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ABSTRACT 

Data transmitted over a long length of cable at high rates must be equalized in order to 

compensate for the loss and phase dispersion of the cable. The more the cable length, the 

more the loss is in it. As the data transfer rate is increasing, more bandwidth is needed 

and the data communication industries are demanding an equalizer system with more 

bandwidth. A pole-zero model for the coax cable- equalizer is developed which shows 

that the poles and zeros of the cable transfer function decrease linearly with the increase 

of the cable length. Thus an adaptive equalizer system has been designed where the 

length of the cable will be estimated through the peak detector circuitry and the equalizer 

filter will be tuned automatically according to the estimated cable length using this 

linearity. All the circuits of the system have been designed using AMI 0.5µm CMOS 

technology and simulated on Cadence's Spectre tools. 
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Introduction 

CHAPTER 

1 

Data transmitted over a long length of cable at high rates must be equalized in order to 

compensate for the loss and phase dispersion of the cable [ 1]. This loss is proportionate to 

the root of the frequency (.fl) of the data transmitted. As the data communication 

industry is always eager to increase the rate of data transfer to higher level, it is essential 

that the cable should be equalized. Again, loss in the cable increases with the increase of 

the length of the cable for a particular frequency of operation. Any data transmission 

through the cable is bandwidth limited. The more the bandwidth, the more is the rate of 

data transfer through cable. For data transmission over standard telephone lines, the 

channel bandwidth is typically a few kilohertz over a few miles. Transmission over 

unshielded-twisted-pair wire is bandwidth limited to a few tens of megahertz over 300 

feet and transmission over high-quality coaxial cable is limited to the hundreds of 

megahertz range over a few hundreds feet. The extent to which the equalizer is able to 

match the inverse of the cable loss characteristic determines the extent to which inter-
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symbol interference induced jitter is eliminated. In application where the cable length 
may vary the equalizer must adapt its transfer function accordingly. 

The current trend in CMOS VLSI is to perform information processing more and more in 
the digital domain [2]. However, the interface between the analog outside world and the 
digital processor will remain analog in nature. As the technology forges ahead, the 
performance/cost potential of the complete system cannot be fully realized until 
integrated circuits with analog input and output can be implemented.(The main challenge 
in implementing a high-speed data-communications transceiver in a standard CMOS 
process is in the analog parts of the system. These parts include the equalizer and the 
clock-recovery circuit)If the analog components can be successfully integrated, then it 
may be possible to integrate the complete transceiver onto a single chip{Eie complete 
transceiver may include a data scrambler and de-scrambler, analog-to-digital and digital­
to-analog converters for multi-level signaling, and feed-forward as well as decision­
feedback equalizers as described in [3].) 

The main work of this thesis project involved the design of �daptive analog cable 
equalize9implemented in AMI 0.5µm CMOS process.�e system is designed such a 
way that it will estimate the length of cable to its input automatically and accordingly 
tune the filte�e system i�esigned based on a MATLAB program, which modeled the 
pole-zero variation of the cable transfer function with the length of the cable. The 
interesting result of this model is that poles and zeros of the cable transfer function 
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decrease linearly as the cable length increase�e equalizer filter is designed as a 
cascade of three band-pass filters where tuning capability has been introduced when the 
length of the cable changes. Moreover, the filter is selected to give a single pole and 
single zero with a gain factor of one) 

1.1 Losses in Cable 

There are two types of losses occur in the cable made of copper, namely skin effect loss 
and the dielectric loss. The skin effect arises when electro-magnetic waves are incident 
upon, or are guided by, conducting surfaces. The electric fields set up currents in the 
surface and hence the fields only penetrate for a finite distance. This in tum means that 
the currents only exist near the surface. In practice, in a thick conductor, the current level 
falls exponentially with the depth below the metal surface. The result is that the currents 
on conductors associated with a guided field only make use of a finite metal thickness. 
Hence the resistance experienced by the currents (which leads to dissipation losses) is 
influenced by this thickness as well as the material's resistivity. The magnitude of the 
currents falls exponentially with a 1/e scale depth, given by the approximate expression, 

1.1 

where, 

f = frequency of operation and 
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Figure 1.1: Cable attenuation showing both the skin loss and the 
dielectric loss 

cr = conductivity of the metal 

This frequency dependence affects both the signal velocity causing dispersion distortions 
and preferentially attenuates high frequencies causing a change of the amplitude 
spectrum. 

Another kind of loss that occurs in cable is dielectric loss. This loss is prominent at very 
high frequencies. Dielectric loss occurs due to the molecular movement at higher 
frequencies and results in loss as heat. Figure 1.1 shows the two types of losses that occur 
in the cable. From figure 1.1, it is evident that, skin loss is the most prominent part of the 
cable loss and frequency up to 100MHz, dielectric loss has little contribution on the 
overall cable loss. 
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1.2 Data Communication Through Wire 

There are many applications that use wire as a medium to transfer data. Few of them are 

reviewed here. Cable is the medium that ordinarily connects network devices. Cable's 

ability to transmit encoded signals enables it to carry data from one place to another. 

These signals may be electrical as in copper cable or light pulses as in fiber-optic cable. 

1.2.1 Ethernet 

Ethernet is a well-known and widely used network technology [ 4] that employs bus 

topology. Ethernet was invented at Xerox Corporation in early 1970s as a 1 0Mbps 

(Megabits per second) networking protocol, very fast for its day, operating over a heavy 

coax cable. Digital Equipment Corporation, Intel Corporation and Xerox later cooperated 

to devise a production standard, which is informally called DIX Ethernet for the initials 

of the three companies. IEEE now controls Ethernet standards. Conceptually, an Ethernet 

LAN consists of a single coaxial cable, called the ether, to which multiple computers 

connect. A given Ethernet is limited to 500 meters in length, and the standard requires a 

minimum separation of 3 meters for each pair of connections. Ethernet hardware operates 

at a bandwidth of 10 Megabits per second. A newer version known as fast Ethernet 

operates at 1 00Mbps. Because it uses a bus topology, Ethernet requires multiple 

computers to share access to a single medium. A sender transmits a modulated carrier 

wave, which propagates from the sender toward both ends of the cable. 
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The main Ethernet standards for transmitting l00Mbps over copper are 100Base-T4, 

1 00Base-TX and 100Base-T2. Each specifies information rates of 1 00Mbps. However 

they use different number of cable pairs, and different coding scheme. 

100Base-T4 uses four pairs of CAT4 cable and is useful for installations where upgrading 

to CATS is impractical. 

1 00Base-TX uses two pairs of CATS cable with each pair supporting S0Mbps. 4BSB 

coding is used to increase the transition density to make clock synchronization easier and 

to remove DC bias. 

100Base-T2 works with two pairs of CA T3 cable, each supporting S0Mbps. Gigabit 

Ethernet is an emerging standard with information capacity of 1 000Mbps over four pairs 

of CA TS cable up to 100 meter in length. 

1.2.2 Digital Television 

Broadband technologies can be classified as either one-way or two-way. One-way 

technologies send digital information to the end user at very high speeds, but rely on 

some other means (usually an analog modem and a phone line) to receive information 

from the end user. One-way broadband technologies include digital television (DTV) and 

satellite. Two-way broadband technologies, such as cable and digital subscriber lines 

(DSL) send and receive digital information at very high speeds over the same medium. 

Two-way broadband technologies usually require a wired infrastructure. Broadband 

transmission uses the same principles as cable TV and runs on coax. Broadband and 

6 
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cable TV take advantage of coax cable's ability to transmit many signals at the same time. 
Each signal is called a channel. Each channel travels along at a different frequency, so it 
does not interfere with other channels. Again television studios use digital video 
transmission from the video cameras to the editing equipment and monitors. The video 
signal in a video camera has three component signal for each red, green and blue. 
Alternatively, these three signals may be luminance, Y, and the color difference signals, 
Y-R and Y-B. These signals are analog in nature but for editing purposes, these signals 
are converted to digital. When converting to digital, the luminance channel is sampled at 
13.5 MHz, while the color difference channels are sampled at half that rate, The end 
result of sampling each with 10 bit resolution and multiplexing the three lines into one, is 
a 270 Mbps serial digital signal as specified in SMPTE Standard 259M [5]. Other bit 
rates covered by this standard are 143 Mbps for 10-bit sampling of NTSC, and 177 Mbps 
for 10-bit sampling of PAL. There are other standard bit rates of 360Mbps, 400Mbps. 
SMPTE Standard 344M uses serial data rate of 540Mbps. SMPTE Standard 292M, which 
is used for High- Definition-Television (HDTV) defines a bit-serial interface for 
component video at data rates in the range of 1.485Gbps. Application of this standard 
requires the use of cables which have loss proportional to the square root of frequency. 
Also, the cable attenuation should not exceed 20dB at half the bit rate. 

1.2.3 ATM 

Asynchronous transfer mode (ATM) is a high-performance, cell-oriented switching and 
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multiplexing technology that utilizes fixed-length packets to carry different types of 

traffic [ 6]. A TM is a technology that will enable carriers to capitalize on a number of 

revenue opportunities through multiple ATM classes of services, high-speed local-area 

network (LAN) interconnection, voice, video, and future multimedia applications in 

business markets in the short term, and in community and residential markets in the 

longer term. Asynchronous transfer mode (ATM) is a technology that has its history in 

the development of broadband ISDN in the 1970s and 1980s. Technically, it can be 

viewed as an evolution of packet switching. Like packet switching for data ( e.g., X.25, 

frame relay, transmission control protocol [TCP]/Internet protocol [IP]), A TM integrates 

the multiplexing and switching functions, is well suited for bursty traffic (in contrast to 

circuit switching), and allows communications between devices that operate at different 

speeds. Unlike packet switching, ATM is designed for high-performance multimedia 

networking. A TM technology has been implemented in a very broad range of networking 

devices. The A TM cells consist of a 48 byte information load, a five byte address load, 

and may be transmitted at many standard rates. A TM user network interface (A TM UNI) 

standards specify how a user connects to the A TM network to access these services. A 

number of standards have been defined for Tl/El (25Mbps), T3/E3, OC-3 ( 155Mbps) 

and OC-12 with OC--48 (2.4Gbps) in the works. OC-3 interfaces have been specified for 

use over single-mode fiber (for wide-area applications) and over unshielded twisted pair 

or multimode fiber for lower-cost, in-building applications. 
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1.3 Problems of Data Communication Through Lossy 

Cable 

Due to the skin effect that was described earlier, any electrical signal suffers loss when 

transmitted through it. This loss is frequency dependent and the more the frequency, the 

more the loss is. For this attenuation, any step response through a length of cable will 

have a finite transition time. So inter-symbol interference may occur if the time between 

consecutive data signal edges is less than the transition time of the signal from the cable. 

The inter-symbol interference caused in this manner can lead to errors in the received 

signal as it passes to the next stage. Again, bit error rate is directly related to jitter which 

may cause distortion to output wave shape. Phase dispersion may also occur. 

1.4 Thesis Outline 

The first chapter describes the background and the motivation for this thesis work. It also 

provides some applications of cable for high-speed data communication and problems of 

data communication thorough cable. 

A pole-zero model for the cable equalizer, which unveils the relationship between the 

cable length and the poles and zeros of the corresponding cable transfer function, has 

9 
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been presented in chapter two. Using that model a new adaptive cable equalizer system 

topology has been introduced. 

Chapter three provides all designs and complete description of the circuit blocks for the 

overall adaptive equalizer system which were done in AMI O.Sµm CMOS process. 

Simulation results are also provided here for each block. 

The overall system simulation results and their conformity with the ideal responses have 

been described in chapter four. 

Chapter five gives the conclusion of the work and remark on future work that can be done 

on this project. 

Appendix A gives a brief description on the present adaptive cable equalizer ICs. 

10 



CHAPTER 

2 

System Design 

( In this chapter, a theoretical basis of the frequency dependent losses on co-axial cable is derived. Using these equations, a pole-zero model for the cable-equalizer that is, the pole­zero variation of the cable transfer function with its length is developed using MATLAB curve-fitting routine. An adaptive analog equalizer system to correct those frequency dependent losses has been proposed and the system topology has been presented. ) 

2.1 General Equalizer System Topology 

(An equalizer with a transfer function that is the inverse of the channel response is called a zero forcing linear equalizer [7]) 0ne possible method of implementing frequency­domain equalizer [8] is through the use of an array of bandpass filters, Bi(s), each followed by a gain control stage, Gi( s ), as shown in Figure 2. 1 ,  so that the weighting of 
1 1  
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G x(t) 

Bl (s) _f 

Wl 
f1 . 1  Bl (s) 

G 
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W2 
f1 . 1  B2(s) 

Gn 

Bn(s) 

w 
f1 . 1  

Figure 2.1 : General Equalizer block diagram 
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each of the spectral bands can be independently controlled. The bands must be narrow 

enough so that the applied weighting is appropriate for all frequency components within 

the band. Then, it should be possible to re-assemble the transmitted signal, s(t), by 

summing the weighted spectral components to produce y( t) 

But, a new system can be developed if the cable transfer function can be modeled by 

keeping its gain factor as unity. In that case the cable transfer function may redefined like 

below, 

C (x) = l .  (s - zl)(s - z2)(s - z3) 
(s - pl)(s - p2)(s - p3) 

2. 1 

So no gain control block is needed and instead of using the filter blocks in summation, 

those blocks can be used in cascade and each filter block will have the appropriate pole 

and zero with a capability of automatic tuning of its pole and zero. 

2.2 Cable Characterization: 

Transmission line equations can be derived starting with the per-unit-length model as in 

[8] and shown in Figure 2 .2. The elements r, 1, c and g are all per-unit-length values. The 

two fundamental differential equations [9] for transmission line are, 

!!_ V(x) = -(r + jrol).l(x) 
dx 

and the current shunted between the lines in each section is, 

1 3  
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r 

V(x) + dV 

Figure 2.2: Modeling of transmission line 

!!_ l(x) = (g + jroc).V(x) 
dx 

g 

Taking the derivative of equation 2.2 and using equation 2.3 gives, 

solving, 

d 2
� 

= (r + jrol) . (g + jroc) . V(x) 
dx 

C V(x) 

2.3 

2 .4 

2.5 

where y is the propagation constant and VA, V 8 are the amplitude of the forward and 

reverse traveling signals respectively. In a properly terminated transmission line, the 

reverse traveling signal is zero so that the transfer characteristic is given by, 

C(s) = e
YL 

2.6 

where L is the length of the line. y is called the propagation constant. Now the series 

impedance elements can be written as, 
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Zs = (r + jrol) 

And the parallel admittance can be written as, 

Yp = (g + jroc) = -1 
Zp 

So, if ZT is the characteristic impedance then the total impedance is, 

Z. 
z 

Z,pZr m = s + --- = ZT Zp + Zr 

Now, solving for ZT, we get, 

r +  jOJl 
g + jOJe 

It is shown in [9] that per unit propagation constant y can be written as, 

y = '1ZsYp = '1(r + jOJl)(g + jOJe) 

= ..}rg - OJ2le + jOJ(gl + re) 

= {OJ2le[ rf - 1  + jr: (gl + re)] } 
OJ le OJ le 

2.7 

2.8 

2.9 

2 . 1 0  

2 . 1 1  

2 . 1 2  

2 . 1 3  

2 . 1 4  

It is assumed that the losses are small but not necessarily negligible, which implies that 

r << rol and g << roe. Then equation 2 . 1 4  can be written as, 

y = ✓-OJ21c * ✓1 - v 2 . 1 5  

where v << 1 .  Using the identity of (1 + x) 112 
, the equation 2. 15  can be simplified to the 

form of , 

15  
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r g l . r,-: r g
2 

rg 
y =  _..,,= + - - +  1mvlc(l + -- + -- - --) 

2� 2 c 8m2z2 8m2c2 4m2lc 
2. 1 6  

The resistance, r, is a frequency-dependant resistor with equal real and imaginary parts. 

The real part of the propagation constant is known as the attenuation constant and is 

given by, 

This can be written as, 

r g a = - + -
2Zo 2fo 

2. 1 7  

2. 1 8  

where Z., = :. is the characteristic impedance of the line and Z., = Jf . Thus, the real 

part of the series impedance, and the real part of the AC shunt admittance, contribute to 

the cable attenuation. The imaginary part of the propagation constant is the phase 

constant, given by, 

r2 g2 rg 
p = (J)� (1 + -2-2 + -2-2 - -2-) 

8m I 8m c 4m le 

Then we have, 

y = a +  j�  

2. 1 9  

2.20 

The velocity of propagation is v = m .  At low frequencies, when the condition r << rol is 
p 

no longer true, the velocity of propagation is reduced. This dispersion effect can cause the 
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high-frequency signal components to pass along the cable faster than the low-frequency 

components. However, for high-speed data transmission, the frequency content of the 

signal is high enough that the low frequency dispersion effect is not evident. 

To find the frequency dependence of attenuation, it is important to take into account the 

increase in series resistance at higher frequencies due to skin effect. The series resistance 

per unit length is given by, 

r
=

- 2.2 1 
aA 

where cr is the conductivity of the wire and A is the cross-sectional area containing the 

current. At low frequency the conduction area is 1tr2 
w where rw is the wire radius. When 

the frequency of signals on the cable is high enough that conduction occurs near the 

surface of the conductor, the series resistance (r), can increase significantly. At high 

frequencies, the skin effect causes the current to conduct only to skin depth, 6, given by 

[ 1  O] , 

2.22 

where µ is the conductor relative permeability. Then the cross-sectional area containing 

the current is 21trw6, causing the series resistance to be frequency dependent according to 

[8] ,  

rac = _l_ {µ J;(l + }) 
1Crw V&a 

Using the real part of rac in place ofr in equation 2.18 results in 

17  
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a = k1 ✓m + k2ro 
where k 1 and k2 are independent of frequency. 

2.24 

To get an idea of the relative contribution of the dielectric losses, it can be shown that the 
dielectric losses and skin effect contribute equally to the attenuation at 15GHz. At this 
frequency, each term contributes 92dB to the attenuation. Since this frequency is beyond 
the usable range, another figure of merit at a lower frequency will be useful. This is the 
frequency where the dielectric loss term contributes 3dB to the attenuation, and is found 
to be 487MHz. Since this frequency is still very high, the second term in equation 2. 24 
can be ignored. So equation 2.24 will become, 

a = k1 ✓m 2.25 
So the cable transfer function can be written as 

C (x) = exp (-(L. k 1 .  ✓m )) 2.26 
Note that the linear phase term due to P has been neglected since it is simply a delay for 
all frequency components and does not contribute to distortion. The phase term 
introduced by the jro-term is accurate in modeling the imaginary part of the resistance 
variation due to skin effect. 

2.3 Cable Transfer Function Design 

The cable transfer function in equation can be written in terms of cable attenuation as 
follows, 
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Table 2.1 :  Cable attenuation in dB for different length of cable in different 

frequencies 

Frequency 450 feet of cable 

MHz 

1 1  -3 .72dB 

22.4 -5.32dB 

33 .3 -6.42dB 

44.6 -7.64dB 

C (x) = exp (-L. a .( 1 + j). J; ) 

h _ b [ log( attenuation) ] w ere, a - a s 
r 

L:v(JJ 

And, attenuation = 1 o<attenuation in dB )/20 

900 feet of cable 1 800 feet of cable 

-7.58dB - 14.32dB 

- 1 0.8 l dB -2 1 .04dB 

- 1 2.62dB -25 .82dB 

- 1 5 .6 l dB -30. l 7dB 

2.27 

2.28 

2.29 

The attenuations in dB for the Belden 728A coax cable are tabulated in Table 2. 1 for few 

frequencies. From the above table, it is evident that for a particular frequency, the cable 

attenuation in dB is linearly proportional to its length. Figure 2.3 is showing the linear 

relationship between cable attenuation in dB and its length for the frequency of 25 MHz. 

Using this linear relationship and using the equations 2.27, 2.28 and 2.29 a set of 
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Figure 2.3: Linear relation between cable attenuation and length 

attenuation curves for 100 feet to 900 feet of cable are drawn for frequency range of 

l0KHz tol00MHz. The curves are shown in Figure 2.4. The bottom curve in the figure 

2.3 is for 900 feet and so on with 100 feet of decrement. 

A MATLAB [ 12] curve fitting routine program has been used to fit those curves 

assuming a cable transfer function as equation 2. 1 which is written below again. 

C (x) 
= 

1. 
(s - zl)(s - z2)(s - z3) 

(s - pl)(s - p2)(s - p3) 
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Figure 2.5: Ideal curve versus fitted curve 

where the gain factor K is set to 1 .  So this technique will give us a unique feature to 

design a filter stage using only the poles and zeros without any gain stage to control K. 

In the MATLAB program, initial guess of three sets of poles and zeros are taken as input 

for a particular length of cable-transfer function curve and the curve fitting routine fits 

that curve using those initial guess and when the fitting is done, program gives three sets 

of poles and zeros which are the best possible results of poles and zeros for that curve. 

Figure 2 .5 is showing the ideal curve and the fitted curve . There is some error in fitting 

which is less than ±0.SdB. 
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Figure 2.6 shows the pole-zero variation with the cable length. This figure is important, 

as it shows that, except the third zero, all poles and zeros are decreasing almost linearly 

with increasing cable length. So using this linearity, an adaptive cable equalizer system 

is possible, which can estimate the length of cable in its input and accordingly change the 

equalizer-filter poles and zeros . . The equalizer poles and zeros are the zeros and poles of 

the cable respectively as the equalizer transfer function is the inverse of the cable transfer 

function which is given by, 

E (x) 
= 

I . 
(s - pl)(s - p2)(s - p3) 

(s - zl)(s - z2)(s - z3) 

2.4 Proposed System Diagram 

2.3 1 

The system block diagram is shown below in Figure 2. 7. The output signal from the cable 

is fed to a voltage to current converter (OTA) as well as to a Gm-C filter. The output of 

the OT A is rectified by a rectifier, which is compared with a reference voltage to estimate 

the cable length. The rectified voltage for the zero cable length is set equal the 

comparator reference voltage, but for all other length of cable, the rectified output 

voltages will be less than reference voltage and the comparator output will be 

proportional to this difference of the voltages. The comparator output will be divided into 

three different voltages to be used to tune the three stages of the Gm-C filter to provide 

appropriate pole and zero for each stage. 
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The peak detector, which consists of the OT A, rectifier and comparator, works on the 

basis that the attenuation for different cable length at a particular frequency is known. 

The following Table 2.2 shows the output voltages for 200m V (peak) input voltage at 

different length of cable at a frequency of 25MHz. Here, the OTA, rectifier, comparator 

and the voltage divider are designed to be linear, so is possible to use the linearity of the 

pole-zero variation of the equalizer transfer function in the filter stage. A cascaded three­

stage filter is used to get the desired pole-zero and thus the desired transfer function as 

Figure 2.8. 

Table 2.2: Output signal levels of 200m V peak input signal for different length of 

cable 

Length of cable Attenuation Output signal of cable 

( feet) (dB) (mV) 

500 6 100 

600 7.2 87.3 

700 8 .4 76 

800 9.6 66 

900 10.8 57 

1000 12 49 
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s - pl 

s - z2 
s - p2 

(s - zl)(s - z2) 

(s - pl)(s - p2) (s - zl)(s - z2)(s - z3) 

--- s - pl)(s - p2)(s - p3 
s - z3 
s - p3 

output 

Figure 2.8: Three cascaded filter stages with their appropriate poles and 
zeros 

As the gain factor (k) in the cable transfer function is 1 ,  the equalizer transfer function 

response will be inverse of that of the cable transfer function. Figure 2 .9 is showing the 

ideal equalizer response needed for the equalizer system. So the designed adaptive 

equalizer should be able to produce response as close as those of ideal ones. 
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Figure 2.9: Ideal response of the equalizer for 100- 900 feet of cable 
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Circuit Design 

CHAPTER 

3 

This chapter describes all the circuits needed for the equalizer system that was describes 

in Chapter two. 

3. 1 Bias Circuit Design 

A good and reliable current generator is crucial in any analog circuit design. A CMOS 

version of a self-biasing Widler current source [8] is chosen in this design. This consists 

of MOS transistors of Nl ,  N2, P l ,  P2 and a resistor Rbias. Cascode devices are used to 

improve the output impedance [ 1 2] . The bottom devices are designed with minimum 

allowable channel length (.6µm). Cascode devices, with slightly larger channel length 

( .8µm), are used in order to provide higher output impedance than a single device could 

provide. For example, a l00µA current source has a low frequency output impedance of 

20KQ if generated from a single transistor of minimum length. This value increases to 

4MQ when a cascode device with slightly larger than minimum length is added. Figure 

3 . 1  shows the bias circuit and the startup circuit, which will be described later. The n-
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Rbias 

Figure 3.1 : Constant transconductance bias current generator 

channel cascode devices have a gate voltage generated by diode-connected NMOS 

transistor N4. This reference level is chosen high enough so that the gate-source voltage 

of the top device of N2 causes the bottom device N2 to be operated in saturation just 

beyond the triode region. This allows the cascode current-mirror output to operate within 

a few hundred millivolts of the supply voltage. Similarly, the p-channel cascode devices 

have a gate reference voltage generated by diode-connected PMOS transistor PS. Then, 

the voltage on current mirrors biased from this reference circuit can be as low as the sum 

of the saturation voltages of the two-stacked devices. 
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The significance of this bias-circuit arrangement is that it generates a current, which 
causes the devices to have a transconductance determined by the conductance of the 
resistor, Rbias. Then any device in the circuit, which uses a current generated by the 
reference voltages of this bias circuit, will also have a transconductance determined by 
Rbias. A first order analysis shows that the transconductance of device N2, in Figure 3 .1, 
will be exactly equal to the conductance of Rbias. Furthermore, this transconductance is 
significantly independent of supply voltage, temperature, and process variations. A 
second-order analysis shows that mobility degradation, finite output impedance, and body 
effect, alter the result of the first-order analysis. The effects of mobility degradation and 
finite output impedance are only a few percent, but the body effect causes the 
transconductance of N2 to be only three quarters of the conductance of Rbias. The body 
effect is the main reason for the transconductance to be dependent on the process and 
temperature. However, the device transconductance is still proportional to the 
conductance of Rbias. 

3.1.1 Startup Circuit 

There is always a possibility that the bias current may be zero at the startup of the circuit 
in all self-biased circuits. The startup circuit, which is shown in Figure 3 . 1  ensures that 
the bias circuit does not latch into a zero-bias current mode on power up. When the 
supply voltage is high enough to turn on P7, V p1 and V p2 will be pulled low by N6 and 
N8 until V 

n2 is high enough to turn on N7. Then the bias circuit will operate in the 
desired mode. 
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3.1 .2 First-Order Analysis 

Since the drain currents ofNl and N 2  are forced to be equal by the Pl, P2 current mirror, 

[ 8] we can write, 

µncox 
(W I L )1 V 2 

effi = µ,,Cox (W /L )2 V2 
eff2 

2 2 

Summing voltages gives 

I Rbias + V em = V efl2 

Since, V gsi = Vt +  Veffi 

Also, the transconductance ofN2 is gm2 = � or 
avgs2 

2h gm2 = -
Ve.ff2 

3. 1 

3. 2 

3. 3 

Substituting Vem from equation 3. 1 into equation 3. 2, and then l 1  = h from equation 3. 2 

into equation 3. 3, results in 

2(l -
(W I L)2

) 
(W I L)1 gm2 = -___,.;. __ _ 

Rbias 

If (W /L) 1 is chosen four times larger than (W /L )2 the result simplifies to 

I gm2 = 

-Rb '  zas 

Thus the transconductance ofN 2  depends only on the value of resistor, Rbias. 
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3.1.3 Error due to Body Effect 

The body effect causes the threshold voltage of a device to change if the device source 

node is at a different potential than that of the device body. For an n-channel device in a 

p-type substrate, the threshold voltage increases when the source voltage is higher than 

the substrate voltage. In the bias circuit of Figure 3 . 1 ,  device N2 does not suffer from the 

body effect, but N 1 does. 

The main division from the first order analysis is due to the body effect on N 1 .  The 

standard method of eliminating the body effect on a device is to connect the device bulk 

to the device source. In a standard n-substrate process, this can be done with the n­

channel devices. However, with the more common p-substrate process, the n-channel 

device is not available in a well and cannot have its bulk connected to its source. Then the 

body effect can be eliminated by connecting the bias resistor between V DD and the source 

of a p-channel device. Then the p-channel devices in the circuit will have their 

transconductance determined by the bias resistor. The n-channel devices will have a 

transconductance related to the p-channel transconductance according to [8] , 

µn(W I L)n 

µp(W I L)p gm
p 3 .6 

If the p-channel devices are now process and temperature independent, the n-channel 

devices will have a residual dependence proportional to the square root of the ratio of 

mobility. 
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The disadvantage of the constant-transconductance bias circuit is that the bias current, 

and device saturation voltage can change significantly for the given variations. For 

example, the bias current, and hence the chip power will increase by fifty percent for an 

eighty degree temperature rise. An increase in device saturation voltage can reduce the 

signal voltage headroom. 

In the implementation of this bias circuit, the resistance is chosen to be 3 .57 K n for 

Rbias with 200 n on-chip and the remainder off-chip. The on-chip resistor is used to 

improve the stability margin of the Nl, N2, Pl and P2 feedback loop. Most of the 

resistance is placed off-chip so that a surface-mount resistor, with its better accuracy and 

temperature characteristics, can be used. 

3.2 Input Cable length detection 

A peak-detector circuitry, which consists of a voltage to current generator, a rectifier and 

a comparator, is used to estimate the input cable length of the equalizer. The amplitude is 

detected by converting the inp t voltage to current, rectifying the current, and integrating 

it on a capacitor. Figure 3.2 shows the basic principle of amplitude detection. Linearity is 

important in the peak detection. So a linear voltage to current converter is needed. A 

current rectifier topology is also selected. 
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Figure 3.2 : Block diagram for the peak detection technique 

3.3 OT A Design 

A voltage to current converter (OTA) [ 1 3] is selected so that it can produce linear current with the input voltage. The OT A circuit is shown in Figure 3 .3 . As the output of the OT A is the input of the rectifier, the circuit is designed in such a way that the loading effect is mm1mum. 
3.4 Rectifier Design 

The current rectifier topology used in this project is shown in Figure 3 .4 1 [ 4] . Here two half wave rectifiers (N 1 ,N3 and N2,N4) are driven by the opposite output phases of an 

35 



E9 

l 
Cable 
output 
signal 

OTA output 

Vn2 0 NS 

Vn 1 ° 

Figure 3.3: Linear OT A circuit 
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OT A with a differential output. Their outputs are summed. When one output of the OT A 
drives positive current into one halfwave rectifier, the other output will draw negative 
current from the other half wave rectifier. There will always be one halfwave rectifier 
drawing current from the output. Therefore, the OT A and the two half wave rectifiers 
make up a full wave current rectifier. The advantage of this strategy is that there is no 
inherent source of non-linearity anywhere in the rectifier. A bias current (Pl a, Pl  b and 
Na, Nb) is introduced to decrease the voltage swing at the input of the rectifier. In that 
case the input transistors do not completely switch off during the zero crossing of the 
input current. One of the transistors of a half wave rectifier will only switch off when the 
other one, conducting the current during that half period is completely on. The bias 
current adds extra current to the output current of the rectifier. This creates an error on 
the integrated output voltage because extra current will be integrated as long as the non­
conducting transistor in each halfwave rectifier is not completely off. The OT A is 
designed to be linear and the output current of the OT A is rectified and this extra bias 
current is added every time with the rectified current. So the total current, which will be 
integrated in a capacitor, is considered to be the rectified current plus the extra current for 
any OTA output current and thus this extra current is a non-issue in this design. The bias 
current can be decreased until the transistors operate in the weak inversion region. In this 
design, the bias current is set to be 3.5µA. A reference level is created by source follower 
NS, along with current source N9a and N9b, to set the allowable input voltage to be 
compatible with the voltage level that the OT A output can provide. 
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Figure 3.5: Input signal to the rectifier ( output signal from the OT A) 

To integrate the current on the capacitor a current mirror is used. The integrated output 
voltage is given by 

1 rT 21C 
Vo,,t = - frtd Sin(- t)d! 

C T 3.7 

where T is the period of the input signal, N is the number of integrated periods, and Irect is 
the amplitude of the rectified current. 

The mirror, P4 is designed such a way that the rectified current to the integrating 
capacitor is large enough and will be comparable to the reference voltage that will be 
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Figure 3.6: Output current after rectification 

1 . 8 u  

used in the comparator and will be described in the later sections. The input and output 

current of the rectifier is shown in Figure 3.5 and Figure 3.6. From the Figure 3.6, it is 

evident that, 6µA, lMhz input current into the rectifier is rectified on 2.5µA bias current 

through N9a. This bias current cannot be avoided and has no effect on the overall 

rectified voltage. Again output current is less than input current because the bias current 

through P 1 a, b is deducted from the output current. 

From equation 3. 7, it is clear that rectifier output voltage can be controlled by changing 

the value of the capacitor, or changing the Irect or taking different number of the input 

current cycles. In this design, the reference voltage in the comparator is set to be 842m V. 
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So the value of the Irect, capacitor and the number of the input current periods are set such 
a way that, 400mV(p-p), 25Mhz input signal to the equalizer will produce 842mV output 
voltage to the rectifier. The reason of doing this is that, the 25MHz input carrier to the 
cable is 400m V (p-p) and thus if the cable output is also 400m V (p-p) then it means that 
there is no loss in the cable, which is possible only when the cable length is negligible. 
But for any other length of cable, there will be some loss and the 400mV(p-p) signal will 
be attenuated. As the rectifier is designed to give output voltage linearly with the input 
voltage or current to the OT A, the rectifier voltage will be linear with the attenuated cable 
signal voltage. 

Table 3.1 :  The rectified output voltages of different input peak voltages 

Input peak voltage to the OT A Rectifier Output voltage 
or cable output voltage (mV) 

(mV) 
200 842 
175 8 16  
150 790 
125 762 
100 735 
75 708 
50 680 
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The Table 3 . 1  is showing the output rectified voltages for different attenuated cable input 

voltages. From the table, it is evident that, the output rectified voltage is linear with the 

cable output voltage. A switch is connected to the capacitor to set the number of cycles to 

be integrated on the capacitor. Here a clock signal with a pulse width of 1 .3µs is given to 

turn off the switch. So the capacitor will be charged within 1 .3 µs and hold the voltage 

constant. This is the output rectified voltage. A typical NMOS switch can be used, but it 

has charge injection [ 1 5] and clock feed-through problems. So a T-switch can be used to 

counteract these problems. The problem of using a switch is that, first l .3µs, the cable 

output data will be un-equalized. Figure 3 .  7 is showing the output voltage of the rectifier 

when the switch is off after 1 .3 µs. 

800m 

700 m 

600 m 

500 m 

400 m  

300 m 

200 m 

1 00 m  

0 .00  
0 . 0  600 n 1 . 2 u  

ti me  ( s ) 
1 . 8 u  

Figure 3.7: Constant capacitor voltage after the switch is off at 1 .3us 
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3.5 Comparator Design 

A source coupled pair diffemtial amplifier with PMOS current load [ 16] is used to design 
the simple comparator. This is shown in Figure 3.8. This circuit has excellent CMRR 
since any common mode currents in Ml and M2 drains tend to be cancelled by the active 
load at the output node. A capacitor is used to hold the output voltage of the comparator. 
A reference voltage of 842 m V is applied to one of the input device. The choice of this 
voltage is that, the bias current generator that was described earlier, will produce a 
reference voltage of 842m V and thus no separate reference voltage generator is needed. 
Again, this magnitude of voltage is big enough to drive the input device into saturation all 
the time. On the other input of the comparator, the rectifier output voltage is fed. As 
described in the previous section, this rectified voltage will be proportional to the output 
cable signal and for negligible cable length this voltage will be exactly 842mV. But with 
the increase of the cable length, this voltage will be decreasing linearly. So difference in 
the two input voltages of the comparator will be amplified and the capacitor that is 
connected to the output of the comparator will be charged with the output voltage of the 
comparator. For a difference voltage of Vict to the comparator will produce a difference of 
current Mct, which is, 

�Id = µ CoxW Vid 
2Iss - (Vid}2 

n 2L µn(CoxW / 2L} 
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�.:. voltage of 

the rectifier "7 

Figure 3.8 : Comparator circuit with three- resistor voltage divider 

So the difference in the output current will be linear with the difference of input voltage 

V id • The expression is valid when both transistors are in the saturation mode of operation, 

which is true if, 

IVictl � 
/ss 

µ,,(CoxW / 2L) 
3 .9 

So, for the MOSFET pairs, the range of Vid for which both devices are active is a 

function of device dimensions and bias current. It can be shown that the differential input 

voltage required to just tum off one of the transistors in the pair is ✓2 IV as - V1l or 

✓2 /J. V GSQ where, 
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For this design, the rectifier output voltage will be 690m V for the maximum cable length 

of 900ft. So the comparator NMOS transistors are sized and bias current are set, so that 

those two input NMOS can remain in active region when the maximum difference 

voltage to the input is 1 52m V ( 842m V - 690m V). 

3.6 Filter Design 

The most critical part of the equalizer design is to get the proper filter, which will give 

the desired transfer function. The transfer function of the desired equalizer while modeled 

(s - zl)(s - z2)(s - z3) in MATLAB was set as 1 .  -------- , that is the gain factor K was set to be 
(s - pl)(s - p2)(s - p3) 

1 .  So, a band-pass filter with a transfer function of (s - z) with no gain term is needed. 
(s - p) 

Then using three stage cascaded band pass filter will give the desired transfer function. 

There are two main techniques for realizing integrated analog filters. One technique is the 

use of switched-capacitor circuits and the other is continuous time filtering. Switched­

capacitor (SC) techniques are relatively difficult to implement in the higher ranges of 

operation for the following reasons [ 2]. ( 1 )  Sampling of signals occurs at many points 

inside the SC filter. Although the signal that is fed into the SC filter is band-limited, the 

noise that gets added to the signal internally often is not. These noise components get 

aliased into the baseband of the filter. (2) Switch feedthrough problems are severe at 
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higher clock rates. (3) High-frequency effects caused by improper amplifier settling, 

switch resistance, etc. are difficult to model and simulate for an SC realization. As no 

sampling is required, continuous time filters have a significant speed advantage over their 

switched-capacitor counterparts [ 1 7]. The filter co-efficients of the continuous time filter 

are determined by the product of two dissimilar elements, such as capacitance and the 

resistor (transconductor) values. Although continuous time filter has relatively poor 

linearity and noise performance, it does not create that much problem in the applications 

such as data communication and video circuits where distortion and noise performances 

are not too demanding. 

Vo ..,_----+-------o 

Vi 

Figure 3.9: Gm-C filter topology selected for this design 
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For the equalizer filter design, few [ 1 8], [19] filter topologies have been investigated. The 
filter topology, that has been selected, is shown in Figure 3.9. This is source-coupled pair 
with enhancement-mode load [16]. This is essentially just a resistively loaded stage using 
another diode connected NMOS to form a nonlinear resistive load. This is often used in 
wideband amplifiers where low gain can be tolerated and the low resistance of the load 
results in large bandwidth for the stage. A resistor Rp is added between V dd and the gate 
of the NMOS load device. This resistor along with the gate-source capacitance of the 
NMOS load device will provide the tuning capability for the filter. Figure 3.10 is 
showing the small signal model of the half circuit of the Figure 3.9. The model is 
simplified by neglecting the body effect parameter gmb• The gate to source capacitance of 
the driver NMOS is neglected as the cable input has very small resistance of 75Q for 
impedance matching. Summing the currents at the output node, we have, 

Vo Vo 
y

· Vo 
O gm2Vo - - - ---- - gm l 1 - - = 

ro2 Rp + Xcgs2 rol 

QmVi C9s2 
vi ro1 Vo 

rin gm2Vo 
ro2 

• 
Rp 

Figure 3.10: Small signal model derived for the half circuit of the filter 

topology 
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Solving, we obtain, 
Vo - gm1 Av = -Vi = ---1--1---1--

gmi + - + - + ----
rol ro2 Rp + Xcgs2 

3.12 

As r0 1 and r02 are large, neglecting 1/ r0 1 and 1/ ro2, Again setting gm 1 and gm2 equal, we 
get, 

Av = 1 + jwCgs2Rp 
. 1 1 + JWCgs2(- - Rp) 

gm 

So, the pole and the zero of the single filter stage is, 
Zero, 

And pole, 

Z = -1 Cgs2Rp 
-1 P = -----
1 

Cgs2{- - Rp) 
gm 

3.13 

3.14 

3.15 

Keeping Cgs2 constant and changing Rp and gm, we can obtain desired pole and zero. The 
complete filter stage is shown in Figure 3 .11. Here three filter stages similar to Figure 3. 9 
are cascaded. The equalizer output is taken out from the third filter stage as a differential 
output. The gate resistances attached with the enhancement-mode load are shown as 
variable resistances. PMOS devices in triode region will be used in place of these 
resistors. Each filter stage will act as a band pass filter stage with band limited by their 
gate capacitance. 
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Figure 3.1 1 :  Complete filter circuit with Rp shown as variable resistance 
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From equation 3 .14 and 3.15, we see that the zero is set by Rp alone and the pole is set by 

Rp as well as by gm , Equation 3 . 1 5  can be written as 

- 1  P = ----­
Cgs2 

(- + Cgs2Rp) 
gm 

3.15 

But, in the design, gm is kept smaller than Rp so that first term in the denominator of 

equation 3 .15 is smaller than second term. In that case, both zero and pole will be set by 

Rp alone. In fact, from Chapter Two, Figure 2.6, we can see that both pole and zero for 

1st and 2nd sets of pole-zero are almost equal except for the third pole-zero. As third pole­

zero are in higher frequency range, so their effect is small in the overall transfer function. 

So in first and second stage the value of gm is set such a way that for a value of Rp which 

is derived for a specific zero, the corresponding pole value will be approximated to close 

enough to the exact value of the pole. Although the third pole-zero are splitting apart with 

the increase of the cable length, those are kept equal in this design. As described earlier, 

these higher frequency pole-zero will not effect that much to the equalizer transfer 

function. In Figure 3.12, three pass bands of the three stages make the transfer function 

for 900 feet of cable for bandwidth of 1 00Mhz. 

3.7 MOS version of the variable resistors 

A MOS device in triode region acts as a resistive device. A PMOS device is used in this 
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Figure 3. 12: Output response of the three cascaded filter stages 
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A MOS device in triode region acts as a resistive device. A PMOS device is used in this 

design. A PMOS device is in triode region if, 

The PMOS connection into the filter stage enhancement-mode load device is shown in 

Figure 3. 13 . From the figure above, it is evident that PMOS is always in triode region as 

there is no gate current in N3 so to Pl .  As no current is flowing through Pl ,  so its V ds is 

also zero, which ensures that this device is always in triode region. The on-resistance of 

this triode connected PMOS device is, 

voltage f i voltage 
from the from the 

comparator comparator 
output 

◊ "7 output 

Figure 3.13: Variable resistance implementation by triode connected PMOS 
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1 Ron � -----
PP(Vsg - Vthp) 

where,�p 
= Kp. W /L, 

3.16 

For a fixed W/L this Ron can be changed by changing Vsg• As source of P l  is always in 
Yoo, so applying a gate voltage to it ( of course V sg should be greater than Vthp) will 
change the on-resistance of PMOS transistor. 

3.8 Resistor Voltage divider 

Three off-chip resistors are used to divide the comparator output voltage. Figure 3.8 is 
showing the three resistors used to divide the output of the comparator. These three 
resistors will provide three different voltages to the gate of the triode connected PMOS 
devices in the filter circuit. From Chapter Two Figure 2.6 and equation 3.13 and 3.14 we 
know that, for every 100 feet of cable length, the values of the filter stage resistors 
increase 20KQ, 12KQ and 6KQ for the 15

\ 2nd and the 3rd stage respectively. Again, 
rectifier output voltage changes 1 Om V for every 100 feet cable. So the values of the 
resistors are set such a way that for every 1 Om V differential input voltage to the 
comparator, the three divider voltages are incremented enough to be capable of changing 
the· resistance of the PMOS triode connected devices to the desired values. Simulation 
results show that using 3 .5KQ resistors will provide desired voltages to the triode 
connected PMOS devices in the filter stages. Table 3.2 shows the three divider voltages 
for every 1 Om V differential input increment. 
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Table 3.2: Voltage divider's output for every lOmV input voltage difference in the 
comparator 

l:lV (mV) Rl (Volt) R2 (Volt) R3 (Volt) 

100 2.99 1 .99 0.999 

1 1 0 3 .07 2.03 1 .02 

1 20 3 . 1 5  2 .07 1 .05 

1 30 3 .24 2. 1 2  1 .08 

1 40 3 .33 2 . 1 6  1 . 1 0  

1 50 3 .41 2 .21 1 . 1 3  
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Simulation Results 

CHAPTER 

4 

The circuit simulations of each stage were done using Spectre simulation tools [26] of 
CADENCE and HSPICE was used to verify the results of pole-zero model developed by 
MATLAB. The AMI 0.5µm CMOS process [20] was used to design all the circuit blocks. 
This non-silicided CMOS process has 3 metal layers and 2 poly layers, and a high 
resistance layer. The process is for 5volt applications. The minimum channel length of 
this process is 0.6µm and the minimum width is l .95µm. This process uses SPICE level-
1 1  model parameters. The resistors and the capacitors values used in this design are 
tabulated in Table 4. 1 and the W/L values and drain currents of all the devices of each 
block are shown in Table 4.2. 

Figure 4. 1 is showing the frequency response of the equalizer filter output for cable 
length of 400 to 900 feet. In this figure, the top curve is for the 900 feet and the bottom 
one is for 400 feet of cable. For each I 00 feet increase of cable length, the equalizer 
response increases about 2dB at I 00MHz. 
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Table 4.1 : Resistor and the capacitor values used in this design 

Circuit Block Device Name Values 

Bias Circuit generator RI  3 .57KQ 

Rectifier C l  3nF 

RI  3KQ 

ComparatorN oltage Divider R2 3KQ 

R3 3KQ 

Cl  lpF 

From frequency 1 OK to few hundred KHz there is attenuation of 0.273dB for all of the 

curves. This is due to the body effect of the driver MOSs of the filter stages. The 

attenuation is originally 3dB if gm of both the driver and the enhancement-mode load is 

kept equal. But in the design, gm of the driver is designed to be higher than gm of the load 

devices to cancel out the lower frequency attenuation as much as possible. In fact, in the 

ideal response of the equalizer, there is very small gain in the lower frequencies. This 

simulated deviation from the ideal response in the small frequency range is less than 0.5 

dB. The target cable length to be equalized was 1 00 to 900 feet, but from simulation 

result, it is evident that at 400 feet of cable or below, the curves loose its proper shape. 

The reason is that, the voltage divider output voltages are designed to be able to increase 
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Table 4.2 : W /L and the drain currents of the devices used in each block of the 
design 

Circuit Block Device W/L values Drain Current 

N I  40/0.6µ 44.4µA 
N2 10/0.6µ 48.77µA 

Bias generator N4 6/1.95µ 48.04µA 
N5 10/0.6µ 49.35µA 
Nl , N4 30/0.6µ 102µA 

OTA N2, N3 30/0.6µ 70.62µA 
NI ,  N2 9/0.6µ 0.9µA 
P3 1.95/0.6µ l .84µA 

Rectifier P4 252/0.6µ -----

Na, Nb 4.95/0.6µ 3.8µA 
Comparator Nl , N2 120/0.6µ -----

Nl , N2 250/0.6µ 586µA 
Filter N3, N4 150/0.6µ 151µA 

N5, N6 120/0.6µ 80µA 
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Figure 4.1 : Equalizer output frequency response for 400-900 feet of cable 
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the on-chip resistors (triode-connected MOS) by 20 KQ, 15 KQ, and 10 KQ respectively 
for the first, second and the third stage of the filter. But, in the range of 100- 400 feet of 
cable, the poles and zeros for these sets of curves are very close to each other and resistor 
values for these sets of curves do not require to be varied by 20 KQ, 15 KQ and 5 KQ as 
it is required for the curve sets of 400-900 feet of cable. 

Figure 4.2 is showing the input attenuated signal of 200m V (p-p) to the equalizer at 25 
MHz and Figure 4.3 is showing the gain of 9dB attained at that particular frequency. 
Table 4.3 shows the deviation between the ideal response and the simulated response of 
400 feet ideal equalizer curve and the simulated curve for different frequencies. As all 
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2 . 44 

2 . 40 ' ' . � � 
1 0 0 n  

A A A � 

i� 
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Figure 4.2 : Input signal of 200m V (p-p) to the equalizer 
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-- - 1 0 0 m  
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Figure 4.3 : Equalizer output signal of 600m V (p-p) at 25 MHz 

700 n 

the curves are symmetrical, these results of deviation are also applicable for any other 

length of cable. 

4.1 Off-chip Input and Output stage 

The Belden coax 728A cable has a characteristic impedance of 7 SQ. So for impedance 

matching, a 75Q resistor will be used. Again, the input from cable is single ended but it 

will be applied differentially to the input of the filter. 

The output buffer is used to drive off-chip load resistor. The choice of off-chip resistor 

value depends on the desired output amplitude, A and bandwidth, BW, which is given by 
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Table 4.3: Error between ideal response and the simulated response 
Frequency of operation Ideal response Simulated Error 

(MHz) (dB) response (dB) (dB) 
1 1 0 .5 0 .5 

25 5 6.5 1 .5 

75 8 .5 9 .5 1 .0 

1 00 1 0.2 1 1 .8 1 .6 

[8] ,  

1 
R = --- 4.1 

2trC.BW 

where R is the off-chip load resistor and C is the output-node parasitic capacitance. 
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CHAPTER 

5 

Discussion and Recommendation 

A cable pole-zero model has been developed which shows that, poles and zeros of the 

cable transfer function decrease linearly with the increase of cable length. This important 

result helps to realize an adaptive cable equalizer where the poles and zeros for the 

equalizer filter can be changed linearly with the change of the cable length. Again, this 

linear relationship requires that all the building blocks in the equalizer system should be 

linear in behavior. Most of the building blocks for the overall equalizer system have been 

designed. CMOS process has been chosen to implement this equalizer system as CMOS 

process allows low-power, high density circuits to be used cost effectively. As the 

equalizer system is a part of the high-speed data communication transceiver, and most of 

the part of this transceiver is digital in function and they are all can be easily 

implemented in CMOS process, so if the analog part of this transceiver like equalizer is 

implemented in CMOS process, then the whole transceiver can be implemented in a 

single chip. While the pole-zero model for the cable-equalizer had been developed, the 

gain constant (k) for the cable transfer function was assumed to be one. So, the main 
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challenging part of the equalizer design is to design a filter which has a transfer function 
with gain constant one, so that, no gain controller (usually automatic gain controller) is 
needed. For this, few of the filter blocks have been investigated and the one which is 
described in section 3.7 of chapter three has been developed which gives only one pole 
and one zero without any gain term in its transfer function and thus help to realize the 
equalizer system without any gain controller which is predominantly used in today's 
equalizer systems. So, the system consists of an OT A, a rectifier and a comparator to 
detect the input cable length of the equalizer, a three-stage filter and a voltage divider to 
generate voltages to tune the poles and zeros of the filters. The circuit, which is not 
designed here, is the output stage. An output stage capable of driving the equalized data 
signal off-chip may be needed. It allows the equalizer circuit to operate as a stand-alone 
chip. If the equalizer drives a decoder and clock recovery circuit, which is on the same 
chip as the equalizer, then an output driver is not needed. 

5.1 Future Work 

The pole-zero model for the cable-equalizer was developed using 3 poles and 3 zeros. 
The first thing that can be done, is to investigate the pole-zero model using more than 3 
poles and 3 zeros It is evident that, the more the poles and zeros the better the curve 
fitting is on MATLAB. 

This equalizer system is developed for a single carrier frequency, which is known and 
can be detected. Using that frequency, the input cable length has been estimated. The 
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system can also be designed where multiple channel frequencies can be detected and 
these can be used to estimate the input cable length. 

In the design of the rectifier, a switch is used to facilitate the capacitor to be charged for a 
certain time. For this time, the output data of the cable will remain un-equalized. So other 
system topology or circuit can be developed to avoid this problem. 
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Integrated Adaptive Cable Equalizers 

Because of it's demand in data communication, integrated circuit (IC) for adaptive cable 

equalizer is widely developed by many companies for long time. Here is a brief 

description of few of those that are widely used. 

National Semiconductor's CLCO 14 adaptive cable equalizer is a low-cost monolithic 

solution for equalizing data transmitted over cable ( or any media with similar dispersive 

loss characteristics). The CLC014 simplifies the task of high-speed data recovery with a 

one-chip solution and a minimal number of external components. The equalizer 

automatically adapts to equalize any cable length from zero meters to lengths that 

attenuate the signal by 40dB at 200MHz. This corresponds to 300 meters of Belden 828 1 

or 120 meters of Category 5 UTP (unshielded twisted pair). The equalizer operates over a 

wide range of data rates from less than SO Mbps to rates in excess of 650Mbps. [21]. 

Application of this equalizer includes SMPTE 259M serial digital interfaces, serial digital 

video routing and distribution, serial digital data equalization and reception, data 

recovery equalization A TM, CAD networks, medical, set top terminals, industrial video 

networks. 
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Maxim Integrated Products builds upon its industry-leading adaptive equalizer portfolio 
with the introduction of the MAX3802 quad adaptive equalizer [22] . Maxim adaptive 
equalization algorithm, already proven in the MAXJ 800 and MAX3801 equalizers, 
enables low-cost copper system interconnections up to 3 .2Gbps and effectively extends 
the usable length of coaxial and twin-axial copper cable in point-to-point 
communications applications. The MAX3802 contains four independent 3.3V adaptive 
cable equalizers and four independent cable drivers on a single chip. It automatically 
adjusts to attenuation caused by skin-effect levels of up to 30dB at 1.6GHz, making 
inexpensive 30m cables viable interconnect solutions. Applications include high-Speed 
Links in communications and data systems, Back-plane and Twin-Axial Cable 
Interconnects, Category 5 DTP-Based systems, digital video systems. 

A cable equalizer product of the Gennum corporation is GS9064 [23] . This is a second 
generation high-speed bipolar integrated circuit designed to equalize and restore 
270Mbps signals received over 750 coax cable. The GS9064 is designed to support both 
SMPTE 259-M-C and DVB-ASI 270Mbps. Their another product GS 1524, equalize and 
restore signals to the coax cable at data rates from 143Mbps up to l .485Gbps. The 
GS1524 is designed to support SMPTE 292M, SMPTE 344M, and SMPTE 259M. 

Sony Corporation's [24] CXB1454R cable equalizer, which is a part of the chip set for 
serial transmission of 24 bit full-color VGA, SVGA and XGA digital image data, can 
adaptively equalize up to 10 meter of cable. 

71 

., 



TDK Semiconductor Corporation [ 25] produces the TSC 78Q2250 which is a high-speed 

line transceiver integrated circuit, intended for use in ATM applications at 155.52Mbps. 

It is used at the interface to 100 meters or less Category 5 UTP cabling and is connected 

to the line via isolation transformers. The receiver provides adaptive equalization for 

accurate clock and data recovery. A similar product is the TSC 78Q2120 transceiver for 

1 00Base-TX Ethernet which can equalize MLT-3 data over 110 meters CATS cable. 
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