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ABSTRACT 

Molten salt reactors (MSRs) have a plethora of advantages over light water 

reactors. They operate at more favorable conditions for power generation and accident 

conditions. These conditions lead to problems with corrosion. Monitoring of this 

corrosion will be required for a MSR when built. Laser Induced Breakdown 

Spectroscopy (LIBS) is an excellent tool for this application, as it can be done with 

minimal sample preparation and without having to complete the more complex sample 

preparation required for EDS. This work will demonstrate the utility of LIBS in showing 

similar features as EDS such that an understanding of the corrosion seen in a material is 

achieved through LIBS.  
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CHAPTER ONE INTRODUCTION  

Brief overview of MSRs and their importance 

Clean, carbon-free energy is important for the continued advancement of humanity. 

Nuclear energy is an excellent option to that end. Nuclear energy has many advantages, 

particularly the energy density of fissile material allows for small footprints compared to 

renewable energy. Nuclear reactor designs outside of current commercial plants exist and 

offer novel features that could be of further benefit in producing cheap, carbon free 

electricity. Of these existing designs, Molten salt reactors have a host of advantages 

worth discussing. However it also has a number of challenges that must be addressed. 

This work will discuss some of the materials and chemical challenges faced by MSRs, as 

well as provide some insight into these systems using the LIBS analysis technique.  

Molten Salt Reactors are an important technology that could be transformative to 

electricity generation in the near term. Molten salt reactors are considered to be a more 

attractive option than Light water reactors (LWRs), which are a technology that is already 

quite good at producing safe and clean energy. Simplicity and physics-based behavior are 

the backbone of the safety of the MSR design. Many of the additional benefits past 

simple safety come from the more complex chemistry that is both the greatest benefit and 

challenge of the MSR. Amongst the considerable benefits of the MSR design are low 

pressure, high temperature operation, inherent safety, increased fuel utilization and the 

potential to use fertile material to fuel the reactor. Technical challenges in the areas of 

materials corrosion, chemistry control, and proliferation concern need to be dealt with 

before a commercial version of the MSR could be viable. Upon successful resolution of 

the few challenges, MSRs offer a technology that could help to produce large amounts of 

carbon-free energy with significantly more rapid deployment than fusion.  

LWRs rely on high pressure to keep water a liquid. This is a problem, as it means there is 

a large driving force that might distribute radionuclides in the case of an accident in an 
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LWR and when pressure is lost in an accident. This high pressure also leads to requiring 

thick piping, pressure vessels, and materials capable of withstanding these pressures, all 

which increases cost and makes maintenance of LWRs difficult. By lowering the 

pressures involved, the molten salt reactor design does not require a massive pressure 

vessel, nor do the pipes containing coolant need to contain hundreds of atmospheres of 

pressure. Similarly, the threat of distributing contamination in the event of an accident is 

reduced since there is no pressure gradient that could disperse material. Finally, molten 

salt does not have the same possibility of the coolant becoming gaseous in accidents that 

water has. This is of benefit, as it means even in accidents, coolant should be present. 

Lowering pressure is an important benefit of the MSR design.   

The high temperature operation of MSRs has one simple advantage. To get one watt of 

electricity from a steam turbine requires about 3 watts of heat (rough assumption). By 

operating at higher temperatures, MSRs are more thermodynamically efficient and will 

require less fuel to produce the same electrical output. Rather than the 33% thermal 

efficiency number of typical turbines in current power plants, molten salt will likely have 

thermal efficiencies closer to 45%[1]. In other words, MSRs are a more fuel-efficient 

design than LWRs; producing the same amount of electricity in a MSR uses less fissile 

material than what a LWR would require. 

A third benefit of the MSR is its inherent safety. There are various methods that achieve 

this; however, none are quite as simple as the freeze plug concept. The freeze plug is a 

small section of piping that requires constant cooling to keep the reactor coolant 

contained within the normal vessel by solidifying salt within a drain tube. In the event of 

an event where power is lost to the reactor, cooling of the freeze plug is lost, and the plug 

melts. This plug melting allows the volume of the reactor to drain into tanks designed to 

stop any ongoing fission reactions, and to cool the salt. This design feature is highly 

important, as it makes the MSR reactor “walk away safe,” meaning that no human input 

is needed to prevent catastrophic consequences from even the worst accidents.  
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Molten salt reactors offer the opportunity to actively separate fission products during 

operation. This is a huge advantage, as it allows for the breeding of fuel from Th, and 

decreases the amount of fission products in the salt. During normal operations, this means 

that Xe-135, Gd-155, Gd-157, Sm-149 and other neutron poisons are removed from the 

core, increasing the neutron utilization of the reactor. In other words, less fissile material 

is needed to sustain a chain reaction. Online processing of fuel offers another potential 

benefit of separating radioactive fission products that might be used for medicine, 

imaging, or other applications as needed. The fissioning of material leads to the 

production of many useful radioisotopes. For example, Mo-99 is produced from the 

fission of U-235. This is a highly important radioisotope, as it decays to Tc-99m which is 

used for medical imaging. Many examples of this exist, providing the opportunity for a 

MSR design to produce radioisotopes as an additional benefit.  

The MSR is not a single reactor design, but rather a classification of design. Just as a car 

and a bike are both vehicles, the MSRE, ARE, and paper reactors are all MSRs but are 

radically different in form. Different designs of MSRs may be optimized for differing 

performance, some may breed fuel, some may use a fast spectrum to limit waste 

production, and some may be used to produce radionuclides for medical applications. 

Molten salt reactors offer the option of using Th-232 to breed U-233 for fuel, avoiding 

the production of Pu, and limiting the production of transuranic elements. This is 

important, as much of the long-lived radioisotopes in nuclear waste are transuranic and 

eliminating their production means that waste will be shorter lived and produce less heat. 

Breeding fuel and burning waste are important potential uses of future MSRs that the 

various designs proposed can take advantage of. The lack of a single design is a strength 

and challenge for MSR implementation. There is utility in being able to attribute every 

benefit as a selling point, however this is a problem when discussing MSRs. The lack of a 

standard design creates a great challenge when discussing MSRs, there is no single MSR 

or MSR model that represents everything, and thus there is not a standard by which 

corrosion, chemistry, performance, and other characteristics of a MSR may be measured 



 

4 

 

or discussed. For example, the same reactor cannot breed fuel from Th-232 and burn 

large amounts of LWR waste, but both are discussed as potential benefits of the MSR 

design, and a simple reading of the benefits of MSRs might mislead the reader into 

thinking that every espoused benefit of the MSR would be present in all MSR designs. 

Problems exist with the MSR design. There has not been a MSR built in over half of a 

century, and that experiment was limited in power and operational time. The hands-on 

knowledge of running a nuclear reactor using molten salt now exist mostly on paper 

rather than in the minds of people. Technical reports are all that remains of the non-

scientific knowledge of building MSRs. There are undoubtedly things that were learned 

about molten salt systems during their operation that have been lost to time.   

Considerable corrosion challenges exist for the MSR. Hastelloy N worked for the MSRE. 

However, it is highly expensive, and it is not code rated meaning it would not be 

permissible to build a commercial system using it. Hastelloy N also had a problem with 

Te induced cracking. While later studies found solutions to the Te induced cracking, 

there are likely other materials challenges that have not been fully addressed. For the 

MSRE, the chemistry control that ensured that corrosion was minimal was manageable 

but difficult. Specific measurements of the redox state of the salt were taken prevent 

corrosion problems at set intervals. Constantly measuring and adjusting of a system is 

expensive and complicated, facts that would limit the implementation of a MSR. Finally, 

Modern corrosion studies have found that impurities in salt will increase corrosion. High 

rates of fission producing a wide spectrum of elements is likely to be problematic for 

introducing impurities and affecting corrosion, the previously mentioned Te cracking was 

found, it might be that other problems would arise. Without running further test reactors, 

there is uncertainty about what fission products might do to a MSR.  

MSRs present a potential proliferation risk in some situations. Any of the breeding fuel 

cycles have the possibility of separating materials that could be directly used in weapons. 

Similarly, the ARE and MSRE designs used uranium enrichments higher than what is 
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allowable under the current licensing framework due to concerns of proliferation. While 

the goal of making a MSR to produce cheap, carbon free energy is good, it must not 

come into conflict with the goal of preventing the proliferation of nuclear materials.  

The MSR technology has many benefits that it offers in producing the energy needed for 

the world. The high safety and efficiency along with the benefit of breeding fuel are all 

fantastic. Technical challenges remain in the way of the MSR being implemented.  

Brief introduction to LIBS 

Laser Induced Breakdown Spectroscopy (LIBS) is a technique used to determine the 

composition of a sample.  LIBS operates by firing a high-power laser at a material, 

depositing a large amount of energy as heat to the material, which causes it to turn into 

plasma.  A plasma is a state of matter similar to gas, but where electrons are not bound to 

atoms and are free to move.  As the volume of created plasma cools, the electrons that 

were removed from the atoms that make up the plasma return to their original position 

orbiting the atom.  This return of electrons results in the emission of photons (light) with 

specific energies based on how the electron returned to orbiting the atom. This 

characteristic photon energy specifies what elements are present.  After flashing a small 

volume of material to plasma, the process is repeated, and the laser is fired again at the 

same fixed point. The emission spectra of this volume of material is recorded and the 

laser is repeatedly fired.  This process repeats until the laser has completed “burning” 

through the depth of interest. Control of this depth of interest is achieved by changing the 

laser power, laser beam shaping, and beam size. Laser power changes emissions by 

producing hotter or cooler plasmas based on the energy input to the system. Adjusting 

plasma temperatures allows for more or less activation of certain emission lines, a feature 

that can enable more selective analysis of elements. Beam shaping matters as it 

determines what the volume of material flashed to plasma is shaped like.  The most 

common beam shapes for LIBS are Gaussian power distribution and top hat (flat top) 

power distribution.  Finally, spot size can be chosen to help include more or less of the 
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localized features or simplify things for bulk analysis.  Often LIBS is repeated at multiple 

positions on a sample to ensure that many representative areas are analyzed. This process 

allows for both homogenized analysis and comparison from one location to another 

where differing features may be analyzed. A final important detail of LIBS 

characterization is that of gate delay. The collection of a LIBS spectra begins with the 

pulsing of a laser. This begins a clock in the spectrometer that will measure the emitted 

light from the produced plasma. The delay between when the laser is fired and when the 

spectrometer begins to collect data is an important parameter in determining the behavior 

of the system, as it determines the plasma temperature. Shorter gate delays have extra 

noise from black body radiation, while longer gate delays have less signal. 

Producing accurate quantification for the amount of an element present in a single LIBS 

spectrum is a complicated task.  Within a spectrum, there will be a background 

continuum superimposed with the spectral peaks.  This background level of photons is 

produced by black body radiation of the plasma as it cools from high temperatures.  Next, 

there will be emission peaks from the cover gas which will be superheated by the laser 

when a measurement is done.  These peaks need to be ignored or removed depending on 

the analysis.  Finally, known peaks based on the elements expected should be seen.  

Every emission peak has a relative intensity which is known for most elements. The 

relative intensity is an important concept, as some emissions will be quite common and 

result in a clear signal, while other emissions will be rare and result in minimal or no 

peak.  There is also an important consideration of how hot the plasma is.  Variations 

occur in laser power that can result in a hotter or cooler plasma that will produce different 

peaks.  A hotter plasma will have more energy and will likely produce more uncommon 

peaks.  Similarly, a cool plasma might not produce some expected emissions.   

LIBS is technically a destructive analysis technique, however it often considered as non-

destructive as very small pieces of material can be used for analysis. It is an important 

caveat that LIBS does destroy at least some of a sample, which can be a problem for 

small samples that are expensive and complex to produce.  
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Applying LIBS to molten salt systems should be able to provide analysis of several 

features of corrosion and material degradation.  Molten salt corrosion will lead to 

removal of the least noble metal from the alloy, metal or material exposed, meaning there 

will be a depleted region of some element observed by LIBS.  LIBS will similarly be able 

to detect if there is salt trapped in openings, pores, or cracks. It is possible that depletion 

of elements along grain boundaries that have been attacked by molten salt can be detected 

using LIBS. Additionally, LIBS will be able to see if there are any other elements present 

from the salt that would suggest the exchange of metal from the alloy for metal from salt 

to create corrosion.  For example, we may detect small amounts of Mg that would 

indicate that Mg from the salt was reduced when Cr was oxidized.  This might indicate 

that there are possible reactions that are not well mapped with the current understanding 

of the thermodynamics of the salt-metal system.   

MSR History 

History of ARE 

Following the second world war where nuclear energy had been demonstrated to 

devastating effect, the US Army Air Forces began to seek out a solution for a nuclear-

powered aircraft. Sustained supersonic flight was the goal of the Aircraft Nuclear 

Propulsion program. With high energy densities, nuclear was considered as a power 

source for such an aircraft. The reactor they built was known as the Aircraft Reactor 

Experiment (ARE). This program resulted in the building of the first molten salt reactor, 

wherein a NaF-ZrF4-UF4 salt was circulated through a BeO moderator. The metal used 

for the construction was an Inconel high Ni content alloy. The ARE was built and 

operated at a 3 MW power. The thermal gradient across the core was 355°F (197°C), and 

the highest temperature within the reactor was 1620°F (882°C). The ARE operated for a 

total of 4 days from November 8 to 12, 1954.  The technical reports from the ARE are 

available [2, 3]. These reports fully detail the design, construction, operation, and post 
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experiment examination of the ARE. The project was reported as a success and set the 

groundwork for the MSRE and future MSR concepts.  

The work of the ARE is highly relevant, as it was the first MSR ever constructed. This 

work successfully demonstrated that molten salt reactors are possible to build and 

operate. Amongst the important lessons from the ARE were that the Inconel that was 

used for the reactor vessel and containment was not compatible with molten salt[3]. 

Earlier corrosion testing has shown Inconel to corrode more than stainless steels, 

however its high-temperature strength, ability to be fabricated, and availability made it 

the choice of material for the ARE.  

The end of ANP occurred for several reasons, however the primary reason was the 

development of Intercontinental Ballistic Missiles. Their development eliminated the 

need for sustained supersonic flight and an energy source that could power it. This left 

the molten salt technology in somewhat of void until civilian power was suggested as an 

application of molten salt. The ARE left the legacy that would enable the MSRE and 

spark the interest in molten salt technology.  

History of MSRE  

A decade after the ARE, a second demonstration of the molten salt reactor concept was 

designed, built, and operated from 1965 to 1969. It operated at up to 7.4 MWt and had a 

hot leg temperature of 650° C. Initially the MSRE ran on enriched U-235 as its fissile 

fuel, however it later was operated using U-233 as the fissile material, demonstrating the 

possibility of running such a reactor fuel cycle. The additional utility in operating a 

nuclear reactor using U-233 is enabling the possibility of breeding fuel from Th-232.  

The salt used in the MSRE was LiF-BeF2-UF4. The materials that were in contact with 

the salt were all graphite or Hastelloy-N, a special alloy developed specifically for work 

with molten salts. Hastelloy N has a composition 7% Cr, 16% Mo, <4% Fe, <1% Si, Mn, 

V, Co, Cu, W, Al, Ti, and balance (~71%) Ni by weight percent. The thermodynamics 
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and design are discussed in greater detail for this alloy in following sections, however it 

was found to be a good choice for work in molten salts due to low Cr content. Of the 

alloy constituents, Cr would be selectively removed first, leaving the majority of the 

metal in place. The MSRE design relied on graphite as a moderator. Graphite was found 

to be compatible with molten salt so long as it had small pores.   

Corrosion in the MSRE was found to be minimal, with Cr content in the salt measured at 

85 ppm at the end of the first major series of operation. This was equated with a 0.2 mm 

or less loss of structural material on any of the exposed surfaces. It is important to note 

that the MSRE had a high degree of control on their salt chemistry, often sampling and 

measuring the amount of U(III) against the amount of U(IV). This ratio was held constant 

such that metal would not be reduced and plate out anywhere in the system, and that 

structural metals would not be oxidized. This is highly important as it is likely why the 

MSRE did not experience significant corrosion whereas some experiments with molten 

salt experience high corrosion rates. 

The technical issues from the MSRE are reported and further discussed in the work [4]. 

Amongst the problems reported are structural material embrittlement, limited graphite 

lifetime, molten salt chemistry, noble metal plate out, tritium management, power 

fluctuations, and design maturity. All of these were addressed in post MSRE works to 

varying degrees. Embrittlement of Hastelloy N was attributed to Te. Te occurs in molten 

salt systems as a fission product, and it was found that a Nickel-Telluride intermetallic 

compound was formed that led to significant cracking of the Hastelloy N used to contain 

salt. Significant work followed at ORNL developing a modified Hastelloy N that would 

be resistant to this cracking. Experiments were initially done as capsules and then loops 

to confirm the behavior of additions to the alloy. This was found to be a diffusive 

process, as the depth to which Te was present was found to be proportional to the square 

root of the exposure time. The mechanism suggested for the embrittlement of Hastelloy N 

was the formation of Ni3Te2. It was eventually found that Te cracking of Hastelloy N 

could be stopped by adding a small (~1-2%) addition of Nb to the alloy[5-7]. 
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A huge number of technical reports were generated for and from the MSRE, and while all 

provide useful information for MSR research and design, a selected few are included as 

sources. These include reports on the characterization of corrosion samples post-

experiment [8-11], general design [12, 13], and chemistry [14].  

The MSRE was a significantly longer experiment than the ARE and thus had more 

challenges but resulted in greater knowledge. Many proposed modern reactors suggest 

using the same salt for the same reasons; greater data is available for the FLiBe mixture 

than any other salt, and its neutronic properties are ideal. The idea of a freeze plug has 

become universal based on its inclusion in the MSRE design. The MSRE was considered 

a success in its plans, as it demonstrated the technology and helped to expand knowledge 

on the MSR design type.  

History of MSBR and paper MSRs 

Following the MSRE, a further demonstration of the MSR technology was planned. The 

Molten Salt Breeder Reactor was one of a series of following designs that came from the 

interest and work done in the MSRE. The MSBR was proposed as a larger reactor on the 

order of several hundred MW power [15]. The intention was to use the lessons learned 

from the MSRE to develop a full scale MSR that could provide civilian nuclear 

power[16]. The MSBR design was to use a similar salt, and the same alloy, save the Nb 

addition to Hastelloy N and the addition of Th to the salt [4]. The MSBR proposed 

breeding fuel from Th. The advantages of breeding Th to U-233 are reduced waste, no 

enrichment requirement, and greater fuel availability. The MSBR would require online 

chemical separation as a part of its operation. The neutron capture of Th-232 produces 

Th-233 which decays rapidly to Pa-233. This Pa-233 needs to be chemically separated to 

prevent further conversion. Once captured, Pa-233 is allowed to decay to U-233, a fissile 

fuel.  This process of continuously separating Pa had been demonstrated on a lab scale, 

however the MSRE only had chemical separations at intervals rather than 

continuously[17]. The integration of an online separation of fission products was of 
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concern and is one of the technical challenges that remains today. Funding for nuclear 

reactor designs was limited, and for a myriad of political and scientific reasons, the 

Atomic Energy Commission chose to pursue liquid metal fast reactors. A final few 

reports of importance were generated from ORNL on the potential of the MSR design 

following this decision. Of particular importance are [7], and [18]. 

Other MSR concepts exist in papers particularly from ORNL. The denatured MSR and 

FHR are amongst these paper reactors proposed. Each has benefits to its design. The 

Denatured MSR (DMSR) is designed for particular concerns of proliferation that MSRs 

generally present[19]. The high enrichment and requirement of continuous chemical 

separation is of concern, and the DMSR Materials accountability is difficult in MSRs, the 

DMSR works to fix this by designing with the limits of 5% enriched U-235 fuel, making 

the theft of fuel less of a proliferation risk. Similarly, the DMSR works to solve the 

problem of producing Pu by limiting the separations processes needed during operation. 

Many potential MSR designs can be made with a host of benefits, however they must all 

deal with the suite of problems that molten salt presents from a chemistry and materials 

perspective.  

Current MSR designs 

After several decades of limited interest, there is renewed interest in molten salt reactor 

designs primarily from an industrial perspective and several are worth mentioning. Kairos 

Power is one company with a MSR design, relying on multiple technologies, they plan on 

loading TRISO fuel pellets in to a LiF-BeF2 (FLiBe) salt, having a secondary salt heat 

transfer loop, and finally using that heat in a steam generator to produce the steam to run 

a thermal cycle. Their planned output is 140 MWe. Peak salt temperature is planned to be 

650° C. Fuel loading is planned as 19.75% U-235 content.  

TerraPower has several nuclear reactor designs, including the Molten Chloride Fast 

Reactor. The MCFR is a MSR that is designed to use a chloride salt as a coolant. This is a 

departure from other designs, and may require the isotopic separation of Cl-35 and Cl-37. 



 

12 

 

The benefits and problems of using Cl based salts will be discussed in a following 

chapter.  

FLiBe energy is another company invested in producing a MSR for the commercial 

market. Their specific specialty is that their reactor design would use Th as a fertile fuel 

rather than relying on U as the fuel for the reactor. Limited information is available on 

the physical properties of their reactor design.  

The purpose of mentioning all of these reactors is to demonstrate the commercial interest 

in the technology. Other designs have been proposed with different goals of using Th or 

U for Fueling, Cl or F salts, and a whole host of other goals that would be beneficial to 

operation of a MSR. Renewed MSR interest is important, and is important justification 

for this work, and the other novel works that are occurring in molten salt science.  
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CHAPTER TWO - LITERATURE REVIEW   

Molten Salt 

Introduction 

Molten Salt is a complex topic that merits discussion. From the ground up, it is important 

to understand why certain elements are selected to make a salt and why other elements 

are not. It is similarly important to know why some materials work better as containers 

for molten salts. Finally, the thermodynamics of these selections are important to know 

and understand. The resulting interaction of the selected salt and metal will show some 

general trends in what elements of the structural metal are attacked. The severity of the 

attack faced by the metal is in large part controlled by the impurities seen in the salt. 

Chloride salts appear to have more impurities and have more complex chemistry. All this 

chemistry is controlled with metallic additions that keep the redox state of the salt at a 

proper set point. Understanding all this requires testing, particularly thermal convection 

loops. Finally, the reported values from testing need to be depth of attack rather than 

mass loss to correctly identify the amount of material that no longer is structurally sound.  

Salt selection Requirements  

The anions and cations that go into making a molten salt are critical and differ vastly 

based on application. Generally physical properties and nuclear properties must be 

balanced to produce an ideal salt. The requirements of having low enough temperatures 

for materials to survive means that the salts used will need to be mixtures, preferably 

eutectic mixtures, of two salts. Generally due to thermodynamic concerns, the middle of 

the periodic table is avoided due to having low energy of formation as halides. This 

means that the structural materials would be able to be more easily reacted by the less 

tightly bound halides found with salts from these metals. This leaves the alkali metals and 

the alkaline earth metals for consideration as salt materials. There are exceptions to this, 
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primarily Zr. Salt cations can be selected from most of the alkali and alkaline metals with 

concern mostly given to producing ideal physical and nuclear properties. 

An important limitation of any salt mixture intended for reactor use is that it must have 

U, Zr, or another cation that is able to have multiple oxidation states in the salt. Cations 

with multiple oxidation states are able to act as buffers in the event that there is a shift in 

redox chemistry in the reactor. In the MSRE, the salt was primarily LiF and BeF2, 65 and 

29 molar percent respectively, however the salt also contained 5 mole percent ZrF4 and 1 

percent UF4. These salts provided a buffer such that were the chemistry of the salt to 

become more oxidizing, the small amount of UF3 in the salt would become oxidized 

before structural metals. A similar change could happen in the Zr should the chemistry 

dictated that reaction was favored. If the salt became reducing, UF4 would be reduced to 

UF3 before fission products or U metal was reduced out of solution in the salt. For these 

chemical reasons, it is essential to include cations with multiple oxidation states in molten 

salts. 

Many concepts from MSRs use FLiBe salt. FLiBe salt is a mixture of LiF and BeF2 with 

approximately 2 parts LiF to 1-part BeF2. FLiBe salt is an ideal choice from a nuclear 

properties perspective, particularly FLiBe enriched in 7Li, due to its low absorption of 

neutrons. For reactors using once through fueling this concern is not significant, and a 

wide variety of cations may be used. K for example has a neutron cross section that 

would prevent it from being used in a thermal breeder reactor, however a once through 

fuel cycle could be completed using a salt with K. As the average neutron energies of the 

designed reactor change, so to do the materials that a salt can use and sustain breeding 

operations. To breed with fast neutrons, most elements may be used. To breed with 

intermediate spectra, only, 7Li, Be, Na, Mg, Al, Zr, Ca, Rb, and Ce may be considered as 

cations. 35Cl must be removed from a Cl salt to breed fuel in a reactor, as it has a high 

neutron absorption cross section. To breed fuel with a thermal spectrum, FLiBe with 7Li 

provides the needed performance. Knowing all of this, the most common salts are FLiBe, 

FLiNaK, KCl-MgCl2, and NaCl-MgCl2. Other salts exist, particular for applications in 
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pyroprocessing of spent nuclear fuel. The 2006 paper Assessment of Candidate Molten 

Salt Coolants for the Advanced High-Temperature Reactor(AHTR) [20] has a good 

assessment and discussion of the reasons why some elements may not be used for a salt 

while others are preferred. The discussion covers physical, chemical and nuclear 

properties, and why a contain salt might be chosen as a balance of these properties.  

An important note is that non-halide salts are not viable for MSR applications for several 

reasons. First, complex salts such as nitrates and carbonates break down under radiation 

and would not provide good performance. Secondly, these systems often have materials 

challenges at least as difficult as halide systems. Finally, these systems do not allow for 

dissolving enough fissile material to sustain a reaction. For these reasons, MSR designs 

will always use halide salts. 

Salt facing metal selection for molten salt applications  

The materials typically proposed for use in high temperature molten salt are graphite and 

metals. Graphite is inert in molten salt so long as the porosity of the graphite is small and 

does not allow significant trapping and interaction with salt. However, graphite is not a 

focus of this work (where traditional structural alloys are required due to design 

restrictions) and will not be discussed further. 

Selection of metals for molten salt has been a highly debated topic since the ARE. The 

ARE used Inconel alloy as it was thought to be sufficiently resistant to corrosion in 

molten salt and had better high temperature strength than stainless steels at the time. 

Problems were found with high corrosion rates using Inconel, and for the next decade, 

considerable work was done to develop Hastelloy N, a nickel-base alloy tailored to 

withstand the environments faced in FLiBe salt. Hastelloy N is resistant to molten salt 

corrosion due to several features. First, the high Ni content means that much of the alloy 

is inert in the salt. The relatively low Cr content (7%) is attacked but is sufficiently low to 

saturate the oxidizing conditions faced by the salt in static reactions without oxidizing 

other metals. Mo is used to strengthen the alloy and add further noble metals to the alloy. 
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Hastelloy N has many beneficial properties in molten salt including corrosion resistance 

and adequate high temperature strength. However, Hastelloy N is relatively costly and it 

embrittled during operation in the MSRE. Through the work conducted following MSRE, 

grain boundary embrittlement was found to be associated with Te fission products. This 

problem appears to be solved by the addition of Nb into the standard Hastelloy N alloy. 

Other variations of Hastelloy N exist with goals of improving performance. Price is a 

problem for the Hastelloy N alloy, as its high Ni content is expensive. Hastelloy N is also 

not used in any other industry, and thus test coupons and later fabrications are not widely 

available. Another problem for Hastelloy N is the potential for neutron irradiation 

produced He bubbles. The formation of He through the two step (n,a) reaction may lead 

to material problems as seen in irradiation of other high Ni content alloys[21]. The work 

dealing with Te cracking following the MSRE appeared to solve the embrittlement 

problem; however it is possible the production of He bubbles embrittling metals may 

have been a contributing factor that has not been sufficiently well studied in the 

degradation of MSR materials. Finally, Hastelloy N is not ASME code qualified, 

meaning before anything could be built using Hastelloy N it would need to be rated per 

ASME coding specifications.  

The expense and limited availability of Hastelloy has led some to suggest using 316 

stainless steel for molten salt. 316 is a steel alloy, and thus more data already exists, it is 

code qualified, piping and plates are available, and 316 is significantly cheaper than 

Hastelloy N. These benefits come at the cost of some corrosion resistance. 316 is more 

susceptible to corrosion than Ni alloys due to higher Cr content, and being a majority Fe-

based alloy, which is more prone to corrode due to being more chemically preferred as a 

halide compared to Ni. There is work from ORNL that suggests that in high purity molten 

salt, there is not a significant difference between corrosion in 316 and Hastelloy N for 

temperatures up to ~650° C. ORNL has also operated a molten salt loop using 316 SS 

and FLiBe salt demonstrating that 316 can successfully withstand loop conditions[22]. It 

is also worth noting that there has not been work done studying the potential interaction 
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of Te and 316H. 316H has a high Ni content making it possible that it would see the same 

issue as Hastelloy N in forming Nickel Telluride at grain boundaries. Research has not 

been done to study this however, so this all must be taken as speculation.  

Generally the alloys that work for molten salt have several things in common. They rely 

on having a sacrificial component that reacts until chemical equilibrium is achieved. This 

typically means that Cr is included. They have good high temperature strength, and they 

must be able to be machined into whatever shape is needed. Generally, the alloys 

considered are Hastelloy N and 316H, however between these two alloys more molten 

salt data exists with Hastelloy, (particularly more flowing tests) and it should be 

considered as superior.  

Molten Salt Thermodynamics  

Molten Salt Has a complex set of chemical interactions that control its behavior. The 

reactions that describe salt chemistry are the fluorination and chlorination of metals. The 

best tool to understand this is an Ellingham diagram describing these reversible chemical 

reactions. An Ellingham diagram reports the change in free energy (or one of its 

derivatives) as a function of temperature for a chemical reaction or set of chemical 

reactions. Ellingham diagrams for common salt cations and structural metal alloys are 

presented in figure 2-1. The alkali metals are highly reactive with the halides and thus 

have large free energies of formation.  The alkali earth metals are less reactive with 

halides, but generally have significant free energies of formation. The transition metals 

are not highly predictable in their interactions with molten salt. Some elements are highly 

favored to be metals, while others are favored to be salt. What this all means is that if 

there is Li and Fe in the presence of Cl, the Li is significantly more likely to react, and 

even should the Fe be oxidized, if contacted the Li would reduce the Fe and become 

oxidized and reduce the iron oxide to metal. 
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Figure 2-1: Ellingham Diagram of Fluorides and Chlorides 

Ellingham diagrams for Fluorine and Chlorine are presented above.  Elements at the 

bottom are most stable as salt while elements at the top are more stable as metals. These 

charts are of great importance, as they predict exactly what elements will be oxidized 

first, and what metals will be stable in molten salt. [23] 
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 All of these reactions are equilibrium reactions, and not all of the metal in the system 

will oxidize. Instead, some will remain metal while most would be oxidized, satisfying 

the reaction constant for the equilibrium reaction. The implication of this is that adding 

some metals will have little effect on what occurs in the molten salt, but others would 

greatly affect the chemistry of the system. For example, if a huge amount of Na metal 

was dumped in a NaCl-MgCl2 salt, it would be possible to produce Mg metal. This would 

generally mean that any Cl in the system would react with the Mg metal in the system 

and would prevent the possibility of oxidizing structural metals. The problem this creates 

is that of reducing fissile material and fission products out of the salt in a reactor with 

circulating fissile material. For this reason, high control is needed of the state of the 

chemistry in a MSR. The MSRE did this by monitoring the oxidation state of the U in the 

system and maintaining a balance of U(III) and U(IV). If that balance was wrong, Be 

metal could be added to reduce some of the U(IV) and make more U(III). If U(IV) was in 

excess, HF could be used to react with excess U(III) to produce U(IV). This delicate 

balance worked for the MSRE chemistry control to keep corrosion low by not favoring 

the oxidation of Cr, and by favoring the oxidation of U and fission products. This balance 

is one of the most important portions of any molten salt system, as being excessively 

oxidizing would result in high corrosion rates, while being highly reducing would plug 

pipes and fix contamination and fissile material.  

The paper that best discusses the thermodynamics is [23]. In that paper, the author 

discusses the corrosion of molten salt systems covering thermodynamics, impurities, 

electrochemistry and how redox control can be used to limit the corrosion seen.  

A report following the MSRE and concluding work was completed by C. F. Baes [24]. In 

this report, the understanding of the thermodynamics that was developed in the MSRE 

and ORNL testing programs through the early 1970s is reported. Discussion in this report 

covers several important topics that are a good introduction to the fundamentals of 

molten salt corrosion. The topics of using HF to limit oxide impurities, the oxidation of 

structural metals, the chemical suspension of actinides and lanthanides, the chemistry of 
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the fuel, the impact of having fission occurring, and tellurium induced cracking are all 

reported in this classic journal article.  

Least noble metal oxidation  

As previously discussed, the reaction of the halide from a molten salt with any metallic 

elements that might be exposed to it are highly favored.  If there were an excess of salt to 

provide free halide anions, any piece of metal would be reacted. Halide anions are 

supplied through the decomposition of salt at an equilibrium rate as the production of any 

salt is an equilibrium reaction. This reaction produces some amount of free halide so long 

as there is not sufficient halide present to balance the reaction. This formed halide is what 

reacts with exposed metal. Were a sufficiently large amount of salt exposed to a small 

specimen, the specimen would be dissolved. The opposite case is also possible, where a 

large metal sample would not allow for the saturation of the chemical reactions occurring 

at the sample surface. More salt present would mean more halide anions would be 

available to oxidize metal and result in more metal being reacted to salt. All that being 

said, the limited availability of free halide results in selective oxidation of the least noble 

metals in an alloy, as the little bit of free halide is most favorably reacted with those alloy 

constituents that have the greatest free energy of formation. This causes the process of 

least noble metal oxidation. A simple example of least noble metal oxidation would be Cr 

and Ni mixtures. It is favored to form CrHa2 rather than NiHa2 (where Ha is a halide 

anion) based on the thermodynamics of the Cr having a greater free energy of formation.  

With the available halide in the salt reacting with the least noble member of the metal 

exposed, there are two general possibilities for what occurs.  In one possibility, there is an 

excess of least noble metal at the sample surface, and the reaction slows based on limited 

availability of halide anions from the salt. This attack likely forms the more uniform 

sections of molten salt corrosion. The second possibility is that the rate limiting step for 

the reaction is the loss of the metal from an alloy. If there is a small amount of least noble 

metal in the alloy, it is possible that all the least noble metal that is in contact with the salt 
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at the interface between metal and salt will react, leaving the more noble constituents of 

the alloy behind. More of the least noble metal is available in the portion of the alloy that 

is not in contact with the salt, however it must be moved to the salt-metal interface. 

Molten salt systems are at high temperature (>500 C) where thermal diffusion is 

generally able to transport more of the least noble metal from the bulk of the alloy to the 

salt-metal interface. Grain boundaries act as locations where there is a greater rate of 

thermal diffusion, and thus the least noble element is removed there. This can lead to 

grain boundaries “opening” and otherwise being attacked and degraded by molten salt. 

The corrosion seen in molten salt is a mixture of high attack at grain boundaries, and 

more uniform matrix surface attack. This can look different based on the specifics of the 

system, however there is generally a bulk material far away from the salt-metal interface 

with a zone in between that is depleted in least noble metal that has porosity and attacked 

grain boundaries. Good examples of typical corrosion behavior in molten salt are seen in 

Figure 2-2.  

Corrosion often occurs in other systems such as in LWRs, however it is not a significant 

concern the way it is in molten salt for a simple reason. In aqueous systems corrosion is 

thermodynamically favored but is highly controlled by the formation of stable oxide films 

on the surface of a material. Cr, Al, and a few other elements are often added to alloys 

and when oxidized they form a layer of metal oxide on the exposed surface of a metal. 

This surface oxide prevents any further oxidizing agent from reaching metal, and thus 

prevents corrosion. Molten salt cannot use this scheme to prevent corrosion, as metal 

oxides are soluble in halide salts.  The inability to form stable thin films means that the 

focus of corrosion control in molten salt must be placed on the chemistry of the salt, the 

thermodynamics of the alloy, and how they interact to produce beneficial or problematic 

behavior. 
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Figure 2-2: Cr Depletion EDS Images  

EDS maps of Cr distribution in 316 steel exposed to FLiBe Salt at 700° C.  (a)-(c) were 

in 316 capsules, (d)-(f) were in graphite.  Exposure times were 1000 hours for (a) and (d) 

, 2000 hours for (b) and (e), and 3000 hours for (c) and (f). This figure shows surface 

depletion of Cr, the least noble metal, and depletion along grain boundaries.  [25] 
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Impurity importance  

The importance of impurities on material corrosion by molten salts cannot be over-stated.  

Literature work has shown that when considered against other factors, the purity of salt 

provides much of the determination on how corrosion occurs[25]. Multiple types of 

impurities occur in molten salt. Metals not intended as a part of the salt may be included. 

A common example of this is iron content in salts due to contact with stainless steel 

working tools. There may be oxide in salt from any contact with oxygen. Oxide content is 

highly important in determining molten salt corrosion behavior, as it allows some salts 

the ability to form oxides from the metal originally in the salt and free halide anions to 

react more metal. An example of this would be in a NaCl-MgCl2 salt at the eutectic 

mixture of 32-68.  If exposed to dry air this salt would form MgO and Cl2. The presence 

of free Cl would lead to increased corrosion. More common than this is the contaminant 

H2O. Water is a highly problematic contaminant in molten salt, as in the example 

previously discussed, the MgCl2 would react with H2O giving MgO and 2 HCl. HCl is 

highly corrosive to metals and would lead to degradation of materials at a faster rate. 

Both papers by Ouyang studied corrosion in a FLiNaK salt that had high moisture 

content, and thus high corrosion rates [26, 27]. The problem with water is of particular 

significance since the salts being considered for molten salt systems are highly 

hygroscopic at room temperature, with MgCl2 naturally forming MgCl2 * 6H2O.  This 

problem means that much of the published data in molten salt corrosion studies is not 

particularly useful, as without characterization of the specific impurities of the salt there 

is not a retroactive way to understand the role that impurities may have played in the 

corrosion results.   

The potential solutions for dealing with the purity problem for molten salt are varied. 

Some groups use chemical cleaning processes to remove excess oxide. Other groups use 

vacuum distillation to purify salts. There is not a clear comparison of these two methods 

or any other purification methods in literature. There is also not a metric used to compare 
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the purity of salts used in literature, which might provide clarity on some experimental 

results of the past.  

The solution proposed in the MSRE was to limit chemical corrosion and deal with 

impurities using salt chemistry. Salts were prepared with minimal contaminants, and any 

H2O or O impurities became unimportant once chemical control of the salt was obtained, 

as produced F was reacted with Be metal additions. The proper chemistry of the salt was 

maintained by monitoring the amount of UF3 to UF4 such that a known state was 

maintained. This limited corrosion and chemical issues for the MSRE, however a better 

system of monitoring this ratio is needed for a new MSR. When the UF3 to UF4 ratio was 

found to be deviate from the desired ratio, the addition of Be metal to the salt (FLiBe) 

was used to shift to having more UF3.  Similarly, a greater pressure of HF could be 

maintained to increase the amount of UF4 if the salt was found to be too reducing.  

General trends between chlorides and fluorides  

Halide salts generally have been discussed this far, and no significant distinction has been 

made between the chlorides and fluorides.  The two have many similarities 

thermodynamically.  Elements that are more noble in one tend to be noble in the other 

with few exceptions. Both tend to from compounds in similar ways, taking the form of a 

singly charged anion when bonding to a metal.  Fluorine is generally thought of as the 

less corrosive of the two, breaking trend with much of chemistry where fluorine is highly 

reactive. The reasoning for this is the high reactivity that would imply fluorine being 

more reactive leads to it not forming some of the more complex reactions that chlorine 

can. Chlorine in the presence of oxygen and the right redox conditions may form 

hypochlorite anions that provide alternate ways to oxidize metal. Chlorine is able to form 

other species, particularly with impurities that lead to more possible reactions with the 

metal in question.  This increases the ability of Cl based salts to corrode metals in molten 

salts.   
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In addition to the problem of Cl generally being more difficult chemically, there is simply 

less data for the chloride salts than for the fluoride salts. Fluorine was chosen for some 

very good reasons for the ARE and MSRE, and much of the testing data for those 

programs has informed further work. The data that does exist for the Cl salts tends to be 

from papers on the topics of electrochemistry, Pyroprocessing, and solar thermal energy 

storage. All of these applications have slightly different requirements than what is needed 

for nuclear applications based on the challenges of dealing with neutrons.  

A final challenge for molten chloride salts is that of neutronic properties. Fluorine has 

one isotope, and a relatively low neutron absorption cross section. The importance of this 

for a molten salt reactor cannot be understated. A chlorine salt could only be used to 

breed fuel with a fast neutron spectrum. Additionally, unenriched Cl salts would produce 

Cl-36, an undesirable radioactive activation product with a long half life and high energy 

beta emission [28]. For these reasons, the implementation of a Cl salt has technical 

challenges that fluorine salts do not experience.   

The Cl salts have some advantages worth discussing from a physical properties 

perspective. They have higher heat capacities, higher densities and lower viscosities than 

fluoride salts. Cl salts have a clear advantage in physical properties, however either salt 

could potentially be used successfully to operate a reactor. The choice of balancing 

chemical, nuclear, and physical properties is not clear cut, and depending on the specific 

requirements of a project or program, both chloride and fluoride salts are viable options 

for a MSR and that neither chloride or fluoride salts are a clear choice.  

Redox state control  

Corrosion behavior often shows radically different results if proper controls are taken to 

limit the corrosive nature of the salt. There must be tight control of the redox potential of 

a salt for a MSR, as a salt with too many additions will not hold fission products and 

fissile material in solution and instead leave high contamination at various places in the 

system. On the other hand, if a salt is too oxidizing, metal from the containing system 
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will be oxidized and no longer contain the salt. The solution is to use proper redox state 

control to ensure that these problems do not occur. Redox control is maintained by three 

control mechanisms. First, metallic additions are used to reduce the halide potential and 

make the salt more reducing in nature. These additions are usually made in the most 

noble metal that is used in the salt, e.g. Be in a FLiBe salt. Studies of corrosion involving 

least noble metal addition have shown reduced attack [29].  

The second control of the redox state of a molten salt system is that of a halide gas 

overpressure. By maintaining a small volume of halide gas that may react with a more 

reducing salt, proper chemistry can be maintained. This is a much finer control than 

metallic additions, only slightly shifting the redox state of the system. The presence of 

free halide gas means that there will be exchange with the salt, and if it becomes more 

reduced, the greater availability of metal to oxidize will lead to reaction with the halide 

gas overpressure. This will help prevent large shifts in redox state. 

The final tool for redox control is the use of a multiple oxidation state cation. U, Th, Ce, 

Zr and a few others are proposed for this purpose. These metals may take multiple 

oxidation states based on how oxidizing or reductive the salt is. The purpose of using a 

redox couple is to prevent rapid shifts in the state of the salt that may be buffered by these 

elements changing oxidation state. Should salt chemistry change, more of one oxidation 

state is produced, keeping material in solution or preventing corrosion but absorbing that 

chemical change. A second benefit besides buffering change is to act as an indicator of 

the redox state of the salt. As previously mentioned the MSRE used the U(III)/U(IV) 

couple to determine the redox state of the salt.  

A brief paper by Donald Olander describes the above [30]. This relatively short paper is 

one of the more important papers in the field of molten salt, as it captures many of the 

most important features of the complex chemistry of molten salt systems and describes 

what control of molten salt chemistry looks like. While short, the detailed chemistry and 

relative impact that this paper describes paints a useful picture for understanding the 
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chemistry required to keep molten salt systems working. This paper is similar to the 

above description, considering the relative importance of metallic additions to adjust 

redox state towards being more reducing, multiple oxidation state cations being used to 

buffer a system, and the use of halide gas to force the system to be more oxidizing. This 

brief paper is central to what the operation of a real world MSR would look like.  

Corrosion testing   

A significant amount of data exists on the corrosion of alloys in molten salt. Stephen 

Raiman recently performed a literature review and data analysis of the available data 

[25]. A summary of his analysis is presented in Figure 2-3, which captures the relative 

importance of several factors in the severity of corrosion seen in molten salt systems. The 

importance of purifying salt is generally more important than the type of salt, the type of 

metal exposed, or any other factor studied in that work. Another important conclusion 

from this paper is that data needs to be scrutinized and improved handling procedures 

need to be adopted by research groups. Two different groups may use the same salt but 

have different handling or procedures that results in different outcomes.  

Much of the data that exists on the corrosion of molten salt systems exists from static 

corrosion tests where salt is put in a graphite crucible or another inert container material 

and a sample coupon is exposed. After a specific time, the alloy is removed and the 

sample is weighed to record the amount of mass change that has occurred in the 

specimen. Exposed samples are then characterized under electron microscopes to show 

the microstructure that has developed at the salt-material interface. A good example of 

this type of study is the paper Metallurgical study on corrosion of austenitic steels in 

molten salt LiF–BeF2 [31]. The advantage of this type of study is that it acts as a good 

screening test to tell if an alloy will have catastrophic failure in molten salt. The majority 

of works detailing the corrosion in molten salt are detailed and considered in the literature 

review by Stephen Raiman [25]. 
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Figure 2-3: Relative Importance of Molten Salt Corrosion Factors 

This chart shows the correlation between several factors that influence corrosion in 

molten salt and their relative importance. It is important to notice that the purification of 

salt is more important than the alloy exposed. [25] 
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Continuing corrosion work has studied many facets of molten salt corrosion outside of 

the more basic factors. Pure Ni coatings are one proposed solution to the problems of 

corrosion and loss of Cr from alloys immersed in molten salt. Ni coating appeared to 

slow the loss of Cr, but Cr was lost as it eventually diffused through the Ni coating[32]. 

There were some other possible positive trends seen, and coatings may be a solution to 

the problem of corrosion in molten salt.  

Another useful and interesting paper discusses Ni-containing salts for pyroprocessing of 

spent nuclear fuel. Corrosion was found to be low for most situations, however it was 

found that when excess Li metal was present, Ni was reacted and found is the salt by 

ICP-OES[33]. This result helps to show that corrosion testing is essential, as predictive 

work for molten salt is limited. 

Loop tests were conducted at ORNL in preparation for the MSRE operation and 

following the MSRE shutdown. These loops provide data that are highly important, as 

loops capture many physical features that static tests do not. The flow through a loop is 

important, however the most important feature seen in loops is that of a thermal gradient. 

Thermal gradients shift the equilibrium of chemical reactions occurring, resulting in mass 

transference from the hot to the cold leg of the loop. The work [34] discusses the results 

from one natural circulation loop at ORNL. Reference [22] further discusses the work, 

and reaches the important conclusions that metallic additions can help reduce corrosion in 

salt, high impurities can increase corrosion rates, and voltammetry can measure impurity 

concentrations. This work also found that there was an initially high corrosion rate as 

impurities reacted with the structural material. It was found that these impurity reactions 

eventually react to completion and the corrosion slowed. Be additions to the salt were 

found to further improve the corrosion resistance of the metal.  

In one ORNL technical report, a Hastelloy N thermal convection loop was run for over 9 

years [35]. The molten salt was FLiBe (as used in the MSRE), the maximum temperature 

was 760 C, and the minimum temperature was 593 C. Mass transfer occurred from the 
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hot to the cold leg of the loop, and the loss of material was found to be moderate, with ~4 

mm maximum depth of attack in the hot leg of the loop. Losing 4 mm of material after 9 

years is likely a rate that can be managed in reactor designs, however the deposition of 

this material is likely problematic in the cold leg. The report states that this is 

significantly improved performance over steel, which is important in the modern 

discussions between which material should be used in molten salt. It is worth noting that 

a leak led to the end of this experiment. While this work did show that the bulk alloy can 

withstand salt for extended times, limitations may be found at joints and welds.  

Work has been conducted in Russia in alloys that duplicate Hastelloy N [36]. The 

corrosion features and results found match well with historic work from ORNL and 

provide good validation for the ideas presented. This is an important set of work for 

several reasons, most especially, it is validation from outside of ORNL that Hastelloy N 

exposed to molten salt is a good combination.  

Thermal convection loops importance and chemistry  

Gathering the data that informs the thermodynamics and physical processes requires 

running experiments. The experiments used have advantages and limitations in the data 

they produce that are worth considering. It is important to discuss the information 

different kinds of tests can and cannot provide with regards to molten salt corrosion. 

Static tests such as capsules and crucibles produce results that are the result of being at a 

specific thermodynamic equilibrium and moving toward it. Static tests act as a sort of 

screening test in which corrosion is expected to be detected wherein if corrosion is large 

during static testing, it is expected to be even larger in loop tests.  

Loop tests of molten salt are most important, as they activate the physical processes that 

capsules do not capture. Loop tests produce the changes in temperature across a molten 

salt system that result in shifting chemical equilibrium. This differing chemical 

equilibrium from one part of the system to another leads to mass transport through the 

system, the key feature that creates continuing corrosion at long time intervals. The 
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importance of getting loop tests and their data cannot be understated. No reactor design 

will ever be based on a fully static isothermal system. Salt will be pumped and moved 

throughout a system to transfer heat and be chemically processed.  The changing 

temperature of molten salt is a large problem, as the equilibrium reactions of the system 

are highly temperature dependent and will create corrosion that might be a significant 

problem.  

A thermal convection loop is the system that has been used to study flowing molten salt 

systems. Pumps for molten salt are difficult, costly and have limited availability, thus 

natural circulation is often used to study flowing salt.  Natural circulation occurs when 

part of the loop is heated, and part is allowed to emit heat.  This temperature difference 

leads to thermal expansion of the salt that drives flow. The high viscosity and low 

thermal expansion coefficient of molten salt mean that a large temperature change is 

needed to create appreciable flow in molten salt. The temperature difference is often 

around 100 C, and only results in flow rates of several cm/s. This slow movement gives 

much time for chemical reactions to occur. The reactions that have been discussed 

previously all have an equilibrium final state that they are moving toward.  In a flowing 

system, the reactions do not saturate in the same way. As previously discussed, the 

thermodynamics of the reactions of molten salt with metal are controlled by temperature, 

taking the form: 𝑀 + 𝑋 𝐻𝑎 ↔ 𝑀𝐻𝑎𝑥 .  This is an equilibrium reaction, and differing 

conditions can shift the balance of this reaction, leading to more or less metal being the 

preferred thermodynamic state. Generally increasing the temperature of a molten salt will 

drive the reaction to the product side as written. This means that more metal can be 

reacted and subsequently dissolved in a high temperature salt compared to a low 

temperature one. Similarly, in a low temperature salt, less metal can be oxidized as 

MHax, and metal must be formed. This temperature has little bearing on static tests. 

However, for a thermal convection loop this means that metal is reacted and removed as 

the salt is being heated. Higher temperatures favor the production of the metal halides in 

the system. Similarly, as the salt is cooled, metal is removed from the salt and deposited 
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out of the salt, as there is an excess of metal halide in the salt.  This process leads to mass 

transfer from the hot leg (heated section) to the cold leg of the thermal convection loop.  

This is highly problematic, as it means that corrosion does not naturally slow or stop over 

time in these systems.  The changing temperature and shifting thermodynamic 

equilibrium of the convection loop means that it will continue to corrode long after a 

static test will have reached equilibrium.  This also means that material will continue to 

deposit on the cold leg so long as the loop operates.  This is a potentially severe problem 

for any system intending to use molten salt to transfer heat, as it means that metal will be 

deposited in a heat exchanger as the salt is cooled there (possibly leading to plugging of 

flow channels in the heat exchanger). 

Results from molten salt corrosion loops generally show continuing mass transfer over 

time, with slowing rate. In some cases, the mass loss is proportional to the square root of 

the time elapsed [18]. For these experiments, the accepted rate limiting step preventing 

faster reaction and mass transfer is diffusion of least noble metals through an alloy. 

Surface depletion of the least noble metal means that diffusion must occur for more 

corrosion to happen. This slows the rate at which metal is oxidized and mass is 

transferred. This sort of understanding of how corrosion will proceed is needed for future 

MSR designs and shows why thermal convection loops are an important tool to 

understand how reactor systems will behave.  

It is worth mentioning in this section that a few pumped corrosion loops were run at 

ORNL. These systems used pumps to move salt resulting in flow rates that were much 

greater and more relevant to MSR systems. The loop MSR-FCL-2 was designed with 

Hastelloy N and the salt for the MSBR project. Limited studies of the corrosion in this 

loop exist, but the corrosion rate was minimal for this loop, showing that there was not a 

significant impact by flow for molten salt flowing in the low m/s range[18]. Further 

molten salt forced convection loops were planned to further study the effects of flow on 

molten salt systems. However with the end of the MSBR program these loops were never 

built. The designs for two loops are documented in a report [37]. 
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LIBS Technique 

Introduction 

LIBS is an advanced characterization technique that studies the elemental composition of 

a sample. LIBS fires a laser at the sample creating a plasma the emits light which is 

analyzed. This is repeated until the selected process has been run. The emissions are then 

analyzed to provide results of what elements are present. LIBS has benefits and 

limitations compared to other techniques that will be discussed later in this work.  

Process of LIBS data Collection 

LIBS begins with pulsing a laser at high power onto a sample. The high energy density 

created by a focused high-power laser on a surface produces intense localized heating and 

creates a plasma from the material corresponding to the area the laser was focused on. 

This plasma cools when the laser pulse is turned off, and during its cooling emits 

coherent light characteristic to the elements present. This atomic emission spectra can 

then be used to determine what elements were present and calculate the fractions of each. 

Quantitative LIBS requires calibrating the system with known references so that the 

specifics of the spectrometer used are well understood. It is also important to know the 

power used in the laser producing each plasma, as slight variations in plasma temperature 

can lead to different optical emissions from a plasma. LIBS can be conducted under an 

inert atmosphere instead of in a vacuum, since the production of plasma of the cover gas 

can usually be separated from that of the sample. In our specific work, Ar was used as a 

cover gas. This led to difficulties in being able to see Cl, since their emissions overlap in 

the region of visible light that we collected in our spectra. This issue would not occur if a 

different cover gas were used in place of Ar, He is an ideal choice as it has very few 

emissions, however Ne would be a more cost effective choice.  
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A final and important consideration when discussing LIBS is that of its ability to be done 

in situ on samples that cannot be moved, or portions removed to characterize. LIBS can 

be done remotely through a clear window, or through a fiber optic cable. 

LIBS data analysis 

For simple analysis of what is present, LIBS spectra can be studied and compared to 

standard atomic emissions [38]. The default way of doing this is to use the software 

included with the LIBS instrument to develop an analysis that integrates the emission 

lines seen from specific elements. Simple numeric integration over the set of wavelengths 

that capture the emission peak of the cooling plasma with the background black body 

radiation removed is a common way to measure the amount of an element present in a 

sample. This method is simple but has problems with elements that have overlapping 

emissions, and/or overly intense emission lines. If the intensity of an emission is 

sufficiently high, it can exceed the maximum allowable intensity value in a detector, 

making it impossible to know its actual intensity. For these reasons, it is important to 

carefully consider what emission lines are used for analysis. This high degree of input 

must be considered carefully to ensure that it accurately reflects the sample studied. 

Advanced numeric techniques such as Principal Component Analysis (PCA), Non-

Negative Matrix Factorization (NNMF), and Multiple Component Analysis (MCA) might 

be of benefit, as they will not require the manual input of emission peaks to find signals, 

and they might enable the separation of more complex trends that cannot be seen with 

univariate analysis. 

Benefits and Limitations of LIBS relative to EDS, GDOES, etc. 

LIBS has several benefits over other characterization techniques. Chief among the 

benefits LIBS offers is that of being very rapid to conduct with minimal sample 

preparation. Samples can be studied without special preparation. For example, salt can be 

left on the surface of a sample and LIBS could be conducted. In this case, the LIBS 
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instrument would “burn” through the surface layer of salt and study the interface and 

metal underneath. Other characterization techniques most often need sample preparation 

where a sample is mounted in epoxy, is cut in half, polished or otherwise prepared. LIBS 

does not require this, making the sample preparation much easier than that need for other 

analysis techniques.  

LIBS has benefits compared to EDS in what elements can be imaged. EDS relies on the 

production of X-rays, light elements produce low energy x-rays that are not able to be 

detected well due to absorption in the x-ray detector pathway, and their lack of electrons 

makes this a less probable event than producing an x-ray in a higher atomic number atom 

and thus EDS has difficulty imaging low Z elements such as Li. LIBS has no such 

problem, as these light elements do emit light while cooling as a plasma. This benefit 

makes LIBS ideal for situations requiring characterization of low Z materials.  

Glow Discharge Optical Emission Spectroscopy (GDOES), Inductively Coupled Plasma 

Optical Emission Spectroscopy (ICPOES), and other optical emission spectroscopy 

techniques are quite similar to LIBS in what elements they are able to detect. These 

techniques all work by producing a plasma that cools and emits coherent light which can 

be studied to determine what elements are present. The advantage that LIBS provides is 

that LIBS allows for finer spot sizes. Work comparing the two techniques exists and 

reaches the conclusion that for homogenous samples such as thin films, GDOES shows 

slight advantage over LIBS. In cases where lateral resolution is important, LIBS more 

clearly characterizes the material than GDOES [39]. One of the most important 

considerations justifying LIBS as a useful technique compared to GDOES or ICPOES is 

that of being conducted in-situ. Samples do not need to be removed and transferred to an 

instrument. Instead the LIBS instrument may be brought to the material of interest for 

use.  

There are physical processes that occur during LIBS that need to be considered and 

accounted for to produce the best possible results. To study the plasma created by the 
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laser pulse in a LIBS system, a delay must be used between when the laser fires and when 

the spectra is taken. This delay allows the plasma to cool and have less black body 

thermal radiation in the region of the spectrum that is studied. This reduces the noise in 

the spectra measured with LIBS, and results in more useful analysis. The problem with 

this is that cool plasmas do not activate some emission lines. Some characteristic 

elemental emissions are not present if a plasma is not sufficiently hot. For these reasons, 

adjusting the delay of the spectra gathered in a LIBS instrument can make a large 

difference in the analysis. Default gate delays are usually around a few microseconds for 

most materials. These can be calibrated, however gate delays over a microsecond are 

usually sufficient to eliminate black-body radiation of cooling plasma. A second 

important physical process occurring in LIBS is that of ablating into a material. When a 

plasma is created, it removes a small layer of material on a sample’s surface. When the 

next laser pulse occurs hitting the sample, it is not as well focused, and does not deposit 

energy as well. This effect is small, but may be important for complex analysis of LIBS 

data and for depth-dependent analysis. In addition to looking at a region of material 

further into a material, another process occurs after a laser pulse in LIBS characterization. 

The cooling plasma from a laser pulse is often deposited on to the sample surface near 

where it was created. This re-deposition of material generally needs to be considered as it 

could lead to false conclusions if not accounted for. For example: If a pure Ni sample was 

coated with Cu and LIBS was used for depth-dependent characterization, Cu would likely 

be detected to some depth in the material due to the re-deposition of material from the 

previous plasma. In addition to re-deposition of material, as LIBS reaches deeper into a 

sample, there is a loss of geometric efficiency to the detector, meaning that the signal 

deeper in to a material is artificially reduced in a way that does not capture the reality of 

the situation. For this reason, it is useful to normalize elemental emissions to an element 

that should be invariant as a function of depth.  

Additional concerns with LIBS are associated with the specific way that elements’ 

emissions overlap. For example, in standard optical wavelengths, it is almost impossible 
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to quantify Cl concentrations if Ar is used as a cover gas for a sample. This occurs 

because the many strong emission lines from Ar happen to overlap the few emission lines 

from Cl that fall in the visual range. There are techniques that could allow for the specific 

characterization in this case: Laser Induced Fluorescence, and molecular emission studies 

in addition to LIBS. However substituting a different noble gas as a cover gas would also 

be a solution to this specific interaction[38]. The interaction of Cl and Ar emissions is 

mentioned due to its relevance to this thesis work, but other combinations of elements 

can similarly have overlapping atomic emission spectra that create problems for analysis.  

Previous LIBS work    

There is not significant prior work in the literature using LIBS to characterize molten salt 

corrosion and salt-sample interaction. There is some published work on using LIBS to 

characterize aerosolized molten salt to determine the uranium content [40], however this 

is significantly different from the LIBS characterization in the context of the current 

thesis work. Similarly, there is work demonstrating the measurement of Eu and Pr in 

molten salt [41], but the same caveat as before applies about the work being significantly 

different.  The limited amount of work that uses LIBS to study molten salt is focused on 

characterizing fission products, rather than characterizing corrosion.  

In literature, work has been done on sets of spectra collected from LIBS that required 

more complex analysis [42]. In the literature case, they used LIBS to study multiple 

phases of rocks in a geologic specimen. Principal Component Analysis was applied to the 

acquired LIBS data in order to determine what portions of the emission spectra changed 

as a function of location and depth ablated into the material. For this case, it meant that 

the authors were able to create a heat map of the differing phases of the rock present, 

which matched with their optical imaging of the same. This work demonstrates that more 

sophisticated computational analysis of LIBS data may enable more refined analysis and 

provide further insight.  
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CHAPTER THREE  METHODS  

Description of molten salt corrosion experiments 

The experiment that was used to produce the molten salt exposed samples was conducted 

as a part of an LDRD project (S. Raiman, PI) conducted at ORNL. A matrix of Ni-based 

samples with differing Cr content were exposed to molten salt for a selected amount of 

time sufficient to induce measurable corrosion. Samples exposed were binary Ni-Cr 

alloys with Cr contents of 7, 16, 24 and 100 atomic percent. Samples were exposed for 

100, 500, 1000, 2000, and 2500 hours. Samples were exposed at 700° C and 800° C. This 

is detailed in figure 3-1. A high degree of control was used when preparing the molten 

salt for these specimens. The salt was a eutectic KCl-MgCl2 mixture. Salt was 

characterized and found to be less than 5% H2O content [43]. The salt was purified using 

the method outlined in Purification of Chloride Salts for Concentrated Solar Applications 

[44], which should result in a salt free of impurities. After production, the salt was stored 

in an inert Ar glove box until needed for experiments. An experiment consisted of a Mo 

inner capsule being loaded with salt and a specimen, then that Mo capsule was loaded 

into a stainless steel capsule to protect it from air and rapid corrosion while at 

temperature. This capsule also acted to catch any molten salt from cracked Mo inner 

capsules to prevent damage to the furnace or experiment. This procedure is shown in 

figure 3-2. The Mo is chemically inert in molten salt given the thermodynamics of Mo in 

salts; however it is brittle and it is possible for Mo to crack. To prevent the leaking of 

molten salt, a stainless steel outer capsule was used. Capsules were loaded into a furnace, 

and held at temperature for the specified amount of time. Capsules were then removed 

from the furnace and allowed to cool. After cooling, capsules were cut open, samples 

were “chipped out” of salt, then were washed to remove any remaining salt on the sample 

surface. After washing, the samples were weighed to quantify mass loss and then samples 

were cut in half with half retained and half mounted in epoxy to allow for the study of the 

cross section looking inwards from the salt-exposed surface.  
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Figure 3-1: Mass Loss Data from Raiman LDRD  

Here we can see results of the mass loss measurements from the samples used in this 

work. The 16% Cr samples were used in this work, thus focus on the red line and data 

points. [Raiman, unpublished] 
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Figure 3-2: Schematic of a capsule containing a sample and salt. 

In this figure we can see the schematics of the sample and how it was exposed to molten 

salt[45].  
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Description of LIBS analysis  

LIBS was conducted on the Applied Spectroscopy J200 Laser-Induced Breakdown 

Spectroscopy (LIBS) instrument. The retained half of molten salt exposed samples were 

used for the LIBS characterization.  LIBS was run with a 140 µm spot size in a 10 by 10 

grid with a total exposure of 200 shots in each location. Laser power was 14.8±.3 mJ per 

shot. Imaging was done under an Ar inert atmosphere. 

Description of LIBS data processing 

Initial analysis of the data set collected for this work relied on the software included with 

the LIBS instrument. The most important (highest intensity and most distinguishable) 

emission peaks were selected for the elements that were expected to be present. A simple 

geometric integration of the spectrum in the region of these peaks given the broadening 

seen was used to give the signal count for each element. This approach met with some 

difficulty in producing quantitative results, and thus a new approach was developed.  

Data analysis using the provided software was not convenient, as it was limited to simple 

integration and background removal on a nearby region of the emission spectra. A Python 

code was developed to conduct the analysis and allow for more complex consideration of 

the data, such as removing regions where re-deposition occurred, and taking an 

interpolated measurement of the background, both of which should improve performance 

of LIBS characterization. This code reads in the data, then looks for selected regions of 

interest. These regions of interest are chosen based on the NIST LIBS database, which 

shows what emission lines should be strongly seen. From this, the channel number of the 

wavelength is selected, plotted and the bounds of the emission peak are found. These are 

input to the Python code, which uses these as bounds to integrate the peak, and subtract 

the background of the spectra in the region. This process is repeated for each spectra, 

providing an intensity of each peak at each location where a LIBS spectra was collected. 
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These can then be averaged and plotted, or all plotted on a single figure to look for 

variations.  

PCA and NMF were implemented in the python code developed for the analysis of this 

LIBS data. However thus far, the univariate analysis appears to capture what is occurring.  

SEM characterization  

Before LIBS was conducted, SEM images of the sample surfaces were taken at ORNL 

HTML. These were gathered on a GE-S3400 instrument with accelerating voltage of 

10kV. SEM cross section images and EDS linescans were gathered on a Phenom XL 

instrument at the stable isotopes group at ORNL. Accelerating voltage was 15kV.  
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CHAPTER FOUR – RESULTS 

Results From LIBS 

LIBS was conducted on a set of samples varying in exposure time. All samples studied 

were of the same model alloy with 16 atomic percent Cr, 84 percent Ni composition. 

These samples were exposed to a KCl-MgCl2 eutectic mixture (68% KCl). Exposure 

times were 1000, 2000, and 2500 hours. An unexposed sample of the same model alloy 

was studied as reference. The analysis of data obtained from LIBS characterization 

begins with simple integrations of the emission peaks for selected elements. Raw 

emission spectra from an exposed sample are shown in figure 4-1. This raw data is noisy, 

but some important initial observations can be made.  

The LIBS data were able to show a few major features that appear in these samples. 

Simple numeric integrations of common Ni and Cr peaks are shown in figure 4-2. First, 

all samples that were exposed to salt were depleted in Cr at the sample surface, indicating 

that Cr solute was preferentially removed due to the exposure to molten salt. We can see 

that there is variation in the Ni signal, however this is a product of the data collection and 

is not real. This is confirmed with EDS data (figure 4-3), which shows that there is not 

significant variation in the Ni content of the samples as a function of depth. Instead, the 

variation in the Ni signal seen in the LIBS analysis is a feature of the LIBS technique 

rather than a description of the sample. For easier comparison to the EDS data, an 

ablation rate was assumed for the LIBS at 0.2 µm per shot. This rate is from unpublished 

work, and will be adjusted later. This is shown in figure 4-4. Here we can see that the 

shape of the LIBS data and the EDS data are similar. Further work will be done 

comparing the two in the next chapter.  

The second important result from LIBS was that elements from the salt were present at 

the surface, and Mg and K had different behaviors. The integration of K and Mg peaks  
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Figure 4-1: Sample LIBS Spectra 

LIBS spectra from unexposed sample showing examples of emission peaks and 

background. Spectra from shot 100 on unexposed sample.  

  

Ni-I 
Cr-I 



 

45 

 

 

 

Figure 4-2: Simple Numeric integrations of Ni and Cr emission peaks 
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Figure 4-3: EDS Linescans of Ni and Cr and SEM image of interface after exposure  

2000 hr and 2500 hr exposure to KCl-MgCl2 salt are shown. Code was used to select 

region after Cr coating was no longer seen in profile. 
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Figure 4-4: Numeric integrations of 2500 hr exposure with assumed ablation rate of 

0.2 µm per shot 
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are shown in figure 4-5. There are several observations that can be made from this figure; 

first, there were very few locations on the exposed sample surface with entrained K. This 

means that the near-surface intercalation and trapping of salt is quite rare. A second 

observation from figure 4-5 is that Mg was found on the surface in most samples. This 

might be some kind of exchange reaction such as: 𝑀𝑔𝐶𝑙2 + 𝐶𝑟𝑂 → 𝑀𝑔𝑂 + 𝐶𝑟𝐶𝑙2 or 

this Mg might be present due to the washing process that the samples underwent which 

exposed them to air and water, both of which could act as sources of O to react MgCl2 to 

MgO. K was also found to have less intensity on the longer exposed samples, although 

the detected intensity was always relatively low suggesting that there is limited K even 

when it is present. The unexposed sample had no amount of K present suggesting that 

there was not simply a bias in data collection or processing that resulted in seeing this 

signal.  

The detection of Mg created some difficulty in the LIBS analysis. Mg has only one 

relatively intense emission in LIBS, that being the Mg-II-279 nm line. The second most 

intense line is a line that sits on the emission peak seen in the 279 nm line, and thus it is 

not ideal for characterizing the presence of Mg. The third most intense Mg emission is a 

Mg-I emission around 383 nm. This presents a problem, as these lines will likely not 

show the same variation with depth, since one is a I and one is an II line. The I peak 

corresponds to neutral emission, where an electron is moving to a lower energy orbital on 

a fully filled electron shell. The II peak is a singly charged emission, where an electron is 

moving to a lower energy orbital in a singly ionized atom. The production of differently 

ionized species should change rapidly as a function of shot number, since the system will 

be less efficient at producing plasma as the number of ablations increases, and thus less 

and cooler plasma will likely result. This complexity makes comparing the results of the 

Mg-I and Mg-II lines difficult. We can say that there is Mg present to some small extent 

on all of the samples exposed to salt. Mg appears to be localized to the surface for these 

cases, and there appears to be limited change in the signal intensity as a function of 

exposure time.  
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Figure 4-5: Integration of the Mg and K emission peaks for all samples 
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All of the reporting thus far deals with simple integration of the peaks, which does not 

provide particularly accurate plots, since variations in the sample characteristics and laser 

characteristics occurred that create noise. For example in figure 4-2, we can see that the 

signal from the Ni emission appears to decrease with increasing shot number. However, 

these data were obtained on an unexposed sample of material and therefore the solute 

concentration should be constant with respect to depth from the surface. This effect (as 

mentioned earlier in this work) is associated with the loss of efficiency in energy 

deposition by the laser, and loss of efficiency in optical emission of the plasma based on 

the changing geometry of the system (varying crater dimensions with increasing number 

of laser pulses). To deal with these factors as well as reduce variations that occur from 

fluctuating laser power, the ratio of the Cr signal to the Ni signal is reported in figure 4-6. 

This figure shows a few regions of interest at the surface where there is re-deposition of 

material. There is a peak around shot 20, the origin of which is unclear. One possibility is 

that this feature is a product of having the focus of the laser below the sample surface. In 

that case, the signal seen deeper into the material would be larger, as plasma production 

would be maximized when the focal location of the laser is reached. This feature is seen 

in all spectra, including the unexposed case suggesting that it is not a product of exposure 

to salt, but instead something due to the LIBS process. The next feature of interest is that 

of a relatively linear increase in signal relative to shot number between shots 60 to 140, 

and a region where the signal does not show significant variance.  Note in this figure that 

there are still some odd features. First, there appear to be multiple regions of behavior as 

a function of shot number. At the surface (shots 1-3), the sample appears to have 

localized enrichment of Cr. This signal is a product of the ablation process depositing 

material back on to the sample and creating an artificial signal in this region. This signal 

was not a “real” feature of the data, as it was not produced by the molten salt corrosion, 

and thus efforts will be made to remove it in later sections of this work. Other elements 

outside of Cr can also be normalized to Ni to attempt to extract more trends. However 

this has little impact, since they show strong trends without this processing. 
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Figure 4-6: Cr signal normalized to Ni signal from same spectra  

This correction method should correct for variations in laser power fluctuating between 

shots.  
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There is a strengthening of the observed emissions that appear to maximize around shot 

24. This feature is not descriptive of the sample, as this feature is not seen in EDS. This 

feature is likely the result of the focus of the laser being inward of the surface of the 

material, increasing the efficiency of plasma production as it reaches this depth, resulting 

in a greater signal. This can be corrected by comparing the signal seen in the exposed 

sample to that seen at the same peak and shot number in the unexposed sample, as the 

laser focus was near the same depth. This is done in figure 4-7. Here we can see that the 

local maximum around shot 24 is gone, and the signal is much smoother. This should 

also help to account for the changing signal deeper in to the sample, making this a useful 

correction. Both this, and the previous method will be applied to the same data in the next 

chapter to attempt to correct for both systematic concerns based on plasma production 

and based on the fluctuations of laser power that occur in the instrument.  

A final small problem that occurs during LIBS is the re-deposition of material at the 

sample surface. The problem of modified material at the sample surface based on the re-

deposition of material from previous ablation is an important consideration in LIBS. In 

this work, the re-deposition of material can be studied using the surface peak before shot 

10 to infer where material has been deposited. To remove this region where material is 

present from re-deposition, the first 4 shots at each location. By performing this 

correction method, we know that the region where re-deposition of material occurred was 

not included in our study. To re-state this process, we remove the first shots of the depth 

profile until we reach the minimum Cr signal. Figure 4-8 shows the Cr signal with the 

surface re-deposition feature, as well as the same signal with this feature removed. 
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Figure 4-7: Cr signal normalized to Cr signal from unexposed sample to account for 

variations in sample geometry 
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Figure 4-8: Cr signal with and without re-deposition of material at the 

surface 

The 2500 hr sample is shown. Note that the spike seen in shots 1-5 is gone 

in the lower figure. 
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CHAPTER FIVE – DISCUSSION 

Discussion of results seen in LIBS analysis 

There were some consistent trends seen in the LIBS data worth discussing. First, Cr was 

depleted in the exposed samples near the sample surface. This Cr depletion is 

unsurprising and matched previous reports in the literature. Ablation rates were not 

characterized for this work. However literature on similar material at similar power 

densities results in approximate ablation rates of 0.2 µm per shot. Given that estimate of 

the ablation rate and a total exposure of 200 shots, a final depth of about 40 microns is 

reached after 200 LIBS shots. In the exposed samples, the Cr signal appears to reach a 

maximum and level off around shot 160 after the full set of corrections for geometric 

efficiency and laser power are applied to the data (figure 4-6). This should map to the 

EDS data in a similar region, where the Cr content is not significantly changing as a 

function of depth. The presence of Mg on all salt-exposed samples, and K on some of the 

samples is strange (shown in Figure 4-5) and merits consideration. It is possible that there 

is some trapping occurring in some of the rough surface features formed during exposure 

to salt. Initial thoughts would suggest that longer exposure would increase salt-trapping if 

this were the case. However it is possible less salt would be trapped at longer exposures, 

since pores, cracks, and other surface features might become larger and salt might be 

more able to escape easier from larger surface features resulting in less salt being seen 

with LIBS. If this is the case, washing would likely remove much of the salt that would 

be of interest to study. Washing much of the salt away might also explain why Mg is 

present while K is not. Washing would expose salt to water, which can break MgCl2 to 

MgO and 2HCl. The MgO would not be soluble in water used to clean salt from the 

sample, and would likely deposit on the sample. This might explain the presence of Mg 

on the exposed samples, why K was present in some cases and why their presence 

differed as a function of exposure time. It is not unexpected then that this is observed, but 

having Mg and K behave differently is unexpected. The trapping of salt would result in 
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both K and Mg being present on samples in similar ways. This is not the case, and Mg 

can be found separate from K in the 2500 hr exposure, where Mg is seen, but K is not 

(figure 4-5). This trend suggests Mg is present in all samples, while longer exposure 

times resulted in less presence of K on sample surfaces. One possible explanation is if the 

washing of samples preferentially removed K in the form of KCl. MgCl2 could also be 

removed, however MgCl2 in the presence of water will form MgO and HCl. This MgO is 

not water soluble and might be left behind, leading to different amounts being present 

compared to the amount of KCl present.  

Comparative analysis between LIBS processing methods 

Two methods were used to process LIBS data, and it is important to compare the results 

seen in the two to provide insight to the advantages and limitations of each. The methods 

applied to our data were univariate analysis and linear correlation between datasets, the 

methods for which were explained in chapter three. The advantage of the univariate 

analysis is obvious: it provides a simple number that is less convoluted to understand. 

There is no complexity to the simple numeric methodology applied for this analysis. This 

method does provide results, and we can see surface depletion of Cr. This technique does 

not tell us what factors change, only that the surface looks different than the unexposed 

sample, or the material seen deep within the sample. On the other hand, the numeric 

integration is able to look at elemental signals but requires much more work to normalize 

and correct than the linear correlation. When this method is used on multiple emission 

lines or datasets, more of the factors causing complexity that occludes the features of 

corrosion are made clear. For example, in figure 5-1 the Cr signal is normalized to the Cr 

signal seen in the unexposed sample. By doing this, we can reduce or eliminate concerns 

about changing parameters based on the formation of a hole in the sample and the 

changing plasma formation characteristics. The case where the two Cr emission lines are 

compared is not particularly useful, as the two lines have different intensities, meaning 

that the two do not result in the same intensity in the emission spectra. 
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Figure 5-1: Cr signal normalized to unexposed sample for multiple wavelengths 

This normalization should remove variation based on sample geometry changing with 

shot number. This was for the 2500 hr exposure.  
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Similarly, in figure 5-2 the Cr signal is normalized to the Ni signal from the same spectra, 

which should reduce or eliminate the variation associated with fluctuations in laser 

power. In this figure, we can see that there is a noticeable change in the signal around 

shot 50, corresponding to a depth of about 10 µm with the previously assumed ablation 

rate. This agrees with the EDS results that there are two regions of Cr content as a 

function of depth. It is plausible these are created from two physical processes, likely a 

near surface region where Cr is more easily reacted with salt, and a deeper section where 

diffusion of Cr controls the loss of Cr. In the EDS (shown in figure 4-3) we can see that 

these regions appear to have less depth dependence than what is seen in the LIBS results, 

implying that there may be some bias towards sensing the Cr emissions deeper into the 

sample.  

Normalization can be done by dividing by the Ni signal of the same spectra to correct for 

variations in laser power, then dividing that signal by Cr signal normalized the same way 

from the unexposed sample to correct for the geometric efficiency of the LIBS process. 

The result is a signal that is corrected for both fluctuations in laser power and the 

changing geometry produced through the LIBS process. To re-iterate, in this 

methodology, the signal of a single Cr emission is compared to that of a Ni emission 

from the same spectra, and that signal is then compared to the signal of Cr normalized to 

Ni in the same way for the unexposed sample. This can be described as: 𝑆 =

  

𝐶𝑟𝑒𝑥𝑝𝑜𝑠𝑒𝑑

𝑁𝑖𝑒𝑥𝑝𝑜𝑠𝑒𝑑
𝐶𝑟𝑢𝑛𝑒𝑥𝑝𝑜𝑠𝑒𝑑

𝑁𝑖𝑢𝑛𝑒𝑥𝑝𝑜𝑠𝑒𝑑

⁄   This method should correct for errors produced by laser power, and 

those produced by changing geometry. The results from this method are shown in Figure 

5-3. This figure is noticeably lacking the peak seen in some earlier figures around 24 

shots from the changing focus of the laser. This profile is also less noisy in the shallow 

and medium depth ranges. There is moderate signal noise deep into the sample, similar to 

the other profiles. This depth profile attempts to correct for all the factors that could lead 

to an incorrect  
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Figure 5-2: Cr signal normalized to the Ni from the same spectra  

Cr signal normalized to the Ni signal from the same sample for multiple wavelengths 

based on the 2500 hr exposure to molten salt. This method of normalization should 

reduce the impact of laser power fluctuations on the dataset.  
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Figure 5-3: Cr signal normalized to both Ni from the same spectra and Cr from 

unexposed sample  

This methodology should reduce fluctuations in laser power and the geometric variation 

of the data. This example was done with the 2500 hr exposure. 
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profile. Similar features are visible; there appears to be a few differing regions where Cr 

content varies with depth. In total, this correction seems to remove most features and 

leaves a signal that does not really explain much of the variation seen in EDS. This likely 

means that this data correction approach to eliminate systematic errors likely leads to 

removing some important information from the analysis.  

The second method for analysis of the LIBS data was that of linear correlation between 

spectra. This method takes one spectrum, then evaluates how similar it is to another 

spectrum. This methodology was presented in [46], where they found it to be effective in 

identifying different layers of material, and showed that it reduced noise and complexity 

from the spectra. This methodology calculates a linear correlation between two spectra 

using the equation:  𝑟 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑖

√∑ (𝑥𝑖−�̅�)2
𝑖 √∑ (𝑦𝑖−�̅�)2

𝑖
  to find a value r that can be used to compare 

spectra. It is worth comparing unexposed samples to exposed samples this way, as well as 

surface and maximum ablation depth regions. These results are shown in figure 5-4. Shot 

120 was used as a comparison, as at this depth material should be similar to bulk 

material. This figure allows for a much simpler method of studying the behavior of the 

sample and is important, as it is a much more rapid technique that can deliver similar 

information. This technique provides another way to look at the sample and see the 

general variance with depth.  The advantage of this technique is that it provides a simple 

way to look at the sample that takes no calibration to find the similarity between spectra. 

This technique would show if something unexpected is happening, as if there were not 

good agreement for samples near each other, we would know something was wrong in 

the processing of data, or with the data itself. The results from both univariate analysis 

and linear correlation are plotted together in figure 5-5. In this way, we can see that there 

is very good agreement between the two, suggesting that the variation in the Cr explains 

most of the variation in the spectra as a function of depth. It appears that the univariate 

analysis captures more of the complexity of the data but has more noise in its results.  
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Figure 5-4: Linear correlation results  

Linear Correlation comparing the spectra at significant depth to the spectra of that 

location in all 100 spots, and to the spectra seen in the unexposed sample. There is greater 

agreement with between the spectra gathered from the same sample than when comparing 

to the unexposed sample.    
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Figure 5-5: Linear correlation and normalized LIBS emission 

Linear correlation and normalized Cr signal plotted together showing that the variance 

seen in the data is largely explained in the change seen in the Cr as a function of depth. 
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Comparative analysis to SEM 

SEM and EDS data was taken for the 2000 and 2500 hr exposure samples. It is worth 

comparing the well accepted technique of SEM with LIBS to confirm LIBS is providing 

accurate insight on material behavior. Results from EDS were relatively clear, and 

showed consistency between samples. The samples both showed around 10% Cr at the 

salt-metal interface. The 2000 hour exposure has approximately 14% Cr content at the 

maximum depth EDS was taken, while the 2500 hour exposure resulted in 12% Cr at 

maximum depth of EDS. Original Cr content was 16%. Depths were comparable, around 

20 µm, and SEM images with EDS linescan locations are shown in figure 5-6. Here we 

can see that there are two major regions of interest in the EDS profile: There is an 

initially rapid change in Cr content near the exposed surfaxce, and a slow change in Cr 

content further from the salt-metal interface at about 10 µm from the sample surface. In 

figure 5-7, the ablation rate estimate is adjusted to 0.12 microns per shot in order to better 

fit the EDS data. This should give us a better estimate of the ablation rate. 

Reporting Variance in Signal 

A useful addition is that of including the maximum, minimum and standard deviation of 

the signal seen for this work. If there is variation that is significant, it would lessen the 

impact of the work, and would make for less believable work. To that end, the maximum, 

minimum and standard deviations were calculated and reported in figure 5-8. In this we 

can see that while there is noise, the trends that we observe in surface depletion, and 

having rich material within the sample are on a significantly larger scale than the standard 

deviation, suggesting they are not just noise.  

Estimating Ablation Depth 

It has been mentioned several times that assuming a linear ablation rate for LIBS is not 

correct. To that end, an attempt was made to calculate the ablation rate using the   
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Figure 5-6: EDS data and LIBS with assumed .2 micron per shot ablation rate 

With these signals plotted together, a similar shape of the plots are seen, however the 

LIBS appears to overestimate the depth to which it reaches. We can see that this fit does 

not make the LIBS and EDS fit together particularly well. 
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Figure 5-7: EDS and LIBS with new ablation rate estimate 

EDS Linescans, their average and the average LIBS signal plotted together with a new fit 

estimating the average ablation rate as 0.12 microns per shot to better fit the LIBS profile 

to the EDS data.  
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Figure 5-8: LIBS Linescans with maximum, minimum, and standard deviation 

reported to assist with understanding the variance of the technique. 
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methodology outlined in the Applied Physics A article from Agresti [47]. The relevant 

math is described in the appendix of this thesis. However it is worth reporting that they 

use a fitting parameter to consider several important physical parameters. This parameter 

(k) wraps the terms of the laser power, heat needed to make material in to plasma, and 

some length parameters into one single term. This term must have units of length to the 

fourth power to produce a length output. This term is not rigorously defined in the paper, 

and thus further explanation will not be made past what is needed to understand why it 

differs in our work from what was used in their work.  

The k parameter was ~1500000 for the case presented in Agresti to fit the given spot size 

and depth occur. For our case, k is significantly lower. First, our power density was about 

half that of what was used in the Agresti paper. Secondly, copper, the material used in the 

paper describing this method [47], has a significantly lower heat of vaporization, heat of 

fusion, and melting point, all which contribute to being more quickly ablated. Thus a 

higher k parameter is expected compared to the Ni used in our work. For our work, 

without having a maximum crater depth, there is not a perfect way to estimate the 

appropriate k. However we can see the trends seen in EDS and LIBS appear to have most 

agreement with the k parameter about an order of magnitude lower than that used in the 

Agresti paper. Given this k, the ablation rate is relatively uniform, and the previous 

assumptions of a linear ablation rate will not be significantly revised. The corrected 

ablation rate is used in figure 5-9, where the same general trends emerge as before. It is 

also worth noting that even with the assumed k in the Agresti paper, the early spots 

within their study showed a relatively linear ablation rate.  

Overall, the largest trend that is evident from the LIBS data is near-surface depletion of 

Cr following exposure to molten salt. The near-surface depletion of Cr was observed with 

LIBS, and confirmed with EDS. The comparison between the two suggests that LIBS 

does show similar trends as EDS, validating that LIBS is capable of detecting important 

depth-dependent chemical changes in exposed samples. In this work, some clear 

limitations and difficulties were seen with LIBS. First, LIBS requires that the processing 
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Figure 5-9: The same figure with error bars showing using the correction 

methodology discussed to estimate the real depth at which each shot occurs. 
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done by the instrument or that developed by the user after the fact is used. This differs 

from EDS where there is more trust in the instrument’s included software to calculate the 

amount of a material present.  

LIBS has some more complicated interactions than EDS; re-deposition of material, an 

emission that varies as a function of depth on a uniform sample, and lack of visibility of 

elements based on experimental conditions. In this work, it would have been great to be 

able to look for the presence of Cl, to confirm if the small amounts of elements that were 

left from salt were in the form salt trapped in surface features, or if those elements were 

present in some other form, metallic, intermetallic, or otherwise present outside of a salt. 

This was not possible for the reason mentioned in chapter 3 of the Ar cover gas having 

emissions that overlap with the Cl emission lines in the region of optical emissions 

observed by the instrument used. Future work could either use a different cover gas to 

avoid this problem, or could use a wider range spectrometer, allowing for studies of the 

optical spectrum where Cl and Ar do not have overlapping emissions. Much of the 

difficulty dealing with LIBS data is that of correcting for the depth dependent nature of 

the response seen. The signal produced in a single plasma creation event in a LIBS 

instrument is a function of several factors, the focus of the laser, the depth to which the 

material has been ablated, the shape of the laser power distribution, the width of the laser 

beam, and the depth to which it has penetrated all play significant roles in the way a LIBS 

signal varies. This complexity might be further studied to make sure that all results seen 

in this work are accurate, however these complexities are inherent to the technique. They 

might be confirmed to be absent, however they must be considered any time LIBS is 

conducted, meaning they likely could not be removed from a future study. A final area of 

further work would be changing the cover gas for this study. This would not be an overly 

difficult task, and likely would not change the core of the results. What might change the 

visibility of Cl in the emission spectra. By enabling the sampling of Cl, it is possible that 

that signal could be compared to the signals seen for Mg and K, which would determine 

if the small amounts of each present were the result of some complex chemistry or if this 
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was salt trapped at pores, cracks, or any surface feature. There are several interesting 

directions that further work on LIBS and molten salt that could be pursued.  

With these complexities and further work, the benefits of LIBS are still likely 

worthwhile. Not needing to do sample preparation for studies and the ability to image 

anywhere an optical fiber can reach is a benefit that is of huge benefit for the ability to 

study ongoing corrosion. Molten salt reactors will require characterization of their 

behavior to ensure performance as designed: LIBS is a tool that can enable characterizing 

corrosion with limited access to a sample and without significantly damaging a specimen. 

For these reasons, LIBS is a technique that merits continued and further investigation.  
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CHAPTER SIX – CONCLUSIONS 

MSRs are a vital technology if the world energy demand is to be met without relying on 

fossil fuels. They have the potential to provide a safe and efficient way to produce cheap, 

clean, and reliable electricity. Their long list of benefits including the usage of Th, the 

transmutation of waste, and the production of medical isotopes provide additional 

benefits that are needed. Enabling this technology requires understanding of the materials 

challenges faced, particularly corrosion. LIBS is an excellent tool for this purpose, as it 

can detect the loss of Cr or the least noble metal in the alloy. LIBS is a versatile and rapid 

data analysis tool that could be implemented on-site allowing for rapid characterization in 

a plant environment. For these reasons along with the performance demonstrated in this 

work, LIBS is a tool that should be considered for characterizing the system when a 

molten salt reactor is built. This would necessitate further development of the technique 

in experiments to provide further insight than in this work.   

In this work, evidence has been presented comparing EDS and LIBS, and a case has been 

made that LIBS is able to see similar features as EDS for Cr and Ni. This suggests that 

for elements that EDS is capable of imaging, LIBS is valid and can provide the same 

information along with the benefit of improved measurement versatility (e.g., in-situ 

characterization). In addition, LIBS data and results were presented for the elements K, 

Mg and O, elements that EDS has difficulty detecting. Having shown LIBS to work for 

Cr and Ni should provide validation for these results that could not be achieved with 

EDS. Mg was found to be localized to the surface, and K was found in minute amounts. 

This and the presence of O everywhere Mg was found suggest that MgO was the 

predominant Mg compound on the samples, not salt. This is possibly a result of washing 

samples, exposing them to air and water which would allow MgCl2 to form MgO and 

Cl2. Of greater interest for molten salt reactors is that LIBS was able to examine the full 

range of depth to which Cr is depleted, and the obtained results matched the EDS results. 

The depletion of least noble metals is the primary method of corrosion in molten salt 
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systems, and LIBS being able to characterize this primary problem demonstrates that 

there is utility in the technique that would merit its consideration for monitoring of 

molten salt exposed systems.  The limitations of LIBS, such as the ability to sense Cl in 

the presence of Ar cover gas for example, should be possible to overcome. Changing 

cover gas, using LIF and other secondary techniques provide the possibility of removing 

the limitations of seeing certain elements.  

Future work on the topic of LIBS for molten salt corrosion would necessitate finding 

samples that had more evidence of salt-trapping or other unusual features. In those cases, 

LIBS would enable seeing features that would not be rapidly visible with EDS. It would 

be beneficial in addition to these to evaluate samples that had seen more complex 

chemical situations that might produce other effects of interest past simple depletion of 

the least noble metal from the sample. 
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Below are the equations used in chapter 5 to iteratively calculate the ablation rate as a 

function of depth. This begins with attempting to solve for zb at one shot, needing to find 

Δzb(1) to then find zb(1). This process is then iterated to find zb(N). These equations are 

laid out in the Agresti paper[47] but are more thoroughly detailed in their solution here. 

An additional equation is the radial power distribution, 𝐸𝑖(𝑟) describing the beam 

characteristics of the laser used in this work.  

ℎ(𝑟) =  𝑘
𝐸𝑖(𝑟)

𝑆(𝑧𝑏)
𝑐𝑜𝑠(𝜃(𝑟))                    𝛥𝑧(𝑟)  =

ℎ(𝑟)

𝑐𝑜𝑠(𝜃(𝑟))
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