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Abstract 

 
Mercury (Hg) is a globally distributed inorganic pollutants of human concern. The high 

toxicity is mainly related to the capacity of Hg species to accumulate and biomagnify along 

aquatic food webs. Along East Fork Poplar Creek (EFPC), erosion represents the principal 

mercury input into the local waters, eventually reaching humans through the food chain. This 

research project aimed to monitor streambank erosion along a mercury-contaminated creek using 

Light Detention and Ranging (Lidar) technology and erosion pins. A Terrestrial Laser Scanner 

(TLS) was used to generate high-resolution point clouds from August 2020 to January 2021 

across nine streambank locations to detect changes in soil volumes. These volumes were 

simultaneously monitored using erosion pins, and with the results, estimates of soil input into the 

creek from streambank erosion were obtained. For all the sites, the volumes of soil introduced 

into the EFPC for the erosion pins ranged between 0-6.29 m³ and 3.93-14.18m³ for the TLS. 

Using erosion estimates, bulk density measurements, and known concentrations of Hg in bank 

soils, estimates for the mass of Hg entering EFPC were obtained. Estimates of Hg released into 

the EFPC ranged between 0-11.84 kg and 0-0.4 kg for the erosion pins and TLS, respectively. 

Erosion pin estimates of Hg and soil introduced into EFPC were both on average of 64 times 

greater than those given by the TLS. Measurements obtained with the TLS can be considered 

more reliable than those given by the erosion pins since this new technique has more spatial 

coverage, higher resolution and can account for irregularities and changes within the whole 

streambank, compared to erosion pins which interrogate only a tiny fraction of the volume of a 

streambank. This assessment identified locations in EFPC where soil erosion and mercury release 

are highest, thereby targeting specific locations for possible future remediation actions to prevent 

mercury mobilization.  

 

Keywords:  

Erosion, Light Detention and Ranging, Terrestrial Laser Scanner, Erosion Pins, Streambanks, 

Mercury, Contamination, East Fork Poplar Creek. 
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Chapter I: Introduction 

 
1.1 Mercury Contamination Background 

 

 
Mercury can be released into the environment by natural (volcanic eruptions or ore 

degradation) or anthropogenic sources (mercury and artisanal gold mining, industrial use, 

disposal of medical waste) (Oken et al., 2008; Bhan et al., 2005). Global anthropogenic 

activities, including ore mining and processing, coal combustion, and metal production, are 

responsible for more than 2,220 metric tons of mercury (Hg) emitted each year, according to the 

2018 Global Mercury Assessment (United Nations Environment, 2018).  This inorganic pollutant 

is a persistent neurotoxin that can easily spread across the environment (Di Natale et al., 2016). 

In nature, mercury may occur in three oxidation states (0, +1, and +2) such as elemental (Hg0), 

mercurous (Hg+1), mercuric (Hg2+) mercury as well as other organomercury compounds (Poulain 

et al., 2013, Guzzi et al., 2008). In combination with environmental physical, chemical, and 

biological factors and other species present, the chemical speciation of Hg dictates the ecological 

and toxicological effects. Some prevailing conditions may facilitate the conversion of inorganic 

Hg into a more toxic species such as methyl mercury (MeHg), a potent neurotoxin that is readily 

accumulated by aquatic biota at each trophic level (Poulain et al., 2013; Ullrich et al., 2001).  

 

Despite the fact that inorganic Hg is the main form of this element being introduced into 

the environment, the biggest threat to wildlife and human health comes from the 

bioaccumulation of MeHg (United Nations Environmental Program, 2009). International efforts 

from the United Nations Environment Programme (UNEP) have been around for several years, 

intending to locate existing Hg-contaminated zones that continuously affect public and 

environmental health. These efforts lead to the location of more than 3,000 high Hg 

contamination systems associated with industries, manufacturing sites, and mining processes 

(United Nations Environment, 2018). In most cases, Hg releases into aquatic environments from 

contaminated sites have not been extensively documented. Although there are many site-specific 

studies, they only use observations from short periods, and they do not always consider external 

factors such as meteorological conditions (Kocman et al., 2013). 
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 Inorganic Hg emitted into the environment may enter watersheds either by direct release 

from contaminated sites or by atmospheric deposition, where it may be transformed to MeHg 

(Kraepiel et al., 2003). Anaerobic bacteria and archaea carrying the gene pair hgcAB are 

responsible for the methylation of Hg (Parks et al., 2013; Podar et al., 2015 and Gilmour et al., 

2013). The primary methylators in freshwater systems and estuaries are sulfate-reducing bacteria 

(Poulain et al., 2013, Rhoades et al., 2009, Gilmour et al., 1992 and Fitzgerald et al., 1991). 

Methylmercury enters aquatic food webs through uptake by phytoplankton, where it 

bioaccumulates and biomagnifies up the trophic levels, as shown in  

Figure 1 (Oken et al., 2008). Consequently, people whose diet relies on predatory fish 

(higher trophic levels) such as king mackerel, shark, swordfish, and bigeye tuna are at higher risk 

of developing Hg-related neurological diseases (Whiteacre et al., 2009).   

 

The first report on MeHg poisoning was published as early as 1940 by Hunter et al. 

However, it was not until the 1960s that a relationship between seafood consumption and Hg-

related diseases was established (Semionov, 2018; Harada, 1992; Hunter et al., 1940). Thousands 

of people were exposed to high levels of MeHg through the consumption of fish and shellfish 

contaminated by the wastewater dumped into a bay by a chemical factory in Minamata, Japan. 

Patients presented numbness, difficulty seeing, hearing, swallowing, coma, and many died.  This 

condition was eventually known as the Minamata disease, and since then, Hg has been a critical 

contaminant of concern around the globe (Seminov, 2018; Timothy, 2001).  

 

In the United States, Federal and state governments have been actively alerting communities 

about the risk of consuming certain kinds of fish (Roe, 2003). Simultaneously, efforts led to 

identifying Hg sources and also prompted research to investigate Hg transformations and the 

development of technologies to reduce and remediate Hg contamination. Even though Hg 

mobilization pathways are not clear, one of the major Hg sources in the environment is the 

erosion of Hg-rich historical deposits in stream banks (Rhoades, 2008).  
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Figure 1: Mercury methylation in the environment (Poulain, A. J. et al. 2013). 
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1.2 Site Background 

 

An example of widespread Hg contamination is the Oak Ridge Reservation (ORR) in eastern 

Tennessee, USA.  The ORR was established during World War II, beginning in 1942, as part of 

the Manhattan Project. A facility to separate lithium isotopes for thermonuclear weapons was 

constructed within the Y-12 plant on the ORR. The lithium isotope separation process involved 

the amalgamation of lithium and required large amounts of metallic Hg. Even though the plant 

took precautions to avoid Hg release into the environment, by the end of the lithium isotope 

enrichment activities in 1963, around 128,000 ± 35,000 kg of Hg were discharged to the 

headwaters East Fork Poplar Creek (EFPC), which is within the boundary of Y-12 (Brooks et al., 

2011) as seen in Figure 2.   

 

The EFPC flows through the city of Oak Ridge until it reaches a confluence with Poplar 

Creek. Active use of Hg by Y-12 no longer occurs, but smaller amounts of Hg continue to enter 

the EFPC from residual contaminated infrastructure and soils at Y-12. The yearly average 

concentrations of total Hg exiting Y-12 and entering EFPC are around 300 ng/L, from which 

60% of the Hg is in a dissolved form (Watson et al., 2017; Southworth et al., 2010).  

 

The streambank soil along EFPC has been sampled to understand additional Hg sources 

along the creek downstream of the Y-12 facility. Studies showed that the stream banks 

throughout the EFPC can be classified as loam and silty loam soils (Dickson et al., 2017). 

Dickson et al. (2018) attempted to understand the role of the streambank and the streambed as 

Hg sources to the contaminated stream. Locations within EFPC were represented with the 

identifier East Fork (EFK), followed by a number that designates the creek kilometer measured 

upstream from the creek's mouth. The main focus of this study was the characterization of Hg 

contamination in streambanks and sediments in EFPC downstream of Y-12, beginning at EFK 23 

throughout the following 19 km downstream to EFK 4. The survey was divided into four 

reaches; these were made based on the similarities of the floodplain properties and stream 

channel gradients, as shown in Figure 3 (Watson et al., 2016). 
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In the previously mentioned study, scientists were able to identify the historical release 

deposit (HRD) as a primary contributor of Hg into the stream. The HRD is a layer rich in coal 

fines deposited during historical Y-12 Hg discharge events. It was previously identified as a Hg-

rich horizon in the bank soil (Southworth et al. 2010, 2013) with elevated Hg concentrations 

(Watson et al., 2017). The HRD contains Hg concentrations up to 4,600 ppm and is typically 

found between 2 to 120 cm below the ground surface with a thickness ranging between 5 and 45 

cm (Dickson et al., 2018). The HRD is not continuous, but around 1,500 m of the stream may 

contain exposures of HRD along the banks of the EFPC (Dickson et al., 2018). That layer 

represents an essential visual aid in the creek banks for locating Hg hotspots. It was shown that 

the areas with HRD soils had an order of magnitude higher Hg than in the rest of the streambank 

soils (Figure 4). Identification of these high Hg zones was critical, especially since erosion plays 

a major role in the creek configuration and the transport of this chemical of concern.   

 

1.3 Erosion Monitoring Approaches 

 
For the past few years, there have been investigations to understand the streambank 

erosion along EFPC. The primary approach to measure erosion involved a conventional 

technique that uses erosion pins placed at different locations along a creek bank surface. This 

technique provides a simple and generalized input for erosion calculations.  The first reference to 

this technique being used for bank erosion comes from Wolman (1959), and since then, it has 

been extensively used by many researchers for many applications (Thorne, 1981). It consists of 

using a rod (metal or fiberglass) of a determined length that is fully inserted into the bank, 

leaving no portion of it exposed. As bank erosion manifests, the rod will be continuously 

exposed (Lawler, 1993), as seen in   

Figure 5 (Watson et al., 2016). After some time, especially following significant rain 

events, measurements are taken from the pin tip to the bank on each side of the rod (top, right, 

bottom, and left), then a mean of these values is obtained (Kiesel et al., 2009). As well as 

erosion, deposition can be easily estimated by measuring the depth to which the rod is buried. 

Apart from being an economical and straightforward alternative for measuring erosion, this 

technique possesses high sensitivity. It can detect small amounts of bank erosion (on the order of 

millimeters) with considerable accuracy (Lawler, 1993).  
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Figure 2: Map of the EFPC watershed (Watson et al., 2016). 

(Notes: EFPC = East Fork Poplar Creek; ORR = Oak Ridge Reservation; ETTP = East Tennessee Technology Park; ORNL = 

Oak Ridge National Laboratory; SNS = Spallation Neutron Source; Y-12 = Y-12 National Security Complex.) 
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Figure 3: Map of EFPC  with the four reaches and soil sampling locations (Watson et al., 2016). 
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Figure 4: Mercury concentration distribution in streambank soils and sediment. (Dickson et al., 2018). 

(Note: data from different studies was used, including a longitudinal soil sampling (2014 and 2015), 

Historical Release Deposit (HRD), vertical and horizontal soil profiles (Southworth et al., 2010), and 

streambed sediment sampling.) 
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Figure 5: Streambank at EFK (January 2014), 96 days after erosion pin installation           

(Watson et al., 2016). 
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1.3.1       Erosion pin measurements in EFPC 

 

A significant outcome from these erosion pin measurements at different locations along 

EFPC was estimates of net erosion and deposition over time. As illustrated in Figure 6 (Watson 

et al., 2016), the various lines represent the distance in centimeters (from the top of the bank) at 

which the erosion pins were located (Watson et al., 2016). In addition to using bulk densities to 

obtain a volume of soil eroded or deposited, two other essential assumptions were made. First, 

volume measurements were derived from a single length scale. The best way to acquire 

streambanks eroded soil volumes is by measuring erosion or deposition in every dimension 

within the bank. Since scientists only measured the length of exposure and burial of the erosion 

pin, they missed essential information such as the actual loss in the bank's horizontal and vertical 

axis. They obtained volumes by assuming equivalent erosion or deposition in every single 

direction on the streambank. As represented in Figure 7 (Mathews et al., 2019), they used the 

length of exposure or burial, then multiplied that value by the height and width of the bank, 

therefore extrapolating from one-dimensional distance value to three-dimensional volume. This 

approach may result in significant errors in the volume of eroded soil measured since the bank 

face is entirely non-uniform; instead of measuring erosion at multiple points along the entire 

bank length and height, only one measurement from the erosion pin is used. Second, it was 

assumed that the bulk soil densities are equivalent along the streambank, which is flawed 

because the creek bank locations where an HRD layer is present are not uniform. In addition, 

EFPC contains areas where clay is predominant and zones where very soft and loose soil 

predominates. When multiplying the volume and the bulk density (both based on assumptions), 

the resulting mass measurements have a high degree of uncertainty. Despite the many 

assumptions and high degree of uncertainties, by combining the information from Figure 6, an 

estimate for net erosion and deposition at different locations as a function of bank height was 

obtained (Figure 8, Mathews et al., 2019). 
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Figure 6: Estimates of net erosion and deposition (y-axis in centimeters) over time obtained from 

the erosion pin experiment at different locations along the EFPC (Watson et al., 2016). Colored 

lines indicate the distance from the top of the bank to the pin in cm.  
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Figure 7: Erosion pin experiment used to obtain volume estimates of the streambank retreat 

(Mathews et al., 2019). 

 

                       

Figure 8: Cumulative erosion and deposition as a function of distance along EFPC       

(Mathews et al., 2019). 
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Despite their limitations, these preliminary measurements provide sufficient background 

data to compare future erosion assessments along the creek. Although this approach provides 

highly sensitive data, it is a point-specific technique, resulting in a high random spatial 

variability. This can lead to overestimates of erosion, a significant factor when cost-intensive 

remedial actions, such as bank restoration, are considered (Lawler, 1993). Also, volume 

estimates lack accuracy since this method can only measure one-dimensional length scales and 

not three-dimensional volumes lost due to erosion. Consequently, erosion pins may be most 

useful to provide qualitative rather than quantitative estimates of erosion (Mathews et al., 2019).   

 

1.4 Proposed Technology for Erosion Monitoring: Terrestrial Laser Scanning  

 
 

 Terrestrial laser scanning (TLS) is a modern technology designed for surveying 

applications, including measuring exact distances and angles. This technology allows the 

acquisition of complex spatial profile data in combination with high-resolution images from 

buildings, machines, and other physical objects. The TLS system uses Light Detection and 

Ranging (Lidar) technology, which uses light emitted by a pulsed laser to measure distances 

between a fixed location and a surface with high spatial resolution. After the laser emits light, it is 

reflected from a surface and detected by a sensor. The equipment measures the time it took for the 

light pulse to travel from the laser source back to the sensor and calculates the distance between 

the equipment and the surface. That way, it can generate a spatially accurate 3D model ("point 

cloud") of the area of interest. This technology, in contrast to previous methods, can repeatedly 

create high spatial resolution 3D maps. This approach has been used to generate digital terrain 

models (DTM) because it can detect continuous changes in a monitored area with vast data.  

 One of the most commonly known applications of Lidar is Airborne Laser Scanning (ALS). 

The ALS is a commonly used surveying technique used to accurately mapping the earth's 

topography as well as man-made structures. Although both technologies are based on the Lidar 

application, the way they are implemented is different. The ALS is usually attached to an airplane, 

helicopter, or drone, and it works by emitting the light pulses downwards. On the other hand, the 

TLS is a stationary device, usually attached to a tripod on the ground and usually used to capture 

specific areas around the instrument. One of the studies where ALS is tested compared to the TLS 
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was performed by Goodwin et al., 217. The study aimed to assess the ability and synergies to 

detect geomorphic changes for a gully located in Aratula, southeast Queensland, Australia. The 

outcome of the experiment showed that both technologies separately provide unique assessments. 

The ALS analyzed bigger data sets of a greater area and used rainfall events to generate estimates 

of volumetric changes. The TLS was able to detect more subtle intra-annual changes but was 

limited in its spatial coverage. Data proved that the TLS is optimum for specific sites and that in 

combination with ALS, data accuracy and general values of volumes can be estimated with more 

reliability.  

 Another relevant experiment was performed in the Piedmont geological region near 

Raleigh, North Carolina, USA (Starek et al., 2013). The goal was to analyze a region with banks 

composed of different kinds of sediments and develop digital terrain models using TLS point cloud 

data. The authors conducted a series of nine TLS surveys within an 11.5 m wide by 3.2 m height 

area, forming eight sequential data epochs. For the study, data was collected periodically using a 

Leica Geosystem ScanStation 2 mounted on a tripod over a timeframe of 18 months. Once point 

cloud data and images were acquired and processed with Leica Cyclone software, a visual 

comparison between the DTM at different periods demonstrates significant erosion. A quantitative 

estimate of the erosion was obtained by staking the DTMs at different times into a voxel model 

(small and distinguishable element of a 3D model) to form a space-time cube. The space-time cube 

provided a compact representation of the spatiotemporal evolution of the bank using the TLS 

images. TLS provided much more accurate 3D measurements of bank erosion compared to 

traditional methods like erosion pins.  

 Other recently developed technologies have evolved with advanced capabilities; they focus 

on applications such as calculating distances and shapes via triangulation. For example, the total 

station (TS) is an electronic, optical instrument used for surveying and many other architectural 

applications. Although both technologies are capable of generating volume estimates, the TLS 

generates a complete coverage of the surface while the TS uses horizontal and vertical angles and 

distances interpolated to generate the image. This technology has also been proposed as an 

alternative for measuring stream bank erosion. An experiment was performed comparing the TS 

technology with TLS to measure streambank retreat (SBR, or erosion) (Resop et al. 2010). This 

study's final objective was to find a technology to efficiently quantify the sediment load of a 
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streambank along Stroubles Creek downstream of Virginia Tech's main campus. The 11 m long 

streambank was measured with a Leica TC 307 for the TS surveying and an Optech ILRIS-3D for 

the TLS measurements. One of the most significant advantages of the TLS over TS was the amount 

of data scientists collected to evaluate the variability of SBR. Also, TLS allowed creating maps of 

the entire zone over time. This aspect is advantageous as it is useful to have a faster and better 

visualization of erosion and deposition areas. 

In conclusion, the study proves that this technology is adequate to calculate SBR and 

volume changes without perturbing the streambank and with improved point density 

measurements compared to the TS. Even though it is a useful instrument, the TS is not easy to 

operate. It requires a skilled surveyor, more software manipulation and is troublesome for the user 

since they cannot check the data from the field (Resop et al., 2010; Myers et al., 2019).  

1.5 Mercury Calculations 

 
As previously mentioned, Hg contamination across the EFPC streambanks represents a 

significant concern for the local community and government. For this reason, quantifying how 

much of this contaminant is being introduced into the EFPC waters is crucial. Although different 

studies aim to understand streambank processes using multiple technologies (erosion pins, Lidar, 

TS), almost none address streambanks with specific contaminants. Efforts to identify a 

technology that can reliably measure streambank erosion will be simultaneously used to measure 

the amount of Hg going into the EFPC waters. This technology and relatively novel assessment 

will replace old techniques such as erosion pins.   

 
1.6 Research Goals, Objectives, and Hypothesis  

 
Goal. This project aimed to quantify changes in volume and soil mass in a streambank to 

generate estimates of Hg input due to erosion. Our objectives for this project were (1) to use TLS 

technology to generate accurate measurements of streambank retreat in the EFPC, (2) compare 

those results from the TLS with data taken simultaneously from existing erosion pins, and (3) use 

the volumes obtained from both techniques along with bulk densities and concentrations of Hg to 

obtain estimates of Hg being introduced to the EFPC waters due to erosion. With these 
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objectives in mind, our hypothesis established that the TLS technology will generate more 

reliable streambank retreat measurements than the erosion pins along EFPC. 
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Chapter II: Materials and Methods 

          In this chapter, sections 2.1 through section 2.4.2.1 are intended to present the materials 

and methods used for TLS technology, including the software used and equipment set up in the 

control and field sites. It also discusses the registration of scans, which is the process of 

combining multiple images (from one site at different angles) to improve the quality of a point 

cloud.  

 

2.1  Leica BLK 360 Imaging Laser Scanner 

 

           The BLK 360 Imaging Laser Scanner is one of the Leica Geosystems (AG, Heerbrugg, 

Switzerland 2020) reality capture instruments. It is a compact imaging laser scanner that uses a 

360° laser distance meter and high-definition panoramic imaging to create a 3D point cloud. This 

machinery can capture 360,000 data points within seconds and generate panoramic images in 

real or thermal imaging within minutes. The accuracy of the instruments ranges between 4 mm at 

10 m distance or 7 mm at 20 m distance. This instrument is the designated TLS technology used 

for this research project, and it was selected for its compactability, low cost, and ease of use in 

the field.  

 

2.2  Field Work Software 

 

           BLK 360 and ReCap Pro are the two operational software packages for working in the 

field. They are used for controlling the TLS instrument remotely, image processing, and digital 

storage of the point cloud data.  

 

2.2.1 BLK 360  

 

The BLK 360 software (Leica Geosystems AG, St. Gallen, Switzerland) is the default 

operating system included with the BLK 360 TLS instrument. It is a simple platform that allows 

users to control the Lidar and to acquire high-resolution data. After taking each measurement, 
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users can view the resulting point cloud on a tablet computer or transfer images to a desktop 

computer for additional processing.  

 

2.2.2 ReCap Pro 

 

 Autodesk ReCap Pro (ARP) (Autodesk Inc., San Rafael, CA) stands for "Reality 

Capture," and it is a more sophisticated program for working with native point clouds from laser 

scanners. It is a software package to open and process point cloud files. One of the most useful 

ARP tools was a "noise filter" that allowed removing unnecessary points that are usually 

associated with heavily dense point clouds. This software was the main program used to control 

the BLK 360 TLS in the field remotely. This software performed a preliminary registration, that 

although it was not permanent, provided feedback on whether a sufficient number of scans were 

obtained for a high-quality point cloud of the streambank. Finally, ARP was used to store the 

acquired data in the tablet, then using the desktop software version, the images were transferred 

to a desktop PC for more processing.  

  

2.3 Modeling Software 

 

        Cloud Compare (CC) and Trimble RealWorks (TRW) are the designated software used to 

process and refine the images and to perform volume calculations.  

 

2.3.1 Cloud Compare 

 

             CloudCompare (http://www.cloudcompare.org, accessed August 14, 2020) is a 3D point 

cloud and a triangular mesh processing software. It was designed initially to perform 

comparisons between two dense 3D point clouds (such as the ones acquired with a laser scanner) 

or between a point cloud and a triangular mesh. Although the software possesses many useful 

tools, it was used as a point cloud cleaning software for this project. Meaning that once the dense 

point clouds were acquired from the field, I used this software to remove unnecessary points to 

http://www.cloudcompare.org/
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only work with the area of interest. It was also used to remove most vegetation and debris from 

the streambank surface since these can generate overestimates of erosion and deposition.  

 

2.3.2 Trimble Real Works 

 

               Trimble RealWorks (Trimble Geospatial, Sunnyvale, CA, USA) was used as a point 

cloud processor and analysis software. This geospatial software was used to perform the final 

registrations between the different scans taken at different times. Using the first scan as a 

reference, TRW combines other point clouds after erosion events. A volume calculation tool 

provided estimates of the difference between both images of the same place at different times. 

The difference between two values separated by time represented a volume of soil eroded based 

on the initial scan. Also, the software provided high-quality visual models of the area of interest 

with a depth color gradient.  

 

2.4 Methodology   

 

The following is a detailed summary of how scans of the creek banks were acquired to 

obtain point clouds. It includes the materials needed, instrument setup, and how the point clouds 

were processed after field scans were taken in the field.  

 

2.4.1 Procedure: Basic Setup 

Once the bank of interest is located, it is important to know how exposed was the surface 

of the bank. Some surfaces were covered with dead leaves or branches and vegetation that 

interfered with the accuracy of the measurement in interrogating the soil. For this reason, the first 

step was to remove loose debris from the surface of the bank. In case of excess vegetation, these 

may be trimmed with scissors while avoiding pulling the roots since that will compromise the 

structure of the bank. This last step is only necessary when taking scans during spring-summer; 

afterward, the surface in this region will have enough visibility (fall-winter). Then, depending on 

the size of the bank, three reference targets were be placed randomly across the area of interest, 

as shown in  Figure 9. More targets can be placed for irregular banks if needed since they will 

facilitate the image registration when taking multiple scans.  
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 The next step is to place a survey marker 8-10 ft from the surface at three different 

angles. Doing this allows the scanner to generate more accurate point clouds that account for the 

irregularities in the surface of the bank. Figure 10 shows a simple diagram of how the instrument 

was set up before taking any scan.   

 

2.4.2 Scanning  

 
 

After the instrument setup, the scanner was placed on one of the survey markers and 

using the iPad with the ReCap Pro software, a point cloud was acquired. The same process was 

repeated on the remaining marked areas. Once the images were taken, the RecapPro software 

was used to perform a preliminary registration of all the scans, resulting in one big point cloud 

that is more accurate than the individual images. This preliminary registration provided useful 

information on the accuracy of the acquired data set.  

 

2.4.3 Image Processing  
 

 
To process and model the images, I started by uploading the individual point clouds into 

CC. For this project's purposes, it is important to know that a scan is used in the same context as 

a point cloud. In this step, the software performed one last registration between the separate 

scans from one site, allowing to pick reference points across multiple images, increasing the 

accuracy of the superimposed scans. The final product was a highly dense point cloud with a 

higher resolution. Next, we cut the 360° image so that we only work with the bank of interest. 

Then, the bank's point cloud was transferred to TRW. To generate the volume estimates of soil in 

the creek banks, I used a starting point of reference. In this case, the reference point was the 

initial scan of the bank taken at the beginning of the experiment. Any erosion or deposition was 

based on that initial scan; this approach eliminated many uncertainties associated with just 

comparing one individual scan to another. The diagram above ( 
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Figure 11) summarizes how the point cloud is processed, starting at the field with the 

equipment setup using the ReCap Pro and BLK 360 to the office work using CC and TRW to 

register, clean, and obtain volume estimates.  

 

 
Figure 9: Control Site reference target positioning 
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Figure 10:BLK 360 scanner  field set up before taking scans 

 

2.5 Initial Tests 

 

2.5.1 Block Test 

 

Before proceeding with fieldwork, a pilot test was conducted to understand and test the 

accuracy of the scans. This test was used in combination with a control site (next section) to 

confirm data and methodological procedure. The test consisted of a double-layer brick wall (17 

bricks per wall, Figure 12) with known dimensions representing a creek bank. The bricks were 

placed so that one or more can be easily removed to simulate erosion and deposition. Following 

the procedure mentioned above, the first set of scans was performed on the full brick wall; this 

initial scan served as our reference point. To simulate erosion and deposition, scans were taken 

after removing one and seven blocks (simulating erosion) and after removing and placing right in 

front of the brick wall two blocks (simulating deposition). Once generated, the point clouds were 

processed with CC and TRW.  
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2.5.2 Control Site 

 

 Although the block test was expected to provide useful data on the volume accuracy, it is 

important to understand that it was a very controlled experiment with symmetric surfaces. When 

working with an actual creek bank, the variations of the surface are very irregular. An additional 

test was performed in a clean soil bank to determine instrument and software performance with 

real soil. Simultaneously, the bulk density was measured to relate the mass of soil removed with 

the soil volume removed.  

 

2.5.2.1 Control Site: Erosion Simulation 

 

This experiment was performed along an old road in the Walker Branch Watershed on 

the ORR. After following the basic setup procedure (section 2.4.1), I selected an area along the 

bank's flat surface with a 1ft long by 3ft height. Using a garden trowel, I delineated this 

rectangle; this was repeated in two more spots on the bank's surface to generate the experimental 

measurements, in triplicate, of simulated erosion.
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Figure 11: Workflow diagram when working with the BLK 3
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Figure 12: Double-layer brick wall simulating a creek bank surface 
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Afterward, I carefully removed with a hand trowel the most upper part of each rectangle a 1ft by 

1ft by 3inch deep cube, as seen in Figure 13. A plastic tarp was positioned under the rectangle 

before digging; this allowed to recover any loosened soil. The loosened soil from each square 

was collected in a bucket and weighed using an Ohaus Digital Bench Scale Series 20L (OHAUS 

Corporation, Parsippany, NJ, USA). The next step was to take the second set of scans following 

this simulated erosion event. Then I repeated the same process by carefully removing another 

cube, immediately beneath the first cube, with the same dimensions (Figure 14). This procedure 

was done one more time until all the delineated rectangles had a depth of 3 inches (Figure 15). 

This process provided a reference plane (flat surface) and an erosion event simulation to compare 

against the reference plane.  

 

            The images were processed (as described in section 2.3.31), and a volume estimate was 

obtained from TRW. Each section's volume is about 432 cubic inches (7079.21 cm3), and this 

number was compared with that of the software. Once more, this experiment served as a proof of 

concept before conducting measurements on the EFPC stream banks.  

 

2.5.2.2 Bulk Density Measurements 

 

          As mentioned before, bulk density measurements are needed to correlate volume with 

mass.  Due to the different types of bank soils along the creeks, it was important to account for 

changes in bulk density as a function of creek bank height and changes observed along the length 

of EFPC. According to the USDA Soil Quality Indicator (June 2008), this soil study will provide 

validity of comparisons by removing errors associated with differences in soil densities at the 

time and place of sampling. The following procedure is based on the Soil Quality Test Kit Guide 

(USDA, 1999), and it consists of a sample collection section and a laboratory analysis. 

 

2.5.2.3 Bulk Density Sample Collection  

 

           Bulk density measurements were performed on the control site to develop a 

representative procedure used in the field sites. For the control site, I took measurements before 

digging each section. I started by selecting four sampling points per section, as seen in  
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Figure 16;  

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 
Figure 13: In the first section of erosion simulation, the orange area indicates the 1ft by 1ft by 

3inch squared simulating erosion. 
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Figure 14: Diagram of the artificial zone after the second erosion event. 

 

 

 
Figure 15: In this diagram, the third erosion zone was added to the delineated area. 
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since I had nine sections, our total samples were 36. Using a metal cylinder with known 

dimensions (and with the help of a hand sledge) I inserted the three-inch-diameter core into the 

surface of the erosion rectangle mentioned above.  

To remove the cylinder and avoid losing soil, I dug the soil around the cylinder's outer 

surface until it was mostly exposed (Figure 17 a). Once the cylinder was loose and easy to 

remove, I ensure that the soil at the bottom was flat with the bottom part of the cylinder. With the 

help of a small knife and spatula, I carefully removed the excess soil from the bottom (Figure 17 

b). To conclude the sample collecting, each of the core samples were placed inside a labeled 

plastic bag. 

 

2.5.2.4 Bulk Density Laboratory Analysis   
 

 

We started by carefully placing the soil from the core into a tray. Samples were then 

placed in a drying oven at 85° C (Active Standard ASTM D6683 temperatures used for bulk 

densities are between 70°C and 105°C) for 48 hours. To ensure samples were fully dried, these 

were removed after the 48 hours, weighed, and placed in the oven again for 24 hours. After no 

significant change in the weight of the dried soil was detected, each bulk density was determined 

by dividing the dry weight of the soil sample by the volume of the sample (which is the inner 

volume of the core).   

 

 

𝑆𝑜𝑖𝑙 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (
𝑔

𝑐𝑚3
) =

𝑜𝑣𝑒𝑛 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑜𝑖𝑙

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙
 

 

 

2.6 Field Bulk Density Samples 
 

 

 As described in chapter one, EFPC has a characteristic black soil layer known as the 

HRD. This distinguishing layer makes the soil across the creek banks irregular in texture. 

Additionally, there are in situ materials weathered from the underlying bedrock, and materials 

(including HRD) deposited on top of the weathered bedrock material, and then all weathered in 

place.   
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Figure 16: Core samples per sections 

 

 

 

    
 

Figure 17: (a) the soil around the core was removed, then (b) the excess soil from the bottom 

was detached from the cylinder's surface. 
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When collecting the core samples from the field, we followed section 2.4.2.3, but we accounted 

for the non-homogeneous bank soils in the following manner. Soil samples were collected every 

10% depth from the top of the bank to standardize sample collection across all banks, as shown 

in Figure 18. Following this method ensures the final average bulk density is more representative 

for the whole bank. In total, two samples were taken per depth, one on each side of the 

streambank, in order for the scanned surface to remain unaltered for future analysis.   

 

2.7  Experimental Site Locations 

 
          This experiment was conducted at nine sites distributed along the 19 kilometers of EFPC 

(sites identified in Figure 19: EFPC Sampling Sites LocationsTwo previous studies by Dickson 

et al. (2018) and Dickson et al. (2015) were used as a reference to select sites. The former study 

focused on the Hg levels, while the latter was intended for soil characterization along the EFPC. 

The selected sites included areas from high to low erosion levels based on previous erosion pin 

data (Watson et al., 2016); this way, the project was able to test the technology under a variety of 

realistic scenarios present in EFPC. Furthermore, the selected sites included erosion pins located 

within different layers of the bank. This was important since the data collected from the TLS was 

compared with the data from the erosion pins.  

 

Table 1 summarizes the location of the sites used in this experiment. Added at the 

beginning are the original names used by previous studies. For this experimental scope, the site 

names were standardized based on the kilometers from the mouth of the creek (EFK). Data was 

collected between August 2020 and January 2021; the first set of scans were taken on August 12, 

13, and 19 of 2020. The second set followed significant rain events and was collected on October 

15-16, 2020. The final scans were taken on January 6, 2021, for 147 total days of the experiment. 

Simultaneously with the scans, erosion pin measurements were taken at the different sites.  
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Figure 18: Bulk density sample's collection depths in the field sites 
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Figure 19: EFPC Sampling Sites Locations 
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Table 1: EFPC experimental sites and coordinates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Previous Designation Km from mouth Latitude Longitude  

BL8 EFK 20.27 36.009790 -84.274850 

EP BL-35 EFK 19.32 36.005080 -84.280059 

EP BL-43 EFK 19.07 36.004230 -84.282660 

EP BL-45 EFK 19.02 36.003880 -84.283000 

EP EFK-13.8 EFK 14.56 35.992720 -84.315010 

EP EFK 15.7 up SCB EFK 16.41 35.996614 -84.303500 

EP EFK-18.2-SCB EFK 19.34 36.005400 -84.280583 

EP EFK-22.5 EFK 23.59 36.000660 -84.245269 

EP EFK-5.4up (SCB) EFK 5.59 35.966276 -84.358567 
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2.8 Erosion Pin Experiment  
 

 
            Erosion pins are widely used for measurement of erosion. A previous experiment by 

Watson et al. (2016) used the erosion pins at different sites on the EFPC, including the selected 

sites for this experiment. Their method consisted of driving narrow diameter metal rods  

(0.635cm diameter x 60-90 cm long) into the stream bank, flush with the surface. These were 

monitored over time, measuring the length of exposure or burial of the pins. Volume estimates 

from this technique were obtained by combining pin data with reach length and bank height 

(Peterson et al., 2014). Then to generate values of the mass of soil eroded, bulk density was 

assumed to be 1.2 g/cm3 (Hsieh et al., 2009).  For this experiment, I continued to use the erosion 

pins that were still installed; these were monitored after significant rain events (August, October, 

and January).  
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Table 2 indicates the position of the erosion pins on the surface of the streambank and the 

material for the rod. Using the ground surface as a reference, they were placed near the top (T), 

middle (M), and bottom (B) of the bank height. The numbers following the top, middle, and 

bottom layer, indicate the depth from the top of the bank at which the pins were placed. As 

mentioned in the previous section, erosion pin measurements were taken simultaneously with the 

scans. In the case of the erosion pins, volume estimates were obtained by combining reach length 

and bank height in combination with the measured exposure (erosion) or depth of burial 

(deposition). The mass of soil eroded or deposited at each site was obtained after measuring the 

bulk density for each location.  Eventually, the data were compared to the TLS data to see how 

the technologies differ.  

 

           Due to the different pin locations within a bank surface, the final data is normalized so 

that each pin measurement becomes more representative of the surface erosion. This 

normalization was made by doing a weighted average of the measurements. It is calculated by 

creating a ratio between the actual coverage of each pin with the total height of the bank. Then 

this ratio is multiplied by the corresponding pin measurement. For example, if a 100 cm bank 

had erosion pins at 25, 50, and 75 cm depth, the coverage area for the first top pin would be 25 

plus half the distance between the first and second pin. In this case, the coverage area for the first 

pin is 37.5 cm, then to obtain the ratio, we divide by the total height of the bank and obtain a 

ratio of 0.375. The same process is then performed for every pin within each site, and after 

multiplying each ratio by the pin measurement, the weighted average is obtained. Finally, to 

make measurements among techniques comparable, the same surface area provided by the 



 

37 
 

software (the erosion pins were in this area) was used. Then the volume is obtained by 

multiplying the weighted average of each location by the surface area (TRW area).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Erosion pin sites along EFPC and distance from the streambank surface 
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Site ID Erosion Pin Depth Location 

EFK 23.59 Fiberglass: 

T 30cm, M 60cm, B 100 cm 

Metal: 

T 50cm, B 110cm 

EFK 20.27  Metal: 

T 40cm, M 75cm, B 100cm 

EFK 19.34 Fiberglass: 

T 25cm, M 85cm, B 140cm 

EFK 19.32 Fiberglass: 

T 10cm, M 30cm, B 100cm  

EFK 19.07  Fiberglass: 

T 20cm, M 40cm, B 100cm 

EFK 19.02 Fiberglass: 

T 30cm, M 60cm, B 100cm  

EFK 16.41 Metal: 

T 40cm, B 80cm 

EFK  14.56 Fiberglass: 

T 80cm, B 120 cm 

EFK 5.59 Metal: 

T 40cm, B 80 cm 

Fiberglass: 

T 40cm, B 80 cm 

 

 

 

 

 

 

 

Chapter III: Experimental Results 
 

3.1 Block Test 
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           The block experiment test served as a precursor for understanding how the TLS works 

before the field measurements. As mentioned before, this was a very controlled test on which the 

dimensions of the material removed were accurately known. I wanted to estimate the volume of 

material removed from the brick wall in this experiment.  I trimmed and processed the reference 

point cloud (full block wall) and the altered point cloud (different configuration) using TRW, as 

seen in Figure 20. The software also provided a registration option by identifying matching 

points between the two images, in this case, the targets. Figure 21 shows the full brick wall (top 

left) and once brick removed (top right) and the resulting single image at the bottom. 

 

           After generating the combined image, I obtained a volume value using the volume tool  

in TRW. This number represents the volume difference between the two different images, e.g., 

Figure 21 shows a red rectangle representing the missing space from removing a single brick.  

The same process was performed for the other configurations (Figure 22, Figure 23, and Figure 

24), and the measured volume was compared with the dimensions of the bricks removed to 

evaluate the accuracy of the TRW volume calculation tool. 

 

Table 3: Erosion and deposition simulation for the block test. summarizes the results from this 

experiment. The first row labeled 'Simulation of Erosion' represents blocks removed from the 

structure (they simulate soil removed from the surface of a creek bank). The second row labeled 

'Simulation of Erosion and Deposition' represents blocks removed from the surface and placed in 

front of the structure. This configuration was intended to represent soil from a streambank 

surface that falls from the top of the bank and settles in the lower section of the bank. The 

different scenarios tested are described in the column labeled 'Configuration' (it tells us how 

many blocks were removed and repositioned within the structure). As mentioned in previous 

sections, all measurements are based on a reference. In this case, the 'Complete Block Wall' was 

used as the reference to calculate all volumes. Starting from this unaltered reference and using 

TRW, I obtained the first volume of the whole block wall (TRW volume column). Then volumes 

from the different configurations were measured by comparing the reference scan and the new 

configuration. Since the reference scan was altered each time, TRW provided new volumes each 
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time. The column labeled 'Volume Difference' shows the difference in volume between the 

reference and the new configuration.  

 

          The 'Expected Volume' in Table 3  indicates the actual volume difference expected 

between the reference and the new configuration based on manual measurements of the blocks. 

In other words, the volume of the whole structure is known and based on the volume of a single 

block, 15321 cm³ (126 cm * 126 cm* 258 cm). Therefore if one block was removed from the 

initial setup, the volume of this new configuration had to be less. Subtracting the new 

configuration volume obtained from TRW from the volume of the entire wall gives us an 

experimental value to compare with the actual dimensions of a block. The last column shows the 

percentage of error between the experimental values and the real measurements.  

3.2 Control Site 

 

       The next experiment served as a proof of principle in a more realistic environment. In this 

field test, we were able to work with a scenario that includes variables such as the irregularity on 

the soil surface. In this scenario (and the real sites), a bulk density test was performed along with 

volume comparisons.  

 

3.2.1 Control Site Bulk Density, Volume, and Mass Calculations 

 

         Following the procedure previously explained in sections 2.5.2.3-2.6, bulk density 

measurements on this control site were completed. The TRW volume was calculated following 

the same method described in the block test. Using the unaltered surface of the bank as a 

reference, I combined it with the first, second, and third layer removed individually. Figure 25 

shows an example of the reference plane (red) and the first layer removed (green). Since I 

removed soil from the surface, the TRW volume corresponds to the volume difference between 

both images (in this case, equal to the soil removed).  
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Figure 20: Full block wall (left) and new configuration example: one block removed (right). 
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Figure 21: Registration between a point cloud and a reference. 
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Figure 22: One block removed (image processed with TRW) 
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Figure 23: Two blocks removed and placed in front of the brick wall. 
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Figure 24: Seven blocks removed from the brick wall.         
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Table 3: Erosion and deposition simulation for the block test. 

      

TRW 

Volume (cm³) 

Volume 

Difference  (cm³) 

Expected 

Volume (cm³) % Error     Configuration: 

    Complete Block Wall 614600 0.00 0.00 0.00 

Simulation of 

Erosion 1 Block removed 602100 12500 15350 18.60 

    7 Blocks removed 494800 119800 10750 11.50 

Simulation of 

Erosion and 

Deposition 

2 Blocks removed and placed in 

front of the wall 

 -404.4  2.36 

6145000 0.00 0.00 0.00 
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          The results summarized in  

Table 4 present the mass of the soil weighed by hand and provided by the software. Since more 

portion of the surface area was disturbed as the sections were added, it was expected to have a 

proportional increment of the error as the surface was disturbed. The average error in mass for all 

of the columns was around 23%. Two trends were observed, starting with the bulk density; 

although values were not too different, the bulk density within each column varied slightly. 

Nonetheless, the bulk density values within the 15 samples of each column were almost 

identical. The second trend observed was that, apart from one of the soil masses, all the weighted 

values were higher than those given by the software. This pattern was expected due to the 

uniformity of the soil, the presence of rock and other debris that might alter the results.  Table 5 

compares volumes provided by TRW as well as those expected from the dimensions of the 

sections. The error presented in this last table average 22.9% and as seen before, errors 

incremented as the surface was being disturbed.   

 
3.3 Experimental Sites in EFPC 

 

        The next set of tables and graphs summarize the bulk density measurements, the volumes 

of released soil into the EFPC waters (using both techniques), and the Hg concentrations at each 

site using historical data.  

 

 

3.3.1 Site Bulk Density  

 

          The average bulk density in  

 

 

Table 6 indicates the average among these samples per site. Values ranged from 1.28 to 1.74 

g/cm³ with an average standard deviation of 0.18 and a total number of samples of 10 per site.  

These values were obtained by dividing the dimensions of each core with the dry weights for 

each sample. In general, values of bulk density average 1.49 g/cm³, when compared to a bulk 



 

48 
 

density of 1.23 g/cm³ obtained during a soil survey across 20 sites along the EFPC by Dickson et 

al. (2015), the difference is about 19.5%, which is expected not only because they were not 

performed on the same sites but because of soil heterogeneity.  

       

Table 4: Comparison between actual volume and software volume for the control site 

experiment. Note: The average bulk density column represents the average between the five 

samples taken per section, and the mass of soil removed is based on TRW results. 

Section 

Average 

bulk 

density per 

section 

(g/cm3) 

TRW 

Volume 

(cm³) 

Mass of Soil 

Removed 

(TRW), (kg) 

Mass of Soil 

Weighted 

(kg) % Error 

 

 

1A 0.87 7794 6.76 8.16 17.2  

1B 0.81 5418 4.39 3.63 21.0  

1C 0.87 5854 5.07 7.08 28.4  

2A 1.04 13680 14.2 18.6 23.9  

2B 0.95 8963 8.47 9.62 11.9  

2C 0.92 11030 10.2 13.9 26.6  

3A 1.22 16220 19.8 31.8 37.7  

3B 1.18 13300 15.8 18.0 12.3  

3C 1.14 14420 16.4 25.8 36.3  

 

 

Table 5: Control site theoretical and TRW volumes per section. 

Section 

Theoretical 

Volume  

(cm³) 

TRW 

Volume 

(cm³) % Error 

 

 

1A 7079 7794 10.1  

1B 7079 5418 23.5  

1C 7079 5854 17.3  

2A 14160 13680 3.39  

2B 14160 8963 36.7  

2C 14160 11030 22.1  

3A 21238 16220 23.6  

3B 2128 13330 37.4  

3C 2128 14420 32.1  
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Figure 25: Superimposed point clouds of undisturbed soil surface (red) and the soil surface after 

removing the first soil layer (green) at the control site. 
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Table 6: Soil bulk densities at the EFPC field sites 

Site 

Average Bulk 

Density(g/cm³) 

Standard 

Deviation 
 

EFK 23.59 1.60 0.22  

EFK 20.27 1.36 0.20  

EFK 19.34 1.53 0.13  

EFK 19.32 1.44 0.15  

EFK 19.07 1.28 0.27  

EFK 19.02 1.42 0.19  

EFK 16.41 1.57 0.11  

EFK 14.56 1.74 0.12  

EFK 5.59 1.50 0.20  
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3.3.2 Soil Volume and Mass Calculations 

 

           Starting with the TRW software volume calculations,  

 

Table 7 summarizes the amount of soil introduced into the water per site. It is important to note 

that these soil values were obtained from a selected surface area that does not include the entire 

surface of the creek bank. Erosion volumes were obtained by subtracting the erosion from the 

deposition, which represents the net soil loss into the creek. 

Figure 26 provides a visual aid between the erosion and deposition occurring per site. Despite 

deposition being overall predominant, there was a pattern observed for erosion. Three particular 

sites (EFK 23.59, 19.34, and 5.59) had the greatest amount of erosion (2.9, 6.3, and 3.5 times 

greater than deposition, respectively); what is consistent about them is that those are the three 

tallest creek banks, and both had either vegetation or visible surface roots during hot months. To 

facilitate calculations, sites where a net deposition was observed (deposition greater than 
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erosion) were marked as zero. This adjustment was made since we cannot quantify how much of 

the deposited soil came from the actual erosion and how much came from other sources such as 

stream sediment.  

 

         The volumes obtained from the erosion pins were based on the weighted average between 

the different pins located on the bank surfaces. Figure 27 summarizes the erosion and deposition 

from all nine sites, and Table 8Error! Reference source not found. provides the difference 

between these measurements. Once again, a zero was assigned for those sites where deposition 

predominates.  Although some patterns can be observed in most upstream sites, the erosion pins 

do not match the erosion measured for the EFK 19.32 (the site with the highest erosion). It also 

differs drastically when measuring deposition. As shown in the figure mentioned above, only 

erosion is clearly visible with these techniques. The site where data seem to match the most is at 

the most upper streambank. This consistency is because erosion in this site was significant, and 

most of the lower portion of the bank was completely washed out, leaving the pins extremely 

exposed, as seen in Appendix A1.  

 

          One outcome of this experiment is the total Hg introduced into the EFPC waters. Using 

historical Hg concentration per site (Dickson et al., 2018), I obtained the total mass of Hg 

released into the creek, as shown in  
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Table 9. 

Figure 28 and 
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Sites 

 

 

 

Hg total 

(mg/kg) 

Mass of soil into the creek     

(kg) 

Mass of Hg into the creek 

(kg) Ratio  

 (Erosion 

Pin/TLS) 

 

TLS Erosion Pins TLS Erosion Pins 
 

EFK 23.59 1070 464 11070 0.49599 11.844 23.9 
 

EFK 20.27 35.9 0.00 394.4 0.00000 0.01417 - 
 

EFK 19.34 763 8.48 2048 0.00648 1.56370 241 
 

EFK 19.32 739 1140 169.9 0.84279 0.12553 0.15 
 

EFK 19.07 429 25.7 0.00 0.01095 0.00000 0.00 
 

EFK 19.02 582 0.00 150.0 0.00000 0.08731 - 
 

EFK 16.41 9.05 88.9 4505 0.00081 0.04079 50.7 
 

EFK 14.56 10.9 0.00 0.00 0.00000 0.00000 - 
 

EFK 5.597 8.10 504 746.7 0.00408 0.00605 1.48 
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Figure 29 summarize the data for both techniques, and clear variability is observed among 

techniques. First and as expected, the site with greater erosion was the tallest streambank (EFK 

19.32) with soil input into the waters but only for the TLS. Second, a similar pattern was 

observed on site EFK 23.59, where the TLS showed that it was the third biggest contributor of 

soil into the creek and the greatest contributor according to the erosion pins. In the case of EFK 

5.59, both technologies provided similar data (TRW: 507.97 Kg; Erosion Pins: 743.68 Kg); this 

was the most consistent site regarding the amount of soil released into the EFPC. Variations in 

these techniques are very related to the spatial variability associated with the erosion pins. Since 

the erosion pins only account for what is around the rod's tip, there is too much of the surface 

area the pin does not consider, therefore high variability in the results. 
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Table 7: Soil erosion volumes for EFPC field sites obtained from TLS. 

 

Site 

TLS Volume, 

soil loss (m3) 

TLS Bank 

Surface 

Area  (m2)  

EFK 23.59 0.29 10.3  

EFK 20.27 0.00 4.62  

EFK 19.34 0.01 6.73  

EFK 19.32 0.79 7.10  

EFK 19.07 0.02 7.92  

EFK 19.02 0.00 7.20  

EFK 16.41 0.06 5.65  

EFK 14.56 0.00 3.93  

EFK 5.59 0.33 14.2  

 

   
 

 

 

Table 8: Soil erosion volumes for EFPC field sites obtained using the erosion pin method. 

 

Site 
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Weighted 

Average 

Erosion (m) 

TLS Bank 

Surface Area 

(m²) 

Erosion Pin 

Volume of 

soil loss (m³) 

 

 
EFK 23.59 0.67361 10.28 6.92  

EFK 20.27 0.06297 4.62 0.29  

EFK 19.34 0.19886 6.73 1.34  

EFK 19.32 0.01661 7.10 0.12  

EFK 19.07 0.00000 7.92 0.00  

EFK 19.02 0.01467 7.20 0.11  

EFK 16.41 0.50639 5.65 2.86  

EFK 14.56 0.00000 3.93 0.00  

EFK 5.59 0.03499 14.18 0.50  

 

 

 

 

Figure 26: TRW-Volume of soil associated with deposition and erosion from the experimental 

sites (Aug 2020- Jan 2021).  
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Figure 27: Erosion Pins-Volume of soil associated with deposition and erosion from 

experimental sites (Aug 2020- Jan 2021). 
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Table 9: Comparison of soil and Hg loss into EFPC at each site using the TLS and erosion pin techniques. 

 

 

 

Sites 

 

 

 

Hg total 

(mg/kg) 

Mass of soil into the creek     

(kg) 

Mass of Hg into the creek 

(kg) Ratio  

 (Erosion 

Pin/TLS) 

 

TLS Erosion Pins TLS Erosion Pins 
 

EFK 23.59 1070 464 11070 0.49599 11.844 23.9 
 

EFK 20.27 35.9 0.00 394.4 0.00000 0.01417 - 
 

EFK 19.34 763 8.48 2048 0.00648 1.56370 241 
 

EFK 19.32 739 1140 169.9 0.84279 0.12553 0.15 
 

EFK 19.07 429 25.7 0.00 0.01095 0.00000 0.00 
 

EFK 19.02 582 0.00 150.0 0.00000 0.08731 - 
 

EFK 16.41 9.05 88.9 4505 0.00081 0.04079 50.7 
 

EFK 14.56 10.9 0.00 0.00 0.00000 0.00000 - 
 

EFK 5.597 8.10 504 746.7 0.00408 0.00605 1.48 
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Figure 28: Volume of soil introduced into the EFPC waters per location. 

 
 
 

Figure 29: Mass of Hg introduced into the EFPC water per location. 
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Chapter IV: Discussion 

 

4.1 Site Volume and Mass Measurements  

 

          TLS data provided a more reliable representation of a streambank morphology compared 

to the erosion pin data. To test how much both technologies differ from one another, sites 

selected for this experiment ranged between low and high erosion, allowing me to compare 

techniques in different scenarios. According to many studies, there are limitations associated 

with the erosion pin measurements of streambank erosion, the most important being its lack of 

accuracy for measuring erosion across the whole surface (Haigh, 1977; Thorne, 1981; Lawler, 

1993; Kumar, 2013; Watson et al., 2016). These limitations suggest that the TLS will provide 

more representative data than the erosion pins. The TLS can obtain millions of points (or 

measurements) from a streambank, and it can detect small and large changes in the surface and 

provide more representative and realistic data. The drastic difference in the capacity of the two 

techniques to measure streambank retreat has been compared in another study, and on average, 

the reported difference was 787%, with values ranging from 22% to 30003% of soil eroded from 

a streambank surface (Myers et al., 2009). The same pattern was observed on this research 

project, where the erosion pins overestimated an average of 64 times higher values of soil and 

Hg into the stream due to erosion.   

 

           Although the experiment was limited to 146 days (August 13, 2020 – January 6, 2021, 

normal rainfall events), I was still able to see some evident signs of erosions among sites. Here, it 

is important to remember that the volume of soil into the creek represents the difference between 

deposition and erosion. As seen in Table 9, there are some cases where a zero was placed for the 

volume of soil into the creek. They represent those sites where the deposition measured with the 

TLS was greater than the erosion. Since we cannot account for how much of the deposition 

comes from other sources, a zero was assigned to indicate there was no net erosion.  
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One of the scenarios was the erosion at the uppermost bank, EFK 23.59 (erosion pin  

exposition image in Appendix A1), where a significant portion of the bottom 30 to 40 cm was 

completely removed between October and January. When analyzing the data from the erosion 

pin, it was evident that the bottom measurements (below 100 cm depth) will have a huge impact 

on the overall erosion, regardless of the weighted average performed. This is one of the biggest 

drawbacks of the erosion pins; since this is a point-specific technique, the erosion obtained may 

not be representative of the actual scale of erosion. The difference between the results obtained 

from both methods at this site indicates that the erosion pin measurements overestimated erosion,  

resulting in a volume of Hg and soil into the creek  24 times higher than the respective volumes 

obtained from TLS.    

 

          Another scenario was the lowermost site, EFK 5.59, which showed the lowest deviation 

(not accounting for the zero where deposition predominates) between the two techniques 

(erosion pin/TLS volume ratio of 1.5). Although this number varies significantly from the 

average soil loss into the creek, it is important to mention that vegetation growth in this site was 

very high. Although vegetation is not a problem for the erosion pins, it can overestimate surface 

erosion or deposition with the TLS. In other words, when the laser from the instrument hits an 

obstruction such as vegetation, the TLS interprets this as the streambank surface. This error was 

only found on this site, and although it was accounted for by manually removing mistaken points 

using TRW and by taking scans from different angles to see the true bank surface, there was still 

a large volume of soil eroded into the creek measured with the TLS. When looking through the 

data, there is a significant difference between the first scan (August), where vegetation was high, 

and the last scan (January), where there was almost no vegetation on the streambank surface. 

This fact led us to conclude that the small ratio of the difference between the pins and the TLS is 

related to the overestimate given by the TLS due to vegetation.  

 

           Site EFK 19.32 appeared to exhibit sheet erosion on its surface. This type of erosion takes 

place when soil particles are carried evenly over the soil surface. Once again, since erosion pins 

are a point-specific technique, it was evident that numbers would differ drastically from those 

obtained using the TLS technique (241 times greater). When sheet erosion happens near the 

erosion pin, the final value of erosion or deposition for this technique will be very high or very 
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low and not representative of the real scenario. For instance, when a small number of particles 

move from the surface and get stuck near the pin, the overall result will be an overestimate of 

deposition, and in the opposite case, when a small portion of soil moves from near the pin, it will 

result on an overestimate of erosion. The TLS measurement can account for these types of 

changes (particles displacing within the surface), and even if the soil is moved within the surface 

of the bank, it will not be considered as soil deposited into the creek. In other words, 

streambanks with sheet erosion where the soil moves and stays within the surface will not be 

accounted for as soil loss into the creek using either technique.   

 

           Due to the modification of the data previously explained (zero where the deposition was 

greater than erosion), there are sites where the difference ratio between techniques can not be 

calculated. That is the case for sites EFK 20.27 and EFK 19.02, where a zero was assigned for 

the volume of soil into the creek. Since the ratio is calculated by dividing the volume (of soil or 

Hg) given by the erosion pins divided by the volume obtained with the TLS, when the TLS was 

zero, the ratio could not be calculated mathematically (division by zero). On the other hand, the 

ratio for EFK 14.56 was not determined since both techniques agreed that the deposition was 

greater than erosion; therefore, no soil appeared to be introduced into the creek regardless of 

technique. Here is necessary to remember, this does not mean that there was no soil introduced 

into the creek. These results indicate that we cannot account for how much of the erosion was 

deposited and how much was released into the EFPC waters. In other words, for any amount of 

deposition greater than erosion, we can not measure how much of that deposition comes directly 

from erosion and how much from other sources. Finally, the EFK 19.07 was equal to zero since 

although the TLS measured soil erosion into the creek, the erosion pin had a zero for the soil into 

the creek. Therefore, the difference between them was calculated as zero even though there is an 

actual difference between the estimates from the two techniques.  

 

          This study showed that TLS technology proved to be more effective and sensitive to 

measure soil erosion, especially deposition. Although the erosion pins showed, in some cases, 

similar patterns, they cannot measure deposition accurately or detect changes across a bigger 

surface area. When comparing the usability of the techniques, the application of erosion pins is 

the most cost-effective technique, and it can be monitored easily. Some of the problems with this 
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technique are that the erosion pins disturbed the surface area; they can be completely washed out 

in extreme erosion events. The most significant problem with the erosion pins is their poor 

spatial variability, meaning that their results are extremely generalized and based only on a point 

within the streambank surface and not the complete surface area. The TLS, in contrast, had the 

capability of measuring changes in the bank surface with high resolution and sub-centimeter 

error. This technology also allows us to develop advanced 3D models, it is easy to use in the 

field, and it does not require much fieldwork time. Some of the drawbacks include the high 

amount of data that needs to be processed, it is expensive, it requires some software training for 

modeling data, and in places with high vegetation, the TLS can overestimate changes in soil 

(despite using tools to remove some of the vegetation). This last problem can be treated if scans 

are taken for longer periods during cold seasons or by picking sites with low vegetation. For 

general assessments and rough estimates, the erosion pins still represent a useful and economical 

tool used in combination with TLS technologies for more accurate data.  
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Conclusions 

 

             Streambank erosion processes represent a significant problem on streams across the 

United States, especially those where the transport of contaminants represents an important 

threat to human or animal life. This project objective was to compare a traditional technology 

used to measure streambank erosion with a relatively new technology. The first one, the erosion 

pins, is a very cheap technology for easy monitoring that proved to measure erosion better than 

deposition in this experiment. Since initially, the erosion pin is fully inserted on the streambank 

surface, in some cases, it provides stability to the soil around it. In addition, deposition in most 

cases is seen in the lower section of the bank, and since multiple pins are used across the surface, 

the values of the other pins are greater than that single pin in the bottom section. 

 

             In contrast, the TLS technology, although it was very expensive and tedious to process a 

huge amount of data, was able to measure streambank erosion at a sub-centimeter scale. It also 

provided high-quality 3D models, showing exactly where soil movement was happening on the 

surface of the bank through subaerial processes. One of its downsides was that although it can be 

resolved (by manually removing mistaken points or taking scans from different angles to have a 

better chance of covering the true streambank surface), interferences on the bank surface can 

overestimate erosion. Both technologies were able to measure soil introduced into the EFPC, but 

because of the spatial variability of the erosion pins, they overestimate an average of 64 times 

greater erosion than the TLS. When comparing the Hg inputs by each technology, the erosion pin 

again provided overestimations of this contaminant release into EFPC. This is something that 

needs to be taking into consideration when monitoring erosion. If the data needed are rough 

estimates or if the monitored site is mostly covered with vegetation, the erosion pins are a cheap 

and viable alternative. In case a survey for streambank remediation is needed, the best alternative 

is the TLS. Not only does this technology provides visual models that help us explain erosion 

processes, but it provides reliable values needed in a cost-dependent project such as streambank 

restoration.   
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Appendix  

A1.  EFK 23.5993 (EP EFK 22.5, August 12, 2020/ January 6, 2021; behind dentist's office)  
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A2 EFK 20.2703 (BL 8, August 18, 2020; AMVET Area ) 
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A3 EFK 19.3466 

(BL 35, August 13, 2020/January 6, 2021; Brunners area, next to a water vein)   
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A4 EFK 19.3244 

(EP EFK 18.2 SCB, August 13, 2020/ January 6, 202; closest to the bridge in Brunners) 
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A5 EFK 19.0723 

(BL 43, August 4, 2020; coupon experiment bank)    
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A6 EFK 19.0258 

(BL 45, August 13, 2020; downstream of mesh experiment) 
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A7 EFK 16.4127 

(EP EFK 15.7 UP SCB, August 18, 2020/ January 6, 2021; behind the electric power plant) 
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A8 EFK 14.5630 

(EP EFK 13.8, August 4, 2020; behind wastewater plant) 
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A9 EFK 5.5972 

(EP EFK 5.4 Up SCB, August 4, 2020/ January 6, 2021; New Horizon)  

 

 
 

 



 

78 
 

B1 EFK 23.5993 Aug-Jan (note erosion/deposition images are inverse) 
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B2 EFK 23.5993 Aug-Oct 
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B3 EFK 20.2703 Aug-Jan 
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B4 EFK 20.2703 Aug-Oct 
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B5 EFK 19.3466 Aug-Jan  
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B6 EFK 19.3466 Aug-Oct 
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B7 EFK 19.3244 Aug-Jan 
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B8 EFK 19.3244 Aug-Oct 
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B9 EFK 19.0723 Aug-Jan 
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B10 EFK 19.0723 Aug-Oct 
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B11 EFK 19.0258 Aug-Jan  
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B12 EFK 19.0258 Aug-Oct 
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B 13EFK 16.4127 Aug-Jan 
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B14 EFK 16.4127 Aug-Oct 
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B15 EFK 14.5630 Aug-Jan  
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B 16 EFK 14.5630 Aug-Oct 
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B17 EFK 5.5972 Aug-Jan 
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B18 EFK 5.5972 Aug-Oct 
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C1 
 
 

Depth Percentage 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Site Length of the core sample (cm) 

EFK 23.59 7.50 5.00 6.70 6.00 7.50 7.00 8.50 5.50 6.50 6.50 

EFK 20.27 5.50 5.00 5.70 6.00 7.00 5.50 6.50 7.30 6.00 8.50 

EFK 19.34 5.00 6.30 6.10 5.40 5.00 5.40 6.00 6.00 5.00 6.00 

EFK 19.32 4.80 5.00 7.50 6.00 7.00 7.50 5.30 5.40 5.40 6.90 

EFK 19.07 6.80 5.00 5.80 7.00 9.50 5.30 6.00 7.00 8.00 5.50 

EFK 19.02 5.50 4.80 5.00 5.40 6.20 3.60 5.00 5.00 5.00 4.60 

EFK 16.41 4.80 7.00 4.60 4.50 6.50 5.20 5.50 4.10 4.50 6.00 

EFK 14.56 7.00 5.80 6.80 7.00 6.00 6.00 7.00 5.50 5.60 5.80 

EFK 5.59 6.80 6.80 6.50 9.00 7.00 7.00 6.20 6.20 6.30 7.50 

 

 

 

           

 

Site ID Volume of core sample (cm³) 

EFK 23.59 33.93 22.62 30.31 27.14 33.93 31.67 38.45 24.88 29.40 29.40 

EFK 20.27 24.88 22.62 25.79 27.14 31.67 24.88 29.40 33.02 27.14 38.45 

EFK 19.34 22.62 28.50 27.59 24.43 22.62 24.43 27.14 27.14 22.62 27.14 

EFK 19.32 21.71 22.62 33.93 27.14 31.67 33.93 23.98 24.43 24.43 31.21 

EFK 19.07 30.76 22.62 26.24 31.67 42.98 23.98 27.14 31.67 36.19 24.88 

EFK 19.02 24.88 21.71 22.62 24.43 28.05 16.29 22.62 22.62 22.62 20.81 

EFK 16.41 21.71 31.67 20.81 20.36 29.40 23.52 24.88 18.55 20.36 27.14 

EFK 14.56 31.67 26.24 30.76 31.67 27.14 27.14 31.67 24.88 25.33 26.24 

EFK 5.59 30.76 30.76 29.40 40.71 31.67 31.67 28.05 28.05 28.50 33.93 
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Site Soil Dry Weight (g)  

EFK 23.59 49.9000 47.1459 48.1249 40.4165 46.2548 53.3570 63.7100 37.8096 52.6177 39.5572 

EFK 20.27 31.9780 33.4862 41.5193 36.4111 43.4158 34.9175 31.3523 32.7297 38.6493 60.8860 

EFK 19.34 40.8302 45.0630 38.0559 34.7853 33.9649 36.2060 43.0902 44.7323 34.7030 36.9333 

EFK 19.32 31.4076 29.6271 39.0120 35.4625 44.5576 52.3788 36.4980 39.6009 39.9485 45.6980 

EFK 19.07 39.4669 33.9203 33.7994 25.4684 36.6179 36.7379 39.2586 44.1940 41.4615 38.8874 

EFK 19.02 39.2934 31.1171 31.1139 28.3846 28.4832 23.3060 36.0940 34.6154 36.1201 30.9115 

EFK 16.41 32.6194 49.8319 35.8603 33.1761 49.3849 35.6070 38.5462 30.2073 33.1903 35.7327 

EFK 14.56 48.9088 45.8880 52.5169 58.3095 49.9944 48.9269 55.7809 45.5258 45.8075 39.8965 

EFK 5.59 54.0806 56.4240 50.5712 61.2620 45.6995 44.9087 38.9002 36.3778 37.0540 47.0817 

Site Bulk Density (g/cm³) 

EFK 23.59 1.4708 2.0844 1.5878 1.4890 1.3633 1.6850 1.6569 1.5196 1.7894 1.3453 

EFK 20.27 1.2853 1.4805 1.6102 1.3415 1.3710 1.4034 1.0662 0.9911 1.4239 1.5834 

EFK 19.34 1.8051 1.5812 1.3791 1.4240 1.5016 1.4821 1.5876 1.6481 1.5343 1.3607 

EFK 19.32 1.4464 1.3098 1.1498 1.3065 1.4071 1.5438 1.5223 1.6211 1.6353 1.4640 

EFK 19.07 1.2830 1.4997 1.2882 0.8043 0.8521 1.5323 1.4464 1.3956 1.1457 1.5630 

EFK 19.02 1.5793 1.4330 1.3756 1.1620 1.0155 1.4311 1.5958 1.5304 1.5969 1.4855 

EFK 16.41 1.5022 1.5737 1.7233 1.6297 1.6795 1.5137 1.5492 1.6287 1.6304 1.3165 

EFK 14.56 1.5445 1.7489 1.7072 1.8414 1.8419 1.8026 1.7615 1.8298 1.8082 1.5206 

EFK 5.59 1.7581 1.8342 1.7198 1.5047 1.4432 1.4182 1.3869 1.2970 1.3002 1.3877 
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