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ABSTRACT 

A three dimensional electrostatic Particle-In-Cell (PIC) code has been developed 

to simulate a Langmuir probe in both quiescent and flowing plasmas. The code was 

\\'ritten to model the use of the Langmuir probe in plasma regimes for which no closed­

form analytical solutions exist; this is the case for a probe in an ion beam, such as the 

plume of an ion thruster. 

Langmuir probes a.re used to determine local plasma properties, such as electron 

tPmperature, by careful dissection of the probe's Voltage-Current (V-I) characteristic. 

To interpret experimental data from a Langmuir probe, one must separate ion from 

P]Pctron current. This process is well documented for quiescent plasmas; however, 

uo systematic techniques a.re available for interpreting data obtained using an electric 

probe in an ion beam. Ad hoc estimates of probe ion current in beam plasmas may 

lead to order of magnitude errors in the calculation of electron temperature. The PIC 

code described in this thesis was written to elucidate the beam-probe interaction and 

provide systematic techniques for legitimately interpreting experimental data. 

Elements of electric probe and PIC theory in general are discussed; in particular, 

plasma sheath theory and methods used in fluxing particles across boundaries a.re 

dPscrihed in detail. Code results (i.e. Current-Voltage characteristics) a.re presented 

for a low density, quiescent plasma and a neutralized ion beam. Code and theoretical 

probe traces for an infinite cylindrical probe in a quiescent plasma. are shown to be 

in agreement. Also, code results for a plasma beam a.re compared with experimental 

data from the UTSI three grid ion thruster. 
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Chapter 1 

Introduction 

It is estimated that more than 99.9 percent of the matter in the known universe is 

in thf' plasma state. In our generation, man has first attempted to extend his domain 

beyond tllf' earth: therefore. it is only fitting and natural that man should strive to 

understand and exploit the unusual properties of the plasma state of matter. 

This increasing interest has led to the development of many methods. or diagnostic 

trrlmiqufs. to measure the composition and thermodynamic properties of plasmas. 

:\ !llong others, these include: microwave interferomometry, electron, ion, and neutron 

!warns. and electrostatic probes. The subject of this thesis is electrostatic probes 

or. more specifically, Langmuir probes (named in honor of Irving Langmuir, who 

clc---veloped the original theory and experimental methods for their use in the mid­

twenties ). The Langmuir probe has an important advantage over many other plasma 

diagnostic techniques: it allows one to obtain local as opposed to average ( or line­

i nt<--grated) plasma properties. 

Langmuir probes have a broad range of applicability - from glow discharges to 

fusion plasmas. They find use in both laboratory and industrial environments. The 

simplicity of the Langmuir probe experimental setup makes it an attractive diagnostic 

for the experimentalist. In plasma processing control, they may be used to give an 

indication that a plasma processing device is producing the same plasma characteristics 
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. . 
as on a pnor occas10n. 

Since their inception, many theoretical studies have been conducted to understand 

t lw lwhavior of Langmuir probes. I. Langmuir and H. Mott-Smith pioneered both the 

exiwrimental and theoretical interpretation of probe data. More advanced treatments 

resulted from a better understanding of plasma sheaths; the work of Bohm [4] in the late 

fortiPs is particularly noteworthy for its elucidation of sheath phenomena. In an effort 

to include the proper potential distribution in the sheath, Allen [1] derived expressions 

for current collection which included the effect of electron potential barriers, while ions 

werP assumed to be immobile, or "cold." Bernstein and Rabinowitz [2] expanded upon 

t lw work of Allen by also allowing for monoenergetic ions. Laframboise [5] completed 

thP picture by incorporating both thermal electrons and ions. 

All of the tlworetical work described above assumes current collection in a colli­

sionless, quiescent plasma by an infinite cylindrical probe. The purpose of this thesis 

is to introduce a particle-in-cell (PIC) code, PROBEPIC. PROBEPIC extends the 

work of previous treatments by simulating the behavior of finite length probes. In 

its present form, PROBEPIC may be used to conduct Langmuir probe experiments 

in hoth quiescent and flowing plasmas. We are compelled to use the term "experi­

ments'' because the PIC method, which uses computational particles to represent real 

electrons and ions, gets as close to reality as we can expect to on a computer. 'Ne 

are not simply numerica.lly integrating a set of differential equations; the PIC method 

introduces experimental realities such as statistical deviations. PROBEPIC enables 

us to conduct parametric studies on and interpret experimental data from Langmuir 

probes. For example, the effect of probe dimensions or specific plasma conditions may 

he explored. Also, the results of the "hand" analysis of experimental data may be 

vnified by running PROBEPIC with similar experimental conditions. In this thesis 

we perform such tasks. The effect of the probe aspect ratio on experimental results 
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is quantified, perhaps for the first time. The results of experimental data from an ion 

th rust er plume a.re scrutinized. 

\Vhile the results presented in this thesis are interesting, the knowledge attained in 

the development of PROBEPIC is equally important, as unique/novel techniques were 

dev<>loped. Consequently, this treatment presents PROBEPIC in the broad context of 

rclf'vant theory, and then focuses on specific techniques to implement this theory in the 

rnmptitat.ional environment. Chapter 2 describes analytical techniques that have pre­

viously been developed to grapple with the difficult task of interpreting experimental 

Langmuir probe data. The analytical techniques serve as limiting cases by which to 

evaluate the general validity of PROBEPIC output. Chapter 3 describes the various 

facets of the PIC technique in general, and establishes a theoretical framework for 

th<' algorithms used in PROBEPIC. Chapter 4 presents a thorough treatment of the 

theoretical and computational details specific to PROBEPIC. This chapter is the most 

important since it describes techniques that cannot be found elsewhere. Chapter ,5 de­

tails the results of the application of PROBEPIC to several problems and summarizes 

the prPsent study ~ suggesting future applications of PROBEPIC. 
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Chapter 2 

Plasma Sheath and Electric Probe 
Theory 

O,w of the most outstanding characteristics of a plasma is its ability to maintain 

intPrnal charge neutrality. Near boundaries, which would otherwise disturb this quasi-

1w11t rality. the plasma redistributes its constituent particles in such a manner as to 

shiPld tlw bulk of the plasma from the perturbation. This is accomplished through a 

thin plasma layer called a sheath in which ion and electron densities can differ. Thus, 

larg<' <'lectric fields can be sustained to counter those fields imposed by the perturbing 

object. 

[f we can develop accurate theoretical models for this shielding effect, then we may 

imwrt objects. or efrrtric probes, into plasmas and infer bulk plasma thermodynamic 

properties from the careful analysis of charge collection for various applied probe 

potPni.ials. In short. valid interpretation of experimenta.1 probe data hinges on a 

t horo11gh understanding of the mechanisms at play in a plasma sheath. 

l T 11fortunately. the customary equations that govern the motion of plasmas change 

character drastically in the vicinity of the boundaries. Consequently, the theory of 

prolws is extremely complicatPd. For this reason the literature on probes is extens­

in'. Pven attracting the interest of twentieth-century scientific giants such as Irving 
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Langmuir and David Bohm. The methodology used in the references is mathematic­

a II Y intensive. In the following sections we condense and filter previous research to 

s11it tlw needs of the pr<"sent treatment - looking qualitatively at results that will 

lw directly applicable to the interpretation of PROBEPIC output found in chapter 5. 

The interested reader may find more detailed treatments in the references listed in 

tlw bibliography. 

2.1 Sheath Theory 

Bulk plasma tends to be quasi-neutral, even in systems which are finite and have 

ho1111daries. The plasma isolates itself from the boundaries through a non-neutral 

plasma sheath. The structure of sheaths is very much dependent on the particular 

problem geometry and the thermodynamic state of the plasma. Solutions almost al­

\\"a_vs depend on simplifying assumptions; these assumptions are problem dependent. 

Tlwrefore. in this treatment we focus on theory relevant to electric probes: current 

rn/frdion and sheath boundary conditions in steady state, uniform, isotropic, collision­

Jpss. single ion species. and unmagnetized plasmas. 

Let us first consider some general, qualitative sheath properties. Figure 2.1 will be 

11sed to illustrate the structure of planar sheaths under various boundary conditions. 

First. consider boundaries A and B as infinite conducting planes whose potentials 

are cb.1 and ¢B respectively. In the absence of an intervening plasma, the potential 

simply increases linearly as shown in the bottom curve. As a second example, let the 

boundary .4 be a grounded infinite conducting plane, and boundary Ba point far away 

inside the (quasi-neutral) bulk plasma. The potential is modified significantly with the 

addition of a quiescent plasma. If the ions and electrons are in thermal equilibrium, 
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V 

A 

d X 

Figure 2.1: Schematic of the potential distribution between two constant potential 
planes for different intervening media. 

tlwn 

(2.1) 

⇒ -- -Ve ~ni 
Vi - me . 

(2.2) 

Equation (2.2) reveals that the mean velocity of the electrons in the plasma is much 

grC'atC'r than that of the ions, because mi » me. Consequently, unchecked, the electron 

Aux to boundary A would be much greater than that of the ions, and the neutrality of 

thP bulk plasma would soon be broken. The plasma avoids this by charging positive 

with respect to the boundary - setting up an electron repelling sheath to balance 

Plectron and ion losses. This is the origin of a finite plasma potential, </JB, which 

is illustrated by the top curve in Figure 2.1. As a final illustrative example, again 

consider boundaries A and B as infinite conducting planes whose potentials are </>A 

and d>a respectively (the following derivation follows Chen [19] closely). Let </>A = 0 

for simplicity. Further, consider boundary A as a surface which emits electrons ( of 

mass rn and charge -e) vvith zero velocity, and boundary B as a perfectly absorbing 
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smface at potential <ba. In this conservative system the Hamiltonian is constant: 

H=T + \l=0, (2.3) 

=} ~mv2 = e\/(:r), (2.4) 

and therefore the instantaneous velocity of an electron is 

1 

v(,r) = (2e\/(:r))2 
rn. 

(2.5) 

If the current density is defined by 

j(:r) = n(:r) v(:r), (2.6) 

t11f'n tlw number density is , using (2.5), 

I 

(. )- .( )[2e\/(x)l- 2 
n,r -JX 

m 
(2.7) 

Poisson's equation for the electrostatic potential may then be written (in Gaussian 

units) 
d2\l 

d:r 2 
-4rrp(x) 

4rren(x) 
I 

4rrej(x) [2e:(:r)l-2 

l\l11ltiplying both sides by d\//dx and integrating from x = 0, we find 

! (dV) 2 

2 dx 

(2.8) 

(2.9) 

Since we have electrons with zero velocity at x = 0, the electric field must also vanish, 

that is. 

- =0 (d\/) 
d:r O • 

(2.10) 
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Tims. rearranging (2.9) we have 

(2.11) 

Integrating (2.11) from J" = 0 to .r = d vve find 

(2.12) 

or 
3 

. 2 ½ VJ 
J(d) = (me) 91rd2 • 

(2.13) 

Equation (2.13) is the Child-Langmuir ~-power law, which describes space-charge­

limitul current ffow between two planes separated by a distance d with a potential 

\ R ht>tween them. A more realistic case would allow the electrons to enter with finite 

velocities. This has the effect of initially depressing the potential below zero, or the 

b11ilding up of a field to oppose the emmision of electrons. The potential associated 

with this situ at ion is represented by the middle curve in Figure 2.1. Langmuir [3] 

derived an expression for space-charge-limited current for particles which enter with 

a thermal, or Maxwellian distribution: 

j(d)= (2-)½_1 (Va-l~n)½ (l+2.66)' 
me 91r ( d - ,Tm ) 2 /ii 

(2.14) 

\\"here \ ;,, is the potential minimum, Xm is the associated position of the potential 

minimum. and r7 = eFa/kT. Although we formulated this derivation for electrons. the 

formulas are also valid for ions in an attractive potential if appropriate masses and 

temperatures are used. 

The derivation above has a more specific interpretation - it is a first order ap­

proximation for the current collected by a conductor immersed in a plasma. Boundary 

A is analogous to the outer edge of the sheath through which particles from the bulk 

plasma cross due to thermal motion. and boundary Bis analogous to a current collect­

ing conductor. This analogy. however, has its limitations. First, a collisionless planar 
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sheath is assumed. For a perfectly absorbing infinite plane conductor, all particles 

move town rd the conductor; no particles move away from the conductor, implying that 

half of the distribution function is missing. In an experimental plasma, the plasma 

compensates for this by allowing the applied potential to extend far into the bulk 

plasma. thus blurring the concept of a sheath altogether. Second, the model assumes 

all charge that crosses the sheath edge is collected at the opposite boundary as current. 

In practice. however. particles are free to execute orbital trajectories which would not 

11f'cessarily result in collection. In any event, it has been shown experimentally that 

the Child-Langmuir model gives reasonable results in the thin sheath limit. More will 

he said about these issues in Section 2.2 in the discussion of electric probes. 

We have considered how current might be collected through a plasma sheath. To 

complete the picture vve should define the relative dimensions of sheaths; the following 

derivation closP!y follows that of Chen [19]. Consider a plane conductor at x = 0 and 

pofrntial \ 0 immersed in a plasma of dimensions R and undisturbed number density 

11 0 . Poisson's equation for the one-dimensional problem is: 

d2V 
- = -41re(n· - n ) d:r2 i e 

If Wf' introduce the dimensionless variables 

ev 
,7 = - kTe' 

( 2 .15) becomes 

where. 

11 i 
v---

! - ' no 

h ·- ( kTe ) ½ 
.- 41rnoe2 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

For simplicity, assume that the ions are relatively immobile as compared to the elec­

trons. that is. they are uniformly distributed. Assume that the electrons a.re in a 
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Boltzmann distribution: 

-ry 
ne = nae . (2.19) 

Poisson ·s Pquation then takes the form 

(2.20) 

If 17 is srna.11, we can expand the exponential in a Taylor series: 

-ry 1 e ~ -17+ ... , (2.21) 

\\"hich results in the Poisson equation taking the form 

d217 
d(:r/h)2 = 17. 

(2.22) 

Finally, the solution of (2.22) yields 

ll _ l/ -(x/h) 
v - voe . (2.23) 

Equation (2.23) shows that an externally applied potential of magnitude \'0 is effect­

iYE'ly shielded (i.e. reduced to 1/e of its initial value) within a distance of order h. 

TllP Jpngth h is called the Debye shielding length. 

In this section we have shown that current collection by electric probes can be rep­

resentE'd. at least to first-order, by space-charge-limited current flow through sheaths 

whose characteristic dimension is the Debye length. A more detailed treatment of the 

sheath has been given by Bohm [4], which includes stability boundary conditions. 

2.1.1 Bohm Sheath Theory 

TllP formulas derived above for space-charge-limited current assume that the electric 

fip)d at tlw sheath edge is exactly zero. However, in reality the shielding is not quite 

p<"rfect. and a small portion of the potential drop between electrode and plasma may 

10 



1w1wtrate beyond the sheath edge. While at first glance it may seem pedantic to worry 

aho11t small fields that extend beyond the sheath edge; however, it turns out that the 

extent to which the potential extends into the bulk plasma may determine the overall 

stability of the sheath. 

Rohm proposed that Dehye shielding be divided into three phenomenologically 

diffr,rcnt regions, as illustrated in Figure 2.2: the plasma region, transition region, 

and sheath region. Within the plasma charge neutrality prevails, with a very gradual 

increase in potential in the direction of the electrode. The sheath region is charac­

terized by a large potential gradient, and negligible electron density. In between, the 

transition region bridges the small and large field regions of the plasma and sheath 

res1wctively. In other words, there is no precise point where one can say the sheath 

ends and the plasma begins. The combined transition and adjacent plasma regions 

are often refered to as the presheath. 

\Ye will now derive a condition which explains why plasma fields cannot be neg­

lPcted - why the plasma/sheath transition may not be abrupt. 

<p 
SHEATH 
REGION 

TRANSITION 
REGION 

PLASMA REGION ---► 

X 

Figme 2.2: The variation of potential near a wall; 1> is the negative of the potential. 
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Boundary Conditions for Sheath 

In this simplified model we consider a one-dimensional sheath as illustrated in Figure 

2.2. lous are assumed to have been accelerated through the presheath up to the sheath 

edge through the plasma potential Vo, that is, the role of the plasma fields are taken 

i 1110 acrount by assuming that they provide ions at the sheath edge with some mean 

energy equal to e\/ci-

Following Bohm [4]. we first write down Poisson's equation for the potential inside 

the sheath region, 

V 2 \-· = 41re(n - n ) + e ' 
(2.24) 

wlwre 11+ is the ion density and ne is the electron density. We assume that the electrons 

arf' in a Boltzmann distribution: 

( e(V - Vo)) 
ne = n0 exp - kTe (2.25) 

Sinn' the ions have kinetic energy eV, their velocity is 

V+= ~-v-;;;-; (2.26) 

From continuity, the current density ( J = nv) must be the same at the edge of the 

sheath and at all internal points; therefore, 

(2.27) 

(Vo 
=} n+ = noy V. (2.28) 

Reassembling (2.24) gives 

_d2. V = 4rrnoe [ (¼_Vo - exp (--e(V_-_vo))] 
d.r 2 V V kTe 

(2.29) 

12 



l\[ultiplying (2.29) by dV/d:r and integrating we find, 

l (dV) 2 
[ r;;-;; kT ( e(V - V)) l 2 d:r = 41rnoe V l'o V + -;- exp - kTe O + C . (2.:30) 

The constant is C found by assuming that the electric field vanishes as V -+ Vo, that 

is. d\/d.r = 0 when,,.= \ 0. Implementing this condition and rearranging terms we 

find. 

(d\") 2 
C) {·. ( {V ) kTe [ ( e(V-\10)) ]} 

rh- = ~7rnoe 2\o V ¼ - 1 + ----;,- exp - kTe - 1 (2.31) 

:-\s ,. approaches \i0, we are justified in expanding the right-hand side of (2.31) in a 

pow<"r series in~,· (where ~V = \l - l'o), in which case we find 

_l_(dV) 2 ~ ~ (_.:._ __ 1 ) (~V) 2 . 

81r11 0e d:r 2 kTe 2va (2.32) 

flpcause ( dl/ d.r )2 ~ 0, real solutions are only possible if 

e 1 
(2.33) ->-

kTe - 2Vo ' 

or. 

i· kTe e lo> - . 
- 2 (2.34) 

Equation ( 2.34) tells us that a stable sheath is possible only when ions reach the 

slieat h ,vith a kinetic energy at lea.st half the thermal energy of the electrons. In 

many experimental plasmas, the bulk plasma ion temperature may be significantly 

lower than the electron temperature. Equation (2.34) tells us that the sheath can 

1w stabilized only if some mechanism is at work to bring the ion energy up to half 

the electron energy upon entry into the sheath. This leads us to conclude that the 

jfff'sheath is a real and necessary region in the Debye shielding process. It should be 

nwntioned that for ion energies less than half the thermal energy of the electrons, the 

slwath Equation (2.29) predicts oscillatory solutions. This is what we mean by stable 



vs. unstable sheaths. \,Ve should, however, remember that this derivation is based on 

t lw assumption of a planar sheath, and recall the comments from Section (2.1) about 

tlw validity of this assumption. 

We will now turn our attention to how the sheath theories developed in this section 

are implPmentecl to provide a basis for the theory of charge collection by laboratory 

<'lectric probPs. 

2.2 Electric Probe Theory 

Electrostatic probes are experimenta.lly very simple devices. They genera.lly consist 

of a metallic electrode (partially insulated and partially exposed) connected to an 

PXtPrnal circuit outside of the plasma. The external circuit usually consists of a DC 

power supply (which is used to bias the probe positive and negative relative to the 

plasma). and an ammeter or oscilloscope to measure the probe current. In this thesis 

we will be concerned only with the cylindrical Langmuir probe, which is basically a 

wire with part of the insulation stripped back. 

Let us first get a qualitative idea of how Langmuir probes work. Figure 2.3 illus­

trates a typical. albeit somewhat idealized, experimental voltage-current (VI) charac­

teri:.;tic. Total current to the probe is plotted as a function of probe bias potential. 

ElPctron current to the probe is taken as positive by convention, ion current. negative. 

Tl1f' potential <Ps is the local zero, or plasma potential. For potentials greater than 

o., the probe attracts electrons; probe potentials less than <Ps repel electrons. Ions, 

having opposite charge, are repelled when ¢ > <Ps, and attracted when ¢ < <Ps• Let us 

consider the various regions of the the VI characteristic in more detail. 

The point labeled C in Figure 2.3 corresponds to ¢ = <Ps, the plasma potential. 

There is no probe sheath at this potential; therefore, charged particles freely migrate 
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Figure 2.3: Typical voltage-current (VI) characteristic for a Langmuir probe. 

to the probe because of their thermal velocities. As shown earlier in section 2.1, the 

Plectron thermal velocity is much greater than that of the ions; consequently, at <l>s, 

what is collected by the probe is predominantly electron current, as illustrated in the 

figurP. 

Behveen C and D the probe is biased positive relative to <l>s, collecting an increasing 

numbn of electrons and a diminishing number of ions. The exact amount of increased 

P]Pctron current for an incremental increase in probe potential is highly dependent on 

the state ( e. g. number density, temperature, etc. ) of the bulk plasma, that is, the 

pffectiveness of the Debye shielding. In the thin sheath case, the VI characteristic has 

a pronounced knee at point C. Incremental increases in probe potential lead to little 

or no increase in probe current. For this reason, the potential and current associated 

\\·ith point C are often refered to as the electron saturation potential and current. 

As the probe potential is made negative relative to <l>s, it begins to repel electrons 
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and attract ions. The dectron current drops off very rapidly. As will be shown later, 

if th<" ciPctrons are in a Maxwellian distribution the electron current will decrease 

exponentially in the region between points A and C. Between points B and C. a 

pott'11tia.l dJ f exists at which the total collected current is zero. This point is called 

1 lw flonfing potrntinl: at this point the field is sufficient to repel all electrons except a 

f111x equal to the ion flux. 

If the probe potential is made negative relative to ¢1 we reach ion saturation at 

point B. The discussion above about electron saturation at point C applies analogously 

for ion saturation. It should be mentioned, though, that in plasmas which contain low 

etwrgy ions the sheath formation for the ions may be quite different than for the 

f'ledrons. since a large ion attracting presheath region may be necessary to satisfy the 

Bohm condition. 

No exact analytical theory exists to determine the VI characteristic for arbitrary 

pla:c-nrn conditions. The main difficulty is that the problem requires a self-consistent 

solution of the equations of motion and the Poisson equation. When one formulates the 

relevant equations, a set of simultaneous non-linear differentia.l equations results for 

\\"hich no closed-form analytica.l solution is available. Simplifying assumptions may be 

introduced to make the problem more tractable; however, these assumptions restrict 

the solution's validity to a narrow set of plasma conditions. 

Approximate solutions are available for two limiting cases: very thin sheaths, and 

,·ery thick sheaths. For thin sheaths (i.e. h « rp, where rp is the probe radius) space­

charge-limited current collection is assumed, where it is assumed that any particles 

crossing the sheath are collected. The resulting theoretical VI characteristic has very 

sharp knees, as pictured at points B and C in Figure 2.3. On the other hand, for 

very thick sheaths (i. e. h » rp) orbital motion limited (OML) current collection 

is assumed. The OML current is the current collected by the probe when none of 
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thP undisturbed particles ( at infinity) capable of reaching the probe on the basis of 

energy considPrations is excluded from doing so by intervening barriers of effective 

potentials. In other words, we neglect the influence of the sheath altogether, and 

simply compute particle orbits using the space-charge-free electric field of the the 

probe. Those orbits that intercept the probe are counted as current. In this case, 

the rf'sult.ing VI characteristic does not have sharp knees at points B and C; rather, 

then" is a very subtle ( and often almost indiscernible) change from positive to negative 

cnrvature. 

Sincf' the OML theory is most relevant to the analysis of the results computed 

using PROBEPIC, we will focus on theory which describes the thick sheath limit. 

2.2.1 The Classical Probe Theory of Langmuir and Mott-Smith 

I. Langmuir and H.M. Mott-Smith conducted the first electric probe measurements, 

crnd consequently. developed the first probe theory [3] to interpret their data. In this 

sPdion we describe their rf'sults for infinite cylindrical probes. 

The Langmuir/Mott-Smith theory describes orbital motion limited current collec­

tion. Again, this approximation is valid in the thick sheath limit, where the Debye 

]pngth is much larger than the probe radius. In this limit not all of the particles 

PntPring the sheath will strike the probe because of the possibility of orbital trajector­

iPs. Only those particles with the appropriate impact parameter, energy, and angular 

momentum will be collected. The details of the derivation are quite long, and can be 

found in the original paper; therefore, we will go directly to the result. For ions with 

a l\Taxwellian velocity distribution function, with the possibility of collection from 

,.I' to infinity, the ion current collected by a cylindrical probe as a function of probe 

potential is given by: 

(2.35) 
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where . 

. \I' := probe aru1. 

Xx := 1H0 1tfral plasma density, 

Z; := ion degree of ionization, 

c := t-"if,fron charge, 

J, := Boltzmann constant, 

T; := ion temperature. 

m; := mas.c. of ion 

and. 

J·. = e-Xp for v > 0 
' ' ,\P ' 

where. 

Z;e</>p 
\p = kT; . 

, for XP < 0 , (2.36) 

(2.37) 

(2.38) 

r:i,, is the probe potential measured relative to the plasma potential. Equations (2.37) 

and ( 2.:38) are are valid for electrons if the appropriate mass and charge sign are 

substituted into all formulas. 

A theoretical VI characteristic is assembled by evaluating (2.37) and (2.38) for 

both the electrons and ions. and adding the individual contributions to yield the 

total current. Figure 2.4 illustrates theoretical Langmuir results for several plasma 

temperatures. In the plot, the electrons and ions were assumed to be in thermal 

equilibrium; all parameters other than temperature were held constant. The plot 

is typical of a quiescent rarefied plasma. There is no distinct knee to indicate the 

location of the plasma potential (in the illustrated curves the plasma potential was set 

to O[\ ·]). Increasing plasma temperature has the effect of shifting the characteristic 

up and flattening the electron repelling region. This intuitively makes sense; higher 
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Figure 2.4: Langmuir theory VI characteristics for several temperatures. 

t<'mperatures are associated with higher energy electrons, which will have a greater 

ability to penetrate the potential barrier and sustain a dominant electron current to 

tlw probe. 

The value of the Langmuir theory is that it enables us to determine the thermody­

namic properties of experimental plasmas from their VI characteristic. Let us pretend 

that the data in Figure 2.4 is experimental data, that is, assume we know nothing 

about the temperature, number density, etc. associated with this pseudo-experimental 

data. Equation (2.35) has the general form (for electrons), 

fe = /3 )e , (2.39) 
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or. in the electron repelling region (using (2.37) and (2.38)), 

e¢p 

le = /3 ekTe • 

Taking the natural logarithm of both sides of (2.40) we find 

e 
=} ln(/e) = kTe c/>p + ln(/3) . 

Equation (2.41) has the form of a straight line 

wlwre. 

y =ax+ b, 

- e a - kTe 

b = ln(;3). 

(2.40) 

( 2.41) 

(2.42) 

(2.43) 

Notice that the only unknown value in a is the electron temperature, Te. Thus, if 

''"e plot In( I e) as a function of c/>p, and pick off the value of the slope in the electron 

retarding region, we can immediately determine the temperature of the electrons. The 

natural logarithm of electron current for the same conditions used to produce Figure 

2.4 is shmvn in Figure 2.5. Consider the lower curve, the solid line. From the figure 

we can estimate the slope in the electron repelling region, 

(2.44) 

Thus, the estimated electron temperature is 

e 
Te~ ok = 11-594.2[k] = l.0[eV] , (2.45) 

20 



-12 

-14 

C: 

-16 

-18 

-20 

-10 -5 0 

--- T=1eV 

T=2eV 

T=5eV 

5 10 

Potential [V] 

FigurP 2.5: N at.ural logarithm of electron current vs. potential for several temperat-
11 J'f'S. 

whi,h corresponds directly to the actual temperature used to construct the character­

istic initiallv. 

The logarithmic plot also helps to identify the plasma potential. In Figure 2.,5 

the knee at O [V] is much more apparent than in Figure 2.4. If we know the plasma 

potential, then we can immediately identify the saturation current. At saturation, 

particles are unimpeded from moving toward the probe and therefore the collected 

charge is simply the thermal flux, 

I= Aenc 
4 ' 
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c= fSk'I'_ V-;-;;; (2.47) 

Sine<' we have already determined the plasma temperature, we can use the experi-

11ie11tal value of saturation current and equation (2.44) to determine the number dens­

it.v. 

111 this section we have shown how the Langmuir and Mott-Smith theory may be 

us<'d to determine the thermodynamic properties of a plasma in the OML limit. The 

theory provides important results even for plasma. regimes which do not correspond 

to the 01\IL limit; it provides an upper bound for the current collected by a probe 

under collisionless conditions. This is because potential barriers which result from 

slwath formation can only reduce the number of charged particles which are able to 

r<'ach the probe. 

2.2.2 Other Descriptions of Quiescent Probe Theory 

It was mentioned earlier that no exact analytical theories exist for Langmuir probes; 

however, numerical solutions have been developed to solve the governing equations. 

Tlw most widely accepted of these is that of Laframboise [.5]. The techniques de­

veloped by Laframboise are sufficient for establishing the VI characteristics of cyl­

indrical probes over essentially the entire range of conditions in which collisions can 

he neglected. 

Laframboise developed a strategy to solve the collisionless Boltzmann equation. 

The assumption of a. Maxwellian distribution for the attracted as well as repelled 

s1wcies results in a nonlinear system of integral equations. These equations must be 

solved numerically by an iterative procedure. The details of the procedure are quite 

complicated and may be found in the original paper. 

!\[any experiments have shown the validity of the Laframboise formulation. Fig-
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Fignre :2.6: Comparison of Langmuir and Laframboise results in a rarefied plasma. 

me 2.6 shows theoretical predictions of the Langmuir and Laframboise theory for 

identical plasma conditions. In general, the Laframboise formulation predicts lower 

rnrr<>nt collection than predicted by the OML theory of Langmuir. The plasma repres­

ented in the figure is of very low density (N = 8.0 x 10-10 [cm-3]); plasmas at higher 

df'nsities ,vill show even greater deviation. This, of course, is expected since the previ­

ously unaccounted for sheath potential barriers are fully modeled in the Laframboise 

theor)'· 

2.2.3 Probe Theory for a Flowing Plasma 

\Vf' may wish to make Langmuir probe measurements in flowing plasmas (such as in 

tlw plume of an ion thruster), where the ions have a mean velocity much greater than 
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t lwi r thermal velocity. It has been found that electron collection will be essentially 

t lw same as in quiescent plasmas; however, ion collection mechanisms may be quite 

<1 iffnP11t. 

[f tlw directf'd euergy of an ion beam is much greater than the thermal energy, it 

may lw impossible for an ion sheath to be established. The situation is worst when 

the probe is aligned perfectly with the direction of the flow. Appealing to the Bohm 

stability criteria, which places a fundamental condition on the normal component of 

ion \'f'locity, a probe aligned with the flow will see ions with predominantly tangential 

vPlocities, and consequently will be unable to form an ion sheath. As a result, the 

ion collection will be influenced most by geometric factors, that is, the exposed cross­

sectional area of the probe normal to the flow direction. Therefore, we expect to collect 

a minimum amount of ion current when the probe is aligned with the flow (where the 

exposed cross-sectional area is essentially the probe tip cross-sectional area), and a 

maximum amount of ion current when the probe is perpendicular to the flow. Also, 

since the inertia of the directed ions may be quite large, the collected ion current may 

be independent of voltage. 

The postulates put forth in the previous paragraph have been verified experiment­

a 1\_v: however, one anomalous and initially overlooked effect has been found. When 

thf' probe is aligned with the flow, a phenomena called the "end effect" may come into 

play. The end effect leads to the counter-intuitive result that the ion current collection 

will be maximum when the probe is aligned with the direction of the flow. Experi­

mental data illustrating this effect is shown in Figure 2.7, from Sonin [6]. The effect is 

fouud in plasma regimes in which the OML theory is applicable. In the OML regime, 

the effect of the sheath becomes small; that is, the probe potential may reach far into 

the bulk plasma and attract ions from many Debye lengths away. When the ions move 

in trajectories tangential to the probe surface (i. e. , when the probe is aligned with 
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Figure 2.7: Illustration of the encl effect. The figure shows the variation of ion current 
with angle of attack. The clashed line is theoretical, from Langmuir. The solid line is 
Pxperimental data, from Hester and Sonin (reproduced with permission of Sonin). 

thf' flow), they will spend the greatest amount of time (as compared to other probe 

orientations) under the influence of the attractive potential. Consequently, the probe 

may collect the greatest amount of current at zero angle of incidence. In this model, 

high aspect ratio (lp/rp) probes should be most vulnerable to the encl effect. Perhaps 

tlw Pncl effect should be more appropriately called the "thin probe effect". 

To avoid complications associated with the end effect, it may be experimentally 

preferable to orient the probe transverse to the flow. Theoretical prediction of the 

ion nirrent is then straightforward, based simply on the side-view cross sectional 

area of the probe; however, interpretation of the electron current may be complicated 

because the upstream electron sheath may be obliterated by the high velocity ion 

flux. Therefore, calculating electron temperatures from the dissection of the electron­

rdarding portion of the VI characteristic must include a velocity correction. It is the 

author's opinion that the introduction of such "fudge factors" belies the complexity of 
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the situation and should probably be avoided altogether. 

This chapter has nwrely touched the surface of the theory that has been developed 

for the interpretation of Langmuir probe data. The vast amount of treatments available 

is evidence of the complexity of the problem (the papers by Chen [19] and Chung 

[:21] give excellent summaries of the most important work), and justifies the present 

work ~ a direct particle simulation. What has been presented here is merely that 

information necessary to make statements about the validity of the PROBEPIC results. 

[11 the following two chapters the theory behind and development of the PROBEPIC 

codP is described in detail. 
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Chapter 3 

The Particle-In-Cell Technique 

This chapter introduces the fundamentals of the particle-in-cell (PIC) technique. 

The basic strategy of the technique is outlined on an elementary level to enable the 

r<'ader who is unfamiliar with PIC to move on to the latter chapters without having 

to consult other references. The various elements of the method will be clarified 

hy specific examples. These examples will elucidate PIC techniques in general as 

wf'll as establish a theoretical framework for the algorithms used in PROBEPIC, as 

presented in Chapter 4. The interested reader may consult the standard references 

[,. ~] for greater detail. 

3.1 What Is PIC ? 

PIC is a computational method used primarily for the simulation of plasma phe­

nomena. The acronym PIC describes the major principles embodied in the technique. 

h,rt icfr: PIC uses many discrete particles to simulate the collective behavior of a 

plasma: in this sense it attempts to simulate reality as closely as possible. Cell: a 

spatial grid on which the electromagnetic fields are computed is superimposed on the 

computational domain; particles in the cells formed by the grid transfer part of their 

"i<kntity" to the nodes that bound the cell. This eliminates the need to explicitly 
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compute the interaction of a given particle with every other particle. Instead the elec-

1 rornagnctic f-if'ld is dctf'rmined by using equivalent charge and current densities at 

1 lw 11odcs only. whicl1 drastically reduces the complexity of the field calculation ( there 

are gf'nerally many more particles than grid-points). Figure :3.1 is a schematic of the 

ohj<'ct s prPsent in any PIC code. The particles and boundaries represent real physical 

e11t it ies. \\'hi!f' tlw grid is a purely mathematical object. 

Grid 
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Figure 3.1: Schematic of PIC objects. 

The first and most obvious question one might ask is, "How can we expect to sim­

ula1f' plasmas particle-by-particle, which even at low densities would require billions of 

p,irt ides."" The answ<"r is svperpnrticles. Superparticles are computational particles 

\\"liich represent many real particles. For example, one superparticle might repres­

ent a million or more real electrons. In this way PIC becomes feasible on today's 

cornp11krs. 

The plasma rPginws for which PIC 1s applicahle are limited primarily by number 
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densitv. For number densities greater than approximately 1013 [cm-3 ] the number 

of s11perparticles rPquired to produce reasonable statistics becomes computationally 

prohibitivP: lwnce, the Pxtension of PIC into denser plasma regimes is contingent upon 

the dPvelopment of faster computers. 

The ti m e-sffp determines how far superparticles will move under the influence of 

the electromagnetic fiPld in one computational cycle. A complication often arises in 

determining a suitable time-step. The disparity in the relative masses of electrons 

and !wavy particles creates a situation in which electrons will move much (perhaps 

thousands. or millions of times) further in a given time-step than the ions - we have 

two different time scales. As a result a lot of computational time is wasted resolving 

PlPctron oscillations while waiting for the ions to catch up. If one is only interested 

in modeling the response of a slightly perturbed plasma and observing the resulting 

plasma oscillations the ions may be treated as "frozen", that is, fixed. The time­

step will then be determined by the desired resolution of the plasma frequency of 

tlw electrons. However. when the mass motion of the ions is important, such as in 

t lw modeling of ion acoustic waves or a Langmuir probe, schemes must be developed 

to ck·al with the difference in the time scales. One such scheme is to sub-cycle the 

electrons: the electrons are allowed to move many time-steps while the ions are held 

stationary; the ions then move a single time-step on their own time-sea.le. Sub-cycling 

may destroy information concerning electron oscillations, but if the goal is to simulate 

the macroscopic motion of the plasma, suitable results may be obtained. An even 

more exotic technique is to use a "hybrid" code in which the electrons a.re treated 

as a fluid (see, for example, Fife [9]) and computations are carried out on the ion 

time-scale. If we a.re interested in modeling a plasma which is both oscillating and 

flowing we a.re left with no alternative but to accept that the simulation will take a 

long time. 

29 



3.2 The Computational Cycle 

:\ PIC program is composed of several modules that work together to move particles 

through phase space. Each of these modules are executed once in a computational 

t inw stPp for Pach particle species. These modules are: the charge weighter, the field 

~ol\"f'l'. the force weighter, and the mover. The order of execution of these tasks for an 

PIPCtrostatic simulation is illustrated in Figure 3.2. 

Lf't us describe, in a general sense, one computational cycle; a more complete 

ckscription of each module will follow in sections :3.2.1-:3.2.4. A PIC program begins 

h_v initializing particle positions and velocities. From these initial conditions the charge 

density at the grid-points is computed. The Poisson equation is then solved yielding 

1 lw electric field at the grid-points. The field at the grid-points is then interpolated 

hack to the particles (i.e. the electric field at each particle position is computed). The 

final step is to integrate the Lorentz force equation to determine the new position and 

YP!ocity for each particle. The process then starts over for the next time-step. 

CHARGE WEIGHTING -- (Xi, Vi) (Pi, Ji) 

' 
MOVE PARTICLES FIELD SOL VER 

Fi - xi y. 
I (Pj,Jj) (Ej,Bj) 

j I 

FORCE WEIGHTING -
(Ej,Bj) Fi -

Figure 3.2: A typical cycle ( one time step) in a PIC simulation. 
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The four steps described above are found in all PIC programs. Most programs 

will also include modules to handle boundary interactions and output diagnostics. 

Also. otlwr modulPs may be included to handle interactions such as collisions. The 

beauty of the PIC technique is that new interactions may be almost seamlessly in­

tegrated into the program once the four core modules are operationa.l; the problem 

doPs not require a complete theoretical reformulation. We will now consider the core 

PH' modules individually in greater detail. For simplicity we will consider only an 

elPctrostatic model; however, the principles discussed apply in general for a full elec­

tromagnetic model once the Maxwell equations have been decoupled under a suitable 

gauge transformation. 

3.2.1 Charge Weighting 

The use of a computational grid considerably simplifies the computation of the 

electric field. It is much more efficient to solve Poisson's equation on Ng grid-points 

ratlwr than computing NP! Coulomb interactions between NP particles ( as, in general, 

S.'l « Np)-

The task is then to develop methods for transferring attributes ( e. g. charge) from 

the particles to the grid; this is the subject of weighting. The term weighting implies 

somP sort of interpolation. Various interpolation schemes will now be explored. 

Consider first, for simplicity, a system in which particles are constrained to move 

111 one dimension. The simplest interpolation scheme is to assign the charge of a 

particle to the nearest grid-point (the so-called NGP method). Also referred to as zero­

order weighting, the NGP method produces an effective charge density on the grid as 

pictmed in Figure 3.3a). It is clear that as this particle, of width ~X -1 X_; - X.i-t I, 

moves along the x-axis it causes a discontinuous jump in the grid charge density. In 

turn. thf' spatial and temporal behavior of the electric field will be noisy. Consequently 
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Figure :3_:3: Particle charge weighting. a) NGP weighting. b) First-order linear particle 
wf'ighting 

1 lw NGP weighting, while being computationally efficient, does not give satisfactory 

macroscopic results. 

Thus. we se('k an interpolation scheme which more uniformly distributes the particle's 

charge over space. First-order linear weighting allows the particle's charge to be dis-

t rihuted to not only one adjacent grid-point, but to its two nearest neighbors, as pic-

t ur('d in Figure 3.'.3b). The effective particle width then becomes 2~X, and the charge 

assigned to each grid-point is linearly related to the separation distance between the 

portide and the grid-point. For example, if the particle is at Xi, between grid-points 

at X_; and X,;+ 1 , then, 

. - . [~x -(xi - Xj)] - . [Xj+l - Xi] 
q., - q1 ~x - q, ~x ('.3.1) 



(3.2) 

\Ve may choose to use even higher order weighting schemes to get a smoother 

charge distribution on the grid; higher order schemes might use quadratic or cubic 

splines. In general the effective shape of the particle is called the shape function S( x ), 

,rnd the grid charge density may be written 

(3.3) 

for i charges in cells adjacent to Xj. Higher order interpolation is seldom used, as it 

becomes too computationally expensive. 

Two properties of any shape function are desired: charge conservation and absence 

of a sfff-force. Charge conservation is satisfied if the sum of the weighted node charges 

is P<pta! to the particle charge. For example, for the first-order weighting described 

abo,·P. 

qi [ , l ~x 
q1 + q1+1 = ~x xj+i - xi+ xi - .x1 = qi ~x = qi . ( 3.4) 

:\ sPlf-force occurs when the electric field, computed using the weighted node charges 

for a single particle, is nonzero at the particle's position (i. e. the particle exerts a 

force on itself). Again, for the first order weighting, the electric field at xi due to the 

weighted node charges at X1 and Xj+1 is: 

(3 .. 5) 

whi('h, using equations (3.1) and (3.2), yields 

Thus. in general, first-order linear weighting produces a finite electric field, or self­

forcc. at the particle position. Figure :3.4 shows the general behavior of (:3.6). The 
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Figme :3.4: Electric Field generated by the weighted charge of a single particle as a 
function of the particle's position within the cell. 

:-Plf-force is small when the particle is is near the center of a cell, and diverges for 

particle positions near the grid nodes. Further, as a particle traverses a cell it first 

ex1wriences a repulsive force, but after it passes the cell center it experiences an 

attractive force: therefore, one might expect that the self-force effects will "wash out" 

provided the particle stays in one cell for two or more time-steps. 

To further discuss the more philosophical issues of whether a weighting scheme is 

·'better" if it conserves charge or produces no self-force is beyond the scope of this 

thesis. Of course we would hope to find a shape function that achieves both ends. 

Pnfortunately, it is unclear whether or not such an object has been developed. 
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3.2.2 Field Solver 

In tht> P]t>ctrostatic model tht> Maxwell equations reduce to only one equation - the 

diffr·rential form of Coulomb's law, 

v -E(__,) = p(x) 
X E(X) ' 

(3. 7) 

wlwre E(x) is tht> dt>ctric field intensity, p(x) is the charge density, and E(x) is the 

electric permittivity of the medium. Since E(x) is irrotational, E(x) may be written 

as tlw gradient of some scalar potential </>(x): 

E(x) = -V<t>(x). (3.8) 

Combining (3.7) and (3.8) gives 

v2.-1-.(x) = _p(x) 
'f' E(x) ' 

(:3.9) 

which is of the form of Poisson's equation. The approach to determine the electro­

static field is to solve (:3.9) for </>(x) numerically with prescribed boundary conditions 

and charge density known at the grid nodes from previous application of the charge 

Wf'ighting algorithm. Once </>(x) is known we may compute E(x) using (3.8). 

The technique used to numerically solve Poisson's equation is highly problem 

dependt>nt. Factors that influence the choice of a particular solver include: 

• Symmetries in the computational domain. 

• Cartesian or curvilinear coordinates. 

• Desired accuracy. 

• A vailahle computer mf'mory. 
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If the computational domain is completely symmetrical, with periodic boundary con­

ditions. fast Fourier transforms may be employed to produce a very fast field solver. 

In general the boundary conditions a.re not periodic and the differencing of (3.9) leads 

to very large, sparse ma.trices. The literature available on sparse matrix technology 

is voluminous(e. g., see [10, ll]). The first decision one must make is the degree of 

accuracy desired. This leads one to choose an exact solver, which uses "brute force" 

to factor the matrix and give an exact (i. e. analytical) result (at least, to machine 

precision). or an ine.wct solver, which uses an approximate factorization to greatly 

reduce the number of required computations ( and consequently gives a result that 

diff Prs to some degree with the analytical result). The modeler must decide what 

accuracy /speed tracleoffs he is willing to make. A fina.l, non-trivial, consideration is 

the amount of physical RAM available on the target machine. Some field solvers may 

rPquire 50-100 MB of storage for the difference matrix alone. If the machine is not 

P<p1ipped with enough RAM it will utilize virtual memory and computations will be 

slowed. 

LPt us consider a simple example to clarify the points discussed above. Consider 

again a system in which the particles are constrained to move in one dimension in 

which case (:3.8) and (3.9) may be written 

and. 

d¢ 
Ex= --d ' 

;i; 

p 

One approach is to use the finite difference forms of (3.10) and (3.11) 

E . _ <Pj-1 - </Jj+l 
J - 26x 

<PJ-1 - 2</Jj + <PJ+l 
(6x)2 
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(3.12) 
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where j is the running grid node index (j=l,2, ... ,N). Equation (3.13) can be written 

more compactly as 

(3.14) 

whf're [A] is a N x N coefficient matrix, pis a N-dimensional column vector of source 

tPrrns. and <b is a column vector of N unknown potentials. To find J; we operate on 

both sides of (3.14) with [Ar 1 , that is, invert [A]. For the problem at hand, [A] is 

tridiagonal and. fortunately, many fast algorithms exist to invert tridiagonal matrices. 

Once the c/>.; have been computed, (3.12) is evaluated to determine the electric field at 

thf' grid-points. 

The field solver is generally called at every time-step; therefore, optimizing the 

fiPld solver for each application is important if computational bottlenecks are to be 

avoided. 

3.2.3 Force Weighting 

Force weighting is the process of interpolating the known electrostatic field intensities 

at the grid nodes back to the particles, that is, it is the process of "telling" ea.ch particle 

what field it is seeing as a result of the field solver computation. But this is simply the 

inwrse of the process used in the charge weighting algorithm to transfer information 

(charge) from the particles to the grid. In this case the information (field intensity) is 

transfered from the grid to the particles. Consequently, the same weighting algorithms 

that were discussed in section 4.2.1 may be applied directly to the force weighting 

problem. All of the conclusions regarding the suitability of a given weighting shape 

function remain unaltered. 

In order to a.void ( or at least reduce) self forces, it is desirable to use the same 

weighting shape function in both charge density and force calculations. So, for ex­

arnplP. the compatible force weighting algorithm to the first-order linear charge weight-
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ing would be (see (3.1) and (3.2)), 

E(.r·) = [Xj+I - 1'i] E [Xi -Xj] E , ~x J + ~x 1+1 
( 3. 1.5) 

A "trick of the trade" may be pointed out here. As pa.rt of the charge weighting 

algorithm, the cell position will be computed (i.e. we determine which cell the particle 

is in). This information is needed a.gain here. It therefore makes sense to store the 

position first in the charge weighting subroutine and simply retrieve it from memory 

here rather than recomputing it. The computational savings becomes pronounced 

in two and three dimensional codes which require large, computationally expensive 

subroutines to determine the cell location of a particle. 

3.2.4 Integration of the Equations of Motion 

Particles in an electrostatic PIC code move as a result of thermal excitation, Coulomb 

in1eractions with other particles, and the presence of electrodes biased with respect to 

tlw plasma potential. In the previous sections we discussed how the electrostatic force 

011 each particle is computed. In this section we describe how that force changes the 

particles position in six-dimensional phase space, that is, how its position and velocity 

are updated during each time-step. 

The Lorentz force equation in the electrostatic model reduces to 

--+ --+ 

F =qE, (3.16) 

wherP F is the electrostatic force on the particle, q is the superparticle charge, and E 
is the electrostatic field intensity at the particle position ( as determined in the force 

weighting algorithm). When combined with Newton's second law and the definition of 

vPlocity. ( 3.16) yields two first order differential equations to be integrated separately 

for each particle 

(3.17) 
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dx .... 
--v dt - . (3.18) 

Tn-o initial conditions are needed to solve these two first-order equations: the position 

and velocity at the end of the previous time-step. 

Equations ('.3.17) and (3.18) can be solved to any degree of accuracy. That is, one 

can 11se a higher order scheme (such as Runge-Kutta [12]) or opt for a simpler first­

order scheme, again trading accuracy for speed. The trend is to use a computationally 

efficient first-order scheme by replacing (3.17) and (3.18) by the finite-difference equa-

tions. 
.... .... 
Vnew - VoJd q _, 

f:lt = m Eold ' 

.... .... 
Xnew - XoJd .... 
--6.-t -- = V new , 

or. 

Ynew = Vold 
q .... + [-Eo1d] f:lt, 
m, 

Xnew == Xold + Vnew ~f ., 

where ~t is the time-step. This method has vanishing error as t:lt \,i 0. 

( 3.19) 

(3.20) 

(3.21) 

(3.22) 

The selection of an appropriate time-step, t:lt, is problem dependent. For simula-

1 ions ,,vhich involve semi-infinite computational domains where only plasma oscillations 

are to be observed, it can be shown [7] that setting w0 !:lt ~ 0.3 (where w0 is the char­

acteristic frequency, for example, the plasma frequency) results in small amplitude 

and phase error for some tens of cycles. In plasma devices (i.e. simulations which in­

volve boundaries such as conductors) the situation is quite different. Electrodes in the 

computational domain may create field strengths on the order of 1000 [V / cm] or more 

which will rapidly accelerate particles. Consequently, the time-step must be chosen 

such that particles will not move distances greater than the dimensions of the physical 

boundaries. For exarnplt->, in a. Langmuir probe simulation we cannot allow a particle 
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11Par the probe to move from one side of the probe to the other (i.e. through the probe) 

without being collected. \Ve must resolve its motion on a fine enough time scale to 

assurp that seYeral points in its trajectory will lie inside the probe so that boundary 

subroutines will be able to remove the particle and increment the current. The author 

has found that this restricts w0 D.t to values at least two orders of magnitude smaller 

than is needed to resolve plasma oscillations alone. 

3.3 Boundary and Initial Conditions 

TllP preYious section described the core PIC modules. These modules are developed 

independent of any particular problem. The physics of a specific simulation ( e. g. a 

Langmuir probe simulation) must be introduced in the form of boundary conditions. 

If the physics of these conditions is incorrect, even if the core PIC modules function 

flawlPssly, the ultimate results will be worthless. The careful process of preliminary 

df'sign may be divided into three categories: general considerations, boundary condi­

tions. and initialization conditions. Actual implementation of these concepts will be 

elaborated on further in chapter .5, where the PROBEPIC algorithms are developed. 

General considerations at the beginning of the simulation design process include: 

• Size of computational domain. 

• Number of grid-points. 

• Number of particles. 

• Position of objects ( conductors, insulators, etc. ) relative to the boundaries. 

The size of the computational domain must be large enough to encompass the 

intf'raction ·which is to be observed. For example, in the Langmuir probe simulation 

\Ye are interested in simulating the formation of a plasma sheath around the probe; 
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therPfore, the computational domain size must be chosen to be on the order of several 

DPh_\'f' lengths to allow the relevant fields to be established ( i. e. De bye shielding). 

The number of grid-points is determined by the Debye length. Since perturbations 

of tlw plasma will result in electron oscillations on the order of a Debye length, the 

grid must contain at least two grid-points per Debye length for these oscillations to 

hP J'f'sol VPd. 

The number of particles in a simulation determines its statistical accuracy. The 

infhwnce of the self-force which results from the charge weighting process can be made 

to "wash out" as progressively more particles are added. It is a "rule of thumb" that 

about ten or more particles should be introduced for each computational grid cell 

to give acceptable statistics. So, for example, a 10 x 10 computational grid would 

require 1000 or more particles. Also, the author has found that when dealing with 

sysfrms which contain disparate particle masses ( e. g. electrons and heavy ions), one 

should use a disproportionately large number of heavy particles in the simulation 

if their contribution to macroscopic results is to be accurately modeled. This is 

because the relative immobility of the heavy particles results in infrequent collisions 

with conducting surfaces; increasing the number of heavy super-particles increases the 

frequency of collisions, and consequently gives less noisy statiststical results. 

Attention must be paid to the positioning of objects within the computational 

domain in plasma device simulations. Objects should not be placed near boundaries 

\\"hich would result in non-physical effects. For example, if current collection on an 

electrode is being simulated, the electrode should not be placed near a computational 

boundary where particles are being introduced (fluxed across). Rather, it should be 

placed near the center of the computational domain, where particles have had a chance 

to tlwrmalize, and the effects of the (non-physical) computational boundary have had 

time to relax. 
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Boundary conditions determine how the plasma interacts with its surroundings. 

Boundary conditions include: 

• Particle fluxing across boundaries of the computational domain. 

• Surface, or material interactions of the plasma with objects in the computational 

domain. 

• Electromagnetic field boundary conditions. 

If a PIC simulation models a small plasma region that is actually contained by a 

much larger plasma, the flux of particles across the computational boundary must be 

modeled. This requires the development of a statistical model for both the velocity and 

angular distribution of particles entering the region to be simulated. Since the plasma 

outside of the computational domain is usually assumed to be neutral, adequate charge 

must be fluxed into the computational domain to account for particles leaving through 

the boundaries. 

In plasma device simulations one is usually interested in modeling how the plasma 

behaves as an active circuit element. The plasma interacts with the external circuit 

through contact with conducting surfaces within the computational domain. Thus, we 

must acrnrately model the physics of this interaction. For example, a particle colli­

sion ,vith a conducting surface might contribute to the current in the external circuit, 

or perhaps cause secondary emission. Insulating surfaces might serve as catalytic 

surfaces for re-combination. In any event, we must be sure that surface interactions 

which occur in the simulation do not violate fundamental physical laws, such as mat­

ter/ energy conservation, if the macroscopic results are to model the physical process 

accuratelv. 

A final set of boundary conditions to be considered are those used in the solution 

of tlw Poisson equation for the electric field. These boundary conditions enforce, for 
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<"xample, the absence of tangential electric fields at the surface of conductors, or define 

bias voltages for conducting surfaces. 

Initializing a PIC code involves choosing an initial distribution function for each 

species. f,(x, v, t = 0), including any initial perturbation, and distributing the 

particles throughout the computational domain to start the simulation. 

Clearly the design work to correctly model the relevant boundary conditions is 

time well spent. In fact. it may be said that the computational results are, figuratively 

speaking. the boundary conditions; therefore, if hasty guesswork is involved in estab­

lishing the bouncla.ry conditions one may as well guess the results and not attempt a 

computer simulation at all. 
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Chapter 4 

PROBEPIC 

PROBEPIC is a 2Dj:3V (the electric field has two components while the particles 

are free to move in three dimensions) PI C code designed to simulate the behavior of 

a Langmuir probe in both quiescent and flowing plasmas. It is a "pure" PIC code 

in that it does not introduce any fluid modeling such as is found in a hybrid code. 

The theory presented in Chapter 4 will now be applied to an actual simulation. A 

fr·w general remarks about the code will be made before the various algorithms are 

dissected in detail in the subsequent sections. 

The programming philosophy was to develop a concise, intuitively accessible code 

with as little redundancy as possible. The C programming language was most com­

patihlt> with these goals because: it allows for longer variable name lengths than FOR­

TRAN. it allows for complicated data structures, and it gives the programmer control 

over dynamic memory allocation. PROBEPIC is made up of twenty-three independ­

ent subprograms, each of which perform an individual task (e.g. mover, injector, etc. 

). These functions were designed to be independent of any external variables. For 

example, the mover can move electrons, ions, or rr+ mesons - by input of pointers 

to relt>vant field and dynamical variables, it performs the appropriate modifications to 

the pointer values. A lean executable file is not necessarily an indication of computa­

tional f'fficiency; a code can often be made to run faster by storing certain variables 
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that are usPd frequently rather than recomputing them over and over. For example, 

the computational time required to generate the LU decomposition of the difference 

rnatrix for the electric field solver takes about an hour on a Sun Sparc2000. This 

matrix remains unchanged and is used in every subsequent time step. Clearly, storing 

this matrix rather than recomputing it thousands of times makes good sense. The 

tradPoff is that the matrix occupies about sixty megabytes of RAM throughout the 

simulation. This size/speed tradeoff was exploited in many of the functions that make 

up PROBEPIC. 

PROBEPIC requires two non-standard libraries to compile: LAPACK [22] (linear 

algebra routines used by the field solver), and VOGL [23] (graphical display routines). 

The latter is not necessary if graphical output is not desired (graphical output is 

g<''nerally suppressed except in special circumstances such as debugging or taking 

'·snapshots"). PROBEPIC requires extensive computational resources. About 80-

1-101\IB of RAM is required. Approximately two data points can be generated per 

twenty-four hour period on a nominal 12'5 mega.flop ma.chine. 

In the following sections the core PROBEPIC functions will be described in de­

tail. In each case application of the theory developed in the beginning chapters and 

programming details will be described. A complete listing of the program source code 

may be found in Appendix B. 

4.1 Computational Domain Layout 

The computational domain in PROBEPIC consists of a cylindrical region which con­

ta ins a cylindrical Langmuir probe, as shown in Figure 4.1. The probe itself consists 

of a cylindrical conducting wire partially covered by an alumina. insulator. During 

a simulation the remainder of the computational domain is filled with approximately 
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Figure 4.1: Schematic of PROBEPIC computational domain layout. 

two-hundred thousand particles. 

The dimensions of the computational boundary were chosen to provide ample room 

for a plasma sheath to form around the probe. Since these dimensions are not known 

a priori, they were determined as part of the initial design work. PROBEPIC was 

nm several times with progressively larger computational domain sizes until the result 

( i .c. the current to the probe) stabilized. 

A "snap-shot" of PROBEPIC in operation is shown in Figure 4.2. The red super­

partides represent electrons, the green, ions. 

4.2 PROBEPIC Code Details 

All PROBEPIC sub-programs along with their function are listed in Table 4.1. In the 

following sub-sections both the theory and C implementation of the core PROBEPIC 

sub-programs will be presented side-by-side. This will enable future users of the code 

to understand what techniques were used in its development without having to dig 

through the source code. Where code is not explicitly shown, the reader may reference 
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Figure 4.2: Snap-shot of PROBEPIC simulation. 
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Figure -!.:2: Snap-shot of PROBEPIC' simulation. 



Table 4.1: PROBEPIC sub-program description. 

Sub-program Function 
bounclary.c Handles particle/boundary interactions for thermal 

particles. 
hounclar~· _twam.c Handles particle/boundary interactions for beam 

particles. 
charge _weight.c The charge weighter. 
ficlcL•mlver.c The electric field solver. 
force _weight.c The force weighter. 
graphics.c Graphical diagnostic output. 
grid.c Generates the computational grid. 
initialize.c Distributes the initial loading of thermal superparticles 

throughout the computational domain. 
initializeJwam.c Distributes the initial loading of beam superparticles 

throughout the computational domain. 
inject_beam.c Fluxes beam particles across boundaries into the 

computationa.l domain. 
injecLpart.c Fluxes thermal particles across boundaries into the 

computational domain. 
locate.c Determines what grid-cell a particle is in. 
rnake_LU.c Performs LU decomposition of difference matrix for 

subsequent use in field solver. 
make _velocity _table .c Creates arrays of velocities with for fluxing into 

the computational domain. 
maxwell.c Creates arrays of velocities with a Maxwellian 

distribution. 
1nover.c The mover. 
outpuLdata.c Generates PROBEPIC output file. 
paranwter.c Determines some necessary parameters used in 

other sub-programs from initial plasma conditions. 
probepic.c PROBEPIC main program. 
probepic.h Header file for PROBEPIC. 
randon1-.number. c Provides uniform random numbers for all 

PROBEPIC sub-programs. 
n'seLgrid.c Resets charge density, electric field, etc. at grid-

points to zero at beginning of each time-step. 
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Appendix A to see how a particular expression was implemented in the source code 

( the subsections are labeled with the appropriate sub-programs for each task). These 

s11hsPdions will also serve a pedagogical role; the PIC methodology presented in 

ChaptPr :3 will be expanded upon, and in some instances, novel approaches to PIC 

problems which were developed for PROBEPIC will be debuted. 

4.2.1 General Remarks (probepic .h) 

A brief word about PROBEPIC's header file is in order because it includes some of 

the codes overall design philosophy. Structures were used in the program for clarity. 

For example. particles( electrons, ions, etc. ) are of the type PARTICLEDEF - which 

has the associated properties of position, velocity, charge, etc .. The actual structure 

dPfinition looks like: 

typedef struct { 

FLOAT x,y,z,r,vx,vy,vz,Ex,Ey,q,m; 

unsigned long cellx,celly; 

}PARTICLEDEF; 

An array of say, fifty, electrons would be created by the declaration 

PARTICLEDEF electron[50]; 

so that subsequent modification of, say, the x-component of velocity of the ith electron 

has the form 

electron[i] .vx= ... ; 

Large arrays were declared as pointers to allow their dimension to be set later 

using malloc( ). This has the advantage of allowing large amounts of memory to be 

d_\'na n1ically allocated or de-allocated during execution. 
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The physics used in the simulation may be characterized as classical and non­

relativistic The particles in the simulation, which are fermions, have high enough 

Pnffgies to safely assume that Fermi-Dirac statistics reduce to Maxwell-Boltzmann 

statistics. The maximum particle velocities are on the order of 0.01 c, so that relativ­

istic pffects may be ignored, although they can be readily included when required. 

The PIC-specific features of PROBEPIC that are not typically found in other PIC 

simulations are: the method used in fluxing particles across boundaries, super-particle 

\\'eighting that is dependent on the "birth-place" of the particle, and the use of an X-Y 

mover in cylindrical space. These unique approaches will be elaborated on in sections 

4. 2. 7. and 4. 2. 11. 

4.2.2 Rando111 Nu111ber Generation (random_number. c) 

The generation of pseudo-random numbers is an important element of any PIC or 

PIC'/Monte-Carlo simulation. The "qua.lity" of the random numbers plays a major 

role in the statistical accuracy of the simulation. The quality of a random number 

generator is determined by its ability to generate (seemingly) uncorrelated numbers 

\\'ith a uniform deviate, with a period that won't be approached in the duration of 

the simulation. The techniques used to generate random numbers are apparently 

somewhat of a black art. The fastest generators seem to exploit memory over-flow and 

other "scary" architecture based tricks. We say scary because the author has found 

that these fast random number generators may function properly on thirty-two bit 

s~'stems, but produce unsatisfactory output on sixty-four bit machines. Portability was 

chosen over speed for PROBEPIC. A random number generator was down-loaded from 

the network and tested on multiple platforms to determine its quality and portability. 

The only documentation provided in the source code is: 

I* portable lagged Fibonacci series uniform random number *I 
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I* generator with "lags" -273 und -607: *I 

I* W.P. Petersen, IPS, ETH Zuerich, 19 Mar. 92 *I 

This algorithm, called random_number. c in this application, is particularly nice be­

cansP it allows one to send it an array of any size, which upon return will be filled with 

random numbers of a uniform deviate. This falls in line with the overall PROBEPIC 

philosophy. where we store many values for later use rather than cakulating them 

Pver_\' time they are needed. \Vhen all of the random numbers in the random number 

array (random_number [] in PROBEPIC) are exhausted, the array is sent back to 

random_number. c with a new seed and reinitialized. 

4.2.3 Initial Conditions (parameter. c) 

The initial plasma parameters (such as temperature and number density) are set in 

parameter. c. From these user defined conditions, quantities such a plasma frequency 

and Debye length are calculated for use in later subroutines. parameter. c is called 

only once during the execution of PROBEPIC. 

4.2.4 Grid Generation (grid. c) 

The computational grid is a structure which associates the following properties to 

Pach grid-point: position, charge density, radial and axial electric field intensity, and 

electrostatic potential. The actual structure definition from probepic. his: 

typedef struct { 

double x,y,q_dens,Ey,Ex,phi; 

}GRIDDEF; 

PROBEPIC uses a non-uniform grid. The grid density is tightened in the vicinity 

of tlw probe to resolve the field within the sheath region. The grid dimensions (i. e. the 
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u·ll width and cell height) are set in parameter. c. grid. c uses these dimensions to 

sf'1 the x and y coordinates of the grid-points in the structure GRIDDEF grid [ngp], 

wlwre ngp is the total number of grid-points. The other properties (field quantities) 

arr initialized to zero. grid. c is called only once during the execution of PROBEPIC. 

4.2.5 Maxwellian Velocity Generator (maxwellian. c) 

Particles in a quiescent plasma must have a Maxwellian distribution of speeds, as 

the Boltzmann H-theorem proves that the only possible equilibrium distribution is the 

l\laxwellian distribution. Consequently, an algorithm is needed to generate random 

speeds. which after many calls, will reproduce a Maxwellian distribution. There is 

a genera.I nwthod for generating random numbers with any desired distribution; the 

steps shown below will illustrate that general method and give a result for the problem 

at hand. 

For a Maxwellian distribution the probability of finding a particle, say an electron, 

with peculiar speed between \IV and W + dW is 

(2)1/2 ( )3/2 f(Hl) = ; N ;; l¥2 e-(mW2 /2kT). ( 4.1) 

The norma.lized version of ( 4.1) is plotted as a function of W in Figure 4.3. 

Now. we have available a random number generator which produces a uniform devi­

ate (i.e. generates a uniform set of random numbers from 0.0 to 1.0), random__number. c. 

The question is, "how can we use random__number. c to generate a set of random speeds 

with a Maxwellian distribution?" The answer can be stated in mathematical probab­

ility transformation theory [12], or we can state in words a more intuitive, geometric 

JHf'scription, referring to Figure 4.3: 

Theorem 1 The integral F( W) is the area under the probability curve f( W) to the 
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PECULIAR SPEED ([M/S) X 1000) 

Figure 4.:3: Maxwellian distribution of peculiar speeds W for electrons at T=2.0[eV], 
f(W). and the normalized integral of f(W), F(W). 

Ifft of lV. To obtain random lvlaxwellian speed W, choose a uniform random number 

y=F(W). then find the value W that has that .fraction y of probability area to its le.ft, 

rmd rdurn the t•alue lV. 

For the present problem, integrating ( 4.1) gives: 

F(ll') j .f(H•) dlV 

N (3-) 1/2 (_!2:__)3/2 
IT kT (4.2) 

{( rr)1/2(1..~r) 3/2 [(m)l/2 l kTW'} 2 --;;; Erf 2KT W - m e(mW2/2kT) 

Thus. to get W's with a Maxwellian distribution we need to invert ( 4.2) for W, which 

is dearly a daunting task analytically. Instead, we can pick a uniform random number 

F(W). and then use a numerical scheme such as the Newton-Raphson method to back 

011t W . .Judging from the complexity of ( 4.2) this numerical approach would be com­

putationa.lly expensive. To get around this PROBEPIC uses a "look-up" table. The 



sub-program rnaxwellian. c initializes arrays ( one for each species) of one hundred 

thousand elements into which speeds generated using ( 4.2) are put. Other PROBEPIC 

sub-programs simply look-up a speed at a random place in the table. This gives us 

tlw desired result of generating speeds with a Maxwellian distribution while keeping 

the computational time low. 

4.2.6 Initial Particle loading (initialize. c) 

The sub-program initialize.c loads a uniform distribution of computational 

particles to begin the simulation. The velocities of each species are set by randomly 

picking values from the velocity tables created in rnaxwellian. c. To make the initial 

number density uniform we have to account for volume's radial dependence, i. e. we 

havf' to distribute more particles toward the outside of the computational domain. 

The probability of finding a particle between r and r + dr is directly proportional 

the volume. that is. 

p( r) dr = V ( r) = 2 1r r I dr . ( 4.3) 

{Tsing logic similar to that presented in the previous section ( taking / = 1 and nor­

malizing with the outer radius of the computational domain r = R) 

P(r) = f/(r) dr = ~ . 
fo p(r) dr R2 

( 4.4) 

Thus. to determine the radial location of a particle in initialize. c we generate a 

uniform random number a= P(r) and use the inverted form of (4.4): 

r = R (a)112 . ( 4.5) 

The remainder of the superparticle parameters (mass, charge etc.) are also set for 

each particle. initialize.c is called only once during the execution of PROBEPIC. 



4.2. 7 Fluxing Particles ( inj ect_part. c, inj ect_bearn. c) 

Particles diffuse into the computational domain from the outside plasma. a.s a. res­

ult of thermal or directed motion. In the quiescent plasma simulation the ions and 

electrons were treated a.s being in thermal equilibrium, while in the beam simulation 

the electrons \'Vere treated a.s therma.lized and the ions were treated a.s having only 

directed energy. Determining the proper method for fluxing these particles into the 

computational domain proved to be the most difficult problem in the development of 

PROBEPIC. We need to determine: 1) How many particles enter the computational 

domain in a. given time-step, and 2) The angular and speed distribution of these 

particies. 

Let us first consider the problem of fluxing therma.lized particles. The answer to the 

first question is straightforward. The flux of particles with a Maxwellian distribution 

function across a unit surface per unit time is 

n C r =-
4 ' 

(4.6) 

where, l' is the flux, n is the number density, and c is the mean speed. For a Maxwellian 

distribution, 

c = ✓81rk1: ' (4.7) 

where k is the Boltzmann constant, T is the temperature, and m is the mass of 

the particle. Equation (4.6) gives us the total number of real particles crossing the 

surface of the computational domain. In PROBEPIC we divide those particles into 

considerably fewer super-particles - this ultimately determines the number of super­

particles that will be in the computational domain once the simulation has reached 

Next we consider the problem of determining the direction and speed in which a. 

particle will cross the boundary. Consider an elemental area. dA with unit normal 71. 
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Particles cross this area with a relative velocity between v and v + dv, polar angle 

rPlative to the normal bPtween 0 and 0+d0, and azimuthal angle between rp and rf>+drf>. 

In tinw dt all particles crossing dA with velocity v must have been within the volume 

of thP prism shown in Figure 4.4. The volume of the prism is then 

l/ = v · ft dA dt = v cos 0 dA dt . ( 4.8) 

v 

Figure 4.4: Illustrative flux volume. 

The number of particles with the appropriate velocities and directions per unit 

volume is, 

(4.9) 

wlwre, cl3i• is the incremental volume in velocity space. If the distribution function is 

Pxpressed in spherical coordinates, 

d3 v = v 2 sin 0 d0drpdv , ( 4.10) 

and. 

:.! nve,t, = f v sin 0 d0drpdv . ( 4.11) 
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If f is Maxwellian, then 

_ . ( m ) 3/2 -( ';kv;) f -11 -k- e , 
· 2n T · (4.12) 

wlwre 1• is the magnitude of the velocity v. Thus, the number of particles with the 

appropriate velocity crossing dA in time dt is 

n1,01> V 

( 
m ) 3/2 _ ( mv 2 ) 

n -- v3 e 2kT sin0 
2nkT 

cos 0 d0 d¢ dv dA dt . 
( 4.13) 

This is the distribution of particles which must be put into the computational domain 

per unit area per unit time. The flux is then 

d3r ( rn ) 312 3 -(1;/;) · 0 0 d0 d,1.. d 
· v01> = n 2nkT v e sm cos 'f' v . 

As a check we note that integrating 4.14 gives 

r j d3 fv01> 

rx, r /2rr n 
Jo_ lo lo 
11 C 

4 

( m ) 3/2 _ ( mv 2 ) 
-- v3 e 2kT sin 0 cos 0 d0 d¢ dv 
2nkT 

(4.14) 

(4.15) 

\Ve can now write down the probability of a particle entering the computational 

domain with speed v, polar angle 0, and azimuthal angle ¢ as the product of the 

individual probabilities given in 4.14, 

or, 

Pv = 4n (_!!!__) 3/2 v3 e -( ;'kv;) 
c 2nkT 

Po = sin 0 cos 0 
2 
1 

P1i=-. 
2n 
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\VP can now apply the formalism developed in section 4.2 .. 5 to generate random 

injection speeds and angles for a particle. The sub-program make_velocity_table.c 

initializes an array of one-hundred thousand speeds for each species, using 4.17. This 

r<'duces the overall PROBEPIC computational time significantly, as inj ect_part. c 

can simply "look-up'' values as it needs them rather than spending a great deal of 

time numerically inverting (4.17). All that remains is to determine where a particle 

is injected. The computational domain may be divided into three regions all having 

different characteristic areas: the back face ( through which the probe and insulator 

pass). the sides. and the front face. The number of particles which flow across each 

of these surfaces in a given time-step is, of course, dependent on the surface area; 

consequently, in a given time-step, inj ect_part. c sets the super-particle weighting 

of Pach particle depending on where it is "born". 

The preceding discussion assumes we are simulating a quiescent plasma. In the 

case of a flowing pla~ma. we still assume that the electrons are in a Maxwellian clis­

tri lrntion. however, the ions are assumed to have a dominant directed velocity. Ions 

arf' injected through the front face only, with a constant velocity, and a random po­

lar angle between ±5°. The rationale for the random injection angle is that it takes 

the beam divergence, which is found in an ion thruster plume, into account. An 

ion thruster extracts and accelerates ions through hundreds of beamlet forming ori­

fict's. The bt'am emerging from these orifices expands downstream of the thruster; 

the random injection angle is a first order approximation to include this effect. To 

assure that sufficient ions are available to strike the probe, super-ions which are born 

with radial positions less than one-fifth of the total computational domain radius are 

fnrther divided in several more super-particles. This increases the number of super­

particles near the center of the computational domain, as desired. The sub-program 

inj ect_part_beam. c handles injection of the ion beam . 
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4.2.8 Charge Weighting ( q_weight. c) 

C'_vlindrica.l coordinates are used in PROBEPIC because of the cylindrical symmetry 

of the ,omputational domain: therefore, we must develop charge weighting shape func­

tions appropriate for cylindrical coordinates. Ruyten [13] has shown that traditional 

"area .. weighting schemes do not conserve charge density in the radial direction. He 

proposed a new radial charge density conserving algorithm (henceforth referred to as 

Ruyten weighting), while maintaining linear weighting in the axial direction. This 

method was implemented in PROBEPIG. Ruyten's results are given below without 

proof: the interested reader may consult his paper for greater detail. 

If a particle is at (z0 , r0 ), in the cell bounded by grid-points at (zi, rj ), (zi, Tj+i), 

(.:-;+ 1.r.i+il, (.:-;+ 1,rj), then the charge assigned to each of these grid-points is given 

hv: 

( 4.20) 

(4.21) 

( 4.22) 

( 4.23) 

The sub-program q_weight. c performs the charge weighting in PROBEPIC. It 

iterates through each particle, performing Ruyten weighting to yield the total charge 

density on the grid. Before applying equations ( 4.20) - ( 4.23), q_weight. c must de­

termine what grid cell the particle is in. For this, it calls an external sub-program 

locate. c. Now, this cell location will also be needed in force_weight. c. For this 

reason, we opt to eliminate the redundant step, and append the cell information (i.e. 

storP) to the particle for future use. For example, referring to the PARTICLEDEF 
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structure definition at the beginning of the chapter, cell information would be associ­

ated with the i th electron by the statements, 

electron[i] .cellx = 

electron[i] .celly = 

and subsequently recalled in force_weight. c. 

4.2.9 Field Solver ( e_iield. c) 

... ' 

... ' 

PROBEPIC uses a novel field solver. When dealing with curvilinear coordinates 

one almost always has to go to an exotic field solver - one that maps the coordinates 

into a rectangular space to solve Poisson's equation, and then transforms the solution 

hack to the curvilinear space (e.g. the ADI method). PROBEPIC makes direct use of 

Gauss' law to eliminate the need for any transformation, yielding a simple, intuitive 

algorithm. The following discussion follows Peng [14] with minor changes. 

Gauss' law states that the surface integral of electric flux is equal to the total 

charge enclosed by the surface. Ma.thematically, 

( 4.24) 

or, if the surface is chosen to enclose one grid-point at (zi,r1), 

11 ---+ ---+ 
1 111 E · dA = - - pd\/ = Q 1 k , 

dA;,1 f 0 d\/;, 1 ' 

( 4.25) 

where, Qj.k is the charge at (zi,rj) (t 0 has been absorbed into the definition of Qj,k 

for convenience), which results from the charge weighting algorithm. 

All that remains is to discretize ( 4.25) subject to appropriate boundary conditions, 

and provide a method to solve the resulting system of equations. The electric field 

boundary conditions used on the various surfaces in PROBEPIC are illustrated in 

Figure 4.5. 
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<p=<pplasma 

(j)=(j)probe 

Figure 4.5: Schematic of field boundary conditions in PROBEPIC. 

Discretization of Poisson's Equation 

B<-'cause of the azimuthal symmetry in PROBEPIC we need only calculate fields 

in the P and 5 directions on the half plane shown in Figure 4.5. The computational 

nwsh may be divided into two broad categories: interior mesh points and surface 

nwsh points. Interior mesh points lie within the plasma, probe conductor, and probe 

insulator. Surface mesh points lie at the edges of the computational domain, and on 

tlw surfaces of the probe conductor and insulator. The surface boundary points can be 

further classified as surfaces of constant potential, or surfaces with special symmetry 

boundary conditions, such as vanishing tangential fields. Each of the grid regions will 

be described separately. 

Case 1 : Interior Mesh-Points 

Figure 4.6 illustrates a typical interior grid-point. The Gaussian surface is an 

annular ring, the cross-section of which is illustrated by dashed lines in the figure. We 
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j+l 

' Eri. j+l/2 
r---- - - - - I 

j 

I 
:Ezi-112, i E'i+l/2,j' 

I I 
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I ' I - - - - - - - -

Eri,j-1/2 

j-1 

i-1 i+l 

Figure 4.6: Two dimensional interior computational mesh-point and Gauss' law 
,·olume. 

can write down Gauss' law for this Gaussian surface: 

Qi,.i Et,i-1/2. az,i-l/2clAz,i-1/2 + Et,i+l/2. az,i+1;2clAz,i+1/2 

+ E,·,.i-1/2. a,·,j-1/2clAr,j-1/2 + Er,j+l/2. ar,j+1;2clAr,j+1/2 • 

Th<" surface area elements are given by 

where 

If WP define 

dAz,i-1/2 = dAz,i+l/2 = 1r( rJ+1/2 - rJ-1;2) 

rJ+1 + rj 
1'j+l/2 = 2 

rj-1 + rj 
1'j-1/2 = 2 

Zi-1/2 = 

Zi+l + Zi 

2 
Zi-1 + Zj 

2 
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( 4.26) 

( 4.27) 

( 4.28) 

(4.29) 

(4.30) 

( 4.31) 

(4.32) 

(4.33) 

( 4.34) 



~7'j+l/2 = 7'j+l/2 - 7'j-l/2 

~Zi-1/2 = Zi - Zi-1 , 

(4.3,5) 

( 4.36) 

( 4.37) 

( 4.38) 

(4.39) 

and use first order differencing to express the electric fields in terms of the potentia.ls, 

E . . - - c/Ji,j+I - c/Ji,j 
r,i,J+l/2 - A 

L..J.7'j+l/2 
( 4.40) 

E . . = _ <Pi,i - <Pi,j-1 
r,l,J-1/2 A 

L..J.7'j-1/2 
(4.41) 

E . . - - <Pi+I,j - c/Ji,j 
z,1+1/2,J - A 

L..J.Zi+l/2 
( 4.42) 

E . . __ <Pi,j - <Pi-1,j 
z,i-1/2,J - A , 

L..J.Zi-1/2 
(4.43) 

tlwn Gauss' law, or the difference equation for interior mesh points, ma.y be written 

in the simple form: 

- Q;,:i ai,j+1 ¢i,j+1 + ai,j-1 <Pi,j-1 + a;+1,j¢i+1,j 

,vhere 

+ a;-1,j<Pi-1,j + a;,j¢i,j , 

~Zi 7'j+l/2 
ai,j+l = 27r A 

L..J.7'j+l/2 

~Zi 7'j-1/2 
ai,j-1 = 21r---~ 

~rj-1/2 

(~r2)j 

ai+l,j = 7r A 
L..J.Zi+l/2 

(~r2)j 
ai-1,j = 7r A • 

L..J.Zi-1/2 

ai,.i = -(ai,j+I + ai,.i-1 + a;+1,j + ai-1,j) . 
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( 4.44) 

( 4.4,5) 

( 4.46) 

(4.47) 

(4.48) 

(4.49) 



Another class of interior mesh-points a.re those that lie within the probe conductor 

and insulator. Points lying within the conductor can be treated simply with the 

ckfi11itio11: 

<Pi,j = <Pprobe • ( 4.50) 

Points inside the insulator may be treated with the same prescription as in (4.44). 

Of course, peda.ntica.lly, we should use the proper insulator dielectric constant in the 

definition of Qi.,;; however, we a.re not interested in the fields within the insulator, so 

we need not treat these points any differently. 

Case 2 : Bmmclary Mesh-Points 

As shown in Figure 4.5 the PROBEPIC computational domain terminates on 

boundaries of either constant potential or vanishing tangential or normal field. The 

difference equations for each case will be treated separately. 

Surfaces of constant potential include the the top and front of the computational 

domain. and the conductor section of the probe. Mesh-points on these surfaces a.re 

simply assigned the constant potential value; for example, points on the the probe 

conductor a.re given the potential </> = </>probe, and those on the edge of the computa­

tional domain</>= </>plasma, etc .. Thus no formal difference equations are required for 

tlwse points. 

Special restrictions are put on the electric field a.long the (r = 0) axis in front of 

the probe and along the (z = Zmax) downstream boundary. At (r = 0) we require from 

symmetry considerations that the electric field has no radial component. Referring to 

Figure 4.7, Gauss' law for points on the (r = 0) axis gives: 

( 4.51) 
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where 

j=l------------------------

E,, i-1/2, o 

j l Er, i, 1/2 
----------------
1 I 

I 

I 

I 

: E,, i+ 112, o j=0---4.,_ _______ ...,...,_ ___________ ___ 

i+l i-1 

Figure 4.7: Gauss' law volume for (r = 0) axis in front of the probe. 

( A ,2) _ 2 2 _ 2 
D. 1 o - r1;2 - ro - r1;2 · (4.52) 

Taking the E,.,;.1; 2 term to be zero, and a.gain using the first order expressions for the 

f'lf'ctric field, the difference equation a.long the ( r = 0) a.xis becomes: 

where. 

-Q· =a <D· + a· ,.1... + a· 0,1...· 10 + a·o,1...·o 1.0 1,l, 1,l 1+l,0'f-'1+l,0 t-1, 'Pt- , t, 'Pt, , 

(fir2)o 
ai-1,0 = 1T A 

Ll.Zi-1/2 

a;,o = -( a;,1 + a;+1,o + a;-1,0) . 

( 4.53) 

( 4.54) 

( 4.55) 

(4.,56) 

(4.57) 

At the downstream ( z = ZrnaJ·) boundary we require that the electric field have no 

axial component; this implies that the field has returned to what one expects from 

au i11fiuite cylindrical cumluctor, or that the effect of the probe tip has become small, 

since it is far away. The Gaussian surface is the same as that used in deriving the 

( r = 0) expressions. except rotated ninety degrees. We can therefore immediately 
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write down an analogous result for the difference equations at the downstream surface 

of the computational domain (for ima:r = n): 

- CJn.j = an,j+l<Pn,j+l + an,j-t<Pn,j-1 + an-1,j<Pn-1 + an,j<Pn,j, 

where 

, ~Zn rj+l/2 
On,j+l = 27!' A 

Llrj+l/2 

~Zn rj-1/2 
On,j-1 = 27!' A 

Llrj-1/2 

(~r2) 
an-1,j = 7T' ~ J 

Zn+l/2 

an,j = -( an,j+l + an,j-1 + an-1,j) • 

Solution of the System of Equations 

( 4.,58) 

(4 .. 59) 

( 4.60) 

( 4.61) 

( 4.62) 

In the previous section we derived the difference equations for all mesh-points in the 

PROBEPIC' computational domain. These difference equations define m (where m 

is the total number of mesh-points) simultaneous equations for the potential at ea.ch 

mesh-point. These equations may be written as a. matrix equation 

[A]¢= -Q' (4.63) 

wlwre [A] is the coefficient matrix of ai,jS, ¢ is the vector of electrostatic potentials at 

each grid-point, and Q is the source vector of weighted grid-point charges, Qi,j• 

vVhen the coefficient matrix [A] is explicitly constructed using the prescriptions 

for the ai,JS given in the previous section, a square band matrix of order m results. The 

hand matrix form is schematically illustrated in Figure 4.8. A band matrix consists 

of several diagonals surrounded by "null", or zero elements. As a result it is wasteful 

of resources ( and in fact is often impossible) to store the entire matrix, which is 

composed almost entirely of zeros. Also, solving the system ( 4.63) by traditional 
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Figme 4.8: Sketch of the band matrix form; non-zero elements are indicated by black 
diagonal lines. 

met hods such as Gaussian elimination is out of the question for large band matrices 

( <>. g. the difference matrix in PROBEPIC is approximately 14000 x 14000). 

Therefore, we are led to algorithms specialized for the solution of band matrices. 

l\Iany such algorithms are available, ranging from simple exact (i.e. returning analyt­

ica I results) to exotic. inexact methods. While all methods apparently give satisfactory 

111mierical results. the inexact methods are generally much faster. Unfortunately, the 

implPmentation of the more exotic techniques (e.g. the ICCG method) requires one 

1 o lwcome knowledgeable of the underlying mathematical and computational "tricks" 

that make the method work - the time investment may become substantial. In this 

first version of PROBEPIC, we opt for a simpler, more robust (albeit slower) algorthm 

lwrause it is easier to implement. and is more likely to give the expected results. Fu­

t.urP versions of PROBEPIC may implement faster techniques, which can be tested 

for accurac_v against the present results. 

PROBEPIC uses standard subroutines from the LAPACK [22] linear algebra lib­

rary. which applies the LU decomposition method to the solution of band matrices. In 

67 



this method the difference matrix [A] is decomposed into the product of two matrices, 

[A] = [L] [U] , (4.64) 

wllf'rc [L] is a lower triangular matrix (a matrix which has elements only on the 

diagonal and below). and [U] is an upper triangular matrix (a matrix which has 

PiemPnts only on the diagonal and above). Using this definition ( 4.63) may be written 

[A]¢= ([Ll[U]) ¢ = [L] ([U]¢) = -Q (4.6,5) 

Tlrns. the solution of ( 4.63) becomes a two step process. Setting a = [U]¢, we first 

sol Vf' 

[L]a= -Q, ( 4.66) 

for the vector a and use this result to solve 

[U]¢= -a, (4.67) 

_vielding the desired vector¢ of electrostatic potentials at the grid-points. This method 

is quite efficient for two reasons. First, very fast algorithms for the solution of ( 4.66) 

and ( 4.67) exist. Second, since the difference matrix depends only on the geometry 

of the computational domain ( which does not change in the course of a simulation), 

[A] does not change; consequently, the LU decomposition only needs to be performed 

once. provided we save the result of the original decomposition. This decomposition 

is 1wrformed once at the beginning of PROBEPIC's execution by the sub-program 

make....LU. c, which consists of a complicated set of loops to form the bands in a form 

usable by the LAPACK routine. 

The formalism illustrated in this section was successfully implemented in PROBEPIC. 

Comparison of fields generated by PROBEPIC and "rough'' analytical results are in 

complete agreement. \Ve say "rough" analytical results because, of course, the analyt­

ical solution of the Poisson equation with mixed (Neumann and Dirichlet) boundary 
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conditions. as are found in PROBEPIC, is impossible. However, we can easily derive 

an analytica.l expression for an infinite cylindrica.l conductor in charge-free space ( i. 

P. WP are now solving the Laplace equation). Far away from the probe tip, where the 

PlPctric field is almost completely radial. PROBEPIC gives potential distributions in 

rnmplPte agreement with this analytical result. A contour plot of electrostatic poten­

tials gPnerated by PROBEPIC is shown in Figure 4.9. The top of the figure is the 

result for charge-free space, while the bottom is the steady state result for a plasma 

( n = 1.0 x 109 [cm-3 ]) filled computational domain. In both cases the probe was 

biased -2 [\/] relative to the plasma potential. The bottom plot clearly shows that 

PROBEPIC simulates the plasma, or Debye shielding - the bulk of the plasma is 

shiPlded from the probe potentia.l by a thin plasma sheath. 

4.2.10 Force Weighting ( f _weight. c) 

As mentioned in Chapter 3, it is advisable to use the same weighting scheme for 

both weighting the charge to the grid and weighting the field back to the particles. 

Therefore, in PROBEPIC, Ruyten weighting is inverted to give the field at the particle 

position. In analogy to equations (4.20) - ( 4.23) the x and y components of the electric 

field for the i th particle in terms of adjacent node field intensities are given by: 

E· .:r. 1, 

( 4.68) 
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Figure 4.9: Contour plot of regions of constant electrostatic potential for t\\'o different 
conditions. The top result is for charge-free space. The bottom result is for a plasma 
filled computational domain. In both cases the probe is biased at -2.0[V] relative to 
the plasma potential. 
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Figure 4.9: Contour plot of regions of constant electrostatic potential for t\\'o different 
conditions. The top result is for charge-free space. The bottom result is for a plasma 
filled computational domain. In both cases the probe is biased at -2.0[V] relative to 
the plasma potential. 
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(4.69) 

4.2.11 Moving Particles (mover. c) 

The mover updates the position and velocity of each super-particle given its previous 

state and the electric field intensity at the particle position. The first order technique 

described in chapter 3 is implemented in PROBEPIC. In review, 

- -Vuew = Vold 
q -+ [-E0 ld] tit ( 4. 70) 
m 

Xnew = Xold + V uew tit . (4.71) 

The PROBEPIC computational domain has cylindrical symmetry; therefore it 

seems most logical to write the equations of motion in terms of set cylindrical basis 

vectors. Gopinath [24], however, shows that this poses a problem as the particle passes 

clmw to the origin. For example, if the incremental change in the polar angle 0 is given 

by ~0 = (1 106.t)/r. then 6.0 becomes very large when a particle passes near the origin, 

that is, r -+ 0. The solution is to move the particles in cartesian coordinates and then 

transform the new particle position back into cylindrical coordinates ( the field solver, 

charge weighting, etc. are carried out in cylindrical coorinates ). This technique was 

irnplernented in PROBEPIC to avoid the singularity at r = 0. 

The only as yet undefined quantity in ( 4. 70) and ( 4.71) is tit. It is through tit that 

we can attempt to rectify the problem associated the disparate masses of the electrons 

and heavy particles, through sub-cycling. In essence, sub-cycling implies the use of 

multiple time-scales. 
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In PROBEPIC we define separately an electron time-step ( dte) and an ion time­

step (dti). The electron time-step is much smaller than the ion time-step, since the 

mean velocity of electrons is much greater than ion mean velocity. Now, if different 

tinw-scales are used we must be sure to structure the program so that the particles 

arf' not moving out of phase relative to one another through (real) time. Thus, the 

Plectrons must be moved an integral number of times ( equal the ratio of the ion 

and electron time steps) before the ions are moved once. Consider the following 

illustrative example. In the case of the ion beam the beam velocity is approximately 

equal to 4.0 x 104 [~] while the mean thermal velocity of the electrons is on the order 

of -l. 0 x 1 O!T:1 ]. Therefore, it makes sense to use an ion time-step that is ten times 

grPater than the electron time-step. To compensate for this time-step difference we 

must move the electrons ten times for each time we move the ions. 

Both the ions and electrons use the same sub-program (mover. c) as a mover, 

whose prototype is; 

void rnover(PARTICLEDEF particle[numpart],long int num_part,FLOAT tirnestep); 

\\'P simply pass the appropriate dt to the variable timestep. 

As a result of sub-cycling, we do not waste computational time moving the ions at 

P\'f'l)" time-step. \,Vhen the number of ion super-particles is large, the computational 

savings may be substantial. 

4.2.12 Checking Boundaries (boundary. c) 

The sub-program boundary. c handles interactions of thermalized particles with 

mm putational and physical boundaries. Beam particles are handled by boundary _beam. c. 

In either routine we must determine what happens to a particle when it encounters the 

011tf'r edges of the computational domain, the probe conductor, or the probe insulator. 

Ill boundary. c any particle that exits through the periphery of the computational 
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domain is removed from the simulation. If a particle strikes the conducting surface 

of the probe, it is removed from the simulation and the probe current variable IS 

incr<>mented by the particle's charge. If a particle strikes the probe insulator it IS 

reflected specularly, i. e. it undergoes a perfectly elastic collision and remains in the 

simulation. 

boundary _beam. c is identical to boundary. c except for the way it treats particle 

interactions with the outer edge of the computational domain. Recall that we can 

divide the faces of the computational domain into three classes: the front( upstream) 

facP, the back(downstream) face, and the side faces. Since beam particles have small 

radial components of velocity, they are injected only through the front face and then 

reflected off of the side faces back into the computational domain. This gives the 

effect of fluxing particles through the side faces without having to do so explicitly. 

The particle interactions with the front and back faces and the probe are treated the 

same as in boundary. c. 

One might ask why not reflect all particles from the edges back into the computa­

tional domain, thus obviating the need for particle injection alltogether. In theory this 

would be great, but in practice anomalous effects such as "numerical heating" might 

occur. It is best to continually introduce fresh particles. 

As mentioned above, the particle interaction with the probe insulator was treated 

simply as a reflection; clearly this does not embody full physical reality, where the 

particles might stick to the insulator, or undergo re-combination to neutralize an 

ion. These interactions were not integrated into PROBEPIC at this time because 

we were not as interested in the global effect of the the presence of the insulator as 

we are interested in modeling the particle kinetics, and the plasma sheath around the 

probe. In the present version of PROBEPIC the insulator serves as a buffer zone 

lwh,·epn the conducting section of the probe and the back face of the computational 
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domain boundary, which minimizes the effect of non-thermalized particles from the 

boundary striking the probe. This allows us to better match the assumptions made 

in the Langmuir-1\fott-Smith probe model, and consequently produce data in closer 

agrPement with that model. 

4.2.13 Output ( output_data. c, graphics. c) 

PROBEPIC is capable of producing both graphical and text output. The graphical 

output is generally only useful in the debugging process, while the text output provides 

the simulation results. 

PROBEPIC uses standard VOGL [23] libraries in its graphics output sub-program 

graphics. c. The user may view either a front or side view of the computational 

domain (i.e. configuration space) in real-time (as opposed to storing particle traject­

ories and viewing them at a later time), that is, we can observe the trajectories of the 

particles as they are injected, reflected from the insulator, absorbed by the conductor, 

etc. . Obviously this is useful in determining if the code is qualitatively behaving as 

\\'e expect, and producing snap-shots like the one shown in Figure 4.2. 

Fltimately we a.re interested in quantitative results. PROBEPIC uses the sub­

program outpuLdata. c to write an output file a.t specified times which contains the 

following information: total number of time-steps executed, probe potential, number 

of super-electrons in the computationa.l domain, number of super-ions in the compu­

tational domain, average number density of electrons, average number density of ions, 

average total current to the probe, average electron current to the probe, and average 

ion current to the probe. A sample of raw data from a PROBEPIC simulation is given 

in Appendix B. 
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Chapter 5 

Simulation Results 

Three computational experiments were conducted to evaluate the usefulness of 

PROBEPIC; two were initially planned, while a third was necessitated by some pe­

rnliar data that resulted from the first experiment. The first computation simulated a 

Langmuir probe in a rarefied, quiescent plasma. The second was designed to quantify 

t lw effect of varying the probe aspect ratio. The final experiment simulated the beha­

vior of a Langmuir probe in a flowing plasma. The final simulation was designed to 

test the validity of a data reduction procedure developed by Keefer and Semak [1.5] 

for ion thruster plumes. 

In this chapter we will present the results of all simulations and make a critical 

assessment of their validity using available theory, which was derived in chapter 2. 

5.1 Probe in a Quiescent Plasma 

Simulations were conducted in a quiescent plasma. The plasma conditions were 

chosen to correspond to the OLM domain, so that theoretical results would be read­

ily available. Thus, we were able to determine whether PROBEPIC was producing 

physically valid results. 

T,rn simulations were carried out: one for a hydrogen plasma, and another for an 
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( artificia.l) ion to electron mass ratio of 100. The "light ion" experiment was carried 

out in order to verify that ion collection was being properly modeled; in real plasmas, 

heavy. immobile ions contribute very little current. The simulation conditions for the 

two experiments are given in Table ,5.1. 

The results of the simulation are pictured in Figure ,5.1. For probe potentials less 

than the plasma potential, the PROBEPIC results agree quite well with the Langmuir 

theory: however. in the electron saturation region, the PROBEPIC results diverge 

from the expected theoretical result. At the time when the data was coming in, 

this divergence was particularly troubling because, as explained in Chapter 2, the 

Langmuir theory gives the ma:rimum current that should be measured. If there were 

to he any disagreement between the PROBEPIC and theoretical results, PROBEPIC 

data should always fall below the upper OLM threshold. 

After rigorously checking the validity of the numerical algorithms used in PROBEPIC, 

it was discovered that the disagreement has a real, physical origin. The Langmuir the­

ory was developed for an infinite cylindrical probe. In PROBEPIC and laboratory 

experiments finite length probes are used. We will now discuss what the effect of 

truncating a probe has on its overall VI characteristic. 

Table .5.1: Quiescent plasma simulation plasma conditions. 

Hydrogen 
11 1.0 · 109 [cm-3] 

T 2.0[eV] 
Plasma Potential 0.0[V] 
Probe Aspect Ratio 4.5.92 
me/mi= 100 
11 1.0 · 109 [cm-3] 

T 2.0[eV] 
Plasma Potential 0.0[V] 
Probe Aspect Ratio 4,5.92 
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Figure 5.1: Comparison between PROBEPIC and Langmuir theory results. 

5.2 Effect of Probe Aspect Ratio 

Probes of finite length may produce significantly different VI characteristics than 

those predicted by infinite probe theory. This may be attributed the effect of the probe 

tip. which may produce overall electric field structures that differ significantly from 

infinite probes. It can be shown (see .Jackson [18]) that sharp corners on conductors 

create intense electric fields in the region around the discontinuity. Thus, the sharp 

corner of the probe tip creates large electric fields that are not accounted for in the 

infinite probe model. The tip also creates axial fields ( whereas only radial fields are 

included in the infinite probe model). These axia.l fields draw particles from in front 

of the probe to increase the overall current; as shown in Figure .5.2, current is then 

..,~ 
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Figure !'5.2: Illustration of the effect of probe aspect ratio on agreement with infinite 
probe Langmuir theory. 

also a function of probe aspect ratio. 

The relevant parameter in this discussion is the probe aspect ratio, 1 , 

(5.1) 

where, lp is the probe length and rp is the probe radius. As the probe aspect ratio 

becomes increasingly large, we expect the probe current to converge to the infinite 

probe result. Indeed, this effect was observed using PROBEPIC, and is illustrated in 

Figure .5.2. 

The points plotted were obtained using a hydrogen plasma. a.t the operating condi­

tions listed in Table 0. l, and a .5[V] probe potential; only the aspect ratio of the probe 

was varied. 
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In conclusion, the deviation of PROBEPIC results shown in Figure 5.1 may be 

attributed to the effect of finite probe length. As a result of the present study, as in­

dirnted in Figure 5.2, experimentalists should consider using probes with aspect ratios 

greater than 200 ( at least for probes operating in the simulated plasma regime) if close 

agreement with theory is desired. A more comprehensive study of probes operating 

in different plasma regimes might be a valuable future application of PROBEPIC. 

5.3 Probe in a Flowing Plasma 

The final simulation was designed to test the validity of a data reduction procedure 

developed by Keefer and Semak [1.5] for ion thruster plumes. As discussed in chapter 

2. the analysis of experimenta.l data is quite difficult. To determine the electron tem­

perature (assuming the distribution is Maxwellian), we must separate electron and ion 

current. and plot the natural logarithm of the electron current in the electron retarding 

region to obtain a straight line which may be correlated with electron temperature. 

The current separation process is complicated by the presence of the ion beam; in 

short. Keefer and Semak developed an iterative procedure in which the ion current 

was varied until a satisfactory linear electron current region was obtained, from which 

the dectron temperature and number density could be extracted. 

The author was given experimental data and proposed plasma conditions ( a.s cal­

culated from the new data reduction procedure). These values a.re shown in Table 5.2. 

These va.lues were input into PROB EPIC to generate a VI characteristic. U nfor­

hmately, it became immediately apparent that something was wrong with the given 

data. For example. at electron saturation the electron current should be 

nee I --s,e - 4 • (.5.2) 
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Table 5.2: Data from analysis of Keefer and Semak. 

ne 
Te 
Plasma Potential 
fs,e 

I s,i 

Beam Velocity 
l]J 

rl' 

Probe Aspect Ratio 

3.1 · 109 [cm-3 ] 

0.228 [eV] 
0.96 [V] 
4. 7 · 10-2 [mA] 
4.1 · 10-3 [mA] 
~ 4. o · 104 [ 7; l 
0.381 [cm] 
0.0127 [cm] 
30.0 

A quick hand calculation using the values given in Table 5.2 results in an electron 

saturation current of ls,e = 1.2 x 10-1 [mA], which is a factor of three greater than 

the value arrived at in their data analysis. 

A PROBEPIC simulation was conducted to determine if the electron temperature 

arrivPd at in the data reduction scheme was valid. A number density value was chosen 

that was more consistent with the experimental data (n ~ 1.04 x 109 [cm-3 ]). The 

complete list of parameters used in the PROBEPIC simulation is given in Table .5.:3. 

The results of this simulation are shown in Figure 5.3. The PROBEPIC, Langmuir 

tlwory. and experiment.a.I data agree quite well in the electron retarding region of the V­

I characteristic. Above electron saturation, the Langmuir theory and the experimental 

Tah]P 5.:3: Conditions used in PROBEPIC and in the theoretical curve for the plasma 
beam. 

n 
T 
Plasma. Potential 
lp 
rl' 

Probe Aspect Ratio 

80 

1.04 · 109 [cm-3 ] 

0.24 [eV] 
0.96 [V] 
0.381 [cm] 
0.0127 [cm] 
30.0 
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Figure -5.:3: Comparison between PIC, Langmuir theory, and experimental results. 

data disagree greatly, with the PROBEPIC result lying somewhere in between. 

Since the electron temperature is calculated using the electron retarding region 

of the V-I characteristic, we may conclude that PROBEPIC verifies the temperature 

arrived at in the data reduction procedure (Te ~ 0.23 [eV]). Above saturation, the 

strong deviation from the theoretical result is expected with the low aspect ratio probe 

used, as explained in the previous section. In this region, the PROBEPIC result is 

closer to the experimental data than the theoretical result. Further steps may be taken 

to bring the experimPnt.al and probepic results into closer agreement. By lowering the 

electron temperature, the PROBEPIC electron saturation current will be lowered and 

the current collection above saturation will be increased - bringing the PROB EPIC 
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rPsttlt into closer agreement with the experimental data. 

The question still remains as to why the data reduction procedure of Semak predicts 

an incorrect value of number density. The number density is calculated from the 

tPmperature. Since the Semak and PROBEPIC predicted temperatures agree, it is 

likPly that Semak has an error in the formula he uses to calculate number density. 

H should be mentioned that Semak's predicted number density is off by a factor 

of approximately 7T. which may point to a simple ommision of that factor in the 

,alculation of the probe area. 
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Chapter 6 

Conclusion 

PROBEPIC, a Particle-In-Cell code, has been developed to simulate the behavior 

of finite length Langmuir probes. Results for the simulation of probes in quiescent 

p]a,-mas and ion beams have been shown to be in agreement with both theory and 

PXpPrimental results. Also, the effect of probe aspect ratio on current collection has 

lwen qualitatively illustrated. 

This thesis contributes to understanding Langmuir probes on two levels. First, 

it develops PIC' specific techniques that are vital to producing a valid simulation. 

Thr proper technique for fluxing particles into the computational domain, which was 

dew·loped in Chapter 4, proved to be the greatest theoretical challenge in the devel­

opnwnt of PROBEPIC; consequently, the details will probably be useful to future 

PIC practitioners. Second, PROBEPIC may provide a valuable tool for interpreting 

ex1wriment.al Langmuir probe data. 

6.1 Suggestions for the Improvement of PROBEPIC 

The present version of PROBEPIC is in many ways a first-draft - there is room 

for improvement in both computational efficiency and more accurate modeling of the 

underlying physics. The purpose of this work was to verify accurate modeling of 
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the physical processes; to this end, widely used, robust algorithms were employed. 

\Vhile these methods may not be the most computationally efficient, they minimize 

the "surprises'' that a.re often indigenous to using "tricks". We now have a code 

that apparently models reality, at least to first order, quite well. Future work on 

PROBEPIC may now focus on improving the computational efficiency and integrating 

mor<" realistic physical interactions. 

To improve the computational efficiency the following areas should be investigated: 

• Profiling software to find the fraction of time used by each subroutine. 

• Applicability of the hybrid model. 

• Effect of grid density on macroscopic results. 

• Inexact field solvers. 

• Vectorization of source code. 

As discussed in the previous chapter, implementing a fluid model for the electrons 

would eliminate the need for two different time-scales. This may allow results to be 

obta.i1wd more quickly; however, the author is uncertain about the suitahility of the 

hybrid method for this particular problem. 

The grid density in PROBEPIC was chosen to resolve plasma oscillations; however, 

it is uncertain as to whether modeling these oscillations is necessary to obtain satis­

factory results for the mass motion of the plasma. If the grid density can be relaxed, 

we •.vill have fewer grid-points; this will cause the program to both occupy less RAM 

and to run faster. 

Since v,·e now have a field solver that gives accurate results, we can try to implement 

c1 faster, more exotic field solver, and use the present one to determine the accuracy of 
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tlw new one. A suggested technique to look into is the ICCG method, which apparently 

works quite well. The author is uncertain as to how much faster the field solver can 

he made since the present field solver uses libraries that have been professionally 

optimized for specific machines and are consequently very fast. 

A final, more radical, computationa.l optimization worth considering 1s a com­

plete restructuring of the sub-programs to make them more amenable to vectoriza­

tion. This would allow the code to take full advantage of the vector architecture found 

in most super-computers. PROBEPIC was run on a convex C4 super-computer at 

the AEDC High Performance Computer Center. The performance was unimpressive, 

in fact. slower than an SGI R8000 workstation. This can be attributed to the fact 

that PROBEPIC is composed almost entirely of scalar code. A completely vector­

ized version of PROBEPIC would probably run an order of magnitude faster on a 

s11per-computer. 

A few aspects of the physics modeled in PROBEPIC should be considered further; 

more specifically, 

• Injection angle of the ion beam. 

• Interaction of particles with the insulator surface. 

A major unknown variable in the ion beam simulation is the proper angular distri­

bution for injected particles. The angular distribution used in PROBEPIC is simply 

an educated guess. A more accurate method would be to use the ion thruster code by 

Peng [14] to study the proper direction to inject particles. 

As mentioned in the previous section, the physics of the interaction of particles 

with the probe insulator was not rigorously modeled. A more thorough treatment of 

1 his interaction would involve adding the proper physics( e.g. surface contact potential, 
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recombination, etc.) to boundary. c. Studies could then be made to quantify the effect 

of the insulator, if any, on the overall probe response. 

6.2 Suggestions for Future Implementation 

Aside from improvements that could be made to the code, further work should 

include modeling different experiments, and developing PROBEPIC as a diagnostic 

aid for evaluating data taken from actual experiments. 

The possibilities for its future application are virtually limitless. The results of 

Section 5.2 indicate that a more comprehensive treatment of the effect of probe aspect 

ratio throughout the range of Langmuir probe applicability may be valuable. Also, 

more work needs to be done to refine the data analysis technique of Keefer and Se­

ma k. In an even broader context, PROBEPIC might be modified to simulate other 

dectrostatic plasma devices, such as ion thrusters, or plasma semiconductor etching 

devices. 

Tlw simulation results for a quiescent plasma presented in Chapter .5 show that 

PROBEPIC vvorks; but who cares if we can model experiments for which we already 

have good theoretical models? The full value of PROBEPIC will be realized only 

when it is used to evaluate and predict experimental results for which no satisfactory 

analytical model exists. To some degree this was the case with the probe in a plasma 

beam. For PROBEPIC to be used as a diagnostic tool a "front encl" will have to 

be developed. This front end would serve as a bridge between the raw experimental 

data a.nd PROBEPIC; it would provide intial guesses for plasma parameters needed 

by PROBEPIC by scrutinizing the experimental data. Further, it would establish 

and monitor convergence criteria to determine when PROBEPIC had iterated to the 

Pxperimental result. 
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l\Iany lessons have been gleaned in the development of PROBEPIC. It is the 

author's hope that the effort spent in including adequate detail in this thesis will allow 

it to sf'rve as a starting point for future PIC practitioners at UTSI, thus incrementing 

the overall progress of the institution. 
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Appendix A 

PROBEPIC Source Code 

Th<' source code for the PROBEPIC sub-programs are given below in the order listed 

in Table 4.1. A soft copy of the source code is included on the floppy affixed to the 

inner back cover. 

A.l boundary.c 

#define EXTERN extern 
#include "lprobe60.h" 

I* This function sorts out which particles have crossed a boundary,i.e. 
the probe or extent of computational domain. Particles crossing the 
probe boundary are counted as current *I 

void boundary (PARTICLEDEF particle[numpart] ,long int *num_part,FLOAT q) 

{ 

long int i,i2,numtemp; 
FLOAT r_part,vzold,vyold; 

numtemp=*num_part;i2=-1; 

for (i=O;i < numtemp;i++){ 
i2=i2+1; 
r_part=particle[i2].r; 

OUT OF COMPUTATIONAL DOMAIN 

if (particle[i2] .x >0.0 I I particle[i2] .x < -length I I 
particle[i2] .y >radius I I particle[i2] .y < -radius I I 
particle[i2] .z >radius I I particle[i2] .z < -radius){ 
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} 

particle[i2] .x=particle[•num_part-1] .x; 
particle[i2] .y=particle[•num_part-1] .y; 
particle[i2] .z=particle[•num_part-1] .z; 
particle[i2] .r=particle[•num_part-1] .r; 
particle[i2] .vx=particle[•num_part-1] .vx; 
particle[i2] .vy=particle[•num_part-1] .vy; 
particle[i2] .vz=particle[•num_part-1] .vz; 
particle[i2] .q=particle[•num_part-1] .q; 
particle[i2] .m=particle[•num_part-1] .m; 
i2=i2-1;•num_part = •num_part - 1; 

CONTACT WITH PROBE 

else ~f (r_part <= r_probe && particle[i2] .x >=-(l_probe+l_insul) && 
particle[i2] .x <=-l_insul){ 

particle[i2] .x=particle[•num_part-1] .x; 
particle[i2] .y=particle[•num_part-1] .y; 
particle[i2] .z=particle[•num_part-1] .z; 
particle[i2] .r=particle[•num_part-1] .r; 
particle[i2] .vx=particle[•num_part-1] .vx; 
particle[i2] .vy=particle[•num_part-1] .vy; 
particle[i2] .vz=particle[•num_part-1] .vz; 

particle[i2] .m=particle[•num_part-1] .m; 

current=current + particle[i2] .q; 
if(q == q_elec) curre=curre + particle[i2] .q; 
else if(q == q_ion) curri=curri + particle[i2] .q; 

particle[i2] .q=particle[•num_part-1] .q; 
i2=i2-1;•num_part = •num_part - 1; 

} 

I• CONTACT WITH CYLINDRICAL SURFACE OF INSULATOR •/ 

else if (r_part <= r_insul && particle[i2] .x >-(l_insul-cell_width)){ 
vzold=particle[i2] .vz; 
vyold=particle[i2] .vy; 
particle[i2] .vz=(vzold•(-particle[i2] .z•particle[i2] .z + 

particle[i2] .y•particle[i2] .y) 
- 2.0•vyold•particle[i2] .y•particle[i2] .z)/(particle[i2] .r•particle[i2] .r) 

particle[i2] .vy=(vyold•(particle[i2] .z•particle[i2] .z -
particle[i2] .y•particle[i2] .y) 
- 2.0•vzold•particle[i2] .y•particle[i2] .z)/(particle[i2] .r•particle[i2] .r) 
} 
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} 

} 

CONTACT WITH FLAT FACE OF INSULATOR 

else if (r_part <= r_insul && particle[i2] .x >=-(l_insul)){ 
particle[i2] .vx=-particle[i2] .vx; 

} 

A.2 boundary _beam. c 

#define EXTERN extern 
#include "lprobe60.h" 

I* This function sorts out which particles have crossed a boundary,i.e. 
the probe or extent of computational domain. Particles crossing the 
probe boundary are counted as current *I 

void boundary_bearn (PARTICLEDEF particle[numpart] ,long int *num_part,FLOAT q) 

{ 

long int i,i2,numtemp; 
FLOAT r_part,vzold,vyold; 

numtemp=*num_part;i2=-1; 

for (i=O;i < numtemp;i++){ 
i2=i2+1; 
r_part=particle[i2] .r; 

OUT OF COMPUTATIONAL DOMAIN 

if (particle[i2] .x >0.0 I I particle[i2] .x < -length){ 

} 

particle[i2] .x=particle[*num_part-1] .x; 
particle[i2] .y=particle[*num_part-1] .y; 
particle[i2] .z=particle[*num_part-1] .z; 
particle[i2] .r=particle[*num_part-1] .r; 
particle[i2] .vx=particle[*num_part-1] .vx; 
particle[i2] .vy=particle[*num_part-1] .vy; 
particle[i2] .vz=particle[*num_part-1] .vz; 
particle[i2] .q=particle[*num_part-1] .q; 
particle[i2] .m=particle[*num_part-1] .m; 
i2=i2-1;*num_part = *num_part - 1; 

I* REFLECTION OFF BOUNDARY *I 

else if (particle[i2] .r >= radius){ 



} 

vzold=particle[i2].vz; 
vyold=particle[i2].vy; 
particle[i2] .vz=(vzold*(-particle[i2] .z*particle[i2] .z + 

particle[i2] .y*particle[i2] .y)- 2.0*vyold*particle[i2] ·Y* 
particle[i2] .z)/(particle[i2].r*particle[i2].r) ; 

particle[i2] .vy=(vyold*(particle[i2].z*particle[i2].z -
particle[i2] .y*particle[i2] .y) - 2.0*vzold*particle[i2] ·Y* 
particle[i2] .z)/(particle[i2].r*particle[i2].r) ; 

CONTACT WITH PROBE 

else if (r_part <= r_probe && particle[i2] .x >=-(l_probe+l_insul) && 
particle[i2] .x <=-l_insul){ 

particle[i2] .x=particle[*num_part-1] .x; 
particle[i2] .y=particle[*num_part-1] .y; 
particle[i2] .z=particle[*num_part-1) .z; 
particle[i2] .r=particle[*num_part-1) .r; 
particle[i2] .vx=particle[*num_part-1] .vx; 
particle[i2] .vy=particle[*num_part-1] .vy; 
particle[i2] .vz=particle[*num_part-1] .vz; 

particle[i2] .m=particle[*num_part-1] .m; 

current=current + particle[i2] .q; 
if(q == q_elec) curre=curre + particle[i2] .q; 
else if(q == q_ion) curri=curri + particle[i2] .q; 

particle[i2] .q=particle[*num_part-1) .q; 
i2=i2-1;*num_part = *num_part - 1; 

} 

I* CONTACT WITH CYLINDRICAL SURFACE OF INSULATOR *I 

else if (r_part <= r_insul && particle[i2] .x >-(l_insul-cell_width)){ 
vzold=particle[i2] .vz; 
vyold=particle[i2] .vy; 
particle[i2] .vz=(vzold*(-particle[i2] .z*particle[i2] .z + 

particle[i2] .y*particle[i2] .y) 
- 2.0*vyold*particle[i2] .y*particle[i2] .z)/( 
particle[i2] .r*particle[i2] .r) ; 

particle[i2] .vy=(vyold*(particle[i2] .z*particle[i2] .z -
particle[i2] .y*particle[i2] .y) 

} 

- 2.0*vzold*particle[i2] .y*particle[i2] .z)/( 
particle[i2] .r*particle[i2] .r) ; 

CONTACT WITH FLAT FACE OF INSULATOR 
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} 

} 

else if (r_part <= r_insul && particle[i2] .x >=-(l_insul)){ 
particle[i2] .vx=-particle[i2] .vx; 

} 

A.3 charge_we ight. c 

#define EXTERN extern 
#include "lprobe60.h" 

I* This function weights the charge to the array *I 

void qweight(GRIDDEF array[ngp1] [ngp2] ,PARTICLEDEF particle[numpart],long int number) 
{ 

unsigned long positionx,positiony; 
long int count!; 
FLOAT dr,dr1,dr2,dz,dz1,dz2; 

for(count1=0;count1 < number;count1++){ 

if (particle[count1] .r <= radius){ 

locatex(array,ngp2,particle[count1] .x,&positionx); 
locatey(array,ngp1,particle[count1] .r,&positiony); 

SAVE CELL LOCATION FOR FORCE WEIGHT 

particle[count1] .cellx=positionx; 
particle[count1] .celly=positiony; 

dr=array[positiony+1] [positionx].y*array[positiony+1] [positionx] .y 
- array[positiony][positionx].y 

*array[positiony] [positionx].y; 
dr1=particle[count1] .r - array[positiony] [positionx] .y; 
dr2=array[positiony+1][positionx] .y - particle[count1] .r; 

dz=array[positiony] [positionx+1].x - array[positiony] [positionx] .x; 
dz1=particle[count1] .x - array[positiony][positionx] .x; 
dz2=array[positiony] [positionx+1] .x - particle[count1] .x; 

array[positiony] [positionx].q_dens=array[positiony][positionx] .q_dens 
+ particle[count1] .q * 

dr2 * dz2 
* (2.0 * array[positiony+1] [positionx] .y + 3.0 

* array[positiony][positionx] .y 
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- particle[count1] .r) / (2.0 * dr * dz); 
array[positiony] [positionx+1].q_dens=array[positiony] [positionx+1] .q_dens 

+ particle[count1] .q * 
dr2 * dz1 

* (2.0 * array[positiony+1] [positionx+1] .y + 3.0 
* array[positiony][positionx].y 

- particle[count1].r) / (2.0 * dr * dz); 
array[positiony+1] [positionx] .q_dens=array[positiony+1] [positionx] .q_dens 

+ particle[count1] .q * 
dr1 * dz2 

* (3.0 * array[positiony+1] [positionx] .y + 2.0 
* array[positiony][positionx] .y 

- particle[count1] .r) / (2.0 * dr * dz); 
array[positiony+1] [positionx+1] .q_dens=array[positiony+1] [positionx+1].q_dens 

+ particle[count1].q * 
dr1 * dz1 

* (3.0 * array[positiony+1] [positionx+1] .y + 2.0 
* array[positiony][positionx+1].y 

- particle[count1] .r) / (2.0 * dr * dz); 
} 

} 

} 

A.4 force_weight.c 
#define EXTERN extern 
#include "lprobe60.h" 

/• This function weights the field from the array•/ 

void fweight(GRIDDEF array[ngp1] [ngp2] ,PARTICLEDEF particle[numpart] ,long int number) 
{ 

long int count 1; 
FLOAT dr,dr1,dr2,dz,dz1,dz2; 

CLEAN UP OLD ELECTRIC FIELD 

for (count1=0;count1 < number;count1++){ 
particle[count1] .Ey=particle[count1] .Ex=O.O; 

} 

for(count1=0;count1 < number;count1++){ 

if (particle[count1] .r <= radius){ 

dr=array[particle[count1] .celly+1] [particle[count1].cellx] .y* 
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array[particle[count1] .celly+1] [particle[count1].cellx] .y -
array[particle[count1] .celly] [particle[count1] .cellx] .y 
*array[particle[count1] .celly] [particle[count1] .cellx] .y; 

dr1=particle[count1] .r - array[particle[count1] .celly] [particle[ 
count1] .cellx] .y; 

dr2=array[particle[count1] .celly+1] [particle[count1] .cellx] .y - p 
article[count1].r; 

dz=array[particle[count1] .celly][particle[count1] .cellx+1] .x -
array[particle[count1] .celly] [particle[count1] .cellx].x; 

dz1=particle[count1] .x - array[particle[count1] .celly] [particle[c 
ount1] .cellx] .x; 

dz2=array[particle[count1] .celly] [particle[count1] .cellx+1] .x - p 
article[count1] .x; 

particle [count 1] . Ey=array [particle [count!] . celly] [particle [count 1 
] .cellx] .Ey*dr2 
* dz2 

* (2.0 * array[particle[count1] .celly+1][particle 
[count!] .cellx] .y 
+ 3.0 

* array[particle[count1] .celly] [particle[count1] 
.cellx] .y -

particle[count1].r) / (2.0 * dr * dz) 
+ array[particle[count1] .celly] [particle[count1] 

.cellx+1] .Ey*dr2 
* dz1 

* (2.0 * array[particle[count1] .celly+1][particl 
e[count1] .cellx+1].y 
+ 3.0 * 

array[particle[count1] .celly] [particle[count1]. 
cellx]. y -
particle[count1] .r) / 

(2.0 * dr *dz)+ array[particle[count1] .celly 
+1][ 
particle[count1].cellx+1].Ey* 

dr1 * dz1 * (3.0 * array[particle[count1] .celly 
+1][ 
particle[count1] .cellx+1] .y + 

2.0 * array[particle[count1] .celly][particle[co 
unt1] .cellx+1] .y -

particle[count1].r) / (2.0 * dr *dz)+ 
array[particle[count1] .celly+1] [particle[count1 

] .cellx] .Ey*dr1 
* dz2 * (3.0 * 

array[particle[count1] .celly+1] [particle[count1] 
.cellx] .y + 2.0 * 

array[particle[count1] .celly] [particle[count1] .ce 
llx]. y -
particle[count1] .r) 
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I (2.0 * dr * dz); 

particle[count1] .Ex=array[particle[count1] .celly] [particle[count1] 
.cellx] .Ex•dr2 
* dz2 

* (2.0 * array[particle[count1] .celly+1][particle[ 
count!] .cellx].y 
+ 3.0 

* array[particle[count1] .celly] [particle[count1] .c 
ellx]. y -

particle[count1].r) / (2.0 * dr * dz) 
+ array[particle[count1] .celly] [particle[count1] .c 

ellx+1] .Ex•dr2 
* dz1 

* (2.0 * array[particle[count1] .celly+1][particle[ 
count!] .cellx+1] .y 
+ 3.0 * 

array[particle[count1] .celly] [particle[count1] .ce 
llx]. y -
particle[count1] .r) / 

(2.0 * dr *dz)+ array[particle[count1] .celly+1] [ 
particle[count1] .cellx+1].Ex• 

dr1 * dz1 * (3.0 * array[particle[count1] .celly+1] [ 
particle[count1] .cellx+1] .y + 

2.0 * array[particle[count1] .celly][particle[count1]. 
cellx+1] . y -

particle[count1].r) / (2.0 * dr *dz)+ 
array[particle[count1] .celly+1] [particle[count1] .cell 

x] .Ex* 
dr1 * dz2 * (3.0 * 

array[particle[count1] .celly+1] [particle[count1] .cell 
x] .y + 2.0 * 

array[particle[count1] .celly] [particle[count1] .cellx] .y -
particle[count1] .r) 

} 

} 

} 

I (2.0 * dr * dz); 

A.5 graphics.c 
#define EXTERN extern 
#include "lprobe60.h" 

void graph(GRIDDEF array[ngp1] [ngp2] ,PARTICLEDEF particle1[numpart] ,PARTICLE 
DEF particle2[numpart]) 
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{ 

static int count1,count2; 
static float probepts[4J [2J ,inspts[4J[2J; 
static float xmouse, ymouse; 
static PushButton SwitchButton, ExitButton,PrintButton; 
backbuffer(); 
color(O); 

l*if(t_count -- 1){ 
clear(); 

}*/ 

ClearMouseBuffer(); 

if (view == 1){ 
color(O); 
clear(); 

MakeButton(PRINTBOXx,PRINTBOXy, &PrintButton, "Print\O"); 
if ( CheckButton(PrintButton)) 

{ 

view= 3; 
} 

MakeButton(SWITCHBOXx, SWITCHB□Xy, &SwitchButton, "Front\O"); 
if ( CheckButton(SwitchButton)) 

{ 

view= O; 
} 

MakeButton(EXITBOXx, EXITBOXy, 
if ( CheckButton(ExitButton) 

vexit(); 
exit ( 1 ); 

} 

color(52); 
polyfill(O); 

&ExitButton, "Exit\O"); 
){ 

rect(1.5*(array[OJ [OJ .x+O.5),-2.O*array[ngp_vert-1J [OJ .y, 
1.5*(array[OJ [ngp_horiz-1J.x+O.5),2.O*array[ngp_vert-1J [OJ.y); 

move2(-O.95,O.O); 
draw2(1.O,O); 

color(5O); 
I* for (count1=O;count1 < ngp_vert;count1++) 

{ 

for (count2=O;count2 < ngp_horiz;count2++) 
{ 

}*/ 

point2(1.5*(array[count1J[count2J .x+.5),2.O*array[count1J[count2J .y); 
} 
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color(56); 
probepts[0][0]=1.5*(.5-l_insul); probepts[0][1]=2.0*r_probe; 
probepts[1][0]=1.5*(.5-l_insul); probepts[1][1]=-2.0*r_probe; 
probepts[2] [0]=1.5*(.5-l_insul-l_probe); probepts[2] [1]=-2.0*r_probe; 
probepts[3] [0]=1.5*(.5-l_insul-l_probe); probepts[3] [1]=2.0*r_probe; 
inspts[O] [0]=1.5*.5;inspts[0][1]=2.0*r_insul; 
inspts[1] [0]=1.5*.5;inspts[1][1]=-2.0*r_insul; 
inspts[2] [0]=1.5*(.5-l_insul);inspts[2] [1]=-2.0*r_insul; 
inspts[3] [0]=1.5*(.5-l_insul);inspts[3][1]=2.0*r_insul; 

if ( CheckButton(SwitchButton)) 
{ 
view= O; 
} 

polyfill(1); 
poly2(4,probepts); 
color(50); 
polyhatch(1); hatchang(90.0); hatchpitch(0.005); 
poly2(4,inspts); 

color(53); 
for (count1=0;count1 < numelec;count1++) 

{ 

point2(1.5*(particle1[count1] .x+.5),2.0*particle1[count1] .y); 
} 

color(2); 
for (count1=0;count1 < numion;count1++) 

{ 

point2(1.5*(particle2[count1] .x+.5),2.0*particle2[count1] .y); 

} 

if .( CheckButton(SwitchButton) ) 
{ 

view= O; 
} 

if ( CheckButton(ExitButton) ){ 
vexit(); 
exit ( 1 ); 

} 

} 

if (view == O){ 
clear(); 
color(O); 

color(56); 
polyfill(1); 
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circle(0.0,0.0,2.5*r_probe); 
polyhatch(1); hatchang(90.0); hatchpitch(0.005); 
circle(0.0,0.0,2.5*r_insul); 

MakeButton (PRINTB□Xx, PRINTB□Xy, &PrintButton, "Print \O"); 
if ( CheckButton(PrintButton)) 

{ 

view= 3; 
} 

MakeButton(SWITCHB□Xx, SWITCHBDXy, &SwitchButton, "Side\O"); 
if ( CheckButton(SwitchButton)) 

{ 

view= 1; 
} 

MakeButton(EXITB□Xx, EXITB□Xy, &ExitButton, "Exit\0"); 
if ( CheckButton(ExitButton) ){ 

vexit(); 
exit ( 1 ); 

} 

color(52); 
polyfill(O); 
circleprecision(64); 
circle(0.0,0.0,2.5*radius); 

color(53); 
for (count1=0;count1 < numelec;count1++) 

{ 

point2(2.5*particle1[count1] .z,2.5*particle1[count1] .y); 
} 

if ( CheckButton(SwitchButton)) 
{ 

view= 1; 
} 

if ( CheckButton(ExitButton) ){ 
vexit(); 
exit ( 1 ); 

} 

color(2); 
for (count1=0;count1 < numion;count1++) 

{ 

point2(2.5*particle2[count1] .z,2.5*particle2[count1] .y); 
} 

} 

swapbuffers(); 

if (view== 3) 
{ 
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vexit(); 
voutput("picture.ps"); 
vinit("cps"); 
color(O); 
clear(); 
color(52); 
polyfill(O); 
rect(2.25*(array[O][ngp_horiz].x+.5),-3.5*array[ngp_vert] [ngp_horiz] .y, 

2.25*(array[O] [OJ .x+0.42),3.S*array[ngp_vert] [O].y); 
rnove2(-0.95,0.0); 
draw2 ( 1. 0, 0) ; 

color(50); 
for (count1=0;count1 < ngp_vert+1;count1++) 

{ 

for (count2=0;count2 < ngp_horiz+1;count2++) 
{ 

point2(2.25*(array[count1] [count2] .x+0.42),3.5*array[count1] [count2] .y); 
} 

} 

color(56); 
probepts[0][0]=2.25*(0.42-l_insul); probepts[0][1]=3.5*r_probe; 
probepts[1][0]=2.25*(0.42-l_insul); probepts[1][1]=-3.5*r_probe; 
probepts[2] [0]=2.25*(0.42-l_insul-l_probe); probepts[2] [1]=-3.5*r_probe; 
probepts[3] [0]=2.25*(0.42-l_insul-l_probe); probepts[3] [1]=3.5*r_probe; 
inspts[O] [0]=2.25*0.42;inspts[O] [1]=3.5*r_probe; 
inspts[1] [0]=2.25*0.42;inspts[1] [1]=-3.5*r_probe; 
inspts[2] [0]=2.25*(0.42-l_insul);inspts[2][1]=-3.5*r_probe; 
inspts[3] [0]=2.25*(0.42-l_insul);inspts[3] [1]=3.5*r_probe; 

if ( CheckButton(SwitchButton) 
{ 

view= O; 
} 

polyfill( 1); 
poly2(4,probepts); 
color(50); 
polyhatch(1); hatchang(90.0); hatchpitch(0.005); 
poly2(4,inspts); 

color(53); 
for (count1=0;count1 < nurnelec;count1++) 

{ 

point2(2.25*(particle1[count1] .x+0.42),3.5*particle1[count1].y); 
} 

vexit() ;exit(!); 
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} 

} 

short CheckButton ( PushButton TomButton) 

{ 

static float xmouse, ymouse; 
if ( slocator( &xmouse, &ymouse )) 

{ 

if ( (xmouse > TomButton.x1PositionUp && (xmouse < TomButton.x2P 
ositionUp) && 

(ymouse < TomButton.y1PositionUp && (ymouse > TomButton.y2P 
ositionUp) ) 

} 

{ 

} 

} 

return O; 

DrawButtonDown(TomButton); 
return 1; 

void ClearMouseBuffer() 

{ 

float xmouse, ymouse; 

slocator( &xmouse, &ymouse ); 
} 

short MakeButton ( float xi, float y1, PushButton *TomButton, char ButtonText[20]) 
{ 

TomButton->x1PositionUp = xi; 
TomButton->y1PositionUp = y1; 
TomButton->x2PositionUp = xi+xButtonOffset; 
TomButton->y2PositionUp = y1-yButton0ffset; 
strcpy(TomButton->ButtonText, ButtonText); 
TomButton->TextColor = 3; 
TomButton->aBorderColorUp = lightgray; 
TomButton->bBorderColorUp = gray; 
TomButton->cBorderColorUp = gray; 
TomButton->dBorderColorUp = lightgray; 
TomButton->aBorderColorDown = gray; 
TomButton->bBorderColorDown = lightgray; 
TomButton->cBorderColorDown = lightgray; 
TomButton->dBorderColorDown = gray; 
TomButton->FillColorUp = midblue; 
TomButton->FillColorDown = gray; 
DrawButton(*TomButton); 
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return ( 0 ); 
} 

void DrawButton(PushButton TomButton) 
{ 

} 

float f , g; 

font ("/usr/people/tmarkusi/vogle/font/futura.m"); 

color(TomButton.FillColorUp); 
polyfill(TomButton.FillColorUp); 
rect(TomButton.x1PositionUp,TomButton.y1PositionUp, 

TomButton.x2PositionUp,TomButton.y2PositionUp); 

color(TomButton.TextColor); 
f = fabs((TomButton.x1PositionUp - TomButton.x2PositionUp)); 
g = fabs((TomButton.y2PositionUp - TomButton.y1PositionUp)); 
boxtext(TomButton.x1PositionUp, TomButton.y2PositionUp,f,g, 

TomButton.ButtonText); 

move2(TomButton.x1PositionUp,TomButton.y1PositionUp); 
color(TomButton.aBorderColorUp); 
draw2(TomButton.x1PositionUp,TomButton.y2PositionUp); 

color(TomButton.bBorderColorUp); 
draw2(TomButton.x2PositionUp,TomButton.y2PositionUp); 

color(TomButton.cBorderColorUp); 
draw2(TomButton.x2PositionUp,TomButton.y1PositionUp); 

color(TomButton.dBorderColorUp); 
draw2(TomButton.x1PositionUp,TomButton.y1PositionUp); 

void DrawButtonDown(PushButton TomButton) 
{ 

float f, g; 

color(TomButton.FillColorDown); 
polyfill(TomButton.FillColorDown); 
rect(TomButton.x1PositionUp,TomButton.y1PositionUp, 

TomButton.x2PositionUp,TomButton.y2PositionUp); 

color(TomButton.TextColor); 
f = fabs((TomButton.x1PositionUp - TomButton.x2PositionUp)); 
g = fabs((TomButton.y2PositionUp - TomButton.y1PositionUp)); 
boxtext(TomButton.x1PositionUp, TomButton.y2PositionUp,f,g, 

TomButton.ButtonText); 
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} 

move2(TomButton.x1PositionUp,TomButton.y1PositionUp); 

color(TomButton.aBorderColorDown); 
draw2(TomButton.x1PositionUp,TomButton.y2PositionUp); 

color(TomButton.bBorderColorDown); 
draw2(TomButton.x2PositionUp,TomButton.y2PositionUp); 

color(TomButton.cBorderColorDown); 
draw2(TomButton.x2PositionUp,TomButton.y1PositionUp); 

col~r(TomButton.dBorderColorDown); 
draw2(TomButton.x1PositionUp,TomButton.y1PositionUp); 

A.6 grid.c 
#define EXTERN extern 
#include "lprobe60.h" 

void gridgen(GRIDDEF array[ngp1] [ngp2]) 
{ 

long int count1,count2,cell1_count,cell6_count; 
FLOAT index1,index2; 

ngp_vert=ngp1; 
ngp_horiz=ngp2; 
cell1_count=15,cell6_count=74; 

index1=-1.0; 
for (count1=0;count1 < cell1_count;count1++){ 

index1=index1+1.0; 

} 

index2=-1.0; 
for (count2=0;count2 < ngp_horiz;count2++){ 

index2=index2+1.0; 
array[count1] [count2].x=-length+index2*cell_width; 
array[count1] [count2].y=index1*cell_height1; 
} 

index2=-1.0; 
for (count2=0;count2 < ngp_horiz;count2++){ 

index2=index2+1.0; 

} 

array[15] [count2] .x=-length+index2*cell_width; 
array[15] [count2] .y= array[14] [count2] .y+cell_height2; 

index2=-1.0; 
for (count2=0;count2 < ngp_horiz;count2++){ 
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} 

index2=index2+1.0; 
array[16] [count2] .x=-length+index2•cell_width; 
array[16] [count2] .y=array[15][count2].y+cell_height3; 

index2=-1.0; 
for (count2=0;count2 < ngp_horiz;count2++){ 

index2=index2+1.0; 
array[17] [count2] .x=-length+index2•cell_width; 
array[17] [count2] .y=array[16][count2].y+cell_height4; 

} 

index2=-1.0; 
for (count2=0;count2 < ngp_horiz;count2++){ 

index2=index2+1.0; 
array[18] [count2] .x=-length+index2•cell_width; 
array[18] [count2] .y=array[17][count2].y+cell_height5; 

} 

index1=0.0; 
for (count1=19;count1 < cell6_count;count1++){ 

index1=index1+1.0; 

} 

index2=-1.0; 
for (count2=0;count2 < ngp_horiz;count2++){ 

index2=index2+1.0; 
array[count1] [count2].x=-length+index2•cell_width; 
array[count1] [count2].y=array[18][count2] .y+index1•cell_height6; 
} 

/• Clean-up grid for next time step •I 
for (count1=0;count1 < ngp_vert;count1++){ 

for (count2=0;count2 < ngp_horiz;count2++){ 
array[count1] [count2].q_dens=array[count1] [count2].Ex= 

array[count1] [count2] .Ey=O.O; 
} 

} 

} 

A.7 initialize.c 

#define EXTERN extern 
#include "lprobe60.h" 

void initialize(PARTICLEDEF particle[nurnpart] ,long int •num_part, 
long int init_num,FLOAT super_init,FLOAT *v_table,FLOAT m,FLOAT q) 

{ 

long int i,rannum; 
FLOAT theta,phi,v,r; 
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for(i=O;i < init_num;i++){ 

theta=pi•random_num[rancount]; 
rancount ++; 

phi=2.0*pi•random_num[rancount]; 
rancount ++; 

rannum=((long)100000.0•random_num[rancount]); 
rancount ++; 

v=v_table[rannum]; 
rancount ++; 

r=radius * sqrt(random_num[rancount]); 
rancount ++; 

particle[•num_part] .x=-length * random_num[rancount]; 
rancount++; 

. particle [•num_part]. y=r•sin(theta); 
particle[•num_part].z=r•cos(theta); 
particle[•num_part] .r=sqrt(particle[•num_part] .y•particle 

[•num_part].y 
+ particle[•num_part] .z * particle[•num_part] .z); 

particle[•num_part] .vx=v * sin(theta) •sin(phi); 
particle[•num_part] .vy=v * cos(theta); 
particle[•num_part] .vz=v * sin(theta) * cos(phi); 
particle[•num_part] .Ex=O.O; 
particle[•num_part] .Ey=O.O; 
particle[•num_part] .q= q * super_init; 
particle[•num_part] .m= m * super_init; 
(•num_part)++; 

} 

} 

A.8 initialize_beam.c 
#define EXTERN extern 
#include "lprobe60.h" 

void initialize_beam(PARTICLEDEF particle[numpart] ,long int •num_part, 
long int init_num,FLOAT super_init,FLOAT m,FLOAT q) 

{ 

long inti; 
FLOAT theta,v,r; 

for(i=O;i < init_num;i++){ 
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r=radius * sqrt(random_num[rancount]); 
rancount ++; 

theta=2.0*pi*random_num[rancount]; 
rancount ++; 

v=beam_vel; 

particle[*num_part] .x=-length * random_num[rancount]; 
rancount++; 

particle[*num_part] .y=r*sin(theta); 
particle[*num_part] .z=r*cos(theta); 
particle[*num_part] .r=sqrt(particle[*num_part] .y*particle[*num 

_part] .y 
+ particle[*num_part] .z * particle[•num_part] .z); 

particle[*num_part] .vx=v; 
particle[•num_part] .vy=O; 
particle[*num_part] .vz=O; 
particle[*num_part] .Ex=O.O; 
particle[•num_part].Ey=O.O; 
particle[•num_part] .q= q * super_init; 
particle[*num_part] .m= m * super_init; 
(*num_part)++; 

/•if(particle[*num_part] .x > (-l_insul) && particle[•num_part] .r 
< (r_insul) ){ 

(*num_part)--; 
i--; 

} 

} 

A.9 inj ect_beam. c 
#define EXTERN extern 
#include "lprobe60.h" 
I* This function injects particles at each time step *I 

void inject_beam(PARTICLEDEF particle[numpart],long int •num_part,FLOAT 
m,FLOAT q) 

{ 

long int i,i2; 
FLOAT theta,phi,v; 

for(i=O;i < super_beami;i++){ 

v=beam_vel; 
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theta=(pi / 36.0) * random_num[rancount]; I* Up to five degree 
beam divergence *I 
rancount ++; 

phi=2.0*pi*random_num[rancount]; 
rancount ++; 

particle[*num_part] .x=-length; 
particle[*num_part] .y=radius * sqrt(random_num[rancount]); 

rancount ++; 
particle[*num_part] .z=0; 
particle[*num_part] .r=sqrt(particle[*num_part] .y*particle[*num_part] .y 

+ particle[*num_part] .z * particle[*num_part] .z); 

particle[*num_part] .vx=v * cos(theta); 
particle[*num_part] .vy=v * sin(theta) * cos(phi); 
particle[*num_part] .vz=v * sin(theta) * sin(phi); 
particle[*num_part] .q= q * super_beam; 
particle[*num_part] .m= m * super_beam; 
particle[*num_part] .Ex=0.0; 
particle[*num_part] .Ey=0.0; 
(*num_part)++; 

if (particle[*num_part-1] .r < (0.2 * radius)){ 

particle[*num_part-1] .q= q * super_beam / ion_sub_inject; 
particle[*num_part-1] .m= m * super_beam / ion_sub_inject; 

for(i2=0;i2 < (ion_sub_inject-1);i2++){ 

theta= -(pi/ 36.0) + 2.0*(pi / 36.0) * random_num[rancount]; 
I* Up 
to five degree beam divergence *I 

rancount ++; 
I* phi=2.0*pi*random_num[rancount]; 

} 

rancount ++;*/ 

particle[*num_part] .x=particle[*num_part-1] .x; 
particle[*num_part] .y=particle[*num_part-1] .y; 
particle[*num_part] .z=particle[*num_part-1] .z; 
particle[*num_part] .r=particle[*num_part-1] .r; 
particle[*num_part] .vx=v * cos(theta); 
particle[*num_part] .vy=v * sin(theta); 
particle[*num_part] .vz=O.0; 

particle[*num_part].vy=v * sin(theta) * cos(phi); 
particle[*num_part] .vz=v * sin(theta) * sin(phi); *I 
particle[*num_part] .q= q * super_beam / ion_sub_inject; 
particle[*num_part] .m= m * super_beam / ion_sub_inject; 
particle[*num_part] .Ex=O.0; 
particle[*num_part] .Ey=0.0; 
(*num_part)++; 
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} 

} 

} 

A.10 inj ect_part. c 

#define EXTERN extern 
#include "lprobe60.h" 
I* This function injects particles at each time step *I 

void inject(PARTICLEDEF particle[numpart],long int *num_part,FLOAT super_back, 
FLOAT super_front, 

FLOAT super_side,long int superinj_back,long int superinj_front, 
long int superinj_side,FLOAT *v_table,FLOAT m,FLOAT q) 

{ 

long int i,rannum; 
FLOAT theta,phi,v; 

for(i=O;i < superinj_front;i++){ 

FRONT 
theta=acos(sqrt(1 - random_num[rancount])); 

rancount ++; 
phi=2.0*pi*random_num[rancount]; 

rancount ++; 
rannum=((long int)100000.0*random_num[rancount]); 

rancount ++; 
v=v_table[rannum]; 
particle[*num_part] .x=-length; 
particle[*num_part] .y=height * random_num[rancount] - height/ 2.0; 

rancount ++; 
particle[*num_part] .z=width * random_num[rancount] - width/ 2.0; 

rancou·nt ++; 
particle[*num_part] .r=sqrt(particle[*num_part] .y*particle[*num_part 

] . y 

+ particle[*num_part] .z * particle[*num_part] .z); 
particle[*num_part] .vx=v * cos(theta); 
particle[*num_part] .vy=v*sin(theta)*cos(phi); 
particle[*num_part] .vz=v*sin(theta)*sin(phi); 
particle[*num_part] .q= q * super_front; 
particle[*num_part] .m= m * super_front; 
particle[*num_part] .Ex=O.O; 
particle[*num_part] .Ey=O.O; 
(*num_part)++; 

} 

for(i=O;i < superinj_back;i++){ 
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BACK 
theta=acos(sqrt(1 - random_num[rancount])); 

rancou·nt ++; 
phi=2.0*pi*random_num[rancount]; 

rancount ++; 
rannum=((long int)100000.0*random_num[rancount]); 

rancount ++; 
v=v_table[rannum]; 
do{ 

particle[*num_part] .x=O.O; 
particle[*num_part] .y=height * random_num[rancount] - height 

I 2.0; 
rancount ++; 

particle[*num_part] .z=width * random_num[rancount] - width 
I 2.0; 
rancount ++; 

particle[*num_part] .r=sqrt(particle[*num_part] .y*particle 
[*num_part] .y 
+ particle[*num_part] .z * particle[*num_part] .z); 

particle[*num_part] .vx=-v * cos(theta); 
particle[*num_part] .vy=v*sin(theta)*cos(phi); 
particle[*num_part] .vz=v*sin(theta)*sin(phi); 
particle[*num_part] .Ex=O.O; 
particle[*num_part] .Ey=O.O; 
particle[*num_part] .q= q * super_back; 
particle[*num_part] .m= m * super_back; 

}while( particle[*num_part] .r <= r_insul); 

(*num_part)++; 

} 

for(i=O;i < superinj_side;i++){ 

BOTTOM SIDE 
theta=acos(sqrt(1 - random_num[rancount])); 

rancount ++; 
phi=2.0*pi*random_num[rancount]; 

rancount ++; 
rannum=((long)100000.0*random_num[rancount]); 

rancount ++; 
v=v_table[rannum]; 
particle[*num_part] .x=-length * random_num[rancount]; 

rancount ++; 
particle[*num_part] .y=-radius; 
particle[*num_part] .z=width * random_num[rancount] - width/ 

2.0; 
rancount ++; 

particle[*num_part] .r=sqrt(particle[*num_part] .y*particle[*num 



_part] .y 
+ particle[•nurn_part] .z * particle[•nurn_part] .z); 

particle[•nurn_part] .vx=v * sin(theta) •sin(phi); 
particle[•nurn_part] .vy=v * cos(theta); 
particle[•nurn_part] .vz=v•sin(theta)•cos(phi); 
particle[•nurn_part] .Ex=O.O; 
particle[•nurn_part] .Ey=O.O; 
particle[•nurn_part] .q= q * super_side; 
particle[•nurn_part] .rn= rn * super_side; 
(•nurn_part)++; 

I* TOP Side •I 
theta=acos(sqrt(l - randorn_nurn[rancount])); 

rancount ++; 
phi=2.0*pi*randorn_num[rancount]; 

rancount ++; 
rannurn=((long)100000.0*randorn_nurn[rancount]); 

rancount ++; 
v=v_table[rannum]; 
particle[•nurn_part] .x=-length * randorn_nurn[rancount]; 

rancount ++; 
particle[•nurn_part] .y=radius; 
particle[•nurn_part] .z=width * randorn_nurn[rancount] - width/ 2.0; 

rancount ++; 
particle[•nurn_part] .r=sqrt(particle[•num_part] .y*particle[•num_pa 

rt] .y 
+ particle[•num_part] .z * particle[•num_part] .z); 

particle[•num_part] .vx=v * sin(theta) * sin(phi); 
particle[•num_part] .vy=-v * cos(theta); 
particle[•nurn_part] .vz=v * sin(theta) * cos(phi); 
particle[•num_part] .Ex=O.O; 
particle[•num_part] .Ey=O.O; 
particle[•num_part] .q= q * super_side; 
particle[•num_part] .m= m * super_side; 
(•num_part)++; 

FRONT SIDE 
theta=acos(sqrt(l - random_num[rancount])); 

rancount ++; 
phi=2.0*pi•random_num[rancount]; 

rancount ++; 
rannurn=((long)100000.0*random_num[rancount]); 

rancount ++; 
v=v_table[rannum]; 
particle[•num_part] .x=-length * random_num[rancount]; 

rancount ++; 
particle[•nurn_part] .y=height * random_num[rancount] - height 

I 2.0; 
rancount ++; 
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particle[*num_part] .z=radius; 
particle[*num_part] .r=sqrt(particle[*num_part] .y*particle[*num 

_part] .y 
+ particle[*num_part] .z * particle[*num_part] .z); 

particle[*num_part] .vx=v * sin(theta) * cos(phi); 
particle[*num_part] .vy=v * sin(theta) * sin(phi); 
particle[*num_part] .vz=-v * cos(theta); 
particle[*num_part] .Ex=O.O; 
particle[*num_part] .Ey=O.O; 
particle[*num_part] .q= q * super_side; 
particle[*num_part] .m= m * super_side; 
(*num_part)++; 

BACK SIDE 

theta=acos(sqrt(1 - random_num[rancount])); 
rancount ++; 

phi=2.0*pi*random_num[rancount]; 
rancount ++; 

rannum=((long)100000.0*random_num[rancount]); 
rancount ++; 

v=v_table[rannum]; 
particle[*num_part] .x=-length * random_num[rancount]; 

rancount ++; 
particle[*num_part] .y=height * random_num[rancount] - heig 

ht/ 2.0; 
rancount ++; 

particle[*num_part] .z=-radius; 
particle[*num_part] .r=sqrt(particle[*num_part] .y*particle 

[*num_part] .y 
+ particle[*num_part] .z * particle[*num_part] .z); 

particle[*num_part] .vx=v * sin(theta) * cos(phi); 
particle[*num_part] .vy=v * sin(theta) * sin(phi); 
particle[*num_part] .vz=v * cos(theta); 
particle[*num_part] .Ex=O.O; 

} 

} 

particle[*num_part] .Ey=O.O; 
particle[*num_part].q= q * super_side; 
particle[*num_part] .m= m * super_side; 
(*num_part)++; 

A.11 locate.c 
#define EXTERN extern 
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#include "lprobe6O.h" 

void locatex(GRIDDEF xx[ngp1J [ngp2J, unsigned long n, FLOAT x, 
unsigned long *jj) 
{ 

} 

unsigned long ju,jm,jl; 
int ascnd; 

jl=O; 
ju=n+1; 
ascnd=(xx[OJ [n-1J .x > xx[OJ [1J .x); 
while (ju-jl > 1) { 

} 

jm=(ju+jl) » 1; 
if (x > xx[OJ [jmJ.x == ascnd) 

jl=jm; 
else 

ju=jm; 

*jj=jl; 

void locatey(GRIDDEF xx[ngp1][ngp2], unsigned long n, FLOAT x, 
unsigned long •jj) 
{ 

} 

unsigned long ju,jm,jl; 
int ascnd; 

jl=O; 
ju=n+1; 
ascnd=(xx[n-1J [OJ .y > xx[1J[OJ.y); 
while (ju-jl > 1) { 

} 

jm=(ju+j 1) » 1; 
if (x > xx[jmJ [OJ .y == ascnd) 

jl=jm; 
else 

ju=jm; 

*jj=jl; 

A.12 make_LU. c 

#define EXTERN extern 
#include "lprobe6O.h" 

/• This function computes the LU decomposition of the 
band matrix generated 

by differencing Poisson's Equation on the grid •/ 
void make_LU(GRIDDEF array[ngp1J[ngp2J) 
{ 

116 



FILE *abddata,*abddata2; 
int info; 
long int i,j,k,jmax,kmax,count,counter1,counter2,counter3, 
counter4,counter5; 

abddata=fopen("abddata. dat", "w+"); 
abddata2=fopen("abddata2 .dat", "w+"); 

MAKE BANDS 

jmax=ngp_vert; 
kmax=ngp_horiz; 
counteri=upper_width-1; 
counter2=0; 
counter3=-1; 
counter4=0; 
counter5=0; 

**** 
I* Initialize all non-relevant positions to zero *I 
for(i=O;i < ngp;i++){ 

band1[i]=band2[i]=band3[i]=band4[i]=band5[i]=O.O; 
} 

for (j=O;j < jmax;j++){ 
for(k=O;k < kmax;k++){ 

if(counteri<(ngp-1)){ 
counter!++; 

} 

if(counter2<(ngp-1)){ 
counter2++; 

} 

counter4++;counter5++; 

I* y < r_probe *I 
if(j <= jprobe){ 

if (j==O && k==1){ 
counter4=0; 

Lower boundary *I 

} 

if(j==1 && k==O){ 
counter5=0; 

} 

if( k < kprobe){ 
if(j==O){ I* 

if(k==O) { 
band! 

[counter1]=0.0; 
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[counter2]=0.0; 

[counter4]=0.0; 

[counter5]=0.0; 

[counter1]=pi*cell_width; 

[counter2]=pi*array[j+1] [k].y 
*array[j+1] [k] .y/(4.0*cell_width); 

[counter4]=pi*array[j+1][k].y 
*array[j+1] [k] .y/(4.0*cell_width); 

[counter5]=0.0; 

Rest to top of probe *I 

[counter1]=0.0; 

[counter2]=0.0; 

[counter4]=0.0; 

[counter5]=0.0; 

} 

else { 

} 

} 

band2 

band4 

band5 

band1 

band2 

band4 

band5 

else{ I* 

if(k==O) { 
band1 

} 

else{ 

band2 

band4 

band5 

band1 
[counter1]=2.0*pi*cell_width* 
(array[j] [k] .y+(array[j+1] [k] .y-array[j] [k] .y)/2.0)/( 
array[j+1][k] .y-array[j][k].y); 

band2 
[counter2]=pi*((array[j] [k].y+ 
(array[j+1] [k] .y-array[j][k] .y)/2.0)*(array[j][k] .y+( 
array[j+1] [k] .y-array[j] [k] .y) 
/2.0) 

-(ar 
ray[j][k] .y-(array[j][k] .y-
array[j-1] [k] .y)/2.0)*(array[j] [k] .y-(array[j][k] .y-a 
rray[j-1] [k] .y)/2.0))/cell_width; 

band4[ 
counter4]=pi*((array[j] [k] .y+ 
(array[j+1] [k] .y-array[j] [k] .y)/2.0)*(array[j] [k] .y+(a 
rray[j+1] [k] .y-array[j][k].y) 
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/2.0) 
-(ar 

ray [j] [k] . y- ( array [j] [k] . y-
array [j-1] [k] .y)/2.0)*(array[j] [k].y-(array[j][k] .y-arr 
ay[j-1] [k] .y)/2.0))/cell_width; 

band5[c 
ounter5]=2.0*pi* 
cell_width*(array[j] [k] .y-(array[j] [k] .y-array[j-1] [k]. 
y)/2.0)/(array[j][k].y 
-array[j-1][k] .y); 

} 

else { I* 
robe *I 

} 

} 

on and inside p 

band1[counter1] 
=band2[counter2]=band4[counter4] 
=band~[counter5]=0.0; 

} 

} 

else if (j>jprobe && j<(jmax-1)){ 
if((k > 0) && (k < (kmax-1))){ 

band1[counter1]=2.0*pi*ce 
ll_width*(array[j][k].y+( 
array[j+1] [k] .y-array[j] [k].y)/2.0)/(array[j+!] [k] .y-arr 
ay[j] [k] .y); 

band2[counter2]=pi*((array 
[j] [k] .y+(array[j+1] [k] .y 
-array[j] [k] .y)/2.0)*(array[j] [k].y+(array[j+1][k] .y-arr 
ay[j] [k] .y)/2.0) -(array[j] 
[k] .y-(array[j] [k] .y-array[j-1] [k] .y)/2.0)*(array[j] [k]. 
y-(array[j] [k] .y-array[j-1] 
[k] .y)/2.0))/cell_width; 

band4[counter4]=pi*((array[ 
j] [k] .y+(array[j+1][k].y-
array[j] [k] .y)/2.0)*(array[j] [k].y+(array[j+1][k] .y-array 
[j] [k] .y)/2.0) -(array[j] 
[k] .y-(array[j] [k] .y-array[j-1] [k] .y)/2.0)*(array[j] [k]. 
y-(array[j] [k].y-array[j-1 
] [k] .y)/2.0))/cell_width; 

band5[counter5]=2.0*pi*cel 
l_width*(array[j][k].y-( 
array[j] [k] .y-array[j-1] [k].y)/2.0)/(array[j] [k] .y-array 
[j-1] [k] .y); 

} 

else if(k==0){ 
band1[counter1]=0.0; 
band2[counter2]=0.0; 
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} 

else { 

band4[counter4]=0.0; 
band5[counter5]=0.0; 

band1[counter1]=2.0*pi*( 
array[j] [k] .y+( 
array [j + 1] [k] . y-array [j] [k] . y) /2. 0 ) * cell_ width/ ( array [j + 
1] [k] . y-array [j] [k] . y); 

band2[counter2]=0.0; 
band4[counter4]=pi*((arra 

y [j] [k] . y+ ( 
array[j+1] [k] .y-array[j] [k].y)/2.0)*(array[j] [k] .y+(array[ 
j+l] [k] .y-array[j][k].y)/ 
2.0) 

-(array[j] [k] .y-(array[j 
] [k] .y-array[j-1] [k] .y)/ 
2.0)*(array[j] [k] .y-(array[j] [k] .y-array[j-1] [k] .y)/2.0))/ 
cell_width; 

band5[counter5]=2.0*pi*( a 
rray[j] [ngp_horiz-1].y-( 
array[j] [k] .y-array[j-1] [k].y)/2.0 )*cell_width/(array[j] [ 
k] .y-array[j-1] [k].y); 

} 

} 

} 

else{ 

} 

} 

/*for(i=O;i<ngp;i++){ 

/*band1[counter1]=0.0;*/ 
band2[counter2]=0.0; 
band4[counter4]=0.0; 
band5[counter5]=0.0; 

printf ( "1/.ld 1/,e 1/,e 1/,e 1/.e 1/,e 
\n", i, band! [i], band2 [i 
],band3[i] ,band4[i],band5[i]); 
}*/ 

I* Diagonal *I 
for (j=O;j < jrnax;j++){ 

I* y < r_probe *I 
if(j <= jprobe){ 

for(k=O;k < krnax;k++){ 
counter3++; 
if(k >= 0 && (k < kprobe)){ 

if(j==O){ 
if (k==O){ 

120 



band3[coun 
ter3] =-1. 0; 

} 

else{ 
band3[coun 

ter3]=-pi*(cell_width+ 
(array[j+1] [k] .y-array[j] [k] .y)*(array[j+1] [k].y-array[j] [k 
] .y)/(2.0*cell_width)); 

} 

} 

else { 
if (k==O){ 

band3[counte 
r3]=-1.0; 

} 

else{ 
band3[counter 

3]=-(2.0*pi*cell_ 
width*(array[j] [k] .y+(array[j+1][k] .y-array[j][k] .y)/2.0)/(arr 
ay[j+1] [k] .y-array 
[j] [k] .y) + pi*((array[j] [k] .y+(array[j+1] [k] .y-array[j][k]. 
y)/2.O)*(array[j][k].y 
+(array[j+1] [k] .y-array[j] [k] .y)/2.0) -(array[j] [k] .y-(array[ 
j] [k] .y-array[j-1] [k] 
.y)/2.0)*(array[j] [k] .y-(array[j][k] .y-array[j-1] [k] .y)/2.0)) 
/cell_width + pi*((ar 
ray[j] [k] .y+(array[j+1] [k] .y-array[j] [k] .y)/2.0)*(array[j] [k]. 
y+(array[j+1][k].y-a 
rray[j] [k] .y)/2.0) -(array[j] [k] .y-(array[j] [k] .y-array[j-1] [ 
k] .y)/2.0)*(array[j][ 
k] .y-(array[j] [k] .y-array[j-1] [k].y)/2.0))/cell_width + 2.0*pi 
*cell_width*(array[j 
] [k] .y-(array[j] [k] .y-array[j-1] [k] .y)/2.0)/(array[j] [k] .y-arr 
ay[j-1] [k]. y)); 

} 

} 

} 

else{ 

} 

} 

band3[counter3]=-1.0; 
} 

I* y > r_probe *I 
else if(j<(jmax-1)){ 

<(jmax-1)) ){ 

for(k=0;k < kmax;k++){ 
counter3++; 

if(k > 0 && (k < (kmax-1)) && (j 

band3[counter3]=-(2.0*pi* 
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cell_width•(array[j][k].y+ 
(array[j+1] [k] .y-array[j][k].y)/2.0)/(array[j+1][k].y-arr 
ay[j] [k] .y) + pi*((array[j 
] [k] .y+(array[j+1] [k] .y-array[j] [k] .y)/2.0)•(array[j] [k]. 

y+(array[j+1][k] .y-array[j 
] [k] .y)/2.0) -(array[j] [k] .y-(array[j] [k].y-array[j-1] [k 
] .y)/2.0)•(array[j][k].y-(a 
rray[j] [k] .y-array[j-1] [k] .y)/2.0))/cell_width + pi*((ar 
ray[j] [k] .y+(array[j+1] [k]. 

y-array[j] [k] .y)/2.0)•(array[j] [k] .y+(array[j+1] [k] .y-ar 
ray[j] [k] .y)/2.0) -(array[j 
] [k] .y-(array[j] [k] .y-array[j-1] [k] .y)/2.0)•(array[j] [k] 
.y-(array[j] [k] .y-array[j-1] 
[k] .y)/2.0))/cell_width + 2.0*pi•cell_width•(array[j] [k] 

.y-(array[j] [k] .y-array[j-1] 
[k] .y)/2.0)/(array[j] [k] .y-array[j-1][k] .y)); 

} 

else if (k==O ){ 
band3[counter3]=-1.0; 

} 

else{ 
band3[counter3]=-(2.0*pi* 

cell_width•(array[j][k].y+ 
(array[j+1] [k] .y-array[j] [k] .y)/2.0)/(array[j+1][k] .y-arr 
ay[j] [k] .y) + pi*((array[j 
] [k] .y+(array[j+1] [k] .y-array[j] [k] .y)/2.0)•(array[j] [k]. 
y+(array[j+1] [k] .y-array[j 
] [k] .y)/2.0) -(array[j] [k] .y-(array[j] [k] .y-array[j-1] [k] 
.y)/2.0)•(array[j][k].y-(ar 
ray[j] [k] .y-array[j-1][k] .y)/2.0))/cell_width + 2.0*pi•ce 
ll_width•(array[j][k].y-(ar 
ray[j] [k] .y-array[j-1][k] .y)/2.0)/(array[j] [k].y-array[j-
1] [k] . y)) ; 

} 

} 

} 

} 

else{ 

} 

for(k=O;k < kmax;k++){ 
counter3++; 
band3[counter3]=-1.0; 

} 

/•for(i=O;i<ngp;i++){ 
printf("¼ld ¼f 

f ¼lf\n", i, band! [i] , b 
and2[i] ,band3[i] ,band4[i],band5[i]); 

¼f ¼f ¼ 
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}*/ 
I* Form band vector to be submitted to the band solv 
er *I 
count=.-1; 
for(i=O;i<ngp;i++){ 

for(j=1;j<=(2*lower_width+upper_width+1);j++){ 
count++; 
if(j==lower_width+1) abd 

[count]=band1[i]; 
else if(j==(lower_width+upper_width)) abd 

[count]=band2[i]; 
else if(j==(lower_width+upper_width+1)) abd 

[count]=band3[i]; 
else if(j==(lower_width+upper_width+2)) abd 

[count]=band4[i]; 

width-1)) 
band5[i]; 

else if(j==(lower_width+upper_width+2+lower_ 
abd[count]= 

else abd[count]=O.O; 

} 

} 

printf("Going into LU factorization ... \n"); 

I* Call LAPACK subroutine to perform the LU factorization 
*I 

sgbtrf_(&m1,&n1,&lower_width,&upper_width,abd,&ldab,piv,&info); 

if ( info==O ){ 
printf("LU decomposition successful. .. \n"); 
} 

else{ 
printf("LU decomposition failed ... \n"); 
exit(1); 
} 

fwrite(abd,sizeof(float),count,abddata); 
fclose(abddata); 

fwrite(piv,sizeof(int),ngp,abddata2); 
fclose(abddata2); 
} 

A.13 make_veloci ty _table. c 
#define EXTERN extern 
#include "lprobe60.h" 
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void make_velocity_table(void) 
{ 

long i,num_div; 
FLOAT accuracy,delta,deltay,v,p,p_exact; 

num_div=100000; 
deltay=1.0/((FLOAT)num_div); 
accuracy=5.0e-6; 
v=-1. 0; 

I* Electrons *I 
for(i=O;i < num_div-1;i++){ 

p=deltay * ((FLOAT)i); 

do { 
v=v+1.0; 

l*p_exact=sqrt(2.0 / pi) * pow((m_elec/su 
pere) / (boltz * 
T * 11588.7),1.5) 

* (sqrt(pi / 2.0) * pow(boltz * T *115 
88.7 / (m_elec/ 
supere),1.5) 

*erf(sqrt((m_elec/supere) / (2.0 * bolt 
z * T * 11588. 7 
)) * v) 

- boltz * T * 11588.7 * v / ((m_elec/sup 
ere) * exp( (m_ 
elec/supere) * v * v 

11588.7),1.5) 
* T * 11588. 7 

(m_elec) * v 
* V 

/ (2.0 * boltz * T * 11588.7))));*/ 

p_exact=boltz * pow((m_elec) / (boltz * T * 

* (-2.0 * boltz * T * 11588.7 + 2.0 * exp( 

/ (2.0 * boltz * T * 11588.7)) * boltz * T 
* 11588. 7 -

(m_elec) * v * v) 

* T * 11588. 
7)) * (m_elec) 

/(2.0 * exp((m_elec) * v * v / (2.0 * boltz 

* (m_elec) * sqrt(boltz * T * 11588.7 / (m_elec))); 

delta=fabs(p-p_exact); 

}while(delta >= accuracy); 
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v_table_e[i]=v; 
} 

printf("Done creating electron velocity table ... \n"); 

IONS 

v=-0. 01; 

for(i=0;i< nurn_div - 1;i++){ 

p=deltay * ((FL0AT)i); 

do { 
v=v + 0.01; 

* 11588.7),1.5) 

on ),1.5) 

* v) 

/*p_exact=sqrt(2.0 / pi) * pow((rn_ion) / (boltz * T 

* (sqrt(pi / 2.0) * pow(boltz * T *11588.7 / (rn_i 

*erf(sqrt((rn_ion) / (2.0 * boltz * T * 11588.7)) 

- boltz * T * 11588.7 * v / ((rn_ion * exp((rn_ion 

/ (2.0 * boltz * T * 11588.7))));*/ 

p_exact=boltz * pow((rn_ion) / (boltz * T * 11588.7), 
1.5) * T * 11588.7 

* (-2.0 * boltz * T * 11588.7 + 2.0 * exp((rn_ion) 

* V * V 
/ (2.0 * boltz * T * 11588.7)) * boltz * T * 11588 

.7 - (m_ion) * V * v) 
/(2.0 * exp((rn_ion) * v * v / (2.0 * boltz * T * 1 

1588.7)) * (rn_ion) 
* (rn_ion) * sqrt(boltz * T * 11588.7 / (rn_ion))); 

delta=fabs(p-p_exact); 

}while(delta >= accuracy); 
v_table_i[i]=v; 

l*printf("1/.ld 1/.lf\n",i,v);*/ 
} 

printf("Done creating ion velocity table ... \n"); 
} 

A.14 rnover.c 

#define EXTERN extern 
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#include "lprobe60.h" 

This function moves the particles 

void mover(PARTICLEDEF particle[numpart] ,long int num_part, 
FLOAT timestep) 
{ 

long inti; 
FLOAT accelx,accelr,theta; 

for(i=O;i < num_part;i++){ 
accelx=particle[i] .q * particle[i] .Ex/ particle[i] .m; 
accelr=particle[i] .q * particle[i] .Ey / particle[i] .m; 
theta=atan2(particle[i] .y,particle[i] .z); 

particle[i] .vx=particle[i] .vx + accelx * timestep; 
particle[i] .vy=particle[i] .vy + accelr * timestep * sin(theta); 
particle[i] .vz=particle[i] .vz + accelr * timestep * cos(theta); 
particle[i] .x=particle[i] .x + particle[i] .vx * timestep; 
particle[i] .y=particle[i] .y + particle[i] .vy * timestep; 
particle[i] .z=particle[i] .z + particle[i] .vz * timestep; 
particle[i] .r=sqrt(particle[i].y*particle[i] .y + particle[i] .z* 

particle[i] .z); 
} 

} 

A.15 output_data. c 

#define EXTERN extern 
#include "lprobe60.h" 

void output_data(PARTICLEDEF particlei[numpart],PARTICLEDEF particle2 
[numpart] ,long int numpart1,long int numpart2,FLOAT me,FLOAT mi) 
{ 

FILE *currdata; 
FLOAT nde,ndi; 
long int i2; 

currdata=fopen("current_q100.dat","a"); 

avecurrent=current/(500.0*dti);avecurre=curre/(500.0*dti);avecurri= 
curri/(500.0*dti); 

COMPUTE NUMBER DENSITY 

nde=ndi=O.O; 
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for(i2=O;i2 < numpart1;i2++){ 
if(particle1[i2] .r <= radius){ 
nde=nde + particle1[i2].m / me; 

} 

} 

nde=nde / (pi*radius*radius*length); 

for(i2=O;i2 < numpart2;i2++){ 
if(particle2[i2] .r <= radius){ 
ndi=ndi + particle2[i2].m / mi; 

} 

} 

ndi=ndi / (pi*radius*radius*length); 

if (t_count2 == 1){ 
fprintf(currdata," 

j je 
} 

V t 
ji\n \n"); 

ne ni nde ndi 

fprintf(currdata,"1/.f 1/.ld 1/.ld 1/.ld 1/.e 1/.e 1/.e 1/.e 1/.e\n",V, 
t_count2,numelec,numion,nde,ndi,avecurrent,avecurre,avecurri); 

fclose(currdata); 

} 

A.16 

t_count=O; 
current=curri=curre=O.O; 

parameter.c 
#define EXTERN extern 
#include "lprobe6O.h" 

/*This function sets initial plasma conditions and computes plasma 
parameters to be used throughout the rest of the simulation *I 

void param() 
{ 

FLOAT avveli,avvele,gammai,gammae; 

FLOAT numiperstep_back,numiperstep_front, 
numiperstep_side,numeperstep_back,numeperstep_front,numeperste 

p_side,fluxi_back,fluxi_front, 
fluxi_side,fluxe_back,fluxe_front,fluxe_side,afront,aback,aside; 

NUMBER OF PARTICLES TO INJECT AT EACH TIME STEP 

superii_init=4OOOO; 
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superii_back=2; 
superii_front=2; 
superii_side=4; 
superei_init=40000; 
superei_back=5; 
superei_front=5; 
superei_side=8; 

GEOMETRY 

l*r_probe=1.25e-4;*/ 
r_probe=1.25e-4 - 3.0*(0.00003125); 
l*r_insul=2.0*r_probe;*/ 
l_probe=0.00287; 
l_insul=1.5*l_probe; 
/*l_probe=0.00287 + 0.5 * 0.00287; 
l_insul=1.0*l_probe;*/ 
radius=0.00395705; 
length=4.0*l_probe; 
height=width=2.0 * radius; 
ioniter=70; 
ioncount=0; 
ion_rnove_count=100; 
ecounter=0; 
view=!; 

T=2.0; 
n=1.0e15; 
rn_ion=1.673e-27; 
q_ion=1.6e-19; 
rn_elec=9. 11e-31; 
q_elec=-1.6e-19; 
wpdt=0.009; 
plasrna_pot=0.0; 

h=6.9*sqrt((T*11588.7)/(n*1.0e-6)) * 0.01; 
cell_heighti=0.00003125; 
cell_height2=0.00003713; 
cell_height3=0.00004301; 
cell_height4=0.00004889; 
cell_height5=0.00005477; 
cell_height6=0.00006065; 
cell_width=0.0000574; 

r_insul=r_probe + cell_height1; 

wp=2.0*pi*9000.0*sqrt(n*1.0e-6); 
elec_iter=15; 
dt=wpdt/wp;dte=dt;dti=15.0*dte; 
t_count=0; 
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sigmae=sqrt((boltz*T*11588.7)/m_elec); 
sigmai=sqrt((boltz*T*11588.7)/m_ion); 

I* Boundary Fluxing Setup *I 

afront=4.0* radius* radius;aside=2.0 *radius* length;aback= 
4.0 *radius* radius - pi*r_insul*r_insul; 

avveli=sqrt((8.0*boltz*T*11589.7)/(pi*m_ion)); 
avvele=sqrt((8.0*boltz*T*11589.7)/(pi*m_elec)); 
gammai=n*avveli/4.0; 
gammae=n*avvele/4.0; 

fluxi_back=gammai*aback; 
fluxe_back=gammae*aback; 
fluxi_front=gammai*afront; 
fluxe_front=gammae*afront; 
fluxi_side=gammai*aside; 
fluxe_side=gammae*aside; 

numiperstep_back=fluxi_back*dti; 
numeperstep_back=fluxe_back*dte; 
numiperstep_front=fluxi_front*dti; 
numeperstep_front=fluxe_front*dte; 
numiperstep_side=fluxi_side*dti; 
numeperstep_side=fluxe_side*dte; 

superi_back=numiperstep_back/((FLOAT)superii_back); 
supere_back=numeperstep_back/((FLOAT)superei_back); 
superi_front=numiperstep_front/((FLOAT)superii_front); 
supere_front=numeperstep_front/((FLOAT)superei_front); 
superi_side=numiperstep_side/((FLOAT)superii_side); 
supere_side=numeperstep_side/((FLOAT)superei_side); 

I* Initial Loading Injection Setup *I 

VOLUME=length*height*width - (pi* r_probe * r_probe * l_probe) -
(pi* r_insul * r_insul * l_insul); 

superi_init=n * ((pi* radius* radius* length)-
(pi* r_probe * r_probe * l_probe) - (pi* r_insul * r_insul 

* l_insul)) 
/ ((FLOAT)superii_init); 

supere_init=n * ((pi* radius* radius* length)-
(pi* r_probe * r_probe * l_probe) - (pi* r_insul * r_insul 

* l_insul)) 
/ ((FLOAT)superei_init); 

injsuperi=superii_init; 
injsupere=superei_init; 
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I* Parameteters needed for field solver *I 
jprobe=((long int)(r_probe/cell_height1)); 
kprobe=((long int)((length-l_probe-l_insul)/cell_width)); 
} 

A.17 probepic.c 
#define EXTERN 
#include "lprobe6O.h" 
#include<stdlib.h> 

I* This is the main program for a two dimensional PIC 
simulation of a Langmuir probe. *I 

void main(void) 
{ 

/*FILE *efdata;*/ 
long int seed,i,i3,iter,i4,i5,i6; 

FIELD SOLVER GLOBAL VARIABLES 
test1=O,test2=O,test3=O,ldab=3*ngp2+1,n1=ngp,m1=ngp,ldb= 
ngp,upper_width=ngp2,lower_width=ngp2; 
x=521288629,y=362436O69,z=161638O1,c=1,n2=1131199299; 

electron=(PARTICLEDEF *)malloc(numpart * sizeof(PARTICLEDEF)); 
ion=(PARTICLEDEF *)malloc(numpart * sizeof(PARTICLEDEF)); 
abd=(FLOAT *)malloc((2*lower_width+upper_width+2)*ngp*size 
of(FLOAT)); 
b=(FLOAT *)malloc(ngp*sizeof(FLOAT)); 
phi=(FLOAT *)malloc(ngp*sizeof(FLOAT)); 
v_table_e=(FLOAT *)malloc(1OOOO1*sizeof(FLOAT)); 
v_table_i=(FLOAT *)malloc(1OOOO1*sizeof(FLOAT)); 
random_num=(FLOAT *)malloc((NPTS+i)*sizeof(FLOAT)); 
piv=(int *)malloc(ngp*sizeof(int)); 

l*efdata=fopen( "efdat3O. dat", "w+"); *I 

numelec=numion=t_count=t_count2=O; 
V=3.5; 

l*prefposition(2O,5); 
prefsize(9O0,7OO); 
vinit("X11"); 
mapcolor(S0,1OO,1OO,1OO); 
mapcolor(56,175,175,175); 
mapcolor(51,139,69,O); 
mapcolor(52,2O,2O,2OO); 
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mapcolor(53,255,0,0); 
mapcolor(55,238,201,0);*/ 

INITIALIZE ARRAY OF UNIFORM RANDOM NUMBERS 
seed=100; 
random_number(seed); 
rancount=O; 

param(); 

gridgen(grid); 

make_velocity_table(); 

initialize(electron,&numelec,superei_init,supere_init, 
v_table_e,m_elec,q_elec); 

seed=101; 
random_number(seed); 
rancount=O; 

initialize(ion,&numion,superii_init,superi_init,v_tabl 
e_i,m_ion,q_ion); 

printf("initial number electrons ==>¼ld 
ions ==>¼ld\n",numelec,numion); 

make_LU(grid); 

printf ( "Entering main program ... \n"); 

iter=12001; 
for (i3 = O;i3 < 18;i3++){ 

V=V+1. 5; 
if (i3 > 0) 

iter=3501; 
for (i = O;i < iter;i++){ 

. 
if (rancount > (NPTS - 500)){ 

} 

seed=seed + 100; 
random_number(seed); 
rancount=O; 

for(i6=0;i6 < 15;i6++){ 

reset_grid(grid); 

qweight(grid,electron,numelec); 

initial number 
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qweight(grid,ion,numion); 

e_field(grid); 

fweight(grid,electron,numelec); 

inject(electron,&numelec,supere_back,supere_ 
front,supere_side, 

superei_back,superei_front,superei_ 
side,v_table_e,m_elec,q_elec); 

mover(electron,numelec,dte); 

boundary(electron,&numelec,q_elec); 
} 

fweight(grid,ion,numion); 

inject(ion,&numion,superi_back,superi_front,super 
i_side, 

superii_back,superii_front,superii_ 
side,v_table_i,m_ion,q_ion); 

mover(ion,numion,dti); 

boundary(ion,&numion,q_ion); 

t_count++; 
t_count2++; 
if (t_count == 500 I I t_count2==1){ 

output_data(electron,ion,numelec,numion, 
m_elec ,m_ion); 

} 

} 

} 

/*fclose(efdata);*/ 
l*vexit() ;*I 
exit(!); 

} 

#undef IA 

#undef IM 
#undef AM 
#undef IQ 
#undef IR 
#undef NTAB 
#undef NDIV 
#undef EPS 
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#undef· RNMX 
#undef NRANSI 

A.18 probepic.h 
#include <stdio.h> 
#include <math.h> 
/•#include<sgidefs.h>•/ 

#define FLOAT float 

#define xButton□ffset 
#define yButton□ffset 

0.15 
0.08 

#define SWITCHBOXx -0.07 
#define SWITCHB□Xy -.85 
#define EXITB□Xx 0.84 
#define EXITB□Xy SWITCHB□Xy 

#define PRINTB□Xx .65 
#define PRINTB□Xy SWITCHBOXy 

#defin·e EPSO 8. 85e-12 
#define EPSA103 10.44e-12 
#define pi 3.14159265359 
#define ngp 14874 
#define ngp1 74 
#define ngp2 201 
#define numpart 80000 
#define boltz 1.38e-23 
#define RAD 0.00378864 
#define IA 16807 
#define IM 2147483647 
#define AM (1.0/IM) 
#define IQ 127773 
#define IR 2836 
#define NTAB 32 
#define NDIV (1+(IM-1)/NTAB) 
#define EPS 1.2e-7 
#define RNMX (1.0-EPS) 
#define NRANSI 
#define NR_END 1 
#define FREE_ARG char* 
#define NPTS 600005 

I• Environment Variables•/ 
#define black 0 
#define white 15 
#define gray 50 
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#define gray2 56 
#define light gray 56 
#define darkorange 51 
#define midblue 52 
#define red 53 
#define gold 55 

Global Variables 

typedef struct { 
FLOAT x,y,q_dens 

,Ey,Ex,phi; 
}GRIDDEF; 

typedef struct { 
FLOAT x,y,z,r,vx,vy,vz,Ex,Ey,q,m; 
unsigned long cellx,celly; 

}PARTICLEDEF; 

typedef unsigned long int unlong; 

typedef struct 
{ 

FLOAT x1PositionUp; 
FLOAT x2PositionUp; 

FLOAT y1PositionUp; 
FLOAT y2PositionUp; 
char ButtonText[2O]; 
short TextColor; 
short aBorderColorUp; 
short bBorderColorUp; 
short cBorderColorUp; 
short dBorderColorUp; 
short aBorderColorDown; 
short bBorderColorDown; 
short dBorderColorDown; 
short FillColorUp; 
short FillColorDown; 

short cBorderColorDown; 

} PushButton; 

GLOBAL VARIABLES 

PARTICLE GLOBAL VARIABLES 

EXTERN PARTICLEDEF •ion,*electron; 

/• GRID/GEOMETRY GLOBAL VARIABLES •/ 
EXTERN long int ngp_vert,ngp_horiz,jprobe,kprobe,jinsul,kinsul; 
EXTERN FLOAT cell_height1,cell_height2,cell_height3,cell_height4, 
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cell_height5,cell_height6,cell_height,cell_width,r_probe,r_insul, 
l_probe,l_insul,radius,length; 
EXTERN GRIDDEF grid[ngp1] [ngp2]; 

FIELD SOLVER GLOBAL VARIABLES 
EXTERN int test1,test2,test3,ldab,*piv,n1,rn1,ldb,upper_width,lower_ 
width,info,nrhs; 
EXTERN long int jprobe,kprobe,kinsul; 
EXTERN FLOAT band1[ngp] ,band2[ngp],band3[ngp] ,band4[ngp],band5[ngp], 
*abd,*b,*phi; 

I* PLASMA PARAMETER GLOBAL VARIABLES */ 
EXTERN FLOAT T,n,rn_ion,q_ion,rn_elec,q_elec,rn_part,plasrna_pot; 

INJECTION SETUP GLOBAL VARIABLES 
EXTERN long int injsuperi,injsupere,superii_init,superii_back,superii 
_front,superii_side,superei_init, 

superei_back,superei_front,superei_side,rancount,elec 
_iter; 
EXTERN FLOAT supere,superi,sigrna,sigrnae,sigrnai,wpdt,h,wp,dt,superi_in 
it,superi_back,superi_front,superi_side,supere_init,supere_back,supere 
_front,supere_side,*v_table_e,*v_table_i,height,width,*randorn_nurn,dti,dte; 

COUNTING GLOBAL VARIABLES 
EXTERN long int torn,nurnelec,nurnion,t_count,t_count2,nurn,ioncount,ioniter 
,ion_rnove_count,ecounter; 

I* GRAPHICS GLOBAL VARIABLES *I 
EXTERN long int view,page; 

BOUNDARY GLOBAL VARIABLES 
EXTERN FLOAT V,current,VOLUME,avecurrent,curri,curre,avecurri,avecurre 
,ins_charge; 

I* TESTING VARIABLES 
EXTERN long int t1,t2; 
EXTERN FLOAT *vxdata; 

EXTERN unlong x,y,z,c,n2; 

I* Prototypes *I 
void random_number(long int seed); 
unlong msmith_ran(); 
void ReadinBigArrays( void); 
void gridgen(GRIDDEF array[ngp1][ngp2]); 
void par am(); 
void initialize2(PARTICLEDEF particle[numpart],PARTICLEDEF particle2[n 
urnpart]); 
void initialize(PARTICLEDEF particle[nurnpart] ,long int *num_part,long 
int init_nurn,FLOAT super_init,FLOAT *v_table,FLOAT m,FLOAT q); 
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void make_velocity_table(void); 
void injecte(PARTICLEDEF particle[numpart]); 
void injecti(PARTICLEDEF particle[numpart]); 
void inject(PARTICLEDEF particle[numpart],long int *num_part,FLOAT sup 
er_back,FLOAT super_front, 

FLOAT super_side,long int superinj_back,long int superi 
nj_front, 

long int superinj_side,FLOAT *v_table,FLOAT m,FLOAT q); 
void qweight(GRIDDEF array[ngp1] [ngp2] ,PARTICLEDEF particle[numpart] ,1 
ong int number); 
void make_LU(GRIDDEF array[ngp1] [ngp2]); 
void e_field(GRIDDEF array[ngp1] [ngp2]); 
void fweight(GRIDDEF array[ngp1] [ngp2] ,PARTICLEDEF particle[numpart] ,1 
ong int number) ; 
void boundary (PARTICLEDEF particle[numpart] ,long int *num_part,FLOAT q); 
/*void mover(PARTICLEDEF array[numpart],long int num_part);*/ 
void mover(PARTICLEDEF array[numpart] ,long int num_part,FLOAT timestep); 
void graph(GRIDDEF array[ngp1] [ngp2] ,PARTICLEDEF particle1[numpart] ,PA 
RTICLEDEF particle2[numpart]); 
FLOAT gasdev(long int *idum); 
FLOAT ran1(long int *idum); 
void output_data(PARTICLEDEF particle1[numpart] ,PARTICLEDEF particle2[ 
numpart] ,long int numpart1,long int numpart2,FLOAT me,FLOAT mi); 
void locatex(GRIDDEF xx[ngp1] [ngp2], unsigned long int n, FLOAT x, uns 
igned long int *jj); 
void locatey(GRIDDEF xx[ngp1] [ngp2], unsigned long int n, FLOAT x, uns 
igned long int *jj); 
void reset_grid(GRIDDEF array[ngp1] [ngp2]); 
void recombination (PARTICLEDEF heavy_part[numpart],long int *num_heav 
y,PARTICLEDEF elec[numpart] ,long int *num_part); 

/*FLOAT *vector(long int nl, long int nh); 
void nrerror(char error_text[]); 
void free_vector(FLOAT *V, long int nl, long int nh); *I 

short CheckButton ( PushButton TomButton ); 
short MakeButton ( FLOAT xi, FLOAT y1, PushButton *TomButton, char But 
ton Text [20] ) ; 
void ClearMouseBuffer(); 
void DrawButton(PushButton TomButton); 
void DrawButtonDown(PushButton TomButton); 
void main(void); 

A.19 random_number. c 

#define EXTERN extern 
#include "lprobe60.h" 

I* Common Block Declarations *I 
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struct klotz0_1_ { 
float buff[607]; 
long int ptr; 

}; 

#define klotz0_1 (*(struct klotz0_1_ *) &:klotzO_) 
#define rnin(a,b) (a<b)?a:b 

struct klotz1_1_ { 
FLOAT xbuff[1024]; 
long int first, xptr; 

}; 

#define klotz1_1 (*(struct klotzl 1 *) &:klotzl_) 

I* Initialized data *I 

struct { 
long int fill_1[1214]; 
long int e_2; 
} klotzO_ = { {O}, 0 }; 

struct { 
FLOAT fill_1[1024]; 
long int e_2[2]; 
FLOAT e_3; 
} klotzl_ = { {O}, 0, 0, 0. }; 

void randorn_nurnber(long int seed) 
{ 

/*long int torn;*/ 
extern long int fischet_(), zufalli_(), norrnalt_(), zufallt_(); 

zufalli_(seed); 
zufall_(NPTS,randorn_nurn); 

/*for ( torn=O; torn<100; torn++) pr long intf ( "randorn_nurnber [¾d] =¼f\n", torn,ra 
ndorn_nurn[torn]);*/ 

} 

int zufall_(n, a) 
long int n; 
FLOAT *a; 
{ 

long int buffsz = 607; 
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long int left, aptr, bptr, aptrO, i, k, q; 
FLOAT t; 

long int nn, vl, qq, k273, k607, kptr; 

I* portable lagged Fibonacci series uniform random number *I 
I* generator with "lags" -273 und -607: *I 
I* W.P. Petersen, IPS, ETH Zuerich, 19 Mar. 92 *I 

L1: 

aptr = O; 
nn = n; 

if (nn <= 0) { 

return O; 
} 

I* factor nn = q*607 + r *I 

q = (nn - 1) / 607; 
left= buffsz - klotz0_1.ptr; 

if (q <= 1) { 

I* only one or fewer full segments *I 

if (nn < left) { 
kptr = klotz0_1.ptr; 
for (i = O; i < nn; ++i) { 

a[i + aptr] = klotz0_1.buff[kptr + i]; 
} 

klotz0_1.ptr += nn; 
return O; 

} else { 
kptr = klotz0_1.ptr; 

/*pragma _CRI ivdep*/ 
for (i = O; i < left; ++i) { 

a[i + aptr] = klotz0_1.buff[kptr + i]; 
} 

klotz0_1.ptr = O; 
aptr += left; 
nn -= left; 

I* buff-> buff case *I 
vl = 273; 
k273 = 334; 
k607 = O; 
for (k = O; k < 3; ++k) { 

l*pragma _CRI ivdep*/ 
for (i = O; i < vl; ++i) { 
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t = klotz0_1.buff[k273+i]+klotz0_1.buff[k607+i]; 
klotz0_1.buff[k607+i] = t - (FLOAT) ((long int) t); 

} 

} 

} else { 

} 

k607 += vl; 
k273 += vl; 
vl = 167; 
if (k == 0) { 

k273 = O; 
} 

goto Li; 

I• more than 1 full segment •I 

kptr = klotz0_1.ptr; 
/•pragma _CRI ivdep•/ 

for (i = O; i < left; ++i) { 
a[i + aptr] = klotz0_1.buff[kptr + i]; 

} 

nn -= left; 
klotz0_1.ptr = O; 
aptr += left; 

/•buff-> a(aptrO) •I 

vl = 273; 
k273 = 334; 
k607 = O; 
for (k = O; k < 3; ++k) { 

if (k == 0) { 
/•pragma _CRI ivdep•/ 

for (i = O; i < vl; ++i) { 

} 

t = klotz0_1.buff[k273+i]+klotz0_1.buff[k607+i]; 
a[aptr + i] = t - (FLOAT) ((long int) t); 

k273 = aptr; 
k607 += vl; 
aptr += vl; 
vl = 167; 

} else { 
/•pragma _CRI ivdep*/ 

} 

for (i = O; i < vl; ++i) { 
t = a[k273 + i] + klotz0_1.buff[k607 + i]; 
a[aptr + i] = t - (FLOAT) ((long int) t); 

} 

k607 += vl; 
k273 += vl; 
aptr += vl; 
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} 

nn += -607; 

I* a(aptr-607) -> a(aptr) for last of the q-1 segments *I 

aptr0 = aptr - 607; 
vl = 607; 

for (qq = 0; qq < q-2; ++qq) { 
k273 = aptr0 + 334; 

l*pragma _CR! ivdep*/ 
for (i = 0; i < vl; ++i) { 

t = a[k273 + i] + a[aptr0 + i]; 
a[aptr + i] = t - (FLOAT) ((long int) t); 

} 

} 

nn += -607; 
aptr += vl; 
aptr0 += vl; 

I* a(aptr0) -> buff, last segment before residual *I 

vl = 273; 
k273 = aptr0 + 334; 
k607 = aptr0; 
bptr = 0; 
for (k = 0; k < 3; ++k) { 

if (k == 0) { 
l*pragma _CR! ivdep*/ 

for (i = 0; i < vl; ++i) { 
t = a[k273 + i] + a[k607 + i]; 
klotz0_1.buff[bptr + i] = t - (FLOAT) ((long int) t); 

} 

k273 = 0; 
k607 += vl; 
bptr += vl; 
vl = 167; 

} else { 
l*pragma _CR! ivdep*/ 

} 

} 

goto L1; 
} 

} I* zufall_ *I 

for (i = 0; i < vl; ++i) { 
t = klotz0_1.buff[k273 + i] + a[k607 + i]; 
klotz0_1.buff[bptr + i] = t - (FLOAT) ((long int) t); 

} 

k607 += vl; 
k273 += vl; 
bptr += vl; 
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long int zufalli_(seed) 
long int seed; 
{ 

I* Initialized data *I 

long int kl = 9373; 
long int ij = 1802; 

I* Local variables *I 
long int i, j, k, 1, m· 

' 
FLOAT s' t· 

' 
long int ii, jj; 

I* generates initial seed buffer by linear congruential *I 
I* method. Taken from Marsaglia, FSU report FSU-SCRI-87-50 *I 
I* variable seed should be O < seed <31328 *I 

if (seed != 0) { 
ij = seed; 

} 

i = 
j = 
k = 
1 = 
for 

ij I 
ij ¼ 
kl I 
kl ¼ 
(ii 
s = 
t = 
for 

177 ¼ 177 + 2; 
177 + 2; 
169 ¼ 178 + 1. 

' 
169; 

= O; ii< 607; ++ii) { 
0.; 
.5; 
(jj = 1; jj <= 24; ++jj) { 
m = i * j ¼ 179 * k ¼ 179; 
i = j; 
j = k; 
k = m; 
1 = (1 * 53 + 1) ¼ 169; 
if (1 * m ¼ 64 >= 32) { 

s += t; 
} 

t *= (FLOAT).5; 
} 

klotz0_1.buff[ii] = s; 
} 

return O; 
} I* zufalli_ *I 

long int zufallsv_(svblk) 
FLOAT *svblk; 
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{ 

long int i; 

I* saves common blocks klotzO, containing seeds and *I 
I* polong inter to position in seed block. IMPORTANT: svblk must be *I 
I* dimensioned at least 608 in driver. The entire contents *I 
I* of klotzO (polong inter in buff, and buff) must be saved. *I 

I* Function Body *I 
svblk[O] = (FLOAT) klotz0_1.ptr; 

l*pragma _CR! ivdep*/ 
for (i = O; i < 607; ++i) { 

svblk[i + 1] = klotz0_1.buff[i]; 
} 

return O; 
} I* zufallsv *I 

long int zufallrs_(svblk) 
FLOAT *svblk; 
{ 

long inti; 

I* restores common block klotzO, containing seeds and pointer *I 
I* to position in seed block. IMPORTANT: svblk must be *f 
I* dimensioned at least 608 in driver. The entire contents *I 
I* of klotzO must be restored. *I 

klotz0_1.ptr = (long int) svblk[O]; 
l*pragma _CR! ivdep*/ 

for (i = O; i < 607; ++i) { 
klotz0_1.buff[i] = svblk[i + 1]; 

} 

return O; 
} I* zufallrs *I 

A.20 reset_grid. c 
#def in·e EXTERN extern 
#include "lprobe60.h" 

void reset_grid(GRIDDEF array[ngp1] [ngp2]) 
{ 

long int count1,count2; 
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CLEAN UP GRID 

for (count1=0;count1 < ngp_vert;count1++){ 

} 

} 

for (count2=0;count2 < ngp_horiz;count2++){ 
array[count1] [count2].q_dens=O.O; 

} 
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Appendix B 

Sample PROBEPIC Output 

V no ni nde ndi j• ji 

-2 .000000 50122 89975 1. 034675•+15 1.035351•+15 4 .4346050-08 -6 .4856090-07 6. 9290700-07 
-2 .000000 1001 60742 89679 1.027824•+15 1.036164e+15 -1.253903e-06 - 1. 586498e-06 3.325954e-07 
-2 .000000 2001 60595 89475 1 . 02694Se+ 1 S 1.03S040e+15 9. 1463720-07 0. 0000000+00 9. 146372e-07 
-2 .000000 3001 60929 89042 1.028149•+15 1.0353030+15 1. 4487020-06 0. 0000000+00 1. 448702e-06 
-2 .000000 4001 60881 88407 1 . 027870•+15 1. 037666•+ 15 2 .4139540-06 -5. 4880530-08 2. 4688350-06 
-2 .000000 5001 60934 87555 1.031526e+15 1. 038886e+16 3. 4225260-06 -5. 4880530-08 3.477406e-06 
-2 .000000 6001 60983 86618 1.032126•+15 1. 039155•+15 3. 7413120-06 0. 0000000+00 3. 7413120-06 
-2 .000000 7001 60821 85669 1.0296680+15 1. 037647•+15 3. 729057.-06 -5. 488053•-08 3. 7839390-06 
-2 .000000 8001 60802 84940 1.026566•+15 1. 0365670+16 3. 920064e-06 -5. 4880530-08 3. 9749450-06 
-2 .000000 9001 60837 85168 1. 028196e+15 1. 036306e+15 3. 682870e-06 0. OOOOOOe+OO 3. 6828700-06 
-2 .000000 10001 60846 85056 1. 0267800+ 15 1.0360S3e+15 4. 3354740-06 0. 0000000+00 4. 335474e-06 
-1. 500000 11001 60838 85051 1.0286870+15 1.0362560+15 3. 6228420-06 -3. 2928320-07 3. 9521260-06 
-1. 500000 12001 61063 85174 1.031903e+15 1.035799e+15 3. 703354e-06 -3.1722730-07 4. 020582e-06 
-1. 500000 13001 61030 85522 1.028492•+15 1.036193e+15 3. 3032700-06 -3.841637•-07 3 .6874340-06 
-1. 500000 14001 61028 85535 1.0303890+15 1.036176•+15 3. 751090e-06 -1.0976110-07 3 .8608530-06 
-1. 500000 15001 61119 85329 1.0314740+15 1.0361850+15 3. 7920490-06 -1.6464160-07 3. 9566900-06 
-1. 500000 16001 61110 85497 1.030035•+15 1. 036208•+15 3. 6504580-06 -2. 195221e-07 3. 8699800-06 
-1. 500000 17001 61030 85328 1.0305140+15 1. 036523e+15 3. 901344e-06 -2. 7440270-07 4. 1757460-06 
-1. 000000 18001 61254 85323 1.033299e+15 1.036517e+16 1 . 924923e-06 -1. 799002e-06 3. 723944e-06 
-1 .000000 19001 61057 85441 1. 0333670+15 1. 036220•+15 2. 7539900-06 -1.152491e-06 3. 9064890-06 
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