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ABSTRACT 

 
Inventory record inaccuracy (IRI) often arises in retail environments due to 

unaccounted stock loss. Theft, misplacement, spoilage, and transaction errors 
will reduce the true inventory values without changing the inventory record. As 
previous inventory replenishment policies assume perfect record accuracy, 
increasing IRI can cause unexpected stockout events, mistimed reorders and 
replenishment freezes. Solutions to rectifying IRI vary from the use of improved 
tracking technologies to prevent it initially occurring at all to recounting programs 
which estimate true inventory value. Unfortunately, in retail environments, 
high-tracking technology is unsuitable and continuous counting programs are too 
costly. To address the limitations of current solutions, we offer a Periodic 
Replenish and Recount Policy (PRRP) which accounts for stochastic stock loss 
and minimizes total costs including recounting. The theoretical foundation of 
PRRP allows for the discovery of both an optimal order quantity as well as 
optimal count frequency for a given inventory system. We find that in instances of 
stochastic stock loss, PRRP balances the trade-offs between shortage, surplus 
and counting costs. 
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CHAPTER ONE  

INTRODUCTION AND GENERAL INFORMATION 

 
 

Inventory Inaccuracy from Stock Loss 

 
 The ability to accurately track inventory levels is critical for an organization 
to keep holding costs low and to avoid overstock and stockouts. Inventory 
managers rely upon accurate data to inform decisions on replenishment 
strategies, warehouse layouts, and even staffing requirements [1]. Yet, true 
inventory values often mismatch what they are purported to be within ERP 
systems. Item misplacement, incorrect counting, theft, and restocking errors are 
a few of the many ways in which an inventory record can deviate from its true 
value in real-case scenarios. As seen in Figure 1-1, uncorrected record 
inaccuracies can become worse over time. As stock loss compounds, the 
discrepancy can become so large that stockouts and replenishment freezes may 
occur. Therefore, significant effort has been placed on understanding the nature 
of inventory record inaccuracy (IRI) as well as methods for its correction [2, 3]. 
We suggest a gap exists for simple inventories in which expensive tracking 
technologies are impractical and cycle counting programs ineffective. Our work 
bridges this gap through the development of a replenishment policy which does 
not rely upon an accurate inventory record. The policy recommends periodic 
replenishment of inventory with subsequent recounting after a set number of 
reorder cycles (Figure 1-2). 
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Figure 1-1. Inventory inaccuracy increasing over time due to compounding stock loss 

 
 

 

Figure 1-2. A replenishment policy that recommends recounting after three reorders to correct IRI  
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CHAPTER TWO  

LITERATURE REVIEW 

 
 

Previous Methods Addressing Inventory Inaccuracy 

 
 This brief review documents notable discoveries in the causes of IRI as 
well as the two majority prescribed solutions: RFID and inventory cycle-counting. 
In 2001, Raman et al. reported that over 65% of inventory records from the 
370,000 stock keeping units (SKUs) stored at a major retailer were incorrect [4]. 
Broader studies by Kang et al. indicated that for a given company’s 500 stores, 
the highest performance was an accuracy of 75–80%. On average, the inventory 
accuracy of the company was a little over 50% [5]. Similar reports reflect the 
prominence of inventory inaccuracy among various industries [6-8]. Our research 
provides an additional tool for inventory managers to practically rectify these 
inventory inaccuracies. 

 Inventory inaccuracy can theoretically occur in either the positive or 
negative direction, meaning inventory records may either exceed or be less than 
its true value. However, researchers have more often discovered inventory 
records to fall below its true value, rather than exceed it [9]. Most presume this 
fact is due to the more numerous ways an item may be lost or removed from a 
system when compared to the ways it may be added. Four scenarios in which 
inventory inaccuracy may arise are: 

(i) the true value stays the same and the inventory record increases,  
(ii) the true value stays the same and the inventory record decreases,  
(iii) the true value increases and the inventory record stays the same, and  
(iv) the true value decreases and the inventory record stays the same.  

 Kang et al. rationalized that most causes of inventory inaccuracy may be 
attributed to stock loss, transaction error, inaccessible inventory, or incorrect 
product identification [5]. Stock loss occurs through internal theft, external theft, 
unauthorized consumption, product expiration, spoilage, or damage. Transaction 
errors may occur at either the inbound receipt or outbound checkout of a good. 
During the inbound phase, receiving clerks may incorrectly track the receipt 
amount of a shipment. On the other hand, checkout clerks may decide to scan a 
single item multiple times instead of each individual item when tasked to scan a 
batch of similar looking goods. While the same result occurs if the multiple items 
share the same SKU, similar looking goods may hold different SKUs, resulting in 
incorrect tracking of outbound inventory. Inaccessible inventory is that which is 
misplaced due to either a customer or employee moving it from its originally 
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assigned location. Finally, incorrect product identification may occur when a 
wrong tag or label is placed on an item.  

 In simulating inventory record errors over time, typical models follow either 
a Poisson [5] or normal distribution [10]. Additionally, error sources have been 
found additive with little interaction effects [11]. Our assumptions agree with 
previous work that stock loss follows a Poisson distribution. We suggest that 
stock loss is memoryless and that both the loss in a single day and the loss in a 
full reorder cycle follow a Poisson distribution. This assumption encourages a 
certain frequency of inventory record rectification to prevent unaccounted 
stockouts or inventory buildup. 

 Effects of IRI have been studied in retail supply chains [12], retail outlets 
[10], and even three-echelon supply chains [11]. Stock loss was shown to 
predictably cause IRI and stockouts [5], while IRI was also shown to negatively 
impact service levels [13]. IRI has also been extensively studied to quantify its 
overall costs. Lee and Özer quantified the value of inventory accuracy through 
comparison of a perfect inventory record scenario with one of the downstream 
effects of IRI [14]. Our work is consistent with these findings that the major cost 
of IRI is attributed to stockouts of SKUs that are recorded as a greater inventory 
value than its true value. 

 RFID technology was first invented in 1946 and expanded to commercial 
use by the 1980s. In the 1990s, standards for its use were implemented across a 
wide variety of industries. More recently, the technology’s affordability has 
improved and many more companies have adopted its use [15]. Since 2005, 
emphasis on RFID’s impact on supply chain improvements have radiated 
throughout academia and industry. Specifically, RFID has been proposed to 
serve as solutions for inventory inaccuracy, bullwhip effects, and optimized 
replenishment policies [16, 17]. The promise of RFID as a silver-bullet hinges 
upon its successful implementation. That is, to reap the benefits of RFID, an 
inventory management system must first correctly add either passive [18] or 
active RFID tags to each item or pallet of inventory which needs to be tracked. 
We find the assumption that this task is viable, or even possible in many 
situations, unlikely. While collaborating with a typical small-sized organization 
with less than 10,000 SKUs, the capital costs of an RFID system were found 
inhibitory. Therefore, our work recognizes the benefits of RFID, but chooses to 
focus on a practical method of IRI correction which can be implemented with little 
to no cost to a firm. 

 Besides RFID technology which promises to automatically sync the 
inventory record with its true value, a second option inventory managers have 
available to correct IRI is a physical inspection. Physical inspections are costly in 
both time and capital and are typically used as sparingly as possible. For most 
small and mid-sized uninformed firms, this translates to an annual inspection for 
auditing and accounting purposes. On the other hand, large-sized firms have 
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recently implemented cycle-count programs which verify inventory accuracy 
through an on-going basis of counting only a portion of randomly selected items 
[3]. Through statistical methods, reasonable levels of inventory accuracy can be 
achieved with moderate confidence levels without the inhibitory costs associated 
with a full physical count. Kök and Shang further improved upon these methods 
through their development of an inspection adjusted base-stock (IABS) policy 
and cycle-count policy with state-dependent base-stock levels (CCABS) [19, 20]. 
While both the IABS and CCABS solutions for IRI are massive improvements 
over non-inspection policies, their implementation is still predicated upon the use 
of ABC classification systems. These systems introduce bias within the policy, as 
ABC classification inherently requires subjective weights to be applied to each 
grouping [21, 22]. Thus, a gap is identified in which a non-biased inspection 
policy would bridge. Our inspection policy allows practitioners with little to no 
experience in statistical methods to ensure the highest inventory accuracy 
without the inhibitory costs of RFID or the complex set-up of cycle-count 
programs. Additionally, our non-biased approach uses easily accessible 
parameters to determine optimal count frequencies. 
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CHAPTER THREE  

MATERIALS AND METHODS 

 
 

Business Assumptions and Sequential Events 

 
Consider a single-item inventory in which the following occurs sequentially: 
 
0. Inventory begins at 𝑄 

1. Each day, inventory decreases by the sum of a deterministic amount 𝐷 
and a random amount 𝑉  

a. 𝐷 represents demand which is accurately accounted through 
traditional inventory tracking technologies 

b. 𝑉 follows a Poisson distribution and represents stochastic stock 
loss which reduces inventory levels without updating the inventory 
record  

2. If the sum of 𝐷 and 𝑋 is greater than the current inventory level, a stockout 
event occurs and no backorder is created (lost sale) 

a. In the case of a stockout, the inventory level will be reset to 𝑄 upon 
the next reorder 

3. After a predetermined period of days 𝑟, 𝑄 is added to the inventory level 

4. After a predetermined number of reorder periods 𝑛, the inventory is 
counted and reset to 𝑄 

Because the reorder period is predetermined, lead time is not considered. 
Additionally, opportunities to count the inventory are restricted to the ends of 
reorder periods to minimize the required labor. Only three costs are considered in 
this study: shortage cost, holding cost, and counting cost. At the end of a reorder 
period, shortage cost is incurred for every stockout which occurred in the reorder 
cycle. Similarly, if the ending inventory is positive, a holding cost is incurred for 
every positive unit of the inventory level. Counting costs are only incurred if the 
inventory is counted. The benefit to counting is to correct any record inaccuracies 
and reduce excess inventory. Because both ordering costs and holding costs for 
cycle inventory are considered sunk costs, they are not considered in the 
analysis of this model. 

The purpose of this study is to evaluate how changes to the reorder quantity 
𝑄 and reorder cycles until recount 𝑛 affects total costs. It was found that due to 
the higher sensitivity of the model to holding costs rather than shortage costs, 
frequent counting to reduce excess inventory buildup is generally rewarded.  
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PRRP Under Deterministic Stock Loss 

 
 First, we can determine the optimal reorder period 𝑟 for a theoretical 

scenario in which both demand 𝐷 and stock loss 𝑉 are deterministic and known. 
In this case, the sum of 𝐷 and 𝑉 may be considered an aggregate demand. After 

the exact length of 
𝑄

𝐷+𝑉
 days, inventory will be completely exhausted (Figure 3-1). 

Once the ordering and cycle inventory holding costs are known, 𝑄 may be set to 

the economic order quantity and the reorder period 𝑟 set to 
𝑄

𝐷+𝑉
. 

If we consider that stock loss 𝑉 is ‘known but invisible,’ i.e., our estimation 
of stock loss is perfect, yet the inventory record only takes account 𝐷, we can 
determine that every reorder cycle adds the unaccounted stock loss as ‘ghost 
inventory’ to the baseline (Figure 3.2). We can also determine how much earlier 𝑟 
should be in comparison to a standard EOQ model which does not consider 
stock loss by taking the difference between reorder periods (Figure 3.3). 
Intuitively, the reorder period is much shorter since more inventory is removed 
from the system every day. Since in the deterministic case we can perfectly 
predict inventory level, there is no need to implement any recounting. 

 While this deterministic scenario does not accurately represent a real-life 
system, it is important to first consider it to gain a baseline understanding of how 
stock loss compounds and creates a larger and larger discrepancy between the 
true inventory and the inventory record. In the stochastic case, stock loss is 
random such that within a reorder period there may be more or less than the 
expected average. If less stock loss occurs, then at the end of a reorder cycle 
there will be remaining inventory in the system. On the other hand, if there is 
more stock loss than the average, stockout events will occur. 
 
 

PRRP Under Stochastic Stock Loss 

 
We next extend our model to the case in which stock loss 𝑉 is random and 

follows a Poisson distribution with parameter 𝜆. Because the replenishment 
system is automated, stockouts are not immediately apparent to inventory 
managers. Instead, the stockouts simply reduce sales to zero for that and any 
subsequent days. Once the reorder cycle completes, then the next order quantity 
𝑄 is added to the system such that the new inventory level is 𝑄. For the case in 
which less stock loss than the average occurs, surplus inventory is held. Once 
the reorder cycle completes and the next order quantity is added to the system, 
the next reorder cycle will begin with an inventory level as the sum of 𝑄 and the 
surplus inventory from the previous cycle.  
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Figure 3-1. True inventory and inventory record under deterministic demand and stock loss 

 
 
 

𝐺ℎ𝑜𝑠𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 =  𝑄 − 𝐷 (
𝑄

𝐷 + 𝑉
) 

𝐺ℎ𝑜𝑠𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 =
𝑄𝑉

𝐷 + 𝑉
 

Figure 3-2. Formulation of Ghost Inventory per reorder cycle 

 
 
 

𝑅𝑒𝑜𝑟𝑑𝑒𝑟 𝑇𝑖𝑚𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
𝑄

𝐷
−

𝑄

𝐷 + 𝑉
 

𝑅𝑒𝑜𝑟𝑑𝑒𝑟 𝑇𝑖𝑚𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
𝑄𝑉

𝐷(𝐷 + 𝑉)
 

Figure 3-3. Formulation of difference between EOQ 𝑟 and PRRP 𝑟 
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Due to this unique property of the inventory system resetting to 𝑄 upon 
stockout but accumulating inventory for periods without stockout, it is expected 
that the first reorder cycle would always have the highest probability of stockout 
given no additional safety stock was added. Figure 3-4 illustrates a single reorder 
cycle operating under stochastic stock loss in which two different scenarios may 
arise: the inventory ends with a shortage, and the inventory ending with a 
surplus. 
 

Formulation of 𝑹𝒏 

 
𝑅𝑛 is defined as the probability of surplus through 𝑛 reorder cycles. 
 

The probability of the system ending with a surplus may be calculated 
using the probability mass function of a Poisson distribution (Figure 3-5). If the 
stock loss is less than or equal to 𝑄 − 𝐷𝑟, no stockout will occur. However, the 
probability of surplus of subsequent reorder cycles are dependent upon previous 
cycles. For example, if there was very little stock loss within the first reorder 
cycle, then the probability of surplus in the next reorder cycle would be greatly 
increased. To calculate the exact probability of a surplus in any given reorder 
cycle, a recursive summation is used in which increasing bounds represent the 
increased chance of surplus given a previous surplus. This recursive relationship 
is stated in the following lemma. 
 
Lemma 1:  
Assuming stock loss follows a Poisson distribution, when ending inventory of the 
first reorder cycle is 𝑦, the probability of surplus through 𝑛 reorder cycles is 
 

𝑅(𝑛,  𝑦) =

{
 
 

 
 

∑
𝜆𝑟𝑖

𝑖!
𝑒−𝜆𝑟

𝑦

𝑖=0

𝑛 = 1;

∑
𝜆𝑟𝑖

𝑖!
𝑒−𝜆𝑟

𝑦

𝑖=0

∙ 𝑅(𝑛 − 1, 𝑦 + 𝑄 − 𝐷𝑟 − 𝑖) 𝑛 ≥ 2.

 

 

Formulation of 𝑺𝒏 

 
𝑆𝑛 is defined as the probability of stockout during the 𝑛th reorder cycle. 
 

Once the probability of surplus is known, the probability of a stockout 
event occurring can be easily calculated considering the overall sample space 
(Figure 3-6). In a single cycle, either a stockout event occurs or a surplus event 
occurs so the stockout probability is the difference between one and the  
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Figure 3-4. Single reorder cycle with possible scenarios shown in pink 

 
 
 
 

𝑅1 = ∑
(𝜆𝑟)𝑊𝑒−𝜆𝑟

𝑊!

𝑄−𝐷𝑟

𝑊=0

 

Figure 3-5. Probability of surplus through the first reorder cycle 

 
 
 
 

𝑆1 + 𝑅1 = 1 

𝑆1 + 𝑆2 + 𝑅2 = 1 
𝑆1 + 𝑆2 + 𝑆3 + 𝑅3 = 1 

… 
𝑆𝑛 = 𝑅𝑛−1 − 𝑅𝑛 

 

Figure 3-6. Relationship between 𝑅𝑛 and 𝑆𝑛 
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probability of surplus. In higher reorder cycles, the sample space is composed of 
stockout events occurring at any one of the cycles or a surplus event occurring 
throughout. The probability of stockout can thus be calculated according to the 
following lemma. 
 Additionally, the probability of stockout in the 𝑛th reorder cycle may be 
fundamentally calculated through use of the probability mass function in an 
analogous method to calculating the probability of surplus through 𝑛 reorder 
cycles. If the stock loss in the first reorder cycle is greater than the maximum 
ending inventory 𝑄 − 𝐷𝑟, then a stockout event will occur. Due to the resetting 
behavior of the system and the way 𝑆𝑛 is defined, 𝑆2 means that the first reorder 
cycle ended in surplus, then the stockout occurred in the second reorder cycle. 
Similarly, 𝑆3 means a surplus occurs in the first two reorder cycles. 
 
Lemma 2:  
Assuming stock loss follows a Poisson distribution, when ending inventory of the 
first reorder cycle is 𝑦, the probability of stockout during the 𝑛th reorder cycle is 
 

𝑆(𝑛, 𝑦) =

{
 
 

 
 ∑

𝜆𝑟𝑖

𝑖!
𝑒−𝜆𝑟

∞

𝑖=𝑦+1

𝑛 = 1;

∑
𝜆𝑟𝑖

𝑖!
𝑒−𝜆𝑟

𝑦

𝑖=0

∙ 𝑆(𝑛 − 1, 𝑦 + 𝑄 − 𝐷𝑟 − 𝑖) 𝑛 ≥ 2.

 

 
 

 Lemma 2 shows how a recursive function may again be used to model the 
same behavior as 𝑅𝑛 for the probability of stockout. Interestingly, the only 
difference between the two lemmas is the bounds of the most internal 
summation. The surplus formulation necessitates that stock loss in every reorder 
cycle be less than the maximum allowable inventory level for that cycle. In 
contrast, the stockout formulation necessitates that stock loss in every reorder 
cycle except the last one be less than the maximum allowable inventory level for 
that cycle. In the last reorder cycle, the stockout necessitates that stock loss be 
greater than the maximum allowable inventory level. 

Expected Surplus Inventory  

 
𝑃𝑛 is defined as the expected surplus in the 𝑛th reorder cycle. 
 

With the probabilities of surplus and stockout in hand, the expected 
surplus inventory was next formulated. By utilizing the probability of any given 
stock loss occurring as a weight for the ending inventory values, a weighted 
average can be calculated. By selectively choosing probabilities and ending 
inventories that only result in surplus, the specific expected surplus inventory 
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may be calculated for any inventory cycle. This relationship is given in the 
following lemma. 

 
Lemma 3:  
Assuming stock loss follows a Poisson distribution, when ending inventory of the 
first reorder cycle is 𝑦, the expected surplus amount in the 𝑛th reorder cycle is  
 

𝑃(𝑛, 𝑦) =

{
 
 

 
 

∑
𝜆𝑟𝑖

𝑖!
𝑒−𝜆𝑟

𝑦

𝑖=0

∙ (𝑦 − 𝑖) 𝑛 = 1;

∑
𝜆𝑟𝑖

𝑖!
𝑒−𝜆𝑟

𝑦

𝑖=0

∙ 𝑃(𝑛 − 1, 𝑦 + 𝑄 − 𝐷𝑟 − 𝑖) 𝑛 ≥ 2.

 

 

Expected Shortage  

 
𝐺𝑛 is defined as the expected shortage in the 𝑛th reorder cycle. 
 

In the same manner as the surplus formulation, expected shortage in the 
𝑛th reorder cycle may be calculated by utilizing the probability of any given stock 
loss occurring as a weight for the ending inventory values. The only difference is 
that the selection of probabilities is limited in the last reorder cycle to be the stock 
loss which exceeds the maximum allowable inventory level for that cycle. This 
relationship is explained in the following lemma. 

 
Lemma 4:  
Assuming stock loss follows a Poisson distribution, when ending inventory of the 
first reorder cycle is 𝑦, the expected shortage amount in the 𝑛th reorder cycle is  
 

𝐺(𝑛, 𝑦) =

{
 
 

 
 ∑

𝜆𝑟𝑖

𝑖!
𝑒−𝜆𝑟

∞

𝑖=𝑦+1

∙ (𝑦 − 𝑖) 𝑛 = 1;

∑
𝜆𝑟𝑖

𝑖!
𝑒−𝜆𝑟

𝑦

𝑖=0

∙ 𝐺(𝑛 − 1, 𝑥, 𝑦 + 𝑄 − 𝐷𝑟 − 𝑖) 𝑛 ≥ 2.

 

Sample Spaces of Various PRRPs 

 
Using lemmas one through four, the probability of stockouts and surplus 

as well as the amount of surplus and shortage may be calculated for any reorder 
cycle. However, in consideration of a PRRP, we must analyze the entire sample 
space for any set number of reorder cycles. For example, in a one-cycle PRRP, 
there are two possible outcomes: either the inventory ends in surplus, or the 
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inventory ends in a shortage. This is represented graphically in Figure 3-7. The 
complexity increases as more reorder cycles are added. In a Two-Cycle PRRP, 
there are four possible outcomes as shown in Figure 3-8. In a Three-Cycle 
PRRP, there are eight possible outcomes as shown in Figure 3-9. 

The probabilities of any single event may be calculated simply through the 
product of individual probabilities. For example, the second event shown in 
Figure 3-13 begins with a stockout in the first reorder cycle followed by two 
subsequent surpluses. The probability of a stockout occurring during the first 
reorder cycle is given by 𝑆1. The probability of surplus occurring through two 
reorder cycles is given by 𝑅2. Because a stockout resets the inventory to 𝑄, the 
probability of having a stockout in the first cycle followed by two surpluses is 
given by 𝑆1𝑅2. 

In the third event shown in Figure 3-9, a surplus occurs in the first reorder 
cycle, followed by a stockout in the second and a surplus in the third. Because 𝑆𝑛 

is defined as the probability of having a stockout during the 𝑛th reorder cycle, 𝑆2 
represents having a surplus in the first reorder cycle and then a stockout during 
the second reorder cycle. So, the probability of a surplus occurring in the first 
reorder cycle, followed by a stockout in the second and a surplus in the third is 
represented by 𝑆2𝑅1. 

 

Expected Shortage and Surplus of Individual Events for a PRRP 

 
The expected shortage and surplus for any individual event in a PRRP 

may be formulated as illustrated in Figure 3-10. In the first example, two surplus 
reorder cycles occur before a stockout in the third reorder cycle. The expected 
shortage follows exactly the definition of 𝐺3. The expected surplus is the result of 
only the first two reorder cycles. Thus, the expected surplus for the first event is 
given by 𝑃2. In the second event of Figure 3-10, a surplus occurs in the first 
reorder cycle followed by stockouts in the subsequent two reorder cycles. The 
expected surplus is given by 𝑃1, the surplus expected in a single reorder cycle. 

However, the expected shortage is given by 𝑆2𝐺1, indicating a surplus occurring 
in the first reorder cycle, a stockout in the second, and a final stockout in the third 
with expected shortage of 𝑆2𝐺1. 
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Figure 3-7. Graphical representation of a One-Cycle PRRP sample space 

 
 

 

Figure 3-8. Graphical representation of a Two-Cycle PRRP sample space 

 
 

 

Figure 3-9. Graphical representation of a Three-Cycle PRRP sample space 

 
 

 

Figure 3-10. Analysis of single event in a Three-Cycle PRRP  
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CHAPTER FOUR  

RESULTS AND DISCUSSION 

 
 

Simulation of Periodic Replenishment Under Stochastic Stock 
Loss 

 
To validate the probability, stockout, and surplus inventory formulations, a 

simulation was created and run. The results of which can be seen in Figure 4-1 
and Figure 4-2. For each run, once a stockout event occurred, the simulation 
terminated. By terminating the simulation at the first occurrence of a stockout, the 
ratio of stockouts in each cycle to total number of simulations represents 𝑆𝑛. In 

the example shown, variables and parameters of 𝑄 = 420, 𝐷 = 13, 𝜆 = 1, 𝑟 = 30 
were chosen. According to the probability formulation, these variables and 
parameters correspond to 𝑆1 = 0.45,  𝑆2 = 0.13 and 𝑆3 = 0.07. The simulation is 

thus validated as 4588 of the 10,000 runs encountered a stockout within the first 
cycle, while 1346 of the 10,000 experienced a surplus in the first cycle and 

stockout in the second, and 665 of the 10,000 experienced a surplus in both the 
first and second cycles and stockout in the third. 

Additionally, the excess inventory formulation may be validated through 
further analysis of the same 10,000 simulated runs. The average inventory of the 
last day before a restock was captured and documented for every run that did not 
end in a stockout under the fourth column of Table 1. This extra inventory is 
calculated as the expected surplus inventory shown in column 5 of Table 1. With 
these various formulations validated, the next step in the study is to conduct a 
scenario analysis in which the costs are analyzed of various PPRPs to evaluate 
the benefits and detriments of varying reorder quantities and recount 
frequencies. 

 

Cost Function 

 
𝑇𝐶(𝑛)  ∶ Expected total cost for PRRP with recount after 𝑛 reorder cycles 

ℎ ∶ Cost of surplus ($/unit) incurred at the end of each reorder cycle 

𝑏 ∶ Cost of shortage ($/unit) incurred at the end of each reorder cycle 
𝑐 ∶ Cost of counting incurred at the end of the 𝑛th reorder cycle 

 
 Calculating the total cost of a PRRP requires multiplying the total surplus 
across 𝑛 reorder cycles by the parameter ℎ, multiplying the total shortage across  
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Figure 4-1. Inventory vs time for 10,000 simulated runs 

 
 

 
 

Figure 4-2. Stockout events for 10,000 simulated runs 

 
 

Table 1. Comparison of expected surplus values vs average of 10,000 simulated runs 

Order cycle 𝒏 Sim 𝑹𝒏 Exp 𝑹𝒏 Sim 𝑷𝒏 Exp 𝑷𝒏 

1 0.5412 0.54835 2.1237 2.1790 

2 0.4066 0.41748 2.6478 2.7378 

3 0.3401 0.34996 2.9345 3.0162 

4 0.2968 0.30718 3.1171 3.1897 
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𝑛 reorder cycles by the parameter 𝑏, and taking the total sum with parameter 𝑐. 
Using the sample space as a guide, 𝑇𝐶(1) is therefore calculated as: 
 

𝑇𝐶(1) = 𝐺1𝑏 + 𝑃1ℎ + 𝑐 
 
𝑇𝐶(2) can similarly be calculated by using its corresponding sample space: 
 

𝑇𝐶(2) = (𝐺1 + 𝐺2 + 𝑆1𝐺1)𝑏 + (𝑃1 + 𝑃2 + 𝑆1𝑃1)ℎ + 𝑐 
 

As it becomes quite cumbersome to continually use the sample space to 
deduce the total cost function, a recursive formulation can be used for the total 
cost of higher PRRPs. This relationship is illustrated in Theorem 1 below. The 
relationship arises from how additional reorder cycles double the previous 
PRRP’s sample space. For example, a Three-Cycle PRRP sample space is 
comprised of eight different possible events. The first four are characterized by a 
surplus in the first reorder cycle followed by the events of a Two-Cycle PRRP. 
The remaining four events are characterized by a shortage in the first reorder 
cycle followed by the events of a Two-Cycle PRRP. The cost function of any 
PRRP can thus be calculated using the cost function of the previous PRRP. 
 
Theorem 1:  
The total cost of a PRRP of one recounting cycle with 𝑛 reorder cycles until 
recount is 
 

𝑇𝐶(𝑛) =

{
 
 

 
 ∑𝑏𝐺(𝑖) + ℎ𝑃(𝑖) + 𝑐

𝑛

𝑖=1

𝑛 = 1;

∑𝑏𝐺(𝑖) + ℎ𝑃(𝑖)

𝑛

𝑖=1

+∑𝑆(𝑗)(𝑇𝐶(𝑛 − 𝑗) − 𝑐) + 𝑐

𝑛−1

𝑗=1

𝑛 ≥ 2.

 

 
 

Scenario Analysis 

 
 To determine the value of counting inventory early, a standard set of 
parameters was chosen and systematically altered. The effect on total cost per 
reorder cycle was then documented and compared. First, the order quantity 𝑄 

was changed while keeping 𝐷 = 6, 𝜆 = 1, and 𝑟 = 14 constant. Parameters ℎ, 𝑏, 
and 𝑐 were arbitrarily set to 100. The results can be seen in Table 2. Cells 
highlighted in green show the lowest cost counting frequency for each order 
quantity. Reducing the order quantity can achieve a lower total cost than the 
expected optimal 𝑄 of 98. This illustrates the fact that, given equal cost 
parameters, the model is much more sensitive to surplus inventory than to 
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shortages. This can be explained because stockouts occur as a lost sale, so 
negative inventory does not exist. If a shortage were to occur in a reorder cycle, 
the inventory is reset to 𝑄 upon the next restock. On the other hand, if a reorder 
cycle were to end in surplus, the inventory will carry over to the next reorder 
cycle. This means that surplus inventory may be penalized by the model multiple 
times if a stockout does not occur. Counting serves to minimize the buildup of 
surplus inventory, which explains why increasing the order quantity 𝑄 
necessitates more frequent counting to achieve the lowest total cost. 

  Next, parameters ℎ and 𝑏 were changed to represent a more realistic 
scenario. Surplus cost ℎ was reduced to 25 and shortage cost 𝑏 increased to 

200. As illustrated in Table 3, the optimal order quantity 𝑄 and recounting 
frequency dramatically changes depending on the nature of the stockout, 
inventory holding, and recounting cost. Due to the higher penalty of stockout, the 
model rewards increasing the order quantity 𝑄 to minimize the probability and 

severity of shortages. Increasing the order quantity 𝑄 to 101 achieves the lowest 
cost when paired with a counting frequency of every two reorder cycles. Because 
surplus inventory will still increase over time, counting is necessary to reset the 
inventory and ensure surplus holding cost is kept to a minimum. The larger the 
order quantity is set, the more frequent counting is required. 
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Table 2. Effects of 𝑄 and 𝑛 on total cost per reorder cycle with equal cost parameters 

𝑸 𝒏 = 𝟏 𝒏 = 𝟐 𝒏 = 𝟑 𝒏 = 𝟒 𝒏 = 𝟓 𝒏 = 𝟔 

96 382.19 356.29 349.74 347.94 347.79 348.30 

97 353.88 339.42 343.53 351.64 360.69 369.76 
98 346.77 352.81 377.09 404.99 433.49 461.67 
99 360.86 397.01 451.78 510.52 570.19 629.84 
100 394.73 469.51 563.71 662.62 763.13 864.24 
101 445.91 565.68 705.49 850.60 997.82 1,146.07 
102 511.35 680.04 868.87 1,063.16 1,259.71 1,457.40 
103 587.88 807.43 1,046.68 1,291.21 1,537.90 1,785.69 
104 672.58 943.59 1,233.59 1,528.54 1,825.51 2,123.49 

𝐷 = 6     𝜆 = 1     𝑟 = 14     𝒉 = 𝟏𝟎𝟎     𝒃 = 𝟏𝟎𝟎     𝒄 = 𝟏𝟎𝟎 

 
 

Table 3. Effects of 𝑄 and 𝑛 on total cost per reorder cycle with varying cost parameters. 

𝑸 𝒏 = 𝟏 𝒏 = 𝟐 𝒏 = 𝟑 𝒏 = 𝟒 𝒏 = 𝟓 𝒏 = 𝟔 

96 648.71 568.79 535.11 515.73 502.94 493.83 

97 529.37 446.62 411.15 390.56 376.94 367.24 
98 433.87 353.87 321.56 304.32 294.16 287.99 
99 362.21 291.14 267.71 259.33 258.03 260.72 
100 312.82 255.91 246.05 250.87 262.53 278.01 
101 282.90 243.53 249.82 269.93 296.29 326.05 
102 269.02 248.50 271.54 307.17 348.26 392.22 
103 267.62 265.70 304.88 355.37 410.57 468.18 
104 275.40 290.97 345.30 409.85 478.55 549.35 

𝐷 = 6     𝜆 = 1     𝑟 = 14     𝒉 = 𝟐𝟓     𝒃 = 𝟐𝟎𝟎     𝒄 = 𝟏𝟎𝟎 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

 
 

Managerial Considerations 

 
 In comparison to traditional (𝑟, 𝑄) or (𝑠, 𝑆) policies, PRRP brings two 
distinct advantages. First, the true inventory value is never assumed accurate. 
This fundamental assumption of traditional policies is the main cause of 
unexpected stockouts and potential replenishment freezes. With PRRP, after an 
initial phase of gathering information to estimate average stockout and demand, 
an ideal frequency of recounting can be discovered. The true inventory value at 
any time between recounts is not assumed accurate to the inventory record. The 
second advantage PRRP holds over traditional replenishment policies is the 
consistent order quantity and period. An often-over-looked aspect of 
replenishment policies is the willingness of the supplier to maintain flexibility 
during times of distress. For example, in an (𝑟, 𝑄) policy, the order period 
fluctuates while the order quantity remains constant. If a period of unaccounted 
stock loss causes a rush-order from the supplier, the overall supply chain may 
become stressed. In many cases, the order may not be filled completely or on 
time. Similarly, an (𝑠, 𝑆)  policy often requires the supplier to dynamically change 
shipment quantities depending on how much is needed to order up to the 
maximum. PRRP may allow for better planning throughout the entire supply 
chain, as the replenishment policy maintains consistent order quantity and order 
periods between recounting cycles. 

The value of recounting was also shown through the decrease in total cost 
of PRRPs with higher count-frequencies. While other strategies to address IRI 
exist, RFID and cycle-count programs are not applicable to all systems. PRRP is 
particularly suitable for retail environments in which the chance of theft and 
misplacement is high. In such areas, it is also unlikely that traditional barcodes 
would be replaced with expensive tracking technologies, such as RFID. PRRP 
offers a complementary method to address stock loss and inventory record 
inaccuracy with minimal up-front investment.    
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Conclusion 

 
 In this study, a new strategy for inventory replenishment was developed 
that does not assume perfect inventory record accuracy. It was found that for any 
given PRRP, the first reorder cycle has the highest chance of stockout. 
Subsequent reorder cycles reduce stockout probability at the cost of holding 
extra inventory. This continues indefinitely with average extra inventory 
increasing every reorder cycle. Once a recount is issued, the inventory may be 
reset to its original level. Surprisingly, this means that initiating a recount will 
increase the chance of stockout due to depletion of the extra inventory. The 
optimal trade-off between cost of stockouts, cost of excess inventory and cost of 
recounting was shown possible to be calculated through use of recursive 
formulation. 
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