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Abstract 

X-ray spectral reconstruction from x-ray transmission data was 

investigated using graphite as an attenuating material which has a monotonic 

declining mass attenuation coefficient for energies up to 30 MeV, and by 

employing the numerical method for unfolding spectra. No experimental 

investigation of energies above 10 Me V using this technique has been 

performed prior to this research. Previous works utilizing this method have used 

material such as lead and aluminum which exhibit an increase in attenuation 

coefficients in the 8 to 10 Me V range and beyond. This increased attenuation 

leads the Simpson technique to produce a number of non-unique fractional 

fluencies representing dual energies. Photon energy spectra for 6 MV and 18 

MV beams produced by Varian 6100 and Varian 21 00C linear accelerators were 

determined to validate the consistency of the measured data and the modeling 

method. The resulting Simpson unfolded spectra were compared to the 

published 6 MV Mohan spectrum and an interpolated 18MV spectrum. Both 

spectra are Monte Carlo based and used in the ADAC Laboratories three 

dimensional Pinnacle treatment planning system (3DPRTP). Modal energies for 

the Simpson technique were determined and compared to the modal energies for 

the Mohan spectrum and the interpolated 18 MV spectrum. Our method's modal 

energies for the 6MV beams were similar to the Mohan 6MV spectrum. The 

modal energies for this work are 0.73 MeV for 2100-6 MV beam and 0.84 MeV 
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for the 6100. For the 2100-18 MV beam, the modal energy for the determined 

Simpson spectrum was approximately 4.2 MeV. The Pinnacle (ADAC 

3DPRTP) interpolated 18 MV spectral model yield a modal energy of l .O MeV. 

All of the above spectra were also compared to a Huang modified Jones-fit 

Laplace transform generated energy fluence spectra. The Laplace technique 

produced modal energies of l MeV for the 2100-6 MV beam and .7 MeV for the 

6100 photon beams. The 2100-18 MV modal energy for the Laplace technique 

was 2.5 MeV. The relatively large differences in the modal energies for the 18 

MV spectra lead the author to compare the results with a fourth spectral model 

generated by Francois and Catala through a technique of direct resolution of a 

matrix system of transmission data. The Francois - Catala technique yields a 

number of modal energies for l5MV to 20 MV beam spectra ranging from 2.76 

to 3.58 MeV. These modal energies agree with the Simpson model as opposed 

to the interpolated 18 MV model. The HVL data also suggests that the modal 

energy of the beam is substantially larger than l MeV. The disagreement of all 

the above models leads the author to conclude that further work and unification 

of methodology is needed to verify true photon energy spectra. 
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Chapter 1 

Introduction 

1 .1 Rationale for Determining the Energy Spectrum 

Chemical and biologic changes in tissue exposed to ionizing radiation depend 

more on the energy absorbed than on the amount of ionization the radiation produces in 

air. Dose from ionizing radiation is defined as the amount of energy absorbed from the 

imparted energy per unit mass to a small volume of the irradiated medium. The modem 

radiotherapy linear accelerator (Linac) produces several monochromatic electron beams 

and photon beams. This allows for a range of dose distributions to match the goals of 

treatment planning. Photon beams in a Linac are produced via bremsstrahlung 

interactions of the monochromatic electrons with a tungsten target in the treatment head. 

These interactions produce a spectrum of photon energies ranging from zero up to the 

energy of the incident electron beam, and the shape of the energy spectrum directly 

affects dose deposition in a medium. The spectral distribution of photons for each Linac 

is unique for a specific configuration. The measured photon energy spectrum is 

dependent on the target, flattening filter, ionization chamber, and bending magnet. 

Because of slight variations in manufacturer tolerance, the x-ray spectrum from two 

accelerators of the same design operating at the same monochromatic electron energy 

may be different. 



1 .2 Problems and Methods of Determining Clinical Photon Spectra 

A reliable method of determining the energy spectrum is desirable especially for 

three-dimensional (3-D) treatment planning. Direct measurement of the high energy 

photon beam spectrum using scintillation detectors such as Nal (Tl) or Ge (Li) is difficult 

due to the high dose rates produced, and the detector low collection efficiency due to the 

large range in energy of the photons produced. However, measurements have been 

attempted, using both direct and indirect techniques. One method places a scatterer at an 

angle with the primary axis and perpendicular to Nal (Tl) detector (Levy et al 1975, 

Brownridge et al 1984, Landry and Anderson 1991 ). Monte Carlo calculations have been . 

used also to theoretically determine the energy spectra (Mohan et al 1985, Kan et al 1987, 

Chaney et al 1994). Monte Carlo techniques are considered the gold standard for 

simulating the production of the bremsstrahlung spectrum, and the interaction of the 

photon beam with the beam shaping components in the accelerator head. Computer 

Programs such as the EGS4, BEAM, and ITS {ETRAN) simulate electromagnetic 

cascades in various geometries. They have the ability to realistically model radiation 

transport of photons and electrons in a variety of elements, compounds or mixtures. 

However, the results of these programs are highly dependent on the level of detailed 

description of the accelerator head design. A common approach is to separate the model 

into a series of individual component modules (CMs), each of which operates 

independently of the other component modules and occupies a slab at right angles with 

the beam axis. The computer computational times are typically in the range of several 

hours, today, as compared to 600 hours on a VAX 11/780 (D.W.O Rogers et al 1994). 
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The time constraint and the specific knowledge of geometrical and material makeup of 

the head design makes this method rather complicated for routine clinical applications. 

Determination of the photon spectrum from measured beam parameters has been 

studied by several investigators. One approach (Bloch and Mcdonough 1997) is to fit 

calculated data represented as a percent of the point of maximum dose (POD) from a 

monoenergetic beam to a measured POD from a clinical beam. This data is combined 

with an electron disequilibrium factor in the buildup region to produce a meaningful 

spectrum. Measured attenuation data has been used to model the photon spectrum from 

the keV range to the MeV range. Figure 1 illustrates the mass attenuation coefficient of 

various elements versus energy. Note that for photon energies from the keV up to the low 

MeV range the pho!oelectric effect is dominant. The steep decline in attenuation 

coefficient versus energy for most materials is beneficial in producing a unique signature 

for an energy spectrum. In the Compton· ·region, coi:nmon attenuating material such as 

lead and aluminum experience an increase in the mass attenuation coefficient starting at 

the 8 to l O Me V regions and above. Other attenuating material such as water and carb�n 

exhibit a monoenergetic decline of mass attenuation coefficient to well over the 25 MeV 

range. The rate of decline with energy plays an impdrtant role in the ability to use the 

material for spectral analysis. 

Laplace transforms have been used to unfold "photon spectra in the photoelectric 

and Compton regions (Huang et al 1980, Archer et al, 1982). In this method, the x-ray 

attenuation curve is fitted to an analytical function containing several parameters. If the 

model is appropriately chosen, its inverse Laplace transform will generate a unique 

soiution of the original spectrum. This method was applied by Silberstein (Huang et al 

3 
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al 1 989), but no experimental investigation of energies above 1 0  MeV has been 

performed to date. This is due to the use of material such as lead and aluminum with a 

limited useful attenuating range vs. energy. The limitation is due to the fact that the 

attenuation coefficient of both these materials begin to increase above l OMeV, and this 

produces a non-unique representation of the beam energies as discussed in the Methods 

and Materials section. The attenuation material chosen for this work is graphite since it 

does not suffer from such a limitation and energy spectra for a Varian 6 1 00 and 2 1  00C 

beams were developed from a Simpson spectral unfolding algorithm. The Varian 2 l O0C 

is a dual energy photon unit with a 6 MV photon beam (2 1 00-6 MV ) and an 1 8  MV 

photon beam (2 1 00- 1 8  MV). The spectra obtained were compared to spectra used in a 

Pinnacle three dimen�ional treatment planning (P3DRTP)system currently used at the 

Thompson Cancer Survival Center (TCSC). The P3DRTP system is a product of ADAC. 

ADAC is a manufacturer of Radiation Therapy and Nuclear Medicine equipment located 

in Milpitas, California . .  The P3DRTP spectrum is initially assumed to represent a 

particular machine and then refined by each radiotherapy department through comp�ng 

computed and measured open field depth dose curves and by adjusting the spectrum until 

the shape of the two curves matches. All of the above spectra were also compared to the 

Huang Laplace transform generated spectrum described in the previous section . . 
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Chapter 2 

Theory 

2 . 1  The Bragg-Gray Cavity Theory 

The Bragg-Gray cavity theory may be used to calculate the dose directly from ion 

chamber measurements in a medium. According to the Bragg-Gray theory (Kahn, 1994), 

ionization produced in a gas filled cavity through inelastic collisions of entering primary 

(produced by photons) and secondary electrons (produced by primary and subsequent 

generations of electrons), is directly proportional to the energy absorbed in the 

surrounding medium. The following assumptions are made: the electrons undergoing 

these collisions are stopped in the chamber, and the chamber must be small enough not to 

cause a disruption in the distribution of electrons that would exist in the medium without 

the cavity. Equation 1 describes the conversion of ionization in the gas filled S absorbed 
p 

dose in the medium by application of the Bragg-Gray principle (Kahn, 1994). 

D 
= J 

* W *
(

S
J

medium 

med g e p g 

( 1 )  

Dmed = the absorbed dose in the medium (in the absence of the cavity) 
lg = the ionization charge of one sign produced per unit mass of the cavity gas 
( -PS ) 'g11edi11111 

= a weighted mean ratio of the mass stopping power of the medium 

to that_of the cavity gas for the electrons crossing the cavity. 
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w 

e 
= 33.97 J/C. Average energy required per unit charge of ionization produced 

in air. 

w 
The product of Jg * is the energy absorbed per unit mass of the cavity gas. The 

stopping power is defined as the energy loss by electrons per unit path length in a 

material (Kahn, 1994). The first assumption in the Bragg-Gray theory is inconsistent with 

the second when using a practical chamber since the chamber has to be large enough to 

exceed the range of the secondary electrons so that they would not deposit some of their 

energy in the medium, and small enough not to perturb the distribution of electrons that 

would exist when the chamber is not present. Hence, Equation I is further modified to 

include the Spencer - Attix theory (Kahn, 1994), or restriction. 

2.2 The Spencer-Attix Theory 

In this theory (Kahn, 1994) the secondary electrons are divided into two groups 

that are separated by a cutoff energy � that corresponds to the energy of an electron that 

can just cross the cavity ( IO - 20 keV). Below that energy, an electron is considered 

"Slow" and is assumed to deposit all its energy at the point of its original generation. 

Hence, the stopping power is redefined as the restricted mass collision power with � as 

the cutoff energy. Equation 2 is based on the Spencer-Attix theory (Kahn, 1994) 

8 

D = J * W * ( L J medium 

med g (2) 
e p g 

e 



( L J mcdium 

= Restricted mean mass collision stopping power, averaged over the 
p g 

electron slowing down spectrum in the wall material. 

Practical ionization chambers perturb the photon and electron fluence in various ways. 

Therefore Equation 2 is further modified to Equation 3 to account for these effects : 

( - ] medium 

D med = M * N gas * � 
g 

* p ;on * prep I * p wall (3) 

M = Charge collected 
N gas = Dose to the gas per unit charge or electrometer reading. 
Pion = Factor that corrects for ionization recombination losses that 

occur at the time of beam calibration. It is the inverse of the collection 
efficiency and has a value of unity or above. 

Prep! = Replacement correction which depends upon the type and energy 
of the radiation, it is the ratio of photon energy fluence at the 
center of the cavity when the cavity is filled with medium to that when 
the cavity is filled with air. 

P wan = Correction factor that accounts for the difference between the 
composition of the chamber wall and the phantom as it pertains 
to photon beam interactions in the users beam. 

2.3 Improvement of Dosimetric Accuracy: 

Most dosimetry protocols for verification of dose in comparison to . Linac output 

{TG2 l 1984, IPSM 1990, IAEA 1987) utilize a tissue phantom ratio (TPR) at depths of 

10cm and 20 cm to estimate the restricted mass collision stopping power {TG2 l 1984). 

Figure 3 illustrates the TPR method of measurement where ionization chamber readings 

are taken at two depths while the distance between the source and the ionization chamber 

remains constant. 

9 



S o u  re e 

2 0 c m  

___ s o l i d  W a ter  

/ 

Figure 3. Tissue Phantom Ratio (TPR) method of measurement where ionization 
chamber readings are taken at two depths while the distance between the source 
and the ionization chamber remains constant. 

The ratio is then correlated with the solid water curve to find the nominal accelerating 

potential (NAP) and the stopping power, as in Figure 4. (Solid water is a material of 

equivalent electron density to water. Electron density is the predominant factor in the 

photon interaction with matter. )  The Nominal Accelerating Potential is an agreed upon 

representation of the average photon beam obtained from a TPR ( 1 0  cm depth, and 20 cm 

depth) versus restricted mass collision stopping power . 
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air as function of the ionization ratio and the nominal accelerating potential. (Taken 
from TG21, 1984) 

In Figure 4 the restricted mass collision stopping power corresponds to a general 

representation of photon spectra where all beams of the same Nominal accelerating 

energy are considered equal. Of course this is not the case, since the monochromatic 

energy of the electrons leaving the exit window of the accelerator structure defines the 

manufacturer-designated energy of the photon beam, which is transformed into a 

polyenergetic spectrum. Therefore, dosimetric accuracy would be enhanced if the 

restricted mass collision stopping power were calculated as a weighted sum of the values 

of monoenergetic beams (Andrea and Nahum 1 985). 
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Chapter 3 

Methods and Materials 

3. 1 The Simpson Iteration Technique 

The basic transmission function for the photon beam ts T(x) = :��� where I (x) 

describes the intensity or signal of the beam after an absorber of thickness x. I (0) is the 

intensity of the beam without an absorber. Equation 4 describes the transmission function 

of a polyenergetic beam 

E max 

T(x) f e µ < E > x F ( E ) dE (4) 

Where µ (E) denotes the linear attenuation coefficient at energy E and F (E) is the photon 

spectrum. According to Huang et al and Pirametti et al, the above equation can be 

linearly approximated using the Simpson rule to obtain the following: 

In Equation 5, n is the total number of energy groups; and is specified to be odd since the 

Simpson rule requires an odd number of intervals. ,1.E = (�. -�1 ) is the final maximum 
n - 1  

energy minus the initial energy divided by the number of intervals represented by n- 1 .  

1 3  
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F(j) = F 1 , F 2 , F 3 , F 4 • • •  F11 are the fractional values of the spectrum in each energy range, 

and µ(}) are the attenuation coefficients for photons of energies Ej. Equation 5 may be 

written as 

Here A .. = a e•µ i  x ;  
1.J 

�E 
T(x . ) = - '°'  A .. F. 

I 3 � IJ J  

j=I 

ll for j = 1 and n l 
and a =  

2
4 for j = 2,4,(n- l )  

for j = 3,5,(n- 2) 

(6) 

(7) 

One method for solving this equation is a nonlinear least square iteration method 

(NLSIM). The NLSIM approach assumes a starting spectrum G � , where k denotes the 

consecutive number of iterations. Thus k = 0 refers to the initial assumed set of fractions 

Fj which make up G � 

Based on the expected physical shape of a photon spectrum, F 1 through Fn are 

assumed to rise from F 1 towards a maximum fractional photon fluence and then decrease 

towards F 11• This maximum fractional photon fluence designates the modal or the most 

frequently occurring energy in the beam. The transmission factor ( C;k ) is calculated using 

Equation 5 and compared to T (xi) using the statistic Chi square ( X 2 ) (Huang et al 1 984). 

(8) 
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where Yi T(x i )  is the estimated uncertainty and it i s  equal to one fractional standard 

deviation of the measured transmission value T (xi)-

{
0.00 1 5  

Yi = 
0.005 0 

for T � .05
} for T < .05 

In our own modified Simpson iteration the following procedure is employed: 

I .  Select a number of equal energy intervals for carbon associated with their · 
respective attenuation coefficients. 

2. Begin with an initial spectrum designated as spectrum Go which translates to 
an initial set of fractional photon fluencies. (F 1 ,  F2, F3, . . .  ,Fn) corresponding 
to the chosen energies. 

. 
(

T(x . ) ) 3 .  Calculate F
1 = F1 ct where T (xi) is a transmission factor for a chosen 

length and C � is the Simpson iteration calculated transmission factor. 

4. Replace Go with G 1 which is comprised of (F i ', F 1 ,  F2, F3 . . .  Fn). 

5 .  Calculate the transmission factor C � . 

n ( C k - T ( x  ) )
2 

6. Calculate X 2 

= i 
i i 

1 = 1  y i T ( x J 

7. If X 2
, > or = to X 2 undo step 3 and go to step 9. 

8 .  If x 2
' < X 2

, set x 2 = x 2 'then go to step 9 .  

9. Set j = j + 1 Repeat 2 through 8 unless if j is > n where n is the total number of 
fractional photon fluencies. The above part of the iteration is repeated until 
X 

2 is minimized. 
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No values of F(E) were allowed to be less or equal to zero (Huang et al 1 994) in order to 

obtain a meaningful spectrum with all the factors in Equation 5 larger than zero. 

The initial spectrum designated as spectrum Go is set to increase towards the modal 

energy and then decrease. The modal energy or the most frequently occurring energy was 

designated as the average effective energy which corresponds to a half value layer (HVL) 

of the transmission data. The HVL is the attenuator thickness in the path of the beam 

where the signal detected at the collecting chamber is half the original signal . The 

effective energy is the energy of photons in a monoenergetic beam that is attenuated at 

the same rate as the heterogeneous photon beam in question. Since the attenuation 

coefficient curve for a given material is characterized by the slope or linear attenuation 

coefficient (µ), the effective energy is determined by finding the energy of the 

monoenergetic photons which have the same (µ) as the given beam. In a heterogeneous 

beam the 2nd HVL is greater than the first and so on. This is due to the filtering out of the 

lower energy photons thus resulting in a hardened beam with higher average energy of 

photons. Each consecutive HVL corresponds to a larger effective energy. In this work we 

define the modal energy as the average of the effective energies for the 1 5
\ 2nd , and 3rd 

HVL's. 
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3.2 The Huang modified Jones Fit Laplace Transform for Resolving Energy 

Spectra 

In this method, an x-ray attenuation data are fitted to an analytical function 

containing several parameters. If the model is appropriately chosen, its inverse Laplace 

transform will generate a unique solution that resembles the original spectrum. The 

modified Jones method developed by Huang et al fits the experimental transmission data 

T(x) data to the exponential function in Equation 9. 

T(x) = e(-ax+bx2 ) 
(9) 

a and b are positive, the inverse Laplace transform of Equation 9 yields Equation I 0, a 

function assumed to fit the spectrum (P.H. Huang et al 1 983) 

where: 

f ( ) = ( I ) )-c��•l' ] 
µ 2-Jicb ( 1 0) 

f(µ) = Fraction of the total signal produced by photons with attenuation coefficient µ per 
interval µ in the un-attenuated beam. 

f(µ) is related to F(E) which is the fraction of signal produced by photons of energy E in 

the range dE through Equation 1 1  

dµ F(E) = - f{µ) -
dE ( 1 1 )  

1 7  



3.3 The Pinn_acle 3DPRTP Energy Spectrum Model  

The Pinnacle 3D PRTP system contains a number of initial spectra models, which 

are fine tuned through comparison with the appropriate POD data .The POD data can be 

measured in a Source to Surface Distance geometry (SSD) with the source being 1 00 cm 

from the surface of a water phantom (Khan , F.M. 1 994). The dose is determined using an 

ionization chamber that is connected to an electrometer. The maximum dose occurs at the 

depth of maximum buildup. The equations for determining the electron contamination in 

relation to depth, off axis distance, and field size effect are displayed in Figure 5. 

P hoton t:.l ec tron � o n taminat ion l::guation s ________ _. 

El ectron Co ntam i nati o n  
Dose M od el i ng 

E.C. Duse(/s,. r, d) = Fr::.tpth ('p. fs) 
· F�.4 (r) 

f., = r r:lr: � 7.r: 
r = Cff �.i5 :,jst;ance  

1 = C ep:h 

Off Axis Effect 

k:..1 .. 1 ( r )  = � -OA C'-r 2 1  
1 ---
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Figure 5. Electron contamination in relation to depth off axis distance and the field 
size effect. 
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The spectrum is adjusted until the shape of the two curves matches well . Figure 6 is the 

Profile Statistics window where the matching of the PDD's is performed. The spectrum 

in Figure 7 is a Mohan 6MeV photon spectrum (Mohan, R. and C. Chui. 1 985) obtained 

through a Monte Carlo modeling and used as an initial spectrum in Pinnacle. It is first 

adjusted for the I Ox I O  cm2 field size until there is a reasonably good match and then 

repeated for all the other field sizes. A fine tuning sequence automatically adjusts the 

relative photons per energy to achieve the final spectrum. 

Machine; jNew 21oocj 

Figure 6. ADAC Laboratories Pinnacle screen for measured versus calculated 
PDD's. The measured PDD's are adjusted as a direct result of fine tuning the 
spectrum. 

1 9  

.:.._-'------------------'P-'r..,;.o_fi_le_S_t_a_ti_s_ti_cs ______________ ._:_J_JJ 
:gneiW, fsMVl 
);/'•;:··:� 

_s_so_':"_1_oo_c_m_F_1e_1d_: z_x_z ___ ,___.-'_· ... I · Profile: Depth Dos� . · ..,, l 

' ' ,�--------�----......., �-� 
1 0--1 0--1 
I MeanError:j: ... ,,.; i

;::
l ==:::::::=: 

l MeanSQ.Err.1
::::

-
=

-'
==� ·�--""-''--�•; 

J Std Dev: , •;;;,.; 
I length (em):!

:=-=-=. ====.j'j �.: . 

Normalize Plot 
v,Yes ,,.. No 

r:· 

Depth Dose 

'Pct Err • (Comp - Meu) I Max Depth OOst 

ii --

f, . 

:-: --



Figure 7. The Pinnacle Photon model editor is used to fine tune a published 
spectrum to represent the measured PDD data for a linear accelerator. The above 
spectrum is a Mohan Monte Carlo model (Mohan & Chui, 1985) 

3.4 Choice Of Attenuation Material 

This technique requires material with an attenuation coefficient that 

monotonically decreases with the increase in energy over the desired range. The LSIM 

diverges above energies of 4 MeV for lead and 1 1  MeV for aluminum since the 

attenuation coefficient of these materials, µ (E), levels off and begins to increase. This 

results in most unfolding algorithms yielding a non-unique solution. Our unfolding 

technique relies on attenuation coefficients as unique value for all energies. For example 

in the case of an 1 8  Me V photon beam being attenuated through a medium, both lead and 

aluminum have attenuation coefficients µ (E) which correspond to two different 
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Table 1 .  Mass attenuation coefficient (µIp) vs. Energy for Carbon (p = 2.2 gm/cm3 

Taken from The Physics of Radiation therapy, Faiz M Kahn) 

Energy µIp Energy µIp Energy µIp 
MeV (cm2 /g) MeV (cm2 /g) MeV (cm2 /g) 

0.01 2 . 1 600 3.20 0.0346 6.40 0.024 1 

0.10 0. 1 490 3.40 0.034 1 6.50 0.0240 

0.20 0. 1 220 3.50 0.0336 6.60 0.0238 

0.30 0. 1 060 3.60 0.033 1 6.70 0.0237 

0.40 0.0953 3.70 0.0325 6.80 0.0236 

0.5_0 0.0870 3.80 0.0320 6.90 0.0234 

0.60 0.0805 3.90 0.03 1 5  7.00 0.0232 

0.70 0.0756 4.00 0.0305 7.10 0.0230 

0.80 0.0707 4.10 0.0302 7.20 0.0228 

0.90 0.067 1 4.20 0.0298 7.30 0.0227 

1 .00 0.0635 4.30 0.0295 7.50 0.0224 

1 .10 0.06 1 1 4.40 0.029 1 7.80 0.022 1 

1 .20 0.0588 4.50 0.0288 7.90 0.02 1 9  

1 .30 0.0564 4.60 0.0285 8.00 0.02 1 6  

1 .40 0.054 1 4.70 0.028 1 10.00 0.0 1 96 

1 .60 0.0502 · 4.80 0.0278 1 1 .00 0.0 1 93 

1 .70 0.0487 4.90 0.0274 12.00 0.0 1 9 1  

1 .80 0.0473 5.00 0.027 1 13.00 0.0 1 88 

1 .90 0.0458 5.10  0.0269 14.00 0.0 1 86 

2.00 0.0443 5.20 0.0266 15.00 0.0 1 70 

2.10 0.0434 5.30 0.0264 16.00 0.0 1 69 

2.20 0.0426 5.40 0.026 1 17.00 0.0 1 68 

2.30 0.04 1 7  5.60 0.0257 18.00 0.0 1 66 

2.40 0.0408 5.70 0.0254 19.00 0.0 1 65 

2.50 0.0400 5.80 0.0252 20.00 0.0 1 58 

2.60 0.039 1 5.90 0.0249 21 .00 0.0 1 57 

2.70 0.0382 6.00 0.0247 21 .00 0.0 1 56 

2.80 0.0373 6.10 0.0245 22.00 0.0 1 55 

2.90 0.0365 6.20 0.0244 24.00 0.0 1 53 

3.00 0.0356 6.30 0.0243 25.00 0.0 1 5 1  

3.10 0.035 1 6.30 0.0243 27.00 0.0 1 49 
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Chapter 4 

Setup and Data Acquisition 

4.1 Setup 

A Varian 6100 single 6 MV photon energy Linac and a Varian 21 OOC dual photon 

energy Linac with 6 and 18 MV photon beams were used. Figures 1 0, 1 1 ,  12, and 13  

illustrate the setup. The attenuator was comprised of  a number of 3x3 cm2 graphite slabs 

0.8 cm, 2 .54 cm, 5.08 cm, I 0.16cm, 20.32cm, and 40.64 cm in length, placed along the 

beam centerline at 1 00-cm SSD. Different combinations of the slabs were used to achieve 

a wider range of attenuating lengths. Buildup caps were placed on the ionization 

chambers. The purpose of the buildup cap is to achieve electronic equilibrium in open-air 

measurements so as to satisfy the Bragg-Gray principle. For the Varian 6100, the 

ionization chamber with a 6 MV build up cap was placed at distances of 123.5 cm and 

184.5 cm from the I 00 cm SSD. This was done to observe the effect of scatter due to 

distance between the attenuator material and the detector. The consistency of the 

measurements in producing comparable transmission ratios for different slab thickness 

was observed at both distances. The chamber was placed at 184.5 cm for both the 2100-6 

MV and the 2100-18 MV using 6 MV and 18 MV buildup caps, respectively. Secondary 

blocks were positioned next to the graphite slab to further discriminate against scatter as 

seen in Figures I O  and 1 1. The chamber was also surrounded with blocks to further 
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Figure 10. Experimental setup 
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Figure 1 1 .  6100Varian setup with the graphite attenuator placed at 100cm SSD with 
the NEL farmer detector on the opposite side. 

Figure 12. NEL 0.6 cm3 farmer chamber detector placed at 184.5 cm from the SSD 

position. The surrounding Cerrobend blocks are used to minimize scatter 

contribution to detector readings. 
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Figure 13. A view alongside the Graphite in the direction of the detector. 

reduce the scatter due to scattered radiation (Figure 1 2) .  Since the slab is relatively 

narrow, special care was given to insure the beam is properly aligned through the central 

axis. A lx l -cm2-field size at 1 00 cm SSD producing 1 cGy / MU (MU = monitor unit) 

beam was centered at the front end of the slab. 

4.2 Method of Data Col lection and Analysis 

Measurements were all taken along the central axis only using a Keithly 6 1 6  

electrometer and N�L farmer chamber. Open-air measurements were taken 

as the un-attenuated signal 1(0). Subsequent measurements I (x) was taken with different 

slab thickness where x denotes an attenuator thickness in cm. The average modal 

attenuation coefficient was determined by plotting transmission T(x) vs. graphite 
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thickness in cm to determine I s1, 2nd
, and 3rd HVL's and by averaging the corresponding 

effective energies. A visual basic program was developed, using the Simpson rule 

technique outlined in section 3 . 1  to unfold the spectrum. This program uses attenuation 

coefficients vs. energy for graphite and combines it with the transmission versus 

attenuating length data to produce a meaningful energy spectrum. A model that uses 79 

energies to define 79 values for the spectrum, associated with F I through F79 was chosen. 

The odd number of energies was picked to satisfy the requirement of the Simpson 

equation, the number of nodes was picked to give a resolution of more than one fractional 

photon fluence (Fi) per MeV. The modal energy was predetermined according to the . 

methods described above. The initial values of F I through F79 were set to rise towards the 

energy associated with the modal energy and then decline towards the final energy. 

Output for the program consists of: 

1 .  The Spectrum of the beam. 

2 .  The value of the l s1, 2nd and 3 rd HVL and the corresponding effective energies 

along with the average modal energy. 

3 .  The value ofx 2 and the spectrum (F 1 through F79) . 

The unfolded spectra were compared to spectra used in the ADAC Laboratories 3DPRTP 

system currently used at the Thompson Cancer Survival Center {TCSC). AU of the above 

spectra were also compared to modified Jones fit Laplace transform generated spectra 
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Chapter 5 

Results and Discussion 

5 . 1  Scatter Considerations 

The transmission ratio data l(x) 
listed in Table 2 is for a chamber setup at 1 25 .3  

1(0) 

cm and 1 84.5 cm from the attenuator are almost identical for the two sets of 6 MV 

measurements. Thus, we can conclude that the detector was placed at a distance 

sufficiently large from the source for its response to be affected with scattered radiation. 

The setup shown in Figures 1 0, 1 1  and 1 2  was utilized to discriminate against scatter of 

the beam and leakage which is defined as all radiation originating in the gantry head of 

the Linac except the useful beam (NCRP REPORT No.49, 1 994, Structural Shielding 

Design And Evaluation For Medical Use ofX Rays And Gamma Rays Of Energies Up to 

Table 2. Relative electrometer readings for a Varian 6100 6 MV and a Varian 2100 
6 MV photon beam attenuated through graphite taken at distances of 125.3 cm and 
184.5 cm between the source and the detector. 

Graphite Slab Thickness 6100 6MV 2100 6MV 
(cm) l(x)/1(0) Measurement l(x)/1(0) Measurement 

At x=125.3cm at x = 184.5cm 
2 .54 0. 8020 0.8027 

5 .08 0.6586 0.6570 

1 7 .78 0.2440 0.2429 

38 . 1 0  0.0576 0.0572 
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10 MeV). Leakage measurements were taken behind the beam exit window and at 90 

degrees off the beam's central axes at a distance of 1 m from the source. Leakage was 

well below 0.1 % of the useful beam measured along the beam axes at 1 m SSD. 

Electrometer readings of the primary beam were taken with and without the Cerrobend 

blocks shown in Figures 11, 12, and 13. These readings were not affected by the removal 

of the blocks. Nevertheless, the blocks were kept to obtain maximum protection against 

scatter. 

The open-air measurements along with the subsequent attenuation thickness electrometer 

readings are displayed in Table 3.and Table 4. The two tables contain the corresponding . 

transmission data T (x) for a separation of 184.5 cm between the chamber and the source. 

Table 3. Electrometer readings (nC) for the Varian 6100 6 MV beam and the 
2100CD for 6 and 18MV beams. 

- -

Attenuation 2100-6MV 6100-6MV 2 1 00-t SMV 
thickness( cm) electrometer electro meter electro meter 

readings readings readings 
0.00 2.271 2.036 3.220 
0 .80 2 .043 1.818 3.017 
2.54 1.823 1.651 2.780 
5.08 1.492 1.417 2.553 
7.62 1.206 1.142 2.246 
10.16 0.999 0.978 2.010 

I 12.70 0.813 0.816 1.796 
17.78 0.552 0.562 1.443 
20.32 0.463 0.489 1.298 
22.86 0.38 1 0.412 1.165 
25.40 I 0.320 0.352 1.048 
38.10 0.130 0.156 0.677 
40.64 0.113 0.137 0.623 
43.18 0.094 0.119 0.562 
78 .74 0.009 0.015 0.147 
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Table 4. Trans�ission data T(x) = I(x) 
calculated using the electrometer readings 

1(0) 
in Table 3 

Attenuation T(X))l00-6 MV T(X) ·6100 T(X)2 100-18 MV 
thickness ( cm) T(O) = 2.271 nC T(O) = 2.036 nC T(O) = 3.220 nC 

-

0.80 0.900 0.893 0.937 
2 .54 0.803 0.8 1 1 0.864 
5 .08 0.657 0.696 0.793 
7 .62 0.53 1 0.56 1 0.700 i 

1 0 . 1 6  0.440 0.480 0.624 
1 2 .70 0.358 0.40 1 0.558 
1 7.78 0.243 0.276 0.448 
20.32 0.204 0.240 0.403 
22.86 0. 1 68 0.202 0.362 
25 .40 0. 1 4 1  0. 1 73 I 0.326 
38 . 1 0  0.057 0.077 0.2 1 0  
40.64 0.050 0.067 0. 1 93 
43 . 1 8  0.042 0.058 0. 1 75 
78 .74 0.004 0.008 0.046 

5.2 Modal Energy Results 

The average modal attenuation coefficient was determined by plotting 

transmission T(x) vs. graphite thickness in cm, then finding the I s1, 2n<l, and 3rd HVL's 

which correspond to effective energies as described in the Methods and Materials 

chapter. The average modal attenuation coefficients for the three beams and their 

corresponding energies are displayed in Table 5. Figure 1 4  is a plot of the transmission 

T(x) vs. Graphite thickness in cm. 

33 



Table 5. Experimentally determined average modal energies for the 6100 Varian 
and 2100 6 MV and 2100 18 MV photon beams. 

Beam Average Modal Attenuation Corresponding Modal 
Coefficient cm2 /g Energy (Me V) 

6100 0.062 0.835 
2100 6 MV 0.075 0.734 

2100-18 MV 0.030 4. 1 77 

1 .00 
-½- 21 00-6X 

0.90 -B- 61 00 

21 00-1 8X 
0.80 

Expon. (21 00-1 8X) 

0.70 - Expon. (21 00-6X) 

-Expon. (61 00) 
� 0.60 
� y(21 00-1 8x) = 0.9136e·0.0394x 

= 0.50 
·""""' 

c-,.} y(21 00-6x) = 0.868e·0·061 5x 
c-,.} 0.40 ·""""' 

y(61 00) = 0.8421e·0·
0677x 

= 0.30 

� 0.20 

o.oo L--1--������--J 
0 20 40 60 80 100 

Thickness ( cm) 

Figure 14. Transmission vs. thickness for a Graphite attenuator. 
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Figure 15. Simpson generated photon energy spectrum for a Varian 2100 6 MV 
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Table 6. Ending minimized Chi square modal energy values for the Simpson 
generated 6 MV photon spectra. 

Beam x,2 Modal Energy (Me V)) 

6100 54744 0.835 
2100 6 MV 28539 0 .759 
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Figure 17. Simpson generated photon energy spectra of the 2100-6 MV and 6100-6 
MV beams. 
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5 .3  Resulting Spectral Model for 6 MV Beams 

The resulting Simpson generated photon spectra for the 6 MV beams are shown in 

Figure 1 5 , Figure 1 6, and Table 6. 

Figure 1 7  is a comparative display of the two spectra. The generated spectra of 

this work were compared to a Mohan spectrum model used in the ADAC 3DPRTP 

system for the Varian 6 1 00 and the 2 1 00 6MV beams. 

Figure 1 8  shows the Mohan beam spectrum model. All of the above spectra were 

also compared to their respective Huang modified Jones Laplace transform models .  The 

Laplace models were generated as described in section 3 .2 .  Figures 1 9  and 20 are the . 

fitted data to equation 9. Table 7 includes the corresponding values for a and b which are 

used in equations 1 0  and 1 1  to generate the Laplace spectra. 

Figures 2 1  and 22 display the Simpson generated spectra for the Varian-6 1 00 and 

Varian-2 1 00 6 MV beams vs . the Pinnacle spectrum and the Laplace spectra. Table 8 is a 

comparison of the modal energies for the Simpson models vs. the Pinnacle generated 

spectra and the modified Jones Laplace spectra. The Huang modified Jones method 

yielded a modal energy of 1 .0 MeV for the 2 1 00-6 MV beam and 0.7 MeV for the 6 1 00-6 

MeV beam. 

5.4 Resulting Spectral Model for the 1 8MV Beam 

The Simpson modeling technique is capable of generating energy spectral 

distribution for the 1 8  MV photon beam. The generated spectral model of this work is 

compared to the spectral model used in the Pinnacle 3DPRTP. 
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Figure 19. Huang modified Jones fit of the 6100 transmission data T(x) to the 
exponential function in Equation 9, T( x) = e (-ar:+bx
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Table 7. Fitted values of parameters a and b of equation 9, T( x) = /-ax+bx
2 

J to the 
experimental attenuation data T(x) of the photon beams. 
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Figure 21. A comparison of the Simpson generated spectrum Versus the Pinnacle 
spectrum,and the modified Jones spectrum for the Varian 6100 beam. 
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· Table 8. A comparison of the modal energies for the Simpson models vs. the 
Pinnacle generated spectra and the modified Jones Laplace spectra. 

Beam Modal Energy MeV 

Pinnacle -Mohan Monte Carlo 6MV 0.800 
Simpson 2100 6 MV 0.759 
Laplace 2100-6 MV 1 .000 

Simpson 6100 0.835 
Laplace 6100 0.700 

.Figures 23 and 24 displays the Simpson generated spectra for the 2 1 00- 1 8  MV beam vs. 

the Pinnacle spectrum and the Laplace spectrum Table 1 0  includes the corresponding 

values for a and b which are used in Equations I O  and 1 1  which were used to generate the 

Laplace spectra. The Laplace models were generated as described in section 3 .2, figure 

25 shows these data fit to Equation 9. 

The Pinnacle spectral model yielded a modal Energy of 1 . 50 MeV, where as the 

Simpson model experimentally defined modal energy was 4. 1 7  MeV, and Huang 

modified Jones method yielded a modal energy of 2.50 MeV. The relatively large 

differences in the modal energies for the 1 8  MV spectra lead the author to compare the 

results with a fourth spectral model generated by Francois and Catala through a technique 

of direct resolution of a matrix system of transmission data (A. Catal et al 1 993). The 

Francois - Catala technique yields a number of modal energies for l 5MV to 20 MV 

beam spectra ranging from 2.76 to 3 . 58 MeV. These modal energies agree better with the 

Simpson model than the interpolated 1 8  MV model . �e collected HVL data also 

suggests that the modal energy of the beam is substantially larger than 1 .5 MeV which is 

the modal energy of the interpolated ADAC 1 8  MV spectrum. 
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Figure 23. Energy Spectrum generated using the Simpson technique for the 2100-18 
MV beam. 
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Figure 24. A comparison of the Simpson generated spectrum versus the Pinnacle 
spectrum and the Laplace transform for the 2100-18 MV beam. 

Table 9. Modal Energy and fractional photon fluence of the modal energy for the 
Pinnacle, Simpson, and Laplace spectrum modeling techniques 

Spectrum Type For the Modal Energy 
2100-1 8 MV beam MeV 

Pinnacle 2100-18 MV 1 .50 
Laplace 2100-18 MV 2.50 

Simpson 2100-18 MV 4. 17 

Table 10. Fitted values of parameters a and b of equation 9, T(x) = e<-a.Hbx
2

> to the 
experimental attenuation data T(x) of the photon beams. 
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Chapter 6 

Conclusions and Future Work 

6. 1 Conclusion 

In conclusion, the photon spectrum of a high-energy Linac can be measured 

through the use of a monoenergetically declining attenuation coefficient attenuator. 

Carbon is a good choice for such material. The attenuation data can be converted to a 

spectral distribution using spectral unfolding techniques. The resulting Simpson unfolded 

spectra's were compared to the published 6 MV Mohan spectrum and an interpolated 

18MV spectrum. Both spectra 's are Monte Carlo based and used in the ADAC 

Laboratories three dimensional Pinnacle treatment planning system. Modal energies for 

the Simpson technique were determined and compared to the modal energies for the 

Mohan spectrum and the interpolated 18 MV spectrum. Our methods modal energies for 

the 6MV beams were similar to the Mohan 6MV spectrum. All of the above spectra's 

were also compared to a Huang modified Jones-fit Laplace transform generated energy 

fluence spectra. The relatively large differences in the modal energies for the 18 MV 

spectra lead the author to compare the results with a fourth spectral model generated by 

Francois and Catala through a technique of direct resolution of a matrix · ·system of 

transmission data. The Francois - Catala technique yields a number of modal energies 

which agree with the Simpson model as opposed to the interpolated 18 MV model. The 

HVL data also suggests that the modal energy is closer to the Simpson and Francois -

Catala modal energies. The disagreement of all the above models leads the author to 
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conclude that further work and unification of methodology 1s needed to verify true 

photon energy spectra. 

6.2 Future Work 

In future work we plan to investigate resolving the photon energy spectrum via 

Monte Carlo calculations. We also hope to resolve the discrepancies that exist in current 

spectral models and thus, create a proposal for future spectral modeling criteria. 
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Appendix A 

A Visual Basic Program for the Simpson Iteration Technique 
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List2.Clear 
List3.Clear 
List4.Clear 
List5. Clear 
List6.Clear 
chi2square = 0 
chi I square = 0 
For I = I To endn 
X(I) = 0# 

T(I) = 0# 

Next I 

test = 1E+ l6  
' NUMBER OF  SIMPSON NODES 
endn = 79 
' Establish initial and final energies 
If List i = "2100-18X" Then 
Ef = 18# 
Ei = 0.01 
End If 
If List i = "2100-6X" Or List i = "6100" Then 
Ef = 6# 

Ei = 0# 
End If 
""' '' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '"'' '"""'' ' ' ' '"'" 
' I st energy coefficient represents LOWEST energy component 
' establish energies and corresponding attenuation coefficients 
' nu is energy attenuation coefficient e is the energy 
For eS = 1 To endn Step 1 
e( eS) = (Ef / endn) * eS 
nu(eS) = 0.0603 * (e(eS) I\ -0.438) 

Next eS 

' divide the transmission data with a maximum of 79cm graphite into 
'endn equal interval e.g 1st cut = largest X(I) 
' Plot T(I) vs X(I) 

If List 1 = "21 OO-l 8X" Then 
For I = 1 To endn 
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X(I) = (79 / endn) * I 

T(I) = 0.9 l l 5 * Exp(-(0.0384 * X(I))) 

List4.Addltem T(I) 
' Determine nodal energy 

' Tnoatten = 1(0) 

Tnoatten = 1 

If T(I) >= (Tnoatten I 2) - 0.0 1 5  And T(I) <= (Tnoatten I 2) + 0.0 1 5 Then 

nodalt = T(I) 
nodalx = X(I) 

nodalnu = -Log(nodalt) / (2 .265 * nodalx) 
nodalE = e(nodalx) 
End If 

If T(I) >= (Tnoatten I 4) - 0.0 1 5 And T(I) <= (Tnoatten / 4) + 0.0 1 5  Then 

second_nodalt = T(I) 
second_nodalx = X(I) - nodalx 

second_nodalnu = -Log(second_nodalt) / (2 .265 * second_nodalx) 
second_nodalE = e(second_nodalx) 

End If 

If T(I) >= (Tnoatten I 8) - 0.0 1 5 And T(I) <= (Tnoatten I 8) + 0.0 1 5 Then 

Third_nodalt = T(I) 
Third_Nodalx = X(I) - (second_nodalx) - nodalx 

Third_Nodalnu = -Log(Third_nodalt) / (2 .265 * Third_Nodalx) 
Third_NodalE = e(Third_Nodalx) 
End If 

Avarage_Nodal_E = (nodalE + second_nodalE + Third_NodalE) / 3 

Avarage_NodalX = (nodalx + second_nodalx + Third_Nodalx) / 3 

A verage_Nodalnu = (nodalnu + second_nodalnu + Third_Nodalnu) / 3 
Next I 

End If 

If List I = "2 1 00-6X" Then 
For I = I To endn 
X(I) = (79 / endn) * I 

T(I) = 0.9332 * Exp(-0.07 1 3 * X(I)) 

List4.Addltem T(I) 
' Tnoatten = 1(0) 
Tnoatten = I 

IfT(I) >= (Tnoatten I 2) - 0.0 1 5  And T(I) <= (Tnoatten I 2) + 0.0 1 5  Then 

nodalt = T(I) 

nodalx = X(I) 
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nodalnu = -Log(nodalt) / (2.265 * nodalx) 
nodalE = e(nodalx) 
End If 
If T(I) >= (Tnoatten / 4) - 0.0 1 5  And T(I) <= (Tnoatten / 4) + 0.0 1 5  Then 
second_nodalt = T(I) 

second_nodalx = X(I) - nodalx 
second_nodalnu = -Log(second_nodalt) / (2 .265 * second_nodalx) 
second_nodalE = e(second_nodalx) 

End If 
If T(I) >= (Tnoatten / 8) - 0.0 1 5  And T(I) <= (Tnoatten / 8) + 0.0 1 5  Then 
Third_nodalt = T(I) 
Third_Nodalx = X(I) - (second_nodalx) - nodalx 
Third_Nodalnu = -Log(Third_nodalt) / (2 .265 * Third_Nodalx) 
Third_NodalE = e(Third_Nodalx) 
End If 
Avarage_Nodal_E = (nodalE + second_nodalE + Third_NodalE) / 3 
Avarage_NodalX = (nodalx + second_nodalx + Third_Nodalx) / 3 
Average_Nodalnu = (nodalnu + second_nodalnu + Third_Nodalnu) / 3 
Next I 
End If 

If List l = "6 1 00" Then 
For I = 1 To endn 
X(I) = (79 / endn) * I 

T(I) = 0.9274 * Exp(-0.063 * X(I)) 

List4 .Addltem T(I) 
' Tnoatten = 1(0) 
Tnoatten = I 

If T(I) >= (Tnoatten I 2) - 0.0 1 5  And T(I) <= (Tnoatten / 2) + 0.0 1 5  Then 
nodalt = T(I) 
nodalx = X(I) 
nodalnu = -Log(nodalt) / (2.265 * nodalx) 
nodalE = e(nodalx) 
End If 
If T(I) >= (Tnoatten / 4) - 0.0 1 5  And T(I) <= (Tnoatten / 4) + 0.0 1 5  Then 
second_nodalt = T(I) 
second_nodalx = X(I) - nodalx 

second_nodalnu = -Log(second_nodalt) / (2.265 * second_nodalx) 
second_nodalE = e( second_nodalx) 
End If 

If T(I) >= (Tnoatten / 8) - 0.0 1 5  And T(I) <= (Tnoatten / 8) + 0.0 1 5  Then 
Third_nodalt = T(I) 
Third_Nodalx = X(I) - (second_nodalx) - nodalx 
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Third_Nodalnu = -Log(Third_nodalt) / (2.265 * Third_Nodalx) 
Third_NodalE = e(Third_Nodalx) 
End If 
Avarage_Nodal_E = (nodalE + second_nodalE + Third_NodalE) / 3 
Avarage_NodalX = (nodalx + second_nodalx + Third_Nodalx) / 3 
Average_Nodalnu = (nodalnu + second_nodalnu + Third_Nodalnu) / 3 
Next I 
End If 

'"''' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ''"""'"'' '' ' ' ' ' ' ' ' '""""""'' ' ' '"'"' "' 

chisquare = 30000000000# 
K = A varage_N odalX 
TestXi( l 0, 0. 1 )  = 0# 

'Do While chisquare >= 300000 
For mm = K - 1 To K + 1 Step 0. 1 

For nn = 0.4 To 0.008 Step -0.0 I 

chi2square = 0# 
For m = I To endn Step I 

If List 1 = "2 1 00- l 8X" Then 
n = mm 
f(n) = nn 
'ri = 0. 1 8  
End If 
If List 1 = "2 1 00-6X" Then 
n = mm 
f(n) = nn 
'ri = 0.33 
End If 
If List l = "6 1 00" Then 
n = mm 
f(n) = nn 
'ri = 0.32 
End If 
If m = n Then 

f(m) = f(n) 
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End If 
If m < n Then 
sintheta = f(n) / n 
f(m) = (m) * sintheta 
End If 
If m > n Then 
sintheta = f(n) / ( endn - n) 
f(m) = ( endn - m) * sintheta 
End If 
If m = I Or m = endn Then 
f(m) = 0.00 1 
End If 

Next m 

'GoTo 800 

Sum = 0 
chisquare = 0# 

test = I 000000000 
For I = 1 To endn Step 1 

' Begin iteration by establishing curve fits for T(I) 

""""""""""""Standard Deviation''"''"' 
80 If T(I) < 0.05 Then 
gam = Val(0.005) 'Estimated uncertainty = 1 STD ofT 
Else 
gam = 0.00 1 5  
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End If 

'f(j): Fraction of photons of a certain energy represented in beam 
'Establish Simpson equation 
Sum = 0# 

evenodd = 1 
For j = 1 To endn Step 1 

DELTAE = (Ef - Ei) / (endn - 1) 

If j = 1 Then 
Alpha = 1 
End If 
If (j = 2 * (evenodd)) Then 
Alpha = 4 
Else 
If (j = 2 * ( evenodd) + 1) Then 
evenodd = evenodd + 1 
Alpha = 2 
End If 
End If 
If j = endn Then 
Alpha = 1 
End If 

Aij(I, j) = Alpha * Exp{-nu(j) * X(I) * 2.265) 
' Sums all individual Simpson values 
Sum = Sum + Aij(I, j) * f(j) 

Next j 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
' calculate C(I) 
' Calculate XV'2 pertinent to this value of I and sum to get Xi,..._2 for all I 

I TRIANGULAR ITERATION 
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
' PREPARE CHISQUARE FOR Fl THROUGH FN ITERATION 
' This loop subtracts each individual simpson value and multiplies it by 
'T(i)/C(i) then returns it to the equation 

ci(I) = (DELT AE / 3) * Sum 
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'For 1 1  = 1 To ENON Step 1 
'Sum = Sum - Aij (I, 1 1  ) * f(l l ) 
'f(l l )  = f(l l )  * (T(I) / ci(I)) 
'Sum = Sum + Aij(I, 1 1 )  * f(l l )  
'Next 1 1  

' calculate adjusted C(i) 
' Calculate adjusted Xi"'2 pertinent to this value of I and sum to get Xi"'2 for all I 

ci(I) = (DEL T AE / 3) * Sum 

chi l square = chi l square + (Abs(ci(I) - T(I)) "' 2 / (gam * T(I)) "' 2) 

' calculate adjusted C(i) 
' Calculate adjusted Xi"'2 pertinent to this value of I and sum to get Xi"'2 for all I 

' NODE by NODE iteration F I  through FN 

List6.Addltem chi I square 

For L = I To endn Step I 
Xl(L, I) = (Abs(ci(I) - T(I)) "' 2 / (gam * T(I)) "' 2) 
Sum = Sum - Aij(I, L) * f(L) 
f(L) = f(L) * (T(I) / ci(I)) 
Sum = Sum + Aij (I, L) * f(L) 

cprime(I) = (DELTAE / 3) * Sum 
XIPRIME(L, I) = (Abs(cprime(I) - T(I)) "' 2 / (gam * T(I))

° "' 2) 

If XIPRIME(L, I) < Xl(L, I) Then 
chi2square = Abs(chi l square - Xl(L, I)) 
Xl(L, I) = XIPRIME(L, I) 
ci(I) = cprime(I) 

chi2square = chi2square + Xl(L, I) 
Else 
chi2square = Abs( chi I square - XI(L, I)) 
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Sum = Sum - Aij(I, L) * f(L) 
f(L) = f(L) * ( ci(I) / T(I)) 
Sum = Sum + Aij(I, L) * f(L) 
ci(I) = (DELTAE / 3) * Sum 
Xl(L, I) = (Abs(ci(I) - T(I)) " 2 / (gam * T(I)) " 2) 
chi2square = chi2square + XI(L, I) 
End If 

Next L 
List5 .Addi tern e(I) 

Next I 

chi2square = 0 

TestXi(mm, nn) = chi l square 
If List 1 = "2100-18X" Then 
lf TestXi(mm, nn) < 29700 Then 
ri = nn 
GoTo 800 
End If 
End If 

If List l = "6100" Then 
If TestXi(mm, nn) < 55700 Then 
ri = nn 
GoTo 800 
End If 

End If 

If List l = "2100-6X" Then 
If TestXi(mm, nn) < 30300 Then 
ri = nn 
GoTo 800 
End If 

End If 
chi 1 square = 0# 
Next nn 
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Next mm 

800 txti2 = e(second_nodalx) 
txtj2 = second_nodalx 
Txti3 = e(Third_Nodalx) 
Txtj3 = Third_Nodalx 
Text 1 = 0.0603 * (Avarage_Nodal_E " -0.438) 

txti = nodalE 
txtj = nodalx 

txti4 = Avarage_Nodal_E 
txtj4 = Avarage_NodalX 
For 11 = 1 To endn 
List3 .Add Item ci(l l )  
Next 11 

'MS Chart l .chartType = VtChChartType2dArea 
FNORM = 0# 
For s l  = 2 To endn 
If f( s 1) >= f( s 1 - 1) Then 
Max = f(s l)  
End If 
Next sl 

For 11 = I To endn 
List2.Addltem (f(l l )  / Max) * ri 
Next 11 

txtfinal = chi I square 

For s = 1 To endn Step I 
MS Chart I .Row = s 
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MSChart l .RowLabel = e(s) 
MSChart I .Column = 1 
MSChart l .Data = (f(s) / Max) * ri 
Next s 
For L = 1 To endn Step 1 
MSChart2.Row = L 
MSChart2 .RowLabel = e(L) 
MSChart2 .Column = 1 
MSChart2 .Data = T(L) 
Next L 
For L = 1 To endn Step 1 
MSChart3 .Row = L 
MSChart3 .RowLabel = e(L) 
MSChart3 .Column = 1 
MSChart3 .Data = nu(L) 
Next L 
For 1 1  = 1 To endn Step 1 
MSChart4.Row = 1 1  
MSChart4.RowLabel = X{l l )  
MSChart4.Column = 1 
MSChart4.Data = T{l l )  
Next 1 1  
'Dim Msg ' Declare variable. 

' On Error Go To ErrorHandler ' Set up error handler. 
PrintForm ' Print form. 
' Exit Sub 

'Error Handler: 
' Msg = "The form can't be printed."  
'MsgBox Msg ' Display message. 

' Resume Next 

End Sub 
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Appendix B 

Pinnacle 3-DPRTP Printouts 
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Patient �ame: tmp 
Patient fD: 
Plan Name: 

Trial Name: 

Revision: R0J.P0J.D04 

Machine: 

Version: 
Energy: 
Field Size: 

2/00C 

200 1 -08- 14 10:48:53 
6 :t,-/V 
All Field Sizes 

Incident Fluence 
lncident fluence incrcase'cm 0.00843402 
Incident flucnce cone radius {cm) 4 .80� 
X {perpendicular co gantry axis) (cml).0259373 
Y (parallel to gantry a.,is) (cm) 0.0360937 
Gaussian height (cm) 0.07i669 
Gausllian width (cm) 0.953635 
Jaw tr:uumission 0.00593261  

Modifiers 
Modifier scatter factor 

Electron Contamination 

0.249999 

On/Off On · 
Max Depth [MAXD] {cm) 3 
EC Surface Dose (ECO. �Ox lO] {D/FIQ461904 
Depth Coefficient [KJ ( I /cm) 3.70675 
Off-axis Coefficient [OAC] ( I /rad"�) 0 
OF 0. 1 0 1S38 
SF 0.6563 1 1  
C I (D/Flu) 0.00770778 
C2 {O/Flu) l .320S 
CJ ( 1/cm) 0.980583 

Spectral Factors 
Off-a.,is softening factor 

Modeling Geometry 

1 2  

Fluence grid resolution (cm) 0.40 
Phantom Size • Latcnl (cm) S0.00 

Phantom Size - Depth (cm) S0.00 

RTP System 6.iJI 
ADAC Llboracoria 

MilpitH, CA 950J5 

(100) !J? • Z1 D 

(.fOI} Jll • 9 100 

Date;Time: Mon Apr 1 1 4:07:42 2002 
Comment: _ 
Institution: 
Physician/Physicist: / 
Planner: 

Energv Spectrum 
(Energy in MeVJ 

Energy MeV 
0. 10 
0.20 
O.JO 
0.40 
0.50 
0.60 
0.80 
1 .00 
1 .2S 

1 .50 
2.00 
3.00 
4.00 
S.00 

6.po 
8.00 

Rel P!totons 
0.004 
0.004 
0. 120 
0. 120 
0.3 14 
0.430 
0.44.S 
0.414 
0.4 13  
0.395 
0.2 1 S  
0. 12 1 
0.089 
0.032 
0.004 
0.000 

Plan Authorization: _____ .....:.N�O�T:..::.F_O_R_C-=L=-I_N;.:;,lC;:;;.A __ L_U-=S-=E-------
PiMaclc v6.0i 

Pg I of I · PHM 

7 1  

I.____ ___JI 

� ... Plnrzacl�.:_ 
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L Pinnacle3 

Patient Name: tmp 
Patient ID: 
Plan Name: 
Trial Name: 
Revision: 

Machine: 
Version: 
Energy: 
Field Size: 

R03.P03.D04 

2/00C 

2001 -08- 14  1 0:48:53 
J8i\1/V 
All Field Sizes 

Incident Fluence 
Incident fluence increase/cm 0.008 1 6823 
Incident fluence cone radius (cm) 24. 1393 
X (perpendicular to gantry axis) (cm,.0256252 
Y (parallel to gantry axis) (cm) 0.036562 1 
Gaussian height (cm) 0.065233 7 
Gaussian width (cm) 0.7 1995  I 
Jaw transmission O.OOS05577 

Modifiers 
Modifier scancr factor 

Electron Contamination 

0.5 

OniOtT . On 
Max Depth [l\llA..XD] (cm) 6 
EC Surface Dose [ECO. tOx lO] (D/FliQ267532 
Depth Coefficient [Kl ( 11cm) 0.684703 
Off-axis Coefficient [OAC) ( l/rad"2) · 0 
OF 0.0 152 1 1 9 
SF 0.99788 
Cl (D/Flu) 0.000233378 
C2 (D/Flu) 0.60602 1 
C3 ( I /cm) 0.0682791 

S oectral Factors 
Off-axis softening factor 

Model ing Geometry 

1 2  

Flueoce grid resolution (cm) 0.40 
Phantom Size - Lateral (cm) so.oo· 
Phantom Size - Depth (cm) S0.oo· 

RTP System 6.0i 

ADAC Laboruorln 

Milpitas, CA 9S0J, 

(100) 2JZ • Z IZJ 

t408) J.ZI • 9 100 

Date/Time: Mon Apr 1 1 4:07:58 2002 
Comment: 
Institution: 
Physician/Physicist: 
Planner: 

Energv Spectrum 
(Energy in MeV) 

Energy McV Rel Photons 
0. 1 0  0.0:?3 
0.20 0.0:?3 
0.30 0.03 1 
0.40 0.03 1 -
0.50 0.069 
0.60 0.090 
0.80 0. 148 
1 .00 0. 169 
1 .25 0. 173 
I .SO . 0 . 1 89 
2.00 0. 18 1 
3.00 0. 138  
4.00 0. 104 
5.00 0.079 
6.00· O.OS5 

8.00 0.044 
10.00 0.023 
1 5.00 0.008 
20.00 0.002 
30.00 0.000 

Plan Authorization: ________ N_O_T......,F_O_R_C=L.:.:IN.;.:I:.;:C�A:.:L=-U.;:;.r=-sE=-------
PiMadc v6.0i 

Pg I of ! · PHM 
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Pinnacle
3 Machine: 2 1  00C 

Energy: l SMV 
Version: (uncommissi��ed) 

Printed 04/0 1 /02 Geometry: SSD = 1 00 cm Field: l 0 X 1 0  

Depth Dose 
Dose 

1 00.00 -- - - ---;.<,··�. ___ L . 
,
·.! 

__ ___ -- - ----- - - -- �
,

- - __ __ _ _ __________ 1,: . _ _________ _____ �::
s

�::p · 
/ ! I ! ! I 

95.00 - -- - -- ·-· · ·-··; ·-·· ·----·-·- ··-+----·--·---- 1 - ----··•·· . - -- ••• , •. _ •••• • ·- . 

90.00 --- - - ---+--- __ .'._+ I t- - ---+ -- - :· 
85.00 ---+--,1---�� I 

I 
1· T-

80.00 - - -

75.00 ---+-------------J.--/ -----------L ____ / - -- --
___.___'"_.______L __ -+- --- --70.00 --

65.00 

! - I 60.00 --·· -;J---------...----_J_---l--�---1-i ___ I _______ _ 

55.oo - ____ ___.____ - j _______ L ________ · -

50.00 -

45.00 

I ; l - -
--- ' -·--· -·-+·-· -•-•·•··- -·--···•- ------ ... ..: .... . I . : 

I I I ! I 
I 

, 
-------.:...---� --··- ·•··-i ·-- -···--· -· 

·1 1 -40.00 ---11-----..-1 --..-1 ---'--.----___;._-'--
35.00 -··· _-- ---·-·r . i 

j . I 

30.00 -- .. --- . • -- . i 

I 
I -- --. ----

25.00 ----- · ·--•·· --· ----�- -- --- - ------ 1--------r--- ----· -- l -- - ·- - ·· ·· · t · ·-- ·· ·- -· · 

0.00 5.00 10.00 1 5.00 20.00 25.00 
Distance 
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L.,, l1i11nacle' 
RTP S,stcm 6.0i ADAC Lahnralnrics Milpi111. CA �JS 

Patient Name: Imp 
Patient ID: 

Date/fime: Mon Apr 1 14:07 :01 2002 
Comment: . 

Revision: R03]>o1.004 
· r1anncr: 

Plan Name: Physicia�h}'_sicist: / lns1i1ution: 

lll!��""'' 
r;�•:;.

_
,'.,':' 1 '"'· 

lt ,1tt.if� [r��.{ 

!l Electron Contamination 
.i:_ l '  

Ii f 
�: 

\i 
f 
1( 

t
'. 

� 

l 
: 

i 

Dose Model i ng 

E.C .  Dose(/s, r, d)= Fvepth (d, Js) 
� FoA (r) 

ft = Field Size 
r = Off Axis Distance 
d ""'  Depth 

. . 

Off Axis Effect 

1 
k�A(r )o= e- OACr 2 

I 
I 
� 

�' 

'. ---
/� 

/ 

;, � 

\ r-P ½ 
:; 
•' 

0 
;, 

'� 

/ ! 
,4----oA·c � 

/ I . \ 
./ ! . \ 

____ .,..,..
/ l i ',., ... ,., ___ 

0 
r (Off Axis Distance) (cm) 

· · Depth Effect 
FFift) 

I 
. p: #- )  -J: d -J:MAXD\ SF . Fi Md ft ) = _L__.!._. � - t?  

. 
lMpt ' SF. 1 -e -r ·MAXD I 

...-;:;-

V � ........, 
1, FyJVs ) .... ___ · .. 
c! --� ft. . 1"·"" 

0 
0 DF·MAXD MAXI: 

d (Depth) (cm) 

Field Size Effect 

'Pn(ft ) = ECD111.io + Ci ·lft - 10

1

)1 
+ C

2
. (e -c:,-10 - c -CJ·ft ) ---

5 ------------
l,� ---

� -----------
ECL\Q.do 

---.. . - . .  . . ----
., ·� .. ��·--·

_,;-

•-· � 
/ I 

0 10 
ft (Eq. Sq. Field Size) (cm) 

i�. :�! ' -� -·r 
� 
( · 
. ti 
\{. 

{-i,_ 

�: ,, , 
;� 
-� 

}_} . . 

';
I 

.,...-r-... �t-:·.:r;,.�?��,I-/1};:��11i�'i��;-jj. ji}��·.''�;:r.��;.i� 'i�? ;�·�·�&ti J �i.��.�{-;t .?:4.�· \ �-i�:•;�r-�:':�;��\?!.':·m-'.�:·,� )°

��:· ;l::9'/.;t�.-�.: ,: �.1 f�:-�� .. =��� 1£. F��·I 1\l 
l·, •,, , .•.f>'..s ·•. ,.• •· · ·:C] • • . • �.' . !".: 

(IOO) 232 • 2123 t 

Page: - �·for 
Scaling: Fill · 
NOT FOR CLINI 

-.:1" t-

• �, 



Appendix C 

Huang modified Jones Laplace Transform Data and Printouts 
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Energy 

MV 

0.0 

0.1 
0.2 

0.3 

0.4 

0.5 

0.6 

0.7 
0.8 

0.9 

1 .0 

1 .1 

1 .2 

1 .3 

1 .4 

1 .5 

1 .6 

1.7 
1 .8  

1 .9 

2.0 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

3.0 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 
3.8 

3.9 
4.0 

4.1 
4.2 

4.3 

4.4 

4.5 

4.6 

4.7 
4.8 

4.9 

5.0 

5.1  

5.2 

5.3 

5.4 

5.5 

5.6 

5.7 

5.8 

5.9 

6.0 

6. 1 

6.2 

6.3 

e.4 

6.5 

6.6 

6.7 

6.8 

6.9 

7.0 

F(E) 

0 
3.5J1 39E•07 
0 004099139 
0.1 19537716 
0.487893 168 
0.85972741 2  
0 914284831 
1 000804◄◄9 
0 696045335 
0.609449929 
0 323◄◄ 1599 
0 26987895 1 
0 21 1n4915 
0 1 69829537 
0. 1 28080879 
0 058561M39 
0.047226675 
0 037579279 
0 02990TT55 
0 02247812 

0 010279163 
0.00872541 3  
0 007372682 
0.006201207 
0.0051!12042 
0 004327245 
0 003590013 
0 002964775 
0.002437243 
0 001 99'422 
0 000952352 
0.000842673 
0.00074◄◄53 
0 000656648 
0 000578288 
0.000508478 
0 000446392 
0 000391271 
0 00034241 7  
0 000299192 
0 000174008 
0.000158732 
0.000144695 
0.0001 3 1 808 
0 0001 1 9984 
0 000109145 
9.921 55E·05 
9.01263E-05 
8.18125E-05 
7.◄21 37E-05 
4 .74873E·OS 
4 4289E·05 

4 12918E-OS 
3.8484E·05 

3.58S◄6E·05 
3.33932E·05 
3. 1 0699E-05 
2 89355E·05 
2.69'209E-05 
2.50379E-05 
1 .so:ME-05 

1 .43403E-05 
1 36766E·OS 
1 304 1 7E-05 
1.24345E·05 
1 . 18S39E-05 
1 . 12987E-05 
1 .07679E·05 
1 .02606E·05 
9 7758E·06 

0.001390871 

Fnew(E) 

0 
9 02485E-07 
0 01 7677536 
0.770850695 
4 055979349 
9 126337143 
12.874623 1 3  
1◄.09296061 
13 34086892 
11 681 1 2364 
9.45655521 8  

7.890528648 

6 365686075 
4.965355097 
3 .744737552 
2 73060221 1  
2 20 1 784 1 63  
1 752006907 
1 .375756738 
1 0623221 1 3  
0.81 5243999 
0 6920155 19 
0 584729919 
0.491 81�5 
0 4 1 1782663 
0 3431 95289 
0 2847251 54 
0235137348 
0. 193298575 . 
0 158178316 
0 128847651 
0. 1 1400875 • 

0 . 1007201 72 
0 088840567 
0.078238908 
0 068794042 
0 060394233 
0 05293668 

0 046327037 
0 040478922 
0 035313434 
0.032213231 
0 029364654 

0 026749258 
0.02434977 

0.022150027 
0.02013492 

0.01 8290342 
0 01 66031 3 1  
0 01 506 1 022 
0.01 3652593 
0 01 2133094 
0 01 187 1 38S 
0.01 1 064 1 36 
0. 01 03081 87 
0 0()9600541 
0 008938359 

0.00831 895 
0.007739768 

0 0071984 
0.006692567 
0.006383752 
0.006088301 
0 005805681 
0 005535375 
0 005276888 
0 005029739 
0.0047�7 

0 004567635 
0 00435 1 808  
0.004145576 

Carbon 

L 
p 

2 16 
0 . 1 ◄9 
0. 1 22 
0 1 06  

0.0953 
0 087 

0.0805 
0 0756 
0.0707 
0 067 1  
0 0635 

0 061 14 
0.05878 
0 05642 
0.05406 
0.05 1 7  

0.05022 
0 04874 
0.04726 
0.04576 
0.0443 

0.04343 
0 04256 
0.04169 
0.04082 
0 03995 
0 03908 
0.03821 
0 03734 
0 03647 
0 0356 · 
0 03509 
0.03458 
0 03407 
0.03356 
0.03305 
0.03254 
0 03203 
0.03152 
0 03 101 
0.0305 
0.03016 
0.02982 
0 02948 
0.0291 4 
0.0288 

0 02846 
0 028 1 2  
0.02778 
0.0274'1 
0.0271 

0 02686 
0 02662 
0.02638 
0 0261 4 
0.0259 

0.02566 
0 02542 
0.02518 
0 0241M 

0.0247 
0.024545 
0.02439 

0.024235 
0.02408 

0.023925 
o.02Jn 

0 023615 
0.02346 

0.023305 
0.02315 

0.08 
b 

0 00006 

cm"2g"-1 

T(x)=exp(-ax+bx"2) 

f(new)-(1/2aqrt(ple•b)exp(-(new-a)"2/4b 
f(E)=f(new)•DeftaE 

w 0.6 +-,,+.i+--;;;.,....;;..,..;......;...,,. 

iC 0.4 �b-:½:<:-i-':"'���� 

0.2 +-1 ..... ---,!lr-..,.......,..,..,,.....,,......, 
0 �;....;..;._.;;;...,;;-.;;;::...-i,,.....�..;.:.�.:..,..;;;::.;;.......,;. ..... ;.;.;.;:-.....,..� 

-0.2 ---------"!"--........ -a...,....--.:.. .................................. _ ___,; 

0.0 2.0 6.0 8.0 

0 0004  

0.9 ..,,.,...,...,..,,.........,,..,..,.r-,,o--,,..,.......,,,,.__,,....,,.......,..,,.,..,..,,..,,...,,...... ........ ,...,...,....,...., ..... 
0.8 +.-..-,,+..w;a.;;;,,;,,;.;;;.,......,....--.,.....,.......,.....,...�'"""""""'"' ....... ....,;;� 
0.7 ������ ........................... "-'---.;;a..;:;;.�--'j;i�Z.iil 

0.6 �����..,a,ii 

0.5 1):-io����� 

0.4 ���"""""'.;,,,,;.;.-;:;;,;.....,......,......,....,......, __ ..,.......,;:;i� 

0.3 ��������������� 

0.2 +..-��� ... ..,.....��,,.._,.....,....a.,,.;-..,�......, ............... � 
0.1 

0 +----------....... ---. ................................. ""'-"-
0 20 40 60 80 1 00  
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Energy 

MV F(E) Fnew(E) 

0.01 0 0 
0. 10  3 J3589E· '2  7.1 1 658E-1 2 
0.20 9.21546E·06 J.31756E·05 
0.30 0.003438546 0.018510301 
0.40 0.05786604 0.401576375 
0.50 0.260996505 2.31 2830566 
0.60 0.52587579 6. 181 723572 
0.70 0.88085061 t 1 0.35448882 
0.80 0.893127205 1 4.29003528 
0.90 1 .000229765 16.00367624 
1 .00 0 66 1443648 1 6. 14370937 
1 . 10  0.628543186 1 5.34071 504 
1 .20 0.571 038469 1 3.93721008 
1 .30 0.496002175 12 . 10581579 
1 .40 0.4 1 1 898079 10.05310566 
1 .50 0.205084877 7.981681694 
1 .60 0.1 73435374 6. 74991 7265 
1 .70 0.14410136 5.608269142 
1 .80 0.1 1 9221443 4.578103401 
1 .90 0.09277943 3.6603391 5.'.3 
2.00 0 043699345 2.8931 9799 
2. 1 0  0.037675412 2.494372092 
2.20 0.032284156 2. 1 3743378 
2.30 0.027495981 1 .820423545 
2.40 0.02327541 1 540992641 
2.50 0.01 9582755 t .29651 3464 
2.60 0.01 6375652 1 .084181 128 
2.70 0.01361 0428 0 901 104 1 73 
2.80 0.01 1243286 0.744383099 
2.90 0.009231305 0.61 1 1 76086 
3.00 0.00441 6032 0498751881 
3.10 0.003908841 0.44 1 4691 1 8  
3.20 0.00345265 0 .389946387 
3.30 0.003043308 0.34371 4823 
3.40 0.002676875 0.302329421 
3.50 0.002349628 0.26536971 1 
3.60 0.002058064 0.2324401 1 5  
3.70 0.001 798901 0.203170009 
3.80 0.001 569078 o. 1 1n 1 3542 
3.90 0.001 365748 0. 1 5424923 
4.00 0.00079085 0.133979358 
4.10 0.0007191 14  0. 121 826449 
4.20 0.000653276 0.1 10672648 
4.30 0.000592912 0 . 10044632 
4.40 0.000537625 0.091 07995 
4.50 0.000487038 0.082509992 
4.60 0.0004408 0.074676737 
4.70 0.00039858 0.067524151 
4.80 0.000360068 0.060999735 
4.90 0.000324974 0.055()s,e369 
5.00 0.000206842 0.049642157 
5.1 0  0.000192164 0.0461 1 94  
5.20 0.000178445 0.042826725 
5.30 0.000165628 0.039750655 
5.40 0.0001 5366 0.036878388 
5.50 0.000142491 0.0341 97769 
5.60 0.0001 32072 0.031697268 
5.70 0.000122358 0.029365953 
5.80 0.0001 1 3306 O.O:i!7193466 
5.90 0.0001 04875 0.0251 70002 
6.00 6.26627E-05 0.023286281 
6.10  5.95TT7E-05 0.0221 39848 
6.20 S.66336E·05 o.02104sm 
6.30 5.38245E-OS 0.020001895 
6.40 5. 1 1449E·05 0.01 9006105 
6.50 4 .85892E·05 0.01 8056391 
6.60 4.61 524E-05 0.017 15081 
6.70 4.38292E·05 0.016287488 
6.80 4.16149E-05 0.01 S464627 
6.90 3.95048E-05 0.014680492 
7.00 0.005599975 0.013933416 
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0.0473 
0.0458 
0.0443 
0.0434 
0.0426 
0.04 1 7  
0 0408 
0.0400 
0.0391 
0.0382 
0.0373 
0 0365 
0.0356 
0.0351 
0.0346 
0.0341 
0.0336 
0.0331 
0 0325 
0.0320 
0.031 5 
0.0310 . 
0.0305 
0.0302 
0.0298 
0.0295 
0.0291 
0.0288 
0.0285 
0.0281 
0.0278 
0.0274 
0.0271 
0.0269 
0.0266 
0.0264 
0.0261 
0.0259 
0.0257 
0.0254 
0.0252 
0.0249 
0.0247 
0.0245 
0.0244 
0.0242 
0.0241 
0.0239 
0.0238 
0.0236 
0.0235 
0.0233 
0.0232 

1 8  

1 6  

1 4  

1 2  

w 10  

ii:' 8 

6 
4 

2 

0 
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Energy 
MV F(E) 

0.01 0 

0.10 S .61JE- t 38  

0.20 5.S•4E-78 

0.30 1 S67E-50 

0.40 1 B54E-35 

0.50 l . 1 95E·25 

0.50 3.948E· 1 9  

0.70 8.931 E-1 5 

a.so 4.081 E· 1 1 

0.90 1 098E·08 

1 .00 9.6"8E-07 

1 . 10  1 639E-05 

1 .20 2.065E-04 

1 .30 1 .927E-03 

1 .40 l .333E-02 

1 .50 4.288E·02 

1 .60 l .026E-01 

1 .70 2., a2e-01 

1 .80 , . ,soe-o, 

1 .90 6.010E-01 

2.00 6.08:JE-01 

2.1 0 7.289E-01 

2.20 8.385E-Ot 

2.30 9.262E·01 

2.40 9.822E-01 

2.50 1 .000E•OO 

2.60 9.776E-0 1 

2.70 9.t 7 6E-01 

2.80 8.269E-01 

2.90 7.15-tE-01 

3.00 3.484E•Ot 

3.10 3.066E·01 

3.20 2.66tE-01 

3.40 2.278E·01 

3.50 l .922E•OI 

3.60 1 .600E·01 

3.70 1 .31 3E-01 

3.80 3.1 80E-02 

4.00 J.452E-02 

4.10 2.89JE-02 

4.20 2.409E·02 

4.30 1 .9!ME·02 

4.40 1 .S40E-02 

4.50 1 .J,,IOE-02 

4.60 1 .089E·02 

4.70 · a.788E-03 

4.80 7.050E•03 

4.90 5.621E-03 

5.00 3.1 44E-03 

5.10  2.658E-03 

5.20 2.240E·03 

5.30 1 .881 E·03 

5.40 l .576E-03 

5.50 I .316E-03 

5.60 t .095E-03 

5.70 9.065E-04 

5.80 7.51 5E·04 

5.90 6. t 97E-04 

6.00 3.290E-04 

6. 1 0  2.605E·04 

6.20 2.31 9E-04 

6.30 2.062E-04 

6.40 l .831 E·04 

6.50 1 .625E-04 

6.60 1 •40E-04 

6.70 l .275E·04 

6.80 3.383E·04 

7.00 8.61 6E-05 

7.10  7.482E-05 

7.20 6.489E-05 

7.30 5 62tE-05 

7.40 •.862E·05 

7.50 4.201 E-05 

7.60 3.624E-05 

7.80 9.369E-05 

Fnew(E) 
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7.21 E·03 

9.00E-03 
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f(E)=f(new,-DeltaE 

-0.2 �-------;.,..----._:;.�,;.;:;. ..... _........,. __ ��---.-::.....;..:-;_,;....;....--.---, 

0.00 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0. 1 

0 

0 

5.00 

20 40 

10.00 15 .00 20.00 

0.000045 

60 80 1 00  

79 



8.00 1 .279E-05 1 .39E-02 2.1 6E-02 

8.10 U 58E·05 1 .39E-02 2.t 5E-02 

8.20 1 048E-05 1 . 39E·02 2.1 4E-02 

8.30 9.483E-06 1 .39E-02 2 1JE-02 

8.40 8.574!:-()6 1 .39E·02 2.1 2E·02 

8.50 7.747E-06 1.39E-02 2.1 1 e-02 

8.60 6 997E·06 1 .39E-02 2.1 0E·02 

8.70 6 3 1 5E-06 1 .39E·02 2.09E-02 

8.80 5.697E-06 1 .39E-02 2.oee-02 

8.90 5.1 37E-06 1 .39E-02 2.07E-02 

9.00 4 .629E-06 1 .39E-02 2.06E-02 

9. 10 4.1 70E-06 1 .39E-02 2.05E-02 

9.20 3.753E-06 1 .39E-02 2.04E-02 

9.30 3.377E•06 1 .39E-02 2.0JE-02 

9.40 3.037E•06 1 .39E-02 2.02E-02 

9.50 2.729E·06 t .39E·02 2.o,e-02 

9.60 2.452E·06 1 .39E·02 2.00E-02 

9.70 2.201E-06 1 .39E·02 1 .99E-02 

9.80 1 .975E·06 1 .39E-02 1 .98E·02 

9.90 t .77 tE-06 1 .39E·02 1 97E-02 

1 0.00 8.256E-07 1 .39E-02 1 .96E-02 

1 0. 1 0  7.797E-07 1 .39E-02 1 .95E-02 

1 0.20 7.363E•07 1 .39E-02 1 .95E-02 

1 0.30 6.952E-07 1 .39E-02 1 .94 E•02 

1 0.40 6.564E-07 1 .39E-02 1 .94E-02 

10.50 6.1 !16E-07 1 .40E-02 l .93E-02 

1 0.60 5 8-47E-07 1 .40E·02 1 .93E-02 

1 0.70 5.5 1 8E-07 1 .40E·02 1 .92E·02 

1 0.80 5.206E-07 1 .40E·02 1 .92E-02 

10 .90 4.9t 1 E•07 1 .40E-02 1 .91 E·02 

1 1 .00 4.633E•07 1 .40E-02 1 .9 1 E·02 

1 1 . 10  4.369E-07 1 .40E-02 1 .90E-02 

1 1 .20 4.120E-07 1 .40E·02 1 .�E-02 

1 1 .30 3.884E-07 1 .40E•02 1 .89E-02 

1 1 .40 3.662E-07 1 .40E·02 1 89E-02 

1 1 .50 J.452E•07 1 .,oe-02 use-02· 

1 1 .60 3.253E-07 1 .40E-02 1 .88E·02 

1 1 .70 3.065E-07 1 .40E·02 1 .87E-02 

1 1 .80 2.888E-07 1 .40E-02 1 .87E-02 

1 1 .90 2.720E-07 1 .40E-02 1 .86E·02 

12.00 2.562E-07 1 .-40E-02 1 .86E·02 

1 2.10 2.4t 3E-07 1 .40E·02 1 .SSE-02 

1 2.20 2.272E-07 1 .40E·02 1 .85E-02 

12 .30 2. 1 39E-07 1 .40E•02 1 .8.CE-02 

1 2.40 2.014E-07 1 .40E·02 1 .84E-02 

12 .50 1 .895E·07 1 .40E-02 1 .SJE-02 

1 2.60 1 .783E-07 1 .40E·02 1 .82E•02 

1 2.70 1 .678E-07 1 .40E·02 1 .82E-02 

1 2.80 1 .579E-07 1 .40E-02 1 .8 1 E-02 

1 2.90 1 .485E-07 1.,oe-02 1 .8 1 E-02 

1 3.00 1 .397E-07 1 .40E-02 1 .BOE-02 

1 3. 1 0  l .31 3E•07 1 .40E·02 1 .80E-02 

1 3.20 1 .235E•07 1 40E·02 1 .79E-02 

1 3.30 1 . t6t E-07 t .40E-02 1 .T9E-02 

1 3.40 t .091 E•07 1 .40E-02 1 .78E-02 

1 3.50 1 .025E-07 1 .40E-02 1 .78E·02 

1 3.60 9.636E·08 l .40E-02 1 .77E-02 

1 3.70 9.054E·08 uoe-02 1 .77E-02 

1 3.80 8.505E-08 l .40E-02 1 .76E-02 

1 3.90 7.989E·08 l .40E-02 l . 76E·02 

1 4.00 7.503E-08 t .40E·02 1 .75E-02 

1 4. 1 0  7.045E·08 l .40E·02 1 .75E-02 

1 4.20 6.61-4E-08 1 .40E·02 1 .74E-02 

1 4.30 6.209E·08 l .40E-02 1 .74E-02 

1 4.40 5.828E·08 1 .40E-02 1 .73E-02 

1 4.50 5.-469E-08 1 .40E-02 1 .73E-02 

1 4.60 5. 132E-08 1 .-40E-02 1 .72E·02 

1 4.70 4.815E-08 1 .40E-02 1 .72E-02 

14.80 4.516E-08 1 .40E·02 1 .71 E·02 

14.90 4 .236E-08 1 .40E·02 1.7 1E•02 

1 5.00 1 .833E·08 , .,oe-02 1 .70E-02 

1 5. 10  1 .780E-08 1 .40E·02 1 .70E-02 

1 5.20 1 .728E-08 l .40E·02 1 .70E-02 

1 5.30 1 .677E-08 1 .40E·02 1 .69E-02 

1 5.40 1 .628E-08 l .40E·02 1 .69E-02 

1 5.50 1 .580E·08 1 .40E-02 1 .69E-02 
-

1 5.60 1 .533E-08 1 .40E-02 1 .69E-02 

1 5.70 1 .488E·08 1 .40E-02 1 .68E·02 

1 5.80 t .444E-08 l .40E·02 1 .oSE-02 

1 5.90 1 .402E·08 1 .40E-02 1 .68E-02 

1 6.00 1 .360E-08 l .40E·02 1 .68E·02 

80 

'===�======±===-::-' 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

:==+===E==::1 I 

I 

I 

-

I 

I 

I 

L J J J 

I 



Vita 

Robbie Alhakeem was born in Essex, England on March 2 1 ,  1 968. He attended schools 

in England, Lebanon, and France. He graduated high school in. August of 1 987, he 

entered the University of Tennessee to pursue a degree in Nuclear Engineering. In May 

of 1 993 he received a Bachelor of Science in that discipline. After traveling for two 

years, he enrolled part time in the Masters program to pursue an advanced degree in 

Nuclear Engineering with a concentration in Medical Physics. In 1 996 he was accepted as · 

a resident at the Thompson Cancer Survival Center in Knoxville, Tennessee where he 

received a formal rigorous training in clinical Medical Physics. His Masters degree was 

received in December of 1 999. 

He is presently working as a consultant at RadPhys LLC Providing a variety of services 

in the areas of cancer patient care, 3-D treatment planning, radiation safety, and ongoing 

medical physics research. 

8 1  


	Determination of the bremsstrahlung spectra of a clinical linear accelerator using a Simpson iteration technique
	Recommended Citation

	tmp.1624363563.pdf.PROQv

