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ABSTRACT 

 Tritium transport behavior in component-level models of fission and fusion systems 

was simulated and assessed using the hydrogen transport code in the BISON fuel 

performance code. Models of different conditions which were of an ITER heat exchanger, 

LWR cladding, and FHR heat exchanger were conducted. Comparable results between 

reported values and BISON predictions demonstrated the ability of the models to predict 

tritium transport behavior through different steel materials for three different model 

conditions. Next, a method for sensitivity and uncertainty analysis was implemented to 

calibrate the models as well as demonstrate the ability to apply this approach in 

multiphysics models in BISON. This calibration method resulted in improving BISON 

predictions. Overall, the capabilities of the BISON code for component-level modeling of 

tritium transport are promising and BISON predictions showed good agreement for the 

three cases.  
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CHAPTER ONE  

INTRODUCTION 

 

 Nuclear energy, both fission and fusion, have the ability to provide large amounts 

of ultra-low carbon electricity [1]. With demand for energy expected to continue to grow, 

nuclear energy provides an important alternative to fossil fuels. Nuclear reactions require 

a multitude of considerations due to safety and economic needs. Tritium, a radioactive 

isotope of hydrogen with a half-life of 12.3 years, is a safety consideration and a key 

component of fuel for fusion reactors, and thereby, an economic consideration as well.  

In both fission and fusion reactors, tritium production occurs due to nuclear reactions [2]. 

Considering light water reactors (LWRs), tritium is mostly produced as a product of 

ternary fission of uranium, though, it can also be created due to neutron activation 

reactions. This results in tritium production occurring in some materials used for control 

rods, burnable poisons, and reactor coolant. Table 1 lists some of these reactions and 

their effective microscopic cross-sections. For tritium to be released to the environment, 

it must first enter the coolant, and the rate this occurs depends on material selection of 

the cladding. Comparing the commonly used zirconium-based alloys with ferritic steels, 

zircaloy cladding have lower emission rates of tritium into the coolant [3].  Heavy water 

reactors (HWRs) produce tritium through the same reactions as LWRs, though, it is mostly 

produced as a result of neutron activation of deuterium in heavy water. Following 

production in the coolant, ternary fission of the fuel is the second most contributing 

mechanism. 
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Table 1. Effective cross-sections for tritium producing reactions and precursors [2]. 

Reaction 𝝈𝒆𝒇𝒇	(𝟏𝟎#𝟐𝟖	𝒎𝟐) 

2H(n,𝛾)T 0.000316 

6Li(n,𝛼)T 693 

7Li(n,n𝛼)T 0.0516 

10B(n,𝛼)Li 3060 

10B(n,2𝛼)T 1.27 
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 Other reactor designs such as liquid metal fast breeder reactors (LMFBRs), molten 

salt breeder reactors (MSBRs), and high temperature gas cooled reactors (HTGRs) 

produce tritium through the same mechanisms as LWRs. Though contributions to overall 

production vary. LMFBRs, similar to LWRs, mostly produce tritium as a result of ternary 

fission followed by neutron activation of reactor components. Due to the use of lithium 

coolant for MSBRs, the primary production mechanism is rather neutron activation of the 

lithium coolant followed by ternary fission. Production in HTGRs results from ternary 

fission in the fuel, neutron activation of 3He coolant, lithium impurities in the graphite 

moderator, and control element utilizing boron. From this, tritium clearly is produced in 

any fission reactor, however, their design has a significant impact on the amount, method, 

and location it is created. 

  The production of tritium in a commercial fusion reactor design, unlike the majority 

of fission reactor designs, is intentionally planned to occur and necessary for reactor 

performance [4-6]. Future fusion reactors are expected to utilize deuterium and tritium 

fusion: 

 

𝐷 + 𝑇 → 𝐻𝑒&
' + 𝑛 + 17.6	𝑀𝑒𝑉                                            (1) 

 

For tritium resources to be sufficient for a reactor to be economically acceptable, breeder 

blankets surround the reactor core, and are designed to produce slightly more tritium than 

used in the fusion process. This is done by utilizing neutrons produced from the fusion 
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reaction as well as neutron multiplier materials in the blanket such as Be or Pb to react 

with lithium in the blanket: 

 

𝐿𝑖(
) + 𝑛 → 𝑇 + 𝐻𝑒&

' + 4.8	𝑀𝑒𝑉                                           (2) 

𝐿𝑖(
* + 𝑛 → 𝑇 + 𝐻𝑒&

' + 𝑛 − 2.5	𝑀𝑒𝑉                                        (3) 

 

Whereas the necessity for more tritium to be produced than used is due to its natural 

scarcity, the natural loss through radioactive decay, and to buildup tritium inventory to 

start up new tritium projects like a new fusion reactor. This would also supply other 

important work such as research and development which utilizes tritium. 

 Blankets, in addition to producing tritium, fulfill the function of extracting the energy 

produced from the fusion reactor, and thereby, have a direct impact on the efficiency and 

economics of a reactor [4-6]. There are essentially two major types of fusion blankets 

which are liquid metal and solid breeders. Liquid breeder blanket designs include the Self 

Cooled Lithium Lead (SCLL), Water Cooled Lithium Lead (WCLL), and Dual Coolant Lead 

Lithium (DCLL) which utilize liquid PbLi eutectic as both the neutron multiplier and tritium 

breeder. The SCLL and DCLL use the PbLi as both a tritium breeder and coolant, though, 

the DCLL design also utilizes He coolant. In regards to the WCLL, the liquids main 

functionality is clearly divided with water as the coolant and PbLi as the tritium breeder. 

The Helium Cooled Pebble Bed (HCPB) blanket utilize solid pebbles of Li4SiO4 in tritium 

breeding regions, regions of solid neutron multiplier materials such as Be, and He as both 

coolant and purge gas. Purge gas is used to extract tritium produced in the breeding 
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regions. Liquid breeders have the advantage of no swelling or damage accumulation of 

the breeder as well as the adjustment of breeder composition outside the blanket to 

maintain tritium production. Though concerns with them arise from material 

considerations such as corrosion of coolant channels and low tritium solubility in PbLi as 

well as electromagnetic effects since the coolant is a metal. 

As tritium readily permeates through most metals such as steel, its release to the 

environment from reactors poses a radiological concern. When tritium decays, it releases 

a low-energy beta particle and changes into helium-3. This beta particle does not pose 

an external radiological hazard as it is unable to penetrate the skin’s outer layer; however, 

it can be an internal risk. Of particular concern is the ingestion of tritiated water due to it 

being readily absorbed by the body. Additionally, separation of tritium from water is 

difficult thereby making the contamination of water furthermore undesirable. 

As per the guidance from the U.S. Department of Energy and NRC, tritium release 

to the environment must be regulated due to it being a radioactive isotope [7, 8]. Though 

tritium must be well controlled, it has multiple uses including one as fuel for fusion 

reactors. Considering its natural scarcity, an additional constraint on tritium inventory 

exists in which tritium will need to be produced for fusion energy and development to 

continue [9, 10]. Therefore, tritium transport and behavior must be accounted for due to 

safety and economic considerations. 

The work in this thesis was conducted to evaluate component-level tritium 

transport modeling using BISON and its hydrogen transport code. Steel components were 

assessed due to its common use as a structural material for both fission and fusion 
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systems. To begin, studies of tritium transport in steels were chosen to assess BISON’s 

ability to predict and calculate key results of tritium buildup and permeation in structural 

materials. Also, to consider expected reactor operation such as steady state and 

transients, studies with different temperature and tritium boundary conditions were 

selected. Figure 1 shows the formulation process of this work in which three different 

studies were modeled in BISON with increasing model complexity to systematically 

assess different model capabilities. First, the assessment of diffusion in BISON followed 

an ITER (International Thermonuclear Experimental Reactor) tritium permeation 

experiment of its heat exchanger where only Fick’s diffusion is considered due to a 

constant temperature across the steel wall [11]. Second, an assessment of multiphysics 

followed a tritium transport model based off experimental work of a PWR FeCrAl cladding 

where steady state conditions were considered [12]. As the model had a temperature 

gradient across the cladding as a result of fission in the fuel, multiphysics was introduced 

since BISON considers the Soret effect and the temperature dependence of the diffusion 

coefficient. Third, an assessment of transients in BISON followed modeling work of an 

FHR heat exchanger where a startup transient causes tritium buildup in the primary 

coolant [13]. Multiphysics was still considered for this case due to a temperature gradient. 

Following this, a sensitivity study of these models was conducted to demonstrate a 

method for sensitivity analysis/uncertainty quantification (SA/UQ) as well as 

optimization/calibration of tritium transport modeling of nuclear reactor systems due to the 

large variance of diffusivity. This work aims to assess expanding the use of BISON code 

to include tritium transport of fission and fusion systems. 
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Figure 1. Diagram of modeling approach formulation. 
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Portions of the work presented in this thesis were previously published as a third 

author in two journal articles. One was published in the Journal of Nuclear Materials which 

was accepted on March 10, 2021 [14], and the other in Fusion Engineering and Design 

that was accepted on June 23, 2021 [15]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 9 

CHAPTER TWO  

LITERATURE REVIEW 

 

 A literature review was conducted to understand the hydrogen transport code in 

BISON utilized to simulate tritium transport as well as tritium aspects of fission and fusion 

systems. Tritium production occurs in all fission reactors as a result of fission and neutron 

activation of tritium forming material [16, 17]. The reactors which produce more tritium 

than the more common light water reactors (LWR) are the heavy water and fast reactors 

[18, 19]. This production of tritium in fission reactors, specifically heavy water CANDU 

reactors, is a key tritium resource that fuels fusion development [10]. In regards to fusion 

reactors, tritium production occurs in the coolant blankets where it is created due to a 

reaction between neutrons released from the core and a form of lithium in the blanket 

[20]. One considered blanket design is the dual coolant lead lithium (DCLL) blanket which 

have inherent design features such as a relatively high PbLi flow rate that result in limiting 

tritium losses. A cross section of a fusion reactor design for a Fusion Nuclear Science 

Facility (FNSF) can be seen in Figure 2. 

 

Hydrogen Transport in BISON code 

BISON is based off of the Idaho National Laboratory (INL) Multiphysics Object-

Oriented Simulation Environment (MOOSE) code which utilizes the finite element method 

to solve systems of coupled equations [21]. BISON can solve fully-coupled partial 

differential equations for heat transfer, species diffusion, and stress equilibrium for 3D  
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Figure 2. Cross section of the FNSF [20]. 
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solids, 2D plane, and 1D layer geometries. BISON has the ability to extend modeling 

considerations to include a coupled multiphysics analysis of a system and to conduct high 

fidelity analysis of steady state and transient conditions. For example, considering a dual 

coolant lead lithium (DCLL) blanket, BISON would be able to conduct complex 3D as well 

as simple 1D tritium transport simulations coupled to a neutronic code like MCNP to 

provide tritium production information and a thermal-hydraulics code providing coolant 

flow conditions such as RELAP5-3D [22, 23]. 

Previous studies have worked to implement a hydrogen migration and 

redistribution model as well as verify and validate simulations by comparing to historic 

experimental data [24-28]. The hydrogen transport model in BISON considers two 

principal phenomena for hydrogen transport behavior in zirconium alloy fuel cladding, 

hydrogen diffusion in solid solution and hydride precipitation and dissolution. As tritium is 

a radioactive isotope of hydrogen, its transport behavior in metals is similar to hydrogen 

though parameter values require adjustment depending on the material it is diffusing 

through. In this study, the models are of steels which are non-hydride forming metals, and 

therefore, hydride precipitation and dissolution phenomena as well as their equations 

within BISON were not considered [29, 30]. Diffusion of tritium in solid solution is driven 

by a concentration gradient defined by Fick’s law, JFick, and a temperature gradient known 

as the Soret effect, JSoret [31-33]. The total tritium flux, Jtot, is therefore the sum of both 

contributions given by 

 

𝐽+,+ = 𝐽-./0 + 𝐽1,23+ = −𝐷4∇𝐶55 −
6!7""8∗

9:$
∇𝑇                             (4) 
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where 𝐶55 is the tritium concentration in solid solution in the metal, 𝑄∗ is the heat of 

transport in units of J/mol, 𝐷4 is the tritium diffusion coefficient of the metal in units of 

m2/s, 𝑅 is the ideal gas constant, and 𝑇 is the temperature in Kelvin. The diffusion 

coefficient of tritium is dependent on temperature, and thus, defined by Arrhenius’ Law 

[31-35]: 

 

𝐷4 = 𝐴6exp	 H−
<%
9:
I                                              (5) 

 

where 𝐴6 is the pre-exponential factor with units of m2/s and 𝐸6 is the activation energy 

for diffusion of tritium in a metal with units of J/mol. 

 

Assessment of Tritium Transport Parameters in Steels 
 

 A review of hydrogen isotope transport in various stainless steels was conducted 

to inform the tritium modeling and model calibration of chosen steel studies. The studies 

chosen were of steel structures using SS 316, SS 304, and SS 316L whose compositions 

are presented in table 2. From this, the makeup of the steels shows small differences, 

and explain why hydrogen isotope transport parameters were found to be comparable in 

many experiments. A report by Dolan et al. [33] reviewed studies of hydrogen interactions 

in steels where many diffusivity experiments of hydrogen isotopes were tabulated [36-

47]. This review included additional studies of which the majority were more current 

studies into the diffusion coefficient, and are presented in table 3 [34, 48-50]. The methods  
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Table 2. Composition of stainless steels. 

Element SS 304 SS 316 SS 316L SS 316LN 

Fe Balanced Balanced Balanced Balanced 

Cr 18.53 16.0-18.0 16.0-18.0 16.0-18.0 

Mo 0.14 2.0-3.0 2.0-3.0 2.0-3.0 

Mn 1.31 2.0 2.0 2.0 

C 0.062 0.08 0.03 0.03 

S 0.02 0.03 0.03 0.03 

Si 0.57 0.75 0.75 1.0 

P - 0.045 0.045 0.045 

Ni - 10.0-14.0 10.0-14.0 10.0-14.0 

N - 0.1 0.1 0.1-0.3 
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Table 3. Hydrogen isotope diffusivity in various steels, partially adapted from Dolan [33]. 

Material Isotope Temperature 
Range (K) Ad (J/mole) Ed (m2/s) Reference 

SS 304 H 600-1000 54892.82 1.200E-06 [37] 
SS 304 H 812-1190 52095.12 9.960E-07 [39] 
SS 304 H 373-873 54313.98 2.720E-06 [39] 
SS 304 H 663-780 50744.50 3.200E-07 [42] 
SS 304 H 373-623 53252.79 7.690E-07 [43] 
SS 304 H 625-1000 49700.00 8.250E-07 [34] 
SS 304 D 273-873 61935.31 1.800E-05 [36] 
SS 304 D 300-400 58848.19 1.200E-05 [47] 
SS 304 D 812-1190 50262.14 6.610E-07 [39] 

SS 304, etc. D 400-714 54024.57 3.400E-07 [41] 
SS 304,316 D,T 298-500 51130.39 2.400E-07 [41] 
SS 304,316 D,T 500-1173 59427.02 1.700E-06 [41] 

SS 304 T 373-573 56725.79 1.240E-06 [39] 
SS 304 T 298-498 58462.30 1.800E-06 [39] 
SS 304 T 373-473 5691.87 7.200E-07 [41] 

SS 304,316 T 298-495 60777.64 1.100E-06 [41] 
SS 316 H 373-623 49300.00 2.010E-07 [51] 
SS 316 H 588-1000 47800.00 6.320E-07 [34] 

SS 316L H 600-900 59716.44 2.990E-06 [44] 
SS 316L H 873-1173 54024.57 1.300E-06 [40] 
SS 316L H 623-1123 55100.00 1.240E-06 [49] 

SS 316-ST1 H 423-723 46306.77 4.700E-07 [38] 
SS 316LN H 573-1123 56510.00 1.590E-06 [48] 
SS 316L D 600-900 58076.41 1.740E-06 [44] 
SS 316L D 623-1123 57500.00 1.380E-06 [49] 

SS 316LN D 573-1123 56800.00 1.380E-06 [48] 
SS 316 T 603-853 63961.23 4.200E-06 [46] 
SS 316 T 288-573 61300.00 1.900E-06 [50] 

SS 316L T 600-900 57883.46 1.410E-06 [44] 
SS 316L T 500-873 15146.17 2.300E-10 [45] 
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used in determining diffusivity include time-lag, thermal desorption, steady state 

permeation, and continuous-flow gas-phase permeation. Figure 3 shows diffusivity of 

hydrogen, deuterium, and tritium in SS 304, SS 316, and SS 316L where SS 316LN was 

assumed as SS 316L due to only small changes in composition. 

From the initial review of diffusivity parameter values, the values varied across the 

different studies, steels, and hydrogen isotopes, and thus, prompted an investigation into 

the standard deviation of the experimental data. Without considering temperature, it was 

found that the largest source of uncertainty comes from the pre-exponential factor with 

the largest percent standard deviation being about 139% for deuterium in SS 304, as 

shown in Figure 4. The activation energy, though, also showed large variance in some 

cases such as about 58% for tritium in SS 316L. 

Figure 5 presents the percent standard deviation of the diffusion coefficient 

dependent on temperature for SS 304, SS 316, and SS 316L for hydrogen, deuterium, 

and tritium. This resulted in large standard deviations for all three steels. Though, the 

steel, temperature, and hydrogen isotope influenced how large the standard deviation 

was. For SS 304, the values were largest for deuterium whereas the only comparable 

point for deuterium in SS 316 was below 5%. In regards to SS 316L, the standard 

deviation was noticeably small for hydrogen and deuterium across all temperatures 

considered, though, the deviation for tritium noticeably increased with temperature. From 

this, it can be determined that diffusivity of hydrogen isotope transport in steels has large 

uncertainty, and thereby, compel the use of model calibration to improve BISON 

predictions of study conditions. 
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(1) 

 
(2) 

 
(3) 

Figure 3. Comparison of diffusivity of hydrogen isotopes from multiple studies in (1) SS 

304, (2) SS 316, and (3) SS 316L with solid, dashed, and dotted lines for hydrogen, 

deuterium, and tritium respectively. 
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Figure 4. Percent standard deviation of hydrogen isotope diffusion parameters for 

various stainless steels. 
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(1) 

 
(2) 

 
(3) 

Figure 5. Percent standard deviation of diffusivity of hydrogen isotopes in (1) SS 304, 

(2) SS 316, (3) and SS 316L with solid, dotted, and dashed lines for hydrogen, 

deuterium, and tritium respectively. 
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The Soret effect describes the influence on tritium transport due to a temperature 

gradient, and the heat of transport parameter defines its impact. From available historical 

data and calculations based off semi-empirical work for the base metal of stainless steels, 

Fe, the heat of transport has been estimated to be negative [33, 52, 53]. A study by 

Longhurst [53] reviewed tritium transport equations accounting for the Soret effect and 

experimental work conducted to measure the heat of transport in various materials. In 

this, negative heat of transport values for Fe were determined, and it was approximated 

that the heat of transport had a linear temperature dependence given by 

 

𝑄∗ = 𝑎 + 𝑏𝑇                                                     (6) 

 

where 𝑎 and 𝑏 are constants determined by relating tritium concentrations to pressures 

using Sieverts’ law. The study determined that the Soret effect and its temperature 

dependence were important in estimating tritium permeation rates of a fusion first-wall 

structure. In contrast, more recent experimental work by Malo et al. [54] determined a 

positive heat of transport for SS 316. From this study, it was reported that there is not 

enough experimental data or theoretical foundation to fully justify assuming a negative 

heat of transport. As such, further work into determining the heat of transport in steels is 

necessary. For the work conducted in this thesis, however, the heat of transport used was 

from a report by Dolan et al. [33] with a value of -6271 J/mole. Temperature dependence 

reported by Longhurst [53] was neglected since the Soret effect implemented in BISON 

considers the heat of transport as a constant. 
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Figure 6 presents an example for how a negative heat of transport and the diffusion 

coefficient would influence tritium transport. In this, the primary coolant has a higher 

temperature than the secondary coolant. Therefore, the temperature gradient across the 

steel has decreasing temperature from left to right. With a tritium source at the left 

boundary, the direction of the concentration and temperature gradients would the same. 

A negative heat of transport would mean the Soret effect works from cold to hot 

temperatures, and thereby, introduces a force on tritium within the example steel from 

right to left. The concentration gradient introduces a force on tritium within the steel from 

high to low concentrations, and hence, from left to right. This would result in Fick’s 

diffusion and the Soret effect working in opposite directions. 

 

Tritium Behavior in Fission Systems 

 Tritium considerations of fission reactors generally focus on radiation safety due 

to its ever present production, though, its use as fuel in fusion reactors also drives reactor 

design examination [9, 10, 16-19, 55-57]. Produced tritium in the fuel is typically retained. 

Though, there are conditions where tritium in the primary coolant becomes a concern 

whether due to atypical tritium release from fuel regions due to material decisions or 

production in the coolant. The current main source of commercial tritium is from CANDU 

fission reactors where the majority of tritium is generated as a result of fission neutrons 

interacting with the heavy water moderator and coolant. With the development of fusion 

reactors comes large uncertainty in the availability of tritium, and hence, developing more 

sources of tritium may be necessary. 
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Figure 6. Schematic of BISON models of steel components. 
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Several studies have been conducted to predict tritium behavior in nuclear fission 

reactor systems. A study by Ustinov et al. [18] investigated tritium behavior in fast reactors 

with nitride fuel. Tritium retention occurs within the fuel and may be the result of tritium 

binding to fission products in the fuel region. Additionally, steel cladding allows for the 

majority of produced tritium to easily permeate through and into the primary coolant. As 

tritium diffuses through the steel cladding, some tritium atoms can enter trap sites, and 

thereby, tritium can result in degrading the physical properties of steel. This results in the 

need to consider tritium behavior in reactors which utilize steel as cladding to ensure the 

metal does not degrade to where fuel failure can occur. Additionally, with tritium readily 

permeating through steel cladding more so than zircaloy, the use of tritium barriers or 

other tritium control mechanisms may become necessary [17]. 

Park et al. [55] analyzed tritium transport and permeation behavior through a steel 

heat exchanger wall of a high temperature gas cooled reactor (HTGR) in a 1D diffusion 

model. They accounted for tritium diffusion inside the material including impact from a 

temperature gradient on diffusivity, and determined tritium source as a boundary condition 

through a balance between solubility which was determined through Sieverts’ law and 

diffusivity in the metal wall. The study was able to accurately predict tritium permeation 

through steel heat exchanger walls by calculating effective diffusivity using an effective 

temperature, which revealed the significance of high-fidelity thermal analysis coupled to 

tritium transport modeling. 

 Guillou et al. [56] aimed at examining tritium behavior due to temperature in CO2-

cooled nuclear fission reactors also called uranium natural-graphite-gaz (UNGG). To do 



 23 

this, deuterium was implanted into graphite, and Nuclear Reaction Analysis (NRA) at 

millimetric and micrometric scales was used to analyze its behavior. The graphite 

samples were subjected to high vacuum and inert Ar gas flow for temperatures ranging 

from 200 to 1200°C. Release of deuterium for the graphite sample was mainly driven by 

its thermal migration and release through its porous structure, and was found to occur 

from about 400-600°C. For the Saint-Laurent A2 (SLA2) reactor, it was extrapolated that 

thermal release of tritium due to reactor shutdown which had operated for 11 effective 

full-power years should be lower than 30% of the amount produced during reactor 

operation. Additionally, it was concluded that removal of all tritium would be more efficient 

in dry inert gas with temperatures greater than 1300°C. As tritium retention in irradiated 

graphite waste contributes significantly to its initial radiological activity, understanding 

tritium release behavior from graphite can inform reactor design, operation, and waste 

management. 

 

Tritium Behavior in Breeding Blankets 

Commercial fusion reactors utilize tritium as fuel. Due to its natural scarcity and 

uncertainty in current production methods to provide sufficient amounts of tritium for future 

development of fusion technology, coolant blankets around the core are designed to 

produce tritium and will need to produce more than the reactor uses [9, 10, 58]. As such, 

achieving tritium self-sufficiency is an important qualification for future fusion reactors. 

Additionally, with the use and production of large amounts of tritium, its transport and 

behavior in reactor designs necessitate safety considerations. 
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In a study by Pattison et al. [58], tritium transport behavior in a fusion reactor’s dual 

coolant lead lithium (DCLL) blanket was investigated by modeling a single rectangular 

duct in a magnetic field with a SiC flow channel insert (FCI). The tritium advection/diffusion 

equations as well as the source terms and trapping were solved using boundary 

conditions provided by computing the flow field of the PbLi coolant with computational 

fluid dynamics (CFD) code. The study predicted that tritium was well-retained within the 

flow channel insert, the majority of tritium loss occurred in the PbLi gap flow, and tritium 

permeation into the helium coolant outside the RAFM structure was low. The results 

revealed the significance of low diffusivity of tritium inside SiC FCI, but it did not include 

thermal analysis that could account for temperature impacts due to the Soret effect on 

tritium diffusion. 

 Fukada et al. [59] examined tritium behavior in Pb-Li blanket systems. Coating 

F82H reduced activity ferrite/martensite (RAFM) steel with a Er203 ceramic film reduced 

tritium permeation by a factor greater than 103. The reduced tritium permeation rate 

minimizes tritium inventory in the structural steel, and thereby, improving the potential 

safety of a reactor. Additionally, experiments using a transient permeation method were 

conducted to determine the solubility, diffusivity, and permeability of hydrogen isotopes 

in Pb-Li eutectic alloy. From this, the diffusivity of hydrogen was determined to be 1.4 

times larger than deuterium. 

 A study by Wang et al. [60] examined thermal hydraulic behaviors of low pressure 

purge gas in tritium breeding zones of a helium cooled solid breeder blanket design. In 

this, a blanket module was modeled in 3D where lithium ceramic pebbles of Li4SiO4 with 
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90% 6Li enrichment was analyzed through the use of computational fluid dynamics (CFD). 

The blanket’s coolant was high temperature helium gas at 8.0 MPa, and low pressure 

helium purge gas utilized to extract produced tritium was at 0.12 MPa. The study found 

that the purge gas was able to extract the produced tritium as well as sufficiently removal 

of deposited power in breeding zones. Though, the purge gas experienced pressure 

drops up to about 64 kPa and increased with its inlet velocity while decreased with pebble 

diameter. As purge gas is utilized in extracting tritium from the blanket module, this study 

highlights the necessity of thermal hydraulic analysis for blanket performance. 

Furthermore, if tritium transport is taken into account, flow conditions of the purge gas 

would affect how much tritium is extracted. This would also affect the potential buildup of 

tritium and the rate at which this occurs in structural materials. 
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CHAPTER THREE  

TRITIUM TRANSPORT MODELING OF STEEL STRUCTURES IN BISON 

 

Determining which reactor components to model was determined by reviewing 

multiple studies which conducted tritium transport modeling and experimental work. This 

focused on whether the model would be of a multiphysics environment to assess the 

ability of BISON to predict tritium transport in this environment, and thereby, assess the 

coupling of tritium transport in BISON with other models. Hence, different studies with 

constant and gradient temperature conditions were decided as necessary. Additionally, 

to assess the analysis capability of the code for expected reactor operation, studies with 

steady state and transient tritium conditions were chosen. 

The simulations in this thesis are of component-level steel structures where the 

physical phenomena considered are the diffusion of tritium due to a concentration 

gradient and the temperature gradient. The concentration gradient drives tritium from 

higher to lower concentrations, and the Soret effect for steels drives tritium from colder to 

warmer temperatures. Two of the simulations which are of a LWR fuel pin and FHR heat 

exchanger have a tritium current into the steels as a boundary condition where 

temperatures are also hotter at one end of the steel structure compared to the other [12, 

13]. Hence, tritium diffusion within these simulations have opposing forces. The 

remainder simulation also has a tritium current boundary condition, though, the 

temperature is constant across the structure meaning there is no impact by a temperature 

gradient [11]. The key figures of merit for these simulations are the tritium distribution and 



 27 

evolution with time from which the total concentration and permeation rate can be 

calculated.  

 A 2D mesh with elements along the x-axis and y-axis were used for all cases, but 

the temperatures and concentration fields along the y-axis are assumed to be constant. 

Therefore, these models were essentially 1D models, and Figure 6 can be referred to as 

depiction of their geometry. For the heat exchanger models, the primary coolant provides 

the left boundary tritium concentration and the secondary coolant acts as a tritium sink. 

In regards to the LWR cladding model, the geometry is essentially the same, however, 

the primary coolant is instead the fuel pin and gap. 

For cases with temperature gradients, the model consists of two scripts where the 

first one solves the temperature distribution at each mesh point for every time step. The 

subsequent script uses the solved time dependent temperature distribution to calculate 

the tritium distribution throughout the steel at each mesh point for every time step. In 

addition, kernels and material properties were used in the code to evaluate values 

associated with temperature calculations as well as the tritium transport model. Tritium 

transport parameters and their nominal values used for modeling these cases are listed 

in Table 4 following the order they are discussed in this chapter. The heat of transport 

was assumed the same value for each steel material considered [33]. Tritium transport 

parameter values for FeCrAl were assumed equivalent to those for tritium in SS 304. 

 

SS 316L Heat Exchanger for ITER 

Nakamura et al. [11] studied tritium permeation through heat exchanger tubes 
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Table 4. Values of tritium transport parameters for steel models in BISON. 

Parameter Unit SS 316L SS 304 SS 316 

Diffusivity Frequency Factor, AD m2/s 5.90×10-7 1.24×10-6 6.32×10-7 

Diffusivity Activation Energy, ED J/mole 52095 56726 47800 

Heat of Transport, Q* J/mole -6271 -6271 -6271 
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made of stainless steel under similar conditions to those from ITER (International 

Thermonuclear Experimental Reactor). The SS 316L heat exchanger tubes had an outer 

diameter of 6 mm, thickness of 0.5 mm, and length of 0.3 m. Considering all 37 tubes, the 

total surface area where tritium permeation out into the secondary coolant occurred was 

0.2 m2. Both primary and secondary coolants were held at constant values for 

temperature at 423 K and for pressure at 0.9 MPa. For the primary coolant, tritiated water 

was filled inside of the tubes while tritium free water filled the chamber outside the tubes. 

The tritium diffusion coefficient was estimated to be 5×10-13 m2/s, and the derived tritium 

permeation rate from the experimental results was 4.2×10-3 Bq/m2/s [11]. 

A 1D model of a single heat exchanger tub was simulated in BISON code 

consisting of a single region made of SS 316L where the tritiated water was to the left 

and the pure water was to the right. As the two coolants had equivalent temperatures, a 

constant temperature of 423 K was assumed over the metal region. A constant tritium 

concentration equal to the reported value in [11] was applied at the left boundary. The 

right boundary tritium concentration was set to zero as it was assumed that tritium which 

reached the boundary was instantaneously released to the secondary coolant. Figure 7 

presents a schematic of this model and conditions modeled in BISON. 

The calculated tritium distribution evolution inside the steel wall using BISON is 

presented in Figure 8. A non-linear distribution was calculated for the steady state model 

due to weakened diffusion of tritium towards the right end. This resulted from a small 

diffusion coefficient due to a low temperature field as well as the absence of thermal 
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Figure 7. Schematic of ITER heat exchanger tritium transport model in BISON. 

 

 

Figure 8. Evolution of tritium distribution across the SS 316L heat exchanger wall. 
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diffusion. The permeation flux was calculated by utilizing a linear approximation of Fick’s 

first law on the last few spatial nodes of the resulting tritium concentration, and was 

comparable to the experimental value. BISON’s predicted permeation flux of tritium was 

1.29×10-3 Bq/m2/s which was on the same order of magnitude as that which is reported 

in the experiment [11]. 

 

FeCrAl Cladding for an LWR 

A study conducted by Hu et al. [12] evaluated tritium permeation in iron-chromium-

aluminum (FeCrAl) ferritic steel alloy for LWR cladding applications. Hu et al. [12] also 

reported a simulation of tritium behavior for FeCrAl cladding in a 1000 MW 4-loop PWR 

using a 1D finite difference method and semi-implicit Crank-Nicolson scheme. Tritium 

production occurs within the fuel pellets where it then diffuses to and absorbed by the 

cladding. Further transport of tritium through the cladding to its interface with the primary 

coolant results in tritium release into the coolant. Fuel operating conditions assume a 

linear power of 220 W/cm and an 8.22 mm diameter fuel pellet of a LWR 17×17 geometry 

which result in a power density of 416.6 W/cm3. This thereby results in a fission rate of 

1.26×1013 cm-3s-1 and a tritium production rate of 1.335×109 cm-3s-1. It was assumed that 

once the tritium was produced in the fuel, 50% of it was released into the fuel cladding 

gap. The model accounted for the tritium production rate in the gap, absorption at the 

inner cladding surface, transport though the cladding structure, and radioactive decay. 

Absorption of tritium at the cladding surface was determined by Sievert’s law where the 

tritium concentration is proportional to the square root of the pressure in the gap. 
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Transport and boundary conditions were also defined by diffusion following Fick’s laws. 

The initial concentration throughout the steel cladding was set to zero, and the boundary 

condition at the interface between the cladding and coolant assumed instantaneous 

isotope exchange. Hence, tritium is released into the coolant once it reaches this 

interface. 

The model created in BISON code first solved a 1D heat conduction equation for 

the temperature distribution and then the tritium transport equation with the solved 

temperature field. This model consisted of three different regions that represented the 

UO2 fuel, helium gas gap, and ferritic steel cladding. Figure 9 presents a schematic of the 

tritium model created in BISON. The primary coolant was included in order to depict the 

entire considered scenario. A constant volumetric heat source was assumed in the fuel 

region to match the average temperature of the fuel region reported in [12]. The left 

boundary was set to be insulated while the right boundary was convective heat transfer 

to the pressurized water coolant. Figure 10 shows that an appropriate temperature 

distribution was calculated over all regions. A constant left boundary condition for the 

tritium source was assumed equal to the approximately steady state tritium concentration 

reported in [12]. The right boundary condition was set to a concentration of zero to follow 

the assumption that tritium is instantaneously released to the coolant once it reaches the 

clad-coolant interface. The BISON simulation then solved the tritium transport equations 

in the cladding region utilizing the time dependent temperature distribution. 
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Figure 9. Schematic of tritium transport model in BISON of FeCrAl cladding. 

 

   

Figure 10. Steady state temperature distribution in the x-direction. 
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 Figure 11 presents the resulting tritium distribution in the cladding predicted by 

BISON simulation dependent on time and distance from the inner cladding surface. The 

calculated tritium distribution at steady state is similar to that reported in [12], and Figure 

12 shows how model prediction improved as the conditions progressed from transient to 

steady state. As this model focused on determining comparable results once the model 

reached steady state, the ability of BISON code to predict tritium distribution in steels 

under steady state conditions and multiphysics considerations was demonstrated. There 

are some discrepancies once the model reaches approximately steady state where 

BISON slightly overpredicts tritium concentration in the center region of the steel.  

 

SS 316 Heat Exchanger for an FHR 

 Stempien [13] developed a tritium transport model to predict its behavior in a heat 

exchanger for FHRs during reactor startup. The hot leg SS 316 heat exchanger tubes 

were approximated as a single pipe with a thickness of 0.02 m, inner diameter of 0.792 

m, and length of 29.74 m. Tritium production and accumulation occurs in the FLiBe 

primary coolant and provided the tritium source boundary condition for the steel wall. In 

the primary coolant side, the heat exchanger inlet and outlet temperatures were set to be 

873.15 K and 973.15 K, respectively. For the secondary coolant, the temperature of 873 

K was assumed throughout the secondary loop. The inner boundary balanced tritium 

fluxes from the bulk coolant to the wall interface and from the wall interface to the metal 

structure. For the outer boundary condition, it was assumed that tritium was instantly 

released to the secondary coolant. 
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Figure 11. Time evolving tritium distribution in FeCrAl cladding. The numbers in the 

contour plot are tritium concentration (mol T/cm3) × 1012. 
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(1) 

 
(2) 

 
(3) 

Figure 12. Tritium distribution in FeCrAl cladding at (1) 1000, (2) 5000, and (3) 120000 

seconds. Dotted and solid lines are for reported and BISON results, respectively, and 

concentrations are times 1012. 
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 The 1D BISON model was divided into two separate steps to calculate heat 

transfer with convective boundary conditions followed by time dependent tritium 

distribution. The model, as shown in Figure 13, was of a single 1D metal block with the 

width equal to the heat exchanger tube’s thickness. For the left boundary temperature 

condition, the coolant temperature was assumed equal to the average of the heat 

exchanger inlet and outlet temperatures which was about 922 K. The right boundary was 

set to 873 K. An external data file was made to determine the time-dependent left 

boundary tritium concentration employing the method reported in [13]. This method 

essentially balances the amount of tritium within the primary coolant to that in the metal 

wall by utilizing a set of equations determined from Henry’s law, Sievert’s law, and Fick’s 

law. To utilize this method, the steel wall was assumed to be a single segment and the 

centerline tritium concentration was set to be equal to reported values of tritium 

concentration in the wall. The right boundary condition assumed instant tritium release to 

the secondary coolant, and therefore, the concentration was set to zero. 

 Figure 14 shows the predicted concentration of tritium in the steel structure 

compared to the reported values in [13]. The resulting time dependent tritium 

concentration calculated by BISON was on the same order of magnitude and followed a 

similar trend as the reported values, though, BISON overall underpredicted the 

concentration. This was a result of assuming that the reported values of tritium 

concentration in the wall were equal to the centerline tritium concentration when 

determining the transient tritium boundary condition. This is only applicable for steady 

state conditions where the temperature gradient impacts the tritium concentration. As the 
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Figure 13. Schematic of FHR heat exchanger tritium transport model in BISON. 

 

 

Figure 14. Transient tritium concentration comparison between reported values and 

BISON predictions. 
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conditions in the first few hours are a transient, the tritium distribution is more similar to 

an exponential decay rather than a linear relation, and thereby, result in underpredicting 

the tritium concentration. 

 The initial modeling results of three reactor components with varying conditions 

has demonstrated BISON’s ability to predict comparable tritium behaviors across various 

steel materials. Though, some discrepancies in tritium distribution exist between BISON 

code predictions and other studies. This might come from the scattered data of diffusion 

properties of tritium in steel materials, which brought the need of the sensitivity analysis 

and calibration studies, presented in chapter 4. 
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CHAPTER FOUR  

SENSITIVITY ANALYSIS AND MODEL CALIBRATION 

 

In this chapter, a global sensitivity study of the three steel models is demonstrated 

as a basis for implementation in a calibration study of a BISON model towards better 

predictions of tritium transport through steel components. A global sensitivity analysis is 

used to determine and rank the key input parameters that influence a model’s output [61-

63]. In this work, Sobol variance decomposition technique was employed for the 

sensitivity analysis [64]. This technique can account for both linear as well as non-linear 

correlations, and thereby, is a more general approach to quantify model uncertainties. 

The first order effect, 𝑆., from a Sobol analysis represents the contribution a given input 

has on the output variance and is defined as 

 

𝑆. =
=&'><&~'(@(A)|A')D

=E@(A)F
                                                   (7) 

 

where 𝑉(𝑓(𝑋)) is the variance of 𝑓(𝑋), and 𝐸A(𝑓(𝑋)|𝑋.) is the conditional expected value 

of 𝑓(𝑋) for a fixed input value 𝑋.. Also, a total effect is determined which captures higher 

order influence in addition to the first order effect, and therefore, represents the 

contribution to output variance due to interaction with several variables. The total effect, 

𝑇., is defined as 
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𝑇. =
<&~'>=&'(@(A)|A~')D

=E@(A)F
                                                  (8) 

 

where 𝐸A~' H𝑉A'(𝑓(𝑋)|𝑋~.)I is the mean of 𝑓(𝑋) for all possible values of 𝑋~. while holding 

𝑋. constant.  

A confidence interval below 0.05 ensures that calculated Sobol indices were 

converged. Total 𝑁 ∗ (2𝐷 + 2) different BISON input decks were generated by the 

sampler for the Sobol analysis where 𝑁 is a chosen sample number and 𝐷 is the number 

of parameters. Once all cases have been completed, the Saltelli’s scheme was used [65] 

to compute Sobol indices for a chosen Figure of Merit (FoM). 

 Sobol sensitivity analysis of the three studies previously modeled in BISON was 

conducted to verify the significance of the impact of diffusion parameters to the prediction 

as well as to incorporate the ability to calibrate these models. The parameters included in 

the sensitivity analysis were relevant model parameters for tritium diffusion within steel 

structures. As such, three input parameters analyzed were the pre-exponential factor for 

the diffusion coefficient, the diffusion activation energy, and the heat of transport. Ranges 

of the model parameters were chosen based off literature review and are listed in table 

5. The range was estimated to be 40% from the nominal value of reported diffusion 

parameter values as from Figure 5, the standard deviation of the diffusion coefficient 

showed larger variance depending on which hydrogen isotope, steel, and temperature 

were considered. Also, Figure 4 showed the pre-exponential or diffusivity frequency factor 

varied greatly, from about 14% to 139%, and the largest standard deviation of the 

activation energy was around 44% and 58%. Therefore, 40% was chosen since the  
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Table 5. Major parameter variation ranges for Sobol sensitivity analysis. 

Material Parameter Unit Lower 
Bound 

Upper 
Bound 

SS 316L 
Diffusivity Frequency Factor, AD m2/s 3.54×10-7 8.26×10-7 

Diffusivity Activation Energy, ED J/mole 31257 72933 

SS 304 
Diffusivity Frequency Factor, AD m2/s 7.44×10-7 1.74×10-6 

Diffusivity Activation Energy, ED J/mole 34036 79416 

SS 316 
Diffusivity Frequency Factor, AD m2/s 3.79×10-7 8.85×10-7 

Diffusivity Activation Energy, ED J/mole 28680 66920 

 Heat of Transport, Q* J/mole -8779 -3763 
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diffusion coefficient showed large variance, it was within the largest standard deviation 

for the activation energy, and was within the range for the diffusivity frequency factor. 

The model calibration study using the results from the sensitivity analysis is 

presented in this chapter to demonstrate this approach as a basis for implementation in 

a more comprehensive study of a component-level multiphysics fission reactor 

component or fusion blanket system. Root Mean Square Error (RMSE) values were 

calculated for each sample of the sensitivity study and is defined as 

 

𝑅𝑀𝑆𝐸 = 	TH
I
∑(𝑦W. − 𝑦.)                                                 (9) 

 

where 𝑦W. are predicted values and 𝑦. are expected values. Note than an RMSE value is 

always positive, and the closer it is to zero means that the predicted values more closely 

match expected values. As such, the calibration study looked for the lowest RMSE value 

between all samples to determine the parameter values which result in improved model 

prediction. 

 In this study, the key FoM of the three cases was the tritium distribution and 

evolution with time inside the steel structures. Once all sampled BISON input decks ran, 

a RMSE analysis was implemented in the Sobol sensitivity analysis to calibrate the 

models. Calculated RMSE values for each case compared values of tritium permeation 

rate at steady state for the ITER SS316L heat exchanger model, tritium concentration 

distribution at steady state for the LWR FeCrAl cladding model, and overall tritium 
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concentration evolving with time in the steel structure for the FHR SS316 heat exchanger 

model. The RMSE values were then used to calculate Sobol indices. 

  Figure 15 presents the computed Sobol indices for their respective cases. While 

the activation energy for the diffusion coefficient had the largest contribution for all three 

cases, there is slight variation between the calculated indices. In regards to the heat of 

transport, it did not contribute to the outputs in the first benchmarking case where no 

temperature gradient existed. The second and third cases had temperature gradients, 

though, the temperature gradient in the second case was comparatively large to that in 

the third case. For the third case, the calculated tritium influx at the boundary was 

dependent on the parameters which determine the diffusion coefficient, and hence, 

resulted in a larger importance of the pre-exponential factor for the diffusion coefficient 

compared to the second case. Considering the pre-exponential factor for the diffusion 

coefficient, the first case was influenced the most between the three cases due to the 

exclusion of the input by the heat of transport. 

 

Calibration of ITER Heat Exchanger Model 

For the model of the ITER heat exchanger, calibration was conducted in regards 

to the tritium permeation rate into the secondary coolant at steady state between reported 

and BISON predicted values. As shown in Figure 16(1), there is a strong correlation 

between the diffusivity activation energy and the prediction of the permeation rate of 

tritium into the secondary coolant. As initial modeling conditions underpredicted the 

permeation rate compared to reported values, the model parameters should be adjusted  
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(1) 

 
(2) 

 
(3) 

Figure 15. Sobol indices of input parameters for three steel models: (1) ITER SS 316L 

heat exchanger, (2) LWR FeCrAl cladding, (3) FHR SS 316 heat exchanger. 
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(1) 

 
(2) 

Figure 16. Scatter plots of RMSE of tritium permeation rate through SS 316L heat 

exchanger in regards to: (1) diffusivity activation energy, (2) diffusivity frequency factor. 
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to increase the amount of tritium diffusing through the steel. Considering the influence 

diffusivity activation energy has on the diffusion coefficient and subsequently tritium 

transport through steel as a whole, increasing activation energy reduces the amount of 

tritium diffusing from high concentrations to low concentrations. As such, the trend in 

Figure 16(1) which shows smaller values of the activation energy from the nominal value 

result in smaller RMSE values, thereby improved comparative prediction, was expected. 

Additionally, once the activation energy decreased below about 40000, modeling 

predictions worsened significantly due to overprediction of the tritium permeation rate. 

 Figure 16(2) presents the RMSE values in regards to the diffusivity frequency 

factor and shows two noticeable weaker trends compared to the activation energy. Again 

considering tritium diffusion as a whole, the trend regarding large RMSE values comes 

from cases in which the activation energy was too small. This shows worsening model 

predictions with increasing diffusivity frequency factor, and thereby, both diffusion 

parameters were resulting in overpredicting the permeation rate. In regards to the trend 

with smaller RMSE values, these frequency factor values pertain to cases with activation 

energies that were too large. Though increasing the diffusivity frequency factor in these 

cases would increase the tritium permeation rate, the permeation rate was more 

dependent on the activation energy. As such, the best model prediction was made with a 

frequency factor smaller than the nominal value since the activation energy was 

sufficiently smaller than its nominal value. A set of diffusion parameters given by the 

minimum RMSE sample resulted in a calibrated prediction of the tritium permeation rate 

of 4.19×10-3 Bq/m2/s whereas the reported value was 4.2×10-3 Bq/m2/s. 
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Calibration of LWR Cladding Model 

The calibration of the LWR FeCrAl cladding model determined RMSE values 

between reported and BISON predictions of tritium concentration distribution once steady 

state was established. Figure 17 presents the scatter plot of RMSE values pertaining to 

tritium distribution with regards to the diffusivity activation energy. There is no noticeable 

trend other than a more populated region of smaller RMSE values at larger activation 

energies. Also, note that the y-axis scale in Figure 17 was very small, orders of magnitude 

smaller than in Figure 16. A potential explanation for this is since the analysis for this case 

focused on tritium distribution at well-established steady state conditions, variations of the 

activation energy and other transport parameters considered in BISON had little impact 

on model predictions. As such, there exists some correlation between the diffusivity 

activation energy and RMSE values, though, there are cases throughout the range of the 

considered parameter with comparatively small RMSE values. This thereby reveals that 

the sensitivity to the other parameters can produce a relatively significant difference in 

model predictions for well-established steady state conditions. 

Figure 18 presents the results from inputting the parameter values which lead to 

the case with the smallest RMSE value back into the model. As the BISON model and 

calibration method only considered tritium distribution once steady state was established, 

the min RMSE conditions led to the model in BISON to better match reported results once 

steady state was established. Figure 19 shows how modeling prediction improved as the 

conditions progressed from transient to steady state. In regards to the reported transient, 

the BISON model’s predictions showed no improvement. Therefore, the modeling  
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Figure 17. Scatter plot of RMSE of tritium concentration distribution across FeCrAl 

cladding in regards to diffusivity activation energy. 

 

 

Figure 18. Time evolving tritium distribution in FeCrAl cladding. The numbers in the 

contour plot are tritium concentration (mol T/cm3) × 1012. 
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(1) 

 
(2) 

 
(3) 

Figure 19. Tritium distribution in FeCrAl cladding at (1) 1000, (2) 5000, and (3) 120000 

seconds. Dotted and solid lines are for reported and BISON results, respectively, and 

concentrations are times 1012. 
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decisions and calibration of tritium transport in FeCrAl cladding of a PWR resulted in 

improving BISON’s prediction of tritium behavior once steady state has been established.  

 

Calibration of FHR Heat Exchanger Model 

For the calibration of the FHR heat exchanger model, RMSE values were 

calculated between reported and predicted values of tritium concentration in the wall as 

time progressed during a transient in which the reactor was started. To account for the 

transient, all sampled cases were run four times in which all four sets ended at different 

times. These included three end times over the noticeable transient and one end time 

once steady state was fully established.  

Figure 20 presents the scatter plot of RMSE values in regards to the diffusivity 

activation energy. The relation between this parameter and tritium concentration in the 

wall was complicated due to the consideration of the transient. Specifically, the left 

boundary condition for tritium concentration was dependent on the diffusion coefficient. 

Decreasing the activation energy and increasing the diffusivity frequency factor increase 

the diffusion coefficient, and thereby, influence the rate of tritium influx from the primary 

coolant. From the initial modeling, the rate at which tritium enters the steel the steady 

state magnitude needed to increase. To calibrate the model which was previously 

underpredicting, the diffusion coefficient’s activation energy was decreased while the 

diffusivity frequency factor increased. For the heat of transport, its value was decreased 

as well though this change had little impact on model predictions compared to the 

diffusivity activation energy. 
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Figure 20. Scatter plot of RMSE of time dependent tritium concentration within a SS 316 

heat exchanger tube wall in regards to diffusivity activation energy. 
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Figure 21 presents the results from the calibrated model. Prediction at steady state 

and over the transient was improved, though, the model continued slightly 

underpredicting for the transient. This was a result of the assumptions made in the method 

to determine the concentration at the left boundary. In this, the method implemented a 

linear approximation between the concentration at the wall in the steel to the 

concentration at the center of the steel. Though the implementation of this approximation 

applies to cases in which the heat of transport was included in simulations, it only applies 

to steady state conditions. Referring to Figure 8 as a visual aid, tritium concentration 

follows an exponentially decreasing trend during a transient. Accounting for the heat of 

transport, this exponential decrease begins to become more linear as the model 

approaches steady state in this case. As such, the calibrated model slightly 

underpredicted the transient while matching the steady state value due to the method for 

determining the boundary condition calculating a smaller influx of tritium than expected. 

Though, overall BISON demonstrated its ability to predict tritium concentration in steels 

under transient conditions and multiphysics considerations. 

 As the resulting BISON prediction which resulted in the smallest RMSE continued 

to slightly underpredict tritium content during the transient, a variable to adjust the 

centerline tritium concentration was introduced to the calibration method and referred to 

as alpha. The variable utilizes the reported tritium content within the metal wall as a 

maximum value when determining the influx of tritium. This variable ranges from 0.1 to 

1.0 where a value of 1.0 would result in matching the previous method. As such, the 

variable attempts to account for the exponentially decreasing tritium concentration trend 
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Figure 21. Transient tritium concentration comparison between reported values, initial 

BISON predictions, and BISON predictions that resulted in the smallest RMSE. 
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during a transient. The goal of introducing this variable is to determine tritium 

concentration boundary conditions which better predict tritium concentration in the steel 

wall over the transient. 

 Figure 22 presents the computed Sobol indices of the three physical parameters 

and boundary condition variable alpha. The physical parameters notably decreased in 

their influence on resulting BISON predictions, though, the activation energy had a 

comparatively large total effect. This mainly resulted from the interaction of the activation 

energy and alpha variable on the predicted tritium content. Scatter plots of these two 

parameters and calculated RMSE values presented in Figure 23 show how these 

parameters influence predicted tritium concentration. From this, a calibrated alpha 

variable can be determined. Figure 24 presents the improved model prediction due to 

introducing the alpha variable. In this, the prediction of tritium concentration during the 

transient slightly improved, though, the prediction at steady state slightly overpredicted. 

This was a result of the calculated RMSE values weighing tritium concentrations over the 

transient more than at steady state due to the distribution of end times for the four sets of 

sampled cases. Three were centered over the noticeable transient and only one was at 

a later time for considering steady state. From this, the influence and impact on BISON 

predictions reveal the need for accurate boundary condition information especially for 

transients. 
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Figure 22. Sobol indices of sampled parameters for FHR heat exchanger model with 

variable alpha boundary conditions. 
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(1) 

 
(2) 

Figure 23. Scatter plots of RMSE of time dependent tritium concentration within a SS 

316 heat exchanger tube wall with variable alpha boundary conditions in regards to: (1) 

diffusivity activation energy, (2) alpha. 
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Figure 24. Transient tritium concentration comparison between reported values, initial 

minimum RMSE, and improved minimum RMSE BISON predictions. 
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CHAPTER FIVE  

CONCLUSIONS 

 

Tritium transport behavior is a primary concern for designs of fusion blanket 

systems for a commercial fusion reactor as well as a safety concern for fission reactors.  

Understanding and predicting tritium behavior is important to achieve tritium self-

sufficiency as well as mitigate the introduction of this radioactive isotope to the outside 

environment. To account for multiple physical phenomena and the important information 

that can be determined from them such as energy extraction in the coolant system, the 

BISON hydrogen migration and redistribution model was assessed for component-level 

simulations of tritium transport. This analysis was conducted due to the ability of BISON 

to be readily coupled with other modeling codes such as MCNP and RELAP5-3D. 

Information from these codes such as tritium production and coolant flow conditions 

influence tritium transport behavior, and hence, can inform boundary conditions of a 

BISON model. Additionally, BISON has the ability to model complex 3D components, and 

thereby, has the ability to predict tritium behavior in a coupled multiphysics model for 

many different reactor component designs. Therefore, the work in this paper was 

conducted to assess BISON’s capability to predict tritium behavior in steels as it is a 

common material for both fission and fusion reactors, and demonstrate a method for 

model analysis and calibration. 

 Tritium distribution and evolution with time was modeled for three different systems 

and conditions. These systems were of a heat exchanger for ITER, cladding for an LWR, 
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and a heat exchanger for an FHR. Tritium permeation flux through ITER’s SS 316L heat 

exchanger wall was initially predicted to be on the same order of magnitude as the 

reported value. Predicted tritium concentration within the FeCrAl cladding was similar to 

reported values at steady state with small overpredictions within the center region of the 

structure. In regards to an FHR’s SS 316 heat exchanger, the time dependent tritium 

concentration predictions were on the same order of magnitude and followed a similar 

trend as reported values. Overall, initial simulation results demonstrated the ability of the 

tritium transport model in BISON to predict comparable results to those from experiments 

and other models.  

A global sensitivity analysis was conducted to demonstrate the ability to extract 

information of key model parameters as well as demonstrate a method to calibrate model 

parameters. In this, a Sobol sensitivity analysis was conducted in which a calibration 

method was implemented through the use of RMSE analysis of model output. In regards 

to the ITER heat exchanger, predicted tritium permeation rate was calibrated to be within 

0.25% of the reported value. The LWR cladding model improved its prediction of tritium 

concentration in the center region once the model reached steady state. For the FHR 

heat exchanger model, tritium concentration prediction improved for both steady state 

and over the transient. To improve model predictions for the transient, a fitting variable 

was added into the method for determining boundary conditions, and Sobol analysis 

revealed the expected requirement for accurate boundary conditions especially for 

transient conditions. 
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In conclusion, the ability for BISON to predict tritium transport behavior in steel 

components of fission and fusion systems as well as utilize a method for sensitivity 

analysis and calibration to improve model prediction was demonstrated. Additionally, the 

ability for BISON to predict tritium transport in steels was verified. Recommended work in 

further developing the tritium transport model in BISON include implementing the ability 

to calculate radioactive decay and trapping behavior. This would account for tritium losses 

for models covering long periods of time as well as the impact of trapping on tritium 

diffusion which would change over time due to material damage as a result of a nuclear 

reactor’s extreme environment. Also, implementing the ability to account for transport 

behavior in fluids would expand BISON’s capabilities to model coolants and their interface 

with structural materials. Additionally, further experimental work for determining the heat 

of transport in steels is necessary as its value has been reported to be both positive and 

negative, and it has the potential to significantly influence tritium transport behavior 

depending on a component’s temperature conditions. 
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