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ABSTRACT 

 

As climate change produces shifts in precipitation patterns, communities will need to 

understand how the performance of green stormwater infrastructure (GSI) may be impacted. 

Bioretention cells are one of the most commonly implemented forms of GSI for their ability to 

reduce peak discharge and filter pollutants and are a vulnerable component of stormwater 

infrastructure. Projections in future climate indicate that bioretention cells may be at risk of losing 

their existing function due to deviations in precipitation frequency and intensity. General 

circulation models (GCMs) downscaled to regional climate models (RCMs) can provide climate 

change projections at a high spatial resolution but often have a degree of bias introduced during 

the downscaling process. As such, an ensemble of 10 regional climate models and 17 locations 

across the contiguous United States were evaluated to provide the widest range of potential future 

outcomes. Bioretention cells were modeled using USEPA’s Storm Water Management Model 

(SWMM) to compare observed and future performances. Observed climate data from 1999 to 2013 

were gathered from NOAA’s National Centers for Environmental Information data archive, and 

simulated future climate data from 2035 to 2049 were gathered from the North American 

Coordinated Regional Downscaling Experiment data archive. To reduce model bias, simulated 

future climate data was bias-corrected using the kernel density distribution mapping (KDDM) 

technique. Median annual rainfall and 99th percentile rainfall event depths were projected to 

increase across all 17 locations while median drying period was projected to decrease for 11 

locations, indicating fewer events with higher magnitudes of rainfall for a majority of locations. 

Correspondingly, bioretention cell performance decreased across all 17 locations. Relative percent 

changes in infiltration loss decreased between 4.0-24.0% across all 17 locations while overflow 

increased between 0.4-19.6% for 15 locations. Results suggest that bioretention cells in the 
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southern United States are at significant risk of losing their existing function while those in the 

Midwest and Northeast are at moderate risk. Bioretention cells in the western and northwestern 

United States performed the best under future climate scenarios but could still lose their existing 

function if unchanged. Most, if not all, bioretention cells across the contiguous United States will, 

therefore, require some degree of modification to maintain their existing function in the future. 

This study provides insight on future regional bioretention cell performance trends that can be used 

to add resiliency to stormwater infrastructure. 
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CHAPTER ONE 

INTRODUCTION AND GENERAL INFORMATION 

Introduction 

The effects of anthropogenic activities on the Earth’s climate are difficult to fully quantify, 

but the affiliated increased likelihood of extreme weather events (e.g., frequent floods, drought 

conditions, record-breaking temperatures) has been firmly documented (Masson-Delmotte et al. 

2018; Kaufmann et al. 2011; Rosenzweig et al. 2008). According to the National Oceanic and 

Atmospheric Administration Global Surface Temperature Dataset (Zhang et al. 2018a), the last 5 

years (2015-2019) and 8 of the last 10 years (2010-2019) have been the warmest years on record 

since global temperature records began in 1880. Additionally, using the NOAAGlobalTemp 

Dataset, Arguez et al. (2020) predicts there is a greater than 99% probability that this next decade 

(referring to 2019-2028) will be among the 10 warmest years on record; since publication of the 

article, 2019 has been ranked as the 2nd hottest year on record (Zhang et al. 2018a).  Despite this 

understanding, identifying specific impacts of climate change can be challenging due to constantly 

varying regional weather patterns. Defined by temperature fluctuations and precipitation 

frequency, intensity, and duration, regional weather patterns vary significantly by location and 

season. To understand climate change impacts at the national scale, differences in regional climate 

perturbations must be explored and understood.  

Increasingly frequent extreme precipitation events illustrate the need for demonstrable 

efforts to mitigate the worsening effects of climate change. Bishop et al. (2019) found a 40% 

increase in fall precipitation for the period 1895-2018 in the southeastern United States north of 

the Gulf of Mexico, with nearly all of the added precipitation occurring with an increased intensity. 

Additionally, the rapid acceleration of urban growth across the planet has led to a greater 
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percentage of urban areas becoming covered by impervious surfaces that disallow soil infiltration. 

Zhang et al. (2018b) showed that the extreme flooding caused by Hurricane Harvey in August 

2017 was exacerbated due to both anthropogenic-induced climate change and the effects of 

increased urbanization in Houston, TX, USA.  

One critical infrastructure directly affected by climate change is the stormwater 

management system. Mitigating the effects of climate change requires additional investment in 

stormwater infrastructure capable of handling future precipitation events. Stormwater 

infrastructure is typically broken into two categories, gray and green. Gray stormwater 

infrastructure is historically designed to move stormwater away from impervious urban areas as 

quickly as possible using curbs, gutters, drains, and piping. Green stormwater infrastructure (GSI), 

which relies on stormwater control measures (SCMs), is designed to imitate nature by allowing 

runoff to be slowed, infiltrated, and evapotranspired. While the majority of cities in the United 

States have historically relied more heavily on gray stormwater infrastructure, a significant push 

in the past 10 years has been made to incorporate more green stormwater infrastructure, which can 

provide some of the same benefits as gray stormwater infrastructure while promoting a more 

natural hydrologic cycle in urban areas and a slew of additional ecosystem and social services. 

Such SCMs are promoted as adding buffering capacity to urban watersheds, and thus resilience to 

climate change, reducing the need for increasing the capacity of grey infrastructure in response to 

more intense weather.  

Bioretention cells, or rain gardens, are one of the most common types of GSI and provide 

a cost-effective way of reducing peak discharge, allowing natural infiltration, improving water 

quality, and improving the visual attractiveness of heavily urbanized areas. Bioretention cells built 

in the present day are designed using Intensity-Duration-Frequency (IDF) curves and design 
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storms of a targeted percentile based on historical rainfall data. These approaches are predicated 

on climate stationarity. However, the increased occurrences of extreme storm events indicate the 

Earth is currently experiencing a period of climate non-stationarity. Given that gray and green 

stormwater infrastructure work together as part of a larger network of stormwater infrastructure, 

determining if bioretention cells built in the present day are capable of handling future precipitation 

events is critical for the efficacy of stormwater infrastructure as a whole. Equally important, the 

hydrologic impacts of regional precipitation variability in the future need to be determined. If 

extreme precipitation events become more frequent in some areas but not others, then resources 

can be better allocated to locations that will experience the most significant effects of climate 

change. 

This thesis assesses the ability of bioretention cells built in the present day to handle future 

precipitation events, and explores design modifications that may result in better system resilience 

to a changing climate. To conduct this study, 17 locations across the United States were selected 

based off their unique hydrologic region. Each location is representative of one region, with the 

17 regions accounting for the vast majority of the United States. To model future precipitation, 10 

Regional Climate Models (RCMs) have been selected from the North American Coordinated 

Regional Downscaling Experiment (NA-CORDEX) to provide the widest range of potential future 

precipitation outcomes (Mearns et al. 2017). While some research has been performed assessing a 

single bioretention cell’s ability to handle future precipitation events (in a single location), almost 

no research has been performed comparing multiple locations across the United States.  As such, 

this research seeks to address this knowledge gap. By maintaining the same bioretention cell design 

specification across all 17 locations with 10 RCMs per location (170 total model runs) the results 

may be compared directly to one another. Using this information, guidance will be provided on 
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which locations will have bioretention designs most adversely affected by climate change, and 

thus may require modifications to ensure the desired performance persists in the future.  

Chapter two provides a literature review of climate change, climate data, urbanization, and 

hydrologic and hydraulic modeling software. Chapter three documents the locations selected for 

this study, data collection of observed and simulated climate data, bias-correction procedure 

selected, methodology used for modeling the bioretention cells, and bioretention cell performance 

indices. Chapter four displays the results from the analysis of the data, provides a discussion of the 

main findings, and provides recommendations for management strategies. Chapter five 

summarizes the entirety of the research and provides suggestions for future research. 
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CHAPTER TWO 

LITERATURE REVIEW 

Climate Change 

The past two decades have provided a significant amount of research related to climate 

change impacts on the environment and, more specifically, the hydrologic cycle. The hydrologic 

cycle is responsible for the continuous circulation of water in the earth and atmosphere and consists 

of five primary components: precipitation, evapotranspiration, condensation, infiltration, and 

surface runoff. One of the most critical hydrologic design inputs generated from precipitation data 

is the intensity-duration-frequency (IDF) curve, which graphically represents the probability of a 

specific rainfall depth or intensity within a period of time (Dupont and Allen 2000), and are 

indicative of trends observed in rainfall time series. Historically, hydrologic engineering designs 

have relied on the stationarity of rainfall patterns, and thus IDF curves, but recent research has 

shown that this can no longer be assumed with a shift towards increasingly frequent intense storm 

events (Horton et al. 2010; Meehl et al. 2000; Milly et al. 2008; Pryor et al. 2009).  

Shifting Precipitation Patterns 

Using datasets from 182 stations across the contiguous United States, Karl and Knight 

(1998) noted a 10% increase in precipitation primarily due to heavy daily precipitation events with 

53% of the added precipitation being attributable to the upper 10% of the precipitation distribution. 

Examining the period from 1948 to 2006, Madsen and Figdor (2007) reported a 24% increase in 

extreme precipitation events across the contiguous United States, ranging from a 14% decrease in 

Oregon to a more than 50% increase in Rhode Island, New Hampshire, Massachusetts, Vermont, 

New York, and Louisiana; Oregon was one of only three states (Oregon, Florida, and Arkansas) 

that showed a decrease in the frequency of extreme precipitation events, and the only state of the 
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three to reach statistical significance. Olsson et al. (2009) performed a case study in Kalmar City, 

Sweden, and found that while total rainfall might decrease peak intensity will increase overall with 

an estimated 20 to 30% increase in the summer and an estimated 50 to 60% increase in the autumn 

by the year 2100. Kuo et al. (2015) performed a case study in central Alberta, Canada, predicting 

an increase in both the intensity and frequency of short duration storm events with an 84.9% 

increase in the projected intensity of sub-hourly storm events by the 2080s. Mailhot et al. (2007) 

performed a similar case study in southern Quebec, Canada, predicting the return periods of 2- and 

6-hr events to halve by 2070. Similarly, Kirtman et al. (2013) notes that the global frequency and 

intensity of heavy precipitation will likely increase on average, and Prein et al. (2017) projects up 

to a 400% increase in the frequency of extreme precipitation events across almost the entirety of 

North America by 2100. 

Clausius-Clapeyron Relationship 

One of the potential causes of shifting rainfall trends is the Clausius-Clapeyron (C-C) 

relationship, which relates the increased moisture-holding capacity in the atmosphere to the 

temperature and may be approximated as 7%/℃ (Trenberth et al. 2003). As of 2017, the 

Intergovernmental Panel on Climate Change (IPCC) reported that anthropogenic activities have 

led to an approximate increase of 1℃ of global warming since pre-industrial levels, likely reaching 

1.5℃ between 2030 and 2052 if greenhouse gas emissions continue to increase at the current rate 

(Masson-Delmotte et al. 2018). This indicates that the moisture-holding capacity in the atmosphere 

has increased by approximately 7% since pre-industrial levels and could increase to 10.5% by 

2052. It must be noted that the Clausius Clapeyron relationship varies by temperature (e.g., 

~7.3%/℃ at 0℃, 6.2%/℃ at 20℃) and, therefore, also varies by latitude (Utsumi et al. 2011). A 

number of studies have explored the validity of the C-C relationship in a range of locations using 
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observed data. Schroeer and Kirchengast (2018) investigated temperature sensitivities of 

precipitation events at sub-hourly (10-min), hourly, and daily temporal resolutions in south-eastern 

Austria using data gathered from 189 stations covering April to October, 2014, and found that 10-

min peak intensities increased with temperature greater than the C-C rate (>7%/℃); hourly peak 

intensities increased with temperature less than the C-C rate (<7%/℃); and daily peak intensities 

decreased with temperature. Similarly, using observed climate data in western Europe ranging 

from 1950 to 2009, Lenderink and Meijgaard (2010) investigated the relationship between hourly 

precipitation extremes (99th and 99.9th percentiles of events) and daily mean temperatures and 

found that four independent data sources confirmed a scaling relationship double the C-C rate 

(14%/℃) above 10℃. However, the C-C equation was not as explanatory in some other locations. 

Investigations by Ivancic and Shaw (2016) and Westra et al. (2014) indicated that the C-C rate 

underpredicts the increase in hourly and sub-hourly extreme precipitation in the mid-latitudes. 

Likewise, Donat et al. (2016) reported that the Clausius-Clapeyron relationship is only accurate in 

dry regions (e.g., central and northeast Asia, central Australia, northwestern North America, north 

and southwestern Africa) with no statistically significant relationship present in wet regions (e.g., 

Southeast Asia, India, eastern South America, southeastern United States, Europe). While there is 

debate regarding C-C scaling rate, the general consensus among climate researchers is that extreme 

precipitation events are becoming more frequent in most parts of the globe and are in part due to 

the Clausius-Clapeyron relationship (Berg et al. 2013; Fischer and Knutti 2016; Kendon et al. 

2014; Wang et al. 2017a). 

Climate Data 

Climate change uncertainty has led to a range of representative concentration pathway 

(RCP) scenarios being produced by the IPCC (Pachauri et al. 2014) to indicate the range of 
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potential greenhouse gas concentration trajectories, and subsequent climate change impacts, which 

include a best-case scenario (RCP2.6), two intermediate scenarios (RCP4.5 and RCP6.0), and a 

worst-case scenario (RCP8.5). RCP2.6 and RCP4.5 scenarios indicate that global warming will 

not increase above 2℃ since pre-industrial levels by 2100 with medium confidence, while RCP6.0 

and RCP8.5 scenarios indicate that global warming will increase above 2℃ since pre-industrial 

levels by 2100 with high confidence (Pachauri et al. 2014). Using the RCP scenarios produced by 

the IPCC (Pachauri et al. 2014), general circulation models (GCMs) and regional climate models 

(RCMs) are used to produce a range of simulated climate data to approximate future changes in 

global- and local-scale climate. GCMs are mathematical models used to simulate global climate 

by representing the physical processes in the atmosphere and ocean (IPCC 2013). GCMs provide 

a coarse view of climate, typically ranging from 250 to 600km grids, and, as such, are not ideal for 

modeling local climate. RCMs provide much finer resolution than GCMs, as fine as 12km grids, 

allowing for more accurate representation of local climate. However, production of RCMs requires 

downscaling of GCMs, often introducing a degree of bias during the downscaling process.  

Bias-Correction 

Due to bias introduced during the downscaling process and inherent model bias, bias-

correction procedures must be applied to more accurately align modeled climate data with 

observed climate data. Stephens et al. (2010) compared five different weather prediction, climate, 

and global cloud “resolving” models and found that all models overproduced precipitation 

frequency by a factor of two while underproducing precipitation intensity compared to observed 

precipitation data. Comparing projected climate data (2021-2050) from 11 RCMs to observed 

climate data (1961-1990) for five catchments in Sweden, Teutschbein and Seibert (2012) evaluated 

six bias-correction methods, linear scaling, local intensity scaling, power transformation, variance 
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scaling, distribution mapping, and the delta-change approach. Results showed that all bias-

corrected data more accurately reflected observed data than non-bias-corrected data with 

distribution mapping performing the best overall. Distribution mapping corrects RCM-simulated 

data by fitting a transfer function to the simulated data to more accurately reflect the patterns of 

the observed data while preserving short temporal variability (Sennikovs and Bethers 2009). 

Kernel Density Distribution Mapping 

A novel non-parametric technique known as kernel density distribution mapping has 

become increasingly popular in the past five years (Biglarbeigi et al. 2020; Lazante et al. 2019; 

McGinnis and Mearns 2016; Oleson et al. 2018; Tirpak et al. 2021) due to its ease of 

implementation, accurate bias-correction, and existing knowledge base from kernel density 

estimation methods (Sheather 2004; Solaiman and Simonovic 2011). McGinnis et al. (2015) 

evaluated six distribution mapping techniques, probability mapping (PMAP), order statistic 

difference correction (OSDC), empirical CDF mapping (ECDF), quantile mapping (QMAP), 

asynchronous regional regression modeling (ARRM), and kernel density distribution mapping 

(KDDM), and found that the KDDM technique performed best overall. Using KDDM to bias-

correct simulated historic (1983-2014) and future (2020-2059) hourly precipitation and daily 

temperature data for 17 locations across the United States, Cook et al. (2019) reported a major 

benefit of the KDDM method being its ability to correct the statistical distribution of the simulated 

data while maintaining the temporal distribution of rainfall intensity in bias-corrected data. 

Climate Data Studies 

RCMs and GCMs have been used extensively to assess future hydrologic issues. For 

example, Ault et al. (2014) analyzed the output from 27 GCMs and 3 representative concentration 

pathway (RCP) scenarios (RCP2.6, RCP4.5, and RCP8.5) and found a 70 to 90% likelihood of a 
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decade-scale megadrought in the US Southwest between 2050 and 2100. Using 26 GCMs and 2 

RCP scenarios (RCP2.6 and RCP8.5), Jhong and Tung (2018) investigated changes in precipitation 

extremes from 2020 to 2100 in the Shih-Men reservoir watershed of Taiwan and found an 

increased likelihood of heavy precipitation events and an increased number of consecutive wet 

days and dry days, leading a greater likelihood of both flood and drought conditions. Lastly, using 

7 global impact models (GIMs) driven by 5 GCMs with 4 RCP scenarios (RCP2.6, RCP4.5, 

RCP6.0, and RCP8.5), Prudhomme et al. (2014) reported that under RCP8.5 Southern Europe, the 

Middle East, the Southeast United States, Chile, and South West Australia are particularly likely 

to experience droughts and water security issues by the year 2100. Comparing observed total daily 

precipitation data from the past 50- to 100-years with three general circulation model (GCM) 

projections, Groisman et al. (2005) analyzed changes in intense precipitation events (top 0.3% for 

daily precipitation events) for over half of the Earth’s land area – focusing on the contiguous 

United States, Mexico, Brazil, Russia, Eastern Europe, South Africa, and Australia – and found an 

increased probability of intense precipitation events in extratropical regions. Examining 34 US 

cities and an ensemble of RCMs, Cook et al. (2020) showed that shorter, hourly storms will 

become both more variable and frequent than longer, daily storms between 2020 and 2099. 

Urbanization 

The detrimental effects of human-induced climate change are compounded due to 

increased urbanization worldwide (Bounoua et al. 2015; Ezber et al. 2007; Garschagen and 

Romero-Lankao 2015; Huong and Pathirana 2013; Kalnay and Cai 2003; Leopold 1968; 

Mahmoud and Gan 2018; Nelson and Palmer 2007; Nelson et al. 2009; Pielke et al. 2002). 

According to the United Nations (2018), from the year 1900 to the year 2016 the percentage of 

humans living in urban areas increased from 16.4 to 54.4%, more than tripling the number of 
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people in urban areas. In that same time period, urban growth in the United States increased from 

40.0 to 81.9%, more than doubling. Urbanization is accompanied by a reduction in pervious 

surfaces (Schueler et al. 2009; Shuster et al. 2005) resulting in increased runoff and flooding (Chen 

et al. 2017; Du et al. 2012; Perry and Nawaz 2008; Suriya and Mudgal 2012), increased nonpoint 

source pollution (Bhaduri et al. 2000; O’Driscoll et al. 2010; Tang et al. 2005; Tong and Chen 

2002), and urban stream syndrome (Walsh et al. 2005, 2012), in which urban runoff delivered to 

streams causes the degradation of waterways and biodiversity.  

Urbanization Studies 

The tangible impacts of urbanization have been shown in multiple studies, including Roy 

et al. (2005), where a positive correlation was reported between increased impervious areas and 

altered storm flows in summer months, leading to a decrease in the diversity of endemic fish 

species. Similarly, due to a projected increase in urban land use from 50 to 94% between 1992 and 

2030 in the City of Normal-Sugar Creek Watershed in Central Illinois, USA, Ahiablame and 

Shakya (2016) found a greater than 30% increase in average annual runoff and flood events. 

Modelling a watershed near the O’Hare International Airport, Chicago, USA, Bhaduri et al. (2001) 

predicted a linear relationship between average annual runoff and increasing imperviousness – 

assuming a 10% increase in imperviousness resulted in an increase between 6.1 to 10.2% in annual 

average runoff. To remediate these impacts, researchers such as Gunn et al. (2012) have begun to 

look at design solutions, comparing pre-development and post-development hydrologic indices for 

three subdivisions – one designed with extensive conservation principles (e.g., little disruption of 

natural soils and forests, minimal increase in impervious cover, stormwater control ponds, 

additional trees), one designed with typical development principles (e.g., increased impervious 

cover, soil compaction due to construction), and one designed with a mix of conservation and 
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typical development principles (e.g., increased impervious cover, swales, additional trees) – in 

Lafayette, Indiana, USA. The subdivision designed with conservation principles performed better 

post-development (32% reduction in annual runoff, 237% increase in time of concentration) while 

both the typical and mixed subdivisions performed worse post-development resulting in increased 

average annual runoff (60% and 52%, respectively) and reduced time of concentration (20% and 

17%, respectively). 

Green Stormwater Infrastructure 

Green stormwater infrastructure, or low impact development (LID) as explored by Gunn 

et al. (2012), is becoming more frequently utilized in urban areas to assist and supplant existing 

gray stormwater infrastructure to bring resilience to anthropogenic-induced climate change (Chan 

et al. 2018; Eckart et al. 2017; Mei et al. 2018). As an example, using 1961-1990 as a baseline, 

Gill et al. (2007) found that an additional 10% GSI in Greater Manchester, England, UK, could 

keep max surface temperatures at or below baseline temperatures up to, but excluding, the modeled 

2080s high. Exploring the hydrologic benefits of LID, Dietz and Clausen (2008) compared pre-

development and post-development annual runoff and pollutant export (total phosphorus (TP) and 

total nitrogen (TN)) for two subdivisions – one 2.0ha traditional subdivision with 17 lots designed 

using typical development principles and one 1.7ha LID subdivision with 12 lots designed with 

bioretention cells, grassed swales, an Ecostone® paver road, and a collection of BMPs (e.g., 

locating and seeding stockpiles to prevent sediment loss, hay bales, silt fences, earthen berms, 

post-storm maintenance) – in  Waterford, Connecticut, USA. Post-development annual runoff and 

pollutant export increased logarithmically with increase in impervious coverage (e.g., runoff 

increased from 0.1cm to over 50cm) for the traditional subdivision while post-development annual 

runoff and pollutant export remained unchanged for the LID subdivision. 
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Bioretention Cell 

 One of the most commonly implemented and studied types of GSI has become the 

bioretention cell, which consists of layers of gravel, soil, sand, organic matter, plants, and filter 

strips (TDEC 2014). Bioretention cells provide removal of total suspended solids (TSS) and 

pollutants (TN, TP) (Davis et al. 2001, 2003, 2006; Line and Hunt 2009; Luell et al. 2011) while 

reducing runoff volume and peak discharge (Ahiablame et al. 2012; Bonneau et al. 2020; Chapman 

and Horner 2010; Dietz 2007; Dietz and Clausen 2005; Moore et al. 2016; Schlea et al. 2014). 

Monitoring three bioretention cells built in northeast Ohio, USA, from May to November 2014, 

covering 28 precipitation events, Winston et al. (2016) reported runoff reductions ranging from 36 

to 59% and peak flow reductions ranging from 24 to 96% for events exceeding 1-year, 5-minute 

rainfall intensity. Monitoring two bioretention cells constructed on the University of Maryland 

campus in College Park, Maryland, USA for nearly two years, covering 49 runoff events, Davis 

(2008) found that 18% of events were small enough to be fully captured by the bioretention cell 

without outflow with mean peak flow reductions of 49% and 58% for all other events.  

Hydrologic and Hydraulic Modeling Software 

Prior to design completion and subsequent construction, hydrologic and hydraulic (H&H) 

modeling software are commonly used to optimize the design and performance of stormwater 

infrastructure. Coupled H&H modeling software combine precipitation frequency, intensity, and 

duration from hydrologic models (e.g., US Army Corps of Engineers Hydrologic Engineering 

Center Hydrologic Modeling System) with the physical characteristics of open channel flow from 

hydraulic models (e.g., US Army Corps of Engineers Hydrologic Engineering Center River 

Analysis System). H&H modeling software provide an additional measure of certainty for 

engineers, architects, and urban planners for ensuring that an urban area is capable of safely 
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handling and passing present and future precipitation events. An array of H&H modeling software 

exists due to the individual requirements of stormwater infrastructure projects (e.g., some projects 

require simple, neighborhood-size models while other projects require robust, metro-size models). 

Modeling GSI 

Hathaway et al. (2014) used DRAINMOD to model four bioretention cells, with two in 

both Rocky Mountain and Nashville, North Carolina, USA, for two RCP scenarios (RCP4.5, 

RCP8.5). Comparing historic (2001-2004) performance with projected performance (2055-2058), 

results showed that the frequency and volume of overflow could increase significantly for 

projected scenarios, requiring an additional storage of between 9 and 31cm to restrict annual 

overflow. Using the MIKE URBAN model, Berggren et al. (2012) performed a case study in a 

small suburb in southeast Sweden to determine the hydraulic performance of the existing urban 

drainage system for the present and three future periods (2011-2040, 2041-2070, and 2071-2100). 

Results showed that the model underestimated peak flows by 13% on average but was accurate 

overall in its prediction of increased future flood frequency and duration. Semadeni-Davies et al. 

(2008) performed a similar study in Helsingborg, south Sweden, using a combination of two H&H 

models, MIKE SHE for permeable surfaces and MOUSE (MOdel of Urban SEwers) for 

impervious surfaces and channel flow, to assess the combined effects of climate change and 

urbanization on urban drainage. Alteration of input climate data and model parameters allowed the 

models to assess a range of future climate and urbanization scenarios. Results showed that under 

the future best-case scenario urban drainage could be exacerbated by increased precipitation 

leading to increased surface runoff while the worst-case scenario could lead to increased peak flow 

volumes and flood risk, both of which could be managed through the installation of sustainable 

urban drainage systems (SUDS). 
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Modeling GSI Using SWMM LID Controls 

One of the most commonly used H&H modeling software is the USEPA’s Storm Water 

Management Model (SWMM) which provides dynamic rainfall-runoff relationships for single-

event and long-term simulations (Denault et al. 2006; Gironás et al. 2009). SWMM version 5.1 

comes standard with LID controls, allowing for explicit modeling of rain gardens, bioretention 

cells, vegetative swales, infiltration trenches, green roofs, rooftop disconnection, rain barrels, and 

porous pavement (Rossman 2015). Using PCSWMM – SWMM incorporated within a graphical 

user interface – Lucas and Sample (2015) compared two conventional gray stormwater 

infrastructure scenarios with two GSI scenarios using multiple LID controls (e.g., green roofs, 

infiltration trenches, porous pavement, and bioretention cells) for two separate years (one year 

with average rainfall depth and intensity and one year with higher intensity due to climate change). 

Results showed that the two GSI scenarios performed better than the two gray stormwater 

infrastructure scenarios for both years with relative performance improvements during the climate 

change year. Similarly, using SWMM LID controls to model bioretention cells in two urban 

catchments in Singapore using 16 model ensembles and 4 RCP scenarios (RCP2.6, RCP4.5, 

RCP6.0, and RCP8.5) from 2040 to 2059, Wang et al. (2017b) reported that LID is effective at 

reducing peak runoff and can improve water quality. Using SWMM LID controls, Wang et al. 

(2019a) performed a case study in Guangzhou, China, to assess the effectiveness of bioretention 

cells for the future period 2040 to 2059. Results showed that the bioretention cells were effective 

in controlling peak runoff for small storms of short duration but were unable to replace 

conventional gray stormwater infrastructure for large storms of long duration. 
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Knowledge Gaps and Research Objectives 

The majority of studies examining the performance of bioretention cells under future 

precipitation events have focused on a single bioretention cell in a single location and a narrow 

range of climate change scenarios. Additionally, future climate data used for bioretention cell 

modeling are typically either not bias-corrected or undergo a simplistic bias-correction procedure. 

As such, bioretention cell performance comparisons between different locations have required 

comparisons between different studies. Due to the potential use of different sources of climate 

data, bias-correction procedures, modeling methods, and bioretention cell design characteristics, a 

degree of inaccuracy may be introduced in any conclusions made from the comparisons. A 

knowledge gap, therefore, exists in comparing a single bioretention cell’s ability to handle future 

precipitation events across multiple locations while using the same source of climate data, bias-

correction procedure, modeling method, and bioretention cell design characteristics.  

This study will address the knowledge gap by maintaining the same bioretention cell design 

characteristics in SWMM across an ensemble of US locations and model scenarios using the same 

sources of climate data and bias-correction procedure. The methodology used in this study will 

allow for direct comparison of bioretention cell performance across all US locations and model 

scenarios selected, which has yet to be done in a previous study at this scale. 
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CHAPTER THREE 

DATA COLLECTION AND METHODOLOGY 

Data Collection 

To provide the widest range of potential future outcomes, an ensemble of 17 US locations 

and 10 model scenarios were used in this study. Observed climate data were acquired from 

NOAA’s National Centers for Environmental Information (NCEI) data archive to allow for bias-

correction of future simulated climate data and characterization of historical bioretention function. 

Simulated historic and future climate data were acquired from the North American Coordinated 

Regional Downscaling Experiment (NA-CORDEX) data archive.  

Bukovsky Climate Regions 

Since the primary purpose of this study was to investigate changing hydrologic patterns 

nationally and their impact on stormwater management controls, the 17 US locations were selected 

based on their unique hydrologic region. As such, the Bukovsky climate map was used due to the 

hydrologic classification of climate regions (Bukovsky et al. 2019). The most frequently used 

climate classification systems, Köppen (1900) and Thornthwaite (1984), are highly vegetation-

based and hydrologically oversimplify the eastern United States while overcomplicating the 

western United States. The Bukovsky climate map, however, groups regions by hydrologic 

similarity, accounting for average temperature and rainfall as well as seasonal occurrences, such 

as the North American monsoon (Bukovsky 2011). Using the same cities as Cook et al. (2019), 

one representative city was present in the analysis from each climate region in the contiguous 

United States. Table 1 provides the characteristics of all 17 locations used in this study along with 

their accompanying NOAA NCEI station name used for observed climate data collection. Fig. 1 

displays the 17 representative locations and hydrologic regions of the contiguous United States. 
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Table 1. Characteristics of US cities used in this study 

City State Bukovsky Region Latitudea Longitudea NOAA NCEI Station Name 

Amarillo TX C. Plains (11) 35.2220° -101.8313° AMARILLO AIRPORT TX US 

Boise ID Great Basin (9) 43.6150° -116.2023° BOISE AIR TERMINAL ID US 

Boston MA North Atlantic (20) 42.3601° -71.0589° BOSTON MA US 

Boulder CO S. Rockies (8) 40.0169° -105.2796° BOULDER 2 CO US 

Charlotte NC Mid Atlantic (19) 35.2271° -80.8431° CHARLOTTE DOUGLAS AIRPORT NC US 

Chicago IL Great Lakes (14) 41.8832° -87.6324° CHICAGO OHARE INTERNATIONAL AIRPORT IL US 

El Paso TX Mezquital (6) 31.7619° -106.4850° EL PASO INTERNATIONAL AIRPORT TX US 

Fargo ND N. Plains (10) 46.8772° -96.7898° FARGO HECTOR INTERNATIONAL AIRPORT ND US 

Memphis TN Deep South (16) 35.1495° -90.0490° MEMPHIS INTERNATIONAL AIRPORT TN US 

Missoula MT N. Rockies (7) 46.8721° -113.9940° MISSOULA INTERNATIONAL AIRPORT MT US 

New Orleans LA Southeast (17) 29.9511° -90.0715° NEW ORLEANS AIRPORT LA US 

Phoenix AZ Southwest (5) 33.4484° -112.0740° PHOENIX AIRPORT AZ US 

Pittsburgh PA Appalachia (15) 40.4406° -79.9959° PITTSBURGH ASOS PA US 

Portland OR Pacific NW (3) 45.5122° -122.6587° PORTLAND INTERNATIONAL AIRPORT OR US 

San Antonio TX S. Plains (12) 29.4241° -98.4936° SAN ANTONIO INTERNATIONAL AIRPORT TX US 

San Jose CA Pacific SW (4) 37.3348° -121.8881° SAN JOSE CA US 

St. Louis MO Prairie (13) 38.6270° -90.1994° ST LOUIS LAMBERT INTERNATIONAL AIRPORT MO US 
aValues provided by latlong.net  
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Fig. 1. Bukovsky climate map showing the 17 representative locations and hydrologic regions of the contiguous United States 

(Bukovsky 2011) 
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NOAA NCEI Observed Climate Data 

Observed daily temperature (maximum and minimum) and hourly precipitation data from 

January 1, 1999, to December 31, 2013, were gathered from NOAA’s NCEI for all 17 locations 

(NOAA 2016). The 15-year period was selected to fully capture the year-to-year variability of 

precipitation and temperature data. This time frame was chosen due to 2013 being the most recent 

year on record for hourly precipitation in the database. Hourly precipitation data was used in this 

study due to it being the finest available temporal resolution. Due to the speed of the rainfall-runoff 

relationship in urban areas caused by impervious surfaces, the highest available temporal 

resolution for precipitation must be used to accurately model the relationship.  

The 17 NOAA NCEI stations shown in Table 1 were selected based off the availability of 

continuous climate data for the time range specified and close proximity to the selected cities. 

Table 2 provides the parameters included for NOAA NCEI climate data queries. In rare cases of 

missing data, a value of “99999” was provided in place of the climate data by the NOAA NCEI 

data archive. The value of “99999” was subsequently replaced by averaging the three preceding 

and three following hours for precipitation (e.g., “99999” at 16:00 was corrected by averaging 

13:00-15:00 with 17:00-19:00) or days for temperature (e.g., “99999” on March 4 was corrected 

by averaging March 1-3 with 5-7). 

NA-CORDEX Simulated Climate Data 

Covering the majority of North America, the NA-CORDEX data archive provides 

simulated climate data from a range of RCMs produced using boundary conditions from GCMs in 

the Coupled Model Intercomparison Project Phase 5 (CMIP5) (Mearns et al. 2017). As 

recommended by Bukovsky and Mearns (2020), all ten NA-CORDEX climate models with 

available simulated hourly precipitation data were used for this study to provide the most 



21 

    

Table 2. Characteristics of NOAA NCEI Climate Data (NOAA 2016) 

Hourly Precipitation Parameter Description 

STATION Station identification number 

STATION_NAME Station location name 

ELEVATION Elevation above mean sea level (ft) 

LATITUDE Northern hemisphere location value (°) 

LONGITUDE Western hemisphere location value (°) 

DATE Year, month, day, and hour 

HPCP Precipitation amount (in) 

Daily Temperature Parameter Description 

STATION Station identification number 

STATION_NAME Station location name 

ELEVATION Elevation above mean sea level (ft) 

LATITUDE Northern hemisphere location value (°) 

LONGITUDE Western hemisphere location value (°) 

DATE Year, month, day, and hour 

TMAX Daily maximum near-surface air temperature (°F) 

TMIN Daily minimum near-surface air temperature (°F) 
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comprehensive range of potential future outcomes. Due to the limited availability of simulated 

hourly precipitation data, only one RCP4.5 scenario was evaluated while nine RCP8.5 scenarios 

were evaluated. Table 3 provides the characteristics for each NA-CORDEX climate model used 

in this study resulting in an ensemble of two RCP scenarios, four GCMs, three RCMS, and two 

spatial resolutions. Both historic simulated climate data from January 1, 1999, to December 31, 

2013, and future simulated climate data from January 1, 2035, to December 31, 2049, were 

acquired to allow for bias-correction and SWMM modeling.  

Table 4 provides the parameters included for NA-CORDEX hourly precipitation and daily 

temperature data queries. Following the download of all NA-CORDEX simulated climate data, 

two data issues had to be corrected prior to bias-correction. The first data issue was the lack of 

leap year climate data for six models (Models 1-4 and 9-10 from Table 3), which occurred four 

times in both the historic (2000, 2004, 2008, and 2012) and future (2036, 2040, 2044, and 2048) 

climate data ranges. Hourly precipitation values for February 29 of those years were produced by 

averaging the values at the same hour on the preceding and following days (e.g., for February 29 

at 13:00, averaging February 28 at 13:00 and March 1 at 13:00). Daily temperature values for 

February 29 of those years were produced by averaging the values on the three preceding and three 

following days (e.g., February 26-28 averaged with March 1-3). The second data issue affected 

the temperature values of three models (Models 3-5 from Table 3) during the December 2005 time 

period with erroneous temperature values being denoted by the value “10,000,000”. Temperature 

values were corrected by averaging the values on the same day for the two preceding and two 

following years (e.g., December 1, 2005, was corrected by averaging December 1 for 2003, 2004, 

2006, and 2007). To enable bias correction, hourly precipitation values were converted from kg 

m-2 s-1 to inches, and daily temperature values were converted from Kelvin to degrees Fahrenheit. 
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Table 3. Characteristics of NA-CORDEX climate models used in this studya 

Model RCP GCM RCM Spatial Resolution 

1 4.5 CanESM2 CanRCM4 50km 

2 8.5 CanESM2 CanRCM4 50km 

3 8.5 GFDL-ESM2M WRF 25km 

4 8.5 GFDL-ESM2M WRF 50km 

5 8.5 HadGEM2-ES WRF 25km 

6 8.5 HadGEM2-ES WRF 50km 

7 8.5 MPI-ESM-LR RegCM4 25km 

8 8.5 MPI-ESM-LR RegCM4 50km 

9 8.5 MPI-ESM-LR WRF 25km 

10 8.5 MPI-ESM-LR WRF 50km 
aNA-CORDEX data provided by Mearns et al. (2017) 

Table 4. Characteristics of NA-CORDEX climate data used in this studya 

Hourly Precipitation Parameter Description 

time Year, month, day, and hour 

latitude[unit="degrees_north"] Northern hemisphere location value (°) 

longitude[unit="degrees_east"] Western hemisphere location value (°) 

pr[unit="kg m-2 s-1"] Hourly precipitation flux (IPCC units) 

Daily Temperature Parameter Description 

time Year, month, day, and hour 

latitude[unit="degrees_north"] Northern hemisphere location value (°) 

longitude[unit="degrees_east"] Western hemisphere location value (°) 

tasmax/tasmin[unit="K"] Daily maximum/minimum near-surface air temperature (K) 
aNA-CORDEX data provided by Mearns et al. (2017) 
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Methodology 

Following climate data compilation, bias-correction and SWMM modeling were 

performed. Bias-correction of the simulated climate data was performed using the kernel density 

distribution mapping (KDDM) procedure (McGinnis et al. 2015). Following bias-correction, the 

SWMM model was designed and run using the observed climate data and the bias-corrected future 

climate data. The performance indices of infiltration loss, underdrain pipe outflow, and overflow 

were compiled for each model run to allow for comparison in the results and recommendations 

chapter. 

KDDM Bias-Correction 

The KDDM bias-correction procedure was selected due its accuracy, ease of 

implementation, and overall performance compared to other bias-correction procedures (McGinnis 

et al. 2015). Kernel density distribution mapping applies a set of bias-correction steps to more 

accurately align the distribution of simulated climate data with the distribution of observed climate 

data. Due to climate models over predicting the frequency of precipitation (Stephens et al. 2010), 

the excess drizzle was first removed from simulated precipitation data by setting hourly 

precipitation volumes below a minimum threshold to zero in order to match the wet/dry ratio of 

observed precipitation data (McGinnis and Mearns 2016). Following dedrizzling, nonparametric 

estimates of the underlying probability density functions (PDFs), similar to smooth, non-discrete 

histograms, were produced for the observed and simulated precipitation datasets. Each value in the 

simulated precipitation datasets is individually adjusted using kernel density estimation (KDE) by 

summing copies of the Gaussian kernel function (McGinnis et al. 2015; Sheather 2004). The 

resulting PDFs were integrated using the trapezoidal rule to approximate cumulative distribution 

functions (CDFs). A transfer function was then created by fitting a spline between the 
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corresponding quantiles for the inverse CDF of the observed precipitation data and the forward 

CDF of the simulated precipitation data (McGinnis et al. 2015; Panofsky and Brier 1968). Lastly, 

the transfer function was applied to both the historic and future simulated precipitation data for 

bias-correction. KDDM bias-correction of the simulated temperature data followed the same steps 

as the precipitation bias-correction, with the exception of the dedrizzling step, and was performed 

on a monthly basis to account for seasonal variability (McGinnis et al. 2015).  

Due to the September 2013 floods in Boulder, CO, which led to 9.08in of rainfall on 

September 12 (NOAA 2016) and nearly doubled the previous daily record of 4.8in (Hamill 2014), 

using the full observed hourly precipitation dataset led to extremely erroneous bias-corrected 

hourly precipitation data. According to NOAA’s National Weather Service Precipitation 

Frequency Data Server (2017), the 24-hr, 1000-year precipitation depth for Boulder, CO, is 8.16in, 

0.92in less than the rainfall on September 12, 2013, further illustrating the rarity of the precipitation 

event. Cook (2018) reported that extreme values in observed data used to bias-correct simulated 

data may lead to inaccurate annual maximum values if observed outliers are not removed prior to 

KDDM bias-correction. As such, observed hourly precipitation data from September 9, 2013, to 

December 31, 2013, were removed from the Boulder, CO, observed hourly precipitation data, 

which significantly improved the accuracy of the bias-corrected hourly precipitation data.  

KDDM bias-correction of the simulated hourly precipitation and daily temperature data 

was performed using the R package “climod” (McGinnis 2018) with the steps outlined in Fig. 2. 

Performing the same statistical analysis as Tirpak et al. (2021), the Wilcoxan rank sum test 

confirmed the statistical similarities between the observed climate data distribution and the bias-

corrected climate data distribution for all 10 models across all 17 locations (R Core Team 2020). 

The bias-corrected future climate data was, therefore, confirmed as a suitable for subsequent 
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SWMM modeling. Following bias-correction, an implausibly high precipitation amount was noted 

in the bias-corrected future dataset in El Paso using Model 6 (378.6in in 4 hours). The precipitation 

amount was subsequently removed and set to 0in for the 4-hour time period, subsequently 

producing future precipitation statistics more in line with the other nine models. 

SWMM Modeling 

USEPA’s Storm Water Management Model (SWMM) Version 5.1 was used in this study 

for its ability to provide dynamic rainfall-runoff relationships for long-term simulations and 

directly model bioretention cells using the LID Control Editor (Rossman 2015). The SWMM 

model consisted of a 1-acre (43,560 ft2) subcatchment, a bioretention cell, a rain gage, and an 

outlet. Detailed design characteristics for the subcatchment are shown in Table 5. The 

subcatchment was designed with 100% impervious cover to represent a common, yet hypothetical 

impervious surface in a city, such as a parking lot. As such, a Manning’s n value of 0.01 was 

selected for the impervious surface to account for the hydraulic efficiency of the subcatchment 

(Arcement and Schneider 1989). All runoff from the subcatchment was routed directly to the 

bioretention cell. While bioretention cell design guidelines do vary slightly by state and, more 

significantly, by region, bioretention cell characteristics were kept constant for all locations and 

models to ensure the only independent variable was climate (observed and bias-corrected future) 

allowing for relative changes in bioretention cell performance to be assessed. Bioretention cell 

design characteristics were based off the Baseline bioretention design scenario used by Tirpak et 

al. (2021) and incorporated design recommendations from the Tennessee Department of 

Conservation (TDEC 2014), the Minnesota Stormwater Steering Committee (MSSC 2006), the 

Knox County, Tennessee Stormwater Management Manual (County 2008), and the Storm Water 

Management Model User’s Manual Version 5.1 (Rossman 2015).   
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Fig. 2. KDDM bias-correction procedure steps using the R package “climod” for hourly 

precipitation data in Amarillo, TX, using Model 1 from Table 3 
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Table 5. Subcatchment design characteristicsa 

Parameter Description Value Unit 

Area Area of subcatchment 1 acre 

Width Width of overland flow path for sheet flow runoff 250 ft 

% Slope Average surface slope 1 % 

% Imperv Percent impervious area 100 % 

N-Imperv Manning's n for overland flow across impervious area 0.01 - 

Dstore-Imperv Depression storage depth for impervious area 0 in 

%Zero-Imperv Percent impervious area with zero depression storage 100 % 

Subarea Routing All runoff flows directly to outlet OUTLET - 
aDue to the subcatchment consisting of 100% impervious cover, all parameters solely influencing 

pervious cover (N-Perv, Dstore-Perv, Percent Routed, and Infiltration Data) were ignored. 
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Figure 3 and Table 6 provide characteristics of the bioretention cell used in the SWMM model. 

The surface area (5,750 ft2) and surface layer depth (6 in) were sized to enable the bioretention 

cell to store the water quality storm event (Deletic 1998), which is typically the surface runoff 

generated from a 1-inch storm event. The soil layer is then composed of a mixture of coarse sand, 

topsoil, and organic matter to filter pollutants while promoting flow through high hydraulic 

conductivity (2 in/hr). Following flow through the soil layer, the storage layer is composed of 

gravel (#57 stone) with a high void ratio (0.4) to allow for water storage or seepage, (0.5 in/hr) 

into the native soil occurs. Lastly, to allow the storage layer to completely fill prior to draining, 

the bottom of the underdrain pipe is placed at the top of the storage layer (Rossman 2015). 

Fig. 4 displays the SWMM model inputs used to define the process, infiltration, and routing 

models. The ‘Rainfall/Runoff’ process model was used to account for surface runoff from the 

subcatchment into the bioretention cell. The ‘Green-Ampt’ infiltration model was used for its 

ability to accurately represent soil infiltration using fundamental soil properties (initial soil 

moisture deficit, saturated hydraulic conductivity, and suction head at the wetting front) (Green 

and Ampt 1911). The ‘Dynamic Wave’ routing model was used for its accuracy above other 

routing models due to its ability to solve the one-dimensional Saint-Venant equations, 

incorporating the continuity and momentum equations (Rossman 2015). Data File inputs for the 

Rain Gage were observed hourly precipitation data (1999-2013) and bias-corrected future hourly 

precipitation data (2035-2049), each independent files. The Climatology Editor was used to input 

External Climate Files containing observed daily temperature data (1999-2013) and bias-corrected 

future daily temperature data (2035-2049).
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Fig. 3. Cross-sectional view of bioretention cell used in SWMM model
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Table 6. Bioretention cell design characteristics 

Surface Parameter Description Value Unit Source 

Berm Height Max ponding depth above surface 6 in TDEC (2014) 

Vegetation Volume Fraction Fraction of volume filled with vegetation (ignored) 0 - Rossman (2015) 

Surface Roughness Manning's n for overland flow (ignored) 0 - Rossman (2015) 

Surface Slope Slope of surface (ignored) 0 % Rossman (2015) 

Soil Parameter Description Value Unit Source 

Soil Thickness Thickness of soil layer 24 in TDEC (2014) 

Porosity Pore space volume/total soil volume 0.44 - MSSC (2006) 

Field Capacity Pore water volume/total soil volume (following drainage) 0.09 - MSSC (2006) 

Wilting Point Pore water volume/total soil volume (for well-dried soil) 0.04 - MSSC (2006) 

Conductivity Hydraulic conductivity of fully saturated soil 2 in/hr MSSC (2006) 

Conductivity Slope Slope of log(Conductivity) vs soil moisture content curve 50 - Rossman (2015) 

Suction Head Soil capillary suction  4 in Brakensiek et al. (1981) 

Storage Parameter Description Value Unit Source 

Storage Thickness Thickness of gravel layer 6 in County (2008) 

Void Ratio Void space volume/solid space volume 0.4 - Miller (1978) 

Seepage Rate Rate of water seepage from storage layer into native soil 0.5 in/hr MSSC (2006) 

Clogging Factor Clogging parameter (ignored) 0 - Rossman (2015) 

Drain Parameter Description Value Unit Source 

Flow Coefficienta (C) Determines drain flow rate as function of hydraulic head 0.6 - County (2008) 

Flow Exponenta (n) Determines drain flow rate as function of hydraulic head 0.5 - County (2008) 

Offset Height of drain line above bottom of storage layer 6 in Miller (1978) 
aFlow Coefficient and Flow Exponent are incorporated within 𝑞 = 𝐶ℎ𝑛 where 𝑞 is drain outflow rate (in/hr) and ℎ is height of saturated 

media above drain (in) (Rossman 2015). 
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Additional details for the SWMM model may be found in the Appendix. Following 

completion of the SWMM model, the model was run using the observed climate data (17 scenarios) 

from January 1, 1999, to December 31, 2013, and the bias-corrected future climate data (170 

scenarios) from January 1, 2035, to December 31, 2049. Since performance comparisons between 

observed and bias-corrected future climate data was the primary focus of this study, and since the 

model represented a hypothetical case, no calibration or model verification was performed on the 

SWMM model (Tirpak et al. 2021; Wang et al. 2016). 

Bioretention Cell Performance Indices 

The three bioretention cell performance indices compiled and assessed in this study were 

infiltration loss, underdrain outflow, and overflow. Infiltration loss accounts for the cumulative 

amount of infiltration (also referred to as seepage rate in Fig. 3 and Table 6) into the native soil 

beneath the storage layer. Underdrain outflow accounts for the cumulative amount of treated 

outflow to a receiving drainage system when the storage layer is filled and is unable to infiltrate 

fast enough into the native soil (TDEC 2014). Overflow accounts for the cumulative amount of 

surface runoff due to the bioretention cell’s inability to evapotranspire, store, infiltrate, and 

discharge through the underdrain at a rate faster than that of the precipitation rate. Underdrain 

outflow and overflow should both be minimized to reduce peak runoff, treat surface runoff, and 

allow native soil infiltration. The three bioretention cell performance indices account for the 

majority of total inflow into the bioretention cell and provide quantitative measures for the efficacy 

of the bioretention cell. 
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Fig. 4.  SWMM Model inputs in Simulation Options  
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CHAPTER FOUR 

RESULTS AND RECOMMENDATIONS 

Results 

Due to the significant number of locations (17) and models (10), climate inputs were first 

parsed to allow an understanding of how precipitation varied based on both the location of interest 

and based on which model was considered. Comparison of observed and future datasets using both 

categories, location and model, provides context as to how assessments of climate change effects 

may yield variable results based on these factors. Bioretention cell performance was then assessed 

using three bioretention cell performance indices: infiltration loss, underdrain outflow, and 

overflow. 

Precipitation Statistics by Location 

Table 7 provides observed (1999-2013) mean precipitation statistics for all 17 locations. 

Rainy days were counted as any day in either dataset in which rainfall volume was greater than 

0.0 in between 00:00 and 23:59. A minimum inter-event time (MIT) of 6-hours was used to 

separate events in the datasets. Accordingly, aggregation was performed on any rainfall occurrence 

within 6-hours of a previous rainfall occurrence (e.g., 0.1in at 02:00 would be aggregated with 

0.5in at 07:00 leading to a 0.6in event). The 6-hour MIT was selected due to its frequent use in 

literature for runoff studies (Chin et al. 2016; Guo and Adams 1998; Palynchuk and Guo 2007). 

While hydrologic processes such as infiltration can take longer than 6 hours, the primary use for 

the MIT in this study was to enable comparison between observed and future precipitation events. 

Therefore, any period without rainfall for 6 hours or more was accounted for in the mean drying 

period. 
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Table 7. Observed (1999-2013) mean precipitation statistics for all 17 locations 

Location 

Annual 

Rainfall 

(in) 

Annual 

Rain 

Events 

Annual 

Rainy 

Days 

Drying 

Period 

(days) 

Percentile Rainfall Event 

Depths (in) 

50th 90th 99th 99.9th 

Amarillo TX 17.8 61.3 64 5.8 0.09 0.81 2.17 4.04 

Boise ID 10.2 83.1 84 4.2 0.06 0.29 0.86 1.36 

Boston MA 42.2 108.7 123 3.1 0.16 1.00 2.78 6.39 

Boulder CO 16.9 57.5 58 6.2 0.10 0.70 1.70 5.52 

Charlotte NC 40.2 100.2 107 3.4 0.16 1.11 2.65 4.70 

Chicago IL 35.9 112.2 119 3.1 0.12 0.84 2.25 6.56 

El Paso TX 8.6 41.5 44 8.7 0.08 0.54 1.74 2.72 

Fargo ND 22.8 90.5 95 3.9 0.08 0.65 2.22 4.31 

Memphis TN 49 96.4 103 3.6 0.22 1.34 3.30 6.37 

Missoula MT 12.4 115.5 116 3.0 0.04 0.27 0.86 1.89 

New Orleans LA 58.6 108.5 109 3.2 0.19 1.39 5.01 10.54 

Phoenix AZ 6.4 29.0 31 12.4 0.08 0.69 1.32 2.59 

Pittsburgh PA 38.2 139.8 146 2.4 0.11 0.75 1.83 3.73 

Portland OR 34.9 152.2 159 2.1 0.10 0.61 1.75 3.50 

San Antonio TX 31.1 77.4 78 4.5 0.11 1.19 3.25 9.36 

San Jose CA 11.3 42.2 43 8.5 0.12 0.70 1.60 2.86 

St. Louis MO 39.9 103.7 110 3.3 0.17 1.04 2.73 4.08 
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Fig. 5 displays the percent change between the observed (1999-2013) and bias-corrected 

future (2035-2049) datasets for mean annual rainfall, mean annual rain events, mean annual rainy 

days, and mean drying period for the 17 locations. Percent change between the observed and future 

datasets was calculated using Eq. 1. 

% 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑓𝑢𝑡𝑢𝑟𝑒−𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
∗ 100%    Eq. 1 

Each location’s boxplot is composed of the percent change between the observed and future 

datasets for all 10 models, leading to 10 values per boxplot. Out of the 170 total future model-

location combinations, annual rainfall increased in 135 combinations (79.4%); annual rain events 

decreased in 110 combinations (64.7%); annual rainy days decreased in 103 combinations 

(60.6%); and mean drying period increased in 107 combinations (62.9%). Median annual rainfall 

(shown in orange in Fig. 5) increased for all 17 locations while the median number of annual rain 

events and rainy days decreased for 9 locations with an additional 3 locations observing decreases 

in one of these two precipitation characteristics.  Across all locations, mean annual rainfall volume 

increased by 9.9% (2.8in) while mean annual rain events and rainy days decreased 6.2% (6.5 days) 

and 3.9% (3.7 days), respectively. The greatest percent change in mean annual rainfall occurred in 

New Orleans with an increase of 18.7% (10.9in), while the lowest percent change occurred in 

Portland with an increase of 4.3% (1.5in). These trends are consistent with the understanding that 

while the total amount of rainfall may be higher in many locations in the future, extreme rainfall 

will also increase in many locations, meaning fewer events with higher magnitudes. Coupled with 

this anticipated reduction in the number of rainfall events, climate change is expected to bring 

larger drying periods between storms. Median drying period increased for 11 locations, with 

Portland being the only location where all 10 models projected increased annual dry days. 

Combining all locations, mean drying period increased by 10.5% (0.5 days) with the greatest 
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percent change in mean drying period occurring in New Orleans, mean increase of 37.8% (1.2 

days), while no change occurred in St. Louis. Jhong and Tung (2018) showed similar results and 

suggested that occurrences of floods and droughts could occur more frequently due to the 

combination of increased precipitation event volumes and drying periods. Manka et al. (2016) also 

showed that increased dry periods can reduce the efficacy of the biological processes present in 

bioretention cells resulting in nutrient export. 

Fig. 6 displays the percent change between observed (1999-2013) and future (2035-2049) 

precipitation volumes for 50th, 90th, 99th, and 99.9th percentile rainfall event depths for the 17 

locations. This allowed a more in-depth analysis as to how event size would change under future 

climate projections. Out of the 170 total future model-location combinations, 50th percentile events 

increased in 62 combinations (36.5%); 90th percentile events increased in 118 combinations 

(69.4%); 99th percentile events increased in 165 combinations (97.1%); and 99.9th percentile events 

increased in 147 combinations (86.5%). While median 50th percentile events only increased in 7 

locations, upper percentile events were shown to consistently increase in size, with median 90th 

percentile events increasing in 12 locations, median 99th percentile events increasing in all 17 

locations, and median 99.9th percentile events increasing in 16 locations. The increased trend in 

upper percentile precipitation events (≥90th) with minimal change in median precipitation events 

(50th) falls in line with observations from existing literature and again points to anticipated 

increases in severe rainfall in the future (Karl and Knight 1998; Madsen and Figdor 2007; Olsson 

et al. 2009; Wang et al. 2019b). Since bioretention cells are most effective during small, lower-

intensity precipitation events, the observed increase in the frequency of large, high-intensity 

precipitation events is particularly concerning for future bioretention cell performance (Wang et 

al. 2018, 2019b).  
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Fig. 5. Percent change between observed (1999-2013) and future (2035-2049) mean annual 

rainfall, mean annual rain events, mean annual rainy days, and mean drying period for the 17 

locations. 

 
Fig. 6. Percent change between observed (1999-2013) and future (2035-2049) precipitation 

volumes for 50th, 90th, 99th, and 99.9th percentile rainfall event depths for the 17 locations. 

*Note: An extreme outlier for 99.9th percentile events in El Paso is not shown in the figure (843%). 
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Bioretention Cell Performance 

Fig. 7 displays the percent change between the observed (1999-2013) and future (2035-

2049) infiltration loss, underdrain outflow, and overflow for all 17 locations. Due to values of zero 

being modeled for underdrain outflow and/or overflow under the observed rainfall data, 6 boxplots 

are not shown for Boise, Missoula, Phoenix, Portland, and San Jose in Fig. 7 (i.e. percent change 

could not be calculated).  

Excluding the 2 locations with increased median infiltration loss, Boise (25.9%) and Fargo 

(1.7%), percent change in median infiltration loss ranged from -0.2% (Portland) to -18.3% (New 

Orleans) in the remaining 15 locations. Conversely, excluding the 1 location with an observed 

underdrain outflow value of zero (Boise), percent change in median underdrain outflow increased 

between 9.7% (San Antonio) and 393.2% (Phoenix) in the remaining 16 locations. Finally, 5 

locations had an observed overflow value of zero with the 2 outlier locations being Boulder 

(median decrease of 8.6%) and El Paso (median increase of 1510.4%). In the remaining 10 

locations, the percent change in median overflow increased between 74.5% (Chicago) and 509.7% 

(Boston). The projected significant increase in overflow in 11 locations is most concerning from a 

public health and safety perspective due to overflow predominantly bypassing treatment and 

quickly proceeding to nearby conveyances (Hathaway et al. 2014; Tirpak et al. 2021). 

Out of the 170 total future model-location combinations, overflow increased in 151 

combinations (88.8%); underdrain outflow increased in 163 combinations (95.9%); and infiltration 

loss decreased in 121 combinations (71.2%). The increase in overflow and underdrain outflow 

combined with decreased infiltration loss indicate bioretention cells designed with existing 

guidelines may be unable to accommodate the projected increase in upper percentile storm 

magnitudes; specifically, surface infiltration may not be fast enough to avoid significant increases 

in overflow. The decrease in infiltration loss is both a consequence and cause of this detrimental 
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feedback loop. Increased annual precipitation volume and intensity expedite the rainfall-runoff 

process and increase runoff, thereby reducing infiltration and increasing overflow. Thus, the 

primary benefits of bioretention cells (e.g., reducing peak runoff, groundwater recharge, filtering 

pollutants) may be lessened under future climate change scenarios. 

Decreased infiltration loss under increased rainfall volumes has been documented in 

literature before (Tirpak et al. 2021), but the root cause has not been investigated. The root cause 

of this relationship is most likely due to either the bioretention cell’s surface layer filling too 

quickly, disallowing surface infiltration (and subsequent infiltration loss) due to immediate surface 

runoff, or infiltration loss being driven primarily by the number of rain events. If the surface layer 

is filling too quickly to enable surface infiltration, then the surface layer depth could be increased 

to hold a greater runoff volume, providing additional time for surface infiltration to occur. 

However, if infiltration loss is driven primarily by the number of rain events (e.g., minimal change 

in infiltration loss regardless of event size), then decreased infiltration loss may be inevitable under 

future climate scenarios projecting decreased rain events. 

Fig. 8 displays the percent change between the observed (1999-2013) and future (2035-

2049) mean yearly overflow days, 50th percentile daily overflow, 90th percentile daily overflow, 

and 99th percentile daily overflow. Due to observed values of zero for overflow, Boise, Missoula, 

Phoenix, Portland, and San Jose are not shown in Fig. 8 (i.e. percent change could not be 

calculated). Percent change in median yearly overflow days increased between 14.8% (New 

Orleans) and 334.6% (El Paso) for all 12 locations shown. The percent increase in median yearly 

overflow days and the associated variability between locations is highly related to the increase in 

extreme precipitation events. Winston (2016) found similar variability in future precipitation when 

comparing locations only 15.5 miles apart in northeast Ohio. Similarly, Gao et al. (2012) showed 
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substantial variability in climate change effects on extreme weather across the eastern United 

States. 

Of the 12 locations shown in Fig. 8, 6 locations (Boston, Boulder, Chicago, El Paso, New 

Orleans, and Pittsburgh) also decreased in median number of annual rainy days, again indicating 

increases in rainfall magnitude when events do occur. A particularly compelling example of this 

trend is found in New Orleans, where a relatively low increase in median yearly overflow days in 

New Orleans is found, yet the location shows a significant increase in median annual precipitation 

(18.7%) and decrease in median annual rainy days (19.5%) – the largest percent changes in both 

precipitation statistics – suggesting larger events will make up a larger percentage of the storms 

that do occur. 

Excluding Boulder and Chicago, median 50th, 90th, and 99th percentile daily overflow 

increased for the 10 remaining locations shown in Fig. 8. Excluding the western and northwestern 

United States, the consistent increase across all overflow percentiles indicates that government 

agencies, city planners, and stormwater engineers should expect higher overflow volumes for all 

events to become the new standard across the United States. Boston, Charlotte, Memphis, and New 

Orleans face the greatest likelihood of higher overflow volumes. All 4 locations experienced 

≥100% increases for all three (50th, 90th, and 99th) median daily overflow percentiles with all 10 

models projecting increases. The increase across all overflow percentiles and models indicates that 

the size of overflow volumes will not only possibly escalate, but this change is statistically likely 

to occur in those 4 locations. Therefore, stormwater professionals for those 4 locations will need 

to begin modifying existing bioretention cells to ensure they are capable of maintaining their 

existing function into the future. 
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Fig. 7. Percent change between observed (1999-2013) and bias-corrected future (2035-2049) 

bioretention cell performance indices, infiltration loss, underdrain outflow, and overflow for 17 

locations. 

*Note: Second half of boxplot for El Paso is cut off from the figure (Q3 = 2487%; Max = 5360%). 

 
Fig. 8. Percent change between observed (1999-2013) and bias-corrected future (2035-2049) 

overflow characteristics for 12 locations. 

*Note: An outlier for Amarillo is cut off from the 90th percentile figure (Max = 766%), and the 

second half of the boxplot for El Paso is cut off from the 90th percentile figure (Q3 = 689%; Max 

= 1147%) and 99th percentile figure (Q3=1211%; Max = 4353%). 
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Fig. 9 provides comparison of observed (1999-2013) and future (2035-2049) median 

overflow, underdrain outflow, and infiltration loss results for all 17 locations. The sum of all three 

bioretention cell performance indices (overflow, underdrain outflow, and infiltration loss) is 

hereafter referred to as “annual volume”. Median overflow increased in 15 locations, remained 

unchanged in 1 location (Boise), and decreased in 1 location (Boulder); underdrain outflow 

increased in all 17 locations; and infiltration loss decreased in all 17 locations. Due to many 

locations having extremely low overflow or underdrain outflow under the observed precipitation 

dataset, relative comparisons between observed and future datasets have been made using changes 

in the percent of total annual volume attributed to each hydrologic pathway as opposed to using 

percent change (e.g., comparing 1% with 5% instead of stating a 400% increase). Relative percent 

change between the observed and future datasets was calculated using Eq. 2. 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 % 𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑓𝑢𝑡𝑢𝑟𝑒 % − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 %    Eq. 2 

Bioretention cells in the southern United States are most at risk of being unable to provide their 

existing function under future climate change scenarios. The 7 southern-most locations (Amarillo, 

Charlotte, El Paso, Memphis, New Orleans, Phoenix, and San Antonio) produced all 7 of the 

highest relative percent increases in overflow, ranging from 7.0% to 19.6%. With the exception of 

Memphis, the 7 southern-most locations also produced 6 of the highest relative percent decreases 

in infiltration loss, ranging from 15.3% to 24.0%. New Orleans and San Antonio also recorded the 

two highest relative median increases in overflow, 2766.5 cu yd/yr and 928.6 cu yd/yr, 

respectively. Significant increases in overflow in the southern and southwestern United States are 

consistent with extreme precipitation projections by Prein et al. (2017) and bioretention cell 

performance analysis literature (Cook et al. 2019; Hathaway et al. 2014). The significant increases 

in overflow are a direct result of the frequent and intense rainfall in the southern United States, 
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which will only further exacerbate existing stormwater infrastructure and cause more flooding. 

Although GSI is likely to provide some resiliency to extreme precipitation, these results indicate 

there are limits in this resilience that can be exceeded.  

While not under the same degree of risk as the southern United States, bioretention cells 

located in the Midwest and Northeast are still at risk of losing their existing function under future 

climate change scenarios. Following the 7 southern locations, the 5 locations in the Midwest and 

Northeast (Boston, Chicago, Fargo, Pittsburgh, and St. Louis) produced the next 5 highest relative 

percent increases in overflow, ranging from 3.3% to 5.2%. The 5 Midwest and Northeast locations 

also recorded the 5th through 9th highest relative median increases in overflow, ranging from 230.5 

cu yd/yr to 315.4 cu yd/yr. Results are consistent with Cook et al. (2019) who found that 

bioretention cells in the Midwest and Northeast overflowed equivalent or elevated magnitudes of 

runoff compared to other regions in the United States. 

Bioretention cells in the western and northwestern United States have the best likelihood 

of being able to maintain their existing function under future climate change scenarios. The 5 

northwestern-most locations (Boise, Boulder, Missoula, Portland, and San Jose) produced all 5 of 

the lowest relative percent changes in overflow, ranging from a decrease of 0.3% to an increase of 

1.2%. The 5 northwestern-most locations also recorded all 5 of the lowest relative changes in 

overflow, ranging from a median decrease of 5.5 cu yd/yr to an increase of 28.1 cu yd/yr. With the 

exception of Boulder, the extremely positive bioretention cell performances in the northwest are 

consistent with results from Cook et al. (2019). The minimal effect on existing bioretention cell 

function indicates that stormwater infrastructure in the northwestern United States will require the 

least additional investment under climate change scenarios to maintain existing function.   
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Fig. 9. Observed (top) and future (bottom) overflow (grey), underdrain outflow (orange), and 

infiltration loss (blue) for all 17 locations. Donut hole size is inversely proportional to the annual 

volume. 
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Recommendations 

While many bioretention cells across the United States are projected to experience 

significant increases in overflow and decreases in infiltration, modifications can be performed to 

mitigate the effects of climate change. 

Management Strategies 

Tirpak et al. (2021) compared an ensemble of retrofit and design configurations for 

bioretention cells in east Tennessee, and found varying degrees of success for three scenarios: 1) 

increasing the soil layer depth; 2) increasing the storage layer depth; 3) and increasing the 

bioretention cell surface area. Increasing the depth of the soil layer in the bioretention cell was 

shown to be a conservative yet effective method of increasing runoff volume retention (Tirpak et 

al. 2021). As such, increasing the depth of the soil layer for bioretention cells in regions where 

overflow is expected to increase some but not significantly, such as the western and northwestern 

United States and parts of the Midwest, is a viable option requiring low investment. Increased soil 

layer depth can also increase pollutant removal and water storage (Hatt et al. 2009; Muerdter et al. 

2016; Read et al. 2008). Vegetation in bioretention cells of the western and northwestern United 

States would benefit greatly from the increased water storage due to the projected significant 

decrease in rainy days and increase in drying period. 

Increasing the depth of the storage layer has been found to be an extremely effective 

method of reducing overflow. Hathaway et al. (2014) found an increased storage layer depth of 

3.6 to 12.4 inches would maintain existing function in east North Carolina into the late 2050’s, and 

Winston (2016) found an increased storage layer depth of 2 to 6.8 inches would maintain existing 

function in northeast Ohio into the late 2050’s. Increased storage layer depth has the potential to 

store a greater volume of runoff than increased soil layer depth but requires either deepening the 
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bioretention cell or removing media from the soil layer, reducing the efficacy of pollutant removal. 

However, increasing the storage layer depth is more effective at reducing overflow than increasing 

the soil layer depth and should be considered if overflow reduction is the priority (Tirpak et al. 

2021). Densely populated, highly urbanized locations with a future need for additional overflow 

volume retention, such as Chicago, Pittsburgh, or Boston, would greatly benefit from increased 

storage layer depths in bioretention cells. 

The final successful option investigated by Tirpak et al. (2021) increased the surface area 

of bioretention cells while keeping the subcatchment area constant, which has been shown to be 

an effective method of reducing overflow and increasing infiltration (Wang et al. 2019a, 2019b). 

Increasing bioretention cell surface area has the greatest potential for reducing overflow and 

increasing infiltration if all other bioretention cell characteristics are held constant. Essentially, 

this in turn causes soil and storage layer volumes to increase, improving overall storage capacity. 

Soil and storage layer depths can also be increased while increasing surface area, adding additional 

storage volume. Increasing the bioretention cell’s surface area requires the greatest investment of 

the three options and may not be an option in some locations due to urbanization or cost. However, 

locations in the southern United States, El Paso, San Antonio, Memphis, Charlotte, and New 

Orleans, will require significant investment in all stormwater infrastructure (grey and green) to 

eliminate or at least reduce overflow volumes. A location such as New Orleans, in particular, will 

need to incorporate bioretention cell modifications wherever possible to reduce the significant 

increases in projected overflow volumes. 
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CHAPTER FIVE 

CONCLUSION 

The increased frequency and severity of extreme precipitation events caused by climate 

change pose significant risk to urban stormwater infrastructure. Although bioretention cells are 

considered to be a way to build resiliency into drainage systems, their performance under climate 

change is largely untested. This study investigated the performance of bioretention cells under 

future climate scenarios across the contiguous United States. Future simulated climate data from 

17 locations and 10 RCMs (170 total combinations) were gathered and bias-corrected using the 

kernel density distribution mapping technique. Bioretention cell simulations were then performed 

in EPA SWMM 5.1 using bias-corrected future (2035-2049) and observed (1999-2013) climate 

data to enable performance comparisons. 

Median annual rainfall increased across all 17 locations in future scenarios. A majority of 

locations also experienced a decreased median number of rainy days and rain events while median 

drying period increased. Precipitation events were projected to become significantly more severe 

for upper-percentile events (≥90th) while 50th percentile events were projected to change minimally 

for all locations except for Boulder. Extreme upper-percentile events increased the most 

consistently across locations with 17 locations increasing in 99th percentile events and 16 locations 

increasing in 99.9th percentile events. Future precipitation events will, therefore, become less 

frequent but more severe. The combination of increased precipitation event severity and volume 

with increased drying period also indicates floods and droughts will occur more frequently in the 

future. However, findings clearly indicate that while precipitation event severity is expected to 

increase on average across the United States the shift in precipitation patterns will vary 

significantly by location. 
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As a result of shifting precipitation patterns, future bioretention cell performance changed 

across all locations. Relative percent increases in annual underdrain outflow and/or overflow and 

decreases in annual infiltration loss occurred for all 17 locations. Increased annual overflow poses 

significant environmental and health risks to urban communities due to the runoff bypassing 

treatment, amplifying downstream flows, and potentially transporting pollutants, pathogens, and 

sediment. Percent increases in median 50th, 90th, and 99th percentile overflow events are also 

projected for 10 locations. Excluding the western and northwestern United States, higher overflow 

volumes for all event percentiles should be expected across the United States. Decreased 

infiltration presents an additional challenge for city planners and stormwater engineers. If 

bioretention cells are no longer able to promote native soil infiltration and filter pollutants, then 

their benefit as a stormwater control measure will be lost. Further, these outcomes suggest that 

while bioretention buffers extreme weather, there are limitations in this buffering capacity during 

large events. 

Findings show that the future performance of bioretention cells built under current 

guidelines will vary significantly by region. The southern United States is projected to experience 

the most significant shift in precipitation patterns with bioretention cells very likely losing their 

existing function if unchanged. However, recent research suggests significant investment in 

retrofits or design modifications of existing bioretention cells in the southern United States have 

the potential to heavily minimize the effects of climate change. The Midwest and Northeast are 

projected to experience a less severe shift in precipitation patterns compared to the southern United 

States, but bioretention cells are still likely to lose their existing function if unchanged. Moderate 

investments in retrofits or design modifications in the Midwest and Northeast could enable 

bioretention cells to maintain or even improve their existing function in the future. The western 
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and northwestern United States have the best projected future outlook compared to all other 

regions. Minor investments in retrofits or design modifications of bioretention cells in the western 

and northwestern United States would ensure existing or improved function regardless of the future 

model scenario. 

Future studies should be performed incorporating a wider range of climate models, 

emissions scenarios, and bioretention cell configurations. The range of climate models and 

emissions scenarios used in this study was limited based on the availability of simulated hourly 

precipitation data. Only two emissions scenarios were used in this study with 1 model based on 

RCP4.5 and 9 models based on RCP8.5. As such, additional climate models used for each 

emissions scenario would further elucidate trends in future climate. While a range of climate 

models and locations were evaluated in this study, a single bioretention cell configuration was 

used for all simulations. A future study incorporating this methodology with multiple bioretention 

cell configurations would provide insight on the significance of design modifications required in 

all locations to maintain existing function under future climate scenarios.  
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Fig. A1. SWMM model overview, including subcatchment (IMP01), bioretention cell (BC01), 

rain gage (STA01), and outlet (OUT) 

 
Fig. A2. SWMM model rain gage (STA01) characteristics 
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Fig. A3. SWMM model Climatology Editor Temperature tab 

 
Fig. A4. SWMM model Climatology Editor Evaporation tab 
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Fig. A5. SWMM model subcatchment (IMP01) characteristics 
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Fig. A6. SWMM model bioretention cell (BC01) characteristics 
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Fig. A7. SWMM model Simulation Options Dates for observed climate scenarios 

 
Fig. A8. SWMM model Simulation Options Dates for future climate scenarios 
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Fig. A9. SWMM model Simulation Options Time Steps tab 

 
Fig. A10. SWMM model Simulation Options Dynamic Wave tab 
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Fig. A11. SWMM model Simulation Options Files tab (none used) 

 
Fig. A12. SWMM model LID Control Editor for Surface layer 
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Fig. A13. SWMM model LID Control Editor for Soil layer 

 
Fig. A14. SWMM model LID Control Editor for Storage layer 
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Fig. A15. SWMM model LID Control Editor for Drain layer 
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