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ABSTRACT 

This research demonstrates the feasibility of using neural backpropagation 

networks to perform neutronic calculations in a pressurized water reactor. The 

LEOPARD (Lifetime Evaluating Operations Pertinent to the Analysis of Reactor 

Design) code is used to generate data for training four ( 4) different models to relate 

the infinite multiplication factor, K-INF, of a fuel assembly at the end of a burnup 

step to the assembly local parameters. The RPM (Reload Power Mapping) code is 

used to generate training and testing data for three (3) different models to relate 

relative power distribution of fuel assemblies to the infinite multiplication factor of 

each assembly. Testing LEOPARD models has shown that it is not possible to utilize 

a general fuel assembly network to relate K-INF to the assembly domain parameters, 

rather a different network should be designed for each assembly type. Of the RPM 

models tested, the patterned network has resulted in the most accurate predictions 

of relative power distribution. An expert system is also designed using OPS5 to assist 

in the determination of core reload patterns. A computer code is written using 

Microsoft Excel to provide an interface between the operator and the neural network 

code, to construct an interaction between RPM and the user, and to develop a 

manual fuel shuffling capability using a graphical interface. 
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CHAPTER I 

INTRODUCTION 

The determination of initial core and reload core parameters is the primary 

concern ofln-Core Fuel Management. These parameters include refueling schedules, 

refueling patterns and control plans that will satisfy energy requirements, safety 

criteria, and design limitations. 

Most pressurized water reactors (PWRs) operate for a cycle of 16-18 months. 

At the end-of-cycle (EOC), the reactor is shut down to be refueled. During 

shutdown, about one third of the fuel assemblies are discharged and replaced with 

fresh fuel assemblies. This partial refueling scheme is selected based upon the results 

of optimization studies on reload cores. These studies are performed with the 

objective of minimizing fuel cost. Six to eight months prior to shutdown, the reload 

batch parameters are predicted in order to determine the amount of fuel that should 

be ordered for the new cycle. 

Determination of the core loading pattern is based on the previous history of 

the reactor core and the characteristics of the fresh batch. Normally, the 

configuration of fuel assemblies inside the core is determined based on a set of rules 

and the experience of the in-core fuel management group. Once this configuration 

is chosen, computer codes are implemented to verify the selection. The computer 

codes evaluate core power distribution, fuel depletion, and control adjustment 

requirements which will ultimately satisfy the thermal limitations, safety and economic 
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constraints of the reactor cycle. Multigroup diffusion theory is one of the methods 

used to calculate the core power distribution. One-, two-, or three-dimensional 

analysis may be used, depending upon the constraints of the problem of concern. For 

example, a preliminary feasibility study would require only a one-dimensional analysis, 

while determination of power peaks in a fuel assembly would require a much more 

involved three-dimensional analysis. [1, 2, 3, 4, 5, 6] 

A fuel depletion analysis is performed to determine isotopic changes over time 

and space in the reactor core. A rate equation is written for each of the principal 

isotopes (i.e., 238U, 23SU, and 239Pu). Other less significant isotopes are lumped 

together by groups into fictitious elements, and a rate equation is written for each of 

these fictitious elements. In order to solve the rate equation, the neutron flux must 

be known. The core cycle is divided into time intervals known as burnup steps, and 

neutron flux is calculated for each burnup step using multigroup diffusion theory. 

Assuming the flux is constant over a burnup step, the neutron fluence can be 

determined over the entire core cycle. Neutron fluence is then used to determine the 

isotopic inventory of the reactor core for each burnup step. [1, 2, 3, 4, 5, 6] 

Additionally, a control plan must be implemented to ensure criticality in the 

reactor. [1, 2, 3, 4, 5, 6] The three control mechanisms at the disposal of the in-core 

fuel management group include control rods, chemical shim, and burnable poisons. 

The in-core fuel manager must make decisions concerning the locations of control 

rod assemblies throughout the core, the isotopic composition of the control material 

inside each burnable poison pin and their locations, and soluble poison scheduling. 
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An expert system may assist in and coordinate the planning tasks of the in­

core fuel management group by speeding up the process of decision making and 

preserving the experience of the experts in a set of rules, thereby minimizing 

shutdown time of the reactor. 

The amount of time and money which neutronic calculations require is costly. 

[5] Thus, a new model designed to mimic reactor power distribution, as well as 

determine other core parameters, would be highly beneficial. A neural network lends 

itself well to performing neutronic calculations because it has the ability to capture 

the non-linear behavior of many reactor phenomena. In this research a neural 

network using back propagation is introduced to model certain neutronic parameters 

extracted from computer codes, including Reload Power Mapping (RPM) and 

Lifetime Evaluating Operations Pertinent to the Analysis of Reactor Design 

(LEOPARD). 



CHAPTER II 

NEURAL BACKPROPAGATION NETWORK 

Background 

A neural backpropagation network (BPN) is so named because of the training 

algorithm used in modifying the connection weights of the neural network. The BPN 

was discovered in 1969 by Bryson and Ho, and rediscovered in independent research 

by Werbos in 1974, Parker in the 1980s, and by Rumelhart, Williams, and other 

members of the PDP group in 1985. [7] In this chapter, a fully-connected, feed­

forward, three-layered BPN network is utilized. The operation of training and testing 

the network and the premanipulation of data are also discussed. 

Network Structure 

A BPN is a hierarchical network consisting of, at a minimum, three layers: an 

input layer, a hidden layer, and an output layer. The input layer is connected to the 

hidden layer and the hidden layer to the output layer via connection weights. Each 

layer can be fully or partially connected to the succeeding layer. The input layer is 

a fan-out layer which means that no modification of the input vector is performed, 

since no transfer function (sometimes called activation function) exists for nodes at 

this layer. The input layer accepts an input vector from the outside world and the 

output layer sends the processed input back to the outside world. The function of 
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the hidden layer is to create an internal representation between input and output 

patterns. Every layer consists of a set of nodes (sometimes called neurodes, units, 

processing elements, or artificial neurons). These nodes are abstractions of the 

neurons found in the brain. The biological neuron consists of the following 

components, as shown in Figure 2-1: 1) a nucleus; 2) dendrites; 3) the axon; and 4) 

synapses. The nucleus receives the inputs through the dendrites from neurons 

connected to it via the synapses. The nucleus then processes the inputs and sends 

the resultant signal to the output path (axon). The axon splits into other paths and 

sends the output to other neurons via junctions called synapses. The adjustment of 

the synapse represents the basic process of memory, and it occurs during the training 

process of the brain. The synapse modifies the signal and transmits it to the dendrite. 

The artificial neuron, or neurode, behaves in a similar manner. The processing 

element (see Figure 2-2) consists of the following components: 1) input paths; 2) the 

transfer function; 3) output paths; and 4) junction weights. The neurode operates in 

the following manner: A neurode sends a signal through its output paths (axon) to 

the input paths (dendrites) of other neurodes, and the processing elements sum all 

the inputs as a net weighted sum. The transfer function (nucleus) then modifies the 

weighted inputs and sends the outputs to other neurodes in the succeeding layer or 

layers. The similarities between the artificial neuron and the biological neuron are 

clear. One operational difference, however, is the nature of processing information. 

A biological neuron is primarily electro-chemical in nature, whereas the artificial 

neuron is electrical in nature. [8] 
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BPN is one of the most widely used neural networks. BPN is used in the 

following applications: 

1) Encoding and data compression; 

2) Signal processing; 

3) Noise analysis; 

4) Stock market predictions; 

5) Converting English letters to phonemes; 

6) Pattern classification; and 

7) Non-linear adaptive control. [9] 

Network Operation 

In this discussion a fully connected, feed-forward, three-layered network is 

assumed (see Figure 2-3). A sigmoidal function of the form shown in Figure 2-4 is 

also assumed for the nodes at the hidden and output layers. The training of the 

network takes place at two stages, forward pass and reverse pass. 

Forward Pass 

The input vector is fanned out from the input layer and distributed to all the 

nodes in the hidden layer. Each node at the hidden layer receives a modified input 

vector. The operation between the input layer and the hidden layer is shown in 

Figure 2-5. A net weighted sum is calculated as follows: 
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where i = the ith node at the input layer; 

j = the jth node at the hidden layer; 

Xi= the ith component of the input vector; 

Wij = the weight connection between the ith node and the jth 

node. 

The net weighted sum is an input to the transfer function at the jth node. Yi 

is operated on by the sigmoidal function which is defined as follows: 

where </Jj = the output of the jth node 

This procedure is followed for all the nodes in the hidden layer. The output 

vector is transmitted to all the nodes in the output layer. The operation between the 

hidden layer and the output layer is shown in Figure 2-6. The same procedure is 

followed for the output layer nodes. 

Reverse Pass 

At the output layer, an error vector is obtained. This error vector is calculated 

as follows: 
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where -t = the desired output vector; and 

4> = the actual output vector. 

The weights between layers are modified based on the generalized delta rule. This 

rule is a descent gradient method where the weights are modified in the direction of 

minimizing the network error. An error function is obtained from the error vector: 

where 

1 '°' 2 E = _L.Je1c 
2 k 

et = the error at node k of the output layer. 

Applying the Chain Rule, the error function is differentiated with respect to the 

connection weight as follows: 

where 

and 

aE a<1>1c az1c -----

<Pt = the output of the kth node; 

Zt = the input to the kth node; 

Wit = the connection weight between the jth and kth nodes; 

</Ji = the output of the jth node of the hidden layer; 
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The change in the weight connection between the jth and kth nodes is evaluated as 

follows: 

where P = the learning parameter. 

The weights are modified by the following relationship: 

The weights between the hidden and input layers must be treated differently than in 

the above method. Because no target vector exists at the hidden layer, the error 

cannot be calculated as previously done for the output layer. The error at the hidden 

nodes is evaluated by propagating the error calculated at the output layer back to the 

hidden nodes: 

The above equation can also be written as 
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where ei = the error at node j of the hidden layer. 

The change in the weight connection between the ith and jth nodes is evaluated as 

follows: 

where Xi = the ith component of the input vector. 

In the above discussion, it is assumed that the weight modification is performed after 

every input-output vector presentation to the network. In other words, every pattern 

sees a different weight matrix. Another method can be used where an overall error 

function is defined as the summation of all the global errors (a global error in this 

context is defined for each pattern). In this method, all patterns see the same weight 

matrix between each layer. The modification of the weights is performed after 

presenting the last input-output pattern. Once training is completed, the network can 

be tested on a set of new patterns which it has never seen before. Training is 

complete once the constrained error (user dependent) is achieved. 

Network Pitfalls 

Some problems exist with the backpropagation algorithm. These include local 
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minima and network paralysis. The local minima occur due to the use of the descent 

gradient method. The surface of the error function is a very complex one, consisting 

of hills and valleys. The network can be trapped inside a local minimum, and the 

corresponding weight change will then be so small that it does not contribute to any 

weight modification. The remedy for this problem is to add a fraction of the change 

of the weight in the previous cycle and in the same direction. For example, a 

momentum term can be added to reflect the changes (memory term). The 

momentum coefficient is a number between zero and one. The best value to use is 

0.9. [10] 

Network paralysis is caused by the derivative of the output of the node with 

respect to its input. If the derivative is close to zero, it means that the function input 

lies in the region where the function range is flat. A remedy for this problem is to 

randomize the weights again and to retrain. 

Data Treatment 

Raw data is manipulated before it is presented to the network. Some 

advantages of performing the manipulation include reduction of training time and 

prevention of the exponential growth of the transfer function of the neurode. 

Normalization and scaling are the most widely used manipulation schemes. Each 

data file is treated at two different levels: 1) a global level where the whole file is 

treated as one unit, and 2) a partial level where the data file is treated as a data 
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base. At the partial level, the manipulation scheme is applied to each field or to 

each record. Different methods of normalization and scaling exist. One method of 

normalization used in the ANSIM software is to calculate the average of the treated 

data and then to subtract this average from each component of the treated data. 

Thus, the average of the modified data is approximately equal to zero. [11] One 

method of scaling is to determine the maximum and the minimum of the data and 

to find a range where the user wants to insert the values ( e.g., between 0.5 and -0.5). 

A slope of the straight line can be determined and the data components can be 

mapped to values on the straight line. 

Some disadvantages exist to using these methods. One disadvantage is the loss 

of details from the data. Other methods exist wherein details of the data can be 

preserved. One of these methods is the extended code, where data is treated in 

binary code form. 
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CHAPTER III 

LEOPARD AND RPM MODELING 

Introduction 

In this chapter, a backpropagation network is implemented to approximate a 

mapping between the fuel assembly local parameters and the fuel assembly 

multiplication factor. It is also used to relate the global interaction of fuel assemblies 

in order to measure relative power distribution based on the multiplication factors 

of the fuel assemblies. 

Problem Statement 

The objective of this study is to measure the infinite medium multiplication 

factor, K-INF, as a function of fuel assembly burnup and other assembly local 

properties, such as burnable poison and soluble poison. When these assemblies are 

loaded to the reactor core, the relative power distribution is calculated, given 

assembly description and location. The purpose of the study is thus based on 

individual specifications of the fuel assemblies and on the interaction of all the 

assemblies when they are inside the reactor core. The backpropagation network is 

used to replicate neutronic software with neural networks. 
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Methodology 

A set of different architectures of networks is designed to relate K-INF to the 

assembly descriptors and to relate assembly relative power at that value of K-INF. 

In this research, the LEOPARD and RPM codes are used to generate data sets for 

the neural network. 

The use of backpropagation as an approximate method for mapping of Rm -

Rn has been the subject of research. The proof of such an approximation is given by 

Cybenko. [12, 13] The question of how many hidden nodes are required can be 

answered based on the number of training patterns or the number of input nodes. 

An optimal number of hidden nodes has been suggested by Baum and Haussler [14], 

but there is no unique set of weights that will satisfy a particular mapping. 

A software package called NETS is used in all of the models designed in this 

research. NETS was developed by a group of engineers at the National Aeronautics 

and Space Administration (NASA). [15] This software is based wholly on the 

backpropagation training algorithm. Two types of networks can be designed using 

this software: a partially connected or a fully connected network. The training files 

prepared for this software have a specific format, depending on the type of network 

under consideration. The software allows the user to select the range of weight 

values, or it can determine a range by default. A choice of adding a bias term is also 

available. One of the chief advantages of this software is the way it treats the 

learning parameter. The learning parameter is the fraction of weight change added 
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to the weight matrices during each cycle of training. This parameter changes 

dynamically during each cycle, based on a polynomial formula. This formula is not 

mentioned explicitly in the software manual. 

Related to the learning parameter is a scaling factor. This scaling factor is a 

measure of how fast the learning parameter is changing. In each cycle, the learning 

parameter changes as a function of the scaling factor. NETS also provides as an 

output the RMS error and the MAX error. The MAX and RMS errors are provided 

at each cycle, after all patterns proceed through the network. In other words, the 

modification of the weights occurs after all the input-output patterns pass through the 

network. 

LEOPARD Modeling 

Fuel assemblies can be categorized in the following ways: 1) fuel assemblies 

with burnable poison; 2) fuel assemblies with control rods; 3) fuel assemblies with 

burnable poison and soluble poison; and 4) fuel assemblies with no burnable poison 

and no soluble poison. In this research, LEOPARD was used to generate assembly 

data descriptions for· several types of fuel assemblies. 

Data Generation 

Five data sets were generated for the purpose of training and testing. Two of 

these sets were generated given soluble poison contents and burnable poison 
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concentration for each burnup step. The other three sets were generated by 

LEOPARD with no soluble or solid burnable poison. All of these assemblies were 

depleted for different burnup step lengths for a maximum of 20 burnup steps. Out 

of each LEOPARD run, the following information was extracted: 1) the burnup at 

the beginning of each burnup step; 2) the length of each burnup step; 3) the 

concentration of soluble poison at the beginning of the burnup step (if soluble poison 

exists); 4) the burnable poison contents at the beginning of the burnup step (if 

burnable poison exists); 5) the initial value of K-INF associated with the burnup step; 

and 6) the final value of K-INF of each burnup step. Different models are used to 

associate final K-INF to descriptors associated with each assembly depth. 

Model A 

In this model, two data sets are used to train the network. The objective of 

this model is to associate final K-INF to initial K-INF, initial burnup, change in 

burnup and poison concentration. The training data consists of five columns. Each 

column corresponds to a fuel assembly descriptor. Zeros are used to fill the spaces 

where poison does not exist. 

The network structure consists of three layers, as shown in Figure 3-1. The 

input layer consists of five (5) nodes corresponding to each input parameter of the 

fuel assembly. Eleven nodes are used in the hidden layer. This number of hidden 

nodes is not an optimal number, but it is a sufficient number to use to capture the 

behavior of the fuel assembly. The number is chosen based on Kolomogrove's 
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Theorem [16], and not on the number of training patterns. At the output layer only 

one node is used. Biases are introduced between the input layer and the hidden 

layer, and between the hidden layer and the output layer. 

Model B 

The objective of this model (see Figure 3-2) is to determine whether a 

network can behave like a fuel assembly where only three inputs are given: initial 

burnup, change in burnup, and initial K-INF, to predict the values of K-INF 

regardless of poison concentration. This model reflects that these three parameters 

are sufficient to find K-INF, while other parameters are learned implicitly by the 

network. The same training patterns used in Model A are used here, but the 

columns corresponding to the poison concentrations are removed. 

Three layers are also used here, where three (3) nodes are used in the input 

layer, seven (7) nodes in the hidden layer, and one (1) unit in the output layer. 

Biases are introduced between the input and hidden layer, and between the hidden 

and output layers to ensure stability of the network. 

Model C 

This model (see Figure 3-3) is used to predict the behavior of fuel assemblies 

that contain only burnable poison and soluble poison. The purpose of this model is 

to obtain a better generalization of results when tested with the same type of fuel 

assemblies. 
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A three-layer network is used in this model. The input layer contains five (5) 

nodes, while the hidden and the output layer contain eleven (11) and five (5) nodes, 

respectively. The number of training patterns used in this model is 18. 

Model D 

Fuel assemblies which contain neither burnable nor soluble poisons are 

modeled here (see Figure 3-4). This model is used because a general network, as 

based on Models A and B, performed poorly in predicting assemblies of this type. 

The network structure consists of three layers. The input layer contains three 

(3) nodes, the hidden layer contains seven (7) nodes, and the output layer consists 

of one (1) node. A bias is used between the hidden and output layers. The learning, 

scaling, and momentum parameters are used globally between the layers. In other 

words, the same value of each parameter is used in every layer. 

RPM Modeling 

In all of the models developed for the RPM code, one-eighth (1/8) core 

symmetry is assumed. All of the fuel assemblies have the same properties, except for 

the amount of potential reactivity that exists in all of the fuel assemblies. (More 

information concerning RPM modeling is given by Driscoll. [2] 
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Data Generation 

A set of thirty-one (31) fuel assemblies was input to the RPM code. The 

values of reactivity potential for these assemblies are different. Thirty-one fuel 

assemblies are reflected with respect to the 1/8 symmetry line to have a reactor core 

containing 193 fuel assemblies. The relative power distributions are calculated at 

beginning of cycle (BOC) and end of cycle (EOC), and are placed in a file. The fuel 

assemblies are shuffled and relative power distribution is recalculated. A set of 110 

shuffling patterns were obtained to respond to the RPM software. 

The potential reactivity, p, is the amount of reactivity produced by the fuel 

assemblies in the absence of poison or leakage. Potential reactivity of the fuel 

assemblies is mapped into K-INF using the following formula: 

1 
k = ---

1 - p 

and the relative power is scaled by the equation 

y = log10 (2 + x) , 

where x = Assembly relative power; and 

y = Scaled assembly relative power. 

A linear scaling was used in this work, but the scaled values accumulated at 

about a point of 0.2 - 0.25; in this region the sigmoidal function performs poorly. 

Model A 

In this model (see Figure 3-5), a three-layered, feed-forward, fully connected 
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backpropagation network is used. The first layer contains thirty-one (31) nodes, one 

node per fuel assembly. The hidden layer has sixty-three (63) nodes, and the output 

layer consists of thirty-one (31) nodes, one node per fuel assembly corresponding to 

relative power. The idea behind this design is to give the hidden nodes a global view 

of all of the 31 fuel assemblies. In other words, each of the hidden nodes will accept 

modified values from each core shuffling, or behave like global nodes to see if such 

a modeling can capture the interaction of the fuel assemblies to generate a power 

distribution. Ten training patterns are used in this model. The network parameters 

are selected globally, where the same learning, scaling, and momentum parameters 

are used between each layer. 

Next-Door Neighbor Model 

The motivation behind this model (see Figure 3-6) is the design of a two­

dimensional grid used in numerical methods of solving the diffusion equation. Each 

fuel assembly has a top neighbor, a bottom neighbor, a left neighbor, and a right 

neighbor. The K-INF of these assemblies are given and a grid layer of all fuel 

assemblies in the core is designed in the same way. 

The network structure consists of three layers. The input to the hidden layer 

is partially connected, while the hidden layer to the output layer is fully connected. 

The input layer consists of a set of (5 x 31) nodes. The hidden layer has a set of 31 

nodes, and the output layer contains 31 units. 

Ten training patterns are used for this network. The network learned these 
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examples after 50 cycles, achieving a maximum error of 0.064 % and a RMS error 

of 0.019 %. Global parameters are used in this network. The learning parameter 

used is 0.484, and the scaling factor is 0.065. The momentum term is approximately 

0.9. 

Patterned Network 

In this model ( see Figure 3-7), the idea is to allow the nodes in the hidden 

layer to get a local view of each region. This analysis is similar to the analysis of 

pattern recognition, where the input is divided into regions and the network learns 

the importance of each pattern by considering partial patterns of the input layer. 

The input grid of this network consists of (9 x 10) nodes. The hidden layer 

consists of 56 nodes, and the output layer has 56 nodes. The output layer nodes are 

imposed on the network due to the design of the input grid. Each pattern consists 

of a (3 x 3) matrix, with one node overlapping for each pattern. 

The network is trained on a set of 100 patterns. After 500 training cycles, the 

network converged with a maximum error of 0.054 % and a RMS error of 0.011 %. 

Global network parameters are used in this design. The learning parameter is 

approximately 0.268, the scaling factor is 0.072, and a momentum term of 0.9 is used. 

Results 

The training results for the LEOPARD models are given in Table 3-1. The 
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TABLE 3-1: TRAINING RESULTS OF ALL LEOPARD MODELS 

MODEL A B C D 

INPUT 5 3 5 3 
LAYER 

HIDDEN 11 7 11 7 
LAYER 

OUTPUT 1 1 1 1 
LAYER 

LEARNING 1.36363 2.142857 1.36363 2.14 
PARAMETER 

SCALING 0.036852 0.011582 0.036852 0.012846 
FACTOR 

MOMENTUM 0.9 0.9 0.9 0.9 
TERM 

TRAINING 9 12 10 5 
CYCLES 

MAXIMUM 0.06805 0.03312 0.03306 0.023138 
ERROR 

RMS 0.033556 0.01513 0.016672 0.012846 
ERROR 
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training results for the RPM models are given in Table 3-2. The training data sets 

for LEOPARD Models A-Dare shown in Appendix A, in Tables A-1 through A-4. 

Training data sets for the RPM models are shown in Tables A-19 and A-20. After 

training is completed, these models are tested on a set of test data. 

Testing of Leopard Models 

LEOPARD test data are constructed based on each of the models discussed 

above. Three sets of data are generated by LEOPARD. Test set (1) is based on a 

different enrichment and soluble poison schedule. The burnable poison 

concentration is also different from the training data set of Models A and C. The 

other two test data sets are built based on two different enrichments and no poison 

present inside the assembly. 

Model A is tested on data set (1) and data set (2), as shown in Tables A-5 and 

A-6. Test results are given in Tables A-12 and A-13. For data set (1), the maximum 

error approached is 12.35 %, and the minimum error achieved is 0.23 %. For data 

set (2), the maximum error obtained is 34.36 %, and the minimum error is 8.10 %. 

Model B is tested on the same sets of data as Model A, except poison 

concentrations are now eliminated from the data sets (see Tables A-7 and A-8). Test 

results are shown in Tables A-14 and A-15. For data set (1), the maximum error is 

15.94 %, and the minimum error is 2.20 %. For data set (2), the maximum error 

obtained is 10.42 %, and the minimum error is 5.25 %. 

Model C is tested on data set (1), as shown in Table A-9. The testing results 
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TABLE 3-2: TRAINING RESULTS OF ALL RPM MODELS 

MODEL MODEL A NEXT-DOOR PATTERNED 
NETWORK NETWORK 

INPUT 31 155 90 
LAYER 

HIDDEN 63 31 56 
LAYER 

OUTPUT 31 31 56 
LAYER 

LEARNING 0.483871 0.483871 0.267857 
PARAMETER 

SCALING 0.065382 0.065382 0.072388 
FACTOR 

MOMENTUM 0.9 0.9 0.9 
TERM 

TRAINING 245 219 412 
CYCLES 

MAXIMUM 0.074958 0.0640475 0.053974 
ERROR 

RMS 0.023363 0.019234 0.01133 
ERROR 
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are shown in Table A-16. The maximum error obtained for this network is 4.48 %, 

and the minimum relative error is 2.31 %. 

Finally, Model Dis tested on data sets (3) and (4), as shown in Tables A-10 

and A-11. The testing results are shown in Tables A-17 and A-18. The maximum 

relative error obtained for data set (3) is 7.93 %, and the minimum error is 0.52 %. 

For data set ( 4), the maximum error obtained is 5.46 %, and the minimum error is 

0.73 %. 

Testin~ of RPM Models 

The first model is tested on 10 patterns, the second model is tested on 5 

patterns, and the third model is tested on 10 patterns. Testing data sets for the three 

RPM models are given in Tables A-21 through A-23. 

Results of testing for Model A are shown in Table A-24. The maximum 

relative error obtained is 24.19 %, and the minimum error achieved is 0.01 %. 

However, the mean relative error obtained is less than 10 %. 

Results of testing for the next-door neighbor network structure are given in 

Table A-25. The maximum relative error is 43.02 %, and the minimum relative error 

is 0.5 %. The mean relative error is around 15 %. 

Results of testing for the patterned network are tabulated in Table A-26. The 

maximum relative error obtained is 16.64 %, and the minimum relative error is 

0.06 %. 
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Conclusions 

LEOPARD Models 

All of the LEOPARD models have learned that the higher the burnup of fuel 

assemblies, the lower the multiplication factor of the assemblies. The testing errors 

that appear in every pattern are dependent upon the distance of the points from the 

hyper surface built by the networks during training. The implicit learning of certain 

assembly parameters is exposed to a larger error in the network. This fact is 

apparent in Model B. 

All of these LEOPARD models suggest that a general assembly network 

cannot be achieved using these parameters. On the other hand, a set of networks 

can be implemented to behave like a certain type of fuel assembly. 

RPM Models 

The different models of RPM are selected based on the following criteria: 1) 

the effect of all fuel assemblies ( or the global interaction of the fuel assemblies on 

each other, which is represented by Model A); 2) the local changes that occur in the 

vicinity of a fuel assembly; and 3) the summation of those local changes to measure 

the global effects on each fuel assembly at a certain location (represented by the 

next-door neighbor model and the patterned network). The different sizes of training 
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data for each model are selected based on the ability of the network to converge. 

In Model A, using 100 patterns for training is not an easy matter, and the network 

may never converge. 



CHAPTER IV 

AN EXPERT SYSTEM FOR FUEL SHUFFLING 

Background 

The determination of a core reload pattern for a PWR is a significant 

investment in terms of money and time. Once the PWR core is loaded, the in-core 

fuel management group starts predicting the BOC inventory distribution, power 

distribution and what fuel assemblies should be removed. At BOC, the core 

conditions may or may not match the predictions made. Replanning may be needed, 

and fast decision making capability is required. For every day of shutdown, 1 million 

dollars of income may be lost by the utility. 

An expert system can assist in the coordination of the core reload designs. 

Experts utilize past experience to find reload configurations, and this knowledge is 

based on a heuristic set of rules the human expert applies. An expert system is a rule 

based system. The advantage of using an expert system is that it speeds up the 

decision-making process faced by human experts. The rules of experience can also 

be preserved and used by the expert system. 

The Electric Power Research Institute (EPRI) developed an expert system 

that is capable of fuel shuffling based on a set of rules extracted from an OUT-IN 

strategy. [17] The expert system developed by EPRI has a graphical interface to assist 

the user in the process. Once a core reload design is selected, PDQ, an evaluator 
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neutronic code, can test it. The testing process is evaluated in conjunction with 

thermal-hydraulic, safety and economic constraints. 

Problem Statement 

The objectives of this problem are to apply the OUT-IN fuel strategy to a 

PWR core at EOC and to find a reload core design that will satisfy thermal-hydraulic 

and safety constraints. 

Methodology 

The fuel strategy chosen in this research is the OUT-IN technique. Other fuel 

shuffling strategies exist in the industry ( e.g. IN-OUT, etc.). The selection of this 

strategy is based on the flat power distribution which this strategy produces. A flat 

power distribution optimizes the thermal hydraulics performance of the reactor. The 

amount of control materials used in this strategy is minimized compared to other 

methods. In a low leakage core, for example, one concern is the power peaking that 

this strategy produces due to the loading of the fresh fuel at the center region of the 

core. In the OUT-IN scheme power peaking is minimum compared to other 

methods. [2] 

A general strategy for shuffling the assemblies ( as extracted from a study 

performed by the Electric Power Research Institute) is as follows: [17] 
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1) The most burned out assemblies are removed from the core, 

2) The new fuel assemblies are loaded around the edge, and 

3) The used assemblies are moved towards the center. 

The specific rules are: 

1) Remove all fuel assemblies that are to be removed (i.e., the third of 

the assemblies in the reactor that are spent). The criteria for removing 

assemblies are that the assemblies are spent, and whatever reactivity 

they have remaining is asymmetrically distributed. 

2) Fill the center and the centerlines dividing the quarters. 

2a) Take the least burned-out assembly of those to be discarded 

and do not discard it, but put it in the center. 

2b) Take those assemblies formerly on centerlines and move them 

towards the center on the centerlines. 

2c) Take those assemblies with the flattest power distribution and 

put them on the centerlines to fill out the centerlines. Note 

that one of the reasons for filling out the center lines is so that 

the evaluation programs can simply work on a quarter of the 

core at a time. The goal is to use symmetric assemblies on the 

centerlines to reduce problems generated when the single 

quadrant is reflected to the remaining quadrants. 

3) Fill the diagonal. 
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3a) Migrate the octant center line assemblies ( on the diagonal line) 

towards the center without moving them off these lines. 

3b) Fill the remaining diagonal line locations with assemblies with 

their hot corners either all pointing towards the center or all 

towards the outside. 

4) Maintain a "quasi-checkerboard" pattern of high and low density. 

5) Maintain one-eighth core symmetry. 

6) Fill the interior of the quarter core. Move assemblies with hot channel 

corners (i.e., which have a large amount of unburned fuel). 

6a) Put these next to the outside baffle (i.e., as close to the outside 

as possible, but having no edge adjacent to the outside). 

6b) Put them adjoining the center assembly. 

6c) Put them near the center of the quadrant with the hot corner 

pointing outward. 

6d) Put them anywhere, as long as the other three corners are 

relatively burned up ( cold). Two hot corners next to each other 

is probably too hot. 

The idea is to put the hot corners m locations of low neutron 

importance or depressed power, or else next to cold corners. 

7) Look at the gradients and rotate or reflect the assemblies (without 

moving them) to adjust the gradient relationships as follows: A 

gradient can be represented by an arrow from the coldest fuel cells to 
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the hottest fuel cells within an assembly. Gradients can be thought of 

as existing along an edge and diagonally through the center of the 

assembly. 

7a) On adjacent edges, the gradients should be in opposite 

directions (i.e., the hot and the cold will balance each other). 

7b) The diagonal gradients should be in the same direction, towards 

the center if possible. (This avoids two gradients pointing 

towards each other and putting two hot comers in the same 

comer.) 

8) Make allowance for fresh fuel enrichment. Adjust the evaluation of 

hot versus cold comers in accordance with the amount of fuel 

enrichment of an assembly, noting that the higher the enrichment, the 

higher the peaking. 

The research performed at the University of Tennessee, Knoxville assumes the 

following conditions about the reactor core: 

1) A 1/8 core symmetry. 

2) Each fuel assembly has an average multiplication factor. 

3) The basic unit of the problem is a fuel assembly. No assembly comers 

are analyzed. 

4) No poison is allowed in the shuffling rules. 

5) A three batch core is assumed. Fuel assemblies can belong to one of 
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the three batches. These batches are designated first, second and 

third. 

6) The fresh batch fuel assemblies have the same amount of potential 

reactivity. 

The following general rules are implemented in the expert system: 

1) One third of the one-eighth core of the fuel assemblies are discharged. 

Discard those which have the lowest multiplication factor. 

2) Out of these discharged assemblies, the assembly with the largest 

multiplication factor is retained and placed at the center of the core. 

3) Fuel assemblies living along the horizontal line are moved toward the 

center of the core, leaving outside locations empty. 

4) Fuel assemblies dwelling on the diagonal line are moved towards the 

center of the core. 

5) Fresh fuel assemblies are placed at the core boundary. 

6) No two hot assemblies are allowed to live adjacent to each other. 

7) A pattern of high and low in the region between the horizontal line 

and the diagonal line is utilized. This rule is relaxed as the core 

boundary is approached. 
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Tool Description 

OPS5 (Official Production System 5) is a knowledge engineering language 

developed at Carnegie-Mellon University. [18] It incorporates a pattern matcher and 

an interpreter which includes a forward-chaining mechanism. The basic structure of 

OPS5 consists of a working memory and a production memory. The working memory 

contains the description of the state of the universe (the description of the problem). 

The production memory contains all the rules that control the behavior of the 

problem. The data types used to describe the state of the universe are called 

working memory elements (WME). There are two types of working memory 

elements, a class working memory element and a scalar working memory element. 

A class working memory element ( also called element class) consists of a class name 

and a set of attributes. These attributes can have one value or a multivalued 

attribute (vector-attribute). The attributes are specific descriptions of an entity. In 

a logical sense, they are variables with values. Only one vector-attribute is allowed 

per element class. For example, the following is an element class: 

(OBJECT ""color red 

""size large 

""weight 10) 

OBJECT is the name of the element class. Color, size and weight are the 

attributes associated with OBJECT. A scalar working memory element is an element 

with no attributes associated with it (e.g., START). 
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The production rules have the following form: 

(P RULE_NAME (LHS) --> (RHS)) 

where the P stands for production, and is then followed by a rule name. The (LHS) 

contains the condition elements for the rule to fire. Condition elements are instants 

of working memory elements. The interpreter tries to match these condition 

elements with what is in the working memory (thus the name pattern matching 

process). The (RHS) consists of all the modification actions affecting the working 

memory elements. These modification actions include updating, creating, or deleting 

working memory elements. Most of the logical operators are provided in OPSS ( e.g., 

AND, OR, etc.). 

Once all the condition elements in a rule match the corresponding working 

memory elements, then the rule is ready to fire. Which rule is ready to fire or which 

rule should fire first or next is the task of the interpreter. The interpreter performs 

its task based on a RECOGNIZE-ACT-CYCLE. In the RECOGNIZE-ACT­

CYCLE, the interpreter looks for a match between condition elements and working 

memory. If only one rule matches, then this rule fires. If more than one match 

exists, then the interpreter puts all instantiations in a conflict set. The conflict 

resolution selects only one rule based on a strategy selected by the programmer. 

OPSS contains two types of strategies, MEA and LEX. Both strategies have the 

same policy. This policy consists of REFRACTION, RECENCY, SPECIFICITY and 

PSEUDO-SELECTION. REFRACTION is the exclusion of any rule which has been 

fired. If the conflict set ends up with one rule, then that rule fires next. If more than 
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one rule remains, then RECENCY comes to the picture. The rule with the most 

recent time tags is selected. Time tags are numbers associated with each working 

memory, created either by the user or the system. If more than one rule has the 

same time tags then SPECIFICITY takes control. The most detailed rule is chosen. 

If the application of SPECIFICITY results in more than one rule, then one rule is 

selected arbitrarily. The difference between MEA and LEX lies in the second step 

of the conflict resolution. In MEA the recency of the first condition element is the 

most important one, whereas in LEX, the recency of each condition element on the 

left-hand side of a rule is compared to that of its competitors. 

System Design 

The first step in designing an expert system is obtaining the domain 

knowledge, followed by a description of world state. Three working memory 

elements are utilized: an element class describing the fuel assembly, a core location 

element class, and a control element class. The fuel assembly element class has the 

following form: 

(ASSEMBLY name 

batch 

position 

knf 

hs 
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vs) 

Six attributes are used. The choice of these attributes is based on the 

knowledge rules under consideration. The name attribute is an identification of a 

fuel assembly. The batch to which a fuel assembly belongs is designated by (batch). 

The core location of a fuel assembly at EOC is described by (position). The 

multiplication factor associated with a fuel assembly is described by (knf). The 

symbols (hs) and (vs) are two control attributes utilized to prevent the logic of the 

checkerboard from cycling indefinitely. The values of these attributes can be either 

zero or one. Zero means the assembly has not been shuffled. The assembly has 

been shuffled if the value is equal to one. 

The core element class reflects the properties of each location inside the 

reactor core. The form of this class is as follows: 

(CORE position 

class 

assembly 

right 

left 

top 

bottom 

distance 
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status) 

This number of attributes is necessary for the rules or the way the rules are 

designed. The position attribute is the position of the location in the core. The class 

attributes can be horizontal, diagonal or in-between. Assembly is the assembly 

located at that position. Left, right, top, and bottom are the neighbor locations of the 

position attribute. The (distance) attribute is the distance from the center location 

of the core. (Status) is the location status where the values of that location are either 

empty or full. The third working memory element is the goal element. This element 

has two attributes, a name and a status. The name attribute is the name of the task 

to be executed next. The status attribute can be active or inactive, and is added to 

reflect the scheduling process in the nature of the execution of some of the subtasks. 

The description of all core locations are described in a file designated 

CORE.MAP ( as shown in Appendix B). Each row of this file is a description of a 

core location. Thirty-one locations are described based on the 1/8 core map as 

depicted in Figure 4-1. 

The description of fuel assemblies is a file provided by the user and has the 

format shown in Table B-2. 

Three types of rules are implemented in this design: input-output, knowledge 

and control rules. Input-output rules are implemented to interact with the user. 

Knowledge rules are those rules implemented based on the fuel shuffling strategy. 

Control rules are rules implemented to drive the total task from one subproblem to 
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another until all necessary rules are instantiated based on the core configuration 

under consideration. 

Input-Output Rules 

These rules include obtaining the assembly description file, getting the core 

location description file, and producing core reload file. These rules are implemented 

at the beginning of the code. Rules can be implemented any where in the program. 

This is one of the advantages of OPS5, where the order of rules is not important. 

Knowledge Rules 

Knowledge rules can be grouped into six sets based on the division of the fuel 

shuffling problem into six regions: 

1) The discharge of fuel assemblies, 

2) The center assembly selection, 

3) The horizontal line shuffling, 

4) The diagonal line shuffling, 

5) The allowance of fresh fuel, and 

6) The checkerboard pattern of full fuel assemblies. 

The six regions are described below. 

1) The discharge of fuel assemblies: 

At EOC, certain fuel assemblies are discharged. The following 

rule performs the task of putting discharged fuel assemblies in a 
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discharge list. 

(p discharge-assembly 

(goal "name discharge 

" status active) 

{ <the-count> (counter { <i> >0} )} 

{ <assembly> (assembly "name <name> 

"batch { <x> < <third second first>>} 

"knf <k>)} 

{<core> ( core " position <pas> 

"assembly <name>)} 

- (assembly "batch < <third second first>> 

"knf < <k>) 

--> 

(modify <assembly> "batch discharged) 

(modify <core> "assembly no 

"status empty) 

(modify <the-count> counter ( compute 

<i> - 1))) 

This rule can be summarized in English form as follows: IF 

( there is an active goal named discharge) AND ( a counter with a value 
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greater than zero exists) AND ( an assembly, belonging to a second, 

third or first batch, named <name>, having a value of knf <k> 

exists) AND (the assembly is at position <pas> in the core) AND 

(there is no assembly, belonging to a third, second or first batch with 

a lower k-inf than <k> ), 

THEN 

(modify the assembly batch into discharged) AND (modify the core 

position into empty) AND (modify the counter working memory into 

a number less than its original value by one). 

The above rule is repeated ten times. The number of times is 

based on the 1/3 number suggested by the fuel strategy. The last 

condition element is a negative condition element. A negative 

condition element is not allowed to be the first condition element in 

the rule. For this rule to fire, none of working memory elements may 

match this condition element. Once these fuel assemblies are put in 

the discharged list, the center fuel assembly is retained from the 

discharge assembly list. 

2) The center assembly selection: 

The fuel assembly with the maximum multiplication factor is 

retained from the discharged list. The following rule picks the center 

assembly: 
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(p pick-center-assembly 

(goal ""name pick-center 

""status active) 

{ <assembly> (assembly ""name <name> 

""batch discharged 

""position < pos > 

A knf <knf> )} 

(counter 0) 

{<core> ( core "" position 11 

""status empty)} 

- ( assembly ""batch discharged 

""knf > <k>) 

--> 

(write ( crfl) I The new center assembly is 

I <name>) 

(modify <core> ""assembly <name> 

""status full) 

(modify <assembly> ""batch old 

"" position 11 

""knf <k>) 

(remove 3)) 

The English form of this rule as follows: 
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IF ( a goal named pick-center is active) AND ( an assembly called 

<name> belonging to batch discharged located at position <pos> and 

having a value of knf <k>) AND (a counter with a value of zero 

exists) AND (the core location of the center assembly is empty) AND 

(there is no assembly belonging to the discharged batch, with a value 

of knf greater than <K>) 

THEN 

(prompt user with the name of the new center assembly) AND (modify 

the center location to a status full and assign the new name of the new 

assembly to the attribute assembly) AND (modify the batch of the 

center assembly to old) AND (remove the working memory element 

counter). 

This rule fires if the center assembly location is empty. 

Otherwise, the rule doesn't fire. This rule fires only once. When the 

center assembly is chosen, the discharged list is removed from working 

memory. 

3) The horizontal shuffling along the center line: 

The rule implemented to perform this task is as follows. 

(p move-fuel-along-horizontal-line 

(goal "'name move-horizontal 

"'status active) 
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{ <core> (core "'position <pas> 

"' class horizontal 

"' assembly no 

"'right <rpos> 

"'status empty)} 

{ < core 1 > ( core "' position < rpos > 

"' class horizontal 

"' assembly {<assembly < > no} 

"'status full)} 

{ < assemblyl > ( assembly "' position < rpos > 

"'name <assembly>)} 

--> 

(modify <core> "'assembly <assembly> 

"'status full) 

( modify < core 1 > "' assembly no 

"'status empty) 

(modify <assemblyl> "'position <pas>)) 

The IF statement of the rule contains four condition elements. 

The first condition element is a control element. Its function is to 

contribute in the environment necessary for this rule to fire. The other 

three condition elements function can be summarized as follows: 
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IF there is a core position at the horizontal line with no assembly AND 

there is a right neighbor with a fuel assembly, 

THEN 

modify that position AND insert the right neighbor assembly in it AND 

modify the position of the right neighbor to empty. 

This rule fires on any two positions along the horizontal line 

which fit the required description. The number of instantiations of this 

rule is controlled by the state of the assemblies along the horizontal 

line. Once the fuel assemblies have no empty positions between each 

other, this rule stops firing and control is handed into another rule to 

trigger another task. The only empty places along the horizontal line 

are at the boundary positions of the core. Figure 4-2 depicts the 

operation of this task. 

4) Fuel shuffling along the diagonal line: 

This subproblem is built by a rule similar to the rule for 

horizontal shuffling. The rule fills out all positions along the diagonal 

line except the boundary positions. This rule exploits the idea that any 

two diagonal assemblies have the same neighbor, as shown in Figure 

4-3. The rule which is implemented to perform this subtask is as 

follows: 

(p move-fuel-along-line 
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(goal "'name move-diagonal 

"'status active) 

{<core> ( core "'position < pos > 

"' class diagonal 

"'assembly no 

"' right < rpos > 

"'status empty)} 

{ <corel> (core "'position <posl> 

"' class diagonal 

"'assembly {<assembly < > no} 

"' top < rpos > 

"'status full)} 

{ <assemblyl> (assembly "'position <posl> 

"'name <assembly>)} 

--> 

(modify <core> "'assembly <assembly> 

"'status full) 

(modify <corel> "'assembly no 

"'status empty) 

( modify < assemblyl > "'position < pos >)) 

The number of instantiations of this rule is controlled by the 
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number of empty positions along the diagonal line. The result of this 

task is shown in Figure 4-4. 

5) Fresh fuel loading: 

The loading of the fresh fuel includes the loading of the 

remaining empty locations at the horizontal centerline, the loading 

along the diagonal line, and loading inside the in-between region. A 

set of rules are written to perform the task. A complete listing of the 

code is available in the Department of Nuclear Engineering. 

6) Checkerboard implementation: 

In the checkerboard design, each assembly with a low K-INF 

should be surrounded with assemblies of high multiplication factor, as 

shown in Figure 4-5. The reason for doing this is to create a uniform 

power distribution and to prevent power peaking at a certain region in 

the core. The method used to perform the task is as follows: 

The core is divided into three concentric regions: the inner 

region, the middle region, and the outer region. In the inner region 

assemblies of the second and the first batch are loaded based on their 

batch name in a checkerboard form. The middle region is permitted 

to have first batch and second batch assemblies where only certain 

locations are allowed for the second batch assemblies. The outer 
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region is allowed to have fresh and first batch assemblies. The rules 

coded for this task are similar to the rules mentioned above. 

The method used in the implementation does not reflect the 

amount of how high is or how low is the value of K-INF. A linguistic 

variable called (KINF) can be defined and a range of the values of 

K-INF can be defined. A set of three membership functions can be 

defined as well, where each function reflects the degree of high, low 

and medium for each set of fuel assembly multiplication factors. This 

method helps in constructing the checkerboard pattern. 

Another method is to generate a set of possible locations for 

each fuel assembly, and then to apply certain pruning rules that reflect 

the forbidden position. This method includes a generation of 

configurations for the in-between region and then tests these 

configurations based on the rules mentioned above. 

Control Rules 

The control rules have the following form: 

(p remove-in-between 

{ <goal> (goal "'namel move-in-between "'status active)} 

--> 

(modify <goal> "'namel shuffle)) 
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The IF side of the rule contains the move-in-between goal. Once this goal is 

satisfied, the THEN side signals the shuffle task to start. Most of the control rules 

have the above format. 

System Operation 

The operation of the program is depicted in Figure 4-6. The first step in running 

this program is to design a file in the format specified in Table B-2. Each record 

contains the assembly type, the batch, the position and the fuel assembly K-INF. The 

user can provide the name of the input file to the program. He or she, while running 

the code, is permitted to supply the fresh batch assembly K-INF. The user is also 

allowed to supply the name of the output file of core configuration. 

A working memory element called START is the spark of the whole operation. 

After the firing of the first rule, the following path is taken by the expert system: 

1) It obtains the EOC core configuration file from the user, 

2) The program assigns a WME for each of the fuel assemblies, 

3) The expert system maps each assembly provided in the description file 

into a core location, 

4) It puts the assemblies to be discharged in a list, 

5) The program selects the new center fuel assembly and then removes 

the rest of the discharged list, 

6) It asks the user to provide the value of K-INF of the fresh batch fuel 
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assembly, and 

7) The expert system shuffles the fuel based on the shuffling rules 

implemented. 

Results 

The expert system is tested on a core data with 1/8 core symmetry. The EOC 

configuration is shown in Figure 4-7. The expert system output is shown in Figure 

4-8. This core can be tested using a neutronic code such as RPM, and relative power 

distribution can be evaluated. 

Conclusions 

The shuffling rules are implemented. The total number of rules implemented 

is thirty-one rules. A MEA strategy is utilized. The expert system can be extended 

to include all core constraints ( e.g., power peaking constraint, batch size constraint, 

etc.). Burnable poison and control rod assemblies can be incorporated into the 

expert system. 
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CHAPTERV 

GRAPHICAL INTERFACE USING MICROSOFT EXCEL 

Background 

The work performed in this branch of the research has arisen from the desire 

to have a graphical interface for the expert system. During development of the whole 

research, new goals were added to the original goal. One of these goals is the 

interaction between the graphical interface and an evaluator neutronic code. The 

neutronic code (RPM) was modified to fit the output of this software. Another new 

goal which was added is the interaction of the neural network code (NETS). 

Configuration, training, and testing files are created using the software. The user is 

also allowed to compare results coming from the RPM code and a trained network. 

This is one of the features of the software. 

EPRI has developed a graphical interface with the shuffling rules it has 

implemented, which utilizes icon images in the design of the software. [18] 

Software Objectives 

The objectives of this work are to design a manual shuffling capability using 

a graphical interface, to construct an interaction between RPM and the user, and to 

create an interface between NETS and the operator. 
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Tool Description 

MicroSoft Excel is the developmental tool of the graphical interface. It is 

chosen because the features that it offers are capable of representing most of the 

tasks proposed in the construction of the graphical interface. MicroSoft Excel has 

three features: (1) Macros, which are divided into two categories: (a) Function 

Macros, which can only perform calculations on a worksheet; (b) Command Macros, 

which are capable of performing actions; (2) Worksheets, which are composed of 

cells. Each cell can represent a value of a parameter of the fuel assembly, and can 

be used to display the 1/8 core map of the reactor core; and (3) Charts, which can 

be used to graph data (i.e., graphing the relative power distribution of the fuel 

assemblies). [18, 19] 

Software Operation 

The graphical interface developed in this research is contained in a MicroSoft 

Excel file called RPMMAINLXLM. The steps involved in operating the software are 

listed as follows: 

1) In the Disk Operating System (DOS) mode, at the C: \ prompt, type 

WIN. This command activates the MicroSoft WINDOWS 

environment. 

2) In the WINDOWS environment, select the MicroSoft Excel application 
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from the menu. This selection activates MicroSoft Excel. 

3) Using the FILE command from the menu bar, select the OPEN 

command to retrieve the RPMMAINLXLM file. 

4) Using the MACRO command from the menu bar, select the RUN 

command to execute the RPMMAINLXLM file. 

5) The menu bar containing the commands for the software appears at 

the top of the screen, replacing the Excel menu bar. 

The path of the software operation is dependent upon which type of command the 

user chooses. 

Software Design 

The input of this software and the RPM code are equivalent. There are two 

types of inputs, core input and fuel assembly input. The core input consists of: 1) the 

core reactivity at end of cycle; 2) the radial leakage coefficient; 3) the axial leakage 

cofficient; 4) the power sharing factor; 5) the number of fuel assembly types; and 6) 

the number of iterations necessary to calculate power fractions. The fuel assembly 

parameters are: 1) the assembly type; 2) the slope of the reactivity-burnup relation, 

which is measured in kilograms per megawatt-day (KG/MWD); 3) Fuel assembly 

reactivity potential; 4) burnable poison reactivity; 5) batch ID; and 6) total number 

of fuel assemblies of the designated type. 

The data manipulation performed by the user is utilized by a worksheet. This 

74 



worksheet contains two cards, an inventory card and a 1/8 core loading map as shown 

in Figure 5-1. The inventory card contains all information provided by the user about 

the fuel assembly and contains a set of two rows at the bottom. These two rows are 

called LOADED and UNLOADED. The LOADED row contains the number of fuel 

assemblies of each type which are loaded. The UNLOADED row contains the 

number of fuel assemblies of each type which remain after loading. The two rows 

are not updated automatically; rather the user must select the submenu 

INVENTORY, and then choose one of the update commands. The other card is a 

grid of the 1/8 core loading map. Each fuel assembly is represented by a set of cells. 

Each cell contains one of the assembly parameters. A group of four cells is used, and 

the group is formatted as one square on the worksheet. A set of squares are 

constructed, creating the 1/8 core loading map. 

The 1/8 core loading map is initially empty. The user must fill the core from 

the inventory card. The process of loading is performed in two steps. First, the user 

must select the assembly from the inventory pool using the command MARK­

ASSEMBL Y. Next, the core location must be selected. This is performed by setting 

the cursor on the top cell of one of the core locations. Finally, the user chooses the 

LOAD-ASSEMBLY command from the CORE submenu. 

Once the core is loaded, the operator can select a WRITE-TO-FILE 

command, where a file called CORE.INP is produced. This file is readable by the 

RPM code. The RPM code can evaluate power fractions based on the input data 

provided by the user. 
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The menu bar of the software as depicted in figure 5-2 contains the following 

submenus: 1) CORE; 2) RPM; 3) SHUFFLE; 4) NEURAL NET; 5) INVENTORY; 

6) OUTPUT; and 7) HELP. Figure 5-1 illustrates the arrangement of the submenus 

within the main menu. All of these submenus are created using Macros. 

1) CORE Submenu: 

This submenu contains the following commands: NEW-CORE, 

OLD-CORE, MARK-ASSEMBLY, LOAD-ASSEMBLY, MOVE­

ASSEMBL Y, REMOVE-ASSEMBLY and EXIT. This section 

describes each command and the purpose of each. 

la) NEW-CORE: 

The user can select this command to load a reactor core 

initially. Once this command is selected, the code asks the user 

to insert the core input and fuel assembly input. 

lb) OLD-CORE: 

If the user has saved the work done in a previous 

session, he or she can retrieve the work again and operate on 

the data using other commands. 

le) MARK-ASSEMBLY: 

This command is necessary before loading, discharging 

or moving an assembly. The user can set the cursor on the fuel 

assembly and drag the mouse to contain all the fuel assembly 

boundaries. After doing this, the user can select this command 
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and an on-off box appears, also called a marquee. 

ld) LOAD-ASSEMBLY: 

This command performs the task of loading a fuel 

assembly to the reactor core. MARK-ASSEMBLY must first 

be chosen, and then a core location is selected on the core 

loading map. This selection is made by setting the cursor on 

the top cell of the fuel assembly. Finally, the LOAD­

ASSEMBLY command is selected. 

le) MOVE-ASSEMBLY: 

This command is used during the shuffling task where 

the assembly is moved from one location to another empty 

location. The first step is to select a fuel assembly (using the 

mouse and pressing the left button while dragging the cursor to 

cover all the fuel assemblies). The selection of the destination 

location is the second step, and is performed by positioning the 

cursor in the top cell of the core location. The last step is the 

selection of the MOVE-ASSEMBLY command. 

lf) REMOVE-ASSEMBLY: 

The purpose of this command is the manual discharging 

of the fuel assemblies. The action is performed by first 

selecting the fuel assembly to be discharged, as done before in 

the above- mentioned commands. Once the fuel assembly is 
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chosen, this command can be selected to remove the fuel 

assembly. 

lg) EXIT: 

This command transfers control from the software back 

to Excel, where the user can obtain a hard copy of the results 

of the session with the software. 

2) RPM Submenu: 

This submenu has the following commands: WRITE-TO-FILE, 

EXECUTE-RPM, and CONTINUE. 

2a) WRITE-TO-FILE: 

This command must be selected before the selection of 

EXECUTE-RPM command. The purpose of it is to write a file 

readable by the RPM code. 

2b) EXECUTE-RPM: 

The execution of the RPM code is performed using this 

command. 

2c) CONTINUE: 

CONTINUE functions as a path back to the RPM code 

once modifications are made to the input of reactor core (i.e., 

shuffling). 

3) SHUFFLE Submenu: 

The purpose of this submenu is to assist in the manual shuffling 
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or automatic shuffling process. During shuffling, exchanging the 

positions of two fuel assemblies is one of the tools used to shuffle. 

Commands are written to perform the exchange task. The following 

commands comprise the SHUFFLE submenu: SELECT-FIRST, 

SELECT-SECOND, EXCHANGE, and AUTOMATIC. 

3a) SELECT-FIRST: 

This command marks an assembly to be exchanged. The 

selection of the fuel assembly is necessary to perform this task. 

The process of selecting an assembly is discussed above. The 

fuel assembly is selected by positioning the cursor on the top 

cell of the fuel assembly, and then dragging the cursor down to 

encompass the fuel assembly. The SELECT-FIRST command 

is then chosen. 

3b) SELECT-SECOND: 

The purpose of this command is to select the next 

assembly to be exchanged. The same steps are performed as in 

the SELECT-FIRST command. The last step in this sequence 

is the selection of the SELECT-SECOND command. 

3c) EXCHANGE: 

This command is selected only after the two previous 

commands are selected. EXCHANGE exchanges the location 

of the two fuel assemblies chosen in the SELECT-FIRST and 
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SELECT-SECOND commands. 

3d) AUTOMATIC: 

This command is a bridge between the graphical 

interface and the expert system discussed in Chapter IV. At 

this point, the interaction has not been made. However, this 

command can be activated in two stages: 

First, an assembly description file readable by the expert 

system would be designed. The second stage would involve 

execution of the expert system from the software environment. 

4) NEURAL NET: 

The NEURAL NET submenu is designed to assist the user in 

building a configuration file for designing the network, creating a 

training file for the network, generating a testing file for the network, 

and interacting with the NETS software. 

4a) WRITE-CONFIGURATION-FILE: 

This command creates a file readable by NETS software. 

The name of the file is user dependent. A necessary condition 

for the name of this file is that it must contain the extension 

NET ( e.g., FILENAME.NET). This file contains information 

about the number of layers in the network and how many nodes 

are in each layer. The file produced is for a fully connected, 

three-layered network. 
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4b) WRITE-TRAINING-FILE: 

The output file produced by this command contains the 

fuel assembly reactivity potentials of the loading core map. This 

file is designed only for a fully connected, three- layered 

network. 

4c) WRITE-TESTING-FILE: 

The testing file is produced once the network has been 

trained. This command creates a testing file readable by NETS. 

4d) INTERACT-WITH-NETS: 

The interaction between the graphical interface and the 

neural network software is performed using this command. This 

command is selected after the creation of the configuration and 

training files. 

A set of computer programs written in C language are provided 

to produce training and testing files for a patterned network. These 

files are available in the Department of Nuclear Engineering. 

5) INVENTORY Submenu: 

The purpose of this command is to keep track of the loading 

process. It is assumed that a 1/8 core symmetry exists. During loading 

of the core, each assembly loaded on the centerlines is worth four 

assemblies (half assemblies) distributed over other the centerlines in 

the core. This is done due to the assumption of symmetry in the 
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reactor core. The UPDATE commands indicate how many fuel 

assemblies remain in the inventory ( e.g., unloaded assemblies), and 

how many assemblies have been loaded. The actions of the UPDATE 

commands are reflected in the LOADED and UNLOADED rows in 

the inventory card as shown in Figure 5-2. The numbers appearing in 

the unloaded column can be either negative or zero. A negative 

number indicates that the operator has loaded more assemblies than 

actually exist in the inventory card. A zero value means that all 

assemblies of a particular type have been loaded, and none remain. 

For a correct loading, the UNLOADED row must consist entirely of 

zero values. 

The following commands are contained in the INVENTORY 

submenu: UPDATE-ONE, UPDATE-ALL, and ADD-FRESH-FUEL. 

Sa) UPDATE-ONE: 

This command updates only one assembly type. Once 

the command is selected, the user is prompted by an input card, 

in which the assembly type which he or she wants to track is 

inserted. 

Sb) UPDATE-ALL: 

The purpose of this command is to inform the user of 

the whole core state. This command, once selected, provides 

the number of loaded and unloaded fuel assemblies in the 
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inventory card at the time of the command selection. 

Sc) ADD-FRESH-FUEL: 

This command is necessary if an EOC analysis is 

performed. After the discharge of fuel assemblies, this 

command can be used to provide fresh fuel for the next cycle. 

6) OUTPUT Submenu: 

This submenu is created to provide an indication of the 

difference between values predicted by the neural network and the 

values produced by RPM. It contains ERROR, RPM-OUTPUT, and 

NETS-OUTPUT. 

6a) RPM-OUTPUT: 

The user can display the output of RPM on a worksheet 

by selecting RPM-OUTPUT. The user is prompted to insert the 

name of the output file and he or she can examine this output. 

6b) NETS-OUTPUT: 

This command has function similar to the previous 

command (RPM-OUTPUT). The output of the network can be 

examined by the user. The user is instructed to provide the 

name of the network file. 

6c) ERROR: 

When the ERROR command is chosen, the user is asked 

to provide the name of the network output file and the desired 

86 



file. The ERROR command then calculates the difference and 

places it in a file named by the user. 

7) HELP submenu: 

This submenu contains three help commands: ABOUT­

SOFfW ARE, ABOUT-RPM, and ABOUT-NETS. The help files have 

not been generated to date. 

Results 

The software was used in producing some of the RPM Training, Testing data 

used in the neural network research performed earlier. In figure 5-3, a 1/8 core map 

is shown with the inventory card containing all fuel assemblies. The 1/8 core is not 

shuffled yet. Figure 5-4 shows the 1/8 core map loaded and ready to be tested by the 

RPM code where relative power distribution of fuel assemblies can be obtained. 

Conclusions 

The objectives of the software are satisfied. The user can load a core at BOC 

or at EOC. He or she can also evaluate a loaded core using the RPM code. The 

operator can test a loaded core with a neural network. A construction of a neural 

network is also available using this software. 

The help files can be incorporated in the software using some of the macro 
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BOC Reactivity 
RHO(B) Slope 
BOC BP Reactiv ity 

INVENTORY CARD 
111 111 112 

1 2 3 
0 0.12 0.24 

0.009 0.009 0.009 
0 0 0 

65 64 60 
65 64 60 
0 0 0 

2 3 
1 2 4 
0 0.12 0.24 

0.009 0.009 0.009 
0 0 0 

1 2 
2 0 0.12 

0.009 0.009 
0 0 

1 
3 0 

0.009 
0 

4 

113 
4 

0.24 
0.009 

0 
4 
4 
0 

4 5 6 7 
1 2 3 1 
0 0.12 0.24 0 

0.009 0.009 0.009 0.009 
0 0 0 0 
3 1 2 3 

0.24 0 0.12 0.24 
0.009 0.009 0.009 0.009 

0 0 0 0 
1 3 1 2 
0 0.24 0 0.12 

0.009 0.009 0.009 0.009 
0 0 0 0 
2 2 3 1 

0.12 0.12 0.24 0 
0.009 0.009 0.009 0.009 

0 0 0 0 
1 2 3 

5 0 0.12 0.24 
0.009 0.009 0.009 

0 0 0 
1 3 

6 0 0.24 
0.009 0.009 

0 0 

FIGURE 5-3: UNSHUFFLED 1/8 REACTOR CORE 
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8 
2 

0.12 
0.009 

0 
1 
0 

0.009 
0 
3 

0.24 
0.009 

0 
2 

0.12 
0.009 
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Batch ID= 
Assy,m Type 
Current RHO 

A(kg/MWD) 
BP RHO 

Total# = 
Loaded = 

Unloaded= 

CORE LOADING MAP 

COLUMN 
ROW 

Assembly Type 
BOC Reactivity 
RHO(B) Slope 
BOC BP Reactiv ity 

INVENTORY CARD 
111 111 112 

1 2 3 
0 0.12 0.24 

0.009 0.009 0.009 
0 0 0 

65 64 60 
65 64 60 
0 0 0 

2 3 
1 2 4 
0 0.12 0.24 

0.009 0.009 0.009 
0 0 0 

1 2 
2 0 0.12 

0.009 0.009 
0 0 

1 
3 0 

0.009 
0 

4 

113 
4 

0.24 
0.009 

0 
4 
4 
0 

4 5 6 
1 2 1 
0 0.12 0 

0.009 0.009 0.009 
0 0 0 
2 1 2 

0.12 0 0.12 
0.009 0.009 0.009 

0 0 0 
1 3 1 
0 0.24 0 

0.009 0.009 0.009 
0 0 0 
2 2 3 

0.12 0.12 0.24 
0.009 0.009 0.009 

0 0 0 
1 2 

5 0 0.12 
0.009 0.009 

0 0 
1 

6 0 
0.009 

0 

FIGURE 5-4: SHUFFLED 1/8 REACTOR CORE 
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2 3 

0.12 0.24 
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0 0 
1 3 
0 0.24 

0.009 0.009 
0 0 
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0.24 
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function capabilities. The set of computer programs written can be accommodated 

under NEURAL NET submenu and the user can construct testing, training files for 

a patterned network. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

Introduction 

This chapter contains the conclusions and future work concerning the research 

performed at the University of Tennessee at Knoxville. Some suggestions are also 

made for others who would like to continue research in the area of in-core fuel 

management. 

LEOPARD Models 

We were unsuccessful in utilizing a feed-forward neural network to represent 

a general fuel assembly and to obtain high accuracy. A recurrent network structure 

may obtain the required accuracy. Two networks can be designed, where one of the 

networks is a control network, and the other is a model network. The model network 

can relate K-INF to initial K-INF, initial burnup, and change in burnup. The control 

network can be designed to provide the amount of poison control necessary to reach 

a certain value of K-INF as an output. The input of the model network would be 

connected to the control network, and the output of the control network could be 

connected to the model network. The control network would behave like an inverse 

controller. 
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RPM Models 

The different models of RPM were chosen based on the following criteria: 

1) the effect of all fuel assemblies, or the global interactions of the fuel assemblies 

on each other, which is represented by a fully connected network, and 2) the local 

changes that occur in the vicinity of a fuel assembly and the summation of those 

changes to measure the global effects on each fuel assembly at a certain location, 

which are represented by the next-door neighbor model and the patterned network. 

The different sizes of training data for each model are selected based on the ability 

of the network to converge. In model A, using 100 patterns for training is a difficult 

task, and the network may never converge. 

For future work, the use of recurrent networks may increase the ability of the 

network to predict the relative power distribution below 5%. The inclusion of other 

assembly descriptors may also enhance the prediction capabilities of the RPM 

models. A model can be designed to relate the relative power distribution in a two­

dimensional mesh point grid, where the grid consists of five assemblies, four neighbor 

assemblies surrounding an assembly in the middle. The input layer consists of four 

nodes, and the output layer consists of one node. The four nodes represent the four 

assembly relative powers next to the middle assembly, whose relative power is 

unknown. The network relates the relative power of the middle assembly to its four 

neighbor assemblies. 
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Expert System 

The representation of knowledge as OBJECT-A TIRIBUTE-V ALUE (0-A-V) 

has decreased the number of rules implemented, compared to the rules previously 

implemented in the Personal Consultant Plus Shell (PC Plus), in which the fuel 

shuffling rules were originally coded. This is a result of the use of the 0-A-V 

representation by OPS5. In PC Plus, knowledge is represented by a frame structure, 

where a default value exists. The default value expresses the most probable value 

of a variable if the inference engine cannot obtain a value using the other methods 

present in the frame structure. This type of parameter fails to give a real-world 

representation of the knowledge. 

The expert system can be extended to include other core constraints ( e.g., 

power peaking constraints, batch size constraints, etc.). The interaction between the 

expert system and a neutronic code can be achieved. Burnable poison and control 

rod assemblies can be incorporated into the expert system. Since real-life 

applications have pre-designed locations for such assemblies, the implementation of 

these rules is more simple than the rules implemented earlier. The checkerboard 

rules need to be examined more closely. One method to model the logic of the 

checkerboard pattern is the use of a pre-specified K-INF value for each concentric 

region, suggested in Chapter IV. 
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Manual Shuffling 

The objectives of the software are satisfied. The user can load a core at BOC 

or EOC. He or she can also evaluate a loaded core using the RPM code. The 

operator can test a loaded core with a neural network. Construction of a neural 

network is also possible using this software. The tool used to develop this software 

is inexpensive compared to other tools. 

The help files can be incorporated in the software by using the Macro function 

capabilities. The set of computer programs written can be accommodated under the 

NEURAL NET submenu, and the user can construct testing and training files for a 

patterned network. 
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TABLE A-1: TRAINING SET FOR LEOPARD MODEL A 

INITIAL BURNUP SOLUBLE BURNABLE INITIAL FINAL 

BURNUP CHANGE POISON POISON IC·inf IC· inf 

GWD/MTU GWD/MTU PPM PPM 

0.00250 0.00250 0.00000 0.00000 1.29760 0.63364 

0.00500 0.00250 0.00000 0.00000 1.26728 0.62797 

0.00750 0.00250 0.00000 0.00000 1 .25594 0.62661 

0.01000 0.00010 0.00000 0.00000 1.25322 0.62598 

0.01000 0.01000 0.00000 0.00000 1.25195 0.62598 

0.02000 0.01500 0.00000 0.00000 1.25195 0.62412 

0.03500 0.01500 0.00000 0.00000 1.24823 0.62192 

0.05000 0.00010 0.00000 0.00000 1.24384 0.62038 

0.05000 0.05000 0.00000 0.00000 1.24075 0.62038 

0.10000 0.10000 0.00000 0.00000 1.24075 0.61690 

0.20000 0.20000 0.00000 0.00000 1.23380 0.61012 

0.40000 0.20000 0.00000 0.00000 1.22023 0.59535 

0.60000 0.20000 0.00000 0.00000 1.19070 0.58063 

0.80000 0.20000 0.00000 0.00000 1.16125 0.56677 

1.00000 0.20000 0.00000 0.00000 1.13354 0.55382 

1.20000 0.20000 0.00000 0.00000 1.10764 0.54174 

1.40000 0.20000 0.00000 0.00000 1.08347 0.53041 

1.60000 0.00010 0.00000 0.00000 1.06081 o.519n 

1.60000 0.25000 0.00000 0.00000 1 .03944 0.51972 

0.00250 0.00250 0.50000 1.40900 1.10765 0.54767 

0.00500 0.00250 0.49900 1.31700 1.09535 0.54766 

0.00750 0.00250 0.49800 1.22600 1.09532 0.55073 

0.01000 0.00001 0.49800 1.21600 1.10146 0.55087 

0.01000 0.01000 0.49700 1.21600 1.10175 0.55087 

0.02000 0.01500 0.49500 1.20600 1.10174 0.55025 

0.03500 0.01500 0.49000 1.19600 1.10050 0.54946 

0.05000 0.00001 0.48500 1.18600 1.09893 0.54911 

0.05000 0.05000 0.48500 1.18600 1.09823 0.54911 

0.10000 0.10000 0.46900 1.17600 1.09823 0.54807 
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TABLE A-1 (CONTINUED) 

0.20000 0.20000 0.43600 1.06600 1 .09614 0.55010 

0.40000 0.20000 0.37400 1.05600 1.10021 0.54355 

0.60000 0.20000 0.31500 0.93600 1.08711 0.54039 

0.80000 0.20000 0.26100 0.71500 1.08078 0.54116 

1.00000 0.20000 0.21200 0.50400 1.08232 0.54162 

1.20000 0.24000 0.16900 0.31100 1.08325 0.54144 

1.44000 0.20000 0.12600 0.19200 1.08289 0.53656 

1.64000 0.20000 0.09600 0.09600 1.07313 0.53252 

1.84000 0.00001 0.07200 0.03800 1.06505 0.53252 
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TABLE A-2: TRAINING SET FOR LEOPARD MODEL B 

INITIAL BURNUP INITIAL FINAL 

BURNUP CHANGE IC-inf IC-inf 
G\1)/NTU G\1)/MTU 

0.00250 0.00250 1 .29760 0.63364 

0.00500 0.00250 1.26n8 0.62797 

0.00750 0.00250 1 .25594 0.62661 

0.01000 0.00010 1 .25322 0.62598 

0.01000 0.01000 1.25195 0.62598 

0.02000 0.01500 1.25195 0.62412 

0.03500 0.01500 1.24823 0.62192 

0.05000 0.00010 1.24384 0.62038 

0.05000 0.05000 1 .24075 0.62038 

0.10000 0.10000 1 .24075 0.61690 

0.20000 0.20000 1 .23380 0.61012 

0.40000 0.20000 1.22023 0.59535 

0.60000 0.20000 1.19070 0.58063 

0.80000 0.20000 1.16125 o.566n 

1.00000 0.20000 1.13354 0.55382 

1.20000 0.20000 1.10764 0.54174 

1.40000 0.20000 1.08347 0.53041 

1.60000 0.00010 1.06081 o.519n 

1.60000 0.25000 1 .03944 o.519n 

0.00250 0.00250 1 .10765 0.54767 

0.00500 0.00250 1.09535 0.54766 

0.00750 0.00250 1.09532 0.55073 

0.01000 0.00001 1. 10146 0.55087 

0.01000 0.01000 1.10175 0.55087 

0.02000 0.01500 1.10174 0.55025 

0.03500 0.01500 1.10050 0.54946 

0.05000 0.00001 1.09893 0.54911 

0.05000 0.05000 1 .09823 0.54911 

0.10000 0.10000 1.09823 0.54807 
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TABLE A-2 (CONTINUED) 

0.20000 0.20000 1.09614 0.55010 

0.40000 0.20000 1.10021 0.54355 

0.60000 0.20000 1 .08711 0.54039 

0.80000 0.20000 1 .08078 0.54116 

1.00000 0.20000 1.08232 0.54162 

1.20000 0.24000 1.08325 0.54144 

1.44000 0.20000 1 .08289 0.53656 

1.64000 0.20000 1.07313 0.53252 

1.84000 0.00001 1.06505 0.53252 
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TABLE A-3: TRAINING SET FOR LEOPARD MODEL C 

INITIAL BURNUP SOLUBLE BURNABLE INITIAL FINAL 

BURNUP CHANGE POISON POISON IC-inf IC-inf 
G\1)/MTtJ Gll>/MTU PPM PPM 

0.02500 0.02500 0.50000 1.40900 1.10765 0.54767 

0.05000 0.02500 0.49900 1.31700 1.09535 0.54766 

0.07500 0.02500 0.49800 1.22600 1.09532 0.55073 

0.10000 0.00010 0.49800 1.21600 1.10146 0.55087 

0.10000 0.10000 0.49700 1.21600 1.10175 0.55087 

0.20000 0.15000 0.49500 1.20600 1.10174 0.55025 

0.35000 0.15000 0.49000 1.19600 1.10050 0.54946 

0.50000 0.00010 0.48500 1.18600 1.09893 0.54911 

0.50000 0.50000 0.48500 1.18600 1.09823 0.54911 

1.00000 1.00000 0.46900 1.17600 1.09823 0.54807 

2.00000 2.00000 0.43600 1.06600 1.09614 0.55010 

4.00000 2.00000 0.37400 1.05600 1.10021 0.54355 

6.00000 2.00000 0.31500 0.93600 1.08711 0.54039 

8.00000 2.00000 0.26100 0.71500 1.08078 0.54116 

10.00000 2.00000 0.21200 0.50400 1.08232 0.54162 

12.00000 2.40000 0.16900 0.31100 1.08325 0.54144 

14.40000 2.00000 0.12600 0.19200 1.08289 0.53656 

16.40000 2.00000 0.09600 0.09600 1.07313 0.53252 

18.40000 0.00010 o.onoo 0.03800 1.06505 0.53252 
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TABLE A-4: TRAINING SET FOR LEOPARD MODEL D 

INITIAL BURNUP INITIAL FINAL 

BURNUP CHANGE IC-inf IC-inf 
G\1)/MTU Gll>/MTU 

0.00250 0.00250 1 .29760 0.63364 

0.00500 0.00250 1.26n8 0.62797 

0.00750 0.00250 1.25594 0.62661 

0.01000 0.00010 1 .25322 0.62598 

0.01000 0.01000 1.25195 0.62598 

0.02000 0.01500 1.25195 0.62412 

0.03500 0.01500 1.24823 0.62192 

0.05000 0.00010 1.24384 0.62038 

0.05000 0.05000 1.24075 0.62038 

0.10000 0.10000 1.24075 0.61690 

0.20000 0.20000 1.23380 0.61012 

0.40000 0.20000 1.22023 0.59535 

0.60000 0.20000 1.19070 0.58063 

0.80000 0.20000 1.16125 o.566n 

1.00000 0.20000 1.13354 0.55382 

1.20000 0.20000 1.10764 0.54174 

1.40000 0.20000 1.08347 0.53041 

1.60000 0.00010 1.06081 o.519n 

1.60000 0.25000 1.03944 0.519n 
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TABLE A-5: TESTING SET (1) FOR LEOPARD MODEL A 

INITIAL BURNUP SOLUBLE BURNABLE INITIAL 
BURNUP CHANGE POISON POISON IC· inf 

GY>/MTU GY>/MTU PPM PPM 

0.00250 0.00250 0.00000 0.00000 1.34661 

0.00500 0.00250 0.00000 0.00000 1.31844 

0.00750 0.00250 0.00000 0.00000 1.30621 

0.01000 0.00010 0.00000 0.00000 1.30336 

0.01000 0.01000 0.00000 0.00000 1.30217 

0.02000 0.01500 0.00000 0.00000 1.30217 

0.03500 0.01500 0.00000 0.00000 1.29876 

0.05000 0.00010 0.00000 0.00000 1.29429 

0.05000 0.05000 0.00000 0.00000 1.29081 

0.10000 0.10000 0.00000 0.00000 1 .29081 

0.20000 0.20000 0.00000 0.00000 1.28317 

0.40000 0.20000 0.00000 0.00000 1.27060 

0.60000 0.20000 0.00000 0.00000 1.24454 

0.80000 0.20000 0.00000 0.00000 1.21857 

1.00000 0.20000 0.00000 0.00000 1 .19393 

1.20000 0.20000 0.00000 0.00000 1 .17084 

1.40000 0.20000 0.00000 0.00000 1.14920 

1.60000 0.00010 0.00000 0.00000 1.12891 
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TABLE A-6: TESTING SET (2) FOR LEOPARD MODEL A 

INITIAL BURNUP SOLUBLE BURNABLE INITIAL 

BURNUP CHANGE POISON POISON K-inf 
G\ll/MTU G\ll/MTU PPM PPM 

0.00250 0.00250 0.60000 1.40900 0.99514 

0.00500 0.00250 0.59900 1.31700 0.98530 

0.00750 0.00250 0.59700 1.22600 0.98760 

0.01000 0.00001 0.59500 1.21600 0.99491 

0.01000 0.01000 0.59500 1.21600 0.99548 

0.02000 0.01500 0.59200 1.20600 0.99548 

0.03500 0.01500 0.58600 1.19600 0.99510 

0.05000 0.00010 0.58000 1.18600 0.99500 

0.05000 0.05000 0.58000 1.18600 0.99546 

0.10000 0.10000 0.56000 1.17600 0.99546 

0.20000 0.20000 0.52100 1.06600 0.99667 

0.40000 0.20000 0.44700 1.05600 1.00494 

0.60000 0.20000 0.37600 0.93600 0.99585 

0.80000 0.20000 0.31200 o. 71500 0.99315 

1.00000 0.20000 0.25300 0.50400 0.99794 

1.20000 0.24000 0.20200 0.31100 1.00180 

1.44000 0.24000 0.15000 0.19200 1.00405 

1.64000 0.24000 0.11400 0.09600 0.99633 

1.84000 0.00001 0.08500 0.03800 0.98968 

109 



TABLE A-7: TESTING SET (1) FOR LEOPARD MODEL B 

INITIAL BURNUP INITIAL 

BURNUP CHANGE IC· inf 
Gll>/MTU Gll>/MTU 

0.00250 0.00250 1.34661 

0.00500 0.00250 1.31844 

0.00750 0.00250 1.30621 

0.01000 0.00010 1 .30336 

0.01000 0.01000 1.30217 

0.02000 0.01500 1.30217 

0.03500 0.01500 1.29876 

0.05000 0.00010 1 .29429 

0.05000 0.05000 1 .29081 

0.10000 0.10000 1 .29081 

0.20000 0.20000 1 .28317 

0.40000 0.20000 1.27060 

0.60000 0.20000 1.24454 

0.80000 0.20000 1 .21857 

1.00000 0.20000 1.19393 

1.20000 0.20000 1 .17084 

1.40000 0.20000 1.14920 

1.60000 0.00010 1 .12891 
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TABLE A-8: TESTING SET (2) FOR LEOPARD MODEL B 

INITIAL BURNUP INITIAL 

BURNUP CHANGE IC-inf 

G\1)/MTIJ G\1)/MTU 

0.00250 0.00250 0.99514 

0.00500 0.00250 0.98530 

0.00750 0.00250 0.98760 

0.01000 0.00001 0.99491 

0.01000 0.01000 0.99548 

0.02000 0.01500 0.99548 

0.03500 0.01500 0.99510 

0.05000 0.00010 0.99500 

0.05000 0.05000 0.99546 

0.10000 0.10000 0.99546 

0.20000 0.20000 0.99667 

0.40000 0.20000 1.00494 

0.60000 0.20000 0.99585 

0.80000 0.20000 0.99315 

1.00000 0.20000 0.99794 

1.20000 0.24000 1.00180 

1.44000 0.24000 1 .00405 

1.64000 0.24000 0.99633 

1.84000 0.00001 0.98968 
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TABLE A-9: TESTING SET FOR LEOPARD MODEL C 

INITIAL BURNUP SOLUBLE BURNABLE INITIAL 

BURNUP CHANGE POISON POISON K-inf 

GWD/NTU GWD/NTU PPM PPM 

0.02500 0.02500 0.60000 1.40900 0.99514 

0.05000 0.02500 0.59900 1.31700 0.98530 

0.07500 0.02500 0.59700 1.22600 0.98760 

0.10000 0.00010 0.59500 1.21600 0.99491 

0.10000 0.10000 0.59500 1.21600 0.99548 

0.20000 0.15000 0.59200 1.20600 0.99548 

0.35000 0.15000 0.58600 1.19600 0.99510 

0.50000 0.00100 0.58000 1.18600 0.99500 

0.50000 0.50000 0.58000 1.18600 0.99546 

1.00000 1.00000 0.56000 1 .17600 0.99546 

2.00000 2.00000 0.52100 1.06600 0.99667 

4.00000 2.00000 0.44700 1.05600 1.00494 

6.00000 2.00000 0.37600 0.93600 0.99585 

8.00000 2.00000 0.31200 0.71500 0.99315 

10.00000 2.00000 0.25300 0.50400 0.99794 

12.00000 2.40000 0.20200 0.31100 1.00180 

14.40000 2.40000 0.15000 0.19200 1.00405 

16.40000 2.40000 0.11400 0.09600 0.99633 

18.40000 0.00010 0.08500 0.03800 0.98968 
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TABLE A-10: TESTING SET (1) FOR LEOPARD MODEL D 

INITIAL BURNUP INITIAL 

BURNUP CHANGE IC-inf 
Gll>/MTU Gll>/MTU 

0.00250 0.00250 1.34661 

0.00500 0.00250 1.31844 

0.00750 0.00250 1.30621 

0.01000 0.00010 1.30336 

0.01000 0.01000 1.30217 

0.02000 0.01500 1.30217 

0.03500 0.01500 1.29876 

0.05000 0.00010 1.29429 

0.05000 0.05000 1.29081 

0.10000 0.10000 1.29081 

0.20000 0.20000 1.28317 

0.40000 0.20000 1.27060 

0.60000 0.20000 1.24454 

0.80000 0.20000 1.21857 

1.00000 0.20000 1.19393 

1.20000 0.20000 1.17084 

1.40000 0.20000 1.14920 

1.60000 0.00010 1.12891 
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TABLE A-11: TESTING SET (2) FOR LEOPARD MODEL D 

INITIAL BURNUP INITIAL 

BURNUP CHANGE IC-inf 
G\1)/NTU G\1)/MTIJ 

0.00140 0.00250 1 .29760 

0.00390 0.00500 1 .27789 

0.00890 0.00800 1 .25865 

0.01690 0.01000 1 .24931 

0.02690 0.01000 1.24599 

0.03690 0.01000 1.24337 

0.05190 0.01500 1.24043 

0.06690 0.01500 1.23811 

0.08690 0.02000 1 .23541 

0.13690 0.05000 1.22890 

0.23690 0.10000 1.21492 

0.34690 0.11000 1.19862 

0.46690 0.12000 1.16111 

0.60190 0.13500 1.13345 

0.80190 0.20000 1.13218 

0.81190 0.01000 1.12949 

0.83190 0.02000 1.12481 
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TABLE A-12: TESTING SET (1) OUTPUT FOR LEOPARD MODEL A 

Desired Network Error Relative Percentage 
IC-inf Output Difference Error Error 

0.659220 0.577830 0.081390 0.123464 12.346410 

0.653105 0.577128 0.075977 0.116332 11.633200 

0.651680 0.576822 0.074858 0.114869 11.486930 

0.651085 0.576760 0.074325 0.114156 11.415560 

0.651085 0.576691 0.074394 0.114262 11.426160 

0.649380 0.576666 0.072714 0.111974 11.197450 

0.647145 0.576569 0.070576 0.109057 10.905750 

0.645405 0.576518 0.068887 0.106735 10.673450 

0.645405 0.576164 0.069241 0.107283 10.728300 

0.641585 0.575707 0.065878 0.102680 10.268010 

0.635300 0.573998 0.061302 0.096493 9.649300 

0.622270 0.571682 0.050588 0.081296 8.129590 

0.609285 0.568212 0.041073 0.067412 6.741180 

0.596965 0.564009 0.032956 0.055206 5.520592 

0.585420 0.559120 0.026300 0.044925 4.492501 

0.574600 0.553581 0.021019 0.036580 3.658023 

0.564455 0.547448 0.017007 0.030130 3.012995 

0.554875 0.553622 0.001253 0.002258 0.225817 
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TABLE A-13: TESTING SET (2) OUTPUT FOR LEOPARD MODEL A 

Desired Network Error Relative Percentage 
K-inf output Difference Error Error 

0.497560 0.668523 -0.170960 -0.343600 -34.360300 

0.492650 0.664191 -0.171540 -0.348200 -34.820100 

0.493790 0.659137 -0.165350 -0.334850 -33.485300 

0.497450 0.658246 -0.160800 -0.323240 -32.324100 

0.497740 0.657928 -0.160190 -0.321830 -32.183100 

0.497740 0.656980 -0.159240 -0.319930 -31.992600 

0.497550 0.656042 -0.158490 -0.318540 -31.854500 

0.497500 0.655530 -0.158030 -0.317650 -31. 764800 

0.497720 0.654086 -0.156370 -0.314160 -31.416500 

0.49m0 0.650880 -0.153160 -o.3omo -30.m300 

0.498330 0.640287 -0.141960 -0.284870 -28.486500 

0.502470 0.635949 -0.133480 -0.265650 -26.564600 

0.497920 0.627732 -0.129810 -0.260710 -26.070900 

0.496570 0.613679 -0.117110 -0.235840 -23.583600 

0.498970 0.597044 -0.098070 -0.196550 -19.655300 

0.500900 0.574750 -0.073850 -0.147430 -14.743500 

0.502020 0.556626 -0.054610 -0.108770 -10.877300 

0.498160 0.538506 -0.040350 -0.080990 -8.099000 

0.494840 0.543666 -0.048830 -0.098670 -9.867030 
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TABLE A-14: TESTING SET (1) OUTPUT FOR LEOPARD MODEL B 

Desired Network Error Relative Percentage 

IC· inf output Difference Error Error 

0.659220 0.554138 0.105082 0.159404 15.940354 

0.653105 0.553134 0.099971 0.153070 15.307033 

0.651680 0.552706 0.098974 0.151875 15 .187515 

0.651085 0.552606 0.098479 0.151254 15.125368 

0.651085 0.552725 0.098360 0.151071 15.107090 

0.649380 0.553025 0.096355 0.148380 14.837999 

0.647145 0.553205 0.093940 0.145161 14.516067 

0.645405 0.553083 0.092322 0.143045 14.304506 

0.645405 0.553811 0.091594 0.141917 14.191709 

0.641585 0.555716 0.085869 0.133839 13.383885 

0.635300 0.559103 0.076197 0.119939 11.993861 

0.622270 0.561361 0.060909 0.097882 9.788195 

0.609285 0.562031 0.047254 0.077556 7.755648 

0.596965 0.561540 0.035425 0.059342 5.934184 

0.585420 0.559802 0.025618 0.043760 4.376004 

0.574600 0.556680 0.017920 0.031187 3.118691 

0.564455 0.552035 0.012420 0.022004 2.200353 

0.554875 0.541233 0.013642 0.024586 2.458572 
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TABLE A-15: TESTING SET (2) OUTPUT FOR LEOPARD MODEL B 

Desired Network Error Relative Percentage 

IC-inf output Difference Error Error 

0.497560 0.533354 -0.035794 -0.071939 -7.193906 

0.492650 0.532573 -0.039923 -0.081037 -8.103725 

0.493790 0.532893 -0.039103 -0.079190 -7.918953 

0.497450 0.533618 -0.036168 -o.on7o7 -7.270680 

0.497740 0.533832 -0.036092 -o.on512 -7.251175 

0.497740 0.534335 -0.036595 -0.073522 -7.352232 

0.497550 0.534917 -0.037367 -0.075102 -7.510200 

0.497500 0.535270 -o.03mo -0.075920 -7.591960 

o.49mo 0.536080 -0.038360 -0.077071 -7.707145 

o.49mo 0.538594 -0.040874 -0.082122 -8.212248 

0.498330 0.542793 -0.044463 -0.089224 -8.922401 

0.502470 o.54n17 -0.044747 -0.089054 -8.905407 

0.497920 0.548382 -0.050462 -0.101346 -10.134560 

0.496570 0.548295 -o.051n5 -0.104165 -10.416457 

0.498970 0.54n04 -0.048234 -0.096667 -9.666713 

0.500900 0.544749 -0.043849 -0.087540 -8.754043 

0.502020 0.539461 -0.037441 -0.074581 -7.458069 

0.498160 0.532436 -0.034276 -0.068805 -6.880520 

0.494840 0.520805 -0.025965 -o.0524n -5.247151 
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TABLE A-16: TESTING SET OUTPUT FOR LEOPARD MODEL C 

Desired Network Error Relative Percentage 

IC-inf output Difference Error Error 

0.497560 0.510670 -0.013110 -0.026349 -2.634858 

0.492650 0.511666 -0.019016 -0.038599 -3.859941 

0.493790 0.512677 -0.018887 -0.038249 -3.824905 

0.497450 0.513354 -0.015904 -0.031971 -3.197105 

0.497740 0.513318 -0.015578 -0.031297 -3. 129746 

0.497740 0.515300 -0.017560 -0.035279 -3.527946 

0.497550 0.517492 -0.019942 -0.040080 -4.008039 

0.497500 0.519445 -0.021945 -0.044111 ·4.411055 

0.49mO 0.518996 -0.021276 -0.042747 -4.274693 

o.49mo 0.520046 -0.022326 -0.044857 -4.485655 

0.498330 0.518137 -0.019807 -0.039747 -3.974675 

0.502470 0.515016 -0.012546 -0.024969 -2.496865 

0.497920 0.514248 -0.016328 -0.032792 -3.279242 

0.496570 0.514013 -0.017443 -0.035127 -3.512697 

0.498970 0.513874 -0.014904 -0.029870 -2.986953 

0.500900 0.513701 -0.012801 -0.025556 -2.555600 

0.502020 0.513624 -0.011604 -0.023115 -2.311462 

0.498160 0.513584 -0.015424 -0.030962 -3.096194 

0.494840 0.513784 -0.018944 -0.038283 -3.828308 
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TABLE A-17: TESTING SET (1) OUTPUT FOR LEOPARD MODEL D 

Desired Network Error Relative Percentage 

IC-inf output Difference Error Error 

0.610732 0.659220 -0.048490 -0.079390 -7.939000 

0.609371 0.653105 -0.043730 -0.071770 -7.177000 

0.608764 0.651680 -0.042920 -0.070500 -7.050000 

0.608640 0.651085 -0.042450 -0.069740 -6.974000 

0.608546 0.651085 -0.042540 -0.069900 -6.990000 

0.608591 0.649380 -0.040790 -0.067020 -6.702000 

0.608495 0.647145 -0.038650 -0.063520 -6.352000 

0.608379 0.645405 -0.037030 -0.060860 -6.086000 

0.608046 0.645405 -0.037360 -0.061440 -6.144000 

0.608064 0.641585 -0.033520 -0.055130 -5.513000 

o.6ono1 0.635300 -0.028100 -0.046280 -4.628000 

0.604964 0.622270 -0.017310 -0.028610 -2.861000 

0.599837 0.609285 -0.009450 -0.015750 -1 .575000 

0.592347 0.596965 -0.004620 -0.007800 ·0.780000 

0.582373 0.585420 -0.003050 -0.005230 -0.523000 

0.569787 0.574600 -0.004810 -0.008450 ·0.845000 

0.554523 0.564455 -0.009930 -0.017910 -1.791000 

0.534714 0.554875 -0.020160 -0.037700 -3.770000 
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TABLE A-18: TESTING SET (2) OUTPUT FOR LEOPARD MODEL D 

Desired Network Error Relative Percentage 

IC-inf output Difference Error Error 

0.638945 0.608276 0.030669 0.047999 4.799944 

0.629325 0.607227 0.022098 0.035114 3.511381 

0.624655 0.606179 0.018476 0.029578 2.957793 

0.622995 0.605695 0.017300 0.027769 2.776908 

0.621685 0.605575 0.016110 0.025913 2.591344 

0.620215 0.605490 0.014725 0.023742 2.374177 

0.619055 0.605391 0.013664 0.022072 2.207235 

0.617705 0.605334 0.012371 0.020027 2.002736 

0.614450 0.605244 0.009206 0.014983 1.498250 

0.607460 0.604873 0.002587 0.004259 0.425872 

0.599310 0.603682 -0.004372 -0.007295 -0.729506 

0.580555 0.601833 -0.021278 -0.036651 -3.665114 

0.566725 0.597685 -0.030960 -0.054630 -5.462967 

0.566090 0.592691 -0.026601 -0.046991 -4.699076 

0.564745 0.585615 -0.020870 -0.036955 ·3.695473 

0.562405 0.585845 -0.023440 -0.041678 -4.167815 

0.556065 0.584682 -0.028617 -0.051463 -5.146341 
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TABLB A-19: TRAINING DATA POR RPM MODEL A 

(1.010101 1.020408 1.030928 1.408451 1.333333 1.351351 
1.369863 1.388889 1.204819 1.234568 1.250000 1.265823 1.282051 
1.2987011.315789 1.041667 1.052632 1.063830 1.075269 1.086957 
1.219512 1.092896 1.0989011.104972 1.1111111.123595 1.136364 
1.149425 1.162791 1.176471 1.190476 

0.436799 0.459392 0.508664 0.624076 0.650016 0.651084 
0.613313 0.5275010.491222 0.517460 0.566084 0.589838 0.590396 
0.557387 0.485579 0.470998 0.466719 0.469822 0.465234 0.443732 
0.408579 0.427973 0.411620 0.398808 0.379306 0.355260 0.384712 
0.365862 0.346353 0.345178 0.328176) 
(1.010101 1.030928 1.020408 1.408451 1.333333 1.351351 
1.369863 1.388889 1.204819 1.234568 1.250000 1.265823 1.282051 
1.2987011.315789 1.041667 1.052632 1.063830 1.075269 1.086957 
1.219512 1.092896 1.0989011.104972 1.1111111.123595 1.136364 
1.149425 1.162791 1.176471 1.190476 

0.438067 0.460748 0.506911 0.623456 0.649821 0.651278 
0.613525 0.527759 0.491502 0.516932 0.565730 0.589838 0.590619 
0.557627 0.485863 0.470557 0.466423 0.469822 0.465383 0.443889 
0.408579 0.427973 0.411620 0.398981 0.379306 0.355260 0.384712 
0.365862 0.346549 0.345178 0.328380) 
(1.010101 1.030928 1.020408 1.190476 1.333333 1.351351 
1.369863 1.388889 1.204819 1.234568 1.250000 1.265823 1.282051 
1.2987011.315789 1.041667 1.052632 1.063830 1.075269 1.086957 
1.219512 1.092896 1.0989011.104972 1.1111111.123595 1.136364 
1.149425 1.162791 1.176471 1.408451 

0.422426 0.441695 0.474216 0.552668 0.633973 0.662286 
0.636488 0.550840 0.471585 0.493597 0.536685 0.582972 0.601843 
0.577951 0.505692 0.455910 0.455758 0.469233 0.474070 0.457276 
0.421604 0.425045 0.414639 0.406540 0.388634 0.362482 0.390759 
0.374382 0.355068 0.355834 0.342225) 
(1.010101 1.030928 1.020408 1.190476 1.333333 1.219512 
1.369863 1.388889 1.204819 1.234568 1.250000 1.265823 1.282051 
1.2987011.315789 1.041667 1.052632 1.063830 1.075269 1.086957 
1.3513511.0928961.0989011.104972 1.1111111.123595 1.136364 
1.149425 1.162791 1.176471 1.408451 

0.430881 0.450557 0.480725 0.552790 0.618780 0.616895 
0.621384 0.549739 0.481586 0.501744 0.539578 0.576802 0.585799 
0.572639 0.510411 0.462548 0.459995 0.469675 0.472025 0.461499 
0.442323 0.429591 0.418467 0.409764 0.393575 0.371437 0.395501 
0.378761 0.359076 0.360215 0.345962) 
(1.010101 1.030928 1.020408 1.190476 1.333333 1.219512 
1.369863 1.388889 1.204819 1.234568 1.250000 1.1627911.282051 
1.2987011.315789 1.041667 1.052632 1.063830 1.075269 1.086957 
1.3513511.092896 1.0989011.104972 1.1111111.123595 1.136364 
1.149425 1.265823 1.176471 1.408451 

0.431525 0.450249 0.477121 0.542078 0.601408 0.615319 
0.6319510.563244 0.480438 0.497483 0.526727 0.546666 0.581608 
0.581267 0.522053 0.458940 0.454235 0.460597 0.472318 0.468643 
0.451786 0.427648 0.418467 0.414137 0.4014010.377306 0.400020 
0.386856 0.372912 0.369030 0.355452) 
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TABLE A-19 (COIITZHUED) 

(1.010101 1.030928 1.020408 1.190476 1.333333 1.219512 
1.369863 1.388889 1.204819 1.234568 1.250000 1.1627911.123595 
1.298701 
1.315789 1.041667 1.052632 1.063830 1.075269 1.086957 1.351351 
1.092896 1.0989011.104972 1.1111111.2820511.136364 1.149425 
1.265823 1.176471 1.408451 

0.450711 0.470263 0.494015 0.551572 0.594945 0.590173 
0.619824 0.560624 0.502837 0.516403 0.536432 0.536811 0.536053 
0.566084 0.519697 0.473487 0.462997 0.459392 0.459543 0.464936 
0.456214 0.435367 0.423246 0.415808 0.406710 0.394101 0.406540 
0.393224 0.379306 0.376029 0.361917) 
( 1.010101 1.030928 1.020408 1.190476 1.333333 1.219512 
1.1764711.388889 1.204819 1.234568 1.250000 1.1627911.123595 
1.2987011.315789 1.041667 1.052632 1.063830 1.075269 1.086957 
1.3513511.092896 1.0989011.104972 1.1111111.2820511.136364 
1.149425 1.265823 1.369863 1.408451 

0.473487 0.494572 0.516139 0.568319 0.595606 0.559548 
0.533772 0.505692 0.530328 0.541829 0.555094 0.541080 0.518382 
0.522314 0.482874 0.494294 0.478855 0.467460 0.456062 0.449015 
0.437751 0.450557 0.436481 0.425045 0.408070 0.388634 0.426023 
0.417472 0.396025 0.423082 0.390228) 
( 1.010101 1.030928 1.020408 1.190476 1.149425 1.219512 
1.1764711.388889 1.204819 1.234568 1.250000 1.1627911.123595 
1.2987011.315789 1.041667 1.052632 1.063830 1.075269 1.086957 
1.3513511.092896 1.0989011.104972 1.1111111.2820511.136364 
1.333333 1.265823 1.369863 1.408451 

0.448706 0.466571 0.482159 0.516668 0.510813 0.517328 
0.512151 0.492201 0.498586 0.508126 0.516139 0.498862 0.493458 
0.507451 0.473779 0.470557 0.462248 0.458487 0.457276 0.451786 
0.438701 0.454082 0.460597 0.463744 0.435526 0.399501 0.490099 
0.516668 0.458638 0.522966 0.460898) 
( 1.010101 1.030928 1.020408 1.190476 1.149425 1.219512 
1.1764711.388889 1.204819 1.234568 1.086957 1.1627911.123595 
1.2987011.315789 1.041667 1.052632 1.063830 1.075269 1.250000 
1.3513511.092896 1.0989011.104972 1.1111111.2820511.136364 
1.333333 1.265823 1.369863 1.408451 

0.405005 0.417804 0.430075 0.459995 0.486430 0.522835 
0.538574 0.522705 0.441066 0.447468 0.446071 0.474653 0.501880 
0.540830 0.505964 0.426511 0.429106 0.449478 0.474508 0.505828 
0.476107 0.438859 0.461048 0.478711 0.462548 0.423574 0.499275 
0.533136 0.476397 0.540204 0.475381) 
( 1.010101 1.204819 1.020408 1.190476 1.149425 1.219512 
1.1764711.388889 1.030928 1.234568 1.086957 1.1627911.123595 
1.2987011.315789 1.041667 1.052632 1.063830 1.075269 1.250000 
1.3513511.092896 1.0989011.104972 1.1111111.2820511.136364 
1.333333 1.265823 1.369863 1.408451 

0.418633 0.431525 0.430075 0.458789 0.486147 0.523356 
0.539452 0.523746 0.424228 0.441066 0.443889 0.474070 0.502291 
0.541704 0.506911 0.422918 0.427648 0.449170 0.475090 0.506640 
0.476832 0.438384 0.461348 0.4794310.463296 0.424228 0.500099 
0.534280 0.477411 0.541454 0.476397) 
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TABLE A-20: TRAINING DATA FOR NEXT-DOOR NEIGHBOR MODEL 

(1.020408 1.020408 1.010101 1.020408 1.020408 
1.204819 1.010101 1.020408 1.030928 1.204819 
1.234568 1.020408 1.030928 1.408451 1.234568 
1.250000 1.030928 1.408451 1.333333 1.250000 
1.265823 1.408451 1.333333 1.351351 1.265823 
1.282051 1.333333 1.351351 1.369863 1.282051 
1.298701 1.351351 1.369863 1.388889 1.190476 
1.315789 1.369863 1.388889 0.001000 1.315789 
1.020408 1.020408 1.204819 1.234568 1.234568 
1.030928 1.204819 1.234568 1.250000 1.041667 
1.408451 1.234568 1.250000 1.265823 1.052632 
1.333333 1.250000 1.265823 1.282051 1.063830 
1.351351 1.265823 1.282051 1.298701 1.075269 
1.369863 1.282051 1.298701 1.315789 1.086957 
1.388889 1.298701 1.315789 0.001000 1.219512 
1.234568 1.234568 1.041667 1.052632 1.052632 
1.250000 1.041667 1.052632 1.063830 1.092896 
1.265823 1.052632 1.063830 1.075269 1.098901 
1.282051 1.063830 1.075269 1.086957 1.104972 
1.298701 1.075269 1.086957 1.219512 1.111111 
1.315789 1.086957 1.219512 0.001000 1.123595 
1.052632 1.052632 1.092896 1.098901 1.098901 
1.063830 1.092896 1.098901 1.104972 1.136364 
1.075269 1.098901 1.104972 1.111111 1.149425 
1.086957 1.104972 1.111111 1.123595 1.162791 
1.219512 1.111111 1.123595 0.001000 0.001000 
1.098901 1.098901 1.136364 1.149425 1.149425 
1.104972 1.136364 1.149425 1.162791 1.176471 
1.111111 1.149425 1.162791 0.001000 1.190476 
1.149425 1.149425 1.176471 1.190476 0.001000 
1.162791 1.176471 1.190476 0.001000 0.000000 

0.436799 0.459392 0.508664 0.624076 0.650016 0.651084 
0.613313 0.527501 0.491222 0.517460 0.566084 0.589838 
0.590396 0.557387 0.485579 0.470998 0.466719 0.469822 
0.465234 0.443732 0.408579 0.427973 0.411620 0.398808 
0.379306 0.355260 0.384712 0.365862 0.346353 0.345178 

0:320116) 
(1.030928 1.030928 1.010101 1.030928 1.030928 
1.204819 1.010101 1.030928 1.020408 1.204819 
1.234568 1.030928 1.020408 1.408451 1.234568 
1.250000 1.020408 1.408451 1.333333 1.250000 
1.265823 1.408451 1.333333 1.351351 1.265823 
1.282051 1.333333 1.351351 1.369863 1.282051 
1.298701 1.351351 1.369863 1.388889 1.190476 
1.315789 1.369863 1.388889 0.001000 1.315789 
1.030928 1.030928 1.204819 1.234568 1.234568 
1.020408 1.204819 1.234568 1.250000 1.041667 
1.408451 1.234568 1.250000 1.265823 1.052632 
1.333333 1.250000 1.265823 1.282051 1.063830 
1.351351 1.265823 1.282051 1.298701 1.075269 
1.369863 1.282051 1.298701 1.315789 1.086957 
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TABLE A-20 (COIITIIIUBD) 

1.388889 1.298701 1.315789 0.001000 1.219512 
1.234568 1.234568 1.041667 1.052632 1.052632 
1.250000 1.041667 1.052632 1.063830 1.092896 
1.265823 1.052632 1.063830 1.075269 1.098901 
1.282051 1.063830 1.075269 1.086957 1.104972 
1.298701 1.075269 1.086957 1.219512 1.111111 
1.315789 1.086957 1.219512 0.001000 1.123595 
1.052632 1.052632 1.092896 1.098901 1.098901 
1.063830 1.092896 1.098901 1.104972 1.136364 
1.075269 1.098901 1.104972 1.111111 1.149425 
1.086957 1.104972 1.111111 1.123595 1.162791 
1.219512 1.111111 1.123595 0.001000 0.001000 
1.098901 1.098901 1.136364 1.149425 1.149425 
1.104972 1.136364 1.149425 1.162791 1.176471 
1.111111 1.149425 1.162791 0.001000 1.190476 
1.149425 1.149425 1.176471 1.190476 0.001000 
1.162791 1.176471 1.190476 0.001000 1.298701 

0.438067 0.460748 0.506911 0.623456 0.649821 0.651278 
0.613525 0.527759 0.491502 0.516932 0.565730 0.589838 
0.590619 0.557627 0.485863 0.470557 0.466423 0.469822 
0.465383 0.443889 0.408579 0.427973 0.411620 0.398981 
0.379306 0.355260 0.384712 0.365862 0.346549 0.345178 

0.328380) 
(1.030928 1.030928 1.010101 1.030928 1.030928 
1.204819 1.010101 1.030928 1.020408 1.204819 
1.234568 1.030928 1.020408 1.190476 1.234568 
1.250000 1.020408 1.190476 1.333333 1.250000 
1.265823 1.190476 1.333333 1.351351 1.265823 
1.282051 1.333333 1.351351 1.369863 1.282051 
1.298701 1.351351 1.369863 1.388889 1.408451 
1.315789 1.369863 1.388889 0.001000 1.315789 
1.030928 1.030928 1.204819 1.234568 1.234568 
1.020408 1.204819 1.234568 1.250000 1.041667 
1.190476 1.234568 1.250000 1.265823 1.052632 
1.333333 1.250000 1.265823 1.282051 1.063830 
1.351351 1.265823 1.282051 1.298701 1.075269 
1.369863 1.282051 1.298701 1.315789 1.086957 
1.388889 1.298701 1.315789 0.001000 1.219512 
1.234568 1.234568 1.041667 1.052632 1.052632 
1.250000 1.041667 1.052632 1.063830 1.092896 
1.265823 1.052632 1.063830 1.075269 1.098901 
1.282051 1.063830 1.075269 1.086957 1.104972 
1.298701 1.075269 1.086957 1.219512 1.111111 
1.315789 1.086957 1.219512 0.001000 1.123595 
1.052632 1.052632 1.092896 1.098901 1.098901 
1.063830 1.092896 1.098901 1.104972 1.136364 
1.075269 1.098901 1.104972 1.111111 1.149425 
1.086957 1.104972 1.111111 1.123595 1.162791 
1.219512 1.111111 1.123595 0.001000 0.001000 
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TABLB A-20 (COl1'l'IIIUBD) 

1.098901 1.098901 1.136364 1.149425 1.149425 
1.104972 1.136364 1.149425 1.162791 1.176471 
1.111111 1.149425 1.162791 0.001000 1.408451 
1.149425 1.149425 1.176471 1.408451 0.001000 
1.162791 1.176471 1.408451 0.001000 1.298701 

0.422426 0.441695 0.474216 0.552668 0.633973 0.662286 
0.636488 0.550840 0.471585 0.493597 0.536685 0.582972 
0.601843 0.577951 0.505692 0.455910 0.455758 0.469233 
0.474070 0.457276 0.421604 0.425045 0.414639 0.406540 
0.388634 0.362482 0.390759 0.374382 0.355068 0.355834 

0.342225) 
(1.030928 1.030928 1.010101 1.030928 1.030928 
1.204819 1.010101 1.030928 1.020408 1.204819 
1.234568 1.030928 1.020408 1.190476 1.234568 
1.250000 1.020408 1.190476 1.333333 1.250000 
1.265823 1.190476 1.333333 1.219512 1.265823 
1.282051 1.333333 1.219512 1.369863 1.282051 
1.298701 1.219512 1.369863 1.388889 1.408451 
1.315789 1.369863 1.388889 0.001000 1.315789 
1.030928 1.030928 1.204819 1.234568 1.234568 
1.020408 1.204819 1.234568 1.250000 1.041667 
1.190476 1.234568 1.250000 1.265823 1.052632 
1.333333 1.250000 1.265823 1.282051 1.063830 
1.219512 1.265823 1.282051 1.298701 1.075269 
1.369863 1.282051 1.298701 1.315789 1.086957 
1.388889 1.298701 1.315789 0.001000 1.351351 
1.234568 1.234568 1.041667 1.052632 1.052632 
1.250000 1.041667 1.052632 1.063830 1.092896 
1.265823 1.052632 1.063830 1.075269 1.098901 
1.282051 1.063830 1.075269 1.086957 1.104972 
1.298701 1.075269 1.086957 1.351351 1.111111 
1.315789 1.086957 1.351351 0.001000 1.123595 
1.052632 1.052632 1.092896 1.098901 1.098901 
1.063830 1.092896 1.098901 1.104972 1.136364 
1.075269 1.098901 1.104972 1.111111 1.149425 
1.086957 1.104972 1.111111 1.123595 1.162791 
1.351351 1.111111 1.123595 0.001000 0.001000 
1.098901 1.098901 1.136364 1.149425 1.149425 
1.104972 1.136364 1.149425 1.162791 1.176471 
1.111111 1.149425 1.162791 0.001000 1.408451 
1.149425 1.149425 1.176471 1.408451 0.001000 
1.162791 1.176471 1.408451 0.001000 1.298701 

0.430881 0.450557 0.480725 0.552790 0.618780 0.616895 
0.621384 0.549739 0.481586 0.501744 0.539578 0.576802 
0.585799 0.572639 0.510411 0.462548 0.459995 0.469675 
0.472025 0.461499 0.442323 0.429591 0.418467 0.409764 
0.393575 0.371437 0.395501 0.378761 0.359076 0.360215 

0.345962) 
(1.030928 1.030928 1.010101 1.030928 1.030928 
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TABLE A-20 (CONTIIIUBD) 

1.204819 1.010101 1.030928 1.020408 1.204819 
1.234568 1.030928 1.020408 1.190476 1.234568 
1.250000 1.020408 1.190476 1.333333 1.250000 
1.162791 1.190476 1.333333 1.219512 1.162791 
1.282051 1.333333 1.219512 1.369863 1.282051 
1.298701 1.219512 1.369863 1.388889 1.408451 
1.315789 1.369863 1.388889 0.001000 1.315789 
1.030928 1.030928 1.204819 1.234568 1.234568 
1.020408 1.204819 1.234568 1.250000 1.041667 
1.190476 1.234568 1.250000 1.162791 1.052632 
1.333333 1.250000 1.162791 1.282051 1.063830 
1.219512 1.162791 1.282051 1.298701 1.075269 
1.369863 1.282051 1.298701 1.315789 1.086957 
1.388889 1.298701 1.315789 0.001000 1.351351 
1.234568 1.234568 1.041667 1.052632 1.052632 
1.250000 1.041667 1.052632 1.063830 1.092896 
1.162791 1.052632 1.063830 1.075269 1.098901 
1.282051 1.063830 1.075269 1.086957 1.104972 
1.298701 1.075269 1.086957 1.351351 1.111111 
1.315789 1.086957 1.351351 0.001000 1.123595 
1.052632 1.052632 1.092896 1.098901 1.098901 
1.063830 1.092896 1.098901 1.104972 1.136364 
1.075269 1.098901 1.104972 1.111111 1.149425 
1.086957 1.104972 1.111111 1.123595 1.265823 
1.351351 1.111111 1.123595 0.001000 0.001000 
1.098901 1.098901 1.136364 1.149425 1.149425 
1.104972 1.136364 1.149425 1.265823 1.176471 
1.111111 1.149425 1.265823 0.001000 1.408451 
1.149425 1.149425 1.176471 1.408451 0.001000 
1.265823 1.176471 1.408451 0.001000 1.298701 

0.431525 0.450249 0.477121 0.542078 0.601408 0.615319 
0.631951 0.563244 0.480438 0.497483 0.526727 0.546666 
0.581608 0.581267 0.522053 0.458940 0.454235 0.460597 
0.472318 0.468643 0.451786 0.427648 0.418467 0.414137 
0.401401 0.377306 0.400020 0.386856 0.372912 0.369030 

0.355452) 
(1.030928 1.030928 1.010101 1.030928 1.030928 
1.204819 1.010101 1.030928 1.020408 1.204819 
1.234568 1.030928 1.020408 1.190476 1.234568 
1.250000 1.020408 1.190476 1.333333 1.250000 
1.162791 1.190476 1.333333 1.219512 1.162791 
1.123595 1.333333 1.219512 1.369863 1.123595 
1.298701 1.219512 1.369863 1.388889 1.408451 
1.315789 1.369863 1.388889 0.001000 1.315789 
1.030928 1.030928 1.204819 1.234568 1.234568 
1.020408 1.204819 1.234568 1.250000 1.041667 
1.190476 1.234568 1.250000 1.162791 1.052632 
1.333333 1.250000 1.162791 1.123595 1.063830 
1.219512 1.162791 1.123595 1.298701 1.075269 
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TABLE A-20 (COll'l'IKUBD) 

1.063830 1.092896 1.098901 1.104972 1.136364 
1.075269 1.098901 1.104972 1.111111 1.149425 
1.086957 1.104972 1.111111 1.282051 1.265823 
1.351351 1.111111 1.282051 0.001000 0.001000 
1.098901 1.098901 1.136364 1.149425 1.149425 
1.104972 1.136364 1.149425 1.265823 1.176471 
1.111111 1.149425 1.265823 0.001000 1.408451 
1.149425 1.149425 1.176471 1.408451 0.001000 
1.265823 1.176471 1.408451 0.001000 1.298701 

0.450711 0.470263 0.494015 0.551572 0.594945 0.590173 
0.619824 0.560624 0.502837 0.516403 0.536432 0.536811 
0.536053 0.566084 0.519697 0.473487 0.462997 0.459392 
0.459543 0.464936 0.456214 0.435367 0.423246 0.415808 
0.406710 0.394101 0.406540 0.393224 0.379306 0.376029 

0.361917) 
(1.030928 1.030928 1.010101 1.030928 1.030928 
1.204819 1.010101 1.030928 1.020408 1.204819 
1.234568 1.030928 1.020408 1.190476 1.234568 
1.250000 1.020408 1.190476 1.333333 1.250000 
1.162791 1.190476 1.333333 1.219512 1.162791 
1.123595 1.333333 1.219512 1.176471 1.123595 
1.298701 1.219512 1.176471 1.388889 1.408451 
1.315789 1.176471 1.388889 0.001000 1.315789 
1.030928 1.030928 1.204819 1.234568 1.234568 
1.020408 1.204819 1.234568 1.250000 1.041667 
1.190476 1.234568 1.250000 1.162791 1.052632 
1.333333 1.250000 1.162791 1.123595 1.063830 
1.219512 1.162791 1.123595 1.298701 1.075269 
1.176471 1.123595 1.298701 1.315789 1.086957 
1.388889 1.298701 1.315789 0.001000 1.351351 
1.234568 1.234568 1.041667 1.052632 1.052632 
1.250000 1.041667 1.052632 1.063830 1.092896 
1.162791 1.052632 1.063830 1.075269 1.098901 
1.123595 1.063830 1.075269 1.086957 1.104972 
1.298701 1.075269 1.086957 1.351351 1.111111 
1.315789 1.086957 1.351351 0.001000 1.282051 
1.052632 1.052632 1.092896 1.098901 1.098901 
1.063830 1.092896 1.098901 1.104972 1.136364 
1.075269 1.098901 1.104972 1.111111 1.149425 
1.086957 1.104972 1.111111 1.282051 1.265823 
1.351351 1.111111 1.282051 0.001000 0.001000 
1.098901 1.098901 1.136364 1.149425 1.149425 
1.104972 1.136364 1.149425 1.265823 1.369863 
1.111111 1.149425 1.265823 0.001000 1.408451 
1.149425 1.149425 1.369863 1.408451 0.001000 
1.265823 1.369863 1.408451 0.001000 1.298701 

0.473487 0.494572 0.516139 0.568319 0.595606 0.559548 
0.533772 0.505692 0.530328 0.541829 0.555094 0.541080 

0.518382 0.522314 0.482874 0.494294 0.478855 0.467460 
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'l'ABLB A-20 (COll'l'IHUBD) 

0.456062 0.449015 0.437751 0.450557 0.436481 0.425045 
0.408070 0.388634 0.426023 0.417472 0.396025 0.423082 

0.390228) 
(1.030928 1.030928 1.010101 1.030928 1.030928 
1.204819 1.010101 1.030928 1.020408 1.204819 
1.234568 1.030928 1.020408 1.190476 1.234568 
1.250000 1.020408 1.190476 1.149425 1.250000 
1.162791 1.190476 1.149425 1.219512 1.162791 
1.123595 1.149425 1.219512 1.176471 1.123595 
1.298701 1.219512 1.176471 1.388889 1.408451 
1.315789 1.176471 1.388889 0.001000 1.315789 
1.030928 1.030928 1.204819 1.234568 1.234568 
1.020408 1.204819 1.234568 1.250000 1.041667 
1.190476 1.234568 1.250000 1.162791 1.052632 
1.149425 1.250000 1.162791 1.123595 1.063830 
1.219512 1.162791 1.123595 1.298701 1.075269 
1.176471 1.123595 1.298701 1.315789 1.086957 
1.388889 1.298701 1.315789 0.001000 1.351351 
1.234568 1.234568 1.041667 1.052632 1.052632 
1.250000 1.041667 1.052632 1.063830 1.092896 
1.162791 1.052632 1.063830 1.075269 1.098901 
1.123595 1.063830 1.075269 1.086957 1.104972 
1.298701 1.075269 1.086957 1.351351 1.111111 
1.315789 1.086957 1.351351 0.001000 1.282051 
1.052632 1.052632 1.092896 1.098901 1.098901 
1.063830 1.092896 1.098901 1.104972 1.136364 
1.075269 1.098901 1.104972 1.111111 1.333333 
1.086957 1.104972 1.111111 1.282051 1.265823 
1.351351 1.111111 1.282051 0.001000 0.001000 
1.098901 1.098901 1.136364 1.333333 1.333333 
1.104972 1.136364 1.333333 1.265823 1.369863 
1.111111 1.333333 1.265823 0.001000 1.408451 
1.333333 1.333333 1.369863 1.408451 0.001000 
1.265823 1.369863 1.408451 0.001000 1.298701 

0.448706 0.466571 0.482159 0.516668 0.510813 0.517328 
0.512151 0.492201 0.498586 0.508126 0.516139 0.498862 
0.493458 0.507451 0.473779 0.470557 0.462248 0.458487 
0.457276 0.451786 0.438701 0.454082 0.460597 0.463744 
0.435526 0.399501 0.490099 0.516668 0.458638 0.522966 

0.460898) 
(1.030928 1.030928 1.010101 1.030928 1.030928 
1.204819 1.010101 1.030928 1.020408 1.204819 
1.234568 1.030928 1.020408 1.190476 1.234568 
1.086957 1.020408 1.190476 1.149425 1.086957 
1.162791 1.190476 1.149425 1.219512 1.162791 
1.123595 1.149425 1.219512 1.176471 1.123595 
1.298701 1.219512 1.176471 1.388889 1.408451 
1.315789 1.176471 1.388889 0.001000 1.315789 
1.030928 1.030928 1.204819 1.234568 1.234568 

129 



TABLE A-20 (COll'l'IIIUBD) 

1.020408 1.204819 1.234568 1.086957 1.041667 
1.190476 1.234568 1.086957 1.162791 1.052632 
1.149425 1.086957 1.162791 1.123595 1.063830 
1.219512 1.162791 1.123595 1.298701 1.075269 
1.176471 1.123595 1.298701 1.315789 1.250000 

1.388889 1.298701 1.315789 0.001000 1.351351 1.234568 
1.234568 1.041667 1.052632 1.052632 

1.086957 1.041667 1.052632 1.063830 1.092896 
1.162791 1.052632 1.063830 1.075269 1.098901 
1.123595 1.063830 1.075269 1.250000 1.104972 
1.298701 1.075269 1.250000 1.351351 1.111111 
1.315789 1.250000 1.351351 0.001000 1.282051 
1.052632 1.052632 1.092896 1.098901 1.098901 
1.063830 1.092896 1.098901 1.104972 1.136364 
1.075269 1.098901 1.104972 1.111111 1.333333 
1.250000 1.104972 1.111111 1.282051 1.265823 
1.351351 1.111111 1.282051 0.001000 0.001000 
1.098901 1.098901 1.136364 1.333333 1.333333 
1.104972 1.136364 1.333333 1.265823 1.369863 
1.111111 1.333333 1.265823 0.001000 1.408451 
1.333333 1.333333 1.369863 1.408451 0.001000 
1.265823 1.369863 1.408451 0.001000 1.298701 

0.405005 0.417804 0.430075 0.459995 0.486430 0.522835 
0.538574 0.522705 0.441066 0.447468 0.446071 0.474653 
0.501880 0.540830 0.505964 0.426511 0.429106 0.449478 
0.474508 0.505828 0.476107 0.438859 0.461048 0.478711 
0.462548 0.423574 0.499275 0.533136 0.476397 0.540204 

0.475381) 
(1.204819 1.204819 1.010101 1.204819 1.204819 
1.030928 1.010101 1.204819 1.020408 1.030928 
1.234568 1.204819 1.020408 1.190476 1.234568 
1.086957 1.020408 1.190476 1.149425 1.086957 
1.162791 1.190476 1.149425 1.219512 1.162791 
1.123595 1.149425 1.219512 1.176471 1.123595 
1.298701 1.219512 1.176471 1.388889 1.408451 
1.315789 1.176471 1.388889 0.001000 1.315789 
1.204819 1.204819 1.030928 1.234568 1.234568 
1.020408 1.030928 1.234568 1.086957 1.041667 
1.190476 1.234568 1.086957 1.162791 1.052632 
1.149425 1.086957 1.162791 1.123595 1.063830 
1.219512 1.162791 1.123595 1.298701 1.075269 
1.176471 1.123595 1.298701 1.315789 1.250000 
1.388889 1.298701 1.315789 0.001000 1.351351 
1.234568 1.234568 1.041667 1.052632 1.052632 
1.086957 1.041667 1.052632 1.063830 1.092896 
1.162791 1.052632 1.063830 1.075269 1.098901 
1.123595 1.063830 1.075269 1.250000 1.104972 
1.298701 1.075269 1.250000 1.351351 1.111111 
1.315789 1.250000 1.351351 0.001000 1.282051 
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'l'ABLB A-20 (COll'l'IIIUBD) 

1.052632 1.052632 1.092896 1.098901 1.098901 
1.063830 1.092896 1.098901 1.104972 1.136364 
1.075269 1.098901 1.104972 1.111111 1.333333 
1.250000 1.104972 1.111111 1.282051 1.265823 
1.351351 1.111111 1.282051 0.001000 0.001000 
1.098901 1.098901 1.136364 1.333333 1.333333 
1.104972 1.136364 1.333333 1.265823 1.369863 
1.111111 1.333333 1.265823 0.001000 1.408451 
1.333333 1.333333 1.369863 1.408451 0.001000 
1.265823 1.369863 1.408451 0.001000 1.298701 

0. 418633 0. 431525 0. 430075 0. 458789 0. 48614 7 0. 523356 0. 539452 
0. 523746 0. 424228 0. 441066 0. 443889 0. 4 74070 0. 502291 0. 541704 
0.506911 0.422918 0.427648 0.449170 0.475090 0.506640 0.476832 
0. 438384 0. 461348 0. 4 79431 0. 463296 0. 424228 0. 500099 0. 534280 
0.477411 0.541454 0.476397) 
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TABLE A-21: TBSTZHG DATA POR RPM MODEL A 

( 1.010101 1.020408 1.030928 1.052632 1.104972 1.351351 
1.369863 1.388889 1.063830 1.234568 1.250000 1.265823 1.282051 
1.2987011.315789 1.041667 1.4084511.204819 1.075269 1.086957 
1.219512 1.0928961.0989011.333333 1.1111111.123595 1.136364 
1.149425 1.162791 1.176471 1.190476) 
( 1.010101 1.020408 1.030928 1.052632 1.104972 1.351351 
1.369863 1.388889 1.063830 1.234568 1.250000 1.086957 1.282051 
1.2987011.315789 1.041667 1.4084511.204819 1.075269 1.265823 
1.219512 1.092896 1.0989011.333333 1.1111111.123595 1.136364 
1.149425 1.162791 1.176471 1.190476) 
( 1.010101 1.020408 1.030928 1.052632 1.104972 1.351351 
1.369863 1.388889 1.063830 1.234568 1.250000 1.086957 1.041667 
1.2987011.315789 1.2820511.4084511.204819 1.075269 1.265823 
1.219512 1.092896 1.0989011.333333 1.1111111.123595 1.136364 
1.149425 1.162791 1.176471 1.190476) 
( 1.020408 1.010101 1.030928 1.052632 1.104972 1.351351 
1.369863 1.388889 1.063830 1.234568 1.250000 1.086957 1.041667 
1.2987011.315789 1.2820511.4084511.204819 1.075269 1.265823 
1.219512 1.092896 1.0989011.333333 1.1111111.123595 1.136364 
1.149425 1.162791 1.176471 1.190476) 
( 1.030928 1.010101 1.020408 1.052632 1.104972 1.351351 
1.369863 1.388889 1.063830 1.234568 1.250000 1.086957 1.041667 
1.2987011.315789 1.2820511.4084511.204819 1.075269 1.265823 
1.219512 1.092896 1.0989011.333333 1.1111111.123595 1.136364 
1.149425 1.162791 1.176471 1.190476) 
( 1.010101 1.030928 1.020408 1.052632 1.104972 1.351351 
1.369863 1.388889 1.063830 1.234568 1.250000 1.086957 1.041667 
1.2987011.315789 1.2820511.4084511.204819 1.075269 1.265823 
1.219512 1.092896 1.0989011.333333 1.1111111.123595 1.136364 
1.149425 1.162791 1.176471 1.190476) 
( 1.010101 1.030928 1.020408 1.234568 1.104972 1.351351 
1.369863 1.388889 1.063830 1.052632 1.250000 1.086957 1.041667 
1.2987011.315789 1.2820511.4084511.204819 1.075269 1.265823 
1.219512 1.092896 1.0989011.333333 1.1111111.123595 1.136364 
1.149425 1.162791 1.176471 1.190476) 
( 1.010101 1.030928 1.020408 1.234568 1.104972 1.351351 
1.369863 1.388889 1.063830 1.052632 1.250000 1.086957 1.041667 
1.2987011.315789 1.2820511.4084511.204819 1.075269 1.123595 
1.219512 1.092896 1.0989011.333333 1.1111111.265823 1.136364 
1.149425 1.162791 1.176471 1.190476) 
( 1.010101 1.030928 1.020408 1.234568 1.104972 1.351351 
1.369863 1.388889 1.063830 1.052632 1.250000 1.086957 1.041667 
1.2987011.315789 1.2820511.1764711.204819 1.075269 1.123595 
1.219512 1.092896 1.0989011.333333 1.1111111.265823 1.136364 
1.149425 1.162791 1.408451 1.190476) 
( 1.010101 1.030928 1.020408 1.234568 1.104972 1.351351 
1.369863 1.388889 1.063830 1.052632 1.250000 1.086957 1.041667 
1.2987011.092896 1.2820511.1764711.204819 1.075269 1.123595 
1.219512 1.315789 1.0989011.333333 1.1111111.265823 1.136364 
1.149425 1.162791 1.408451 1.190476) 
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TABLE A-22: TESTING SET FOR RPK HBX'l'-DOOR HBZGBBOR HODEL 

(1.010101 1.010101 1.020408 1.010101 1.010101 
1.204819 1.020408 1.010101 1.123595 1.204819 
1.234568 1.010101 1.123595 1.298701 1.234568 
1.250000 1.123595 1.298701 1.333333 1.250000 
1.265823 1.298701 1.333333 1.092896 1.265823 
1.369863 1.333333 1.092896 1.052632 1.369863 
1.030928 1.092896 1.052632 1.388889 1.190476 
1.315789 1.052632 1.388889 0.001000 1.315789 
1.010101 1.010101 1.204819 1.234568 1.234568 
1.123595 1.204819 1.234568 1.250000 1.075269 
1.298701 1.234568 1.250000 1.265823 1.282051 
1.333333 1.250000 1.265823 1.369863 1.149425 
1.092896 1.265823 1.369863 1.030928 1.041667 
1.052632 1.369863 1.030928 1.315789 1.104972 
1.388889 1.030928 1.315789 0.001000 1.408451 
1.234568 1.234568 1.075269 1.282051 1.282051 
1.250000 1.075269 1.282051 1.149425 1.111111 
1.265823 1.282051 1.149425 1.041667 1.098901 
1.369863 1.149425 1.041667 1.104972 1.063830 
1.030928 1.041667 1.104972 1.408451 1.219512 
1.315789 1.104972 1.408451 0.001000 1.351351 
1.282051 1.282051 1.111111 1.098901 1.098901 
1.149425 1.111111 1.098901 1.063830 1.136364 
1.041667 1.098901 1.063830 1.219512 1.086957 
1.104972 1.063830 1.219512 1.351351 1.162791 
1.408451 1.219512 1.351351 0.001000 0.001000 
1.098901 1.098901 1.136364 1.086957 1.086957 
1.063830 1.136364 1.086957 1.162791 1.176471 
1.219512 1.086957 1.162791 0.001000 1.190476 
1.086957 1.086957 1.176471 1.190476 0.001000 
1.162791 1.176471 1.190476 0.001000 1.030928) 

(1.010101 1.010101 1.020408 1.010101 1.010101 
1.204819 1.020408 1.010101 1.123595 1.204819 
1.234568 1.010101 1.123595 1.298701 1.234568 
1.250000 1.123595 1.298701 1.162791 1.250000 
1.265823 1.298701 1.162791 1.092896 1.265823 
1.369863 1.162791 1.092896 1.052632 1.369863 
1.030928 1.092896 1.052632 1.388889 1.190476 
1.315789 1.052632 1.388889 0.001000 1.315789 
1.010101 1.010101 1.204819 1.234568 1.234568 
1.123595 1.204819 1.234568 1.250000 1.075269 
1.298701 1.234568 1.250000 1.265823 1.282051 
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TABLE A-22 (CONTIHOED) 

1. 162791 1.250000 1.265823 1. 369863 1.149425 
1.092896 1.265823 1.369863 1.030928 1.041667 
1. 052632 1.369863 1.030928 1. 315789 1.104972 
1.388889 1.030928 1. 315789 0.001000 1.408451 
1.234568 1.234568 1.075269 1.282051 1.282051 
1.250000 1. 075269 1.282051 1.149425 1.111111 
1.265823 1.282051 1.149425 1. 041667 1.098901 
1.369863 1.149425 1. 041667 1.104972 1.063830 
1. 030928 1. 041667 1. 104972 1.408451 1.219512 
1. 315789 1.104972 1.408451 0.001000 1.351351 
1.282051 1.282051 1. 111111 1.098901 1.098901 
1.149425 1.111111 1.098901 1.063830 1.136364 
1.041667 1.098901 1.063830 1.219512 1.086957 
1.104972 1. 063830 1.219512 1.351351 1. 333333 
1.408451 1.219512 1.351351 0.001000 0.001000 
1.098901 1.098901 1. 136364 1.086957 1.086957 
1.063830 1.136364 1.086957 1. 333333 1.176471 
1.219512 1.086957 1.333333 0.001000 1.190476 
1.086957 1.086957 1.176471 1.190476 0.001000 
1.333333 1.176471 1. 190476 0.001000 1. 030928) 

(1.010101 1.010101 1.020408 1.010101 1.010101 
1.204819 1.020408 1.010101 1.123595 1.204819 
1.234568 1.010101 1.123595 1.190476 1.234568 
1.250000 1.123595 1.190476 1.162791 1.250000 
1.265823 1.190476 1.162791 1.092896 1.265823 
1.369863 1.162791 1.092896 1.052632 1.369863 
1.030928 1.092896 1.052632 1.388889 1.298701 
1.315789 1.052632 1.388889 0.001000 1.315789 
1.010101 1.010101 1.204819 1.234568 1.234568 
1.123595 1.204819 1.234568 1.250000 1.075269 
1.190476 1.234568 1.250000 1.265823 1.282051 
1.162791 1.250000 1.265823 1.369863 1.149425 
1.092896 1.265823 1.369863 1.030928 1.041667 
1.052632 1.369863 1.030928 1.315789 1.104972 
1.388889 1.030928 1.315789 0.001000 1.408451 
1.234568 1.234568 1.075269 1.282051 1.282051 
1.250000 1.075269 1.282051 1.149425 1.111111 
1.265823 1.282051 1.149425 1.041667 1.098901 
1.369863 1.149425 1.041667 1.104972 1.063830 
1.030928 1.041667 1.104972 1.408451 1.219512 
1.315789 1.104972 1.408451 0.001000 1.351351 

134 



'l'ABLB A-22 (CON'l'IIIUBD) 

1.282051 1.282051 1.111111 1.098901 1.098901 
1.149425 1.111111 1.098901 1.063830 1.136364 
1.041667 1.098901 1.063830 1.219512 1.086957 
1.104972 1.063830 1.219512 1.351351 1.333333 
1.408451 1. 219512 1.351351 0.001000 0.001000 
1.098901 1.098901 1.136364 1.086957 1.086957 
1.063830 1.136364 1.086957 1.333333 1.176471 
1.219512 1.086957 1.333333 0.001000 1.298701 
1. 086957 1.086957 1. 176471 1.298701 0.001000 
1.333333 1. 176471 1.298701 0.001000 1. 030928) 

(1.010101 1.010101 1.020408 1.010101 1.010101 
1.204819 1.020408 1.010101 1.123595 1.204819 
1.234568 1.010101 1.123595 1.190476 1.234568 
1.250000 1.123595 1.190476 1.162791 1.250000 
1.265823 1.190476 1.162791 1.092896 1.265823 
1.176471 1.162791 1.092896 1.052632 1.176471 
1.030928 1.092896 1.052632 1.388889 1.298701 
1.315789 1.052632 1.388889 0.001000 1.315789 
1.010101 1.010101 1.204819 1.234568 1.234568 
1.123595 1.204819 1.234568 1.250000 1.075269 
1.190476 1.234568 1.250000 1.265823 1.282051 
1.162791 1.250000 1.265823 1.176471 1.149425 
1.092896 1.265823 1.176471 1.030928 1.041667 
1.052632 1.176471 1.030928 1.315789 1.104972 
1.388889 1.030928 1.315789 0.001000 1.408451 
1.234568 1.234568 1.075269 1.282051 1.282051 
1.250000 1.075269 1.282051 1.149425 1.111111 
1.265823 1.282051 1.149425 1.041667 1.098901 
1.176471 1.149425 1.041667 1.104972 1.063830 
1.030928 1.041667 1.104972 1.408451 1.219512 
1.315789 1.104972 1.408451 0.001000 1.351351 
1.282051 1.282051 1.111111 1.098901 1.098901 
1.149425 1.111111 1.098901 1.063830 1.136364 
1.041667 1.098901 1.063830 1.219512 1.086957 
1.104972 1.063830 1.219512 1.351351 1.333333 
1.408451 1.219512 1.351351 0.001000 0.001000 
1.098901 1.098901 1.136364 1.086957 1.086957 
1.063830 1.136364 1.086957 1.333333 1.369863 
1.219512 1.086957 1.333333 0.001000 1.298701 
1.086957 1.086957 1.369863 1.298701 0.001000 
1.333333 1.369863 1.298701 0.001000 1.030928) 
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TABLE A-22 ( COll'l'IHUBD) 

(1.010101 1.010101 1.020408 1.010101 1.010101 
1.204819 1.020408 1.010101 1. 123595 1.204819 
1.234568 1.010101 1. 123595 1.190476 1.234568 
1.250000 1.123595 1.190476 1. 162791 1.250000 
1.111111 1.190476 1.162791 1.092896 1.111111 
1.176471 1.162791 1.092896 1.052632 1.176471 
1.030928 1.092896 1.052632 1.388889 1.298701 
1.315789 1.052632 1.388889 0.001000 1.315789 
1.010101 1.010101 1.204819 1.234568 1.234568 
1.123595 1.204819 1.234568 1.250000 1.075269 
1.190476 1.234568 1.250000 1.111111 1.282051 
1.162791 1.250000 1.111111 1. 176471 1.149425 
1.092896 1.111111 1.176471 1.030928 1.041667 
1.052632 1.176471 1.030928 1. 315789 1.104972 
1.388889 1.030928 1.315789 0.001000 1.408451 
1.234568 1.234568 1.075269 1.282051 1.282051 
1.250000 1.075269 1.282051 1.149425 1.265823 
1.111111 1.282051 1. 149425 1.041667 1.098901 
1.176471 1.149425 1.041667 1.104972 1.063830 
1.030928 1.041667 1. 104972 1.408451 1.219512 
1.315789 1.104972 1.408451 0.001000 1.351351 
1.282051 1.282051 1.265823 1.098901 1.098901 
1.149425 1.265823 1. 098901 1.063830 1.136364 
1.041667 1.098901 1.063830 1.219512 1.086957 
1.104972 1.063830 1.219512 1.351351 1.333333 
1.408451 1.219512 1.351351 0.001000 0.001000 
1.098901 1.098901 1. 136364 1.086957 1.086957 
1.063830 1.136364 1.086957 1. 333333 1.369863 
1.219512 1.086957 1.333333 0.001000 1.298701 
1.086957 1.086957 1.369863 1.298701 0.001000 
1.333333 1.369863 1.298701 0.001000 1.030928) 
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TABLE A-23: TBSTIKG DATA POR PATTBRIIBD IIBTWORK MODEL 

(1.063830 1.020408 1.063830 1.234568 1.250000 1.265823 
1.282051 1.298701 1.315789 0.000000 
1.020408 1.0101011.020408 1.030928 1.052632 1.104972 1.351351 
1.369863 1.388889 0.000000 
1.063830 1.020408 1.063830 1.234568 1.250000 1.265823 1.282051 
1.298701 1.315789 0.000000 
1.234568 1.030928 1.234568 1.041667 1.4084511.204819 1.075269 
1.086957 1.219512 0.000000 
1.250000 1.052632 1.250000 1.4084511.092896 1.0989011.333333 
1.111111 1.123595 0.000000 
1.265823 1.104972 1.265823 1.204819 1.0989011.136364 1.149425 
1.162791 0.000000 0.000000 
1.2820511.3513511.2820511.075269 1.333333 1.149425 1.176471 
1.190476 0.000000 0.000000 
1.2987011.369863 1.2987011.086957 1.1111111.1627911.190476 
0.000000 0.000000 0.000000 
1.315789 1.388889 1.315789 1.219512 1.123595 0.000000 0.000000 
0.000000 0.000000 0.000000) 

(1.063830 1.020408 1.063830 1.234568 1.250000 1.086957 
1.282051 1.298701 1.315789 0.000000 
1.020408 1.0101011.020408 1.030928 1.052632 1.104972 1.351351 
1.369863 1.388889 0.000000 
1.063830 1.020408 1.063830 1.234568 1.250000 1.086957 1.282051 
1.298701 1.315789 0.000000 
1.234568 1.030928 1.234568 1.041667 1.4084511.204819 1.075269 
1.265823 1.219512 0.000000 
1.250000 1.052632 1.2500001.4084511.092896 1.0989011.333333 
1.111111 1.123595 0.000000 
1.086957 1.104972 1.086957 1.204819 1.0989011.136364 1.149425 
1.162791 0.000000 0.000000 
1.2820511.3513511.2820511.075269 1.333333 1.149425 1.176471 
1.190476 0.000000 0.000000 
1.2987011.369863 1.2987011.265823 1.1111111.1627911.190476 
0.000000 0.000000 0.000000 
1.315789 1.388889 1.315789 1.219512 1.123595 0.000000 0.000000 
0.000000 0.000000 0.000000) 

(1.063830 1.020408 1.063830 1.234568 1.250000 1.086957 
1.041667 1.298701 1.315789 0.000000 
1.020408 1.0101011.020408 1.030928 1.052632 1.104972 1.351351 
1.369863 1.388889 0.000000 
1.063830 1.020408 1.063830 1.234568 1.250000 1.086957 1.041667 
1.298701 1.315789 0.000000 
1.234568 1.030928 1.234568 1.2820511.4084511.204819 1.075269 
1.265823 1.219512 0.000000 
1.250000 1.052632 1.2500001.4084511.092896 1.0989011.333333 
1.111111 1.123595 0.000000 
1.086957 1.104972 1.086957 1.204819 1.0989011.136364 1.149425 
1.162791 0.000000 0.000000 
1.041667 1.3513511.041667 1.075269 1.333333 1.149425 1.176471 
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TABLB A-23 (COIITIIRJBD) 

1.190476 0.000000 0.000000 
1.2987011.369863 1.2987011.265823 1.1111111.1627911.190476 
0.000000 0.000000 0.000000 
1.315789 1.388889 1.315789 1.219512 1.123595 0.000000 0.000000 
0.000000 0.000000 0.000000) 

(1.063830 1.010101 1.063830 1.234568 1.250000 1.086957 
1.041667 1.298701 1.315789 0.000000 
1.0101011.020408 1.0101011.030928 1.052632 1.104972 1.351351 
1.369863 1.388889 0.000000 
1.063830 1.0101011.063830 1.234568 1.250000 1.086957 1.041667 
1.298701 1.315789 0.000000 
1.234568 1.030928 1.234568 1.2820511.4084511.204819 1.075269 
1.265823 1.219512 0.000000 
1.250000 1.052632 1.250000 1.4084511.092896 1.0989011.333333 
1.111111 1.123595 0.000000 
1.086957 1.104972 1.086957 1.204819 1.0989011.136364 1.149425 
1.162791 0.000000 0.000000 
1.041667 1.3513511.041667 1.075269 1.333333 1.149425 1.176471 
1.190476 0.000000 0.000000 
1.2987011.369863 1.2987011.265823 1.1111111.1627911.190476 
0.000000 0.000000 0.000000 
1.315789 1.388889 1.315789 1.219512 1.123595 0.000000 0.000000 
0.000000 0.000000 0.000000) 

(1.063830 1.010101 1.063830 1.234568 1.250000 1.086957 
1.041667 1.298701 1.315789 0.000000 
1.0101011.030928 1.0101011.020408 1.052632 1.104972 1.351351 
1.369863 1.388889 0.000000 
1.063830 1.0101011.063830 1.234568 1.250000 1.086957 1.041667 
1.298701 1.315789 0.000000 
1.234568 1.020408 1.234568 1.2820511.4084511.204819 1.075269 
1.265823 1.219512 0.000000 
1.250000 1.052632 1.2500001.4084511.092896 1.0989011.333333 
1.111111 1.123595 0.000000 
1.086957 1.104972 1.086957 1.204819 1.0989011.136364 1.149425 
1.162791 0.000000 0.000000 
1.041667 1.3513511.041667 1.075269 1.333333 1.149425 1.176471 
1.190476 0.000000 0.000000 
1.2987011.369863 1.2987011.265823 1.1111111.1627911.190476 
0.000000 0.000000 0.000000 
1.315789 1.388889 1.315789 1.219512 1.123595 0.000000 0.000000 
0.000000 0.000000 0.000000) 

(1.063830 1.030928 1.063830 1.234568 1.250000 1.086957 
1.041667 1.298701 1.315789 0.000000 
1.030928 1.0101011.030928 1.020408 1.052632 1.104972 1.351351 
1.369863 1.388889 0.000000 
1.063830 1.030928 1.063830 1.234568 1.250000 1.086957 1.041667 
1.298701 1.315789 0.000000 
1.234568 1.020408 1.234568 1.2820511.4084511.204819 1.075269 
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TABLB A-23 (COHTIBOBD) 

1.265823 1.219512 0.000000 
1.250000 1.052632 1.250000 1.4084511.092896 1.0989011.333333 
1.111111 1.123595 0.000000 
1.086957 1.104972 1.086957 1.204819 1.0989011.136364 1.149425 
1.162791 0.000000 0.000000 
1.041667 1.3513511.041667 1.075269 1.333333 1.149425 1.176471 
1.190476 0.000000 0.000000 
1.2987011.369863 1.2987011.265823 1.1111111.1627911.190476 
0.000000 0.000000 0.000000 
1.315789 1.388889 1.315789 1.219512 1.123595 0.000000 0.000000 
0.000000 0.000000 0.000000) 

(1.063830 1.030928 1.063830 1.052632 1.250000 1.086957 
1.041667 1.298701 1.315789 0.000000 
1.0309281.0101011.030928 1.020408 1.234568 1.104972 1.351351 
1.369863 1.388889 0.000000 
1.063830 1.030928 1.063830 1.052632 1.250000 1.086957 1.041667 
1.298701 1.315789 0.000000 
1.052632 1.020408 1.052632 1.2820511.4084511.204819 1.075269 
1.265823 1.219512 0.000000 
1.250000 1.234568 1.250000 1.4084511.092896 1.0989011.333333 
1.111111 1.123595 0.000000 
1.086957 1.104972 1.086957 1.204819 1.0989011.136364 1.149425 
1.162791 0.000000 0.000000 
1.041667 1.3513511.041667 1.075269 1.333333 1.149425 1.176471 
1.190476 0.000000 0.000000 
1.2987011.369863 1.2987011.265823 1.1111111.1627911.190476 
0.000000 0.000000 0.000000 
1.315789 1.388889 1.315789 1.219512 1.123595 0.000000 0.000000 
0.000000 0.000000 0.000000) 

(1.063830 1.030928 1.063830 1.052632 1.250000 1.086957 
1.041667 1.298701 1.315789 0.000000 
1.030928 1.0101011.030928 1.020408 1.234568 1.104972 1.351351 
1.369863 1.388889 0.000000 
1.063830 1.030928 1.063830 1.052632 1.250000 1.086957 1.041667 
1.298701 1.315789 0.000000 
1.052632 1.020408 1.052632 1.2820511.4084511.204819 1.075269 
1.123595 1.219512 0.000000 
1.250000 1.234568 1.250000 1.4084511.092896 1.0989011.333333 
1.111111 1.265823 0.000000 
1.086957 1.104972 1.086957 1.204819 1.0989011.136364 1.149425 
1.162791 0.000000 0.000000 
1.041667 1.3513511.041667 1.075269 1.333333 1.149425 1.176471 
1.190476 0.000000 0.000000 
1.2987011.369863 1.2987011.123595 1.1111111.1627911.190476 
0.000000 0.000000 0.000000 
1.315789 1.388889 1.315789 1.219512 1.265823 0.000000 0.000000 
0.000000 0.000000 0.000000) 

(1.063830 1.030928 1.063830 1.052632 1.250000 1.086957 
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TABLB A-23 (CO:H'l'IBUED) 

1.041667 1.298701 1.315789 0.000000 
1.030928 1.0101011.030928 1.020408 1.234568 1.104972 1.351351 
1.369863 1.388889 0.000000 
1.063830 1.030928 1.063830 1.052632 1.250000 1.086957 1.041667 
1.298701 1.315789 0.000000 
1.052632 1.020408 1.052632 1.2820511.1764711.204819 1.075269 
1.123595 1.219512 0.000000 
1.250000 1.234568 1.250000 1.1764711.092896 1.0989011.333333 
1.111111 1.265823 0.000000 
1.086957 1.104972 1.086957 1.204819 1.0989011.136364 1.149425 
1.162791 0.000000 0.000000 
1.041667 1.3513511.041667 1.075269 1.333333 1.149425 1.408451 
1.190476 0.000000 0.000000 
1.2987011.369863 1.2987011.123595 1.1111111.1627911.190476 
0.000000 0.000000 0.000000 
1.315789 1.388889 1.315789 1.219512 1.265823 0.000000 0.000000 
0.000000 0.000000 0.000000) 

(1.063830 1.030928 1.063830 1.052632 1.250000 1.086957 
1.041667 1.298701 1.092896 0.000000 
1.030928 1.0101011.030928 1.020408 1.234568 1.104972 1.351351 
1.369863 1.388889 0.000000 
1.063830 1.030928 1.063830 1.052632 1.250000 1.086957 1.041667 
1.298701 1.092896 0.000000 
1.052632 1.020408 1.052632 1.2820511.1764711.204819 1.075269 
1.123595 1.219512 0.000000 
1.250000 1.234568 1.250000 1.1764711.3157891.0989011.333333 
1.111111 1.265823 0.000000 
1.086957 1.104972 1.086957 1.204819 1.0989011.136364 1.149425 
1.162791 0.000000 0.000000 
1.041667 1.3513511.041667 1.075269 1.333333 1.149425 1.408451 
1.190476 0.000000 0.000000 
1.2987011.369863 1.2987011.123595 1.1111111.1627911.190476 
0.000000 0.000000 0.000000 
1.092896 1.388889 1.092896 1.219512 1.265823 0.000000 0.000000 
0.000000 0.000000 0.000000) 
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TABLE A-24: TESTING SET OUTPUT FOR RPM MODEL A 
(for ten testing patterns) 

DESIRED OUTPUT LOGARITHMICALLY SCALED RELATIVE POWER 

0.400365 0.417472 0.456821 0.499962 0.542327 0.601734 

0.585799 0.511081 0.442166 0.494015 0.540204 0.558108 

0.567379 0.54133 0.47509 0.503927 0.556061 0.5214 

0.484727 0.448397 0.408579 0.498999 0.465829 0.457579 

0.401401 0.362294 0.429268 0.403464 0.366796 0.370883 

0.343015 

NETWORK OUTPUT 
0.441308 0.463482 0.491853 0.568493 0.619509 0.614261 

0.610198 0.539758 0.490451 0.508464 0.537594 0.560904 

0.566647 0.565221 0.503562 0.465135 0.465789 0.465498 

0.463219 0.457168 0.430364 0.432135 0.422085 0.423876 

0.394617 0.366638 0.398834 0.382587 0.373494 0.373203 

0.358782 

ERROR DIFFERENCE 
-0.040943 -0.04601 -0.035032 -0.068531 -o.on182 -0.012527 

-0.024399 -0.0286TT -0.048285 -0.014449 0.00261 -0.002796 

0.000732 -0.023891 -0.028472 0.038792 0.090272 0.055902 

0.021508 -0.008771 -0.021785 0.066864 0.043744 0.033703 

0.006784 -0.004344 0.030434 0.0208n -0.006698 -0.00232 

-0.015767 

RELATIVE ERROR 
-10.23% -11.02% -7.67% -13.71% -14.23% -2.08% 

-4.17% -5.61% -10.92% -2.92% 0.48% -0.50% 
0.13% -4.41% -5.99% 7.70% 16.23% 10.72% 

4.44% -1.96% -5.33% 13.40% 9.39% 7.37% 

1.69% -1.20% 7.09% 5.17% -1.83% -0.63% 

-4.60% 
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TABLE A-24 (CONTINUED) 

DESIRED OUTPUT LOGARITHMICALLY SCALED RELATIVE PCNER 

0.392873 0.40824 0.44295 0.478711 0.514681 0.600319 

0.604766 0.533264 0.43072 o.4n411 0.513484 0.509471 

0.563244 0.563125 0.497483 0.489114 0.538448 0.505286 

0.492481 0.491922 0.43361 0.489537 0.462997 0.467164 

0.420945 0.376394 0.431846 0.410609 0.376212 0.377306 

0.34811 

NETWORK OUTPUT 
0.44058 0.463356 0.486584 0.553239 0.601688 0.597844 

0.598631 0.536616 0.48627 0.501354 0.526251 0.547001 

0.555226 0.559978 0.50255 0.462828 0.463911 0.461992 

0.461972 0.461618 0.43609 0.432738 0.427435 0.431631 

0.404562 0.373644 0.410806 0.401685 0.386716 0.395587 

0.37677 

ERROR DIFFERENCE 
-0.047707 -0.055116 -0.043634 -0.074528 -0.087007 0.002475 

0.006135 -0.003352 -0.05555 -0.023943 -0.012767 -0.03753 

0.008018 0.003147 -0.005067 0.026286 0.074537 0.043294 

0.030509 0.030304 -0.00248 0.056799 0.035562 0.035533 
0.016383 0.00275 0.02104 0.008924 -0.010504 -0.018281 

-0.02866 

RELATIVE ERROR 
-12.14% -13.50% -9.85% -15.57% -16.91% 0.41% 

1.01% -0.63% -12.90% -5.02% -2.49% -7.37% 

1.42% 0.56% -1.02% 5.37% 13.84% 8.57% 
6.19% 6.16% -0.57% 11.60% 7.68% 7.61% 

3.89% 0.73% 4.87% 2.17% -2.79% -4.85% 

-8.23% 
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TABLE A-24 (CONTINUED) 

DESIRED OUTPUT LOGARITHMICALLY SCALED RELATIVE POIJER 

0.432649 0.453318 0.493179 0.507451 0.499275 0.53199 

0.539954 0.483872 0.486289 0.548635 0.557146 0.501059 

0.481443 0.503109 0.454997 0.602277 0.60401 0.521922 

0.468052 0.459242 0.40824 0.5325 0.480007 0.463445 

0.409257 0.365301 0.442166 0.412796 0.373831 0.378943 

0.348305 

NETWORK OUTPUT 
0.441021 0.465175 0.482628 0.544481 0.588472 0.584986 

0.58811 0.533878 0.485064 0.500258 0.51405 0.53459 

0.546344 0.555517 0.503961 0.456576 0.459602 0.461264 

0.461259 0.463579 0.43998 0.432801 0.434614 0.43783 

0.411736 0.382179 0.415631 0.420477 0.398591 0.411822 

0.390213 

ERROR DIFFERENCE 
-0.008372 -0.011857 0.010551 -0.03703 -0.089197 -0.052996 

-0.048156 -0.050006 0.001225 0.048377 0.043096 -0.033531 

-0.064901 -0.052408 -0.048964 0.145701 0.144408 0.060658 

0.006793 -0.004337 -0.03174 0.099699 0.045393 0.025615 

-0.002479 -0.016878 0.026535 -0.007681 -0.02476 -0.032879 

-0.041908 

RELATIVE ERROR 
-1 .94% -2.62% 2.14% -7.30% -17.87% -9.96% 

-8.92% -10.33% 0.25% 8.82% 7.74% -6.69% 
-13.48% -10.42% -10.76% 24.19% 23.91% 11.62% 

1.45% -0.94% -7.77% 18.72% 9.46:11: 5.53% 

-0.61% -4.62% 6.00% -1.86% -6.62% -8.68% 
-12.03% 
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TABLE A-24 (CONTINUED) 

DESIRED OUTPUT LOGARITHMICALLY SCALED RELATIVE POWER 

0.431846 0.451172 0.492481 0.507181 0.499412 0.532245 

0.540329 0.4843 0.485011 0.548144 0.556905 0.501196 

0.481729 0.503518 0.455302 0.601951 0.603902 0.521922 

0.468347 0.459543 0.408579 0.5325 0.480151 0.463744 

0.409426 0.365488 0.442323 0.412964 0.374015 0.379124 

0.348305 

NETWORK OUTPUT 
0.441016 0.465285 0.482568 o.5445n 0.588478 0.585012 

0.588047 0.533824 0.48504 0.500244 0.513908 0.53459 

0.546394 0.555501 0.503936 0.456495 0.459554 0.46125 

0.461179 0.463535 0.439916 0.432675 0.434575 o.43n92 

0.41175 0.382244 0.415411 0.420527 0.398517 0.411747 

0.390181 

ERROR DIFFERENCE 
-0.00917 -0.014113 0.009913 -0.037396 -0.089066 -0.052767 

-0.047718 -0.049524 -2.9E-05 0.0479 0.042997 -0.033394 

-0.064665 -0.051983 -0.048634 0.145456 0.144348 0.060672 

0.007168 -0.003992 -0.031337 0.099825 0.045576 0.025952 

-0.002324 -0.016756 0.026912 -0.007563 -0.024502 -0.032623 

-0.041876 

RELATIVE ERROR 
-2.12% -3 .13% 2.01% -7.37% -17.83% -9.91% 

-8.83% -10 .23% -0.01% 8.74% 7.72% -6.66% 

-13.42% -10.32% -10.68% 24.16% 23.90% 11.62% 

1.53% -0.87% -7.67% 18.75% 9.49% 5.60% 

-0.57% -4.58% 6.08% -1.83% -6.55% -8.60% 

-12.02% 
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TABLE A-24 (CONTINUED) 

DESIRED OUTPUT LOGARITHMICALLY SCALED RELATIVE POWER 

0.432328 0.450403 0.490099 0.506505 0.499275 0.532627 

0.54108 0.484869 0.484157 0.547036 0.556423 0.501059 

0.482016 0.504063 0.455758 0.601408 0.603686 0.522053 

0.468643 0.459995 0.408918 0.532372 0.480294 0.464042 

0.409764 0.365675 0.442637 0.4133 0.374198 0.379306 

0.3485 

NETWORK OUTPUT 
0.441117 0.465327 0.482511 0.544674 o.5885n 0.585235 

0.588046 0.533721 0.485068 0.500402 0.513914 0.534669 

0.546575 0.555612 0.503934 0.456339 0.459533 0.461349 

0.461206 0.463607 0.43992 0.432727 0.434561 o.4376n 

0.411572 0.382295 0.415259 0.42052 0.398437 0.411576 

0.389938 

ERROR DIFFERENCE 
-0.008789 -0.014924 0.007588 -0.038169 -0.089302 -0.052608 

-0.046966 -0.048852 -0.000911 0.046634 0.042509 -0.03361 

-0.064559 -0.051549 -0.048176 0.145069 0.144153 0.060704 

0.007437 -0.003612 -0.031002 0.099645 0.045733 0.026365 
-0.001808 -0.01662 0.027378 -0.00722 -0.024239 -0.03227 
-0.041438 

RELATIVE ERROR 
-2.03% -3.31% 1.55% -7.54% -17.89% -9.88% 

-8.68% -10.08% -0.19% 8.52% 7.64% -6.71% 
-13.39% -10.23% -10.57% 24.12% 23.88% 11 .63% 

1.59% -0.79% -7.58% 18.72% 9.52% 5.68% 
-0.44% -4.55% 6.19% -1. 75% -6.48% -8.51% 

-11.89% 
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TABLE A-24 (CONTINUED) 

DESIRED OUTPUT LOGARITHMICALLY SCALED RELATIVE POWER 

0.43393 0.454692 0.491502 0.506911 0.499137 0.532117 

0.540204 0.484157 0.486572 0.548144 0.556785 0.501059 

0.481586 0.503382 0.45515 0.601951 0.603794 0.521922 

0.4682 0.459392 0.40841 0.532372 0.480007 0.463594 

0.409426 0.365488 0.442323 0.412964 0.374015 0.378943 

0.348305 

NETWORK OUTPUT 
0.441126 0.465106 0.482633 0.54448 0.588565 0.585184 

0.588174 0.53383 0.485117 0.500428 0.514201 0.534669 

0.546476 0.555646 0.503984 0.456504 0.459631 0.461378 

0.461368 0.463696 0.44005 0.432982 0.434642 o.43n54 

0.411544 0.382164 0.415702 0.420418 0.398584 0.411727 

0.390001 

ERROR DIFFERENCE 
-0.007196 -0.010414 0.008869 -0.037569 -0.089428 -0.053067 

-0.04797 -0.049673 0.001455 0.047716 0.042584 -0.03361 

-0.06489 -0.052264 -0.048834 0.145447 0.144163 0.060544 

0.006832 -0.004304 -0.03164 0.09939 0.045365 0.02584 

-0.002118 -0.016676 0.026621 -0.007454 -0.024569 -0.032784 

-0.041696 

RELATIVE ERROR 
-1.66% -2.29¾ 1.80% -7.41% -17.92% -9.97% 
-8.88% -10.26% 0.30% 8.71% 7.65% -6.71% 

-13.47% -10.38% -10. 73% 24.16% 23.88% 11.60% 
1.46% -0.94% -7.75% 18.67% 9.45% 5.57% 
-0.52% -4.56% 6.02% -1.80% -6.57% -8.65% 

- 11.97% 
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TABLE A-24 (CONTINUED) 

DESIRED OUTPUT LOGARITHMICALLY SCALED RELATIVE POWER 

0.40637 0.422754 0.462997 0.529943 0.512684 0.551206 

0.563837 0.505014 0.442637 0.488974 0.545307 0.504471 

0.494155 0.522966 0.472756 0.565139 0.58872 0.521269 

0.476542 0.473195 0.420286 0.525563 0.481443 0.471145 

0.417804 0.371991 0.446226 0.418798 0.379306 0.383995 

0.351989 

NETWORK OUTPUT 
0.442057 0.465748 0.484971 0.554788 0.599883 0.597114 

0.594815 0.534921 0.488066 0.506375 0.52084 0.543849 

0.555356 0.559711 0.504894 0.456469 0.45992 0.464628 

0.46235 0.461215 0.436941 0.432975 0.431257 0.43133 

0.403752 0.378806 0.406923 0.409412 0.389713 0.396153 

0.376409 

ERROR DIFFERENCE 
-0.035687 -0.042994 -0.021974 -0.024845 -0.087199 -0.045908 
-0.030978 -0.029907 -0.045429 -0.017401 0.024467 -0.039378 

-0.061201 -0.036745 -0.032138 0.10867 0.1288 0.056641 

0.014192 0.01198 -0.016655 0.092588 0.050186 0.039815 

0.014052 -0.006815 0.039303 0.009386 -0.010407 -0.012158 

-0.02442 

RELATIVE ERROR 
-8.78% -10.17% -4.75% -4.69% -17.01% -8.33% 
-5.49% -5.92% -10.26% -3.56% 4.49% -7.81% 
-12.38% -7.03% -6.80% 19.23% 21.88% 10.87% 

2.98% 2.53% -3.96% 17.62% 10.42% 8.45% 
3.36% -1.83% 8.81% 2.24% -2. 74% -3.17"-' 
-6.94% 
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TABLE A-24 (CONTINUED) 

DESIRED OUTPUT LOGARITHMICALLY SCALED RELATIVE POWER 

0.413467 0.43072 0.471878 0.539703 0.517064 0.548512 

0.554368 0.496238 0.451479 0.499137 0.55582 0.509203 

0.490661 0.510009 0.462997 0.578066 0.600755 0.526469 

0.47041 0.444981 0.409087 0.534407 0.485721 0.46938 

0.410271 0.375664 0.449015 0.419129 o.3mo6 0.384353 

0.351603 

NETWORK OUTPUT 
0.443092 0.466252 0.484741 0.550751 0.596936 0.593021 

0.592732 0.534292 0.489932 0.507597 0.518035 0.53887 

0.553895 0.560371 0.507108 0.454504 0.45882 0.465912 

0.463218 0.461679 0.440605 0.436036 0.434873 0.433726 

0.403367 0.379125 0.409992 0.41411 0.39516 0.400391 

0.380323 

ERROR DIFFERENCE 
-0.029625 -0.035532 -0.012863 -0.011048 -0.079872 -0.044509 

-0.038364 -0.038054 -0.038453 -0.00846 o.o3n85 -0.029667 

-0.063234 -0.050362 -0.044111 0.123562 0.141935 0.060557 

0.007192 -0.016698 -0.031518 0.098371 0.050848 0.035654 

0.006904 -0.003461 0.039023 0.005019 -0.017854 -0.016038 

-0.02872 

RELATIVE ERROR 
-7.17% -8.25% -2.73% -2.05% -15.45% -8.11% 

-6.92% -7.67% -8.52% -1.69% 6.80% -5.83% 

-12.89% -9.87% -9.53% 21.38% 23.63% 11.50% 

1.53% -3.75% -7.70% 18.41% 10.47% 7.60% 

1.68% -0.92% 8.69% 1.20% -4. 73% -4.17% 
-8.17% 
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TABLE A-24 (CONTINUED) 

DESIRED OUTPUT LOGARITHMICALLY SCALED RELATIVE POWER 

0.39585 0.408918 0.443263 0.510813 0.517196 0.583199 

0.610128 0.549984 0.423082 0.457276 0.508664 0.497759 

0.512551 0.55594 0.507991 0.500374 0.500236 0.495406 

0.479863 0.473487 0.438701 0.476687 0.470557 0.483302 

0.431203 0.395152 0.45515 0.444045 0.398634 0.437433 

0.378761 

NETWORK OUTPUT 
0.440036 0.463466 0.482536 0.533948 0.573907 0.571704 

0.579283 0.533 0.486953 0.498778 o.5o6m 0.521309 

0.538842 0.54915 0.506743 0.454109 0.455357 0.460549 

0.462967 0.46296 0.446878 0.43491 0.443072 0.44043 

0.419095 0.389377 0.425989 0.440301 0.410917 0.429666 

0.403999 

ERROR DIFFERENCE 
-0.044186 -0.054548 -0.039273 -0.023135 -0.056711 0.011495 

0.030845 0.016984 -0.063871 -0.041502 0.001891 -0.02355 

-0.026291 0.00679 0.001248 0.046265 0.044879 0.034857 

0.016896 0.010527 -0.008177 0.041777 0.027485 0.042872 

0.012108 0.005775 0.029161 0.003744 -0.012283 0.007767 

-0.025238 

RELATIVE ERROR 
-11.16% -13.34% -8.86% -4.53% -10.97% 1.97% 

5.06% 3.09% -15.10% -9.08% 0.37% -4.73% 

-5 .13% 1.22% 0.25% 9.25% 8.97% 7.04% 

3.52% 2.22% -1.86% 8.76% 5.84% 8.87% 

2.81% 1.46% 6.41% 0.84% -3.08% 1.78% 

-6.66% 
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TABLE A-24 (CONTINUED) 

DESIRED OUTPUT LOGARITHMICALLY SCALED RELATIVE POWER 

0.40671 0.421604 0.458487 0.525434 0.515741 0.557026 

0.559188 0.483302 0.438542 o.4n411 0.5302 0.503518 

0.495822 0.511215 0.432969 0.533645 0.539954 0.516006 

0.479143 0.452859 0.405688 0.554126 0.504199 0.496238 

0.428135 0.382557 0.478855 o.45m1 0.403464 0.449941 

0.38507 

NETWORK OUTPUT 
0.443501 0.46807 o.4n652 0.538947 0.578012 o.5n558 

0.5n673 0.529812 0.48584 o.5o51n 0.502032 0.523912 

0.542371 0.553983 0.507298 0.446282 0.453311 0.464224 

0.462117 0.466022 0.444703 0.435108 0.44266 0.440562 

0.413492 0.392383 0.416593 0.44014 0.409367 0.422542 

0.396786 

ERROR DIFFERENCE 
-0.036791 -0.046466 -0.019165 -0.013513 -0.062271 -0.020532 

-0.018485 -0.04651 -0.047298 -o.02n66 0.028168 -0.020394 
-0.046549 -0.042768 -0.074329 0.087363 0.086643 0.051782 
0.017026 -0.013163 -0.039015 0.119018 0.061539 0.055676 
0.014643 -0.009826 0.062262 0.017591 -0.005903 0.027399 
-0.011716 

RELATIVE ERROR 
-9.05% -11.02% -4.18% -2.57% -12.07% -3.69% 

-3.31% -9.62% -10.79% -5.82% 5.31% -4.05% 
-9.39% -8.37% -17.17% 16.37% 16.05% 10.04% 
3.55% -2.91% -9.62% 21.48% 12.21% 11.22% 

3.42% -2.57% 13.00% 3.84% -1.46% 6.09% 
-3.04% 
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TABLE A-25: TESTING SET OUTPUT FOR NEXT-DOOR NEIGHBOR MODEL 
(for five testing patterns) 

DESIRED OUTPUT LOGARITHMICALLY SCALED RELATIVE POWER 

0.49485 0.52009 0.565848 0.591065 0.565021 0.507451 

0.432649 0.414973 0.563837 0.589391 0.602819 0.577262 

0.532245 0.432007 0.406881 0.564784 0.574263 0.518119 

0.456062 0.412796 0.397245 0.511482 0.45894 0.414137 

0.394977 0.372175 0.420451 0.386677 0.373831 0.366049 

0.349472 

NETWORK OUTPUT 
0.443404 0.459454 0.482735 0.538599 0.598819 0.622818 

0.610438 0.546975 0.475005 0.503634 0.523505 0.549102 

0.56789 0.563535 0.517978 0.484215 0.459956 0.483762 

0.471185 0.446603 0.441766 0.435726 0.426639 0.403833 

0.404467 0.390206 0.425102 0.3718 0.379787 0.387366 
0.376682 

ERROR DIFFERENCE 
0.051446 0.060636 0.083113 0.052466 -0.033798 -0.115367 

-0.177789 -0.132002 0.088832 0.085757 0.079314 0.02816 

-0.035645 -0.131528 -0.111097 0.080569 0.114307 0.034357 

-0.015123 -0.033807 -0.044521 0.075756 0.032301 0.010304 
-0.00949 -0.018031 -0.004651 0.014877 -0.005956 -0.021317 

-0.02721 

RELATIVE ERROR 
10.40% 11.66% 14.69% 8.88% -5.98% -22. 73% 
-41.09% -31.81% 15.75% 14.55% 13.16% 4.88% 
-6.70% -30.45% -27.30% 14.27% 19.90% 6.63% 
-3.32% -8.19% -11.21% 14.81% 7.04% 2.49% 
-2.40% -4.84% - 1. 11% 3.85% -1.59% -5.82% 

-7.79% 
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TABLE A-25 (CONTINUED) 

DESIRED OUTPUT LOGARITHMICALLY SCALED RELATIVE POWER 

0.513218 0.539327 0.583765 0.601082 0.557267 0.475526 

0.411451 0.399501 0.585235 0.608633 0.613419 0.567144 

0.479719 0.40841 0.392697 0.581495 0.586925 0.518514 

0.441381 0.402261 0.388989 0.522444 0.465383 0.415474 

0.394977 0.369772 0.430236 0.398981 0.382917 0.39585 

0.364926 

NETWORK OUTPUT 
0.441998 0.454743 0.480322 0.526448 0.566634 0.590527 

0.579297 0.530154 0.478701 0.501998 0.51362 0.522526 

0.540014 0.543396 0.513468 0.480224 0.4552 0.476479 

0.468874 0.454694 0.44748 0.441853 0.441353 0.426691 

0.423297 0.401395 0.448981 0.41802 0.41166 0.436087 

0.407431 

ERROR DIFFERENCE 
0.07122 0.084584 0.103443 0.074634 -0.009367 -0.115001 

-0.167846 -0.130653 0.106534 0.106635 0.099799 0.044618 

-0.060295 -0.134986 -0.120771 0.101271 0.131725 0.042035 

-0.027493 -0.052433 -0.058491 0.080591 0.02403 -0.011217 

-0.02832 -0.031623 -0.018745 -0.019039 -0.028743 -0.040237 

-0.042505 

RELATIVE ERROR 
13.88% 15.68% 17.72% 12.42% -1.68% -24.18% 
-40.79% -32.70% 18.20% 17.52% 16.27% 7.87% 
-12.57"/4 -33.05% -30.75% 17.42% 22.44% 8.11% 
-6.23% -13.03% -15.04% 15.43% 5.16% -2.70% 
-7.17% -8.55% -4.36% -4.77% -7.51% -10.16% 

-11.65% 
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TABLE A-25 (CONTINUED) 

DESIRED OUTPUT LOGARITHMICALLY SCALED RELATIVE POYER 

0.519303 0.545183 0.586475 0.592954 0.52866 0.45667 

0.402777 0.394802 0.591732 0.613207 0.606919 0.523486 

0.459392 0.400711 0.389343 0.591621 0.601517 0.515211 

0.437592 0.401056 0.388811 0.57066 0.484157 0.423246 

0.399847 0.372175 0.445604 0.409426 0.390759 0.407051 

0.37236 

NETWORK OUTPUT 
0.441832 0.458799 0.479354 0.52438 0.560806 0.582716 

0.576047 0.531173 0.483063 0.504803 0.51532 0.516369 

0.531396 0.542598 0.516411 0.479152 0.455593 0.474524 

0.467165 0.457251 0.452575 0.444921 0.442885 0.426901 

0.422751 0.404718 0.451017 0.422477 0.415206 0.436732 

0.411076 

ERROR DIFFERENCE 
0.077471 0.086384 0.107121 0.068574 -0.032146 -0.126046 

-0.17327 -0.136371 0.108669 0.108404 0.091599 0.007117 

-0.072004 -o .141887 -0.127068 0.112469 0.145924 0.040687 
-0.029573 -0.056195 -0.063764 0.125739 0.041272 -0.003655 
-0.022904 -0.032543 -0.005413 -0.013051 -0.024447 -0.029681 
-0.038716 

RELATIVE ERROR 
14.92% 15.84% 18.27% 11.56% -6.08% -27.60% 
-43.02% -34.54% 18.36% 17.68% 15.09% 1.36% 
·15.67% ·35.41% -32.64% 19.01% 24.26% 7.90% 

-6.76% ·14.01% • 16.40% 22.03% 8.52% -0.86% 
-5. 73% -8.74% -1.21% -3.19% -6.26% -7.29% 
·10.40% 
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TABLE A-25 (CONTINUED) 

DESIRED OUTPUT: LOGARITHMICALLY SCALED RELATIVE POWER 

0.490099 0.517196 0.575303 0.63809 0.626853 0.52621 

0.43361 0.40824 0.559428 0.589838 0.616581 0.596927 

0.538951 0.429429 0.399154 0.561101 0.571709 0.517724 

0.452247 0.40432 0.386677 0.503927 0.450095 0.403292 

0.380211 0.36135 0.407221 0.370698 0.349278 0.348889 

0.330617 

NETWORK OUTPUT 
0.443711 0.464509 0.500499 0.563432 0.618566 0.632729 

0.60362 0.538173 0.485071 0.516619 0.536211 0.559207 

0.574207 0.558286 0.510636 0.488587 0.46384 0.480044 

0.466991 0.445154 0.43776 0.435447 0.421485 0.405294 

0.400828 0.383192 0.414951 0.364212 0.368083 0.377489 

0.362334 

ERROR DIFFERENCE 
0.046388 0.052687 0.074804 0.074658 0.008287 -0.106519 

·0.17001 -0.129933 0.074357 0.073219 0.08037 0.03772 

·0.035256 ·0.128857 ·0.111482 0.072514 0.107869 0.03768 

-0.014744 ·0.040834 ·0.051083 0.06848 0.02861 -0.002002 

·0.020617 ·0.021842 ·0.00773 0.006486 ·0.018805 ·0.0286 
-0.031717 

RELATIVE ERROR 
9.47% 10.19% 13.00% 11. 70% 1.32% ·20.24% 

·39.21% -31.83% 13.29% 12.41% 13.03% 6.32% 
-6.54% ·30.01% ·27.93% 12.92% 18.87% 7.28% 

-3.26% ·10.10% ·13.21% 13.59% 6.36% ·0.50% 
-5.42% ·6.04% ·1.90% 1. 75% -5.38% ·8.20% 
·9.59% 
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TABLE A-25 (CONTINUED) 

DESIRED OUTPUT LOGARITHMICALLY SCALED RELATIVE POWER 

0.498311 0.524915 0.578181 0.625518 0.575072 0.506911 

0.428621 0.408918 0.568202 0.595827 0.613842 0.580583 

0.529559 0.427486 0.400883 0.567497 0.575996 0.5168 

0.452247 0.407391 0.390935 0.509874 0.45515 0.408918 

0.388456 0.366796 0.414973 0.380211 0.366236 0.357935 

0.339253 

NETWORK OUTPUT 
0.435123 0.449604 o.4815n 0.546925 0.595153 0.623173 

0.593711 0.534552 0.465286 0.496289 0.515585 0.54743 

0.568146 0.555625 0.506918 0.478278 0.456443 0.479401 

0.472867 0.455629 0.437099 0.435782 0.431982 0.413866 

0.409412 0.389887 o.4329n 0.390912 0.391611 0.406985 

0.384853 

ERROR DIFFERENCE 
0.063188 0.075311 0.096604 0.078593 -0.020081 -0.116262 

-0.16509 -0.125634 0.102916 0.099538 0.098257 0.033153 

-0.038587 -0.128139 -0.106035 0.089219 0.119553 0.037399 

-0.02062 -0.048238 -0.046164 0.074092 0.023168 -0.004948 

-0.020956 -0.023091 -0.018004 -0.010701 -0.025375 -0.04905 
-0.0456 

RELATIVE ERROR 
12.68% 14.35% 16.71% 12.56% -3.49% -22.94% 

-38.52% -30.72% 18.11% 16.71% 16.01% 5.71% 
-7.29% -29.98% -26.45% 15.72% 20.76% 7.24% 

-4.56% -11.84% -11.81% 14.53% 5.09% -1.21% 

-5.39% -6.30% -4.34% -2.81% -6.93% -13.70% 

-13.44% 
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TABLE A-26: TESTING SET OUTPUT FOR PATTERNED NETWORK 
(for ten testing patterns) 

DESIRED OUTPUT: LOGARITHMICALLY SCALED RELATIVE POWER 

0.400365 0.417472 0.456821 0.499962 0.542327 0.601734 0.585799 0.511081 

0.417472 0.442166 0.494015 0.540204 0.558108 0.567379 0.54133 0.47509 

0.456821 0.494015 0.503927 0.556061 0.5214 0.484727 0.448397 0.408579 

0.499962 0.540204 0.556061 0.498999 0.465829 0.457579 0.401401 0.362294 

0.542327 0.558108 0.5214 0.465829 0.429268 0.403464 0.366796 0 

0.601734 0.567379 0.484727 0.457579 0.403464 0.370883 0.343015 0 

0.585799 0.54133 0.448397 0.401401 0.366796 0.343015 0 0 

NETWORK OUTPUT: RELATIVE POWER 
0.359163 0.369968 0.414594 0.471986 0.558823 0.619175 0.590487 0.512485 

0.371568 0.404167 0.467167 0.535924 0.544483 0.554158 0.545454 0.481745 

0.414098 0.46698 0.490199 0.540786 0.509196 0.480873 0.474601 0.444269 

0.472625 0.534011 0.542799 0.494461 0.470554 0.473526 0.449326 0.408641 

0.559747 0.545074 0.508988 0.470159 0.442865 0.422721 0.401436 0.000976 

0.6199 0.554935 0.484939 0.475459 0.421118 0.391753 0.360177 0.000807 

0.58863 0.544955 0.474328 0.449351 0.405932 0.360614 0.001267 0.000809 

ERROR DIFFERENCE 
0.041202 0.047504 0.042227 0.027976 -0.016496 ·0.017441 -0.004688 -0.001404 

0.045904 0.037999 0.026848 0.00428 0.013625 0.013221 -0.004124 -0.006655 
0.042723 0.027035 0.013728 0.015275 0.012204 0.003854 -0.026204 -0.03569 

0.027337 0.006193 0.013262 0.004538 -0.004725 -0.015947 -0.047925 -0.046347 
·0.01742 0.013034 0.012412 ·0.00433 -0.013597 -0.019257 -0.03464 -0.000976 
-0.018166 0.012444 ·0.000212 ·0.01788 -0.017654 -0.02087 -0.017162 -0.000807 
-0.002831 -0.003625 ·0.025931 ·0.04795 -0.039136 -0.017599 -0.001267 -0.000809 

RELATIVE ERROR 
10.29% 11.38% 9.24% 5.60% -3.04% -2.90% -0.80% -0.27% 
11.00% 8.59% 5.43% 0.79% 2.44% 2.33% -0.76% -1.40% 
9.35% 5.47% 2.72% 2.75% 2.34% 0.80% -5.84% -8.74% 

5.47% 1.15% 2.38% 0.91% -1.01% -3.49% -11.94% -12.79% 
-3.21% 2.34% 2.38% -0.93% -3.17% -4.77% -9.44% 
-3.02% 2.19% -0.04% -3.91% -4.38% -5.63% -5.00% 
-0.48% -0.67% -5.78% -11. 95% -10.67% -5.13% 
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TABLE A-26 (CONTINUED) 

DESIRED OUTPUT: LOGARITHMICALLY SCALED RELATIVE POWER 

0.392873 0.40824 0.44295 0.478711 0.514681 0.600319 0.604766 0.533264 

0.40824 0.43072 0.477411 0.513484 0.509471 0.563244 0.563125 0.497483 

0.44295 0.477411 0.489114 0.538448 0.505286 0.492481 0.491922 0.43361 

0.478711 0.513484 0.538448 0.489537 0.462997 0.467164 0.420945 0.376394 

0.514681 0.509471 0.505286 0.462997 0.431846 0.410609 0.376212 0 

0.600319 0.563244 0.492481 0.467164 0.410609 o.3mo6 0.34811 0 

0.604766 0.563125 0.491922 0.420945 0.376212 0.34811 0 0 

NETWORK OUTPUT: 
0.35646 0.365464 0.405137 0.449539 0.524763 0.609909 0.584904 0.510655 

0.367594 0.404252 0.462377 0.519422 0.513245 0.540608 0.545034 0.485492 

0.40523 0.462862 0.489856 0.542059 0.497015 0.479859 0.485977 0.456991 

0.449999 0.518385 0.543702 0.497225 0.476529 0.491562 0.468892 0.423142 

0.52606 0.513795 0.496628 0.47662 0.45735 0.443067 0.420968 0.000798 

0.611472 0.541043 0.485853 0.49459 0.440659 0.414276 0.375788 0.000655 

0.583757 0.544866 0.485492 0.470442 0.425585 0.376848 0.001041 0.000703 

ERROR DIFFERENCE 
0.036413 0.042776 0.037813 0.029172 -0.010082 -0.00959 0.019862 0.022609 

0.040646 0.026468 0.015034 -0.005938 -0.003774 0.022636 0.018091 0.011991 

0.03772 0.014549 -0.000742 -0.003611 0.008271 0.012622 0.005945 -0.023381 
0.028712 -0.004901 -0.005254 -0.007688 -0.013532 -0.024398 -0.047947 -0.046748 

-0.011379 -0.004324 0.008658 -0.013623 -0.025504 -0.032458 -0.044756 -0.000798 

-0.011153 0.022201 0.006628 -0.027426 -0.03005 -0.03697 -0.027678 -0.000655 

0.021009 0.018259 0.00643 -0.049497 -0.049373 -0.028738 -0.001041 -0.000703 

RELATIVE ERROR 
9.27% 10.48% 8.54% 6.09% -1.96% ·1.60% 3.28% 4.24% 
9.96% 6.15% 3.15% -1.16% -o. 74% 4.02% 3.21% 2.41% 

8.52% 3.05% -0.15% -0.67% 1.64% 2.56% 1.21% -5.39% 

6.00% -0.95% -0.98% -1.57% -2.92% -5.22% ·11.39% ·12.42% 

-2.21% -0.85% 1. 71% -2.94% -5.91% -7.90% -11.90% 

-1.86% 3.94% 1.35% -5.87% -7.32% -9.80% -7.95% 
3.47% 3.24% 1.31% -11. 76% ·13.12% -8.26% 
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TABLE A-26 (CONTINUED) 

DESIRED OUTPUT: LOGARITHMICALLY SCALED RELATIVE POWER 

0.432649 0.453318 0.493179 0.507451 0.499275 0.53199 0.539954 0.483872 

0.453318 0.486289 0.548635 0.557146 0.501059 0.481443 0.503109 0.454997 

0.493179 0.548635 0.602277 0.60401 0.521922 0.468052 0.459242 0.40824 

0.507451 0.557146 0.60401 0.5325 0.480007 0.463445 0.409257 0.365301 

0.499275 0.501059 0.521922 0.480007 0.442166 0.412796 0.373831 0 

0.53199 0.481443 0.468052 0.463445 0.412796 0.378943 0.348305 0 

0.539954 0.503109 0.459242 0.409257 0.373831 0.348305 0 0 

NETWORK OUTPUT: 
0.376822 0.38952 0.445048 0.456871 0.527265 0.578938 0.554567 0.489833 

0.391625 0.429162 0.493088 0.532778 0.515447 0.493393 0.515884 0.46902 

0.44607 0.493867 0.519559 0.559265 0.506587 0.46484 0.462634 0.440902 

0.456738 0.53299 0.561244 0.508663 0.483915 0.486129 0.456441 0.415119 

0.528611 0.515321 0.506203 0.483832 0.467622 0.451609 0.421421 0.000971 

0.580714 0.49342 0.472011 0.488292 0.4491 0.426638 0.379835 0.000817 

0.552979 0.515975 0.46234 0.458006 0.424567 0.379832 0.001279 0.000931 

ERROR DIFFERENCE 
0.055827 0.063798 0.048131 0.05058 -0.02799 -0.046948 ·0.014613 ·0.005961 

0.061693 0.057127 0.055547 0.024368 -0.014388 -0.01195 -0.012775 -0.014023 

0.047109 0.054768 0.082718 0.044745 0.015335 0.003212 -0.003392 -0.032662 

0.050713 0.024156 0.042766 0.023837 -0.003908 -0.022684 -0.047184 -0.049818 

-0.029336 -0.014262 0.015719 -0.003825 -0.025456 -0.038813 -0.04759 -0.000971 

-0.048724 ·0.011977 -0.003959 -0.024847 -0.036304 -0.047695 -0.03153 -0.000817 

·0.013025 ·0.012866 ·0.003098 ·0. 048749 ·0.050736 -0.031527 -0.001279 -0.000931 

RELATIVE ERROR 
12.90% 14.07% 9.76% 9.97% -5.61% -8.82% -2.71% ·1.23% 

13.61% 11. 75% 10.12% 4.37% -2.87% -2.48% -2.54% -3.08% 

9.55% 9.98% 13.73% 7.41% 2.94% 0.69% -0. 74% -8.00% 

9.99% 4.34% 7.08% 4.48% -0.81% -4.89% -11.53% -13.64% 

·5.88% ·2.85% 3.01% -0.80% -5.76% ·9.40% -12. 73% 

·9.16% ·2.49% ·0.85% -5.36% -8.79% ·12.59% -9.05% 

·2.41% -2.56% ·0.67% ·11.91% -13.57% -9.05% 
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TABLE A-26 (CONTINUED) 

DESIRED OUTPUT: LOGARITHMICALLY SCALED RELATIVE POWER 

0.431846 0.451172 0.492481 0.507181 0.499412 0.532245 0.540329 0.4843 

0.451172 0.485011 0.548144 0.556905 0.501196 0.481729 0.503518 0.455302 

0.492481 0.548144 0.601951 0.603902 0.521922 0.468347 0.459543 0.408579 

0.507181 0.556905 0.603902 0.5325 0.480151 0.463744 0.409426 0.365488 

0.499412 0.501196 0.521922 0.480151 0.442323 0.412964 0.374015 0 

0.532245 0.481729 0.468347 0.463744 0.412964 0.379124 0.348305 0 

0.540329 0.503518 0.459543 0.409426 0.374015 0.348305 0 0 

NETWORK OUTPUT: 
0.371086 0.383516 0.442051 0.456325 0.527868 0.578768 0.555154 0.490755 

0.385659 0.423665 0.491274 0.532413 0.515143 0.493414 0.516527 0.470288 

0.443003 0.491987 0.518601 0.559234 0.506464 0.464806 0.463848 0.442636 

0.456283 0.532553 0.561405 0.508436 0.48487 0.488889 0.459423 0.417366 

0.52932 0.515016 0.506142 0.484592 0.469008 0.45308 0.423451 0.000946 

0.580442 0.493438 0.471988 0.491047 0.45061 0.427633 0.380711 0.000795 

0.553492 0.516507 0.463769 0.460982 0.426831 0.380864 0.001263 0.000908 

ERROR DIFFERENCE 
0.06076 0.067656 0.05043 0.050856 -0.028456 -0.046523 -0.014825 -0.006455 

0.065513 0.061346 0.05687 0.024492 -0.013947 -0.011685 -0.013009 -0.014986 

0.049478 0.056157 0.08335 0.044668 0.015458 0.003541 -0.004305 -0.034057 

0.050898 0.024352 0.042497 0.024064 -0.004719 -0.025145 -0.049997 -0.051878 

-0.029908 -0.01382 0.01578 -0.004441 -0.026685 -0.040116 -0.049436 -0.000946 

-0.048197 -0.011709 ·0.003641 -0.027303 -0.037646 -0.048509 -0.032406 -0.000795 

-0.013163 -0.012989 -0.004226 -0.051556 -0.052816 -0.032559 -0.001263 -0.000908 

RELATIVE ERROR 
14.07"/4 15.00% 10.24% 10.03% ·5.70% -8.74% -2.74% -1.33% 
14.52% 12.65% 10.38% 4.40% -2.78% -2.43% -2.58% -3.29% 

10.05% 10.24% 13.85% 7.40% 2.96% 0.76% -0.94% -8.34% 

10.04% 4.37% 7.04% 4.52% ·0.98% -5.42% ·12.21% -14.19% 

-5.99% -2.76% 3.02% -0.92% -6.03% -9.71% -13.22% 

-9.06% -2.43% -0.78% -5.89% -9.12% -12.80% -9.30% 
-2.44% -2.58% -0.92% ·12.59% -14.12% -9.35% 
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TABLE A-26 (CONTINUED) 

DESIRED OUTPUT: LOGARITHMICALLY SCALED RELATIVE POWER 

0.432328 0.450403 0.490099 0.506505 0.499275 0.532627 0.54108 0.484869 

0.450403 0.484157 0.547036 0.556423 0.501059 0.482016 0.504063 0.455758 

0.490099 0.547036 0.601408 0.603686 0.522053 0.468643 0.459995 0.408918 

0.506505 0.556423 0.603686 0.532372 0.480294 0.464042 0.409764 0.365675 

0.499275 0.501059 0.522053 0.480294 0.442637 0.4133 0.374198 0 

0.532627 0.482016 0.468643 0.464042 0.4133 0.379306 0.3485 0 

0.54108 0.504063 0.459995 0.409764 0.374198 0.3485 0 0 

NETWORK OUTPUT: 
0.363905 0.375464 0.43333 0.451963 0.526496 0.579844 0.558538 0.495046 

0.377631 0.415812 0.486083 0.530286 0.513502 0.494345 0.519883 0.473951 

0.434282 0.486809 0.515511 0.5582 0.505718 0.465443 0.467083 0.445894 

0.451979 0.53034 0.560487 0.507798 0.485657 0.491759 0.463004 0.420269 

0.527985 0.513439 0.505482 0.485264 0.470432 0.455218 0.425716 0.000906 

0.581651 0.494382 0.472862 0.494039 0.452584 0.429248 0.382032 0.000758 

0.556827 0.519858 0.467062 0.464619 0.429328 0.382264 0.001235 0.000867 

ERROR DIFFERENCE 
0.068423 0.074939 0.056769 0.054542 -0.027221 -0.047217 -0.017458 -0.010177 

0.072772 0.068345 0.060953 0.026137 -0.012443 -0.012329 -0.01582 -0.018193 

0.055817 0.060227 0.085897 0.045486 0.016335 0.0032 -0.007088 -0.036976 

0.054526 0.026083 0.043199 0.024574 -0.005363 -0.027717 -0.05324 -0.054594 

-0.02871 -0.01238 0.016571 -0.00497 -0.027795 -0.041918 -0.051518 -0.000906 

-0.049024 -0.012366 -0.004219 -0.029997 -0.039284 -0.049942 -0.033532 -0.000758 
-0.015747 -0.015795 -0.007067 -0.054855 -0.05513 -0.033764 -0.001235 -0.000867 

RELATIVE ERROR 
15.83% 16.64% 11.58% 10.77% -5.45% -8.86% -3.23% -2.10% 
16.16% 14.12% 11. 14% 4.70% -2.48% -2.56% -3.14% -3.99% 

11.39% 11.01% 14.28% 7.53% 3.13% 0.68% -1.54% -9.04% 

10.77% 4.69% 7.16% 4.62% -1.12% -5.97% -12.99% -14.93% 

-5. 75% -2.47°/4 3.17% -1.03% -6.28% -10.14% -13.77% 

-9.20% -2.57% -0.90% -6.46% -9.50% -13.17% -9.62% 

-2.91% -3.13% -1.54% -13.39% -14. 73% -9.69% 
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TABLE A-26 (CONTINUED) 

DESIRED OUTPUT: LOGARITHMICALLY SCALED RELATIVE POWER 

0.43393 0.454692 0.491502 0.506911 0.499137 0.532117 0.540204 0.484157 

0.454692 0.486572 0.548144 0.556785 0.501059 0.481586 0.503382 0.45515 

0.491502 0.548144 0.601951 0.603794 0.521922 0.4682 0.459392 0.40841 

0.506911 0.556785 0.603794 0.532372 0.480007 0.463594 0.409426 0.365488 

0.499137 0.501059 0.521922 0.480007 0.442323 0.412964 0.374015 0 

0.532117 0.481586 0.4682 0.463594 0.412964 0.378943 0.348305 0 

0.540204 0.503382 0.459392 0.409426 0.374015 0.348305 0 0 

NETWORK OUTPUT: 
0.375404 0.387494 0.439296 0.453059 0.525256 0.580199 0.557372 0.493239 

0.389588 0.426836 0.489693 0.530986 o.514on 0.494307 0.518611 0.471439 

0.440387 0.490551 0.517386 0.55826 0.505933 0.465504 0.464666 0.442419 

0.45289 0.531184 0.560158 0.508255 0.483713 0.486178 0.456992 0.415736 

0.526532 0.514017 0.505569 0.483714 0.467621 0.45225 0.421623 0.000955 

0. 582211 0.494352 0.472897 0.488469 0.449538 0.427238 0.380272 0.0008 

0.555811 0.518814 0.46421 0.45862 0.424762 0.380191 0.001267 0.00091 

ERROR DIFFERENCE 
0.058526 0.067198 0.052206 0.053852 -0.026119 -0.048082 -0.017168 -0.009082 

0.065104 0.059736 0.058451 0.025799 -0.013018 -0.012721 -0.015229 -0.016289 

0.051115 0.057593 0.084565 0.045534 0.015989 0.002696 -0.005274 -0.034009 

0.054021 0.025601 0.043636 0.024117 -0.003706 -0.022584 -0.047566 -0.050248 

-0.027395 -0.012958 0.016353 -0.003707 -0.025298 -0.039286 -0.047608 -0.000955 

-0.050094 -0.012766 -0.004697 -0.024875 -0.036574 -0.048295 -0.031967 -0.0008 

-0.015607 -0.015432 -0.004818 -0.049194 -0.050747 -0.031886 -0.001267 -0.00091 

RELATIVE ERROR 
13.49% 14.78% 10.62% 10.62% -5.23% -9.04% -3.18% -1.88% 
14.32% 12.28% 10.66% 4.63% -2.60% -2.64% -3.03% -3.58% 
10.40% 10.51% 14.05% 7.54% 3.06% 0.58% -1.15% -8.33% 

10.66% 4.60% 7.23% 4.53% -o.m -4.87% -11.62% -13.75% 
-5.49% -2.59% 3.13% -0.77% -5.72% -9.51% -12. 73% 

-9.41% -2.65% -1.00% -5.37% -8.86% -12. 74% -9.18% 

-2.89% -3.07% -1.05% -12.02% -13.57% -9.15% 
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TABLE A-26 (CONTINUED) 

DESIRED OUTPUT: LOGARITHMICALLY SCALED RELATIVE POIJER 

0.40637 0.422754 0.462997 0.529943 0.512684 0.551206 0.563837 0.505014 

0.422754 0.442637 0.488974 0.545307 0.504471 0.494155 0.522966 0.472756 

0.462997 0.488974 0.565139 0.58872 0.521269 0.476542 0.473195 0.420286 

0.529943 0.545307 0.58872 0.525563 0.481443 0.471145 0.417804 0.371991 

0.512684 0.504471 0.521269 0.481443 0.446226 0.418798 0.379306 0 

0.551206 0.494155 0.476542 0.471145 0.418798 0.383995 0.351989 0 

0.563837 0.522966 0.473195 0.417804 0.379306 0.351989 0 0 

NETWORK OUTPUT: 
0.441757 0.463373 0.527367 0.560585 0.59035 0.581631 0.53408 0.462659 

0.463903 0.490921 0.532356 0.564917 0.556909 0.505135 0.494128 0.439787 

0.527417 0.532585 0.538844 0.551566 0.52084 0.469564 0.43106 0.399693 

0.560335 0.565635 0.551401 0.4977 0.463481 0.433421 0.398046 0.368513 

0.590839 0.555774 0.52019 0.465399 0.435339 0.411063 0.376993 0.001536 

0.580457 0.505157 0.47091 0.432861 0.412047 0.390816 0.354767 0.001405 

0.533954 0.494373 0.43065 0.398431 0.375347 0.352419 0.001866 0.001624 

ERROR DIFFERENCE 
-0.035387 -0.040619 -0.06437 -0.030642 -0.077666 -0.030425 0.029757 0.042355 

-0.041149 -0.048284 -0.043382 -0.01961 -0.052438 -0.01098 0.028838 0.032969 

-0.06442 -0.043611 0.026295 0.037154 0.000429 0.006978 0.042135 0.020593 

-0.030392 -0.020328 0.037319 0.027863 0.017962 0.037724 0.019758 0.003478 

-0.078155 -0.051303 0.001079 0.016044 0.010887 0.007735 0.002313 -0.001536 

-0.029251 -0.011002 0.005632 0.038284 0.006751 -0.006821 -0.002778 -0.001405 

0.029883 0.028593 0.042545 0.019373 0.003959 -0.00043 -0.001866 -0.001624 

RELATIVE ERROR 
-8.71% -9.61% -13.90% -5.78% -15.15% -5.52% 5.28% 8.39% 

-9.73% -10.91% -8.87% -3.60% -10.39% -2.22% 5.51% 6.97% 

-13.91% -8.92% 4.65% 6.31% 0.08% 1.46% 8.90% 4.90% 

-5. 73% -3. 73% 6.34% 5.30% 3.73% 8.01% 4.73% 0.93% 

-15.24% -10.17% 0.21% 3.33% 2.44% 1.85% 0.61% 

-5.31% -2.23% 1.18% 8.13% 1.61% -1. 78% -0.79% 

5.30% 5.47% 8.99% 4.64% 1.04% -0.12% 
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TABLE A-26 (CONTINUED) 

DESIRED OUTPUT: LOGARITHMICALLY SCALED RELATIVE PO\IER 

0.413467 0.43072 0.471878 0.539703 0.517064 0.548512 0.554368 0.496238 

0.43072 0.451479 0.499137 0.55582 0.509203 0.490661 0.510009 0.462997 

0.471878 0.499137 0.578066 0.600755 0.526469 0.47041 0.444981 0.409087 

0.539703 0.55582 0.600755 0.534407 0.485721 0.46938 0.410271 0.375664 

0.517064 0.509203 0.526469 0.485721 0.449015 0.419129 o.3mo6 0 

0.548512 0.490661 0.47041 0.46938 0.419129 0.384353 0.351603 0 

0.554368 0.510009 0.444981 0.410271 o.3mo6 0.351603 0 0 

NETWORK OUTPUT: 
0.44186 0.463589 0.530579 0.562452 0.591455 0.579224 0.532988 0.461887 

0.464191 0.494078 0.536749 0.567495 0.560835 0.504554 0.492306 0.439492 

0.530758 0.536785 0.541149 0.551275 0.522579 0.467352 0.427625 0.398024 

0.562396 0.567938 0.55153 0.497561 0.463594 0.432141 0.396908 0.370966 

0.592002 0.5597 0.52184 0.46528 0.434889 0.409597 0.377873 0.001562 

0.57787 0.504652 0.468248 0.431672 0.411099 0.391695 0.356656 0.001425 

0.53277 0.492425 0.427079 0.396658 0.376518 0.354341 0.001886 0.001641 

ERROR DIFFERENCE 
-0.028393 ·0.032869 ·0.058701 ·0.022749 ·0.074391 -0.030712 0.02138 0.034351 

·0.033471 ·0.042599 ·0.037612 ·0.011675 ·0.051632 -0.013893 0.017703 0.023505 

-0.05888 -0.037648 0.036917 0.04948 0.00389 0.003058 0.017356 0.011063 

-0.022693 -0.012118 0.049225 0.036846 0.022127 0.037239 0.013363 0.004698 

-0.074938 -0.050497 0.004629 0.020441 0.014126 0.009532 -0.000567 -0.001562 

-0.029358 -0.013991 0.002162 0.037708 0.00803 -0.007342 -0.005053 -0.001425 

0.021598 0.017584 0.017902 0.013613 0.000788 -0.002738 -0.001886 -0.001641 

RELATIVE ERROR 
·6.87% -7.63% ·12.44% -4.22% -14.39% -5.60% 3.86% 6.92% 
-7. 77% -9.44% -7.54% -2.10% ·10.14% -2.83% 3.47% 5.08% 
·12.48% -7.54% 6.39% 8.24% 0.74% 0.65% 3.90% 2.70% 

-4.20% -2. 18% 8.19% 6.89% 4.56% 7.93% 3.26% 1.25% 

·14.49% -9.92% 0.88% 4.21% 3.15% 2.27% -0.15% 

-5.35% -2.85% 0.46% 8.03% 1.92% -1.91% ·1.44% 

3.90% 3.45% 4.02% 3.32% 0.21% -0.78% 
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TABLE A-26 (CONTINUED) 

DESIRED OUTPUT: LOGARITHMICALLY SCALED RELATIVE POIJER 

0.39585 0.408918 0.443263 0.510813 0.517196 0.583199 0.610128 0.549984 

0.408918 0.423082 0.457276 0.508664 0.497759 0.512551 0.55594 0.507991 

0.443263 0.457276 0.500374 0.500236 0.495406 0.479863 0.473487 0.438701 

0.510813 0.508664 0.500236 0.476687 0.470557 0.483302 0.431203 0.395152 

0.517196 0.497759 0.495406 0.470557 0.45515 0.444045 0.398634 0 

0.583199 0.512551 0.479863 0.483302 0.444045 0.437433 0.378761 0 

0.610128 0.55594 0.473487 0.431203 0.398634 0.378761 0 0 

NETWORK OUTPUT: 
0.427589 0.447026 0.508674 0.549662 0.569219 0.572917 0.539595 0.46542 

0.446869 0.477443 0.516552 0.546463 0.538874 0.505388 0.503192 0.446258 

0.507983 0.514741 0.525689 0.514083 0.511242 0.476802 0.441103 0.410564 

0.54854 0.545098 0.514797 0.479819 0.467044 0.453408 0.414079 0.382999 

0.569261 0.538334 0.509954 0.467494 0.451435 0.43891 0.402716 0.001269 

0.572077 0.505495 0.475633 0.453786 0.440266 0.432175 0.381674 0.001224 

0.538711 0.503893 0.439558 0.413739 0.401721 0.379415 0.001546 0.001476 

ERROR DIFFERENCE 
-0.031739 -0.038108 -0.065411 -0.038849 -0.052023 0.010282 0.070533 0.084564 

-0.037951 -0.054361 -0.059276 -0.037799 -0.041115 0.007163 0.052748 0.061733 

-0.06472 -0.057465 -0.025315 -0.013847 -0.015836 0.003061 0.032384 0.028137 

-0.037727 -0.036434 -0.014561 -0.003132 0.003513 0.029894 0.017124 0.012153 

-0.052065 -0.040575 -0.014548 0.003063 0.003715 0.005135 -0.004082 -0.001269 

0.011122 0.007056 0.00423 0.029516 0.003779 0.005258 -0.002913 -0.001224 

0.071417 0.052047 0.033929 0.017464 -0.003087 -0.000654 -0.001546 -0.001476 

RELATIVE ERROR 
-8.02% -9.32% ·14.76% -7.61% ·10.06% 1.76% 11.56% 15.38% 

-9.28% -12.85% -12.96% -7.43% -8.26% 1.40% 9.49% 12.15% 

·14.60% -12.57% -5.06% -2.77% -3.20% 0.64% 6.84% 6.41% 

-7.39% -7.16% -2.91% -0.66% 0.75% 6.19% 3.97% 3.08% 

-10.07% -8.15% -2.94% 0.65% 0.82% 1.16% -1.02% 

1.91% 1.38% 0.88% 6.11% 0.85% 1.20% -0.77% 

11. 71% 9.36% 7.17% 4.05% -0.77% -0.17% 
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TABLE A-26 (CONTINUED) 

DESIRED OUTPUT: LOGARITHMICALLY SCALED RELATIVE P~R 

0.40671 0.421604 0.458487 0.525434 0.515741 0.557026 0.559188 0.483302 

0.421604 0.438542 0.477411 0.5302 0.503518 0.495822 0.511215 0.432969 

0.458487 0.477411 0.533645 0.539954 0.516006 0.479143 0.452859 0.405688 

0.525434 0.5302 0.539954 0.554126 0.504199 0.496238 0.428135 0.382557 

0.515741 0.503518 0.516006 0.504199 0.478855 0.45m1 0.403464 0 

0.557026 0.495822 0.479143 0.496238 o.45m1 0.449941 0.38507 0 

0.559188 0.511215 0.452859 0.428135 0.403464 0.38507 0 0 

NETWORK OUTPUT: 
0.436249 0.455377 0.510911 0.557102 0.575928 0.586514 0.550355 0.456697 

0.45617 0.484083 0.521086 0.553917 0.551135 0.526236 0.505012 0.432128 

0.510227 0.518667 0.533941 0.534422 0.524091 0.486212 0.440568 0.396624 

0.556692 0.552293 0.534196 0.496047 0.468761 0.448359 0.411514 0.375503 

0.57655 0.550852 0.523215 0.470254 0.438207 0.418042 0.3877 0.001373 

0.58686 0.525485 0.486698 0.450359 0.417268 0.404915 0.362981 0.001321 

0.551217 0.505894 0.439999 0.412052 0.387036 0.362494 0.001677 0.001609 

ERROR DIFFERENCE 
-0.029539 -0.033773 -0.052424 -0.031668 -0.060187 -0.029488 0.008833 0.026605 

-0.034566 -0.045541 -0.043675 -0.023717 -0.047617 -0.030414 0.006203 0.000841 

-0.05174 -0.041256 -0.000296 0.005532 -0.008085 -0.007069 0.012291 0.009064 

-0.031258 -0.022093 0.005758 0.058079 0.035438 0.047879 0.016621 0.007054 

-0.060809 -0.047334 -0.007209 0.033945 0.040648 0.039689 0.015764 -0.001373 

-0.029834 -0.029663 -0.007555 0.045879 0.040463 0.045026 0.022089 -0.001321 
0.007971 0.005321 0.01286 0.016083 0.016428 0.022576 -0.001677 -0.001609 

RELATIVE ERROR 
-7.26% -8.01% -11.43% -6.03% -11.67% -5.29% 1.58% 5.50% 
-8.20% -10.38% -9.15% -4.47% -9.46% -6.13% 1.21% 0.19% 

-11. 28% -8.64% -0.06% 1.02% -1.57% -1.48% 2.71% 2.23% 

-5.95% -4.17% 1.07% 10.48% 7.03% 9.65% 3.88% 1.84% 

-11.79% -9.40% -1.40% 6.73% 8.49% 8.67% 3.91% 

-5.36% -5.98% -1.58% 9.25% 8.84% 10.01% 5.74% 

1.43% 1.04% 2.84% 3.76% 4.07% 5.86% 
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TABLE B-1: CORE DESCRIPTION FILE 

Position Class Right Left Top Bottom Status Distance 
11 center 12 nil nil nil empty 0 
12 horizontal 13 11 nil 22 empty 1 
13 horizontal 14 12 nil 23 empty 2 
14 horizontal 15 13 nil 24 empty 3 
15 horizontal 16 14 nil 25 empty 4 
16 horizontal 17 15 nil 26 empty 5 
17 horizontal 18 16 nil 27 empty 6 
18 horizontal rf 17 nil 28 empty 7 
22 diagonal 23 nil 12 nil empty 1 
33 diagonal 34 nil 23 nil empty 2 
44 diagonal 45 nil 34 nil empty 3 
55 diagonal 56 nil 45 nil empty 4 
66 diagonal 67 nil 56 nil empty 5 
23 in-between 24 22 13 33 empty 2 
24 in-between 25 23 14 34 empty 3 
25 in-between 26 24 15 35 empty 4 
26 in-between 27 25 16 36 empty 5 
27 in-between 28 26 17 37 empty 6 
28 in-between rf 27 18 38 empty 7 
34 in-between 35 33 24 44 empty 3 
35 in-between 36 34 25 45 empty 4 
36 in-between 37 35 26 46 empty 5 
37 in-between 38 36 27 47 empty 6 
38 in-between rf 37 28 48 empty 7 
45 in-between 46 44 35 55 empty 4 
46 in-between 47 45 36 56 empty 5 
47 in-between 48 46 37 57 empty 6 
48 in-between rf 47 38 rf empty 7 
56 in-between 57 55 46 66 empty 5 
57 in-between rf 56 47 67 empty 6 
67 in-between rf 66 57 rf empty 6 
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TABLE B-2: INPUT PILE POR EXPERT SYSTEM 

Assembly ID Batch Location K-IHP 

al third 11 0.811 
a2 second 12 2.002 
as first 18 3.00 
a3 third 13 1.13 
a4 second 14 2.0 
a5 third 15 1.45 
a6 second 16 1.1 
a7 first 17 3.21 
bl third 22 0.987 
cl second 33 1.2 
dl third 44 0.78 
el first 55 2.7 
fl first 66 2.98 
b2 second 23 1.35 
b3 second 24 2.03 
b4 first 25 2.34 
b5 first 26 2.45 
b6 first 27 2.75 
b8 first 28 2.80 
c2 third 34 1.25 
c3 third 35 1.26 
c4 second 36 1.45 
c5 second 37 1.54 
c6 first 38 2.023 
d2 third 45 0.876 
d4 third 46 0.967 
d5 second 47 2.356 
d6 second 48 2.42 
e2 third 56 1.23 
e3 second 57 2.76 
f2 first 67 3.05 

168 



APPENDIX C 

THE RPM CODE 

169 



APPENDIX C 

THE RPM CODE 

In this appendix the equations used in the RPM code are discussed. 

BACKGROUND: 

The RPM code is based on the linear reactivity model. [2] In this model the 

basic relationship between reactivity and bumup is a linear one: 

(C.1) 

where B is bumup. 

Reactivity, p0 , is measured by extrapolation when xenon and samarium have 

come to equilbrium. The slope A is a strong function of the fuel conversion ratio and 

hence unique for each combination of initial fuel enrichment and fuel-to-moderator 

ratio. 

Equation (C.1) can be used with a batch-by-batch analysis or an assembly-by­

assembly analysis. In the RPM code, the analysis is performed based on a fuel 

assembly. 

REACTIVITY-BASED POWER-SHARING RELATION: 

The method used in the construction of the RPM program is the group-and­

one-half diffusion equation. Applying the two-group diffusion equation for any space 

under consideration yields, for the fast group, the following: 
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where 

D1 is fast group diffusion coefficient, 

cl>1 is fast group flux, 

el>i is thermal group flux, 

:E.1 is fast group absorption cross section, 

:E 12 is fast group scattering cross section, 

:En is fast group fission cross section, 

:Ea is thermal group fission cross section, 

v is average number of neutrons released per fission, and 

k is effective multiplication factor. 

For the thermal group, 

where 

D2 is thermal group diffusion coefficient, and 

:E.2 is fast group absorption cross section. 

(C.2) 

(C.3) 

The group-and-one-half model is obtained by assuming the thermal leakage 

to be zero. This is a valid assumption, since the thermal leakage is typically less than 
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5% of thermal absorption. This reduces equation (C.3) to: 

or 

(C.4) 

The corresponding two-group reactivity, p, is given by: 

(C.5) 

Combining Eqs. (C.2), (C.4) and (C.5) yields, for a critical system (k = 1.0): 

(C.6) 

where M2 is the migration area, defined as: 

(C.7) 

The fast flux can be related to the local power density, q, since: 

(C.8) 
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where K is energy yield per fission (Me V /fission), 

or using Eq. (C.4) for ~ , 

Combining Eqs. (C.5), (C.6), and (C.9) after some manipulation, 

V2 [q(l-p)] +_e_q-0. 
M2 

(C.9) 

(C.10) 

Normalizing by total power, Q, yields the following equation for each mesh point: 

(C.11) 

where 

fi is assembly i power fraction. 

ALGORITHMS USED IN RPM PROGRAM: 

The application of numerical methods to equation (C.11) can permit a 

computer to solve the equation for a set of fuel assemblies loaded to the reactor 

core. The number of fuel assemblies used in this model is 193. The backward finite-
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difference approximation for each mesh point i and its four neighbors can be 

evaluated as follows: 

where 

where 

(C.12) 

fi is power fraction; power of fuel assembly i relative to that of core-average 

assembly, 

~ is power fraction; power of fuel assembly j relative to that of core-average 

assembly, 

PL is leakage reactivity, 

Pi is reactivity of the ith fuel assembly, 

Pj is reactivity of the jth fuel assembly adjacent to the ith assembly, 

R is the number of neighbors that are reflector nodes (R = 0,1,2), and 

8 is the coupling constant, which can be obtained as follows: 

h is assembly width, and 

M2 is the migration area. 

1 h 2 
8-1+--, 

6 M2 
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Once this has been accomplished, the mean potential reactivity of the core is 

given by the power-weighted relation: 

where 

PBP is burnable poison reactivity, and 

Be is cycle burnup. 

The quantity fi is the cycle average power of the assembly i: 

(C.14) 

(C.15) 

The leakage reactivity is given by 

where 

N 

E f1.NF.RQ 
~ _...;.1_-1;;..__N ___ I (C.16) 

Ef1 
i-1 

NF is the number of assembly faces (0,1, or 2) exposed to the reflector, and 

RQ is the fraction of assembly-born neutrons leaking per reflected face. 

The required soluble poison (SP) reactivity is given by 

175 



(C.17) 

The thermal leakage correction is applied at BOC and EOC to the converged set of 

power fractions, fi : 

where 

where 

Af. 
__ i __ TL.p ., 

f .l 
i 

TL = 4L/h, the thermal leakage correction, 

L is diffusion length, and 

h is the assembly width. 

DESCRIPTION OF PROGRAM: 

(C.18) 

The user starts the program by typing RPM. Two different sets of inputs are 

needed to run the program core parameters and assembly parameters. The core 

parameters are as follows: 

1) specified end of cycle reactivity 

2) power sharing factor 

3) thermal leakage correction factor 

4) radial leakage factor 

5) number of different assembly types 
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6) number of iterations 

The assembly parameters are as follows: 

1) assembly type 

2) assembly potential reactivity 

3) slope, A (Kg/MWd) 

4) burnable poison reactivity 

The RPM code evaluates the following: 

1) relative power distribution at BOC 

2) poisoned reactivity required to keep the system critical 

3) relative power distribution at EOC 

4) assembly cycle bumup 

5) core average power 

6) core average cycle bumup 

7) leakage reactivity 

The program also permits the user to coastdown the reactor core. Coastdown 

is one of the methods used to strech out the reactor cycle. In coastdown, the extra 

reactivity is obtained by reducing the core power (hence, mean fuel temperature and 

xenon concentration) and/or moderator temperature. The code asks the user if he 

or she wishes to coastdown the reactor core. The user provides the code with a 

negative amount of reactivity. Then the code evaluates the assembly relative power 

and bumup. 
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APPENDIXD 

LEOPARD CODE 

LEOPARD (Lifetime Evaluating Operations Pertinent to the Analysis of 

Reactor Design) is a zero-dimensional neutronic code. The code performs neutronic 

calculations, including fast and thermal spectra and fuel depletion analysis. It utilizes 

the MUFf-SOFOCATE model. [21] This appendix describes geometry and initial 

isotopic treatment, thermal spectrum calculations, fast spectrum calculations and fuel 

depletion analysis performed by LEOPARD. 

GEOMETRY AND ISOTOPIC TREATMENT: 

LEOPARD views the reactor core as a large array of identical cylindrical fuel 

cells arranged in a square or a hexadiagonal lattice. Each fuel cell contains four 

regions: pellet region, clad and void region, moderator region, and an extra region. 

The extra region represents the percent of the core comprised of control rod 

followers, water slots, assembly cans and structure. Each region is provided by the 

user in the form of a volumetric percentage. A typical description might be: 

a. pellet 100% UO2 

b. clad and void 

c. moderator 

d. extra 

85 % ss 304, 15 % void 

100% H2O 

40% ss 304, 40% H2O, 20% Zr-2 

The user is also allowed to supply a non-lattice fraction. The non-lattice 
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fraction is the fraction of the total core which is not unit fuel cells. 

The lattice dimensions are supplied by the user. These include pellet radius, 

clad outer radius, and the lattice pitch. Other dimensions not provided by the user 

are inferred by the code from geometry. The user is allowed to enter the dimensions 

as cold or hot. The code corrects these dimensions if they are cold, based on the 

effects of temperature on materials using elemental thermal expansion coefficients. 

ISOTOPIC TREATMENT: 

by 

where 

For each one of the regions discussed, a number density vector is evaluated 

i denotes an element or pseudo element, 

j denotes a region, 

(D.1) 

f is the user's supplied regional volume fraction for the 

element or pseudo element, 

B is the reference elemental number density ( atoms per 

cubic angstrom), 

T is the regional temperature (° F), 

a is the elemental thermal expansion coefficient, (inch/inch °F), and 

N is the resultant number density (atoms per cubic angstrom) 
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The homogenized number densities can be calculated by: 

(D.2) 

where Vj is the regional volume or volume fraction. 

THERMAL SPECTRUM CALCULATIONS: 

The SOFOCATE model is used to calculate thermal constants averaged over 

the Wigner-Wilkins spectrum using 172 energy groups [21 ]. The thermal energy 

extends from 0.625 e V to zero e V. The thermal constants incude disadvantage 

factors and macroscopic cross sections. Each energy group is homogenized using the 

ABH method. [21) One difference between the calculation of disadvantage factors 

using LEOPARD and using the SOFOCATE model is that, in LEOPARD, the 

disadvantage factors are energy-dependent and inherent in the spectrum calculation, 

where in the SOFOCA TE model, they must be determined a priori. A Maxwellian 

distribution is also available in LEOPARD. 

FAST SPECTRUM CALCULATIONS: 
.. 

The MUFf model is used to calculate the fast neutron cross section. MUFf 

is a 54-group, Fourier transform, slowing-down code which utilizes the B1 and 

Grueling-Goertzel approximations. [21] The upper limit of the fast group is 10 MeV. 
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The cutoff energy is 0.625 e V. 

BURNUP CALCULATIONS: 

In performing bumup calculations, LEOPARD considers only these groups of 

related elements: 

a. Thorium 232 through uranium 236 

b. Uranium 238 through plutonium 242 

c. Promethium 149 and samarium 149 

d. Iodine 135 and xenon 135 

e. One pseudo element accounting for all other fission products. 

A set of differential equations has been written for all of the above groups, and a 

solution for the isotopic concentration of each element can be obtained. [21] 
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