
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

8-2021

Development of an Encrypted Wireless System for Body Sensor Development of an Encrypted Wireless System for Body Sensor

Network Applications Network Applications

Kendra Anderson
kander68@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Anderson, Kendra, "Development of an Encrypted Wireless System for Body Sensor Network Applications.
" Master's Thesis, University of Tennessee, 2021.
https://trace.tennessee.edu/utk_gradthes/6155

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F6155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=trace.tennessee.edu%2Futk_gradthes%2F6155&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Kendra Anderson entitled "Development of an

Encrypted Wireless System for Body Sensor Network Applications." I have examined the final

electronic copy of this thesis for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Master of Science, with a major in Electrical

Engineering.

Nicole McFarlane, Major Professor

We have read this thesis and recommend its acceptance:

Aly Fathy, Garrett Rose

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Development of an Encrypted

Wireless System for Body Sensor

Network Applications

A Thesis Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Kendra Anderson

August 2021

© by Kendra Anderson, 2021

All Rights Reserved.

ii

DEDICATION

To my family.

iii

Acknowledgments

First, I would like to express my sincere gratitude to Dr. Nicole McFarlane for her guidance,

support, and patience. Her deep knowledge and passion for the field has always encouraged

and motivated me. Not only has she been my advisor during my master’s program, but she

has been an incredible mentor and role model.

I would like to thank my committee members: Dr. Aly Fathy and Dr. Garrett Rose

for their insightful questions and comments of my thesis. I would also like to thank Dr.

Fathy for his support throughout my academic career so far, and for providing equipment

for measurements. I would like to thank Dr. Garrett Rose as well for his support with the

probe station, and to Ryan Weiss, who helped me multiple times with the probe station.

I am deeply grateful for my family, who always offered their unwavering support and

belief in me. I would like to especially thank my grandmother, Betty Taylor, my mother,

Cindy Anderson, and my father, Wally Anderson, for their unconditional love and unending

support.

I would like to thank my MLAB colleagues and all the people I have worked with

during my time at UT: Bennett Waddell, Matthew Smalley, Ava Hedayatipour, Shaghayegh

Aslanzadeh, Aminul Haghue, Zakaraya Hamdan, Kelli Determan, Farshid Tamjid, and other

lab-mates in MK540 and MK538. I will always cherish my memories of long hours working on

projects, eating lunches, hallways talks, and more. I would like to extend a special thank you

to two of my co-authors, Farshid Tamjid and Ava Hedayatipour, for their valuable assistance

in different projects.

iv

Abstract

Wireless body area networks (WBAN), also called wireless body sensor networks (WBSN),

consist of a collection of wireless sensor nodes used to monitor and assess various human

physiological conditions, which can then be used by healthcare professionals to help them

make important healthcare decisions. They can be used to prevent disease, help diagnosis a

disease, or manage the symptoms of a disease. An extremely important aspect of WBAN is

security to protect a patient’s healthcare information, as a hacker could potentially cause fatal

harm. Current security measures are implemented in software at the MAC layer and higher,

not in the physical layer. Previous research demonstrated a chaotic encryption cipher to add a

layer of security in the physical layer. This cipher exploits different properties of the Lorenz

chaotic system to encrypt and decrypt digital data. Decryption involved synchronizing

two chaotic signals to recover original data by sharing a state between the transmitter

and receiver. In this thesis, we further develop the encryption system by implementing

wireless capabilities. We use two approaches: the first by using commercially available

wireless microcontrollers that communicate using Bluetooth Low Energy, and the second

by the design and fabrication of a dual-band low noise amplifier (LNA) that can be used

in a receiver for WBANs collecting data from implantable and on-the-body sensors. For

the first approach, a custom Bluetooth Low Energy profile was created for streaming the

analog encrypted signal, and signal processing was done at the receiver side. For the second

approach, the LNA operates at the Medical Implant Communication System (MICS) band

and the 915 MHz Industrial, Scientific, and Medical (ISM) band simultaneously through

dual-band input and output matching networks.

v

Table of Contents

1 Introduction 1

1.1 Wireless Body Sensor Networks . 1

1.1.1 Communication Techniques . 2

1.2 Previous Work . 3

1.3 Organization . 6

2 Literature Review 8

2.1 Wireless Body Area Network . 8

2.2 Security . 9

2.3 Multi-Band LNAs . 12

3 Wireless Module 16

3.1 Background . 16

3.1.1 OSI Model . 16

3.1.2 Bluetooth 5 Stack . 18

3.2 System Implementation . 26

3.2.1 Hardware . 26

3.2.2 Software . 32

3.3 Results . 34

3.3.1 System Overview . 34

3.3.2 Performance . 36

4 CMOS Low Noise Amplifier 41

vi

4.1 Background . 41

4.1.1 Radio Frequency Concepts . 41

4.1.2 IEEE 802.15.6 Standard . 45

4.2 Design and Simulation . 46

4.2.1 Design . 46

4.2.2 Simulations . 50

4.3 Results . 52

5 Conclusions 59

5.1 Future Work . 61

Bibliography 63

Appendices 69

A Application Code . 70

A.1 cipherService.h . 71

A.2 cipherService.c . 74

A.3 project zero.c . 86

A.4 host test appc.c . 93

A.5 icall hci tl.c . 95

B Low Noise Amplifier Layout and Testing . 99

B.1 Pin-Out . 99

B.2 A Note for Future RFIC Chips . 101

Vita 102

vii

List of Tables

3.1 A comparison of the different PHY options in BLE-5. [39] 27

4.1 A summary of the Monte Carlo analysis. 53

1 Added System Configuration Tool Settings for the Transmitter’s Code

(Project Zero). 70

2 Added System Configuration Tool Settings for the Receiver’s Code (Host Test

App). 70

3 Pad Connections . 99

viii

List of Figures

1.1 The Butterfly attractor from plotting x vs. y of the Lorenz function. 4

1.2 TS-CSK Circuit. 7

2.1 Output Matching Network (OMN) Approaches [38]. 15

3.1 OSI Model. [40] . 17

3.2 BLE 5 Stack. [39] . 19

3.3 GAP State Diagram. [39] . 21

3.4 Data units in the BLE-5 Stack. 23

3.5 L2CAP Data Flow. [39] . 25

3.6 The operational amplifier circuits. 29

3.7 Signal extraction circuit. 31

3.8 The custom BLE service. 33

3.9 Block diagram of the whole system. 35

3.10 Set-up of the system. 35

3.11 Experimental Results. 37

3.12 Frequency Domain of the Results. 38

3.13 Frequency domain of the input signal. 39

3.14 A breakdown of power consumption. 39

4.1 Scattering Parameters for a 2-Port Network. 43

4.2 Smith Chart. [41] . 43

4.3 LNA Schematic. 47

4.4 Gain and noise figure circles of amplifier without matching networks. 49

ix

4.5 The model for the input matching network. 49

4.6 Simulated results of return loss, gain, and NF. 51

4.7 Monte Carlo results for S21 and NF at (a) 403.5 MHz and (b) 915 MHz. . . 53

4.8 Chip Photomicrograph. 54

4.9 Fabricated PCB for the LNA. 54

4.10 Setup to Probe Station. 56

4.11 The RF and DC probe connections on the chip. 56

4.12 Experimental Results. 57

1 Pin-out of the LNA chip. 100

x

Chapter 1

Introduction

1.1 Wireless Body Sensor Networks

Wireless sensor networks (WSN) have been a huge advancement in technology and have

transformed the modern world. Wireless sensor networks consist of a collection of sensor

nodes that are used to monitor and detect information, and then send that information

to the outside world. Sensor nodes usually consist of a sensor, a microcontroller, a radio

transceiver, a battery, and possibly external memory. They are used in various applications

such as agriculture, traffic monitoring, fitness and wellness, military, medical, and social

networking. Some specific application examples are vineyard monitoring, bridge monitoring,

and animal monitoring [1]. Wireless body sensor network (BSN), also referred to as body area

network (BAN), is a type of wireless sensor network focused on applications with the human

body. Sensor nodes are placed around, on, or inside of the body to monitor physiological

conditions. The collected data can be used by medical professionals to make important

healthcare decisions. BSNs are typically used to track a patient over time in order to observe

and detect any adverse event in real time, allowing real time decision making and intervention

[2].

1

1.1.1 Communication Techniques

There are different protocols that a wireless sensor node can use to communication data. The

most common are Bluetooth Low Energy (BLE), Zigbee, and the IEEE 802.15.6 standard.

The IEEE 802.15.6 is the newest standard for body area networks and is recommended

for BAN applications; however, the technology for this standard is premature and under-

developed.

Bluetooth Low Energy (BLE)

The Bluetooth Low Energy protocol was introduced in version Bluetooth 4.0, and is branded

as ”Bluetooth Smart.” The main difference from classic Bluetooth is that it consumes less

power, making it suitable for cell phones, wearable hardware such as fitness trackers, etc.

At it’s core, Bluetooth consists of the host and the controller. The host defines the upper

layers of the protocol, and the controller defines the lower layers of the protocol, such as

the radio and link manager layers. BLE sends radio signals at 2.4 GHz and uses Gaussian

frequency shift modulation. There are 40 channels between 2.402 and 2.480 GHz, each with

2 MHz bandwidth, that BLE can operate and send data on. To avoid interference with other

protocols that use the 2.4 GHz band, such as Wifi and Zigbee, BLE uses a frequency hopping

technique, called frequency hopping spread spectrum (FHSS), to hop between channels if

there is any interference.

Zigbee

Zigbee is a communication protocol with low power, low data rate, and short range, and is

specially built for sensor networks. It supports up to 65000 devices in its network. Zigbee

networks consist of a coordinator, routers, and end devices. A coordinator is the root of the

network, and routers are intermediate nodes between the coordinator and end devices. Zigbee

network topolgies include star, mesh, tree, and cluster tree. The star topology contains no

routers. Mesh and tree topologies have routers; however, mesh requires every node to be

connected to every other node except end devices. Unlike mesh topology, the routers are not

2

interconnected in the tree topology. Clustered tree topology means routers are connected to

other routers to extend the network range.

Zigbee can operate at 915 MHz or 2.4 GHz. At the 915 MHz band, it has 10 channels

between 902-928 MHz spaced 2 MHz apart; at the 2.4 GHz band, it has 16 channels between

2.4-2.4835 GHz spaced 5 MHz apart. To avoid interference with other protocols, Zigbee uses

direct sequence spread spectrum (DSSS), which spreads the signal over a wider bandwidth.

802.15.6 Standard

The first standard specifically for body area networks (BAN) is the IEEE 802.15.6 standard

[3], which supports low power, short-range, and highly reliable communication. This

standard defines multiple frequency bandwidths for the physical layer, which includes

human body communication (HBC: 21 MHz), narrowband communication (NB: 402-405,

420-450, 863-870, 902-928, 950-958, 2360-400, and 2400-2483.5 MHz), and ultra-wideband

communication (UWB: bandwidth - 499.2 MHz, 10 center frequencies ranging from 3.5 MHz

to 10 MHz). This standard was published in 2012, and research relating to this standard

are still underdeveloped.

1.2 Previous Work

Previously, a cipher was developed using discrete components that utilized time-scaling

chaotic shift keying [4, 5]. This system is based on the Lorenz function, which is a

mathematical model defined as,

ẋ = σ(y − x)

ẏ = (β − z)x− y

ż = xy − ρz

(1.1)

where σ, β, and ρ are real positive values, and only certain relations result in a chaotic

system. A plot of the system is shown in Fig. 1.1. The system can be bounded when

meeting certain conditions, and a small change in initial conditions results in significantly

different outcomes and trajectories. These properties can be exploited for an encryption

3

Figure 1.1: The Butterfly attractor from plotting x vs. y of the Lorenz function.

4

algorithm. Two chaotic systems can be synchronized and their trajectories matched, known

as chaotic synchronization, which can be exploited for decryption algorithms. Chaotic shift

keying (CSK) is the encryption/decryption algorithm that uses these two properties, and

the system equations are,

ẋ1 = σ(x2 − x1) ż1 = σ(z2 − z1)

ẋ2 = (β(m)− x3)x1 − x2 ż2 = (β0 − z3)x1 − z2

ẋ3 = x1x2 − ρx3 ż3 = x1z2 − ρz3

(1.2)

In these equations, the transmitter states are x1, x2, and x3 and the receiver states are

z1, z2, and z3. β is the modulator. x1 is the encrypted signal and the shared state with the

receiver.

The CSK algorithm is vulnerable to the return map attack, where the local minimum and

maximum with respect to time can be monitored to discover time-varying characteristics. To

protect against this attack, a time scaling factor, λ(x,m), is added to create a time-scaling

chaotic shift keying algorithm. The message m is a digital signal that can be 0 or 1. The

system equations are,

ẋ1 = σ(x2 − x1)λ(x,m)

ż1 = σ(z2 − z1)λ(z, 0)

ẋ2 = ((β(m)− x3)x1 − x2)λ(x,m)

ż2 = ((β(m)− z3)x1 − z2)λ(z, 0)

ẋ3 = (x1x2 − ρx3)λ(x,m)

ż3 = (x1z2 − ρz3)λ(z, 0)

(1.3)

where,

λ(x,m) =

 λm if dx = 0

λ1−m if dx = 1

 (1.4)

where d(x) is the decision engine function, which uses a series of logic gates to perform a λ

selection and is a function of the message signal, time, and the states of the system.

5

The full circuit is shown in Fig. 1.2. An algorithm is used to extract the original

information signal, which uses periodic averaging, thresholding, and the shared state. More

details regarding this system can be found in [4].

1.3 Organization

In Chapter 2, a literature review on wireless sensor nodes, chaotic ciphering, and multi-band

low noise amplifiers. Chapter 3 details the system implementation of the wireless chaotic

encryption cipher. Chapter 4 details the design, fabrication, and results of the dual-band

LNA. Finally, Chapter 5 concludes the thesis and presents possible future work.

6

Figure 1.2: TS-CSK Circuit.

7

Chapter 2

Literature Review

2.1 Wireless Body Area Network

Even though wireless body area network technology is in a primitive stage, it is a hot topic

in research and numerous papers are dedicated on either one aspect of a sensor node, such

as the transceiver or sensor, or the entire functioning sensor node is presented to use in

WBANs. Sensor nodes consist of the sensors, a micro-controller, a radio transceiver, and

usually a battery.

A wearable sensor node was demonstrated in [6] that used electrocardiography (ECG) and

photolenthysmography (PPG) sensor modules, an energy harvesting module, a low-power

microcontroller, and a Bluetooth Low Energy module. They used a photovoltaic energy

source to extend the battery life of the node. In [7], the presented sensor node contains

an accelerometer, temperature sensor, and pulse sensor. The core microcontroller is an

ATmega328P, and a Bluetooth Low Energy module is used to transmit data to a smartphone.

The sensor node contains a flexible solar panel as a power source for energy harvesting, and

stores energy is a supercapacitor to extend battery life. Experimental results confirm that

the sensor node can operate autonomously for 24 hours, as long as it gets some sunlight

everyday. A zigbee-based wireless sensor network is presented in [8], using sensor nodes

that consist of a physiological parameter sensor (heart rate), a MSP430 microcontroller,

and a Zigbee transceiver. The system demonstrates the potential of remote healthcare

monitoring. A sensor node for glucose monitoring is presented in [9]. The node consists

8

of an optical glucose sensor, an energy harvesting unit, an energy storage element, and a

wireless microcontroller that uses Bluetooth Low Energy.

These examples are just a few found in literature about wireless sensor nodes and/or

wireless sensor networks. However, the only security measures that the systems take are

within the communication protocols. Most encryption efforts outside of the communication

protocol, if any, are done through software at the MAC layer or higher.

Combining chaos to wireless sensor networks, most work found in literature focuses on

software chaotic encryption algorithms. In [10], a fast reaching finite time synchronization

approach is verified in numerical simulation for chaotic systems, and its application to

medical image encryption is explored. Secret keys are generated from synchronized chaotic

systems, and an adaptive terminal sliding mode tracking approach is used to synchronize

the chaos at the receiver and transmitter ends. A block encryption algorithm is presented

in [11] that uses chaotic mapping along with other different types of mapping. Lower power

consumption make it potentially suitable for wireless network applications.

2.2 Security

The two types of encryption are symmetric key encryption and asymmetric key encryption.

Symmetric-key ciphers use the same private key for encrypting and decrypting data.

Although it is a fast method of encryption, it depends on the sender exchanging the key

with the receiver [12]. Asymmetric-key ciphers have one public key used for encryption and

one private key used for decryption, where the private key is only known by the receiver

[13]. One common way of hacking the cipher is through brute force method, where all of

the possible combinations are tried until the right key is found to read the encrypted data.

Other methods are through side-channel attacks, where the attacks exploit a system error

in the cipher, or cryptanalysis, where a flaw in the encryption algorithm is exploited [12].

Cryptography is a fundamental part of all online communication and modern day

computers. Various different algorithms exist that are pivotal to modern day technology and

communication, utilizing asymmetric-key encryption. Once large quantum computers exist,

many of these cryptosystems are expected to fail [13]. Classic computers relay on a binary

9

physical state of zero or one, called a bit; quantum computers relay on a particle’s quantum

state, known as a qubit. Qubits do not have a defined state, but rather a superposition of

multiple states that simultaneously exist and are entangled together. Some companies have

already made strives towards successful quantum computing. For example, IBM made a 5-

qubit processor in 2016, and have continued upgrading the qubit count since then. Google,

announced a 72-qubit processor [14]. Since quantum computing is on the horizon, security

methods other than symmetric and asymmetric security are gaining importance. This is

because quantum computing has the capacity to break cryptography keys using brute force

method where it was not previously possible before using modern day computers. Chaotic

ciphering is an alternative method of encryption that can implemented with low power

electronics.

Communication systems that utilize chaotic encryption are scarce in literature. While

efforts have been made to implement a chaotic communication system in digital and analog

electronics, most implementations are software-based. Even rarer are the chaotic circuit

implementations that have been constructed or fabricated. Because a chaotic system is very

sensitive to initial conditions, most of the demonstrated circuits in literature had problems

with accuracy due to mismatch and variance in component parameters.

In 1993, circuit implementations of the Lorenz chaotic system presented and demon-

strated for the use of encryption for communication applications [15]. Two approaches were

presented. First, the data was masked with a chaotic signal, and the receiver regenerated the

mask to subtract it from the received signal and recover the data. Second, the coefficients

of the chaotic system were modulated in the transmitter and the receiver detected the

synchronization error. Since then, some circuit designs have been presented in FPGAs,

using discrete components, and fabricated at the IC level.

One of the first experimentally verified chaotic encryption ICs is demonstrated in [16]

where they implement a monolithic chaotic oscillator based on Chua’s model for chaotic

systems. The design incorporated a nonlinear resistor. A multiscroll chaotic oscillator is

presented in [17] by using floating gate MOSFETs to implement the nonlinear function, and

a later paper explores the limitations of this design [18]. Another experimentally verified

cryptography IC is found in [19] that operates at the baseband level and uses a Lorenz based

10

chaotic system. The design implements differential circuits that implement mathematical

functions to build the chaotic system. In [20], a chaotic oscillator is presented that uses

a four-dimensional model of chaos from combining the Lorenz and Stenflo equations. The

conditions for synchronization are defined, which can be exploited for decryption. In [21],

a double-scroll chaotic system is implemented using OTAs. In [22], two designs of the Lu

chaotic oscillator were presented.

One work in literature that incorporates chaotic-based encryption with bio-medical

devices is presented in [23]. The work presents a symmetric encryption method that avoids

exchanging the keys wirelessly. Instead, a chaotic system is used to generate pseudo-

random keys from the preset initial conditions in the transmitter and receiver. Although this

implementation uses chaotic systems, it is still considered a type of symmetric key ciphering

that has a key length of 128 bits and is potentially breakable through quantum computing.

FPGA implementations of various chaotic-based systems have been presented in litera-

ture. An advantage of FPGAs is that there is no mismatch between the transmitter and

receiver, which has been a problem in different implementation platforms due to the chaotic

system’s sensitivity to initial conditions. The only noise depends on noise sensibility [13].

For example, [24] presents an FPGA implementation of the Lorenz’s chaotic generator,

and [25] presents an FPGA implementation of Chua’s chaotic system. In [26], a wireless

transmission system is presented that uses chaotic encryption with an A5/1 algorithm on an

FPGA platform. It uses a SIM300 module to realize wireless transmission. Even though this

system is chaotic-based, the chaotic systems are not synchronized and the wireless module

does not stream any data.

Implementations of chaotic-based systems can also be found using discrete components.

In [27], a Lorenz-based discrete circuit is implemented using a master transmitter and slave

receiver. In [28], a Lorenz design consists of analog multipliers, operational amplifiers, and

passive elements as discrete components. It improves the Lorenz system by using an active

control method so that the synchronization error system can be stabilized from the origin.

11

2.3 Multi-Band LNAs

Multiple strategies exist for designing an LNA that operates in two or more frequency bands.

One strategy is to design an LNA for each desired frequency band and then put the LNAs

in parallel with one another. While this offers the advantage of optimizing the performance

of each LNA, it comes at the expense of increased power, area, and receiver complexity.

Another strategy is to use wideband LNAs that cover a range of frequencies. Wideband

LNAs are used for both multi-band and multi-mode receivers where the receivers can satisfy

more than one standard protocol. Also, the ultra-wide band (UWB) frequency band is from

3.1 to 10.6 GHz, which support high data rate and bandwidth at low range, low energy

levels [29]. For these reasons, many research efforts have been made to develop and improve

wideband LNA design. Two of the biggest considerations when designing a wideband LNA

are wideband input matching and linearity. Wideband input matching can be done with a

common gate (CG) stage or a common source (CS) stage as the input stage. The common

gate stage is relatively easier to to get wideband input matching; however, it has lower gain

than its CS counterpart and degrades the noise figure (NF) of the whole circuit [30]. In a

conventional CG LNA stage, the input matching network consists of an input inductor L1

and the input transistor gate-source capacitance Cgs1, which create a resonance at,

ω0 = 1
2π
√
Cgs1L1

(2.1)

when neglecting load impedance. A low Q-factor results in wideband impedance matching

[31], and the resistive 50 Ω matching is set by the transconductance of the input transistor,

gm = 1
Rs

= 1
50 (2.2)

assuming channel length modulation is neglected [32]. A CS stage has higher gain and better

NF than a CG stage, but it is harder to achieve wideband input matching. Typically, a CS

stage is used with inductive degeneration or resistive feedback. The input impedance of a

CS stage with inductive degeneration is [32],

12

Zin = gmL1

Cgs1
+ L1s+ 1

Cgs1s
(2.3)

where gm is the transconductance of the input transistor, L1 is the inductive degeneration,

and Cgs1 is the gate-source capacitance of the input transistor. For input matching, the real

term is set equal to 50 Ω and an input matching network is required to cancel the reactance of

Eq. 2.3 at the frequency range of interest. A CS stage with resistive feedback is similar to the

CG stage in that the resistive 50 Ω matching is set by Eq. [32]. However, the resistor degrades

noise figure by contributing the input noise. Because wideband LNAs allow interference from

unwanted covered frequeny ranges, linearity is especially important and can affect overall

performance. One common way to improve linearity is by using differential circuits to cancel

out the even order harmonics [32]. Another common method is the multiple gated transistors

method (MGTR), which adds a transistor in parallel with the main transistor and biases it

in subthreshold in order to cancel out the second order transconductance parameters of the

two transistors and therefore improve linearity. Examples of this method are found in [33]

and [34].

Although not as common in recent literature, another approach to designing a multi-band

LNA is use of CMOS switches to change the operating frequency. The switches are turned

on and off to add or remove different components in the matching networks, changing the

resonance frequency and therefore the frequency band operation by doing so. The advantages

of this approach are that they LNAs can have optimal performance at each desired frequency

bands while rejecting unwanted frequencies. The disadvantages are that the LNA is limited

to one frequency band at a time, and the CMOS switch adds parasitics to the circuit that

affect circuit operation in both on and off states. When the switch is on, it acts like a resistor

whose value is dependent on the transistor width. Too high of a resistance may result in the

matching network not being affected by the added components, and too low of a resistance

may result in a lowered Q factor of the matching network [32]. When the switch is off, it acts

like a capacitor, which will shift the resonance frequency. A few examples of this approach

are found in [35], [36], and [37].

13

The use of more complicated matching networks can be used to create multiple resonance

frequencies of the desired bands. This approach has the advantage of operating at the desired

bands simultaneously and rejected unwanted frequencies at the expense of more complicated

matching networks. This approach is more commonly used for dual band operation. For

output matching, the two most common matching networks are a parallel combination of

bandpass and bandstop filters and two bandpass filters connected in series. In the former, the

bandpass filter allows a large frequency range to pass, and the bandstop filter cuts that range

in the middle to create break the passband into two, as shown in Fig. 2.1a. In the latter,

two separate bandpass filters create the two resonances at the desired frequency bands, as

shown in Fig. 2.1b. Input matching networks can range from any combination of filters or

matching network configurations such as the L-shape, T-shape, π-shape matching networks.

14

(a) OMN Approach 1 (b) OMN Approach 2

Figure 2.1: Output Matching Network (OMN) Approaches [38].

15

Chapter 3

Wireless Module

3.1 Background

This background is summarized from the TI BLE-5 User’s Guide [39].

3.1.1 OSI Model

The OSI model stands for Open System Interconnection Model, and it represents a standard

reference model for communication protocols. It illustrates how two devices communicate

with one another with 7 different layers, as shown in Fig. 3.1. The top layer is the application

layer, which contains different network applications that an end-user can use to produce data.

The data is sent to the presentation layer, where it is converted to machine language, called

translation. The bits that comprise the data get reduced, which is called compression. Then,

the data gets encrypted and sent to the session layer. The session layer has multiple roles.

This includes initializing, managing, and ending connections. It checks to see if the data is

synchronized and re-synchronizes if needed. The data continues to the transport layer, which

is responsible for segmentation/reassembly, flow control, and error control. Segmentation

takes the data from the session layer and divides it into smaller units, called segments, to

send to the network layer on the sender side; reassembly reassembles the segments from the

network layer to be able to send to the session layer on the receiver side. The Source and

Destination port numbers are added to the header. Flow control determines the amount of

16

Figure 3.1: OSI Model. [40]

17

data being transmitted or received. Error control checks data for corruption and re-transmits

data if there is an error.

The network layer is responsible for communication between networks and between hosts.

It determines the best path for data to take, which is known as routing. It is also responsible

for logical addressing, in which the sender and receiver’s IP addresses are added to the

header of the data unit. Data units in the network layer are called packets. To ensure

the data is transferred correctly over the physical layer, the packets get sent to the data

link layer. Through framing, the data link layer allows upper levels to access media and

provides a way to transmit meaningful bits to the receiver. Media access control (MAC)

addresses are added to the header of the data units, now called frames, through physical

addressing. The data link layer re-transmits any damaged or lost frames and maintains a

constant data rate from both the sender and receiver. When multiple devices are using the

same communication channel, the data link layer will determine which device has control

over the channel and for how long. Lastly, the physical layer converts the information bits

into physical signals that can be transmitted over local media. The physical layer provides a

clock for bit synchronization, defines the transmission rate, defines the device topology for a

given network, and defines the direction of data flow. Data starts at the application layer of

the sender side, flows down the layers, gets transmitted to the receiver side, and data flows

back up from the physical layer to the application layer [40].

3.1.2 Bluetooth 5 Stack

Similarly following the OSI model, an overview of the BLE-5 stack can be seen in Fig.

3.2. Profiles and applications sit on top of the Generic Access Profile (GAP) and Generic

Attribute Profile (GATT) layers. The Bluetooth stack consists of the host (software layers)

and the controller (hardware layers). The controller, host, and applications can all be

implemented in a single device, or the applications can reside on an external application

processor (AP) such as a smart phone or laptop. The GAP layer controls the connection

functionality of the device and interfaces with the application. The GATT layer provides

a framework for using the Attribute Protocol (ATT). Attributes are the smallest unit

of data that is communicated between Bluetooth devices. The Security Manager (SM)

18

Figure 3.2: BLE 5 Stack. [39]

19

provides methods to securely exchange data. Logical Link Control and Adaption (L2CAP)

provides data encapsulation services for data units traveling through the layers, and the

Host-Controller Interface (HCI) is the interface between the L2CAP and Link Layer (LL).

Generic Access Profile (GAP)

The GAP layer is responsible for procedures for device connection (establishing, maintaining,

and terminating a link) and device configuration. There are five RF states that a device

can be in: standby, advertiser, slave, scanner, initiator, and/or master (Fig. 3.3). The

standby state is an idle, unconnected device. When a device wants to connect to another

device, it sends out an advertisement on one of the designated Bluetooth channels to say

that it is a connectable device (advertiser). The other device wanting to connect looks for

advertisements by scan requests (scanner). Device discovery occurs when the advertiser sends

a scan response back to the scanner. Then, the scanner becomes an initiator and a request

to initiate a link with the advertising device is sent. After they are connected, the scanner

and advertiser become the master and slave, respectively. GAP roles include broadcaster,

observer, peripheral, and central. The broadcaster and peripheral roles are advertisers,

while the observer and the central are the scanners. The broadcaster and observer are not

connectable, while the peripheral and central can connect to each other. Devices can operate

in one or more roles and utilize one or more states.

A connection event occurs two devices send and receive data to each other. The time

between connection events is the connection interval. The slave device can deny a particular

number of connection events. This is known as called slave latency. The maximum time

span between two successful connection events is known as the supervision time-out. The

connection terminates after this time-out.

Generic Attribute Profile (GATT) and Attribute Protocol (ATT)

The GATT layer is an abstraction of the ATT layer and is used to transfer data between

connected devices. An attribute is the smallest data unit. Characteristics are made up of

attributes and data is communicated in the form of characteristics. Every attribute has a

handle, a type or Universal Unique Identifier (UUID), and permissions. A handle is the index

20

Figure 3.3: GAP State Diagram. [39]

21

of the attribute in the table, a type indicates how to interpret the data, and the permissions

enforce how an attribute can be accessed from another device. Every characteristic contains

the following attributes [39]:

• Characteristic Declaration: stores the properties, location, and type of characteristic

value

• Characteristic Value Declaration: stores the data value

• Client Characteristic Configuration: permits the GATT server to write a 0, 1, or 2

within the characteristic to allow for no updates, updates (notifications), or updates

with acknowledgements (indications), respectively.

There are two devices: GATT server and GATT client. The server device contains the

database of attributes grouped by characteristics. The GATT client communicates (reads

and writes data) with the GATT server.

In a connection between two devices, a GATT server is the device that contains the

characteristic database and the GATT client is the device that is reading or writing data

from/to the GATT server. A GATT server can independently define permissions for

each characteristic. Two permission techniques are authentication and authorization. In

authentication, characteristics cannot be read or written to until the GATT client has

undergone a pairing method that is performed within the BLE stack; in authorization,

the stack forwards any requests on the characteristics to the application layer, where the

requirements for authorization are defined. A group of characteristics is called a service, and

a group of services is called a profile, as shown in Fig. 3.4. Many profiles implement one

service, so the terms profile and service can be used interchangeably in that case.

GAP Bond Manager

The GAP Bond Manager performs pairing and bonding security processes associated with

the Security Manager (SM) protocol from the application. The module is configurable and is

responsible for the pairing process (where keys are exchanged), encrypting the link, storing

keys in the secure flash (SNV), and reconnecting if needed. The pairing methods include:

22

Figure 3.4: Data units in the BLE-5 Stack.

23

• Just Works: it just pairs

• Passkey Entry: an authenticated pairing method where one device displays a passcode

and the other inputs it

• Numeric Comparison: an authenticated pairing method where both devices show a

6-digit code and indicate if codes match

• Out of Band: devices send authentication information over an out of band channel

Logical Link Control and Adaption Protocol (L2CAP)

The Logical Link Control and Adaption Protocol (L2CAP) is responsible for transferring

data between the upper layers of the host and the link layer. It performs multiplexing,

segmentation, and reconstruction of the communicated information. The L2CAP channel

is the logical link between the protocol endpoints of the peer devices. A service data unit

(SDU) is a packet of data tha contains the raw data from the application with no headers,

while a protocol data unit (PDU) is the same packet of data but with L2CAP headers.

Fragmentation is the process of breaking down PDUs into smaller units, and recombination

is the process of reassembling the smaller units into complete PDUs. Similarly, segmentation

is the process of breaking a single SDU up into smaller segments, and reassembly is the

process of combining the smaller segments together into a complete SDU. These processes

that the L2CAP is responsible for is demonstrated in Fig. 3.5.

Host Controller Interface (HCI)

The host controller interface (HCI) is responsible for transferring data and commands

between the host and the controller elements of Bluetooth. This layer can use transport

protocols such as SPI or UART, or they can use function calls and code all within one

microcontroller (MCU). Executing this layer through transport protocols allows the ability

for the application to run on an external MCU to interface with the Bluetooth stack.

24

Figure 3.5: L2CAP Data Flow. [39]

25

Link Layer (LL) and Physical Layer (PHY)

The link layer (LL) and physical layer (PHY) have the same responsibilities as described in

the standard, general OSI model. In the Bluetooth stack, the link layer controls which of

the five RF states the device is in: standby, advertising, scanning, initiating, or connected.

When in the connected state, a device can either be a central or peripheral device. The link

layer is also responsible for scheduling, which physical channel to be on, and the length of the

data packets. The Bluetooth stack supports three different PHYs: LE 1M, 2M, and coded

PHY. LE 1M transfers data at a symbol rate and data rate of 1 Mbps, LE 2M at 2 Mbps.

One symbol is equal to one bit. Using the same transmit power, the difference between 1M

and 2M is the modulation type. In LE Coded PHY, each bit is represented by either two

or eight symbols (S2 or S8, respectively). This allows the signal range to increase, but data

throughput decreases, at a data rate of 500 kbps and 125 kbps for S2 and S8, respectively.

Table 3.1 summarizes the differences in the PHYs.

3.2 System Implementation

Portions of this section have been submitted as “A Wireless Time-Scaling Chaotic Shift

Keying Encryption System For Biosensing Systems,” to the IEEE Engineering in Medicine

and Biology Conference (EMBC), 2021.

3.2.1 Hardware

Transceiver Boards

The LAUNCHXL-CC26x2R1 evaluation board was chosen to develop the software running on

the CC2652R wireless microcontroller (MCU). This particular wireless microcontroller was

chosen because it supports Bluetooth 5.1 Low Energy and contains the same microcontroller

model that our lab has a tapeout for, the Arm Cortex-M0. In fact, the CC2642R has two

microcontrollers: the ARM Cortex-M4F that is used as the core MCU for the BLE stack and

the Arm Cortex-M0 that is used to interface with sensor data, called the sensor controller.

This allows the main MCU to consume less power by offloading some of the signal processing.

26

Table 3.1: A comparison of the different PHY options in BLE-5. [39]

27

The MCU has 352 kB of programmable flash, 256 kB of Read Only Memory (ROM), 8 kB

of cache SRAM, and 80 kB of ultra-low leakage SRAM. It offers many peripherals such as

GPIO pins, general-purpose timers, two UART, two SSI, I2C, and a real-time clock (RTC).

It contains eight channels for a 12-bit ADC with a sampling rate of up to 200 kSamples/sec.

DAC

A DAC is needed to convert the signal back to an analog signal on the receiver’s side in order

to run it back through the cipher to recover the original signal information. The BOOST-

DAC7551Q1 was chosen because it is a 12 bit, like the ADC on the transmitter side, and

is compatible with the BoosterPack layout that the transceiver evaluation boards use. The

DAC is compatible with SPI to communicate with the transceiver boards. To input data to

the DAC, a 16-bit word is loaded into the input shift register, under the control of a clock

signal SCLK. In normal mode, the first two bits are don’t care bits, the next two bits should

be low, and the rest of the bits are the data for the DAC with the most significant bit (MSB)

first. Data is loaded when the SYNC signal is low, and when the SYNC signal is brought

high again, the last 16 bits of data stored in the register and latched into the DAC register

and updates the DAC. The clock signal operates in Mode 1, meaning the clock polarity is

non-inverted (idle=0, active=1), and data is sampled at he falling edge of the clock.

Signal Processing Circuitry

A non-inverting summing amplifier was added in between the cipher output and the ADC

input on the transmitter side for two purposes: to provide a buffer before the ADC input

with low output resistance and to add a DC offset to the encrypted signal. The DC offset

moved the signal into the voltage range of required by the ADC of all positive values and in

between the range of 0 to 4.2 V. The schematic of the operational amplifier can be seen in

Fig. 3.6, and the derivation of the gain is as follows,

Vout = R4IF +R3IF

IF = VX

R3

Vout

VX
= R3+R4

R3

(3.1)

28

(a) TX Buffer

(b) RX Buffer

Figure 3.6: The operational amplifier circuits.

29

In the summing part of the amplifier, KCL at the node VY and assuming R1 equals R2 yields,

VIN−VY

R1
+ Vb−VY

R2
= 0

R1 = R2 = R

VIN

R
+ Vb

R
= 2VY

R

VY = 1
2(VIN + Vb)

(3.2)

In an ideal operational amplifier, the voltages at both inputs are equal to each other (VX =

VY). Assuming the op amp is close to ideal, the full equation after combining Eq. 3.1 and

Eq. 3.2 becomes,

VOUT =
(

1 + R4

R3

)(
VIN + Vb

2

)
(3.3)

On the receiver side, another non-inverting summing amplifier was added after the DAC

to reverse the DC offset added on the transmitter side. An RC low pass filter was added

right before the amplifier to remove the high frequency components added from the DAC,

as shown in Fig. 3.6b. It uses the resistor from the summing amplifier and adds a shunt

capacitor after the node. The gain of the RC filter can be found from using voltage division:

|VY |
|Vb|

=
| 1
jωC1
|

|R2 + 1
jωC1
|

(3.4)

The cutoff frequency is,

fc = 1
2πR1C1

(3.5)

Lastly, a difference operational amplifier was added added the receiver buffer to subtract

the two signals needed for decryption, shown in Fig. 3.7. The gain is calculated by first

doing KCL at nodes VX and VY and voltage division at VY ,

VIN1−VX

R1
= VX−VOUT

R2

VIN2−VY

R3
= VY

R4

VY = VIN2
R4

R3+R4

(3.6)

30

Figure 3.7: Signal extraction circuit.

31

then using superposition,

VIN2 = 0 : VOUT,A = −VIN1
R2
R1

VIN1 = 0 : VOUT,B = VIN2
R4

R3+R4

(
R1+R2
R1

)
VOUT = VOUT,A + VOUT,B

(3.7)

If R1 = R3 and R2 = R4, then the final gain equation can be simplified to,

VOUT = R2

R1
(VIN2 − VIN1) (3.8)

For the interface circuits, the LM741 operational amplifiers were used with 10 kΩ resistors

for all resistors. The capacitor in the low-pass filter is a 0.47 µF electrolytic capacitor. Bypass

capacitors were used as well.

3.2.2 Software

BLE Profile

A custom Bluetooth Low Energy profile was created that contains one custom service called

CipherService and two characteristics called CipherValue and StreamEN, as shown in Fig.

3.8. The service has a UUID equal to 0xBA55. The CipherValue characteristic has a

UUID of 0x2BAD and has read and notify properties. Its attributes include a characteristic

declaration, a characteristic value declaration, and a client characteristic configuration, where

the client characteristic configuration’s value allows for notifications. When notifications are

turned on, an alert will be sent to the receiver that the value has been changed, and no

response from the receiver is required. The CipherValue characteristic is used to hold and

update the value of the encrypted signal. The StreamEN characteristic has a UUID of 0x2BE,

and its attributes include a characteristic declaration and a characteristic value declaration.

The characteristic is readable and writable. It is initially set to zero. When the value ”01”

is written to it, it turns on the ADC through a callback function to record and stream data.

To turn off stream, write another value besides ”01”.

32

Figure 3.8: The custom BLE service.

33

3.3 Results

3.3.1 System Overview

Fig. 3.9 shows a block diagram of the entire cipher system, and Fig. 3.10 shows the physical

setup of the system. It starts off with a low frequency, digital signal that would be produced

by a sensor. More specifically, sensors that could be used with this system are those with

a quasi-digital output, in which information is encoded in its frequency. The encryption

module masks the digital data using time-scaling chaotic shift keying and makes it look like

a noisy, random signal. This analog signal is the input to the transmitter board, which

continuously samples it with a built-in 12-bit ADC buffer and stores it in a 16-bit unsigned

integer array storing 10 samples when the StreamEN characteristic is enabled. Once the

array is full of samples, the array is converted from type 16-bit unsigned integer to type

8-bit unsigned integer storing 20 samples, since the BLE stack transfers data in bytes. Once

converted, a notification is sent to the receiver that the value has changed and the transmitter

sends the receiver the updated data. The maximum data length that BLE can send in one

packet for notifications is 20 bytes.

On the receiver side, the Bluetooth data packet is collected and processed. After

processing the notification signal and extracting the sent data, called the payload, the receiver

converts the type 8-bit array back to type 16-bit to be able to communicate the value to the

DAC through SPI and convert it back to an analog signal. The encrypted analog signal goes

through the cipher again to get another chaotic signal for decryption, and the two signals

are subtracted in circuitry to recover the original signal information.

Bluetooth uses frequency-hopping spread spectrum to avoid interference with other

signals in the same frequency band, meaning that two devices communicate data with each

other on specific channels at specific times, and continuously hop between channels to transfer

data. This meeting is known as a connection event, and the amount of time between two

connection events is called the connection interval. In Bluetooth Low Energy, the connection

interval is between 7.5 ms to 4 s. In order to stream the data continuously and at the correct

rate, the minimum connection interval is used, at 7.5 ms.

34

Figure 3.9: Block diagram of the whole system.

Figure 3.10: Set-up of the system.

35

3.3.2 Performance

Fig. 3.11 show the final results of the system. Fig. 3.11a shows the low-frequency, digital

input signal that replicates what a biological sensor would produce. For this test, a 2.5 V, 1

Hz pulse is produced. Fig. 3.11b and fig. 3.11c show the encrypted signal at the transmitter

and receiver, respectively. The logical highs and lows are indistinguishable. The encrypted

signal at the receiver side shows the effect of sampling at 133 Hz on the signal. Fig. 3.11d

shows the recovered signal after subtracting the two chaotic signals for decryption, and the

dashed line is the fully recovered, original signal after running it through a thresholding

algorithm detailed in [4]. The parameters were the following: a weight of 0.4 and a cut of

0.15. It should be noted that the algorithm requires a previous knowledge of the message’s

frequency.

The continuous time fourier transform (CTFT) was taken for the input signal and

encrypted signals. The frequency domain of the encrypted signal is shown in Fig. 3.12,

and the frequency domain of the input signal is shown in Fig. 3.13. The CTFT of Fig. 3.11b

is shown in Fig. 3.12a, and a zoomed-in version of the same graph is shown in Fig. 3.12b.

This signal is before any sampling from the ADC, and represents the original encrypted signal

information. Fig. 3.12c shows the encrypted signal at the receiver side, after it has been

sampled by the ADC on the transmitter side and after it goes back to an analog signal by the

DAC. The sampling process adds some higher frequency components to the signal; however,

the original frequency information is still intact. The low-pass filter is added to remove

those high-frequency components, which is shown in Fig. 3.12d. The frequency information

is not lost from sampling. The slight drop in gain from the low-pass filter does affect the

recovered signal because the chaotic system is sensitive to the trajectory, so any slight change

in information will result in a change in the second chaotic signal being generated, thereby

affecting the decryption process. The result is some missed bits after decryption.

The system operates on a dual supply rail of ± 12 V and a 5 V supply rail. Total power

consumption for transmitting and receiving is 2.8 W, and a breakdown of the power can be

shown in Fig. 3.14. The largest contributor to power consumption is the encryption and

decryption modules, consuming about 80% of the power, or 1.104 W for each board. The

36

(a) Input signal. (b) Encrypted signal at the transmitter side.

(c) Encrypted signal at the receiver side. (d) Recovered signal.

Figure 3.11: Experimental Results.

37

(a) The frequency domain of the encrypted signal

at the transmitter side before sampling.

(b) A zoomed-in view of the encrypted signal’s

frequency domain (TX side).

(c) The frequency domain of the encrypted signal

at the receiver side after sampling.

(d) The frequency domain of the encrypted signal at

the receiver side after sampling and after the low-pass

filter.

Figure 3.12: Frequency Domain of the Results.

38

(a) A zoomed-out graph of the frequency domain. (b) A zoomed-in graph of the frequency domain.

Figure 3.13: Frequency domain of the input signal.

Figure 3.14: A breakdown of power consumption.

39

second largest contributor is the interfacing circuits, which consume 528 mW or 19% of the

overall power. The transmitter and ADC consume 0.034 W, and the receiver and the DAC

consume 0.021 W. Each contribute about 1% of the overall power. Power is calculated by

first measuring the current through each supply rail. For the 5 V supply rail, the current

was multiplied by the total voltage (5 V). For the dual supply rails, the higher current from

one of the rails was multiplied by the total voltage change (24 V).

Each module in the system occupies the following area: the encryption/decryption boards

occupy 131 × 56 mm2, the transceiver evaluation boards occupy 96 × 59 mm2, the DAC

occupies 51 × 31 mm2, and the interface circuits occupy 50 × 50 mm2. Since the DAC

sits directly on top of the receiver, it does not add any additional area to the system. The

effective area for the system (in a 2D configuration) is approximately 285 cm2. However, a

stacked configuration with each module would allow for a smaller area, making the effective

area of the system equal to 73.4 cm2. Further reduction in area could be obtained through

implementing the interface circuitry in SMD components on a PCB and making a custom

PCB for the transceiver module instead of using an evaluation board.

40

Chapter 4

CMOS Low Noise Amplifier

4.1 Background

4.1.1 Radio Frequency Concepts

Scattering Parameters

In microwave theory, power quantities are usually used over voltage or current qualities for

two main reasons: traditional microwave characterization relies on the amount of power that

is transferred from the preceding stage to the next, and the measurements of high-frequency

power quantities are more straightforward and easier to obtain than high-frequency voltages

or currents [32]. For these reasons, microwave circuits are characteristics by high-frequency

quantities called ”scattering parameters” (S-parameters). S-parameters allow a complicated

circuit or network to be modeled as a ”black box” or an N port network, and they quantify

how RF energy propagates through the network. When a wave encounters an impedance

discontinuity within a circuit, a fraction of the wave will be reflected and the wave continuing

through (incident wave) will lower in magnitude. The reflected wave can scatter to the other

ports of the network. S-parameters describe this response of the network to the incident

signals, and they are defined for a given frequency and system impedance. The subscripts

in the s-parameter Sij refer to the input and output path being measured; i refers to the

responding (output) port and j refers to the incident (input) port.

41

In the 2-port network shown in Fig. 4.1, the coefficients a1 and a2 represent the incident

wave and coefficients b1 and b2 represent the reflected waves. The S parameters are related

to the waves as follows:

b1 = S11a1 + S12a2

b2 = S21a1 + S22a2

(4.1)

Solving for each S-parameter:

S11 = b1
a1

∣∣∣
a2=0

S12 = b1
a2

∣∣∣
a1=0

S21 = b2
a1

∣∣∣
a2=0

S22 = b2
a2

∣∣∣
a1=0

(4.2)

where S12 is reverse gain coefficient, S21 is forward gain coefficient, S11 is input reflection

coefficient, and S22 is output reflection coefficient.

Impedance Transformation

Impedance matching is used to minimize power loss and thereby maximize power transfer.

Maximum power transfer occurs when the resistance of the load equals the resistance of the

source, and the load and source reactance cancel each other. Impedance matching is used

to transform the impedance to meet this condition as close as possible through the use of

matching networks.

Smith Chart

The Smith chart is the most widely used tool to solve transmission line problems. It also

aids in designing matching networks. Shown in Fig. 4.2, the Smith chart is a polar plot of

the voltage reflection coefficient (Γ), defined as:

Γ = ReflectedWave

IncidentWave
= ZL − ZS
ZL + ZS

(4.3)

42

Figure 4.1: Scattering Parameters for a 2-Port Network.

Figure 4.2: Smith Chart. [41]

43

where ZS is the source impedance and ZL is the load impedance from the impedance

discontinuity. It is used to convert reflection coefficients to and from normalized impedances

(or admittances) with respect to the source impedance (or admittance).

The chart contains constant resistance circles and constant reactance circles. The open

circuit is on the right side of the circle (infinite resistance) and the short circuit is on the left

side (zero resistance). The upper half of the circle is inductive due to the positive reactance,

and lower half is capacitive due to the negative reactance.

Noise

Because noise is a random process, noise is measured by its distribution of power over a

range of frequency. Thermal noise and flicker noise are the two main sources of noise for the

LNA. Flicker noise is due to fluctuations in the current when charge carriers are randomly

captured and released from traps at the silicon-silicon dioxide interface. Thermal noise comes

from heat and is dependent on temperature. The effect of noise can be modeled as either a

voltage source or current source [32]. For a resistor, the effect of noise can be modeled as a

voltage source in series with the resistor R1 or a current source in parallel with the resistor

R1, with a value of

V = 4kTR1

I = 4kT
R1

(4.4)

where V is the value voltage source and I is the value of the current source, k is Boltzmann’s

constant, and T is temperature. For MOSFETs, thermal noise can be modeled as a voltage

source in series with the gate, or a current source between the drain and source connections,

with the values of

V = 4kTγgm
I = 4kTγ

gm

(4.5)

for the voltage and current source, respectively. The excess noise coefficient γ is dependent

on the technology process, and gm is the transconductance of the transistor.

44

The contribution of noise is measured by signal-to-noise ratio (SNR), which is defined as

the signal power divided by the noise power. Another main measure of noise is the noise

figure (NF),

NF = 10log(SNRin

SNRout

) (4.6)

where SNRinin is the SNR at the input of the circuit blackbox, and SNRout is the SNR at

the output. Another definition of NF is the total noise at the output divided by the noise at

the output due to the source impedance [32], which is usually 50 Ω, making the equation,

NF = 1
4kTRs

V 2
n,out

A2
0

(4.7)

where k is Boltzmann’s constant, T is temperature (K), Rs is the source impedance (usually

50 Ω), V 2
n,out is output power, and A0 is gain.

In the receiver chain, the LNA is the largest contributor to the noise figure, as its

performance directly impacts the whole receiver’s performance. The noise figure of the

LNA directly adds to that of the receiver. The gain should be large enough to minimize

the noise contribution of the following stages, but not too large as to compromise the noise

figure and linearity [32].

4.1.2 IEEE 802.15.6 Standard

The first standard for BSNs is the IEEE 802.15.6 standard [3], which supports low

power, short-range, and highly reliable communication. This standard defines the different

frequency bands that can be used for body area networks. There are three categories

for the frequency bands: human body communication (HBC), narrowband communication

(NB), and ultra-wideband communication (UWB). One NB band is the Medical Implantable

Communication Services (MICS) band, operating between 402-405 MHz. This band is

dedicated for implantable medical devices. Other NB bands include the ISM bands 2.4

GHz and and 915 MHz. Wearable sensors most commonly use the 2.4 GHz band because

many communication protocols already operate on it, such as Zigbee, Bluetooth, and Wifi.

This band also allows for a small antenna and a small design. However, the body shadowing

45

effect can lead to significant path loss on frequencies over 1 GHz, which makes the 915 MHz

an attractive alternative [42].

The design presented is a dual-band low noise amplifier that operates between 402-405

MHz (MICS band) and between 902-928 MHz (ISM band). The 915 MHz ISM band was

chosen instead of the 2.4 GHz band in order to have less pass loss and less congestion due

to other communication protocols. The concurrent dual-band topology was chosen to be

able to operate at the desired frequencies at the same time and reject other frequency bands.

The unique combination of input and output matching networks creates an LNA competitive

with similar reported works in literature. The LNA could potentially be used in a receiver

for both implantable and wearable sensors.

4.2 Design and Simulation

Portions of this section were published in “A Concurrent MICS/ISM Dual-Band CMOS

Low Noise Amplifier for an Integrated Body Sensor Network,” IEEE Asia-Pacific Microwave

Conference (APMC), 2020.

4.2.1 Design

The low noise amplifier, Fig. 4.3, is in a current-reuse topology. Adding the second transistor

improves stability and isolation between the input and output, while ”reusing” the same

current from the first transistor. There is a trade-off that exists for the sizing of the width of

the second transistor W2. The noise power increases as the width increases, and as the width

of M2 increases, the capacitance at the node between M1 and M2 reduces. This reduced

capacitance causes noise mismatch and increased equivalent noise resistance (Rn) value [43].

For this reason, the width of M2 is the same as M1. Both transistors are biased in weak

inversion to yield a high transconductance. This can be estimated by the weak inversion

saturation equation for MOSFETS,

ID = Id0
W

L
exp(Vgs − Vth

nUt
) (4.8)

46

Figure 4.3: LNA Schematic.

47

where ID is drain current, Id0 is a function of oxide capacitance and mobility, W/L is the

aspect ratio, n is the subthreshold slope, and Ut is thermal voltage. The bias voltage applied

to bias the transistors is 0.65 V. Capacitors CO, C1, and Cb are DC blocking capacitors.

The gain and noise figure circles for each frequency band before any matching networks are

added are shown in Fig. 4.4, which were used to help design the input and output matching

networks for each band.

Input Matching Network

The input matching network combines two matching network in series. The first uses the

gate inductor Lg for the 915 MHz band and the second uses an L-shaped matching network

for the MICS band. The input impedance of a common source LNA is [32],

Zin1 = gmLs
Ct

+ j(ωLt −
1
ωCt

) (4.9)

where

Lt = Lg + Ls

Ct = Cgs1 + Cex.
(4.10)

The impedance at the MICS center frequency was calculated using Eq. 4.9 and modeled

as a capacitor and resistor in series (Fig. 4.5). A L-matching network was used to create a

second resonance and minimize the number of components.

Zin2 = Z∗in1

Zin = 50Ω.
(4.11)

To lower load impedance, the network is in shunt with the load. A DC blocking capacitor

C1 is added to prevent current flow in the input matching network. The network values are,

48

(a) Noise circles at 403.5 MHz. (b) Noise circles at 915 MHz.

(c) Gain circles at 403.5 MHz (d) Gain circles at 915 MHz

Figure 4.4: Gain and noise figure circles of amplifier without matching networks.

Figure 4.5: The model for the input matching network.

49

Rs = Re[Zin1]

Q = 2πLt

Rs

Rp = Rs(Q2 + 1)

C1 = 1
ωQRs

L1 = Rp

Qω
.

(4.12)

Output Matching Network

Two LC tanks are added in series with one another, or two bandpass filters connected in

series. Each tank produces a resonance that in-turn creates the gain. The output impedance

is,

Zout =
(
jωLI ||

1
jωCI

)
+
(
jωLM ||

1
jωCM

)
(4.13)

which, after simplifying, yields

Zout = jω(LI + LM − ω2LILMCM − ω2LICILM)
ω4LICILMCM − ω2(LICI + LMCM) + 1 (4.14)

The characteristic equation can be found from Eq. 4.14, and the solutions are [43]

ωI = 1√
LICI

ωM = 1√
LMCM

(4.15)

which is used to size the component values for the correct frequencies. The output capacitor

CO is sized to minimize S22.

4.2.2 Simulations

The equations in section II were used to derive the component values in Fig. 4.3. The design

was then simulated using Cadence’s Virtuoso Spectre in a commercial 1 poly 6 metal 180 nm

process, and simulation results are shown in Fig. 4.6. Published simulation results do not

factor in parasitic capacitances and inductances from ESD circuits, pad frame, packaging,

or wire bonds.

50

Figure 4.6: Simulated results of return loss, gain, and NF.

51

Using a 1.8 V supply rail, the LNA draws 2 mA of current. At 403.5 MHz, the input and

output return loss are -14.7 dB and -26.3 dB, respectively. The gain is 17 dB and the NF is

2.3 dB. At 915 MHz, the input and output return loss are -18.3 and -20.9 dB, respectively.

The gain is 12.7 dB and the NF is 1.7 dB.

The effects of mismatch and process variation on the RF transistors and MIM capacitors

were evaluated using Monte Carlo simulations for input and output return loss, gain, and

noise figure. Out of 250 runs, Monte Carlo analysis demonstrates that the design maintains

a competitive range for a majority of the runs. For all runs, the gain and noise figure

values stay within a competitive range. For the majority of runs, return loss stays within a

competitive range. More specifically, for 86.0% of runs, input return loss stays better than

10 dB. For (94.4%) of runs, output return loss stays better than 10 dB, and the results are

shown in Fig. 4.7 and tabulated in Table 4.1. If a fabricated design did have poor return

loss, the performance could be tweaked by adjusting the DC blocking capacitor values, which

would positively affect gain and noise figure as well.

4.3 Results

The integrated circuit (IC) was taped-out in a commercial 1 poly 6 metal 180 nm process,

and the photomicrograph can be seen in Fig. 4.8. The area of the circuit is approximately

830 × 915 µm2 within a 2 × 2 mm2 padframe. Originally, the IC was going to be directly

wire-bonded to a PCB for testing. The PCB designed in Fig. 4.9 contains matched 50 Ω

transmission lines in the RF input and output paths, the off-chip input matching network,

and the DC biasing with bypass capacitors to short the AC noise from the DC voltage

source.The input matching network for the MICS band consisted of a 56 nH inductor at

gate. The input matching network for the MICS band consisted of a 1 ρF capacitor, a 1 µF

DC blocking capacitor, and a 48 nH inductor. The changes in values were to account for the

parasitics from the pad frame and PCB board. The area for the IC was a 2.2 × 2.2 mm2

copper trace with vias to ground to connect the substrate ground to the board’s ground.

The traces for wire bonding were 200 µm away from the IC and the minimum distance of

6 mil, or 152.4 µm, wide. The distance between traces was also 152.4 µm apart. Since the

52

Figure 4.7: Monte Carlo results for S21 and NF at (a) 403.5 MHz and (b) 915 MHz.

Table 4.1: A summary of the Monte Carlo analysis.

53

Figure 4.8: Chip Photomicrograph.

Figure 4.9: Fabricated PCB for the LNA.

54

IC was shared with other circuits, the other inputs were grounded. However, the wire bond

machine was not used in the end because the machine was not working consistently, and no

successful wire bonds could be made on the PCB traces due to the lead-free HAL finish.

Future PCB boards are suggested to have an ENIG or ENIPIG finish.

The probe station was used instead of the wire bonding machine. The PCB was cut into

two so that the off-chip input matching network could still be connected to the circuit, and

the output port ground was connected to the PCB board ground, as shown in Fig. 4.10.

A total of 4 probes were used: two DC probes for the DC biasing (VDD and Vbias) and

2 RF probes for the RF input and output pins. The RF probe has 3 connections: ground,

signal, ground. Because the circuit and padframe were not designed for this, the two ground

connections were left open on the probe end, as shown in Fig. 4.11. For future designs, the

RF probe connections are spaces 100 µm apart, so the pads in the pad frame would need

to be spaced out wider to account for this, and two ground connections would need to be

placed to surround the signal connection.

The experimental results for this setup can be seen in Fig. 4.12. Fig. 4.12a and 4.12b

show the input and output return loss, respectively. The output return loss shows a dip

near the desired ISM band, but a negligible dip near the MICS band. This loss could

be explained by parasitic capacitance from the probes, which kills the MICS band return

loss and impacts the ISM band return loss. Two resonances occur at the input matching

network; however, they are not at the correct frequencies. Possible explanations could be

again parasitic capacitances affecting results along with parasitic inductances in the probes.

Also, parasitic inductance from the solder and SMAs most likely shifted results. Because the

input and output return loss is severely impacted by parasitics, the reverse and forward gain

coefficients are severely impacted as well. This explains why S12 and S21 do not resemble

simulation results, shown in Fig. 4.12c and Fig. 4.12d.

Another major factor that impacted performance was the open ground connections on

the RF probes. The length of the RF probes and cables were roughly 140 cm combined.

The wavelength of 403.5 MHz is 74.3 cm, and the wavelength of 915 MHz is 32.8 cm. This

means that the electromagnetic signals have to travel over one wavelength to reach the RF

ground on the other ends of the probes, resulting in degradation of the RF electromagnetic

55

Figure 4.10: Setup to Probe Station.

Figure 4.11: The RF and DC probe connections on the chip.

56

(a) S11 (b) S22

(c) S12 (d) S21

Figure 4.12: Experimental Results.

57

waves and negatively impacting the signal. Current draw for the chip was around 1.5 mA,

which is close to the simulated 2 mA, with the difference most likely due to variations in the

chip.

58

Chapter 5

Conclusions

This thesis detailed the first generation system implementation of a wireless chaotic

communication system that uses time-scaling chaotic shift keying, which can be used for

body sensor network applications. A streaming algorithm was developed and successfully

integrated with the Bluetooth Low Energy communication stack. Interface circuits were

designed and experimentally verified to enable integration of the encrytpion and transceiver

modules. The system adds a layer of security to WSNs on top of the security methods

that the communication protocol provides. Chaotic shift keying is an attractive real-time

encryption method because it can be implemented in hardware using analog multipliers,

operational amplifiers, resistors and capacitors using competitive power consumption to

software implementations. Typical microcontroller implementations of security systems

range from 2 W to 5 W; this proposed system consumes approximately 2.8 W. Chaotic shift

keying can also be implemented on-chip, as proposed in [13]. This means that encryption can

be taped out on the same chip as a sensor, protecting the data as soon as its produced. Power

consumption is significantly reduced in IC implementations of chaotic shift keying. Another

appealing property of this encryption method is that if an attacker wanted to decrypt the

signal, they would need to replicate the exact chaotic system. Any variation in component

values would change the system parameters and would therefore result in an inability to

recover the original message signal. A replica for IC implementation chaotic systems would

prove even more challenging, as fabrication of the IC costs thousands of dollars. If an attack

wanted to use a return map attack to recover the message signal, the time-scaling factor in

59

this implementation protects against this by obscuring the changing system characteristics

of the system.

The wireless system demonstrates that this particular encryption method can be used

for wireless body sensor networks. Many wireless body sensor networks use Bluetooth Low

Energy for their communication protocol. The main limiting factor in Bluetooth Low Energy

is a maximum streaming rate of 133 Hz, which stems from the minimum connection event

interval being 7.5 ms. Frequency domain analysis shows that the information in the frequency

spectrum is maintained after sampling and filtering. A small change in the magnitude of the

frequency information does result in occasionally missed bits due to the nature of the chaotic

system being sensitive to different trajectories. To be truly competitive with wearable sensor

nodes in literature, power and area need to be significantly reduced, which can be achieved

by integrating the entire system. The encryption method has already been integrated and

fabricated [13]. Future work will include the design and fabrication of a custom transceiver

to put on the same chip as the encryption method.

This thesis also detailed the design, fabrication, and testing of a CMOS dual-band low

noise amplifier. This design can be used in WBSN receivers that collect data from both

implantable and wearable sensors. The design is compatible with the IEEE 802.15.6 standard

for wireless body area networks. To the best of the author’s knowledge, this published

design is the only work in literature that operates concurrently at the Medical Implantable

Communication Services (MICS) band and the 915 MHz Industrial, Scientific, and Medical

(ISM) band. The design uses two LC tanks for the output matching network. For the input

matching network, an inductor was added for the first band, and an L-shaped matching

network was added for the second band. The matching networks were designed to transform

the impedance of the input and output to yield high gain and low noise figure results. The

transistors were biased in weak inversion to yield a high transconductance.

While the LNA simulation results were promising, the results did not match the

simulation. Many unaccounted for factors contributed to this. First, since the IC was

originally going to be directly wire bonded to a PCB, there was no parasitic model for

packaging or for the probes used in the probe station. The parasitic model used was

a 1 nH inductor at all of the ports (RF input, RF output, VDD, GND) for the wire

60

bonds. The ESD protection circuits from the padframe were simulated with the design

as well. Therefore, parasitic capacitance from the probes impacted performance. Parasitic

inductance from the probes probably impacted performace as well; however, the effect was

not as big as the parasitic capacitance since there was some parasitic inductance model in

the simulated design. The PCB for the input matching network also introduced significant

parasitic inductance and thereby shifting the resonances. Even though the transmission lines

were simulated in ADS after the S-parameters of the circuit was extracted from Cadence,

the effect of solder and SMAs were not included in simulation. Lastly, the RF probes used

in the probe station had a ground, signal, ground connection, which was not accounted for

in the original design. The ground signals had to be left open, which means the RF signal

did not have an immediate ground, resulting in dissipation in the electromagnetic waves. All

of these factors negatively impacted performance. However, the current draw was similar to

simulated current, showing that the transistors are working and turned on. Small resonances

in input and output return loss show potential in LNA performance if some of the above

issues were fixed. For example, packaging the IC could mitigate the effect of the ground

problem, since the RF ground would be about 2 mm apart (the length of the padframe)

instead of the length of the RF probe and cables apart. The input matching network could

be tweaked to account for shifts from solder and SMAs to produce resonances in the correct

places.

5.1 Future Work

More work can be taken to further develop this system. The following points are some

possible ideas:

1. A custom PCB can be developed to include the wireless MCU, the DAC, and the buffer

stages and signal processing circuitry. The developed code presented in this thesis can be

uploaded onto the wireless MCU. This would make the system more compact and may

improve performance due to the reduced parasitics.

2. The use of nano-fabricated electrodes can be considered to implement this system as a

wearable sensor node. Also, adding more sensors to create a fuller monitoring node.

61

3. Further research can be taken into chaotic circuit implementations in order to increase

the input frequency range of the system. In this thesis, the digital data is running at 1

Hz, which is impractical for many applications. Newer implementations of chaos need to be

explored. One possibility might be finite time chaotic systems.

62

Bibliography

63

[1] A. Forster, Introduction to Wireless Sensor Networks. Wiley-IEEE Press, 2016. 1

[2] C. C. Y. Poon, B. P. L. Lo, M. R. Yuce, A. Alomainy, and Y. Hao, “Body sensor

networks: In the era of big data and beyond,” IEEE Reviews in Biomedical Engineering,

vol. 8, pp. 4–16, 2015. 1

[3] “Ieee standard for local and metropolitan area networks - part 15.6: Wireless body area

networks,” IEEE Std 802.15.6-2012, pp. 1–271, 2012. 3, 45

[4] D. Brown, “A practical realization of a return map immune lorenz based chaotic stream

cipher in circuitry,” 2017. 3, 6, 36

[5] D. Brown, A. Hedayatipour, M. Majumder, G. Rose, N. McFarlane, and D. Materassi,

“A practical realization of a return map immune lorenz based chaotic stream cipher in

circuitry,” IET Computers & Digital Techniques, vol. 12, no. 6, pp. 297–305, 2018. 3

[6] T. Tran and W. Chung, “High-efficient energy harvester with flexible solar panel for a

wearable sensor device,” IEEE Sensors Journal, vol. 16, no. 24, pp. 9021–90282, 2016.

8

[7] T. Wu, F. Wu, J. Redouté, and M. Yuce, “An autonomous wireless body area network

implementation towards iot connected healthcare applications,” IEEE Access, vol. 5,

pp. 11413–11422, 2017. 8

[8] W. Zhang, Y. Wang, J. Zou, A. Cui, and G. Zou, “The design of wireless sensor network

calling system based on zigbee,” Information Technology, Networking, Electronic and

Automation Control Conference (ITNEC), pp. 625–628, 2017. 8

[9] M. F. Shaik and M. M. Subashini, “Implementation of wearable glucose sensor node with

energy harvesting for wireless body area network,” in 2019 5th International Conference

on Advanced Computing Communication Systems (ICACCS), pp. 624–627, 2019. 8

[10] B. Vaseghi, S. Mobayen, S. S. Hashemi, and A. Fekih, “Fast reaching finite time

synchronization approach for chaotic systems with application in medical image

encryption,” IEEE Access, vol. 9, pp. 25911–25925, 2021. 9

64

[11] L. Yi, X. Tong, Z. Wang, M. Zhang, H. Zhu, and J. Liu, “A novel block encryption

algorithm based on chaotic s-box for wireless sensor network,” IEEE Access, vol. 7,

pp. 53079–53090, 2019. 9

[12] N. Lord, “What is data encryption? definition, best practices & more.” https:

//digitalguardian.com/blog/what-data-encryption, 2020. 9

[13] A. Hedayatipour, “Design and implementation of a multi-modal sensor with on-chip

security,” 2020. 9, 11, 59, 60

[14] N. Savage, “Quantum computers compete for supremacy.” https://www.

scientificamerican.com/article/quantum-computers-compete-for-supremacy/,

2017. 10

[15] K. Cuomo, A. Oppenheim, and S. Strogatz, “Synchronization of lorenz-based chaotic

circuits with applications to communications,” IEEE Transactions on Circuits and

Systems II: Analog and Digital Signal Processing, vol. 40, no. 10, pp. 626–633, 1993. 10

[16] M. Delgado-Restituto and A. Rodriguez-Vazquez, “A CMOS analog chaotic oscillator

for signal encryption,” ESSCIRC ’93: Nineteenth European Solid-State Circuits

Conference, pp. 110–113, 1993. 10

[17] R. Trejo-Guerra, E. Tlelo-Cuautle, M. Jimenez-Fuentes, and C. Sánchez-López,

“Multiscroll oscillator based on floating gate CMOS inverter,” International Conference

on Electrical Engineering Computing Science and Automatic Control, pp. 541–545, 2010.

10

[18] R. Trejo-Guerra and E. Tlelo-Cuautle, “On the frequency limitations of fgmos

transitor-based integrated chaotic oscillators,” International Conference on Electrical

Engineering, Computing Science and Automatic Control (CCE), pp. 458–462, 2013. 10

[19] O. Gonzales, G. Han, J. de Gyvez, and E. Sanchez-Sinencio, “Lorenz-based chaotic

cryptosystem: a monolithic implementation,” IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Applications, vol. 47, no. 8, pp. 1243–1247, 2000.

10

65

https://digitalguardian.com/blog/what-data-encryption
https://digitalguardian.com/blog/what-data-encryption
https://www.scientificamerican.com/article/quantum-computers-compete-for-supremacy/
https://www.scientificamerican.com/article/quantum-computers-compete-for-supremacy/

[20] Y. Wu, Y. Yang, Y. Li, and C. Wu, “Nonlinear dynamic analysis and chip

implementation of a new chaotic oscillator,” IEEE International Conference on

Networking, Sensing and Control, pp. 554–559, 2015. 11

[21] M. Dar, N. Kant, and F. Khanday, “Realization of fractional-order doublescroll chaotic

system using operational transconductance amplifier,” Journal of Circuits, Systems and

Computers,, vol. 27, no. 1, p. 1850006, 2018. 11

[22] V. Carbajal-Gomez, E. Tlelo-Cuautle, J. Mu noz Pacheco, L. de la Fraga, C. Sanchez-

Lopez, and F. ernandez Fernandez, “Optimization and CMOS design of chaotic

oscillators robust to pvt variations,” Integration, vol. 65, pp. 32–42, 2019. 11

[23] T. Belkhouja, A. Mohamed, A. Al-Ali, X. Du, and M. Guizani, “Light-weight encryption

of wireless communication for implantable medical devices using henon chaotic

system,” International Conference on Wireless Networks and Mobile Communications

(WINCOM), pp. 1–6, 2017. 11

[24] M. Azzaz, C. Tanougast, S. Sadoudi, and A. Dandache, “Real-time FPGA

implementation of lorenz’s chaotic generator for ciphering telecommunications,” Joint

IEEE North-East Workshop on Circuits and Systems and TAISA Conference, pp. 1–4,

2009. 11

[25] A. El-Maksoud, A. El-Kader, B. Hassan, M. Abdelhamed, N. Rihan, M. Tolba,

L. Said, A. Radwan, and M. Abu-Elyazeed, “FPGA implementation of fractional-order

chua’s chaotic system,” 7th International Conference on Modern Circuits and Systems

Technologies (MOCAST), pp. 1–4, 2018. 11

[26] J. Pan, N. Qi, B. Xue, and Q. Ding, “Design and hardware implementation of FPGA &

chaotic encryption-based wireless transmission system,” First International Conference

on Instrumentation, Measurement, Computer, Communication and Control, pp. 691–

695, 2011. 11

66

[27] H. Chen, B. Liau, and Y. Hou, “Hardware implementation of lorenz circuit systems

for secure chaotic communication applications,” Sensors, vol. 13, no. 2, pp. 2494–2505,

2013. 11

[28] L. Xiong, Y. Lu, Y. Zhang, X. Zhang, and P. Gupta, “Design and hardware

implementation of a new chaotic secure communication technique,” PloS One, vol. 11,

no. 8, p. e0158348, 2016. 11

[29] O. Eslamifar and R. Shirazi, “Malek, m. and saini, s.,” International Conference on

Signal Processing and Communication Engineering Systems, pp. 157–161, 2015. 12

[30] X. Luo, W. Feng, H. Zhu, L. Wu, W. Che, and Q. Xue, “A 21-41 ghz compact wideband

low-noise amplifier based on transformer-feedback technique in 65-nm CMOS,” IEEE

Asia-Pacific Microwave Conference (APMC), pp. 92–94, 2020. 12

[31] M. Kusuma, S. Shanthala, and R. Prasanna, “A 3-6 ghz CMOS low noise amplifier with

14.8 db gain and 3 dB noise figure for UWB applications,” International conference on

Electronics, Communication and Aerospace Technology (ICECA), pp. 1430–1433, 2019.

12

[32] B. Razavi, RF Microelectronics. Prentice-Hall, 2011. 12, 13, 41, 44, 45, 48

[33] G. Cheng, Z. Li, L. Luo, and Z. Wang, “A 2–3 ghz high gain and high linearity

current-reused LNA with wideband input matching,” International Conference On

Communication Problem-Solving (ICCP), pp. 1–2, 2016. 13

[34] B. Guo, J. Chen, Y. Li, H. Jin, Y. Yang, and W. Chen, “A wideband common-gate LNA

with enhanced linearity by using complementary mgtr technique,” IEEE International

Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1540–1542,

2016. 13

[35] L. Lian, N. Noh, M. Mustaffa, A. Manaf, and O. Sidek, “A dual-band LNA with 0.18-µm

CMOS switches,” IEEE Regional Symposium on Micro and Nano Electronics, pp. 172–

176, 2011. 13

67

[36] J. Borremans, P. Wambacq, G. Van der Plas, Y. Rolain, and M. Kuijk, “A switchable

low-area 2.4-and-5 ghz dual-band LNA in digital CMOS,” European Solid-State Circuits

Conference, pp. 376–379, 2007. 13

[37] X. Xing, P. Cao, H. Feng, and Z. Wang, “A 0.9/1.8/2.4ghz-reconfigurable LNA with

inductor and capacitor tuning for iot application in 65nm CMOS,” IEEE International

Conference on ASIC (ASICON), pp. 1–4, 2019. 13

[38] S. Sattar and T. Zulkifli, “A 2.4/5.2-GHz concurrent dual-band CMOS low noise

amplifier,” IEEE Access, vol. 5, pp. 21148–21156, 2017. ix, 15

[39] T. Instruments, “Ble5-stack user’s guide.” https://dev.ti.com/tirex/explore/

node?node=AOimuSWjap.4RuDbcp7OqA__pTTHBmu__LATEST, 2020. viii, ix, 16, 19, 21,

22, 25, 27

[40] K. Thiyari and H. Pandey, “Layers of OSI model.” https://www.geeksforgeeks.org/

layers-of-osi-model/, 2020. ix, 17, 18

[41] U. Editor, “Smith chart basics.” https://www.microwaves101.com/encyclopedias/

smith-chart-basics, 2. ix, 43

[42] N. Cho, J. Bae, and H. Yoo, “A 10.8 mw body channel communication/mics dual-band

transceiver for a unified body sensor network controller,” IEEE Journal of Solid-State

Circuits, vol. 44, no. 12, pp. 3459–3468, 2009. 46

[43] S. Sattar and T. Z. A. Zulkifli, “A 2.4/5.2-GHz concurrent dual-band CMOS low noise

amplifier,” IEEE Access, vol. 5, pp. 21148–21156, 2017. 46, 50

68

https://dev.ti.com/tirex/explore/node?node=AOimuSWjap.4RuDbcp7OqA__pTTHBmu__LATEST
https://dev.ti.com/tirex/explore/node?node=AOimuSWjap.4RuDbcp7OqA__pTTHBmu__LATEST
https://www.geeksforgeeks.org/layers-of-osi-model/
https://www.geeksforgeeks.org/layers-of-osi-model/
https://www.microwaves101.com/encyclopedias/smith-chart-basics
https://www.microwaves101.com/encyclopedias/smith-chart-basics

Appendices

69

A Application Code

The base code is from Texas Instruments and developed using Code Composer Studio version

10.2.1.00009 and Sensor Controller Studio version 2.6.0.132. The base project files are Project

Zero for the transmitter and Host Test App for the receiver, both from SDK 5.10.00.48. The

additional system configuration settings that were added are summarized for the transmitter

and the receiver in Table 1 and Table 2, respectively. The subsections show the files within

the project, and the numbers are the line numbers where the code is added.

Table 1: Added System Configuration Tool Settings for the Transmitter’s Code (Project
Zero).

Added Driver Instance Name Pin Number Notes

ADCBuff CONFIG ADCBUF 0 DIO 30 –

Table 2: Added System Configuration Tool Settings for the Receiver’s Code (Host Test
App).

Added Driver Instance Name Pin Number Notes

GPIO
CONFIG GPIO SS* DIO 0 Output, Low strength,

High initial stateCONFIG GPIO CLR DIO 15

SPI CONFIG SPI MASTER

SCLK: DIO 10 Uses LaunchPad SPI

Bus hardware, three

pin mode

MISO: DIO 8

MOSI: DIO 9

*Note: DIO 0 should be externally connected to DIO 14 to connect correctly to

the DAC. The external connection avoids hardware conflict.

70

A.1 cipherService.h

1 # ifndef _CIPHERSERVICE_H_

2 # define _CIPHERSERVICE_H_

3

4 #ifdef __cplusplus

5 extern "C"

6 {

7 #endif

8

9 /* ****************************

10 * INCLUDES

11 */

12

13 /* ****************************

14 * CONSTANTS

15 */

16

17 // Service UUID

18 # define CIPHERSERVICE_SERV_UUID 0xBA55

19

20 // CipherValue Characteristic defines

21 # define CIPHERSERVICE_CIPHERVALUE_ID 0

22 # define CIPHERSERVICE_CIPHERVALUE_UUID 0x2BAD

23 # define CIPHERSERVICE_CIPHERVALUE_LEN 20

24

25 // Characteristic defines

26 # define CIPHERSERVICE_STREAMEN_ID 1

27 # define CIPHERSERVICE_STREAMEN_UUID 0x2BAE

28 # define CIPHERSERVICE_STREAMEN_LEN 1

29

30 /* ****************************

31 * TYPEDEFS

32 */

33

34 /* ****************************

71

35 * MACROS

36 */

37

38 /* ****************************

39 * Profile Callbacks

40 */

41

42 // Callback when a characteristic value has changed

43 typedef void (* cipherServiceChange_t)(uint16_t connHandle , uint8_t

↪→ paramID , uint16_t len , uint8_t * pValue);

44

45 typedef struct

46 {

47 cipherServiceChange_t pfnChangeCb ; // Called when

↪→ characteristic value changes

48 cipherServiceChange_t pfnCfgChangeCb ;

49 } cipherServiceCBs_t ;

50

51

52

53 /* ****************************

54 * API FUNCTIONS

55 */

56

57

58 /*

59 * CipherService_AddService - Initializes the CipherService service

↪→ by registering

60 * GATT attributes with the GATT server .

61 *

62 */

63 extern bStatus_t CipherService_AddService (uint8_t rspTaskId);

64

65 /*

66 * CipherService_RegisterAppCBs - Registers the application

↪→ callback function .

72

67 * Only call this function once.

68 *

69 * appCallbacks - pointer to application callbacks .

70 */

71 extern bStatus_t CipherService_RegisterAppCBs (cipherServiceCBs_t *

↪→ appCallbacks);

72

73 /*

74 * CipherService_SetParameter - Set a CipherService parameter .

75 *

76 * param - Profile parameter ID

77 * len - length of data to right

78 * value - pointer to data to write. This is dependent on

79 * the parameter ID and WILL be cast to the appropriate

80 * data type (example : data type of uint16 will be cast to

81 * uint16 pointer).

82 */

83 extern bStatus_t CipherService_SetParameter (uint8_t param , uint16_t

↪→ len , void *value);

84

85 /*

86 * CipherService_GetParameter - Get a CipherService parameter .

87 *

88 * param - Profile parameter ID

89 * value - pointer to data to write. This is dependent on

90 * the parameter ID and WILL be cast to the appropriate

91 * data type (example : data type of uint16 will be cast to

92 * uint16 pointer).

93 */

94 extern bStatus_t CipherService_GetParameter (uint8_t param , uint16_t

↪→ *len , void *value);

95

96 /* *************************************

97 ************************************** */

98

99 #ifdef __cplusplus

73

100 }

101 #endif

102

103 #endif /* _CIPHERSERVICE_H_ */

A.2 cipherService.c

1 /* ****************************

2 * INCLUDES

3 */

4 # include <string .h>

5

6 # include <icall.h>

7

8 /* This Header file contains all BLE API and icall structure

↪→ definition */

9 # include " icall_ble_api .h"

10

11 # include " cipherService .h"

12

13 /* ****************************

14 * MACROS

15 */

16

17 /* ****************************

18 * CONSTANTS

19 */

20

21 /* ****************************

22 * TYPEDEFS

23 */

24

25 /* ****************************

26 * GLOBAL VARIABLES

27 */

74

28

29 // cipherService Service UUID

30 CONST uint8_t cipherServiceUUID [ATT_BT_UUID_SIZE] =

31 {

32 LO_UINT16 (CIPHERSERVICE_SERV_UUID), HI_UINT16 (

↪→ CIPHERSERVICE_SERV_UUID)

33 };

34

35 // cipherValue UUID

36 CONST uint8_t cipherService_CipherValueUUID [ATT_UUID_SIZE] =

37 {

38 TI_BASE_UUID_128 (CIPHERSERVICE_CIPHERVALUE_UUID)

39 };

40 // streamEN UUID

41 CONST uint8_t cipherService_StreamENUUID [ATT_UUID_SIZE] =

42 {

43 TI_BASE_UUID_128 (CIPHERSERVICE_STREAMEN_UUID)

44 };

45

46 /* ****************************

47 * LOCAL VARIABLES

48 */

49

50 static cipherServiceCBs_t * pAppCBs = NULL;

51

52 /* ****************************

53 * Profile Attributes - variables

54 */

55

56 // Service declaration

57 static CONST gattAttrType_t cipherServiceDecl = { ATT_BT_UUID_SIZE ,

↪→ cipherServiceUUID };

58

59 // Characteristic " CipherValue " Properties (for declaration)

60 static uint8_t cipherService_CipherValueProps = GATT_PROP_READ |

↪→ GATT_PROP_NOTIFY ;

75

61

62 // Characteristic " CipherValue " Value variable

63 static uint8_t cipherService_CipherValueVal [

↪→ CIPHERSERVICE_CIPHERVALUE_LEN] = {0};

64

65 // Characteristic " CipherValue " CCCD

66 static gattCharCfg_t * cipherService_CipherValueConfig ;

67 // Characteristic " StreamEN " Properties (for declaration)

68 static uint8_t cipherService_StreamENProps = GATT_PROP_READ |

↪→ GATT_PROP_WRITE_NO_RSP ;

69 //| GATT_PROP_WRITE

70

71 // Characteristic " StreamEN " Value variable

72 static uint8_t cipherService_StreamENVal [CIPHERSERVICE_STREAMEN_LEN

↪→] = {0};

73

74 /* ****************************

75 * Profile Attributes - Table

76 */

77

78 static gattAttribute_t cipherServiceAttrTbl [] =

79 {

80 // cipherService Service Declaration

81 {

82 { ATT_BT_UUID_SIZE , primaryServiceUUID },

83 GATT_PERMIT_READ ,

84 0,

85 (uint8_t *)& cipherServiceDecl

86 },

87 // CipherValue Characteristic Declaration

88 {

89 { ATT_BT_UUID_SIZE , characterUUID },

90 GATT_PERMIT_READ ,

91 0,

92 & cipherService_CipherValueProps

93 },

76

94 // CipherValue Characteristic Value

95 {

96 { ATT_UUID_SIZE , cipherService_CipherValueUUID },

97 GATT_PERMIT_READ ,

98 0,

99 cipherService_CipherValueVal

100 },

101 // CipherValue CCCD

102 {

103 { ATT_BT_UUID_SIZE , clientCharCfgUUID },

104 GATT_PERMIT_READ | GATT_PERMIT_WRITE ,

105 0,

106 (uint8 *)& cipherService_CipherValueConfig

107 },

108 // StreamEN Characteristic Declaration

109 {

110 { ATT_BT_UUID_SIZE , characterUUID },

111 GATT_PERMIT_READ ,

112 0,

113 & cipherService_StreamENProps

114 },

115 // StreamEN Characteristic Value

116 {

117 { ATT_UUID_SIZE , cipherService_StreamENUUID },

118 GATT_PERMIT_READ | GATT_PERMIT_WRITE ,

119 0,

120 cipherService_StreamENVal

121 },

122 };

123

124 /* ****************************

125 * LOCAL FUNCTIONS

126 */

127 static bStatus_t cipherService_ReadAttrCB (uint16_t connHandle ,

↪→ gattAttribute_t *pAttr ,

77

128 uint8_t *pValue ,

↪→ uint16_t *pLen ,

↪→ uint16_t offset ,

129 uint16_t maxLen , uint8_t

↪→ method);

130 static bStatus_t cipherService_WriteAttrCB (uint16_t connHandle ,

↪→ gattAttribute_t *pAttr ,

131 uint8_t *pValue ,

↪→ uint16_t len ,

↪→ uint16_t offset ,

132 uint8_t method);

133

134 /* ****************************

135 * PROFILE CALLBACKS

136 */

137 // Simple Profile Service Callbacks

138 CONST gattServiceCBs_t cipherServiceCBs =

139 {

140 cipherService_ReadAttrCB , // Read callback function pointer

141 cipherService_WriteAttrCB , // Write callback function pointer

142 NULL // Authorization callback function

↪→ pointer

143 };

144

145 /* ****************************

146 * PUBLIC FUNCTIONS

147 */

148

149 /*

150 * CipherService_AddService - Initializes the CipherService service

↪→ by registering

151 * GATT attributes with the GATT server .

152 *

153 */

154 extern bStatus_t CipherService_AddService (uint8_t rspTaskId)

155 {

78

156 uint8_t status ;

157

158 // Allocate Client Characteristic Configuration table

159 cipherService_CipherValueConfig = (gattCharCfg_t *) ICall_malloc (

↪→ sizeof (gattCharCfg_t) * linkDBNumConns);

160 if (cipherService_CipherValueConfig == NULL)

161 {

162 return (bleMemAllocError);

163 }

164

165 // Initialize Client Characteristic Configuration attributes

166 GATTServApp_InitCharCfg (LINKDB_CONNHANDLE_INVALID ,

↪→ cipherService_CipherValueConfig);

167 // Register GATT attribute list and CBs with GATT Server App

168 status = GATTServApp_RegisterService (cipherServiceAttrTbl ,

169 GATT_NUM_ATTRS (

↪→ cipherServiceAttrTbl

↪→),

170 GATT_MAX_ENCRYPT_KEY_SIZE ,

171 & cipherServiceCBs);

172

173 return (status);

174 }

175

176 /*

177 * CipherService_RegisterAppCBs - Registers the application

↪→ callback function .

178 * Only call this function once.

179 *

180 * appCallbacks - pointer to application callbacks .

181 */

182 bStatus_t CipherService_RegisterAppCBs (cipherServiceCBs_t *

↪→ appCallbacks)

183 {

184 if (appCallbacks)

185 {

79

186 pAppCBs = appCallbacks ;

187

188 return (SUCCESS);

189 }

190 else

191 {

192 return (bleAlreadyInRequestedMode);

193 }

194 }

195

196 /*

197 * CipherService_SetParameter - Set a CipherService parameter .

198 *

199 * param - Profile parameter ID

200 * len - length of data to right

201 * value - pointer to data to write. This is dependent on

202 * the parameter ID and WILL be cast to the appropriate

203 * data type (example : data type of uint16 will be cast to

204 * uint16 pointer).

205 */

206 bStatus_t CipherService_SetParameter (uint8_t param , uint16_t len ,

↪→ void *value)

207 {

208 bStatus_t ret = SUCCESS ;

209 switch (param)

210 {

211 case CIPHERSERVICE_CIPHERVALUE_ID :

212 if (len == CIPHERSERVICE_CIPHERVALUE_LEN)

213 {

214 memcpy (cipherService_CipherValueVal , value , len);

215

216 // Log_info0 ("In SetParameter beofre notifications ");

217

218 // Try to send notification .

219 GATTServApp_ProcessCharCfg (cipherService_CipherValueConfig

↪→ , (uint8_t *)& cipherService_CipherValueVal , FALSE ,

80

220 cipherServiceAttrTbl ,

↪→ GATT_NUM_ATTRS (

↪→ cipherServiceAttrTbl),

221 INVALID_TASK_ID ,

↪→ cipherService_ReadAttrCB)

↪→ ;

222

223 // Log_info0 ("In SetParameter after notifications ");

224 }

225 else

226 {

227 ret = bleInvalidRange ;

228 }

229 break ;

230

231 case CIPHERSERVICE_STREAMEN_ID :

232 if (len == CIPHERSERVICE_STREAMEN_LEN)

233 {

234 memcpy (cipherService_StreamENVal , value , len);

235 }

236 else

237 {

238 ret = bleInvalidRange ;

239 }

240 break ;

241

242 default :

243 ret = INVALIDPARAMETER ;

244 break ;

245 }

246 return ret;

247 }

248

249

250 /*

251 * CipherService_GetParameter - Get a CipherService parameter .

81

252 *

253 * param - Profile parameter ID

254 * value - pointer to data to write. This is dependent on

255 * the parameter ID and WILL be cast to the appropriate

256 * data type (example : data type of uint16 will be cast to

257 * uint16 pointer).

258 */

259 bStatus_t CipherService_GetParameter (uint8_t param , uint16_t *len ,

↪→ void *value)

260 {

261 bStatus_t ret = SUCCESS ;

262 switch (param)

263 {

264 case CIPHERSERVICE_STREAMEN_ID :

265 memcpy (value , cipherService_StreamENVal ,

↪→ CIPHERSERVICE_STREAMEN_LEN);

266 break ;

267

268 default :

269 ret = INVALIDPARAMETER ;

270 break ;

271 }

272 return ret;

273 }

274

275

276 /* ****************************

277 * @fn cipherService_ReadAttrCB

278 *

279 * @brief Read an attribute .

280 *

281 * @param connHandle - connection message was received on

282 * @param pAttr - pointer to attribute

283 * @param pValue - pointer to data to be read

284 * @param pLen - length of data to be read

285 * @param offset - offset of the first octet to be read

82

286 * @param maxLen - maximum length of data to be read

287 * @param method - type of read message

288 *

289 * @return SUCCESS , blePending or Failure

290 */

291 static bStatus_t cipherService_ReadAttrCB (uint16_t connHandle ,

↪→ gattAttribute_t *pAttr ,

292 uint8_t *pValue , uint16_t *

↪→ pLen , uint16_t offset ,

293 uint16_t maxLen , uint8_t

↪→ method)

294 {

295 bStatus_t status = SUCCESS ;

296

297 // See if request is regarding the CipherValue Characteristic

↪→ Value

298 if (! memcmp (pAttr ->type.uuid , cipherService_CipherValueUUID ,

↪→ pAttr ->type.len))

299 {

300 if (offset > CIPHERSERVICE_CIPHERVALUE_LEN) // Prevent

↪→ malicious ATT ReadBlob offsets .

301 {

302 status = ATT_ERR_INVALID_OFFSET ;

303 }

304 else

305 {

306 *pLen = MIN(maxLen , CIPHERSERVICE_CIPHERVALUE_LEN - offset);

↪→ // Transmit as much as possible

307 memcpy (pValue , pAttr -> pValue + offset , *pLen);

308 }

309 }

310 // See if request is regarding the StreamEN Characteristic Value

311 else if (! memcmp (pAttr ->type.uuid , cipherService_StreamENUUID ,

↪→ pAttr ->type.len))

312 {

83

313 if (offset > CIPHERSERVICE_STREAMEN_LEN) // Prevent

↪→ malicious ATT ReadBlob offsets .

314 {

315 status = ATT_ERR_INVALID_OFFSET ;

316 }

317 else

318 {

319 *pLen = MIN(maxLen , CIPHERSERVICE_STREAMEN_LEN - offset); //

↪→ Transmit as much as possible

320 memcpy (pValue , pAttr -> pValue + offset , *pLen);

321 }

322 }

323 else

324 {

325 // If we get here , that means you ’ve forgotten to add an if

↪→ clause for a

326 // characteristic value attribute in the attribute table that

↪→ has READ permissions .

327 *pLen = 0;

328 status = ATT_ERR_ATTR_NOT_FOUND ;

329 }

330

331 return status ;

332 }

333

334

335 /* ****************************

336 * @fn cipherService_WriteAttrCB

337 *

338 * @brief Validate attribute data prior to a write operation

339 *

340 * @param connHandle - connection message was received on

341 * @param pAttr - pointer to attribute

342 * @param pValue - pointer to data to be written

343 * @param len - length of data

344 * @param offset - offset of the first octet to be written

84

345 * @param method - type of write message

346 *

347 * @return SUCCESS , blePending or Failure

348 */

349 static bStatus_t cipherService_WriteAttrCB (uint16_t connHandle ,

↪→ gattAttribute_t *pAttr ,

350 uint8_t *pValue , uint16_t

↪→ len , uint16_t offset ,

351 uint8_t method)

352 {

353 bStatus_t status = SUCCESS ;

354 uint8_t paramID = 0xFF;

355

356 // See if request is regarding a Client Characterisic

↪→ Configuration

357 if (! memcmp (pAttr ->type.uuid , clientCharCfgUUID , pAttr ->type.

↪→ len))

358 {

359 // Allow only notifications .

360 status = GATTServApp_ProcessCCCWriteReq (connHandle , pAttr ,

↪→ pValue , len , offset , GATT_CLIENT_CFG_NOTIFY);

361 }

362 // See if request is regarding the StreamEN Characteristic Value

363 else if (! memcmp (pAttr ->type.uuid , cipherService_StreamENUUID ,

↪→ pAttr ->type.len))

364 {

365 if (offset + len > CIPHERSERVICE_STREAMEN_LEN)

366 {

367 status = ATT_ERR_INVALID_OFFSET ;

368 }

369 else

370 {

371 // Copy pValue into the variable we point to from the

↪→ attribute table.

372 memcpy (pAttr -> pValue + offset , pValue , len);

373

85

374 // Only notify application if entire expected value is

↪→ written

375 if (offset + len == CIPHERSERVICE_STREAMEN_LEN)

376 paramID = CIPHERSERVICE_STREAMEN_ID ;

377 }

378 }

379 else

380 {

381 // If we get here , that means you ’ve forgotten to add an if

↪→ clause for a

382 // characteristic value attribute in the attribute table that

↪→ has WRITE permissions .

383 status = ATT_ERR_ATTR_NOT_FOUND ;

384 }

385

386 // Let the application know something changed (if it did) by

↪→ using the

387 // callback it registered earlier (if it did).

388 if (paramID != 0xFF)

389 if (pAppCBs && pAppCBs -> pfnChangeCb)

390 pAppCBs -> pfnChangeCb (connHandle , paramID , len , pValue); //

↪→ Call app function from stack task context .

391

392 return status ;

393 }

A.3 project zero.c

52 # include <ti/ drivers /SPI.h>

53 # include <ti/ drivers /GPIO.h>

54 # include <ti/ drivers / ADCBuf .h>

...

101 # include " services / cipherService .h"

102 # include "scif.h"

86

103 # define BV(x) (1 << (x))

...

115 /* ****************************

116 * CONSTANTS

117 */

118

119 # define ADCSAMPLESIZE (CIPHERSERVICE_CIPHERVALUE_LEN /2)

120

121 uint16_t sampleBufferOne [ADCSAMPLESIZE];

122 uint16_t sampleBufferTwo [ADCSAMPLESIZE];

123 uint8_t updateArray [2* ADCSAMPLESIZE];

124

125 ADCBuf_Handle adcBuf ;

126 ADCBuf_Conversion continuousConversion ;

...

163 # define PZ_SC_CTRL_READY 11 /* Sensor controller control

↪→ ready */

164 # define PZ_SC_TASK_ALERT 12 /* Sensor controller task alert

↪→ */

165 # define PZ_ADC_UPDATE 13 /* My defined message to test

↪→ */

...

481 // Sensor Controller functions

482 static void scCtrlReadyCallback (void);

483 static void scTaskAlertCallback (void);

484 static void processTaskAlert (void);

485

486 static void myProcessTask (void);

487

488 void adcBufCallback (ADCBuf_Handle handle , ADCBuf_Conversion *

↪→ conversion ,

489 void * completedADCBuffer , uint32_t completedChannel ,

↪→ int_fast16_t status);

87

...

541 // Service callback function implementation

542 // CipherService callback handler . The type cipherServiceCBs_t is

↪→ defined in cipherService .h

543 static cipherServiceCBs_t user_cipherServiceCBs =

544 {

545 . pfnChangeCb = user_cipherService_ValueChangeCB , //

↪→ Characteristic value change callback handler

546 . pfnCfgChangeCb = NULL , // No CCCD change handler implemented

547 };

548

549 /* ****************************

550 * SENSOR CONTROLLER FUNCTIONS

551 */

552

553 /* ****************************

554 */

555

556 static void scCtrlReadyCallback (void)

557 {

558 // Notify application ‘Control READY ‘ is active

559 ProjectZero_enqueueMsg (PZ_SC_CTRL_READY , 0);

560 } // scCtrlReadyCallback

561

562 static void scTaskAlertCallback (void)

563 {

564 // Notify application ‘Task ALERT ‘ is active

565 ProjectZero_enqueueMsg (PZ_SC_TASK_ALERT , 0);

566 } // scTaskAlertCallback

567

568 static void processTaskAlert (void)

569 {

570 // Clear the ALERT interrupt source

571 scifClearAlertIntSource ();

572

573 // Data Processing Here

88

574

575

576 // Acknowledge the ALERT event

577 scifAckAlertEvents ();

578 } // processTaskAlert

579

580

581 void adcBufCallback (ADCBuf_Handle handle , ADCBuf_Conversion *

↪→ conversion ,

582 void * completedADCBuffer , uint32_t completedChannel ,

↪→ int_fast16_t status)

583 {

584 uint16_t i, n;

585

586 if (completedADCBuffer == conversion -> sampleBuffer){

587 for (i = 0; i < ADCSAMPLESIZE ; i++) {

588 updateArray [n] = sampleBufferOne [i] >> 8;

589 n++;

590 updateArray [n] = sampleBufferOne [i] & 0xff;

591 n++;

592 }

593 } else if (completedADCBuffer == conversion -> sampleBufferTwo){

594 for (i = 0; i < ADCSAMPLESIZE ; i++) {

595 updateArray [n] = sampleBufferTwo [i] >> 8;

596 n++;

597 updateArray [n] = sampleBufferTwo [i] & 0xff;

598 n++;

599 }

600 }

601

602

603 ProjectZero_enqueueMsg (PZ_ADC_UPDATE ,0);

604 }

605

606 static void myProcessTask (void){

89

607 CipherService_SetParameter (CIPHERSERVICE_CIPHERVALUE_ID , 2*

↪→ ADCSAMPLESIZE , (void *) updateArray);

608 }

...

736 CipherService_AddService (selfEntity);

...

772 CipherService_RegisterAppCBs (& user_cipherServiceCBs);

...

790 // Initalization of characteristics in cipherService that are

↪→ readable .

791 uint8_t cipherService_cipherValue_initVal [

↪→ CIPHERSERVICE_CIPHERVALUE_LEN] = {0};

792 CipherService_SetParameter (CIPHERSERVICE_CIPHERVALUE_ID ,

↪→ CIPHERSERVICE_CIPHERVALUE_LEN ,

↪→ cipherService_cipherValue_initVal);

793 uint8_t cipherService_streamEN_initVal [

↪→ CIPHERSERVICE_STREAMEN_LEN] = {0};

794 CipherService_SetParameter (CIPHERSERVICE_STREAMEN_ID ,

↪→ CIPHERSERVICE_STREAMEN_LEN ,

↪→ cipherService_streamEN_initVal);

...

841 static void ProjectZero_taskFxn (UArg a0 , UArg a1)

842 {

843 ADCBuf_init ();

844 GPIO_init ();

845

846 // Initialize application

847 ProjectZero_init ();

848

849 GPIO_setConfig (CONFIG_GPIO_RLED , GPIO_CFG_OUT_STD |

↪→ GPIO_CFG_OUT_LOW);

850

90

851 ADCBuf_Params adcBufParams ;

852

853 /* Set up an ADCBuf peripheral in

↪→ ADCBuf_RECURRENCE_MODE_CONTINUOUS */

854 ADCBuf_Params_init (& adcBufParams);

855

856 adcBufParams . callbackFxn = adcBufCallback ;

857 adcBufParams . recurrenceMode = ADCBuf_RECURRENCE_MODE_CONTINUOUS

↪→ ;

858 adcBufParams . returnMode = ADCBuf_RETURN_MODE_CALLBACK ;

859 adcBufParams . samplingFrequency = 1000;

860 adcBuf = ADCBuf_open (CONFIG_ADCBUF_0 , & adcBufParams);

861

862 /* Configure the conversion struct */

863 continuousConversion .arg = NULL;

864 continuousConversion . adcChannel = CONFIG_ADCBUF_0_CHANNEL_0 ;

865 continuousConversion . sampleBuffer = sampleBufferOne ;

866 continuousConversion . sampleBufferTwo = sampleBufferTwo ;

867 continuousConversion . samplesRequestedCount = ADCSAMPLESIZE ;

868

869 if (adcBuf == NULL){

870 /* ADCBuf failed to open. */

871 GPIO_write (CONFIG_GPIO_RLED , CONFIG_GPIO_LED_ON);

872 while (1);

873 }

874

875 // // Initialize the Sensor Controller

876 // scifOsalInit ();

877 // scifOsalRegisterCtrlReadyCallback (scCtrlReadyCallback);

878 // scifOsalRegisterTaskAlertCallback (scTaskAlertCallback);

879 // scifInit (& scifDriverSetup);

880 //

881 // // Set the Sensor Controller task tick interval to 0.1 second

882 // uint32_t rtc_Hz = 10000;

883 // scifStartRtcTicksNow (0 x00010000 / rtc_Hz);

884 //

91

885 //

886 // // Start Sensor Controller task

887 // scifStartTasksNbl (BV(SCIF_ANALOG_LIGHT_SENSOR_TASK_ID));

...

1011 ADCBuf_close (adcBuf);

...

1182 case CIPHERSERVICE_SERV_UUID :

1183 user_cipherService_ValueChangeHandler (pCharData);

1184 break ;

...

1271 case PZ_SC_TASK_ALERT :

1272 processTaskAlert ();

1273 break ;

1274 case PZ_ADC_UPDATE :

1275 myProcessTask ();

1276 break ;

...

2664 static void user_cipherService_ValueChangeCB (uint16_t connHandle ,

2665 uint8_t paramID , uint16_t len ,

2666 uint8_t * pValue)

2667 {

2668 pzCharacteristicData_t * pValChange =

2669 ICall_malloc (sizeof (pzCharacteristicData_t) + len);

2670

2671 if(pValChange != NULL)

2672 {

2673 pValChange -> svcUUID = CIPHERSERVICE_SERV_UUID ;

2674 pValChange -> paramID = paramID ;

2675 memcpy (pValChange ->data , pValue , len);

2676 pValChange -> dataLen = len;

2677

2678 ProjectZero_enqueueMsg (PZ_SERVICE_WRITE_EVT , pValChange);

92

2679 }

2680 }

2681

2682 void user_cipherService_ValueChangeHandler (pzCharacteristicData_t *

↪→ pData)

2683 {

2684 switch (pData -> paramID)

2685 {

2686 case CIPHERSERVICE_STREAMEN_ID :

2687 // Do something useful with pData ->data here

2688 // -------------------------

2689 if (pData ->data [0] == 1){

2690 ADCBuf_convert (adcBuf , & continuousConversion , 1);

2691 } else if (pData ->data [0] == 2) {

2692 GATT_ExchangeMTU (0, 210, 0);

2693 } else {

2694 ADCBuf_convertCancel (adcBuf);

2695 }

2696

2697 break ;

2698 }

2699

2700 }

A.4 host test appc.c

57 # include <ti/ display / Display .h>

58 # include <ti/ drivers /SPI.h>

59 # include <ti/ drivers /GPIO.h>

...

438 static void HostTestApp_taskFxn (UArg a0 , UArg a1)

439 {

440

441 SPI_Handle masterSpi ;

93

442 SPI_Params spiParams ;

443

444 GPIO_init ();

445 SPI_init ();

446

447 // Initialize application

448 HostTestApp_init ();

449

450 GPIO_setConfig (CONFIG_GPIO_SS , GPIO_CFG_OUTPUT | GPIO_CFG_OUT_LOW

↪→);

451 GPIO_setConfig (CONFIG_GPIO_CLR , GPIO_CFG_OUTPUT |

↪→ GPIO_CFG_OUT_LOW);

452

453 GPIO_write (CONFIG_GPIO_CLR , 1);

454 GPIO_write (CONFIG_GPIO_SS , 1);

455

456 /* Open SPI as master (default) */

457 SPI_Params_init (& spiParams);

458 spiParams . frameFormat = SPI_POL0_PHA1 ;

459 spiParams . bitRate = 12000000;

460 spiParams . dataSize = 16;

461 masterSpi = SPI_open (CONFIG_SPI_MASTER , & spiParams);

462 if (masterSpi == NULL) {

463 GPIO_write (CONFIG_GPIO_LED_0 ,1);

464 GPIO_write (CONFIG_GPIO_LED_1 ,0);

465 // while (1);

466 }

467 else {

468 GPIO_write (CONFIG_GPIO_LED_0 ,0);

469 GPIO_write (CONFIG_GPIO_LED_1 ,1);

470 }

...

499 // Message

500 dealloc = HostTestApp_processStackMsg ((hciPacket_t *)

↪→ pMsg , & masterSpi);

94

...

539 SPI_close (masterSpi);

...

610 return (HCI_TL_processStructuredEvent ((ICall_Hdr *)pBuf ,

↪→ spiHandle));

A.5 icall hci tl.c

52 # include <string .h>

53 # include <ti/ drivers /SPI.h>

54 # include <ti/ drivers /GPIO.h>

...

3910 uint8_t HCI_TL_processStructuredEvent (ICall_Hdr *pEvt , SPI_Handle *

↪→ spiHandle)

3911 {

3912 return (processEvents (pEvt , spiHandle));

3913 }

...

6491 static uint8_t processEvents (ICall_Hdr *pMsg , SPI_Handle * spiHandle

↪→)

...

6520 case GATT_MSG_EVENT :

6521 pBuf = processEventsGATT ((gattMsgEvent_t *)pMsg , out_msg , (

↪→ uint8_t *)&msgLen , &allocated , spiHandle);

...

6534 if (msgLen)

6535 {

6536 if (!(pMsg ->event == GATT_MSG_EVENT && Msg -> method ==

↪→ ATT_HANDLE_VALUE_NOTI)){

6537 HCI_TL_SendVSEvent (pBuf , msgLen);

95

6538 }

6539 // HCI_TL_SendVSEvent (pBuf , msgLen);

6540 // HCI_SendControllerToHostEvent (HCI_VE_EVENT_CODE , msgLen ,

↪→ pBuf);

6541 }

...

7412 static uint8_t * processEventsGATT (gattMsgEvent_t *pPkt , uint8_t *

↪→ pOutMsg ,

7413 uint8_t *pMsgLen , uint8_t *

↪→ pAllocated , SPI_Handle *

↪→ spiHandle)

7414 {

7415 uint8_t msgLen = 0, attHdrLen = 0, hdrLen = HCI_EXT_HDR_LEN + 1;

↪→ // hdr + event length

7416 uint8_t *pBuf , * pPayload = NULL;

7417 uint8_t status = pPkt ->hdr. status ;

7418

7419 uint16_t masterTxBuffer [1];

7420 SPI_Transaction transaction ;

...

7499 case ATT_READ_RSP :

7500 {

7501 attReadRsp_t *pRsp = &pPkt ->msg. readRsp ;

7502

7503 msgLen = ATT_BuildReadRsp (& pOutMsg [hdrLen], (uint8_t *)

↪→ pRsp);

7504 pPayload = pRsp -> pValue ;

7505

7506 uint16_t i;

7507 for (i=0; i< msgLen ; i=i+2){

7508 masterTxBuffer [0] = ((uint16_t) pPayload [i] << 8)

↪→ | pPayload [i+1];

7509 transaction .count = 1;

7510 transaction .rxBuf = (void *) NULL;

96

7511 transaction .txBuf = (void *) masterTxBuffer ;

7512

7513 GPIO_write (CONFIG_GPIO_SS , 0);

7514 SPI_transfer (* spiHandle , & transaction);

7515 GPIO_write (CONFIG_GPIO_SS , 1);

7516 }

7517 }

...

7524 case ATT_READ_BLOB_RSP :

7525 {

7526 attReadBlobRsp_t *pRsp = &pPkt ->msg. readBlobRsp ;

7527

7528 msgLen = ATT_BuildReadBlobRsp (& pOutMsg [hdrLen], (uint8_t

↪→ *) pRsp);

7529 pPayload = pRsp -> pValue ;

7530

7531 uint16_t i;

7532

7533 for (i=0; i< msgLen ; i=i+2){

7534 masterTxBuffer [0] = ((uint16_t) pPayload [i] << 8) |

↪→ pPayload [i+1];

7535 transaction .count = 1;

7536 transaction .rxBuf = (void *) NULL;

7537 transaction .txBuf = (void *) masterTxBuffer ;

7538

7539 GPIO_write (CONFIG_GPIO_SS , 0);

7540 SPI_transfer (* spiHandle , & transaction);

7541 GPIO_write (CONFIG_GPIO_SS , 1);

7542 }

7543 }

...

7626 case ATT_HANDLE_VALUE_NOTI :

7627 {

7628 attHandleValueInd_t *pInd = &pPkt ->msg. handleValueInd ;

97

7629

7630 attHdrLen = ATT_HANDLE_VALUE_IND_FIXED_SIZE ;

7631

7632 // Copy request header over

7633 msgLen = ATT_BuildHandleValueInd (& pOutMsg [hdrLen], (

↪→ uint8_t *) pInd) - attHdrLen ;

7634 pPayload = pInd -> pValue ;

7635

7636 uint16_t i;

7637 for (i=0; i< msgLen ; i=i+2){

7638 masterTxBuffer [0] = ((uint16_t) pPayload [i] << 8)

↪→ | pPayload [i+1];

7639 transaction .count = 1;

7640 transaction .rxBuf = (void *) NULL;

7641 transaction .txBuf = (void *) masterTxBuffer ;

7642

7643 GPIO_write (CONFIG_GPIO_SS , 0);

7644 SPI_transfer (* spiHandle , & transaction);

7645 GPIO_write (CONFIG_GPIO_SS , 1);

7646 }

7647 }

98

B Low Noise Amplifier Layout and Testing

There are three circuit implementations within the chip: one with the output matching

network (circuit 1), one with only transistors and capacitors (circuit 2), and one with only

transistors (circuit 3). Fig. 1 shows the pin-out of the chip and Table 3 summarizes the

corresponding connection to each numbered pad.

B.1 Pin-Out

Table 3: Pad Connections

Circuit Pad Number Connection

Circuit 1

1 VDD

2 RF Input

3 RF Output

4 Source of Input NMOS

5 GND

Circuit 2

1 VDD

6 RF Output

7 Capacitor for ISM OMN

8 Source of Input NMOS

9 RF Input

10 Capacitor for MICS OMN

Circuit 3

1 VDD

11 Gate of Input NMOS

12 Source of Input NMOS

13 Drain of Second NMOS

In circuit 2, the output matching network inductor for the MICS band should be

connected between pad 1 and pad 10. The output matching network inductor for the ISM

band should be connected between pad 7 and pad 10.

99

100

Figure 1: Pin-out of the LNA chip.

B.2 A Note for Future RFIC Chips

Wire Bonding: If you want to wire bond the IC directly to the PCB, make sure the PCB

has an ENIG or ENIPIG finish.

Probe Station: The RF probes at the probe station have 3 connections: ground, signal,

ground. The connections are spaced 100 µm apart. Pads with 60 µm width and 40 µm apart

would work well for this. There is a limit to two RF probes.

101

Vita

Kendra Anderson received her B.S. degree in electrical engineering from the University of

Tennessee in 2019. Later in 2019, she joined the Mlab group at the University of Tennessee

as a research and teaching assistant pursuing her M.S. degree in electrical engineering. Her

current research interests include analog integrated circuit design, radio frequency integrated

circuit design (RFIC), RF/microwave circuits and systems, microelectronics, and wireless

body area networks.

102

	Development of an Encrypted Wireless System for Body Sensor Network Applications
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgments
	Abstract

	Table of Contents
	1 Introduction
	1.1 Wireless Body Sensor Networks
	1.1.1 Communication Techniques

	1.2 Previous Work
	1.3 Organization

	2 Literature Review
	2.1 Wireless Body Area Network
	2.2 Security
	2.3 Multi-Band LNAs

	3 Wireless Module
	3.1 Background
	3.1.1 OSI Model
	3.1.2 Bluetooth 5 Stack

	3.2 System Implementation
	3.2.1 Hardware
	3.2.2 Software

	3.3 Results
	3.3.1 System Overview
	3.3.2 Performance

	4 CMOS Low Noise Amplifier
	4.1 Background
	4.1.1 Radio Frequency Concepts
	4.1.2 IEEE 802.15.6 Standard

	4.2 Design and Simulation
	4.2.1 Design
	4.2.2 Simulations

	4.3 Results

	5 Conclusions
	5.1 Future Work

	Bibliography
	Appendices
	A Application Code
	A.1 cipherService.h
	A.2 cipherService.c
	A.3 project_zero.c
	A.4 host_test_appc.c
	A.5 icall_hci_tl.c

	B Low Noise Amplifier Layout and Testing
	B.1 Pin-Out
	B.2 A Note for Future RFIC Chips

	Vita

