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ABSTRACT 

The purpose of this study was to investigate the 

advantages offered by a z-transform approach to direct 

digital control applications. A discrete-time modeling 

package was developed for modeling process input/output 

data using a general second-order pulse transfer function. 

Also, a z-transform controller presented in the literature 

was modified to yield a control algorithm which gives 

significant improvement over conventional DOC algorithms. 

i i i 
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CHAPTER 1 

INTRODUCTION 

In the last decade, advances in computer technology 

have resulted in increased use of the digital computer to 

directly control industrial processes. The memory, logic, 

and computational capabilities of the computer, coupled with 

modern computer/process interface equipment, make possible 

the implementation of advanced control techniques and have 

served to establish the area of computer control as an im

portant, and promising, segment of chemical process control. 

However, despite the computer's vast flexibility as compared 

to analog controllers, industrial applications of direct 

digital control (DOC) are usually little more than discrete 

versions of conventional analog control schemes. The design 

freedom afforded the control engineer has rarely been used to 

exploit the full potential of the digital computer at this 

first level of control. 

At The University of Tennessee, a research program has 

been established in the Department of Chemical and Metallur

gical Engineering to investigate DOC. The specific objective 

of the program, directed by Dr. C. F. Moore, is to develop 

improved DOC strategies and to experimentally evaluate these 

strategies using a PDP 15/35 digital computer interfaced to 

laboratory units designed to be representative of industrial 

control situations. The work described in this thesis is 

1 
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part of this research program and deals with process model

ing and controller development aspects of direct digital 

control loop design. 

The DOC Loop Design Problem 

Consider design of the DOC loop diagrammed in Figure 

l(a). The continuous process output, x(t), is sampled to 

give a discrete--time signal, xi. This is subtracted from a 

sampled set point signal, ri' to produce a discrete error 

signal which can be used by the computer to calculate a con

trol action, m., via some control algorithm. The discrete 
l 

control action is then converted by a hold device to a con-

tinuous time signal, m(t), which is input to the process. 

Any disturbance, n(t), is considered to enter the process in 

addition with the control action. 

The control loop design method of concern in this 

work is a three-step procedure consisting of: 

(1) process modeling, in which a mathematical rela

tion between u(t) and x(t) is found, 

(2) controller specification, in which the form of 

the control algorithm is chosen, and 

(3) controller tuning, in which values for the con

trol algorithm parameters are determined such that the de

sired control loop performance is obtained. With conventional 

control algorithms, the advantage of process modeling is that 

the algorithm may be tuned off-line by simulation of the 

control loop, and modeling is not necessary if on-line tuning 



CONTROL COMPUTER ,- - - - - - - .... - - - - -
I ,-- I 
I e 1~ CONTROL m; 1 C' ) y I r1 + , . I 

rt!__~'T~~, ALGGRITH:_J I T 
r -1. L ----1 i -n 

I n ( t) 

+ 
HOLD lm(t} ~u(t~PROCESS 

DEVICE 
x(ti 

I J 
I •~--~x(~t) ______ _ I •; • r 
' I ·r L --·- -- .. ,,.. - - -- - - - -·- -

Figure l(a),(b),(c). Direct Di~1ital Control Loop 

w 



COMPUTER 
1- - - - - - - - - ... - - -CONTROL 
! ALGORITHM 

I f 1 
~ • K [e + T I e 

r (!l v' I ri .:I" - ei~ 1 ~ i f1 j•l J I m.i 
,.t~.r-., TD 
T - 'i' + T (e1-e1-1 )] 

: I 
I . 

~~-'of 

T 

N ( s) 
HOLD PROCESS 

H(s) r(s)t)!iJrs,.,J , I X(s) 
7'-1 ,1 G l s ) I-,--➔ 

I 

-- L _ ___. 

X. • ! 
, 1 t 'J(_ X(s) g ~'- _J 

I • 
- - - - - - - - - - - - -- T 

Figure l(co11tinued). 

~ 



5 

-N -X 

c:r:: 

l I-
c:r:: 
Cl 

I C/'l ..--.. 
Cl ti) N 
L.:.J LlJ 
..Ju (!J 
o_O :c 
:::: c:::: 
c:r:: 0.. 
l') 

-- N 
N ........ 

--- :::> 
z + 

/ 

+ 

-N ........ 
~ 

.... 
c:::: 
Lu -_J ,_J N -C:::..J - ......... "'O 

l--0 N >< Q) 
..... c:::: - ::, 
(!J I- Cl c:: ,....z .... 
ao -+--> u c:: 

0 
(.J ---N ,-

't 
:J.) 

s.. 
+ --· ::::i 

en .... 
LL. 

' 
~ 



6 

is practical. However, if advancec control techniques such 

as multivariable decoupling, feedfcn:ard control, or dead 

time compensation are to be implemented for improved control, 

some mathematical description of the process is required. 

f on v en t i on a 1 D e_?_i.9!!.__An P r o a c h 

The conventional approach to digital control loop de

sign in the chemical industries is to adapt continuous con

trol techniques (see Figure l(b)). For modeling purposes, 

the process dynamics are represented by a Laplace domain 

transfer function, and the most general ·model used to describe 

the process is an analytical solution to or a finite-differ

ence representation of this transfer function. The fitting 

of process response data u~ing the model is then performed 

to- find values of the transfer function parameters which 

minimize a selected fit criterion (1,2). 

As with process modeling, the general approach to 

controller sp~cification for digital loops has relied heavily 

on continuous control concepts. The majority of digital con

trol algorithms are simply numerical approximations of the 

analog one-, two-. and three-mode controllers. For example, 

the discrete PID controller is illustrated in Figure l(b). 

It is well-known, however, that the performance of sampled

data control using discrete versions of analog modes decrea

ses as sample time is increased. Thus, the engineer who 

employs tnese algorithms in digital systems must tend toward 

rapid sampling ratEs to achieve acceptable control which is, 



nevertheless, limited to th~t attainable with continuous 

control. 

A Discrete-Time Approach 

Rather than considering the digital control loop as 

being comprised of both discrete and continuous elements, 

7 

one can formulate the design problem entirely in terms of 

discrete-time components. If the samplers, the hold device, 

and the process are viewed collectively as a discrete-time 

system that reacts to a discrete input mi to produce a dis

crete output x1, z-transform methods ·can be used to derive a 

pulse transfer function, HG(z), relating t~e discrete inputs 

and outputs in the z-dornain (3,4). Since disturbance design 

generally assumes that the load change is a step function 

beginning at a sample time~ the disturbance may nlso be 

treated a5 a discrete-t1me function which enters the hold 

device with the controller output. Finally, the computer 

control algorithm can be considered a digital controller with 

a z-domain transfer function, D(z), and the control loop can 

be represented by the sampled-data control loop diagrammed in 

Figure l(c). This discrete-time approach to direct digital 

contiol applications offers definite advantages over conven

tional techniques in the process modeling and controller 

specification phases of control loop design. 

Inversion of the pulse transfer function gives a dis

crete-time model which is linear in a11 the model parameters 

except dead time. Thus, a least-squares f1t of process 
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response data can conceivably be performed using a one

dimensional search for dead time with the remaining model 

parameters calculated by linear regression at each iteration. 

This constitutes a general, efficient modeling scheme for 

chemical process modeling. 

The z-transform design of digital controllers is a 

well-developed subject of sampled-data control theory (4,5). 

Essentially, for a given pulse transfer function, block dia

gram algebra is used with Figure l(c) to find the controller 

transfer function required to produce specified control loop 

characteristics. The relevance of such techniques to the 

control of chemical processes arises from the fact that con

troller design automatically includes compensation for any 

process dead time, a variable which is notoriously detrimen

tal to the performance of conventional controllers. 

Organization 

The objective of this thesis was to investigate the 

advantages offered by a z-transform approach to process 

modeling and controller design. Chapter II describes a 

discrete-time modeling procedure for fitting process response 

data to a general second-order model; the listing of a 

Fortran IV modeling program based on these developments is 

given in Appendix A. Chapter Ill outlines the z-transform 

design of control algorithms and the development of an im~ 

proved DDC algorithm; controller simulation results are 

presented, with a listing of the simulation program in 



Appendix B. Final conclusions and recommendations are 

summarized in Chapter IV, 

9 



CHAPTER II 

DISCRETE-TIME MODELING 

Analytical process models are usually too complex to 

be of any practical use in chemical process control. The 

general approach in the chemical industries is to propose a 

simple model with adjustable parameters and to empirically 

determine the parameter values which, in some sense, 11 best 11 

describe the process dynamics. One approximation which has 

been used for years is the first-order lag plus dead time 

model. The graphical methods presented by Ziegler and 

Nichols {6) and Miller (7) can be used when a continuous 

step response plot is available. For sampled process re

sponse data, an analytical solution of the first-order lag 

differential equation can be used for a least-squares fit of 

the data. 

While the first-order model is attractive from the 

standpoint of simplicity, a much improved representation of 

the higher-order chemical process response may be obtained 

with a second-order model. Smith {3) simulated the continu

ous PIO control of a fourth-order process and compared the 

set point and load change responses for an optimally tuned 

controller with those for controllers tuned using first- and 

second-order process models. The tuning criterion was ITAE. 

The possible improvement over the first-order tuned control

ler was nearly 50 percent for load changes and over 100 per

cent for set point changes, while the possible improvement 

10 
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for the controller tuned using the second-order model was 

only 12 percent for load changes and less than one percent 

for set point changes. In a similar study, Chiu (8) simula

ted the temperature control of a jacketed backmix reactor 

and found that tuning PI and PIO controllers using a second

order model gave controller parameters which were nearly 

optimal. Again, substantial improvements over first-order 

tuning were observed. 

As with the first-order lag model, graphical methods 

are available for evaluating the p~rameters of a second

order lag plus dead time model from a step response plot. 

Sten's technique (9) is applicable only with an overdamped 

model, and the need for a graphical tangent can introduce 

considerable error. The method by Meyer (10) can be used 

for both overdamped and underdamped models but has the dis

advantage that the dynamic parameters are based upon only 

two points. 

A more general, objective approach which removes the 

restriction of a step input is to develop a finite-difference 

representation of the second-order differential equation. A 

least-squares fit of sampled process input/output data may 

then be performed using a one-dimensional search to find the 

model dead time with the remaining model parameters calcula

ted by linear regression (1). This type of numerical proced

ure is also useful in adaptive control applications in which 

on-line model updating is required. However, because of the 

finite-difference approximations, such a model is strictly 



12 

limited to short sample times. 

One common feature of these modeling methods is that 

the basis of the model is a Laplace domain transfer function, 

and the objective of the modeling is to find values for the 

transfer function gain, dead time, and time constants. For 

direct digital control applications, an approach more con

sistent with the discrete-time nature of the computer would 

be to consider the hold/process cascade as a discrete-time 

system and develop a modeling procedure with a z-transform 

pulse transfer function as its basis. 

Discrete-Time Model Development 

While almost all chemical engineers are aware of the 

Laplace transform and its usefulness in the analysis of con

tinuous systems, a far smaller number are as familiar with 

the z-transform and its applications to discrete-time, or 

sampled-data, systems analysis. The z-transform of the 

discrete-time signal obtained by sampling the continuous 

signal f(t) with a sample time T can be denoted as F(z) and 

is defined as 

F(z) = Z[f(kT)] = 
00 

l: 
k=O 

This equation results from representing the sampler output 

as the product of the continuous signal and a unit impulse 

train of period T. Taking the Laplace transform of this 

signal/impulse train representation, and making the change 
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of variable z = e 5 T yields the above relation (5). There

fore, the z-transform is essentially the Laplace transform 

of the sampler output. F(z) is often written as 

F(z) = Z[F(s)] 

which should be interpreted as the z-transform of the dis

crete-time signal obtained by sampling a continuous signal 

which has a Laplace transform F(s}. 

In terms of the figure below, the z-transform expres

sion relating X(z), the sampled process output, 

U(z) f-1 ll(s] 

to the discrete-time input, U(z), is termed the pulse trans

fer function HG(z}: 

HG(z) = Z[H(s}G(s)J 

Just as the Laplace transfer function for a continuous 

system is the Laplace transform of the system's impulse re

sponse, the pulse transfer function is the z-transform of the 

discrete-time system's response to a Kronecker delta input, 

o(kl), defined by the relations 

o ( kT) = 
l for k=O 

O for klO 

Tables listing the z-transform transfer function cor

responding to various Laplace transfer functions are generally 
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included in any text that deals with sampled-data systems 

(3,4,5). These tables can be used to find the pulse transfer 

function for a given hold and process. For example, with a 

zero-order hold and a second-order lag plus dead time process, 

and 

l -sT 
H(s) = _-e __ 

s 

G(s) = 
Ke-es 

HG(z) 

The z-transform of a time delay of m sample times is z-m 

and we have 

HG(z) 

where N = 6/T, assumed to be an integer. A partial fractions 

expansion of the expression in brackets yields 

2 
HG(z) = K z-N(l-z- 1) {zt!J + Z [ tl ] + 

(t 2-t 1 ) (t 1 s+l) 

From z-transform tables, 

z [ ls·J = -'-1-=-
1 - l -z 
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and 

where 

a = 
l and 

Substitution of these relations gives the pulse transfer 

function 

HG(z) ( 2 ) 

The coefficients a1 , a 2 , b1 , and b2 are functions of the pro

cess time constants, process gain, and the sample time. 

Cross-multiplication of equation (2) yields 

and employing the right-shift property of the z-transform, 

which states that 

we obtain the time-domain expression 

( 3) 

This equation is a second-order difference equation which re

lates the process output at sample i to past input and output 

samples. 

Equation (3) is a very general expression in that it 

is valid for a number of first- and second-order processes of 

interest in chemical process modeling. In Table I are 
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presented the relations oetheen the difference equation co-

e ff i c i e n t s a n d th e i:: a ram et e rs c f t :, e co r re s po n d i n g L a p i a c e 

transfer function. The process dead time is assumed to be 

an integer multiple of the sample time, and the hold device, 

as in almost all DDC applications, is a zero-order hold. 

To use equation (3) as a least-squares model, the 
" actual output x1 is replaced by the model output, xi. For 

the general case in which the process output is non-zero for 

a zero input, an offset term D must be added, and the model 

equation becomes 

The model estimate ca1•:u1a-

ted from the model parameters using the relation 

D 

If process response data are to be fit with a first

order model (a"=b 2=o), then this discrete model offers no 
L . 

advantages. In fact, an analytical solution cf the first-

order 1ag differential equation gives the same modei. How

ever, in fitting a more descriptive second-order model to 

proce.ss data, the model of equation (4) offers several def

inite advantages. Since the pulse transfer function is an 

exact relation, the model is not limited to short sample 

times as are models derived using finite-differences. This 

is an important consideration if the modei is to b~ U$ed in 
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conjunction with a control algorithm that will allow in

creased sample times. Also, the same second-order model 

equation can be used whether the process exhibits overdamped, 

underdamped, or inverse response characteristics. Thus, one 

general equation can be used to model several types of sys

tems with no restrictions on the type of process data. The 

model may be applied to closed-loop operating data ~swell as 

to open-loop response data. Finally, the linearity of the 

model in all parameters except dead time allows linear re

gression to be used with a search for dead time. This is, of 

course, an important computational advantage. 

Kalman {11) suggested the use of this model, without 

dead time or the offset term, as the basis of an adaptive 

control system which could follow the changes in process pa

rameters by on-line modeling. Dahlin (12) employed a first

order version of the model in the identification of paper 

machine dynamics. However, in the modeling of chemical pro

cesses, this model has been generally ignored. Apparently, 

one reason for this arises from the conventional approach of 

modeling in terms of Laplace transfer function parameters and 

from the fact that, at first glance, solving for the gain and 

two time constants of the important second-order lag, given 

the four discrete-time model parameters, would not appear to 

yield a unique solution. For example, Gallier and Otto (2) 

outlined the possible use of the model in an on-line updating 

of second-order lag parameters for adaptive DDC of chemical 

processes. Instead of taking advantage of the linear 
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regression calculation of the model coefficients, they chose 

to perform a numerical search for the time constants, gain, 

and dead time which minimized the least-squares fit criterion. 

Consider relating the discrete model coefficients to 

the second-order lag parameters as follows. From Table I, we 

have the four equations shown below and three unknowns--t 1 , 

t 2 , and K. 

al = -(a1+a2 ) 

a2 = a1a2 

bl K [l 
t 1a1-t2a2 = + J 

t2-tl 

b2 = K [ala2 + 
t 1a 2-t2a1 

J 
t2-t, 

Another relation may be obtained from equation (3) giving the 

process gain as 

K = 

But adding together the above expressions for b1 and b2 gives 

the same gain equation and, therefore, there are actually 

only three independent equations--those for a1 and a2 and the 

process gain relation. These three equations are easily 

solved to give t 1 , t 2 , and K. Therefore, if values for the 

second-order lag transfer function parameters are to be the 

objective of a modeling effort, the discrete-time model can 

still be used and the continuous parameters back-calculated 

from the model coefficients. 
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Formula ti or:i __ of the R~_g_r_e.__?_~j on 

With the model equation given by equation (4), the 

objective is to find those values of a 1 , a2 , b1 , b2 , D, and 

N which give the best fit of the process response data. For 

a least-squares regression, the fit criterion Eis the sum of 

the squared residuals, or fit errors. That is, 

E = 
M 
E 

i=H+3 

,., 2 
(x.-x.) 

1 1 
( 5) 

where Mis the number of data points. Note that the need for 

greater-than-zero subscripts on the u values requires that 

the error summation begin with i=N+3. The total number, m, 

of model output values considered in the fit criterion is 

then 
m = M-N-2 

which, for a fixed number of data points, decreases with in

creasing N. 

Substitution of the model equation gives 

E = 
M 2 
r (x.+a 1x. 1+a 2x. 2-b 1u. N 1-b 2u. N 2-D) i=N+J 1 1- 1- 1- - 1- -

( 6 ) 

The best values for the model coefficients are those which 

minimize E. Thus, we require 

M 
= 0 = 2 r x. 1 (x.+a 1x. 1+a 2x. 2-b 1u. N l 

i=N+3 1- 1 1- 1- 1- -
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aE M 
aa2 = 0 = 2 i=~+3xi-2(xi+alxi-l+a2xi-2-blui-N-l-b2ui-N-2-D) 

e1 E M 
ob 1 = 0 = -2 I u. N l(x.+alx. l+a2x. 2-blu. N 1 

i=N+3 1- - 1 1- 1- 1- -

-b2ui-N-2-D) 

oE M 

ob 2 
= 0 = -2 I u. N 2(x.+alx. l+a2x. 2-blu. N 1 

i=N+3 1- - 1 1- 1- 1- -

-b2 °i-N -2-D) 

oE M 
= 0 = -2 I (xi+alxi-l+a2xi-2-blui-N-l-b2ui-N-2-D) an i=N+3 

which upon rearrangement gives 

M 2 
-a 1 I x. 1-a 2 Ix. 2x. 1+b 1 I u. N 1x. 1+b 2 Z: u. N 2x. l i=H+3 ,- ,- ,- ,- - ,- 1 - - 1-

+DI x. l = Ix.x. l 
l - l l -

M 

-al I xi_lxi-2-a2 E xi-~ +bl I ui-N-lxi-2+b2 I ui-N-2xi-2 
i =N +3 

+D Ix. 2 = Ix.x. 2 l - 1 1 -

( 7 ) 
M 

-a 1 I x. 1u. 1-a 2 L'. x. 2u. N 1+b 1 ✓, u1.
2_N_ 1+b 2L u. N 2u. N l i=N+3 1- 1-N- 1- ,- - 1- - 1- -

+D Iu. N l = 1 - -
Ix.u. N l 1 1 - -
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M 
-al. E x,._lu1·-N-2-a2 Ex. 2u. I" 2+bl Eu. N lu. N 2 l=N+3 1- 1-,- 1- - 1- -

2 
+b2 E ui··N-2+0 E ui-N-2 = E xiui-N-2 

EX. 
l 

All unlabeled summations are, of course, implied to sum from 

i=N+3 to M. 

These equations are termed the normal equations for 

the regression, and the solution of this set of equations 

for a specific value of N gives the model coefficients which 

minimize the fit criterion for that particular choice of 

dead time. Therefore, a least-squares fit of the data can 

be performed by a search on N with the best values of the 

model coefficients for each iteration determined by solution 

of equations (7). That value of N which results in the least 

sum of squared residuals, as calculated by equation (5), and 

the corresponding values of the model coefficients give a 

least-squares fit of the experimental data. 

Note the similarity of terms in the normal equations. 

For example, with step response data, one would not expect 

the elements of the first two equations to be very different; 
2 in other words, the rx. 1 term would not be much different 

l -

from the rx. 1x. 2 term, etc. Likewise, the third and 
l - l -

fourth equations would not be expected to differ drastically. 

In such cases, the first and second equations and the third 
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and fourth equations would be nearly linearly dependent, and 

the numerical problems associated with such ill-conditioned 

systems could be expected to arise. In computer solutions 

of the equations, this was found to be the case, with changes 

in the sixth significant figure of the summation terms pro

ducing changes in the second significant figure of the solu~ 

tions. Also, double precision computations were required to 

obtain correct solutions. 

There are a couple of factors which must be considered 

in choosing the search technique to be used in finding the 

optimum dead time. 

Note that the magnitude of the fit criterion of 

equation (5) is influenced by the number of residuals as 

well as the magnitude of those residuals. As was pointed 

out, the number of residuals decreases as the model dead 

time is increased; thus, the fit criterion could conceivably 

be minimized by a poor fit which utilizes a large estimate of 

dead time. Since the objective of the modeling procedure is 

to minimize the fit criterion by minimizing only the magni

tude of the residuals, it follows that the search should be 

limited to relatively low values of dead time. In addition, 

minimizing the mean squared error would tend to offset the 

effect of the number of errors considered. 

Also, large dead time estimates in the modeling of 

step response data can lead to results which are physically 

meaningless and useless for control purposes, Consider the 

sampled response of a second-order system to a unit step 
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input which enters at sample k. The response is, of course, 

governed by equation (3). However, for i ~ k+N+2, the dis

crete inputs, ui-N-l and ui-N- 2 , are constant and equal to 

one, and the response is given as 

x. = -a 1x. 1-a 2x. 2+D' 
l l - l -

( 8) 

where 

If the data are modeled using an estimate of dead time, N', 

such that 

N' > N + k -1 (10) 

Then all the data points considered in the error calculations 

can be represented by equation (8), and the least-squares 

fit gives an input-independent model which fits the data as 

well as equation (3). In fact, since the N' of equation (10) 

is larger than the actual dead time, the number of residuals 

summed in the fit error for N' would be less than those for 

N, resulting in a lower value of the fit criterion for N'. 

A definite example vividly illustrates the above. The 

discrete model parameters shown below were used to generate 

unit step response data. 

N = 5 

a1 = -l.84034 

a2 = 0,84648 

D = 0,01228 

b1 = 0.003154 

b2 = 0,002983 

( 11 ) 
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These parameters correspond to sampling the continuous pro

cess 
.. 55 

G(s) = (l0s+~)(l5s+l) 

with a sample time of one and an offset of 2.0. The input 

and calculated process output are shown in Figure 2. Note 

that the step input entered at the eighth sample. For esti

mates of·N, equations (7) were solved on the IBM 360 comput

er by pivotal condensation (13) to find the least-squares 

model coefficients for that dead time estimate, and the least

squares fit criterion and mean squared error were then cal

culated. The regression equations were sufficiently ill

conditioned to require double precision calculations in their 

solution. Figure figure 3 is a plot of the fit error as a 

function of the model dead time. Beginning at a model dead 

time of zero, the fit error decreases to a definite minimum 

at the process dead time of 5. The error then rises but 

drops drastically.again at a model dead time of 12, as ex

pected from equation {10), and continues to decrease for 

higher values of N'. The fits for dead times of 12 and higher 

were characterized by zero values for b1 and b2 , while the 

bias estimate obeyed equation (9). Figure 4 shows that the 

mean squared error behaved in the same general manner, and 

minimizing this parameter would offer no improvement. 

This procedure was repeated with simulated set point 

change response data for the process of equation (11) under 

discrete PI control. Input and output data points are shown 
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in Figure 5. It was found that for model dead times greater 

than 11, the least squares regression treated the overshoot 

response as the step response of an underdamped system, and 

the fit error behaved in the same manner as that of the step 

response data, with an input-independent model (b 1=b 2=0}. 

In light of the above, it was concluded that the best 

dead time search procedure for the least-squares modeling is 

to begin with an estimate of zero and increment N' by one 

until there is no improvement in the fit criterion. This 

ensures that a low value for the fit error does not arise 

because only a few data points are considered in its calcu

lation. Such a cautious search also prevents the dead time 

estimate from becoming so large that process response data 

can be described by an input-independent model. Note that 

the maximum allowable dead time estimate is N'=M-7 since for 

model dead times greater than this, less than 5 data points 

are fit and the linear regression has no unique solution. 

In Figure 6 is shown a flow diagram of this least

squares modeling scheme. The main program serves to input 

the process response data and execute the dead time search. 

For a given model dead time, the subroutine ASUBI sets up the 

normal equations for the linear regression, solves the 

equations for the model coefficients, and computes the fit 

error. Because the linear regression must be performed for 

each dead time iteration, the bulk of the program computa

tions occur in the linear regression subroutine. It is 

desirable, therefore, that the calculations required to form 
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NO 

N = N+l 
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NO 
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( cl ) Main Program 

CALL ASUBI 

PRINT RESULTS 

END 

SET UP 
LINEAR REGRESSION 
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SOLVE NORMAL EQUATIONS 

FOR a 1 ,a 2 ,b 1 ,b 2 ,D 

,11 
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ERRORS, ESQ~D 
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( b ) Linear Regression Subroutine, ASUBI 

Figure 6. Flow Diagram of Least-Squares Modeling Scheme 
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the summation terms for the linear regression be a minimum. 

Reduction of Computations 

The linear regression equations (7) show that 29 

summation terms must be evaluated for each iteration of dead 

time. The computation time required to form these summa

tions can be considerably reduced by noting several relation

ships among the terms. 

The first obvious simplification results from noting 

that 10 of the summation terms appear twice in the equations. 

Therefore, only the evaluation of 19 summations is actually 

necessary. There also exist the following relations among 

these 19 terms. 

M 
L X. l 

i=N+3 l-

M 
L X. 2 i=N+3 l-

M 
r x? 

i=N+3 1 - 2 

M 

M 

= XN+2-xM+ i =~+/i 

M 

= XN+l-xM-1+ i=~+/i-1 

M 
}: X. x. l 

i=N+3 1 l- = XMXM_,-xN+2XN+l+ i=~+fi-lxi-2 



M M 

i=~+/i-N-2 = u l - u M - ~• - l + " u . N l 
It i = N + 3 1 - -

M 
I: u~ 

i=N+3 1-N-2 

M M 
I: x.u. N l 

i=N+3 1 l- -
= x Mu M- N - l - u l x N + 2 + I: u . ~, 2 x . l i=N+3 l-1t- ,-

M 
I: u. N 2X· 2 i=N+3 l- - ,-

M 
= ulxN+l-uM-N-lxM_l+ I: u. N lx. l i=N+3 l- - ,-
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These relationships show that 8 of the 19 summation terms nec

essary for the linear regression may be found by simple addi

tions to other terms. 

The computation time necessary to set up the regression 

equations can be further reduced since for two values of N, 
N1 and N2 • such that N2 = N1+1. the following relations are 
val id. 

M 
I: x~ 

i=N +3 l-l 
2 

M 

= 
M 2 
I: X. l 

i=H +3 ,-
1 

M 
I: X. 2X. l = 

i=N +3 l- l-
I: X. 2x. l 

i=N +3 ,- l-
1 2 



M 
L U • X = 

·-N 3 1-N 2-l i-1 ,- 2+ 

M 
;:; u. N 1x = 

i=N +3 ,- 2- i- 2 
2 

M 
L U. f·' X = 

i=N +3 l-~2- 2 i-l 
2 

M 
;:; u. N l = 

i=N +3 l- 2-
2 

M 

M 

i=~ 1+/i-N 1-2xi-2-ulxN 1+1 

M 
L u. N x.-u X 

i=N,+3 1- ,-2 1 M-N,-2 M 

M 
I: u. N 2u. 

i=N,+3 1- ,- 1-N 1-l 

E x.x. -X X 
i=N,+31 1-2 N1+3 N1+1 

34 
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M M 
L X. = 

i=H +3 1 
2 

I: X--XN 3 
i=N +3 1 l+ 

l 

Thus, for two successive iterations of dead time, 10 of the 

11 summations required for the second iteration can be effi

ciently calculated from those required for the preceeding 

iteration. This leaves only one summation term to be com

pletely evaluated, once the dead time search is initiated. 

A reduction in the time required to evaluate the fit 

error may also be realized. Recall the fit criterion of 

equation (6): 

E = 
M 

2 
E ( x . + a 1 x . 1 + a 2 x . 2 - b 1 u . f'' 1 - b 2 u . N 2 - D ) 

i=N+3 1 l- l- l-,- l- -

Expansion of the summation argument gives 

E = SXX-2SXU-2SD+SUU ( l 2) 

where 

2 2 2 SXX = I: x.+2a 1 i::x.x. 1+2a 2 z; x.x. 2+a 1 I: x. 1 i=N+3 1 , ,- , ,- ,-

M 
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sn - D r x i + a l D E x i _ l ·ta 2 D L x i _ 2 - b l D }'. u i _ N .. l - b 2 D 1~ u ; _ N _ 2 - mi 2 

suu 

Since equation (12) involves only terms which would be 

available from the linear regression calculations, it offers 

a savings in computations when compared with the individual 

residual evaluations of equation (6). 

The least-squares modeling scheme diagrammed in 

Figure 6 was programmed in Fortran IV for execution on the 

IBM 360 computer. Because standard precision computations 

were found to be inadequate in solving the normal equations 

for the simulated response data, the program was written in 

double precision. The relationships permitting the simpli

fied calculation of the normal equation summation terms and 

the fit criterion were, of course, incorporated in the linear 

regression subroutine. The numerical method chosen for 

solution of the normal equations was pivotal condensation 

(13), which is the standard Gaussian elimination method with 

partial pivoting. When an estimate of the process offset is 

available and has been subtracted from the process output 

data, a linear regression estimate of Dis not necessary, 

although the normal equations still apply with all terms in

volving D equal to zero. This option was included in the 

program. 
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Effects of Measurement Noise 

Consider the important case diagrammed below in which 

the actual process output is contaminated with noise. The 

measured process output can be visualized as the sum of the 

actual output and a random signal. In this situation, 

Process 
input, 

u . 
l 

PROCESS 

HG(z) 

Measurement Noise, 
z . 

l 

Actual 
process 
output, 

y i + + 
Observed 

process 
1-----~i-----➔ output, 

Xi 

the independent variables, xi-l and xi_ 2 , of the 

discrete-time model contain measurement errors, and the 

basic least-squares assumption of measurement errors only in 

the dependent variable is violated. Therefore, a least

squares modeling of the process using the observed process 

response data does not assure unbiased estimates of the pro

cess parameters (14). In view of this, a brief evaluation 

of the noise sensitivity of the least-squares modeling scheme 

was undertaken. 

The IBM subroutine RANDU (15) was used to generate 

random numbers which were added to the output data of the 

simulated step response (see equation (11) and Figure 2). 

The random numbers were uniformly distributed between +6 and 
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- 6. For values of 6 up to O.OS, the noisy response data 

were modeled with the least-squares modeling program to de

termine the effect of increasing noise levels on the process 

parameter estimates. Figures 7 and 8 graphically summarize 

the results obtained. A horizontal line across each graph 

indicates the actual value of the particular process param

eter. 

Even for the extremely low noise levels of this study, 

it is evident the least-squares modeling performed poorly. 

Dead time estimates behaved erratically, deviating signifi

cantly from the actual process dead time. Least-squares 

estimates of a 1 and a2 differed considerably from the process 

values with the deviation increasing with increasing noise 

levels. Although the definition of a2 for a second-order lag 

process is the positive product of two exponentials, negative 

estimates of a 2 were obtained. Estimates of the process gain 

were consistently high with a maximum deviation from the 

process value of about 35%, while the values obtained for 

offset were generally better with a maximum deviation near 

l 0%. 

Statistically, the poor performance of the least

squares fit of noisy data is attributable to measurement 

errors in the independent variables of the dynamic model. 

Numerically, the biased parameter estimates are due to the 

ill-conditioned nature of the linear regression normal equa

tions. Although measurement noise introduces small changes 
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in the summation terms of the normal equations, large 

changes in the least-squares coefficients result because the 

equations are ill-conditioned. 

Another form of the second-order model which is not 

so sensitive to measurement noise is the so-called 11 free

running11 model (4): 

"' "' "' 
xi = -alxi_l-a2xi-2+blui-N-l+b2ui-N-2+D ( l 5) 

In this equation, the model output is not a function of the 

observed process output but of past model estimates of the 

process output. Thus, measurement noise is not involved in 

the calculatio~ of the model output. Figure 9 shows block 

diagram representations of the model errors associated with 

the least-squares and free-running models. N(z) and D(z) 

are the numerator and denominator, respectively, of the 

model pulse transfer function. For the second-order model, 

and 

The modeling of process data using equation (15) is a 

non-linear regression problem. However, Steiglitz and 

McBride (16) have shown that the minimization of the free

running model error may be accomplished by iteratively mini

mizing the least-squares model error. A diagram of their 

iterative scheme is presented in Figure 10. 
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Figure 9. Model Error for Least-Squares and Free-Running 
Models 
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Each iteration consists simply of filtering the 

original process input/output data and performing a least

squares fit of this filtered data. The digital filter used 

to produce the filtered data, u and x, is the inverse of the 

least-squares estimate of D(z) obtained in the preceeding 

iteration. For a normalized filter (unity gain), 

and 

iitl = 
X(z) 

-where Kf = l+a 1+a 2 , With an analogous expression for u1. If 

the minimization of the least-squares model error is obtained 

at each iteration and the coefficients of D(z) converge, that 

is, o1(z) = Di-l (z) after a number of iterations, then the 

block diagram of Figure 10 becomes that of Figure 9(b) and 

the free-running model error is minimized. Although no proof 

of convergence was offered, Steiglitz and McBride reported 

convergence within 10-20 iterations in simulations of more 

than 50 different systems with signal-to-noise ratios as low 

as 0.6. In every case, there was significant improvement 

over the least-squares parameter estimates. 

In Figure 11 is presented a flow diagram of the itera

tive modeling technique. A computer program was written to 

implement this scheme using the least-squares program de

veloped earlier to perform the least-squares regression on 
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the filtered data. The convergence criterion chosen was no 

difference in the sixth significant figure between successive 

estimates of a 1 and a2 , and the maximum number of iterations 

was fixed at 25. This modeling program was used to model the 

same noisy step response data used in studying the noise 

sensitivity of the least-squares modeling scheme. The results 

are presented in Figures 12 and 13. 

These results show that the iterative modeling program 

is effective in improving the least-squares parameter esti

mates. Although the model dead time varied with the noise 

level, the estimates were considerably better than those 

obtained from the least-squares regression alone. Model 

estimates of a1 , a2 , gain, and offset were greatly improved 

with no significant deviations from the process values. 

Discrete-Time Modeling Program 

The iterative modeling program was modified slightly 

for use as a discrete-time modeling package to fit process 

input/output data with the model of equation (15). To pro

vide a general data input feature, provisions were made for 

a user-supplied subroutine INPUT which reads in the process 

data to be modeled. Noise tests of the modeling scheme 

showed that the model dead time was constant after three or 

four iterations. Therefore, the program was modified to hold 

the dead time estimate constant after five iterations, elimi

nating the dead time search at that point. Except for these 

minor revisions, the program flow chart is the same as that 
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shown in Figure 11. 

The program output consists of the number of itera

rations required for convergence, the values of the model 

parameters and the sum of the squared errors. Also, a print

out of the original process data is given together with the 

output predicted by the model and the corresponding model 

error. 

Appendix A contains a complete listing of the main 

program MODEL, subroutine ASUBI, and an example of the user

supplied subprogram INPUT. Definitions of key program 

variables, descriptions of the program flow, and instructions 

for program use are documented within the program by comment 

statements. 



CHAPTER II I 

CONTROLLER DEVELOPMENT AND SIMULATION RESULTS 

Because of the widespread use of the analog control 

modes in continuous control' of chemical processes, it was 

natural that the fir$t control algorithms developed for 

direct digital control were extensions of these modes. This 

approach to controller specification still prevails in the 

majority of DDC applications, with the most common controller 

algorithms being the discrete PI and PIO algorithms obtained 

by representing the integral and derivative modes by a 

summation and a finite difference, respectively. However, 

the performance of these algorithms is limited to that 

attainable with their continuous counterparts (17), and the 

real promise and economic justification of direct digital 

control lies in the development of improved control strate

gies which are either impossible or too expensive to imple

ment using conventional analog equipment. The mathematics 

of z-transforms is a potentially valuable tool for use in 

this development. 

Z-Transform Controller Design 

The z-transform design of digital controllers is a 

commonly included topic in texts dealing with sampled-data 

control theory (4,5). The basis of the technique may be 

developed by a simple analysis of the sampled-data control 

50 
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loop below. As shown in Table JI, there are eight variables 

R(z) ~-E(z) ... , ,,,, 
- J ~ 

DIGITAL 
CONTROLLER 

D(z) 

X(z) 

M(z) 

N(z) 

+ 
+~ U(z) .... , 

SAMPLED-DATA 
PROCESS 

HG(z) 
X(z) .... , 

involved, and block diagram algebra gives four independent 

relations among these variables. This results in four de

grees of freedom for the system, which means that once any 

four of the control loop variables are specified, the remain

ing four variables are automatically fixed. Therefore, 

desired control loop characteristics may be used to define 

four of the system variables, and the controller transfer 

function required to produce these operating characteristics 

can be determined. 

As an example of this ap~roach to controller design, 

consider the following. Suppose there is a controller, 

D0 (z), which gives an acceptable set point change response 

when controlling a process, HG 0 (z), containing no dead time. 

If applied to the same process with dead time added, the 

controller may not produce an acceptable set point change 

response, because the control action, M(z), calculated for 



TABLE II 

SAMPLED-DATA CONTROL LOOP VARIABLES 

Variables 

R(z), set point 

E ( z) , error 

D(z), controller 

M(z), controller output 

H(z), disturbance 

U(z), process input 

HG(z), process pulse 

transfer function 

X(z), process output 

Total = 8 

Degrees of freedom= 4 

Independent Relationships 

E(z) = R(z) - X(z) 

M(z) = D(z)E(z) 

U(z) = M(z) + N(z) 

X(z) = HG(z)U(z) 

Total = 4 

52 
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the dead time process will, most likely, differ from the 

control action, M0 (z), for the case of no dead time. This 

is, of course, the situation encountered with discrete 

versions of the three-mode analog controllers. What is need

ed for acceptable control of the dead time process is a 

controller D(z) which, for a set point change, outputs the 

control action M0 (z). The process response is then the re

sponse for the no-dead-time case delayed one dead time. 

For the case of no dead time, four of the control 

loop variables must be specified before M0 (z) can be found. 

D0 (z) and the process transfer function, HG 0 (z), are fixed 

and for set point design, R(z) is specified with N(z)=O. 

This gives the control action as 

For the same system with dead time, R(z) and N(z) remain un

changed, the process pulse transfer function is given as 

and 

The controller is then 

M,.,., M0 (z) 
D(z) ~ ~ = 

E(z) R(z)-HG(z)M 0 (z) 

and substitution of the expressions for HG(z) and M0 (z) 



54 

yields 

D ( z) = ( l 6) 

With this as the controller for the dead time process, the 

control loop transfer function is 

tiu = D0 (z)HG 0 (z)z-N 

R(z) l+D0 (z)HG 0 (z) 

which indicates that if the process is known exactly, the 

dead time is effectively removed from the feedback loop. 

The controller of equation (16) gives the discrete 

equivalent of a control strategy proposed by Smith (18) for 

dead time compensation. Originally developed for continuous 

control, the Smith predictor uses a simulation of the dead 

time process to cancel the actual process output, and for 

perfect modeling the control action is based on the output 

of a minimum-phase (no dead time) process model. Direct 

digital control versions of Smith's scheme have been studied 

(19,20,21) with significant improvement over conventional 

algorithms. Equation (16) gives the predictor in a single, 

closed-form expression, eliminating the need for explicit 

simulations of the process. 

The digital controller generally presented in discus

sions of z-transform controller design is the deadbeat 

controller. The deadbeat design procedure is to specify 

that the set point change response reach the new set point 
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in a minimum number of sample times and remain at the set 

point for all subsequent samples. The controller transfer 

function giving this·performance can be determined after 

fixing the type of set point change (step,ramp,etc.) and the 

process pulse transfer function. The disturbance is, of 

course, zero, Kuo (4) points out that deadbeat response de

sign has several disadvantages. First, while the design 

assures minimum-time response at the sampling instants, there 

is no assurance that the process output is constant between 

samples. Application of the deadbeat controller could con

ceivably produce an unstable set point change response that 

satisfied the design criteria simply by coinciding with the 

set point at each sample. Second, although the deadbeat 

control system is optimal for the specific input used for 

design, unsatisfactory performance may be obtained for other 

inputs. This difficulty is of no major consequence for set 

point change design in the process industries, since the set 

point change is consistently a step input. However, the 

response of systems designed for a step in disturbance might 

suffer because of this point. Finally, deadbeat design is 

basically a pole-zero cancellation, and Kuo indicates the 

results are highly sensitive to modeling errors. This dis

advantage certainly affects the applicability of the method 

to digital control of chemical processes, the dynamics of 

which are seldom known precisely, 

Mosler (22) reported the des1gn of deadbeat controllers 

based on a first-order lag model for both set point and load 
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compensation, and applied the algorithms to digital control 

of a laboratory~scale temperature control system. Perform

ance comparable to that of continuous PIO control was ob

tained by adding a P-D transmitter to cancel one of the poles 

of the second-order process. Lane (23) also designed a 

first-order deadbeat controller for set point changes and 

presented a method for on-line tuning of the algorithm. 

Simulations using a first-order lag plus dead time process 

with an analog dead time approximation gave responses which 

were close to the ideal deadbeat response. However, the 

algorithm produced an excessively oscillating control action, 

a phenomenon known as controller ringing. 

In another case, Dahlin (24) designed digital con

trollers based on a first-order lag plus dead time closed

loop response for a set point change. The response dead time 

was that of the process, and the lag time constant was used 

as a tuning parameter. Controller ringing was exhibited in 

simulations of the controller, but Dahlin showed that the 

useful portion of the control action could be retained by 

simply eliminating the controller poles causing ringing with 

appropriate gain adjustment to preserve the original con

troller steady-state gain. Chiu (25) applied the Dahlin de

sign method in the simulated DOC of a jacketed backmix 

reactor using both first- and second-order process models. 

Eliminating the ringing poles of the controllers obtained 

gave a discrete Pl controller for the first-order model and 
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a discrete PIO controller for the second-order design. 

The Kalman Controller 

Like the deadbeat controller design, the z-transform 

controller design presented by Kalman (26) is based upon a 

minimum-time set point change response. Using a second-order 

pulse transfer function for the process, the design differs 

in that the form of the controller output is also fixed. 

Although Kalman neglected process dead time, it is a simple 

matter to include this important variable in the design. As 

shown in Figure 14(a), the second-order process output is to 

reach the set point in N+2 sample times. This gives 

X(z) = -N-1 -N-2 -N-3 x1z · +z +z + ... 

In forcing the process to the new set point, the controller 

operates in bang-bang fashion as in Figure 14(b). Thus, 

Note that for perfect modeling of the process, controller 

ringing is eliminated since the control action is limited to 

three switches. For a unit step change in set point, 

R(z) = 1 
1-z-l 

( 1 7) 
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and 

( l 8) 

From the definition of the process pulse transfer function 

and equations (17) and (18), it follows that 

HG(z) = X(~_) = P(z) 
~ QTzT 

and the second-order pulse transfer function gives 

z-N[. b z- 1+b z- 2] 
E_ltl _ l 2 
Q(z) - -1 -2 l+a 1z +a 2z 

bl b -N-2 -N-1 2 
bl+b2 

z + z 
bl+b2 

= 
1 a a2 -2 + 1 2 -l+ 

b1+b2 bl+b2 bl+b2 z 

Division of the numerator and denominator of HG(z) by b1+b 2 

is necessary to ensure that p1+p 2=1 as required by equation 

( l 7) . 

The controller transfer function is given as 

D(z) = X(z)/R(z) 
HG(z)[l-X(z)/R(z)J 
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and substitution of the above results yields 

Inverting this expression gives the digital control algorithm 

m1. -- K [e.+a 1e. 1+a 2e. 2+b 1m. N 1+b 2m. N 2 ] 
C 1 1- 1- 1- - 1- -

where 

Inspection of this control algorithm shows that the 

Kalman controller output can be viewed as the sum of two 

control actions. If the error terms are expanded, the 

algorithm can be written as 

m. = K [r.+a 1r. 1+a 2r. 2-x.-a 1x. 1-a 2x. 2 1 C 1 1- 1- 1 1- 1-

From the least-squares model equation, 

A 

x. =-a 1x. 1-a 2x. 2+b 1m. N 1+b 2m. N 2 1 1- 1- 1- - 1- -
( l 9) 

and 

Therefore, the Kalman control action is the sum of the output 
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from an optimal open-loop controller, Mr(z), and the output 

of a model-error controller, Mm(z): 

M(z) = Mr(z) + Mm(z) 

where Mr(z) = Kc[l+a 1z- 1+a 2z- 2]R(z) 

A 

Em(z) = X(z) - X(z) 

A schematic representation of this expansion of the Kalman 

controller is shown in Figure 15. 

The open-loop controller responds only to set point 

changes and supplies the same control action regardless of 

the process dead time, a required property for a good dead 

time compensator. The model-error controller is essentially 

a load estimator which attributes any difference between the 

actual and predicted process outputs to the presence of a 

disturbance acting on the process and subtracts an estimate 

of the load from the open-loop controller output in an at

tempt to cancel the disturbance. Thus, Mm(z) provides comp

ensation for load changes and supplements the open-loop 

control action for set point changes when model errors exist. 

For perfect·mode]ing, the open-loop controller may not 

be optimal for set point changes if the control action is 

constrained. figure 16 illustrates the effects of controller 

constraints upon the process response. The process in the 

unit step set point change simulation was the second-order 
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lag plus dead time process of equation (ll) in Chapter II. 

Since the process w~s a true second-order process, there was 

no modeling error involved giving a model-error control 

action of zero, The bang-bang control actions dictated by 

the open-loop controller were greater than the controller 

constraints of+ 5. Since the open-loop controller receives 

no information concerning the process output, the control 

action remains at its final value after two sample times 

regardless of the process response. The result is a very 

sluggish response, 

Modification of the Kalman Controller 

The basic structure of the Kalman controller is a 

sound one. An open-loop controller is used to give a mini

mum-time set point change response for the ideal case of 

perfect modeling and unlimited control action. This open

loop control action is supplemented by a second control action, 

based on model error, which serves to eliminate any offset 

due to imperfect modeling and provides load compensation when 

disturbances are present. However, for the case of controller 

constraints, the open-loop controller may give an unacceptable 

response, and modification of it is necessary. 

A constraint-aware controller which preserves the 

optimal nature of the Kalman controller may be derived as 

follows, At sample i, suppose we calculate the control 

action mi which is necessary to bring the process output to 

the set point, ri' in two sample times. For no dead time and 
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perfect modeling, there are three equations which describe 

the process output at the next three samples: 

At sample i, xi, xi-l, and mi-l are known, and if the process 

reaches the set point in two sample times, we must have 

= r. 
l 

The three equations can then be solved for xi+l, mi, and 

mi+l' Using two equations to eliminate xi+l and mi+l and 

solving for mi gives 

mi = c1ri+C 2xi+C3xi_ 1+c 4mi-l (20) 

where Cl = 1 
bl+b2 

2 

c2 
a2b2+ala2bl-alb2 

= 
co 

2 
ala2b2 a2bl -

C3 = 
co 

alb2 - a2blb2 
C4 = 

co 
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Evaluating this control algorithm for a step change in set 

point shows that for no controller constraints, the algorithm 

is equivalent to the Kalman controller, This fact can be 

used to obtain simpler expressions for c3 and c4 : 

However, unlike the Kalman controller, if the control action 

calculated by the algorithm has not been input to the process 

due to controller constraints, this is reflected in the feed

back of the process output, and the controller continues in 

its attempt to force the process to the set point. 

To use the algorithm of equation (20) as the open-loop 

controller in the Kalman scheme, the process output can be 

replaced by a minimum-phase process model output, x0 , to 

yield 

where 

x~ = 
1 

(21) 

0 0 -a 1x. 1-a 2x. 2+b 1m +b 2m 
1 - ,- ri-1 ri-2 

This gives an open-loop control action which is independent 

of the process dead time. Of course, the constrained values 

of the controller output are used in these equations rather 
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than the calculated yalues, Below is a z-transform block 

diagram of the controller, This controller was used as the 

R(z) .... + 1 Mr(z) 
Cl -...- ..... ..... ,,.. r , , 

1-C z-l r 
I\ 

+ 4 

-1 -2 
-1 .... x0 (z) b1z +b 2z 

~ - C2+C3Z 
' - 1 -2 ' l+a 1z +a 2z 

open-loop controller in the Kalman scheme of Figure 15, and 

a simulated set point change for the second-order process 

cited earlier was carried out. Figure 17 gives the results 

of the simulation and illustrates the improvement over the 

original Kalman controller for the case of controller con

straints. 

To investigate the use of the modified Kalman con

troller for control of higher-order processes, the process 

below was simulated using the IBM Continuous System Modeling 

e .. , , Os 

G(s) ~ (s+l)5 (22) 

Program (27) to obtain step response data for sample times 

of 0.1 and 1.0. The simulated response data was then 
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modeled using the discrete-time modeling package in Appendix 

A to give the second-order mode) parameters shown in Table 

III. A CSMP program was also written to simulate direct 

digital control of the fifth-order process, and set point 

change and load change responses were obtained. Controller 

constraints of~ 5 were used. 

-Figure 18 shows the performance of the modified Kal

man controller for a unit step set point change and l .o 

sample time. While the process output reaches its final 

value in about 12 samples, the control action does not settle 

until after another ten samples. For a sample time of 0. 10, 

the response was nearly the same, but the excessive control 

action was more pronounced. After the process had settled at 

the set point, the controller output oscillated between 5 and 

-3 with a period of about 25 samples. 

A unit step load change with a sample time of l .0 gave 

the response shown in Figure 19. In this case, the model

error controller responds to slowly cancel the disturbance 

entering the process. 

In an attempt to eliminate the excessive control 

action obtained for set point changes, the model error was 

filtered using the digital filter 

where 
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The model-error control action was then based on the filtered 
-

model error, E (z}:· 
Ill 

-
Mm(z) = KcEm(z) 

This approach gave the set point change and load change re

sponsesof Figures 20 and 21. A sample time of 1.0 was used. 

While the process output for the set point change is 

essentially the same as that in Figure 18, the control action 

reflects a substantial improvement over that for the unfil

tered case. For a sample time of 0. 10, a more drastic im

provement was observed with the controller oscillations 

completely eliminated by filtering the model error. However, 

Figure 21 shows that the improved control action for set 

point changes is obtained at the expense of a slower load 

change response. The second-order filter introduces a lag in 

the model-error controller response, resulting in a 

slower return to the set point than for the unfiltered case. 

Since the model-error controller is essentially a load 

estimator, an alternative approach to the estimation of the 

disturbance was developed. Assuming that any difference be

tween the predicted process output and the actual process 

output at sample i is due to a step disturbance which enter

ed at sample i-N-2 will allow estimation of that step and, 

therefore, of the present load, For perfect modeling, the 

process output at sample i is 
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which, due to the step load assumption, simplifies to 

The predicted output is 
~ ~ 

xi = -a1x1_,-a2x1-2+blmi-N-l+b2mi-N-2+[b1+b2Jni-l ( 24 ) 

~ 

where n. 1 is the load estimate for the preceeding sample, 
l -

and subtracting equation (23) from this equation gives 

~ ~ 

x.-x. = [b 1+b 2J[n. 1-n.J 
l l l - l 

Rearrangement yields a recursive relation for updating the 

load estimate: 
A A A 

n. = n. 1 - KI[x.-x.J 
l l - l l 

(25) 

While the analytical relation for KI is 

K = K = l 
I c b1+b 2 

the use of KI as a tuning parameter gives an integral-mode 

estimation of the load. Moore (17) used this method of dis

turbance estimation in the development of his first-order 

analytical predictor for dead time compensation. For the 

modified Kalman controller, this approach is attractive in 

that ·KI can be tuned such that the undesirable effects of the 

load estimator upon controller output are lessened for set 

point changes without sacrificing good disturbance regulation. 

This load estimation method was used as the model

error contro11er in the Kalman control1er scheme, and CSMP 
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simulations for various values of K1 were obtained, The load 

esti1nate given by equation (25) was subtracted from the open

loop control action calculated by equation (21). Note that 

for this approach, the predicted process output is obtained 

from equation (24) rather than from the disturbance-free 

model of equation (19). The process was the fifth-order 

process in equation (22), the sample time was l .0, and con

troller constraints were again set at+ 5. To illustrate 

programming of the algorithm, a listing of the CSMP program 

used for set point change· simulations is given in Appendix B. 

Simulation results are presented in Figures 22-25. 

Figures 22, 23, and 24 show that for a unit step set 

point change, the process output is relatively insensitive 

to changes in KI. Although calculated values for the in

tegral absolute error {IAE) show slightly better performance 

for a K1 value equal to 0.5 Kc, the real difference is in the 

control action. A more desirable controller output is ob

tained for values of KI less than the analytical value, with 

K1 = 0.1 Kc giving the smoothest control action of the three 

cases studied. 

As would be expected, lower values for KI gave slower 

load change responses. Figure 25 shows that lowering K1 

reduces the rate at which the controller output reaches the 

value required to Cqncel the disturbance. The best perfor

~ance is, of co4rse, obtained with K1 = Kc' However, the 

response for K1 ~ 0,5 Kc is certainly acceptable, and in 
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view of the correspondiny set point change control action, 

this y,.\lue ga,ve the- best overall results, 

For comparison, simulated set point and load change 

responses were obtained using the discrete proportional

integral (PI) controller shown below. 

i 
m1. = K [e. + T E e. J 

p l TI j=l J 

This is perhaps the most common algorithm in DOC applications 

today. The PI algorithm was tuned by simulating the _digital 

control loop using the second-order discrete-time model of 

the fifth-order process. A Pattern search (1) was used to 

find those values of KP and TI which minimized the IAE in

tegral criterion for unit step changes in set point and load. 

Figure 26 shows the set point change response for the 

fifth-order process under discrete PI control. The process 

output exhibits a largerrise time and requires longer to 

settle out than that for the modified Kalman controller in 

Figure 23. In terms of the integral performance criterion, 

the modified Kalman controller with K1 = 0.5 Kc gave a 40% 

improvement over the PI controller. 

Similarly, the load change response for PI control in 

Figure 27 was much slower than the response obtained with the 

modified Kalman controller, Comparison with the process 

response in figure 25 for K1 ~ 0,5 Kc shows that while the 

Kalman controller returns the process to the set point with 
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negligible overshoot, the proce~s output for PI control is 

more oscillatory with an IAE about 1.5 times that for the 

Kalman controller. 

A final attempt to further speed up the load response 

for the modified Kalman controller consisted of the approach 

diagrammed below: 

r; r~ mr. 
+ .... 1 .... Open-loop 1 .... 

, ~ , 
cont ro 11 er 

r 
J\ -

A 

bl+b2 n. 
~ 

1 

l+a 1+a 2 ' 

To take advantage of the open-loop controller's quick 

response to a set point change, the load estimate of equation 

{25) was used to reset the set point of the controller. The 

load estimate was not subtracted from the open-loop control 

action as before, and the only control action sent to the 

process was Mr(z). Simulations of this load estimate feed~ 

back scheme showed that because of the high sensitivity of 

the open-loop controller, a K1 value of 0. 1 Kc was needed to 

maintain stability for both set point and load changes, The 

load change response corresponding to th1s value of K1 was no 

better than that for PI control, 



CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

Conclusions 

The general conclusion resulting from this work is 

that a discrete-time approach to direct digital control 

offers definite advantages over the simple adaptation of 

continuous control techniques. This work has shown that a 

single discrete-time model is descriptive of ·many processes 

of interest in chemical process modeling. Also, the modifi

cation of a controller designed by z-transforms gave an 

algorithm w~ich promises improved process control. Other 

conclusions are briefly summarized in the following para

graphs. 

A least-squares fit of noise-contaminated process 

data appears to be inadequate even for extremely low noise 

levels. The measurement error introduced in independent 

variables of the model causes b~ased estimates of the pro

cess parameters. The iterative least-squares modeling scheme 

of Steiglitz and McBride (16) is effective in improving the 

process parameter estimates resulting from a single least

squares fit of process data and is easily incorporated in a 

computer program for off-line modeling. 

The mociified Kalman controller obtained by including 

controller constraints and revising the 1oad estimation 

method of Kalman~s z-transform contro11er (26) is a 

86 
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potentially useful algorithm for direct digital control. 

Simulation results show that the modified Kalman controller 

gives significantly improved performance over the popular 

discrete PI algorithm, 

Recommendations 

In the modeling of simulated step response data, the 

process dead time was the least accurate of the parameter 

estimates. The use of more substantial test inputs might 

improve the dead time estimate, and the effect of alternative 

process inputs for open-loop testing (pulse,ramp,etc.) on the 

resulting model parameters is one area for future study. 

Because the discrete-time model is applicable to 

operating data as well as open-loop response data, the de

velopment of an on-line modeling scheme for following changes 

in process parameters would be a logical extension of this 

work. The determinant or, more appropriately, the norm of 

the matrix formed by the linear regression summation terms 

could be used to judge when significant changes in the pro

cess input and output had occurred, and, consequently, if the 

normal equations were sufficiently independent to allow mod

eling of the collected data. 

An investigation of the effects of modeling errors on 

the performance of the modified Kalman controller should be 

carried out. The sensitivity of the algorithm to imperfect 

knowledge of process parameters wou1d pe an important con

sider~tion in its app1ication to control of an actual process, 
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Also, some consideration should ~e. given to tuning the in

tegral mode in the load estimation portion of the algorithm, 

One possible tuning criterion wou1d be the integral of some 

function of the set point change controller output and the 

load change response. 
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APPENDIX A 

DISCRETE-TIME MODELING PROGRAM 

C 
C MODEL -- THIS IS THE MAIN PROGRAM OF A MODELING PACKAGE WHICH PERFORMS 
C A LEAST-~QUAPfS FIT OF PQOCESS DATA USING THE DISCRETE-TIME MODEL 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

XIII = -Al•XII-ll-A2•XII-21+Bl*UIT-N-ll+B2°U!I-N-21+D. 
THE METHOD USEO IS THE ITERATIVE FILTEAING SCHEME PRESENTED RY STEIGLJTZ 
ANO MCARTDf. !IEEE TRANS. ON AUTO. CONTROL, OCT. 1965, PP. 461-4641 WITH 
A ONE-DJMENStONAL SEARCH FOR DEAD TIME. THE USEQ MUST SUPPLY A DOUBLE 
PRECISION SUAPROGRAM JNPIJT OF l"HE FORM 

SU8ROUTINE JNPUTIUN,XN,NPTSI 
WHICH READS IN THF PROCE~S INPUT (UN> AND PROCESS OUTPUT (XNI DATA TO 
RE MODELED. NPTS lS THE NUMBEP OF DATA POINTS. 
THE FIRST DATA CARD SHOUtD CONTAIN VALUES FOR THE VARIABLES NPTS 1<500) 
ANO NP JN A (I3,J21 FORMAT. NP EQUALS O IF NO ESTIMATF OF THE PROCESS 
OFFSET IS DESIRED A~O 1 TF THE OFFSET TEAM DIS TO BE INCLUDED. FOLLOWING 
THIS CARO SHOULD BE THE PROCESS RESPONSE DATA IN THE FORMAT USED IN 
SU8ROUTJNE INPUT. NO OT~ER DATA CARDS ARE NECESSARY. 
THE PROGRAM OUTPUT CONSJ~TS OF THE NUMBER OF ITERATIONS REQUIRED IITERI, 
VALUES OF THE MODEL PARAMETERS 1Alll,Al2), ••• ,Al5ll, THE SUM OF THE SQUARED 
ERRORS IESQRDl, AND A PRtNT-OUT OF THE PROCESS INPUT, PROCESS OUTPUT, 
MODEL OUTPUT, AND MODEL FRROR. 

c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
DOUBLE PRECISION UNISOnl,XNISOOl,UISOOl,X(SOOl,AISl,ERROR, 

l AlOLD,A20LO,ESQRO,ESQRD,GAINF,XMINl,XMIN2,XMOD,OFFSET 
COMMON UN,XN,U,X,NPTS 
IIN = c; 
IOUT:: 6 
READ IIIN,lOOll NPTS,NP 

C 
C READ IN PROCESS INPUT/OUTPUT DATA. 
C 

CALL INPUT(UN,XN,NPTSI 
00 5 I=ltNPTS 
U II l :: UN I I I 
XI I) :: XN I I) 

5 CONTINUE 
WRITF. IIOUT,1003) 
NP= NP+4 
AlOLD = 1.00+50 
A20LD = l.OD+SO 
DO 40 TTER=l,25 
IF IITER.GT.SI GO TO 25 

C 
C PERFORM A LEAST-SQUARES FIT OF THE FILTERED DATA. 
C 

CALL ASUBIIO,NP,l,AtESORO) 
IE:: NPTS-7 
DO 10 N=l,tE 
CALL ASURI<N,NP,2,A,ESnROl 
IF IESQRD.GT.ESORO) GO TO 20 
ESQRO = ESQRO 

10 CONTINUF 
20 N = N-1 
25 CALL ASURI!N,NP,1,A,ESoRDl 

C 
C TEST FOR CONVERGENCE OF Alli ANO Al21o 
C 
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IF IDAA5(A10LD-A(l)).LT.2.0D-05.ANO.DAAS(A20LO-A(2)).LT.2.oo-06) 
l GO TO r;o 

AFJLO = All) 
A20LD = Al2) 

C 
C FILTER THE ORIGINAL PROCFSS DATA ■ 

C 

C 

GAINF = l.n•Alll•Al2) 
Xlll = Al51/GAINF 
UC21 = GAINF~UN(21-All1°U(ll 
XC2) = GAINF 0 XNC21-(AIJ)+A(2))0X(ll 
DO 30 JJ=3,l~PTS 
U(JJ) = GAINF 0 UN(JJ)-A(l)OU(IJ-l)-A(2)0U(IJ-2) 
X(IJ) = GAINF 0XN(JJ)-A(l) 0X(IJ-ll-A(2)0X(IJ-2) 

30 CONTINUE 
40 CONTINUE 

WRITE IIOUT,1012) 
GO TO 60 

C PRINT RESULTS. 
C 

SO WRITE IIOUTtlOll l ITER 
60 WRITE IIOUT,10041 N 

WRITE (IOUT,1005) 
WRITE IIOUTtl006) (A(Ii tl=l,51 
WRITE (JOUT,10071 
J = N+2 
WPITE <IOUT,10081 CUN(Tl,XNIIl,I=l,Jl 
J = J+l 
ESQRD = 0,0 
OFFSET= A15l/Cl.O•A<l>•Al2ll 
XMINl = OFFSET 
XMIN2 = OFFSET 
DO 70 I=J,NPTS 
IN:: I-N 
XMOD:: -A(})OXMJN1-A(2J 0 XMIN2+AC3) 0 UNIIN-ll 

l +A14l 0 UN(IN-2l•Al5) 
ERROR= XNII>-XMOD 
ESQRD = ESQRO+ERROR 00 2 
WRITE CIOUT,10091 UN(I),XNCil,XMOD,ERROR 
XMJN2 = XMINl 
XMINl = XMOD 

70 CONTINUE 
WRITE IIOUT,10101 NPTS,ESQRD 

1001 FORMAT (13,121 
1003 FORµAT ClHll 
1004 FORMAT (1H0,3HN =,T31 
lOO"i FORMAT (lH0,6X,2HAl,l4X,2HA2,l4X,2HRltl4X,2HA2,l4X,lHD) 
1006 FORHAT llH ,013,6,4016.61 
1007 FORMAT llH0,?7X,7HPROCFSS,lOX,5HMODEL,/,lJX,SHJNPUT,10Xt6HOUTPUT, 

l llX,6HOUTPUT,loX,SHERROR,/,6X,4Cl6H ------------)) 
1008 FORMAT llH ,r;X,2016,61 
1009 FORMAT (lH ,SX,4016,6) 
1010 FORMAT (1H0,14HTOTAL POINTS =,I4,//,24H SUM OF SQUARED ERRORS=, 

l 013,61 
1011 FORMAT ClH ,12HITFPATIONS =,131 
1012 FORMAT llH ,l4HNO CONVFRGENCEl 

CALL EXIT 
END 
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SUBP.OUTJNE ASURJIN,NP,lCALL,A,ESORD) 
c•••••••••••aaaoaaaaaauoaaoaaaaaaaaaaaac,aoooaaaoaoooooooaoaaaoaao•ooooooooaooooo 

C 
C FOR A GJVfN VALUE OF nEAn T1Mf, N, THIS SUHPPOGRAM SOLVES THE LINEAR 
C REGRESSJnN NONMAL EOIIATJnNS FOR THE COEFFJCifNTS A(ll, ••• ,A(S) OF THE 
C ~OOEL SHOWN IN MAIN PROGRAM MOOEL. SOLUTION OF THE SET OF SIMULTANEOUS 
C fQUATJON~ JS RY PIVOTAL rONnENSATIOr1. ICALL IS A FLAG VAklAALE WHICH 
C JNDJCATES THF POSSIAILITY OF s,w~rrr;rn Cf,LCULATJON OF THE NORMAL FOUATION 
C FLEMENTS. IF ICALL=?, T~E DEAO Tl~E SEARCH HAS REEN INITIATED, ANO ALL 
C RUT ONE OF THE SUMMATION TEPMS MAY~[ CALCULATED FROM THOSE REQUIRED FOR 
C THE PRECEEDING DEAD TIME ITERATION. OTHERWISE, ICALL=l• 
C 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

DOU8LE PRECISION UN151JOI ,XtJl'iOOI ,ll(SOOI ,XISOOI ,AISI ,AM(S;61, 
l AUX(201,FNPPM,PJVOT,ASAVE,AMULT,XMOD,ESQRD,XMIN1,XMIN2 

DOU8LE PRECISION sxx,sxu.so,suu,OFFSET 
COMMON UN,XN,U,X,NPTS 
NPRH = NPTS-N-2 
FNPRM: FLOATINPRM) 
18 = N+3 

C 
C COMPUTE NORMAL EQUATION ELEMENTS. 
C 

GO TO <10,40,101,ICALL 
10 DO 20 t=l,20 

AUX(I) = 0 0 0 
20 CONTINUF. 

DO 30 I=IB,NPTS 
IN= I-N 
AUX(l) = AUX(ll +X(t-i>**2 
AUX(2) = AUX(2) +X(I-2>*X<I-ll 
AUX(41 = AUXl4) +U(lN-ll*X(I-1> 
AUXISI = AUX(S) +U(IN-ll*XII-2) 
AUX(6) = AUX(i<,) +U(lN-11002 
AUX(7) = AUXl7) +U(IN-2)*XII-l) 
AUXl91 = AUX(Q) +UIIN-2l*U(IN-l) 
AUX(l31 = AUXl13)+UIIN-ll 
AUX1171 = AUX(l7l+X(Il•X<I-21 
AUX1191 = AUX(l9l+X(IloU(IN-2) 
AUX(20) = AUX(20)+XIII 

30 CONTINUE 
GO TO 60 

40 IN= NPTS-N 
AUX(l) = AUX(]) -XIN+j°l••2 
AUX(2J = AUX(2l -X<Nl•X(N+l) 
AUX(41 = AUX(71 -U(ll•XIN+ll 
AUX(5) = AUXl81 -u11,~x1N) 
AUXl6) = AUX(I,) -ll(fl-J)OOj? 

AUXl7) = AUX(l91-U(JN-l)*X(NPTS) 
AUX19) = AUX(Q) -UIIN-l)*U(IN) 
AUX(lJI = AUX(l31-UIINI 
AUX1171 = AUXl171-X(N+2l*X(NI 
AUX(?O) = AUX(20)-X(N+?) 
AlJX(l91 = O.O 
DO 50 t= 1B, NPTS 
IN= I-N 
AUX(l91 = AUXl19l+X(ll•UIIN-2) 

50 CONTINUE 
60 IN= NPTS-N 

AUX(3) = AUXll) +XIN+1)**2-X(NPTS-1)**2 
AUX(81 = AUX(41 +U(l)oX(N+l)-UIIN-ll*X(NPTS-1) 
AUX(lO) = AUX(6) +ll(l)o 0 2-U(lN-ll**2 
AUX(ll) = AUX(20)+X(N+?>-X<NPTSI 
AUX(l21 = AUX(ll)+XIN+})-XINPTS-1) 
AUX(l4) = AUX(lJl•Ull)-U(IN-1) 



AUX ( 15 l = FNPRM 
AUX(lbl = AUX(2l +X(NPT5)-0X(NPTS-l)-X(N+2) 0 X(N+ll 
AUX<l8l = AUX(7) +X(NPTS) 0 UCJN-l)-U(l)oX(N+2) 
IF CNP.LT.5l GO TO 70 
GO TO 90 

70 00 BO J=l,5 
AUXCI+lOI = O.O 

80 CONTINUE 
AUXl?.Ol = O.O 
AC5l = O.O 

90 I= 1 
DO 100 IC=l,S 
AM(IC,61 = /UJX(JC+15)/FNPRM 
DO 100 IR=I,JC 
AM!IR,IC) = AUX(ll/FNPRM 
AM(lC,1R) = AMiiR,I~i 
I= I+l 

100 CONTINUE 
r. 
C SOLUTION OF THE NORMAL EQUATIONS••• 
C 

C 

IE= NP-1 
DO 150 IELIM=l,IE 
IR = IELIM+l 

C LOCATE THE LARGEST COLUMN MEMRER FOR USE AS THE 
C PIVOT ELEMENT FOR THIS ELIMINATION STEP. 
C 

PIVOT= AMIIELIM,IELIMl 
IROW = IELIM 
DO 110 IR=JB,NP 
IF (DAqS(PJVOT>.GT.DAB~CAMCJR,IELIM))) GO TO 110 
PIVOT= AMIIR,IELIM) 
IROW = IR 

110 CONTINUE 
C 
C INTERCHANGE ROWS, IF NEC~SSARY. 
C 

IF IIROW.EQ.JELIMI GO TO 130 
00 120 IC=IELIM,6 
ASAVE = AM(JELIM,IC) 
A~CIELTM,IC> = AM(JROW,ICI 
AM(lROWtIC) = ASAVE 

120 CONTINUE 
C 
C PfQFORH ELIMINATION. 
C 

C 

130 DO 140 IR=JB,NP 
AMULT = AM(JR,IELJMI/AM(IELIM,JELIM) 
DO 140 IC=JB,6 
AM(JR,JCI = AM(IR,JC)-AMULT 0 AMCJELJM,ICI 

140 CONTINUE 
1'50 CONTINUE 

C CALCULATE MODEL COEFFICIFNTS RY RACK SUBSTITUTION. 
C 

DO 160 IR=l,"IP 
A(IRI = AMCIR,6)/AMCIR,IR) 

160 CONTINUE 
IN= NP+l 
00 170 I=l,IE 
IR= NP-I 
DO 170 J=l,I 
IC= IN-J 
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C 

AIIR) = AITRl-AMIIR,ICilAM(IR,1Rl 0 AIICl 
170 CONTINUE 

All) = -ACJl 
A(r.l = -AC2) 

C COMPUTE THE 5UM OF THE SoUAREO ERRORS. 
r. 

SXX = AUX(ll+XINPTS)oo7-X(N+2Joo2+A!2loA(2lOAUXC3) 
1 +2.00A(2) 0 AUX(l7)+~(J)OA(lJOAUX(ll+(2.00A(lJOA(2)0AUXl2l 
2 +2.00A(l) 0AUX(l~JI 
sxu = (A(3J 0 AUX(lPJ+A1?1°A(4J 0 AUX(All+(A(4) 0 AUX(l91 

l +A(2) 0 A(11°AUX151l+(il)IDA(3) 0AUX(41•tl))OA(4)0AUX(7)l 
SO= A151°!AUX129)+A(2) 0AUX!l2)+A(l) 0 Al1Xllll+I-Al31oAUX(l31 

1 -A(4) 0 AUX(l4i-0,50A(~)OFNPRMI) 
SUU = A(31°A!3)vAlJXlhl+A141*Al4)0AUX(lOl•2.00A(3J 0 A(41°AUX(91 
ESORD = (SXX+SUU>-2.oocSXU+Sn> 
RETURN 
END 
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SUBROUTINE INPUT(UN,XN,NPTS) 
cooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo 

C 
C THIS IS AN EXAMPLE OF THF USER-SUPPLIED SUBPROGRAM FOR READING IN PROCESS 
C INPUT/OUTPUT DATA FOP THE DISCRETE-TIME MODELING PACKAGE. 
C 
coooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo~oooooooooo 

DOUALE PRECISION UNISOnl,XNISOOI 
IIN = 5 
no 10 T=l,NPTS 
READ IJTN,lOftll UN!IltXNIII 

10 CONTINUE 
1001 FORMAT (2Fl0.6! 

RETURN 
END 



APPENDIX B 

CSMP SIMULATION PROGRAM 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• THJS IS .A CSMP PROGRAM FOR SIMULATING OJRECT DIGITAL CONTROL OF A 
• FIFTH-ORDER PROCESS USING THE MOnIFJED KALMAN CONTROLLER • 
• 
• THF INITIAL SECTION tNITIALI7fS PAST VALUES OF CONTROL ACTION, MODEL 
• OUTPUTS, ANO THE LOAD ESTIMATE Tn ZERO. ALSO, MODEL PARAMETERS ARE 
• DEFINED AND CONTROLLfR CONSTANTS ARE CALCULATED • 
• 
0 THF. DYNAMIC SECTION CONTAINS THE CONTROL LOOP SIMULATION. IT CONSISTS 
• OF TWO PARTS: !l)THE DISCRETE-TIME CONTROLLER ANO (2>THE CONTINUOUS 
• PROCESS AND THE ZERO-ORDER HOLD ■ AT EACH SA~PLE TIME, THE MINIMUM-
• PHASE MODEL OUTPUT XZM IS £ALCULATED ANO USED IN THE C~LCULATION OF MR, 
• THE OPEN-LOOP CONTROL ACTION. THIS CONTROLLER OUTPUT IS THEN CONSTRAINED 
•TOAN ABSOLUTE VALUE OF S.O. NEXT, THE NON-MINIMUM PHASE MODEL OUTPUT 
• XMOD TS EVALUATED ANO USED WITH THE SAMPLED PROCESS OUTPUT XZ TO DETERMINE 
• THE LOAD ESTIMATE NEST• THIS LOAD ESTil~ATE IS SUBTRACTED FROM "4R 
• AND THE RESULT CONSTRAJNEO TO GIVE MZ!ll, THE MODIFIED KALMAN CONTROLLER 
0 OUTPUT. PAST CONTROL ACTIONS ARE MAINTAINED IN A RUNNING STORAGE TABLE 
• USING THE MZ VECTOR • 
• MZ(l) rs INPUT TO A ZOH TO YIELD THE CONTINUOUS CONTROL ACTION TO THE 
•PROCESS.XS IS THE CONTINUOUS PRnCESS OUTPUT.-
• 
··········································································~····· / D:~ENSION MZ(J~) 
FIXED ~M,IE,I,J 
INITIAL 
NOSORT 

NS= 0.0 
IAE = OoO 
MRl = 0o0 
MR2 = O.O 
XZ"4 = 0,0 
XZMl =. 0.0 
XZM2 = o.o 
xz = o.o 
XZl = o.o 
XZ2 = o.o 
RZ = 0o0 
SA"4PT = 1,00 
DLAYX = SAMPT•l ■ O 
NM: 2 
Al= -0.134467E+l 
A2 = 0.488763E+O 
EH = 0.380643E-l 
82 = O.l03l96E+O 
Cl = lo0/<rll+R2) 
C? = (A2°!R2+Al*Rll-Al 0 Al 0 B2)/(B2°(R2-Al•Bl)+A2°B1°B1) 
C4 = Al-C2°Rl 
C3 = Cl 0 <1.0-C4)•!Al•A2)-C2-r.l•C4 
KI= o.s•c1 
NF"STl = O.O 
If = N'-h3 
no 20 I=l,IE 
"4Z <I> = O. 0 

20 CONTINUE 
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DYNAMIC 
NOSORT 

Rs= srrri<o.o, 
T = JMPULS(O.OtSAMPT) 
JF <T.NE.l.Ol GO TO 10 
IF (KEfP.NE.11 GO TO 10 
R7 = RS 
XZ = XS 
JAE =·JAE•ARSIRZ-XZ) 0 SAMPT 
X7M = -Al 0 XZMJ-A? 0 XZM2+R) 0 MRJ+B2°M~2 
MP= C}042•C?OX74+f30XZMl+C4oMRl 
IF (MR.GT.s.01 HR=~.o 
IF (MR.LT.-5.01 HR=-5.0 
XMOO = -Al 0 XZl-A2°XZ2+BJOMZ(TE-ll+A20MZ(IE)+(Rl+R2) 0 NfST1 
NFST = NEST1-KI 0 (XMOD-XZ) 
EI = xr-100-xz 
M7 ( 11 = MR-NfST 
IF (MZ(l>.GE.S.01 r~Z<ll=SoO 
JF <Ml<l> ■ LE.-5.0I MZ(l>=-5 ■ 0 
DO 30 1=2,IE 
J = IE-1•2 
MZ (J) = MZ CJ-1) 

30 CONTINUE 
MP2 = MRI 
"4R l = MR 
XZ!-42 = XZMl 
XZMl = XZM 
XZ2 = XZl 
XZl = XZ 
NESTI =·NEST 

1 0 rNH rNU!: 
MS= ZHOLO(T,MZ(ll) 
INPUT= MS+NS 
OUT) = REALPL(O.o,1.o,1NPUT) 
OUT2 = REALPL(0.0,1.0,ouTll 
OUT3 = PEALPL(O.o,1.o,ouT2) 
OUT4 = RfALPL(0.0,1.0,ouTJ) 
XSl = REALPL(0.0,1.0,ouT•l 
XS= OELAY(lOO,OLAYX,XSll 

TERMINAL 
NOSORT 

WRITE (6, l 001) I AE 
1001 FORMAT (lH ,El3.S) 

TIMER FJNTIM=40.0,0UTOEL=O.l,DELT=o.lO 
METl-400 RKSFX 
END 
STOP 
ENOJOEl 
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