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ABSTRACT 

Within the past 15 years, the 223 km2 Beaver Creek watershed of Knox County, 

Tennessee has begun to undergo rapid development. Past studies of urbanizing 

watersheds have indicated that even small degrees of development can impact channel 

stability through increased runoff from impervious areas. Already, bank erosion seems to 

be prevalent throughout the upper reaches, and it is likely that this channel instability is 

contributing to the watershed's severe flooding and water quality problems. 

To determine whether urban development is a cause of the channel instability 

observed in upper Beaver Cre�k, I took qualitative and quantitative field measurements 

of channel stability at 10 sites within eight adjacent sul>basins and tested for bivariate 

correlation between the channel stability indicators and 10 urbanization metrics generated 

using a geographic information system (GIS). The selected sub-basins ranged from 

3 .1 km2 to 10.1 km2 in area, varied from predominately rural to urban in land use, and 

encompassed many of the different types of topography and underlying geology found 

throughout the upper Beaver Creek watershed. 

I found that the prevalence of bank erosion does increase as urbanization 

increases within the upper Beaver Creek watershed. My data suggest that a total 

impervious area greater than 13-20% and a wooded area of less than 3 8-51 % may lead to 

channel instability within the upper Beaver Creek sub-basins. The observed channel 

erosion is also correlated with the proportion of human to natural uses within the 

catchment and the 30-meter riparian buffer zone, as well as the proportion of wooded 

riparian buffer upstream of the site. 
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CHAPTER I 

INTRODUCTION 

The Effects of Urbanization on Channel Stability 

Stream channels change in response to land use changes within the drainage 

basin, and a change from rural to suburban land use may yield dramatic responses in 

hydrologic and geomorphic systems (Graf 1977). During urbanization of a watershed, 

forested and agricultural lands are typically converted to a combination of impervious 

surfaces-such as roads, parking lots, rooftops and sidewalks-and less-permeable 

surfaces-such as lawns, parks and construction areas compacted by heavy machinery 

(Schueler 1994, Barnes et al. 2000, Finkenbine et al. 2000). Typically, development 

takes place in a "quiltwork pattern," with some tracts of land becoming intensely 

developed while other nearby areas remain unchanged (Graf 1977). As a watershed is 

urbanized, numerous artificial channels are added to its network and some natural 

channels may be paved over or straightened (Graf 1977, Marsh 1997). 

Sediment yields change as a watershed becomes increasingly developed. 

Wolman (1967) found that a decline in active farming will decrease sediment yields, but 

that land exposed by construction projects will produce sediment yields several times 

greater than land used for agriculture and sediment yields several hundred times greater 

than forested land. Thus, development tends to cause temporary aggradation in streams 

(Wolman 1967). During the suburbanization of the Denver area, for instance, so much 

sediment was introduced into the Meadow Hills stream network that the watershed's 

floodplain area increased by 270% as the excess alluvium was deposited (Graf 1975). A 

more recent study of an urbanizing tropical watershed in Nigeria showed that the 

channels were aggrading and narrowing due to dramatic increases in sediment yield 

(Jacobson et al. 2001). After construction activities have been completed, stormwater 
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runoff will increase and sediment inputs will coincidently decrease; ultimately, sediment 

yields from completely urbanized areas may be even less than from forested areas 

(Wolman 1967). 

As land is developed, storm water runoff will enter the channel network more 

quickly due to an increase in impervious surfaces, an increase in the number of storm 

drains delivering runoff directly to the stream channel, or both. Thus, lag time, or the 

elapsed time between the center of mass of a storm event and the center of mass of the 

resulting hydrograph, decreases as suburban land uses increase within a previously rural 

watershed (Graf 1977). Runoff volumes may also increase as a result of development. 

Low-level suburban development (i.e., 10-20% impervious area) has been shown_ to 

increase peak flows by two to three times, and formerly inconsequential storms may 

begin to produce substantial amounts of runoff (Booth 1990). Sewered watersheds may 

experience an eightfold increase in peak storm flow as imperviousness increases from 0% 

to 100% (Barnes et al. 2000). 

Many studies have shown that higher peak flows cause stream channel 

enlargement through bed and bank erosion (Wolman 1967, Booth 1990, Finkenbine et al. 

2000, Jacobson et al. 2001 ). Channel widths have been known to double as watersheds 

are urbanized (Trimble 1997; Doyle et al. 2001). Streams may either enlarge at a rate 

roughly proportional to the increased discharges, or they may incise deeply and rapidly in 

a manner completely disproportionate to the increased discharge (Booth 1990). The 

channel slope and geologic material, as well as the flow, topography, and channel 

roughness, are the controls of channel incision (Booth 1990). Riparian vegetation is also 

a factor in channel stability, as studies have shown that the effectiveness of water to erode 

banks is reduced by one to two orders of magnitude in the presence of flourishing 

riparian vegetation (Simon and Downs 1995). Vegetated banks may deliver large woody 
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debris to the channel, thereby increasing the frictional resistance of the bed and possibly 

causing a switchover to aggrading conditions (May et al.1997). However, in urbanized 

areas there is a tendency to purposefully remove the large woody debris from the stream 

channel as a flood control measure (Jacobson et al. 2001). 

While streams are inherently dynamic features of the landscape over geologic 

timescales, from the human perspective an "unstable" stream or stream reach is generally 

considered to be one which changes its pathway and channel structure within several 

years or decades. Johnson et al. (1999) define an unstable channel to be one in which 

aggradation, width adjustment, or planform changes are actively occurring in time and 

space, but note that the main requirement is that there be net morphological change over 

engineering time scales. Similarly, Doyle et al. (2001) define an unstable channel to be 

one which experiences rapid erosion or sedimentation when compared to channels in 

similar geologic or climatic regions. 

De-stabilized banks have been shown to significantly contribute to sediment 

yields, and eroding riparian zones may be a substantial, though often overlooked, cause 

of nonpoint source pollution (Booth 1990, Trimble 1997, Jacobson et al. 2001 ). 

According to Booth (1990), most sediment input to stream systems comes from mass 

failures of stream bank material, particularly when the upper watershed is paved. During 

his 10-year study of an urbanizing basin in southern California, Trimble ( 1997) found 

that channel erosion accounted for approximately two-thirds of the measured sediment 

yield from San Diego creek. Eroding banks are known to de-stabilize engineering 

structures such as bridges, culverts and roadways and often damage expensive waterfront 

property (Trimble 1997, Johnson, Gleason and Hey 1999, Grable 2000). It seems logical 

that excess sediment yields might exacerbate flooding in downstream reaches by 

prematurely filling watershed storage areas. 
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Recent studies have shown that channel instability rapidly alters aquatic habitat 

and may reduce stream biodiversity (Bledsoe and Watson 2001, Doyle et al. 2001, 

Jacobson et al. 2001). Unpredictable flows are particularly hard m the most sensitive 

aquatic species, and several studies have shown that changes in substrate size and 

distribution profoundly impact insect populations (Doyle et al. 2001, Jacobson et al. 

2001). As channels begin to widen due to increased runoff, there is often an opening of 

the tree canopy which formerly sheltered the stream from direct rays of the sun (Jacobson 

et al. 2001). This may lead to increased water temperatures and decreased oxygen levels, 

thereby harming aquatic organisms (Jacobson et al. 2001 ). 

According to a recent U.S. federal-state review of studies relating land use 

change to changes in physical stream habitat (Jacobson et al. 2001 ), links between 

channel erosion and basin-scale land use have been hard to document except in cases of 

extreme urbanization. In his Australian study, Neller (1998) used erosion pins to monitor 

bank erosion over an 18-month period in adjacent rural and urban catchments and found 

that the rate of channel erosion in the urbanized watershed was three to six times greater 

than that of the rural watershed. Several successful studies have related channel 

widening/incision to land use changes in the salmon-rich Pacific Northwest, such as a 

1991 study that found that channel stability and fish habitat quality both declined rapidly 

after 10% of the watershed was covered by impervious surfaces (Scheuler 1994, Booth 

1996, Booth and Jackson 1997, May et al.1997). A recent study of three Indiana 

watersheds (Doyle et al. 2001) found that measurements of excess shear stress, bankfull 

discharge recurrence interval and critical discharge recurrence interval are indicators of 

bank stability that may be linked to the percentage of dense residential housing in the 

drainage area. The group concluded, however, that more research would be needed to 

establish a definitive relationship between channel erosion and urbanization. Bledsoe and 
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Watson (2001) recently modeled the effects of watershed imperviousness on channel 

instability and aquatic ecosystem degradation, but stated that measured data on the effects 

of urbanization on stream channel form are still rare. 

Research Objective 

While many studies have attempted to correlate urbanization with the 

degradation of water quality and aquatic habitat, relatively few have tried to correlate 

urban development with channel morphology. This is surprising because a direct 

relationship exists between physical changes in a stream and changes in stream health 

and biodiversity (Booth 1996, May et al. 1997, Jacobson et al. 2001 ). Physical habitat 

changes are actually thought to be more pervasive and persistent than changes in stream 

chemistry (Jacobson et al. 2001 ). Moreover, diffuse, or nonpoint, sources are now the 

leading cause of water pollution in the United States, and sediment influxes from bank 

erosion may be a significant contributor to nonpoint source pollution (Booth 1990, 

Trimble 1997, Barnes et al. 2000, Jacobson et al. 2001 ). 

This study was undertaken to establish a relationship between simple, 

inexpensive measurements of channel stability and surrounding land use. While some 

researchers have found a relationship between changes in channel geometry and changes 

in land use over time (Booth 1996), I hypothesized that there would be a relationship 

between bank stability and different degrees of urbanization within adjacent sub-basins. 

By establishing current relationships between physical channel parameters and 

surrounding land use, it might become possible to predict the degree of physical stream 

habitat change that is likely to occur at various levels of urban development. Ultimately, 

by determining the point at which urbanization impacts streams beyond an ecologically 

sustainable level within a given area, it might become possible for local policy makers to 

5 



establish a threshold level of development for a particular watershed or county before 

irreparable damage to streams and aquatic life occurs. 

Organization of Thesis 

This thesis is divided into six major sections. The "Introduction" has presented 

an overview of research related to the effects of urban development on stream channel 

morphology and has identified the objective of this study. Chapter II, "The Study Area," 

introduces the reader to the general physiography of the selected focus area, the upper 

Beaver Creek watershed in north Knox County, Tennessee, and summarizes the 

environmental and development issues currently faced by the watershed's inhabitants. 

The study methods, results and discussion are divided into two main categories. 

Chapter III, "Evaluation of Channel Stability," contains all of the information related to 

efforts to characterize channel stability using qualitative and quantitative indicators. 

Chapter IV, "Evaluation of Land Use and Urbanization," explains the geographic 

information system (GIS) and statistical analyses undertaken to relate basin-wide 

urbanization levels to the bank stability measurements. An overall summary o� the 

results and their implications for future study are included in the final chapter. 

The Appendix contains supplementary information, including a copy of the 

evaluation sheet used during the qualitative assessment of channel stability, channel 

measurements related to baseflow (rather than bankfull) conditions, and bankfull cross 

sections for future reference. 
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CHAPTER II 

THE STUDY AREA 

The Knoxville/Knox County area is one of the fastest growing regions in the 

southeastern United States (Silence 1998) and an ideal location in which to study the 

relationships between urbanization and channel stability. A comparison of water budgets 

computed for urban and non-urban uses within the Knoxville area suggest that 

urbanization has increased annual water surpluses of the Knoxville drainage basins by 

amounts ranging from 95.3 mm to 294.7 mm per year (Kung and McCabe 1987). Over 

the past several years, citizens and local agencies have become particularly concerned 

about development impacts within the Beaver Creek watershed of north Knox County. 

Beaver Creek has a reputation for flooding problems and is showing increasingly poor 

water quality (Marcum 1993, Marcum 1995, Silence 1998, Marcum 2001). The 

Knoxville Water Quality Forum (WQF) estimates that the Beaver Creek watershed as a 

whole already has 18% impervious cover (Craig 2001b). This is alarming because 

previous studies of streams within humid areas of the United States have shown that 

channel instability and possibly irreversible declines in aquatic ecosystems commonly 

begin at 10-20% impervious cover (Bledsoe and Watson 2001). 

General Physiographic Setting 

The Beaver Creek watershed is located within north Knox County in eastern 

Tennessee (Figure 2-1). Beaver Creek lies within the Lower Clinch River watershed, 

and the upper half of Beaver Creek has been assigned the 12-digit hydro logic unit code 

060102070301. The 223 km2 (or 86 mi2) Beaver Creek watershed is a rectangular area 

bounded by Copper Ridge to the north and Black Oak Ridge to the south (Ogden 2000b ). 

It completely contains Beaver Ridge. Beaver Creek runs for 71 km (or 44 mi) from its 
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Knox County, Tennessee 

C V 
Beaver Creek Watershed, 

Knox County 

Scale: 
0.5 0 0 .5 1 1 .5 2 Ki lometers 

Data Sources: Elevation data from Tennessee 
Spatial Data Server. Streams derived from TVA 
1 978, TVA 1 987a, TVA 1 987b and TVA 1 992 . 
Sub-basin outlines derived from Ogden 2000a. 
Gauge location obtained from NWISWeb. 

N 

+ 

Legend : 

e USGS Gauge 
Af_ Streams 
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Elevation (m) 

301 - 323 
323 - 344 
344 - 366 

� 366 - 388 
- 388 - 409 
- 409 - 431 
1111] 431 - 453 

453 - 474 
CJ 474 - 496 

Figure 2-1. The Upper Beaver Creek Watershed, Knox County, Tennessee 
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headwaters at Harbison Crossroads to its confluence with the Clinch River at Melton 

Valley Lake (Silence 1998). From its headwaters to its mouth, Beaver Creek only 

descends 85 m (or 279 ft), a gradient of 0.013% (Silence 1998). This low gradient causes 

peak flows to move through the channel very slowly, and flooding is common in many 

areas adjacent to the stream (Silence 1998). 

Beaver Creek lies within the Valley and Ridge province in the humid 

southeastern United States. Located at the contact between the Knox Group and the 

Middle/Lower Chickamauga, the watershed is predominately underlain by sedimentary 

rocks, including limestone, dolomite, sandstone and shale (Cattermole 1966, Ogden 

2001a). While most of the watershed contains moderately drained soil, some areas have 

poorly drained soils (e.g. clay layers over 30 meters deep) that generate a lot of runoff 

(Ogden 2000a). Several springs and sinkholes in the upper part of the watershed are 

characteristic of the karst terrain prevalent in this area of Tennessee (TVA 1978, TVA 

1987a, TV A 1987b, TV A 1992). 

Hydrologic Data 

One continuous record of hydro logic data exists for the Beaver Creek watershed : 

annual peak discharge data from 1967 through 2000 taken at USGS stream gauging 

station 0353180 on Willow Fork near Harbison Crossroads (Figure 2-1). Years of 

hydrological studies have demonstrated that the 1.5-year peak discharge recurrence 

interval typically correlates to bankfull discharge (Knighton 1998). To estimate the 

bankfull discharge at Willow Fork, I entered the annual maximum peak discharge values 

into an Excel spreadsheet and ranked the 34 values from largest to smallest. I then 

calculated the recurrence interval (in years) associated with each discharge using the 

equation Tr
= (n+ 1)/m, where "n" is equal to the number of peak discharge measurements, 

9 
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and "m" is equal to the ranking of the discharge measurement (Dunne and Leopold 

1978). By graphing the recurrence intervals versus the maximum annual discharge 

values on Gumbel probability paper and fitting a straight line to the data (Figure 2-2), I 

was able to estimate the discharge corresponding to a 1.5-year recurrence interval, 

namely 4.0 m3 Is. I would later be able to compare this bankfull discharge value to 

bankfull discharge values obtained through channel geometry measurements. The 

probability graph shows that, as of 2000, a 100-year flood event had not occurred in the 

Beaver Creek watershed for at least 34 years. 

For future research purposes, it should be noted that intermittent annual peak 

discharge measurements were taken on the South Fork tributary of Beaver Creek (USGS 

stream gauge 03535140) from 1967-1978 . Also, within the past few years, USGS has 

begun placing several new peak flow gauges within the Beaver Creek watershed, 

including one in the lower watershed at Solway (gauge 03535400), one in the middle part 

of the watershed in Powell (03535195), and another gauge on Willow Fork in Halls 

(035351830). The Solway gauge is measuring discharge in addition to stage and 

precipitation, but it will be several more years before a hydrologic rating curve can be 

developed (Mihlbachler 2001 ). 

Environmental Concerns 

Beaver Creek is listed on Tennessee's 1998 Clean Water Act Sect_ion 303(d) list 

of impaired waterways due to habitat alteration, nutrients, pathogens and siltation, and is 

categorized as having a high priority for Total Maximum Daily Load (TMDL) 

development (Tennessee Department of Environment and Conservation web site at 

www.tdec.com). The likely causes of impairment have been identified as agriculture, 

drainage and filling of wetlands, land development and municipal point sources. 
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According to the Beaver Creek Watershed Assessment Team, the stream has high fecal 

coliform counts and large phosphorous and nitrogen loads, and has experienced 

significant habitat alteration (Craig 2001, Knoxville Water Quality Forum (WQF) 2001). 

The Team thinks that the water quality problems in Beaver Creek are due to poor 

construction practices, poor landscaping practices (e.g., over-fertilization), leaking sewer 

pipes and septic systems, and in-stream dumping of trash and debris (Craig 2001). 

During a preliminary reconnaissance of the Kerns Branch watershed, I observed that 

many cows have direct access to the stream and have trampled down banks in several 

areas (Parish and Young 2001 ). 

Citizen concerns about flooding and water quality deterioration have led to 

several recent governmental studies in the Beaver Creek Watershed. While updating its 

General Plan for Knoxville in 1993, the Metropolitan Planning Commission (MPC) 

became concerned that more and more developers were trying to build on steep ridges 

and floodplain areas within Knox County (Marcum 1993). Local citizens had been 

warning MPC that building proposed subdivisions within the Beaver Creek area would 

worsen the area's flooding problems. MPC suggested that the Tennessee Valley 

Authority (TV A) produce an updated floodplain map of the Beaver Creek area to address 

these concerns (Marcum 1993). In the spring of 1995, a group of citizens incorporated 

themselves as the Halls Neighbors Association and began to vocalize their concerns 

about increasing development within the Beaver Creek floodplain (Marcum 1995, 

Silence 1998). The association was convinced that floodplain boundaries had been 

drawn at least two feet too low and petitioned the county to re-map the area (Marcum 

1995). 

In response, Knox County contracted with Ogden Environmental and Energy 

Services, Inc. (hereafter referred to as "Ogden") to perform a two million dollar project in 
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1998 to digitally re-map the Beaver Creek floodplain and model flooding based on future 

development scenarios (Silence 1998). The flood study was designed to update the Flood 

Insurance Study published in 1982 by the Federal Emergency Management Agency 

(FEMA), and was intended for presentation to FEMA and TV A (Ogden 2000b, Silence 

1998). The resulting two-volume Beaver Creek Watershed Flood Study (Ogden 2000a) 

provides the 100-and 500-year flood boundaries for selected stream reaches as well as 

water surface profiles for the 2-, 5-, 10-, 25-, 100-, and 500-year floods. Ogden used 

HEC-1 and HEC-RAS models to determine frequency discharges and stages along 

Beaver Creek and twelve of its tributaries (Ogden 2000a). The flood models showed that 

peak discharges and flood elevations are most sensitive to inflows from the surrounding 

drainage area north of the Allen Branch tributary, or the upper third of the watershed 

(Mihlbachler 2001 ). Thus, the control of peak discharges and hydrograph timing in the 

upper watershed will be critical to effective storm water management (Ogden 2000a). 

Current and Expected Land Use 

Land use within Beaver Creek may be generalized as rural with developed areas 

throughout (Ogden 2000a). The majority of the developed areas are residential in nature, 

and most are clustered around the main traffic corridors (Ogden 2000b ). The current 

percent land use distribution within the uppermost 19 sub-basins of the Beaver Creek 

watershed is depicted in Figure 2-3, and it can be seen that the individual sub-basins 

range from rural (e.g., Sub-basin 03, Kerns Branch) to wholly urbanized (e.g., Sub-basin 

06). The Knoxville WQF estimates that the Beaver Creek watershed as a whole already 

has 18% impervious cover (Craig 2001 b ), and the Knoxville-Knox County Metropolitan 

Planning Commission (2000) predicts that 85% of the watershed will be developed 

within the next 15 years. 
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The results of the Beaver Creek flood study and floodplain mapping project have 

led to an integrated effort to look at the status of the entire watershed, including zoning 

and development, water quality, and wildlife (Marcum 2001). Knox County, Knox Land 

and Water Conservancy (KLWC), Hallsdale-Powell Utility District (HPUD), the 

Knoxville Field Office of the United States Department of Agriculture's (USDA) Natural 

Resources Conservation Service (NRCS), Ogden, the University of Tennessee's (UT's) 

Water Resources Research Center (WRRC), UT's Energy, Environment, and Resources 

Center, and the National Association of Conservation Districts have partnered together as 

the Beaver Creek Watershed Assessment Team in an effort to control flooding, improve 

water quality, and allocate land for open space, recreation, and trails (Craig 2001 a, 

Knoxville WQF 200 1 ). KLWC has received a grant from TV A to . develop a conservation 

easement acquisition program within the watershed, and an Americorps team is helping 

the group to identify wetland areas and establish greenways (Craig 200 1b, Knoxville 

WQF 200 1 ). The work undertaken in the Beaver Creek area and the lessons learned will 

be applied to the assessments of other Knox County watersheds (Craig 200 1b), many of 

which face the same intense development pressures in a similarly restrictive valley and 

ridge setting. 

As of March 2003, Knox County will be required to obtain a permit to discharge 

storm waters to the waters of the State (Ogden 2000a). To qualify for the permit, the 

county will need to have a storm water program in place to address public needs for 

education and outreach, public involvement, illicit discharge detection and control, 

construction runoff controls, post-construction runoff controls, and best management 

practices for municipal operations (Ogden 2000a). In 2000, Knox County decided to 

make Beaver Creek the subject of its first Storm Water Master Plan due to development 

pressures within the watershed, the frequency and extent of flooding, and the high 
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potential for future development and associated flooding (Ogden 2000a). Knox County 

re-hired Odgen Environmental and Energy Services, Inc. to examine flood solution 

alternatives for "priority areas," or those areas that had experienced recent and/or frequent 

flooding. In its report, Ogden (2000a) has recommended placing several detention basins 

in the upper part of the watershed, but these have not been constructed to date. 

Study Design 

In a recent review of studies relating physical stream changes to changes in land 

use, the United States Geological Survey (USGS) categorized the work to date into four 

categories: historical, process, modeling and associative (Jacobson et al. 200 1 ). After 

weighing the advantages and disadvantages of each approach, I decided to conduct an 

associative study within the upper Beaver Creek waterfhed. 

Historical studies document the sequence and causes of disturbance so that 

researchers are better able to discern natural versus human influences on channel 

structure and estimate baseline conditions. It may take many years for land use change 

impacts to be transmitted through a channel network. Only one historical gauging station 

exists in the Beaver Creek watershed (located on Willow Fork), and it has only recorded 

annual peak flows since 1967; until recently, no studies of water quality had been 

conducted in this watershed. Thus, in spite of the availability of historic aerial 

photographs of the area, there seemed to be little opportunity for relating land use change 

to changes in physical stream habitat over time. 

Process-based studies are experimental in nature and are often conducted by 

comparing stream responses between treatment and control sites or by monitoring a 

single site before, during and after land use change. Funding and time constraints 

prevented me from conducting this type of in Beaver Creek. However, there are still 
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locations within the upper watershed that might make a process-based study feasible for 

another researcher. 

While computer modeling studies of urbanization impacts on streams have been 

performed on a basin scale and channel scale, researchers are only just beginning to 

incorporate both scales into a single model (Jacobson et al. 2001 ). Many of the equations 

used in such models are based on experiments and monitoring activities conducted in 

disparate areas of the cotmtry on very large basins, and might not be truly applicable to a 

small basin in East Tennessee. Thus, I decided not to do a modeling study in this area. 

Associative studies correlate basin-scale and/or riparian-scale land use to 

physical habitat variables, and per Jacobson et al. (2001 ), they are useful tools for 

screening potential links between land use and stream habitat before more expensive and 

time-consuming types of studies are conducted. Land use within each of the 19 sub­

basins of upper Beaver Creek is quite varied, ranging from predominately rural to 

predominately urban, so I expected the upper Beaver Creek watershed to provide a good 

opportunity for linking the presence/absence of channel erosion to different land use 

patterns within adjacent sub-basins sharing very similar climatic and geologic histories. 

In the spring of 2001, the University of Tennessee's Department of Geography made 

qualitative observations about land use, water quality and bank stability in the upper 

Beaver Creek watershed (Parish and Young 2001 ). Nine out of eleven groups reported 

moderate to significant bank erosion in their assigned areas, suggesting that both stable 

and unstable sites could be located within the upper watershed. By combining qualitative 

and quantitative field observations of channel stability with GIS-based land use 

calculations (Doyle et al. 2001 ), I planned to establish a threshold value of urban 

development for the upper Beaver Creek watershed beyond which channel instability 
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would be likely to occur. I reasoned that channel instability within the upper watershed 

would exacerbate downstream flooding and water quality problems. 

I initially set out to measure bank stability at least one location within each of the 

19 sub-basins in the upper third of the Beaver Creek watershed, or .that area of the 

watershed upstream of Allen Branch and east of Interstate 75. After driving for several 

days throughout the 83 km2 (32 mi2) upper Beaver Creek watershed, however, I 

discovered that even though "windshield" surveys had been possible in most of the area, 

the majority of the streams are fenced out at the water's edge by private property owners 

and there are very few places to park ( due to a lack of shoulders on any of the roads). 

These conditions made it very difficult to gain access to sampling locations within some 

of the basins. In addition, because I conducted field work during a period of extreme 

drought, many of the smaller streams were completely dry. In the end, I was able to 

locate 10 accessible and suitable study sites within eight of the upper Beaver Creek sub­

basins: Beaver Creek Sub-basin 05, Cox Creek, Hines Creek, Kerns Branch, Mill Branch, 

North Fork, Thompson School Branch, and Willow Fork. These eight second- and third­

order sub-basins ranged from 3.1 km2 to 10.1 km2 in size, and varied from predominately 

rural to urban (Table 2-1). The 10 site locations also encompassed many of the different 

types of topography and underlying geology found throughout the upper watershed. 
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CHAPTER III 

EVALUATION OF CHANNEL STABILITY 

I hypothesized that channel instability, as evidenced by the prevalence of bank 

erosion, would be correlated with urbanization in the upper Beaver Creek watershed such 

that an increase in development would lead to more visible bank erosion. I reasoned that 

this relationship would occur due to the tendency of developed, or more densely paved 

land, to produce greater volumes of storm runoff and speed that runoff directly to stream 

channels, thereby altering the original hydro logic conditions of the watershed. I decided 

that I would use both a qualitative and quantitative field method to designate each site as 

"stable" or "unstable." This chapter discusses the two field techniques used to assess 

channel stability and compares their results. 

Site Locations and Timeframe of Study 

From November 3, 2001 to December 18, 2001, I took quantitative and 

qualitative field measurements of channel stability at 10 different locations within the 

upper Beaver Creek watershed (Figure 3-1 and Table 3-1 ). These 10 locations included 

one site along the main stem of Beaver Creek (in Sub-basin 05) and nine sites along 

seven different tributaries-Cox Creek (CX), Hines Branch (HB), Kerns Branch (KB), 

Mill Branch (MB), North Fork (NF), Thompson School Branch (TS), and Willow Fork 

(WF). The site numbering scheme for the tributaries includes the two letter code used for 

each sub-basin during the Knox County flood study (Ogden 2000a) combined with my 

own two-digit code representing the general location of the reach along the stream, such 

that 01 = near the mouth (lower sub-basin), 02 = in the middle, and 03 = near the 

headwaters (upper sub-basin). It took approximately four hours for me and an assistant 
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who recorded data to take a complete set of qualitative and quantitative measurements at 

each site. 

Qualitative Assessment of Channel Stability 

Qualitative Methods 

At the recommendation of the Beaver Creek Watershed Assessment Team, I used 

the U.S. Department of Agriculture's Stream Visual Assessment Protocol (USDA 1998) 

to assess the general stream health and bank stability at each site. The SV AP 

measurement for bank stability was simpler then most and allowed me to easily compare 

my study sites. It also provided more information than the four-tier method outlined by 

Booth ( 1 996) in his suggested methodology for relating channel stability to land use 

change. After walking down and sketching a portion of the stream that was 

approximately 12 times longer than the active channel width (i.e., an average reach length 

of 28 meters), I scored 10  criteria using a scale of 10 (best) t� 1 (worst). The 10 

assessment elements and their evaluation criteria are summarized in Table 3-2. 

Intermediate scores were possible for each indicator. 

At each site, I sketched the site and recorded the qualitative indicator scores on a 

copy of the "NRCS Stream Visual Assessment Protocol" field checklist (Figure A-1). In 

accordance with the protocol, I added together the 10 indicator scores and divided the 

sum by 1 00 to obtain an overall site score ranging from 10 to 1 .  These overall site scores 

may be interpreted as follows: 2'.: 9.0 = excellent condition; 7.5 - 8.9 = good condition; 

6. 1 - 7.4 = fair condition; and, � 6.0 = poor condition (USDA 1998). 

Since the bank stability indicator was of primary interest, I documented any 

evidence of significant bank erosion with verbal descriptions and digital photographs. 

Signs of erosion included undercut banks and exposed tree roots (Figure 3-2a), exposed 
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edges of sewer lines crossing stream channels (Figure 3-2b ), and exposed bridge 

footings (Figure 3-2c). I also looked for tilting vegetation, scalloped edges (USDA 

1998), and knickpoints (Neller 1998). At the conclusion of each qualitative assessment, I 

added an overall qualitative descriptor of "sta�le," "eroding" or "aggrading" to the 

comments section of the NRCS form. Whenever I used the photographs to document 

some of the visual observations, I also recorded the site-specific photo numbers and 

corresponding descriptions on the NRCS form. General information about each of the 10 

sites, including an overall visual asst:Ssment of channel stability and a summary of 

adjacent land use, is provided in Table 3-3 . 

Qualitative Results 

None of the stream reaches examined during this study received an "excellent" 

health rating, and six out of the 10 reaches were ranked as "fair" (Table 3-4). The upper 

Kerns Branch site (KB03) and lower Cox Creek site (CX0I)  had the best overall ratings 

(8.0 and 7.6 out of 10, respectively), whereas the upper North Fork site (NF03) had the 

worst rating (4.2 out of 10). KB03 and CX0I both run alongside a two-lane road in a 

wooded area with scattered houses. NF03 is located at the intersection of three two-lane 

roads at the entrance of a subdivision which appears to be several decades old. 

Of primary interest to this study are the SV AP scores relating to bank stability. 

The upper North Fork site (NF03) and the middle Hines Branch site (HB02) received the 

lowest bank stability scores (1 out of 10). NF03 appears to be deeply incised, as was 

evidenced by a tree hanging with its roots completely suspended one foot above the 

channel center, a knickpoint of greater than 1 foot downstream of a culvert at the north 

end of the reach, an exposed gas pipe, and over 60% of the channel reach exhibiting 

scoured ( or "raw") banks with exposed tree roots. It was difficult to take photographs 
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Table 3-4. Results of the USDA Stream Visual Assessment 

Site Name � .c .c � {Ii .c � 
.� C 

C = � -

� =  
{Ii � ,_ -

- C 0 (j ....,. C 
� ,_ 

- 0 -; t)J) 0 N :s ,_ C C � 
= -� 0 0 � ,_ = 

(j � 
C :: 0 ·-

� = -� e {Ii 00 = - - C = - e e � 0 .c -C ·- 0 = - - ,_ � ·- -

= "O ,_ ,_ = 00 = = ,_ .c {Ii � = 
> 

0 - .c -; -

Creek ID ·c � § 
- (j -� � � 0 

,_ = -; .C C "O � = ·- � u 0 � .:::  � z 2 ,_ u 
� = 

,_ ,_ = C t: � - � u ::c <  C. {Ii C > � 
c2 

= < � = C � 0 > 
= 

= 
� 0 

Beaver Creek, BV05 9 10 1 5.5 4 7 10 3 8 3 6.1 Fair 
Sub-basin 05 
Cox Creek, CX0 l 10 10 2 8 1 0  9 5 5 10 7 7.6 Good 

lower 
Hines Branch, HB02 10 10 8 1 3 7 5 5 3 10 6.2 Fair 

middle 
Kerns Branch, KB0 l 1 0  10 7 3 10 7 10 1 1 7 6.6 Fair 

lower 
Kerns Branch, KB03 1 0  7 8 1 0  10  10 10 5 3 7 8.0 Good 

upper 
Mill Branch, MB0 l 10 1 1 9 10 1 0  8 1 1 1 5.2 Poor 

lower 
North Fork, NF03 2 3 3 1 10  7 3 5 1 7 4.2 Poor 

upper 
Thompson TS0 l 10 1 0  10  3 1 7 5 5 3 10 6.4 Fair 

School Branch, 
lower 

Willow Fork, WF0l 9 10 5 1 0  1 0  7 4 3 2 3 6.3 Fair 
lower 

Willow Fork, WF02 10 9 4 3 5 6 6 8 6 10 6.7 Fair 
middle 

3 1  



and measurements at this site because the channel was filled with thorny brambles. 

Located behind a Weigel's gas station just downstream of a subdivision and two-lane 

road crossing, HB02 also appeared to be deeply incised. Its banks were de-vegetated and 

inlaid with trash (drink bottles, plastic bags, oil containers,etc.), and several bedrock 

steps were found within the reach. I saw many exposed tree roots and an exposed gas 

line running beneath the road crossing. 

Out of the 10  sites, the lower Willow Fork site (WF0 l)  was the only reach that 

appeared to be aggrading, or storing a large volume of sediment. WF0 1 lay 259 1  m 

downstream from eroding site WF02. The channel was deceptively shallow; after 

stepping into the water to measure pebbles, it became apparent that the banks were 

obscured by at least one meter of mud. I found in-stream vegetation growing along the 

center of the waterway, and I picked up several mussel shells. Located in the middle of a 

flat, grassy area, the WF0 1 reach runs alongside the foot of an elevated shopping center 

that includes a pharmacy and a large grocery store. A black plastic silt screen was still in 

place between the shopping center and the channel at the time of sampling, indicating 

that construction of the CVS Pharmacy had only been recently completed. I speculate 

that the aggradation at WF0 1 was either d� to recent land disturbance at the nearby CVS 

pharmacy, or to infilling from the channel erosion noted upstream at WF02. Either of 

these factors would be compounded by the especially low gradient at this location ( only 

0.00 1 ). Per Reid and Dunne ( 1996), alluvial reaches, or those stream segments bounded 

by lowland floodplains and alluvial terraces, have the greatest risk of aggradation. 

Because the SV AP equates bank stability to the degree of channel erosion, WF0 1 ,  with 

no apparent erosion, received 10  out of 10  for bank stability. Sites KB03 and MB0 l also 

received bank stability scores of 10 out of 10, but neither of these sites showed any signs 

of aggradation. 
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Quantitative Assessment of Channel Stability 

Quantitative M etliods 

In addition to making a qualitative determination of channel stability, I sought to 

classify the 10 sites as having stable or unstable banks based upon a quantitative 

measurement of excess shear stress, or the ability of the channels to mobilize their 

sediments. Excess shear stress, 'te, is equal to 'tc/'tc, the ratio of cross.:.section averaged 

boundary shear stress exerted on the bed to the critical shear, or the shear at which bed 

motion is initiated (Johnson et al. 1999, Doyle et al. 200 1 ). When 't0 exceeds 'tc, particles 

will begin to roll, slide or saltate along the bed (Knighton 1 998). Because 'te accounts for 

both erosive and resistive forces, it is better suited to characterizing channels of variable 

substrate size than more traditional measurements of t0 alone (Doyle et al. 2001 ). 

According to Johnson et al. ( 1999 ), a reach with a 'tc/'tc ratio of less than 1. 0 is considered 

to have "excellent" stability, and a ratio value of 1.0 to 1.5 implies "good" stability . In 

contrast, stream reaches with excess shear values of 1.5 to 2.5 are considered to have only 

"fair" stability, and reaches with values greater than 2.5 are considered to have "poor" 

stability. Although excess shear stress is a new measure of bank stability that has not 

been widely tested, I chose it because it does not require any hydrologic data, as very 

little historical hydrologic data exist for the Beaver Creek watershed. 

Shear stress ( -r0) and critical shear ( 'tc) may be calculated according to the 

following two equations: 

(1) 'to = yRS, 

where y is the unit weight of water, R is the hydraulic radius, and S is the energy slope; 

and 
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where 'tc * is the dimensionless Shields parameter for entrainment of particle of size D, the 

value D is assumed to be the median grai_n size of the bed sediment, and 'Ys and y are the 

unit weight of sediment and water, respectively (Doyle et al. 2001 ). To calculate excess 

shear stress, I measured the bankfull channel geometry and the median pebble size at 

each site. 

Per Reid and Dunne ( 1996), measurements to be used in the calculation of 

sediment transport should be taken within straight, single-stranded reaches that are free of 

local complications. I therefore selected straight reaches without noticeable point bars, 

debris jams or other disruptive features to ensure that an evenly distributed bed sample 

would be measured. I also stayed at least 600 m back from the tributary confluences 

(Reid and Dunne 1996). In keeping with the study by Doyle et al. (2001 ), the selected 

reaches generally corresponded to riffle reaches. However, given the much smaller size 

of the streams in the Beaver Creek study area then those measured by Doyle at al. (2001) 

in Indiana, it was not possible to pick riffle reaches that were 200 meters in length; 

instead, the average length of the riffle reaches used in this study was 7 meters. These 

sampling reaches appeared to be representative of the larger qualitatively assessed 

reaches and the particular lower, middle or upper sub-basin area. 

I used eight survey flags to mark the boundaries of the sampling reach and aid in 

the measurement of channel geometry (Figure 3-3). Flags 1-4 were used to mark the 
0 

boundaries of the active channel, or that part of the stream channel currently occupied by 

water. Flags 5-8 were used to mark the boundaries of the approximated bankfull flow, or 

the level of flow which would cause the stream to overtop its banks. To identify the 

bankfull stage, I looked for breaks in topography from steeply sloping banks to flatter 

floodplain areas and changes in vegetation, such as bare to grass or treeless to trees (Reid 

and Dunne 1996). 
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I measured the length of the reach and took cross-sectional measurements at each 

end of the reach to verify channel uniformity. To measure the width of the upstream 

baseflow cross section, I stretched a plastic tape from flag 1 to flag 2 (perpendicular to 

the flow) at water level. I then used a yardstick to measure the depth of the water to the 

nearest 6 mm (0.25 in) at 0.31 m (I ft) increments along the tape. I made similar 

baseflow cross section measurements downstream using flags 3 and 4. To measure the 

width of the upstream bankfull cross section, I measured the distance between flags 5 and 

6. I took depth measurements from the streambed to the height of the suspended tape 

using a single yardstick or two stacked yardsticks. Again, I took depth measurements at 

0.31-m ( I -ft) increments along the tape and recorded to the nearest 6 mm (0.25 inch). I 

made similar bankfull cross section·measurements downstream using flags 7 and 8. 

To calculate the bankfull hydraulic radius (R) for each site, I graphed each 

bankfull cross section at a 1 :24 scale and used the graphs to calculate the cross-sectional 

area (A) and wetted perimeter (WP). I then calculated R as A/WP and averaged the two 

values for each site to get a representative R for the site (Table 3-5). For comparison, 

similar baseflow measurements are in Table A-1 . 

Table 3-5. Average Bankfull Cross-sectional Area (A), 
Wetted Perimeter (WP) and Hydraulic Radius (R) 

Site A (m�) WP (m) R (m) 
BV05 7.25 8 .17 0.89 
CX0l 7.19 9.85 0.73 
HB02 2.31 4.36 0.53 
KB0l 3 .40 6.63 0.51 
KB03 1.72 5 .85 0.29 
MB0l 0.98 4 .24 0.23 
NF03 5.48 6.86 0.80 
TS0 l 2.68 4.69 0.57 
WF0l 0.33 2.24 0.15 
WF02 2.63 5.20 0.51 
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I used the Wolman (1954) pebble count method to measure the intermediate axis 

of 100 streambed pebbles at regularly spaced intervals along each study reach. By 

dividing 100 by the length of the sampling reach, I determined how many surface pebbles 

would need to be picked up across the width of the stream at each length increment. In 

other words, if the reach was 25 m long, then 100/25 or 4 pebbles would need to be 

measured each time I walked across the stream at one-meter increments. I drew the 

resulting 100-cell grid (e.g. , 4 columns by 25 rows) on a sheet of graph paper to help with 

the data recording. I strung a plastic measuring tape from flag 1 to flag 3 (parallel to the 

stream) and left it in place for reference. 

To avoid sampling bias, I kept an even pace and attempted to pick up whichever 

pebble was directly under the toe of my boot without looking. Because it was fall, I 

frequently had to gently lift or push aside leaves to access the streambed material. Once I 

had measured a pebble, I cast it a short distance behind me so that I would not 

accidentally pick it up and measure it a second time. At most sites, I used a metal caliper 

accurate to 0.01 mm to measure the pebble axes. When the streambed material consisted 

of cobbles and boulders, I used a transparent 12-inch plastic ruler to measure the "pebble" 

axes to the nearest millimeter. Whenever I picked up a handful of smooth colloidal 

material rather than distinguishable grains or pebbles, I recorded the measurement as "S." 

I later assigned these "S" particles an intermediate diameter of 0.03 mm, the average size 

of silt particles (Knighton 1998, Bunte and Abt 2001 ). 

In accordance with Doyle et al. (2001), I assumed that the particle size (D) in 

equation 2 was equivalent to the median grain size of the bed sediment {050).  To 

determine D50 for each site, I entered the 100 pebble count measurements from each site 

into Excel spreadsheets and calculated the median values. The median particle sizes 

ranged from 1 mm to 87 mm, indicating a significant difference in bed material across the 
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upper Beaver Creek watershed (Table 3-6). In general, the upper reaches had coarser 

bedload material than the lower reaches, as would be expected (Reid and Dunne 1996). 

By converting the particle sizes to phi units, or -log2(particle size in mm), and 

graphing their frequency, one can check to see that the particle size distribution has the 

general backward-S shape expected from natural gravel riverbeds (Wolman 1954, Bunte 

and Abt 2001 ). A comparison of the particle distributions for my 10 sites (Figure 3-4) 

reveals that nine of the 10 sites showed the expected particle size distribution, but that 

TSO 1 had a very different particle size distribution ( as explained in the Discussion section 

of this chapter). 

Because the bed slope may be used to approximate the energy slope (S) during 

bankfull conditions (Doyle et al. 2001 ), I used 7 .5-minute topographic maps to calculate 

the channel gradients (Table 3-6) by measuring the rise/run in the immediate vicinity of 

each study site. The study area is found at the intersection of four 1 :24,000 topographic 

quadrangles, namely the Graveston (TVA 1987b), Fountain City (TVA 1978), John 

Sevier (TV A 1992) and Big Ridge Park (TV A 1987a) quads. I also tried using an Abney 

level to calculate channel bed gradients directly, but the changes in slope were too subtle 

for meaningful measurement. 

I selected roughness coefficients, or Manning "n" values (Table 3-6), for each 

site by examining the bedload material (Marsh 1997) and comparing the appearance of 

each reach to photographs published by Barnes (1967). The selected n-values roughly 

agree with the ranges of channel n-values listed in Table 4-9 of the Ogden flood study for 

each tributary, which are said to vary according to season and channel depth (Ogden 

· 2000a). 

To calculate excess shear stress, I still needed to determine values for the three 

remaining variables: the unit weight of waer ('Y), sediment density ('Ys), and the 
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Table 3-6. Summary of Site Physical Characteristics 

Site 
Drainage Gradient Roughness Dso, Qbf, Width to 

area (km2) value (n) mm m3/s depth ratio 

BV05 3 . 1 1 0.00 1 0 .025 5 7.69 4.6 
CX0 l 9.58 0.003 0.055 87 6. 12  8.7 
HB02 1 .28 0.0 10  0 .040 20 3 .79 2.9 
KB0 l  8.03 0.008 0.030 9 6.4 1 5 .2 
KB03 1 .05 0.029 0 .050 68 2.57 1 1 .7 
MB0 l 8 .55 0.005 0.035 14 0 .74 5 .6 
NF03 1 .73 0.0 14  0.045 45 1 2 .55 1 .6 
TS0 l 2 .60 0.006 0.030 1 4.73 3 .9  
WF0 l 1 0 . 1 0  0.00 1 0.025 8 0. 1 0  20.2 
WF02 8.49 0.0 1 0  0.035 14 4.77 4.2 
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dimensionless Shields parameter (-re*). After conducting a literature search, I decided 

that for each site, I would set the unit weight of water (y) equal to 1000 kg/m3
, the 

average density of clear water at 4 degrees Celsius, and the sediment density (Ys) equal to 

2,650 kg/m3
, the average density of limestone, dolomite and sandstone particles (Bunte 

and Abt 2001). I set the dimensionless Shields parameter (-re*) equal to 0.065, an 

approximate average of values derived from reference-based incipient motion studies 

(Doyle et al. 200 I ). Setting 'tc * > 0 .060 ensured that any bed armoring would be 

overcome and that most of the bedload would begin to move (Knighton 1998). I then 

calculated the excess shear stress ratio ( 'te) for each of the 10 site locations (Table 3-7). 

Statistical M etltod 

Due to the nonparametric nature of the collected data, I selected the Kendall rank 

correlation coefficient, -r, for analysis of bivariate correlation between the qual itative and 

quantitative channel stability measurements and for correlation between each set of 

channel stability indicators and the urbanization metrics ( discussed in Chapter IV}. Like 

the Pearson product-moment correlation coefficient, the Kendall -r ranges from -1 to 1, 

with a value of 0 indicating no relationship between the two variables and a value of 1 or 

-1 indicating a perfect, 1: 1 correlation between the selected variables. I reported a 

correlation coefficient as "significant" when the probability of a Type I error was 

determined to be � I 0% (i.e. , p � .10) using a I -tailed distribution. For more information 

about the Kendall rank correlation coefficient, the reader may consult Siegel (1956) or 

Burt and Barber (1996). 

Quantitative Results 

A comparison of the excess shear stress measurements and SV AP bank stability 

scores (Table 3-7) reveals that the five sites with a Johnson stability ranking of "fair" or 
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Site 

BV05 
CX0l 
HB02 
KB0l 
KB03 
MB0 l 
NF03 
TS0 l 
WF0 l 
WF02 

Table 3-7. Comparison of Quantitative and Qualitative 
Measures of Channel Stability 

Critical Excess Johnson SVAP Bank 
Boundary Shear shear Stability Stability 

Shear Stress Stress ('t'c) stress Ranking Score 
('t'0) in kg/m1 

in kg/m1 ('t'e) 
(Doyle et al. (USDA 

2001) 1998) 
0.73 0.54 1 .37 Good 5.5 
2.43 9.33 0 .26 Excellent 8 
5.3 1 2. 15 2.47 Fair 1 
4.00 0.97 4.14 Poor 3 
8.39 7.29 1 . 15 Good 10 
1 . 13 1 .50 0.76 Excellent 9 
1 1 .42 4 .83 2.37 Fair 1 
3.37 0. 1 1 3 1 .44 Poor 3 
0. 12 0.86 0. 14 Excellent 10 
5 .06 1 .50 3.37 Poor 4 
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"poor" (based on thresholds of excess shear stress) were the same sites that showed a 

SV AP bank stability score of less than 5 out of 10 and an overall visual description of 

"unstable" (i. e., eroding through widening or incision). The five stable sites had a mean 

excess shear stress value of 0.74, and the five unstable sites had a mean excess shear 

stress value of 8.76 (or 3.09 if TS0 l  is excluded due to its odd pebble- size distribution). 

A plot of the SV AP bank stability scores versus the excess shear stress measurements 

(Figure 3-5) shows that there is a significant correlation between the quantitative and 

qualitative ·bank stability measurements ('r = -.55, n = 10, p < .02). 

Verification of Channel Geometry Measurements 

I estimated the bankfull discharge (Qbf) at each site (Table 3-6) by deriving 

bankfull velocity from the Manning equation and multiplying it by the average bankfull 

cross-sectional area. The Manning equation states that velocity (v) is equal to 

l .49*[(R213*s 112)/n], where R is the hydraulic radius, s is the channel gradient, and n is the 

roughness coefficient. Using this method, I determined that the 10 sites had an average 

estimated bankfull discharge of 4.95 m3 /s and that site WF02 had a bankfull discharge of 

4. 77 m3 /s. Data from the USGS gauging station upstream of site WF02 indicate that 

Willow Fork has a bankfull discharge of 4.0 m3/s (Figure 2-2). Thus, I was satisfied that 

the Qbr estimates for the upper Beaver Creek watershed were realistic. 

Discussion of Channel Stability Indicators 

During the field work portion of this project, I observal and measured channel 

stability at 10 different sites scattered across the upper Beaver Creek watershed, 

including one site along the main channel (BV05) and nine sites along seven tributaries. 

The eight selected second- and third-order sub-basins ranged from 3 .1 km2 to 10 .1 km2 in 
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size, and varied from predominately rural to urban. The 10 si�e locations also 

encompassed many of the different types of topography and underlying geology found 

throughout the upper watershed. 

Using a qualitative indicator of bank stability described in .the USDA's Stream 

Visual Assessment Protocol (USDA 1998) and a quantitative measurement of excess 

shear stress ( 'te) based on channel geometry and median surface particle size (Johnson et 

al. 1999, Doyle et al. 2001), I determined that five of the 10 sites had unstable, or 

eroding, banks. The selected qualitative and quantitative indicators of bank stability 

correlated well with one another ('t = -.55, n = 10, p < .02) and agreed with the visual 

observations recorded at each site. Thus, it would seem that both the SV AP bank 

stability rating system and the excess shear stress method worked successfully in the 

upper Beaver Creek area. The results from site TSO I ,  however, reveal that there is an 

inherent limitation to the excess shear stress measurement method of quantifying bank 

stability: namely, the Wolman (1954) pebble count method used to approximate the 

particle size (D) used in the critical shear calculation is based upon the assumption that 

the bedload contains coarse gravel. 

The bedload of the lower Thompson School Branch site, TSO 1, consisted of a 

mucky mixture of colloidal silt particles and broken pieces of shale, and exhibited fewer 

of the intermediate gravel-sized particles than were found at the other nine sites. The site 

lay less than 1.6 km (1 mi) downstream of two new subdivision construction sites, or two 

large tracts of newly devegetated and compacted land, so the abundant silt particles may 

have washed in from the construction sites during the proceeding days of heavy rainfall. 

It is also possible that the fine bedload material might have been generated by the mass 

wasting that was evident along the reach. A longitudinal profile of the Thompson School 

Branch (Figure 3-6) shows that TSO 1 was located just downstream of a bedrock shelf 
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marking the contact between the Moccasin Formation (shale units interbedded with 

limestone) and the Martinsburg Shale (1V A 1987b, TV A 1992, Cattermole 1 966). Per 

Knighton ( 1 998), a significant break in slope of the longitudinal profile may lead to a 

rapid transition from coarse to fine sediments. No matter what the reason for the fine 

bedload at TSO 1 ,  the Wolman pebble count method was not intended for addressing 

bedload with 45% of the material less than I mm in size (Wolman 1954, Bunte and Abt 

2001 ). 

It is worth noting that the accuracy of the excess shear stress measurements 

might have been improved had I measured the actual average particle density at each site 

rather than using an average value based upon the three main types of lithology found in 

the study area (limestone, dolomite and sandstone). Technically, the unit weight of the 

sediment at each site could have varied by as much as 800 kg/m3 (Bunte and Abt 2001 ), 

which might have altered the calculated critical shear stress measurements for D50 by as 

much as a factor of 1 .  7. A measurement of water temperature at each site would also 

have improved the accuracy of the measurements. 

Overall, the qualitative measurements of bank stability, or the SV AP bank 

stability scores, are the more reliable of the two sets of measurements. This is not 

unusual given the complexity of channel-related questions (Reid and Dunne 1996). 

Wolman ( 1967) also noted that erosion and flooding characteristics of streams might be 

more easily compared through visual and subjective analysis than through any 

measurable parameters. 

Because channel morphology is typically influenced by topography, geology, bed 

roughness and/or riparian vegetation, I attempted to correlate each set of bank stability 

indicators with local morphological controls {Table 3-8). The excess shear stress 

measurements were correlated with the average mean slope of the drainage area 
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(r = - .33, n = 10, p < .09) and the SVAP riparian zone scores ('r = .37, n= I O, p<.07), such 

that channel stability decreased as average slope decreased and increased as the width of 

the riparian zone decreased. Because the mean slope of the drainage area was strongly 

related to the median particle size found at each site (t = .67, n= I O, p < 0.004), it made 

sense that the excess shear stress measurements tended to decrease as the particle size and 

slope increased. However, it was unexpected for the bank stability to decrease as the 

riparian buffer increased in width. Perhaps the Beaver Creek channels become less stable 

when there is a greater availability of large woody debris (Jacobson et al. 2001 ). There 

were no significant relationships between either set of bank stability indicators and 

channel roughness, underlying geology, or soil type. 

Both the qualitative and quantitative indicators of channel stability were 

correlated with the size of the area draining directly to the observation point (SV AP: 

-r = .46, n = 10, p< .04; excess shear stress: 't' = - .38, n= lO, p<.06) and the estimated 

bankfull discharge at each site (SVAP: 't' = - .4 1 ,  n = 10, p< .05; excess shear stress: 

-r = .33, n= I O, p<.09). The fact that channel erosion potential increased as basin size and 

discharge increased suggests that a cumulative effect of flow and/or sediment yield­

both of which could be altered by land use change-might have impacted the I O  sites 

(Jacobson et al. 200 1 ). 

In the next chapter, I wil l  discuss the degree of correlation between each set of 

bank stability measurements and the 1 0  urban development indicators that I derived for 

the upper Beaver Creek watershed. 
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CHAPTER IV 

EVALUATION OF LAND USE AND URBANIZATION 

Creation of a Geographic Information System 

During the second phase of my project, I created a geographic information 

system (GIS) to test for relationships between my field measurements of channel stability 

and the level of urban development found within the catchments contributing to each of 

the 10 site locations. I created the GIS using ESRI software, including Arc View 3 .2, 

Arclnfo 8, and ArcGIS. This section discusses the steps that I took to obtain or create the 

various layers needed for land use determination and the calculation of 10  urbanization 

metrics: three estimates of total impervious area, a human use index, wooded area, road 

density, road and stream crossing density, population density, and riparian land use as 

represented by the proportion of human to natural uses and by the total percent of 

wooded, or mature, buffer. 

I was able to obtain Beaver Creek sub-basin outlines, land use polygons, 

hydrologic soil types, and soil curve number (SCS) polygons in digital format from 

Ogden, now known as AMEC (Mihlbachler 200 1 ). These files were created in 1999 as 

part of the Knox County flood study (Ogden 2000a) and were provided to me in Lambert 

projection. The watershed and sub-basin boundaries were delineated using four-foot 

contour intervals, knowledge of drainage conveyance and land use, and field verification; 

drainage to or from surface streams via sinks, seeps or springs was not considered in the 

basin boundary analysis (Ogden 2000a). I clipped all of the Ogden layers to match my 

study area within the upper watershed (i.e., those 1 9  sub-basins upstream oflnterstate 75 

and the Allen Branch tributary) and overlaid them with other data layers, such as roads 

and streams, for analysis. 
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I created a stream layer in line format by downloading digital raster grapiics 

(DRGs) of the Fountain City, Graveston, John Sevier and Big Ridge Park 7.5-minute 

topographic quadrangles from the· Tennessee Spatial Data web site (http:/ /63 . 148. 169 .50), 

importing the images into Arc View, and tracing over the 1 :24,000 .blue lines with a 

mouse. I created a layer of sample points by using field notes and site sketches to locate 

and digitize the 10  sites over the DRGs. When the sampling point was located within the 

upper or middle portion of the sub-basin, I digitized the polygonal boundary of the 

smaller catchment area by tracing a new watershed divide over the DRGs. I obtained 

road data for the study area by clipping ESRI's 1995 detailed roads coverage of the 

southeastern United States with the sub-basin polygons. The roads were originally 

derived from US Bureau of Census TIGER/Line files. 

I tried using two different datasets to describe land use within the study area: 

( 1 )  30-meter grid Multi-Resolution Land Characteristics Consortium (MRLC) National 

Land Cover Data (NLCD) for the coterminous United States in equal-area Albers 

projection (Figure 4-1), known hereafter as the MRLC dataset; and (2) Ogden land use 

polygons re-projected into equal-area Albers projection (Figure 4-2), known hereafter as 

the Ogden dataset. The MRLC dataset was based on interpretation of 30-meter 

resolution Landsat 5 Thematic Mapper (TM) satellite data, and the base dataset for the 

Tennessee NLCD coverage was leaves-off/on Landsat TM data collected between 

February 1991  and June 1993. The Ogden land use polygons for Beaver Creek had been 

created in March 1999 during the 2000 Knox County flood study. According to Ogden 

personnel, these polygons were created by field-verifying zoning coverages from the 

Knox County GIS, with special emphasis placed on land uses greater than 100 acres 

(Mihlbachler 2001 ). For easier comparison of the two coverages, I simplified the land 

use categories (Table 4-1). Homes on plots 2'.: 1 acre were considered to be low density 
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Data Sources: Land cover data derived 
from the 30-meter resolution National Land 
Cover Data Set. Sub-basin outl ines derived 
from Ogden 2000a. Streams derived from 
TVA 1 978, TVA 1 987a, TVA 1 987b and 
TVA 1 992 . 

1 

Scale: 
0 1 2 Kilometers 

N 

+ 

Legend : 

@ Site Locations 
N Streams 
D Sub-basins 
Land Use: 
1111 agricultural 
1111 commercial/industrial 

pasture/grass 
L j residential (low) 

residential (high) 
transitional 

1111 water 
1111 wooded 

Figure 4-1. Land Use, 1991-1993 
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Data Sources : Land cover and 
sub-basin outl ines derived from 
Ogden 2000a. Streams derived 
from TVA 1 978, TVA 1 987a, 
TVA 1 987b and TVA 1 992. 

1 

Scale: 

0 1 2 Kilometers 

N 

+ 

Legend : 
® Sites 

N Streams CJ Sub-basins 
Land Use: 1111 agricultural 1111 commercial/industrial 

pasture/grass 
-] residential (high) 
[==:J residential (low) 
[==:J transitional 1111 water 
1111 wooded 

Figure 4-2. Land Use, 1999 
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Table 4-1. Land Use Categories 

Land Use 
MRLC Land Use Ogden Land Use 

Categories Categories 
water open water water 

residential (low) low intensity residential residential (low density) 

residential (high) 
high intensity residential residential (med. density) 

residential (high density) 
high intensity commercial 

commercial/industrial commercial/industrial/ industrial 
transportation impervious 

transitional transitional disturbed/transitional 
deciduous forest woods (thick cover) 

wooded evergreen forest woods (thin cover) 
mixed forest 

agricultural row crops agricultural 
pasture/ grass open land - good 

pasture/ grass other grasses meadow (urban/recreational) 
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residential housing. Row crops were considered to be agriculture, and pasture was 

lumped together with other grassy areas. 

Calculation of Landscape Metrics :  Methods and .Results 

Land Use Percentages 

To determine the percent of each land use type within each of the 1 0  

catchments during 1 99 1- 1993, I converted the catchment polygons to grids and used 

them to mask ( or clip) the MRLC land cover grid. I then exported the grid values to a 

Microsoft Access database for manipulation. Since each 30-meter grid cell was 

equivalent to 0.22 acres of land, I used the following equation to determine the percent of 

land used for a particular purpose within a given watershed: 

% land use = 100 * [(Pixel count for combined land use value and catchment value) * 
0.22 acres]l(Catchment size in acres). 

To determine the percent of each 1 999 land use type within each of the 1 0  

catchments, I clipped the Ogden land cover polygons with the catchment polygons and 

recalculated the area of each resulting polygon. To determine the percent of land used for 

a particular purpose within a given watershed, I used the following equation: 

% land use = JOO * [(£Catchment areas devoted to a given land use in m1)/ 
(Catchment size in m1) 

The two sets of land use percentage results are compared in Table 4-2 . It is 

possible that the difference column (Ogden% - MRLC¾) actually shows a six-yea- land 

use change, which would indicate a significant increase in development throughout the 

upper Beaver Creek watershed from 199 1- 1 993 to 1999. However, some of the 

differences in percentages are undoubtedly due to differences in the way the data were 

collected (satellite interpretation versus field verification of zoning maps). Based upon 
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Table 4-2. Comparison of Land Use (by Percent) within Each Catchment 

Catchment Land Use MRLC% Ogden% Difference 
wooded 50 32 - 1 8  

transitional 0 5 +5 

residential (low) 14 20 +6 

BV05 residential (high) 1 1 9  + 1 8  

pasture/ grass 29 23 -6 

commercial/industrial 3 2 - 1  

agriculture 3 0 -3 

wooded 74 48 -26 

residential (low) 6 16  +10  

CX0l 
residential (high) 1 14 +13  

pasture/ grass 1 6  20 +4 

commercial/industrial 0 1 +1  

agriculture 3 1 -2 

wooded 58 2 1  -37 

residential (low) 3 1  1 3  - 1 8  

HB02 residential (high) 4 65 +6 1 

pasture/ grass 6 0 -6 

commercial/industrial 1 1 0 

wooded 5 1  40 -11 
transitional 0 1 + 1  

KB0l 
residential (low) 1 1 5  +14 

residential (high) 0 1 + 1  

pasture/grass 45 42 -3 

agriculture 3 0 -3 

wooded 88 84 -4 

KB03 residential (low) 0 4 +4 

pasture/ grass 11 12 +1  

wooded 61  46 - 1 5  

residential (low) 2 2 1  + 19  

MB0l 
residential (high) 0 3 +3 

pasture/ grass 3 1  28 -3 

commercial/industrial 1 0 - 1  

agriculture 6 2 -4 

wooded 62 43 - 1 9  

residential (low) 0 1 8  + 1 8  

NF03 
residential (high) 0 15  +15  

pasture/ grass 34 23 -11 
commercial/industrial 0 1 +1 

agriculture 4 0 -4 

wooded 41 25 - 1 6  

TS0l 
residential (low) 0 1 5  + 1 5  

pasture/ grass 53 58 +5 

agriculture 6 2 -4 
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Table 4-2. Continued 

Catchment Land Use MRLC% Ogden% Difference 

wooded 59 40 - 1 9  

residential (low) 2 1 7  + 1 5  

WF0l 
residential (high) 0 2 +2 

pasture/ grass 35 40 . +5 

commercial/industrial 1 0 - 1  

agriculture 4 0 -4 

wooded 60 44 - 1 6  

WF02 
residential (low) 1 1 5  +14 

pasture/ grass 34 41 +7 

agriculture 4 0 -4 
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my own observations within the upper Beaver Creek watershed, I decided that the more 

recent Ogden dataset presented a more realistic picture of current land use and used it to 

calculate the following estimates of urbanization. 

Impervious Cover 

Measurement of impervious surface cover is emerging as a key urban 

environmental indicator because it has been shown to relate to, and effectively integrate, 

a complex variety of issues related to stream health (Arnold and Gibbons 1 996). 

Impervious surfaces are those land surfaces which prevent water from infiltrating into the 

underlying soil. Paved roads, parking lots, sidewalks and rooftops are typically 

considered to be 100% impervious, though they may contain some cracks (Barnes et al. 

2000) . Compacted soil, lawns and parks are considered to be semi-pervious. The 

imperviousness of a watershed may be raised or lowered by factors such as topographic 

relief, soil and land cover types, the density of the stream network, and/or the distribution 

of the impervious land cover (Prisloe et al. 200 1 ). 

The total amount of land within a basin considered to be impervious is known as 

the "total impervious area," or TIA, whereas impermeable land that drains directly to 

streams and storm systems is considered to be the "effective impervious area," or EIA 

(Booth and Jackson 1 997, Barnes et al. 2000). Over the past 1 5-20 years, a variety of 

studies have shown that water quality and stream quality begin to degrade at 10% 

impervious cover and become irreversible by 30% impervious cover (Arnold and 

Gibbons 1996; Prisloe et al. 2000). However, it is not always clear which type of 

impervious area, namely TIA or EIA, has been used to establish the relationship. During 

their study of watersheds urbanized for 20 years or more with total impervious area 

ranging from 5-77%, Finkenbine et al. (2000) could find no definitive relationship 
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between the percentage of TIA and the degree of bank erosion in a watershed. However, 

in their study of watersheds in western Washington state, Booth and Jackson (1997) 

found that an EIA of 8- 10% causes channel instability, and that an EIA greater than 10% 

may cause permanent changes in aquatic ecosystems (e.g. , a reduction in the number of 

viable species) . 

Because impervious surfaces typically generate much more runoff than 

pervious surfaces, I hypothesized that the likelihood of channel instability would increase 

as the percentage of impervious area within the catchment increased. To test this 

hypothesis, I calculated the percentage of TIA within each catchment using a weighted 

sums approach based on land use type (Castle 1 996, Prisloe et al. 2000). I chose to use 

the TIA method rather than the EIA method because I already had a good set of land use 

data for the area, but would have had to spend many hours tracing over maps, aerial 

photos, and storm drains to derive a good set of data for EIA calculations. 

Because there is not yet a consensus on the impervious coefficients that should 

be applied to different types of land use within different parts of the country, I applied 

three different sets of imperviousness coefficients to the Ogden land use dataset for 

comparison: ( 1 )  Ogden imperviousness coefficients used during the HEC-RAS modeling 

of Beaver Creek for the Knox County flood study (Ogden 2000a); (2) Camp, Dresser & 

McKee coefficients used during their 1992 preparation of Knoxville's National Pollutant 

Discharge Elimination System (NPDES) permit application (Castle 1996); and (3) US 

Environmental Protection Agency (EPA) imperviousness coefficients based upon studies 

in the Pacific Northwest and presented in their experimental Analytical Tools Interface 

for Landscape Assessments (ATtILA), Beta Version 3 .0 software (Ebert et al. 200 1 ). I 

calculated TIA for each catchment using the following formula (Prisloe et al. 2000): 

% TIA = JOO* I [(Impervious coefficient/or land use X) * (Area of land use X)]. 
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The three sets of imperviousness coefficients are summarized in Table 4-3, and a 

comparison of the percent TIA generated for each catchment is shown in Figure 4-3. 

The ATtILA coefficients consistently yielded the highest value of TIA in each 

of the 10  catchments. This is due to the fact the ATtILA coefficients for low density 

residential land (0.40) and pasture/grass (0. 10) are significantly higher than the 

corresponding Ogden coefficients (0. 1 5  and 0) and the corresponding Camp, Dresser & 

McKee coefficients (0.25 and 0.0 1). Within the 10  catchments, low density residential 

land use ranged from 4-21 % and pasture/grass ranged from 0-58%. This led to quite a bit 

of variation between the ATtILA-based TIA results and the other two sets of TIA results, 

except in the case of the most highly developed catchment, the middle Hines Branch area 

(HB02). Differences between the Ogden-based TIA values and the Camp, Dresser & 

McKee-based TIA values were primarily due to the difference in the coefficient for high 

density residential housing (0.65 versus 0.40). High density residential housing varied 

from 0-65% of total land use within the 10 catchments. All three sets of coefficients 

indicated that the middle Hines Branch catchment (HB02) was covered with the most 

impervious surface (30-45%), and that the upper Kerns Branch catchment (K.B03) was 

covered with the least amount of impervious surface (1 -3% ). 

To determine if there was any correlation between the field observations of 

channel stability and TIA as an indicator of urban development within the catchments, I 

plotted each set of TIA results against the SV AP bank stability scores and excess shear 

stress measurements and looked for simple linear relationships. There was no significant 

relationship between the excess shear stress values and any of the TIA calculations. 

However, I did find significant relationships between the SV AP bank stability scores and 

all three of the TIA calculations (Figure 4-4). The strongest relationships were with the 

Camp, Dresser & McKee-based calculations of TIA (r = -.37, n = 10, p < .07) and the 
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Table 4-3. Three Sets of Imperviousness Coefficients 

Ogden 
Camp, Dresser ATtILA 

Land Use (Ogden 2000a) & McKee (Ebert et al. 
(Castle 1996) 2001)  

water 1 .00 0 0 
residential (low dens.) 0. 15 0.25 0.40 
residential (high dens.) 0.65 0.40 0.60 
commercial/industrial 0.79 0.85 0.90 

transitional 0 0.05 0 
wooded 0 0.0 1 0.02 

agricultural 0 0.0 1 0 
pasture/ grass 0 0.01 0. 10  
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ATtILA-based calculations of TIA (t = -.37, n = 10, p < .07), but in all three cases, the 

banks tended to become less stable as the percentage of TIA within the catchment 

increased. Thus, my hypothesis was upheld. 

Human Use Index 

The human use index, or U-index, of a watershed is a simple EPA land use 

indicator that has demonstrated good correlation with a variety of environmental 

variables (Ebert et al. 2001 ). The U-index of a watershed is equal to the total percentage 

of the watershed area dedicated to "human" uses (meaning the "residential, "  

"commercial/industrial" and "agricultural" uses within the selected land use 

categorization scheme), excluding transitional areas from the total land area (Jones et al. 

1997, Ebert et al. 2001). The U-indices of the 10 catchments used in this study ranged 

from 4% within the KB03 catchment to 79% within the HB02 catchment (Table 44) . 

The SV AP bank stability indicators were correlated to the U-4ndices (t = -.37, n = 10, 

p < .07) such that bank stability decreases as the catchment-wide U-index increases. 

Wooded Area 

Assuming that the MRLC and Ogden land cover datasets can be used to 

interpret land use changes within the Beaver Creek watershed from 1991-1993 to 1999, 

then the 10 catchments have each lost a substantial amount of wooded area to 

development activities over the past decade (Table 4-2). For this reason, I decided to test 

for bivariate correlation between the two sets of channel stability indicators and the 

current amount of wooded area in each catchment. There was, in fact, a significant 

relationship between each set of indicators and the percentage of wooded area (SV AP: 

-r = .5 1 ,  n = 1 0, p < .02; excess shear stress: -r = -.38, n = 10, p < .06), such that the 
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Table 4-4. Human Use Index and Population 
Density by Catchment 

Human Use 
Population Density 

Catchment Index (persons/km2) 
(%) 

HB02 79 863 
BV05 42 462 
NF03 33 144 
CX0 l 32 266 
MB0 l  26 1 70 
WF0l 19  1 99 
TS0 l 1 7  84 
KB0l  16  98  
WF02 15  160 
KB03 4 99 
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prevalence of channel erosion increased as the percentage of wooded area decreased 

within each catchment (Figure 4-5) . 

Road Density 

Roads can significantly alter stream quality through runoff of oil, antifreeze, 

tire particles, and other vehicular contaminants (Jones et al. 1 997). Because roads are 

made of nearly 100% impervious asphalt or concrete, they can significantly increase the 

amount of runoff that enters nearby channels (Barnes et al. 2000). Studies in the 

northwestern United States have found that roads account for over 60% of the impervious 

cover of suburban watersheds, and that road density is highly correlated to overall 

imperviousness (Arnold et al. 1 996, May et al. 1 997, Barnes et al. 2000). For these 

reasons, I hypothesized that the increasing bank erosion would also be related to 

increasing road density. 

A map of the road and stream networks within the upper Beaver Creek 

watershed is depicted in Figure 4-6. To calculate a road density value for each 

catchment, I first intersected the linear road coverage with the catchment polygons and 

summed the resulting arc lengths for each catchment. I then divided the road length sums 

(in m) by the catchment areas (in kni2) to get the density values (Jones et al. 1 997). 

Road density ranged from 1752 m/km2 in the upper North Fork catchment 

(NF03) to 6558 m/km2 in the middle Hines Branch catchment (HB02) (Table 4-5). 

While a comparison of the road density values and the verbal bank stability descriptions 

for each site make it appear that the majority of the stable sites were actually located in 

the catchments with the highest road densities, there were no statistically significant 

relationships between the road density values and either set of bank stability indicators. 
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Data Sources: Streams and catchments 
derived from TV A 1 978, TV A 1 987 a, 
TV A 1 987b and TV A 1 992. Roads derived 
from ESRl's 1 995 detai led roads database. 
Sub-basin outl ines derived from Ogden 2000a. 
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Figure 4-6. Roads and Streams 
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Density of Road and Stream Crossings 

Because I found no demonstable relationship between road density and channel 

stability, I decided to test for a relationship between the density of road/stream crossings 

and bank stability. Other researchers have found that road crossings frequently damage 

stream systems (May et al. 1997, Jones et al. 1997), so I postulated that the more times 

that roads crossed (or came within 30 m of) the streams within each catchment, the more 

likely it would become to find unstable channels within the catchment. 

I converted the road and stream layers to 30-meter grids with cell values of 1. 

Then I added the two grids together to produce a grid containing ceU values of 2 

wherever the roads and streams come within 30 meters of one another. Next, I clipped 

the road/stream crossing grid with the catchments in order to get a count of road/stream 

crossings per catchment. I normalized the data for comparison by dividing the total 

number of crossings found in each catchment by the total catchment area. The 

road/stream crossing densities (Table 4-5) ranged from 3.8/kni2 in catchment BV05 to 

29.8/knl in catchment K.803. 

At first I thought that the unusually high road/stream crossing density in 

catchment KB03 resulted from the fact that the grid calculation method considered all 

roads within 30 m of the streams to be road/stream crossings, when in actuality, many of 

the streams within the steeper portions of the upper Beaver Creek watershed run 

alongside roads for long distances. However, a hand count of road/stream crossings 

performed while looking at a map of roads and streams (Figure 4-6) yielded a similar 

result. Neither set of road/stream crossing calculations showed any significant 

relationship with the bank stability indicators. 
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Population Density 

A recent Connecticut study found a general correlation between impervious 

cover and population density (Prisloe et al. 2000), and a recent Vancouver study 

developed a formula relating TIA to population density in persons.per hectare (Hicks and 

Shaw 2000). Because I had already found a relationship between TIA and the SV AP 

bank stability scores, I hypothesized that there would be a similar relationship between 

population density and bank stability, such that channel instability would increase as 

population density increased. 

I downloaded 2000 United States Census data from www.census.gov for those 

census blocks which were contained in or overlapped with the study area. I then used 

EP A's A TtILA software (Ebert et al. 200 I )  to derive population densities for each 

catchment by area-weighting. The resulting population densities of the IO  catchments 

ranged from 84 persons/km2 in TSO I to 863 persons/km2 in HB02 (Table 4-4). A map of 

sub-basin population density by quartiles (Figure 4-7) reveals that out of the eight sub­

basins examined in this study, Thompson School Branch, Kerns Branch and Mill Branch 

were the least densely populated sub-basins (98-181 persons/km2
), and Hines Branch and 

Sub-basin 05 were the most densely populated sub-basins (375-650 persons/km2) .  

I did find a bivariate correlation between population density and my excess 

shear stress measurements (t = -.38, n = 10, p < .06), but it was the opposite of the 

relatioriship that I had expected. Unlike Prisloe et al. (200 I ), I found that bank erosion 

decreased as population increased. This unexpected result may have resulted from the 

inaccurate assumption that the population was evenly spread across the census block 

areas, particularly given that several of the catchment areas were very small by 

comparison. 
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Data Sources: Population densities derived 
from the 2000 U.S. Census data at the block 
level of detai l .  Sub-basin outl ines derived 
from Ogden 2000a. 
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Legend 
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D 98 - 181 

- 181 - 223 
- 223 - 375 I- 375 - 650 

Figure 4-7. Population Density 
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Riparian Land Use 

Per Jacobson et al. (200 1 ), there is usually a clearer connection between 

riparian land use change and changes in channel morphology than there is between basin­

wide land use changes and channel morphology. Thus, I postulated that the types of 

riparian buffers in each catchment would likely have an impact on the channel stability 

observed. 

Most literature suggests that 30-meter buffers of natural vegetation be left on 

either side of a stream (Thibault 1 997). To create a riparian land use layer for the GIS, I 

buffered the streams by 30 meters on each side and used the resulting polygonal layer to 

clip the Ogden land use coverage. I used the following equation to derive the percentage 

of riparian buffer devoted to each land use within each catchment: 

% riparian land use = JOO * [(IR.iparian areas devoted to a given land use in m2)/ 
(Total riparian buffer size in m2). 

The resulting data indicate that many of the riparian zones within the upper 

Beaver Creek watershed have been fragmented by multiple types of land use in the 

immediate vicinity of the streams {Table 4-6, Figure 4-8). All of the catchments 

contained at least two different types of riparian land use, and CX0 1 contained seven 

different types of land use within 30 meters of its streams. 

To simplify the visualization of urbanization impacts on riparian land use, I 

created a human use index, or U-index, for each catchment {Table 4-6, Figure 4-9) . The 

U-index is equal to the total percentage of each catchment's riparian buffer dedicated to 

"human" uses, or residential, commercial/industrial and agricultural uses, rather than 

"natural" uses, meaning wooded and pasture/grass areas (Jones et al. 1 997) . Transitional 

uses are excluded from the calculation. The riparian U-indices of the 10 catchments 

ranged widely, from 6% for catchment TS0 l to 100% for catchment HB02. There was a 
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Table 4-6. Comparison of Riparian Land Use 

Catchment Riparian Land Use Percent U-index 

wooded 25 

transitional 4 

BV05 residential (low) 1 1  
34 

residential (high) 1 6  

pasture/ grass 38 

commercial/industrial 6 

wooded 26 

water 1 

CX0 l 
residential (low) 20 

residential (high) 5 27 

pasture/ grass 46 

commercial/industrial 1 

agricultural 1 

HB02 
residential (high) 92 

100 
commercial/industrial 8 

wooded 34 

KB0 l residential (low) 26 
27 

residential (high) 1 

pasture/ grass 38 

KB03 
wooded 90 

residential (low) 7 8 

pasture/ grass 2 

wooded 5 1  

MB0 l 
water 1 

residential (low) 24 26 

pasture/ grass 22 

agricultural 2 

wooded 63 

NF03 residential (low) 26 
34 

residential (high) 8 

pasture/ grass 2 

wooded 19  

TS0 l residential (low) 5 
6 

pasture/ grass 75 

agricultural 2 

wooded 45 

WF0l residential (low) 1 2  
1 4  

residential (high) 2 

pasture/ grass 41 

WF02 
wooded 56 

residential (low) 10 10  
pasture/ grass 34 . 
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Data Sources: Land cover and 
sub-basin outl ines derived from 
Ogden 2000a. Streams derived 
from TVA 1 978, TVA 1 987a, 
TVA 1 987b and TVA 1 992. 

1 

Scale: 

0 1 2 Ki lometers 
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+ 

Legend : 
® Sites 

D Sub-basins 
Riparian Land Use: 
Ill agricultural 
Ill commercial/industrial 

pasture/grass 
residential (high) 

CJ residential (low) 
c=I transitional 

1111 water 
Ill wooded 

Figure 4-8. Riparian Land Use 
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Data Sources: Land cover and 
sub-basin outl ines derived from 
Ogden 2000a. Streams derived 
from TVA 1 978, TVA 1 987a, 
TVA 1 987b and TVA 1 992. 

1 

Scale: 

0 1 2 Ki lometers 
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Legend : 
0 Sites 

D Sub-basins 
Land Use Category: 
- Human 
- Natural 

Transitional 

Figure 4-9. Simplified Riparia:n Land Use 
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negative relationship between the increasing riparian human use index and the degree of 

bank erosion documented by the SV AP bank stability scores ( -r = -.4 1 ,  n = 10, p < .05), 

such that the prevalence of bank erosion increased as the proportion of human uses 

increased within the catchment area. 

The human use index calculations excluded all pasture/grass from the "human" 

category. Because cows have been known to trample down stream banks and increase 

bank erosion in Beaver Creek (Parish and Young 2000), and because a Pacific Northwest 

study (May et al. 1 997) found that stream degradation was linked to the proportion of 

"mature'' riparian buffer ( or the proportion of riparian buffer consisting of trees rather 

than other types of vegetation and built surfaces), I also examined the percentage of 

wooded riparian buffer within each catchment. Once again, the values ranged widely, 

from 0% wooded in catchment HB02 to 90% wooded in catchment KB03. As expected, 

there was a positive relationship between the amount of forested area and the SV AP bank 

stability scores (-r = .32, n = I 0, p < . 1 0). No significant relationship was found with the 

excess shear stress measurements, however. 

Discussion of Urbanization Metrics 

In this chapter, I compared 10 approximations of urbanization to both sets of 

channel stability indicators ( qualitative and quantitative) in an eff>rt to establish a 

relationship between increasing development and accelerated channel erosion. Despite 

the small number of sites used in the statistical analysis, there appeared to be a good 

correlation (p � . 1 0) between seven of the urbanization metrics and the qualitative SV AP 

bank stability scores and two of the urbanization metrics and the quantitative 

measurements of excess shear stress {Table 4-7). Both sets of channel stability indicators 

were correlated with the percentage of wooded area in each catchment. Neither set of 
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channel stability indicators was related to the road density or road/stream crossing density 

of the contributing area. 

It is possible that the lack of correlation with the road density and road/stream 

crossing density simply resulted from the road data being out of date or at a resolution too 

coarse for such a small study area. Since 1995 , many new subdivisions have been built in 

the upper Beaver Creek watershed. If this study were to be expanded, I would suggest 

scanning in and digitizing the road maps contained in the recently published third edition 

of the Knoxville and Knox County Street Guide Map (The MiniTmap Company 2000). 

These large-scale street maps were invaluable during the fieldwork portion of this thesis, 

and they included nearly all of the new subdivision roads. 

The majority of the analyses outlined in this chapter indicated that sub-basin­

wide land use changes are indeed causing channels within the upper Beaver Creek 

watershed to become less stable, either through widening or incision. As further 

demonstration that there is a likely relationship between urbanization and channel 

stability within the upper Beaver Creek watershed, consider the comparison of sites 

KB03 and NF03. Both of these sites were located within upper tributary reaches with 

similar topography, and both were underlain by dolomite. Both streams had the same 

width of 5 .5 m (18 ft), but NF03 was considerably deeper than KB03 (Figure 4-10). 

Whereas KB03 had a width-to-depth ratio of 11. 7, NF03 had a width-to-depth ratio of 

1.6 , indicating that NF03 had been incised. While the topographic and geologic controls 

of both sites were nearly identical, the land use patterns within the catchments were not. 

The KB03 catchment was 83% wooded and had a 93% wooded riparian buffer. The 

NF03 catchment was only 43% wooded, with 15% high density residential land use and 

1 % commercial/industrial ,and use. Although its riparian buffer was 64% wooded, 15% 

of the 30-meter riparian zone was occupied by high density residential land use. Given 
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the similarities of topography and geography, it seems likely that the differing land uses, 

either catchment-wide or within the riparian zone, caused the significant differences in 

the channel depths. Similar cases of incision due to urbanization have been noted in 

Indiana (Doyle et al. 2001)  and in Connecticut (Jacobson et al. 2001 ). 

Although several of the urbanization metrics discussed in this chapter related 

to channel instability, impervious cover is the measure most likely to be applied by land 

use planning agencies (Arnold and Gibbons 1996). I used the ATtILA imperviousness 

coefficients (Ebert et al. 200 I )  trend line from a plot of SV AP bank stability versus 

percent TIA (Figure 4-4), to find a range of impervious cover beyond which bank 

instability would be likely to occur in the upper Beaver Creek watershed. During the 

qualitative assessment of bank stability, the four most stable sites received scores 

between 8 and IO  and the five eroding sites received scores between I and 4 (although 

site BV05 was deemed stable, it only scored 5 .5 and was really a borderline site). Thus, 

to calculate the lower threshold boundary of TIA, I set the SV AP bank stability score 

equal to 8, and to calculate the upper threshold boundary of TIA, I set the SV AP bank 

stability equal to 4. In this way, I determined that the channels within the upper Beaver 

Creek watershed tend to become unstable when urban development of the catchment 

exceeds 13-20% impervious cover. Using the same technique on a plot of wooded area 

versus SV AP bank stability scores, I determined that erosion will become more prevalent 

in Beaver Creek when the wooded area falls below 38-5 1 % of the total catchment land 

use. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY 

My hypothesis that there would be a positive relationship between the 

prevalence of bank instability, as erosion, and increased levels of urbanization within the 

upper Beaver Creek watershed was upheld by the results of this associative study. I 

selected 1 0  sites within eight adjacent sub-basins ranging from predominately rural to 

urban and used two different field methods to assess channel stability at those sites: ( 1 )  a 

visual, qualitative indicator of bank stability ranging from 1 (worst) to 10  (best) based on 

the USDA Stream Visual Assessment Protocol ( 1 998); and (2) a calculated measure of 

excess shear stress based on channel geometry measurements and the median particle size 

at each site (Doyle et al. 2001) .  Both of the methods showed that five of the 1 0  sites 

were eroding substantially, and that the remaining five sites were either stable or 

aggrading. After quantifying urban development in 1 0  different ways (both on a 

catchment-wide scale and a 30-meter riparian buffer scale), I found that the qualitative 

indicators of channel stability correlated with seven of the 1 0  selected urbanization 

metrics and that both sets of bank stability indicators were significantly related to the 

wooded area of the contributing drainage area (Table 4-7) . 

A central Michigan study recently found that there was a greater correlation 

between bedrock and channel morphology than there was between land use and channel 

morphology (Jacobson et al. 200 1 ). While I found no such correlation between geology 

and channel erosion in my study area, I did find a correlation between decreasing slope 

and increasing channel erosion. I found even stronger relationships, however, between 

bank stability and urban development. Thus, this associative study has achieved its 

objective of being a coarse filter to test for potential relationships between land use 

change and channel morphology (Jacobson et al. 2001 ). An increase in the number of 
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sites will likely strengthen these relationships and facilitate a greater distinction between 

catchment-wide land use change impacts and riparian land use change impacts on 

channel stability. 

Because it is difficult to attain access to sites within the upper Beaver Creek 

watershed, it would take many more months to work out agreements with local residents 

to enable a researcher to take both sets of channel stability measurements on private 

property. Fortunately, the SVAP bank stability indicators ended up being more reliable 

than the excess shear stress measurements, and the qualitative protocol (USDA 1998) can 

generally be used without crossing fences at the water's edge. If more field work is to be 

conducted, then I would suggest that measurements be taken within more heavily 

developed catchments similar to HB02. There was a large jump in development between 

HB02 and the other nine catchments selected for analysis (e.g., 45% impervious cover 

versus the next highest value of 24% impervious cover). While I assumed that there was 

a linear relationship between urbanization and channel stability (based on other studies 

relating impervious cover to runoff), it is also possible that more intense development 

over a sufficient length of time leads to a new equilibrium state (Jacobson et al. 200 1 ) .  

Although there was a good correlation ('t = - .55, n = 10, p < .02) between the 

qualitative and quantitative indicators of channel stability, the results from site TSO 1 

revealed that there is an inherent limitation to the excess shear stress measurement 

method of quantifying bank stability: namely, the Wolman ( 1954) pebble count method 

used to approximate the particle size (D) used in the critical shear calculation is based 

upon the assumption that the bedload contains coarse gravel. Given the wide variations 

in topography, bedrock, and soil type throughout the upper Beaver Creek watershed, it is 

likely that other researchers attempting to quantify excess shear stress would find similar 
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reaches with predominately fine-grained bedload. In such instances, D50 could be 

calculated in the laboratory by sieving and weighing dried bedload samples. 

My data suggest that pronounced bank erosion, or channel instability, begins to 

occur at an 1 3-20% impervious cover, as calculated using the EPA coefficients of 

imperviousness (Ebert et al. 200 1 ). Thus, my study agrees with a with a wide variety of 

studies from across the United States which have shown that potentially irreversible 

changes in stream structure and habitat begin at 10-20% impervious cover (Booth 1 990, 

Schueler 1994, Bledsoe and Watson 2001 ). Because biological degradation of streams 

occurs more rapidly than physical degradation as the urbanization of a watershed 

increases (Barnes et al. 2000), these measurements of channel erosion should be seen as 

conservative measurements of stream habitat alteration. In addition to the potential 

impacts of channel erosion on stream health, inhabitants of the Beaver Creek watershed 

should be concerned about accelerated bank erosion because of its potential to fi.ll in 

downstream water storage areas prematurely and exacerbate flooding. Further, we 

should all be concerned about bank erosion because it is a potentially significant 

contributor of nonpoint source pollution, the leading cause of water pollution in the 

United States (Booth 1 990, Trimble 1 997, Barnes et al. 2000, Jacobson et al. 200 1). 

The Nonpoint Education for Municipals Officials (NEMO) Program at the 

University of Connecticut has developed a simple GIS interface that allows land use 

planners to test the effects of build out scenarios on stream degradation as based on 

impervious cover (Prisloe et al. 2001) . Using a similar "traffic light" coloring scheme to 

illustrate the total impervious area of each sub-basin (Figure 5-1)-- such that red implies 

that damage has already been done to the sub-basin's channels, yellow implies that the 

sub-basin's channels are on the verge of being severely eroded if nothing is changed, and 

green indicates that it will be a while before the sub-basin's channels become unstable-it 
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Note concerning categories: 
Stable basins are those with 7-12% 
total impervious area (TIA), basins 
at the critica l  level are those with 
1 3-20% TIA, and eroding basins are 
considered to be those with 
21 -66% TIA. Calcu lations of TIA were 
based upon ATULA imperviousness 
coefficients from Ebert et al .  2001 , 
as appl ied to 1 999 land cover 
data derived from 
Ogden 2000a. 

0.5 0 0.5 1 Ki lometers 

N 

+ 

Sub-basin Status: 
Currently Stable 

D At Threshold Level 

Al ready Eroding 

Figure 5-1 .  Land Management Implications of lmpervious Cover Calculation 
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becomes apparent that seven of the 19 sub-basins of the upper Beaver Creek watershed 

are at a critical stage in development (namely Allen Branch, Mill Branch, Willow Fork, 

Thompson School Branch, Cox Creek, South Fork, and Sub-basin 04). A similar "traffic 

light" map based upon the percentage of wooded area within each sub-basin (Figure 5-2) 

indicates that Allen Branch, Thompson School Branch, and South Fork may have already 

exceeded the threshold level of development, and that Kerns Branch, Sub-basins 02 and 

03 may not be as stable as they first appeared. Thus, I would recommend that Mill 

Branch, Willow Fork, Cox Creek, and Sub-basin 04 be examined immediately for ways 

to limit or mitigate the impacts of future urban development, followed closely by Kerns 

Branch and Sub-basins 02 and 03. 

Because I found a positive correlation between the human use index of the 

riparian buffer, or the ratio of built to natural surfaces within the 30-meter area adjacent 

to each stream, and the degree of bank instability, I would suggest that the riparian zones 

in these three sub-basins be examined more closely in terms of the types and quantity of 

vegetation and the presence/absence of large woody debris. The effectiveness of water to 

erode banks is reduced by one to two orders of magnitude by the presence of flourishing 

vegetation (Grable 2000, Finkenbine 2000), and scientists and planners alike have now 

come to the conclusion that natural vegetated buffers are preferred to engineering 

methods when it comes to stabilizing banks. Leaving narrow strips of naturally vegetated 

land along the edges of streams in suburbanizing areas may preserve water quality and 

wildlife habitat, and serve as aesthetic greenways (Marsh 1997, Thibault 1997). As 

wooded riparian buffers are increased, however, the role of large woody debris in the 

watershed may need to be addressed (Jacobson et al. 2001 ). Other ways of minimizing 

future development impacts might include restricting the size of shopping center parking 

lots, which are typically built to a capacity estimated upon the two biggest shopping days 
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Note concern ing categories: 
Stable basins are those with >51 % 
wooded area, basins at the critical 
level are those with 38-51 % wooded 
area , and eroding ba.sins are 
considered to be those with 0�37% 
wooded area. Calculations of forest 
cover were based upon 1 999 Ian 
cover data derived from 
Ogden 2000a. 

0.5 0 0.5 1 Ki lometers 

N 

+ 

Sub-bas in Status :  
Currently Stable 

D At Threshold Level 

Already Erod ing 

Figure 5-2. Land Management Implications of Wooded Area Calculation 
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per year rather than daily shopping needs, or clustering new residential housing areas 

(Barnes et al. 2000). 

The qualitative assessment protocol used in this study (USDA 1998) only 

categorized eroding sites as "unstable," but in actuality, a disturbed stream system may 

erode in some areas while aggrading in others (Jacobson et al. 2001 ). More work needs 

to be done to allow for the incorporation of aggrading sites into aerial characterizations of 

channel stability. For example, it would be interesting to do a sediment budget of the 

entire Beaver Creek watershed to determine whether or not the eroding banks in the 

upper watershed are, in fact, prematurely filling downstream storage areas. 

On March 18, 2002, the local news media reported that a 100-year flood had hit 

the Knox County area. It will be interesting to see if the channels in the upper Beaver 

Creek watershed have been impacted by the significant storm event and/or if the channel 

geometry and bedload particles will return to the size documented during November and 

December of 2001. 
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USDA -- NRCS Stream Visual Assessment Protocol 

Owner's Name _________ Evaluator's Name ________ Date ______ _ 

Stream Name ______________ _ Waterbody ID Number . ________ _ 

Reach Location 

Ecoregion __________ Drainage Area ________ Gradient 

Applicable Reference Site 

Land Use within Drainage (%): Row crop _ Hayland __ Grazing/pasture __ Forest __ Residential 

Confined Animal Feeding Operations __ Cons. Reserve Industrial Other: _____ _ 

Weather Conditions - Today _________ _ Past 2-5 Days _____________ _ 

Active Channel Width _____ _ Dominant Substrate: boulder _ gravel _ sand __ silt __ mud _ 

Site Diagram 

Figure A-1 .  Field Data Sheet Used to Perform Qualitative Assessments 
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Assessment Scores 

Channel Condition □ Pools □ 
Hydrologic Alteration □ Invertebrate Habitat □ 
Riparian Zone □ Score only if appl,cab/e 

Bank Stability □ Canopy over D 
Water Appearance □ anure Pr scnce 

□ 
□ Nutrient Enrichment nlinity 

□ 
□ Barriers to Fish Movement Riffle Embeddedness 

□ 
□ Instream Fish Cover acroin rl bratcs 

□ Ob erv d (optiona1) 

Overall Score � 6.0 POOR 

(Total divided by number scored) 6. 1 - 7.4 FAIR 

7.5 - 8.9 GOOD 

� 9.0 EXCELLENT 

Suspected Causes of Observed Problems: __________________ _ 

Recommendations: 

Figure A-1.  Continued 
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Table A-1 .  Baseflow Measurements 

Cross Wetted Hydraulic 
Sectional Perimeter Radius Roughness Bed Velocity* Discharge 

Site Area (m2) (m) (m) Value (n) Slope (mis) (m
3
/s) 

BV05 0.72 3 .43 0.2 1 0.025 0.00 1 0 . 1 2  0.083 

CX0l 1 .55 6.74 0.23 0.055 0.003 0.03 0.043 

HB02 0.06 1 .27 0.05 0.040 0.0 10  0. 1 0  0.006 

KB0 l  0. 12  1 .28 0.09 0.030 0.008 0.27 0.032 

KB03 0. 1 3  2 .74 0.05 0.050 0.029 0 .10 0.0 1 3  

NF03 0. 10  1 .53 0.06 0.045 0.0 14  0. 1 5  0 .0 1 5  

TS0 l 0.35 2.29 0. 1 5  0.030 0.006 0. 1 1  0.039 

WF0 l 0.33 2.24 0. 1 5  0.025 0.00 1 0.20 0.063 

WF02 0. 17  1 .68 0. 10  0.035 0.0 10  0 .33 0.056 

* Site MBOl has been excluded from the baseflow measurements table because it did not have 
flowing water at the time of observation. Per Dunne and Leopold ( 1978), I measured baseflow 
velocity at each site by conducting five float tests along the length of the reach ( or over as long a 
section as possible, given low-flow conditions and obstructions). While I stood at the upstream 
end of the reach and dropped small twigs into the water at the imaginary line between flags 1 and 
2 (see Figure 3-3), my assistant held a timer and stood at the downstream end of the reach waiting 
for the twig to cross the imaginary line between flags 3 and 4. My assistant recorded the amount 
of time that it took each twig to travel the length of the reach. If a twig got caught on an 
obstruction along the way, we discarded its results and conducted a new trial. I attempted to use 
uniform lengths of a single stick so that the twigs would have approximately the same weight. 
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