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Abstract 

In the event of an earthquake, structures experience large lateral loads that can lead to weak story 

mechanisms and result in premature building collapse. Strongback braced frames (SBF) are a type of 

seismic force resisting system that aim to evenly distribute horizontal loads up the height of the building to 

mitigate this failure mechanism. Previous research shows that SBFs are a promising way to better design 

for seismic demands, but these systems have not been fully explored to best exploit the design space. This 

work is a part of a project that aims to provide both numeric and experimental verification of these SBF 

systems. 

 

An important component of the SBF is the inelastic energy dissipating element. Often, this component is 

designed as a buckling restrained brace (BRB). As part of the experimental test set up, a small-scale BRB 

must be designed and tested. This thesis explains the relevance of the BRB to the project as a whole, 

discusses the scaling and design decisions that were made during initial prototyping, and presents initial 

results that suggest a small-scale device can effectively simulate the behavior of its full-scale counterpart. 

Following these initial tests, numerical modeling and experimental testing of a further improved design 

provides validation of device functionality over a range of brace strengths and stiffnesses. This work is 

instrumental in providing small-scale analogs of BRBs for future testing of SBFs and could be utilized by 

others to simulate the effects of other energy dissipating elements in the full-scale and small-scale 

experimental testing of structures. 
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Chapter 1 

 

1 Introduction 

The main subject of this thesis is the numerical modeling and experimental testing of a small-scale buckling 

restrained brace (BRB) analog. However, this device is only one component of a larger experimental and 

analytical project entitled “Dual System Strongback Designs for Seismic Damage-Resistant Structures”. 

The overall project is one that experimentally verifies numeric simulations that quantify the behavior of 

different strongback braced frame (SBF) configurations. This work will aid in the advancement of using 

SBFs as seismic force resisting systems (SFRS) to lessen both the economic and structural impact to 

buildings during a large seismic event. A strongback, shown schematically in Figure 1, has two main parts 

– an elastic “spine” and an inelastic energy dissipating element. Often, the inelastic energy dissipating 

elements are BRBs. Proper functionality of these BRBs is critical to the overall performance of the SBF 

because these elements are the primary resistance to the inelastic lateral loads placed on the structure. 

Therefore, a small-scale analog for this device is a crucial portion of the overall experimental design. 

 

There is extensive literature on the experimental testing and optimization of full-scale BRBs. There are also 

a number of papers that discuss small-scale modeling of concrete building systems and some that 

experimentally verify small-scale steel SFRS. However, to the best of the knowledge of the author, there 

has been little work focused on small-scale testing of BRBs. The small-scale tests that have been done are 

still large compared to the scale this project requires. This work will therefore address the need for a verified 

small-scale inelastic energy dissipation device that accurately mimics the behavior of its large-scale 

counterpart at deformation levels up to those expected during design level earthquake ground motions. 

 

The subsequent chapters present the design process and final outcome of the small-scale model BRB. There 

were multiple significant pieces of the project performed simultaneously to efficiently work towards 

achieving the desired result. In order to clearly convey the findings of this work, the discussion is ordered 

linearly even though the workflow was completed in a nonlinear fashion. Chapter 2 provides an in-depth 

literature review and explains the basis of scaling laws used in design. Chapter 3 presents the initial 

conceptual design of the small-scale BRB, discusses the flaws noted, and concludes with an improved 

conceptual design paired with the actual physical realization of the specimen. Chapter 4 introduces the 

finite element analysis used to refine the physical model. Chapter 5 discusses results of both material  
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Figure 1.  Schematic representation of an SBF. 

   

Strongback 

Members
Inelastic Energy

Dissipating Elements



3 

 

coupon tests and experimental testing of the physical model. Chapter 6 provides an updated material model 

that addresses the inconsistencies between the initial material model and the experimental results. Chapter 

7 then provides a different physical design that utilizes the strengths of previous models and mitigates the 

weaknesses identified via experimental testing. Finally, chapter 8 draws conclusions about device 

functionality and proposes potential pathways for future work. 
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Chapter 2 

 

2 Literature Review & Scaling Laws 

There is extensive literature available regarding SBF systems, BRB designs, and small-scale testing. This 

chapter begins by explaining the design goals of the SBF that provide a basis for the motivation of the 

overall project. Then, a review of the currently available large-scale BRB device designs is presented. While 

not at a scale applicable for this work, the design concepts upon which these large-scale devices are based 

aided greatly in the conceptual formulation of the small-scale product. Following this is a review of the 

accepted similitude laws that govern small-scale modeling, a summary of relevant shake table tests and the 

scaling factors used, and acknowledgement of the potential sources of error in this type of testing. To 

conclude this chapter, the gap in literature surrounding small-scale testing of BRBs is addressed and 

constructability concerns that guided the continued design of the device are discussed. 

2.1 Strongback Braced Frames 

As mentioned in the previous section, this work is a portion of a larger project that aims to quantify the 

contributions of different SBF elements to the earthquake resilience of structures. Because SBFs are not the 

main focus of this work, an in-depth literature review is not provided for this topic. However, understanding 

the functionality of these systems is necessary to understand the importance of the BRB. There are many 

options for SFRS, and each have strengths and weaknesses. One of the weaknesses of conventional buckling 

restrained braced frames (BRBF) is that they are subject to weak story mechanisms that undermine the 

ability of the structure to safely resist seismic load. These weak-story mechanisms occur when there is rapid 

loss of strength and stiffness in the braces after yielding has occurred. This leads to a concentration of load 

demand in the weakened member and a premature failure of the structure due to brace collapse. 

 

To counter this, a different type of SFRS, called a strongback braced frame, has been introduced and is 

being studied. SBFs are comprised of two main components – a rather stiff, elastic “spine”, known as a 

strongback, and inelastic energy dissipating elements. The strongback truss is designed to remain elastic 

throughout the entirety of a seismic event, allowing it to distribute loads more evenly along the height of 

the building and thus preventing failure of one or a select few brace members (Simpson and Mahin 2018a; 

b). Energy is dissipated by specially designed inelastic elements along the height of the building. Often, 

these elements are BRBs. In order to meet the goal of experimentally verifying the SBFs, a scale model of 
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such a system must be constructed and tested on the shake table facility at the University of Tennessee. 

Because of shake table size and weight restrictions, the experimental portion of this project must be 

performed at a small-scale. Therefore, all components must be designed and tested to ensure they produce 

the small-scale analog of the prototype behavior. 

2.2 Buckling Restrained Braces 

The component of interest in this thesis is the inelastic energy dissipating element – the buckling restrained 

brace (BRB). There are several different BRB designs, but they all have a common feature – stable, 

repeatable hysteretic behavior. They are designed in such a way that the steel brace core is prevented from 

buckling and can therefore reach much higher axial forces than traditional steel braces, which are 

significantly affected by buckling (Dehghani and Tremblay 2018). Because of this, BRBs are often used as 

the inelastic energy dissipating element in SBFs. Figure 2 shows the full hysteretic curve characteristic of 

a typical BRB using a solid line and the undesirable hysteretic curve of a typical buckling steel brace using 

the dashed line. The difference in these two curves lies in the compression behavior of the brace. It is 

commonly known that slender members cannot support the same axial load in compression that they can in 

tension due to global buckling. This causes the area under the hysteretic curve to be low on the compression 

side, meaning that the energy dissipated is reduced. The buckling behavior is also a failure mechanism that 

can lead to weak story collapse. The BRB improves the energy dissipation of the brace by providing 

transverse restraint that prevents global buckling. Typically, this design actually raises the compression 

capacity slightly higher than the tension capacity due to the steel core interacting with the outer restraining 

mechanism during local buckling in compression. 

 

BRBs consist of two main components – a steel core and a restraining mechanism. The steel core will 

extend out of the restraining mechanism to form connections with other framing members. Tensile and 

compressive forces are resisted mainly by the restrained portion of the steel core. Because of Poisson’s 

effect, the steel core will expand laterally during compression. Therefore, a small gap is left between the 

restraining mechanism and the steel core. There is also a debonding agent applied to the steel surface to 

decrease frictional interaction between the restraining mechanism and the steel core (Talebi et al. 2014). 

This lowers any contribution from the restraining mechanism to the overall axial strength. 

2.2.1 Conventional Buckling Restrained Braces 

Both conventional and alternative BRBs have a yielding mechanism and a restraining mechanism. A 

conventional BRB is shown in Figure 3. The restraining mechanism used is a concrete filled steel casing. 

The yielding mechanism is the steel core, which has three distinct areas: the yielding region, transition 
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Figure 2. Hysteretic curve of a typical buckling steel brace vs. a BRB. 

Reproduced from (Kersting et al. 2016) 

 

 

 

Figure 3. Diagram of a conventional BRB. 

Reproduced from (Kersting et al. 2016) 
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region, and connection region. The specific design of the core concentrates deformation in the yielding 

region. The transition region and connecting region are stiffened so as to ensure stable elastic response in 

the portion of the core that is unrestrained (Tremblay et al. 2004). 

2.2.2 Alternative Buckling Restrained Braces 

Although Figure 3 is the typical design used for BRBs, there are alternative designs presented in the 

literature that have also proven to provide the full, stable hysteretic curve shown in Figure 2. The first of 

these designs follows the same basic design presented previously but employs steel members as the 

restraining mechanism rather than the typical concrete filled steel tube. The steel restraining mechanism 

can use a combination of steel plates and HSS members (Dehghani and Tremblay 2018; Koetaka et al. 

2001), or may only use a specially fabricated steel plate (Jia et al. 2017). Figure 4 and Figure 5 show the 

layout of these all steel BRBs. 

 

Experimental tests were done on the all steel BRB designs to confirm the desired hysteretic behavior and 

determine the effect of changing different design parameters. According to Dehghani and Tremblay (2018), 

there was no recommended debonding agent, but it was noted that the lack of proper detailing and 

lubrication can lead to a significant increase in compressive axial force. The performance of the steel 

restraining mechanism also depended on the spacing of the bolts connecting the restrainer plates. When the 

spacing was less than required, the core could experience both strong and weak axis buckling, as seen in 

Figure 6. This shows that once the main buckling mode of a slender element is constrained, there are other 

buckling modes that may become important, such as higher mode buckling or strong axis buckling. 

 

A second alternative type of buckling restrained brace found in the literature does not use a restraining 

mechanism along the core area of the brace. This brace does not buckle because it is not a slender member. 

This design utilizes a specially designed Yielding Brace System (YBS) connector at the end of a typical 

wide-flange brace member to produce the desired hysteretic behavior. The design is shown in Figure 7 and 

Figure 8. It concentrates plastic deformation in a series of yielding fingers that bolt into slotted holes at the 

end plate connection. The yielding fingers then undergo flexural bending during a seismic event. The shape 

of the yielding fingers is meant to promote plasticity along the entire length of the finger. The YBS 

geometry was designed using first principles in mechanics and confirmed with quasi-static cyclic testing 

(Gray et al. 2012, 2017). This design provided a theoretical basis for the work presented in the remainder 

of this thesis. 
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Figure 4. Alternative all steel BRB design, Type I. 

Reproduced from (Dehghani and Tremblay 2018) 

 

 

 

 

Figure 5. Alternative all steel BRB design, Type II. 

Reproduced from (Jia et al. 2017) 
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Figure 6. Potential buckling modes of the BRB. 

Figure (A) and (B) show strong axis buckling of the core; Figure (C) shows higher mode weak axis 

buckling of the core 

Reproduced from (Dehghani and Tremblay 2018) 

 

 

 

 

Figure 7. YBS prototype. YBS component (left) and full scale frame (right). 

Reproduced from (Gray et al. 2012) 
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Figure 8. Yielding finger design of the YBS connector 

Reproduced from (Gray et al. 2012) 
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2.3 Small-Scale Experimental Testing 

2.3.1 Similitude Theory 

While there is an absence of literature discussing small-scale BRB testing at the magnitude of scaling 

required for this project, there is an abundance of literature exploring the topic of similitude. Similitude 

provides a basis for creating a useful model. A model is a device related to the physical system (prototype) 

in such a way that observations made on the model may be used to accurately predict the performance of 

the physical system (Murphy 1950). These models can be created by a variety of different methods, but the 

most useful and general method is that of dimensional analysis. This tool is widely used across many 

engineering disciplines and has been discussed in many resources. What is now known as the Buckingham 

Pi Theorem is the accepted basis for performing dimensional analysis (Buckingham 1914). A summary of 

the methodology of dimensional analysis and its applicability to modeling is provided below (Casaburo et 

al. 2019; Murphy 1950). 

 

Similitude theory has its basis in dimensional analysis. Dimensional analysis takes into account the 

knowledge that physical variables can be represented by a set of basic units. These basic units are often 

taken as mass (M), length (L), and time (T), but for engineering purposes, force (F) is sometimes used in 

place of mass. There are a set number of physical variables that can be used to fully represent a system. 

Using the Buckingham Pi Theorem, N number of physical variables that are represented by K basic units 

can be translated from their original form into (N – K) non-dimensional variables, known as Π terms. This 

reduces the number of independent variables to be experimentally validated for a given problem. Because 

each Π term is dimensionless, they can be used as a general tool to equate model and prototype behavior. 

Scale modeling using these Π terms requires that the following be true: 

(m) (p)
 for i 1, 2,..., (N K)

i i
 =  = −  

This provides proportionality constants for the important physical variables between the prototype and the 

model. An example is shown in order to make the concept clear. 

One of the Π terms that can be obtained in the case of structural analysis is 
2

P

El , where P represents an 

axial load, E represents Young’s modulus, and l represents an arbitrary length defining the scale of the 

system. Using F, L, and T as the basic units for this example, the three physical variables can be expressed 

as P = [F], E = [FL-2], and l = [L]. Therefore, the Π term is dimensionless. Setting the Π term for model and 

prototype equal to each other, the following is obtained: 
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2
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m p
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PP

E l E l

E l
P P

E l

=

  
=     

    

  

The ratio 

m

p

E

E
 is defined as the modular ratio, Er, and the ratio 

m

p

L

L
 is defined as the length ratio, Lr. These 

ratios are independent from each other and therefore do not have to equal the same value. The equality 

relating the axial force in the model to the axial force in the prototype can then be rewritten. 

2

m p r rP P E L=
 

The problem could be continued by equating other Π terms and solving for ratios that define the necessary 

scaling of all physical variables. Only as many ratios as there are basic units can be arbitrarily chosen based 

on physical constraints of the model. All other ratios are dependent on these K independent ratios. This 

method is generally applicable to many problems, but it requires a deep knowledge of the problem at hand 

to determine the important physical variables to include in the analysis. Inclusion of physical terms that do 

not heavily influence parameters under investigation can lead to unnecessary constraints on the model 

formulation (Casaburo et al. 2019). 

 

Another method of dimensional analysis that has been used (Torkamani et al. 2008) and is similar to the 

Buckingham Pi Theorem applies similitude theory to the governing equations of a problem (Casaburo et 

al. 2019; Coutinho et al. 2016). Instead of equating general Π terms, this method equates a governing 

physical equation for the prototype to the same governing physical equation for the model. The scaling 

ratios are then determined in the same manner presented above. This method can be used to define all 

scaling ratios pertinent to a problem in order to achieve either complete or partial similarity. Depending on 

the complexity of the problem, complete similarity may not be achievable, but partial similarity can still be 

useful as long as the concessions made in scaling are carefully considered. 

 

No matter the method chosen for dimensional analysis, it is important to recognize the limitations of the 

model and the implications of any assumptions made during the scaling process. In some cases, the 

limitation is physical, such as a space constraint in the testing facility limiting the additional weight that 

could be added to the specimen at specified locations (Li et al. 2006). In this case, the implications are that 

the model is somewhat distorted and the scaling parameters that depend on mass must be revised. In other 

cases, the limitation may lie in the control system being used. If the time ratio is not defined by the user, 
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similitude may require that time be compressed (and therefore frequency be increased) for proper dynamic 

input (Kim et al. 2004). Depending on the time history of the prototype ground motion and the maximum 

input frequency of the control, this can be a limitation that needs to be considered. A third limitation to 

consider is the practicality of a true model. A true model is one in which no similitude law is violated. If 

there is any relaxation of the similitude requirements, the model is said to be distorted. It is most often the 

case that a model is somewhat distorted, but this can still lead to accurate results as long as the expected 

behavior of the model is known beforehand (Wissmunn 1968). A pertinent example of this is given in the 

complexity of scaling all compatibility and equilibrium equations, boundary conditions, etc. from a 

supertall prototype building to a model structure. While exact replication is impractical, the study of seismic 

effects is most dependent on the similarity of the lateral force resisting system (Lu et al. 2012). Therefore, 

exact replication could reasonably be sacrificed for the sake of proper simulation of lateral resistance. 

2.3.2 Shake Table Tests 

There have been many small-scale shake table tests conducted for multi-story structures using both steel 

and reinforced concrete members. While all of these tests differ in the ratio values chosen for modeling 

purposes, they are all similar in the fact that they utilize similitude scaling laws. Below is a list of the tests 

referenced with a short description of the testing goal. Table 1 lists the defined and calculated scaling factors 

used in each listed experiment. It is important to note that this is by no means an exhaustive list of all shake 

table experiments, but it does adequately explore the use of similitude in shake table testing for the purposes 

of this project. 

• Small-scale testing of low-rise base isolated structures under seismic loads (Chung et al. 1999) 

• Small-scale testing to experimentally validate the use of transfer plate design in high-rise building 

systems (Li et al. 2006) 

• Small-scale testing to experimentally test the effect of viscous wall dampers on reinforced concrete 

structures (Lu et al. 2008) 

• Collapse testing of small-scale steel moment resisting frames (Lignos 2008) 

• Small-scale testing of seismic performance of the Shanghai Tower (Chunyu et al. 2012) 

• Small-scale testing to experimentally validate the use of transfer stories in the design of supertall 

structures (Lu et al. 2012) 

 

The range of tests presented from the literature vary widely in size – from 1:2 length scale up to 1:40 length 

scale. This wide range of accepted shake table length ratios shows that it is possible to gather valid data 

from very small-scale tests. However, one must take into account the differences in selected ratios between 

these tests. As previously discussed, similitude theory only allows the designer to choose as many ratios as 
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Table 1. Scaling ratios used in previous shake table tests. 

Ratios shaded in blue are independently chosen. All other ratios are dependently calculated. 

Author & 

Year 

Length 

Ratio 

Acceleration 

Ratio 

Modular 

Ratio 

Mass 

Density 

Ratio 

Stress 

Ratio 

Mass 

Ratio 

Force 

Ratio 

Time 

Ratio 

Chung et al. 

1999 
0.250 1.00 1.000 4.00 1.000 0.0625 0.0625 0.500 

Li et al. 

2006 
0.050 1.16 0.177 3.04 0.177 0.0004 0.0004 0.207 

Lu et al. 

2008 
0.500 1.00 1.000 2.00 1.000 0.2500 0.2500 0.707 

Lignos 

2008 
0.125 1.00 1.000 8.00 1.000 0.0156 0.0156 0.354 

Chunyu et al. 

2012 
0.025 2.40 0.313 5.20 0.313 0.0001 0.0002 0.102 

Lu et al. 

2012 
0.033 2.50 0.370 4.44 0.370 0.0002 0.0004 0.115 
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there are pertinent basic units. All other pertinent ratios are subsequently calculated based on the chosen 

values. All 6 papers defined a length scale as the geometric scaling constraint. Following this decision, 

there are mixed usages of material constraints, loading constraints, and dynamic constraints. For example, 

Chunyu et al. (2012) bases the length scale on the size constraints of the shake table, then chooses a modular 

scale based on the differing material properties between the prototype and model. Finally, the mass density 

ratio is chosen based on the bearing capacity of the shake table. The subsequently calculated parameters 

include the time, acceleration, and frequency ratios that define the dynamic components of the experiment, 

as well as the stress and strain ratios that define the interpretation of the results. The same concept is true 

for tests done by the other authors listed; however, the reasoning for defining the selected ratios varies. For 

example, after choosing a length ratio based on geometric constraints and recognizing the need for a 

modular ratio less than unity, Lu et al. (2012) decided to define the acceleration ratio as something greater 

than unity to resolve issues with material selection difficulty as well as mitigate noise issues in the data 

acquisition system at small amplitude ground motion. The authors recognized that this decision implied the 

acceleration due to gravity was also greater than unity. Since this was not the case, additional weights were 

distributed throughout the structure to properly simulate vertical loads. It is clear that the force ratio and 

mass ratio are usually quite small. This makes sense, as there are often weight limitations specific to the 

shake table facility that must be taken into consideration. The time ratio is also always less than unity in the 

examples presented, indicating that the input frequency of the earthquake simulation must be increased.

 

2.3.3 Limitations of Small-Scale Testing 

The similitude laws presented previously and used in the shake table tests listed above properly consider 

similarities between the prototype and the model in the elastic range. This can be seen in the formulation 

of the similitude laws used. The scaling law for material properties is a ratio of the elastic modulus between 

model material and prototype material. Clearly, an accurate modular ratio does not guarantee the similarity 

of material behavior in the plastic strain range. Since high level earthquakes inherently cause lateral forces 

that induce inelastic effects, it is imperative that the effectiveness of similitude in the plastic strain range be 

properly examined. It has been proven through both mathematical analysis and physical testing that 

geometrically similar models can accurately predict the stress and strain behavior of their prototype 

counterpart into the elastic range when properly constructed (Goodier and Thomson 1944). The proper 

construction of such a model requires that the stress-strain behavior be similarly scaled at all strain values, 

thus ensuring a similar hysteretic response of the model and prototype. In order for this to be true, the model 

material must have similar hardening and/or softening characteristics and an appropriately scaled yield 

point as compared to the prototype (Murphy 1950). For the model to be a true model, this similarity would 
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need to be exact for the extent of the strain range of interest. However, similarity requirements can be 

relaxed and the model material deemed “adequate” if the model is to be acceptably distorted. The use of 

adequate material models is implicitly seen in the formulation of similitude requirements in the previously 

identified literature by way of the chosen elastic modular ratio used to define model similarity. It is also 

explicitly stated in a previously mentioned concrete shake table test (Li et al. 2006). The ability of similitude 

theory to properly define model parameters is therefore maintained. It is only necessary that the designer 

analyze the similarity of the entire stress-strain curves of both model and prototype material to decide if the 

model will adequately produce a scaled energy dissipation response in the strain range of interest. 

 

In the case of this work, the material stress-strain behavior is not as important as the force-displacement 

behavior. The above discussion is still applicable to the focus of this work, but some modifications must be 

addressed. Accurate stress-strain behavior is important if one designs a geometrically similar model that is 

meant to provide accurately scaled stress and strain data at specific points on each member. This is not the 

case for the current project. A geometrically dissimilar model is acceptable as long as the overall force-

displacement behavior of the device is accurate. Force-displacement behavior is related to but does not 

directly correlate to the material stress-strain relationship. It is therefore possible to fabricate a device from 

a material with a distorted modular ratio and still obtain the proper behavior of interest. This is seen 

schematically in Figure 9. Many small-scale tests utilize only the first step in this process. This limits the 

material chosen to the previously discussed stress-strain laws. The process used in this design utilizes the 

strengths of the two-step process that frees the designer from the material constraint and leaves only the 

functionality constraint. This will be further discussed in chapter 3. 

2.3.4 BRB Testing 

While there is extensive literature on large-scale BRB testing, there is little to no literature on small-scale 

BRB testing. There has been work done on low-tech devices that are both simpler in design and smaller in 

size than the average large-scale specimen (Palazzo et al. 2009); however, even this design is much larger 

than necessary for this project. While there has not been small-scale testing of typical BRB devices, there 

has been small-scale testing of individual components of a traditional BRB – steel and concrete. “Small-

scale” can refer to any device that is not tested at its full structural size. However, the applicability of small-

scale testing depends on the material, the magnitude of scaling, and the desired model similarities. There 

are documented problems in the literature associated with small-scale reinforced concrete testing. While 

this research does not explore reinforced concrete, there is potential for use of concrete as a restraining 

mechanism, so the difficulties associated with scalability have been documented. The strength of concrete 

is associated with crack propagation, which depends on the flaws in the concrete specimen. Since the 
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Figure 9. Schematic two-step similitude process for geometrically dissimilar models. 
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aggregate size of concrete mixtures cannot be scaled down in the same proportion that the size of the 

member is scaled, the crack propagation is not comparable from small- to large-scale failure. Problems in 

modeling the interface conditions between cement and aggregate and the variety of factors influencing the 

concrete mixture strength (i.e. aggregate size, water content) causes small-scale concrete models to show 

significant overstrength when compared to their large-scale counterparts, with the amount of overstrength 

increasing as the size of the model decreases (Kim et al. 1988; Knappett et al. 2011; Leicester 1973). While 

this overstrength is significant, there have also been tests conducted on microconcrete (concrete made from 

Portland cement, water, and no coarse aggregate) that show the effectiveness of using microconcrete as a 

small-scale modeling material (Kim et al. 1988). Many tests in the literature use microconcrete for 

acceptable results. Since the concrete in a BRB is only acting as a restraining mechanism and is not expected 

to carry a large axial load, overstrength issues are not as much of a concern and the accepted microconcrete 

mixture could likely be effectively used. However, another important consideration in the design of this 

component is its manufacturing ease. One of the overall goals of the experimental design is to manufacture 

parts that are easily replaced after testing or upon failure so that the number of tests completed in a certain 

time frame can be maximized. The use of a concrete filled steel tube as a restrainer mechanism does not 

yield itself to this type of quick replacement, as new concrete would have to be cast and cured for each new 

brace. This type of restrainer mechanism also severely limits the geometry of the brace core. Because the 

brace yield capacity and elastic stiffness are expected to necessarily be scaled to a very small value, any 

severe limitation on brace core design presents the likelihood that proper scaled values will not be 

obtainable. Based on this information, the conventional BRB setup was deemed unacceptable, and focus 

was redirected to a small-scale all steel BRB device. 

 

Steel is a much easier material to work with when considering issues that may arise with small-scale 

modeling because it is inherently a more homogeneous material as compared to concrete. Regardless of the 

materials, the main concern of these development efforts is that the load-deformation behavior of the model 

accurately simulate the load-deformation behavior of the prototype. A concern for steel that is documented 

in the literature is the issue of higher than expected strength and lower than expected ductility. This behavior 

can be attributed to differences in the forming process. Cold formed metals can behave in this way due to 

internal strain induced during the forming process. While this is an issue, it is usually resolved with a heat 

treatment process (Kim et al. 1988). There has also been a documented difference in yield strength of steel 

coupons for samples cut perpendicular to the direction of rolling vs. those cut parallel to the direction of 

rolling (Jia et al. 2017). However, the difference is small, especially considering the inherent variation in 

testing and potential for slight material differences throughout a steel sheet. Overall, mild steel has a 

repeatable load-deformation behavior that can be easily assessed to a reasonable degree of certainty. 
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Therefore, it is likely that it is possible to design and manufacture a BRB model made of mild steel that 

both has accurate, predictable behavior and is easy to assemble. 
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Chapter 3 

 

3 Small-scale BRB Analog 

This chapter provides a detailed design overview of the small-scale BRB from the conceptual phase to the 

physical device design. To begin, the scaling laws necessary for overall project completion are discussed, 

along with the logical reasoning that led to the adoption of the scaling factors used for the duration of device 

design. Then, the design concepts used in creating large-scale, all steel BRBs as previously discussed are 

transferred to the design of a small-scale, all steel BRB device. During the process of designing this device, 

there were multiple iterative models conceptualized. Two of these models are presented in this chapter: the 

beam-type design and the ring-type design. Their strengths and weaknesses, as understood at the time of 

the initial prototyping, are then addressed. Following this, the ring-type design is chosen as the model to 

proceed into the physical design stage, and the physical component drawings are discussed.  

3.1 Scaling from Prototype to Model 

Chapter 2 discussed both the properties of full scale BRBs and similitude rules for accurate prototype to 

model scaling. It also addressed two of the main design goals that led to the decision to focus effort on an 

all steel geometrically dissimilar small-scale analog. The first of these goals was to design a device that is 

easily replaced after testing at design level earthquake ground motions. The second goal was to design this 

device with functional similarity at relatively low force and deformation levels. A concrete restraining 

mechanism is not as useful for quick replacement as compared to a steel restraining mechanism. A 

geometrically similar design severely limits the range of functionality of the device. Therefore, this section 

discusses design decisions made to achieve a geometrically dissimilar but functionally analogous small-

scale BRB. The main goal of the model BRB is to dissipate energy in such a way that it achieves a full 

hysteretic curve characteristic of the prototype BRB. The design method must be accurate and repeatable 

over a range of sizes so that prototype BRBs of differing core areas can be properly simulated at the scale 

chosen. 

3.1.1 Prototype Geometry & Seismic Weight 

Recall that the focus of this thesis is the design of a small-scale BRB, but the overall goal of the work is to 

design a component that dissipates energy as expected as part of a larger SFRS model. Therefore, the first 

step in the process of meeting this goal is to evaluate the necessary scaling laws for the project as a whole 

and relate them to the scaling of the individual BRB. In order to do this, some preliminary features of the 
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prototype building must be established. A plan view of the building prototype is seen in Figure 10. For the 

initial evaluation of gravity loads, the frame bays were considered to be 20 ft. x 20 ft. and the story heights 

were considered to be 13 ft. at all levels with a maximum of six stories. The dead loads and seismic loads 

were defined with the guidance of ASCE 7-16 and are tabulated in Table 2 (ASCE 2017). The decking at 

each floor is considered as a composite slab weighing 50 psf, while the roof decking is considered as plain 

steel weighing 3 psf. The structural framing members are considered as an average of 20 psf over the entire 

tributary floor area. The 10 psf miscellaneous allowance considers the addition of fireproofing, mechanical 

& electrical systems, etc. The 42 inch roof parapet and all story walls have the same weight of 25 psf. The 

seismic weight is calculated as the sum of the dead load and a 10 psf provision for partitions at all story 

levels. Dividing the seismic load evenly between the two SFRS shown, the total calculated seismic load per 

typical story is 201 kips. The total calculated roof seismic load is 89 kips. Therefore, the maximum total 

seismic weight per lateral frame is 1,094 kips. 

3.1.2 Project Scaling Laws 

Adequate scaling laws must be defined that follow the similitude theory presented in chapter 2 while also 

meeting the specifications of the shake table at the University of Tennessee. The shake table has dimensions 

of 1.2 m x 1.2 m (3.9 ft. x 3.9 ft.) and a payload of 1 metric ton (2,200 lbs.). This places constraints on both 

the model length and model seismic load. It is impractical to scale the gravitational acceleration, so in order 

to simulate both inertial and gravitational loads, the acceleration ratio is constrained to 1.0. It is 

acknowledged that some of the small-scale tests in the literature use an acceleration ratio greater than 1.0; 

however, this effectively increases the necessary seismic mass and is contrary to the goal of meeting the 

relatively low payload constraint. Because the acceleration ratio is now chosen, there are only two more 

independent ratios that can be selected. One of these ratios is necessarily the length ratio. This is chosen as 

1:12 for the purpose of designing a model that has a bay width less than the dimensions of the shake table 

but is still large enough to physically manufacture all components and connections. Finally, the force ratio 

is chosen as 1:700 to ensure the maximum seismic load of a 6-story SFRS model frame is less than 1,600 

lbs. This seismic load limit is 600 lbs. less than the maximum payload of the shake table. This ensures that 

all measurement equipment, additional bracing systems, etc. may be placed on the shake table along with 

the required seismic mass plates while still remaining at or under the maximum payload of the system. The 

three chosen scaling ratios and pertinent dependent scaling ratios are shown in Table 3. 

 

Before accepting these scaling ratios, one must evaluate the implications of the calculated ratios and 

determine if the limitations and/or distortions they present are reasonable. The first distortion recognized is 
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Figure 10. Plan view of prototype building layout with moment frames designed in this study highlighted. 

Reproduced from (Talley 2018) 

 

 

Table 2. Dead loads for the prototype building. 

Load Source 
Floor 

(psf) 

Roof 

(psf) 

Decking 50 3 

Structural Framing 20 20 

Miscellaneous 10 10 

Wall & Parapet 25 25 

 

 

 

Table 3. Project scaling ratios. 

Chosen (Independent) Ratios Calculated (Dependent) Ratios 

Length 

Ratio 

Acceleration 

Ratio 

Force 

Ratio 

Stiffness 

Ratio 

Modular 

Ratio 

Time 

Ratio 

Frequency 

Ratio 

0.0833 1.00 0.00143 0.0171 0.206 0.289 3.46 
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the stress-strain distortion evidenced in the modular ratio not being equal to 1.0. In order for the stress 

behavior of the model to properly simulate the prototype, the modulus of elasticity of the model material, 

as well as the ratio of stress to strain for the entire plastic strain range considered, must be 0.206 times that 

of the prototype. If steel is considered as the prototype material, this implies the model material must have 

a modulus of approximately 6,000 ksi and a stress-strain behavior that follows the typical behavior of mild 

steel (linear-elastic range, yield plateau, strain hardening and strain softening). There is no common material 

that meets these specifications. However, this does not mean that the model scaling ratios are unacceptable 

because the goal of the project is not to measure stress and strain but rather to accurately simulate force and 

displacement. This can be accomplished using the scaling ratios in Table 3 along with the two-step 

similitude process previously discussed. 

 

The other implication of these scaling ratios is that the frequency of ground motion input must be over three 

times higher than the earthquake ground motion histories used in numerical analysis of the prototype. The 

limiting frequency for adequate control of the shake table is 50 Hz. This means the input frequency for the 

prototype is limited to 14.4 Hz. While this is limiting, it is estimated that the maximum fourth mode 

frequency will be less than 1.5 Hz for the prototypes considered (Talley 2018). Therefore, the frequency 

input limit will not limit effects of higher modes of vibration. While the previous discussion established the 

initial parameters used in this study, it is also acknowledged that the choice of scale factors can be easily 

changed should future work on the project necessitate such a change. 

3.1.3 Prototype Yield Strength & Stiffness 

Before the model BRB can be designed, the strength and stiffness of the prototype BRB must be calculated. 

The nominal yield force of a BRB is calculated using AISC 314-16 (AISC 2016). 

 ysc ysc scP F A=   (3.1) 

Where: 

P design yield strength of BRB steel coreysc

F design yield stress of BRB steel coreysc

A cross-sectional area of BRB steel coresc

=

=

=

 

 

The stiffness of a BRB is more complex than a simple truss element due to the varying cross-sectional area 

of the core, transition region, and connection region. Therefore, an appropriate stiffness modification factor, 

KF, is applied to the stiffness calculation as follows (Kersting et al. 2016): 

 scA E
K

L
= KF   (3.2) 
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Where: 

stiffness modification factor

A cross-sectional area of BRB steel coresc

E Young's modulus of BRB steel core

L work point-to-work point length of BRB steel core

=

=

=

=

KF

  

 

The minimum design yield stress is 38 ksi and Young’s modulus for steel is 29,000 ksi. The work point-to-

work point length is dependent upon the structural layout of the larger building model and the chosen brace 

pattern of the buckling restrained brace. Using a chevron bracing pattern and the previously given building 

layout, the length of the prototype BRB is 16.4 ft. The area of the steel core is dependent upon detailed 

prototype design that is not yet complete at this time. However, based on previous work (Simpson and 

Mahin 2018b; Talley 2018) and preliminary calculations by Peter Talley, an appropriate range of cross-

sectional areas is identified as 3.0 – 9.0 in2. KF is also unknown but is estimated as 1.5, which is the median 

value of the acceptable range given in (Kersting et al. 2016). 

 

Equations (3.1) and (3.2) are used to calculate the design yield force and stiffness of the prototype BRB. 

These values are then multiplied by the force and stiffness scaling factors, respectively, to determine the 

small-scale model yield force and elastic stiffness. These values are shown in Table 4 for three BRB core 

area sizes that define the range of interest: 3.0 in2, 6.0 in2, and 9.0 in2. 

 

A previously identified problem was that of achieving the desired yield strength and elastic stiffness using 

the determined force and stiffness ratios while still manufacturing the model out of a common material with 

an adequately ductile behavior. This is not physically realistic using the same geometry as the prototype 

BRB. If a simple axially loaded steel bar was to be used to reproduce the hysteretic behavior of the steel 

prototype BRB, the required area ranges between 0.004 in2 – 0.013 in2. If a different material is used, the 

material properties must be very specific to satisfy the chosen scaling constraints. This is illustrated by 

analyzing the yield displacement, which is simply the yield force divided by the elastic stiffness. Using 

equations (3.1) and (3.2), the yield displacement is written as: 

 y

y

F L

E KF


   
=    

  
  (3.3) 

The yield displacement and the brace length both have units of [L], which is multiplied by the length ratio 

to determine the appropriate value for the model. In order for both the yield displacement and the brace 

length to equal their appropriate scaled values in the model, the ratio of material yield strength to Young’s 

modulus must remain constant. So, not only is the required area of the model brace core unrealistically 
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Table 4. Yield force and elastic stiffness values for prototype and model BRBs. 

Prototype Values Model Values 

Asc (in.2) Pysc (kips) K (kips / in.) Py,m (lbs.) Km (lbs. / in.) 

3.00 114 663 163 11,367 

6.00 228 1,326 326 22,734 

9.00 342 1,989 489 34,100 
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small, but the material properties must be scaled to exactly match behavior of the prototype material in 

order for the model to function properly. This is not a practical solution. 

3.2 Functionally Similar, Geometrically Dissimilar Model 

Since it is not practical to design a similarly shaped BRB analog due to the model scaling ratios required, a 

different solution needed to be employed. Inspiration was drawn from the several all steel prototype BRBs 

presented in chapter 2. Most notably, the idea of energy dissipation through plate bending (Gray et al. 2012, 

2017) was used to design an appropriate small-scale BRB analog. The guiding principle behind this design 

is that the stress and strain at particular points within the small-scale BRB are not important. Rather, the 

force-displacement curve of the device as a whole is the main item of interest. Therefore, a device of a 

different shape with different derived equations that define yield force and elastic stiffness can produce the 

desired behavior with fewer constraints on material properties and part geometry. This is the core concept 

of the two-step scaling process previously presented in Figure 9. 

3.2.1 Initial Model 

Using the same predictive modeling technique found in Gray et al., the first prototype design was based on 

a simple fixed beam with a central concentrated load, as shown below in Figure 11. Assuming an elastic 

perfectly-plastic stress-strain relationship and a rectangular cross-section, the plastic bending moment of a 

section is found using the following formula: 

 

2

y

p

F db
M

4
=   (3.4) 

Where: 

M plastic bending moment of the sectionp

F yield stress of the materialy

b depth of the cross-section

d thickness of the part

=

=

=

=

 

Assuming a constant value of Young’s modulus and  constant beam cross-sectional geometry, the maximum 

bending moment at the center of the beam in the model shown in Figure 11 is: 

 
PL

M
8

=   (3.5) 

Where: 

P magnitude of  the concentrated load

L length of  the beam

=

=
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Figure 11. Beam bending model. 

  

b

2
L

2
L

BRB Axial Force



28 

 

The maximum beam deflection at the beam center is: 

 

3
PL

192EI
 =   (3.6) 

Substituting the moment of inertia into equation (3.6), the maximum beam deflection is:  

 
3

PL

3
16bd

 =   (3.7) 

In order to form the predictive equation for the yield strength of the bending beam, the plastic moment from 

equation (3.4) is set equal to the maximum bending moment in equation (3.5) and solved for the magnitude 

of the concentrated force required to yield the beam in bending. Equation (3.7) is simply rearranged to 

represent the bending stiffness of the beam. These two representative equations are presented below, with 

all variables having the same definitions as previous. 
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The predictive equations have four variables that can be changed to yield different results. Yield stress (Fy) 

and Young’s modulus (E) are material dependent, and therefore considered as one variable. The beam 

length (L), beam section depth (b), and part thickness (d) are the other three variables. Since there are only 

two equations, it then follows that two of the four variables are chosen by the designer (independent 

variables), and the other two are then solved for using the above equations (dependent variables). Out of 

necessity, one of the chosen independent variables is the material, as it is impractical to solve for material 

properties based on geometry and attempt to match a certain material to these values. The other independent 

variable is the part thickness, as most metals are manufactured in standard sheet thicknesses. Therefore, 

equations (3.8) and (3.9) can now be rearranged to determine the necessary values for the two dependent 

variables – length and section depth. The closed-form solution is seen below: 
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  (3.11) 

From these equations, three conclusions about the relationship of beam length and depth to the independent 

variables are drawn: 



29 

 

1 The ratio of BRB yield force to material yield stress impacts both dependent variables to the same 

degree. 

2 Both are dependent on the ratio of Young’s modulus to BRB stiffness. However, any change in this 

ratio impacts the length calculation to a greater degree. 

3 Both are dependent on the reciprocal of part thickness. However, any change in this design value 

impacts section depth to a greater degree. 

 

Two choices for material type were explored – aluminum and mild steel. For both materials, a yield stress 

of 40 ksi was used in calculations. Young’s modulus was set to 10,000 ksi and 29,000 ksi for aluminum 

and steel, respectively. The calculated values for necessary beam length and section depth are shown in 

Table 5. Since both materials have the same yield stress, the difference in geometry due to increased elastic 

modulus is clearly seen. Steel is the material with the higher elastic modulus and also has higher required 

beam length and section depth. The impact of part thickness is also seen. For both materials, the thinner 

part has a higher required beam length and section depth. 

3.2.2 Fabrication Error Considerations 

The relationship between material type and thickness to model geometry informs decisions on the part 

fabrication, but the accepted tolerance of the manufacturing process also influences design. The parts are 

to be cut using a waterjet machine, and this machine has a previously observed tolerance of +/- 0.015 inches. 

Therefore, there is potential for inaccurate cutting of the yielding plate parts that will introduce error into 

the yield force and stiffness of the physical specimen. This is an absolute error, so it is desirable that the 

section depth be larger to decrease the percent error caused by manufacturing tolerances. For example, a 

prototype BRB with a core area of 3 in2 requires a beam depth of 0.197 inches if it is made of 0.125-inch-

thick aluminum. If the same part is made of 0.125-inch-thick steel, it requires a beam depth of 0.280 inches. 

In the event of the part being cut at the maximum negative tolerance, the depth of the aluminum part would 

be 0.182 inches, and the depth of the steel part would be 0.265 inches. For the aluminum part, this translates 

to a percent error in yield force of 14.6% and a percent error in stiffness of 21.1%, based on the current 

closed-form solution. For the steel part, the percent error is reduced to 10.4% and 15.2% for yield force and 

stiffness, respectively. This shows that the percent error decreases as the overall width of the part increases. 

So, while it is still undesirable to have this much error due to manufacturing, it is best to increase the 

geometric dimensions of the part in order to decrease the potential percent error. Using this information, as 

well as the previously discussed relationships, 0.125-inch-thick steel is the preferable material. Figure 12 

shows the schematic design of the entire yielding plate. As the beam length increases, the overall 

dimensions of the part increase in the direction perpendicular to loading. This is problematic because the  
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Table 5. Initial model BRB geometry. 

Asc 

(in.2) 

Py,m 

(lbs.) 

Km 

(lb. / in) 

0.125" 

Aluminum 

0.250" 

Aluminum 

0.125" 

Mild Steel 

0.250" 

Mild Steel 

b 

(in.) 

L 

(in.) 

b 

(in.) 

L 

(in.) 

b 

(in.) 

L 

(in.) 

b 

(in.) 

L 

(in.) 

3.00 163 11,367 0.197 2.374 0.124 1.884 0.280 4.827 0.177 3.831 

6.00 326 22,734 0.312 2.991 0.197 2.374 0.445 6.082 0.280 4.827 

9.00 489 34,100 0.409 3.423 0.258 2.717 0.583 6.962 0.367 5.525 

 

 

 

 

Figure 12. Schematic of yielding plate design using the beam model. 
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0.125-inch-thick steel produces the longest necessary beam lengths. When considering higher force BRB 

analogs this longer beam length may cause the BRB to not fit well in the frame bay. Therefore, a different 

part geometry needed to be considered. This led to the next iteration of this device – the ring-type yielding 

plate BRB. 

3.2.3 Second Iteration Model 

The main requirement of the model BRB is that it produces the desired hysteresis. The shape of the BRB 

yielding plate is not as limited as is the axial force-displacement behavior it produces. Therefore, the second 

iteration of the model design used a different shape for the yielding section. Instead of simple beam bending, 

a circular yielding mechanism was explored. The simplified conceptual model is shown in Figure 13. The 

same procedure as previously described for the bending beam was followed for the circular yielding 

mechanism in order to determine an initial estimate of geometric constraints.  

 

The formula for the maximum moment and the vertical displacement due to a concentrated load on a thin 

ring are seen below (Engineering Library 2021). 

 M 0.3183PR=   (3.12) 

 
3PR

0.149
EI

 =   (3.13) 

Where: 

M  moment at the point of load application

P  magnitude of concentrated load

R  average ring radius

 vertical displacement of the ring due to the concentrated load

E  Young's modulus

3
db

I
12

d  thickness 



=

=

=

=

=

=

= of the yielding plate

b width of the ring=

  

Setting equation (3.12) equal to equation (3.4) and solving for P, an equation for yielding force is 

determined. 
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Rearranging equation (3.13) and substituting in the moment of inertia, the equation for stiffness is 

determined. 
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Figure 13. Circular bending model 
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As was done for the initial model, equations (3.14) and (3.15) can be solved simultaneously to determine 

the appropriate ring thickness and average ring radius for different prototype BRB core areas. 
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It is clear from these equations that, using the simplified model, the required width of the beam and the ring 

are comparable. However, the average radius is only about a quarter of the required beam length, which 

means the circular model has only half the width of the beam model. This is a considerable improvement 

in being able to fit the model BRB in the building frame bay. See Table 6 for a numeric comparison of 

required geometric values for 0.125-inch-thick steel plate. 

3.2.4 Limitations of the Predictive Equations 

While the predictive equations in the previous section yield promising results, there is introduced error due 

to the simplified modeling technique that limits the usefulness of these results. The first simplification made 

was to assume the load was a concentrated force rather than a distributed load. Assuming a concentrated 

load increases the maximum moment in the ring, which increases the calculated ring width. The equations 

for maximum moment and vertical deformation are also for “thin” rings, in which the ring width is much 

smaller than the ring radius. That is not the case for the model BRB. Therefore, the thickness of the ring is 

not negligible in the formulation of the moment and deformation equations. Because of these two major 

simplifications, this model is expected to produce results with a level of accuracy that is less than desired. 

However, these values for thickness and radius form a good basis for initial BRB geometry when iteratively 

refining the small-scale BRB using numerical modeling software. 

3.3 Physical Design of the Circular BRB 

Up until this point, the design of the functionally similar model BRB has been based completely on the 

assumed elastic response. However, as mentioned, it is likely that the equations defining moment in a thin 

ring are not an accurate prediction of the behavior of the BRB central ring design due to the relatively large 

thickness in comparison to the ring radius. Also, this simplified model provides no information on the 

functionality of the device in the inelastic range. Therefore, three main steps are necessary: 
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Table 6. Comparison of parameters for 1st and 2nd model iteration. 

Asc 

(in2) 

Py,m 

(lbs) 
Km (lb / in) 

Beam Circular 

b (in) L (in) b (in) R (in) 

3.00 163 11,367 0.280 4.827 0.233 1.314 

6.00 326 22,734 0.445 6.082 0.370 1.655 

9.00 489 34,100 0.583 6.962 0.485 1.895 

 

  



35 

 

• Design a physical device that incorporates ring bending to dissipate energy. 

• Numerically model the device in finite element software to better predict both elastic and inelastic 

behavior. 

• Manufacture the physical device and experimentally test its behavior to evaluate the accuracy of 

the numeric simulation. 

These goals are necessarily intertwined. In order to clearly convey the findings of this work, the physical 

model will first be presented without reference to numeric simulation of its functionality. Then, the finite 

element analysis process will be presented in the context of its relation to the physical part. Next, the 

experimental evaluation of the device will be discussed. Finally, necessary model updating will be 

presented and further improvements will be discussed. 

3.3.1 Yielding Plate Design 

The theoretical design of this device was based on energy dissipation through plate bending. The yielding 

force and elastic stiffness of this energy dissipator must be predictable and controllable. Therefore, the first 

consideration in the design process is the fabrication of the main energy dissipation mechanism – the 

yielding plate. The central portion of this yielding plate is to be circular, and the load is to be transferred 

axially through the center of the circle. All portions of the plate outside the central ring are to remain elastic. 

This concentrates plasticity in the specially shaped ring, giving the designer more control over the total 

load-deformation behavior. See Figure 14 for the schematic of the physical model of the yielding plate. 

Notice the three dimensions labeled as “A”, “B”, and “C”. Dimension “A” and “B” define the inner and 

outer diameter of the central ring. These are the two dimensions that control the yielding force and elastic 

stiffness of the device. Dimension “C” adjusts to accommodate smaller or larger ring diameters while still 

maintaining the same overall length. The plate is designed to have a thickness of 0.125 inches, as discussed 

in earlier sections. 

3.3.2 Assembled Test Mechanism 

Figure 15 shows the assembled mechanism with the yielding plate highlighted in orange. A full set of 

drawings is in Appendix A. The first important component of the BRB mechanism is the confining plate. 

There are two confining plates attached to the yielding plate – one on either side – to prevent out-of-plane 

buckling during axial compression. The slotted holes in the yielding plate accommodate the connection of 

these confining plates along the yielding plate length while also allowing free relative movement between 

the yielding plate and the confining plates. While friction may still influence the load carried by the yielding 

plate, the free relative movement between components encourages most of the axial load to be carried solely 

by the yielding plate. This mimics the design of full-scale BRBs by uncoupling the restraining mechanism  
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Figure 14. Physical model of the BRB yielding plate. Plan view. 

 

 

 

Figure 15. Assembled test mechanism for small-scale BRB. 

LVDT  and LVDT braces not shown. 
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and the brace core. The screws inserted through the slotted connections provide resistance against in-plane 

buckling of the yielding plate. The yielding plate is then connected to a thicker grip plate through a series 

of fillers and splice plates. This grip was designed at a thickness of 0.375 inches to fall within the thickness 

range of the machine grips to be used during testing. The last important part of the design involved 

accounting for the expected relative axial movement between the yielding plate and other components of 

the BRB. The test protocol, which will be discussed more in depth in chapter 5, had a prescribed maximum 

displacement of 0.26 inches in both tension and compression. Both slotted holes were designed to have at 

least 0.50 inches of free space on either side of the connecting screw, and the space between the confining 

plates and the end connection on one side was designed to be 0.50 inches. This ensured there was adequate 

free space for the yielding plate to displace. It is also required that an LVDT be attached during testing. 

This will also be addressed later in chapter 5. 
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Chapter 4 

 

4 Numerical Modeling 

In order to gain a comprehensive understanding of the behavior of the physical mechanism at varying axial 

loads, it is necessary to fabricate several sizes of the yielding plate. Recall from previous discussion that 

the closed form solutions for yield force and elastic stiffness are not considered reliable for exact calculation 

due to the necessary simplifications made to obtain them. Therefore, exact sizing of the yielding plate is 

done using finite element (FE) analysis in a software called ABAQUS. Prior to sizing the physical 

specimen, the physical design needed to be adequately transferred to the numerical design space by properly 

applying boundary conditions, using an appropriate material model, and performing a mesh refinement 

study to validate the accuracy of the given results. After this was completed, the yielding plate was modeled 

in ABAQUS, displacement-controlled deformation was applied, the resulting force-displacement curve was 

obtained, and the resulting yield force and elastic stiffness was then compared to the predicted values. The 

ring radius and thickness were then modified based on the difference between the ABAQUS result and the 

predicted value, and the process was repeated until ABAQUS calculated results that were close enough to 

the desired values to justify a physical test of the mechanism. This initial modeling process is later reviewed 

and revised after initial experimental test results were available; however, this chapter only includes the 

initial FE modeling steps taken to obtain the first experimental results. 

4.1 Initial Finite Element Model 

4.1.1 Idealization of ABAQUS Boundary Conditions 

While FE analysis is more refined than the initial analytical model, there are still choices made to simplify 

the modeling process and complexity of calculations so that the numeric simulation was both effective and 

efficient. First, because the yielding plate is very thin and under only axial load, the stress in the direction 

normal to the plate surface will be at or close to zero. Therefore, the part was simplified from a three-

dimensional plate to a two-dimensional, plane stress plate. There are also many connecting parts in the 

physical BRB. However, defining frictional forces and contact surfaces for all pieces of the BRB is complex 

and does not add much value to the final result. It is actually likely that complete modeling could decrease 

accuracy if any portions of the part were incorrectly input into ABAQUS. So, the second simplification was 

to remove all parts from the FE analysis except the central yielding plate and to replace these missing pieces 

with boundary conditions. But, even these boundary conditions were too complex and were again 
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simplified. Instead of applying boundary conditions to the yielding plate at the holes, a pinned boundary 

condition was applied at the left edge of the plate. Vertical rollers were applied at discrete points along the 

slotted holes to prevent in-plane vertical displacement. The right edge of the part was then given a specified 

horizontal displacement pattern. Any frictional interaction between the yielding plate and confining plates 

was ignored. See Figure 16 for a visual representation of the two-dimensional part and associated boundary 

conditions. Note that divisions shown are not elements, but rather are boundaries created for part meshing. 

4.1.2 Material Model for Initial Results 

At this phase of the project, material had not yet been ordered for yielding plate fabrication. This meant 

that actual tensile test data was unavailable for material calibration. To overcome this difficulty, tensile test 

data was obtained from a different test of 3/16-inch thick mild steel (Tanamal et al. 2009). While this 

material data is not expected to exactly match the actual steel used, it should have a similar elastic modulus 

and yield strength, which are the main parameters that influence the yield force and elastic stiffness. The 

material data used was provided as nominal stress and strain data points. This is the usual presentation of 

such data, however, ABAQUS expects tabular input of true plastic strain and true stress for calibration of 

material hardening. The process to transform the given data to the expected ABAQUS input is documented 

below and considered valid until necking (Dassault Systèmes Simulia Corp. 2010). 

• Transform the nominal stress, εnom, to true stress, ε, using the equation ( )nomln 1 = +   

• Transform the nominal stress, σnom, to the true stress, σ, using the equation nom nom(1 )  = +   

• Using these transformed values, find the true plastic strain, εpl, using the equation 
pl

E
 = −   

• Identify key points on the σ vs. εpl curve that well represent the material model. These are the 

tabulated values that will be input into ABAQUS. 

Using this process, the initial material data was transformed to the proper format and used for initial FE 

analysis. The true stress vs. true plastic strain curve is seen in Figure 17. The initial point on this graph is 

the yield point. The elastic portion of the stress-strain curve is defined in a different ABAQUS module 

using Young’s modulus. For initial results, isotropic hardening with tabular input was used for the plasticity 

model. This provides sufficient data for determination of an elastic stiffness and yield strength since these 

parameters are not dependent upon cyclic testing results. 

4.1.3 Element Type Selection 

There are strengths and weaknesses of each element type in ABAQUS. It is important to choose an efficient 

element, but one must be careful to ensure there are no large errors introduced into the model results due to 

element selection. Initially, a linear, plane-stress quadrilateral with neither reduced integration nor  
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Figure 16. Two-dimensional ABAQUS model of yielding plate. 

 

 

 

Figure 17. True stress vs. true plastic strain curve for ABAQUS input 
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incompatible modes (CPS4) was chosen. This element seemed to work, but it provided seemingly unreliable 

maximum stresses for some elements. As shown in Figure 17, the material used in the initial design phase 

was a mild steel with an ultimate stress of approximately 55,000 psi. Using CPS4 elements, the averaged 

stress in some locations was higher than the given ultimate stress of the material. In order to determine the 

problem, one must know what the FE analysis is doing. FE software solves for the different parameters, 

which are in this case stress and strain, at discretized nodes along an element. The values of these parameters 

at each node are then used to interpolate the value of such data at any point on the part. After confirming 

the stresses at all nodes were at or less than the ultimate stress, it was theorized that the interpolation 

mechanism of the program caused ABAQUS to interpolate elemental stresses higher than those at the actual 

element nodes, therefore providing strange results. This was further validated by confirming the maximum 

strains were much less than fracture strain. 

 

While this reasoning provided circumstantial evidence that the original element type could be justified, 

other element types were still explored. One such element type was the linear, plane stress quadrilateral 

with reduced integration (CPS4R). The premise of reduced integration is that the element is evaluated at a 

reduced number of points rather than all integration points. This “unlocks” the element, reducing the amount 

of parasitic strain and shear developed during the solution process. One problem with this element type is 

the potential for “zero-strain” deformation modes, but commercial software implements stabilization 

techniques to counteract this. This method calculates the value of interest as only one integration point per 

element (located in the element center) as opposed to four integration points per element (one at each 

corner) for the linear quadrilateral element. When unaveraged, this meant that each finite element had a 

single stress associated with it, and the maximum stress calculated during the simulation was at or equal to 

the ultimate stress of the material. The reduced integration process also simplified the analysis, making it 

run quicker without sacrificing the overall accuracy of the results. Therefore, this was the chosen element 

used in all FE analyses. 

4.1.4 Mesh Refinement Study 

After determining the element type to be used, the next step was to perform a mesh refinement analysis to 

increase confidence in the accuracy of the results. The circular portion of the yielding plate is where the 

majority of stress and strain is concentrated. Therefore, this is the portion of the model that requires the 

most refinement. Since the ring is expected to undergo bending, it is known that one element across the 

width of the ring is unstable, thus the refinement analysis began with two elements across the ring thickness. 

The parameters under investigation in this study were: initial stiffness, yield displacement, yield force, and 

post-yield stiffness.  
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First, an FE analysis was completed for a yielding plate with 2 elements across the ring thickness. Then, 

successive analyses were completed for the same yielding plate geometry and one more element than 

previous across the ring thickness until 20 elements were reached. After all analyses were complete, the 

initial stiffness, yield force, yield displacement, and post-yield stiffness were calculated for each. Figure 18 

shows how these values were determined. The slope of the labeled lines are the elastic stiffness and post-

yield stiffness. The post-yield stiffness was an average slope of the curve after yield. It is acknowledged 

that the accuracy of these parameters is only as valid as the method used to determine them, and that the 

method itself has limitations. However, if the methodology is consistent for the duration of the mesh 

refinement study, the integrity of the conclusion is maintained. Finally, the percent difference between 

successive calculated values was determined. 

 

These final results are tabulated in Table 7 and plotted in Figure 19. The mesh is considered adequate once 

the percent difference reaches a value of 1.0% or less. Initial stiffness, yield displacement, and yield force 

each reach and maintain adequacy at 7 elements. The post-yield stiffness, however, oscillates back and 

forth between a median value for a time before reaching the desired accuracy at 14 elements. It is desirable 

to have a smaller number of elements across the ring thickness because this will increase the speed of each 

analysis. Since the main parameters of interest are the elastic stiffness and yield force, the oscillation in 

post-yield stiffness is considered secondary, and either 7 or 8 elements is deemed sufficient for accurate 

prediction of yielding plate parameters. When considering either an even number or odd number of 

elements, the integration scheme of the analysis must be considered. Odd numbered elements have an 

element directly in the center of the bending portion of the ring, and therefore on the neutral axis. Since 

there is only one integration point at the center of the element, this element experiences a strain at or near 

zero. It is undesirable to have the possibility of such an element, so the final conclusion drawn is that using 

8 elements across the thickness of the ring is preferred. 

4.2 Sizing the Initial Physical Specimens 

Now that the FE model has been established, the initial physical specimens needed to be sized for testing. 

At this stage in the project, stress-strain data was still unavailable for the actual yielding plate material, so 

it was accepted that the actual yield force and elastic stiffness of the manufactured specimens would be 

different than the predicted values using the sample stress-strain data detailed above. However, at this time, 

it is not vital that the BRB conform to any specific strength or stiffness values. Rather, it is important that 

the overall behavior of the BRB is similar to the goal behavior of the final specimen design. It was assumed 

that initial rough estimates of sizing would provide an adequate starting point for physical testing. After the  
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Figure 18. Calculation of parameters for mesh refinement study. 

 

 

Table 7. Mesh Refinement Analysis - Calculated Parameters 

Number 

of 

Elements 

Initial 

Stiffness 

(lb/in) 

Percent 

Difference 

Post-

yield 

Stiffness 

(lb/in) 

Percent 

Difference 

Yield 

Displacement 

(in) 

Percent 

Difference 

Yield 

Force 

(lb) 

Percent 

Difference 

2 19,351 - 350 - 0.0132 - 256.2 - 

3 21,790 12.6% 356 1.9% 0.0113 -14.9% 245.7 -4.1% 

4 22,086 1.4% 351 -1.5% 0.0120 6.6% 265.5 8.1% 

5 22,081 0.0% 371 5.8% 0.0119 -0.6% 263.8 -0.6% 

6 22,142 0.3% 355 -4.5% 0.0121 1.6% 268.6 1.8% 

7 22,235 0.4% 377 6.3% 0.0121 -0.5% 268.5 -0.1% 

8 22,320 0.4% 359 -4.6% 0.0121 0.2% 270.0 0.6% 

9 22,335 0.1% 380 5.8% 0.0121 -0.2% 269.6 -0.2% 

10 22,328 0.0% 363 -4.4% 0.0121 0.4% 270.7 0.4% 

11 22,341 0.1% 378 4.1% 0.0121 -0.3% 270.1 -0.2% 

12 22,356 0.1% 368 -2.8% 0.0121 0.3% 271.1 0.3% 

13 22,379 0.1% 376 2.1% 0.0121 -0.3% 270.6 -0.2% 

14 22,388 0.0% 372 -0.9% 0.0121 0.1% 271.0 0.2% 

15 22,377 -0.1% 374 0.6% 0.0121 0.0% 270.9 -0.1% 

16 22,376 0.0% 375 0.2% 0.0121 0.1% 271.1 0.1% 

17 22,382 0.0% 374 -0.2% 0.0121 0.0% 271.1 0.0% 

18 22,392 0.0% 376 0.3% 0.0121 0.0% 271.2 0.0% 

19 22,397 0.0% 375 -0.1% 0.0121 0.0% 271.1 0.0% 

20 22,397 0.0% 375 -0.1% 0.0121 0.1% 271.3 0.1% 
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Figure 19. Graphical Representation of Mesh Refinement Study 
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initial physical tests were complete, the FE model was refined to better describe the mechanism behavior. 

This is discussed in detail in chapter 6. The initial predictive equations are known to have inherent 

inaccuracy due to simplifications made in the model when forming them. They are useful for providing a 

rough estimate of the required dimensions of this device as starting values from which the part can be 

further refined. As previously explained, it was desired to test three sizes of BRBs in initial testing – one 

each that corresponded to a 3.0 in2 prototype core area, a 6.0 in2 prototype core area, and a 9.0 in2 prototype 

core area. From now on, these three sizes will be referred to as “small”, “medium”, and “large”, 

respectively. Using equations (3.16) and (3.17), Table 8 shows the starting values for average radius, R, 

and ring width, b, for each considered size of BRB. Using this geometry for a 0.125-inch-thick steel plate 

and the ABAQUS model previously described, Table 9 shows the calculated yield force, elastic stiffness, 

and yield displacement of each considered BRB, along with the percent difference between the expected 

result and the calculated FE result for each parameter. 

 

It is obvious that the initial predictive equations are not as accurate as necessary for estimating geometry of 

the model BRB. The most likely reason for the large error is that the equations used were for rings which 

had such a large radius as compared to their thickness that deflection theory for straight beams could be 

applied (Engineering Library 2021). This is not the case, so the error in actual vs. goal values is quite high. 

Although the error was high, there were no alternative predictive equations, so an iterative process was used 

to determine the geometry of initial test specimens. The “goal” values were either raised or lowered, 

depending on if the calculated error was positive or negative, geometry was recalculated, and the ABAQUS 

analysis was re-run. This iterative process was able to produce geometries that came close to the “goal” 

values for yield force and elastic stiffness for each of the three BRB sizes. The final iterative ring width and 

average radius for each specimen were then used in the plan set for initial manufacturing. The final average 

ring radius, ring width, estimated yield force, estimated elastic stiffness, and estimated yield displacement 

are shown in Table 10. 
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Table 8. Width and radius of circular-type BRBs using initial predictive equations. 

Asc (in2) Py,m (lbs) Km (lb / in) b (in) R (in) 

3.00 163 11,367 0.233 1.314 

6.00 326 22,734 0.370 1.655 

9.00 489 34,100 0.485 1.895 

 

 

 

Table 9. Percent error in parameters of interest using initial predictive equations. 

Asc (in2) Py,m (lbs) PEP Km (lb / in) PEK δy (in) PEδ 

3.00 272 66.9% 14,097 24.0% 0.0193 35.0% 

6.00 505 54.9% 23,767 4.35% 0.0212 48.3% 

9.00 753 54.0% 34,019 -0.24% 0.0221 54.5% 

 

 

 

Table 10. Geometry and predicted values for final experimental specimens to 3 significant figures. 

Asc (in2) R (in) b (in) Py,m (lbs.) Km (lb. / in) δy (in) 

3.00 0.908 0.144 132 8,450 0.0156 

6.00 1.050 0.230 269 22,300 0.0121 

9.00 1.129 0.297 398 33,000 0.0121 
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Chapter 5 

 

5 Experimental Tests 

There were three distinct phases of the initial experimental testing. First, monotonic tension tests were 

carried out on steel coupons to characterize the specific material properties of the mild steel being used. 

Next, quasi-static cyclic tests were conducted on a set of three ring-type specimens with dimensions 

conforming to Table 10 from the previous chapter. While not conclusive due to testing error, these first 

tests did identify both numerical modeling improvements and physical design improvements necessary for 

improved precision in predicting brace hysteretic response. Physical improvements are then discussed and 

the third portion of experimental test results are presented. These results evaluate the effectiveness of the 

physical design modifications as well as identify another area of necessary improvement in the FE model. 

5.1 Coupon Tests 

It is necessary to know the actual material properties of the steel used to cut the yielding plates, as these 

properties will directly influence the yield force and elastic stiffness. Therefore, coupon tests were 

performed following the standards of ASTM E8 (E28 Committee 2016). The material ordered for 

fabrication of the yielding plate was 11-gauge A1011-CS-B steel. According to ASTM standard 

specifications, this material is expected to have a yield strength between 30 and 50 ksi and a maximum 

strain at or above 25% (A01 Committee 2018). This material should therefore have a high amount of 

ductility, which is necessary for the purposes of this application. The thickness of 11-gauge standard steel 

is 0.1196 inches, and may vary due to allowable tolerance. While this is not the exact dimension of the 

originally designed part, it is the closest thickness of plate possible. The steel plate ordered was 4 ft. x 8 ft., 

so the remainder of yielding plates for this project can be cut from the same steel specimen. This avoids the 

necessity of having to retest different steel sheets prior to production of these devices in the future. 

 

ASTM E8 testing methods specify specific coupon shapes for different types of materials. For standard, 

rectangular tension test specimens, there are two categories – plate-type and sheet-type. The minimum 

metal thickness for a plate-type specimen is 0.188 inches, and the maximum thickness for a sheet-type 

specimen is 0.750 inches. Because the thickness of the metal tested was 0.1196 inches, it did not meet the 

minimum requirement for plate-type specimens. It did, however, fall under the maximum allowable 
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thickness for sheet-type specimens, so this was the standard that was used. Figure 20 shows the dimensions 

specified for each coupon. 

 

Coupons were cut using a waterjet at the same time the initial BRB testing specimens were cut. Three 

specimens were tested using the MTS 858 Table Top System. This machine has a load capacity of 25 kN 

(5.6 kips) and uses 647.25A hydraulic wedge grips. This is the same system that was used to conduct all 

cyclic component tests for model BRBs. The testing procedure is as follows: 

• Lightly scratch the side of the specimen to mark a 2 inch axial distance in the reduced portion of 

the specimen. 

• Center the specimen in the lower grip. Tighten. 

• Place the machine in force control. Tighten the upper grip, ensuring the specimen remains plumb. 

• Place the extensometer in the center of the reduced section. 

• Begin the test using a crosshead speed control of 0.04875 in/min as specified by ASTM. 

• Once the specimen reaches 2% strain, remove the extensometer and test at the same rate until 

failure. 

• Measure the distance between the marks on the specimen at the end of testing to calculate the final 

elongation at failure. 

 

This testing procedure was carefully followed and the resulting data analyzed for all three tests to determine 

the representative material properties for continued numeric analysis. All data sets had a distinct upper yield 

strength (UYS), lower yield strength (LYS), and yield plateau, matching the analysis case listed in ASTM 

E8 Section 7.7.3 for materials that exhibit discontinuous yielding (E28 Committee 2016). For the purposes 

of this project, the UYS was determined but ultimately neglected, and the LYS was used as the material 

yield strength because it corresponded more closely to the stress at level at the yield plateau. Figure 21 

shows the calculated nominal stress-strain curve for all three tests. The calculated strain was determined 

using the extensometer up until 2% strain, which adequately defines the elastic zone. The calculated strain 

outside of this region used the machine displacement readings and assumed a uniform average strain across 

the reduced section length. The stress is calculated using axial force readings from the machine and 

assuming a uniform stress across the reduced section area. There may be slight error in this calculation 

method due to potential stress or strain concentrations and inaccuracies in machine displacement data; 

however, these errors are minimal and the resulting behavior is considered adequate for the purposes of the 

project. Table 11 reports the values for elastic modulus (E), LYS, UYS, and ultimate strength (Fu). Aside 

from the calculated elastic moduli, all values are very close for the three tests. This yields confidence in the 

accuracy of the data. The initial stress-strain relationship was not truly linear, so the elastic modulus was 
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Figure 20. Sheet-type coupon for tensile testing. 

 

 

 

Figure 21. Nominal stress-strain behavior of 11 gauge A1011-CS-B steel. 

 

 

Table 11. Calculated values for coupon tests. 

Specimen # E (ksi) LYS (ksi) UYS (ksi) Fu (ksi) 

1 29,100 34.2 40.0 49.9 

2 32,900 34.7 38.6 49.3 

3 30,000 34.4 40.2 49.7 
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estimated using the secant modulus measured from the first to the fifth reading. The secant modulus was 

then used to define the elastic zone as having a linear stress-strain relationship based on Hooke’s Law, as 

is common accepted engineering practice. The yield strain was then approximated as:  

  =y

LYS

E
  (5.1) 

Steel is known to have a modulus of approximately 29,000 ksi, so Specimen 1 was used as the representative 

sample to form the simplified material relationship shown in black on Figure 22. This simplified curve had 

to be manipulated even more for entry into the ABAQUS material module; however, this will be discussed 

in the following section when the numerical updating is addressed. Additionally, it was noted that the 

specimens fractured at very low loads and had a very high modulus of toughness. While measurements of 

final elongation at failure are prone to human error, both physical measurements and strains based on 

machine displacements indicate that the material has a failure strain of approximately 40%. This is high 

enough to provide the ductility necessary for the model BRB to function well as an inelastic energy 

dissipator. 

5.2 Quasi-static BRB Testing 

5.2.1 Testing Protocol for Initial Tests 

The American Institute of Steel Construction (AISC) provides accepted BRB testing protocols in Section 

K3 of the Seismic Provisions for Structural Steel Buildings that are followed in the relevant literature (AISC 

2016; Dehghani and Tremblay 2018; Gray et al. 2017). While this work is not a full scale BRB, it will still 

be subjected to the testing protocol of the current standard in order to validate the brace behavior. This 

testing protocol is described as follows. The variables used define the axial brace displacement value during 

testing (Δb), the expected brace axial displacement value at brace yield (Δby), and the expected brace axial 

displacement at the design story drift (Δbm). 

 

• Two cycles of loading at the deformation corresponding to Δb = Δby 

• Two cycles of loading at the deformation corresponding to Δb = 0.5 Δbm 

• Two cycles of loading at the deformation corresponding to Δb = 1.0 Δbm 

•  Two cycles of loading at the deformation corresponding to Δb = 1.5 Δbm 

• Two cycles of loading at the deformation corresponding to Δb = 2.0 Δbm 

• Additional cycles of loading at the deformation corresponding to Δb = 1.5 Δbm, as required for the 

brace test specimen to achieve a cumulative inelastic axial deformation of at least 200 times the 

yield deformation 
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Figure 22. Representative stress-strain behavior. 

Showing only 0 to 0.05 strain to better see the fit of the simplified model. 
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The above protocol was followed, but an additional step was added at the beginning of the test protocol: 

 

• Two cycles of loading at the deformation corresponding to Δb = 0.5 Δby 

 

These additional two cycles of load were added to ensure the elastic response of the BRB was captured 

since the estimate of yield displacement was not known to be accurate. 

 

The first set of tests featured three sizes of BRB – small, medium, and large. The small BRB is named 

“T1S1”, the medium BRB is labeled “T1S2”, and the large BRB is labeled “T1S3”. The yield displacement 

value for testing protocol was estimated using the procedure described in chapter 4. The values of these 

estimated yield displacements were previously presented in . Determination of Δbm was less straightforward. 

This quantity represents the expected brace axial displacement at the design story drift, and is not to be 

taken less than 0.01hs, where hs represents the story height. It is not currently known what the exact design 

story drift is for the experimental structure. Therefore, previous works in the literature were consulted to 

determine a reasonable assumption for the brace deformation at design levels. Tremblay et al. concluded 

that using Δbm = 5.0 Δby was sufficient, based on the then proposed NEHRP provisions (Tremblay et al. 

2004). Simpson used a different approach and defined the brace axial deformation as being Δbm = 2 Cd Δby, 

where Cd is the deflection amplification factor for BRBs as defined in ASCE-7-16 (ASCE 2017). Using all 

three methods to calculate Δbm, the values presented in Table 12 are obtained. The minimum AISC 

requirement controlled for both TIS2 and T1S3. The estimation from Simpson was slightly higher for T1S1. 

As stated before, the yield displacement of the specimens was estimated using ABAQUS, but was not 

certain. In light of this, and in order to keep the displacement control as similar as possible for all tests, the 

minimum AISC requirement of Δbm = 0.13 inches was chosen. After choosing the design Δbm, it was 

determined that there was no need for additional cycles after Δb = 2.0 Δbm because the brace had already 

reached a cumulative inelastic deformation of over 200 times the yield deformation by this point. 

 

The next step in the displacement control process was to determine the loading rate. This was accomplished 

via guidance from the previous coupon testing protocol. According to ASTM, tensile specimens are to be 

loaded at a rate of 0.015 times the reduced section length (in./min.). The model BRB is not a simple 

mechanism and therefore does not have a reduced section length. However, it seems reasonable to use an 

average specimen diameter as the “length of the reduced section” since the majority of strain is to be 

concentrated in the central ring. Using an average diameter of 2.0 inches, the initial displacement rate was 

set at 0.030 in./min. This is a reasonable rate for the initial test cycles, but it is unreasonable to continue the 

test at such a slow pace for all cycle amplitudes. Guidance from ASTM specifies an acceptable displacement  
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Table 12. Calculated values for Δbm. Values reported in inches. 

Specimen Minimum per AISC Tremblay et al. Simpson 

T1S1 0.13 0.078 0.156 

T1S2 0.13 0.0605 0.121 

T1S3 0.13 0.0605 0.121 
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rate of between 3 – 33 times the initial rate for post-yield displacement in specimens where the expected 

maximum strain is greater than 5% and the material behavior is not sensitive to displacement rate. Fracture 

of the material is not expected before 40% strain, and the application of the device as an energy dissipator 

during earthquake ground motions implies that the testing rate should not affect performance. Therefore, 

the displacement rate was increased for cycles after yield such that the total test time per specimen was 

approximately 45 minutes. A visual representation of the displacement pattern is shown in Figure 23. 

5.2.2 Instrumentation 

The MTS testing machine has the capability to measure both axial force and axial displacement, but it was 

initially unknown if the axial displacements measured by the machine would be representative of the axial 

displacements between connection points of the specimen yielding plate. So, an external LVDT was 

attached between the yielding plate connection points. To accomplish this, several LVDT brace components 

were manufactured from 1/2-inch-thick aluminum. These are shown in detail in the drawing set in Appendix 

A. The overall test setup and bolt connection layout is shown in Figure 24. The LVDT used has a 

displacement range of ±1 inch, so the height of the lower brace resting point was set to accommodate this. 

The thickness of the gripping plates was decided specifically for these component tests. The serrated grips 

that were compatible with the MTS testing machine required a gripping thickness of 0.28-0.57 inches. The 

gripping plates were therefore fabricated from 0.375-inch-thick steel to comply with these requirements. 

The use of the serrated grips was preferable to decrease likelihood of slipping within the grips during testing. 

5.2.3 Initial Test Results 

Specimen T1S1 and T1S2 were tested prior to realizing there had been a mistake in machine set-up that 

resulted in unwanted crosshead movement. While this meant the results from these two tests could not be 

fully trusted, there were still valuable lessons learned about the device from these failed attempts. Figure 

25 shows the force-displacement curve of specimen T1S1 using both the LVDT displacement readings and 

the machine displacement readings. It is evident that there is disagreement between the two forms of 

displacement readings, which visually confirms the error in test set up. Additionally, there was a 

displacement programming error captured during this test in which the last cycle did not include the 

negative displacement amplitude. This issue was fixed prior to continuing testing. Other than the set-up 

errors, the lesson learned during this test was that the bolts holding the mechanism together need to be 

tighter. There are visible points of load reduction at high tensile force, which indicates there is slip in at 

least one of the connections. In addition, a small gap between the yielding plate and the confining plate was 

observed at high compressive load, which indicated out-of-plane buckling, shown in Figure 26. To 

counteract the first phenomena, bolts 1A and A2 were torqued to 40 ft-lb prior to testing of specimen T1S2. 

It was noted bolts C1 – C4 were initially tightened less than finger tight in an attempt to decrease frictional 
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Figure 23. Displacement control for specimen T1S2. 
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Figure 24. Test setup & bolt layout. 
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Figure 25. Force vs. displacement curve of specimen T1S1. 

 

 

 

 

Figure 26. Out-of-plane buckling of T1S1. 
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interaction between the plates. While the friction may have been lowered by this choice, the usefulness of 

the restraining mechanism was also lowered. To reduce the potential for buckling, bolts C1 – C4 were 

tightened with a wrench at the beginning of the test for specimen T1S2. 

 

The error in the displacement readings was initially attributed to a poorly calibrated LVDT within the MTS 

testing machine, so the error in crosshead movement was not fixed prior to testing of specimen T1S2. The 

crosshead movement was identified part way through the second test. Once this was fixed, it was decided 

to cycle the BRB at the two highest displacement cycles to capture the end of the desired response. Figure 

27 shows the initial cycle at the second highest displacement value. The axial forces were almost 3 times 

the expected value based on the numeric analysis at the time. This was very unexpected, and was 

hypothesized to stem from overtightening bolts C1 – C4, which led to increased friction that enabled the 

restraining mechanism to resist some of the axial load and led to increased axial force capacity. The test 

was again stopped and a third set of data was gathered after loosening bolts C1 – C4 to be finger tight. After 

this, the maximum recorded load was only 1.2 times the expected load at that displacement level, shown in 

Figure 28. This shows that the tightness of bolts C1 – C4 is very important. They cannot be too loose 

because this renders the confining plates less effective than necessary, as seen in specimen T1S1. However, 

they cannot be too tight because this restricts the necessary relative displacement between the confining 

plates and the yielding plate. The effect of this restriction was seen when the mechanism was disassembled. 

Figure 29 clearly shows the wear around the slotted holes where the bolt tightening caused increased 

frictional resistance between contact surfaces as the yielding plate attempted to displace. 

 

Specimen T1S3 gave the best result from this initial testing. Bolts A1 and A2 were torqued to 40 ft-lb as 

done for specimen T1S2, and bolts C1 – C4 were tightened to finger tight – no looser, but also no tighter. 

Figure 30 shows the experimental data on the same graph as the initial ABAQUS analysis results. There 

are several key takeaways from this comparison. First, the device seems to provide a full, stable hysteretic 

response as desired. Second, the elastic region appears to be well estimated using FE analysis. The initial 

stiffness and yield behavior match quite well. Third, there is a slight jog in the curve just before 200 lbs. in 

both tension and compression on all cycles past yield. This indicates that there is some slip in the 

connections. This slip is present in both the displacement data gathered from the MTS testing machine and 

from the LVDT. This indicates that the slip is occurring at bolts 1B – 4B, not in bolts A1 and A2. Updated 

connection detailing to fix this problem will be discussed in the subsequent chapter. Lastly, it is clear that 

while the FE analysis estimated the elastic response quite well, the estimated force levels of the higher 

amplitude cycles are much too high. This indicates that the hardening model used in the numerical analysis 

was incorrect. This will also be addressed in chapter 6. 
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Figure 27. Force vs. displacement curve of specimen T1S2. Bolts C1-C4 tightened. 
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Figure 28. Force vs. displacement curve of specimen T1S2. Bolts C1-C4 loosened. 

 

 

 

Figure 29. Disassembly of components showing wear on the contact surface (circled in red). 
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Figure 30. Force vs. displacement curve of specimen T1S3. 
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5.2.4 Testing Protocol for Second Tests 

Initially, the model BRB displacement control included Δb = 2.0Δbm as the maximum amplitude 

displacement. As previously stated, the actual expected maximum displacement is currently unknown, but 

it may be higher Δb = 2.0Δbm. For the second set of tests, a modified displacement protocol was designed 

such that the BRB was subjected to a 5% story drift at the maximum amplitude. Using terms as defined in 

Figure 31, the original length of the model BRB, L, is: 

 2 2( / 2)= +sL h w   (5.2) 

At 5% drift, small angle approximations are still valid, and the new brace length is: 

  
22 ( / 2)= + +new s sL h w   (5.3) 

Where :  0.05 = 
s

h
s . 

 

The change in length of the model brace is then calculated to be 0.4042 inches at 5% story drift. This is less 

than the maximum brace axial displacement of 0.50 inches. To test the brace behavior at larger 

displacement, two cycles at a displacement of Δb = 0.4042 inches were added after the original cycles 

described previously. In order to keep the test time at approximately 45 minutes, the displacement rates 

were increased more than original for cycles after yield. The highest rate of displacement was still less than 

the ASTM recommended maximum. Figure 32 is a visual representation of the displacement control for 

specimen T2S3. 

5.2.5 Connection Revisions and Second Test Results 

While the initial model needed improvement, the overall initial results provided good confidence that the 

device would function adequately with some revision. The main concern identified was that of slip between 

the plates at the connections. This problem was addressed by tightening bolts A1 and A2 to a specified 

torque. The connection at bolts B1 – B4 was not so easily resolved because of the necessary connection to 

the LVDT brace. This connection location is especially critical because there are four faying surfaces and 

thus ample opportunity for slip. The initial connection was designed to tighten as the bolts were screwed 

into the aluminum braces, as shown in the bottom of Figure 26. This figure also shows the space between 

different pieces in this connection during compressive load, indicating that the connection was not secure. 

To fix this, the solution shown in Figure 33 was designed. Each splice plate was welded to its corresponding 

filler plate, since there is no need for these pieces to be taken apart. Vinyl friction tape was wrapped around 

the end of the yielding plate to increase the coefficient of friction at the connection surface. The bolt length 

was increased at location B1 – B4 to accommodate the placement of a nut between the filler plate and the 
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Figure 31. First story of frame shown at prescribed story drift. 

 

 

 

Figure 32. Displacement control for specimen T2S3. 
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Figure 33. Initial improved connection. 
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LVDT brace. Upon assembly, the bolts were first screwed securely into the LVDT brace. Then, the nuts 

were tightened as tight as possible with a wrench.  

 

The following tests will be referred to as “T2SX”, where X represents the test number. Dimensions of the 

yielding plates remained unchanged, which facilitates easier comparison to initial results. Specimens T2S1 

and T2S2 were the small BRB size. Specimens T2S3 and T2S4 were the large BRB size. There was visual 

misalignment of the holes at bolts B1 and B2 after connections were complete for T2S1. This was initially 

considered a manufacturing error unique to the T2S1 yielding plate, and no conclusive tests were 

performed. However, specimen T2S2 appeared to have the same misalignment. It was then determined that 

the holes in the splice plate/filler plate connection had more clearance than originally thought, likely due to 

slight expansion from heat due to welding. This problem was overcome by manually aligning the 

connection prior to complete tightening of bolts B1 and B2. This did not appear to negatively affect brace 

performance. However, another issue was identified during the first two amplitudes of displacement for 

T2S2. Figure 34 shows the initial hysteretic curve. The behavior is not repeatable, and the measured 

displacements do not match the amplitude given for the cycle. Also, instead of the expected full hysteretic 

curve, the unloading curve shown by the red arrows is more similar to a flag shaped hysteretic curve that 

one would observe in a mechanism such as a friction spring damper (Wang et al. 2019). This behavior, 

coupled with the lower than expected forces at yield displacement, showed there was a significant problem 

with design improvements. Because of the abrupt softening of the curve upon unloading, it was theorized 

that the vinyl tape was causing more slip rather than creating less slip as intended. While the tape does 

increase the static coefficient of friction, the vinyl material has both a low shear strength and a low bond 

strength with the metal. This enabled more relative movement between the yielding plate and the filler plate 

at lower force. 

 

The tape was removed and the connection updated to reflect that of Figure 35. After this, the full test 

protocol, including the two cycles at 5% story drift, was completed for T2S2. Results are shown in Figure 

36. There are two main conclusions drawn from this data. First, the elastic portion of the data again matches 

the elastic analysis previously performed in ABAQUS. Calculating the average slope of the elastic tensile 

and compressive regions provided an experimental elastic stiffness of 10,483 lb./in. Finding the intersection 

point between the average elastic slope and average initial plastic slope in the tensile region provided an 

experimental yield force of 130.5 lbs. and an experimental yield displacement of 0.0127 in. These values 

are compared to the estimated elastic stiffness of 8,450 lb./in., a yield force of 132.0 lbs., and a yield 

displacement of 0.0156 in. Specimen T2S2 was stiffer than predicted, which led to a lower yield 

displacement value. But, the estimation of yield force was still close to accurate. Secondly, one can observe  
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Figure 34. Initial flag shaped hysteresis of T2S2. 

 

 

 

Figure 35. Connection detail with tape removed. 
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Figure 36. Full hysteretic curve of T2S2 - No Tape. 
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the continually increasing tensile capacity in conjunction with the softening behavior of the compressive 

curve. Similar to the material hardening inconsistencies, this phenomenon was not initially present in the 

FE analysis. Both of these behaviors are essential to proper design and will be addressed in the model 

updating portion of this thesis in chapter 6. 

 

Specimens T2S3 and T2S4 were both large BRB yielding plates. These results, combined with the initial 

large specimen (T1S3), provided a good basis for determining the average behavior of this size of model 

BRB. The initial elastic stiffness, yield force, and yield displacement were calculated using the same 

method as previously described. The results from these calculations, the mean value, and the maximum 

deviation from the mean for each parameter are shown in Table 13. Notice that the calculated yield force 

and yield displacement are much higher for specimen T2S3 than for the other two specimens. This could 

be an area of concern; however, overall hysteretic behavior does not appear to be significantly affected by 

this variation. This shows that even if the yield force is higher than expected, the overall hysteretic behavior 

of the device is predictable. Ignoring the outlier in the experimental data, the calculated values are close to 

expected. Similar to the small BRB, the estimated yield force and yield displacement was slightly high. The 

estimated elastic stiffness was slightly low. The difference in tensile force capacity and compressive force 

capacity is evident in Figure 37 just as it was for the small specimen in Figure 36. Therefore, this behavior 

is not limited to low force model BRBs. However, it is not as exaggerated in the larger specimen. A final 

observation that can be made from these results is that the updated detailing in the connection appears to 

mitigate the slip present in the hysteretic curve. However, there is still a very slight amount of slip noticeable 

at a higher force. This solidifies the theory that the connections must be as tight as possible so as to provide 

smooth force-displacement behavior. 

5.3 Conclusions Based on Experimental Tests 

5.3.1 Impact of Manufacturing Tolerances 

An observed trend was that the estimated yield force and yield displacement were slightly high, while the 

estimated elastic stiffness was slightly low for both sizes of BRB when compared to experimental data. 

Some of these differences are attributed to the simplifications used in the ABAQUS analysis. For example, 

the numerical model ignored the impact of friction. There was physically some friction present due to the 

interaction between the confining plates and the yielding plate. This frictional force could have resisted 

initial movement, which would have caused the experimental force values to be higher than those obtained 

in numerical simulation. These higher forces at the same displacement would produce a higher calculated 

stiffness. While this is a potential concern, the overall impact of ignoring friction in the numerical model  
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Table 13. Calculated parameter values for large experimental BRBs. 

Absolute Values 

Specimen # C/T 
Yield 

Force 

Yield 

Displacement 

Elastic 

Stiffness 

T1S3 T 394.2 0.0110 35,257 

T2S3 T 461.1 0.0131 34,889 

T2S4 T 397.7 0.0108 36,878 

Average 417.7 0.0116 35,675 

Max. % Deviation 10.4% 12.6% 3.4% 

 

 

 

 

 

Figure 37. Hysteretic curves of all large BRB specimens. 
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seems negligible. Also, the percent error in stiffness decreases with an increase in BRB size and force 

demand. This indicates an absolute error, which is not characteristic of frictional forces. 

 

Another likely explanation for the difference in expected and observed parameters are the manufacturing 

tolerances discussed in chapter 3. The estimated parameter values in Table 10 assumed nominal dimensions 

for average ring radius and ring width. As shown in Table 14, the measured average ring radius was within 

the expected tolerance of ±0.015 in. previously observed for the waterjet machine, but the measured ring 

width was sometimes outside of these observed boundaries. The tolerance values were calculated by 

subtracting the nominal dimension from the measured dimension. Therefore, a negative tolerance means 

the actual value was smaller than nominal, and a positive tolerance means the actual value was larger than 

nominal. In all cases, the measured average ring radius was smaller than nominal. A smaller radius makes 

the ring stiffer, which correlates well with the higher experimental elastic stiffness values. In some cases, 

the ring width was smaller than nominal, and in other cases it was larger than nominal. It is therefore 

difficult to form any hypothesis on what effects this variation in parameter had on final results. Even so, it 

is reasonable to conclude that the manufacturing tolerances likely caused some of the observed differences 

between experimental and estimated parameters. 

5.3.2 Experimental Observations & Overview of Model Updating 

While experimental testing did not validate the original design, it did provide important insight into 

improvements that must be made for accurate FE analysis of future improved designs. The main two 

improvements that must be made are (1) updating the hardening model and (2) modifying the analysis 

procedure such that the increased tensile capacity is adequately captured. Both of these improvements will 

be discussed in the following chapter. Another important conclusion of the experimental portion of this 

work is that the tightness of the connections is an important factor in the fullness and smoothness of the 

hysteretic curve. This conclusion does not require any more attention at the current time, but it is important 

for future work involving connection of the BRB analog to the larger test frame. 
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Table 14. Measured manufacturing tolerances. 

Manufacturing Tolerances 

Identifier Specimen Size b (in.) R (in.) 

T1S1 Small 0.0058 -0.0020 

T2S1 Small -0.0022 -0.0004 

T2S2 Small 0.0006 -0.0015 

T1S2 Medium 0.0056 -0.0012 

T1S3 Large 0.0072 -0.0002 

T2S3 Large -0.0016 -0.0002 

T2S4 Large -0.0011 -0.0008 
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Chapter 6 

 

6 Model Updating 

The experimental results showed that, while the initial FE analysis provided in chapter 4 was adequate for 

the elastic region of the cyclic test, it was not adequate to predict the specimen plastic behavior. While the 

elastic zone parameter predictions were not exact, it was previously discussed that this disparity was likely 

due to manufacturing tolerances, not the material model used. However, the large differences in material 

hardening behavior observed cannot be attributed to inconsistencies in the experimental geometry. 

Therefore, significant changes in the ABAQUS plasticity model are necessary. 

6.1 Isotropic and Kinematic Hardening 

6.1.1 Differences in the Hardening Models 

 There are two main models used for material hardening definitions – isotropic and kinematic. The basic 

difference between these two models is in the constraints placed on the movement and expansion of the 

yield surface. Kinematic hardening, schematically shown on the left in Figure 38, causes the center of the 

yield surface to move in stress space once the state of stress causes the stress level to reach the edge of the 

original surface. This means the size of the yield surface remains constant but the center of the surface can 

move. Isotropic hardening, schematically shown on the right in Figure 38, causes the yield surface to expand 

in stress space once the state of stress causes the stress level to reach the edge of the original surface. This 

means that the center of the yield surface always remains at the origin but the size of the yield surface 

changes (Gong et al. 2010). In actuality, metals subjected to cyclic loads often behave in a manner that 

combines these two descriptors of hardening. 

6.1.2 Purely Isotropic Hardening 

Using the initial test data from T1S3, an investigation of differences due to material hardening was 

performed. Recall Figure 14 from chapter 3, which shows the geometry of the central yielding plate. For 

T1S3, nominal dimensions were as follows: dimension “A” was 2.555 inches, dimension “B” was 1.962 

inches, and dimension “C” was 0.690 inches. Figure 39 shows the original cyclic numerical analysis using 

purely isotropic hardening on the same graph as the experimental results for T1S3. The original model  

allowed the yield surface to expand to the limits set by the ultimate stress. Once this stress state was reached, 

ABAQUS considers the model to behave in a perfectly plastic manner. This led to multiple errors, two of 

which are visually evident on the force-displacement curve shown in Figure 39. The axial force predicted  
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Figure 38. Schematic representation of (a) kinematic hardening and (b) isotropic hardening. 

Reproduced from (Gong et al. 2010). 

 

 

 

Figure 39. Isotropic hardening model from previous FE analysis.  
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by the model grows much faster than the experimental results. This inaccuracy leads to another inaccuracy 

– by the time the model reaches the last two displacement amplitudes, the hysteretic response is that of an 

elastic perfectly-plastic model. 

6.1.3 Bilinear Kinematic Hardening 

The purely isotropic hardening model has obvious and sever deficiencies in this application, so the next 

hardening model evaluated was a purely kinematic hardening. When using the “kinematic” hardening 

model in ABAQUS, one must define a constant hardening modulus using tabular data. The analyst inputs 

the stress at zero plastic strain in the first row of the table and then inputs a true stress-true plastic strain 

data point on the second row of the table that defines the post-yield kinematic hardening modulus of the 

material. Since this singular modulus will not represent the entire material behavior, the analyst retains the 

right to choose a hardening modulus that best describes the hardening in the strain range of interest. The 

strain range does not have to encompass the entire monotonic behavior. Rather, it is acceptable to enter a 

stress-strain point that is nearer to the maximum strain the part experiences during the test, or a stress-strain 

point that defines the average hardening modulus over the expected strain range. This is visually explained 

in Figure 40. In this figure, 4 different points along the true stress-true plastic strain curve were used to 

calibrate the kinematic hardening modulus. The theoretical behavior of the material is noticeably different 

for the different points used. If the ultimate point is used for calibration (shown in magenta), the material 

model misses the effect of strain hardening. If a point midway through the strain hardening range is used 

for calibration (both the green and red line shown), the numerical material model will achieve much higher 

stress capacities than physically available if the plastic strain is high. Therefore, one must have a good 

understanding of both the strain range of interest and the expected hardening behavior within that range of 

interest before deciding on a proper kinematic hardening modulus for use in the numerical simulation. 

 

In this case, observed strains were at or below 0.1 during the entire test protocol, as seen in Figure 41. 

Therefore, a true stress-true strain pair at a plastic strain just past 0.1 strain was chosen to define the 

hardening modulus. This is shown in green in Figure 40. It is acknowledged that the unconventional part 

geometry of the yielding plate may lead to increased or decreased strains for different sizes of model BRB. 

While this means that the actual stress state of each element may be either under- or over-estimated using 

the bilinear kinematic model, the chosen hardening modulus provides true stress values that are within ±5% 

of average measured true stress for a plastic strain range of approximately 0.0 – 0.15. Therefore, this is 

considered as an adequate model for the purposes of this work. The result of this analysis is seen in Figure 

42. The model now has the opposite problem as previously noted – the axial forces in the numerical analysis 

are much less than the experimental values. As previously discussed, this model also neglects the effects of  
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Figure 40. Comparison of kinematic hardening moduli using different calibration points. 

 

 

 

Figure 41. Average maximum strain in yielding plate. Ring only with no elements shown for clarity. 
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Figure 42. Bilinear kinematic hardening. 
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any changes in hardening behavior at different strain levels. In order to verify the extent of impact that 

variation in the hardening modulus may have on the behavior of this specimen, a multilinear kinematic 

hardening model was tested next.  

6.1.4 Multilinear Kinematic Hardening Model 

The multilinear kinematic hardening model improves on the weakness of the bilinear model by accounting 

for different hardening moduli at different strain levels. As seen in Figure 43, there is little visible difference 

in the overall specimen behavior between the bilinear and multilinear kinematic hardening models. The 

axial force capacity only increases by a maximum of approximately 6%. This shows that defining the 

hardening modulus in a more complex manner does not solve the overall modeling issues.  

 

While these flaws demonstrate that the kinematic hardening model does not provide adequate numerical 

simulation regardless of the hardening modulus, this does not mean the model is useless. Bilinear kinematic 

hardening models are better at limiting the size of the stress surface during cyclic deformation than isotropic 

models. In the case of the isotropic model, the size of the yield surface is not constrained unless the stress 

state reaches the ultimate stress. Then, the stress surface becomes constrained to the size set by the ultimate 

state due to the elastic perfectly-plastic model considerations past this point. In contrast, the kinematic 

hardening model restricts this growth and therefore does not require an elastic perfectly-plastic assumption 

in order for the growth of the yield surface to be constrained. This means the effects of strain hardening can 

still be seen at higher strain levels, as shown by the post-yield stiffness present at all displacement 

amplitudes in Figure 42 and Figure 43. In reality, the response of a metal to cyclic deformation is a 

combination of these two types of hardening. 

 

This phenomenon of combined hardening is seen by looking at the behavior of the experimental specimen 

in Figure 42. In the initial stages of cyclic displacement, the size of the experimental yield surface grows. 

This is clearly seen in the tensile portion of the displacement amplitudes at 0.065 inches and 0.13 inches. 

At both of these amplitudes, the value of the axial force capacity increases from the first to the second cycle 

of the same amplitude. After these cycles, the increase in axial force capacity from the first to second cycle 

is less dramatic and eventually is no longer visible. The disappearance of this growth in axial capacity for 

cycles at the same displacement amplitude indicates the material has reached a point that defines saturation 

of yield surface growth and is now deforming in a manner consistent with the kinematic hardening model. 

Therefore, it is plausible that a combined hardening model will more adequately describe the force-

displacement behavior of the yielding plate under cyclic load demands.  
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Figure 43. Multilinear kinematic hardening model. 
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6.2 Combined Isotropic and Kinematic Hardening 

Based on the results presented, it is obvious that neither the isotropic hardening model nor the kinematic 

hardening model provide adequate representations of the hysteretic behavior of the yielding plate. It was 

therefore necessary to determine an adequate combined hardening model. The best way to define a 

combined hardening model is using cyclic test data; however, cyclic data of the form necessary is not 

accessible. In order to use cyclic data to define a combined hardening model, it would be necessary to obtain 

cyclic stress and strain data from a coupon test. The only cyclic data available is the cyclic force and 

displacement readings from the BRB component testing. While useful for analysis of hysteretic behavior, 

this type of cyclic data does not provide stress-strain behavior, nor is it feasible to process the data in order 

to obtain this stress-strain behavior due to the complex geometry of the yielding plate. In lieu of cyclic 

coupon tests, the literature has suggested that mild metals may be adequately defined by a combined 

hardening model using 50% isotropic hardening and 50% kinematic hardening (Hu et al. 2016; Jia and 

Kuwamura 2014; Xiang et al. 2017). 

 

The hardening model chosen is the Chaboche model with nonlinear isotropic hardening. This model is 

easily input in ABAQUS using the “combined model” with multiple backstresses and manual calibration 

of cyclic hardening parameters. The necessary parameters for kinematic hardening are calibrated in 

ABAQUS using tabular true stress-true strain data points from the original coupon testing. Multiple 

backstresses provides differing kinematic hardening relationships at different levels of plastic strain. For 

low plastic strain, the movement of the center of the yield surface is governed by a nonlinear function of 

equivalent plastic strain. At high plastic strains, the translation of the center of the yield surface is governed 

by a linear hardening law. This is visualized in Figure 44 where three backstresses are shown. The total 

backstress is determined by superimposing all of the defining backstress laws at each value of equivalent 

plastic strain. Including multiple backstresses in this manner provides a more accurate estimation of the 

actual hardening characteristics of the material at multiple strain levels. ABAQUS incorporates this 

hardening law implicitly in the combined material definition when tabular data points are used as input. 

 

To add the isotropic hardening component to the model, the “cyclic hardening” suboption is chosen in 

ABAQUS and the calibrated material parameters are input. These parameters include the equivalent stress 

at which hardening begins (i.e. the true yield stress), the maximum radius of the yield surface (Q∞), and the 

exponential material hardening parameter (b). The calibration of these parameters is performed following 

the procedures outlined in literature (Gong et al. 2010; Jia and Kuwamura 2014). 
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Figure 44. Graphical representation of multiple backstresses defining kinematic hardening component. 

Reproduced from (Dassault Systèmes Simulia Corp. 2010). 
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This hardening model assumes a growth of the yield surface that follows the evolution rule: 

 eqdR b(Q R)d= −   (6.1) 

Differentiating equation (6.1) with respect to time, the size of the yield surface can be defined for a 

uniaxial state as: 

 ( )eqb
R Q 1 e

−

= −   (6.2) 

Considering the assumption that the isotropic component of hardening is constrained to 50% of the total 

hardening, the maximum growth of the yield surface is defined as: 

 mono y0
Q

2

 


−
=   (6.3) 

Figure 45 provides a visualization of the variables used in the definition of Q∞. The value of σmono should 

be defined such that the calculated parameters model the necessary strain range as accurately as possible. 

Similar to the definition of the hardening modulus, the value of σmono is chosen by the analyst. A higher 

value will allow the yield surface to grow more prior to saturation, while a lower value will limit the 

isotropic growth of the yield surface to a lower value. In the case of this design, the best value to choose 

for σmono is not well defined due to the lack of a uniform average strain at high displacement amplitudes. 

Because of this, the average maximum strain shown previously in Figure 41 was chosen as a reasonable 

strain range in which to focus the calibration of hardening parameters. Therefore, σmono was set equal to the 

true stress at a strain of εpl ≈ 0.10. The hardening parameter, b, must then be calibrated from a known point 

prior to σmono. This point is taken as a point at approximately half the maximum considered plastic strain. 

The hardening parameter can then be calculated as: 

 
eq

Rln 1
Q

b




 − 
 =   (6.4) 

Because the data is from a monotonic tension test, the equivalent plastic strain is equal to the measured 

plastic strain in the axial direction. The simplified tabular input for defining backstresses and a graphical 

representation of these tabulated values is shown in Table 15 and Figure 46. The calibrated material 

parameters for the isotropic hardening component are shown in Table 16. The ABAQUS results of the 

combined hardening model is shown in conjunction with test results from T1S3 in Figure 47. Again, it is 

acknowledged that the strain levels at certain points within the yielding plate may exceed the final plastic 

strain of 0.1002 input in the tabular data. However, this will not drastically affect results for two reasons. 

First, the overall average maximum strain in the high strain regions of the yielding ring is approximately 

half the maximum strain recorded for any individual element, as shown in Figure 41. This is a reflection of 

strain concentrations at the location of ring connection to the overall device. Secondly, as discussed  
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Figure 45. Visualization of parameters for isotropic hardening calibration. 

Reproduced from (Jia and Kuwamura 2014). 

 

 

Table 15. Simplified stress-strain tabular input for kinematic hardening calibration. 

True Stress (psi) True Strain 

34,200 0.0000 

36,200 0.0193 

44,996 0.0546 

51,695 0.1002 

 

 

 

Figure 46. Simplified stress-strain data for ABAQUS model. 
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Table 16. Isotropic hardening parameters. 

σy0 (psi) σmono (psi) Q∞ (psi) b 

34,200 51,695 8,747 17.58 

 

 

 

 

Figure 47. Combined hardening model. 
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previously, the linear hardening law is retained in ABAQUS at high strain levels, thus still providing an 

adequate estimate of hardening at strains slightly past 0.1002. 

 

There are still inconsistencies between the behavior of the numerical model and the experimental model. 

Of particular interest is the discrepency between the estimated behavior in extreme tension and the actual 

behavior in extreme tension. Despite this flaw, the combined hardening model provides significant 

improvement over the previous hardening models when considering the behavior of the specimen at large 

displacement levels. There is neither a gross overestimate nor a gross underestimate of the force levels as 

was previously seen. There is an overestimate of the initial compressive behavior just after yield. This is 

attributed to the exponential isotropic hardening behavior assumed in ABAQUS that overestimates the 

amount of isotropic hardening at some strain levels and underestimates at other strain levels. There is also 

potential that the tension and compression behavior is not symmetric. However, considerations of 

asymmetry in hardening are beyond the scope of this thesis. While the behavior of this model is not ideal, 

it is still reasonable, so the combined model is determined as the most accurate hardening model to use in 

future analyses. 

6.3 Nonlinear Geometric Effects 

The material nonlinearity is accounted for in the nonlinear combined hardening model previously discussed. 

However, the hardening model alone does not account for the increased tensile force capacity observed at 

high displacements. This phenomenon is attributed to large deformation effects that cause the specimen to 

be dominated by tensile stresses at large displacements as opposed to the bending stresses that control at 

smaller displacements. This behavior is seen clearly when the deformed shape at maximum compression is 

contrasted to the deformed shape at maximum tension in Figure 48. When experiencing the maximum 

tensile deformation, the source of plasticity in the yielding plate is a combination of flexural bending stress 

and axial stress across the top and bottom portions of the ring. The resistance capacity of the section is 

therefore increased at high tensile displacements because the axial resistance capacity is greater than the 

flexural resistance capacity. At high compressive deformation, flexural bending stresses dominate the 

plastic response in the section. This difference in plastic mechanism causes the axial force capacity at 

maximum compression to be much lower than the axial force capacity at maximum tension. 

 

This behavior was not previously accounted for because the effect of nonlinear geometry was not included 

in the ABAQUS analysis. If there are any large strains or large deformations expected, the nonlinear 

geometry effects must be toggled to “on” in the step definition. Once this was done and the analysis re-run,  
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Figure 48. Deformed shape in tension (top) and compression (bottom). Showing contours for von Mises stress. 
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the effect of this increased capacity was clearly seen, as shown in Figure 49. This figure shows that the 

extreme deformation behavior at both tension and compression is matched well by the new numerical model 

for specimen T2S4. The tensile behavior of specimen T1S3 is also adequately captured. However, there are  

still inconsistencies in the comparison of the numerical and experimental results. The compression capacity  

of specimen T1S3 is not well captured. There is disagreement between the experimental compressive force  

capacity for specimen T1S3 and T2S4 at low displacement amplitudes. This leads to an overestimate of  

compressive capacity for specimen T2S4 at low displacement amplitudes, while the estimation is fairly  

accurate for specimen T1S3. Because there is a limited amount of experimental data, it is unknown which  

compressive behavior more accurately represents the average force capacity. Therefore, this potential error  

is not feasibly corrected and is rather accepted. The numerical model also begins to yield sooner than the  

experimental results show, especially on the tension side. These discrepancies show that this is not a perfect  

model. However, there are good aspects of this model that make it an acceptable model to use in following  

tests. First, the transition from the elastic region to the plastic region is well matched. This transition is not  

an exact match, but as discussed previously, this is likely due to manufacturing tolerances. This is the most  

important portion of the curve for designing a BRB with the correct yield force and elastic stiffness. The  

model also captures the overall behavior well and identifies the possibility of asymmetry in the hysteresis.  

This is of high importance for future iterations of this device because the goal of this work is to produce a  

device with a hysteretic curve that matches the form of the prototype BRB, which usually has a high degree  

of symmetry. 

 

While the hardening model is not a perfect fit and the nonlinear geometric effects included in ABAQUS do  

not match the exact experimental results, the conclusion is that the proposed improvements to the numerical  

model are accurate enough in the areas that matter for this project that it will be beneficial for use in  

continued analyses. The focus of this stage of numerical updating is not on obtaining a numerical model  

that provides a highly accurate description of device behavior at all displacement levels. Rather, the goal at  

this phase in the project was to identify a geometric configuration of a yielding mechanism that can replicate  

the scaled parameter values of its prototype counterpart while still providing a symmetric hysteretic curve.  

This updated numerical model is useful in moving forward with the next phase in this project because it  

provides an adequate picture of the overall force-displacement behavior, as well as an accurate estimation  

of initial elastic properties of the model BRB. This numerical model will therefore be used to perform FE  

analyses of other brace shapes to determine if there is a different configuration of the physical yielding  

device that will perform in a manner more similar to that of the prototype BRB. 
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Figure 49. Analytical hysteretic curves including nonlinear geometric effects vs. experimental results. 
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Chapter 7 

 

7 Updated Model: The Rectangle-Type BRB 

Experimental results from chapter 5 and improved FE results from chapter 6 conclusively show that the 

initial design was inadequate for modeling BRB hysteresis at a large range of displacement values. While 

this means the initial model was not as successful as anticipated, these results still provided valuable insight 

into the proper design of a small-scale BRB counterpart. Building from this, the strengths of the original 

beam-type and ring-type design were combined to form the new rectangle-type BRB. Based on initial FE 

analyses using the improved material model and nonlinear geometric effects previously discussed, this new  

design was predicted to behave in a way similar to that of the large-scale BRB, as desired. Initial 

experimental results provide further proof of desirable performance of this new mechanism. 

7.1 Conceptual and Physical Design 

7.1.1 Targeted Improvements 

There are several targeted improvement goals for the new design of the small-scale BRB. The first and 

most imperative of these improvements is to mitigate the increased tensile capacity identified in the ring-

type specimen. A promising way to do this would be to force the deformed shape of the device to be similar 

in extreme compression as compared to extreme tension. This will encourage a similar mechanism of plastic 

deformation that will effectively lead to similar axial force capacities in both tension and compression. This 

is a strength of the previous beam-type mechanism discussed at the beginning of chapter 3. Recall Figure 

11 from chapter 3, which shows the conceptual model initially used in the beam-type formulation of  

predictive equations. As opposed to the ring-type mechanism, which deforms into an oval of varying degree 

depending on whether displacement is tensile or compressive, the bending beam will have a similar 

deformed shape at all instances due to the high stiffness at the connections (previously idealized as fixed 

connections with infinite stiffness). 

 

Another concern was that of the small-scale BRB geometrically fitting in the frame bay. This concern is 

mitigated by taking advantage of the strength of the ring-type BRB model. As previously shown in Table 

6, the ring-type model was expected to have a diameter much smaller than the length of the beam-type 

model. This can be attributed to the ring having a higher percentage of the central geometry experiencing 

high moment demands as opposed to the beam. A higher portion of the part yielding allows the ring-type 
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design to perform at the relatively low yield force and elastic stiffness required while still maintaining a 

compact geometric configuration. The rectangle-type device effectively utilizes two bending beams as 

opposed to the single bending beam used previously in the beam-type model. This increases the portion of 

the central yielding mechanism that is expected to dissipate energy. This increase in available yielding area 

should decrease the overall beam length as compared to the original beam-type model. Therefore, the 

rectangle-type BRB should have no issue fitting in the allowable space in the frame bay. 

 

Lastly, there was concern surrounding the manufacturing tolerance levels that affect the accuracy of the 

experimental parameters, as shown in chapter 5. One of the main issues is the percent error that may be 

attained if the part is nominally thin. The waterjet tolerance is an absolute measurement, so the larger the 

nominal width, the smaller the percent error in actual elastic stiffness, yield force, and yield displacement 

values. As previously documented in Table 6, the beam-type model produced larger required widths to fit 

the scaled parameterized BRB. While these predictive equations have been shown to be inaccurate due to 

modeling simplifications, it is still reasonable to expect that the use of a beam bending mechanism may 

increase the required part yielding width and therefore aid in reducing percent error due to manufacturing 

tolerances. 

7.1.2 Conceptual Validation 

Prior to performing any in-depth calculations, a cyclic analysis of the new rectangle-type design was 

performed in ABAQUS using the updated material model and including nonlinear geometric effects. This 

was a simple check to ensure there did not seem to be any excessive tensile or compressive capacity as seen 

in the previous ring-type model. Shown in Figure 50 is the hysteretic curve for a yielding plate with the 

rectangle-type geometry shown in Figure 51. The values of L and b are not calibrated to provide any goal 

elastic stiffness or yielding force values. This test was simply done to ensure the new design provided a 

symmetric hysteretic curve at large displacements. Since the hysteretic curve had the correct form, the 

design then proceeded to the next phase – calibration of the geometric parameters to obtain the proper 

elastic stiffness and yielding force required for the scaled specimen. 

7.2 Parameter Calibration 

In order to efficiently design the physical BRB to the dimensions necessary, it was vital that the predictive 

equations be more accurate than they were for the initial specimen. While a more detailed conceptual model 

would provide a better estimation of important parameters, even this is not accurate enough to exactly 

estimate required geometry for the BRB due to stresses and strains not being completely confined to the  
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Figure 50. Force vs. displacement of square specimen using improved numerical model. 

 

 

 

Figure 51. Physical rectangle-type device labeled with important design parameters. Only central yielding square 

shown for clarity of dimensions. 
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central square. While stresses will be concentrated in this area, the geometry of the entire plate is expected 

to somewhat impact the actual strength and stiffness. Therefore, a different approach was designed to 

accurately predict the elastic stiffness and yield force based on the length (L) and width (b) of the rectangle-

type BRB. These parameters are defined visually in Figure 51. The progression of work is as follows: 

• Define the form of an empirical equation to predict elastic stiffness and yielding force of the device. 

• Perform numerical monotonic tension tests in ABAQUS on a suite of training values for L and b. 

Determine the elastic stiffness, yield strength, and yield displacement for all tests. 

• Perform a nonlinear regression analysis using MATLAB to determine the values of all unknown 

constants in the predictive equations. 

• Calculate elastic stiffness and yielding force of the training data set using the predictive equations. 

Determine the percent error in the equations to examine the fit of the model. 

• Analyze the effectiveness of the predictive equations on a test set with different connecting widths. 

• Analyze the effectiveness of the predictive equations on a test set with values for L and b both 

smaller and larger than the extents of the training set. 

• Make any corrections necessary based on test set results. 

• Use the predictive equations to solve for required b and L for a small and large BRB. Evaluate this 

geometry in ABAQUS to determine adequacy of the predictive equations for future use. 

 

These steps are followed and the results presented in the subsequent sections. 

7.2.1 The Initial Form of the Empirical Equations 

The first and most critical step is defining the proper form of the empirical equations for elastic stiffness 

and yielding force. The final form of the empirical equations is presented below, followed by a qualitative 

discussion of the logical reasoning that led to this particular format. 
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Where: 

K  elastic stiffness

P  yielding forcey

=

=
  



92 

 

1 8

eff

C C  constants to be determined using regression analysis

w  length of connecting portion

b  width of bending beam

L  length of bending beam

L L w  effective length of bending beam

d  thickness of yie

− =

=

=

=

= − =

= lding plate

E  Young's modulus of the plate material

F  yielding stress of the plate materialy

=

=

  

eff

w
=

L

b
=

L





  

7.2.2 Qualitative Basis for Predictive Equations 

A combination of basic mechanics, qualitative analysis of part behavior, and quantitative contour diagrams 

from ABAQUS analyses provide logical proof for the form of the predictive equations. First, consider the 

known equations that govern the moment and deflection at midspan of beams subject to certain loading 

patterns and support conditions, as presented in Table 17. These equations are derived from basic mechanics 

and are known to accurately describe the midspan deflections and moments of the beams shown. While 

there are different support and loading conditions for each case, the form of the deflection equation and 

moment equation is similar. If the total load for cases 2 and 4 is considered to be 0P p L= , the deflection 

and moment at midspan for each case can be described by the equations below, with 1A  and 1B  

representing a multiplier specific to the loading and support conditions present. 
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Substituting 
31

I db
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=  into equations (7.3) and (7.4), the deflection equation can then be rearranged to 

produce a bending stiffness. The constant 2A  represents a new coefficient value. 
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Table 17. Midspan deflection and moment for different support and loading conditions. 

Case Support & Loading Condition 
Deflection at 

Midspan 

Moment at 

Midspan 

1 

 

3

mid

PL

48EI
 =  

mid
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=  

2 

 

4
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5p L

384EI
 =  

2

0
mid

p L
M

8
=  
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Using the same derivation described in chapter 3 to determine the force at which plastic moment is achieved, 

the midspan moment equation can be used to form an expression for the yielding force of the beam, with 

2B  representing a new coefficient value.  

 

2

y

y 2

F db
P B

L
=   (7.6)

It can therefore be deduced that for the four cases presented in Table 17, the elastic stiffness of the beam is 

dependent upon the material’s elastic modulus, beam width, beam thickness, and beam length. The yielding 

force is dependent upon the material yield stress, beam width, beam thickness, and beam length. These 

dependencies are reflected in the formulation of the predictive equations. However, the actual loading 

conditions, support conditions, and geometric parameters of the rectangle-type yielding plate are more 

complex than the simple loading cases and support conditions presented in Table 17. The beam ends are 

neither pinned nor fixed. Rather, they have some rotational stiffness provided by the top and bottom of the 

central square. Due to the special design of these top and bottom members, the relative stiffness of the 

bending beam as compared to the support members remains constant for all beam widths. This encourages 

the “support conditions” of the beam to act in a similar manner for all sizes of BRBs and will therefore aid 

in forming more accurate predictive equations. 

 

However, the deflected shape of the beam may still change as the width changes due to the stiffened central 

portion of the beam at the connection location. The equations in Table 17 account for a uniform cross-

section along the entire length of the beam. This is not the case. Not only is the load distributed across the 

connecting length, w, but this connection itself provides increased stiffness to the beam at that location by 

effectively increasing the width of the beam. This increase in stiffness at the center of the bending portion 

of the beam will affect both the maximum deformation and the distribution of stresses. This is clearly seen 

when comparing Figure 52 and Figure 53, which represent two very different stiffness values. Let us first 

compare the x-direction stress distribution. Figure 52 clearly shows bending stress in the top and bottom of 

the central square with a maximum stress of 33.4 ksi. There is negligible tensile stress in the connecting 

portions of the yielding plate. Figure 53 also shows appreciable bending stress in the top and bottom of the 

central square with a maximum stress of 36.8 ksi. However, in contrast to Figure 52, Figure 53 also shows 

high tensile stresses across the connecting length. These tensile stresses are at an average value of 

approximately 20 ksi, which is significant in magnitude. Now, let us shift focus to the y-direction stress 

distribution. Both figures show bending stresses distributed at predicted locations along the bending beam 

– at the connections and in the center. Both of these locations are expected to have high moment and 

therefore should experience high bending stress. Figure 52 shows an intersection of extreme compressive  
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Figure 52. Comparison of x- (left) and y-direction (right) stresses for L = 2.00 in. and b = 0.15 in. Stress in psi. 

 

 

Figure 53. Comparison of x- (left) and y-direction (right) stresses for L = 2.00 in. and b = 0.35 in. Stress in psi. 
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and extreme tensile stress at the locations of maximum bending, which implies the plastic moment capacity 

of the beam is well utilized. In contrast, Figure 53 shows a larger distribution of high stress areas and no 

intersection of extreme tensile and compressive stress across the bending plane. This suggests that plasticity 

is not as concentrated in the specimen with higher stiffness and the assumption of plastic moment capacity 

defining the onset of overall device yielding may not be as accurate. 

 

A third consideration in the formulation of the predictive equations was that the connection length, w, was 

set to be 0.375 inches for all sizes of model BRB. This affects the stress distribution, as discussed 

previously, but this also affects the deformation due to the percentage of the beam length that is loaded. In 

the case of a short beam length, more of the beam is loaded with a distributed axial load than if the overall 

beam length is larger. This will affect both the elastic stiffness and the yield force. If a greater percentage 

of the beam is loaded, both the midspan deflection and midspan moment decrease. This corresponds to an 

increase in both elastic stiffness and yield force. Therefore, this parameter must be accounted for in the 

final formulation of the predictive equation. 

 

After considering all of these influential factors, the form of the predictive equation was finalized. The use 

of Leff  as the main length parameter is justified by the fact that the actual bending portion of the beam is the 

portion which is not stiffened by the connection. Therefore, calculation of moment and deflection should 

account for only effective bending length. There are three distinct factors that effectively describe the 

behavior of the yielding mechanism of the rectangle-type BRB: a constant, a “load distribution” factor, and 

a “stiffness correction” factor. The first constant simply reflects the base yielding force and elastic stiffness 

of the mechanism. The other two constants are more complex. 

 

The “load distribution” factor reflects the constant value of w combined with the changing value of L. As 

previously shown in Table 17, the overall maximum deflection and midspan moment both decrease with 

an increase in the load distribution if considering the total resultant load to remain unchanged. Therefore, 

this factor either raises or lowers the base value of strength and stiffness to account for a greater or lesser 

load distribution. 

 

The “stiffness correction” factor reflects the previous qualitative discussion of the stress distribution within 

the beam as a variation of relative stiffness. A shorter beam length combined with a larger beam width 

increases the stiffness of the bending portions of the beam and thus increases the tensile (or compressive) 

force in the connecting portion of the yielding plate and more evenly distributes the plastic response of the 

beam over more of the beam length. Conversely, a combination of a long length and small width decreases 
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the stiffness of the bending portion of the beam, thus decreasing the amount of stress concentrated in the 

connecting portion of the yielding plate and intensifying the concentration of plasticity to specific plastic 

hinge locations within the beam. Applying this stiffness correction factor to the width and effective length 

individually allowed the regression analysis more flexibility to provide a more accurate fit of the training 

data. 

7.2.3 Suite of ABAQUS Analyses 

The suite of training data used to initially fit the empirical equations needed to be composed of enough tests 

that the behavior of the device over a range of elastic stiffnesses and yield forces could be thoroughly 

investigated. However, it was also important that this training data did not include outliers representing a 

combination of parameters unlikely to be used in the BRB analog, as the inclusion of such outliers would 

ultimately reduce equation accuracy. After analyzing a few initial rectangle-type plates, the lower and upper 

bounds of length were set to 2.00 and 3.00 inches, respectively. The lower and upper bounds for width were 

set to 0.15 and 0.45 inches, respectively. A list of all 24 training tests is presented in Table 18. The same 

procedure described in chapter 4 and graphically shown in Figure 18 for determining elastic stiffness, yield 

force, and yield displacement was followed for each test. Following the mesh refinement study previously 

conducted for the ring-type yielding plate, 8 CPS4R elements across the bending width were used for each 

ABAQUS analysis, along with the same material model and simplified boundary conditions previously 

discussed. 

7.2.4 Results of Regression Analysis 

Using the suite of specimen geometries, calculated elastic stiffnesses, yield forces, and yield displacements, 

MATLAB nonlinear regression capabilities were used to determine the constants C1-C8. Placing these 

constants in their appropriate places in equations (7.1) and (7.2), the predictive equations as solved by the 

regression analysis are seen below, with variables defined in the same manner as previous.
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While it is not possible to obtain a simple closed form solution for the yield force and elastic stiffness to 

validate the constants found via linear regression, it is important to qualitatively inspect the equations for 

any notable flaws. One noticeable disagreement between the previous qualitative discussion and the final 

solution is the negative value of C6. Previously, it was discussed that a higher percentage of a beam being  
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Table 18. Training data for empirical equations. 

Test 

Number 

L 

(in) 

b 

(in) 

w 

(in) 

K 

(lb/in) 

Py 

(lb) 
δy (in) 

PE, K 

(%) 

PE, Py 

(%) 

PE, δy 

(%) 

1 2.00 0.15 0.375 12,674 159 0.0125 -3.76 -2.55 1.26 

2 2.00 0.20 0.375 23,225 271 0.0117 -1.37 -1.59 -0.22 

3 2.00 0.25 0.375 35,784 407 0.0114 0.06 -0.64 -0.70 

4 2.25 0.15 0.375 9,001 130 0.0145 -2.38 -0.26 2.17 

5 2.25 0.20 0.375 17,080 226 0.0132 -0.79 -0.35 0.44 

6 2.25 0.25 0.375 27,171 343 0.0126 -0.08 -0.07 0.01 

7 2.25 0.30 0.375 50,827 635 0.0125 0.69 0.55 -0.15 

8 2.50 0.15 0.375 6,582 111 0.0168 -0.77 0.67 1.45 

9 2.50 0.20 0.375 12,844 193 0.0150 0.17 0.46 0.29 

10 2.50 0.25 0.375 20,949 295 0.0141 0.34 0.35 0.00 

11 2.50 0.30 0.375 30,470 416 0.0137 0.32 0.26 -0.06 

12 2.50 0.35 0.375 41,006 553 0.0135 0.16 0.34 0.18 

13 2.50 0.40 0.375 52,095 708 0.0136 0.07 0.12 0.04 

14 2.50 0.45 0.375 63,339 874 0.0138 0.10 0.13 0.03 

15 2.75 0.25 0.375 16,387 258 0.0158 1.19 0.82 -0.36 

16 2.75 0.30 0.375 24,285 366 0.0151 0.81 0.56 -0.24 

17 2.75 0.35 0.375 33,297 490 0.0147 0.21 0.15 -0.06 

18 2.75 0.40 0.375 43,048 628 0.0146 -0.26 -0.14 0.12 

19 2.75 0.45 0.375 53,177 780 0.0147 -0.52 -0.22 0.30 

20 3.00 0.25 0.375 13,009 229 0.0176 2.20 1.04 -1.14 

21 3.00 0.30 0.375 19,607 326 0.0166 1.39 0.55 -0.83 

22 3.00 0.35 0.375 27,276 437 0.0160 0.54 0.22 -0.32 

23 3.00 0.40 0.375 35,773 564 0.0158 -0.23 -0.35 -0.13 

24 3.00 0.45 0.375 44,805 702 0.0157 -0.77 -0.58 0.19 
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loaded corresponds to a higher stiffness value. Intuitively, it then follows that the factor multiplying α 

should be positive. However, upon further inspection, the negative value does not disqualify the solution. 

While α is the factor representing the “load distribution” factor, this is not the only portion of the equation 

accounting for the connecting width. The width of the connecting portion is also implicitly included in the 

“stiffness correction” factor because the magnitude of w directly impacts the magnitude of Leff, which in 

turn directly impacts β. This complexity means that the calculation of C6 is not straightforward and therefore 

supports the integrity of the negative constant value. 

 

Although qualitative understanding is important, quantitative proof is also useful in validating the final 

form of equations (7.7) and (7.8). Consider a rectangle-type BRB defined by the length, L = 2.50 inches 

and b = 0.30 inches. Now, consider one situation in which the connecting width, w, is 0.375 inches and a 

second situation in which the connecting width 0.400 inches. Because the larger connecting width both 

increases the load distribution factor and decreases the effective bending length, the overall elastic stiffness 

should be higher for this case. Using equations (7.7) and (7.8), we do indeed find this to be the case. In the 

first case, the yield force and elastic stiffness are calculated as 417 lbs. and 30,566 lb./in., respectively. In 

the second case, these values are calculated as 431 lbs. and 31,214 lb./in. This quantifiable increase, while 

not yet verified as accurate, does prove that the equation itself does produce a higher yield force and higher 

elastic stiffness value for a greater connecting width. This makes physical sense, so the regression analysis 

is considered trustworthy. 

 

Table 18 shows the parameter values calculated using numerical analysis, as well as the error in parameter 

estimation using equations (7.7) and (7.8). The overall absolute maximum error is 3.76%, 2.55%, and 2.17% 

for the elastic stiffness, yield force, and yield displacement, respectively. The mean error is much lower for 

all three parameters. A scatter plot showing the error in graphical form is show in a later section. These 

error values prove that the equations do a good job of predicting parameter values using the training data, 

but this does not validate the effectiveness of these equations for lengths and widths not specific to the 

training set. Therefore, the next step in the solution process was to analyze different combinations of L, b, 

and w to further validate the predictive equations. 

7.2.5 In-Bounds Test Set 

This set of test data is termed the “in-bounds” test set because all values of L and b are chosen such that 

they do not extend past either the lower or upper bound of the training data. This will test the effectiveness 

of the data for interpolation. In addition, values of w other than the original connecting width of 0.375 

inches are tested. The complete set of test data geometry, as well as the ABAQUS calculated values of 
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elastic stiffness, yield force, and yield strength are presented in Table 19. None of these lengths or widths 

were previously used in the training data, and the values of all three parameters under consideration are 

within a reasonable range of the training data, so it is expected that the previous empirical equation will fit 

the data well. 

 

While the original empirical equations fit the test data within reasonable error, the error in yield force was 

higher than anticipated with a maximum of approximately 6%. This is an acceptable error in experimental 

testing since there are so many sources of error possible in the experimental test; however, it is preferable 

to minimize the error in numerical calculations so that the overall error is ultimately decreased. Figure 54 

graphically presents the percent error in yield force vs. the ABAQUS calculated yield force value. The error 

is smallest for tests 4 and 5, which are also the test points with a connecting width closest to the original 

0.375 inches. This provides proof that an adjustment must be made to equations (7.7) and (7.8) in order to 

accurately predict all three parameters if the connecting width by necessity must be changed. 

 

The solution to this is provided by adding a correction factor to the “load distribution” factor already in the 

equation. This width correction factor, λ, accounts for the difference in actual connecting width and 

assumed connecting width based on the constant value for w used in the training data set. The correction 

factor is seen in the new predictive equations as: 
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Where: 0(w w)

L


−
=  and 0w 0.375 inches=  

If the actual connecting width is larger than the original calibration width, λ will be negative. When 

substituted into equations (7.9) and (7.10), this will increase the yield force and decrease the percent error 

in calculation. When the actual width is less than the calibration width, the opposite will occur. If the actual 

width is the same as the calibration width, λ is equal to zero and no change occurs to either equation. Figure 

55 shows the improvement in yield force error when using this correction factor. 

7.2.6 Out-of-Bounds Test Set 

Another potential concern when using the predictive equations is the validity of the equation when either 

the length or width is outside the upper or lower bounds of the training data set. The impact of this is  
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Table 19. "In-bounds" test data set. 

Test Number L (in) b (in) w (in) K (lb/in) Py (lb) δy (in) 

1 2.10 0.175 0.315 14,435 187 0.0129 

2 2.20 0.225 0.330 22,159 284 0.0128 

3 2.30 0.225 0.345 20,122 268 0.0133 

4 2.40 0.275 0.360 27,846 371 0.0133 

5 2.60 0.325 0.390 33,018 462 0.0140 

6 2.70 0.375 0.405 40,421 579 0.0143 

7 2.80 0.375 0.420 37,711 556 0.0147 

8 2.90 0.425 0.435 44,734 677 0.0151 

 

 

 

 

Figure 54. Original error in calculated yield force for in-bounds test data. 
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Figure 55. Error in calculated yield force when considering width correction factor. 
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explored in this section. Six data points were chosen for this test set – each corresponding to one or both of 

the parameters in question being extrapolated. A limit of 15% deviation from original bounds was set as 

the maximum, as it is not expected that the original estimation of necessary extents for the geometric 

parameters will have greater error than this. Table 20 shows the lengths and widths chosen, as well as the 

ABAQUS calculated values for all parameters of interest. The results of the equation fit are shown in the 

following section in conjunction with a final discussion on the strengths and weaknesses of the empirical 

equations as they apply to this work. 

7.2.7 Conclusions Drawn based on Empirical Equations 

The previous sections discussed the procedures used to arrive at the final form of the empirical equations, 

as well as two different groups of test data used to validate the usefulness of the equations for future BRB 

fabrication. Figure 56 through Figure 58 show the error in each estimated parameter using equations (7.9) 

and (7.10). Most data points are estimated within ± 2% of the ABAQUS calculated value; however, there 

are notable exceptions. The most obvious of these exceptions are the three data points in the out-of-bounds 

test data set that utilize lengths and widths below the lower limit of the training set. The error in the predicted 

elastic stiffness and yield force is approximately 4 – 8%. This is very high when considering most other 

predictions are below 2% error. This shows that the predictive equations do not hold true if extrapolating 

past the lower bound of either geometric parameter. While this is not ideal, it is not an area of concern 

because the combination of such small width and length are not desirable to produce the elastic stiffness 

and yield force of the scaled BRBs needed in this project. 

 

In addition to this, it is noticeable that there is a poorer fit to the data for lower elastic stiffness and yield 

force in general. But, these low stiffness values and higher estimation error generally correspond to a width 

values of 0.15 inches. This small of a width is not expected to be used for model BRBs necessary for this 

work, so the larger error in this instance is considered acceptable. In addition, the extrapolated data points 

past the upper bounds of the training data limits appear to be well estimated. These results provide 

confidence that the final form of the predictive equations will be highly useful in determining required 

dimensions for model BRBs based on the values of scaled strength and stiffness requirements even if the 

necessary strength and stiffness values are higher than currently expected and require a larger geometry. 

7.3 Experimental Testing of the Rectangle-type BRB 

The tests presented in this section were completed in an effort to validate the numerical model using 

experimental data. The new set of drawings for these experimental specimens can be found in Appendix B. 

The test specimens are labeled as “T3SX”, with “X” representing the specimen number. Specimens number  
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Table 20. Out-of-bounds test data set. 

Test Number L (in) b (in) w (in) K (lb/in) Py (lb) δy (in) 

1 2.00 0.128 0.375 8,815 116 0.0132 

2 1.70 0.150 0.375 19,973 207 0.0104 

3 1.70 0.128 0.375 14,302 154 0.0108 

4 3.00 0.518 0.375 57,410 906 0.0158 

5 3.45 0.450 0.375 33,299 593 0.0178 

6 3.45 0.518 0.375 43,800 771 0.0176 

 

 

 

 

Figure 56. Percent error in stiffness estimation of all data points. 
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Figure 57. Percent error in yield force estimation of all data points. 

 

 

 

Figure 58. Percent error in yield displacement estimation of all data points. 
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1 and 2 are small BRBs, and specimens 3 and 4 are large BRBs. Prior to testing, measurements of all 

specimens were taken to determine the amount of tolerance in the waterjet cutting. These tolerances are 

shown in Table 21. Similar to the ring-type BRB calculations, tolerance levels were determined by 

subtracting the nominal dimension from the measured dimension. Therefore, a negative tolerance means 

the actual value was smaller than nominal, and a positive tolerance means the actual value was larger than 

nominal. Measurements were taken at multiple location, but only the average is shown for concise 

presentation. 

 

Using the equations presented, the required length and width of a small and large BRB can be estimated 

using the scaled elastic stiffness and yield force values already obtained and presented in Table 4. The 

calculated geometric values are seen in Table 22, along with an estimate of the expected parameter values 

using ABAQUS analysis. The difference in the goal values from Table 4 and the estimated values in Table 

22 are all less than 1%, which further validates the regression analysis used to obtain the form of the 

predictive equations. The next step in evaluating this new design was to experimentally test the small and 

large BRB. The experimental sizes of both specimens are presented in Table 23 along with an estimate of 

all parameters of interest. The length of the large experimental specimen is slightly different than the length 

estimated by the predictive equations because these experimental specimens were cut prior to completion 

of the full regression analysis. However, the estimated parameter values obtained in ABAQUS are still 

within 1% of the required values for the experimental specimens, so they will still provide useful results. 

7.3.1 Small Rectangle-type BRB Experimental Results 

Two experimental tests were completed for the small BRB. Both tests used the same displacement control 

pattern as described in chapter 5 for T2SX specimens, with Δby = 0.0143 inches and Δbm = 0.13 inches. The 

goal of these tests was threefold: (1) provide preliminary validation of the predictive equations, (2) test 

repeatability of the device, and (3) provide an experimental comparison for the entirety of the numerical 

force-displacement curve. The results of these 2 tests, along with their relevance to the stated goals are 

discussed in the following paragraphs. 

 

The first goal of experimental testing was to provide preliminary validation of the predictive equations. 

This was done by calculating the elastic stiffness, yield force, and yield displacement of each experimental 

specimen to compare to the numerical results. A graphical comparison of the initial cyclic behavior of the 

two experimental test specimens and the corresponding ABAQUS specimen is seen in Figure 59. Table 24 

lists the calculated elastic stiffness, yield force, and yield displacement for all three results. When 

calculating these parameters, no monotonic data was available as had been used in the initial parameter  
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Table 21. Waterjet tolerance for rectangle-type BRB specimens. 

Identifier b (in.) Tolerance (in.) L (in.) Tolerance (in.) L + 4b (in.) Tolerance (in.) 

T3S1 0.173 0.002 2.293 -0.002 2.979 0.000 

T3S2 0.170 -0.001 2.293 -0.002 2.976 -0.003 

T3S3 0.342 0.000 2.662 -0.003 4.030 -0.003 

T3S4 0.342 0.000 2.664 -0.001 4.033 0.000 

 

 

 

Table 22. ABAQUS estimated parameter values for BRB using predictive equations. 

Specimen L (in.) b (in.) Km (lb./in.) Py,m (lb.) δy (in.) 

Small 2.295 0.171 11,428 162 0.0142 

Large 2.671 0.342 33,970 487 0.0143 

 

 

 

Table 23. ABAQUS estimated parameter values for BRB using experimental geometry. 

Specimen L (in.) b (in.) Km (lb./in.) Py,m (lb.) δy (in.) 

Small 2.295 0.171 11,428 162 0.0142 

Large 2.665 0.342 34,141 489 0.0143 
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Figure 59. Graphical comparison of initial cyclic behavior for small rectangle-type BRB. 

 

 

 

Table 24. Cyclic experimental results vs. cyclic ABAQUS results – small specimen. 

Identifier Km (lb./in.) Py,m (lb.) δy (in.) 

T3S1 10,960 160 0.0142 

T3S2 10,991 158 0.0138 

ABAQUS 11,433 165 0.0144 
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calculations. Therefore, an approximate yield force and yield displacement was calculated by finding the 

intersection of the initial elastic behavior and the plastic behavior at the beginning of the first cycle at an 

amplitude of Δb = 0.065 inches, since this cycle was the first cycle to extend fully into the plastic range. 

Because some hardening has occurred by this point, the calculated yield point is slightly larger in magnitude 

than when calculated using a monotonic tension test, as is obvious when comparing the ABAQUS estimated 

values in Table 23 and Table 24. However, this estimation still provides a valid comparison between 

numeric and experimental parameters if performed in the same manner for all data sets. 

 

The ABAQUS estimate matched the experimental data within approximately 4% for all parameters in both 

tests. Graphically, the behavior is also very similar between experimental and numerical analysis. There is 

some apparent hysteretic area in the experimental specimens at the first cyclic amplitude, but this is 

reasonably explained by compliance in the overall fixture due to the more complex interaction between the 

yielding plate and all physical connecting elements that was not modeled in the numerical analysis. Even 

with several simplifications to the numerical model, ABAQUS results still provide a good estimate of actual 

part behavior in the elastic and initial plastic ranges. The high degree of accuracy in numerical estimation 

of elastic parameters provides confidence that the predictive equations are accurate and can be used to 

determine model geometry for other sizes of BRB specimens in later phases of this project. 

 

The second goal of these experimental tests was to determine if the device behavior was repeatable. 

According to the results in Table 24 and Figure 59, the behavior is very repeatable. All estimated parameters 

for T3S1 and T3S2 were very close in value, so it is reasonably concluded that the device behavior is well 

defined and repeatable. It is also worth noting that the rectangle-type device appears to be more accurately 

cut with the waterjet device as compared to the ring-type mechanism. This is obvious when comparing the 

tolerance values from Table 14 to those in Table 21. The reason for this improved accuracy is likely two-

fold. The waterjet control is likely improved when cutting a less complex shape, so the straight lines of the 

rectangle-type device are beneficial. Secondly, physical measurement of the device geometry is more 

straightforward when measuring length and width as compared to diameter, so there is likely less human 

error in the measurements for the rectangle-type device. This improved accuracy is beneficial when 

considering the need to manufacture several small-scale devices that provide the same force-displacement 

behavior. 

 

The third goal of these experimental tests was to obtain data for comparison against the entire numerical 

force-displacement curve. The comparison of the entire hysteretic curve for T3S1, T3S2, and the numerical 

analysis is shown in Figure 60. The numerical analysis does a very good job fitting the experimental data  
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Figure 60. Comparison of entire hysteresis for small rectangle-type BRB. 
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up until a displacement amplitude of 0.13 inches. After this, the numerical estimate of force capacity is too 

low. This shows that the updated numerical model presented in chapter 6 was not adequate to capture the 

entirety of the behavior of the rectangle-type BRB. This is not unexpected because of the limited data that 

was available when forming the previous material model. The only cyclic data previously available was 

that of the ring-type BRB, so this is what was used to predict the hardening behavior of the rectangle-type 

BRB. However, the cyclic behavior of the ring-type specimen was a combination of the material behavior 

and the complex geometry of the part. It is therefore not directly transferable to the new device geometry. 

Even though the material model is not well suited to predict the axial force capacity of the rectangle-type 

BRB at high displacements, it is reasonable to conclude that a simple adjustment to the material input 

parameters may be made in ABAQUS to better fit the experimental results. This change in numerical 

modeling will be a part of future work to provide better estimates of experimental behavior for calibration 

of the OpenSees model to be used for the larger overall project. 

 

The last notable result from the experimental tests of specimen T3S1 and T3S2 is the inconsistency in 

connection tightness. This is obvious when comparing the hysteresis of T3S1 with that of T3S2 in Figure 

60. T3S1 still has some slip present in the connections, which is seen graphically when the curve changes 

displacement without a large change in force. This happens consistently at approximately 100 lbs. in tension 

and 150 lbs. in compression. This slip is no longer visible for specimen T3S2. This difference is due to 

human error in the tightening of the bolted connections. The bolts at either end of the yielding plate (bolts 

B1-B4 in Figure 24) were manually tightened by feel. There is inherently a lot of error in this. While the 

goal was to tighten these bolts as much as possible, there was an obvious difference in tightness that led to 

slip in the first experimental test. It is therefore imperative to have a method of tightening the connections 

that provides a higher degree of certainty for the actual slip resistance of the connection. This is an area of 

future work. 

7.3.2 Large Rectangle-type BRB Experimental Results 

It was intended to capture accurate results from large BRB tests using specimens T3S3 and T3S4; however, 

there was notable error in the testing of T3S3 that led to the test being stopped. This error was due to the 

poor connection strength of the bolts, as discussed previously. Therefore, the connection of the yielding 

plate to the grip plate was redesigned and specimen T3S4 was tested with the new connection detail. The 

new connection detail featured 1/4-28 Grade 8 bolts in place of the #10 machine screws previously used at 

locations B1 – B4 in Figure 24. These bolts were each torqued to 15 ft-lb, and the larger bolts (location A1 

& A2 in Figure 24) were torqued to 45 ft-lb to ensure adequate preload force to resist slip in the connections. 

This improved design detail is shown in Figure 61. 
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Figure 61. Updated connection detail to resist slip. 
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Specimen T3S4 was then tested using the same displacement control as used in previous tests. The results 

in the elastic zone up to the initial transition to the plastic zone are seen in Figure 62 for both T3S4 and the 

ABAQUS numerical estimation. The estimated value of elastic stiffness, yield force, and yield displacement 

are seen in Table 25. The ABAQUS estimation was higher than the experimental data for all three 

parameters, but the maximum percent error was only 0.80%. This shows there is a strong correlation 

between the parameter estimates from the numerical simulation and those obtained experimentally. This 

provides validation of the rectangle-type parameterized design for both small and large model BRBs. 

 

Figure 63 shows the full hysteretic curve of both the experimental specimen and the ABAQUS analysis. 

Similarly to the observation from the small specimen, it is clear that the material hardening model needs to 

be updated to better capture the entire hysteretic behavior of this device. Even though there are still numeric 

updates to be done, this experimental result clearly shows the symmetric behavior of the model BRB at 

multiple displacement amplitudes, which was the overall desired outcome of these tests.  

7.4 Conclusions on the Rectangle-type BRB 

Initial experimental tests of the small-scale BRB provide confidence that this design will yield an 

appropriately scaled hysteretic curve that mimics its large-scale counterpart. Figure 64 shows the 

comparison of the small BRB to the large BRB. The behavior is the same, with the large BRB acting as a 

scaled version of the small BRB. This is the goal of this work, so these initial experimental tests provide 

validation of the completion of this goal. The asymmetric behavior of the ring-type BRB is not seen in 

either size of specimen, showing this issue has been mitigated with the design updates. The predictive 

equations also provide reasonable geometric values for a range of scaled specimens that are large enough 

to be accurately cut with the waterjet machine but are small enough that they will fit in the overall frame 

bay when used in future shake table testing. The results presented in this chapter conclusively provide 

numeric evidence that supports the use of this device to replicate the prototype BRB. 
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Figure 62. Graphical comparison of initial cyclic behavior for large rectangle-type BRB. 

 

 

Table 25. Cyclic experimental results vs. cyclic ABAQUS results - large specimen. 

Identifier Km (lb./in.) Py,m (lb.) δy (in.) 

T3S4 33,870 493 0.0144 

ABAQUS 34,141 495 0.0145 
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Figure 63. Comparison of entire hysteresis for large rectangle-type BRB. 

 

 

 

Figure 64. Comparison of small and large BRB experimental hysteretic curve. 
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8 Conclusions & Future Work 

The work presented in this thesis is a compilation of the design development process for a small-scale BRB. 

It is a part of a larger project that aims to evaluate the resiliency of strongback braced frames (SBF) when 

resisting dynamic loads during seismic events. Small-scale experimental shake table tests will be performed 

as part of the project. The main source of energy dissipation in SBFs are buckling restrained braces (BRB). 

While there is extensive literature documenting both large-scale BRB functionality and the use of small-

scale testing, to the best of the knowledge of the author, there is no literature focused on the design and 

validation of a BRB at a scale small enough for use in the planned shake table tests. Therefore, the goal of 

this work was to design a geometrically dissimilar but functionally similar device that produced a properly 

scaled, symmetric force-displacement curve characteristic of BRBs. 

 

The first step in this process was the identification of required scaling ratios. A geometrically similar model 

was not necessary, as the main goal of this work is to model the strength and stiffness of the SBF in order 

to evaluate its global response to seismic load demands. The scaling ratios were chosen such that the size 

of the device is reasonable for assembly while still maintaining a required seismic load less than the 

maximum payload of the shake table available for testing. Following these decisions, an initial iteration of 

the small-scale device was discussed. This device was designed to dissipate energy through flexural 

yielding and was initially sized using moment and deflection relationships from basic mechanics. However, 

the required geometry of this device was larger than desired, so it was abandoned in favor of the colinear 

ring-type yielding device. 

 

The ring-type device was still formulated to dissipate energy through flexural bending, but the geometry of 

the central yielding portion of the device was circular as opposed to beam-like in nature, which allowed the 

device to better fit in the frame bay of the overall structure. The ring-type device was initially sized using 

an approximation from basic mechanics, refined using ABAQUS finite element software, and eventually 

tested experimentally. Errors in the initial numerical analysis and material hardening model were captured 

during the experimental tests, and the numerical model was updated to better reflect the actual device 

behavior. The ring-type device was ultimately shown to provide an asymmetric response due to differences 

in the deformed shape and stress distribution at extreme tension as compared to extreme compression. 

 

Because of this, a new rectangle-type device was designed. This device was first tested numerically using 

the refined finite element model to ensure an expected symmetric response at high displacement levels. 

Once this was confirmed, a suite of ABAQUS analyses were utilized in a nonlinear regression analysis to 
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determine the form of predictive equations that would accurately calculate required BRB geometry. The 

device was then experimentally tested to determine the accuracy of the numerical estimate of its behavior. 

The parameterized elastic stiffness, yield force, and yield displacement of both a small and large size of 

BRB were determined to be within a reasonable range of accuracy, which lends validity to the overall 

design and provides confidence in future work. 

 

There are many potential pathways of future work to broaden the impact of the model BRB. The main area 

of future work as it pertains to the overall project is continuation of numerical updating. The hardening 

model used in the current ABAQUS design performs well for estimation of the elastic stiffness and yield 

force of the BRB. However, it does not well match the entire experimental hysteretic curve. This can be 

addressed by utilizing an OpenSees numerical model rather than continued updating of the ABAQUS 

model. This is a favorable option because OpenSees is the program better fit to overall numerical analysis 

of the SBF. Development of an equivalent uniaxial stress-strain relationship to fit the behavior of the model 

BRB would facilitate numerical evaluation of a small-scale SBF that utilized this BRB device. 

 

There is also potential for exploration of the device functionality using different materials, or with slight 

changes to the yielding plate geometry. As already discussed, changing the connecting width, w, was shown 

to have a rather significant impact on the effectiveness of the yield force and elastic stiffness predictive 

equations. There is potential that other changes in geometry or material parameters may have a similar 

impact. There are still many areas of research that need to be explored for further expansion of the 

understanding of this small-scale device. However, the experimental success of this design has proven this 

device can provide an accurately scaled analog of prototype BRB behavior. This design will be used as the 

inelastic energy dissipation mechanism in shake table tests, which are an integral part of the overall project. 
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