
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

12-1996

Particle simulation of a Langmuir probe in quiescent and flowing Particle simulation of a Langmuir probe in quiescent and flowing

plasmas plasmas

Thomas Edward Markusic
University of Tennessee

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Markusic, Thomas Edward, "Particle simulation of a Langmuir probe in quiescent and flowing plasmas. "
Master's Thesis, University of Tennessee, 1996.
https://trace.tennessee.edu/utk_gradthes/5807

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F5807&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Thomas Edward Markusic entitled "Particle

simulation of a Langmuir probe in quiescent and flowing plasmas." I have examined the final

electronic copy of this thesis for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Master of Science, with a major in Aerospace

Engineering.

Dennis R. Keefer, Major Professor

We have read this thesis and recommend its acceptance:

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Thomas Edward Markusic entitled
"Particle Simulation of a Langmuir Probe in Quiescent and Flowing Plasmas." I
have examined the final copy of this thesis for form and content and recommend it be
accepted in partial fulfillment of the requirement for the degree of Master of Science,
with a major in Aerospace Engineering.

Dr. Dennis R. Keefer, M~ ~

We have read this thesis
and recommend its acceptence.

Accepted for the Council:

Associate Vice Chancellor
and Dean of The Graduate School

Particle Simulation of a Langmuir Probe
in Quiescent and Flowing Plasmas

A Thesis
Presented for the
Master of Science

Degree
The University of Tennessee, Knoxville

Thomas Edward Markusic
December 1996

DEDICATION

This thesis is dedicated to my parents

Mr. Stephen M. Markusic

and

Mrs. Marilyn E. Markusic

whom I love very much.

II

ACKNOWLEDGMENTS

The completion of this Master's thesis owes not only to my own effort, but to the

invaluable support of two other people. Christa E. Markusic, my wife, endured many

nights alone and, throughout the process, took care of me at home and inspired me

with her love. Dr. Dennis R. Keefer, my major professor, provided the topic for this

thesis. Further. he helped me work through technical problems that surfaced along

the way ~ drawing on his seemingly intuitive knowledge of the subject.

Thank you, Christa and Dennis.

This material in this thesis is based upon work supported by the National Science

Foundation under grant No. CTS-9,512489. The computations were primarily carried

out on computers purchased with this NSF Grant. The faculty at the Center for Laser

Applications, especially Dr. Christian Pa.rigger, were most helpful in making sure that

tlw computers were in working order. Thank You.

Additionally, I would like to thank The University of Tennessee Space Institute

and NASA, whose financial contributions made my studies possible.

lll

ABSTRACT

A three dimensional electrostatic Particle-In-Cell (PIC) code has been developed

to simulate a Langmuir probe in both quiescent and flowing plasmas. The code was

\\'ritten to model the use of the Langmuir probe in plasma regimes for which no closed­

form analytical solutions exist; this is the case for a probe in an ion beam, such as the

plume of an ion thruster.

Langmuir probes a.re used to determine local plasma properties, such as electron

tPmperature, by careful dissection of the probe's Voltage-Current (V-I) characteristic.

To interpret experimental data from a Langmuir probe, one must separate ion from

P]Pctron current. This process is well documented for quiescent plasmas; however,

uo systematic techniques a.re available for interpreting data obtained using an electric

probe in an ion beam. Ad hoc estimates of probe ion current in beam plasmas may

lead to order of magnitude errors in the calculation of electron temperature. The PIC

code described in this thesis was written to elucidate the beam-probe interaction and

provide systematic techniques for legitimately interpreting experimental data.

Elements of electric probe and PIC theory in general are discussed; in particular,

plasma sheath theory and methods used in fluxing particles across boundaries a.re

dPscrihed in detail. Code results (i.e. Current-Voltage characteristics) a.re presented

for a low density, quiescent plasma and a neutralized ion beam. Code and theoretical

probe traces for an infinite cylindrical probe in a quiescent plasma. are shown to be

in agreement. Also, code results for a plasma beam a.re compared with experimental

data from the UTSI three grid ion thruster.

IV

Contents

1 Introduction

2 Plasma Sheath and Electric Probe Theory

2.1 Sheath Theory

2.1. l Bohm Sheath Theory

1

4

5

10

2.2 Electric Probe Theory 14

2.2.1 The Classical Probe Theory of Langmuir and Mott-Smith . 17

2.2.2 Other Descriptions of Quiescent Probe Theory

2.2.3 Probe Theory for a Flowing Plasma

3 The Particle-In-Cell Technique

:3. 1 \Vhat Is PIC' ?

:3.2 The Computational Cycle

:{. 2.1 Charge Weighting .

:3.2.2 Field Solver ...

:3.2.:3 Force Weighting .

:3.2.4 Integration of the Equations of Motion

Boundary and Initial Conditions

4 PROBEPIC

LI Computational Domain Layout

V

22

23

27

27

:30

:31

3.5

37

38

40

44

45

1.2 PROBEPIC Code Details

4.2. l General Remarks (probepic. h)

4.2.2 Random Number Generation (random_number. c)

4.2.:3 Initial Conditions (parameter. c)

4.2.4 Grid Generation (grid. c)

4.2.S l\faxwellian Velocity Generator (maxwellian.c)

4.2.6 Initial Particle loading (initialize.c)

4.2.7 Fluxing Particles (inject_part.c, inject_beam.c)

4.2.8 Charge Weighting (q_weight. c)

4.2.9 Field Solver (e_field. c)

-1.2.10 ForceWeighting(Lweight.c).

~l.2.11 Moving Particles (mover. c) ..

4.2.12 Checking Boundaries (boundary.c)

4.2.l'.3 Output (outpuLdata.c, graphics.c).

5 Simulation Results

!5.1 Probe in a Quiescent Plasma .

S.2 Effect of Probe Aspect Ratio .

S.:3 Probe in a Flowing Plasma .

6 Conclusion

G.1 Suggestions for the Improvement of PROBEPIC

6.2 Suggestions for the Future Implementation of PROBEPIC .

Bibliography

VI

46

49

so

Sl

51

52

54

5!j

59

60

69

71

72

74

75

75

77

79

83

s:3

86

88

Appendices 92

A PROBEPIC Source Code 93

A. l boundary.c 93

:\.2 boundary _beam. c 95

:\ .:J charge_weight. c 97

:\.4 force_weight. c. 98

:_!j graphics.c 100

A.6 grid. c . 107

A.7 initialize.c. 108

A.~ ini tialize...beam. c. 109

A.9 inj ect_beam. c 110

:-\.10 inject_part.c 112

A.ll locate.c 11.5

A.12 make....LU. c 116

A.1:3 make_velocity_table.c 123

A.14 mover. c 125

A.15 outpuLdata.c 126

:-\.16 parameter.c 127

A.17 probepic.c 130

A.18 probepic.h 13:3

A .19 random_number. c 136

A.20 reset....grid. c 142

B Sample PROBEPIC Output 144

Vita 145

Vll

List of Tables

'1.1

.S. l

S.2

PROBEPIC sub-program description

Quiescent plasma simulation plasma conditions.

Data from analysis of Keefer and Semak.

0.>3 Conditions used in PROBEPIC and in the theoretical curve for the

48

76

80

plasma beam. 80

VIII

List of Figures

2. l Schematic of the potential distribution between two constant potential

planes for different intervening media. 6

2.2 The variation of potential near a wall; ¢ is the negative of the potential. 11

2.:3 Typical voltage-current (VI) characteristic for a Langmuir probe. 1.5

2.4 Langmuir theory VI characteristics for several temperatures. . . 19

•) r-: __ .) Natural logarithm of electron current vs. potential for several tern per-

atures. 21

2.6 Comparison of Langmuir and Laframboise results in a rarefied plasma. 2:3

•) --·' Illustration of the end effect. The figure shows the variation of ion cur­

rent with angle of attack. The dashed line is theoretical, from Langmuir.

The solid line is experimental data, from Hester and Sonin (reproduced

with permission of Sonin).

:3.1 Schematic of PIC objects.

:3.2 A typical cycle (one time step) in a PIC simulation.

:3_:3 Particle charge weighting. a) NGP weighting. b) First-order linear

particle weighting

:3.4 Electric Field generated by the weighted charge of a single particle as

a function of the particle's position within the cell. ...

Ll Schema.tic of PROBEPIC computa.tiona.l domain layout.

IX

2.5

28

:30

32

34

46

l.4

4.-S

Snap-shot of PROBEPIC simulation.

l\faxwellian distribution of peculiar speeds W for electrons at T=2.0[eV],

f(W), and the normalized integra.l of f(W), F(W).

Illustrative flux volume

Schematic of field boundary conditions in PROBEPIC.

4.G Two dimensional interior computational mesh-point and Gauss' law

volume.

4.7 Gauss' law volume for (r = 0) axis in front of the probe .

4.8 Sketch of the band matrix form; non-zero elements are indicated by

47

,53

,56

61

62

65

black diagonal lines. 67

4.9 Contour plot of regions of constant electrostatic potential for two dif­

ferent conditions. The top result is for charge-free space. The bottom

result is for a plasma filled computational domain. In both cases the

probe is biased at -2.0[V] relative to the plasma potential. 70

!i. l Comparison between PROBEPIC and Langmuir theory results. . 77

5.2 Illustration of the effect of probe aspect ratio on agreement with infinite

probe Langmuir theory. 78

-1.'.l Comparison between PIC, Langmuir theory, and experimental results. 81

X

Chapter 1

Introduction

It is estimated that more than 99.9 percent of the matter in the known universe is

in thf' plasma state. In our generation, man has first attempted to extend his domain

beyond tllf' earth: therefore. it is only fitting and natural that man should strive to

understand and exploit the unusual properties of the plasma state of matter.

This increasing interest has led to the development of many methods. or diagnostic

trrlmiqufs. to measure the composition and thermodynamic properties of plasmas.

:\ !llong others, these include: microwave interferomometry, electron, ion, and neutron

!warns. and electrostatic probes. The subject of this thesis is electrostatic probes

or. more specifically, Langmuir probes (named in honor of Irving Langmuir, who

clc---veloped the original theory and experimental methods for their use in the mid­

twenties). The Langmuir probe has an important advantage over many other plasma

diagnostic techniques: it allows one to obtain local as opposed to average (or line­

i nt<--grated) plasma properties.

Langmuir probes have a broad range of applicability - from glow discharges to

fusion plasmas. They find use in both laboratory and industrial environments. The

simplicity of the Langmuir probe experimental setup makes it an attractive diagnostic

for the experimentalist. In plasma processing control, they may be used to give an

indication that a plasma processing device is producing the same plasma characteristics

l

. .
as on a pnor occas10n.

Since their inception, many theoretical studies have been conducted to understand

t lw lwhavior of Langmuir probes. I. Langmuir and H. Mott-Smith pioneered both the

exiwrimental and theoretical interpretation of probe data. More advanced treatments

resulted from a better understanding of plasma sheaths; the work of Bohm [4] in the late

fortiPs is particularly noteworthy for its elucidation of sheath phenomena. In an effort

to include the proper potential distribution in the sheath, Allen [1] derived expressions

for current collection which included the effect of electron potential barriers, while ions

werP assumed to be immobile, or "cold." Bernstein and Rabinowitz [2] expanded upon

t lw work of Allen by also allowing for monoenergetic ions. Laframboise [5] completed

thP picture by incorporating both thermal electrons and ions.

All of the tlworetical work described above assumes current collection in a colli­

sionless, quiescent plasma by an infinite cylindrical probe. The purpose of this thesis

is to introduce a particle-in-cell (PIC) code, PROBEPIC. PROBEPIC extends the

work of previous treatments by simulating the behavior of finite length probes. In

its present form, PROBEPIC may be used to conduct Langmuir probe experiments

in hoth quiescent and flowing plasmas. We are compelled to use the term "experi­

ments'' because the PIC method, which uses computational particles to represent real

electrons and ions, gets as close to reality as we can expect to on a computer. 'Ne

are not simply numerica.lly integrating a set of differential equations; the PIC method

introduces experimental realities such as statistical deviations. PROBEPIC enables

us to conduct parametric studies on and interpret experimental data from Langmuir

probes. For example, the effect of probe dimensions or specific plasma conditions may

he explored. Also, the results of the "hand" analysis of experimental data may be

vnified by running PROBEPIC with similar experimental conditions. In this thesis

we perform such tasks. The effect of the probe aspect ratio on experimental results

2

is quantified, perhaps for the first time. The results of experimental data from an ion

th rust er plume a.re scrutinized.

\Vhile the results presented in this thesis are interesting, the knowledge attained in

the development of PROBEPIC is equally important, as unique/novel techniques were

dev<>loped. Consequently, this treatment presents PROBEPIC in the broad context of

rclf'vant theory, and then focuses on specific techniques to implement this theory in the

rnmptitat.ional environment. Chapter 2 describes analytical techniques that have pre­

viously been developed to grapple with the difficult task of interpreting experimental

Langmuir probe data. The analytical techniques serve as limiting cases by which to

evaluate the general validity of PROBEPIC output. Chapter 3 describes the various

facets of the PIC technique in general, and establishes a theoretical framework for

th<' algorithms used in PROBEPIC. Chapter 4 presents a thorough treatment of the

theoretical and computational details specific to PROBEPIC. This chapter is the most

important since it describes techniques that cannot be found elsewhere. Chapter ,5 de­

tails the results of the application of PROBEPIC to several problems and summarizes

the prPsent study ~ suggesting future applications of PROBEPIC.

3

Chapter 2

Plasma Sheath and Electric Probe
Theory

O,w of the most outstanding characteristics of a plasma is its ability to maintain

intPrnal charge neutrality. Near boundaries, which would otherwise disturb this quasi-

1w11t rality. the plasma redistributes its constituent particles in such a manner as to

shiPld tlw bulk of the plasma from the perturbation. This is accomplished through a

thin plasma layer called a sheath in which ion and electron densities can differ. Thus,

larg<' <'lectric fields can be sustained to counter those fields imposed by the perturbing

object.

[f we can develop accurate theoretical models for this shielding effect, then we may

imwrt objects. or efrrtric probes, into plasmas and infer bulk plasma thermodynamic

properties from the careful analysis of charge collection for various applied probe

potPni.ials. In short. valid interpretation of experimenta.1 probe data hinges on a

t horo11gh understanding of the mechanisms at play in a plasma sheath.

l T 11fortunately. the customary equations that govern the motion of plasmas change

character drastically in the vicinity of the boundaries. Consequently, the theory of

prolws is extremely complicatPd. For this reason the literature on probes is extens­

in'. Pven attracting the interest of twentieth-century scientific giants such as Irving

4

Langmuir and David Bohm. The methodology used in the references is mathematic­

a II Y intensive. In the following sections we condense and filter previous research to

s11it tlw needs of the pr<"sent treatment - looking qualitatively at results that will

lw directly applicable to the interpretation of PROBEPIC output found in chapter 5.

The interested reader may find more detailed treatments in the references listed in

tlw bibliography.

2.1 Sheath Theory

Bulk plasma tends to be quasi-neutral, even in systems which are finite and have

ho1111daries. The plasma isolates itself from the boundaries through a non-neutral

plasma sheath. The structure of sheaths is very much dependent on the particular

problem geometry and the thermodynamic state of the plasma. Solutions almost al­

\\"a_vs depend on simplifying assumptions; these assumptions are problem dependent.

Tlwrefore. in this treatment we focus on theory relevant to electric probes: current

rn/frdion and sheath boundary conditions in steady state, uniform, isotropic, collision­

Jpss. single ion species. and unmagnetized plasmas.

Let us first consider some general, qualitative sheath properties. Figure 2.1 will be

11sed to illustrate the structure of planar sheaths under various boundary conditions.

First. consider boundaries A and B as infinite conducting planes whose potentials

are cb.1 and ¢B respectively. In the absence of an intervening plasma, the potential

simply increases linearly as shown in the bottom curve. As a second example, let the

boundary .4 be a grounded infinite conducting plane, and boundary Ba point far away

inside the (quasi-neutral) bulk plasma. The potential is modified significantly with the

addition of a quiescent plasma. If the ions and electrons are in thermal equilibrium,

5

V

A

d X

Figure 2.1: Schematic of the potential distribution between two constant potential
planes for different intervening media.

tlwn

(2.1)

⇒ -- -Ve ~ni
Vi - me .

(2.2)

Equation (2.2) reveals that the mean velocity of the electrons in the plasma is much

grC'atC'r than that of the ions, because mi » me. Consequently, unchecked, the electron

Aux to boundary A would be much greater than that of the ions, and the neutrality of

thP bulk plasma would soon be broken. The plasma avoids this by charging positive

with respect to the boundary - setting up an electron repelling sheath to balance

Plectron and ion losses. This is the origin of a finite plasma potential, </JB, which

is illustrated by the top curve in Figure 2.1. As a final illustrative example, again

consider boundaries A and B as infinite conducting planes whose potentials are </>A

and d>a respectively (the following derivation follows Chen [19] closely). Let </>A = 0

for simplicity. Further, consider boundary A as a surface which emits electrons (of

mass rn and charge -e) vvith zero velocity, and boundary B as a perfectly absorbing

6

smface at potential <ba. In this conservative system the Hamiltonian is constant:

H=T + \l=0, (2.3)

=} ~mv2 = e\/(:r), (2.4)

and therefore the instantaneous velocity of an electron is

1

v(,r) = (2e\/(:r))2
rn.

(2.5)

If the current density is defined by

j(:r) = n(:r) v(:r), (2.6)

t11f'n tlw number density is , using (2.5),

I

(.)- .()[2e\/(x)l- 2
n,r -JX

m
(2.7)

Poisson's equation for the electrostatic potential may then be written (in Gaussian

units)
d2\l

d:r 2
-4rrp(x)

4rren(x)
I

4rrej(x) [2e:(:r)l-2

l\l11ltiplying both sides by d\//dx and integrating from x = 0, we find

! (dV) 2

2 dx

(2.8)

(2.9)

Since we have electrons with zero velocity at x = 0, the electric field must also vanish,

that is.

- =0 (d\/)
d:r O •

(2.10)

7

Tims. rearranging (2.9) we have

(2.11)

Integrating (2.11) from J" = 0 to .r = d vve find

(2.12)

or
3

. 2 ½ VJ
J(d) = (me) 91rd2 •

(2.13)

Equation (2.13) is the Child-Langmuir ~-power law, which describes space-charge­

limitul current ffow between two planes separated by a distance d with a potential

\ R ht>tween them. A more realistic case would allow the electrons to enter with finite

velocities. This has the effect of initially depressing the potential below zero, or the

b11ilding up of a field to oppose the emmision of electrons. The potential associated

with this situ at ion is represented by the middle curve in Figure 2.1. Langmuir [3]

derived an expression for space-charge-limited current for particles which enter with

a thermal, or Maxwellian distribution:

j(d)= (2-)½_1 (Va-l~n)½ (l+2.66)'
me 91r (d - ,Tm) 2 /ii

(2.14)

\\"here \ ;,, is the potential minimum, Xm is the associated position of the potential

minimum. and r7 = eFa/kT. Although we formulated this derivation for electrons. the

formulas are also valid for ions in an attractive potential if appropriate masses and

temperatures are used.

The derivation above has a more specific interpretation - it is a first order ap­

proximation for the current collected by a conductor immersed in a plasma. Boundary

A is analogous to the outer edge of the sheath through which particles from the bulk

plasma cross due to thermal motion. and boundary Bis analogous to a current collect­

ing conductor. This analogy. however, has its limitations. First, a collisionless planar

8

sheath is assumed. For a perfectly absorbing infinite plane conductor, all particles

move town rd the conductor; no particles move away from the conductor, implying that

half of the distribution function is missing. In an experimental plasma, the plasma

compensates for this by allowing the applied potential to extend far into the bulk

plasma. thus blurring the concept of a sheath altogether. Second, the model assumes

all charge that crosses the sheath edge is collected at the opposite boundary as current.

In practice. however. particles are free to execute orbital trajectories which would not

11f'cessarily result in collection. In any event, it has been shown experimentally that

the Child-Langmuir model gives reasonable results in the thin sheath limit. More will

he said about these issues in Section 2.2 in the discussion of electric probes.

We have considered how current might be collected through a plasma sheath. To

complete the picture vve should define the relative dimensions of sheaths; the following

derivation closP!y follows that of Chen [19]. Consider a plane conductor at x = 0 and

pofrntial \ 0 immersed in a plasma of dimensions R and undisturbed number density

11 0 . Poisson's equation for the one-dimensional problem is:

d2V
- = -41re(n· - n) d:r2 i e

If Wf' introduce the dimensionless variables

ev
,7 = - kTe'

(2 .15) becomes

where.

11 i
v---

! - ' no

h ·- (kTe) ½
.- 41rnoe2

(2.15)

(2.16)

(2.17)

(2.18)

For simplicity, assume that the ions are relatively immobile as compared to the elec­

trons. that is. they are uniformly distributed. Assume that the electrons a.re in a

9

Boltzmann distribution:

-ry
ne = nae . (2.19)

Poisson ·s Pquation then takes the form

(2.20)

If 17 is srna.11, we can expand the exponential in a Taylor series:

-ry 1 e ~ -17+ ... , (2.21)

\\"hich results in the Poisson equation taking the form

d217
d(:r/h)2 = 17.

(2.22)

Finally, the solution of (2.22) yields

ll _ l/ -(x/h)
v - voe . (2.23)

Equation (2.23) shows that an externally applied potential of magnitude \'0 is effect­

iYE'ly shielded (i.e. reduced to 1/e of its initial value) within a distance of order h.

TllP Jpngth h is called the Debye shielding length.

In this section we have shown that current collection by electric probes can be rep­

resentE'd. at least to first-order, by space-charge-limited current flow through sheaths

whose characteristic dimension is the Debye length. A more detailed treatment of the

sheath has been given by Bohm [4], which includes stability boundary conditions.

2.1.1 Bohm Sheath Theory

TllP formulas derived above for space-charge-limited current assume that the electric

fip)d at tlw sheath edge is exactly zero. However, in reality the shielding is not quite

p<"rfect. and a small portion of the potential drop between electrode and plasma may

10

1w1wtrate beyond the sheath edge. While at first glance it may seem pedantic to worry

aho11t small fields that extend beyond the sheath edge; however, it turns out that the

extent to which the potential extends into the bulk plasma may determine the overall

stability of the sheath.

Rohm proposed that Dehye shielding be divided into three phenomenologically

diffr,rcnt regions, as illustrated in Figure 2.2: the plasma region, transition region,

and sheath region. Within the plasma charge neutrality prevails, with a very gradual

increase in potential in the direction of the electrode. The sheath region is charac­

terized by a large potential gradient, and negligible electron density. In between, the

transition region bridges the small and large field regions of the plasma and sheath

res1wctively. In other words, there is no precise point where one can say the sheath

ends and the plasma begins. The combined transition and adjacent plasma regions

are often refered to as the presheath.

\Ye will now derive a condition which explains why plasma fields cannot be neg­

lPcted - why the plasma/sheath transition may not be abrupt.

<p
SHEATH
REGION

TRANSITION
REGION

PLASMA REGION ---►

X

Figme 2.2: The variation of potential near a wall; 1> is the negative of the potential.

11

Boundary Conditions for Sheath

In this simplified model we consider a one-dimensional sheath as illustrated in Figure

2.2. lous are assumed to have been accelerated through the presheath up to the sheath

edge through the plasma potential Vo, that is, the role of the plasma fields are taken

i 1110 acrount by assuming that they provide ions at the sheath edge with some mean

energy equal to e\/ci-

Following Bohm [4]. we first write down Poisson's equation for the potential inside

the sheath region,

V 2 \-· = 41re(n - n) + e '
(2.24)

wlwre 11+ is the ion density and ne is the electron density. We assume that the electrons

arf' in a Boltzmann distribution:

(e(V - Vo))
ne = n0 exp - kTe (2.25)

Sinn' the ions have kinetic energy eV, their velocity is

V+= ~-v-;;;-; (2.26)

From continuity, the current density (J = nv) must be the same at the edge of the

sheath and at all internal points; therefore,

(2.27)

(Vo
=} n+ = noy V. (2.28)

Reassembling (2.24) gives

_d2. V = 4rrnoe [(¼_Vo - exp (--e(V_-_vo))]
d.r 2 V V kTe

(2.29)

12

l\[ultiplying (2.29) by dV/d:r and integrating we find,

l (dV) 2
[r;;-;; kT (e(V - V)) l 2 d:r = 41rnoe V l'o V + -;- exp - kTe O + C . (2.:30)

The constant is C found by assuming that the electric field vanishes as V -+ Vo, that

is. d\/d.r = 0 when,,.= \ 0. Implementing this condition and rearranging terms we

find.

(d\") 2
C) {·. ({V) kTe [(e(V-\10))]}

rh- = ~7rnoe 2\o V ¼ - 1 + ----;,- exp - kTe - 1 (2.31)

:-\s ,. approaches \i0, we are justified in expanding the right-hand side of (2.31) in a

pow<"r series in~,· (where ~V = \l - l'o), in which case we find

l(dV) 2 ~ ~ (_.:._ __ 1) (~V) 2 .

81r11 0e d:r 2 kTe 2va (2.32)

flpcause (dl/ d.r)2 ~ 0, real solutions are only possible if

e 1
(2.33) ->-

kTe - 2Vo '

or.

i· kTe e lo> - .
- 2 (2.34)

Equation (2.34) tells us that a stable sheath is possible only when ions reach the

slieat h ,vith a kinetic energy at lea.st half the thermal energy of the electrons. In

many experimental plasmas, the bulk plasma ion temperature may be significantly

lower than the electron temperature. Equation (2.34) tells us that the sheath can

1w stabilized only if some mechanism is at work to bring the ion energy up to half

the electron energy upon entry into the sheath. This leads us to conclude that the

jfff'sheath is a real and necessary region in the Debye shielding process. It should be

nwntioned that for ion energies less than half the thermal energy of the electrons, the

slwath Equation (2.29) predicts oscillatory solutions. This is what we mean by stable

vs. unstable sheaths. \,Ve should, however, remember that this derivation is based on

t lw assumption of a planar sheath, and recall the comments from Section (2.1) about

tlw validity of this assumption.

We will now turn our attention to how the sheath theories developed in this section

are implPmentecl to provide a basis for the theory of charge collection by laboratory

<'lectric probPs.

2.2 Electric Probe Theory

Electrostatic probes are experimenta.lly very simple devices. They genera.lly consist

of a metallic electrode (partially insulated and partially exposed) connected to an

PXtPrnal circuit outside of the plasma. The external circuit usually consists of a DC

power supply (which is used to bias the probe positive and negative relative to the

plasma). and an ammeter or oscilloscope to measure the probe current. In this thesis

we will be concerned only with the cylindrical Langmuir probe, which is basically a

wire with part of the insulation stripped back.

Let us first get a qualitative idea of how Langmuir probes work. Figure 2.3 illus­

trates a typical. albeit somewhat idealized, experimental voltage-current (VI) charac­

teri:.;tic. Total current to the probe is plotted as a function of probe bias potential.

ElPctron current to the probe is taken as positive by convention, ion current. negative.

Tl1f' potential <Ps is the local zero, or plasma potential. For potentials greater than

o., the probe attracts electrons; probe potentials less than <Ps repel electrons. Ions,

having opposite charge, are repelled when ¢ > <Ps, and attracted when ¢ < <Ps• Let us

consider the various regions of the the VI characteristic in more detail.

The point labeled C in Figure 2.3 corresponds to ¢ = <Ps, the plasma potential.

There is no probe sheath at this potential; therefore, charged particles freely migrate

14

D

(j)s

A

Figure 2.3: Typical voltage-current (VI) characteristic for a Langmuir probe.

to the probe because of their thermal velocities. As shown earlier in section 2.1, the

Plectron thermal velocity is much greater than that of the ions; consequently, at <l>s,

what is collected by the probe is predominantly electron current, as illustrated in the

figurP.

Behveen C and D the probe is biased positive relative to <l>s, collecting an increasing

numbn of electrons and a diminishing number of ions. The exact amount of increased

P]Pctron current for an incremental increase in probe potential is highly dependent on

the state (e. g. number density, temperature, etc.) of the bulk plasma, that is, the

pffectiveness of the Debye shielding. In the thin sheath case, the VI characteristic has

a pronounced knee at point C. Incremental increases in probe potential lead to little

or no increase in probe current. For this reason, the potential and current associated

\\·ith point C are often refered to as the electron saturation potential and current.

As the probe potential is made negative relative to <l>s, it begins to repel electrons

15

and attract ions. The dectron current drops off very rapidly. As will be shown later,

if th<" ciPctrons are in a Maxwellian distribution the electron current will decrease

exponentially in the region between points A and C. Between points B and C. a

pott'11tia.l dJ f exists at which the total collected current is zero. This point is called

1 lw flonfing potrntinl: at this point the field is sufficient to repel all electrons except a

f111x equal to the ion flux.

If the probe potential is made negative relative to ¢1 we reach ion saturation at

point B. The discussion above about electron saturation at point C applies analogously

for ion saturation. It should be mentioned, though, that in plasmas which contain low

etwrgy ions the sheath formation for the ions may be quite different than for the

f'ledrons. since a large ion attracting presheath region may be necessary to satisfy the

Bohm condition.

No exact analytical theory exists to determine the VI characteristic for arbitrary

pla:c-nrn conditions. The main difficulty is that the problem requires a self-consistent

solution of the equations of motion and the Poisson equation. When one formulates the

relevant equations, a set of simultaneous non-linear differentia.l equations results for

\\"hich no closed-form analytica.l solution is available. Simplifying assumptions may be

introduced to make the problem more tractable; however, these assumptions restrict

the solution's validity to a narrow set of plasma conditions.

Approximate solutions are available for two limiting cases: very thin sheaths, and

,·ery thick sheaths. For thin sheaths (i.e. h « rp, where rp is the probe radius) space­

charge-limited current collection is assumed, where it is assumed that any particles

crossing the sheath are collected. The resulting theoretical VI characteristic has very

sharp knees, as pictured at points B and C in Figure 2.3. On the other hand, for

very thick sheaths (i. e. h » rp) orbital motion limited (OML) current collection

is assumed. The OML current is the current collected by the probe when none of

16

thP undisturbed particles (at infinity) capable of reaching the probe on the basis of

energy considPrations is excluded from doing so by intervening barriers of effective

potentials. In other words, we neglect the influence of the sheath altogether, and

simply compute particle orbits using the space-charge-free electric field of the the

probe. Those orbits that intercept the probe are counted as current. In this case,

the rf'sult.ing VI characteristic does not have sharp knees at points B and C; rather,

then" is a very subtle (and often almost indiscernible) change from positive to negative

cnrvature.

Sincf' the OML theory is most relevant to the analysis of the results computed

using PROBEPIC, we will focus on theory which describes the thick sheath limit.

2.2.1 The Classical Probe Theory of Langmuir and Mott-Smith

I. Langmuir and H.M. Mott-Smith conducted the first electric probe measurements,

crnd consequently. developed the first probe theory [3] to interpret their data. In this

sPdion we describe their rf'sults for infinite cylindrical probes.

The Langmuir/Mott-Smith theory describes orbital motion limited current collec­

tion. Again, this approximation is valid in the thick sheath limit, where the Debye

]pngth is much larger than the probe radius. In this limit not all of the particles

PntPring the sheath will strike the probe because of the possibility of orbital trajector­

iPs. Only those particles with the appropriate impact parameter, energy, and angular

momentum will be collected. The details of the derivation are quite long, and can be

found in the original paper; therefore, we will go directly to the result. For ions with

a l\Taxwellian velocity distribution function, with the possibility of collection from

,.I' to infinity, the ion current collected by a cylindrical probe as a function of probe

potential is given by:

(2.35)

17

where .

. \I' := probe aru1.

Xx := 1H0 1tfral plasma density,

Z; := ion degree of ionization,

c := t-"if,fron charge,

J, := Boltzmann constant,

T; := ion temperature.

m; := mas.c. of ion

and.

J·. = e-Xp for v > 0
' ' ,\P '

where.

Z;e</>p
\p = kT; .

, for XP < 0 , (2.36)

(2.37)

(2.38)

r:i,, is the probe potential measured relative to the plasma potential. Equations (2.37)

and (2.:38) are are valid for electrons if the appropriate mass and charge sign are

substituted into all formulas.

A theoretical VI characteristic is assembled by evaluating (2.37) and (2.38) for

both the electrons and ions. and adding the individual contributions to yield the

total current. Figure 2.4 illustrates theoretical Langmuir results for several plasma

temperatures. In the plot, the electrons and ions were assumed to be in thermal

equilibrium; all parameters other than temperature were held constant. The plot

is typical of a quiescent rarefied plasma. There is no distinct knee to indicate the

location of the plasma potential (in the illustrated curves the plasma potential was set

to O[\ ·]). Increasing plasma temperature has the effect of shifting the characteristic

up and flattening the electron repelling region. This intuitively makes sense; higher

18

/

-5

0.1

/

I
0.05 /

0

0

/

/

/
/

/

/
/

/

/

--- T=1eV

T=2eV

T=5eV

5 Potential [VJ

Figure 2.4: Langmuir theory VI characteristics for several temperatures.

t<'mperatures are associated with higher energy electrons, which will have a greater

ability to penetrate the potential barrier and sustain a dominant electron current to

tlw probe.

The value of the Langmuir theory is that it enables us to determine the thermody­

namic properties of experimental plasmas from their VI characteristic. Let us pretend

that the data in Figure 2.4 is experimental data, that is, assume we know nothing

about the temperature, number density, etc. associated with this pseudo-experimental

data. Equation (2.35) has the general form (for electrons),

fe = /3)e , (2.39)

19

or. in the electron repelling region (using (2.37) and (2.38)),

e¢p

le = /3 ekTe •

Taking the natural logarithm of both sides of (2.40) we find

e
=} ln(/e) = kTe c/>p + ln(/3) .

Equation (2.41) has the form of a straight line

wlwre.

y =ax+ b,

- e a - kTe

b = ln(;3).

(2.40)

(2.41)

(2.42)

(2.43)

Notice that the only unknown value in a is the electron temperature, Te. Thus, if

''"e plot In(I e) as a function of c/>p, and pick off the value of the slope in the electron

retarding region, we can immediately determine the temperature of the electrons. The

natural logarithm of electron current for the same conditions used to produce Figure

2.4 is shmvn in Figure 2.5. Consider the lower curve, the solid line. From the figure

we can estimate the slope in the electron repelling region,

(2.44)

Thus, the estimated electron temperature is

e
Te~ ok = 11-594.2[k] = l.0[eV] , (2.45)

20

-12

-14

C:

-16

-18

-20

-10 -5 0

--- T=1eV

T=2eV

T=5eV

5 10

Potential [V]

FigurP 2.5: N at.ural logarithm of electron current vs. potential for several temperat-
11 J'f'S.

whi,h corresponds directly to the actual temperature used to construct the character­

istic initiallv.

The logarithmic plot also helps to identify the plasma potential. In Figure 2.,5

the knee at O [V] is much more apparent than in Figure 2.4. If we know the plasma

potential, then we can immediately identify the saturation current. At saturation,

particles are unimpeded from moving toward the probe and therefore the collected

charge is simply the thermal flux,

I= Aenc
4 '

21

(2.46)

c= fSk'I'_ V-;-;;; (2.47)

Sine<' we have already determined the plasma temperature, we can use the experi-

11ie11tal value of saturation current and equation (2.44) to determine the number dens­

it.v.

111 this section we have shown how the Langmuir and Mott-Smith theory may be

us<'d to determine the thermodynamic properties of a plasma in the OML limit. The

theory provides important results even for plasma. regimes which do not correspond

to the 01\IL limit; it provides an upper bound for the current collected by a probe

under collisionless conditions. This is because potential barriers which result from

slwath formation can only reduce the number of charged particles which are able to

r<'ach the probe.

2.2.2 Other Descriptions of Quiescent Probe Theory

It was mentioned earlier that no exact analytical theories exist for Langmuir probes;

however, numerical solutions have been developed to solve the governing equations.

Tlw most widely accepted of these is that of Laframboise [.5]. The techniques de­

veloped by Laframboise are sufficient for establishing the VI characteristics of cyl­

indrical probes over essentially the entire range of conditions in which collisions can

he neglected.

Laframboise developed a strategy to solve the collisionless Boltzmann equation.

The assumption of a. Maxwellian distribution for the attracted as well as repelled

s1wcies results in a nonlinear system of integral equations. These equations must be

solved numerically by an iterative procedure. The details of the procedure are quite

complicated and may be found in the original paper.

!\[any experiments have shown the validity of the Laframboise formulation. Fig-

22

8.0

7.0
"' 0

T""

X

~ 6.0
I-z
w
a:

5.0 a:
:::,
0

4.0

0 2

0

0

0

4 6

POTENTIAL [V]

0

0

0

0

Langmuir

Laframboise

8 10

Fignre :2.6: Comparison of Langmuir and Laframboise results in a rarefied plasma.

me 2.6 shows theoretical predictions of the Langmuir and Laframboise theory for

identical plasma conditions. In general, the Laframboise formulation predicts lower

rnrr<>nt collection than predicted by the OML theory of Langmuir. The plasma repres­

ented in the figure is of very low density (N = 8.0 x 10-10 [cm-3]); plasmas at higher

df'nsities ,vill show even greater deviation. This, of course, is expected since the previ­

ously unaccounted for sheath potential barriers are fully modeled in the Laframboise

theor)'·

2.2.3 Probe Theory for a Flowing Plasma

\Vf' may wish to make Langmuir probe measurements in flowing plasmas (such as in

tlw plume of an ion thruster), where the ions have a mean velocity much greater than

23

t lwi r thermal velocity. It has been found that electron collection will be essentially

t lw same as in quiescent plasmas; however, ion collection mechanisms may be quite

<1 iffnP11t.

[f tlw directf'd euergy of an ion beam is much greater than the thermal energy, it

may lw impossible for an ion sheath to be established. The situation is worst when

the probe is aligned perfectly with the direction of the flow. Appealing to the Bohm

stability criteria, which places a fundamental condition on the normal component of

ion \'f'locity, a probe aligned with the flow will see ions with predominantly tangential

vPlocities, and consequently will be unable to form an ion sheath. As a result, the

ion collection will be influenced most by geometric factors, that is, the exposed cross­

sectional area of the probe normal to the flow direction. Therefore, we expect to collect

a minimum amount of ion current when the probe is aligned with the flow (where the

exposed cross-sectional area is essentially the probe tip cross-sectional area), and a

maximum amount of ion current when the probe is perpendicular to the flow. Also,

since the inertia of the directed ions may be quite large, the collected ion current may

be independent of voltage.

The postulates put forth in the previous paragraph have been verified experiment­

a 1_v: however, one anomalous and initially overlooked effect has been found. When

thf' probe is aligned with the flow, a phenomena called the "end effect" may come into

play. The end effect leads to the counter-intuitive result that the ion current collection

will be maximum when the probe is aligned with the direction of the flow. Experi­

mental data illustrating this effect is shown in Figure 2.7, from Sonin [6]. The effect is

fouud in plasma regimes in which the OML theory is applicable. In the OML regime,

the effect of the sheath becomes small; that is, the probe potential may reach far into

the bulk plasma and attract ions from many Debye lengths away. When the ions move

in trajectories tangential to the probe surface (i. e. , when the probe is aligned with

24

- u

-90° - 7'Z' -48" -24° 0

8

24° 48" 7'Z' 90°

Figure 2.7: Illustration of the encl effect. The figure shows the variation of ion current
with angle of attack. The clashed line is theoretical, from Langmuir. The solid line is
Pxperimental data, from Hester and Sonin (reproduced with permission of Sonin).

thf' flow), they will spend the greatest amount of time (as compared to other probe

orientations) under the influence of the attractive potential. Consequently, the probe

may collect the greatest amount of current at zero angle of incidence. In this model,

high aspect ratio (lp/rp) probes should be most vulnerable to the encl effect. Perhaps

tlw Pncl effect should be more appropriately called the "thin probe effect".

To avoid complications associated with the end effect, it may be experimentally

preferable to orient the probe transverse to the flow. Theoretical prediction of the

ion nirrent is then straightforward, based simply on the side-view cross sectional

area of the probe; however, interpretation of the electron current may be complicated

because the upstream electron sheath may be obliterated by the high velocity ion

flux. Therefore, calculating electron temperatures from the dissection of the electron­

rdarding portion of the VI characteristic must include a velocity correction. It is the

author's opinion that the introduction of such "fudge factors" belies the complexity of

2.5

the situation and should probably be avoided altogether.

This chapter has nwrely touched the surface of the theory that has been developed

for the interpretation of Langmuir probe data. The vast amount of treatments available

is evidence of the complexity of the problem (the papers by Chen [19] and Chung

[:21] give excellent summaries of the most important work), and justifies the present

work ~ a direct particle simulation. What has been presented here is merely that

information necessary to make statements about the validity of the PROBEPIC results.

[11 the following two chapters the theory behind and development of the PROBEPIC

codP is described in detail.

26

Chapter 3

The Particle-In-Cell Technique

This chapter introduces the fundamentals of the particle-in-cell (PIC) technique.

The basic strategy of the technique is outlined on an elementary level to enable the

r<'ader who is unfamiliar with PIC to move on to the latter chapters without having

to consult other references. The various elements of the method will be clarified

hy specific examples. These examples will elucidate PIC techniques in general as

wf'll as establish a theoretical framework for the algorithms used in PROBEPIC, as

presented in Chapter 4. The interested reader may consult the standard references

[,. ~] for greater detail.

3.1 What Is PIC ?

PIC is a computational method used primarily for the simulation of plasma phe­

nomena. The acronym PIC describes the major principles embodied in the technique.

h,rt icfr: PIC uses many discrete particles to simulate the collective behavior of a

plasma: in this sense it attempts to simulate reality as closely as possible. Cell: a

spatial grid on which the electromagnetic fields are computed is superimposed on the

computational domain; particles in the cells formed by the grid transfer part of their

"i<kntity" to the nodes that bound the cell. This eliminates the need to explicitly

2,

compute the interaction of a given particle with every other particle. Instead the elec-

1 rornagnctic f-if'ld is dctf'rmined by using equivalent charge and current densities at

1 lw 11odcs only. whicl1 drastically reduces the complexity of the field calculation (there

are gf'nerally many more particles than grid-points). Figure :3.1 is a schematic of the

ohj<'ct s prPsent in any PIC code. The particles and boundaries represent real physical

e11t it ies. \\'hi!f' tlw grid is a purely mathematical object.

Grid

o 1° • I • I o I • I o I O I o I I I O I I o 1 • • 1 • I o I o I o
..?o+ - -I _o_,! I- - + - -I - -1- - I-~+• -I - -1-o- I- - + - -I - ~I- - 1-• - + -
e I •o I l O I I o I o I o I I o I O I o 10 I o I e I • 1 e I O e
_ .L _ .J ~ _I_ ! t..- .L ! _J __ I_ ~ L ':_ .L _ .J ~ _I~ _ L _• .L _': .J _ o_ I _ _!: le _ .L _

o I •' I ~ I Io I O I O I e I ~ 1. loo le; O I O I • , 0 I e I a·
lo I o I I I I e Io I o I I o I I I • I I I I

~ T 9 I - -1- - ,- • T - ol O -t- 0 I- - I - ;i - -1-; I ; I; l'- -1-•- I- 0- T •-
I o I o Io• I e I o I IO e l 01 o I• o I o I o I • I e O r° 1 • I O

; , - 7 - -1- - r - • - 7 - 0 -1- - r - T - 0 7. -1- - r - T 0- 7 - -1; - ra. T -

• I • 0 1 o I 0 1 l•o I• Io 1 0• 10 10• I • 0 1°• I• 1° 0 I O 1 0 I c!'
- + - -, - -1- - f- - + - -, - -1- - f- - + - -, - -1- - f- - + - -, - -1- - f- - + -
~ Io ' 0 1 • 10 1 e O I • I• o I o I o O I ~ I O I e0 I o I o• I e o I e 1 e 0

o_ .L !2 .J __ 1..'? _ L:: .L _ .J __ I __ L _ .L _ .J __ I __ L 0 _ .L ~ .J __ I __ L 0_ .L _

o I I to I o I I • 1•0 I I e1 o t el• I O lo le I O I e
e .!. c. e! _0 _I_ e_ 1_0~ .!. ~ _J __ I_•-~ _ 0 .!. 0_.J _o _P_ ... ~ _o .!. : _J ~_I_~ 1_e _ .!. _

0 I I I O I O I e I I I I ol O I I I O 'o I e I I
e 1 ·o I O • 1 °, 0 I I I O • O lo I O I O e I 0° I e I e I O I 0• IO e

- T - 7 - ;10- r - T - 7 9 -1- - re T 9 7 - ,;-1- - r - T 9 7 o -1- 0- r - T -

0•1 •I O I 0 1 o le I 1eo1 0 1 0 °1 0 1001 0° lo I • 0 t 0 •1 o•I o
-,, + - lli - -1- - f- - + - -i - -1- - f- • + - -, - -1- - f- - + - -, - -1- - f- - + -

0 1eo1e1e101e101 0 1°e1 e1:1°•1•01°er• 0 1° I•

• • •

Figure 3.1: Schematic of PIC objects.

The first and most obvious question one might ask is, "How can we expect to sim­

ula1f' plasmas particle-by-particle, which even at low densities would require billions of

p,irt ides."" The answ<"r is svperpnrticles. Superparticles are computational particles

\\"liich represent many real particles. For example, one superparticle might repres­

ent a million or more real electrons. In this way PIC becomes feasible on today's

cornp11krs.

The plasma rPginws for which PIC 1s applicahle are limited primarily by number

28

densitv. For number densities greater than approximately 1013 [cm-3] the number

of s11perparticles rPquired to produce reasonable statistics becomes computationally

prohibitivP: lwnce, the Pxtension of PIC into denser plasma regimes is contingent upon

the dPvelopment of faster computers.

The ti m e-sffp determines how far superparticles will move under the influence of

the electromagnetic fiPld in one computational cycle. A complication often arises in

determining a suitable time-step. The disparity in the relative masses of electrons

and !wavy particles creates a situation in which electrons will move much (perhaps

thousands. or millions of times) further in a given time-step than the ions - we have

two different time scales. As a result a lot of computational time is wasted resolving

PlPctron oscillations while waiting for the ions to catch up. If one is only interested

in modeling the response of a slightly perturbed plasma and observing the resulting

plasma oscillations the ions may be treated as "frozen", that is, fixed. The time­

step will then be determined by the desired resolution of the plasma frequency of

tlw electrons. However. when the mass motion of the ions is important, such as in

t lw modeling of ion acoustic waves or a Langmuir probe, schemes must be developed

to ck·al with the difference in the time scales. One such scheme is to sub-cycle the

electrons: the electrons are allowed to move many time-steps while the ions are held

stationary; the ions then move a single time-step on their own time-sea.le. Sub-cycling

may destroy information concerning electron oscillations, but if the goal is to simulate

the macroscopic motion of the plasma, suitable results may be obtained. An even

more exotic technique is to use a "hybrid" code in which the electrons a.re treated

as a fluid (see, for example, Fife [9]) and computations are carried out on the ion

time-scale. If we a.re interested in modeling a plasma which is both oscillating and

flowing we a.re left with no alternative but to accept that the simulation will take a

long time.

29

3.2 The Computational Cycle

:\ PIC program is composed of several modules that work together to move particles

through phase space. Each of these modules are executed once in a computational

t inw stPp for Pach particle species. These modules are: the charge weighter, the field

~ol\"f'l'. the force weighter, and the mover. The order of execution of these tasks for an

PIPCtrostatic simulation is illustrated in Figure 3.2.

Lf't us describe, in a general sense, one computational cycle; a more complete

ckscription of each module will follow in sections :3.2.1-:3.2.4. A PIC program begins

h_v initializing particle positions and velocities. From these initial conditions the charge

density at the grid-points is computed. The Poisson equation is then solved yielding

1 lw electric field at the grid-points. The field at the grid-points is then interpolated

hack to the particles (i.e. the electric field at each particle position is computed). The

final step is to integrate the Lorentz force equation to determine the new position and

YP!ocity for each particle. The process then starts over for the next time-step.

CHARGE WEIGHTING -- (Xi, Vi) (Pi, Ji)

'
MOVE PARTICLES FIELD SOL VER

Fi - xi y.
I (Pj,Jj) (Ej,Bj)

j I

FORCE WEIGHTING -
(Ej,Bj) Fi -

Figure 3.2: A typical cycle (one time step) in a PIC simulation.

30

The four steps described above are found in all PIC programs. Most programs

will also include modules to handle boundary interactions and output diagnostics.

Also. otlwr modulPs may be included to handle interactions such as collisions. The

beauty of the PIC technique is that new interactions may be almost seamlessly in­

tegrated into the program once the four core modules are operationa.l; the problem

doPs not require a complete theoretical reformulation. We will now consider the core

PH' modules individually in greater detail. For simplicity we will consider only an

elPctrostatic model; however, the principles discussed apply in general for a full elec­

tromagnetic model once the Maxwell equations have been decoupled under a suitable

gauge transformation.

3.2.1 Charge Weighting

The use of a computational grid considerably simplifies the computation of the

electric field. It is much more efficient to solve Poisson's equation on Ng grid-points

ratlwr than computing NP! Coulomb interactions between NP particles (as, in general,

S.'l « Np)-

The task is then to develop methods for transferring attributes (e. g. charge) from

the particles to the grid; this is the subject of weighting. The term weighting implies

somP sort of interpolation. Various interpolation schemes will now be explored.

Consider first, for simplicity, a system in which particles are constrained to move

111 one dimension. The simplest interpolation scheme is to assign the charge of a

particle to the nearest grid-point (the so-called NGP method). Also referred to as zero­

order weighting, the NGP method produces an effective charge density on the grid as

pictmed in Figure 3.3a). It is clear that as this particle, of width ~X -1 X_; - X.i-t I,

moves along the x-axis it causes a discontinuous jump in the grid charge density. In

turn. thf' spatial and temporal behavior of the electric field will be noisy. Consequently

31

a)

b)

Grid Node

I •
x.i-1 • • • I

X j+I •
Particle

• Xj+2

Figure :3_:3: Particle charge weighting. a) NGP weighting. b) First-order linear particle
wf'ighting

1 lw NGP weighting, while being computationally efficient, does not give satisfactory

macroscopic results.

Thus. we se('k an interpolation scheme which more uniformly distributes the particle's

charge over space. First-order linear weighting allows the particle's charge to be dis-

t rihuted to not only one adjacent grid-point, but to its two nearest neighbors, as pic-

t ur('d in Figure 3.'.3b). The effective particle width then becomes 2~X, and the charge

assigned to each grid-point is linearly related to the separation distance between the

portide and the grid-point. For example, if the particle is at Xi, between grid-points

at X_; and X,;+ 1 , then,

. - . [~x -(xi - Xj)] - . [Xj+l - Xi]
q., - q1 ~x - q, ~x ('.3.1)

(3.2)

\Ve may choose to use even higher order weighting schemes to get a smoother

charge distribution on the grid; higher order schemes might use quadratic or cubic

splines. In general the effective shape of the particle is called the shape function S(x),

,rnd the grid charge density may be written

(3.3)

for i charges in cells adjacent to Xj. Higher order interpolation is seldom used, as it

becomes too computationally expensive.

Two properties of any shape function are desired: charge conservation and absence

of a sfff-force. Charge conservation is satisfied if the sum of the weighted node charges

is P<pta! to the particle charge. For example, for the first-order weighting described

abo,·P.

qi [, l ~x
q1 + q1+1 = ~x xj+i - xi+ xi - .x1 = qi ~x = qi . (3.4)

:\ sPlf-force occurs when the electric field, computed using the weighted node charges

for a single particle, is nonzero at the particle's position (i. e. the particle exerts a

force on itself). Again, for the first order weighting, the electric field at xi due to the

weighted node charges at X1 and Xj+1 is:

(3 .. 5)

whi('h, using equations (3.1) and (3.2), yields

Thus. in general, first-order linear weighting produces a finite electric field, or self­

forcc. at the particle position. Figure :3.4 shows the general behavior of (:3.6). The

33

Q
...:i

1

w O. 5
H

"'
u
H
0::
E-<
u

~ or---------=::::::=---...... =:::::::::::::::-------,
Q
w
N
H
...:i

to.s
~

0 0.2 0.4 0. 6 0.8

CELL POSITION

Figme :3.4: Electric Field generated by the weighted charge of a single particle as a
function of the particle's position within the cell.

:-Plf-force is small when the particle is is near the center of a cell, and diverges for

particle positions near the grid nodes. Further, as a particle traverses a cell it first

ex1wriences a repulsive force, but after it passes the cell center it experiences an

attractive force: therefore, one might expect that the self-force effects will "wash out"

provided the particle stays in one cell for two or more time-steps.

To further discuss the more philosophical issues of whether a weighting scheme is

·'better" if it conserves charge or produces no self-force is beyond the scope of this

thesis. Of course we would hope to find a shape function that achieves both ends.

Pnfortunately, it is unclear whether or not such an object has been developed.

34

3.2.2 Field Solver

In tht> P]t>ctrostatic model tht> Maxwell equations reduce to only one equation - the

diffr·rential form of Coulomb's law,

v -E(__,) = p(x)
X E(X) '

(3. 7)

wlwre E(x) is tht> dt>ctric field intensity, p(x) is the charge density, and E(x) is the

electric permittivity of the medium. Since E(x) is irrotational, E(x) may be written

as tlw gradient of some scalar potential </>(x):

E(x) = -V<t>(x). (3.8)

Combining (3.7) and (3.8) gives

v2.-1-.(x) = _p(x)
'f' E(x) '

(:3.9)

which is of the form of Poisson's equation. The approach to determine the electro­

static field is to solve (:3.9) for </>(x) numerically with prescribed boundary conditions

and charge density known at the grid nodes from previous application of the charge

Wf'ighting algorithm. Once </>(x) is known we may compute E(x) using (3.8).

The technique used to numerically solve Poisson's equation is highly problem

dependt>nt. Factors that influence the choice of a particular solver include:

• Symmetries in the computational domain.

• Cartesian or curvilinear coordinates.

• Desired accuracy.

• A vailahle computer mf'mory.

35

If the computational domain is completely symmetrical, with periodic boundary con­

ditions. fast Fourier transforms may be employed to produce a very fast field solver.

In general the boundary conditions a.re not periodic and the differencing of (3.9) leads

to very large, sparse ma.trices. The literature available on sparse matrix technology

is voluminous(e. g., see [10, ll]). The first decision one must make is the degree of

accuracy desired. This leads one to choose an exact solver, which uses "brute force"

to factor the matrix and give an exact (i. e. analytical) result (at least, to machine

precision). or an ine.wct solver, which uses an approximate factorization to greatly

reduce the number of required computations (and consequently gives a result that

diff Prs to some degree with the analytical result). The modeler must decide what

accuracy /speed tracleoffs he is willing to make. A fina.l, non-trivial, consideration is

the amount of physical RAM available on the target machine. Some field solvers may

rPquire 50-100 MB of storage for the difference matrix alone. If the machine is not

P<p1ipped with enough RAM it will utilize virtual memory and computations will be

slowed.

LPt us consider a simple example to clarify the points discussed above. Consider

again a system in which the particles are constrained to move in one dimension in

which case (:3.8) and (3.9) may be written

and.

d¢
Ex= --d '

;i;

p

One approach is to use the finite difference forms of (3.10) and (3.11)

E . _ <Pj-1 - </Jj+l
J - 26x

<PJ-1 - 2</Jj + <PJ+l
(6x)2

36

p
(

(3.10)

(3.11)

(3.12)

(3.13)

where j is the running grid node index (j=l,2, ... ,N). Equation (3.13) can be written

more compactly as

(3.14)

whf're [A] is a N x N coefficient matrix, pis a N-dimensional column vector of source

tPrrns. and <b is a column vector of N unknown potentials. To find J; we operate on

both sides of (3.14) with [Ar 1 , that is, invert [A]. For the problem at hand, [A] is

tridiagonal and. fortunately, many fast algorithms exist to invert tridiagonal matrices.

Once the c/>.; have been computed, (3.12) is evaluated to determine the electric field at

thf' grid-points.

The field solver is generally called at every time-step; therefore, optimizing the

fiPld solver for each application is important if computational bottlenecks are to be

avoided.

3.2.3 Force Weighting

Force weighting is the process of interpolating the known electrostatic field intensities

at the grid nodes back to the particles, that is, it is the process of "telling" ea.ch particle

what field it is seeing as a result of the field solver computation. But this is simply the

inwrse of the process used in the charge weighting algorithm to transfer information

(charge) from the particles to the grid. In this case the information (field intensity) is

transfered from the grid to the particles. Consequently, the same weighting algorithms

that were discussed in section 4.2.1 may be applied directly to the force weighting

problem. All of the conclusions regarding the suitability of a given weighting shape

function remain unaltered.

In order to a.void (or at least reduce) self forces, it is desirable to use the same

weighting shape function in both charge density and force calculations. So, for ex­

arnplP. the compatible force weighting algorithm to the first-order linear charge weight-

37

ing would be (see (3.1) and (3.2)),

E(.r·) = [Xj+I - 1'i] E [Xi -Xj] E , ~x J + ~x 1+1
(3. 1.5)

A "trick of the trade" may be pointed out here. As pa.rt of the charge weighting

algorithm, the cell position will be computed (i.e. we determine which cell the particle

is in). This information is needed a.gain here. It therefore makes sense to store the

position first in the charge weighting subroutine and simply retrieve it from memory

here rather than recomputing it. The computational savings becomes pronounced

in two and three dimensional codes which require large, computationally expensive

subroutines to determine the cell location of a particle.

3.2.4 Integration of the Equations of Motion

Particles in an electrostatic PIC code move as a result of thermal excitation, Coulomb

in1eractions with other particles, and the presence of electrodes biased with respect to

tlw plasma potential. In the previous sections we discussed how the electrostatic force

011 each particle is computed. In this section we describe how that force changes the

particles position in six-dimensional phase space, that is, how its position and velocity

are updated during each time-step.

The Lorentz force equation in the electrostatic model reduces to

--+ --+

F =qE, (3.16)

wherP F is the electrostatic force on the particle, q is the superparticle charge, and E
is the electrostatic field intensity at the particle position (as determined in the force

weighting algorithm). When combined with Newton's second law and the definition of

vPlocity. (3.16) yields two first order differential equations to be integrated separately

for each particle

(3.17)

38

dx
--v dt - . (3.18)

Tn-o initial conditions are needed to solve these two first-order equations: the position

and velocity at the end of the previous time-step.

Equations ('.3.17) and (3.18) can be solved to any degree of accuracy. That is, one

can 11se a higher order scheme (such as Runge-Kutta [12]) or opt for a simpler first­

order scheme, again trading accuracy for speed. The trend is to use a computationally

efficient first-order scheme by replacing (3.17) and (3.18) by the finite-difference equa-

tions.
....
Vnew - VoJd q _,

f:lt = m Eold '

....
Xnew - XoJd
--6.-t -- = V new ,

or.

Ynew = Vold
q + [-Eo1d] f:lt,
m,

Xnew == Xold + Vnew ~f .,

where ~t is the time-step. This method has vanishing error as t:lt \,i 0.

(3.19)

(3.20)

(3.21)

(3.22)

The selection of an appropriate time-step, t:lt, is problem dependent. For simula-

1 ions ,,vhich involve semi-infinite computational domains where only plasma oscillations

are to be observed, it can be shown [7] that setting w0 !:lt ~ 0.3 (where w0 is the char­

acteristic frequency, for example, the plasma frequency) results in small amplitude

and phase error for some tens of cycles. In plasma devices (i.e. simulations which in­

volve boundaries such as conductors) the situation is quite different. Electrodes in the

computational domain may create field strengths on the order of 1000 [V / cm] or more

which will rapidly accelerate particles. Consequently, the time-step must be chosen

such that particles will not move distances greater than the dimensions of the physical

boundaries. For exarnplt->, in a. Langmuir probe simulation we cannot allow a particle

39

11Par the probe to move from one side of the probe to the other (i.e. through the probe)

without being collected. \Ve must resolve its motion on a fine enough time scale to

assurp that seYeral points in its trajectory will lie inside the probe so that boundary

subroutines will be able to remove the particle and increment the current. The author

has found that this restricts w0 D.t to values at least two orders of magnitude smaller

than is needed to resolve plasma oscillations alone.

3.3 Boundary and Initial Conditions

TllP preYious section described the core PIC modules. These modules are developed

independent of any particular problem. The physics of a specific simulation (e. g. a

Langmuir probe simulation) must be introduced in the form of boundary conditions.

If the physics of these conditions is incorrect, even if the core PIC modules function

flawlPssly, the ultimate results will be worthless. The careful process of preliminary

df'sign may be divided into three categories: general considerations, boundary condi­

tions. and initialization conditions. Actual implementation of these concepts will be

elaborated on further in chapter .5, where the PROBEPIC algorithms are developed.

General considerations at the beginning of the simulation design process include:

• Size of computational domain.

• Number of grid-points.

• Number of particles.

• Position of objects (conductors, insulators, etc.) relative to the boundaries.

The size of the computational domain must be large enough to encompass the

intf'raction ·which is to be observed. For example, in the Langmuir probe simulation

\Ye are interested in simulating the formation of a plasma sheath around the probe;

40

therPfore, the computational domain size must be chosen to be on the order of several

DPh_\'f' lengths to allow the relevant fields to be established (i. e. De bye shielding).

The number of grid-points is determined by the Debye length. Since perturbations

of tlw plasma will result in electron oscillations on the order of a Debye length, the

grid must contain at least two grid-points per Debye length for these oscillations to

hP J'f'sol VPd.

The number of particles in a simulation determines its statistical accuracy. The

infhwnce of the self-force which results from the charge weighting process can be made

to "wash out" as progressively more particles are added. It is a "rule of thumb" that

about ten or more particles should be introduced for each computational grid cell

to give acceptable statistics. So, for example, a 10 x 10 computational grid would

require 1000 or more particles. Also, the author has found that when dealing with

sysfrms which contain disparate particle masses (e. g. electrons and heavy ions), one

should use a disproportionately large number of heavy particles in the simulation

if their contribution to macroscopic results is to be accurately modeled. This is

because the relative immobility of the heavy particles results in infrequent collisions

with conducting surfaces; increasing the number of heavy super-particles increases the

frequency of collisions, and consequently gives less noisy statiststical results.

Attention must be paid to the positioning of objects within the computational

domain in plasma device simulations. Objects should not be placed near boundaries

\\"hich would result in non-physical effects. For example, if current collection on an

electrode is being simulated, the electrode should not be placed near a computational

boundary where particles are being introduced (fluxed across). Rather, it should be

placed near the center of the computational domain, where particles have had a chance

to tlwrmalize, and the effects of the (non-physical) computational boundary have had

time to relax.

41

Boundary conditions determine how the plasma interacts with its surroundings.

Boundary conditions include:

• Particle fluxing across boundaries of the computational domain.

• Surface, or material interactions of the plasma with objects in the computational

domain.

• Electromagnetic field boundary conditions.

If a PIC simulation models a small plasma region that is actually contained by a

much larger plasma, the flux of particles across the computational boundary must be

modeled. This requires the development of a statistical model for both the velocity and

angular distribution of particles entering the region to be simulated. Since the plasma

outside of the computational domain is usually assumed to be neutral, adequate charge

must be fluxed into the computational domain to account for particles leaving through

the boundaries.

In plasma device simulations one is usually interested in modeling how the plasma

behaves as an active circuit element. The plasma interacts with the external circuit

through contact with conducting surfaces within the computational domain. Thus, we

must acrnrately model the physics of this interaction. For example, a particle colli­

sion ,vith a conducting surface might contribute to the current in the external circuit,

or perhaps cause secondary emission. Insulating surfaces might serve as catalytic

surfaces for re-combination. In any event, we must be sure that surface interactions

which occur in the simulation do not violate fundamental physical laws, such as mat­

ter/ energy conservation, if the macroscopic results are to model the physical process

accuratelv.

A final set of boundary conditions to be considered are those used in the solution

of tlw Poisson equation for the electric field. These boundary conditions enforce, for

42

<"xample, the absence of tangential electric fields at the surface of conductors, or define

bias voltages for conducting surfaces.

Initializing a PIC code involves choosing an initial distribution function for each

species. f,(x, v, t = 0), including any initial perturbation, and distributing the

particles throughout the computational domain to start the simulation.

Clearly the design work to correctly model the relevant boundary conditions is

time well spent. In fact. it may be said that the computational results are, figuratively

speaking. the boundary conditions; therefore, if hasty guesswork is involved in estab­

lishing the bouncla.ry conditions one may as well guess the results and not attempt a

computer simulation at all.

43

Chapter 4

PROBEPIC

PROBEPIC is a 2Dj:3V (the electric field has two components while the particles

are free to move in three dimensions) PI C code designed to simulate the behavior of

a Langmuir probe in both quiescent and flowing plasmas. It is a "pure" PIC code

in that it does not introduce any fluid modeling such as is found in a hybrid code.

The theory presented in Chapter 4 will now be applied to an actual simulation. A

fr·w general remarks about the code will be made before the various algorithms are

dissected in detail in the subsequent sections.

The programming philosophy was to develop a concise, intuitively accessible code

with as little redundancy as possible. The C programming language was most com­

patihlt> with these goals because: it allows for longer variable name lengths than FOR­

TRAN. it allows for complicated data structures, and it gives the programmer control

over dynamic memory allocation. PROBEPIC is made up of twenty-three independ­

ent subprograms, each of which perform an individual task (e.g. mover, injector, etc.

). These functions were designed to be independent of any external variables. For

example, the mover can move electrons, ions, or rr+ mesons - by input of pointers

to relt>vant field and dynamical variables, it performs the appropriate modifications to

the pointer values. A lean executable file is not necessarily an indication of computa­

tional f'fficiency; a code can often be made to run faster by storing certain variables

44

that are usPd frequently rather than recomputing them over and over. For example,

the computational time required to generate the LU decomposition of the difference

rnatrix for the electric field solver takes about an hour on a Sun Sparc2000. This

matrix remains unchanged and is used in every subsequent time step. Clearly, storing

this matrix rather than recomputing it thousands of times makes good sense. The

tradPoff is that the matrix occupies about sixty megabytes of RAM throughout the

simulation. This size/speed tradeoff was exploited in many of the functions that make

up PROBEPIC.

PROBEPIC requires two non-standard libraries to compile: LAPACK [22] (linear

algebra routines used by the field solver), and VOGL [23] (graphical display routines).

The latter is not necessary if graphical output is not desired (graphical output is

g<''nerally suppressed except in special circumstances such as debugging or taking

'·snapshots"). PROBEPIC requires extensive computational resources. About 80-

1-101\IB of RAM is required. Approximately two data points can be generated per

twenty-four hour period on a nominal 12'5 mega.flop ma.chine.

In the following sections the core PROBEPIC functions will be described in de­

tail. In each case application of the theory developed in the beginning chapters and

programming details will be described. A complete listing of the program source code

may be found in Appendix B.

4.1 Computational Domain Layout

The computational domain in PROBEPIC consists of a cylindrical region which con­

ta ins a cylindrical Langmuir probe, as shown in Figure 4.1. The probe itself consists

of a cylindrical conducting wire partially covered by an alumina. insulator. During

a simulation the remainder of the computational domain is filled with approximately

4,5

. / Computational Boundary~

Insulator~

0 -------------- 4~-~--;-Bl!»OO,ffi~m@_
Conductor_/

Front View Side View

Figure 4.1: Schematic of PROBEPIC computational domain layout.

two-hundred thousand particles.

The dimensions of the computational boundary were chosen to provide ample room

for a plasma sheath to form around the probe. Since these dimensions are not known

a priori, they were determined as part of the initial design work. PROBEPIC was

nm several times with progressively larger computational domain sizes until the result

(i .c. the current to the probe) stabilized.

A "snap-shot" of PROBEPIC in operation is shown in Figure 4.2. The red super­

partides represent electrons, the green, ions.

4.2 PROBEPIC Code Details

All PROBEPIC sub-programs along with their function are listed in Table 4.1. In the

following sub-sections both the theory and C implementation of the core PROBEPIC

sub-programs will be presented side-by-side. This will enable future users of the code

to understand what techniques were used in its development without having to dig

through the source code. Where code is not explicitly shown, the reader may reference

46

Figure 4.2: Snap-shot of PROBEPIC simulation.

4,

Figure -!.:2: Snap-shot of PROBEPIC' simulation.

Table 4.1: PROBEPIC sub-program description.

Sub-program Function
bounclary.c Handles particle/boundary interactions for thermal

particles.
hounclar~· _twam.c Handles particle/boundary interactions for beam

particles.
charge _weight.c The charge weighter.
ficlcL•mlver.c The electric field solver.
force _weight.c The force weighter.
graphics.c Graphical diagnostic output.
grid.c Generates the computational grid.
initialize.c Distributes the initial loading of thermal superparticles

throughout the computational domain.
initializeJwam.c Distributes the initial loading of beam superparticles

throughout the computational domain.
inject_beam.c Fluxes beam particles across boundaries into the

computationa.l domain.
injecLpart.c Fluxes thermal particles across boundaries into the

computational domain.
locate.c Determines what grid-cell a particle is in.
rnake_LU.c Performs LU decomposition of difference matrix for

subsequent use in field solver.
make _velocity _table .c Creates arrays of velocities with for fluxing into

the computational domain.
maxwell.c Creates arrays of velocities with a Maxwellian

distribution.
1nover.c The mover.
outpuLdata.c Generates PROBEPIC output file.
paranwter.c Determines some necessary parameters used in

other sub-programs from initial plasma conditions.
probepic.c PROBEPIC main program.
probepic.h Header file for PROBEPIC.
randon1-.number. c Provides uniform random numbers for all

PROBEPIC sub-programs.
n'seLgrid.c Resets charge density, electric field, etc. at grid-

points to zero at beginning of each time-step.

48

Appendix A to see how a particular expression was implemented in the source code

(the subsections are labeled with the appropriate sub-programs for each task). These

s11hsPdions will also serve a pedagogical role; the PIC methodology presented in

ChaptPr :3 will be expanded upon, and in some instances, novel approaches to PIC

problems which were developed for PROBEPIC will be debuted.

4.2.1 General Remarks (probepic .h)

A brief word about PROBEPIC's header file is in order because it includes some of

the codes overall design philosophy. Structures were used in the program for clarity.

For example. particles(electrons, ions, etc.) are of the type PARTICLEDEF - which

has the associated properties of position, velocity, charge, etc .. The actual structure

dPfinition looks like:

typedef struct {

FLOAT x,y,z,r,vx,vy,vz,Ex,Ey,q,m;

unsigned long cellx,celly;

}PARTICLEDEF;

An array of say, fifty, electrons would be created by the declaration

PARTICLEDEF electron[50];

so that subsequent modification of, say, the x-component of velocity of the ith electron

has the form

electron[i] .vx= ... ;

Large arrays were declared as pointers to allow their dimension to be set later

using malloc(). This has the advantage of allowing large amounts of memory to be

d_\'na n1ically allocated or de-allocated during execution.

49

The physics used in the simulation may be characterized as classical and non­

relativistic The particles in the simulation, which are fermions, have high enough

Pnffgies to safely assume that Fermi-Dirac statistics reduce to Maxwell-Boltzmann

statistics. The maximum particle velocities are on the order of 0.01 c, so that relativ­

istic pffects may be ignored, although they can be readily included when required.

The PIC-specific features of PROBEPIC that are not typically found in other PIC

simulations are: the method used in fluxing particles across boundaries, super-particle

\\'eighting that is dependent on the "birth-place" of the particle, and the use of an X-Y

mover in cylindrical space. These unique approaches will be elaborated on in sections

4. 2. 7. and 4. 2. 11.

4.2.2 Rando111 Nu111ber Generation (random_number. c)

The generation of pseudo-random numbers is an important element of any PIC or

PIC'/Monte-Carlo simulation. The "qua.lity" of the random numbers plays a major

role in the statistical accuracy of the simulation. The quality of a random number

generator is determined by its ability to generate (seemingly) uncorrelated numbers

\\'ith a uniform deviate, with a period that won't be approached in the duration of

the simulation. The techniques used to generate random numbers are apparently

somewhat of a black art. The fastest generators seem to exploit memory over-flow and

other "scary" architecture based tricks. We say scary because the author has found

that these fast random number generators may function properly on thirty-two bit

s~'stems, but produce unsatisfactory output on sixty-four bit machines. Portability was

chosen over speed for PROBEPIC. A random number generator was down-loaded from

the network and tested on multiple platforms to determine its quality and portability.

The only documentation provided in the source code is:

I* portable lagged Fibonacci series uniform random number *I

50

I* generator with "lags" -273 und -607: *I

I* W.P. Petersen, IPS, ETH Zuerich, 19 Mar. 92 *I

This algorithm, called random_number. c in this application, is particularly nice be­

cansP it allows one to send it an array of any size, which upon return will be filled with

random numbers of a uniform deviate. This falls in line with the overall PROBEPIC

philosophy. where we store many values for later use rather than cakulating them

Pver_\' time they are needed. \Vhen all of the random numbers in the random number

array (random_number [] in PROBEPIC) are exhausted, the array is sent back to

random_number. c with a new seed and reinitialized.

4.2.3 Initial Conditions (parameter. c)

The initial plasma parameters (such as temperature and number density) are set in

parameter. c. From these user defined conditions, quantities such a plasma frequency

and Debye length are calculated for use in later subroutines. parameter. c is called

only once during the execution of PROBEPIC.

4.2.4 Grid Generation (grid. c)

The computational grid is a structure which associates the following properties to

Pach grid-point: position, charge density, radial and axial electric field intensity, and

electrostatic potential. The actual structure definition from probepic. his:

typedef struct {

double x,y,q_dens,Ey,Ex,phi;

}GRIDDEF;

PROBEPIC uses a non-uniform grid. The grid density is tightened in the vicinity

of tlw probe to resolve the field within the sheath region. The grid dimensions (i. e. the

51

u·ll width and cell height) are set in parameter. c. grid. c uses these dimensions to

sf'1 the x and y coordinates of the grid-points in the structure GRIDDEF grid [ngp],

wlwre ngp is the total number of grid-points. The other properties (field quantities)

arr initialized to zero. grid. c is called only once during the execution of PROBEPIC.

4.2.5 Maxwellian Velocity Generator (maxwellian. c)

Particles in a quiescent plasma must have a Maxwellian distribution of speeds, as

the Boltzmann H-theorem proves that the only possible equilibrium distribution is the

l\laxwellian distribution. Consequently, an algorithm is needed to generate random

speeds. which after many calls, will reproduce a Maxwellian distribution. There is

a genera.I nwthod for generating random numbers with any desired distribution; the

steps shown below will illustrate that general method and give a result for the problem

at hand.

For a Maxwellian distribution the probability of finding a particle, say an electron,

with peculiar speed between \IV and W + dW is

(2)1/2 ()3/2 f(Hl) = ; N ;; l¥2 e-(mW2 /2kT). (4.1)

The norma.lized version of (4.1) is plotted as a function of W in Figure 4.3.

Now. we have available a random number generator which produces a uniform devi­

ate (i.e. generates a uniform set of random numbers from 0.0 to 1.0), random__number. c.

The question is, "how can we use random__number. c to generate a set of random speeds

with a Maxwellian distribution?" The answer can be stated in mathematical probab­

ility transformation theory [12], or we can state in words a more intuitive, geometric

JHf'scription, referring to Figure 4.3:

Theorem 1 The integral F(W) is the area under the probability curve f(W) to the

,52

0 500 1000 1500 2000 2500

PECULIAR SPEED ([M/S) X 1000)

Figure 4.:3: Maxwellian distribution of peculiar speeds W for electrons at T=2.0[eV],
f(W). and the normalized integral of f(W), F(W).

Ifft of lV. To obtain random lvlaxwellian speed W, choose a uniform random number

y=F(W). then find the value W that has that .fraction y of probability area to its le.ft,

rmd rdurn the t•alue lV.

For the present problem, integrating (4.1) gives:

F(ll') j .f(H•) dlV

N (3-) 1/2 (_!2:__)3/2
IT kT (4.2)

{(rr)1/2(1..~r) 3/2 [(m)l/2 l kTW'} 2 --;;; Erf 2KT W - m e(mW2/2kT)

Thus. to get W's with a Maxwellian distribution we need to invert (4.2) for W, which

is dearly a daunting task analytically. Instead, we can pick a uniform random number

F(W). and then use a numerical scheme such as the Newton-Raphson method to back

011t W . .Judging from the complexity of (4.2) this numerical approach would be com­

putationa.lly expensive. To get around this PROBEPIC uses a "look-up" table. The

sub-program rnaxwellian. c initializes arrays (one for each species) of one hundred

thousand elements into which speeds generated using (4.2) are put. Other PROBEPIC

sub-programs simply look-up a speed at a random place in the table. This gives us

tlw desired result of generating speeds with a Maxwellian distribution while keeping

the computational time low.

4.2.6 Initial Particle loading (initialize. c)

The sub-program initialize.c loads a uniform distribution of computational

particles to begin the simulation. The velocities of each species are set by randomly

picking values from the velocity tables created in rnaxwellian. c. To make the initial

number density uniform we have to account for volume's radial dependence, i. e. we

havf' to distribute more particles toward the outside of the computational domain.

The probability of finding a particle between r and r + dr is directly proportional

the volume. that is.

p(r) dr = V (r) = 2 1r r I dr . (4.3)

{Tsing logic similar to that presented in the previous section (taking / = 1 and nor­

malizing with the outer radius of the computational domain r = R)

P(r) = f/(r) dr = ~ .
fo p(r) dr R2

(4.4)

Thus. to determine the radial location of a particle in initialize. c we generate a

uniform random number a= P(r) and use the inverted form of (4.4):

r = R (a)112 . (4.5)

The remainder of the superparticle parameters (mass, charge etc.) are also set for

each particle. initialize.c is called only once during the execution of PROBEPIC.

4.2. 7 Fluxing Particles (inj ect_part. c, inj ect_bearn. c)

Particles diffuse into the computational domain from the outside plasma. a.s a. res­

ult of thermal or directed motion. In the quiescent plasma simulation the ions and

electrons were treated a.s being in thermal equilibrium, while in the beam simulation

the electrons \'Vere treated a.s therma.lized and the ions were treated a.s having only

directed energy. Determining the proper method for fluxing these particles into the

computational domain proved to be the most difficult problem in the development of

PROBEPIC. We need to determine: 1) How many particles enter the computational

domain in a. given time-step, and 2) The angular and speed distribution of these

particies.

Let us first consider the problem of fluxing therma.lized particles. The answer to the

first question is straightforward. The flux of particles with a Maxwellian distribution

function across a unit surface per unit time is

n C r =-
4 '

(4.6)

where, l' is the flux, n is the number density, and c is the mean speed. For a Maxwellian

distribution,

c = ✓81rk1: ' (4.7)

where k is the Boltzmann constant, T is the temperature, and m is the mass of

the particle. Equation (4.6) gives us the total number of real particles crossing the

surface of the computational domain. In PROBEPIC we divide those particles into

considerably fewer super-particles - this ultimately determines the number of super­

particles that will be in the computational domain once the simulation has reached

Next we consider the problem of determining the direction and speed in which a.

particle will cross the boundary. Consider an elemental area. dA with unit normal 71.

55

Particles cross this area with a relative velocity between v and v + dv, polar angle

rPlative to the normal bPtween 0 and 0+d0, and azimuthal angle between rp and rf>+drf>.

In tinw dt all particles crossing dA with velocity v must have been within the volume

of thP prism shown in Figure 4.4. The volume of the prism is then

l/ = v · ft dA dt = v cos 0 dA dt . (4.8)

v

Figure 4.4: Illustrative flux volume.

The number of particles with the appropriate velocities and directions per unit

volume is,

(4.9)

wlwre, cl3i• is the incremental volume in velocity space. If the distribution function is

Pxpressed in spherical coordinates,

d3 v = v 2 sin 0 d0drpdv , (4.10)

and.

:.! nve,t, = f v sin 0 d0drpdv . (4.11)

56

If f is Maxwellian, then

_ . (m) 3/2 -(';kv;) f -11 -k- e ,
· 2n T · (4.12)

wlwre 1• is the magnitude of the velocity v. Thus, the number of particles with the

appropriate velocity crossing dA in time dt is

n1,01> V

(
m) 3/2 _ (mv 2)

n -- v3 e 2kT sin0
2nkT

cos 0 d0 d¢ dv dA dt .
(4.13)

This is the distribution of particles which must be put into the computational domain

per unit area per unit time. The flux is then

d3r (rn) 312 3 -(1;/;) · 0 0 d0 d,1.. d
· v01> = n 2nkT v e sm cos 'f' v .

As a check we note that integrating 4.14 gives

r j d3 fv01>

rx, r /2rr n
Jo_ lo lo
11 C

4

(m) 3/2 _ (mv 2)
-- v3 e 2kT sin 0 cos 0 d0 d¢ dv
2nkT

(4.14)

(4.15)

\Ve can now write down the probability of a particle entering the computational

domain with speed v, polar angle 0, and azimuthal angle ¢ as the product of the

individual probabilities given in 4.14,

or,

Pv = 4n (_!!!__) 3/2 v3 e -(;'kv;)
c 2nkT

Po = sin 0 cos 0
2
1

P1i=-.
2n

57

(4.16)

(4.17)

(4.18)

(4.19)

\VP can now apply the formalism developed in section 4.2 .. 5 to generate random

injection speeds and angles for a particle. The sub-program make_velocity_table.c

initializes an array of one-hundred thousand speeds for each species, using 4.17. This

r<'duces the overall PROBEPIC computational time significantly, as inj ect_part. c

can simply "look-up'' values as it needs them rather than spending a great deal of

time numerically inverting (4.17). All that remains is to determine where a particle

is injected. The computational domain may be divided into three regions all having

different characteristic areas: the back face (through which the probe and insulator

pass). the sides. and the front face. The number of particles which flow across each

of these surfaces in a given time-step is, of course, dependent on the surface area;

consequently, in a given time-step, inj ect_part. c sets the super-particle weighting

of Pach particle depending on where it is "born".

The preceding discussion assumes we are simulating a quiescent plasma. In the

case of a flowing pla~ma. we still assume that the electrons are in a Maxwellian clis­

tri lrntion. however, the ions are assumed to have a dominant directed velocity. Ions

arf' injected through the front face only, with a constant velocity, and a random po­

lar angle between ±5°. The rationale for the random injection angle is that it takes

the beam divergence, which is found in an ion thruster plume, into account. An

ion thruster extracts and accelerates ions through hundreds of beamlet forming ori­

fict's. The bt'am emerging from these orifices expands downstream of the thruster;

the random injection angle is a first order approximation to include this effect. To

assure that sufficient ions are available to strike the probe, super-ions which are born

with radial positions less than one-fifth of the total computational domain radius are

fnrther divided in several more super-particles. This increases the number of super­

particles near the center of the computational domain, as desired. The sub-program

inj ect_part_beam. c handles injection of the ion beam .

. 58

4.2.8 Charge Weighting (q_weight. c)

C'_vlindrica.l coordinates are used in PROBEPIC because of the cylindrical symmetry

of the ,omputational domain: therefore, we must develop charge weighting shape func­

tions appropriate for cylindrical coordinates. Ruyten [13] has shown that traditional

"area .. weighting schemes do not conserve charge density in the radial direction. He

proposed a new radial charge density conserving algorithm (henceforth referred to as

Ruyten weighting), while maintaining linear weighting in the axial direction. This

method was implemented in PROBEPIG. Ruyten's results are given below without

proof: the interested reader may consult his paper for greater detail.

If a particle is at (z0 , r0), in the cell bounded by grid-points at (zi, rj), (zi, Tj+i),

(.:-;+ 1.r.i+il, (.:-;+ 1,rj), then the charge assigned to each of these grid-points is given

hv:

(4.20)

(4.21)

(4.22)

(4.23)

The sub-program q_weight. c performs the charge weighting in PROBEPIC. It

iterates through each particle, performing Ruyten weighting to yield the total charge

density on the grid. Before applying equations (4.20) - (4.23), q_weight. c must de­

termine what grid cell the particle is in. For this, it calls an external sub-program

locate. c. Now, this cell location will also be needed in force_weight. c. For this

reason, we opt to eliminate the redundant step, and append the cell information (i.e.

storP) to the particle for future use. For example, referring to the PARTICLEDEF

59

structure definition at the beginning of the chapter, cell information would be associ­

ated with the i th electron by the statements,

electron[i] .cellx =

electron[i] .celly =

and subsequently recalled in force_weight. c.

4.2.9 Field Solver (e_iield. c)

... '

... '

PROBEPIC uses a novel field solver. When dealing with curvilinear coordinates

one almost always has to go to an exotic field solver - one that maps the coordinates

into a rectangular space to solve Poisson's equation, and then transforms the solution

hack to the curvilinear space (e.g. the ADI method). PROBEPIC makes direct use of

Gauss' law to eliminate the need for any transformation, yielding a simple, intuitive

algorithm. The following discussion follows Peng [14] with minor changes.

Gauss' law states that the surface integral of electric flux is equal to the total

charge enclosed by the surface. Ma.thematically,

(4.24)

or, if the surface is chosen to enclose one grid-point at (zi,r1),

11 ---+ ---+
1 111 E · dA = - - pd\/ = Q 1 k ,

dA;,1 f 0 d\/;, 1 '

(4.25)

where, Qj.k is the charge at (zi,rj) (t 0 has been absorbed into the definition of Qj,k

for convenience), which results from the charge weighting algorithm.

All that remains is to discretize (4.25) subject to appropriate boundary conditions,

and provide a method to solve the resulting system of equations. The electric field

boundary conditions used on the various surfaces in PROBEPIC are illustrated in

Figure 4.5.

60

<p=<pplasma

(j)=(j)probe

Figure 4.5: Schematic of field boundary conditions in PROBEPIC.

Discretization of Poisson's Equation

B<-'cause of the azimuthal symmetry in PROBEPIC we need only calculate fields

in the P and 5 directions on the half plane shown in Figure 4.5. The computational

nwsh may be divided into two broad categories: interior mesh points and surface

nwsh points. Interior mesh points lie within the plasma, probe conductor, and probe

insulator. Surface mesh points lie at the edges of the computational domain, and on

tlw surfaces of the probe conductor and insulator. The surface boundary points can be

further classified as surfaces of constant potential, or surfaces with special symmetry

boundary conditions, such as vanishing tangential fields. Each of the grid regions will

be described separately.

Case 1 : Interior Mesh-Points

Figure 4.6 illustrates a typical interior grid-point. The Gaussian surface is an

annular ring, the cross-section of which is illustrated by dashed lines in the figure. We

61

j+l

' Eri. j+l/2
r---- - - - - I

j

I
:Ezi-112, i E'i+l/2,j'

I I
I I
I ' I - - - - - - - -

Eri,j-1/2

j-1

i-1 i+l

Figure 4.6: Two dimensional interior computational mesh-point and Gauss' law
,·olume.

can write down Gauss' law for this Gaussian surface:

Qi,.i Et,i-1/2. az,i-l/2clAz,i-1/2 + Et,i+l/2. az,i+1;2clAz,i+1/2

+ E,·,.i-1/2. a,·,j-1/2clAr,j-1/2 + Er,j+l/2. ar,j+1;2clAr,j+1/2 •

Th<" surface area elements are given by

where

If WP define

dAz,i-1/2 = dAz,i+l/2 = 1r(rJ+1/2 - rJ-1;2)

rJ+1 + rj
1'j+l/2 = 2

rj-1 + rj
1'j-1/2 = 2

Zi-1/2 =

Zi+l + Zi

2
Zi-1 + Zj

2

62

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

~7'j+l/2 = 7'j+l/2 - 7'j-l/2

~Zi-1/2 = Zi - Zi-1 ,

(4.3,5)

(4.36)

(4.37)

(4.38)

(4.39)

and use first order differencing to express the electric fields in terms of the potentia.ls,

E . . - - c/Ji,j+I - c/Ji,j
r,i,J+l/2 - A

L..J.7'j+l/2
(4.40)

E . . = _ <Pi,i - <Pi,j-1
r,l,J-1/2 A

L..J.7'j-1/2
(4.41)

E . . - - <Pi+I,j - c/Ji,j
z,1+1/2,J - A

L..J.Zi+l/2
(4.42)

E . . __ <Pi,j - <Pi-1,j
z,i-1/2,J - A ,

L..J.Zi-1/2
(4.43)

tlwn Gauss' law, or the difference equation for interior mesh points, ma.y be written

in the simple form:

- Q;,:i ai,j+1 ¢i,j+1 + ai,j-1 <Pi,j-1 + a;+1,j¢i+1,j

,vhere

+ a;-1,j<Pi-1,j + a;,j¢i,j ,

~Zi 7'j+l/2
ai,j+l = 27r A

L..J.7'j+l/2

~Zi 7'j-1/2
ai,j-1 = 21r---~

~rj-1/2

(~r2)j

ai+l,j = 7r A
L..J.Zi+l/2

(~r2)j
ai-1,j = 7r A •

L..J.Zi-1/2

ai,.i = -(ai,j+I + ai,.i-1 + a;+1,j + ai-1,j) .

63

(4.44)

(4.4,5)

(4.46)

(4.47)

(4.48)

(4.49)

Another class of interior mesh-points a.re those that lie within the probe conductor

and insulator. Points lying within the conductor can be treated simply with the

ckfi11itio11:

<Pi,j = <Pprobe • (4.50)

Points inside the insulator may be treated with the same prescription as in (4.44).

Of course, peda.ntica.lly, we should use the proper insulator dielectric constant in the

definition of Qi.,;; however, we a.re not interested in the fields within the insulator, so

we need not treat these points any differently.

Case 2 : Bmmclary Mesh-Points

As shown in Figure 4.5 the PROBEPIC computational domain terminates on

boundaries of either constant potential or vanishing tangential or normal field. The

difference equations for each case will be treated separately.

Surfaces of constant potential include the the top and front of the computational

domain. and the conductor section of the probe. Mesh-points on these surfaces a.re

simply assigned the constant potential value; for example, points on the the probe

conductor a.re given the potential </> = </>probe, and those on the edge of the computa­

tional domain</>= </>plasma, etc .. Thus no formal difference equations are required for

tlwse points.

Special restrictions are put on the electric field a.long the (r = 0) axis in front of

the probe and along the (z = Zmax) downstream boundary. At (r = 0) we require from

symmetry considerations that the electric field has no radial component. Referring to

Figure 4.7, Gauss' law for points on the (r = 0) axis gives:

(4.51)

64

where

j=l------------------------

E,, i-1/2, o

j l Er, i, 1/2

1 I

I

I

I

: E,, i+ 112, o j=0---4.,_ _______ ...,...,_ ___________ ___

i+l i-1

Figure 4.7: Gauss' law volume for (r = 0) axis in front of the probe.

(A ,2) _ 2 2 _ 2
D. 1 o - r1;2 - ro - r1;2 · (4.52)

Taking the E,.,;.1; 2 term to be zero, and a.gain using the first order expressions for the

f'lf'ctric field, the difference equation a.long the (r = 0) a.xis becomes:

where.

-Q· =a <D· + a· ,.1... + a· 0,1...· 10 + a·o,1...·o 1.0 1,l, 1,l 1+l,0'f-'1+l,0 t-1, 'Pt- , t, 'Pt, ,

(fir2)o
ai-1,0 = 1T A

Ll.Zi-1/2

a;,o = -(a;,1 + a;+1,o + a;-1,0) .

(4.53)

(4.54)

(4.55)

(4.,56)

(4.57)

At the downstream (z = ZrnaJ·) boundary we require that the electric field have no

axial component; this implies that the field has returned to what one expects from

au i11fiuite cylindrical cumluctor, or that the effect of the probe tip has become small,

since it is far away. The Gaussian surface is the same as that used in deriving the

(r = 0) expressions. except rotated ninety degrees. We can therefore immediately

65

write down an analogous result for the difference equations at the downstream surface

of the computational domain (for ima:r = n):

- CJn.j = an,j+l<Pn,j+l + an,j-t<Pn,j-1 + an-1,j<Pn-1 + an,j<Pn,j,

where

, ~Zn rj+l/2
On,j+l = 27!' A

Llrj+l/2

~Zn rj-1/2
On,j-1 = 27!' A

Llrj-1/2

(~r2)
an-1,j = 7T' ~ J

Zn+l/2

an,j = -(an,j+l + an,j-1 + an-1,j) •

Solution of the System of Equations

(4.,58)

(4 .. 59)

(4.60)

(4.61)

(4.62)

In the previous section we derived the difference equations for all mesh-points in the

PROBEPIC' computational domain. These difference equations define m (where m

is the total number of mesh-points) simultaneous equations for the potential at ea.ch

mesh-point. These equations may be written as a. matrix equation

[A]¢= -Q' (4.63)

wlwre [A] is the coefficient matrix of ai,jS, ¢ is the vector of electrostatic potentials at

each grid-point, and Q is the source vector of weighted grid-point charges, Qi,j•

vVhen the coefficient matrix [A] is explicitly constructed using the prescriptions

for the ai,JS given in the previous section, a square band matrix of order m results. The

hand matrix form is schematically illustrated in Figure 4.8. A band matrix consists

of several diagonals surrounded by "null", or zero elements. As a result it is wasteful

of resources (and in fact is often impossible) to store the entire matrix, which is

composed almost entirely of zeros. Also, solving the system (4.63) by traditional

66

Figme 4.8: Sketch of the band matrix form; non-zero elements are indicated by black
diagonal lines.

met hods such as Gaussian elimination is out of the question for large band matrices

(<>. g. the difference matrix in PROBEPIC is approximately 14000 x 14000).

Therefore, we are led to algorithms specialized for the solution of band matrices.

l\Iany such algorithms are available, ranging from simple exact (i.e. returning analyt­

ica I results) to exotic. inexact methods. While all methods apparently give satisfactory

111mierical results. the inexact methods are generally much faster. Unfortunately, the

implPmentation of the more exotic techniques (e.g. the ICCG method) requires one

1 o lwcome knowledgeable of the underlying mathematical and computational "tricks"

that make the method work - the time investment may become substantial. In this

first version of PROBEPIC, we opt for a simpler, more robust (albeit slower) algorthm

lwrause it is easier to implement. and is more likely to give the expected results. Fu­

t.urP versions of PROBEPIC may implement faster techniques, which can be tested

for accurac_v against the present results.

PROBEPIC uses standard subroutines from the LAPACK [22] linear algebra lib­

rary. which applies the LU decomposition method to the solution of band matrices. In

67

this method the difference matrix [A] is decomposed into the product of two matrices,

[A] = [L] [U] , (4.64)

wllf'rc [L] is a lower triangular matrix (a matrix which has elements only on the

diagonal and below). and [U] is an upper triangular matrix (a matrix which has

PiemPnts only on the diagonal and above). Using this definition (4.63) may be written

[A]¢= ([Ll[U]) ¢ = [L] ([U]¢) = -Q (4.6,5)

Tlrns. the solution of (4.63) becomes a two step process. Setting a = [U]¢, we first

sol Vf'

[L]a= -Q, (4.66)

for the vector a and use this result to solve

[U]¢= -a, (4.67)

_vielding the desired vector¢ of electrostatic potentials at the grid-points. This method

is quite efficient for two reasons. First, very fast algorithms for the solution of (4.66)

and (4.67) exist. Second, since the difference matrix depends only on the geometry

of the computational domain (which does not change in the course of a simulation),

[A] does not change; consequently, the LU decomposition only needs to be performed

once. provided we save the result of the original decomposition. This decomposition

is 1wrformed once at the beginning of PROBEPIC's execution by the sub-program

make....LU. c, which consists of a complicated set of loops to form the bands in a form

usable by the LAPACK routine.

The formalism illustrated in this section was successfully implemented in PROBEPIC.

Comparison of fields generated by PROBEPIC and "rough'' analytical results are in

complete agreement. \Ve say "rough" analytical results because, of course, the analyt­

ical solution of the Poisson equation with mixed (Neumann and Dirichlet) boundary

68

conditions. as are found in PROBEPIC, is impossible. However, we can easily derive

an analytica.l expression for an infinite cylindrica.l conductor in charge-free space (i.

P. WP are now solving the Laplace equation). Far away from the probe tip, where the

PlPctric field is almost completely radial. PROBEPIC gives potential distributions in

rnmplPte agreement with this analytical result. A contour plot of electrostatic poten­

tials gPnerated by PROBEPIC is shown in Figure 4.9. The top of the figure is the

result for charge-free space, while the bottom is the steady state result for a plasma

(n = 1.0 x 109 [cm-3]) filled computational domain. In both cases the probe was

biased -2 [\/] relative to the plasma potential. The bottom plot clearly shows that

PROBEPIC simulates the plasma, or Debye shielding - the bulk of the plasma is

shiPlded from the probe potentia.l by a thin plasma sheath.

4.2.10 Force Weighting (f _weight. c)

As mentioned in Chapter 3, it is advisable to use the same weighting scheme for

both weighting the charge to the grid and weighting the field back to the particles.

Therefore, in PROBEPIC, Ruyten weighting is inverted to give the field at the particle

position. In analogy to equations (4.20) - (4.23) the x and y components of the electric

field for the i th particle in terms of adjacent node field intensities are given by:

E· .:r. 1,

(4.68)

69

0
0

0 0
~

0 0 0 0 0 0 0 0
I.{) '<j" (") ('J ,- 0 ,- ('J (")
0 0 0 0 0 0 0 0 0
0 ~ 0 0 0 ~ ~ ~ ~
ci 0 0 0 0 0 9 9 0

'

Figure 4.9: Contour plot of regions of constant electrostatic potential for t\\'o different
conditions. The top result is for charge-free space. The bottom result is for a plasma
filled computational domain. In both cases the probe is biased at -2.0[V] relative to
the plasma potential.

i'O

0
0

0 0
~

0 0 0 0 0 0 0 0
I.{) '<j" (") ('J ,- 0 ,- ('J (")
0 0 0 0 0 0 0 0 0
0 ~ 0 0 0 ~ ~ ~ ~
ci 0 0 0 0 0 9 9 0

'

Figure 4.9: Contour plot of regions of constant electrostatic potential for t\\'o different
conditions. The top result is for charge-free space. The bottom result is for a plasma
filled computational domain. In both cases the probe is biased at -2.0[V] relative to
the plasma potential.

i'O

(4.69)

4.2.11 Moving Particles (mover. c)

The mover updates the position and velocity of each super-particle given its previous

state and the electric field intensity at the particle position. The first order technique

described in chapter 3 is implemented in PROBEPIC. In review,

- -Vuew = Vold
q -+ [-E0 ld] tit (4. 70)
m

Xnew = Xold + V uew tit . (4.71)

The PROBEPIC computational domain has cylindrical symmetry; therefore it

seems most logical to write the equations of motion in terms of set cylindrical basis

vectors. Gopinath [24], however, shows that this poses a problem as the particle passes

clmw to the origin. For example, if the incremental change in the polar angle 0 is given

by ~0 = (1 106.t)/r. then 6.0 becomes very large when a particle passes near the origin,

that is, r -+ 0. The solution is to move the particles in cartesian coordinates and then

transform the new particle position back into cylindrical coordinates (the field solver,

charge weighting, etc. are carried out in cylindrical coorinates). This technique was

irnplernented in PROBEPIC to avoid the singularity at r = 0.

The only as yet undefined quantity in (4. 70) and (4.71) is tit. It is through tit that

we can attempt to rectify the problem associated the disparate masses of the electrons

and heavy particles, through sub-cycling. In essence, sub-cycling implies the use of

multiple time-scales.

71

In PROBEPIC we define separately an electron time-step (dte) and an ion time­

step (dti). The electron time-step is much smaller than the ion time-step, since the

mean velocity of electrons is much greater than ion mean velocity. Now, if different

tinw-scales are used we must be sure to structure the program so that the particles

arf' not moving out of phase relative to one another through (real) time. Thus, the

Plectrons must be moved an integral number of times (equal the ratio of the ion

and electron time steps) before the ions are moved once. Consider the following

illustrative example. In the case of the ion beam the beam velocity is approximately

equal to 4.0 x 104 [~] while the mean thermal velocity of the electrons is on the order

of -l. 0 x 1 O!T:1]. Therefore, it makes sense to use an ion time-step that is ten times

grPater than the electron time-step. To compensate for this time-step difference we

must move the electrons ten times for each time we move the ions.

Both the ions and electrons use the same sub-program (mover. c) as a mover,

whose prototype is;

void rnover(PARTICLEDEF particle[numpart],long int num_part,FLOAT tirnestep);

\\'P simply pass the appropriate dt to the variable timestep.

As a result of sub-cycling, we do not waste computational time moving the ions at

P\'f'l)" time-step. \,Vhen the number of ion super-particles is large, the computational

savings may be substantial.

4.2.12 Checking Boundaries (boundary. c)

The sub-program boundary. c handles interactions of thermalized particles with

mm putational and physical boundaries. Beam particles are handled by boundary _beam. c.

In either routine we must determine what happens to a particle when it encounters the

011tf'r edges of the computational domain, the probe conductor, or the probe insulator.

Ill boundary. c any particle that exits through the periphery of the computational

72

domain is removed from the simulation. If a particle strikes the conducting surface

of the probe, it is removed from the simulation and the probe current variable IS

incr<>mented by the particle's charge. If a particle strikes the probe insulator it IS

reflected specularly, i. e. it undergoes a perfectly elastic collision and remains in the

simulation.

boundary _beam. c is identical to boundary. c except for the way it treats particle

interactions with the outer edge of the computational domain. Recall that we can

divide the faces of the computational domain into three classes: the front(upstream)

facP, the back(downstream) face, and the side faces. Since beam particles have small

radial components of velocity, they are injected only through the front face and then

reflected off of the side faces back into the computational domain. This gives the

effect of fluxing particles through the side faces without having to do so explicitly.

The particle interactions with the front and back faces and the probe are treated the

same as in boundary. c.

One might ask why not reflect all particles from the edges back into the computa­

tional domain, thus obviating the need for particle injection alltogether. In theory this

would be great, but in practice anomalous effects such as "numerical heating" might

occur. It is best to continually introduce fresh particles.

As mentioned above, the particle interaction with the probe insulator was treated

simply as a reflection; clearly this does not embody full physical reality, where the

particles might stick to the insulator, or undergo re-combination to neutralize an

ion. These interactions were not integrated into PROBEPIC at this time because

we were not as interested in the global effect of the the presence of the insulator as

we are interested in modeling the particle kinetics, and the plasma sheath around the

probe. In the present version of PROBEPIC the insulator serves as a buffer zone

lwh,·epn the conducting section of the probe and the back face of the computational

73

domain boundary, which minimizes the effect of non-thermalized particles from the

boundary striking the probe. This allows us to better match the assumptions made

in the Langmuir-1\fott-Smith probe model, and consequently produce data in closer

agrPement with that model.

4.2.13 Output (output_data. c, graphics. c)

PROBEPIC is capable of producing both graphical and text output. The graphical

output is generally only useful in the debugging process, while the text output provides

the simulation results.

PROBEPIC uses standard VOGL [23] libraries in its graphics output sub-program

graphics. c. The user may view either a front or side view of the computational

domain (i.e. configuration space) in real-time (as opposed to storing particle traject­

ories and viewing them at a later time), that is, we can observe the trajectories of the

particles as they are injected, reflected from the insulator, absorbed by the conductor,

etc. . Obviously this is useful in determining if the code is qualitatively behaving as

\\'e expect, and producing snap-shots like the one shown in Figure 4.2.

Fltimately we a.re interested in quantitative results. PROBEPIC uses the sub­

program outpuLdata. c to write an output file a.t specified times which contains the

following information: total number of time-steps executed, probe potential, number

of super-electrons in the computationa.l domain, number of super-ions in the compu­

tational domain, average number density of electrons, average number density of ions,

average total current to the probe, average electron current to the probe, and average

ion current to the probe. A sample of raw data from a PROBEPIC simulation is given

in Appendix B.

74

Chapter 5

Simulation Results

Three computational experiments were conducted to evaluate the usefulness of

PROBEPIC; two were initially planned, while a third was necessitated by some pe­

rnliar data that resulted from the first experiment. The first computation simulated a

Langmuir probe in a rarefied, quiescent plasma. The second was designed to quantify

t lw effect of varying the probe aspect ratio. The final experiment simulated the beha­

vior of a Langmuir probe in a flowing plasma. The final simulation was designed to

test the validity of a data reduction procedure developed by Keefer and Semak [1.5]

for ion thruster plumes.

In this chapter we will present the results of all simulations and make a critical

assessment of their validity using available theory, which was derived in chapter 2.

5.1 Probe in a Quiescent Plasma

Simulations were conducted in a quiescent plasma. The plasma conditions were

chosen to correspond to the OLM domain, so that theoretical results would be read­

ily available. Thus, we were able to determine whether PROBEPIC was producing

physically valid results.

T,rn simulations were carried out: one for a hydrogen plasma, and another for an

75

(artificia.l) ion to electron mass ratio of 100. The "light ion" experiment was carried

out in order to verify that ion collection was being properly modeled; in real plasmas,

heavy. immobile ions contribute very little current. The simulation conditions for the

two experiments are given in Table ,5.1.

The results of the simulation are pictured in Figure ,5.1. For probe potentials less

than the plasma potential, the PROBEPIC results agree quite well with the Langmuir

theory: however. in the electron saturation region, the PROBEPIC results diverge

from the expected theoretical result. At the time when the data was coming in,

this divergence was particularly troubling because, as explained in Chapter 2, the

Langmuir theory gives the ma:rimum current that should be measured. If there were

to he any disagreement between the PROBEPIC and theoretical results, PROBEPIC

data should always fall below the upper OLM threshold.

After rigorously checking the validity of the numerical algorithms used in PROBEPIC,

it was discovered that the disagreement has a real, physical origin. The Langmuir the­

ory was developed for an infinite cylindrical probe. In PROBEPIC and laboratory

experiments finite length probes are used. We will now discuss what the effect of

truncating a probe has on its overall VI characteristic.

Table .5.1: Quiescent plasma simulation plasma conditions.

Hydrogen
11 1.0 · 109 [cm-3]

T 2.0[eV]
Plasma Potential 0.0[V]
Probe Aspect Ratio 4.5.92
me/mi= 100
11 1.0 · 109 [cm-3]

T 2.0[eV]
Plasma Potential 0.0[V]
Probe Aspect Ratio 4,5.92

76

0.10
~ .s
I- 0 z
w □" a: " /,

a: /.

=> /.

()

-10

□

□

□0

0
□

OLM Mi/Me=100
- - - - - OLM HYDROGEN

□ PROBEPIC Mi/Me=100

0 PROBEPIC HYDROGEN

5
POTENTIAL [V]

10

Figure 5.1: Comparison between PROBEPIC and Langmuir theory results.

5.2 Effect of Probe Aspect Ratio

Probes of finite length may produce significantly different VI characteristics than

those predicted by infinite probe theory. This may be attributed the effect of the probe

tip. which may produce overall electric field structures that differ significantly from

infinite probes. It can be shown (see .Jackson [18]) that sharp corners on conductors

create intense electric fields in the region around the discontinuity. Thus, the sharp

corner of the probe tip creates large electric fields that are not accounted for in the

infinite probe model. The tip also creates axial fields (whereas only radial fields are

included in the infinite probe model). These axia.l fields draw particles from in front

of the probe to increase the overall current; as shown in Figure .5.2, current is then

..,~
11

1.25

1.20

◊

___;,~ 1.15

..............

1.10

◊

1.05

1 .00 ___.._ ___.._ __._...._ _._...._ _._....__ __._
0 20 40 60 80 100 120

PROBE ASPECT RATIO

Figure !'5.2: Illustration of the effect of probe aspect ratio on agreement with infinite
probe Langmuir theory.

also a function of probe aspect ratio.

The relevant parameter in this discussion is the probe aspect ratio, 1 ,

(5.1)

where, lp is the probe length and rp is the probe radius. As the probe aspect ratio

becomes increasingly large, we expect the probe current to converge to the infinite

probe result. Indeed, this effect was observed using PROBEPIC, and is illustrated in

Figure .5.2.

The points plotted were obtained using a hydrogen plasma. a.t the operating condi­

tions listed in Table 0. l, and a .5[V] probe potential; only the aspect ratio of the probe

was varied.

78

In conclusion, the deviation of PROBEPIC results shown in Figure 5.1 may be

attributed to the effect of finite probe length. As a result of the present study, as in­

dirnted in Figure 5.2, experimentalists should consider using probes with aspect ratios

greater than 200 (at least for probes operating in the simulated plasma regime) if close

agreement with theory is desired. A more comprehensive study of probes operating

in different plasma regimes might be a valuable future application of PROBEPIC.

5.3 Probe in a Flowing Plasma

The final simulation was designed to test the validity of a data reduction procedure

developed by Keefer and Semak [1.5] for ion thruster plumes. As discussed in chapter

2. the analysis of experimenta.l data is quite difficult. To determine the electron tem­

perature (assuming the distribution is Maxwellian), we must separate electron and ion

current. and plot the natural logarithm of the electron current in the electron retarding

region to obtain a straight line which may be correlated with electron temperature.

The current separation process is complicated by the presence of the ion beam; in

short. Keefer and Semak developed an iterative procedure in which the ion current

was varied until a satisfactory linear electron current region was obtained, from which

the dectron temperature and number density could be extracted.

The author was given experimental data and proposed plasma conditions (a.s cal­

culated from the new data reduction procedure). These values a.re shown in Table 5.2.

These va.lues were input into PROB EPIC to generate a VI characteristic. U nfor­

hmately, it became immediately apparent that something was wrong with the given

data. For example. at electron saturation the electron current should be

nee I --s,e - 4 • (.5.2)

79

Table 5.2: Data from analysis of Keefer and Semak.

ne
Te
Plasma Potential
fs,e

I s,i

Beam Velocity
l]J

rl'

Probe Aspect Ratio

3.1 · 109 [cm-3]

0.228 [eV]
0.96 [V]
4. 7 · 10-2 [mA]
4.1 · 10-3 [mA]
~ 4. o · 104 [7; l
0.381 [cm]
0.0127 [cm]
30.0

A quick hand calculation using the values given in Table 5.2 results in an electron

saturation current of ls,e = 1.2 x 10-1 [mA], which is a factor of three greater than

the value arrived at in their data analysis.

A PROBEPIC simulation was conducted to determine if the electron temperature

arrivPd at in the data reduction scheme was valid. A number density value was chosen

that was more consistent with the experimental data (n ~ 1.04 x 109 [cm-3]). The

complete list of parameters used in the PROBEPIC simulation is given in Table .5.:3.

The results of this simulation are shown in Figure 5.3. The PROBEPIC, Langmuir

tlwory. and experiment.a.I data agree quite well in the electron retarding region of the V­

I characteristic. Above electron saturation, the Langmuir theory and the experimental

Tah]P 5.:3: Conditions used in PROBEPIC and in the theoretical curve for the plasma
beam.

n
T
Plasma. Potential
lp
rl'

Probe Aspect Ratio

80

1.04 · 109 [cm-3]

0.24 [eV]
0.96 [V]
0.381 [cm]
0.0127 [cm]
30.0

0.20

~ 0.15 .s -C:
Q)
:::,

(.)
0.10

0.05

-2 -1 0

0

,,
,,

Langmuir Theory

--- Experiment

0 PROBEPIC

2

Potential [V]

Figure -5.:3: Comparison between PIC, Langmuir theory, and experimental results.

data disagree greatly, with the PROBEPIC result lying somewhere in between.

Since the electron temperature is calculated using the electron retarding region

of the V-I characteristic, we may conclude that PROBEPIC verifies the temperature

arrived at in the data reduction procedure (Te ~ 0.23 [eV]). Above saturation, the

strong deviation from the theoretical result is expected with the low aspect ratio probe

used, as explained in the previous section. In this region, the PROBEPIC result is

closer to the experimental data than the theoretical result. Further steps may be taken

to bring the experimPnt.al and probepic results into closer agreement. By lowering the

electron temperature, the PROBEPIC electron saturation current will be lowered and

the current collection above saturation will be increased - bringing the PROB EPIC

81

rPsttlt into closer agreement with the experimental data.

The question still remains as to why the data reduction procedure of Semak predicts

an incorrect value of number density. The number density is calculated from the

tPmperature. Since the Semak and PROBEPIC predicted temperatures agree, it is

likPly that Semak has an error in the formula he uses to calculate number density.

H should be mentioned that Semak's predicted number density is off by a factor

of approximately 7T. which may point to a simple ommision of that factor in the

,alculation of the probe area.

82

Chapter 6

Conclusion

PROBEPIC, a Particle-In-Cell code, has been developed to simulate the behavior

of finite length Langmuir probes. Results for the simulation of probes in quiescent

p]a,-mas and ion beams have been shown to be in agreement with both theory and

PXpPrimental results. Also, the effect of probe aspect ratio on current collection has

lwen qualitatively illustrated.

This thesis contributes to understanding Langmuir probes on two levels. First,

it develops PIC' specific techniques that are vital to producing a valid simulation.

Thr proper technique for fluxing particles into the computational domain, which was

dew·loped in Chapter 4, proved to be the greatest theoretical challenge in the devel­

opnwnt of PROBEPIC; consequently, the details will probably be useful to future

PIC practitioners. Second, PROBEPIC may provide a valuable tool for interpreting

ex1wriment.al Langmuir probe data.

6.1 Suggestions for the Improvement of PROBEPIC

The present version of PROBEPIC is in many ways a first-draft - there is room

for improvement in both computational efficiency and more accurate modeling of the

underlying physics. The purpose of this work was to verify accurate modeling of

83

the physical processes; to this end, widely used, robust algorithms were employed.

\Vhile these methods may not be the most computationally efficient, they minimize

the "surprises'' that a.re often indigenous to using "tricks". We now have a code

that apparently models reality, at least to first order, quite well. Future work on

PROBEPIC may now focus on improving the computational efficiency and integrating

mor<" realistic physical interactions.

To improve the computational efficiency the following areas should be investigated:

• Profiling software to find the fraction of time used by each subroutine.

• Applicability of the hybrid model.

• Effect of grid density on macroscopic results.

• Inexact field solvers.

• Vectorization of source code.

As discussed in the previous chapter, implementing a fluid model for the electrons

would eliminate the need for two different time-scales. This may allow results to be

obta.i1wd more quickly; however, the author is uncertain about the suitahility of the

hybrid method for this particular problem.

The grid density in PROBEPIC was chosen to resolve plasma oscillations; however,

it is uncertain as to whether modeling these oscillations is necessary to obtain satis­

factory results for the mass motion of the plasma. If the grid density can be relaxed,

we •.vill have fewer grid-points; this will cause the program to both occupy less RAM

and to run faster.

Since v,·e now have a field solver that gives accurate results, we can try to implement

c1 faster, more exotic field solver, and use the present one to determine the accuracy of

84

tlw new one. A suggested technique to look into is the ICCG method, which apparently

works quite well. The author is uncertain as to how much faster the field solver can

he made since the present field solver uses libraries that have been professionally

optimized for specific machines and are consequently very fast.

A final, more radical, computationa.l optimization worth considering 1s a com­

plete restructuring of the sub-programs to make them more amenable to vectoriza­

tion. This would allow the code to take full advantage of the vector architecture found

in most super-computers. PROBEPIC was run on a convex C4 super-computer at

the AEDC High Performance Computer Center. The performance was unimpressive,

in fact. slower than an SGI R8000 workstation. This can be attributed to the fact

that PROBEPIC is composed almost entirely of scalar code. A completely vector­

ized version of PROBEPIC would probably run an order of magnitude faster on a

s11per-computer.

A few aspects of the physics modeled in PROBEPIC should be considered further;

more specifically,

• Injection angle of the ion beam.

• Interaction of particles with the insulator surface.

A major unknown variable in the ion beam simulation is the proper angular distri­

bution for injected particles. The angular distribution used in PROBEPIC is simply

an educated guess. A more accurate method would be to use the ion thruster code by

Peng [14] to study the proper direction to inject particles.

As mentioned in the previous section, the physics of the interaction of particles

with the probe insulator was not rigorously modeled. A more thorough treatment of

1 his interaction would involve adding the proper physics(e.g. surface contact potential,

8.5

recombination, etc.) to boundary. c. Studies could then be made to quantify the effect

of the insulator, if any, on the overall probe response.

6.2 Suggestions for Future Implementation

Aside from improvements that could be made to the code, further work should

include modeling different experiments, and developing PROBEPIC as a diagnostic

aid for evaluating data taken from actual experiments.

The possibilities for its future application are virtually limitless. The results of

Section 5.2 indicate that a more comprehensive treatment of the effect of probe aspect

ratio throughout the range of Langmuir probe applicability may be valuable. Also,

more work needs to be done to refine the data analysis technique of Keefer and Se­

ma k. In an even broader context, PROBEPIC might be modified to simulate other

dectrostatic plasma devices, such as ion thrusters, or plasma semiconductor etching

devices.

Tlw simulation results for a quiescent plasma presented in Chapter .5 show that

PROBEPIC vvorks; but who cares if we can model experiments for which we already

have good theoretical models? The full value of PROBEPIC will be realized only

when it is used to evaluate and predict experimental results for which no satisfactory

analytical model exists. To some degree this was the case with the probe in a plasma

beam. For PROBEPIC to be used as a diagnostic tool a "front encl" will have to

be developed. This front end would serve as a bridge between the raw experimental

data a.nd PROBEPIC; it would provide intial guesses for plasma parameters needed

by PROBEPIC by scrutinizing the experimental data. Further, it would establish

and monitor convergence criteria to determine when PROBEPIC had iterated to the

Pxperimental result.

86

l\Iany lessons have been gleaned in the development of PROBEPIC. It is the

author's hope that the effort spent in including adequate detail in this thesis will allow

it to sf'rve as a starting point for future PIC practitioners at UTSI, thus incrementing

the overall progress of the institution.

87

BIBLIOGRAPHY

88

Bibliography

[l] Allen, .J.E., Boyd. R.L.F., and Reynolds, P.(1957), Proc. Phys. Soc. B., 70, 297.

[2] Bernstein. LB. and Rabinowitz, 1.(1959), Phys. Fluids, 2, 112.

[:3] Langmuir. I. and Mott-Smith, H.M .. Collected Works of Irving Langmuir. Per­

gamon, 1961.

[4] Bohm, D .. Arfinimum Ionic I{inetic Energy for a Stable Sheath. New York

lVkGra.w-Hill, 1949.

[-5] Laframboise . .J.G. and Parker, L.W.(1973), Phys. Fluids, 16, 629.

[6] Hester, S.D. and Sonin, A.A.(1969), Phys. Fluids, 13, 1265.

[i] C'.K. Birdsall and A.B. Langdon. Plasma Physics Via Computer Simulation. New

r·ork : Adam Hilger, 1991.

[8] R.\,V. Hockney and J.W. Eastwood. Computer Simulation Using Particles. Phil­

adelphia. : Institute of Physics Publishing, 1988.

[~)] Fife, .J.M .. Two-Dimensional Hybrid Particle-In-Cell Modeling of Hall Thrusters.

:Master's Thesis: Ma.ssachussetts Institute of Technology, 1995.

[I OJ J{ersha.w. D.S.(1978), Journal of Computational Physics, 26, 43.

89

[11] l\leijerink, .J.A. and Van Der Vorst, H.A.(1981), Journal of Computational Phys­

ics, 44, 134.

[12] Press, Teukolsky, Vettering, Flannery. Numerical Recipes in C. New York : Cam­

bridge University Press, 1994.

[I :i] Wilhelmus M. Ruyten. Density-Conserving Shape Factors for Particle Simula­

tions in C'ylindrical and Spherical Coordinates. Journal of Computational Phys­

ics, 105,1993.

[l I] Peng, X .. Particle Simnlation of Grid Erosion in an Ion Thruster. Dissertation

: The University of Tennessee, 1991.

[15] D. Keefer and V.V. Semak. Measurements of Radial and A:rial Distributions of

Ion Thruster Plasma Parameters Using a Langmuir Probe. (unpublished).

[Hi] .Jackson, .J.D .. Classical Electrodynamics. New York: .John Wiley & Sons, 1975.

[17] Hershkowitz, Noah. How Langm1tir Probes Work. Plasma Diagnostics: Discharge

Parameters and Chemistry,Vol.1,pgs.113-183, Academic Press, 1989.

[18] Holt, E.H. and Haskell, R.E.. Foundations of Plasma Dynamics. New York : The

Macmillan Company, 1965.

[l 9] Chen, F.F .. Electric Probes. New York Plasma Diagnostic Techniques, Aca­

demic Press, 196,5.

[20] Hershkowitz, Noah .. How Does the Potential Get from A to Bin a Plasma. IEEE

Review Paper, 1993.

[21] Chung, Ta.lbot, Touryan. Electric Probes in Stationary and Flowing Plasmas.

New York : Springer - Verlag, 197,5.

90

[22] Oak Ridge National Laboratory. Linear Algebra Package.

[:Z:3] Eric H. Echidna. Very Ordinary Graphics Language.

[24] V.P. Gopinath, P. Mirrashidi, D. Cooperberg, V. Vahedi, J.Verboncoeur, and

C.K. Birdsall. XPDC2 - R0 A 2 Dimensional Electrostatic Code.,University of

California, Berkely(Unpublished).

91

APPENDIX

92

Appendix A

PROBEPIC Source Code

Th<' source code for the PROBEPIC sub-programs are given below in the order listed

in Table 4.1. A soft copy of the source code is included on the floppy affixed to the

inner back cover.

A.l boundary.c

#define EXTERN extern
#include "lprobe60.h"

I* This function sorts out which particles have crossed a boundary,i.e.
the probe or extent of computational domain. Particles crossing the
probe boundary are counted as current *I

void boundary (PARTICLEDEF particle[numpart] ,long int *num_part,FLOAT q)

{

long int i,i2,numtemp;
FLOAT r_part,vzold,vyold;

numtemp=*num_part;i2=-1;

for (i=O;i < numtemp;i++){
i2=i2+1;
r_part=particle[i2].r;

OUT OF COMPUTATIONAL DOMAIN

if (particle[i2] .x >0.0 I I particle[i2] .x < -length I I
particle[i2] .y >radius I I particle[i2] .y < -radius I I
particle[i2] .z >radius I I particle[i2] .z < -radius){

93

}

particle[i2] .x=particle[•num_part-1] .x;
particle[i2] .y=particle[•num_part-1] .y;
particle[i2] .z=particle[•num_part-1] .z;
particle[i2] .r=particle[•num_part-1] .r;
particle[i2] .vx=particle[•num_part-1] .vx;
particle[i2] .vy=particle[•num_part-1] .vy;
particle[i2] .vz=particle[•num_part-1] .vz;
particle[i2] .q=particle[•num_part-1] .q;
particle[i2] .m=particle[•num_part-1] .m;
i2=i2-1;•num_part = •num_part - 1;

CONTACT WITH PROBE

else ~f (r_part <= r_probe && particle[i2] .x >=-(l_probe+l_insul) &&
particle[i2] .x <=-l_insul){

particle[i2] .x=particle[•num_part-1] .x;
particle[i2] .y=particle[•num_part-1] .y;
particle[i2] .z=particle[•num_part-1] .z;
particle[i2] .r=particle[•num_part-1] .r;
particle[i2] .vx=particle[•num_part-1] .vx;
particle[i2] .vy=particle[•num_part-1] .vy;
particle[i2] .vz=particle[•num_part-1] .vz;

particle[i2] .m=particle[•num_part-1] .m;

current=current + particle[i2] .q;
if(q == q_elec) curre=curre + particle[i2] .q;
else if(q == q_ion) curri=curri + particle[i2] .q;

particle[i2] .q=particle[•num_part-1] .q;
i2=i2-1;•num_part = •num_part - 1;

}

I• CONTACT WITH CYLINDRICAL SURFACE OF INSULATOR •/

else if (r_part <= r_insul && particle[i2] .x >-(l_insul-cell_width)){
vzold=particle[i2] .vz;
vyold=particle[i2] .vy;
particle[i2] .vz=(vzold•(-particle[i2] .z•particle[i2] .z +

particle[i2] .y•particle[i2] .y)
- 2.0•vyold•particle[i2] .y•particle[i2] .z)/(particle[i2] .r•particle[i2] .r)

particle[i2] .vy=(vyold•(particle[i2] .z•particle[i2] .z -
particle[i2] .y•particle[i2] .y)
- 2.0•vzold•particle[i2] .y•particle[i2] .z)/(particle[i2] .r•particle[i2] .r)
}

94

}

}

CONTACT WITH FLAT FACE OF INSULATOR

else if (r_part <= r_insul && particle[i2] .x >=-(l_insul)){
particle[i2] .vx=-particle[i2] .vx;

}

A.2 boundary _beam. c

#define EXTERN extern
#include "lprobe60.h"

I* This function sorts out which particles have crossed a boundary,i.e.
the probe or extent of computational domain. Particles crossing the
probe boundary are counted as current *I

void boundary_bearn (PARTICLEDEF particle[numpart] ,long int *num_part,FLOAT q)

{

long int i,i2,numtemp;
FLOAT r_part,vzold,vyold;

numtemp=*num_part;i2=-1;

for (i=O;i < numtemp;i++){
i2=i2+1;
r_part=particle[i2] .r;

OUT OF COMPUTATIONAL DOMAIN

if (particle[i2] .x >0.0 I I particle[i2] .x < -length){

}

particle[i2] .x=particle[*num_part-1] .x;
particle[i2] .y=particle[*num_part-1] .y;
particle[i2] .z=particle[*num_part-1] .z;
particle[i2] .r=particle[*num_part-1] .r;
particle[i2] .vx=particle[*num_part-1] .vx;
particle[i2] .vy=particle[*num_part-1] .vy;
particle[i2] .vz=particle[*num_part-1] .vz;
particle[i2] .q=particle[*num_part-1] .q;
particle[i2] .m=particle[*num_part-1] .m;
i2=i2-1;*num_part = *num_part - 1;

I* REFLECTION OFF BOUNDARY *I

else if (particle[i2] .r >= radius){

}

vzold=particle[i2].vz;
vyold=particle[i2].vy;
particle[i2] .vz=(vzold*(-particle[i2] .z*particle[i2] .z +

particle[i2] .y*particle[i2] .y)- 2.0*vyold*particle[i2] ·Y*
particle[i2] .z)/(particle[i2].r*particle[i2].r) ;

particle[i2] .vy=(vyold*(particle[i2].z*particle[i2].z -
particle[i2] .y*particle[i2] .y) - 2.0*vzold*particle[i2] ·Y*
particle[i2] .z)/(particle[i2].r*particle[i2].r) ;

CONTACT WITH PROBE

else if (r_part <= r_probe && particle[i2] .x >=-(l_probe+l_insul) &&
particle[i2] .x <=-l_insul){

particle[i2] .x=particle[*num_part-1] .x;
particle[i2] .y=particle[*num_part-1] .y;
particle[i2] .z=particle[*num_part-1) .z;
particle[i2] .r=particle[*num_part-1) .r;
particle[i2] .vx=particle[*num_part-1] .vx;
particle[i2] .vy=particle[*num_part-1] .vy;
particle[i2] .vz=particle[*num_part-1] .vz;

particle[i2] .m=particle[*num_part-1] .m;

current=current + particle[i2] .q;
if(q == q_elec) curre=curre + particle[i2] .q;
else if(q == q_ion) curri=curri + particle[i2] .q;

particle[i2] .q=particle[*num_part-1) .q;
i2=i2-1;*num_part = *num_part - 1;

}

I* CONTACT WITH CYLINDRICAL SURFACE OF INSULATOR *I

else if (r_part <= r_insul && particle[i2] .x >-(l_insul-cell_width)){
vzold=particle[i2] .vz;
vyold=particle[i2] .vy;
particle[i2] .vz=(vzold*(-particle[i2] .z*particle[i2] .z +

particle[i2] .y*particle[i2] .y)
- 2.0*vyold*particle[i2] .y*particle[i2] .z)/(
particle[i2] .r*particle[i2] .r) ;

particle[i2] .vy=(vyold*(particle[i2] .z*particle[i2] .z -
particle[i2] .y*particle[i2] .y)

}

- 2.0*vzold*particle[i2] .y*particle[i2] .z)/(
particle[i2] .r*particle[i2] .r) ;

CONTACT WITH FLAT FACE OF INSULATOR

96

}

}

else if (r_part <= r_insul && particle[i2] .x >=-(l_insul)){
particle[i2] .vx=-particle[i2] .vx;

}

A.3 charge_we ight. c

#define EXTERN extern
#include "lprobe60.h"

I* This function weights the charge to the array *I

void qweight(GRIDDEF array[ngp1] [ngp2] ,PARTICLEDEF particle[numpart],long int number)
{

unsigned long positionx,positiony;
long int count!;
FLOAT dr,dr1,dr2,dz,dz1,dz2;

for(count1=0;count1 < number;count1++){

if (particle[count1] .r <= radius){

locatex(array,ngp2,particle[count1] .x,&positionx);
locatey(array,ngp1,particle[count1] .r,&positiony);

SAVE CELL LOCATION FOR FORCE WEIGHT

particle[count1] .cellx=positionx;
particle[count1] .celly=positiony;

dr=array[positiony+1] [positionx].y*array[positiony+1] [positionx] .y
- array[positiony][positionx].y

*array[positiony] [positionx].y;
dr1=particle[count1] .r - array[positiony] [positionx] .y;
dr2=array[positiony+1][positionx] .y - particle[count1] .r;

dz=array[positiony] [positionx+1].x - array[positiony] [positionx] .x;
dz1=particle[count1] .x - array[positiony][positionx] .x;
dz2=array[positiony] [positionx+1] .x - particle[count1] .x;

array[positiony] [positionx].q_dens=array[positiony][positionx] .q_dens
+ particle[count1] .q *

dr2 * dz2
* (2.0 * array[positiony+1] [positionx] .y + 3.0

* array[positiony][positionx] .y

97

- particle[count1] .r) / (2.0 * dr * dz);
array[positiony] [positionx+1].q_dens=array[positiony] [positionx+1] .q_dens

+ particle[count1] .q *
dr2 * dz1

* (2.0 * array[positiony+1] [positionx+1] .y + 3.0
* array[positiony][positionx].y

- particle[count1].r) / (2.0 * dr * dz);
array[positiony+1] [positionx] .q_dens=array[positiony+1] [positionx] .q_dens

+ particle[count1] .q *
dr1 * dz2

* (3.0 * array[positiony+1] [positionx] .y + 2.0
* array[positiony][positionx] .y

- particle[count1] .r) / (2.0 * dr * dz);
array[positiony+1] [positionx+1] .q_dens=array[positiony+1] [positionx+1].q_dens

+ particle[count1].q *
dr1 * dz1

* (3.0 * array[positiony+1] [positionx+1] .y + 2.0
* array[positiony][positionx+1].y

- particle[count1] .r) / (2.0 * dr * dz);
}

}

}

A.4 force_weight.c
#define EXTERN extern
#include "lprobe60.h"

/• This function weights the field from the array•/

void fweight(GRIDDEF array[ngp1] [ngp2] ,PARTICLEDEF particle[numpart] ,long int number)
{

long int count 1;
FLOAT dr,dr1,dr2,dz,dz1,dz2;

CLEAN UP OLD ELECTRIC FIELD

for (count1=0;count1 < number;count1++){
particle[count1] .Ey=particle[count1] .Ex=O.O;

}

for(count1=0;count1 < number;count1++){

if (particle[count1] .r <= radius){

dr=array[particle[count1] .celly+1] [particle[count1].cellx] .y*

98

array[particle[count1] .celly+1] [particle[count1].cellx] .y -
array[particle[count1] .celly] [particle[count1] .cellx] .y
*array[particle[count1] .celly] [particle[count1] .cellx] .y;

dr1=particle[count1] .r - array[particle[count1] .celly] [particle[
count1] .cellx] .y;

dr2=array[particle[count1] .celly+1] [particle[count1] .cellx] .y - p
article[count1].r;

dz=array[particle[count1] .celly][particle[count1] .cellx+1] .x -
array[particle[count1] .celly] [particle[count1] .cellx].x;

dz1=particle[count1] .x - array[particle[count1] .celly] [particle[c
ount1] .cellx] .x;

dz2=array[particle[count1] .celly] [particle[count1] .cellx+1] .x - p
article[count1] .x;

particle [count 1] . Ey=array [particle [count!] . celly] [particle [count 1
] .cellx] .Ey*dr2
* dz2

* (2.0 * array[particle[count1] .celly+1][particle
[count!] .cellx] .y
+ 3.0

* array[particle[count1] .celly] [particle[count1]
.cellx] .y -

particle[count1].r) / (2.0 * dr * dz)
+ array[particle[count1] .celly] [particle[count1]

.cellx+1] .Ey*dr2
* dz1

* (2.0 * array[particle[count1] .celly+1][particl
e[count1] .cellx+1].y
+ 3.0 *

array[particle[count1] .celly] [particle[count1].
cellx]. y -
particle[count1] .r) /

(2.0 * dr *dz)+ array[particle[count1] .celly
+1][
particle[count1].cellx+1].Ey*

dr1 * dz1 * (3.0 * array[particle[count1] .celly
+1][
particle[count1] .cellx+1] .y +

2.0 * array[particle[count1] .celly][particle[co
unt1] .cellx+1] .y -

particle[count1].r) / (2.0 * dr *dz)+
array[particle[count1] .celly+1] [particle[count1

] .cellx] .Ey*dr1
* dz2 * (3.0 *

array[particle[count1] .celly+1] [particle[count1]
.cellx] .y + 2.0 *

array[particle[count1] .celly] [particle[count1] .ce
llx]. y -
particle[count1] .r)

99

I (2.0 * dr * dz);

particle[count1] .Ex=array[particle[count1] .celly] [particle[count1]
.cellx] .Ex•dr2
* dz2

* (2.0 * array[particle[count1] .celly+1][particle[
count!] .cellx].y
+ 3.0

* array[particle[count1] .celly] [particle[count1] .c
ellx]. y -

particle[count1].r) / (2.0 * dr * dz)
+ array[particle[count1] .celly] [particle[count1] .c

ellx+1] .Ex•dr2
* dz1

* (2.0 * array[particle[count1] .celly+1][particle[
count!] .cellx+1] .y
+ 3.0 *

array[particle[count1] .celly] [particle[count1] .ce
llx]. y -
particle[count1] .r) /

(2.0 * dr *dz)+ array[particle[count1] .celly+1] [
particle[count1] .cellx+1].Ex•

dr1 * dz1 * (3.0 * array[particle[count1] .celly+1] [
particle[count1] .cellx+1] .y +

2.0 * array[particle[count1] .celly][particle[count1].
cellx+1] . y -

particle[count1].r) / (2.0 * dr *dz)+
array[particle[count1] .celly+1] [particle[count1] .cell

x] .Ex*
dr1 * dz2 * (3.0 *

array[particle[count1] .celly+1] [particle[count1] .cell
x] .y + 2.0 *

array[particle[count1] .celly] [particle[count1] .cellx] .y -
particle[count1] .r)

}

}

}

I (2.0 * dr * dz);

A.5 graphics.c
#define EXTERN extern
#include "lprobe60.h"

void graph(GRIDDEF array[ngp1] [ngp2] ,PARTICLEDEF particle1[numpart] ,PARTICLE
DEF particle2[numpart])

100

{

static int count1,count2;
static float probepts[4J [2J ,inspts[4J[2J;
static float xmouse, ymouse;
static PushButton SwitchButton, ExitButton,PrintButton;
backbuffer();
color(O);

l*if(t_count -- 1){
clear();

}*/

ClearMouseBuffer();

if (view == 1){
color(O);
clear();

MakeButton(PRINTBOXx,PRINTBOXy, &PrintButton, "Print\O");
if (CheckButton(PrintButton))

{

view= 3;
}

MakeButton(SWITCHBOXx, SWITCHB□Xy, &SwitchButton, "Front\O");
if (CheckButton(SwitchButton))

{

view= O;
}

MakeButton(EXITBOXx, EXITBOXy,
if (CheckButton(ExitButton)

vexit();
exit (1);

}

color(52);
polyfill(O);

&ExitButton, "Exit\O");
){

rect(1.5*(array[OJ [OJ .x+O.5),-2.O*array[ngp_vert-1J [OJ .y,
1.5*(array[OJ [ngp_horiz-1J.x+O.5),2.O*array[ngp_vert-1J [OJ.y);

move2(-O.95,O.O);
draw2(1.O,O);

color(5O);
I* for (count1=O;count1 < ngp_vert;count1++)

{

for (count2=O;count2 < ngp_horiz;count2++)
{

}*/

point2(1.5*(array[count1J[count2J .x+.5),2.O*array[count1J[count2J .y);
}

101

color(56);
probepts[0][0]=1.5*(.5-l_insul); probepts[0][1]=2.0*r_probe;
probepts[1][0]=1.5*(.5-l_insul); probepts[1][1]=-2.0*r_probe;
probepts[2] [0]=1.5*(.5-l_insul-l_probe); probepts[2] [1]=-2.0*r_probe;
probepts[3] [0]=1.5*(.5-l_insul-l_probe); probepts[3] [1]=2.0*r_probe;
inspts[O] [0]=1.5*.5;inspts[0][1]=2.0*r_insul;
inspts[1] [0]=1.5*.5;inspts[1][1]=-2.0*r_insul;
inspts[2] [0]=1.5*(.5-l_insul);inspts[2] [1]=-2.0*r_insul;
inspts[3] [0]=1.5*(.5-l_insul);inspts[3][1]=2.0*r_insul;

if (CheckButton(SwitchButton))
{
view= O;
}

polyfill(1);
poly2(4,probepts);
color(50);
polyhatch(1); hatchang(90.0); hatchpitch(0.005);
poly2(4,inspts);

color(53);
for (count1=0;count1 < numelec;count1++)

{

point2(1.5*(particle1[count1] .x+.5),2.0*particle1[count1] .y);
}

color(2);
for (count1=0;count1 < numion;count1++)

{

point2(1.5*(particle2[count1] .x+.5),2.0*particle2[count1] .y);

}

if .(CheckButton(SwitchButton))
{

view= O;
}

if (CheckButton(ExitButton)){
vexit();
exit (1);

}

}

if (view == O){
clear();
color(O);

color(56);
polyfill(1);

102

circle(0.0,0.0,2.5*r_probe);
polyhatch(1); hatchang(90.0); hatchpitch(0.005);
circle(0.0,0.0,2.5*r_insul);

MakeButton (PRINTB□Xx, PRINTB□Xy, &PrintButton, "Print \O");
if (CheckButton(PrintButton))

{

view= 3;
}

MakeButton(SWITCHB□Xx, SWITCHBDXy, &SwitchButton, "Side\O");
if (CheckButton(SwitchButton))

{

view= 1;
}

MakeButton(EXITB□Xx, EXITB□Xy, &ExitButton, "Exit\0");
if (CheckButton(ExitButton)){

vexit();
exit (1);

}

color(52);
polyfill(O);
circleprecision(64);
circle(0.0,0.0,2.5*radius);

color(53);
for (count1=0;count1 < numelec;count1++)

{

point2(2.5*particle1[count1] .z,2.5*particle1[count1] .y);
}

if (CheckButton(SwitchButton))
{

view= 1;
}

if (CheckButton(ExitButton)){
vexit();
exit (1);

}

color(2);
for (count1=0;count1 < numion;count1++)

{

point2(2.5*particle2[count1] .z,2.5*particle2[count1] .y);
}

}

swapbuffers();

if (view== 3)
{

103

vexit();
voutput("picture.ps");
vinit("cps");
color(O);
clear();
color(52);
polyfill(O);
rect(2.25*(array[O][ngp_horiz].x+.5),-3.5*array[ngp_vert] [ngp_horiz] .y,

2.25*(array[O] [OJ .x+0.42),3.S*array[ngp_vert] [O].y);
rnove2(-0.95,0.0);
draw2 (1. 0, 0) ;

color(50);
for (count1=0;count1 < ngp_vert+1;count1++)

{

for (count2=0;count2 < ngp_horiz+1;count2++)
{

point2(2.25*(array[count1] [count2] .x+0.42),3.5*array[count1] [count2] .y);
}

}

color(56);
probepts[0][0]=2.25*(0.42-l_insul); probepts[0][1]=3.5*r_probe;
probepts[1][0]=2.25*(0.42-l_insul); probepts[1][1]=-3.5*r_probe;
probepts[2] [0]=2.25*(0.42-l_insul-l_probe); probepts[2] [1]=-3.5*r_probe;
probepts[3] [0]=2.25*(0.42-l_insul-l_probe); probepts[3] [1]=3.5*r_probe;
inspts[O] [0]=2.25*0.42;inspts[O] [1]=3.5*r_probe;
inspts[1] [0]=2.25*0.42;inspts[1] [1]=-3.5*r_probe;
inspts[2] [0]=2.25*(0.42-l_insul);inspts[2][1]=-3.5*r_probe;
inspts[3] [0]=2.25*(0.42-l_insul);inspts[3] [1]=3.5*r_probe;

if (CheckButton(SwitchButton)
{

view= O;
}

polyfill(1);
poly2(4,probepts);
color(50);
polyhatch(1); hatchang(90.0); hatchpitch(0.005);
poly2(4,inspts);

color(53);
for (count1=0;count1 < nurnelec;count1++)

{

point2(2.25*(particle1[count1] .x+0.42),3.5*particle1[count1].y);
}

vexit() ;exit(!);

104

}

}

short CheckButton (PushButton TomButton)

{

static float xmouse, ymouse;
if (slocator(&xmouse, &ymouse))

{

if ((xmouse > TomButton.x1PositionUp && (xmouse < TomButton.x2P
ositionUp) &&

(ymouse < TomButton.y1PositionUp && (ymouse > TomButton.y2P
ositionUp))

}

{

}

}

return O;

DrawButtonDown(TomButton);
return 1;

void ClearMouseBuffer()

{

float xmouse, ymouse;

slocator(&xmouse, &ymouse);
}

short MakeButton (float xi, float y1, PushButton *TomButton, char ButtonText[20])
{

TomButton->x1PositionUp = xi;
TomButton->y1PositionUp = y1;
TomButton->x2PositionUp = xi+xButtonOffset;
TomButton->y2PositionUp = y1-yButton0ffset;
strcpy(TomButton->ButtonText, ButtonText);
TomButton->TextColor = 3;
TomButton->aBorderColorUp = lightgray;
TomButton->bBorderColorUp = gray;
TomButton->cBorderColorUp = gray;
TomButton->dBorderColorUp = lightgray;
TomButton->aBorderColorDown = gray;
TomButton->bBorderColorDown = lightgray;
TomButton->cBorderColorDown = lightgray;
TomButton->dBorderColorDown = gray;
TomButton->FillColorUp = midblue;
TomButton->FillColorDown = gray;
DrawButton(*TomButton);

105

return (0);
}

void DrawButton(PushButton TomButton)
{

}

float f , g;

font ("/usr/people/tmarkusi/vogle/font/futura.m");

color(TomButton.FillColorUp);
polyfill(TomButton.FillColorUp);
rect(TomButton.x1PositionUp,TomButton.y1PositionUp,

TomButton.x2PositionUp,TomButton.y2PositionUp);

color(TomButton.TextColor);
f = fabs((TomButton.x1PositionUp - TomButton.x2PositionUp));
g = fabs((TomButton.y2PositionUp - TomButton.y1PositionUp));
boxtext(TomButton.x1PositionUp, TomButton.y2PositionUp,f,g,

TomButton.ButtonText);

move2(TomButton.x1PositionUp,TomButton.y1PositionUp);
color(TomButton.aBorderColorUp);
draw2(TomButton.x1PositionUp,TomButton.y2PositionUp);

color(TomButton.bBorderColorUp);
draw2(TomButton.x2PositionUp,TomButton.y2PositionUp);

color(TomButton.cBorderColorUp);
draw2(TomButton.x2PositionUp,TomButton.y1PositionUp);

color(TomButton.dBorderColorUp);
draw2(TomButton.x1PositionUp,TomButton.y1PositionUp);

void DrawButtonDown(PushButton TomButton)
{

float f, g;

color(TomButton.FillColorDown);
polyfill(TomButton.FillColorDown);
rect(TomButton.x1PositionUp,TomButton.y1PositionUp,

TomButton.x2PositionUp,TomButton.y2PositionUp);

color(TomButton.TextColor);
f = fabs((TomButton.x1PositionUp - TomButton.x2PositionUp));
g = fabs((TomButton.y2PositionUp - TomButton.y1PositionUp));
boxtext(TomButton.x1PositionUp, TomButton.y2PositionUp,f,g,

TomButton.ButtonText);

106

}

move2(TomButton.x1PositionUp,TomButton.y1PositionUp);

color(TomButton.aBorderColorDown);
draw2(TomButton.x1PositionUp,TomButton.y2PositionUp);

color(TomButton.bBorderColorDown);
draw2(TomButton.x2PositionUp,TomButton.y2PositionUp);

color(TomButton.cBorderColorDown);
draw2(TomButton.x2PositionUp,TomButton.y1PositionUp);

col~r(TomButton.dBorderColorDown);
draw2(TomButton.x1PositionUp,TomButton.y1PositionUp);

A.6 grid.c
#define EXTERN extern
#include "lprobe60.h"

void gridgen(GRIDDEF array[ngp1] [ngp2])
{

long int count1,count2,cell1_count,cell6_count;
FLOAT index1,index2;

ngp_vert=ngp1;
ngp_horiz=ngp2;
cell1_count=15,cell6_count=74;

index1=-1.0;
for (count1=0;count1 < cell1_count;count1++){

index1=index1+1.0;

}

index2=-1.0;
for (count2=0;count2 < ngp_horiz;count2++){

index2=index2+1.0;
array[count1] [count2].x=-length+index2*cell_width;
array[count1] [count2].y=index1*cell_height1;
}

index2=-1.0;
for (count2=0;count2 < ngp_horiz;count2++){

index2=index2+1.0;

}

array[15] [count2] .x=-length+index2*cell_width;
array[15] [count2] .y= array[14] [count2] .y+cell_height2;

index2=-1.0;
for (count2=0;count2 < ngp_horiz;count2++){

107

}

index2=index2+1.0;
array[16] [count2] .x=-length+index2•cell_width;
array[16] [count2] .y=array[15][count2].y+cell_height3;

index2=-1.0;
for (count2=0;count2 < ngp_horiz;count2++){

index2=index2+1.0;
array[17] [count2] .x=-length+index2•cell_width;
array[17] [count2] .y=array[16][count2].y+cell_height4;

}

index2=-1.0;
for (count2=0;count2 < ngp_horiz;count2++){

index2=index2+1.0;
array[18] [count2] .x=-length+index2•cell_width;
array[18] [count2] .y=array[17][count2].y+cell_height5;

}

index1=0.0;
for (count1=19;count1 < cell6_count;count1++){

index1=index1+1.0;

}

index2=-1.0;
for (count2=0;count2 < ngp_horiz;count2++){

index2=index2+1.0;
array[count1] [count2].x=-length+index2•cell_width;
array[count1] [count2].y=array[18][count2] .y+index1•cell_height6;
}

/• Clean-up grid for next time step •I
for (count1=0;count1 < ngp_vert;count1++){

for (count2=0;count2 < ngp_horiz;count2++){
array[count1] [count2].q_dens=array[count1] [count2].Ex=

array[count1] [count2] .Ey=O.O;
}

}

}

A.7 initialize.c

#define EXTERN extern
#include "lprobe60.h"

void initialize(PARTICLEDEF particle[nurnpart] ,long int •num_part,
long int init_num,FLOAT super_init,FLOAT *v_table,FLOAT m,FLOAT q)

{

long int i,rannum;
FLOAT theta,phi,v,r;

108

for(i=O;i < init_num;i++){

theta=pi•random_num[rancount];
rancount ++;

phi=2.0*pi•random_num[rancount];
rancount ++;

rannum=((long)100000.0•random_num[rancount]);
rancount ++;

v=v_table[rannum];
rancount ++;

r=radius * sqrt(random_num[rancount]);
rancount ++;

particle[•num_part] .x=-length * random_num[rancount];
rancount++;

. particle [•num_part]. y=r•sin(theta);
particle[•num_part].z=r•cos(theta);
particle[•num_part] .r=sqrt(particle[•num_part] .y•particle

[•num_part].y
+ particle[•num_part] .z * particle[•num_part] .z);

particle[•num_part] .vx=v * sin(theta) •sin(phi);
particle[•num_part] .vy=v * cos(theta);
particle[•num_part] .vz=v * sin(theta) * cos(phi);
particle[•num_part] .Ex=O.O;
particle[•num_part] .Ey=O.O;
particle[•num_part] .q= q * super_init;
particle[•num_part] .m= m * super_init;
(•num_part)++;

}

}

A.8 initialize_beam.c
#define EXTERN extern
#include "lprobe60.h"

void initialize_beam(PARTICLEDEF particle[numpart] ,long int •num_part,
long int init_num,FLOAT super_init,FLOAT m,FLOAT q)

{

long inti;
FLOAT theta,v,r;

for(i=O;i < init_num;i++){

109

r=radius * sqrt(random_num[rancount]);
rancount ++;

theta=2.0*pi*random_num[rancount];
rancount ++;

v=beam_vel;

particle[*num_part] .x=-length * random_num[rancount];
rancount++;

particle[*num_part] .y=r*sin(theta);
particle[*num_part] .z=r*cos(theta);
particle[*num_part] .r=sqrt(particle[*num_part] .y*particle[*num

_part] .y
+ particle[*num_part] .z * particle[•num_part] .z);

particle[*num_part] .vx=v;
particle[•num_part] .vy=O;
particle[*num_part] .vz=O;
particle[*num_part] .Ex=O.O;
particle[•num_part].Ey=O.O;
particle[•num_part] .q= q * super_init;
particle[*num_part] .m= m * super_init;
(*num_part)++;

/•if(particle[*num_part] .x > (-l_insul) && particle[•num_part] .r
< (r_insul)){

(*num_part)--;
i--;

}

}

A.9 inj ect_beam. c
#define EXTERN extern
#include "lprobe60.h"
I* This function injects particles at each time step *I

void inject_beam(PARTICLEDEF particle[numpart],long int •num_part,FLOAT
m,FLOAT q)

{

long int i,i2;
FLOAT theta,phi,v;

for(i=O;i < super_beami;i++){

v=beam_vel;

110

theta=(pi / 36.0) * random_num[rancount]; I* Up to five degree
beam divergence *I
rancount ++;

phi=2.0*pi*random_num[rancount];
rancount ++;

particle[*num_part] .x=-length;
particle[*num_part] .y=radius * sqrt(random_num[rancount]);

rancount ++;
particle[*num_part] .z=0;
particle[*num_part] .r=sqrt(particle[*num_part] .y*particle[*num_part] .y

+ particle[*num_part] .z * particle[*num_part] .z);

particle[*num_part] .vx=v * cos(theta);
particle[*num_part] .vy=v * sin(theta) * cos(phi);
particle[*num_part] .vz=v * sin(theta) * sin(phi);
particle[*num_part] .q= q * super_beam;
particle[*num_part] .m= m * super_beam;
particle[*num_part] .Ex=0.0;
particle[*num_part] .Ey=0.0;
(*num_part)++;

if (particle[*num_part-1] .r < (0.2 * radius)){

particle[*num_part-1] .q= q * super_beam / ion_sub_inject;
particle[*num_part-1] .m= m * super_beam / ion_sub_inject;

for(i2=0;i2 < (ion_sub_inject-1);i2++){

theta= -(pi/ 36.0) + 2.0*(pi / 36.0) * random_num[rancount];
I* Up
to five degree beam divergence *I

rancount ++;
I* phi=2.0*pi*random_num[rancount];

}

rancount ++;*/

particle[*num_part] .x=particle[*num_part-1] .x;
particle[*num_part] .y=particle[*num_part-1] .y;
particle[*num_part] .z=particle[*num_part-1] .z;
particle[*num_part] .r=particle[*num_part-1] .r;
particle[*num_part] .vx=v * cos(theta);
particle[*num_part] .vy=v * sin(theta);
particle[*num_part] .vz=O.0;

particle[*num_part].vy=v * sin(theta) * cos(phi);
particle[*num_part] .vz=v * sin(theta) * sin(phi); *I
particle[*num_part] .q= q * super_beam / ion_sub_inject;
particle[*num_part] .m= m * super_beam / ion_sub_inject;
particle[*num_part] .Ex=O.0;
particle[*num_part] .Ey=0.0;
(*num_part)++;

111

}

}

}

A.10 inj ect_part. c

#define EXTERN extern
#include "lprobe60.h"
I* This function injects particles at each time step *I

void inject(PARTICLEDEF particle[numpart],long int *num_part,FLOAT super_back,
FLOAT super_front,

FLOAT super_side,long int superinj_back,long int superinj_front,
long int superinj_side,FLOAT *v_table,FLOAT m,FLOAT q)

{

long int i,rannum;
FLOAT theta,phi,v;

for(i=O;i < superinj_front;i++){

FRONT
theta=acos(sqrt(1 - random_num[rancount]));

rancount ++;
phi=2.0*pi*random_num[rancount];

rancount ++;
rannum=((long int)100000.0*random_num[rancount]);

rancount ++;
v=v_table[rannum];
particle[*num_part] .x=-length;
particle[*num_part] .y=height * random_num[rancount] - height/ 2.0;

rancount ++;
particle[*num_part] .z=width * random_num[rancount] - width/ 2.0;

rancou·nt ++;
particle[*num_part] .r=sqrt(particle[*num_part] .y*particle[*num_part

] . y

+ particle[*num_part] .z * particle[*num_part] .z);
particle[*num_part] .vx=v * cos(theta);
particle[*num_part] .vy=v*sin(theta)*cos(phi);
particle[*num_part] .vz=v*sin(theta)*sin(phi);
particle[*num_part] .q= q * super_front;
particle[*num_part] .m= m * super_front;
particle[*num_part] .Ex=O.O;
particle[*num_part] .Ey=O.O;
(*num_part)++;

}

for(i=O;i < superinj_back;i++){

112

BACK
theta=acos(sqrt(1 - random_num[rancount]));

rancou·nt ++;
phi=2.0*pi*random_num[rancount];

rancount ++;
rannum=((long int)100000.0*random_num[rancount]);

rancount ++;
v=v_table[rannum];
do{

particle[*num_part] .x=O.O;
particle[*num_part] .y=height * random_num[rancount] - height

I 2.0;
rancount ++;

particle[*num_part] .z=width * random_num[rancount] - width
I 2.0;
rancount ++;

particle[*num_part] .r=sqrt(particle[*num_part] .y*particle
[*num_part] .y
+ particle[*num_part] .z * particle[*num_part] .z);

particle[*num_part] .vx=-v * cos(theta);
particle[*num_part] .vy=v*sin(theta)*cos(phi);
particle[*num_part] .vz=v*sin(theta)*sin(phi);
particle[*num_part] .Ex=O.O;
particle[*num_part] .Ey=O.O;
particle[*num_part] .q= q * super_back;
particle[*num_part] .m= m * super_back;

}while(particle[*num_part] .r <= r_insul);

(*num_part)++;

}

for(i=O;i < superinj_side;i++){

BOTTOM SIDE
theta=acos(sqrt(1 - random_num[rancount]));

rancount ++;
phi=2.0*pi*random_num[rancount];

rancount ++;
rannum=((long)100000.0*random_num[rancount]);

rancount ++;
v=v_table[rannum];
particle[*num_part] .x=-length * random_num[rancount];

rancount ++;
particle[*num_part] .y=-radius;
particle[*num_part] .z=width * random_num[rancount] - width/

2.0;
rancount ++;

particle[*num_part] .r=sqrt(particle[*num_part] .y*particle[*num

_part] .y
+ particle[•nurn_part] .z * particle[•nurn_part] .z);

particle[•nurn_part] .vx=v * sin(theta) •sin(phi);
particle[•nurn_part] .vy=v * cos(theta);
particle[•nurn_part] .vz=v•sin(theta)•cos(phi);
particle[•nurn_part] .Ex=O.O;
particle[•nurn_part] .Ey=O.O;
particle[•nurn_part] .q= q * super_side;
particle[•nurn_part] .rn= rn * super_side;
(•nurn_part)++;

I* TOP Side •I
theta=acos(sqrt(l - randorn_nurn[rancount]));

rancount ++;
phi=2.0*pi*randorn_num[rancount];

rancount ++;
rannurn=((long)100000.0*randorn_nurn[rancount]);

rancount ++;
v=v_table[rannum];
particle[•nurn_part] .x=-length * randorn_nurn[rancount];

rancount ++;
particle[•nurn_part] .y=radius;
particle[•nurn_part] .z=width * randorn_nurn[rancount] - width/ 2.0;

rancount ++;
particle[•nurn_part] .r=sqrt(particle[•num_part] .y*particle[•num_pa

rt] .y
+ particle[•num_part] .z * particle[•num_part] .z);

particle[•num_part] .vx=v * sin(theta) * sin(phi);
particle[•num_part] .vy=-v * cos(theta);
particle[•nurn_part] .vz=v * sin(theta) * cos(phi);
particle[•num_part] .Ex=O.O;
particle[•num_part] .Ey=O.O;
particle[•num_part] .q= q * super_side;
particle[•num_part] .m= m * super_side;
(•num_part)++;

FRONT SIDE
theta=acos(sqrt(l - random_num[rancount]));

rancount ++;
phi=2.0*pi•random_num[rancount];

rancount ++;
rannurn=((long)100000.0*random_num[rancount]);

rancount ++;
v=v_table[rannum];
particle[•num_part] .x=-length * random_num[rancount];

rancount ++;
particle[•nurn_part] .y=height * random_num[rancount] - height

I 2.0;
rancount ++;

114

particle[*num_part] .z=radius;
particle[*num_part] .r=sqrt(particle[*num_part] .y*particle[*num

_part] .y
+ particle[*num_part] .z * particle[*num_part] .z);

particle[*num_part] .vx=v * sin(theta) * cos(phi);
particle[*num_part] .vy=v * sin(theta) * sin(phi);
particle[*num_part] .vz=-v * cos(theta);
particle[*num_part] .Ex=O.O;
particle[*num_part] .Ey=O.O;
particle[*num_part] .q= q * super_side;
particle[*num_part] .m= m * super_side;
(*num_part)++;

BACK SIDE

theta=acos(sqrt(1 - random_num[rancount]));
rancount ++;

phi=2.0*pi*random_num[rancount];
rancount ++;

rannum=((long)100000.0*random_num[rancount]);
rancount ++;

v=v_table[rannum];
particle[*num_part] .x=-length * random_num[rancount];

rancount ++;
particle[*num_part] .y=height * random_num[rancount] - heig

ht/ 2.0;
rancount ++;

particle[*num_part] .z=-radius;
particle[*num_part] .r=sqrt(particle[*num_part] .y*particle

[*num_part] .y
+ particle[*num_part] .z * particle[*num_part] .z);

particle[*num_part] .vx=v * sin(theta) * cos(phi);
particle[*num_part] .vy=v * sin(theta) * sin(phi);
particle[*num_part] .vz=v * cos(theta);
particle[*num_part] .Ex=O.O;

}

}

particle[*num_part] .Ey=O.O;
particle[*num_part].q= q * super_side;
particle[*num_part] .m= m * super_side;
(*num_part)++;

A.11 locate.c
#define EXTERN extern

11.5

#include "lprobe6O.h"

void locatex(GRIDDEF xx[ngp1J [ngp2J, unsigned long n, FLOAT x,
unsigned long *jj)
{

}

unsigned long ju,jm,jl;
int ascnd;

jl=O;
ju=n+1;
ascnd=(xx[OJ [n-1J .x > xx[OJ [1J .x);
while (ju-jl > 1) {

}

jm=(ju+jl) » 1;
if (x > xx[OJ [jmJ.x == ascnd)

jl=jm;
else

ju=jm;

*jj=jl;

void locatey(GRIDDEF xx[ngp1][ngp2], unsigned long n, FLOAT x,
unsigned long •jj)
{

}

unsigned long ju,jm,jl;
int ascnd;

jl=O;
ju=n+1;
ascnd=(xx[n-1J [OJ .y > xx[1J[OJ.y);
while (ju-jl > 1) {

}

jm=(ju+j 1) » 1;
if (x > xx[jmJ [OJ .y == ascnd)

jl=jm;
else

ju=jm;

*jj=jl;

A.12 make_LU. c

#define EXTERN extern
#include "lprobe6O.h"

/• This function computes the LU decomposition of the
band matrix generated

by differencing Poisson's Equation on the grid •/
void make_LU(GRIDDEF array[ngp1J[ngp2J)
{

116

FILE *abddata,*abddata2;
int info;
long int i,j,k,jmax,kmax,count,counter1,counter2,counter3,
counter4,counter5;

abddata=fopen("abddata. dat", "w+");
abddata2=fopen("abddata2 .dat", "w+");

MAKE BANDS

jmax=ngp_vert;
kmax=ngp_horiz;
counteri=upper_width-1;
counter2=0;
counter3=-1;
counter4=0;
counter5=0;

I* Initialize all non-relevant positions to zero *I
for(i=O;i < ngp;i++){

band1[i]=band2[i]=band3[i]=band4[i]=band5[i]=O.O;
}

for (j=O;j < jmax;j++){
for(k=O;k < kmax;k++){

if(counteri<(ngp-1)){
counter!++;

}

if(counter2<(ngp-1)){
counter2++;

}

counter4++;counter5++;

I* y < r_probe *I
if(j <= jprobe){

if (j==O && k==1){
counter4=0;

Lower boundary *I

}

if(j==1 && k==O){
counter5=0;

}

if(k < kprobe){
if(j==O){ I*

if(k==O) {
band!

[counter1]=0.0;

117

[counter2]=0.0;

[counter4]=0.0;

[counter5]=0.0;

[counter1]=pi*cell_width;

[counter2]=pi*array[j+1] [k].y
*array[j+1] [k] .y/(4.0*cell_width);

[counter4]=pi*array[j+1][k].y
*array[j+1] [k] .y/(4.0*cell_width);

[counter5]=0.0;

Rest to top of probe *I

[counter1]=0.0;

[counter2]=0.0;

[counter4]=0.0;

[counter5]=0.0;

}

else {

}

}

band2

band4

band5

band1

band2

band4

band5

else{ I*

if(k==O) {
band1

}

else{

band2

band4

band5

band1
[counter1]=2.0*pi*cell_width*
(array[j] [k] .y+(array[j+1] [k] .y-array[j] [k] .y)/2.0)/(
array[j+1][k] .y-array[j][k].y);

band2
[counter2]=pi*((array[j] [k].y+
(array[j+1] [k] .y-array[j][k] .y)/2.0)*(array[j][k] .y+(
array[j+1] [k] .y-array[j] [k] .y)
/2.0)

-(ar
ray[j][k] .y-(array[j][k] .y-
array[j-1] [k] .y)/2.0)*(array[j] [k] .y-(array[j][k] .y-a
rray[j-1] [k] .y)/2.0))/cell_width;

band4[
counter4]=pi*((array[j] [k] .y+
(array[j+1] [k] .y-array[j] [k] .y)/2.0)*(array[j] [k] .y+(a
rray[j+1] [k] .y-array[j][k].y)

118

/2.0)
-(ar

ray [j] [k] . y- (array [j] [k] . y-
array [j-1] [k] .y)/2.0)*(array[j] [k].y-(array[j][k] .y-arr
ay[j-1] [k] .y)/2.0))/cell_width;

band5[c
ounter5]=2.0*pi*
cell_width*(array[j] [k] .y-(array[j] [k] .y-array[j-1] [k].
y)/2.0)/(array[j][k].y
-array[j-1][k] .y);

}

else { I*
robe *I

}

}

on and inside p

band1[counter1]
=band2[counter2]=band4[counter4]
=band~[counter5]=0.0;

}

}

else if (j>jprobe && j<(jmax-1)){
if((k > 0) && (k < (kmax-1))){

band1[counter1]=2.0*pi*ce
ll_width*(array[j][k].y+(
array[j+1] [k] .y-array[j] [k].y)/2.0)/(array[j+!] [k] .y-arr
ay[j] [k] .y);

band2[counter2]=pi*((array
[j] [k] .y+(array[j+1] [k] .y
-array[j] [k] .y)/2.0)*(array[j] [k].y+(array[j+1][k] .y-arr
ay[j] [k] .y)/2.0) -(array[j]
[k] .y-(array[j] [k] .y-array[j-1] [k] .y)/2.0)*(array[j] [k].
y-(array[j] [k] .y-array[j-1]
[k] .y)/2.0))/cell_width;

band4[counter4]=pi*((array[
j] [k] .y+(array[j+1][k].y-
array[j] [k] .y)/2.0)*(array[j] [k].y+(array[j+1][k] .y-array
[j] [k] .y)/2.0) -(array[j]
[k] .y-(array[j] [k] .y-array[j-1] [k] .y)/2.0)*(array[j] [k].
y-(array[j] [k].y-array[j-1
] [k] .y)/2.0))/cell_width;

band5[counter5]=2.0*pi*cel
l_width*(array[j][k].y-(
array[j] [k] .y-array[j-1] [k].y)/2.0)/(array[j] [k] .y-array
[j-1] [k] .y);

}

else if(k==0){
band1[counter1]=0.0;
band2[counter2]=0.0;

119

}

else {

band4[counter4]=0.0;
band5[counter5]=0.0;

band1[counter1]=2.0*pi*(
array[j] [k] .y+(
array [j + 1] [k] . y-array [j] [k] . y) /2. 0) * cell_ width/ (array [j +
1] [k] . y-array [j] [k] . y);

band2[counter2]=0.0;
band4[counter4]=pi*((arra

y [j] [k] . y+ (
array[j+1] [k] .y-array[j] [k].y)/2.0)*(array[j] [k] .y+(array[
j+l] [k] .y-array[j][k].y)/
2.0)

-(array[j] [k] .y-(array[j
] [k] .y-array[j-1] [k] .y)/
2.0)*(array[j] [k] .y-(array[j] [k] .y-array[j-1] [k] .y)/2.0))/
cell_width;

band5[counter5]=2.0*pi*(a
rray[j] [ngp_horiz-1].y-(
array[j] [k] .y-array[j-1] [k].y)/2.0)*cell_width/(array[j] [
k] .y-array[j-1] [k].y);

}

}

}

else{

}

}

/*for(i=O;i<ngp;i++){

/*band1[counter1]=0.0;*/
band2[counter2]=0.0;
band4[counter4]=0.0;
band5[counter5]=0.0;

printf ("1/.ld 1/,e 1/,e 1/,e 1/.e 1/,e
\n", i, band! [i], band2 [i
],band3[i] ,band4[i],band5[i]);
}*/

I* Diagonal *I
for (j=O;j < jrnax;j++){

I* y < r_probe *I
if(j <= jprobe){

for(k=O;k < krnax;k++){
counter3++;
if(k >= 0 && (k < kprobe)){

if(j==O){
if (k==O){

120

band3[coun
ter3] =-1. 0;

}

else{
band3[coun

ter3]=-pi*(cell_width+
(array[j+1] [k] .y-array[j] [k] .y)*(array[j+1] [k].y-array[j] [k
] .y)/(2.0*cell_width));

}

}

else {
if (k==O){

band3[counte
r3]=-1.0;

}

else{
band3[counter

3]=-(2.0*pi*cell_
width*(array[j] [k] .y+(array[j+1][k] .y-array[j][k] .y)/2.0)/(arr
ay[j+1] [k] .y-array
[j] [k] .y) + pi*((array[j] [k] .y+(array[j+1] [k] .y-array[j][k].
y)/2.O)*(array[j][k].y
+(array[j+1] [k] .y-array[j] [k] .y)/2.0) -(array[j] [k] .y-(array[
j] [k] .y-array[j-1] [k]
.y)/2.0)*(array[j] [k] .y-(array[j][k] .y-array[j-1] [k] .y)/2.0))
/cell_width + pi*((ar
ray[j] [k] .y+(array[j+1] [k] .y-array[j] [k] .y)/2.0)*(array[j] [k].
y+(array[j+1][k].y-a
rray[j] [k] .y)/2.0) -(array[j] [k] .y-(array[j] [k] .y-array[j-1] [
k] .y)/2.0)*(array[j][
k] .y-(array[j] [k] .y-array[j-1] [k].y)/2.0))/cell_width + 2.0*pi
cell_width(array[j
] [k] .y-(array[j] [k] .y-array[j-1] [k] .y)/2.0)/(array[j] [k] .y-arr
ay[j-1] [k]. y));

}

}

}

else{

}

}

band3[counter3]=-1.0;
}

I* y > r_probe *I
else if(j<(jmax-1)){

<(jmax-1))){

for(k=0;k < kmax;k++){
counter3++;

if(k > 0 && (k < (kmax-1)) && (j

band3[counter3]=-(2.0*pi*

121

cell_width•(array[j][k].y+
(array[j+1] [k] .y-array[j][k].y)/2.0)/(array[j+1][k].y-arr
ay[j] [k] .y) + pi*((array[j
] [k] .y+(array[j+1] [k] .y-array[j] [k] .y)/2.0)•(array[j] [k].

y+(array[j+1][k] .y-array[j
] [k] .y)/2.0) -(array[j] [k] .y-(array[j] [k].y-array[j-1] [k
] .y)/2.0)•(array[j][k].y-(a
rray[j] [k] .y-array[j-1] [k] .y)/2.0))/cell_width + pi*((ar
ray[j] [k] .y+(array[j+1] [k].

y-array[j] [k] .y)/2.0)•(array[j] [k] .y+(array[j+1] [k] .y-ar
ray[j] [k] .y)/2.0) -(array[j
] [k] .y-(array[j] [k] .y-array[j-1] [k] .y)/2.0)•(array[j] [k]
.y-(array[j] [k] .y-array[j-1]
[k] .y)/2.0))/cell_width + 2.0*pi•cell_width•(array[j] [k]

.y-(array[j] [k] .y-array[j-1]
[k] .y)/2.0)/(array[j] [k] .y-array[j-1][k] .y));

}

else if (k==O){
band3[counter3]=-1.0;

}

else{
band3[counter3]=-(2.0*pi*

cell_width•(array[j][k].y+
(array[j+1] [k] .y-array[j] [k] .y)/2.0)/(array[j+1][k] .y-arr
ay[j] [k] .y) + pi*((array[j
] [k] .y+(array[j+1] [k] .y-array[j] [k] .y)/2.0)•(array[j] [k].
y+(array[j+1] [k] .y-array[j
] [k] .y)/2.0) -(array[j] [k] .y-(array[j] [k] .y-array[j-1] [k]
.y)/2.0)•(array[j][k].y-(ar
ray[j] [k] .y-array[j-1][k] .y)/2.0))/cell_width + 2.0*pi•ce
ll_width•(array[j][k].y-(ar
ray[j] [k] .y-array[j-1][k] .y)/2.0)/(array[j] [k].y-array[j-
1] [k] . y)) ;

}

}

}

}

else{

}

for(k=O;k < kmax;k++){
counter3++;
band3[counter3]=-1.0;

}

/•for(i=O;i<ngp;i++){
printf("¼ld ¼f

f ¼lf\n", i, band! [i] , b
and2[i] ,band3[i] ,band4[i],band5[i]);

¼f ¼f ¼

122

}*/
I* Form band vector to be submitted to the band solv
er *I
count=.-1;
for(i=O;i<ngp;i++){

for(j=1;j<=(2*lower_width+upper_width+1);j++){
count++;
if(j==lower_width+1) abd

[count]=band1[i];
else if(j==(lower_width+upper_width)) abd

[count]=band2[i];
else if(j==(lower_width+upper_width+1)) abd

[count]=band3[i];
else if(j==(lower_width+upper_width+2)) abd

[count]=band4[i];

width-1))
band5[i];

else if(j==(lower_width+upper_width+2+lower_
abd[count]=

else abd[count]=O.O;

}

}

printf("Going into LU factorization ... \n");

I* Call LAPACK subroutine to perform the LU factorization
*I

sgbtrf_(&m1,&n1,&lower_width,&upper_width,abd,&ldab,piv,&info);

if (info==O){
printf("LU decomposition successful. .. \n");
}

else{
printf("LU decomposition failed ... \n");
exit(1);
}

fwrite(abd,sizeof(float),count,abddata);
fclose(abddata);

fwrite(piv,sizeof(int),ngp,abddata2);
fclose(abddata2);
}

A.13 make_veloci ty _table. c
#define EXTERN extern
#include "lprobe60.h"

123

void make_velocity_table(void)
{

long i,num_div;
FLOAT accuracy,delta,deltay,v,p,p_exact;

num_div=100000;
deltay=1.0/((FLOAT)num_div);
accuracy=5.0e-6;
v=-1. 0;

I* Electrons *I
for(i=O;i < num_div-1;i++){

p=deltay * ((FLOAT)i);

do {
v=v+1.0;

l*p_exact=sqrt(2.0 / pi) * pow((m_elec/su
pere) / (boltz *
T * 11588.7),1.5)

* (sqrt(pi / 2.0) * pow(boltz * T *115
88.7 / (m_elec/
supere),1.5)

*erf(sqrt((m_elec/supere) / (2.0 * bolt
z * T * 11588. 7
)) * v)

- boltz * T * 11588.7 * v / ((m_elec/sup
ere) * exp((m_
elec/supere) * v * v

11588.7),1.5)
* T * 11588. 7

(m_elec) * v
* V

/ (2.0 * boltz * T * 11588.7))));*/

p_exact=boltz * pow((m_elec) / (boltz * T *

* (-2.0 * boltz * T * 11588.7 + 2.0 * exp(

/ (2.0 * boltz * T * 11588.7)) * boltz * T
* 11588. 7 -

(m_elec) * v * v)

* T * 11588.
7)) * (m_elec)

/(2.0 * exp((m_elec) * v * v / (2.0 * boltz

* (m_elec) * sqrt(boltz * T * 11588.7 / (m_elec)));

delta=fabs(p-p_exact);

}while(delta >= accuracy);

124

v_table_e[i]=v;
}

printf("Done creating electron velocity table ... \n");

IONS

v=-0. 01;

for(i=0;i< nurn_div - 1;i++){

p=deltay * ((FL0AT)i);

do {
v=v + 0.01;

* 11588.7),1.5)

on),1.5)

* v)

/*p_exact=sqrt(2.0 / pi) * pow((rn_ion) / (boltz * T

* (sqrt(pi / 2.0) * pow(boltz * T *11588.7 / (rn_i

*erf(sqrt((rn_ion) / (2.0 * boltz * T * 11588.7))

- boltz * T * 11588.7 * v / ((rn_ion * exp((rn_ion

/ (2.0 * boltz * T * 11588.7))));*/

p_exact=boltz * pow((rn_ion) / (boltz * T * 11588.7),
1.5) * T * 11588.7

* (-2.0 * boltz * T * 11588.7 + 2.0 * exp((rn_ion)

* V * V
/ (2.0 * boltz * T * 11588.7)) * boltz * T * 11588

.7 - (m_ion) * V * v)
/(2.0 * exp((rn_ion) * v * v / (2.0 * boltz * T * 1

1588.7)) * (rn_ion)
* (rn_ion) * sqrt(boltz * T * 11588.7 / (rn_ion)));

delta=fabs(p-p_exact);

}while(delta >= accuracy);
v_table_i[i]=v;

l*printf("1/.ld 1/.lf\n",i,v);*/
}

printf("Done creating ion velocity table ... \n");
}

A.14 rnover.c

#define EXTERN extern

125

#include "lprobe60.h"

This function moves the particles

void mover(PARTICLEDEF particle[numpart] ,long int num_part,
FLOAT timestep)
{

long inti;
FLOAT accelx,accelr,theta;

for(i=O;i < num_part;i++){
accelx=particle[i] .q * particle[i] .Ex/ particle[i] .m;
accelr=particle[i] .q * particle[i] .Ey / particle[i] .m;
theta=atan2(particle[i] .y,particle[i] .z);

particle[i] .vx=particle[i] .vx + accelx * timestep;
particle[i] .vy=particle[i] .vy + accelr * timestep * sin(theta);
particle[i] .vz=particle[i] .vz + accelr * timestep * cos(theta);
particle[i] .x=particle[i] .x + particle[i] .vx * timestep;
particle[i] .y=particle[i] .y + particle[i] .vy * timestep;
particle[i] .z=particle[i] .z + particle[i] .vz * timestep;
particle[i] .r=sqrt(particle[i].y*particle[i] .y + particle[i] .z*

particle[i] .z);
}

}

A.15 output_data. c

#define EXTERN extern
#include "lprobe60.h"

void output_data(PARTICLEDEF particlei[numpart],PARTICLEDEF particle2
[numpart] ,long int numpart1,long int numpart2,FLOAT me,FLOAT mi)
{

FILE *currdata;
FLOAT nde,ndi;
long int i2;

currdata=fopen("current_q100.dat","a");

avecurrent=current/(500.0*dti);avecurre=curre/(500.0*dti);avecurri=
curri/(500.0*dti);

COMPUTE NUMBER DENSITY

nde=ndi=O.O;

126

for(i2=O;i2 < numpart1;i2++){
if(particle1[i2] .r <= radius){
nde=nde + particle1[i2].m / me;

}

}

nde=nde / (pi*radius*radius*length);

for(i2=O;i2 < numpart2;i2++){
if(particle2[i2] .r <= radius){
ndi=ndi + particle2[i2].m / mi;

}

}

ndi=ndi / (pi*radius*radius*length);

if (t_count2 == 1){
fprintf(currdata,"

j je
}

V t
ji\n \n");

ne ni nde ndi

fprintf(currdata,"1/.f 1/.ld 1/.ld 1/.ld 1/.e 1/.e 1/.e 1/.e 1/.e\n",V,
t_count2,numelec,numion,nde,ndi,avecurrent,avecurre,avecurri);

fclose(currdata);

}

A.16

t_count=O;
current=curri=curre=O.O;

parameter.c
#define EXTERN extern
#include "lprobe6O.h"

/*This function sets initial plasma conditions and computes plasma
parameters to be used throughout the rest of the simulation *I

void param()
{

FLOAT avveli,avvele,gammai,gammae;

FLOAT numiperstep_back,numiperstep_front,
numiperstep_side,numeperstep_back,numeperstep_front,numeperste

p_side,fluxi_back,fluxi_front,
fluxi_side,fluxe_back,fluxe_front,fluxe_side,afront,aback,aside;

NUMBER OF PARTICLES TO INJECT AT EACH TIME STEP

superii_init=4OOOO;

127

superii_back=2;
superii_front=2;
superii_side=4;
superei_init=40000;
superei_back=5;
superei_front=5;
superei_side=8;

GEOMETRY

l*r_probe=1.25e-4;*/
r_probe=1.25e-4 - 3.0*(0.00003125);
l*r_insul=2.0*r_probe;*/
l_probe=0.00287;
l_insul=1.5*l_probe;
/*l_probe=0.00287 + 0.5 * 0.00287;
l_insul=1.0*l_probe;*/
radius=0.00395705;
length=4.0*l_probe;
height=width=2.0 * radius;
ioniter=70;
ioncount=0;
ion_rnove_count=100;
ecounter=0;
view=!;

T=2.0;
n=1.0e15;
rn_ion=1.673e-27;
q_ion=1.6e-19;
rn_elec=9. 11e-31;
q_elec=-1.6e-19;
wpdt=0.009;
plasrna_pot=0.0;

h=6.9*sqrt((T*11588.7)/(n*1.0e-6)) * 0.01;
cell_heighti=0.00003125;
cell_height2=0.00003713;
cell_height3=0.00004301;
cell_height4=0.00004889;
cell_height5=0.00005477;
cell_height6=0.00006065;
cell_width=0.0000574;

r_insul=r_probe + cell_height1;

wp=2.0*pi*9000.0*sqrt(n*1.0e-6);
elec_iter=15;
dt=wpdt/wp;dte=dt;dti=15.0*dte;
t_count=0;

128

sigmae=sqrt((boltz*T*11588.7)/m_elec);
sigmai=sqrt((boltz*T*11588.7)/m_ion);

I* Boundary Fluxing Setup *I

afront=4.0* radius* radius;aside=2.0 *radius* length;aback=
4.0 *radius* radius - pi*r_insul*r_insul;

avveli=sqrt((8.0*boltz*T*11589.7)/(pi*m_ion));
avvele=sqrt((8.0*boltz*T*11589.7)/(pi*m_elec));
gammai=n*avveli/4.0;
gammae=n*avvele/4.0;

fluxi_back=gammai*aback;
fluxe_back=gammae*aback;
fluxi_front=gammai*afront;
fluxe_front=gammae*afront;
fluxi_side=gammai*aside;
fluxe_side=gammae*aside;

numiperstep_back=fluxi_back*dti;
numeperstep_back=fluxe_back*dte;
numiperstep_front=fluxi_front*dti;
numeperstep_front=fluxe_front*dte;
numiperstep_side=fluxi_side*dti;
numeperstep_side=fluxe_side*dte;

superi_back=numiperstep_back/((FLOAT)superii_back);
supere_back=numeperstep_back/((FLOAT)superei_back);
superi_front=numiperstep_front/((FLOAT)superii_front);
supere_front=numeperstep_front/((FLOAT)superei_front);
superi_side=numiperstep_side/((FLOAT)superii_side);
supere_side=numeperstep_side/((FLOAT)superei_side);

I* Initial Loading Injection Setup *I

VOLUME=length*height*width - (pi* r_probe * r_probe * l_probe) -
(pi* r_insul * r_insul * l_insul);

superi_init=n * ((pi* radius* radius* length)-
(pi* r_probe * r_probe * l_probe) - (pi* r_insul * r_insul

* l_insul))
/ ((FLOAT)superii_init);

supere_init=n * ((pi* radius* radius* length)-
(pi* r_probe * r_probe * l_probe) - (pi* r_insul * r_insul

* l_insul))
/ ((FLOAT)superei_init);

injsuperi=superii_init;
injsupere=superei_init;

129

I* Parameteters needed for field solver *I
jprobe=((long int)(r_probe/cell_height1));
kprobe=((long int)((length-l_probe-l_insul)/cell_width));
}

A.17 probepic.c
#define EXTERN
#include "lprobe6O.h"
#include<stdlib.h>

I* This is the main program for a two dimensional PIC
simulation of a Langmuir probe. *I

void main(void)
{

/*FILE *efdata;*/
long int seed,i,i3,iter,i4,i5,i6;

FIELD SOLVER GLOBAL VARIABLES
test1=O,test2=O,test3=O,ldab=3*ngp2+1,n1=ngp,m1=ngp,ldb=
ngp,upper_width=ngp2,lower_width=ngp2;
x=521288629,y=362436O69,z=161638O1,c=1,n2=1131199299;

electron=(PARTICLEDEF *)malloc(numpart * sizeof(PARTICLEDEF));
ion=(PARTICLEDEF *)malloc(numpart * sizeof(PARTICLEDEF));
abd=(FLOAT *)malloc((2*lower_width+upper_width+2)*ngp*size
of(FLOAT));
b=(FLOAT *)malloc(ngp*sizeof(FLOAT));
phi=(FLOAT *)malloc(ngp*sizeof(FLOAT));
v_table_e=(FLOAT *)malloc(1OOOO1*sizeof(FLOAT));
v_table_i=(FLOAT *)malloc(1OOOO1*sizeof(FLOAT));
random_num=(FLOAT *)malloc((NPTS+i)*sizeof(FLOAT));
piv=(int *)malloc(ngp*sizeof(int));

l*efdata=fopen("efdat3O. dat", "w+"); *I

numelec=numion=t_count=t_count2=O;
V=3.5;

l*prefposition(2O,5);
prefsize(9O0,7OO);
vinit("X11");
mapcolor(S0,1OO,1OO,1OO);
mapcolor(56,175,175,175);
mapcolor(51,139,69,O);
mapcolor(52,2O,2O,2OO);

130

mapcolor(53,255,0,0);
mapcolor(55,238,201,0);*/

INITIALIZE ARRAY OF UNIFORM RANDOM NUMBERS
seed=100;
random_number(seed);
rancount=O;

param();

gridgen(grid);

make_velocity_table();

initialize(electron,&numelec,superei_init,supere_init,
v_table_e,m_elec,q_elec);

seed=101;
random_number(seed);
rancount=O;

initialize(ion,&numion,superii_init,superi_init,v_tabl
e_i,m_ion,q_ion);

printf("initial number electrons ==>¼ld
ions ==>¼ld\n",numelec,numion);

make_LU(grid);

printf ("Entering main program ... \n");

iter=12001;
for (i3 = O;i3 < 18;i3++){

V=V+1. 5;
if (i3 > 0)

iter=3501;
for (i = O;i < iter;i++){

.
if (rancount > (NPTS - 500)){

}

seed=seed + 100;
random_number(seed);
rancount=O;

for(i6=0;i6 < 15;i6++){

reset_grid(grid);

qweight(grid,electron,numelec);

initial number

131

qweight(grid,ion,numion);

e_field(grid);

fweight(grid,electron,numelec);

inject(electron,&numelec,supere_back,supere_
front,supere_side,

superei_back,superei_front,superei_
side,v_table_e,m_elec,q_elec);

mover(electron,numelec,dte);

boundary(electron,&numelec,q_elec);
}

fweight(grid,ion,numion);

inject(ion,&numion,superi_back,superi_front,super
i_side,

superii_back,superii_front,superii_
side,v_table_i,m_ion,q_ion);

mover(ion,numion,dti);

boundary(ion,&numion,q_ion);

t_count++;
t_count2++;
if (t_count == 500 I I t_count2==1){

output_data(electron,ion,numelec,numion,
m_elec ,m_ion);

}

}

}

/*fclose(efdata);*/
l*vexit() ;*I
exit(!);

}

#undef IA

#undef IM
#undef AM
#undef IQ
#undef IR
#undef NTAB
#undef NDIV
#undef EPS

132

#undef· RNMX
#undef NRANSI

A.18 probepic.h
#include <stdio.h>
#include <math.h>
/•#include<sgidefs.h>•/

#define FLOAT float

#define xButton□ffset
#define yButton□ffset

0.15
0.08

#define SWITCHBOXx -0.07
#define SWITCHB□Xy -.85
#define EXITB□Xx 0.84
#define EXITB□Xy SWITCHB□Xy

#define PRINTB□Xx .65
#define PRINTB□Xy SWITCHBOXy

#defin·e EPSO 8. 85e-12
#define EPSA103 10.44e-12
#define pi 3.14159265359
#define ngp 14874
#define ngp1 74
#define ngp2 201
#define numpart 80000
#define boltz 1.38e-23
#define RAD 0.00378864
#define IA 16807
#define IM 2147483647
#define AM (1.0/IM)
#define IQ 127773
#define IR 2836
#define NTAB 32
#define NDIV (1+(IM-1)/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)
#define NRANSI
#define NR_END 1
#define FREE_ARG char*
#define NPTS 600005

I• Environment Variables•/
#define black 0
#define white 15
#define gray 50

133

#define gray2 56
#define light gray 56
#define darkorange 51
#define midblue 52
#define red 53
#define gold 55

Global Variables

typedef struct {
FLOAT x,y,q_dens

,Ey,Ex,phi;
}GRIDDEF;

typedef struct {
FLOAT x,y,z,r,vx,vy,vz,Ex,Ey,q,m;
unsigned long cellx,celly;

}PARTICLEDEF;

typedef unsigned long int unlong;

typedef struct
{

FLOAT x1PositionUp;
FLOAT x2PositionUp;

FLOAT y1PositionUp;
FLOAT y2PositionUp;
char ButtonText[2O];
short TextColor;
short aBorderColorUp;
short bBorderColorUp;
short cBorderColorUp;
short dBorderColorUp;
short aBorderColorDown;
short bBorderColorDown;
short dBorderColorDown;
short FillColorUp;
short FillColorDown;

short cBorderColorDown;

} PushButton;

GLOBAL VARIABLES

PARTICLE GLOBAL VARIABLES

EXTERN PARTICLEDEF •ion,*electron;

/• GRID/GEOMETRY GLOBAL VARIABLES •/
EXTERN long int ngp_vert,ngp_horiz,jprobe,kprobe,jinsul,kinsul;
EXTERN FLOAT cell_height1,cell_height2,cell_height3,cell_height4,

134

cell_height5,cell_height6,cell_height,cell_width,r_probe,r_insul,
l_probe,l_insul,radius,length;
EXTERN GRIDDEF grid[ngp1] [ngp2];

FIELD SOLVER GLOBAL VARIABLES
EXTERN int test1,test2,test3,ldab,*piv,n1,rn1,ldb,upper_width,lower_
width,info,nrhs;
EXTERN long int jprobe,kprobe,kinsul;
EXTERN FLOAT band1[ngp] ,band2[ngp],band3[ngp] ,band4[ngp],band5[ngp],
*abd,*b,*phi;

I* PLASMA PARAMETER GLOBAL VARIABLES */
EXTERN FLOAT T,n,rn_ion,q_ion,rn_elec,q_elec,rn_part,plasrna_pot;

INJECTION SETUP GLOBAL VARIABLES
EXTERN long int injsuperi,injsupere,superii_init,superii_back,superii
_front,superii_side,superei_init,

superei_back,superei_front,superei_side,rancount,elec
_iter;
EXTERN FLOAT supere,superi,sigrna,sigrnae,sigrnai,wpdt,h,wp,dt,superi_in
it,superi_back,superi_front,superi_side,supere_init,supere_back,supere
_front,supere_side,*v_table_e,*v_table_i,height,width,*randorn_nurn,dti,dte;

COUNTING GLOBAL VARIABLES
EXTERN long int torn,nurnelec,nurnion,t_count,t_count2,nurn,ioncount,ioniter
,ion_rnove_count,ecounter;

I* GRAPHICS GLOBAL VARIABLES *I
EXTERN long int view,page;

BOUNDARY GLOBAL VARIABLES
EXTERN FLOAT V,current,VOLUME,avecurrent,curri,curre,avecurri,avecurre
,ins_charge;

I* TESTING VARIABLES
EXTERN long int t1,t2;
EXTERN FLOAT *vxdata;

EXTERN unlong x,y,z,c,n2;

I* Prototypes *I
void random_number(long int seed);
unlong msmith_ran();
void ReadinBigArrays(void);
void gridgen(GRIDDEF array[ngp1][ngp2]);
void par am();
void initialize2(PARTICLEDEF particle[numpart],PARTICLEDEF particle2[n
urnpart]);
void initialize(PARTICLEDEF particle[nurnpart] ,long int *num_part,long
int init_nurn,FLOAT super_init,FLOAT *v_table,FLOAT m,FLOAT q);

13,5

void make_velocity_table(void);
void injecte(PARTICLEDEF particle[numpart]);
void injecti(PARTICLEDEF particle[numpart]);
void inject(PARTICLEDEF particle[numpart],long int *num_part,FLOAT sup
er_back,FLOAT super_front,

FLOAT super_side,long int superinj_back,long int superi
nj_front,

long int superinj_side,FLOAT *v_table,FLOAT m,FLOAT q);
void qweight(GRIDDEF array[ngp1] [ngp2] ,PARTICLEDEF particle[numpart] ,1
ong int number);
void make_LU(GRIDDEF array[ngp1] [ngp2]);
void e_field(GRIDDEF array[ngp1] [ngp2]);
void fweight(GRIDDEF array[ngp1] [ngp2] ,PARTICLEDEF particle[numpart] ,1
ong int number) ;
void boundary (PARTICLEDEF particle[numpart] ,long int *num_part,FLOAT q);
/*void mover(PARTICLEDEF array[numpart],long int num_part);*/
void mover(PARTICLEDEF array[numpart] ,long int num_part,FLOAT timestep);
void graph(GRIDDEF array[ngp1] [ngp2] ,PARTICLEDEF particle1[numpart] ,PA
RTICLEDEF particle2[numpart]);
FLOAT gasdev(long int *idum);
FLOAT ran1(long int *idum);
void output_data(PARTICLEDEF particle1[numpart] ,PARTICLEDEF particle2[
numpart] ,long int numpart1,long int numpart2,FLOAT me,FLOAT mi);
void locatex(GRIDDEF xx[ngp1] [ngp2], unsigned long int n, FLOAT x, uns
igned long int *jj);
void locatey(GRIDDEF xx[ngp1] [ngp2], unsigned long int n, FLOAT x, uns
igned long int *jj);
void reset_grid(GRIDDEF array[ngp1] [ngp2]);
void recombination (PARTICLEDEF heavy_part[numpart],long int *num_heav
y,PARTICLEDEF elec[numpart] ,long int *num_part);

/*FLOAT *vector(long int nl, long int nh);
void nrerror(char error_text[]);
void free_vector(FLOAT *V, long int nl, long int nh); *I

short CheckButton (PushButton TomButton);
short MakeButton (FLOAT xi, FLOAT y1, PushButton *TomButton, char But
ton Text [20]) ;
void ClearMouseBuffer();
void DrawButton(PushButton TomButton);
void DrawButtonDown(PushButton TomButton);
void main(void);

A.19 random_number. c

#define EXTERN extern
#include "lprobe60.h"

I* Common Block Declarations *I

136

struct klotz0_1_ {
float buff[607];
long int ptr;

};

#define klotz0_1 (*(struct klotz0_1_ *) &:klotzO_)
#define rnin(a,b) (a<b)?a:b

struct klotz1_1_ {
FLOAT xbuff[1024];
long int first, xptr;

};

#define klotz1_1 (*(struct klotzl 1 *) &:klotzl_)

I* Initialized data *I

struct {
long int fill_1[1214];
long int e_2;
} klotzO_ = { {O}, 0 };

struct {
FLOAT fill_1[1024];
long int e_2[2];
FLOAT e_3;
} klotzl_ = { {O}, 0, 0, 0. };

void randorn_nurnber(long int seed)
{

/*long int torn;*/
extern long int fischet_(), zufalli_(), norrnalt_(), zufallt_();

zufalli_(seed);
zufall_(NPTS,randorn_nurn);

/*for (torn=O; torn<100; torn++) pr long intf ("randorn_nurnber [¾d] =¼f\n", torn,ra
ndorn_nurn[torn]);*/

}

int zufall_(n, a)
long int n;
FLOAT *a;
{

long int buffsz = 607;

137

long int left, aptr, bptr, aptrO, i, k, q;
FLOAT t;

long int nn, vl, qq, k273, k607, kptr;

I* portable lagged Fibonacci series uniform random number *I
I* generator with "lags" -273 und -607: *I
I* W.P. Petersen, IPS, ETH Zuerich, 19 Mar. 92 *I

L1:

aptr = O;
nn = n;

if (nn <= 0) {

return O;
}

I* factor nn = q*607 + r *I

q = (nn - 1) / 607;
left= buffsz - klotz0_1.ptr;

if (q <= 1) {

I* only one or fewer full segments *I

if (nn < left) {
kptr = klotz0_1.ptr;
for (i = O; i < nn; ++i) {

a[i + aptr] = klotz0_1.buff[kptr + i];
}

klotz0_1.ptr += nn;
return O;

} else {
kptr = klotz0_1.ptr;

/*pragma _CRI ivdep*/
for (i = O; i < left; ++i) {

a[i + aptr] = klotz0_1.buff[kptr + i];
}

klotz0_1.ptr = O;
aptr += left;
nn -= left;

I* buff-> buff case *I
vl = 273;
k273 = 334;
k607 = O;
for (k = O; k < 3; ++k) {

l*pragma _CRI ivdep*/
for (i = O; i < vl; ++i) {

138

t = klotz0_1.buff[k273+i]+klotz0_1.buff[k607+i];
klotz0_1.buff[k607+i] = t - (FLOAT) ((long int) t);

}

}

} else {

}

k607 += vl;
k273 += vl;
vl = 167;
if (k == 0) {

k273 = O;
}

goto Li;

I• more than 1 full segment •I

kptr = klotz0_1.ptr;
/•pragma _CRI ivdep•/

for (i = O; i < left; ++i) {
a[i + aptr] = klotz0_1.buff[kptr + i];

}

nn -= left;
klotz0_1.ptr = O;
aptr += left;

/•buff-> a(aptrO) •I

vl = 273;
k273 = 334;
k607 = O;
for (k = O; k < 3; ++k) {

if (k == 0) {
/•pragma _CRI ivdep•/

for (i = O; i < vl; ++i) {

}

t = klotz0_1.buff[k273+i]+klotz0_1.buff[k607+i];
a[aptr + i] = t - (FLOAT) ((long int) t);

k273 = aptr;
k607 += vl;
aptr += vl;
vl = 167;

} else {
/•pragma _CRI ivdep*/

}

for (i = O; i < vl; ++i) {
t = a[k273 + i] + klotz0_1.buff[k607 + i];
a[aptr + i] = t - (FLOAT) ((long int) t);

}

k607 += vl;
k273 += vl;
aptr += vl;

139

}

nn += -607;

I* a(aptr-607) -> a(aptr) for last of the q-1 segments *I

aptr0 = aptr - 607;
vl = 607;

for (qq = 0; qq < q-2; ++qq) {
k273 = aptr0 + 334;

l*pragma _CR! ivdep*/
for (i = 0; i < vl; ++i) {

t = a[k273 + i] + a[aptr0 + i];
a[aptr + i] = t - (FLOAT) ((long int) t);

}

}

nn += -607;
aptr += vl;
aptr0 += vl;

I* a(aptr0) -> buff, last segment before residual *I

vl = 273;
k273 = aptr0 + 334;
k607 = aptr0;
bptr = 0;
for (k = 0; k < 3; ++k) {

if (k == 0) {
l*pragma _CR! ivdep*/

for (i = 0; i < vl; ++i) {
t = a[k273 + i] + a[k607 + i];
klotz0_1.buff[bptr + i] = t - (FLOAT) ((long int) t);

}

k273 = 0;
k607 += vl;
bptr += vl;
vl = 167;

} else {
l*pragma _CR! ivdep*/

}

}

goto L1;
}

} I* zufall_ *I

for (i = 0; i < vl; ++i) {
t = klotz0_1.buff[k273 + i] + a[k607 + i];
klotz0_1.buff[bptr + i] = t - (FLOAT) ((long int) t);

}

k607 += vl;
k273 += vl;
bptr += vl;

140

long int zufalli_(seed)
long int seed;
{

I* Initialized data *I

long int kl = 9373;
long int ij = 1802;

I* Local variables *I
long int i, j, k, 1, m·

'
FLOAT s' t·

'
long int ii, jj;

I* generates initial seed buffer by linear congruential *I
I* method. Taken from Marsaglia, FSU report FSU-SCRI-87-50 *I
I* variable seed should be O < seed <31328 *I

if (seed != 0) {
ij = seed;

}

i =
j =
k =
1 =
for

ij I
ij ¼
kl I
kl ¼
(ii
s =
t =
for

177 ¼ 177 + 2;
177 + 2;
169 ¼ 178 + 1.

'
169;

= O; ii< 607; ++ii) {
0.;
.5;
(jj = 1; jj <= 24; ++jj) {
m = i * j ¼ 179 * k ¼ 179;
i = j;
j = k;
k = m;
1 = (1 * 53 + 1) ¼ 169;
if (1 * m ¼ 64 >= 32) {

s += t;
}

t *= (FLOAT).5;
}

klotz0_1.buff[ii] = s;
}

return O;
} I* zufalli_ *I

long int zufallsv_(svblk)
FLOAT *svblk;

141

{

long int i;

I* saves common blocks klotzO, containing seeds and *I
I* polong inter to position in seed block. IMPORTANT: svblk must be *I
I* dimensioned at least 608 in driver. The entire contents *I
I* of klotzO (polong inter in buff, and buff) must be saved. *I

I* Function Body *I
svblk[O] = (FLOAT) klotz0_1.ptr;

l*pragma _CR! ivdep*/
for (i = O; i < 607; ++i) {

svblk[i + 1] = klotz0_1.buff[i];
}

return O;
} I* zufallsv *I

long int zufallrs_(svblk)
FLOAT *svblk;
{

long inti;

I* restores common block klotzO, containing seeds and pointer *I
I* to position in seed block. IMPORTANT: svblk must be *f
I* dimensioned at least 608 in driver. The entire contents *I
I* of klotzO must be restored. *I

klotz0_1.ptr = (long int) svblk[O];
l*pragma _CR! ivdep*/

for (i = O; i < 607; ++i) {
klotz0_1.buff[i] = svblk[i + 1];

}

return O;
} I* zufallrs *I

A.20 reset_grid. c
#def in·e EXTERN extern
#include "lprobe60.h"

void reset_grid(GRIDDEF array[ngp1] [ngp2])
{

long int count1,count2;

142

CLEAN UP GRID

for (count1=0;count1 < ngp_vert;count1++){

}

}

for (count2=0;count2 < ngp_horiz;count2++){
array[count1] [count2].q_dens=O.O;

}

14:3

Appendix B

Sample PROBEPIC Output

V no ni nde ndi j• ji

-2 .000000 50122 89975 1. 034675•+15 1.035351•+15 4 .4346050-08 -6 .4856090-07 6. 9290700-07
-2 .000000 1001 60742 89679 1.027824•+15 1.036164e+15 -1.253903e-06 - 1. 586498e-06 3.325954e-07
-2 .000000 2001 60595 89475 1 . 02694Se+ 1 S 1.03S040e+15 9. 1463720-07 0. 0000000+00 9. 146372e-07
-2 .000000 3001 60929 89042 1.028149•+15 1.0353030+15 1. 4487020-06 0. 0000000+00 1. 448702e-06
-2 .000000 4001 60881 88407 1 . 027870•+15 1. 037666•+ 15 2 .4139540-06 -5. 4880530-08 2. 4688350-06
-2 .000000 5001 60934 87555 1.031526e+15 1. 038886e+16 3. 4225260-06 -5. 4880530-08 3.477406e-06
-2 .000000 6001 60983 86618 1.032126•+15 1. 039155•+15 3. 7413120-06 0. 0000000+00 3. 7413120-06
-2 .000000 7001 60821 85669 1.0296680+15 1. 037647•+15 3. 729057.-06 -5. 488053•-08 3. 7839390-06
-2 .000000 8001 60802 84940 1.026566•+15 1. 0365670+16 3. 920064e-06 -5. 4880530-08 3. 9749450-06
-2 .000000 9001 60837 85168 1. 028196e+15 1. 036306e+15 3. 682870e-06 0. OOOOOOe+OO 3. 6828700-06
-2 .000000 10001 60846 85056 1. 0267800+ 15 1.0360S3e+15 4. 3354740-06 0. 0000000+00 4. 335474e-06
-1. 500000 11001 60838 85051 1.0286870+15 1.0362560+15 3. 6228420-06 -3. 2928320-07 3. 9521260-06
-1. 500000 12001 61063 85174 1.031903e+15 1.035799e+15 3. 703354e-06 -3.1722730-07 4. 020582e-06
-1. 500000 13001 61030 85522 1.028492•+15 1.036193e+15 3. 3032700-06 -3.841637•-07 3 .6874340-06
-1. 500000 14001 61028 85535 1.0303890+15 1.036176•+15 3. 751090e-06 -1.0976110-07 3 .8608530-06
-1. 500000 15001 61119 85329 1.0314740+15 1.0361850+15 3. 7920490-06 -1.6464160-07 3. 9566900-06
-1. 500000 16001 61110 85497 1.030035•+15 1. 036208•+15 3. 6504580-06 -2. 195221e-07 3. 8699800-06
-1. 500000 17001 61030 85328 1.0305140+15 1. 036523e+15 3. 901344e-06 -2. 7440270-07 4. 1757460-06
-1. 000000 18001 61254 85323 1.033299e+15 1.036517e+16 1 . 924923e-06 -1. 799002e-06 3. 723944e-06
-1 .000000 19001 61057 85441 1. 0333670+15 1. 036220•+15 2. 7539900-06 -1.152491e-06 3. 9064890-06

144

VITA

Thomas E. Markusic was born and raised in rural northeastern Ohio. He spent

his early years in Mantua, enjoying the benefits of country living - exploring nature,

harassing various farm animals, and appreciating the freedom from worry that comes

with separation from the bustle.

Tom was educated public secondary schools. In high school, he was active in

wrt>stling and foot ball. At the encouragement of his girlfriend, Christa J. English (now

Christa E. Markusic, his wife), Tom entered engineering school, obtaining a B.S. in

Aeronautical and Astronautical Engineering from The Ohio State University in 1993.

After receiving a NASA Space Grant Fellowship, he enrolled in the Master's program

at The University of Tennessee Space Institute. In the fall of 1996 he completed the

degree requirements for Master's degrees in both Physics and Aerospace Engineering.

Also. in March of this year, his first child was born, Elena Maria Markusic.

Early in 1996 Tom was awarded an Air Force Palace Knight Fellowship. He

intends to use this fellowship to pursue a Ph.D. in Mechanical Engineering at Stanford

{T niversity, specializing in electric propulsion.

14.5

	Particle simulation of a Langmuir probe in quiescent and flowing plasmas
	Recommended Citation

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058(1)
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081(1)
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145
	0146
	0147
	0148
	0149
	0150
	0151
	0152
	0153
	0154
	0155
	0156

