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CHAPTER I
INTRODUCTION

The following arose out of an unsuccessful attempt to answer the
question "is there a map of the unit interval onto itself whose inverse
limit is hereditarily indecomposable?" This question naturally leads to
the broader problem of determining what sort of continua may be obtained
by taking the inverse limit of a single map on the unit interval. A very
limited number of answers to this problem will be found in Chapter IV,
chiefly dealing with how to obtain indecomposable continua. Chapter V
gives some examples to show why Chapter IV contains very little in the
way of theorems characterizing the inverse limits by means of reascnable
properties of the map. Some examples are also given of continua which may
be obtained.

A complete answer is given in Chapter III to the question of what
may be obtained as the inverse limit of a sequence of functions on the
unit interval. The answer is complete since it is that every compact
chainable continuum may be so obtained, and only such continua may be ob-
tained. The question of which compact chainable continuum one will get
with a giien sequence of maps is not answered.

The study of inverse limits has developed in two principal direc-
tions. The first direction is abstract homology theory, which is the
source of the concept. This direction will not be considered. The
second direction is apparently an outgrowth of the first. It conslsis of

giving examples of unusual continua conveniently generated as inverse
1l



limits and the study of the properties used in generating the examples.

One of the classical sets of examples of indecomposable continua,
the solenoids, are very nicely given as inverse limits. R. D. Anderson
and Gustave Choquet [11% have given an example of a compact continuum con-
tained in the plane no two of whose non-degenerate subcontinua are homeo-
morphic. The construction was by means of inverse limits.

In connection with the general study of inverse limits, M. K.

Fort, Jr., and Jack Segal [7] have given a necessary and sufficiemt con-
dition that an inverse limit be locally connected. J. R. Isbell [9] has
shown that an inverse limit on compact subsets of E" can be embedded in
E2n . Eilenberg and Steenrod [6; Chapter X] stated a theorem which ap-
parently asserts that each compact space is an inverse limit on a sequence
of compact triangulable spaces.

The results listed above are those which are most closely‘connected
with the problems considered here. There seems to have been little sys-
tematic study of inverse limits for their own sake. Accessible informa-
tion is of a very fragmentary nature.

Some elements of the style and notation to be followed should be
mentioned, perhaps as a warning. Basic topological theorems and defini-
tione will be used without author reference and sometimes without specifie
assertion of the particular item being employed. All topological spaces

considered are assumed to be metric and of diameter 1, if not otherwise

specified. Much of the considerations to follow depend on the concept

*The numbers which appear in brackets correspond to the numbers
in the Bibliography at the end of this paper.



and properties of a product space. For a metric space sequence
(Il, dl)’ (Xé, dy)s ..., the product nX, will always be metrized by
the function D defined by

D(x, 7) = 2y 4 (x7,) 2

where x and y are points in uxi and x, and Ty always denote

the coordinates of x and y in xk . This metric is equivalent to the
product topology. A concise discussion of product spaces and metric spaces
can be found in Kelley [10]. The symbol "iff" is used as an abbreviation
for the phrase "if and only if", generally in definitions. The closure of
a set A will be denoted A, Thsiword fcontinuum" means only a closed
and connected set and if compactness is wanted it will be stated in the
phrase "compact continuum.” The reader should not assume that since some
proofs are given in great detail that all are so given, nor should he as-
sume that all the proofs are only sketched upon reading some excessively

concise remarks indicative of the outlines of a demonstration.



CHAPTER II
BASIC PROPERTIES

A sequence (xl, fl), (12, f2), ... Will be called an inverse
limit sequence iff each X 1 is a topological space and each f 5 is a
continuous transformation from X 141 into xi . If P 1is a property of
topological spaces (maps), an inverse limit sequence will be said to have
or satisfy property P 1ff each space (map) in the sequence has property P.
The word map, if used, will mean continuous transformation. The inverse
limit of an inverse limit sequence (xl, fl), (12, fa), eeo is the set of
all sequences (xl, Xys «e.) 80 that for each positive integer 1 , xy
is in X, and fi(xi +1) is x, . The inverse limit is denoted
J,im_(xi, h i) or more concisely as 1lim fi , and is always considered as a
subspace of the product space of the Ii . If f 1is a map from a space
X into itself the inverse limit of f is the inverse limit of the se-
quence (xl, fl) R (12, f2) s ++. Where for each positive integer 1 , X

i

is X and fi

Strictly speaking, one should distinguish between a topological

is £ , and is denoted 1lim f .

space, and the set of points of the topological space. This will not be
done. For a sequence of spaces, the projection map from the product space

onto the k-th coordinate space is always denoted as Pk . If 1 and k

are positive integers and i is less than k , f will denote the map

ik

defined by fik = fifi FOIREY fk- . The identity map

A somewhat confusing property of

from xk into Ii

from Iiu onto Ii 1s denoted fii .

this notation is that fi,i-i-l is fi .

L



5
In the theorems of this chapter (X 49 fi) always denotes an in-

verse limit sequence.

Theorem 1. If A 1is a subset of limfi, and k and m are

positive integers with m greater than k , then Pk(A) is fkm[Pm(A)] .

Proof. If x is in Pk(A) , there is a point y in A whose
k-th coordinate is8 x . The m-th coordinate of y is necessarily a

point 2z so that (z) is x . That is, Pk(A) is a subset of

fiem
fkm(Pk(A)) . Conversely, if z is in Pm(A) , there is a point y in A
so that the m-th coordinate of y is =z . By definition, the k-th

coordinate of y is fkm'( z) , and so fkm(Pm(A)) is a subset of Pk(A) .

Theorem 2. If lim fi exists it is a closed subset of the product

space of the Ii .

Proof. Suppose y is in (1lim fi)' but not in lim £, . Since ¥y
is not in 1lim fi there is a positive integer n so that fn(Pn +1(y))

is not Pn(y) . There are disjoint open subsets U and V of xn con-
taining Pn(y) and fn(Pn +1(y)) respectively. Since f ~is continuous,
there is an open subset W of XA containing P +1(y) so that fn(W)
is contained in V . ILet Z denote the open subset Pn'l(tl) n P; +1(W)

of nX, . Since Z contains y , Z must contain a point of 1lim f

i
But Pn+1(Z N lim f,) is contained in W and fn(Pn-'-l(z N 1im fi))

i ]

= Pn(Z N lim fi) is contained in V . But also Pn(Z N 1lim fi) is con-
tained in U , contradicting the disjolntness of U and V.
Theorem 3. If for each n, f is onto, then Pn(lim fi) is

X for each n . Conversely, if for each n, Pn(lim fi) is X ,

then each f_  is onto. (The proof is obvious.)
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Theorem 4. If y is a point of 1lim fi and U 1s an open subset
of 1lim fi containing y , then there is a positive integer »p , that

for each integer n greater than p there is an open subset V of X n

containing P (y) %o that if z isin limf, and P () isin 7V,
then z isin U. (Thatis, P2 (V) Nlnmf

containing y .)
Proof. By the definition of the product topology, there is a posi-

i E an open subset g£ U

tive integer p and a collection Ul’ ceey Up of open sets so that for

p an
each i, U  cX, and so that y is in [1im £, 0 ((ni_lvi) x ni‘pﬂxil

cU. Pick n to be any integer greater than p . Since fin is con-

tinuous for i =1, ..., n and fin(Pn(y’)) = Pi(y) s for each i from 1

to p there is an open subset Vi

P
g * Define V = N Vi . Since projections are continuous
i=]1

P;I(_V) is an open subset of the product space. Suppose z & lim f; and

of X containing Pn(y) so that
f iﬁ(vi)h cU

Pn(z) isin V. Foreach i from 1 to p, Pi(z) = fin(Pn(z)) is
in U; , and so z is in U . Therefore P;I(V) N lim f, is an open
subset of U containing y .

Theorem 5. If (Ii s fi) is a compact inverse limit sequence, the

inverse limit exists and is compact. If the sequence is also connected,

the inverse limit is connected.

Proof. For each positive integer n , denote as Fn the trans-
a0 Q0 .
formation from =, X. into m,_,X; defined by Fn(x) = (fln(xn),

f2n(xn)’ coes fnn(xn), X 40 ce ) vhere x is (xn, X 40 e ) .

Suppose U 1is an open subset of n:'].li containing Fn(x) . There is a



positive integer p > n and open subsets Ul, ooe Up of xl, ceoy xp

1=1 i)X _p+lxicU. For each i

from 1 to n there is an open subset Vi of xn containing x_ so

respectively so that F (x) e (P

n
n
that £, (V,) c U, . Define v«inlvi , and W=7V X(xb ene1%s)
a0 [- -}
X(ui - +1Ii). Clearly W is an open subset of m, X, containing x

80 that 'Fn(‘rl) cU . Therefore each F_ is continuous.

For each n denote H =F ( Since products of couipact

i=n i)
spaces are compact and the Fn are continuous, each H is compact. If

x is in the domain of F_ 1,x=(x

n41? Xpsp? ) and x = (£ (x 4q)s

,oo.,)’then F(I)‘F CHn. There-

Xn41 w1 &%) -
fore n -1 }% exists and is compact.

So for each n , Hn 41

Suppose xen. =1 Hn . For any positive integer k , since x 1is

in M, > Pk(x) ( k_‘_1(::)) ,and x is in lim f Conversely, if

i L)
X = (xl, Xy, cee) 18 in 1lim f, , then for any positive integer k ,
x = Fk(x') where x'=(x , X .., ...), and S0 x is in nn oMy - So
Q0
Um £, is N .M and exists and is compasct.
If each Ii is connected, then n: .nxi
connected since the image of a connected space under a continuous trans-

is connected and Mn is

formation. Then “:-1Mn = 1im fi is connected.

It should be noted that Theorems 1, 2, 3 and 5 have been proved
by Eilenberg and Steenrod [6] and also by Hocking and Young [8], and are
noted in Capel [5]. An example given in the latter can be slightly al-
tered to show the use of Theorems 3 and 5. Denote as X the non-negative
integers with the usual topology and as f the homeomorphism from X

into X given by f(x) =x +1 . For any positive integer x ,



f"l(;) =x -1 . Note that a point z in an inverse limit always has

the property that P__.(z) is in f;]'(Pn(z)) . Suppose x 1is in the

n+l
inverse limit of f, x = (1:1, Xpy eee ) . fThe (xl+1)-st coordinate of

-X
x is f 1(x1)-0. But O has no preimage under f . So f has no
inverse limit.

An easy application of Theorem L gives the following.

Theorem 6. If K is a closed subset of 1lim fi » and for each

n,Pn(K)-In,Lhﬂ K=1lim f,.
Proof. Suppose y is in lim fi and U 1is an open set con-
taining y . There is a positive integer n and an open subset V of
In 80 that if 2z is in lim f, and Pn(z) isin V , then 2z is in
U . Since Pn(K) =X , there is a point 3 of K so that Pn(s) is
in V , and so there is a point of K in U . So y 1is a 1limit point
of K, and since K is closed, y is in K . Therefore K is 1lim fi .
The following theorem says approximately that the same inverse
limit is obtained if a subsequence of the inverse limit sequence is taken.

This may be considered as a variation of Lemma 2-8L of [8] or of
Theorem 2.11 of [5].

Theorem 7. Suppose (Xi, fi) is an inverse limit sequence,

1im (xi, fi) exists and Dy Dyy «oo is an increasing sequence of posi-

tive integers. Then 1lim (Ii ’ gi) exists and is homeomorphic to

lim (Xi, fi) where for each i, Y, = Xniigg g = fni’ni-l-l .

Proof. Denote as F the transformation from 1lim (xi, £y) de-

fined by F(x) = (Jcn s X_ 5 +e.) Where x = (xl, Xy, «es) . Clearly F
1

)



9
is into lim(Ii, gi) , and lim(l'i, gi) exists. If F(x) = F(y) , then
for each positive integer i , P n (x) = P (y) . If k is a positive

i i

integer there is an integer i 80 that n, > k , and then Pk(x)

i
fk’ni(Pni(x))~fk’ni(Pni(y)) = Pk(y) ,and x=y. So F is 1-1.

Suppose x' = (xl', x2', eee) is in 1lim(Y ,gi) . If x = (flnl(xl'),
2“1(!1 )y eoes xl n +1,m, (12 )s +eo) clearly x is in lim(xi,f

and F(x) =x' . So F 1is onto. Suppose U is open in lim(Y 59 81)
and F(x) is in U . There is a positive integer k> 1 and an open

subset V of Ik

lim( 59 gi) isin U if Pk(z) is in V. Define

oyl
= [(ﬂk X)XV X (ui-nk-o-l )] .

CV and x isin WnN m(xi, fi)
is open in 1im(xi,fi) and x is in U . By Theorem L there is a posi-

containing Pk(F(x)) 8o that a point 2z of

Obviously P, [F(W N 1im(X,,f,))]

So F 1is continuous. Suppose U

tive integer p so that for any integer n greater than p there is
an open subset V of X containing Pn(x) so that the open subset
P;I[V] n lim(xi,fi) contains x and is contained in U . Choose n
to be any n, greater than p and V a set with the foregoing proper-
ties. Clearly F(P;i'[V] A ln(X,, £,)) contains F(x) and is open in

1im(Y 12 gi) since it is P [V] N 1im(Y 42 gi) . So F is 1-1 con-
tinuous and open, and is a homeomorphism.

There are several corollaries to this theorem. Corollary 9 yields
an amusing example in Chapter V, that for any compact continuous curve T
(Peano space) there is a map f from T onto T so that the inverse

limit of f is a chainable indecomposable continuum. Since any such
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continuum can be embedded in the plane and T may be of high dimension,
this is not the expected thing.

Corollary 8. Suppose (Ii » £;) 1s an inverse limit sequence,

Q(xi,fi) exists and n 1is a positive integer. Then }_il(Yi,gi)

exists and is homeomorphic to lim (X,, f,) where T, = Xin-1)+t 2

g = f(n-l)-!-i for each i .

Corollary 9. Suppose X and Y are topological spaces, f 1is a

map of Y into X , and the inverse limit of fg exists. Then the in-

verse limit of gf exists and is homeomorphic to the inverse limit of fg.

Proofs. Corollary 8 1is obtained by considering the increasing
sequence n, n +1l, n + 2, ... and applying Theorem 7 directly. Corol-

lary 9 is obtained by considering (xi, fi) where X, =X for i odd,

i

X, =Y for i even, f, =g for 1 odd and f, =f for i even.

i i i
Taking the sequence 1, 3, 5, ..., Theorem 7 gives lim (xi, fi) is homeo-
morphic to 1lim gf . Taking the sequence 2, 4, 6, ... Theorem 7 gives
lim (Xi, fi) is homeomorphic to 1lim fg . So lim fg is homeomorphic
to 1lim gf . '

Foramap f of X into X, fl will denote f , and for n
a positive integer, fm'l denotes ff" .

Corollary 10. If f is amap from X into X, 1lim f exists

and n is a positive integer, then lim £~ exists and is homeomorphie

%o Um £ .
Corollary 10 is a simplified version of Corollary 11.
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Corollary 11. Suppose f is a map from X into X , lim f

exists and L TRTIRED is a sequence of positive integers, (not neces-

sarily increasing.) Then lim (Ii, fi) exists and is homeomorphic to

n
lim £ where X, =X for each i and fisfi.

Proof. Consider the sequence 1, +1l,n, +n, +1, ... and
Proof M 17 M

lim f . Clearly Theorem 7 applies and gives the desired result.
Recall that a collection of open sets Hl, ceey Un in a metric

space is called a chain if Uk intersects Um if and only if

|k - m| <1 . The maximum diameter of the open sets making up a chain
(if such exists) is called the mesh of the chain. A set M in a metric
space is said to be chainable iff for each positive real number d ,
there is a chain of mesh less than d so that every point of M 1is
contained in some member of the chain. (Such a chain is said to cover NM.)

One may refer to a paper by R. H. Bing, [3], and a paper by Lida
K. Barrett [2] for some interesting results on chainable continua, and
(especially) for references to other results. The following shows that
inverse 1limits on the unit interval are all chainable. This at least
prohibits some pathological continua occurring, but not sufficiently
many so as to make the problem uninteresting.

Theorem 12. If (x 19 fi) is an onto inverse limit sequence so

that each X, is compact and chainable, then lim (xi, fi) is chainable.

i
Proof. The principal fact used in the proof is that a continuous

transformation from a compact metric space into a metric space is uni-

formly continuous. Note that if Ul, U2 3 esey U 1is a chain covering

k

-1
X, P[0, 0 Unm (X, £,) = ui‘ , 1=1, ..., k is a collection of
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open sets covering 1l1im (xi, fi) and Ui' intersects U;j' if and only
if Pn[Ui'] intersects Pn[U J'] » hence if and only if U, intersects
Uj - But then U;', ..., U, ' 1is a chain (of open subsets of 1lim (xi’fi)
covering lim (xi, fi) .

Suppose ¢ 1is a positive number. There is a positive integer k
so that 27 1s less than (¢/2) . For each positive integer i not
greater than k , since fik is uniformly continuous, there is a positive
number 61 X
di(fik(x) s fik(y)) <2 | There is a positive number & 1less than the

80 that if x and y are in X, and dk(x, y)<61,then

minimum of 61 ’ 82 s esey ak . Since Xk is chainable there is a chain
of mesh less than & covering xk s 8ay Ul’ ceey Un . Denote each set

-1

of the form P (Ui) Nlim £, as V, . Then Vis ooy V. 18 @ chain

covering 1lim fi . Suppose x &and y are in some Vi . 3Since
4 (P, (x), P, (7)) < & , we have

k ,-k.-1 o

R -1 -1 k
D(x,Y) zi-ldi(Pi(x)’Pi(y))? S 2592 2 4350002

< 2” +2'k <ég.

The assumption that all the Xi have diameter not greater than 1 was

i

used in the inequality di(Pi(x) ,Pi(y)) o1 < 2™ for i greater than

k. So V,...,Vn iaachainofmosixleuthat ¢ covering 11mfi.

1
The following obvious theorem and its corollary give that every
compact space is the inverse limit of some inverse limit sequence. This
is not very useful since the space used is the space to be duplicated,
and we can obtain no information about the space to be duplicated by
looking at the spaces in the inverse limit sequence. In fact, one can

easily show that if (Il, fl) R (12, f2), eee 1is an inverse limit sequence
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and each fi is an onto homeomorphism, then 1lim fi is topologically
equivalent to 11 .

Theorem 13. If each f, is 1-1 and lim f,
each positive integer n , the projection Pn maps lim fi 1-1 into In .

exists, then for

coroll&sz 1)40 E (xl, fl), (xz’ f2), oo 1_8. -a- 1"1 OntO EE"
pact inverse limit sequence, then 1lim fi is topologically equivalent

to X .

Proof. One only needs recall that a continuous 1-1 map on a com-

pact space is a homeomorphism, and therefore the continuous 1-1 onto

transformation Pl

the homeomorphism is Plllim £, .

from 1lim fi onto X, is a homeomorphism. Properly

1



CHAPTER III
AN EQUIVALENCE THEOREM

The constructive proof of the principal theorem of this chapter
is broken down into several lemmas. The first may seem to be out of
place. However, it gives conditions under which one compact chainable
continuum is homeomorphic to another, and the conditions of the first
lemma will be used to guide the construction., This may make the con-
struotive process clearer than it would have been, had the construction
been made without and it were shown at the end that the construction is
adequate,

In general a chain will be given a name which is a capital letter,
possibly with subscripts, and its links will be denoted by the same
letter not capitalized, and with subscripts. The notation the chain
are distinct links of the chain,

C= Oys cees © vill mean Cys cees ©

n n
and that they are in order. That is, ¢
1 -3 <2.

A chain O will be said to be &-spread iff if x and y are points

of non-adjacent links of C , then the distance from x to y is not

intersects ¢, if and only if

1 J

less than &8 . A chain C will be said to be spread if there is some
positive number & 8o that C 1is &-spread.

If each of cl, 02, oo and Dl’ D2, eos 18 a sequence of chains,
cl,
oreasing sequencs of chains so that for each positive integer n On and

1

02, eeo Will be said to be similar to Dl, Dz, ses 1ff each is a de-
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Dn have the same number of links and if each of J and k is a posi-

tive integer so that Cn contains at least J links and t.‘.n con-

+1
tains at least k 1links, and °n+1, j c °n,k s then there is a positive

integer m so that d and |m-k| <2 . A chain E is

n+l,J < dn sm
sald to have mesh less than the number t iff each link of E is of
diameter less than t . A sequence El ’ E2, ees Of chains is said to
be decreasing iff there is a sequence tl, t2 s +++ Of real numbers with
limit O so that for each positive integer n , En has mesh less than

t_ and the closure of each link of En is contained in some link

n
of En .

+1

Iemma 1. Suppose each of M and N is a compact chainable con-

tinuum and each of Cl, 02, eeo and Dl’ Dz, +so 1is a decreasing se-

quence of chains so that

1. cl’ 02, ceoe 3._8; Silllilar_t_q Dl, Dz, eoe o

2. For each positive integer n ,

A. Each point of M is in some link of C:k and each point

B. There is a positive number 6n 80 that Dn is Gn-

spread and D .. has mesh less than &n/lL .
C. Each link of (:n contains some point of M and each

4

link of Dn contains some point of N .

Then M 1is homeomorphic to N .

Proof. First a function is defined from M into N . Suppose p
is a point of M , and n 1is a positive integer. Define Knp by agree-
ing that q is in Knp iff q 1is in N and there are positive integers
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J and s s0 that each of J and s is not greater than the number of

lnks in C , p isin ¢ q isin d _ and |s -3l <3. The

nj ’
set Knp consists of the points of N in approximately the same posi-
tion in Dn as p 1is in in cn . Certainly Knp always exists by con-

dition 2.C. It will be shown that K is always contained in Knp ’

n+l,p
and that Kn p is of dlameter at most 7 times the mesh of Dn . Since
3

Kn; is a closed subset of N , then K;p is compact, and we will have

that Ki p’ KEp, ... 1is a nested sequence of compact sets whose diameters

(- ] - a0
have limit O and therefore nn_lxnp which is nn_l K np exists and is

a single point. The function f from M into N is defined by

£(p) = n:-lxnp .

To prove the assertions about K np ? note that if p is in ¢ nJ

then p 1is not contained in a link of cn not adjacent to ¢ So

n °

if p is in °nJ sand p is in ¢ and s is a positive integer

nj'’
not greater tham the number of links of C_~ and |3' -8/ <3, it is

true that [J -s8| <3 since |J-3'| S1. Seo xnp is contained in

the union of dn and the three links to each side of dn 5 a set of

J
diameter at most 7 times the mesh of Dn . Restated, Kﬁp is contained
in the union of at most 7 consecutive links of Bn no more than three of

which are on the same side of dn 3° Next suppose that p is in . A,k °

n+l,k J°
Since the C-sequence and the D-sequence are similar, there is a posi-

There is a positive integer Jj so that ¢ is contained in c,

tive integer k' so that dn 1,3

|k - k| S1. Because p is in oy » if |r - k| <3, we have the

is contained in dn,k' » and
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intersection of dnr and N is contained in Kh . But if dnr is a

P

link of D adjacent to d then |r - k|S|r -k'| + |k' -k| <3

nk! ?
and so th contains the intersection of N and links of Dn either

adjacent to dps or d,, . Since Kﬁ+1,p

section of N and dn#l,J and of three links to each side of dn+1,J ’

is less than 1/L the width of the gap between

contains at most the inter-

and the mesh of Dn+1

non-adjacent links of Dn s then four consecutive links of Dn+1 5 one

of which is dn+1,j

sect a link of Dn not adjacent to dn,k' and so Kh+1,p

. Therefore Kip contains

have the property that their union does not inter-
does not in-
tersect a link of Dn not adjacent to dn

2
%*’l,P :

It remains to be shown that f is 1-1 , onto and continuous.

k!

Since M is compact, this will be sufficient to know that f is a homeo-
morphism of M onto N .

Suppose that p and q are different points of M . Choose an
integer r so that C_ is of mesh less than 1/15 the distance from p
to q . There are integers j and k so that p is in °rj and gq

isin ¢ Necessarily |J - k| > 15 . But Krp is contained in the

rk °

union of at most 7 links of Dr s one of which is dr and K% is

J q
contained in the union of 7 consecutive links of Dr one of which is

d Since |j - k| > 15 , these two sets of 7 links contain no adja-

rk °
t links and K d K disjoint. Si f is in K
cent links and so rp 804 K are sjo nce f(p) n K
and f(q) 18 in qu s f(p) isnot f(q) , and f is 1-1.
Suppose U is open and f(p) is in U . There is a positive number
¢ so that the e-sphere about f(p) 1s contained in U . There is a

positive integer r so that D, has mesh less than ¢/7. Choose Jj to be
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any positive integer so that p is in °r;)’ If q isin ¢ then

rJ
K - is contained in the union of 7 consecutive links of Dr » one of
which 1is dr 'K and this set contains f(q) and is of diameter less
than seven times a number greater than the mesh of I)r . This set also
contains f(p) and so f(p) is a distance less that 7(&/7) from

f(q) ,or f(q) isin U . So f£(MN c.

J) is contained in U and f

is continuous.

Since f is continuous and 1-1 on the compact set M , f£(M)
is compact and therefore closed. Suppose f 1is not onto. Then there
isapoint z in N not in f(M) . Since f(M) is closed there is a
positive number € so that the sphere about z of radius & does not
intersect f(M) . Again choose a positive integer r so that D, has
mesh less than &7 . Iet J be an integer so that z is in drj .

There is a point p of M in c. by condition 2C. But as above in

J
showing that f 1s comtinuous, ;13'(0:3r 5 N M) is contained in the e-
sphere about z , and in particular f(p) is within ¢ of 2z , contrary
to assumption. Therefore f 1is onto.

This completes the proof of the first lemma.

The second lemma is a restatement of Iemma 1 of [2], and will not

be proved here.

Iemma 2. If M 1is a compact chainable continuum, there is a

decreasing sequence of chains Cl, 02 s +++ 8o that each 'Z!n is spread,

and so that for each positive integer n , each point of M 1s contained

in some link of Cn and each link of Cn containg a point of M and a

Lok of O, -

The next Lemma provides the constructive apparatus.
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Iemma 3. Suppose E 229. F are chains containing m and n
links regEctiveH 80 that each link g£ P contains some link o_f E and

each link of E 1is contained in some link of F . Suppose further that

n is greater than 3, & and t are positive numbers and Q 1is an inte-
ger greater than 1 3o that F is &-spread, E has mesh less than &q
and Y% > /@ -1), and V is a spread chain of n connected open

subsets of [0,1] ‘whi'ch covers [0,1] so that V has mesh less than 2/n.

Then there is a spread chain U of m connected open subsets of {o,1]

which covers [0, 1] of mesh less than 2/m and a continuous function g

from [0, 1] into [0,1] so that the closure of the g-image of each link

of U 1is contained in some link of V and is of length less than t , each

link o_i" V contains the closure 92 the image of some 1ink g:_t’_ U and so

that if g(uy) is contained in Vg then there is an integer p 80 that
ej is contained in fp and |p -kl <2.

I. The chain U 1is constructed by choosing a number w less than
1/(6m) and defining u; tobe [0, (I/m) + w), u, to be ((l/m) -,
(%/m) +w), ... and uw, tobe ((®1/m)-w, 1] . Clearly U is a chain
of m connected open subsets of [0,1] covering [0,1], U has mesh less
than 2/m and is (1/ 3m)-spread. There is also a positive number x so
that V is x-spread and x 1s less than Y72 .

IT. Ilet kl denote a positive integer so that e 1s contained

in f.

kl . Denote as the smallest positive integer so that

4

e j is not contained in fk . Since F 1is spread more than the
1 1
diasmeter of e and e intersects f in a point of e
| 3 U1 ky i I’
there is only one integer k2 so that e 3 is contained in fk and
1l 2

k2 is either klfl or kl-l. Denote k,‘,--k:l as il,and
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kl- 11 as k2 ! . Two cases will be considered:
A. Either ky' <1 or k,' >n or for 151531,03 is not

contained in f, , .
2

B. There is an integer j.' with 1= j.,'<J, so that e, ' is
1 1 <9 3
contained in f , .

k,

The second case is that E runs over into the link of F on the other side

of fkl from fk before running inside fk s and leaving fk‘.l . The first
2 2
case is that the second does not occur. Denote the endpoint of vkl in i
2

as bl and the endpoint of vkl not in Ve @8 &, . Denote the endpoint
2
of V in v as '1' and the endpoint of v. in v as b,' , if

ky k ky ky 1

v, is defined. Either al < 'bl' < al' < bl or 8 > bl' > al' > bl .

2
In either case, bl' - al' > x . Choose a number x less than x ,

|a1 - b1'|/2 and lal' - b1|/2 but greater than O .
In case A define g, to be the function from [0, (J.l/in) + w] onto

t +Dd
12—1 - The following are true of g, s (1) g is continuous,

(2) For 1532 3 > (gl(uj))' is contained in v, N v, and is of

k
h K
of F containing a 1link e

dlameter O . (3) For each link f of E

k J

with 1= 3= Jl s Yy contains the closure of the image of some link uj,

of U with 1X3'=3, . (b) If gl(ud) is contained in v, for

lﬁjﬁjl,thonthorouunintoger P 80 that e cfp and |p - k| < 2.

J

(The integer k is either k, or k for 125 j< J; » and

p-k2 for j-:)l will do.)

Suppose in case B that a, < bl' < .1' < bl . Then define g from
[o, (Jrlﬁn) +w] into e, ¥ g,(0) = b '~ x, g ((Y/m)+ w) = b '- (F1/2),

P=k

2 1
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‘1 -1 - = LIS X1, Jl = 1
81(( 1 “/m)-w)=a ( "1/2) and 31(( /m) + w) a'+x , and
g is linear on the intervals [0, (1/m) + wl , [( 1/n) + W, (31 - l/m)-w]
and [(17Ym) - w, (F/m) +w) . If 8y >yt > eyt >y, define
gy(0) =by' +x , gy (( /m) +w) =by' + (F/2) , gy ((1V/m)w)= ay'-(F2)
and gl((jlfm) +W) = a,' - X, , with the corresponding linearity on the
intervals. Note that (1) g, 1s continuous. (2) gl(nl)-'[bl‘-xl,bl‘-(xlﬂ)]
or [b! + :’fl/'z s by' ill: is contain:: fn v N7, and s of Clameter
= )
less than Y/2 and gl(ujl)‘ [al + ( /2)‘, '1' +31] or [al' -x
8" - (*1/2)] 1is contalned in v, N v, and is of diameter less than Y2,
) . 1 2
and for 153 = 3 » gl(uj)' 1slcontained in vkl . Since g is linear
on the interval [(i/m) +w , (Jl— /m) - w] there is a number s, 8o that
if r is the length of a subinterval, then its gl-imge is of length 8T+
Now [(I/m) +w, (11 ‘m) - w] has length (Jl'a/n) - 2w and its image has
length less than 1 . So the inequality ( (Jl-z/ll) - 2w)s; <1 holds.
S8ince F is &-spread, the mesh of E 1is less than 5/Q and e

1

and e are in non-adjacent links of F , Q<}J, - J;' = -1,

Jl'
Then 1<QZ5J,-2 and so 1/(3; - 2) S3/q <1 . Applying this to the

inequality above and using 2w < 1/3m , and 1/Q < 1';/6 one sees that

Jea - 2
Vo> s (—lm— - %’-) > 31(% - 2w>> ’1(% - %) > (®1/3)(¥/nm) .
so Y/2s>3/4Q> 81(2/m) . But U has mesh less than 2/m , and so the
length of the image of u, for 1< J<J, is less than Yoset/2at .
(The link u, may be split up into a piece in [0, (I/m) + w] or
(1 Y/n) - w, (Jlfm) +w] and a piece in [(1/m) + w((J1"1/m) - w].)

(3) If alink f, of F contains a link e, of E with 1XJ=1J,,

k J



22

then Vi contains the closure of the image of some link of U with

u

J'
1353 J; » simce k is either ki, ky, or k' . (L) If gl(uj) is
contained in v, for 123= 3y » then there is an integer p so that
oJc\fp and |p - k] <2 . (Again, k is k; or k, or ky' and

15:]<31, then e, c f

1%

is Jl,then k is k2 or kl, ej cf.‘k
1

and p =k, gives lp -kl <2. If j

and p-l:2 glves
2
lp -kl <2.)

It probably should have been noted earlier that ;]1 exists since
n>3. In fact jl<m . It could easily happen that kl is 1 or

m , in which case, Case A applies since no e 3 is contained in fk '
2
because no such link of F exists. No use was made of Vi 1 in con-
2
structing g8 in part A , and no difficulties arise. However, in the

next part, III, the existence of a 32 is more worrisome. In either
Case A or Case B a function g has been constructed satisfying the con-
ditions of the conclusion for g .on the first Jl links of U .

IIT. The next thing to do is to consider as many as possible con-
secutive links of E in sz starting with e 31 . There are five cases
to be considered, to be from two major cases.

A. For 115;15:1 s ©, is contained in f

J k,

B. There is an integer Jj so that jl< J and ed is not con-
tained in £, .

kp

Choose 32 to be the least such integer Jj . Denote as k., the

3

j is contained in rk o As in II, there is only one
2 3
such integer and it is either k2 +1 or ko -1. Denote k3 -k, as

12 s and k2 - 12 as k; . Three subcases of B may be considered.

integer so that e



23

Bl. We have k3 isk.landnolink °;) of E, ,115:)5;)2:
is contained in Lo
3
Bﬁ’ We have k3 is k1 and for some integer 32' with
IS 3 <3y 032, is contained in fk3' .

33. We have k3

Two subcases of Case A will be considered. Ome cannot actually

is not k1 .

occeur in this second step of the construction, but its inclusion makes
further steps exactly the same as the second. Recall that kz is kl + il’
and |11| = 1. The number k, + 21, which we denote k," is so that

Ikz" - k2| =1. If ¢ is defined, then it is the link of F adja-

k L
2
cent to fk but not fkl « Two things could conceivably happen.
2
. < 3<
Case A. No oy for §; SJ=m, is contained in sz,, (or
fke,, is not defined.)
' <
Case Ay For some integer :)2" with 31< 32" -m, ."2" is
contained in fk noe
2

In Case 11, define g, to be the map from [0, 1] into vkl 80
that g, is g on [0, (J1/m) + w] and so that g, takes gl( (31/m)
+w, 1] onto gl(("l/m) +w) . Clearly (1) g, 1is continuous. (2) For

Jp+1<3=m gy(ny) is contained in v, N v. and is of diameter O.

k
LACH 1) 1s 81([(31/111)-\' » (Ym) +wl) v 52([(31/!1) +w, CTm)+ W),
which is of diameter less than t/2 + 0 , and 32( .14-1) is contained in

(3) For each link fk of F containing a link °J of E

contains the closure of the image of uj .
k

J; 23 Zm, there is anintoger p 8o that e, 1is contained in fp and

kll"lvkz.
<
with Jl_J m,vk

k is either k, or k, ) (h) If 32( ) is contained in

(Since

for
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Ip - k| <2 . We can invariably choose p to be k, -
In Case A,, denote the endpoint of v, inv, , asb

2 k, k, 1
point of v kzn in v, k, as a,". Either a,' <b, <" <b" or a'>b

" and the end-

>-a1“ > bl" . Somewhat confusingly, the endpoints of vk2 are al' and

bl" . Choose a positive number xz' to that xz' is less than Y/2 and

less than Ia " _b "I/2 Define the map 32 from [0, 1] into [0, 1]
by g, 1= g on [0, ym) + w1, 82(("l /m) - w) e a" + (x,'/2)
and 32(1) is al" + 1:2 if al" <b", 32((m - l/m) -w) is

8" - (xz'/2) and 32(1) is a" - x," if a," >b," , and g, is linear
on [(Jl/II) +w, (™n) -w] andon [(®L/m) -w, 1] . Since e 4 1s

3

contained in f, and e, , 1s comtained in f,_, , a link of F not ad-

1 Jo" k,
Jacent to £, , there are at least Q links of E between e '11'1 and
J.. e 80 Q53" -(33-1)-1=3,"-J);Sm-J, . Since g, is
linur on [(J]_/m) +w, M- 1/m) - w] there is a number 8, 8o that if
r 1is the length of a subinterval of [(Jl/n) +w, (B - 1/m - w] , then its
gz-i.mage is of length 8T . Since the whole interval is of length
((m - 3 - 1)/m) - 2w and its image has length less than 1 ,
32(((n-;]1-1)/m)-2w)<1. Yince Q-lim-dl-l,and
Y6>1/(Q-1)21(m -3, -1), then t/6 > 8,((1/m) - 2w/(m - J; - 1))
> 32((1/m) -2w) > 02(2/(3111)) , and so t/2> sz(z/m). We have (1) g, is
continuous. (2) For 3 ¢ l<j<m-1, ge(ud)' is of diameter less
than t/2 and is contained in . The set g,(u, )" 4is of diameter

v
k
2
X,'f2,hence of diameter less than t/2 , and is contained in vk . The
set g,( Jl+1) 1s (g [(3y/m) - w, (J3/m) + W] U gy[(J3/m) + w, ((Jl+1)/m

+w]) and is of diameter less than the sum of the length of gl(u ) and
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32(_1/1_11) , which is less than t . Similarly gz(nm_l)- is of diameter
less than t , and both gz(ujlﬂ)" and ga(nm_l)" are contained in vkz.
(3) Por each link £, of F so that f, contains a link oy of E with
31 S§jSm, ) contains the closure of the gz-inago of a link uJ' of
U with 31-153'_<.m, since k is either k;, k, or k," . (L) 1
ge(uj) is contained in v, for J, = Sm, then k is either k), k,
or kz" and p = k2 gives both that e 3 is contained in fp and
lp -kl <2.

How to continue the construction, and finish it, when the chain E
ends in a link of F has now been shown. In both cases Al and A, &
function g, was constructed which fulfilled all the conditions of the con-
clusion. The only part of the conclusion which might be in doubt is that
each link of V contains the image of some link of U . Any link Vi of
V contains the image of some link of U since fk contains some e 3
Either 1= j = g or 4 S JSm. But one of the observations numbered
(L) after the construction of g, and g, applies, and v, contains the
closure of the image of some link of U .

Case Bl is that kl is k3 and no link of E 1is contained in
sz' for 3, 3= Jp - To duplicate this behavior it is sufficient to
map all the links uy of U with- 3153552 into vkln vk2 . Take
gy tobe g on fo, (Jl/m) + w] and so that g, maps all of
[(J/m) + w , (92/m) + w] onto 31((31/1;1) .4+ w). The required four pro-
perties hold for g - The statements of these properties can be obtained
by replacing m with 32 in the statement of the resulting properties in

Case A1 . The proofs are almost exactly identical.
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Case B, is that k3 is kl and for some integer :)2' so that

Jl < 32' < 32 s 032, is contained in fk3 . To duplicate this, we shall
make the images run over into v, , and back into vklnvk » which is

3 2
vk3 n vk2 - Define a, and b, to be the endpoints of vk2 in vkj, and
Vi respectively, ‘2' to be the endpoint of Vic in Vi and b2' to
3 3 2
be the endpoint of vk3' in vkz. Either a, <b,' <a,' <b, or

a, > b2' > 32' > b2 . Iet x, be a positive number less than half the over-

lap of eachof v, and v, and v, and v, , , and also less than Y2 .
2 3
Recall that g 18 so that gl((Jl/m) +w) is in vkln vk which is

v, N v, . Wechoose g, tobe the function defined on [O, (Jz/m) + w)
2 3

go that g, is & on [0, (Jy/m) +w] , 32(((;)2 -1)/m) + w) is

b2' - x, and 32((32 /m) +w) is b ' - x, if a2<b2' R

32(((;]2' -1)/m) +w) 1is b,' +x, and 32((.12'/11) +w) 1is b,' +x, if
a, > b, , 82((32/‘) +w) is (az' + be)/2 » and g, is linear on the in-
tervals [(J,/m) +w, ((J,' - 1)/m +w], [((J,* - 1)/m) +w, (3,'/m) + w]

nd [J,'/m) +w, (j,(m) +w] . Sin d tained in f
a 2/m 2 ce ejl-l an e:’2 are con kl

snd e, , 1is contained in ka, s dp' -3y +1<Q and J, -3, <Q.

3!
Similar to the above one can show (1) g, 1s continuous. (2) For

3 <3< 3, gz(uj)' is contained in v, and is of diameter less than t .

2
Moreover, 82(qu')- is contained in ka' n vkz and g,((J/m) + w) 1is
in v, Av, . (3) for each link £,
2 3

with J; S J S J, , there is an integer j' so0 that J, -1=3' =], and
ge(uj,)' is contained in v, . (Again k is either k., k, or k,' and

of F econtaining a link e:l of E

one may choose j' to be ,11 -1, J; -1 and 35! respectively. )

for 3153532, then there is an

(k) I gz(uj)' is contained in v,
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integer p so that ey is contained in fp and |p - k| <2 . We have

k 1is either k3,k2 or k,', p=k, will do if 31§J<;)2, and

3 2
P=k =ky willdoif J is J,.

Case 33 is that k. 1is not k in which case k

will be ignored. The map 32 from [Of (32/1:) +w] is de:'incd so that

g 15 g on [0, (3y/m) + %], g(((3, - 1)/m) - w] 1s &, + (x,/2)
and 32((,12/1:1) +w) 1is 8, +x, if 8, <b,, g..‘,(((;l2 -1)/m) + W)

is a,' -x, and 32((32/1'!1) +w) is a,' -x, if a,' >by, and g, 1is
linear on [(J,/m) + W, ((Jp-1)/m) + w] , and on [((3y-1)/m) + w, (Jp/m)+ ¥].
Again J, - J, >Q and the following hold: (1) g, 1s continuous.

and is of length

'iskland

(2) For 332323, gz(uj)- is contained in vk2

is contained in v, Nv, . (3) For each
/ k Tk

of E with J, SJ§=<J,, there

less than t , and sz(ujl)-

link f. of F containing a 1ink e

k J
is an integer j' with 3 £3'2J, s=o that gz(uj,)' is contained in

Ve - (h) 1 gz(uj)' is contained in v,

is contained in rp and |p-kK <2.

for ‘11 =J= 12 s then there

is an inﬂogor P 8o 'that eJ
IV. Clearly the above process can be continued, if necessary.

Step ITI constructed a funetion g8, 8o that 2% fulfills all the require-

ments for the function g of the conclusion on at least the first two

links of U . If g, does not have domain [0,1], the next constructive

step would invelve first seeing if all the links e, of E with J, <3

< m are contained in flt . If so, precisely the same procedure as in
3

Case A1 or Case 12 of III could be followed. If not, then a precise

analogus of Case B, , Case B, or Case 33 would hold. A function 8y

could then be constructed so that 33 is an extension of g > 33 is
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continuous, and 33 fulfills the properties of g for at least one more
link of U +than & does.

This completes the demonstration of Lemma 3.

The first three lemmas may be described in a heuristic fashion. The
proof of the theorem of this chapter involves imitating a sequence of chains
which characterize a chainable continuum with a sequence of continuous func-
tions on [0,1]. The imitation will be faithful enough so that the inverse
limit of the seqmﬁee of functions is homeomorphic to the original chainable
continuum. The first lemma gives a standard of accuracy for the imitation to
follow. The second lemma asserts there is a sequence of chains of a nice
enough nature "characterizing" the continuum which we will see are comfortably
imitable. The third lemma says the imitation may be made so as to satisfy
many conditions if the chains satisfy a few conditions.

The following two lemmas continue the process. The fourth merely
gives that the imitation, still to be put together out of the pieces provided
by the lemmas, satisfies one more of the criteria of adequacy of the first
lemma. The fifth lemma is really inessential, but says the imitation to be

constructed may be chosen to be of a more pleasing nature.

Lenma L. Suppose fl’ f2, +ss 1is an inverse limit sequence on [0,1]
and Ul, Uy, ... 18 a sequence of chains of open subsets of [0, 1] each

covering [0, 1] so that for all positive integers n 1if U3 is a link

of U, then there is a link u of U S0 that £ (up4y,) 18 com-

n+l,k = Tn+l
Then for each positive integer n , if Un, 4 is a link of

ined in .
tained in un,J

U, , there is a point p in 1lim £, so0 that Pn(p) is in LT
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Proof. Recall that in the proof of Theorem 5 of Chapter I, when
given a compact inverse limit sequence (xi R fi) then a sequence of con-

tinuous functions Fl » F2 s »++ wWas constructed. Each F y Wwas defined

a0 Q0
from m X, dnto m ) X, by F,(x) - (fl_,i(xi)’fz,i("i)""’ £y,1(x)
X140 2 ees) Where (xi, X400 ees) Was a point of n:,i xk . The funec-
tions had the properties that the range of each Fi contained the range of

existed and

Fi +1° and that the intersection of the ranges of all the Fi

was lim fi .

In this case each X, is [0,1]. Suppose Unj is a link of U_.

i

By hypothesis there is a sequence w of links of

so that fn(u A, 31)' is contained in Unj and for each

Y n

Un+1 n+2’ eeoo

positive integer 1, f +i(un el )" 1is contained in u For

n+i,;)i :
)~ is compact and so

’ji"‘l)- X ﬁ:‘f“‘i"’l(xk)

+ is therefore compact. Define Di to

)" X ":-n +141% for each positive integer i . Clearly

d1a

each positive integer 1, f +i(un Hel

"ji‘*l

f

( )" is compact and so f

n+i‘Pneiel ’31 o n+1(un+1+1

is compact and its image under Fn

be f

n+i(un

+1+1,] 141

for each 1, Fn +1(Di) contains Fn +i+1( +1 +1
tained in u

(- ]
nj Since each Fn-l-i(Di) is compact N __, F +k(Dk) exists,
is compact, is a subset of 1lim fi and Pn(n:-].Fn +k(Dk)) is contained in

D, ) and Pn(Fn (Di)) is con-

., j°? and the lemma is proved.

lemma 5. Suppose fl’ f2 s +++ 18 a sequence of continuous functions

from (0, 1] into [0, 1] and lin f, is non-degenerate. Then there is a

sequence g, 8ys - of continuous functions from [0, 1] onto [0, 1]

80 that 1lim fi is homeomorphic to lim g *
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Proof. For each positive integer n define a, and bn to be the

left and right endpoints of the possibly degenerate interval, n:.lfn n ﬁ[o,l].
’ 3

For each positive integer i , f is continuous and so fn n ‘_1[0 1] is
»

n,n+i

a compact subcontinuum of [0,1]. Moreover since fn,n¢i+1[0’1] is
£ (0,1]), £

n,n#i( " n,n+i+1[°’1] is contained in fn,n-t-i[o’l] and the in-

tersection of a nested sequence of compact continua is a compact continuum,

t

ny .f [0,1] exists and is a subcontinuum of [0,1]. So it is proper to
1=1%n,n+i
(- -}
call ni-lfn,n +1[0,1] by the name [an, bn] if we allow degenerate intervals.

(-]
It is also true that f (N, ,f a,n +1+1[051]1) 1ie contained in

- -] Qo .
ni-lfn(fnﬂ,n ﬁﬂ[o,l]) which is ni-2fn,n *1[0,1] and is contained in

[an,bn] , 8ince fn,n-l-l[o’l] contains 'fn,n ‘2[0,1]. For each positive inte-

ger n , fn[a bn+1] is contained in [an, bn]° Suppose p is in

n+l’
[an, bn] but not in fn['n +° o +1] . Now f:ll(p) is closed and so compact,

and does not intersect [an +° b, +1] . Since for each i , {o,1]

fm-l sn+l+i

is compact, it must be there is a positive integer J so that fn 1]

+1,n42431%
-1 ) 21,
does not intersect f (p) or ni-l(fn 1,04 00,11 n £ (p) would exist

and be conteined in f;l(p) N [a ] which does not exist. But then

n+l’ bn-l-l

fnfnel,ne1+g [0,1] does not contain p and does contain [a , b ] since it

18 £ 0400510
n, fla,b .1 is [a,b]. Suppose p is in lim f, . For all posi-
fn,n*-i(Pn d_(P)) is Pn(p) and 80 Pn(p) 31_3 in

[0,1]. Thatis, P (p) isin [a,b ] . The cbvious thing to do 1s

A contradiction has been produced, and so we know for each

tive integers n and 1 ,
fn,n-l»:i.
cut each f ~down to [an, bn].

For each positive integer define rn* tobe £ |[a ,b ], where "|" de-
notes restriction. Clearly lim(f},[a ,b ]) is 1im f_, since if p is in lim £, ,
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then Pn(p) is in [an,bn] for each n and f:(Pn +1(p))-fn(Pn +1(p)- Pn(p) and p
is in 1in(f ", [a_,b ]). The containment in the other direction is even
more obvious.
Since 1lim fn is non-degenerate, there is an integer r so that
[ar, br] is non-degenerate and necessarily for k> r , [ak, bk] is non-
degenerate. For each positive integer k not less than r define Tk

by Tk(x) = (x - ak)/(bk -'ak) - Each T

[ak, bk] onto [0, 1]. For each integer k not less than r define &

* -1
to be Tk fk Tk'l'l .

by Theorem 7 of Chapter I, the inverse limit of the sequence Tr s fr*,

-1 * -1 3
‘l'r 2, Tr +2° fr +29 etc. But this is the inverse limit of

s Which is the inverse limit of fl, f2’ eee « Each 8y

is a linear homeomorphism from
The inverse limit of the sequence B Bnyp oo is

Tr+1’ r+l? £ r+l?

* 3#
fro Traao Treps oo

3¢
is from [0, 1] onto [0,1] , since gk[o,ll = kak[akﬂ’ bk+1] = Tk[ak,bk]
= [0,1] and so 1lim f; is 1lim g; and the lemma is proved.

Theorem. A compact continuum M is chainable if and only if homeo-

morphic to the inverse limit of a sequence of continuous functions from

[0, 1] into [0, 1] . Moreover, M is a non-degenerate compact chainable

continuum iff there is a sequence of contlnuous functions from [0,1] onto

[0,1] whose inverse limit is homeomorphic to M .

Proof. The "moreover" is a direct and simple consequence of Lemma 5
and the first part of the theorem. Lemma 5 and Theorems 5 and 12 of Chap-
ter II give immediately that each inverse limit of a sequence of maps on
[0,1] is a chainable compact continuum, with the obvious observation that a
point is chainable.

It remains to be shown that if M 1is a compact chainable continuum,
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then M is homeomorphic to the inverse limit of a sequence of functions on
[0,1]. If M is degenerate, then M is homeomorphic to the inverse limit
of the function g defined by g(x) = 0 for x in [0,1]. The inverse
limit of g is the point (0,0,0, ...). Suppose M is non-degenerate.
By lemma 2 there is a decreasing sequence cl, 02 s «+. Of spread chains so
that for each positive integer n , each point of M is contained in some

link of cn s and each link of (.'3n contains some link of cn and a point

+1

of M.

Since M is non-degenerate, there is a positive integer n, so that

On contains more than four links. Ilet ry denote the number of links in
1

cnl ’ &.l. a positive numbers so that Gnl is 61-apread s tl

number 1/2 and Q, denote any integer greater than L so that t1/16 is

denote the

greater that 1, (Ql - 1) . Since C,5 Cy5 +.. is decreasing there is an in-

teger n, greater than n, so that C_ has mesh less than 61/01 . let
"2

U, be any spread chain of ry connected open subsets of [0,1] covering

1
[0,1] which is of mesh less than 2/':-1 . let r, denote the number of
links in Cn . By lemma 3 there is a spread chain U2 of Ty connected

2 .
open subsets of [(0,1] covering [0,1] which has mesh less than 2/1‘2 and

there is a continuous function g, from [0,1] into [0,1] so that the

closure of the gl-imge of each link of U, is contained in some link of

2

and is of length less than tl s each link of Ul

and so that if gl(u2 J) is contained

U contains the closure

1l

of the gi—imge of some link of U,

in Uy then there is an integer p so that cnz, J is contained in

: - 2.
cn:l’p and |p - k|<
Suppose this process has béen continued for m - 1 steps in the

manner described below. An increasing sequence n)5 Nys oee nm of positive
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integers and a sequence of integers Tys Tos eees Tp each greater than L

exists so that for 1< im, (2:n contains r, links and r, is
i
greater than 21"1. A sequence 61, 62 9 eeey sm of positive numbers

exists so that for 1S j<m, c,k 1is sj-spreadandfor 12jSm-1,

J
C is of mesh less than 5J/h . A sequence U., ..., U of spread
chains of connected open subsets of [0,1] covering [0,1] exists so that
for 1 3Sm U 3 contains r ! links and is of mesh less than 2/ g - A
sequence g5 E55 co-s &y 1 of continuous functions from [0,1] into

[0,1] exists so that for 1< j<m -1, the closure of the gj-imge of
each link of U is contained in some link of U, and each link of U

J+l J J
contains the closure of the g J-imge of some link of U J41° Moreover, for

any two pointe x and y in a link of U, , lgi 3 (x) - gy J(y)| <29 yhere
< P
i<jom and gij denotes Bi Bi4q o gj—l . Note that U;) is of

mesh less than 29 for 1= jJ<m since of mesh less than 2/r 3 and

T > 23t |

Now 8im is continuous for i <m and so uniformly continuous.

Clearly there is a positive number tm so that if | x - y| < tm » then
Igim(x). - gim(y)l < 2-m-1, and so that tm is less than 271 Ghoose an
integer Q  greater than 1 so that t’“*/6 > ]‘/(Q”l - 1) . Choose an in-

teger Do+l greater than n, so that.the mesh of C is less than

Tl
Bm'/Qm and is less Sm/) , and Cn has more than 2""2 links. Denote
m+l
the number of links of (3n as 1 . - By lemma 3 there is a continuous
. m+l
function g, from [0,1] into [0,1] and a spread chain Um»l of Sy

connected open subsets of [0,1] covering [0,1] so that U has mesh
less than 2 ™1 (which is more than 2 times the reciprocal of the number
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of 1inks in C is
Pne1 +

contained in some link of Um and is of length less than tm, each link of

), the closure of the g,-image of each link of Um

U, conteins the g -image of some link of U ., and so that if g(u ., J)

is contained in L then there is a positive integer p so that c
L

is contained in cnm,p and |k -p|l <2.

By induction the above process can be continued for all positive

integers. ILet l)i denote cn for each positive integer 1 . Therefore
i

there exists a decreasing sequence Dl’ D2 s «+. oOf spread chains so that

nm.‘,l ’j

for each positive integer i , each point of M is in some link of Di

and each link of D1

61 ’ 62 s seo Of positive numbers so that for each positive integer i ,

contains & point of M . There is a sequence

D, is & spread and D, , has mesh less than 81/ . There is a se-

i i
quence U., U,, ... of spread chains of connected open. subsets of [0,1]
1’ "2

covering [0,1] so that each U, has the same number of links as Di .

i
There is a sequence 85 8ps oo of continuous funoctions from [0,1] into

[0,1] so that each U, has mesh less than 271

points x and y of a link of U, , Igji(x) - gji(y)l <21 for an1 J

so that for any two

less than i and so that the closure of the gi-inage of each link of

contains the

U is contained in some link of U

i+41 1 i
closure of the g,-image of some link of Uy, ond so that if gy (uy *1’3)

s @ach link of U

is contained in ui,k

is tained in 4
con 1,p

Jet T denote the inverse limit of 8ys Bps oo - Let Vl denote

there is a positive integer p so that d
i+1,]
and |p -kl <2.

the chain of open subsets of T covering T whose links are

(w, X, [0,1])NT, (uy, X ":-2[0’1]) NT, etc. For integers }J
greater than 1 let V 3 denote the chain of open subsets of T covering
T whose links are (x)o7 [0,1] X g Xm0, 0T,
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(x 300,11 X uy, x 75, 1[0,1]) AT, ete. Each of the links of each 7V,
exists and contains a point of T by ILemma L. Suppose v Ik is a link
of VJ .
y are in T , and Pj(x) and Pj(y) are in Uy s the distance from

let x and y denote any two points of v ik Since x and

x to y is

a8 @) - py 2™ = 2 e (P (x)) - gyy(ryrnI2

+ |Py(x) - Pj(y)l + 2‘-:.3,,12'1

< 2'323 1 2'3 + 2"'3 < 3(2'3) .
For any Unk v, ; of V,,, , there isa link Uy of Uy =0 that
gj(uj-rl,i)- is contained in Uy - Since Via1,1 " 8y :j+1( 541, 4) » and

since Us,1 DPJ+1(VJ+1,1) we have V54,1 € Vgk ¢ So V;,V, isa

decreasing sequence of chains. Obviously, by the construction, Vl, v PYIRER
is similar to Dl’ D2’ «eo and by lemma 1, T is homeomorphic to M .
This completes the proof of the theorem.



CHAPTER IV
SOME THEOREMS ON DECOMPOSABILITY

This chapter is principally concerned with a few theorems that
say when the inverse limit of a single function on [0,1] is indecom-
posable. A continuum is said to be indecomposable iff it is not the
union of two proper subcontinua. It is well-known that a non-degenerate
compact continuum is indecomposable iff it contains three points between
each pair of which it is irreducible. That is a non-degenerate compact
continuum M is indecomposable iff it contains three points a, b, and
¢ so that no proper subcontinuum of M contains more than one of a,
b, and ¢ .

The first theorem gives that continuous functions frem ([0,1]
into [0,1] of a particularly simple type have very decomposable inverse
limits, which are in fact arcs. An arc may be defined as a non-degenerate
compact metrizeble continuum with at most two non-cut points. A standard
theorem is that a compact continuum is an arc iff it is homeomorphic to
the unit interval (with the usual topology.) A much stronger form of the
first theorem may be found in Capel [5].

Theorem 1. If f is a monotone continuous function from [0,1]

onto [0,1], then lim f is an arc.
Proof. It will be assumed that f is non-decreasing. If f were
non-increasing, then f2 is non-decreasing and the inverse limit of f

is homeomorphic to the inverse limit of a non-decreasing function by
36



Corollary 10 of Chapter II.

Since f 1is onto, its inverse limit is non-degenerate. Since f
is onto and non-decreasing, f(0) = 0 and f(1) =1 . So (0,0, ...)
and (1,1,...) are points of the inverse limit of f . Suppose p is a
point of the inverse limit of f so that for some positive integer n ,
Pn(p) is not O and is not 1 . For each integer m greater than n ,
‘Pm(p)- is neither O nor 1 . Define A, to be (14m £) N Pm'l([O,Pm(p)))
and B to be (1im £) N P;l((Pm(p) s1]) for each integer m greater than
n. Define A tobe U> A and B tobe U B . Eachof A and
B is an open subset of lim f . Suppose q is in 1lim f and q is not
P . For some positive integer J , Pj(p) is not Pj(q) , and J can be

chosen larger than n . If Pj(p) < Pj(q) , then q is in A It

x

Pj(p)<Pj(q), then q is in B So lim f -p is A UB . Suppose

q 1.4 a point; in A and q is a :oint in B . For some integer J
greater than n , PJ(q) > PJ(p) » and for some integer k greater than
n, Pk(q) < Pk(p) . If J 1is greater than k , then f(PJ(p))
= £(P4(q)) and fj_l(p) SPy5(a) 5 Py 4(p) = £Py 1(q) and Py_o(P)
= Pj_z(q) , ete., since f 1is non-decreasing. But then also Pk(P)
< Pk(q) contrary to assumption. A similar argument suffices if j 1is
less tﬁan k . Therefore A and B do not intersect, and p separates
lim £ .

It has been shown that each point of 1lim f other than (0,0,...)
and (1,1, ...) separates lim f , and lim f 1is an arc.

A simpie example shows that this onto condition of the first theo-

rem cannot easily be dispensed with, and requiring f simply to have
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a non-degenerate range is not sufficient. ILet f be the function from
[0,1] into [0,1) defined by f(x) = (x/2) + (1/L4) . A simple computa-

n-1

tion shows f'n(x) =2% -2 + 1/2 , and the only number with enough

preimages in [0,1] is 1/2 . That is, the inverse limit of f is
(Y2, 1/2, /2, ...) .

The first theorem may be considered as a slight strengthening of
the fact that an onto homeomorphism has an inverse limit homeomorphic to
its domain, since an onto monotone map is "almost® a homeomorphism. The
above example also shows that into homeomorphisms do not share this pi'o—
perty.

The second theorem gives a simple condition which implies the in-
verse limit is indecomposable. An example in Chapter V shows this is not
a necessary and sufficient condition.

Theorem 2. Suppose g is a continuous function from [0, 1] onto

[0, 1] and there are numbers a, b, and c so that a<b<c and either

gla) = g(c) =1 and g(db) =0 or g(a) = g(c) =0 and g(b) =1 . Then
the mvorsé limit of g _i_s indecomposable.

Proof. Suppose that g(a) = g(c) = 0 and g(b) =1 . Since g is
continuous there are numbers d and e with a<d<b<e<c¢ 80 that
g(d) =d and g(e) =e . Since d<b and g(b) =1, there is a number
h sothat d<h<b and g(h) =b , and since b<e<c¢ and g(b) =1,
there is @ number k 80 that b<k<e and g(k) =c . Now gz(h) =1
and ga(k) =0 and h<k 8o there is a number f so that h< f <k
and ga(f)- = £ . We have now that gz[d,t] contains [d,f] and ga(h) R
which is 1 . So gz[d,f] contains [d, 1] . Also gzgz[d,f] contains
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[4,1] and g% which is O , and so g [d,f] = [0,1] . Similarly
gh[f,e] and gh[d,e] are [0,1] .
The inverse limit of gh is homeomorphic to the inverse limit of
g - Also gh leaves the three numbers d, e and f fixed and so

(d,d,d, ees), (e,0,8, ...) and (£,£,f, ...) are points of lim gh .

Suppose T 1is a subcontinuum of 1lim gh containing (d,d,d, ...) and
(e,e,, «o.) . Since T is connected and for each positive integer n ,

P is continuous, Pm_l('r) contains [d,e] . But gthﬂ(T) = Pn(‘.l')

n+l
by Theorem 1 of Chapter II, so for each positive integer n , Pn(T)
= [0,1] . By Theorem 6 of Chapter II, T is lim gh , and so lim gh is
irreducible from (d,d,d, ...) to (e,e,e,...) . Similarly 1lim gh is
irreducible from (d,d,d, ...) to (£,£,f, ...) and from (e,e,e, ...)
to (f,f,f, ...) and 1lim gh- is indecomposable.

Suppose instead that g(a) = g(c) =1 and g(b) = O . Then since
g 1s continuous, there are numbers r , 3 and ¢t and u, v and w so
that aSr<s<t<bZu<v<wSc sothat g(r)=g(w) =c, g(s)
= g(v) =b and g(t) = g(u) =a . Then s<u< v and 32(3) = gz(v) =0

2

and gz(u) = 1 and by the above argument the inverse limit of g~ is indecom-

posable. But since the inverse limit of 32 is homeomorphic to the inverse
limit of g, the ipverse limit of g is indecomposable,and the theorem is proved.

Actually Theorem 2 is a special case of Theorem 3, but its proof is
enough different to make it interesting in itself. The proof of Theorem 3
depends on some concepts and theorems of which the author first read in a
paper of Lida K. Barrett [2]. The essential concepts used here are of a

defining sequence and of a chain looping in another. If M is a chainmable
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continuum, a sequence 01 » 02 » oeo Of chains is said to be a defining
sequence for M iff cl, 02 s ese 18 a decreasing sequence of spread
chains so that for each positive integer n , each point of M is con-
tained in some link of cn and each 1link of cn contains some point of
M and a link of cml o A chailn C 1is said to loop in a chain D 1iff
each link of C 1is contained in some link of D and there is a subchain
C' of C so that either the first and last links of C' are contained
in the first link of D and some link of C' is contained in the last
link of D or the first and last links of C' are contained in the last
link of D and some link of C' is contained in the first link of D .

Theorem 2 of [2] may be restated as follows: If M 1is an indeeompoéable

compact continuum and (21 ’ 02 s +oo 1is a defining sequence for M , then

for each positive integer n there is an integer 1 greater than n so that

C; loops in C . Conversely if there is a defining sequence Cys Cps oee

for the compact chainable continuum M 8o that for each positive integer

n there is an _integer i greater than n so that (}:l loops in C:n 9
then M 1is indecomposable.

Analogously, if f is a function from [0,1] into [0,1] and e
is a positive number, f is said to e-loop iff there are numbers a, b
and ¢ with a<b<c 8o that either [f(a) - 1] <e, [f(c) -1] <&
and [f(b) -0 <e or |f(a) -0| <e¢, |£(c) - 0] <& and
|£(b) -1] < e . So a function e-loops if it follows the behavior of the
function of Theorem 2 to within & . An analogue to the theorem quoted
above is immediate, and the proof is only sketched.

Theorem 3. If f 1is a continuous function from [0,1] onto [0,1],

the inverse limit 9_1: f 1is indecomposable if and only if for each positive




number ¢ there 12‘5 positive 1nte52£ n 8o that ©® ¢-loops.

Proof. Suppose 1lim f 1is indecomposable, and ¢ is a positive
number. By methods similar to those used before, a defining sequence of
chains can be produced for 1lim f by taking a sequence of chains Ul,

U,, ... each covering [0,1] , and this can be arranged so that Uy has
mesh less than ¢ . Now since for some integer n + 1 the chain resulting

from Un+1 loops in the chain resulting from U, , we have integers i, j,

1
n n
and k with i< j<k so that either f (un+1,i) uf (un*l;k) c ul,1 and
n : n . )
£ (un+1,j) is contained in the last link of U, 5 or £ (un+1,i) v fn(un+1’k)
n
is contained in the last link of U, and f (un+1,d) cu gy - Choosing

b isin u and ¢

points a, b and ¢ so that a is in LW n+l,

+1,1°
n
is in un+1,k it is clear that f e-loops.
Conversely if for each positive number ¢ , there is a positive in-
teger n 8o that = €e-loops we can construct a defining sequence Vi,

Vz, ees for 1im f so that for each positive integer n , V

n+l loops in

vh s> In an obvious way.
Morton Brown [3] has proved a theorem similar to this, which shows

that a property much like e-looping is necessary and sufficient for an in-
verse limit sequence to have an hereditarily indecomposable inverse limit.
His theorem is concerned with much more general inverse limit sequences,
although the condition on the maps is necessarily somewhat more restrictive.

The following gives another condition under which an inverse limit
is decomposable, and it is a simple corollary to Theorem 3 that the inverse
limit of f is decomposable.

Theorem L. Suppose f is a continuous function from [0,1] onto

[0,1] and there is a number b so that O<b <1l and f(b) =b ,
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f[O,b] = [o,b] and f[b,1] = [b,1]. Then the inverse limit of f is

decomposable, lim f is the union of 1lim(f]|[0,b]) and lim(f|[b,1]) and

these proper subcontinua of 1lim f intersect in only one point.

Proof. Since f£|[0,b] is a continuous function from [0,b] onto
[0,b] , 1im(f| [(O,b]) is a compact continuum and similarly lim(f|[b,1])
is a compact continuum. Suppose p is in 1lim f. Either Pn(p) =Db for
all n , or for some n , Pn(p) is in [O,b) or for some n , Pn(p) is
in (b,1] . If for some n Pn(P) is in [0, b) , then for m 1less than
n, P(p) = £17(R (p)) = (£1[0,6])" (P (P)) and P (p) is in [O,b] .
Clearly also it cannot be that for some m greater than n , Pm(p) is
in [b,1] or Pn(p) would have to be in [b,1] , and so p is in
1lim(f| [0,b]) . If for some n , P (p) isin (b,1] , we see similarly
that p is in lim(f|[b,1]) . So lim(f|[O,b]) U 1im(f|[b,1]) . No point
with first coordinate O is in lim(f|[b,1]) and no point with first co-
ordinate 1 is in lim(f|[O,b]) . So 1lim(f|[0,b]) and 1lim(£|[b,1])
are proper subcontinua of lim f whose union is 1im £ , 1im f is de-
composable, and clearly lim(f|[0,b]) N lim(£|[b,1]) is (b,b,b, ...) .

The next theorem is used mainly in some of the examples of Chap-
ter V. A topological ray is a continuum homeomorphic to the non-negative
real numbers with the usual topology. A non-degenerate connected set is
a topological ray iff separable, locally compact and it has one non-cut
point so that each other point separates it into two connected sets.

Theorem 5. Suppose f., f2 s> -+ 18 a sequence of continuous func-

tions from [0,1] into [0,1] and the sequence 8ys8ps oo+ of continuous fune-

tions from [0,1] onto [0,1] is s0 that for each positive integer n ,
sn(o)» =0, g (VVb) = 1, g (1/2) = £ (0)/2 +1/2, g,  1is linear on
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[0, 1/L] and [3/L,1/2) and for x in [Y2,1] , g,(x) = (W2)f,(2x-1)+ V2.
T‘Le_r_a_ 1im 8 is the union of a topological ray R and & continuum M so
that R and M are disjoint, each point of M is a limit point of R
and M 1is homeomorphic to lim f, .

Proof. Iet R denote the set of points of lim 8y with some co-
ordinate less than 1/2 . lLet M denote the set of points of 1lim g
with all coordinates greater than or equal to 1/2 . Clearly R UM is
limg, and R and M are disjoint. Define T from [0,1] onto [1/2,1]
by T(x) = x/2 +1/2 . Clearly 71
and is so that T'l(x) is always 2x - 1 . Then ‘nl [1/2,1] 1is

is 1-1 frem ([1/2,1] onto [0,1]

‘I‘fnl‘-l , and the inverse limit of gll [1/2,1], 82| [1/2,1], ... is homeo-
morphic to lim £ by Theorem 7 of Chapter I. (The explicit proof is
similar to the proof of Lemma 5 of Chapter III.) But this continuum is M
and 80 M is homeomorphic to lim fi .

Now we define a relation < on R . We shall say that p<q iff
for some positive integer n , Pn(p) < Pn(q) < 1/2 , where here < 1is the
normal order on the real numbers. Observe tﬁa‘h if p isin R and
P (p) <1/2 , then P __,(p) = (/b)P (p), P o(p) = (1/26)P (p), etec.

For all integers m greater than n , Pm(p) is (Vh)m'nPn(p) , and a co-
ordinate of a point of R which is in [0,1/2] completely determines the
point. Se if p and q are in R there is a positive integer n

so that both Pn(p) and Pn(q) are in [0,1/2) , and < is defined for
all pairs p and q in R . Clearly also < 1s transitive and anti-
reflexive.

The next thing to show is that if p<q for p and q in R,
then [p,q] is an arc, where ([p,q] denotes the set of all points x of
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R so that p<x =< q . Choose a positive integer n so that both

Pn-(p) and Pn(q) are less than 1/2 . Clearly [p,q] consists of the
points r of limg, 8o that P (p) S P, (r) SP (q) and the function
S from [Pn(p), Pn(q)], defined by S(x) is the unique point of lim g
whose n-th coordinate is x, is 1-1 and continuous and onto [p,q], and
so [p,q] is an arec.

Therefore R 1s arcwise connected and connected. Since R 1is an
open subset of 1lim g » R 1is separable and locally compact. It is also
true that R - (0,0,0, ...) is arcwise connected by the preceding argu-
ment and so (0,0, ...) is a non-cut point of R. For p in R not
(0,0,0, ...) , for q and r 1less than p , there is an arc of points
less than p containing q and r and so the set of points less than p
is connected. Similarly the set of points of R greater than p is con-
nected. Choosing an integer n so that Pn(p) <1/2 , we have R -p is
(R 0 P71[0,P_(p))) U (R A P;1(P_(p),1]) which are disjoint open subsets
of R and so p separates R . Therefore R is a topological ray.

Suppose x 1is a point of M , and U is an open subset of 1lim 8y
containing x . By Theorem li of Chapter II there is a positive integer
n and an open subset V of [0,1] so that P;]'(V) N lin g, contains
x and is contained in U . By the way g, vas constructed there is s
number s in [0,1/4] so that gn(s) = Pn(x) . The unique point y of

R so that P_..(y) = s has the property that Pn(y) = Pn(x) and s0 y

n+l
is in U , since Pn(y) isin V. So R is dense in limg, .

This completes the proof of Theorem 5.



L5

A theorem of R. H. Bing [3] is that each compact chainable con-
tinuum can be embedded in the plane. There is a hereditarily indecompos-
able compact non-degenerate chainable continuwm which by the theorem of
Chapter III can be represented as the inverse limit of a sequence of con-
tinuous functions from [0,1] onto [O,1] , £15 £55 eee . By the pre-
ceding theorem there is a chainable continuum which is the union of such
an hereditarily indecomposable continuum and a ray dense in it. Embedding
this in the plane, we obtain a very wild topological ray, one whose set of
limit points not in itself is an hereditarily indecomposable continuum.

From some of the preceding comments, the following is clear.

Corollary 6. If M is a chainable compact continuum, there is a

compact chainable continuum which is the union of a topological ray R and

a continuum M' homeomorphic to M so that M!' and R are disjoint and

R _:Ls_ dense _:I._n M.



CHAPTER V
SOME EXAMPLES

The first example shows that the converse of Theorem 1 of Chap-
ter IV does not hold.

Example 1. There is a continuous function from {0,1] onto [O0,1]
vwhich is not monotone and whose inverse limit is an arc.

Define g on [0,1] by g(0) = 0 g(1/2) = 1/h , g(7/12) = 1/2
g(8/12) = 1/h , g(3/h) =1/2 g(1) =1 and g is linear on the inter-
vals [0, 1/2], [V/2, 7/12], [7/12, 8/12], [8/12, 3/L] amd on [3/L,1] .
The function g 1is continuous and not monotone. Note that for x in
(1/2,1] , g'l(x) is degenerate and is in (3/L,1] . If a point of lim g
has a coordinate in (1/2,1] , then all further coordinates are in (3/L,1]
and they are a monotone non-decreasing sequence. Suppose x is 1/2 .
Then g"l(x) consists of 7/12 and 3/h , and the preimages of 7/12
and 3L are in (3/L,1] . So if a point of 1im g has n-th coordinate
1/2 the (n + 2)-cordinate is in (3/L,1] and all further coordinates
form a monotone increasing sequence. Suppose x is in (1/L4,1/2) . There
are three g-preimages of x , all in (1/2,1], and so the g-preimges of
the g-preimages are in (3/L4,1] . The g-preimages of 1/L are 1/2 and
7/12 , and we have seen that the g-preimages of the g-preimages of 1/2
and 7/12 are in (3/4,1] . On [0, 1/2) , g(x) =x/2 and for x in
[0, /L) , g'l(x) =2x . For x in (0, 1/4) there is a positive in-
teger m 8o that 1/2 > 22 1/L, g™x) is in [1/4,1/2) . But then

L6
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if a point of 1lim g has a coordinate in (0, 1/h) it eventually has a
coordinate in [1/L, 1/2) and we have just seen that if a point of lim g
has a coordinate in [1/L, 1/2] it has a coordinate in (3/L, 1] . In sum-
mary, it has been shown that every point other than (0, O, O, ...) has a

coordinate in (3/L, 1] . Moreover since 8-1

is 1-1 from (3/h,1] into
(3/L,1] , for each positive integer n and number x in' (3/L,1] , there
is only one point p of 1lim g so that Pn(p) =x. If p is a point of
lim g , and p isnot (0, 0, ...) or (1, 1, ...) then there is a positive
integer n so that Pn(p) is in (3/h, 1) and lim g - p

- (im g N P7Y0, P_(p))) U (1im g N P7X(P_(p),1]) which are separated
sets. Therefore 1lim g ' is a compact continuum in a metric space with at
most two non-cut points and is an arc.

The second example shows that there is a function f from [0,1]
onto [0,1] whose inverse limit is indecomposable and so that there are no
numbers a, b and ¢ with a <b < c so that either f(a) = f(¢) = O
and f(b) =1 or f£(b) =0 and f(a) = f(¢) =1 . That is, the converse
of Theorem 2 of antef IV does not liold.

Example 2. There is a continuous function g from [0, 1] onte
[0, 1] whose inverse limit is indecomposable so that 3'1(0) =0 and
gl(1) =1. Define g om [0,1] by g(0) =0, g(1/3) =Yk,

g = (y9) =3k, g(59) =1/h, g(2/3) = 3/4 and g(1) =1, and g is
lnear on [0, /31, [V/3, /9], (9, 5/91, [5/9, 2/3] and [2/3,1] .
Clearly g is continuous and g ~(0) = 0, g (1) =1 . A little
thought will show that for all x in [0,1], g(l=x) =1 - g(x) . On
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[0, /3] , g(x) = /b x , and so for any positive integer n , g (x)
= (3/4)"x for x in [0, 1/3]. If ¢ is a positive number there is
a positive integer n so that (3/L)"<e . Since g(l -x) =1 - g(x) ,
then 32(1 -x) =g(1 - g(x)) =1 - gz(x) and clearly for any positive
integer n, g(l-x)=1-g"(x). Now g(5/9) = 1/ and so
& (5/9) = (YW(Wh) <6 . Mso g/9) = ¥h, and (W) = &(/b)
=g (1-1k)= 1- (j/h)n(l/h) . Moreover gnﬂ'(O) =0 . Sowe have
1&*(0) - 0l =0<e, |g™(W/9) - 1| = [(FW)*(/L)| <& and
|8n+1(5/9) - ol = [(4)*(/h)| <&, and gnﬂ ¢-loops. Since for each

1 e-loops,

positive number ¢ there is a positive integer n so that gn
by Theorem 3 of Chapter IV, the inverse limit of g is indecomposable.

It is by no means necessary that a function with the properties
stated in Example 2 need have such an obvious up and down character. In
fact, there is a continuous g from [0, 1] onto [0, 1] whose inverse
limit is indecomposable so that for each x in [0, 1] g(x) =x . This
is neither surprising enough nor instructive enough to warrant its
inclusion.

The next is an example of a continuum which can be obtained as the
inverse limit of a single function.

Example 3. A continuous function from [0,1] onto [0,1] whose
inverse limit is a topological "Sin(1/x)" curve.

For each n let 8_ be the identity map of [0,1] omto [0,1].
Using the procedure of Theorem 5 of Chapter IV we have that the inverse
limit of g, gy, ... where for each n gn(o) =0, gn(l/h) =1,

gn(1/2) - 1/2, gn(l) =1 and g is linear on [0, /4] , [1/L, 1/2] and
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[1/2,1] 1is the union of a topological ray and an arc disjoint from the
ray so that the ray is densg in the arc. Each &, is g and so this
is the inverse limit of a single function. A "Sin(1/x)" curve is also
the union of an arc and a ray of this form. Unfortunately this is not
enough information to know that the inverse limit of g is a "Sin(1/x)"
curve. The actual verification would be very tedious and will not be
done here.

If f is a monotone non-decreasing function from [0, 1] into
[0,1] , then £, f2 R £ s «+s converge pointwise to a continuous functionm,
whose graph is an arec. If f 1is onto, then the inverse limit of f is
an arc. Consider the function g of Example 1. The graphs of g, 32 R
53 s «s. converge to the set of all points (x,y) with x and y in
[0,1] and either y =0 or x =1 . This set 1s also an arc, and the
inverse limit of g is an arc. Consider the function 8 of Example 3.
The graphs of g » 312 s 313 s sse have a sequential limiting set which
is a polygonal "Sin(1/x)" curve in the upper half of the unit square
with an arc trailing off along the lower left-hand edge of the unit square.
These and some other things of the same sort make it seem that there must
be a definite connection between convergence of the graphs of a function
and its inverse limit. No specific conjecture is offered.

The next example is an illustration of the case with which some ex-
amples of continua with specified properties may be obtained as inverse
limits and also of a continuum which can be obtained as the inverse limit
of a single function. It is essentially just an iteration of the procedure

of Theorem 5 of Chapter IV.
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Example L. A continuum with only two topologically different non-
degenerate subcontinua, one of which is an arc, and which is the union of
a ray dense in the continuum and a homeomorphic image of the continuum
disjoint from the ray.

Define a map f from [0, 1/2] onte [0,1] by £(0) =0,
£(1/h) = 1, £(1/2) = 1/2 and f dis linear on [0, 1/h4] and [1/L,1/2].
Define the map T from [0,1] onto [1/2,1] by T(x) = (x/2) + (1/2) .
The map T is 1-1 and maps [0, 1/2] onto [1/2, 3/L] . Define g
by g=f o [0,1/2], g=1TfT on [Y2,¥h], g = Tor12 = 11
on [3/h4,7/8) , and in general, g is THT ™ on [1-27,1 - 2-n-1],
and g(l) =1 . Essentially, the graph of g is formed by taking the
graph of f , squeezing down to half its height and width, shifting up 1/2
and over onto [1/2, 3/L4], then squeezing f down to 1/L4 its height
and width, shifting up 3/L and over onto [3/L, 7/8], etc. We have that

1 s givenby TMx)=2x-1, and so T -2") -2 - 20"

-n+l

-1
=1-2 for all positive integers n . Moreover T (1 - 270)
=1-2°=0, @2 a1-2121/2 ana T(0) = TNO)
= 1™ 1(1/2) = ™ 1e(1/2) and so g is well defined on points of the
form 1 - 2%, A 1little reflection shows T"[0,1] = [1 - 2°7,1] and
80 it 1s always true that g[1-2™, 1 - 2™1] is contained in [1-277,1].
Since g 1is piecewise linear on [0,1) and by the preceding remark the
limit of g at 1 (from the left) is 1 s & 1s continuous.

Note now that Tg‘l"l on [1;/2, 1] is g on [1/2,1] , and s0
1im g is homeomorphic to lim(g |[1/2 »1] , precisely as in Theorem 5 of

Chapter IV. So 1lim g is homeomorphic to the union of a topological ray
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R and a continuum M so that R and M are disjoint, R is dense in
M and M is homeomorphic to 1lim g . Next, recall that the only non-
degenerate compact subcontinuum of a ray is an arc. So if H is a
compact subcontinuum of lim g and H 1s contained in a ray in 1lim g,
H 1is an arc. Since lim g is compact, each subcontinuum of lim g is
compact and so 1f H 1s a non-degenerate subcontinuum of 1lim g and H
is not an ar¢, H is not contained in a ray in 1lim g.

Note that T and g ocommute. If x is a point in [1 - 277,
1-27), then x) tsin [1-270, 1.2, on [1-27,
1-271], g 18 9™ andon [1 -2, 1-272), g 18
™20l | g @) = P r(x) = e R(x) - Tg(x) . Clearly
the map h from lim g into lim g defined by h(p) = ('.l‘Pl(p), TPz(p),...)
is a homeomorphism which leaves (1,1,1,...) fixed. As in the proof of
Theorem 5 of Chapter IV, the set R of all fointe of limit g with some
coordinates less than 1/2 is a ray, and the rest is homeomorphiec to
lim g , as remarked before. Suppose H 18 a non-degenerate proper sub-
continuum of lim g which 1s not an arc. Either H interseets R or H
does not. If H intersects R , H is clearly homeomorphic to 1lim g
since H is not contained in R and therefore H 1is only lim g less
a half-open arc beginning the ray R , and a slight displacement along R
gives H is homeomorphic to 1im g . Suppose H does not intersect R .
Then there is a first integer n so that h™2 (H) intersects R . Since
H is not an arc, h~B(H) is not contained in R and so h™(H) is
homeomorphic to lim g . Since h is a homeomorphism, H 1is homeomorphic

to limg .
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The next example shows that things are not always what they might

seem.
Example 5. If M is a non-degenerate compact continuous curve »

there is a continuous function g from M onto M whose inverse limit
is a chainable indecomposable continuum.

Since M is normal and connected there is a continuous function
f from M onto [0,1]. lLet a be any point so that f(a) =0 and b
any point so that f(b) = 1 . By a standard theorem there is a continuous
funetion T, from [1/-6 s 2/6] onto M and a continuous function TS
from [L/6, 5/6] onto M . Now either T2(1/6) is a or there is an
arc a from a to Tz(l/b) contained in M .- In either case there
is a continuous function T, from [0, 1/6] into M so that Tl(O) = a
and T1(1/6) =T, (1/6) . Similarly there are continuous functioms 'r3 s
T, snd T, from [2/6, 3/6], [3/6, L/6], and [5/6, 1], respectively,
into M so that T,(2/6) = T,(2/6) , T4(/6) =b , T)(3/6) = b,
Th(h/b) - Ts(hjb), T, (5/6) = 15(5/6) and T.(1) =a . Define T to be
the continuous function from [0,1] onto M so that T|[(n-1/6, (n/6)]
is ‘l'n for n=1,2,3,4,5,6. Now define g to be Tf. The function g is
continuous from M onto M. By Corollary 9 of Chapter 1I, the inverse limit
of g is homeomorphic to the inverse limit of fT. Now fT is continuous,
£7(0) = £f(a) = 0, £7(1/2) = £(b) = 1 and £T(1l) = £f(a) = 0 and the inverse
limit of fT is a chainable indecomposable continuum by Theorem 2
of Chapter IV.

So although one gets chainable continua out of inverse limite on
chainable compact continua, it 1s by no means necessary to take chainable

continua to get a chainable inverse limit.
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On the very unlikely chance that one now believes that inverse
limits always are chainable, examples of non-chainable indecomposable
inverse limit continua will now be given. It is, of course, necessary
to know that an n - od is not chainable for any positive integer n
greater than 2 . A continuum M will be said to be an n -od iff
M contains a point p and a sequence of arcs Al’ A2, ooy An 80
that M is u”iglAi and A NA; is p for i not J.

Example 6. For each integer n greater than 2 there is a con-
tinuous function from an n -od onto itself whose inverse limit is inde-
composable and contains an n-od.

Suppose n 1is greater than 2 and M is an n-od. Denote the
"arms® of M as Ays Ags ..., A and the point at which these arcs
meet denote as p . Suppose f 1is a continuous transformation from M
onto M so0 that f Jleaves p fixed and for each integer m less than

n, f(A)=A UA and £(A) =A UA . Then r"’(al)

+1°
=A UM UL, f3(A1) =A UK UA UA , ste., and £7(A) =M.
Suppose Hl and M, are proper subcontinua of lim f so that )ll v H2
= 1im f . For each positive integer k , Pk(Ml) u Pk(Hz) is M,
since f 1is onto. It must be that for one of Hl and N2 , for each
positive integer k , Pk(Hi) contains one of the arcs A j° But then

for each positive integer k , Pk(Hi) is fnPk ) which is M, and

m(ni
so Hi is 1im f . So 1lim f is indecomposable.

Clearly f might have been chosen so that there are subarcs Bl ,

32’ coey Bn of Al, Az, ceey An respectively, each containing p so

onto A, . It is not difficult to see

that £ 1is 1-1 from each Bi 5
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that f restricted to the set U‘;_:lB 5 is an into homeomorphism, and that

lim f contains ga homeomorphic image of the n-od U:’lni .
The following conjecture is offered principally because it was
very difficult to find a counter-example. It is conjectured that any
plece-wise linear map of the unit square onto itself has a decomposable
inverse limit. An unsuccessful search for a nice map of the unit square
onto itself with an indecomposable inverse limit led to Example 5. Another
problem suggested by some of the preceding work is to find some topolog-
ically different indecomposable inverse limits of single functions from

[O’ 1] into [O, 1] .
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