11 University of Tennessee, Knoxville
i LN IWERSITY of

TENNESSEE TRACE: Tennessee Research and Creative
FHOREE Exchange
Masters Theses Graduate School

3-1974

A discrete-time approach to process modeling and direct digital
control.

Dennis K. Jones
University of Tennessee

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation

Jones, Dennis K., "A discrete-time approach to process modeling and direct digital control.. " Master's
Thesis, University of Tennessee, 1974.

https://trace.tennessee.edu/utk_gradthes/5803

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.


https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F5803&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Dennis K. Jones entitled "A discrete-time approach
to process modeling and direct digital control.." | have examined the final electronic copy of this
thesis for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Master of Science, with a major in Chemical Engineering.

Charles F. Moore, Major Professor
We have read this thesis and recommend its acceptance:

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



March 15, 1974

To the Graduate Councili:

I am submitting harvewith &
Dennis K. Jones entitled "A Discre Time Apprsach to
Process Modeling and Direct Digital Cantroi,” 1 recom-
mand ‘that it be accepted for 15 quarter hours of credit
in partial fulfillment of tiie reguirements for the
degree of Master of Science, with a major in Chemical

Engineering,
Chot 7_Wore

Kajor Professor

thesis written by
ta-
1 r
1

We have read this thesis and
rezommend its acceptance:

é?zz,f%w/w?
# o). Mo

Accepted for the Council:

X ;Z2éé§;2: 452‘:V4i;221

Yice Chanceilor-for
Gracduyate Studies antd Rescarch




A DISCRETE-TIME APPROACH TO PROCESS MODELING
AND DIRECT DIGITAL CONTROL

A Thesis
Presented to
The Graduate Council of

The University of Tennessee

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Dennis K. Jones

June 1974



ACKNOWLEDGEMENTS

The author wouyld like to acknowledge the following
people, all of whom were instrumental in the completion of
this thesis:

My parents, for thejr moral and financial support
throughout my education.

My wife, Susie, for her companionship, encouragement,
and patient understanding,

Dr. Charles F. Moore, my advisor, who initiated this
project and without whose guidance its completion would have
been impossible.

Dr. Homer F. Johnson, for arranging financial support
in the form of a teaching assistantship.

Mrs. Joann Arms, for her excellent typing.

il



ABSTRACT

The purpose of this study was to investigate the
advantages offered by a z-transform approach to direct
digital control applications. A discrete-time modeling
package was developed for modeling process input/output
data using a general second-order pulse transfer function.
Also, a z-transform controller presented in the literature
was modified to yield a control algorithm which gives

significant improvement over conventional DDC algorithms.
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CHAPTER 1
INTRODUCTION

In the last decade, advances in computer technology
have resulted in increased use of the digital computer to
directly control industrial processes. The memory, logic,
and computational capabilities of the computer, coupled with
modern computer/process interface equipment, make possible
the implementation of advanced control techniques and have
served to establish the area of computer control as an im-
portant, and promising, segment of chemical process control.
However, despite the computer's vast flexibility as compared
to analog controllers, industrial applications of direct
digital control (DDC) are usually little more than discrete
versions of conventional analog control schemes. The design
freedom afforded the control engineer has rarely been used to
exploit the full potential of the digital computer at this
first level of control.

At The University of Tennessee, a research program has
been established in the Department of Chemica} and Metallur-
gical Engineering to investigate DDC. The specific objective
of the program, directed by Dr. C. F. Moore, is to develop
improved DDC strategies and to experimentally evaluate these
strategies using a PDP 15/35 digital computer interfaced to
laboratory units designed to be representative of industrial

control situations. The work described in this thesis 1is
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part of this research program and deals with process model-

ing and controller development aspects of direct digital

control loop design.

The DDC Loop Design Problem

Consider design of the DDC loop diagrammed in Figure
1(a). The continuous process output, x(t), is sampled to
give a discrete-time signal, X This is subtracted from a
sampled set point signal, r., to produce a discrete error

i
signal which can be used by the computer to calculate a con-
trol action, mis via some control algorithm. The discrete
control action is then converted by a hold device to a con-
tinuous time signal, m(t), which is input to the process.
Any disturbance, n(t), is considered to enter the process in
addition with the control action.

The control loop design method of concern in this
work is a three-step procedure consisting of:

(1) process modeling, in which a mathematical rela-
tion between u(t) and x(t) is found,

(2) controller specification, in which the form of
the control algorithm is chosen, and

(3) controller tuning, in which values for the con-
trol algorithm parameters are determined such that the de-
sired control loop performance is obtained. With conventional
control algorithms, the advantage of process modeling is that
the algorithm may be tuned off-line by simulation of the

control Joop, and modeling is not necessary if on-line tuning
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is practical. However, if advancec control techniques such
as multivariable decoupiing, fesdfcrward control, or dead
time compensation are to be implemented for improved control,

some mathematical description of the process is required.

Conventional Design Approachn

The conventional approach tc digital control loop de-
sign in the chemical industries is to adapt ccntinuous con-
trol techniques (see Figure 1(b)). For modeling purposes,
the process dynamics are represented by a Laplace domain
transfer function, and the most general -model used to describe
the process is an analytical sojution tc or a firnite-differ-
ence representation of this transfer functison. The fitting
of process response data using the model is then performed
to- find values of thz transfer function parameters which
minimize a selected fit criterion (1,2).

As with process modeling, the general approach to
controlier spacification for digital loops has relied heavily
on continuous contrel concepts. The majority of digitai con-
trol algorithms are simply numerical appreximations of the
analvg one-, two-, and three-mode controllers. For axample,
the discrete PID controllier is iliustrated in Figure 1/b).

It is well-known, however, that the performance c¥ samp
data control using discrete versions of analog modes decrea-
ses as sample time is increased. Thus, the engineer whe

employs tnese algorithms in digital systems must tend toward
1

rapid sampling rates to achieve acceptabhle control which is,
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nevertheless, limited to that attainabie witn continuous

control.

B Discrete-Time Approach

Rather than considering the digital control loop as
being comprised of both discrete and continuous elements,
one can formulate the design problem entireiy in terms of
discrete-time components. If the samplers, the hold device,
and the process are viewed collectively as a discrete-time
system that reacts to a discrete input m; to procduce a dis-
crete output Xy z-transform methods can be used to derive a
pulse transfer function, HG(z), relating the discrete inputs
and outputs in the z-domein (3,4). Since disturbance design
generally assumes that the load change is a step function
beginning at a sample time, the disturbance may also be
treated as a discrete-time function which enters the hold
device with the controller output. Finaily, the computer
controel algorithm can be considered a digital controller with
a z-domain transfer function, D(z), and the control ioop can
be represented by the sampied-data control loop diagrammed in
Figure 1{c). This discrete-time approach to direct digital
control appiications offers definite advantages over conven-
tional technigues in the process modeling and controller
specification phases of control loop design.

Inversicn of the pulse transfer function gives a dis-
crete-time mode] which ic Tinear in all the model parameters

except dead time, Aus, a least-squares fit of 2rocess



response data can conceivably be performed using a one-
dimensional search for dead time with the remaining model
parameters calculated by Tinear regression at each iteration.
This constitutes a general, efficient modeling scheme for
chemical process modeling.

The z-transform design of digital controllers is a
well-developed subject of sampled-data control theory (4,5).
Essentially, for a given pulse transfer function, block dia-
gram algebra is used with Figure 1(c) to find the controller
transfer function required to produce specified control loop
characteristics. The relevance of such techniques to the
control of chemical processes arises from the fact that con-
troller design automatically includes compensation for any
process dead time, a variable which is notoriously detrimen-

tal to the performance of conventional controllers.

Organization

The objective of this thesis was to investigate the
advantages offered by a z-transform approach to process
modeling and controller design. Chapter II describes a
discrete-time modeling procedure for fitting process response
data to a general second-order model; the listing of a
Fortran IV modeling program based on these developments is
given in Appendix A, Chapter III outlines the z-transform
design of control algorithms and the deyelopment of an im-
proved DDC algorithm; controller simulation results are

presented, with a 1isting of the simulation program in



Appendix B. Final conclusions and recommendations are

summarized in Chapter 1V,



CHAPTER II
DISCRETE-TIME MODELING

Analytical process models are usually too complex to
be of any practical use in chemical process control. The
general approach in the chemical industries is to propose a
simple model with adjustable parameters and to empirically
determine the parameter values which, in some sense, "best"
describe the process dynamics. One approximation which has
been used for years is the first-order lag plus dead time
model. The graphical methods presented by Ziegler and
Nichols (6) and Miller (7) can be used when a continuous
step response plot is available. For sampled process re-
sponse data, an analytical solution of the first-order lag
differential equation can be used for a least-squares fit of
the data.

While the first-order model is attractive from the
standpoint of simplicity, a much improved representation of
the higher-order chemical p}ocess response may be obtained
with a second-order model. Smith (3) simulated the continu-
ous PID control of a fourth-order process and compared the
set point and load change responses for an optimally tuned
controller with those for controllers tuned using first- and
second-order process models. The tuning criterion was ITAE.
The possible improvement over the first-order tuned control-
ler was nearly 50 percent for load changes and over 100 per-

cent for set point changes, while the possible improvement

10
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for the controller tuned using the second-order model was
only 12 percent for load changes and less than one percent
for set point changes. In a similar study, Chiu (8) simula-
ted the temperature control of a jacketed backmix reactor
and found that tuning PI and PID controllers using a second-
order model gave controller parameters which were nearly
optimal. Again, substantial improvements over first-order
tuning were observed.

As with the first-order lag model, graphical methods
are available for evaluating the parameters of a second-
order lag plus dead time model from a step response plot.
Sten's technique (9) is applicable only with an overdamped
model, and the need for a graphical tangent can introduce
considerable error. The method by Meyer (10) can be used
for both overdamped and underdamped models but has the dis-
advantage that the dynamic parameters are based upon only
two points.

A more general, objeqtive approach which removes the
restriction of a step input is to develop a finite-difference
representation of the second-order differential equation. A
least-squares fit of sampled process input/output data may
then be performed using a one-dimensional search to find the
model dead time with the remaining model parameters calcula-
ted by linear regression (1). This type of numerical proced-
ure is also useful in adaptive control applications in which
on-1ine model updating is required. However, because of the

finite-difference approximations, such a model is strictly



12

limited to short sample times.

One common feature of these modeling methods is that
the basis of the model is a Laplace domain transfer function,
and the objective of the modeling is to find values for the
transfer function gain, dead time, and time constants. For
direct digital control applications, an approach more con-
sistent with the discrete-time nature of the computer would
be to consider the hold/process cascade as a discrete-time
system and develop a modeling procedure with a z-transform

pulse transfer function as its basis.

Discrete-Time Model Development

While almost all chemical engineers are aware of the
Laplace transform and its usefulness in the analysis of con-
tinuous systems, a far smaller number are as familiar with
the z-transform and its applications to discrete-time, or
sampled-data, systems analysis. The z-transform of the
discrete-time signal obtained by sampling the continuous

signal f(t) with a sample time T can be denoted as F(z) and

is defined as

£(kT) 2K
0

F(z) = z[f(kT)] =

™8

k

This equation results from representing the sampler output
as the product of the continuous signal and a unit impulse
train of period T. Taking the Laplace transform of this

signal/impulse train representation, and making the change
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of variable z = eST

yields the above relation (5). There-
fore, the z-transform is essentially the Laplace transform

of the sampler output. F(z) is often written as
F(z) = Z[F(s)]

which should be interpreted as the z-transform of the dis-
crete-time signal obtained by sampling a continuous signal
which has a Laplace transform F(s).

In terms of the figure below, the z-transform expres-

sion relating X(z), the sampled process output,

Uz) K sl n(s) 6(s) K Az)
4

T

to the discrete-time input, U(z), is termed the pulse trans-

fer function HG(z):
HG(z) = Z[H(s)G(s)]

Just as the Laplace transfer function for a continuous
system is the Laplace transform of the system's impulse re-
sponse, the pulse transfer function is the z-transform of the
discrete-time system's response to a Kronecker delta input,
§(kT), defined by the relations

1 for k=0

§(kT) =
0 for k#0

Tables listing the z-transform transfer function cor-

responding to various Laplace transfer functions are generally



14

included in any text that deals with sampled-data systems
(3,4,5). These tables can be used to find the pulse transfer
function for a given hold and process. For example, with a

zero-order hold and a second-order lag plus dead time process,

_-sT

H(s) = l_S;__
-0s

~ \ Ke
\J(S) = -

(t]s+])(t25+1)

and
-sT -0s

He(z) = z [Llze ~ JKe

s(T,571) (t,5+1)]

The z-transform of a time delay of m sample times 1is z'm,

and we have

K
s(t]s+])(t25+])

He(z) = 2z N(1-z7 Nz | ]

where N = g/T, assumed to be an integer. A partial fractions
expansion of the expression in brackets yields
2

t] 1 +
(tz"t] ) (t]S+] )

He(z) = k 27 N(1-271) (z[T1 + 7 [

t 2

2
JA
CERICII

From z-transform tables,

14 _ ]
Z[-] = ——
s 1—2"]
2
t t
Z [ 1 1
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and
2
t t
7 [ 2 2

(t1-t,) (tps+1)" ~ (t,-t,) (T-ayz 1)

where

-T/t -
ay = e /1ty . T/t

and a,

Substitution of these relations gives the pulse transfer

function :
Z—N(b]z"]+b?z'2)
HG(z) = - Y (2)
]+a]z +a22

The coefficients a1, Ay, b], and b2 are functions of the pro-
cess time constants, process gain, and the sample time.

Cross-multiplication of equation (2) yields

1

[1+a]z' +a22'2] X(z) = z'N

-1

[b,z +b22'2] U(z)

and employing the right-shift property of the z-transform,
which states that

we obtain the time-domain expression

Xj T magXjqtagx; o v b

IRETTIE B PY T (3)
This equation is a second-order difference equation which re-
lates the process output at sample i to past input and output
samples.

Equation (3) is a very general expression in that it

is valid for a number of first- and second-order processes of

interest in chemical process modeling. In Table I are
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o b.;
Function, G(s) 24 a2 b, 2
-0s
Ke e
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Ke - 2 T \n T
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presented the relations oetweer the difference equation co-
efficients and the parameters c¢f the corresponding Lapiac
transfer function. The process dead time is assumed to be
an integer multiple of the sample time, and the hold device,
as in almost all DDC applications, i¢ a zero-order hold.

To use equation (3) as a least-squeares model, the
actual output Xy is replaced by the model output, ;i’ For
the general case in which the process output is non-zero for

a zero input, an offset term D must be added, and the model

equation becomes

Xy = magXgqm8p%iip *obyuyy * bl

]

3 ~A £ by ~ = U -
The model estimatc of the proccss ofvzec, X cah e Ca

/3]

0’
ted from the model parameters using the reiation

D

o 7 Ty,

If process response data are to be fit with a first-
order model (a2=b2=0), then this discrete model offers no
advantages. In fact, an analytical solution c¢f the First-
ag differential equation gives the same modei. How-
ever, in fitting a more descriptive second-crder model to
process data, the modei of equation (4} offers several der-
inite advantages. Since the pulse transfer function is an
exact relation, the model! is not limited to short sample
times as are models derived using finite-differences. Thicz

used in

or

il

is an important consideration if the model is to
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conjunction with a control algorithm that will allow in-
creased sample times. Also, the same second-order model
equation can be used whether the process exhibits overdamped,
underdamped, or inverse response characteristics. Thus, one
general equation can be used to model several types of sys-
tems with no restrictions on the type of process data. The
model may be applied to closed-loop operating data as well as
to open-loop response data. Finally, the linearity of the
model in all parameters except dead time allows linear re-
gression to be used with a search for dead time. This is, of
course, an important computational advantage.

Kalman (11) suggested the use of this model, without
dead time or the offset term, as the basis of an adaptive
control system which could follow the changes in process pa-
rameters by on-line modeling. Dahlin (12) employed a first-
order version of the model in the identification of paper
machine dynamics. However, in the modeling of chemical pro-
cesses, this model has been generally ignored. Apparently,
one reason for this arises from the conventional approach of
modeling in terms of Laplace transfer function parameters and
from the fact that, at first glance, solving for the gain and
two time constants of the important second-order lag, given
the four discrete-time model parameters, would not appear to
yield a unique solution. For example, Gallier and Otto (2)
outlined the possible use of the model in an on-line updating
of second-order lag parameters for adaptive DDC of chemical

processes. Instead of taking advantage of the linear
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regression calculation of the model coefficients, they chose
to perform a numerical search for the time constants, gain,
and dead time which minimized the least-squares fit criterion.
Consider relating the discrete model coefficients to
the second-order lag parameters as follows. From Table I, we

have the four equations shown below and three unknowns—-t],

tz, and K.
a; = -(a]+a2)
8 T 2%
b]=|<[1+t‘:—]::2—a—2-]
2”4
tyop-troy

b, = K [aqya, + ]
2 172 -
tr-ty

Another relation may be obtained from equation (3) giving the
process gain as

b.l+b2

]+a]+a2

But adding together the above expressions for b] and b2 gives
the same gain equation and, therefore, there are actually
only three independent equations--those for a7 and a, and the
process gain relation. These three equations are easily
solved to give t], t2, and K. Therefore, if values for the
second-order lag transfer function parameters are to be the
objective of a modeling effort, the discrete-time model can
still be used and the continuous parameters back-calculated

from the model coefficients.
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Formulation of the Regression

With the model equation given by equation (4), the

objective is to find those values of ays Ay, b b D, and

1> 72
N which give the best fit of the process response data. For
a least-squares regression, the fit criterion E is the sum of
the squared residuals, or fit errors. That is,

M A

E = z (X-"X_i)
i=h+3

2 (5)

where M is the number of data points. Note that the need for
greater-than-zero subscripts on the u values requires that
the error summation begin with i=N+3. The total number, m,
of model output values considered in the fit criterion is
then
m = M-N-2

which, for a fixed number of data points, decreases with in-
creasing N.

Substitution of the model equation gives

M

E = z (xi+a
i=N+3

2 (6)

1%4-1%22%5 2Py 1Pl 27 D)

The best values for the model coefficients are those which

minimize E. Thus, we require

M
oE
2L =0 =2 1 x. X.ta X, qta,Xx. ,-bju,
4 i=N+3 -1 (XgFapXggtagX bty

“byUiy-27D)
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oE M

daZ =0 = 2 i=§+3xi—2(xi+alxi—l+62xi-2-blui—N—l~b2ui-N-—2—D)

JE M

by = 0 = -2 2 uypop(xgtagxg gtagxg oobiug v

i=N+3 ]

"bauioN-27D)

O k

- =0 = =2 z u, (x,+a,x, .+a,x, ,-b.u,

3b, jeN+3  i-N-2727477174-177274-2 T17i-N-1
“byuin-27D)

O _ 0 = -2 Pz:ll (x.,+a,x + -b -b -D)

D T e R A I A T E A A T (B

which upon rearrangement gives
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M
-a Lo X qu. “ans T X.: AU +b. I u. u.
Vizneg 1-171-N-2 72 1-271-N-2 "1 i=N-1"i-N-2
2 -
thy I Uy y2tD Uy o = EX{Ui_yo2
M -

A1l unlabeled summations are, of course, implied to sum from
i=N+3 to M.

These equations are termed the normal equations for
the regression, and the solution of this set of equations
for a specific value of N gives the model coefficients which
minimize the fit criterion for that particular choice of
dead time. Therefore, a least-squares fit of the data can
be performed by a search on N with the best values of the
model coefficients for each iteration determined by solution
of equations (7). That value of N which results in the least
sum of squared residuals, as calculated by equation (5), and
the corresponding values of the model coefficients give a
least-squares fit of the experimental data.

Note the similarity of terms in the normal equations.
For example, with step response data, one would not expect
the elements of the first two equations to be very different;
in other words, the zxigl term would not be much different
from the 5x, ;x;_, term, etc. Likewise, the third and

fourth equations would not be expected to differ drastically.

In such cases, the first and second equations and the third
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and fourth equations would be nearly linearly dependent, and
the numerical problems associated with such ill-conditioned
systems could be expected to arise. In computer solutions

of the equations, this was found to be the case, with changes
in the sixth significant figure of the summation terms pro-
ducing changes in the second significant figure of the solu-
tions. Also, double precision computations were required to
obtain correct solutions.

There are a couple of factors which must be considered
in choosing the search technique to be used in finding the
optimum dead time.

Note that the magnitude of the fit criterion of
equation (5) is influenced by the number of residuals as
well as the magnitude of those residuals. As was pointed
out, the number of residuals decreases as the model dead
time is increased; thus, the fit criterion could conceivably
be minimized by a poor fit which utilizes a large estimate of
dead time. Since the objective of the modeling procedure is
to minimize the fit criterion by minimizing only the magni-
tude of the residuals, it follows that the search should be
limited to relatively low values of dead time. In addition,
minimizing the mean squared error would tend to offset the
effect of the number of errors considered.

Also, large dead time estimates in the modeling of
step response data can lead to results which are physically

meaningless and useless for control purposes. Consider the

sampled response of a second-order system to a unit step
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input which enters at sample k. The response is, of course,
governed by equation (3). However, for i > k+N+2, the dis-

crete inputs, u;_ ., and u; .
one, and the response is given as

_ps are constant and equal to

X: = -a]xi_]-azxi_2+D' (8)

where

D [

b]+b2+D. (9)

If the data are modeled using an estimate of dead time, N',
such that
N' > N + k -1 (10)

Then all the data points considered in the error calculations
can be represented by equation (8), and the least-squares
fit gives an input-independent model which fits the data as
well as equation (3). In fact, since the N' of equation (10)
is larger than the actual dead time, the number of residuals
summed in the fit error for N' would be less than those for
N, resulting in a lower value of the fit criterion for N'.

A definite example vividly illustrates the above. The
discrete model parameters shown below were used to generate

unit step response data.

N =5 D =0,01228
ay = -1.84034 b] = 0.003154 (11)
a, = 0.84648 b2 = 0,002983
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These parameters correspond to sampliing the continuous pro-

cess
.Bg
e

(10s+1)(15s+1)

G(s) =

with a sample time of one and an offset of 2.0. The input
and calculated process output are shown in Figure 2. Note
that the step input entered at the eighth sample. For esti-
mates of N, equations (7) were solved on the IBM 360 comput-
er by pivotal condensation (13) to find the least-squares
model coefficients for that dead time estimate, and the least-
squares fit criterion and mean squared error were then cal-
culated. The regression equations were sufficiently il11-
conditioned to require double precision calculations in their
solution. Figure figure 3 is a plot of the fit error as a
function of the model dead time. Beginning at a model dead
time of zero, the fit error decreases to a definite minimum
at the process dead time of 5. The error then rises but
drops drastically again at a model dead time of 12, as ex-
pected from equation (10), and continues to decrease for
higher values of N'. The fits for dead times of 12 and higher
were characterized by zero values for b] and b2, while the
bjas estimate obeyed equation (9). Figure 4 shows that the
mean squared error behaved in the same general manner, and
minimizing this parameter would offer no improvement.

This procedure was repeated with simulated set point
change response data for the process of equation (11) under

discrete PI control. Input and output data points are shown
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in Figure 5. It was found that for model dead times greater
than 11, the least squares regressicn treated the overshoot

response as the step response of an underdamped system, and

the fit error behaved in the same manner as that of the step
response data, with an input-independent model (b]=b2=0).

In Tight of the above, it was concluded that the best
dead time search procedure for the Teast-squares modeling is
to begin with an estimate of zero and increment N' by one
until there is no improvement in the fit criterion. This
ensures that a Tow value for the fit error does not arise
because only a few data points are considered in its calcu-
lation. Such a cautious search also prevents the dead time
estimate from becoming so large that process response data
can be described by an input-independent model. Note that
the maximum allowable dead time estimate is N'=M-7 since for
model dead times greater than this, less than 5 data points
are fit and the linear regression has no unique solution.

In Figure 6 is shown a flow diagram of this least-
squares modeling scheme. The main program serves to input
the process response data and execute the dead time search.
For a given model dead time, the subroutine ASUBI sets up the
normal equations for the linear regression, solves the
equations for the model coefficients, and computes the fit
error. Because the linear regression must be performed for
each dead time iteration, the bulk of the program computa-
tions occur in the linear regressijon subroutine. It is

desirable, therefore, that the calculations required to form



30

4. 09

1

2.00

PROCESS INPUT
%Eoo

5 2.00

.00 20.00 40.00 60.00 80.00 100.0C
TIME

4.00

b.00 20.00  40.00 _ 60.00  80.00  100.00
TIME

Figure 5. Simulated Set Point Response Data



READ IN PROCES
RESPONSE DATA

> SET UP
LINEAR REGRESSION
N=0 NORMAL EQUATIONS

ELAST = 10°0

4
SOLVE NORMAL EQUATIONS
CALL
SUBROUTINE ASUBI FOR a].az.b,,bz.D
y
N
1S THE FIT ERROR, YES

ESQRD, GREATER THAN THE
PREVIOUS FIT ERROR,ELASTY CALCULATE THE SUM

- P OF THE SQUARED
lm‘

ERRORS, ESQRD

N = N-1
N = N+1
ELAST = ESQRD ‘l’
CALL ASUBI
> A RETURN
' #HERPi:;E:ULHAN YES >1 PRINT RESULTS
ALLOWABLE VALUE?
NO
END
(a) Main Program (b) Linear Regression Subroutine, ASUBI

w
—

Figure 6. Flow Diagram of Least-Squares Modeling Scheme
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the summation terms for the Tinear regression be a minimum.

Reduction of Computations

The linear regression equations (7) show that 29
summation terms must be evaluated for each iteration of dead
time. The computation time required to form these summa-
tions can be considerably reduced by noting several relation-
ships among the terms.

The first obvious simplification results from noting
that 10 of the summation terms ahpear twice in the equations.
Therefore, only the evaluation of 19 summations is actually
necessary. There also exist the following relations among

these 19 terms.

M M

T X 7 T Xuyio-Xut T Xs
jeNes 0T TNERZTME L

M M

LI X. = X -X + I X.

M M

2 2 2 2

r x5 ., = x5 .-x8 o+ 5 xS
i=N+3 i-2 N+1 “M-1 i=N+3 i-1

M M

T L B B T B T 2 TR R T P L
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M M

NoUs o T Ug-Uy o gt nooUs no
i=p+3 1°N-2 TM=N-T g 1N

M M
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L u; = uq-u + L u;
$=N+3 i-N-2 ToM=N-T L g TN

M M

I X;u, = XyU “Uq Xy, ot I u, X
S=N+3 ] i-N-1 MPM-N-1 "17N+2° .y o 1-N-2719-1]

M M

I Us i oXi_ o = UsXy 1=Uy o Xy 1+ T oU._y_q1Xs_
jaN+3 1TN-271-2 PN+ OM-N-TOM-10 L g T-N-17 -1

These relationships show that 8 of the 19 summation terms nec-
essary for the Tinear regression may be found by simple addi-
tions to other terms.

The computation time necessary to set up the regression

equations can be further reduced since for two values of N,

N] and NZ’ such that N2 = N]+], the following relations are

valid.
M M
2 2
x5 .= r o x5 .- x
j=N.+3 TV epez 01 TNy2
2 1
M M
I XioXi1 = L XioXiq = Xy iqX
i=N,+3 i-271-1 =N, +3 i-27-1 Ny HT7N, +2
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M M
% X. = X X=X
i=i,*3 | i=Ny+3 Ny+3

Thus, for two successive iterations of dead time, 10 of the
11 summations required for the second jteration can be effi-
ciently calculated from those required for the preceeding
iteration, This leaves only one summation term to be com-
pletely evaluated, once the dead time search is initiated.

A reduction in the time required to evaluate the fit
error may also be realized. Recall the fit criterion of
equation (6):

M

E = % (X_i‘l'a-lx_i_]+32X.i_2"b]U.i_N_'I"bzu-i_N_Z-D

2
)
i=N+3

Expansion of the summation argument gives

E = SXX-2SXU-2SD+SUU (12)

where
g x?+2a L X.X +2a, I X.X +a2 L X
i=N+3 i 1 i79-1 2 7 Mi%i-2 71 1

SXX

2 2
+2a]a2 X x]._]x]._2+a2 in_z

SXU

by Exgug yoqthy Boxgup y otagby Ioxg quy oy

tagb, Toxg quy_n_ptangby Ioxg oup g qtagbs IoXg ougyo



36

- . ¥ + N ~ X - X - 2

2

SUU = bT BT #2byby Tug oy qug o p¥by Bul
Since equation (12) involves only terms which would be
available from the linear regression calculations, it offers
a savings in computations when compared with the individual
residual evaluations of equation (6).

The least-squares modeling scheme diagrammed in
Figure 6 was programmed in Fortran IV for execution on the
IBM 360 computer. Because standard precision computations
were found to be inadequate in solving the normal equations
for the simulated response data, the program was written in
double precision. The relationships permitting the simpli-
fied calculation of the normal equation summation terms and
the fit criterion were, of course, incorporated in the linear
regression subroutine. The numerical method chosen for
solution of the normal equations was pivotal condensation
(13), which is the standard Gaussian elimination method with
partial pivoting. When an estimate of the process offset is
available and has been subtracted from the process output
data, a linear regression estimate of D is not necessary,
although the normal equations still apply with all terms in-
volving D equal to zero. This option was included in the

program.
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Effects of Measurement Noise

Consider the important case diagrammed below in which
the actual process output is contaminated with noise. The
measured process output can be visualized as the sum of the

actual output and a random signal. In this situation,

Measurement Noise,

2
Actual
Thpuc.”  TROCESS BretEs Observed
, . serve
u. Y + process
L > HG(z) ] +)%§ > output,

X3

the independent variables, x,_, and x;_,, of the
discrete-time model contain measurement errors, and the
basic least-squares assumption of measurement errors only in
the dependent variable is violated. Therefore, a least-
squares modeling of the process using the observed process
response data does not assure qnbiased estimates of the pro-
cess parameters (14), 1In view of this, a brief evaluation
of the noise sensitivity of the least-squares modeling scheme
was undertaken.

The IBM subroutine RANDU (15) was used to generate
random numbers which were added to the output data of the
simulated step response (see equation (11) and Figure 2).

The random numbers were uniformly distributed between +§ and
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-6. For values of 8 up to 0.05, the noisy response data
were modeled with the least-squares modeling program to de-
termine the effect of increasing noise levels on the process
parameter estimates. Figures 7 and 8 graphically summarize
the results obtained. A horizontal line across each graph
indicates the actual valuce of the particular process param-
eter.

Even for the extremely low noise levels of this study,
it is evident the least-squares modeling performed poorly.
Dead time estimates behaved erratically, deviating signifi-
cantly from the actual process dead time. Least-squares
estimates of ay and a, differed considerably from the process
values with the deviation increasing with increasing noise
levels. Although the definition of a, for a second-order lag
process is the positive product of two exponentials, negative
estimates of a, were obtained. Estimates of the process gain
were consistently high with a maximum deviation from the
process value of about 35%, while the values obtained for
offset were generally better with a maximum deviation near
10%.

Statistically, the poor performance of the least-
squares fit of noisy data is attributable to measurement
errors in the independent variables of the dynamic model.
Numerically, the biased parameter estimates are due to the
ill-conditioned nature of the linear regression normal equa-

tions., Although measurement noise introduces small changes
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in the summation terms of the normal equations, large
changes in the least-squares coefficients result because the
equations are ill-conditioned.

Another form of the second-order model which is not
so sensitive to measurement noise is the so-called "free-
running" model (4):

N N A

Xi T mRXia1m8% Pyt Uy oy oD (15)
In this equation, the model]l output is not a function of the
obseryved process output but of past model estimates of the
process output. Thus, measurement noise is not involved in
the calculation of the model output. Figure 9 shows block
diagram représentations of the model errors associated with
the least-squares and free-running models. N(z) and D(z)

are the numerator and denominator, respectively, of the

model pulse transfer function. For the second-order model,

and

o
—
N
~
1]

]+a]z- ta,z

The modeling of process data using equation (15) is a
non-linear regression problem. However, Steiglitz and
McBride (16) have shown that the minimization of the free-
running model error may be accomplished by iteratively mini-

mizing the least-squares model error. A diagram of their

jterative scheme is presented in Figure 10.
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Each iteration consists simply of filtering the
original process input/output data and performing a least-
squares fit of this filtered data. The digital filter used
to produce the filtered data, u and X, is the inverse of the
least-squares estimate of D(z) obtained in the preceeding

iteration. For a normalized filter (unity gain),

x(z) _ a1+,

X(z) ~ 1, -2
1+a]z ta,z
and
Xj = KeXgmagXyg-3%y .,
where Kf = ]+a]+a2, with an analogous expression for Gi. If

the minimization of the least-squares model error is obtained
at each iteration and the coefficients of D(z) converge, that
is, Di(z) = Di_](z) after a number of iterations, then the
block diagram of Figure 10 becomes that of Figure 9(b) and
the free-running model error is minimized. Although no proof
of convergence was offered, Steiglitz and McBride reported
convergence within 10-20 iterations in simulations of more
than 50 different'systems with sighal-to-noise ratios as low
as 0.6. In every case, there was significant improvement
over the least-squares parameter estimates.

In Figure 11 is presented a flow diagram of the itera-
tive modeling technique. A computer program was written to
implement this scheme using the Teast-squares program de-

veloped earlier to perform the least-squares regression on
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the filtered data. The convergence criterion chosen was no
difference in the sixth significant figure between successive
estimates of 2y and ays and the maximum number of iterations
was fixed at 25. This modeling program was used to model the
same noisy step response data used in studying the noise
sensitivity of the least-squares modeling scheme. The results
are presented in Figures 12 and 13.

These results show that the iterative modeling program
is effective in improving the least-squares parameter esti-
mates. Although the model dead time varied with the noise
level, the estimates were considerably better than those
obtained from the least-squares regression alone. Model
estimates of ays @y gain, and offset were greatly improved

with no significant deviations from the process values.

Discrete-Time Modeling Program

The iterative modeling program was modified slightly
for use as a discrete-time modeling package to fit process
input/output data with the model of equation (15). To pro-
vide a general data input feature, provisions were made for
a user-supplied subroutine INPUT which reads in the process
data to be modeled. HNoise tests of the modeling scheme
showed that the model dead time was constant after three or
four iterations. Therefore, the program was modified to hold
the dead time estimate constant after five iterations, elimi-
nating the dead time search at that point. Except for these

minor reyisions, the program flow chart is the same as that
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shown in Figure 17.

The program output consists of the number of itera-
rations required for convergence, the values of the model
parameters and the sum of the squared errors. Also, a print-
out of the original process data is given together with the
output predicted by the model and the corresponding model
error,

Appendix A contains a complete listing of the main
program MODEL, subroutine ASUBI, and an example of the user-
supplied subprogram INPUT. Definitions of key program
variables, descriptions of the program flow, and instructions
for program use are documented within the program by comment

statements.



CHAPTER 111
CONTROLLER DEVELOPMENT AND SIMULATION RESULTS

Because of the widespread use of the analog control
modes in continuous control of chemical processes, it was
natural that the first control a{gorithms developed for
direct digital control were extensions of these modes. This
approach to controller specification still prevails in the
majority of DDC applications, with the most common controller
algorithms being the discrete PI and PID algorithms obtained
by representing the integral and derivative modes by a
summation and a finite difference, respectively. However,
the performance of these algorithms is limited to that
attainable with their continuous counterparts (17), and the
real promise and economic justification of direct digital
control lies in the development of improved control strate-
gies which are either impossible or too expensive to imple-
ment using conventional analog equipment. The mathematics
of z-transforms is a potentially valuable tool for use in

this development.

Z-Transform Controller Design

The z-transform design of digital controllers is a
commonly included topic in texts dealing with sampled-data
control theory (4,5). The basis of the technique may be

developed by a simple analysis of the sampled-data control

50
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loop below. As shown in Table JI, there are eight variables

DIGITAL N(z) SAMPLED-DATA
CONTROLLER PROCESS
+
+ M(z) Y\ u(z) X(z)
Riz Elz D(z) 2N > H6(z) >
N
X(z)

involved, and block diagram algebra gives four independent
relations among these variables. This results in four de-
grees of freedom for the system, which means that once any
four of the control loop variables are specified, the remain-
ing four variables are automatically fixed. Therefore,
desired control loop characteristics may be used to define
four of the system variab]és, and the controller transfer
function required to produce these operating characteristics
can be determined.

As an example of this approach to controller design,
consider the following. Suppose there is a controller,
Do(z),'which gives an acceptable set point change response
when controlling a process, HGO(Z), containing no dead time.
If applied to the same process with dead time added, the

controller may not produce an acceptable set point change

response, because the control action, M(z), calculated for



TABLE 11

SAMPLED-DATA CONTROL LOOP VARIABLES

Variables Independent Relationships

R(z), set point E(z)

R(z) - X(z)

E(z), error

D(z), controller M(z) = D(z)E(z)

M(z), controller output

N(z), disturbance U(z) = M(z) + N(z)

U(z), process input

HG(z), process pulse X(z) = HG(z)U(z)
transfer function

X(z), process output

Total = 8 Total = 4

Degrees of freedom = 4

52



53

the dead time process will, most likely, differ from the
control action, M (z), for the case of no dead time. This
is, of course, the situation encountered with discrete
versions of the three-mode analog controllers. What is need-
ed for acceptable control of the dead time process is a
controller D(z) which, for a set point change, outputs the
control action Mo(z). The process response is then the re-
sponse for the no-dead-time case delayed one dead time.

For the case of no dead time, four of the control
loop variables must be specified before Mo(z) can be found.
Do(z) and the process transfer function, HGO(z), are fixed
and for set point design, R(z) is specified with N(z)=0.

This gives the control action as

- Do(Z)R(Z)
Mo (2) 14D_(z)HE_(z)

For the same system with dead time, R(z) and N(z) remain un-

changed, the process pulse transfer function is given as

HG(z) = z_NHGO(z)

and

The controller is then

D(z) = M(z) _ MO(Z)

E(z) R(z)—HG(z)Mo(z)

and substitution of the expressions for HG(z) and Mo(z)
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yields

D,(2)
D(z) = N . (16)
1+Do(z)HGO(z)[1~z ]

With this as the controller for the dead time process, the

contro] loop transfer function is

-N
Do(z)HGO(z)z

]+DO(2)HGO(2)

which indicates that if the process is known exactly, the
dead time is effectively removed from the feedback loop.

The controller of equation (16) gives the discrete
equivalent of a control strategy proposed by Smith (18) for
dead time compensation. Originally developed for continuous
control, the Smith predictor uses a simulation of the dead
time process to cancel the actual process output, and for
perfect modeling the control action is based on the output
of a minimum-phase (no dead time) process model. Direct
digital control versions of Smith's scheme have been studied
(19,20,21) with significant improvement over conventional
algorithms. Equation (16) gives the predictor in a single,
closed-form expression, eliminating the need for explicit
simulations of the process.

The digital controller generally presented in discus-
sions of z-transform controller design is the deadbeat
controller. The deadbeat design procedure is to specify

that the set point change response reach the new set point



in a minimum number of sample times and remain at the set
point for al] subsequent samples. The controller transfer
function giving this performance can be determined after
fixing the type of set point change (step,ramp,etc.) and the
process pulse transfer function, The disturbance is, of
course, zero, Kuo (4) points out that deadbeat response de-
sign has several disadvantages. First, while the design
assures minimum-time response at the sampling instants, there
is no assurance that the process output is constant between
samples. Application of the deadbeat controller could con-
ceivably produce an unstable set point change response that
satisfied the design criteria simply by coinciding with the
set point at each sample. Second, although the deadbeat
control system is optimal for the specific input used for
design, unsatisfactory performance may be obtained for other
inputs. This difficulty is of no major consequence for set
point change design in the process industries, since the set
point change is consistently a step input. However, the
response of systems designed for a step in disturbance might
suffer because of this point. Finally, deadbeat design is
basically a pole-zero cancellation, and Kuo indicates the
results are highly sensitive to modeling errors. This dis-
advantage certainly affects the applicability of the method
to digital control of chemical processes, the dynamics of
which are seldom known precisely,

Mosler (22) reported the design of deadbeat controllers

based on a first-order lag model for both set point and load
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compensation, and applied the algorithms to digital control
of a laboratory-scale temperature contro] system. Perform-
ance comparable to that of continuous PID control was ob-
tained by adding a P-D transmitter to cancel one of the poles
of the second-order process. Lane (23) also designed a
first-order deadbeat controller for set point changes and
presented a method for on-line tuning of the algorithm.
Simulations using a first-order lag plus dead time process
with an analog dead time approximation gave responses which
were close to the ideal deadbeat response. However, the
algorithm produced an excessively oscillating control action,
a phenomenon known as controller ringing.

In another case, Dahlin (24) designed digital con-
trollers based on a first-order lag plus dead time closed-
loop response for a set point change. The response dead time
was that of the process, and the lag time constant was used
as a tuning parameter. Controller ringing was exhibited in
simulations of the controller, but Dahlin showed that the
useful portion of the control action could be retained by
simply eliminating the controller poles causing ringing with
appropriate gain adjustment to preserve the original con-
troller steady-state gain. Chiu (25) applied the Dahlin de-
sign method in the simulated DDC of a jacketed backmix
reactor using both first- and second-order process models.
Eliminating the ringing poles of the controllers obtained

gave a discrete PI controller for the first-order mode] and
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a discrete PID controller for the sccond-order design.

The Kalman Controller

Like the deadbeat controller design, the z-transform
controller design presented by Kalman (26) is based upon a
minimum-time set point change response. Using a second-order
pulse transfer function for the process, the design differs
in that the form of the controller output is also fixed.
Although Kalman neglected process dead time, it is a simple
matter to include this important variable in the design. As
shown in Figure 14(a), the second-order process output is to

reach the set point in N+2 sample times. This gives

X(z) = x]z"Nf]+z"N'2+z'N'3+

In forcing the process to the new set point, the controller

operates in bang-bang fashion as in Figure 14(b). Thus,

- -1 -2 -3
M(z) = mytmyz 4mez “mez T+

Note that for perfect modeling of the process, controller
ringing is eliminated since the control action is limited to

three switches. For a unit step change in set point,
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Figure 14. Process Response and Control Action for

Kalman Controller
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and
M(z) _ -1 -1 o _3
R(z) [1-27 I tmyz” ez " S4mez ™ s L L L]
= g (g omg )2 e ey )28
= qta 2 a8 = q(2) (18)
0 q] q2 A

From the definition of the process pulse transfer function

and equations (17) and (18), it follows that

and the second-order pulse transfer function gives

P(z) _ z'Ntb]z']+b22-2]
a(z) ]+a]z']+a22'2
by n-1, P2 ne2
i b]+b2 b]+b2
bllbz ! b:lbzz-]+ bjibz 2

Division of the numerator and denominator of HG(z) by b]+b2
is necessary to ensure that p]+p2=] as required by equation
(17).

The controller transfer function is given as

D(z) = X(z)/R(z)
HG(z)[1-X(z)/R(z)]
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and substitution of the above results yields

n

o

NN
a—

1|70
e~
—~ N
N [~
~

i

—

1O

D(z)

Inverting this expression gives the digital control algorithm

mi = Kelegrage; qrage; obymy y g+bomy o]

where K =

Inspection of this control algorithm shows that the
Kalman controller output can be viewed as the sum of two
control actions. If the error terms are expanded, the

algorithm can be written as

mi = Kelrgragry qtapry pmXy-a1X972%4 5

tbymy _y_qtbomi o]

From the least-squares model equation,

el

X; =-apX5_17a,X b bom. _y_o (19)

1Mi-n-17
and

. N

Therefore, the Kalman control action is the sum of the output
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from an optimal open-lovop controller, Mr(z), and the output

of a model-error controller, Mm(z):

M(z) = Mr(z) + Mm(z)

1

where Mr(z) Kc[]+a]z" +a22"2]R(z)

Mo (z) = K.E (z)

n

E (2) = X(2) - X(z)

A schematic representation of this expansion of the Kalman
controller is shown in Figure 15,

The open-loop controller responds only to set point
changes and supplies the same control action regardless of
the process dead time, a required property for a good dead
time compensator. The model-error controller is essentially
a load estimator which attributes any difference between the
actual and predicted process outputs to the presence of a
disturbance acting on the process and subtracts an estimate
of the load from the open-loop controller output in an at-
tempt to cancel the disturbance. Thus, Mm(z) provides comp-
ensation for load changes and supplements the open-loop
control action for set point changes when model errors exist.

For perfect modeling, the open-loop controller may not
be optimal for set point changes if the control action is
constrajned, Figure 16 illustrates the effects of controller

constraints upon the process response. The process in the

unit step set point change simulation was the second-order



Optimal
open-1lo0op
controllen

M. (z +
r( L M(z) * U(z)
_92‘ ra®, ‘> HG(z)
+
M, (2)
Process
Model <
K
c o~ Em(z)
Figure 15. Block Diagram of Kaiman Controller
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Figure 16. Set Point Change Response for Second-Order
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lag plus dead time process of equation (11) in Chapter II.
Since the process was a true second-order process, there was
no modeling error involved giving a model-error control
action of zero, The bang-bang control actions dictated by
the open-loop controller were greater than the controller
constraints of + 5. Since the open-loop controller receives
no information concerning the process output, the control
action remains at jits final value after two sample times
regardless of the process response. The result is a very

sluggish response,

Modification of the Kalman Controller

The basic structure of the Kalman controller is a
sound one. An open-loop controller is used to give a mini-
mum-time set point change response for the ideal case of
perfect modeling and unlimited control action. This open-
loop control action is supplemented by a second control action,
based on model error, which serves to eliminate any offset
due to imperfect modeling and provides load compensation when
disturbances are present. However, for the case of controller
constraints, the open-loop controller may give an unacceptable
response, and modification of it is necessary.

A constraint-aware controller which preserves the
optimal nature of the Kalman controller may be derived as
follows, At sample i, suppose we calcuylate the control
action m, which is necessary to bring the process output to

i

the set point, r,

i’ in two sample times. For no dead time and
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perfect modeling, there are three equations which describe

the process output at the next three samples:

Xj41 T Xgma% g tbymythomy g

n

Xi¢3 = -a1xi+2—a2xi+]+b]m1+2+b2mi+]

At sample i, Xy X5.7> and m;_q are known, and if the process

reaches the set point in two sample times, we must have

X.i+2-X- - Y‘-

m

1
-
~
~

it2 i

The three equations can then be solved for Xip1s My and

m Using two equations to eliminate x.

P+ and L and

i+’

solving for m gives

my = Cyrytlox+laxy 4#Cymy (20)

where C] = 5 4B

2
ayb,*tajasby-ayb,

C =
2 Co
2
Y 50 Wale v A
3 C
0




66

- ne 4

Evaluating this control algorithm for a step change in set
point shows that for no controller constraints, the algorithm
is equivalent to the Kalman controller., This fact can be

used to obtain simpler expressions for Cy and C4:

C3 = C][]—C4][a]+a2]—C2—C]C4

However, unlike the Kalman controller, if the control action
calculated by the algorithm has not been input to the process
due to controller constraints, this is reflected in the feed-
back of the process output, and the controller continues in
its attempt to force the process to the set point.

To use the algorithm of equation (20) as the open-loop

controller in the Kalman scheme, the process output can be

replaced by a minimum-phase process model output, xo, to
yield
m. = Cqr.+C,x2+C,x% . +C,m (21)
r; 1 7271 73%i-1 74 rioq
where
0 _ _ o )
S IS LTS B B ALS L L

This giyes an open-loop control action which is independent
of the praocess dead time, Of course, the constrained values

of the controller output are used in these equations rather
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than the cajculated yolues, Below is a z-transform block

diagram of the controller, This controller was used as the

R(z) + 1 Mr(z)

PR e >

C,+C,z~

open-loop controller in the Kalman scheme of Figure 15, and
a simulated set point change for the second-order process
cited earlier was carried out. Figure 17 gives the results
of the simulation and illustrates the improvement over the
original Kalman controller for the case of controller con-
straints.

To investigate the use of the modified Kalman con-
troller for contro]l of higher-order processes, the process
below was simulated using the IBM Continuous System Modeling
em1:0s

(22)
(s+1)°

G(s) =

Program (27) to obtain step response data for sample times

of 0.1 and 1.0. The simulated response data was then
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Process with Kalman Controller Modified for
Controller Constraints
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modeled using the discrete-time mod2ling package in Appendix
A to give the second-order mode] parameters shown in Table
ITI, A CSMP program was also written to simulate direct
digital control of the fifth-order process, and set point
change and load change responses were obtained., Controller
constraints of + 5 were used,

-Figure 18 shows the performance of the modified Kal-
man controller for a unit step set point change and 1.0
sample time. While the process output reaches its final
value in about 12 samples, the control action does not settle
until after another ten samples. For a sample time of 0.10,
the response was nearly the same, but the excessive control
action was more pronounced. After the process had settled at
the set point, the controller output oscillated between 5 and
-3 with a period of about 25 samples.

A unit step load change with a sample time of 1.0 gave
the response shown in Figure 19. In this case, the model-
error controller responds to slowly cancel the disturbance
entering the process.

In an attempt to eliminate the excessive control
action obtained for set point changes, the model error was

filtered using the digital filter

)
S B
z) Tta,z"'+a,7 4

where Kf = l+a]+a2 .



TABLE III

MODEL PARAMETERS FOR FIFTH-ORDER PROCESS

N a] a2 b] b2
0.1 23 -1.9275 0.92957 0.00022 0.00178
1.0 2 -1.3447 0.48876 0.03806 0.10320

0L
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The model-error control action was then based on the filtered

model error, Em(z)r

M (z) = K.E (z)

This approach gave the set point change and load change re-
sponsesof Figures 20 and 21. A sample time of 1.0 was used.
While the process output for the set point change is
essentially the same as that in Figure 18, the control action
reflects a substantial improvement over that for the unfil-
tered case. For a sample time of 0.10, a more drastic im-
provement was observed with the controller oscillations
completely eliminated by filtering the model error. However,
Figure 21 shows that the improved control action for set
point changes is obtained at the expense of a slower load
change response. The second-order filter introduces a lag in
the model-error controller response, resulting in a
slower return to the set point than for the unfiltered case.
Since the model-error controller is essentially a load
estimator, an alternative approach to the estimation of the
disturbance was developed. Assuming that any difference be-
tween the predicted process output and the actual process
output at sample i is due to a step disturbance which enter-
ed at sample i-N-2 will allow estimation of that step and,
therefore, of the present load, For perfect modeling, the

process output at sample i is

S LM L PP L N NI R PR T RPALE P
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which, due to the step load assumption, simplifies to

X§ % magXgogmanXg ptbymy y ytbomy i otIbythyldng (23)

The predicted oytput is

Xj = mayXg_qmagXy_ptbymy y qrbomy y o t[bytbydng y o (24)
where Hi—] js the load estimate for the preceeding sample,

and subtracting equation (23) from this equation gives

Xj=X; = [by#byllng y-nyl

Rearrangement yields a recursive relation for updating the

load estimate:

e}

While the analytical relation for K, is

the use of KI as a tuning parameter gives an integral-mode
estimation of the load. Moore (17) used this method of dis-
turbance estimation in the development of his first-order
analytical predictor for dead time compensation. For the
modified Kalman controller, this approach is attractive in
that~KI can be tuned such that the undesirable effects of the
load estimator upon controller output are lessened for set
point changes withouyt sacrificing good disturbance regulation.
This 7load estimation method was used as the model-

error controller in the Kalman controller scheme, and CSMP
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simulations for various values of KI were obtained. The load
estimate given by equation (25) was subtracted from the open-
lToop control action calculated by equation (21). Note that
for this approach, the predicted process output is obtained
from equation (24) rather than from the disturbance-free
mode] of equation (19). The process was the fifth-order
process in equation (22), the sample time was 1.0, and con-
troller constraints were again set at + 5. To illustrate
programming of the algorithm, a listing of the CSMP program
used for set point change simulations is given in Appendix B.
Simulation results are presented in Figures 22-25.

Figures 22, 23, and 24 show that for a unit step set
point change, the process output is relatively insensitive
to changes in KI' Although calculated values for the in-
tegral absolute error (IAE) show slightly better performance
for a KI value equal to 0.5 Kc’ the real difference is in the
control action. A more desirable controller output is ob-
tained for values of KI less than the analytical value, with
KI = 0.1 KC giving the smoothest control action of the three
cases studied.

As would be expected, lower values for KI gave slower
load change responses. Figure 25 shows that lowering KI
reduces the rate at which the controller output reaches the
value required to cancel the disturbance., The best perfor-
mance is, of coyrse, obtained with K; = K.. However, the

response for K; = 0.5 K. is certain]y acceptable, and in
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view of the correspondiny set point change control action,
this value gave the best overall results,

For comparison, simulated set point and load change
responses were obtained using the discrete proportional-

integral (PI) controller shown below,

T

This is perhaps the most common algorithm in DDC applications
today. The PI algorithm was tuned by simulating the digital
control loop using the second-order discrete-time model of
the fifth-order process. A Pattern search (1) was used to
find those values of Kp and Ty which minimized the IAE in-
tegral criterion for unit step changes in set point and load.

Figure 26 shows the set point change response for the
fifth-order process under discrete PI control. The process
output exhibits a largerrise time and requires longer to
settle out than that for the modified Kalman controller in
Figure 23. In terms of the integral performance criterion,
the modified Kalman controller with KI = 0.5 KC gave a 40%
improvement over the PI controller.

Similarly, the load change response for PI control in
Figure 27 was much slaower than the response obtained with the
modified Kalman controlley, Comparison with the process
response in Figure 25 for KI = 0.5 KC shows that while the

Kalman controller returns the process to the set point with
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negligible overshoot, the process output for PI control is
more oscillatory with an IAE about 1.5 times that for the
Kalman controller.

A final attempt to further speed up the Joad response
for the modified Kalman controller consisted of the approach

diagrammed below:

S Open-loop

’75 controller

A4

b,+b n,

1 72 <

1+a]+a2

To take advantage of the open-loop controller's quick
response to a set point change, the load estimate of equation
(25) was used to reset the set point of the controller. The
load estimate was not subtracted from the open-loop control
action as before, and the only control action sent to the
process was Mr(z). Simulations of this load estimate feed-
back scheme showed that because of the high sensitivity of
the open-loop controller, a KI value of 0.1 Ko was needed to
maintain stability for both set point and load changes, The
load change response corresponding to this value of KI was no

better than that for PI control,



CHAPTER 1V
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

Conclusions

The general conclusion resulting from this work is
that a discrete-time approach to direct digital control
offers definite advantages over the simple adaptation of
continuous contro] techniques. This work has shown that a
single discrete-time mode] is descriptive of many processes
of interest in chemical process modeling. Also, the modifi-
cation of a controller designed by z-transforms gave an
algorithm which promises improved process control. Other
conclusions are briefly summarized in the following para-
graphs,

A lTeast-squares fit of noise-contaminated process
data appears to be inadequate even for extremely low noise
levels. The measurement error introduced in independent
variables of the model causes biased estimates of the pro-
cess parameters. The iterative least-squares modeling scheme
of Steiglitz and McBride (16) is effective in improving the
process parameter estimates resulting from a single least-
squares fit of process data and is easily incorporated in a
computer program for off-line modeling.

The modified Kalman controller obtained by including
controller constraints and reyising the Joad estimation

method of Kalman's z-transform controller (26) is a
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potentially useful algorithm for direct digital control.
Simuylation results show that the modified Kalman controller
gives significantly improved performance over the popular

discrete PI algorithm,

Recommendations

In the modeling of simulated step response data, the
process dead time was the Jeast accurate of the parameter
estimates. The use of more substantial test inputs might
improve the dead time estimate, and the effect of alternative
process inputs for open-loop testing (pulse,ramp,etc.) on the
resulting model parameters is one area for future study.

Because the discrete-time model is applicable to
operating data as well as open-loop response data, the de-
velopment of an on-line modeling scheme for following changes
in process parameters would be a logical extension of this
work. The determinant or, more appropriately, the norm of
the matrix formed by the linear regression summation terms
could be used to judge when significant changes in the pro-
cess input and output had occurred, and, consequently, if the
normal equations were sufficiently independent to allow mod-
eling of the collected data.

An investigation of the effects of modeling errors on
the performance of the modified Kalman controller should be
carried out. The sensitivity of the algorithm to imperfect
knowledge of process parameters would be an important con-

sideration in {its application to control of an actual process,
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Also, some consideration should be yiven to tuning the in-
tegral mode in the Joad estimation portion of the algorithm,
One possible tuning criterion would be the integral of some

function of the set point change controller output and the

load change response,
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APPENDIX A

DISCRETE-TIME MODELING PROGRAM

CooaaadnoadeeaatonaddotaanttoaddcdnidnddldiasaonaraatodnoldatonsRpRanREcOROIRGODY

MODEL == THIS IS THE MAIN PROGRAM OF A MODELING PACKAGE WHICH PERFORMS

A LEAST-SQUARES FIT OF PrROCESS DATA USING THE DISCRETE-TIME MODEL
X(I) = =A18X(I=))=A2aX(I=2)+RB12U(T~N=~1)+B2eU(I-N=2)+D,
THE METHOD USED IS THE ITERATIVE FILTERING SCHEME PRESENTED BRY STEIGLITZ
AND MCRRIDE (IFEE TRANS. ON AUTO. CONTROLy OCT. 196Ss PP. 461-464) WITH
s ONE-DIMENSTONAL SFARCH FOR DEAD TIME, THE USER MUST SUPPLY A DOUBLE
PRECISION SURPROGRAM INPUT OF YHE FORM
SURROUTINE TNPUT (UNsXNyNPTS)

WHICH READS IN THFE PROCESS INPUT (UN) AND PROCESS OUTPUT (XN) DATA TO
RE MODELFD. NPTS IS THE NUMBER OF DATA POINTS,
THE FIRST DATA CARD SHOUI D CONTAIN VALUES FOR THE VARIABLES NPTS (<500)
AND NP IN A (I3+12) FORMAT, NP EQUALS 0 IF NO ESTIMATF OF THE PROCESS
OFFSET IS DESIRED AMD 1 TF THE OFFSET TERM D IS TO BE INCLUDED. FOLLOWING
THIS CARND SHOULD BE THE PROCESS RESPONSE DATA IN THE FORMAT USED IN
SUBROUTINE INPUT, NO OTWER DATA CARDS ARE NECESSARY,
THE PROGRAM NUTPUT CONSISTS OF THE NUMBER OF ITERATIONS REQUIRED (ITER)
VALUES OF THE MODEL PARAMETERS (A(1)sA(2)1ees9A(5))s THE SUM OF THE SQUARED
ERRORS (ESQRD)s AND A PRINT=-0OUT OF THE PROCESS INPUT, PROCESS OUTPUT,
MODEL OUTPUT, AND MODEL FRROR,

I Ty N e Y a L L R L L R R Y LTI L)
DOUBLE PRECISION UN(500) 9XN(500)sU(S500)+X(500)9A(5)+ERRORY
1 Al10LDsA20LDIESQROIESQRDyGAINF s XMIN1 ¢ XMINZ s XMOD s OFFSET
COMMON UNyXNyUsXoNPTS
IIN = §
10UT = 6
READ (IINs1001) NPTSeNP

s NsNeNeNe Nz NeNeNoReNeNeNoNoNoNeNeNe N Ne o Nel

C
c READ IN PROCESS INPUT/OUTPUT DATA,
Cc

CALL INPUT(UNsXNsNPTS)

00 S I=1+NPTS

U(r) = UNC(T)

X(I) = XN(T1)

5 CONTINUE

WRITE (I0UT»1003)

NP = NP+4&

Al0LD = 1.00+50

A20LD = 1.0D+50

D0 40 1TER=1+25

IF (ITER.GT.S) GO TO 25

PERFORM A LEAST-SQUARES FIT OF THE FILTERED DATA,

(g N Xg]

CALL ASUBI(0sNPs1yA+ESQRO)
1€ = NPTS-7
DO 10 N=1+1E
CALL ASUBI(NyNP»24A+ESNRD)
IF (ESQRD.GT.ESQRO) GO TO 20
ESQRO = ESQRD

10 CONTINUF

20 N = N-]

25 CALL ASUBI (NyNPs1+A+ESQRD)

TEST FOR CONVERGENCE OF a(l) AND A(2),

(e NeNel
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IF (DABS(A10LD-A(1)) eLTe2.0D=05.AND.DARS (A20LD~A(2)) L T42.0D-06)
1 GO TO 50

A10LD A1)

AZ20LD A(2)

uwn

C
(o FILTER THE ORIGINAL PROCFSS DATA.
c
GAINF = l.n+A(1)+A(2)
X1 A(5) /GAINF
u2) GAINF#UN(2)=A(1)®2U(])
X(2) GATNF&eXN(2)=-(A(1)+A(2))®X(]1)
DO 30 TJU=3,NPTS
U(TIJ) = GAINFRUN(TJU)Y=A(1)®U(IJ=-1)~A(2)#U(TJU=2)
X(IJ) = GAINFeXN(TIJ)=A(1)®X(IJ=1)=A(2)#X(IJ=2)
30 CONTINUE
40 CONTINUE
WRITE (10UT»1012)
GO TO 60

fntnan

PRINT RESULTS.

[z EeNel

S0 WRITE (I0UT,1011) ITER
60 WRITE (IOUT,1004) N
WRITE (I0UT+1005) )
WRITE (IOUT«1006) (A(I)sI=145)
WRITE (I0UT»1007)

J = N+2
WRITE (IOUT+1008) (UN(T)sXN(I)eI=1sJ)
J = Jel

ESORD = 0,0 .
OFFSET = A(S)/(1.,0+A(1)+A(2))
XMIN] = OFFSET

XMIN2 = OFFSET

DO 70 I=JsNPTS

IN = I-N

XMOD = =A(1)#XMIN1-A(2)#XMIN2+A(3)2UN(IN=-1)
1 +A(4)#UN(IN=2)+A(5)

ERROR = XN(I)=XMOD

ESQRD = ESQRN*ERROR®®#2

WRITE (IOUT,1009) UN(I)sXN(I)9+XMODsERROR
XMIN2 = XMIN1
XMIN1 = XMOD
70 CONTINUE
WRITE (IOUT»1010) NPTS,ESGRD
1001 FORMAT (13,12)
1003 FORMAT (1H})
1004 FORMAT (1HOs3HN =,13)
1005 FORMAT (1HOW6Xe2HAY ¢14X92HA2914X92HBL 914X e2HB29 14X 1HD)
1006 FORMAT (1H +D13.644D16,6)
1007 FORMAT (1HO0927Xs THPROCFSSs10XeSHMODEL /9 13XsSHINPUT 10Xy 6HOUTPUT,y
1 11Xy 6HOUTPUT 91 0X9sSHERRORs/96X94 (16H  =e=-omcemeceao ))
1008 FORMAT (1H +SX+2D16.6)
1009 FORMAT (1H +5X44D16,.6)
1010 FORMAT (1HOs)4HTOTAL PNINTS =414s//924H SUM OF SQUARED ERRORS =,
1 D13.6)
1011 FORMAT (1H 412HITFRATIONS =,13)
1012 FORMAT (1H +14HNO CONVFRGENCE)
CaLL EXIT
END
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SUBRCUTINE ASUBT {NyNPs1CALL+AESQRD)

Cheaanaahecadodddaantiogiosnbocasatitiogoninocdnuinpiododgtanidndonenaongoiotnaaand

C
C
C
c
C
C
C
c
C
C
c

C
c

c

FOR A GIVEN VALUE OF DEAP TIME, Ns THIS SUBPROGRAM SOLVES THE LINEAR
REGRESSION NORMAL EOUATINNS FOR THE COEFFICIENTS A(l)seeevA(S) OF THE
MODEL SHOWN IN MAIN PROGRAM MODEL. SOLUTION OF THE SET OF SIMULTANEOUS
FQUATIONMS IS BY PIVOTAL cONDENSATIOMN. ICALL IS A FLAG VARIABLE WHICH
INDICATES THF POSSIRILITY OF SHORTFRED CALCULATION OF THE NORMAL FQUATION
FLEMENTS., IF ICALL=?s THE DEAD TIME SEARCH HAS BEEN INITIATEDs AND ALL
BUT ONE OF THE SUMMATION TERMS MAY KE CALCULATED FROM THOSE REQUIRED FOR
THE PRECEEDING DEAD TIME ITERATION, OTHERWISEs ICALL=1.

LR EEE-DEE-L 2222002222222 2-R- 2 XL EE RS LELE-ELELELNLLL LS LAY -L 2R X 22222 X

DOURLE PRECISION LIN(SNA) ¢XN(500) »U(500) 9X(500) +A(5) s AM(545) s
1 AUX (20) s FNPRMyPTVOT s ASAVE s AMULT ¢ XMOD9ESQRD ¢ XMIN1 o XMIN2
DOUBLE PRECISION SXX9sSXUsSDsSUUWOFFSET

COMMON UNy¢XNyUeXsNPTS

NPRM = NPTS-N-2

FNPRM = FLOAT(NPRM)

IB = N+3

COMPUTE NORMAL EQUATION FLEMENTS,

GO TO (10+40910)sICALL

10 DO 20 1=1+20

AUX(I) = 0,0

20 CONTINUE

D0 30 1=IBWNPTS

IN = I-N A

AUX(1) = AUX(1) +X(I=])ee2
AUX(2) = AUX(2) +X(I-2)&X(I=1)
AUX(4) = AUX(4) +U(IN=1)®X(I=1)
AUX(5) = AUX(5) +U(IN=1)®X(I-2)
AUX(6) = AUX(6) +U(IN=1)®®2
AUX(7) = AUX(T) +U(IN=2)%X(I=1)
AUX(9) = AUX(9) +U(IN=2)2U(IN=1)
AUX(13) = AUX(13)+U(IN=]1)
AUX(1T) = AUX(17)+X(1)aX(I=2)
AUX(19) = AUX(19)+X(I)aU(IN=2)
AUX(20) = AUX(20)«X(I)

30 CONTINUE

GO TO 60

40 IN = NPTS-N

AUX (1) = AUX(1) =X(Ne+j)eo?
AUX(2) = AUX(2) =X(N)aX(N+1)
AUX{4) = AUX(T) =U{1)aX(Nel)
AUX(S) = AUX(B) =U(1)&X(N)
AUX(6) = AUX(K) -U(IN)®e82
AUX(7) = AUX(19)=U(IN=1)8X(NPTS)
AUX(9) = AUX(9) =U(IN=1)#U(IN)
AUX(13) = AUX(13)-U(IN)

AUX(17) = AUX(17)=X(N+2)8X(N)
AUX(20) = AUX(20)=X(N+?)
AUX(19) = 0.0

DO SO0 T=IBJNPTS

IN = I=N

AUX (19) = AUX(19)+X(I)sU(IN-2)

50 . CONTINUE
60 IN = NPTS-N

AUX(3) = AUX(]1) ¢X(N+})@82=-X(NPTS=-1)4ae?

AUX(8) = AUX(4) +U(1)eX(N+]1)=U(CIN=1)2X(NPTS-1)
AUX(10) = AUX(6) «U(1)e82-U(IN=-]1)oe2

AUX(11) = AUX(20)+X(N+2)=X(NPTS)

AUX(12) = AUX(11)+X(N+]1)=X(NPTS~1)

AUX(14) AUX(13)+U(]1)=U(IN=1)



AUX(15) = FNPRM
AUX(16) = AUX(2) +X(NPTS)CX(NPTS=1)~X(MN+2)8X(Ne])
AUX(18) = AUX(T) «X(NPTS)PU(IN=1)=U(L1)eX{N+2)

IF (NP.LT.5) GO TO 70
GO TO 90
70 DO B0 T=1+5
AUX(I+10) = 0.0
80 CONTINUE
AUX(20) = 0.0
A(5) = 0,0
90 I = )
DO 100 IC=1+5
AM(ICs6) = AUX(IC+15)/FNPRM
DO 100 IR=1,IC
AM(IR,IC) = AUX(I)/FNPRM
AM(ICyIR) = aAamMiiReIC)
1 = Ie)
100 CONTINUE
(of
C SOLUTION OF THE NORMAL EQUATIONS,..
¢ .

IE = NP-1
DO 150 IELIM=1,IE
I8 = TELIM«]

LOCATE THE LARGEST COLUMN MEMBER FOR USE AS THE
PIVOT ELEMENT FOR THIS ELIMINATION STEP,.

(e NeNeXe]

PIVOT = AM(IELIMyIELIM)
IROW = TELIM
DO 110 IR=IBsNP
IF (DARS(PIVOT).GT.DABS(AM(IRsIELIM))) GO TO 110
PIVOT = AM(IRsIELIM)
IROW = IR
110 CONTINUE

INTERCHANGE ROWSs IF NECFSSARY,

o000

IF (IROW.EQ.TELIM) GO 70O 130
DO 120 IC=IELIMy6
ASAVE = AM(TELIM,IC)
AM(TELIMoIC) = AM(IROW,.IC)
AM(TROW.IC) = ASAVE

120 CONTINUE

PERFORM ELIMINATION,

(s XeXe]

130 DO 140 IR=IB«NP

AMULT = AM(TRsIELIM)/AM(IELIM,IELIM)

DO 140 IC=IB+6

AM(IRsIC) = AM(IRyIC)=aMULT#AM(IELIMyIC)
140 CONTINUE
150 CONTINUE

CALCULATE MODEL COEFFICIFNTS BY BACK SUBSTITUTION,

[a NeKe]

DO 160 IR=]14NP
A(IR) = AM(IRs6)/AM(IR,IR)
160 CONTINUE

IN = NP+l
NO 170 1I=1,I1E
IR = NP~-I

DO 170 JU=1,1
IC = IN-J



98

A(IR) = A{IR)=AM(IRsIC)/AM(IR,IR)*A(IC)
170 CONTINUE
AC)) = ~A())
A(?) = =A(2)
c
C COMPUTE THE SUM OF THE SQUARED ERRORS,
c
SXX = AUX(1)¢X(NPTS)282=-X (N+2)##2+A(2)2A(2)#AUX(3)
1 +2.09A(2)%AUX(17)+A(1)%A(1)SAUX(1)+(2,02A(1)®A(2)8AUX(2)
2 +2.08A(1)®AUX(16))
SXU = (A(3)2AUX(1A)+A(P)PA(4)PAUX(A)) +(A(4)2AUX(19)
1 +A(2)CA(3IBAUXIB) I+ (A1) EA(3) SAUX(4) «A (1) PA(4) SAUX(T))
SD = A(S)®(AUX(29)+A(2)2AUX(12) +£ (1) RALX (11) +(=A(3)2AUX(13)
1 -A(4)YAUX(1647=0,5%A(5) 2FNPRM) )
SUU = A(3) A (3)%AUX(6)+A{4)#A(L)BAUX(10) ¢2,0%A(3) %A (4)#AUX(9)
ESORD = (SXX+5UU)=2,0% (SXU+SD)
RETURN
END

SUBROUTINE INPUT (UNsXN4NPTS)
R o R Y L T T 2 2 Y )

(o
C THIS 1S AN EXAMPLE 0OF THF USER-SUPPLIED SUBPROGRAM FOR READING IN PROCESS
(o INPUT/QUTPUT DATA FOR THE DISCRETE-TIME MODELING PACKAGE.
g#¢¢§ﬂoaaccuq&#o#aoécaaqo&oaoooaqouoa#oc@nuuo#ﬂ&ﬁanaoaoooo##u»aaﬁoaQoaquoucﬁaoqo
DOUBLE PRECISION UN(500) ¢ XN(500)
IIN = 5§
DO 10 1=1sNPTS
READ (TIN»1001) UNCI)exN(I)
10 CONTINUE
1001 FORMAT (2F10,6!
RETURN
END



APPENDIX B

CSMP SIMULATION PROGRAM

(22X 22222 222222222 X222 RX2 XX 2 1

LR B B BB BN B B A A B BN BN BN DR BN CBE BN ]

THIS IS A CSMP PROGRAM FOR STMULATING DIRECT DIGITAL CONTROL OF A
FIFTH-ORDER PROCESS USING THE MONIFIED KALMAN CONTROLLER,

THF INITIAL SECTION INITIALIZES PAST VALUES OF CONTROL ACTION, MODEL
OUTPUTSy AND THE LOAD ESTIMATE Tn ZERO., ALSOs MODEL PARAMETERS ARE
DEFINED AND CONTROLLER CONSTANTS ARE CALCULATED.

THE DYNAMIC SECTTON CONTAINS THE CONTROL LOOP SIMULATION, IT CONSISTS

OF TWO PaRTS: (1)THE DISCRETE-TIME CONTROLLER AND (2)THE CONTINUOUS
PROCESS AND THE ZERO-ORDER HOLD. AT EACH SAMPLE TIMEs THE MINIMUM=-

PHASE MODEL OUTPUT XZM IS CALCULATED AND USED IN THE CALCULATION OF MR,
THE OPEN-LOOP CONTRO{. ACTION., THIS CONTROLLER CUTPUT IS THEN CCNSTRAINED
TO AN ABSOLUTE VALUE OF 5.0, NExTs THE NON-MINIMUM PHASE MODEL OUTPUT
XMOD TS EVALUATED AND USED WITH THE SAMPLED PROCFESS OUTPUT XZ TO DETERMINE
THE LOAD ESTIMATE NEST, THIS LOAD ESTIMATE IS SUBTRACTED FROM MR

AND THE RESULT CONSTRAINED TO GIVE MZ(1)y THE MODIFIFD KALMAN CONTROLLER
OUTPUT. PAST CONTROL ACTIONS ARE MAINTAINED IN A RUNNING STORAGE TABLE
USING THE M2 VECTOR,

MZ (1) IS INPUT TO A ZOH TO YIELD THE CONTINUOUS CONTROL ACTION TO THE
PROCESS. XS IS THE CONTINUQOUS PRNCESS OUTPUT,.-

(222222002 2220220222t ssy2 222 syl 20RRR2dd X R Xests g

/ DIMEMSIGN M2139)
FIXED NMyIEsIsJ
INITIAL
NOSORT
NS = 0.0
1AE = 0,0
MRl = 0,0
MR2 = 0,0
XZM = 0,0
XZM1 = 0,0
XZM2 = 0,0
XZ = 0.0
XZ1 = 0,0
XZ2 = 0,0
RZ = 0
SAMPT = 1,00
DLAYX = SAMPT®]1,0
NM = 2
Al = =0.,13446TE+]
A2 = 0.488763E+0
Bl = 0.380643E~1
B2 = 0.103196E+0
Cl = 1.0/(B1+R2)
C?2 = (A2 (B2+A1%B1)~A1®A1%B2)/(B2#(B2~A1%B1)+A2%B1+%B])
C4 = A1-C2%B]
C3 = C1#(1.,0-C4)#(A1+A2)-C2=C1%C4
KI = 0.5%#C1
NEST1 = 0.0
IF = NM+3
DO 20 I=1+1E
MZ (1) = 0,0

20 CONTINUE
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100

DYNAMIC
NOSORT

RS = STFEP(0,0)
T = THMPULLS(0,.0+SAMPT)
IF (T,NE+.140) GO TO 10
IF (KEEP.NE.1) GO TO 10
R7 = RS
XZ = XS
18E = TAE+ABS(RZ~XZ)®SAMPT
X?2M = -Al°XZMl-A2“XZM2~R]”MR]0BZ“M82
MR = CloRZ+C24X7M+C39XZM)+C4alR]
IF (MR,GT.5,0) MR=R.0
IF (MR.LT.=5,0) MR==5,0
XMOD = =~Al®XZ1=-A2°XZ2+B1#MZ(TE~1)+R2®MZ(1E)+(B1+B2)*#NFST1
NFST = NEST1-KI®(XMON=XZ)
El = XMOD=-XZ
M7 (1) = MR=NFST
IF (MZ(1)eGE.5.0) MZ(1)=5,0
IF (MZ(1).LE.=-5.90) MZ(1)==5,0
DO 30 [=2+1E
J = 1E=-1+2

S MZ(J) = MZ(J-1)

30 CONTINUE

MR2 = MR1
MR1 = MR
XZM2 = XZM1
XZM1 = XZM
X22 = XZ1
XZ1 = XZ

NEST1 = NEST

1¢ COMTINUE
MS = ZHOLD(TsMZ(1))
INPUT = MS+NS

OUT]) = REALPL(0,0+1.0sINPUT)
0UT2 = REALPL(0.0s1.0,0UT1)
OUT3 = REALPL(0.09140,0UT2)
OUT4 = REALPL(0.051.0+s0UT3)

XS1 = REALPL(0.,0+1.090UT&)
XS = DELAY(100sDLAYX9sXS1)
TERMINAL
NOSORT
WRITE (6+1001) IAE
1001 FORMAT (1H 4£13.5)
TIMER FINTIM=40.,0s0UTDEL=0.19DELT=0.10
METHOD RKSFX
END

SToP
ENDJOR
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