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Abstract 

Vesta and Vesta-like asteroids have been convincingly linked, through visible and near-
infrared (VNIR; 0.7 - 2.5 µm [micron]) spectral analysis, to a clan of basaltic achondritic 
meteorites – howardites, eucrites, and diogenites (HEDs). VNIR reflectance spectra of 
V-type asteroids and HED meteorites have two absorption features centered near 1 µm 

(Band I) and 2 µm (Band II) caused primarily by Fe2+ [iron] and Ca2+ [calcium] cations 
in pyroxene. Previous studies have shown a correlation between the mol% Fs and Wo 
with the central wavelengths of Band I and Band II, hereafter called Band I Center 
(BIC) and Band II Center (BIIC). This dependency on mineral composition allows for 
the generation of calibration equations that link BIC and BIIC to mol% Fs and Wo, 
which can be applied to estimate the mineralogy of V-type asteroids from their NIR 
spectra. The ability to accurately determine BIC and BIIC wavelength positions is 
dependent on the signal-to-noise ratio (SNR) of the spectrum. The typical SNR of 
asteroid spectra is SNR ~ 50, noticeably lower than the SNR of meteorite spectra, which 
is about ten times higher. Sanchez et al. (2020) artificially reduced the SNR of the 
ordinary chondrite meteorite spectra to explore mineralogical determinations using S-
type asteroid spectra of comparable SNR. Sanchez et al. (2020) also extended the 
applicability of S-type calibration equations to incomplete spectral data sets lacking 
visible data or having unreliable/incomplete data between 2.4 - 2.5 µm. 

Here I performed a similar analysis on HEDs and V-type asteroids using a reduction in 
SNR for HED meteorite spectra. In addition, I used six versions of each spectra, 
covering wavelength ranges from five different terminal wavelengths (~0.75 and 0.8 µm 
for Band I; 2.4, 2.45, and 2.5 µm for Band II), mimicking incomplete spectral data sets. 
Like Sanchez et al. (2020), I found that the decreased SNR calibration equations mostly 

yielded a lower R2, and an increased rms error, compared with their high SNR 
calibrations. I also created calibration equations using the minimum of Band I as an 
alternative to the center of Band I, and explored the efficacy of those equations. When  
applied to V-type asteroids, I found that the derived mineralogy from Band I is 
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systematically higher than that of Band II, but that averaging the results from both 
bands gives mineralogical results for the V-type asteroids most consistent with those of 
the HEDs. I discuss the potential reasons for this discrepancy, including SNR, 
temperature effects, the overall slope of the reflectance spectra, and space weathering. 
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Chapter 1  ☽  Introduction 

Our solar system comprises not only the eight planets with their moons revolving 
around the Sun, but also minor bodies such as comets and asteroids. Asteroids are rocky 
bodies that coalesced in the early stages of the solar system’s evolution. There are 
millions, ranging in size from 1 meter across to almost 1000 km across (Rubin and 
Grossman, 2010). Most of them inhabit the Main Asteroid Belt (MBA), an area that 
spans much of the space between Mars and Jupiter. The second largest asteroid, 4 
Vesta, was discovered in 1807 and occupies the MBA. Its mean diameter is 525 km 
(Russell et al. 2012) and is the brightest asteroid visible from earth, due to it’s 
extremely high geometrical albedo of 0.423 (Tedesco et al. 2004).  
 Studying the evolution of the asteroids both in terms of chronology and distance 
from the Sun improves our understanding of the evolution of our solar system, which 
can then inform our models of solar systems other than ours. As the solar system 
evolved, asteroids migrated, collided, dismantled and reassembled. As they migrate 
closer to or further from the Sun, they sometimes are effected by, for example, the 

mean-motion resonances with Jupiter, or the 𝜈6 secular resonance of Saturn, which can 

eventually act to forcibly eject asteroids from their habitual motion. Observations of 
asteroids near these resonance points suggest that debris from these types of asteroids 
may have eventually reached the earth as meteorites. Thus, studying the inclinations, 
eccentricities and orbital radii of asteroid families, and matching those types with 
meteorites, can elucidate  our comprehension of the evolution of the solar system. Most 

of the V-type asteroids lie between the Jovian 3:1 and 𝜈6 resonances, and are thus 

situated in a manner conducive to their potential ejection from the MBA (Wisdom 1985, 
(Migliorini et al. 1997). 
 High-quality reflectance spectra have been obtained for hundreds of asteroids, and 
many of these resemble Vesta’s spectrum. The asteroids whose spectra resemble Vesta 
are thus thought to have come from Vesta, and are dubbed V-type asteroids. Since 
Vesta has a massive crater that spans almost the diameter of Vesta itself, and is 19 km 
deep, then Vesta must have been struck by a large asteroid or other solar system body, 
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which then excavated a large portion of its mantle and interior. The dimensions of this 
crater indicate excavation of ~106 km3 of rock, which is more than enough to account for 
the known V-types (Thomas et al. 1997). A large part of this thesis is the examination 
of the spectra of 17 V-types (including Vesta).  
 McCord et al. (1970) found similarities in the spectral reflectance between Vesta 
and a group of mafic silicate meteorites called the HEDs (howardites, eucrites and 
diogenites). Over the ensuing decades, numerous studies have been performed linking 
the V-types to the HEDs (Consolmagno and Drake, 1977; Binzel et al. 1997; Gaffey 
1997). There is substantial evidence that the HEDs may have originated in Vesta 
(Consolmagno and Drake 1977; Binzel and Xu 1993; Thomas et al. 1997; Drake 2001; 
McSween et al. 2013). It is also possible that some HEDs originated from a different 
parent body other than Vesta (Binzel and Lazarro 2000; Hardersen et al. 2004), as the 
dynamical properties of some V-type asteroids make it difficult to explain how these 
asteroids might have emerged from Vesta — that is, there may be other V-types that 
arose during the solar system’s evolution independently of Vesta.  
 A few asteroids, including Vesta, were large enough to have differentiated in the 
early solar system, as a planet does, due to the heat from, for example, 26Al, and 
gravitational forces, acting on its geochemical makeup. Thermal metamorphism is 
responsible for heterogeneous petrologies on Vesta, which mirrors the variety of 
compositions among HEDs (Yamaguchi et al. 1997, McSween et al. 2013). HEDs are 
achondrites, which means that the chondrules present in other types of meteorites, such 
as OCs (ordinary chondrites), are not present since they have melted in their parent 
body. This thesis attempts to improve techniques for linking HED meteorites with their 
probable V-type parent asteroids, which can then shed light on how and in what part of 
the solar system the solar nebula behaved to produce various kinds of protoplanets, 
which then were disrupted in the chaotic early environment of the solar system (Michel 
et al. 2015).  
 The spectra of V-types and HEDs contain two prominent absorption features 
centered around 1 and 2 µm, called Band I and Band II, respectively (see Figure 1). The 
electronic field transitions in the Fe2+ and Ca2+ cations in pyroxene are the main cause 
for these features (Clark, 1957; Burns, 1970; Adams, 1974; Cloutis and Gaffey, 1993; 
Burns, 1993). The relative amount of iron and calcium cause the absorption features to  
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Figure 1: A graphical representation of the red edge problem. The blue and red hued shaded areas 
demonstrate how the choice of blue and red edge, respectively, affect the Band I and Band II straight-
line continua.



slightly change in shape and position. The pyroxene quadrilateral is a map of the three 
end members of pyroxene: the iron-rich ferrosilite (Fs), magnesium-rich enstatite (En), 
and calcium-rich wollastonite (Wo — which doesn’t occur as an end-member in nature). 
Band parameter analysis can be used to locate the band centers (Band I center, or BIC; 
and Band II center, or BIIC) of the 1- and 2-µm absorption features of a mafic silicate 
object’s reflectance spectrum. Since the band centers have been linked to the amount of 
iron and calcium contained in these objects, we can make mineralogical determinations 
of the relative amount of Fs, En and Wo in that object. If that object under 
consideration is a meteorite, then the reflectance spectrum is obtained in a laboratory in 
controlled conditions, and the signal-to-noise ratio (SNR) of the spectrum is very high.  
 However, it is not so easy to obtain high SNR spectra of asteroids. All spectra of 
asteroids are obtained from earth-based telescopes, and the water in earth’s atmosphere 
causes absorptions in the spectra that are difficult to impossible to remove. Additionally, 
asteroids are faint targets with the typical SNR of asteroid spectra being on the order of 
ten times lower than the spectra of meteorites (Sanchez et al. 2020). Figure 2 shows a 
typical V-type asteroid spectrum (2579 Spartacus). In addition, the asteroid spectra 
often lack the wavelength coverage needed to show the complete Band I and/or II. In 
this case, it is not possible to find the true BIC or BIIC, and thus the mineralogy 
cannot be calculated using the methods developed up to this point in time. The short-
wavelength edge of the spectrum is dubbed the “blue edge,” and hence the problems 
stemming from an incomplete or noisy (low SNR) blue edge are referred to as the “blue 
edge problem.” This is similar to the “red edge problem” diagnosed by Lindsay et al. 
(2015), which addressed the noisy and/or truncated spectra of S-type asteroids and their 
meteorite analogs, the ordinary chondrites. One of the goals of this thesis is to find ways 
to overcome the problems associated with low SNR and/or truncated asteroidal spectra, 
for both the blue and red edges.  
 In order to retrieve mineralogical information from a spectrum, a calibration 
equation that links a band parameter to mineral content is required. Burbine et al. 
(2009, 2018) derived calibration equations linking Fs and Wo from HEDs to band 
minima and centers from their spectra. However, the band parameter technique used to 
obtain band centers vary from author to author, and thus the band centers calculated 
by one author may not agree with those that were used to determine Burbine’s  
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Figure 2: The VNIR spectrum of V-type asteroid 2579 Spartacus 



calibration equations. In this case, using band centers in those equations will return 
incorrect mineralogical determinations. One of the main goals of this thesis is to provide 
the scientific community with a new set of calibration equations that are applicable to a 
wide variety of spectral conditions, including noisy and incomplete spectra. For example, 
many NIR asteroid spectra were obtained with spectrometers using a dichroic filter, 
which cuts off the short-wavelength edge of Band I (Sanchez et al. 2020). Often, a 
second spectrum from the visible wavelength range, complementing the NIR spectrum 
and thus completing Band I, does not exist. In that case, in order to calculate that 
asteroid’s mineralogy, one needs to use a calibration equation computed from a 
spectrum that is truncated at the same blue edge as the asteroid spectrum. The left-
most dashed vertical line in Figure 1 represent the “real” blue edge, which denotes the 
wavelength value of the local maximum reflectance points immediately short-ward of the 
Band I absorption feature (~.75 µm). The dashed line immediately to its right 0.8 µm 
represents the wavelength of a the blue edge of a truncated spectrum, hereafter called 
the false blue edge. The three dashed lines on the right represent the 2.5, 2.45 and 2.4 
µm cut-offs for the red edge of the spectrum.   

My thesis is organized as follows: In section 2, I introduce the meteorites used for the 
calibrations, which is the same HED sample that Burbine et al. (2009, 2018) used to 
calculate their calibration equations (which I call the “Burbine sample”). I also introduce 
another sample of 53 HEDs that are used in this thesis. This greater sample size is used 
to offset the small number statistics of the Burbine sample, which only contains 13 
meteorites. I then introduce the 17 V-type asteroids chosen for this study, and describe 
my band parameter techniques. Section 3 comprises three subsections. Section 3.1 
presents my band parameters and 12 calibration equations derived from the original 
(“clean”) Burbine sample spectra. I show how the equations act on the 53 HED sample 
as well as the Burbine sample, and confirm that the equations return reasonable 
mineralogical determinations. I then present the slopes of the Band I continuum from 
both the real and false blue edge. Afterwards, I perform a frequency analysis similar to 
the one presented in Lindsay et al. (2015) and Sanchez et al. (2020), which shows how 
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often using band centers in the incorrect equation return derived mineralogy that is 
worse than the RMS error of the equations. I then introduce a new concept which I call 
“modified band I centers,” with the  aim of producing alternative band parameters that 
rely on the Band I slope (BIS). The goal here is to offset any anomalies in the calculated 
mineralogy for the asteroids that might result from BIS discrepancies. The final part of 
section 3.1 is a presentation of the HED zones — that is, the use of band parameter 
space to delineate separate boundaries for the howardites, eucrites, and diogenites 
(Gaffey et al. 1993; Moskovitz et al. 2010; Lindsay et al. 2015). Section 3.2 shows all the 
results that section 3.1 has, except for the case of the SNR50 Burbine sample spectra. 
Figure 3a shows the clean reflectance spectrum of the Johnstown diogenite (blue line). 
Figure 3b shows the same spectrum after artificially adding noise (blue line), in order to 
imitate the low SNR of a typical asteroid spectra. Section 3.3 presents the results from 
the asteroids. It begins with a discussion of temperature corrections to the band 
parameters, and then repeats the same themes outlined above. In chapter 4, I discuss 
two main themes. The first is an overview of the efficacy of the various calibrations 
presented in this thesis (there are 35 equations in all), and how they relate to the HED 
zones and meteorite analog assignments. The second is a discussion of a conundrum 
uncovered while calculating mineralogy for the asteroids — namely, the FsI (the mol% 
Fs derived from the Band I centers) over-estimates the mineralogy compared to what we 
expect, and the FsII (the mol% Fs derived from Band II centers) under-estimates the 
expected mineralogy. I present some potential reasons for this discrepancy, and discuss 
their merits or lack there-of. 
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Figure 3a: Original Johnstown Diogenite spectrum

Figure 3b: SNR50 Johnstown Diogenite spectrum. The original reflectance values 
have had gaussian noise added in order to mimic a typical asteroid spectrum. 



Chapter 2  ☽  Data & Methods 

2.1  Data 

2.1.1 Meteorites 

For this study, we use a sample of 53 HED meteorites, composed of 34 eucrites, 12 
howardite, and seven diogenites. All of the meteorites of the sample have visible+near-
infrared (VNIR) wavelengths (0.3 - 2.6 µm). The reflectance spectra came from the 
bidirectional spectrometer at Brown University’s Keck/NASA Reflectance Experiment 
Laboratory (RELAB) (Pieters and Hiroi 2004), taken at 0.005 μm wavelength intervals 
for samples with grain sizes of less than 25 μm. Only a subset of the HEDs with 
available VNIR reflectance spectra have also had their mineralogy determined in a 
laboratory setting. This suite of 13 HEDs (Bouvante, EETA79005, EET 87503, EET 
87542, EET 90020, Johnstown, Juvinas, LEW 87004, Pasamonte, Petersburg, PCA 
82502, Stannern, Tatahouine), hereafter called the “Burbine sample,” are the same that 
were used in Burbine et al. (2007, 2009 & 2018). The Burbine sample contains ten 
eucrites, one howardite, and two diogenites. This sample was chosen because the 
pyroxene chemistries (mol% Fs, Wo, and En) have been determined in Burbine et al. 
(2001) by an Electron Microprobe Analysis (EMPA). The combination of reflectance 
spectra and known mineralogy allows us to construct calibration equations that 
correlate spectral band parameters to pyroxene chemistry. By comparing the derived 
mineralogy from the larger set of 53 with the EMPA mineralogy of the Burbine sample, 
we can quantify how robust our calibration equations are, which is useful when 
interpreting the derived mineralogy of the asteroids. The 39 HEDs outside the Burbine 
sample were also used in Moskovitz et al. (2010.)  
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2.1.2 Asteroids 

This study uses a total of 17 asteroids with publicly available reflectance spectra. The 
reflectance spectra of six of the V-types, 809 Lundia, 3703 Volkonskaya, 3782 Celle, 3982 
Kastel, 5481 Kiuchi, and 34706 2001op83, are from Lindsay et al. (2015). The 4 Vesta 
and 1929 Kollaa spectrum came from Reddy and Sanchez (2016). 1929 Kollaa has errors 
about an order of magnitude larger than any of the other spectra. This did not effect 
the band parameters of 1929 Kollaa, but it did double the mean errors. Not all of these 
8 asteroid spectra have wavelength coverage out to 2.5 µm. In cases with incomplete 
coverage, extrapolation techniques were used to extend Band II out to 2.5 µm. This 
extrapolation method is described later in this section. The 2045 Peking spectrum is 
single NIR spectrum (0.435-2.4845 µm) from Moskovitz et al. (2010). It is the only 
unmodified asteroid spectrum used for a red edge of 2.5 µm band parameter analysis.  
For each of the other asteroids, visible and near-infrared (NIR) spectra were obtained 
from the Planetary Data System - Small Bodies Node, and combined into a single VNIR 
spectrum using an IDL routine. They are 2442 Corbett (NIR: Moskovitz et al. 2010; 
visible: Xu et al 1995, from the Small Main-belt Asteroid Spectrographic Survey 
(SMASS)); 4188 Kitezh (NIR: Sunshine et al 2004; visible: Bus & Binzel 2002 
(SMASSII)); and the other six NIR and visible spectra from 2566 Khirgizia, 2579 
Spartacus, 2581 Harbin, 2912 LaPalma, 3155 Lee, 51111 Jacliff were all obtained from 
Moskovitz et al. 2010, and Bus & Binzel 2002 (SMASSII), respectively.  The two spectra 
were combined in an IDL routine provided by Sean S. Lindsay by using 3rd order 
polynomial fits to the visible and near-infrared spectra in a wavelength range that they 
overlap. The NIR data is then scaled to match the visible data in the region of overlap. 
Finally, the two pieces are merged together into a single visible + near-infrared 
spectrum. 
 All 17 asteroids were normalized to unity at 0.55 µm before spectral analysis was 
performed. All the V-types had errors given in their reflectance spectra, except for 2442 
Corbett, to which we added a global .005 error. We attempted to use the same methods, 
described in the following section, for all spectra. However, there were some exceptions, 
which were necessary to obtain acceptable fits. Kiuchi had an extremely noisy spectrum 
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long-ward of 2.38 µm, so the noisy end of the spectrum was replaced with an 
extrapolation of a 4th order polynomial fit to Band II. This method has previously been 
successfully used by Lucas et al. (2019), who used 3rd order fits rather than 4th order. I 
then added the average error of the spectrum to that part of the fit. We thus ended up 
with a usable spectrum for input into SARA. To determine the band parameters, we 
used a 4th order polynomial fit for band II, instead of a 5th order fit (see § 2.2) only for 
the 2.5 µm red edge for Kiuchi. We used the same extrapolation technique on 34706 
2001op83, with the points long-ward of 2.41 µm. For 3782 Celle, we did not alter the 
spectrum, but to determine the band parameters we fit a 6th order polynomial over 
band II rather than the 5th order.  

2.2  Methods 

The VNIR wavelengths relevant to this research range from 0.7 µm to 2.5 µm (Figure 
1.) A primary goal of this thesis is to generate a new set of calibration equations to 
determine V-type mineralogy for a variety of observing conditions that lead to limited 
wavelength coverage. For observations that only have infrared reflectance data, which 
may not have coverage or reliable data short-ward of 0.8 µm, I explore the use of two 
blue edges for Band I: the “real” blue edge determined by the reflectance maximum near 
0.75 µm, and a “false” blue edge of 0.8 µm. Frequently, the spectrometers (e.g., IRTF+ 
SpeX in PRISM mode) used to obtain asteroid spectra only obtain reliable data out to 
approximately 2.45 µm. Other facilities (e.g., TNG-NICS) only have wavelength 
coverage out to 2.40 µm. Because of these wavelength limitations, I explore three red 
edges for Band II: 2.40, 2.45, and 2.50 µm. These are the same red edges used by 
Lindsay et al. (2016) and Sanchez et al. (2020). In this study, all combinations of the 
two blue edges and three red edges give a total of 10 calibration equations. 
 Our band parameters are determined using the IDL-based Spectral Analysis 
Routine for Asteroids (SARA; Lindsay et al., 2015). In order to determine our band 
parameters, SARA first identifies four points that delineate the boundaries for the two 
absorption bands. Point(i) is the short-wavelength edge of Band I, called the blue edge; 
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point(ii) is the long-wavelength edge of Band I; point(iii) is the short-wavelength edge of 
Band II; and point (iv) is the long-wavelength edge of Band II, called the red edge.  
 For the real blue edge, point(i) is found by the following procedure: first SARA 
locates the maximum reflectance value just short-ward of Band I, around 0.75 µm; then 
it fits a 5th order polynomial to a 0.25 µm wavelength range centered at that maximum 
value; then it defines the maximum of that polynomial as point(i). Point(ii) is found as 
follows: first SARA locates the maximum reflectance value just long-ward of band I, 
around 1.4 µm; then it fits a 5th order polynomial to a 0.6 µm wavelength range 
centered at that maximum value, defining that as point(iii); SARA then draws a 
straight line, beginning at point(i), toward that polynomial, and defines point(ii) as the 
point where that continuum lies tangent to the polynomial. The Band I slope (BIS) is 
recorded as the slope of that continuum. In order to determine the BIC, SARA uses the 
following procedure: the reflectance values of the original spectrum are divided by the 
straight-line continuum; then a 3rd, 4th, and 5th order polynomial is fit to the bottom 
60% of Band I — the band depth is taken to be one minus a ten-point boxcar smooth of 
the reflectance at the wavelength position of the band center. The BIC and BID (Band I 
depth) is the average of the minimums and depths, respectively, all three polynomials. 
 For the 0.8 µm blue edge, a 4th order polynomial is fit to the reflectance values of 
the wavelength range between  0.8 and 1.15 µm of band I. A 4th order fit gave a better 
polynomial than a 5th order for this blue edge. Point(i) is simply defined as the value of 
that polynomial at the 0.8 µm wavelength. The other Band I parameters are found in 
the same way as for the real blue edge.  
 For Band II, a 5th order polynomial is fit to the entire absorption feature. 
Point(iv) is defined as the value of that polynomial at either the 2.4, 2.45, or 2.5 µm 
wavelength. The BIIC is determined in the same way as the BIC, except the 
polynomials are fit to the bottom 50% of the band.  
 The band minimums (BIM and BIIM) are taken as the average of the minimum 
reflectance values of the three polynomial fits to Band I & II, respectively, prior to 
dividing by the continuum. Ideally, one would expect the minimum should be 
independent of the chosen edge. For the clean spectra, this is true. However, for the 
SNR50 spectral set, we found that although this is true for Band II, this is not the case 
for Band I. Since the polynomial fits are dependent on the chosen edge, and the false 
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blue edge is much closer in wavelength value to the absorption feature minimum than 
the real blue edge is, and since a 4th order polynomial was used for the false edge as 
opposed to a 5th order for the real edge, three HEDs from the Burbine sample exhibited 
a change of 0.005 µm in BIM when using the false blue edge. However, the mean BIM 
for the Burbine sample remained the same.  
 Band areas are measured as the area between the flat linear continuum and the 
continuum-divided smoothed reflectance values, using trapezoidal integration.  

 SARA calculates band parameter 1𝜎 errors by performing 20,000 Monte Carlo 

simulations for all three orders of polynomial fits. First, gaussian noise commensurate 
with the level of SNR is added to the reflectance values, resulting in new spectra. The 
band centers and depths, for each polynomial fit, are recalculated for all 20,000 new 
spectra, and the errors are taken to be the standard deviation of the 20,000 remeasured 
centers and depths. The finalized band center and depth error is the average of the 
errors from each polynomial order. The error in band area is calculated in a similar 
manner, where 20,000 simulated spectra have their areas computed and the error in 
band area is taken to be the standard deviation of all measured band areas. See Lindsay 
et al. (2015) for further details on how SARA performs the spectral analysis 
calculations. 
 The meteorite spectra without reduction to the SNR were analyzed for all edge 
combinations first. This thesis refers to these spectra as the “clean” spectra. As stated in 
the Introduction, I introduced noise into the HED spectra in order to mimic the SNR of 
asteroid spectra. Using IDL, we added gaussian noise to each reflectance data point. The 
standard deviation of the Gaussian was set such that the reflectance divided by the 
gaussian noise averaged 25 for the 1.35 - 1.5 and 1.8 - 2.1 µm ranges, 37.5 for 1.1 - 1.175 
µm, and 50 for the rest of the spectrum. The SNR was decreased to 1/2 and 3/4 to 
simulate loss of signal in the telluric water bands. The values were chosen to match a 
typical NASA IRTF with SpeX in Prism-mode reflectance spectrum. This spectral set 
will be referred to as “SNR50” from now on. Figure 3a and 3b show an example of a 
typical meteorite spectrum (Johnstown), before and after noise was added to it. Figure 2 
shows a typical V-type spectrum (Spartacus) with polynomial fits produced by SARA. 
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Chapter 3  ☽  Results 

One of the primary tasks of this thesis is to produce a set of calibration equations that 
are relevant to a range of observational scenarios where full wavelength coverage of 
Band I and Band II may not be available. Those equations are presented in two forms in 
this section. First, they are calculated using the nominal spectra from the Burbine 
sample; and secondly, they are calculated using the same sample, but altered by 
artificially added noise which mimics the typical SNR of observed asteroid spectra. I also 
derive calibration equations from the Band I Minima.  
 § 3.1.1 presents the band parameters (the results of the band analysis techniques 
performed by SARA), for both the Burbine sample, and the set of 53 HEDs. In § 3.1.2 I 
will present the calibration equations from the clean spectra, after which, in § 3.1.3 I 
will apply those equations to the HEDs themselves and compare both the mineralogy 
from the different blue and red edge combinations to each other, and also to the EMPA 
molar contents. That will be followed by an analysis of the Band I slopes in § 3.1.4, 
which will become important in later sections on the asteroids. In § 3.1.5 I will quantify 
how frequently the truncated spectra cause problems in interpreting derived molar 
contents. § 3.1.6 introduces an alternative method for calculating modified Band I 
“centers.” And finally, in § 3.1.7, I will separate the howardites, eucrites and diogenites 
into their own band parameter space, which I will refer to as the “HED 
zones” (Moskovitz et al. 2010).    

3.1  Meteorites (Clean Spectra) 

3.1.1 Band Parameters 
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Table 1 shows the band centers, band area ratios (BAR), Band I slopes (B1S), and the 
EMPA Fs and Wo mol% from the real, 2.5 µm edge combination for the 13 HEDs with 
known molar contents. The mean and standard deviations of the whole collection, as 
well as of just the eucrites and diogenites, are also listed. The mean of the howardite is 
not relevant since there is only one. The slopes vary greatly, though they are all above 
zero (this is relevant because that is not always the case with either HEDs or V-type 
asteroids). Since these thirteen Burbine sample HEDs are the only ones with known 
molar contents, it is important to analyze their band parameters as an independent data 
set. Not only is the Burbine sample necessary to develop calibration equations, but it 
will be useful when comparing the HEDs with V-type asteroids. However, we also 
determined the band parameters of a set of 53 HEDs (which includes the Burbine 
sample), four of which have a negative slope. This sample consists of 34 eucrites, seven 
diogenites, and 12 howardites, and hence we were also able to obtain a howardites mean 
with this dataset. Rather than perform a full analysis on all the edge combinations with 
this set of 53 meteorites, I chose to constrain my analysis of this larger set to only 
certain elements of my research. Therefore, I present the mean band parameters of the 
real, 2.5 µm edge combination in Table 2. In order to verify that this larger set is 
representative of the calibrations formulated from the Burbine sample, I compare the 
band parameters (and molar contents, to be discussed in the next section) in Table 3. 
The mean BIC and BIIC values between the two sets differ by only 0.001 µm, the mean 
BAR differs by only 0.043, and the mean BIS by 0.087. All of these are well within the 
range of the standard deviations of either set, thus assuring that I may confidently use 
the larger sample of 53 HEDs in my comparison with V-type asteroids.  

3.1.2 Calibration Equations 

Following the work of Burbine et al. (2009, 2018), I derived calibrations equations 
connecting the Burbine sample Fs and Wo molar abundance to Band I & II centers. The 
calibration equations were determined by performing a linear fit to the BIC and BIIC 
band parameters and the mol% Fs and Wo values determined by EMPA. Using this 
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Table 1: Burbine Sample HEDs with known molar contents. A real blue edge and 2.5 µm 
red edge were used to generate these results. Meteorites are arranged from low to high 
Wollastonite. 
† These are average pyroxene mineralogies from electron microprobe analysis.  

Meteorite Type BI Center  
(µm)

BII Center 
(µm)

BAR Band I 
Slope

EMPA Fs 
† (mol%)

EMPA Wo  
† (mol%)

Tatahouine Dio 0.920 1.895 1.690 0.05 23.0 1.5

Johnstown Dio 0.917 1.885 1.390 0.02 23.5 2.8

EET87503 How 0.928 1.950 1.365 0.04 40.3 8.1

Petersburg Euc 0.933 1.975 1.763 0.09 40.6 9.4

Stannern Euc 0.938 2.008 1.703 0.14 55.8 9.6

EETA79005 Euc 0.933 1.967 1.790 0.16 43.2 10.3

LEW87004 Euc 0.933 1.973 1.473 0.14 45.0 11.0

Juvinas Euc 0.935 1.995 1.520 0.10 51.8 11.3

EET87542 Euc 0.940 1.993 1.245 0.04 44.0 13.0

EET90020 Euc 0.938 2.005 1.057 0.00 53.0 13.0

Pasamonte Euc 0.938 2.002 1.462 0.14 43.5 13.7

PCA82502 Euc 0.940 2.012 1.960 0.23 53.0 14.0

Bouvante Euc 0.943 2.010 1.907 0.26 53.5 14.0

All HEDs 
Mean

-
0.934 
±0.008

1.975 
±0.042

1.563 
±0.26
6

0.110 
±0.079

43.9 
±10.6

10.1 
±4.0

Eucrites 
Mean

-
0.937 
±.003

1.994 
±.017

1.588 
±0.29
0

0.131 
±0.078

48.3 
±5.6

11.9 
±1.8

Diogenites 
Mean

-
0.918 
±0.002

1.890 
±0.007

1.540 
±0.21
2

0.035 
±0.024

23.3 
±0.4

2.2 
±0.9
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Table 2:  Band parameters and molar contents for the set of 53 HEDs from using the real, 2.5 
µm edges and associated calibration equations.

Means BIC 
(µm)

BIIC 
(µm) BAR Slope FsI 

(mol%)
FsII 

(mol%)
Fs ave 
(mol%)

WoI 
(mol%)

WoII 
(mol%)

Wo ave 
(mol%)

53 
HEDs

0.935 
±0.010

1.974 
±0.044

1.647 
±0.300

0.087 
±0.066

44.1 
±10.5

43.1 
±9.7

43.6 
±9.8

10.2 
±4.2

9.9 
±3.6

10.0 
±3.8

Euc- 
rites 
n=34

0.939 
±0.006

1.995 
±0.023

1.619 
±0.319

.101 
±0.077

50.2 
±7.0

48.8 
±5.4

49.5 
±5.7

12.7 
±2.8

12.0 
±2.0

12.3 
±2.2

Dioge- 
nites 
n=7

0.920 
±0.002

1.899 
±0.009

1.751 
±0.265

0.046 
±0.014

27.4 
±3.0

25.7 
±2.2

26.5 
±2.3

3.6 
±1.2

3.3 
±0.8

3.4 
±0.9

Howar- 
dites 
n=12

0.928 
±0.004

1.949 
±0.019

1.720 
±0.193

0.073 
±0.038

36.9 
±4.5

37.6 
±4.5

37.3 
±4.3

7.4 
±1.8

7.8 
±1.7

7.6 
±1.7

Table 3:  Compares the Burbine Sample to the sample of 53 HEDs. This shows the difference 
between the two data sets for the real, 2.5 µm edges. All results are within one standard 
deviation of the Burbine sample except those in red. For the Howardites, since there is no 
standard deviation possible from the Burbine sample (n=1), the standard deviation from the 
sample of 53 HEDs was used instead.

Means ∆BIC  
(µm)

∆BIIC 
(µm)

∆BAR ∆Band I 
Slope

∆FsI 
(mol%)

∆FsII 
(mol%)

∆Fs ave 
(mol%)

∆WoI 
(mol%)

∆WoII 
(mol%)

∆Wo ave 
(mol%)

53 
HEDs 0.001 0.001 0.043 0.037 0.2 0.8 0.2 0.1 0.2 0.1

Euc- 
rites 0.002 0.001 0.031 0.030 1.9 0.3 1.1 0.8 0.1 0.4

Dioge- 
nites 0.002 0.009 0.211 0.011 2.3 2.1 2.2 0.9 0.8 0.8

Howar- 
dites 0.000 0.001 0.355 0.033 0.4 0.4 0.3 0.1 0.1 0.1



method, two sets of five calibration equations were produced: one set for mol% Fs and 
one set for mol% Wo. The Fs and Wo sets each include two equations for mineralogy 
using BICs from the real and false blue edges, and three equations for mineralogy using 
BIICs from the three red edge values (2.40, 2.45, and 2.50 µm). The 10 equations are 
given in Table 4.  
 My examination of meteorite and asteroid spectral sets, using different red and 
blue edges, at different SNR, parallels the work of Sanchez et al. (2020). We started this 
project to build a parallel HED/V-type paper to the Sanchez et al. (2020) OC/S-type 
paper. This parallel project largely remains the core of this thesis.  
 One of these calibrations, Fs vs. BIC, is compared to my rendition of the Burbine 
et al. (2009) and Burbine et al. (2018) calibration equations in Figure 4. Note that 
Burbine et al. (2009) uses the Band I Minimum instead of BIC. As seen in Figure 4, 
most of my data points (black dots) have smaller BICs compared to Burbine’s. However, 
my lowest value is ~ 0.002 µm higher than Burbine et al. (2009)’s lowest value (red 
disk). This results in a steeper calibration best-fit line, with a noticeably higher 
coefficient. I found this steeper trend in all ten calibration equations. Burbine et al. 
(2018) re-derived calibration equations using different band parameter techniques than 
they used in 2007. Interestingly, the BIC of only one meteorite, Johnstown (green circle 
at 0.92 µm in Fig. 2), differed from their 2009 BICs. It has a much higher value than the 
2009 BIC, which has the effect of a noticeably steeper best-fit line, putting the 
coefficient about halfway between mine and Burbine’s 2009 coefficient. All of Burbine’s 
2018 equations had larger coefficients than Burbine’s 2009 equations, but not so large as 
mine presented here. This result highlights the need to use calibration equations that 
match the band parameter analysis method they were derived from. Table 5 lists both 
sets of Burbine’s equations alongside the ones I derived.  
 Figure 5 shows our mol% Fs Band I calibration from both the real and false blue 
edge. For the false blue edge, the meteorites with the lowest two values (Johnstown and 
Tatahouine) have shifted comparatively far to longer wavelengths, yielding a much 
steeper best-fit line. The mol% Wo calibration plots share the same features, and the 
equations are listed in Tables 4 and 5. 
 The R2 goodness of fit statistics are shown in the tables where the equations are 
reported, and are calculated as follows: 
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Figure 4: Real, 2.5 µm edge FsI calibration equation from the best fit to the 
black dots, compared with both of Burbine’s FsI equations.

Figure 5: Band 1 Calibrations from the Real and False Blue Edge. 
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Table 4: Calibration Equations from this paper (Clean spectra)

Blue Edge Mol% Fs Equation R2 RMS Mol% Wo Equation R2 RMS

Real Fs I = 1221.51×B1C - 1096.68 0.83 4.2 Wo I = 486.41×B1C - 444.04 0.88 1.2

False 
(0.8 µm)

Fs I = 1451.74×B1C - 1316.12 0.81 4.5 Wo I = 585.56×B1C - 538.42 0.91 1.2

Red Edge

2.5 µm Fs II = 239.85×B2C - 429.75 0.91 3.0 Wo II = 90.23×B2C - 168.04 0.89 1.3

2.45 µm Fs II = 250.84×B2C - 450.49 0.92 3.0  Wo II = 93.82×B2C - 174.76 0.88 1.3

2.4 µm Fs II = 263.06×B2C - 473.01 0.90 3.2 Wo II = 100.03×B2C - 186.42 0.90 1.2

Table 5.  Calibration equations from three papers.

Burbine 2007 Burbine 2018 Frere 2020

Fs I = 1023.4×BIC - 913.82 1119.4×BIC - 1004.1 1221.51×BIC - 1096.68

Wo I = 396.13×BIC - 360.55 436.31×BIC - 398.33 486.41×BIC - 444.04

Fs II = 205.86×BIIM - 364.3 223.15×BIIC - 398.91 239.85×BIIC - 429.75

Wo II = 79.905×BIIM - 148.3 85.342×BIIC - 159.21 90.23×BIIC - 168.04



     (1) 

Where  is the value along the y-axis,  is the linear fit to the data, and  is the 

average value of those data points. Considering the ferrosilite, my Band I equations have 
R2 values of 0.83 and 0.81 for the real and false edge, respectively, slightly lower than 
Burbine et al’s 0.85 and 0.89, both from their real blue edge, from 2009 and 2018, 
respectively (Tables 4 & 5). For Wollastonite, my Band I equations have R2 values of 
0.88 and 0.91 for the real and false edge, respectively, equal to and higher than Burbine 
et al’s 0.88 and 0.85, both from their real blue edge, from 2009 and 2018, respectively. 
 The RMS (root mean square) error describes the difference between the actual 
EMPA mol% and the predicted mol%, and is calculated as follows: 

     (2) 

  

My RMS errors for FsI are ±4.2 and ±4.5 mol% for the real and false edge, respectively, 
compared with Burbine et al’s ±3.3 and ±4 mol%, both from their real blue edge, from 
2009 and 2018, respectively. My RMS errors for WoI are ±1.2 mol% for both the real 
and false edge, compared with Burbine et al’s ±1.1 and ±1 mol%, both from their real 
blue edge, from 2009 and 2018, respectively. Note that Burbine’s 2018 paper only gives 
one significant figure for RMS.  
 Figure 6 shows all three of my Fs Band II calibration equations. They are more 
similar to each other than the two Band I equations are to each other. The more the red 
edge is truncated, the more the BIICs shift to shorter wavelengths. The meteorites with 
the two lowest values — lower in both the BIIC and mol% Fs — (Johnstown and 
Tatahouine) shift the least of all the meteorites (the exact opposite of the situation for 
Band I, wherein they shifted the most), which has the same consequence of progressively 
steeper best-fit lines for the more truncated red edges. My Fs Band II equations have R2 

R2 = 1 −
∑n

i=1 (yi − yfit,i)2

∑n
i=1 (yi − ȳ)2

yi yfit,i ȳ

R MS =
∑n

i=1 (yi − yfit,i)2

n
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Figure 6: Band 2 Calibrations from the 2.5 µm (black), 2.45 µm (red), and 2.4 µm (green) red edges.



values of 0.91, 0.92 and 0.90 for the 2.5, 2.45 and 2.4 µm red edges, respectively, a bit 
higher than Burbine’s 0.84 and 0.87, from 2009 and 2018, respectively. Note that 
Burbine’s 2009 Band II calibration assumes Band II minima are equivalent to Band II 
centers, which does not require a red edge cut-off, while their 2018 Band II calibration 
uses Band II centers. My Wo Band II equations have R2 values of 0.89, 0.88 and 0.90 for 
the 2.5, 2.45 and 2.4 µm red edges, respectively, slightly higher than Burbine et al’s 
0.87, from both their 2009 and 2018 papers. 
 My RMS errors for FsII are ±3.0 mol% for the 2.5 and 2.45 µm edges, and ±3.2 
mol% for the 2.4 µm edge, compared with Burbine et al’s (2009) ±3.3 from his Band II 
minimum equation, and Burbine et al’s (2018) ±3 mol% from their 2.5 µm red edge. My 
RMS errors for WoI are ±1.3 mol% for the 2.5 and 2.45 µm edges, and ±1.2 mol% for 
the 2.4 µm edge, compared with Burbine et al’s (2009) ±1.1 from his Band II minimum 
equation, and Burbine et al’s (2018) ±1 mol% from their 2.5 µm red edge. The band 
parameters for all edge combinations are shown in Table 6. 
 Although the BIC and BIIC calibration equations are robust when determining 
mol% on HEDs (§ 3.1.3), in § 3.3.2 I will show that the BIC equations are less accurate 
when used on asteroids. This may be in part because the Band I slopes for the 
meteorites and asteroids are so different from one another (to be shown in § 3.3.3). 
Although BIMs from clean spectra are theoretically independent of blue edge, they are 
affected by slope of the continuum. Indeed, the reason for using BICs is to remove any 
differences caused by the continuum to find the maximum point of absorption in the 
feature, i.e., the band center. However, since the HED meteorite slopes are so different, 
and change differently for Band I and Band II slopes, from the V-type asteroid slopes, 
dividing by the continuum does not seem to produce the expected results of Band I and 
Band II calibration equations yielding the same mol% (within the uncertainties).  
 Another slope consideration, is the difference in Band I slopes between using the 
real and false blue edge. While we demonstrated that the false blue edge calibration 
equations give reliable mineralogy determinations for meteorites (Table 6), we will show 
that this is not the case for asteroids in § 3.3. A potential explanation for this is the 
large difference in HED and V-type Band 1 Slopes. The artificial imposition of a steep 
slope by using the false blue edge creates B1Cs that are artificially larger than the “real” 
BIC. As the slope increases, the measured B1C will also increase. Since the Band I 
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Table 6: Burbine Sample HED’s mol% Fs from all edge combinations.  
† These are average pyroxene mineralogies from electron microprobe analysis.

Real 
Blue

False 
Blue

2.5  
Red

2.45 
Red

2.4  
Red

Real/
2.5

Real/
2.45

Real/
2.4

False/
2.5

False/
2.45

False/
2.4

EMPA

Meteorite FsI FsI FsII FsII FsII Fs Ave Fs Ave Fs Ave Fs Ave Fs Ave Fs Ave Fs †

Tatahouine 27.1 29.2 24.8 24.9 25.0 25.9 26.0 26.1 27.0 27.0 27.1 23.0

Johnstown 23.0 21.9 22.4 22.3 22.4 22.7 22.7 22.7 22.1 22.1 22.2 23.5

EET 
87503

37.3 38.8 38.0 37.4 36.9 37.6 37.3 37.1 38.4 38.1 37.9 40.3

Petersburg 43.4 43.7 44.0 43.7 43.5 43.7 43.5 43.4 43.8 43.7 43.6 40.6

Stannern 49.5 46.1 51.9 52.4 51.3 50.7 51.0 50.4 49.0 49.3 48.7 55.8

EETA 
79005

43.4 41.3 42.0 42.4 42.6 42.7 42.9 43.0 41.6 41.8 41.9 43.2

LEW 
87004

43.4 43.7 43.6 43.7 44.8 43.5 43.5 44.1 43.6 43.7 44.2 45.0

Juvinas 45.4 46.1 48.7 48.7 49.2 47.1 47.1 47.3 47.4 47.4 47.6 51.8

EET 
87542

51.5 50.9 48.3 48.7 48.7 49.9 50.1 50.1 49.6 49.8 49.8 44.0

EET 
90020

49.5 53.4 51.1 51.2 50.9 50.3 50.3 50.2 52.3 52.3 52.1 53.0

Pasamonte 49.5 48.5 50.3 49.9 50.5 49.9 49.7 50.0 49.4 49.2 49.5 43.5

PCA 
82502

51.5 53.4 52.7 52.4 53.1 52.1 52.0 52.3 53.1 52.9 53.2 53.0

Bouvante 55.6 53.4 52.3 52.4 51.3 54.0 54.0 53.5 52.9 52.9 52.4 53.5

All HEDs 
Mean

43.9 
±9.6

43.9 
±9.5

43.9 
±10.1

43.9 
±10.1

43.9 
±10.8

43.9 
±9.8

43.9 
±9.8

43.9 
±9.8

43.9 
±9.7

43.9 
±9.7

43.9 
±9.7

43.9 
±10.6

Eucrites 
Mean

48.3 
±4.2

48.0 
±4.5

48.5 
±4.0

48.6 
±3.9

48.6 
±3.7

48.4 
±3.9

48.4 
±3.9

48.4 
±3.8

48.3 
±4.1

48.3 
±4.1

48.3 
±3.9

48.3 
±5.6

Diogenites 
Mean

25.1 
±2.9

25.5 
±5.1

23.6 
±1.7

23.6 
±1.8

23.7 
±1.9

24.3 
±2.3

24.3 
±2.3

24.4 
±2.4

24.6 
±3.4

24.6 
±3.5

24.6 
±3.5

23.3 
±0.4



Slopes of the V-types are much larger than they are for the HEDs, which the calibration 
equations are derived from, this will lead to an overestimation of the mol% Fs and Wo 
for V-types. This error in BIC may be larger than the error involved with using B1M 
instead of a real BIC for the asteroids. In response to this, I produced calibration 
equations using the Band I Minimum instead of the Band I Center for IR-only data 
because it is not dependent on blue edge choice. If the error from using “false” BICs is 
larger than the BIM errors, then I recommend that BIMs and their related calibration 
equation should be used in cases of NIR-data only without an identifiable 0.75 µm 
reflectance maximum (see § 4.2). Figure 7 is the same as Figure 4 except it uses the 
BIM instead of the BIC (Burbine’s equations are unchanged). The resulting calibration 
equation’s coefficient is higher than all other Band I equations from the clean spectra 
presented in this thesis. The calibration equations using the BIM are presented in Table 
7, including the SNR50 results, which will be addressed in § 3.2.1.  

3.1.3 Applicability of the Calibration Equations 

The prevailing assumption is that calibration equations from HEDs can be used to 
accurately retrieve mineralogy for V-types (Gaffey et al. 2002, Burbine et al 2007, 2009, 
2018; Hardersen et al. 2018). However, my results suggest that care is needed when 
interpreting the derived modal abundance from the different absorption features. If the 
two bands give disparate results, then that introduces some doubt into the effectiveness 
of the calibration equations as applied to asteroids. Table 6 shows the derived mol% for 
the Burbine sample from all edges, for Band I (FsI), Band II (FsII), the mean of those 
two bands [Fs Ave = (FsI+FsII)/2], and EMPA. Note that the average of the two bands 
is frequently used in the literature (Burbine et al. 2009; Lindsay et al 2015; Hardersen et 
al. 2018). Table 8 shows the same for Wollastonite. The mean mol% Fs, for the Burbine 
sample as a whole, is nearly identical for all edges and combinations, matching the 
EMPA mean. The same is true for mol% Wo. This is important, as it shows that each 
calibration equation produces mineralogical results in agreement with the measured 
EMPA compositions. In Section 3.3., we will see that the derived molar contents for the 
asteroids is not so consistent when using different edges and absorption features. I have 
outlined and bolded the entries closest in mol% to the EMPA values. There is no single 
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Figure 7: Frere’s Fs Min Band I Calibration Equation. The x-axis  shows Band 1 Minimums for Frere’s 
and Burbine’s 2009 data points, but Burbine’s 2018 data points use the B1 Centers. 

Table 7:   Band 1 Minimum Calibration Equations

Blue Edge Mol% Fs Equation R2 RMS Mol% Wo Equation R2 RMS

Clean Fs I = 1247.19×B1M - 1118.42 0.73 5.3 Wo I = 494.02×B1M - 450.26 0.79 1.8

SNR 50 
(real) Fs I = 1436.7×B1M - 1293.9 0.70 5.5 Wo I = 585.63×B1M - 535.18 0.81 1.7

SNR 50 
(false) Fs I = 1380.8×B1M - 1241.4 0.84 4.1 Wo I = 541.43×B1M - 493.81 0.90 1.3
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Table 8: Burbine Sample HED’s mol% Wo from all edge combinations.  
† These are average pyroxene mineralogies from electron microprobe analysis.

Real 
Blue

 False 
Blue

2.5  
Red

2.45 
Red

2.4  
Red

Real/
2.5

Real/
2.45

Real/
2.4

False/
2.5

False/
2.45

False/
2.4

EMPA

Meteorite WoI WoI WoII WoII WoII Wo 
Ave

Wo 
Ave

Wo 
Ave

Wo 
Ave

Wo 
Ave

Wo 
Ave

Wo †

Tatahouine 3.5 4.2 2.9 3.0 3.0 3.2 3.2 3.2 3.6 3.6 3.6 1.5

Johnstown 1.8 1.3 2.0 2.1 2.0 1.9 2.0 1.9 1.7 1.7 1.6 2.8

EET 87503 7.5 8.1 7.9 7.7 7.5 7.7 7.6 7.5 8.0 7.9 7.8 8.1

Petersburg 9.9 10.1 10.2 10.1 10.0 10.1 10.0 10.0 10.1 10.1 10.0 9.4

Stannern 12.4 11.0 13.2 13.3 13.0 12.8 12.9 12.7 12.1 12.2 12.0 9.6

EETA 
79005

9.9 9.1 9.4 9.6 9.6 9.7 9.8 9.8 9.2 9.3 9.4 10.3

LEW 
87004

9.9 10.1 10.0 10.1 10.5 10.0 10.0 10.2 10.0 10.1 10.3 11

Juvinas 10.8 11.0 12.0 11.9 12.1 11.4 11.3 11.4 11.5 11.5 11.6 11.3

EET 87542 13.2 13.0 11.8 11.9 12.0 12.5 12.6 12.6 12.4 12.5 12.5 13

EET 90020 12.4 14.0 12.9 12.9 12.8 12.6 12.6 12.6 13.4 13.4 13.4 13

Pasamonte 12.4 12.0 12.6 12.4 12.6 12.5 12.4 12.5 12.3 12.3 12.3 13.7

PCA82502 13.2 14.0 13.5 13.3 13.6 13.3 13.3 13.4 13.7 13.7 13.8 14

Bouvante 14.8 14.0 13.3 13.3 13.0 14.1 14.1 13.9 13.6 13.7 13.5 14.0

All HEDs 
Mean

10.1
±3.8

10.1 
±3.8

10.1 
±3.8

10.1 
±3.8

10.1 
±3.8

10.1 
±3.8

10.1 
±3.8

10.1 
±3.8

10.1 
±3.8

10.1 
±3.8

10.1 
±3.8

10.1 
±4.0

Eucrites 
Mean

11.9 
±1.7

11.8 
±1.8

11.9 
±1.5

11.9 
±1.5

11.9 
±1.4

11.9 
±1.5

11.9 
±1.5

11.9 
±1.5

11.9 
±1.6

11.9 
±1.6

11.9 
±1.6

11.9 
±1.8

Diogenites 
Mean

2.7 
±1.2

2.8 
±2.1

2.5 
±0.6

2.6 
±0.7

2.5 
±0.7

2.6 
±0.9

2.6 
±0.9

2.6 
±0.9

2.6 
±1.4

2.6 
±1.4

2.6 
±1.4

2.2 
±0.9



calibration that stands out as producing the most number of individual meteorite mol% 
results most consistent with the actual chemistry of the HEDs.   
 We can gain insight into the efficacy of our equations by comparing the derived 
molar contents of the Burbine sample to the set of 53 HEDs. As explained below, I 
found that the averages for the Burbine sample are largely in agreement with the larger 
53 meteorite sample. This gives us confidence that the statistics for the larger sample 
are valid and representative of the HEDs on whole. As such, they will be used as a 
comparative data set to band parameters for V-type asteroids to look for similarities 
and differences between HEDs and V-types. Table 2 shows the band parameters of the 
set of 53 HEDs from the real, 2.5 μm edge combination. I found that the difference 
(∆mol%) of the mean Fs and Wo for the Burbine versus the full 53 HED sample sets are 
less than 0.3% (Table 3), except for FsII, which is 0.8%. Although this is well within 
RMS error, it is almost three times greater than ∆mol% for FsI, which calls attention to 
the potential for the Band II calibration equation to give slightly less reliable derived 
mineralogy. The difference in ∆mol% between the populations of howardites, eucrites 
and diogenites however are quite varied, with howardites exhibiting the least difference 
at 0.3 ∆mol% for Fs ave (∆Fs ave), the diogenites exhibiting the greatest difference at 
2.2 ∆Fs ave, and the Eucrites in between at 1.1 ∆Fs ave. The same is true for Wo ave. 
The differences in ∆mol% between FsI, FsII, WoI, and WoII bands within the separate 
populations of HEDs, are more varied within the eucrites, but less varied for the 
howardites and diogenites. In other words, when it comes to the difference in the derived 
mineralogy between the Burbine sample and full set of 53 HEDs, the eucrites exhibit the 
greatest disparity between Bands I & II. This is true for both Fs and Wo.  

3.1.4 Slopes 

I examine the Band I slopes (BIS) because they are highly effected by the change from 
the real to the false blue edge. When using the false blue edge, the slope of the 
continuum fit is not the true BIS that is defined by the real blue edge (point (i)) and 
point (ii). As previously mentioned in Section 3.1.2, the result is an artificial increasing 
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of the BIS. This artificial increase of band slope will result in an artificial increase for 
the B1C determination.  
 The average slopes for the Burbine sample are 0.110 ± 0.079 and 0.221 ± 0.116 
for the real and false blue edge, respectively, giving a 0.112 difference between them. 
Figure 8 shows how the slope is effected by changing blue edges, as a function of BIC 
and BIIC. The diogenites exhibit the greatest change, mostly due to Tatahouine. These 
will be compared to the asteroid slopes in § 3.3.3. The set of 53 HEDs show overall 
shallower slopes, but the change in slope is slightly greater. The means are 0.087 ±.066 
and 0.218 ±.097, for the real and false blue edge, respectively, giving a 0.131 difference 
between them. With the Burbine sample, the false edge slopes are about double the real 
edge slopes. With the larger data set of 53 HEDs, it is somewhat more than double. 
Although the false edge slopes are about the same in both samples, the real edge slopes 
are quite a bit lower in the larger sample, which, it will be seen, exacerbates the slope 
discrepancy between the meteorites and the asteroids. The larger set also shows that 
diogenites show the greatest slope change, with the false edge mean slope almost seven 
times that of the real edge mean. In order to ascertain how serious the slope problem is, 
I will perform a frequency analysis of it and several other parameters in the next 
section. 

3.1.5 Frequency Analysis 

As stated above, I presented the calculated Fs and Wo molar contents of the 13 HEDs 
using all edge combinations in Tables 6 and 8. It is not surprising that the mean mol% 
is identical for all edge combinations, since that is the whole point of the calibration 
equations for the different edges. The red edge and blue edge “problem” happens when 
using the wrong equation on asteroid spectra can result in errors in determining 
mineralogy that are larger than the RMS error of the calibration equation itself. With 
such a limited set of available equations in the literature (Gaffey et al. 2002; Burbine et 
al. 2009, 2018), the use of equations that don’t match the band parameter analysis is 
common. It is for this reason that I provide a set of calibration equations that are 
applicable to truncated or noisy asteroid spectra. This has the additional benefit of 
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Figure 8: Burbine sample Band I slopes. Discs are real blue edge slope magnitudes between 0.003 and 
0.265. Circles are false blue edge slopes between .069 and .542. Brown crosshair is standard deviation of 
the mean of all 13 HEDs. Blue and green crosshairs show the mean and standard deviation of the 
Eucrites and Diogenites, respectively. Brown discs show the mean of the slopes, and black circles show 
the ± standard deviation.



providing the first set of equations that allow for mineralogy determinations from NIR 
only data.  
 In order to ascertain how serious a problem the truncated spectra are, and 
provide recommendations on how others should use calibration equations, I evaluate the 
consequence of using equations from only one set of edges applied to band parameters 
measured with different red and blue edge choices. The standards I am comparing to are 
the real blue edge and 2.50 µm red edge equations. This is chosen as the standard 
because it is what is frequently used to establish calibrations from meteorite spectra, 
which always have full Band I and Band II wavelength coverage with good SNR. 
Specifically, I calculate the molar contents by using the false blue edge BICs in the real 
blue edge calibration equation, as well as by using the 2.4 and 2.45 µm BIICs into the 
2.5 µm calibration equation. The point here is that if you are analyzing a truncated 
spectrum, then previous to this thesis there were no calibration equations for V-type 
asteroids except for the real blue edge and the 2.5 µm red edge ones. By comparing the 
derived mol% from using two different inputs into a single equation (∆mol%), we can 
quantify how often the edges result in mol% errors that are larger than a calibration’s 
RMS error. This is shown in Figure 9, using the Burbine sample. For the blue edge, the 
mean difference between using the “false” BICs as opposed to the “real” BICs in the real 
blue edge equation is 3.76 ∆mol%. Although this is still within the RMS of ±4.2 mol%, 
it is still concerning, as four of the meteorites fall above that line, and four are just 
barely below. In other words, ~30% of the Burbine sample meteorites are problematic in 
terms of the “blue edge problem.” This discrepancy motivates the need for a false blue 
edge calibration equation. Notice that there is a slight trend for HEDs with smaller 
BICs, corresponding to the diogenites, to respond more strongly to ∆mol%. This makes 
sense because the smaller the BIC, the closer the center is to the blue edge, and 
therefore the more likely to be altered when dividing by the slope of the straight-line 
continuum.  
 The red edge does not present the same level of concern. The 2.45 µm BIICs run 
through the 2.5 µm calibration equation yield a mean difference of only 0.42 ∆mol%, 
and the 2.4 µm BIICs run through the 2.5 µm calibration equation yield a mean 
difference of 1.1 ∆mol%. For this reason, this paper focuses its analysis more heavily on 
Band I than Band II. However, the red edge ∆mol% appears to be a larger problem for 
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Figure 9: Frequency of cases for the Burbine sample in which the ∆mol% for different edges, using the 
same equation, is greater than the respective RMS error. 



larger BICs. The problem is also systematic in that the ∆mol% is always positive. Even 
though ∆mol% is below the level the uncertainty of the standard equations, these kinds 
of systematic errors are always a concern because they always behave the same way. For 
these reasons, and also in the case of incomplete or noisy asteroid spectra long-ward of 
2.4 µm, it is important to provide the three Band II calibration equations, which 
supplement the work of Lindsay et al. (2016) and Sanchez et al. (2020). Having the 
complete set of calibration equations should yield greater accuracy for those who desire 
to derive molar contents with truncated V-type asteroid spectra in the future. It also 
offers the first set of calibration equations for IR only datasets. This is a valuable 
contribution because VNIR spectra require time on both visible and NIR telescopes, 
which adds time and cost to asteroid mineralogy research projects. Additionally, the 
observational conditions for data from two telescope are taken at different times, in 
different locations, and with different observing conditions, all of which can have an 
affect on the quality of the spectral data. 
 Figure 10 shows the frequency analysis for the set of 53 HEDs. For the blue edge, 
the mean difference is 4.9 ∆mol%, which is well above the RMS error of ±4.2 mol% 
from the clean BIC equation, bolstering our previous conclusion from the Burbine 
sample frequency analysis above. 24 of the 53 meteorites, or 45%, have ∆mol% values 
greater than the ±4.2 mol% RMS error, and another nine have a values of 4.1 ∆mol%, 
which is just below that RMS error. Using the SNR50 BIIC equation RMS of ±5.5 has 
no effect on the frequency of the blue edge “problem.” The 2.45 µm BIICs run through 
the 2.5 µm calibration equation yield a mean difference of only 1.2 ∆mol%, and the 2.4 
µm BIICs run through the 2.5 µm calibration equation yield a mean difference of  2.6 
∆mol%. The ∆mol% of 13 of the 53 HEDs, or 25%, are greater than the RMS error, 
and another eight lie just below the RMS value. These results from the larger sample set 
emphasize a greater need for multiple Band II calibration equations. The trend that 
edge choice is more important for larger BICs is very evident with this larger sample. 
This emphasizes that the “red edge problem” is more of a concern for eucrite-like 
mineralogies, which have higher BICs due to a higher amounts of Fe2+ and Ca2+.  
 Burbine et al. (2009) used Band II minimums instead of centers in all of their 
analyses. The reason for that was because of the low signal-to-noise of the Band II 
absorption feature in asteroids, as well as the incompleteness of that feature in general, 
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Figure 10: Frequency of cases for 53 HEDs in which the ∆mol% for different edges, using the same 
equation, is greater than the respective RMS error.

Center



since the reflectance values appear to increase beyond the range of the usable part of the 
spectrum (Burbine et al. 2009). Since using BIIMs might be used by another researcher, 
and in the interest of thoroughness, I repeat this frequency analysis using the Band I 
and II minimums in the real and 2.5 µm Band center equations (Figure 11). For the blue 
edge, the mean difference is -1.8 ∆mol%. Here, the systematic one-sidedness of the 
∆mol% always being positive, as exhibited in the previous cases, is no longer adhered 
to. The ∆mol% of 11 of the 53 HEDs, or 21%, are greater than the 4.2 mol% RMS 
error. Of those, 9 have negative values. For the red edge, the mean difference is 3.7 
∆mol%, which is above the RMS, and only two meteorites exhibit a negative difference, 
so that the red edge “problem” is also systematically positive in this case. The ∆mol% of 
35 of the 53 HEDs, or 66%, are greater than the 3.0 mol% RMS error of the BIIC 
equation. Interestingly, ∆mol% for this full 53 HED sample is worse for Band II, 
whereas the Burbine sample showed a greater problem for Band I. This presents good 
evidence that the Band II minimums shouldn’t be used in a BIIC calibration equation 
when the centers are available. But it also works the other way: BIICs should not be 
used as inputs into BIIM calibration equations. In fact, it is best to use the calibration 
equations that best match the band analysis techniques that were used in determining 
the band parameters. Burbine et al. (2018) also makes this point.  
 Whereas the above analyses were performed using different band centers into the 
standard equations chosen, I also performed the converse test by using the same band 
centers in different equations. Figure 12 shows the derived mol% Fs when using SARA’s 
BICs from the real blue edge in three different BIC calibration equations — mine, and 
two from Burbine et al. (2007 & 2018). EMPA mol% is also plotted for comparison. 
Notice how the two results from using Burbine’s equations are both very close to each 
other, and also quite a bit lower than the EMPA and my results.  

3.1.6 Modified Band I “centers” 

  There are two kinds of slope discrepancies in this thesis. One, the discrepancy 
between the slopes computed from the real blue edge as opposed to the false blue edge; 
and two, the discrepancy between the HED slopes and the V-type asteroid slopes (to be 
shown in § 3.3.3). This section focuses on the latter issue. 
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Figure 11: Frequency of cases for 53 HEDs, in which the ∆mol% for using the Band 
Minimums in the Band Center equations, is greater than the respective RMS error. 
Circles are Band I. Triangles are Band II. The values of two meteorites lie below 
the confines of this figure. 
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 Because the slope, shape and position of the Band I absorption feature is what 
causes the BIC to be different from the BIM, I investigated the possibility of adding an 
offset to the BIMs (using the clean spectral set). This gives a different way of computing 
a Band I “center” that takes account of slope, and has the additional benefit of 
potentially being applicable to infrared-only spectra that does not encompass the 
entirety of Band I. Figure 13 plots the Burbine sample BIC - BIM (called the “offset” in 
this thesis) against the real blue edge slope, to give 

  Offset = 0.033 × BI Slope – 0.002     (3) 

Solving for BIC, I obtain 

 BICmod (mol%) (±) = 0.033 × BI Slope + BIM (µm) – 0.002  (4) 

where “mod” is short for modified. I then input these modified BICs into the BIC 
calibration equation and examine the derived molar abundances. The results are in 
excellent agreement with those from using the regular BICs, with the mean value 
identical. However, it will be seen in § 3.3.4 that this method, when applied to asteroids, 
yields remarkably higher Fs content than from using the BICs themselves. This is 
because the offset equations depend on the slope, and as will be discussed in § 3.3.3, the 
slopes for the asteroids are altogether much higher than the meteorite slopes. In an 
attempt to resolve this issue, still using the same offset idea, I added the asteroids to the 
offset plot, which is shown in Figure 14. This yields 

B1Cmod_2 = 0.016 × B1 Slope + BIM (µm) + 0.001             (5) 

There appears to be a curvature to the points in Figure 14, so I fit polynomials  all the 
way through the 5th order. Although the higher orders have a higher R2, they are not 
useful because of the severe downturn at the longer wavelengths. However, it will be 
seen later that the 2nd order polynomial yields results consistent with our other 
equations. This gives us a third possibility for calculating Band I “centers”. 
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Figure 14: Blue Edge Offset Equations from HEDs and V-types. 
V-type BICs are temperature corrected

Figure 13: Fs Blue Edge Offset Equation from Burbine sample only



B1Cmod_quad = – 0.024×BIS2 + 0.039×BIS + BIM (µm) – 0.002   (6)  

The calculated mean mol% Fs for the Burbine sample using the B1Cmod_2 and 
B1Cmod_quad centers are 43.7 and 43.3 mol%, respectively, which is well within the RMS 
error.  

3.1.7   HED Zones 

Howardites, eucrites and diogenites can be largely separated from each other by the 
amount of Fs and Wo in Pyroxenes, with the complication that eucrites, which result 
from magma flows, are divided into two subgroups — cumulate and non-cumulate 
(Stolper 1977, McSween et al. 2011). Non-cumulate eucrites are basaltic material from 
quickly-cooling magma (Klein & Hurlbut, 1977), and cumulates are gabbros, the solids 
that settle out of slower-cooling magma. Basaltic eucrites are more enriched in Fe 
(Mayne et al. 2009), and the cumulates have a higher diversity in Fe-content due to the 
fact that cumulates are the result of fractional crystallization. Non-cumulate eucrites 
have the greatest mol% Fs and Wo chemistries, diogenites have the least amount, and 
howardites have some amount in between. The composition of cumulate eucrites 
overlaps with that of both non-cumulate eucrites and howardites, introducing 
complexity into categorizing both meteorites and asteroids. Fs and Wo are dependent on 
the amount of Fe and Ca, respectively, which in turn effect the band centers of the 
absorption features that those elements correspond to. Therefore, we can plot BIC vs. 
BIIC to separate the meteorites into their three constituent subtype zones (Burbine et 
al. 2009; Moskovitz et al. 2010). Figure 15 plots those data points, for both the real 
(disks) and false (squares) blue edges, for the 53 HEDs, with polygons drawn around the 
points for each subtype for the real blue edge data points only. Whereas the diogenites 
are clearly in their own separate area, the cumulate eucrites and howardites overlap one 
another. The squares show how the band centers have shifted as a result of changing to 
the false blue edge cut-off. Figure 16 is similar to Figure 15, except it plots only the real 
blue edge points, and excludes the data point from an anomalous eucrite, MAC02522, 
because the average pyroxene calculated from its spectrum is not physically  meaningful 
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Figure 15: Subtype zones from 53 HEDs for the real, 2.5 µm edges. The 
discs are fro the real blue edge. Polygons are drawn around the boundaries 
of those data points to delineate the subtype zones. The squares are their 
data points from the false blue edge.

Figure 16: Subtype zones from 53 HED for the real, 2.5 µm edges. The 
anomalous eucrite in the top right corner from Figure 15a has been removed. 



due to two compositionally disparate areas within its matrix that yield high and low Fs 
values compared with the average value (Maybe et al. 2015). Figure 17 shows the HED 
zones for the false blue edge. In § 3.3.5 we will over-plot the asteroidal band centers onto 
these subtype zones.   
 There is another way to separate out the subtypes — by plotting BIIC versus 
BAR (Moskovitz et al. 2010). Figure 18 performs this with the diameter of the bubble 
indicating Band I slope. As with the above method, the diogenites are firmly separated 
from the other two subtypes. Since there is such a large overlap in the average BAR ± 
1-σ for each meteorite type, BAR alone does not help discriminate between the 
howardites, eucrites and diogenites. However, Moskovitz found that the BARs for his 
sample of inner Main Belt V-types were noticeably higher in value than the HEDs. In § 
3.3.5 I will perform that same comparison. Plotting the slopes as circle diameters 
separates the subtypes from each other statistically, with the diogenites mean being half 
that of the eucrites.  
 We can also separate the HEDs from other meteorite types as Gaffey et al. (1993) 
did, by plotting BIC versus BAR, which I call the “Gaffey plot” in this paper. This plot 
differentiates the HEDs (Gaffey et al, 1993), ordinary chondrites (Gaffey et al, 1993), 
ureilites (Cloutis et al. 2010) and lodranites/acupulcoites (Burbine et al. 2010, Lucas et 
al. 2019) from each other. Figure 19 does this for the Burbine sample using the real, as 
well as false blue edges, and the 2.5 µm red edge. It also over-plots asteroid (4) Vesta 
from the band analysis results of three different sources: mine used in this paper, Gaffey 
et al.’s (1993), and a spectrum from the near-infrared wavelength range only, in order to 
quantify the results when the visible portion of an asteroid’s spectrum is not obtainable. 
Interestingly, the false blue edge produces results for the HEDs most consistent with 
Gaffey. The conclusion should not be that a false blue edge produces mineralogical 
results most consistent with HEDs. Rather, a case is made that the boxes representing 
compositional meteorite types in the Gaffey plot were produced using methods that are 
different than the methods used by SARA; and that in order to properly differentiate 
meteorite types from one another by plotting BIC against BAR, a researcher needs to 
use the Gaffey-type plot that is commensurate with one’s methods (see McClure and 
Lindsay 2020). This echoes the point made earlier about using calibration equations 
appropriate to one’s band analysis techniques.  
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Figure 17: Subtype zones from 53 HED for the false, 2.5 µm edges. The 
anomalous eucrite in the top right corner from Figure 15a has been removed. 

Figure 18: Subtypes for 53 HEDs for the real, 2.5 µm edges Blue is eucrites, red is 
howardites, green is diogenites. Means and standard deviation for each subtype is 
shown. Circle diameter is Band I Slope. Euc mean B1 slope = 0.091. How mean 
B1 slope = 0.071. Dio mean B1 slope = 0.046  
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Figure 19: The Gaffey plot, showing four meteorite type zones. The HEDs were assigned to the dark 
blue rectangular zone in 1993 by Gaffey et al. Teh black triangles are the data points from the real blue 
edge, and the blue triangle are from the false blue edge. The remaining symbols are the band 
parameters from four different versions of asteroid (4) Vesta spectra. 



 To emphasize this point, I have redrawn the HED boundary in the Gaffey plot in 
Figure 20. It has shifted very noticeably to the left, overlapping much of Burbine’s 
lodranites/acapulcoites zone, and touching the toe of the ordinary chondrite (OC) 
“boot.” However, it is possible that if I were to analyze OCs using the same techniques 
used in this thesis, then the OC polygon would also shift to the left. Note that McClure 
& Lindsay (2020), who also used SARA, found that the OC boot shifted down, and also 
extended its left boundary to shorter wavelengths, but did not as a whole shift to the 
left in a manner likewise to my HED boundary in Figure 20. The vast majority of data 
points are contained within my HED boundary.  
 In Figure 21 I redraw the HED zone in the Gaffey plot for the false blue edge, 
still using the 2.5 µm red edge to calculate BAR.  
 Figure 22 shows the Gaffey plot for the 53 HED sample. Most of the data points 
are contained within my HED zone. However, there are several points at longer 
wavelengths which still remain in Burbine’s HED zone, as well as four data points which 
lie above and/or to the left of my HED zone. Discounting MAC 02522, those three 
meteorites would only slightly change my HED boundary on the left-hand side. Since I 
did not perform an analysis on an SNR50 version of the 53 HED sample, I will use the 
boundary drawn from the Burbine sample, as it appears in Figure 21, for the remainder 
of this paper.  
  

3.2  Meteorites  (SNR50) 

The difference in signal-to-noise for the spectra from meteorites (SNR~600) versus 
asteroids (SNR~50) is great. In the Introduction, I described the process by which I 
decreased the SNR of the Burbine sample meteorites to be comparable to asteroid 
spectra. In this section, I generate calibration equations from this noisy spectral set that 
give “realistic” (Sanchez et al. 2020) uncertainties in mineralogy for asteroids. We want 
to have uncertainties that are commensurate with the quality of spectra we have for 
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Figure 20: The Gaffey plot. The Burbine sample band parameters for the real, 2.5 µm edges are shown. A 
box was drawn around those points to signify the HED zone, as distinct from the HED zone (formerly 
called the basaltic achondrite (BA) zone) from Gaffey et al. (1993). 

Figure 21: The Gaffey plot for the Burbine sample, using the false, 2.5 µm edges. 
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Figure 22: The Gaffey plot for the 53 HED sample, using the real, 2.5 µm edges. 



asteroids. Using uncertainties from clean spectra gives the false impression that we can 
determine mineralogy of asteroids from asteroid spectra with the same precision we can 
with meteorite spectra. This is not true. It is, however, closer to true asteroid 
mineralogy uncertainties if we use calibration equations derived from asteroid-like SNR 
spectra. RMS error uncertainties are a function of band parameter analysis. Therefore 
we want to define our uncertainties using spectra with similar SNR characteristics to 
asteroids. 
 For example, when deriving asteroidal mineralogy, Band I might respond 
differently to the disparate SNR levels than Band II. I helped explore a similar study for 
S-type asteroids and ordinary chondrites (OCs), their meteorite analog (Sanchez et al., 
2020). In that work, we published a paper entirely devoted to this subject for the S-type 
asteroids and OCs. The work done here is a parallel study to their research and will be 
submitted as a companion paper to Sanchez et al. (2020).  

3.2.1 Calibration Equations 

In order to mimic the low signal to noise ratio of earth-based asteroid spectra, I 
introduced noise into the Burbine sample (as described in the Methods section), and 
recalculated the calibration equations, shown in Table 9 and 7. Figure 23 shows the real 
and false Band I calibration equations for both the real and false blue edge. The 
coefficient value from the real blue edge SNR50 BIC equation lies mid-way between the 
coefficient from the same equation from the clean spectra, and the coefficient from 
Burbine et al.’s (2018) version. As expected, the SNR50 equations’ R2 and RMS increase 
in both cases. The RMS error for the real blue edge with SNR50 is 5.5 mol% Fs 
compared with an RMS error of 4.2 mol% Fs for the same equation using the clean 
spectra. The RMS error for the false blue edge with SNR50 is the highest of all the 
calibration equations in this thesis — 5.9 mol% Fs — compared with 4.5 mol% Fs for 
the same equation using the clean spectra. There is little to no change in the Wo RMS 
between the clean and SNR50 spectra..  
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Table 9: Calibration Equations from SNR50 HED Spectra

Blue Edge Mol% Fs Equation R2 RMS Mol% Wo Equation R2 RMS

Real FsI = 1163.58×B1C - 1041.58 0.71 5.5 WoI = 501.01×B1C - 457.24 0.91 1.2

False FsI = 1086.84×B1C - 973.33 0.67 5.9 WoI = 473.07×B1C - 432.63 0.87 1.4

Red Edge

2.5 µm FsII = 214.78×B2C - 379.81 0.82 4.3 WoII = 81.90×B2C - 151.42 0.82 1.6

2.45 µm FsII = 218.60×B2C - 386.50 0.79 4.6 WoII = 84.19×B2C - 155.61 0.81 1.7

2.4 µm FsII = 232.64×B2C - 412.49 0.81 4.4 WoII = 88.48×B2C - 163.44 0.81 1.7

Figure 23: SNR50 Band I Calibration Equations



 Figure 24 compares the BIM equation for both the real and false blue edges. Note 
that the clean HED spectra produce only one set of BIMs for both the real and false 
blue edge, but that the point-to-point scatter in the data in the noisy spectra results in 
two BIM equations, one for each blue edge. The linear fit for the real blue edge data 
points has the highest coefficient of any real blue edge equation (1436.7), because both 
diogenites’ BIMs are at the longer 0.92 µm wavelength, resulting in a steeper linear fit, 
unlike other versions of the Band I “centers” in which they are separated along the x-
axis. The RMS error for the real BIM equation with SNR50 is 5.5 mol% Fs, only slightly 
higher than the RMS error of 5.3 mol% Fs for the same equation using the clean 
spectra. However, the SNR50 false blue edge equation’s RMS error is surprisingly 
smaller at 4.1 mol% Fs. Note also that this error is much smaller than the error from the 
SNR50 false blue edge BIC equation stated above (5.9 mol% Fs). This suggests that 
asteroidal mineralogy derived from the false blue edge SNR50 BIM calibration might 
give results better resembling the expected mineralogy of the HEDs. This will be tested 
in § 3.3.2. The Wo RMS decreased from 1.8 mol% from the clean BIM equation to 1.7 
and 1.3 mol% for the SNR50 real, and false, blue edge equations, respectively. 
 Figure 25 compares four versions of BIC mol% Fs equations: three are presented 
in Table 5 — the two from Burbine et al. (2007 & 2009) and the one from the clean 
spectra from this thesis; and the SNR50 version. I present this figure as an overview of 
the BIC calibration equations calculated from a complete Band I wavelength range.  
 Figure 26 compares the clean and the SNR50 false blue edge equations using the 
BICs. This constitutes the most dramatic change, resulting from adding noise to the 
spectra, of all the equations, with the coefficient increasing by almost 400. This is a 
warning that incomplete and noisy spectra need to be treated carefully. This is in stark 
contrast to Figure 24, which shows a comparatively minor change when using the 
minimums instead of the centers. To elaborate on this point, in Figure 26, the same edge 
(the false blue edge) was used for BICs, while the noise level of the generating spectra 
was changed. Whereas in Figure 24, the noise level remains constant at SNR50 for 
BIMs, while the blue edge was changed. This suggests that, when using BIMs, it doesn’t 
matter so much if you have truncated spectra if your spectra are noisy to begin with. 
However, it might be a consequence of how I determine the minimum. The BIC is found 
using smoothed reflectance data instead of a polynomial fit to the band. To test this, a 
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Figure 24: Band I Minimum Calibration Equation. The blue dots are from the real blue edge. 
The green triangles are from the false blue edge. Linear fits are shown with their corresponding 
color. 
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Figure 25: Four versions of BIC Calibration Equations

Figure 26: False Blue Edge Calibration Equations



polynomial could be fit to Band I, as is done for the BICs, before calculating the 
minimum. I did not perform this test.  
 Figure 27 shows the Band II equations. The slopes of the linear fits are shallower 
than their clean counterparts by roughly the same amount in each case. The diogenite 
centers cluster more in the same area, because Tatahouine’s BIIC raised by 0.008 µm, as 
can be seen in Figure 27, which shows derived mol% Wo from both the clean and 
SNR50 calibration equations. As with the blue edge calibration equations, the RMS 
error increase by ~1.5 mol% Fs from approximately ± 3 mol% Fs for the clean spectra 
to approximately ± 4.5 mol% Fs for the SNR50 equations. Unlike the blue edge case, 
there is a noticeable increase, from approximately ± 1.3 to ± 1.7 in the RMS for Wo 
between the clean and SNR50 equations. 
 In going from the clean to the SNR50 Fs calibration equations, the R2 decreased 
in value by 0.14 for both the blue edges, and by between 0.09 and 0.13 for the the red 
edges. In contrast, the Wo R2 decreased in value by no more than 0.04 for the blue 
edges, and by between 0.07 and 0.09 for the the red edges. 

3.2.2 Comparing Calibration Equations 

The Burbine sample HEDs have been arranged in the tables in this thesis from lowest to 
highest mol% Wo, which follows Burbine et al’s (2018) presentation of the same sample. 
This arrangement is clear in the green line in Figure 28, but notice how the blue line 
(SNR50 mol% Wo) no longer follows this trend. This is an example of how using noisy 
spectra can obfuscate band parameters and the resulting mineralogy. Overall, however, 
both the clean and SNR50 equations are in agreement. The SNR50 equations are the 
most appropriate equations to use when attempting to retrieve mineralogical 
information from the reflectance spectra of asteroids. This is because they best represent 
the uncertainty in determined composition from spectra with signal-to-noise 
characteristics most common for asteroid observations.  
 Figure 29 shows the Fs ave from each edge combination, and compares that to 
Burbine et al. (2018) results and the EMPA values. The main thing to notice here is 
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Figure 27: SNR50 Band II Calibration Equations 
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Figure 28: Derived mol% WoI from using both clean 
and SNR50 calibration equations with their 
corresponding BICs.

Figure 29: Burbine sample SNR50 Fs ave from all six edge combinations. The 
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that the differences between the different edges are less than the differences between 
SARA’s results and both Burbine’s and the EMPA results. The small differences 
between all the SARA-based mineral determinations indicates that all equations reliably 
return similar mineralogy. Each combination of edge choices have only small differences 
in RMS errors, with the false blue edge equations being, in general, the least precise. 
The increase in uncertainty in mineral composition, however, is greatly offset by the 
ability to retrieve composition from IR-only data sets. IR-only observations can be made 
with a single telescope on the same night. This limits any telescope+instrument 
differences and time-dependencies, such as different atmospheric conditions, phase 
angles, and temperature differences that would exist for data sets reliant on visible and 
infrared spectra. My recommendation is that the researcher uses the equation from this 
thesis that best matches the availability to the spectral data that was obtained. 
 Figure 30 shows the same SNR50 results, but compares it with the clean results. 
The clean spectra give two groupings of results (dashed lines): one for the real blue edge, 
with the red edges making very little difference; and a higher up set for the false blue 
edge, again with the red edges making very little difference. Adding noise to the source 
spectra has somewhat preserved the gap between the real and false blue edge results, 
but blurred the red edge gaps. It is important to realize though, that while each 
individual meteorite’s mol% Fs ave deviates more or less from the EMPA values, yet the 
means from all edge combinations still equal the EMPA mean of 43.9 mol%.  

3.2.3 Slopes & BAR 

Going from the clean to SNR50 spectral sets, there was a negligible change to the real 
Band I slopes, with only Petersburg exhibiting a change greater than 0.01, and a mean 
shift of -0.004. The mean false BIS increased from 0.221 to 0.228 when going from the 
clean to the SNR50 spectral sets, exhibiting only a 0.007 change. This is not 
unexpected, as points (i) and (iv) (see the Methods section for an explanation of how 
they are calculated) are defined the same way for both the clean and SNR50 spectral 
sets. Compare this with the mean change in BIS when going from the real to the false 
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Figure 30: Comparing Burbine sample clean with SNR50 Fs ave from all six edge 
combinations. The solid lines are SNR50, while the dashed lines are from the clean 
spectra and equations. 
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blue edge of 0.112. This change is expected due to point (i) being defined at a different 
part of the spectrum for the false blue edge than it is for the real blue edge.  
 The BAR went from 1.991 ± 0.317 to 2.002 ± 0.322 for a change of 0.011, a 
negligible change. Compare this to a shift of 0.428 from the real to the false mean BAR. 
The take-away is that the blue edge choice has a much greater effect on the slopes than 
the noise-level of the spectra. 

3.2.4 Frequency Analysis 

Here, I repeat the frequency analysis, presented in § 3.1.5, for the decreased SNR 
spectra to see if the increase in uncertainty leads to an increase in how frequently the 
choice of edges leads to errors in mineralogy larger than those inherent to the calibration 
equation. The mean ∆mol% for the Burbine sample for the case of using the false blue 
edge SNR50 BICs in the real blue edge SNR50 BIC equation is 3.6 ∆mol%. This is 
almost identical to the clean spectral set’s mean of 3.8 ∆mol%. These values are very 
close to the RMS error from the clean BIC equation of ±4.2 mol%. Figure 31 shows the 
∆mol% for both Band I and II. In both the clean and SNR50 cases, four of the 13 HEDs 
from the Burbine sample, or 31%, are above this RMS value, and thus problematic in 
terms of the “blue edge problem.” The RMS error for the SNR50 BIC equation is higher 
at ±5.5 mol%, and the ∆mol% from only two meteorites surpass that value, which is 
~15% of the meteorites.  
 The mean Burbine sample ∆mol% for using the 2.4 µm BIICs in the 2.5 µm BIIC 
equation is 2.4 ∆mol%, more than double the 1.1 ∆mol% from the clean spectra. This 
suggests that mineralogy derived from a truncated Band II is more susceptible to 
spectral noise than that derived from a truncated Band I. The RMS for the clean 2.5 
µm BIIC equation is ±3.0 mol%, and 31% of the HEDs lie above this line. The RMS for 
the SNR50 2.5 µm BIIC equation is ±4.3 mol%, and the ∆mol% of one HED equals this 
value. 
 Overall the use of reduced SNR calibration equations did not change the 
frequency of how often the edge choices are the largest source of uncertainty. The errors 
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Figure 31: Frequency of cases for the Burbine sample in which the ∆mol% for using the false BICs in the 
real BIC equation (blue dots), and in which the ∆mol% for using the false BIICs in the real BIIC 
equation (green triangles) is greater than the respective RMS error. RMS errors are shown for both the 
clean and the SNR50 equations.



in determined mol% remain systematic in overestimating molar contents, with worse 
errors for larger Fe2+ content for the Band II equations. Therefore, more caution must 
be applied to the non-cumulate Eucrites when only incomplete and noisy spectra in the 
Band II area are available.  

3.2.5 HED Zones  

I did not perform a band parameter analysis on an SNR50 version of the larger set of 53 
HEDs. Therefore I analyze only the Burbine sample here.  
 Figure 32, analogous to Figure 16, shows the band centers plotted against each 
other for both the clean and SNR50 spectral sets. The SNR50 (green triangles) data 
points show slightly more scatter than the clean (blue dots) data points, but overall they 
align quite well. Thus I conclude that adding noise to the Burbine sample spectra did 
not alter the make-up of the howardite, diogenite or eucrite zones by using this method. 
Figure 33, similar to Figure 17, but without the slopes, shows the BIICs plotted against 
the BARs for the real, 2.5 µm edge combination for the Burbine sample, for both the 
clean and SNR50 spectral sets. As in the above case, the data points are, on the whole, 
unaffected by adding noise to the spectra. Figure 34, analogous to Figure 21, shows that 
adding noise to the spectra have no bearing on the placement of the Burbine sample 
within my HED boundary in the Gaffey plot. Thus, I can overlay the V-type band 
parameters onto the Gaffey plot containing the HED boundary that was drawn using 
the clean HED spectra. There is no need to redraw the HED zone for the noisy spectral 
set.  

3.3  Asteroids 
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Figure 32: The HED Zone plot. Compares the band centers from the clean 
(blue) and SNR50 (green) spectral sets.  

Figure 33: The Burbine sample Band II canters plotted against BARs for the real, 
2.5 µm edge combination, for the clean (blue dots) and SNR50 (green triangles) 
spectral sets. 
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Figure 34: The Gaffey plot for the SNR50 Burbine sample, using the real, 2.5 µm edges. 



The motivation to create calibration equations from meteorites is to derive mineralogy 
for asteroids. By comparing the derived molar contents for asteroids from both the clean 
as well as SNR50 sets of equations, and for a variety of blue and red edges, I hope to 
gain insight into the relationship between HEDs and V-types. Additionally, I aim to 
provide the asteroid research community with a set of equations that reliably determine 
V-type mineralogy. Such a data set can be used to explore potential parent bodies other 
than Vesta, and/or the thermal history of this class of asteroids. Ultimately, this sheds 
light on how our the terrestrial bodies of our solar system formed and evolved. A key 
step to achieve this is to parse out any inconsistency in the derived chemistry from 
different absorption features, ie. Band I and Band II.  

3.3.1 Temperature Corrections 

The purpose of this section is only to justify the use of temperature-corrections. 
Numerous groups have demonstrated that the 1- and 2-µm absorption features are 
sensitive to temperature. Changes in temperatures affect the band center positions and 
width of the absorption features. Band centers move to shorter wavelengths as the 
temperature decreases (Singer and Rouch, 1985; Schade and Wäsch, 1999; Moroz et al. 
2000; Hinrichs and Lucey, 2002; and Sanchez et al. 2012). The meteorite spectra used in 
this thesis were measured at room temperature (~295 K). Given their distance from the 
Sun, the main belt asteroid used here have significantly lower temperatures. The V-
types used in this study range from 150 K - 205 K with a sample mean equilibrium 
temperature of 167 K ± 12 K. Such a large temperature difference should have a 
noticeable affect on the absorption bands. Since the HED calibration equations apply for 
spectra measured at room temperature, we must evaluate if temperature corrections to 
the band parameters are necessary. In the Discussion section I will explore how 
temperature effects the band centers, and hence the mineralogy derived from the two 
different absorption features.  
 In what follows, we use the methodology of Burbine et al. (2009). The 
temperature of asteroids is calculated as 
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      (7) 

where Lo is the Solar luminosity (3.828 × 1026 W), A is the bolometric Bond albedo of 

the asteroid, η is the beaming factor (assumed to be unity), ε is the infrared emissivity of 

the asteroid (assumed to be 0.9), σ is the Stefan-Boltzmann constant, and r is the 
heliocentric distance of the asteroid at the time of observation. 
 The temperature correction equations used here are from Reddy et al. (2012). For 
eucrites and howardites, the BIC and BIIC corrections are 

BIC correction (µm) = 0.01656 – 0.0000552×T (K)         (8)  
and  

BIIC correction (µm) = 0.05067 – 0.00017×T (K)         (9)  

and for diogenites are 

BIC correction (µm) = 0.0000000017×T3 (K) – 0.0000012602×T2  (K) +  
0.0002664351×T (K) – 0.0124           (10)  

and 
BIIC correction (µm) = 0.038544 – 0.000128×T         (11)  

 Using the above equations, Burbine et al. (2018) found that temperature 
corrections in the BIIC vs. BIC space of their sample of NEAs did not shift the location 
of asteroids in this space to better overlap with where the HEDs plotted. Therefore they 
decided to not use temperature corrections on their band centers before deriving molar 
chemistry. However, NEAs are considerably closer to the Sun than Main belt asteroids, 
and hence are significantly warmer. The average temperature of the V-types in this 
thesis is 167 K, while the average temperate of the NEAs in Burbine et al (2018) is 234 
K, 40% warmer. Given the large difference in temperature between their NEAs and 

T = 4 (1 − A)Lo

16ηϵσπ r2
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MBAs, we re-evaluate the efficacy of temperature corrections to see if they shift our 
data to better overlap with the HEDs in BIIC vs. BIC space. Indeed, that is what we 
found. 
 Figure 35 shows, from the real blue edge, 2.5 µm red edge combination, the BIIC 
vs. BIC plot of the 17 main belt V-types before temperature corrections (yellow points) 
and after temperature corrections (blue squares). By drawing boxes around the majority 
of data points, one can see that the temperature corrections have shifted the V-types 
(blue box) towards the red box (my HED band parameters), as well as the black box 
(Burbine’s HED band parameters). Changing the red edge has no effect on these trends, 
and is therefore not further considered in this analysis.  
 The false blue edge responds differently to the temperature corrections. Figure 36 
shows the results of the false blue edge with the 2.5 µm red edge. While the temp-
corrected V-type BIICs shift upwards towards the HED BIICs, as expected, the BICs 
shift to longer wavelengths than the HED BICs. This is likely due to the imposition of 
an artificially increased slope resulting from not using the entirety of Band 1 to 
determine the continuum. This will be discussed further in the Discussion section.  
 Since the overall effect of applying temperature corrections to both Band I and II 
is to bring the asteroids closer to the HEDs in Figures 35 and 36, we will use the 
temperature-corrected BICs and BIICs for the asteroids for the remainder of this thesis. 
Figure 37 shows the effect from all edge combinations. The main thing to note here is 
that within each blue edge regime (the top three panels are the real blue edge; the lower 
three panels are the false blue edge), correcting for temperature makes little difference 
for the different red edges. However, shifting from the real blue edge to the false blue 
edge regime, both the slope of the V-types’ linear fits — which are horizontal in the 
bottom three panels — as well as the distance between the V-types non-temp-corrected 
and temp-corrected results changed markedly; and the difference in the linear fit’s slope 
between Burbine’s and SARA’s band centers differ.  

3.3.2. Band Parameters & Molar Contents 
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Figure 35: Before & After Temperature Corrections (Real, 2.5 µm). Yellow is non-temp-corrected V-
types Blue is temp-corrected V-types. Red is SARA’s HED results. Black is Burbine’s HED results.
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Figure 36: Before & After Temperature Corrections (False, 2.5 µm). Yellow 
is non-temp-corrected V-types. Blue is temp-corrected V-types. Red is 
SARA’s HED results. Black is Burbine’s HED results 

Figure 37: Before & After Temperature Corrections for all edge combinations with best-fit lines. 
Yellow is non-temp-corrected V-types Blue is temp-corrected V-types. Red is SARA’s HED 
results. Black is Burbine’s HED results 



Table 10 shows the real, 2.5 µm edge Band I and II centers and errors, BAR and errors, 
and mol% Fs ave and Wo ave for the 17 V-type asteroids, from the clean spectra. The 
asteroids are arranged by increasing Wo content, as are all the tables in this thesis. The 
band centers have been temperature corrected as described in the previous section. The 
derived molar contents are firmly in the HED range. In fact, the mean Fs ave is identical 
to the mean Fs ave from the set of 53 HEDs, although the asteroids exhibit about half 
the standard deviation; and the mean Wo is identical to the EMPA Burbine sample Wo, 
which is just 0.1% above the Wo ave from the set of 53 HEDs, again with the asteroid 
standard deviations about half that of the HEDs.  
 Table 11 shows the SNR50 molar contents for Fs and Wo for both absorption 
bands, separately and averaged, for each of the 17 V-types, using the real, 2.5 µm edges. 
They are arranged in the same order as in Table 10. However, the Wo content has 
changed such that the order no longer goes from low to high Wo, although overall the 
trend remains.  
 Table 12 shows the mean derived molar contents from all edge combinations, as 
well as the Band I slopes for the real and false blue edges. There are dashes in order to 
highlight repeated information from preceding rows. Unlike for the meteorites, the 
difference in mol% between Band I & II is very noticeable. The mol% difference (FsI-
FsII) is shown in Table 12, with the false edge cases being more than double that of the 
real edge cases. This is because the false edge FsI gives abnormally high results, with a 
mean value of ~60 mol%. The reason for this disparity between mineralogy determined 
using BICs and BIICs is discussed in Section 4.2.  

3.3.3 Slopes 

The asteroid’s slopes are markedly different from the meteorite’s — with a mean value 
several times greater. The real blue edge mean is 0.706 ±0.255, compared with the 53 
HED sample mean of 0.087 ±.066. The false blue edge mean is 1.262 ±0.411, compared 
with the 53 HED sample mean of and 0.218 ±.097. Figure 38 shows a graphical 
representation of the slopes of the Burbine sample, the set of 53 HEDs, and the V-types. 
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Table 10: Real, 2.5 µm edge V-type results, arranged by increasing Wo. All band centers and 
thus molar contents have been corrected for temperature. There is no temperature correction for 
BAR for vestoids. Fs and Wo are averages of the mol% from the BIC and BIIC equations.

        Band I        Band II Band 1

Asteroid Center Error Center Error BAR Error Slopes Fs ave Wo ave

Lee 0.924 0.002 1.927 0.008 2.380 0.025 0.903 32 6

Harbin 0.931 0.001 1.938 0.006 2.118 0.010 0.880 38 8

2001op83 0.936 0.004 1.927 0.023 1.771 0.050 0.829 39 8

LaPalma 0.934 0.001 1.954 0.003 1.920 0.008 0.782 42 9

Volkonskaya 0.934 0.003 1.960 0.009 1.962 0.035 0.618 42 9

Jacliffe 0.930 0.000 1.966 0.002 1.890 0.006 0.557 41 9

Corbett 0.937 0.002 1.956 0.009 2.313 0.022 0.761 43 10

Kirhizia 0.935 0.002 1.965 0.007 1.945 0.019 0.451 44 10

Kastel 0.937 0.001 1.961 0.005 2.154 0.014 0.757 44 10

Kiuchi 0.936 0.006 1.962 0.028 1.802 0.069 0.936 44 10

Kollaa 0.936 0.026 1.975 0.130 1.842 0.290 0.137 45 11

Peking 0.940 0.001 1.968 0.003 1.780 0.008 0.796 47 11

Celle 0.943 0.002 1.941 0.005 1.837 0.024 1.097 46 11

4 Vesta 0.937 0.000 1.967 0.002 1.917 0.004 0.270 45 11

Lundia 0.940 0.002 1.959 0.004 1.865 0.017 1.001 46 11

Kitezh 0.941 0.000 1.970 0.004 1.924 0.011 0.711 47 12

Spartacus 0.948 0.003 1.995 0.017 1.359 0.028 0.516 55 14

All mean 
st. dev.

0.936 
±0.005

0.003 1.958 
±0.017

0.016 1.928 
±0.230

0.038 0.706 
±0.255

43.6 
±4.7

10.1 
±1.8
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Table 11: SNR50 derived mol% Fs and Wo from the real, 2.5 µm edges. The asteroids 
are arranged by increasing Wo according to the clean derived mineralogy as seen in 
Table 10.

Asteroid FsI FsII Fs ave WoI WoII   Wo Ave    

Lee 33.9 34.0 34.0 5.8 6.4 6.1

Harbin  41.8 36.5 39.1 9.2 7.3 8.3

2001op83 47.3 34.1 40.7 11.6 6.4 9.0

LaPalma 45.3 39.9 42.6 10.8 8.6 9.7

Volkonska 44.9 41.1 43.0 10.6 9.1 9.8

Jacliff 41.0 42.5 41.8 8.9 9.6 9.3

Corbett 48.5 40.2 44.3 12.1 8.7 10.4

Kirghizia 46.9 42.2 44.6 11.4 9.5 10.5

Kastel  48.8 41.4 45.1 12.2 9.2 10.7

Kiuchi  47.5 41.7 44.6 11.7 9.3 10.5

Kollaa  47.0 44.4 45.7 11.5 10.3 10.9

Peking  52.3 42.9 47.6 13.7 9.8 11.8

Celle   56.2 37.1 46.6 15.4 7.6 11.5

4 Vesta   48.3 42.7 45.5 12.0 9.7 10.9

Lundia  52.7 40.9 46.8 13.9 9.0 11.5

Kitezh  52.8 43.3 48.1 14.0 9.9 12.0

Spartacus 61.1 48.6 54.9 17.5 12.0 14.7

Mean 48.0 40.8 44.4 11.9 9.0 10.4

St. dev. ±6.2 ±3.7 ±4.4 ±2.7 ±1.4 ±1.8
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Figure 38: A graphical representation of the HED and V-type 
slopes

 V-types Real

 V-types False

Burbine sample RealBurbine Sample False 

53 HEDs Real & False

Table 12: Mean derived molar contents from 17 asteroids for all edge combinations, as well 
as Band I Slope. (From the clean equations)

Blue edge Red edge  FsI  FsII Fs ave FsI - FsII WoI WoII Wo ave WoI-WoII BI Slope

2.5 47.2 
±6.5

40.0 
±4.1

43.6 
±4.7

7.2 
±5.4

11.4 
±2.6

8.7 
±1.6

10.1 
±1.8

2.8 
±2.1

0.706 
±0.255

Real 2.45
-

40.3 
±4.4

43.7 
±4.9

6.8 
±5.4

-
8.8 

±1.6
10.1 
±1.9

2.6 
±2.0

-

2.4
-

40.9 
±4.5

44.0 
±5.0

6.2 
±5.1

-
9.0 

±1.7
10.2 
±1.9

2.4 
±2.0

-

2.5 58.9 
±10.8

-
49.4 
±5.8

18.9 
±11.5

16.2 
±4.3

-
12.4 
±2.3

7.5 
±4.6

1.262 
±0.411

False 2.45
- -

49.6 
±5.8

18.5 
±11.6

- -
12.5 
±2.3

7.4 
±4.6

-

2.4
- -

49.9 
±5.8

17.9 
±11.7

- -
12.6 
±2.3

7.2 
±4.7

-



The bottom two lines are the mean HED real blue edge slopes. The middle two lines are 
the mean HED false blue edge slopes and are almost identical, and the top two lines are 
the mean asteroid slopes. Not only is the difference between the meteorite and asteroid 
slopes great, but the difference between the real and false blue edges within the asteroid 
slopes is also great, and much larger than the difference in real to false blue edge slopes 
for the HEDs. It has been known for decades that asteroid slopes were redder (an 
increasing reflectance from shorter to longer wavelengths) than their meteorite 
counterparts (Gaffey 1976, Burbine et al 2001). Only Kollaa has a shallower slope 
(0.137) than any of the meteorites, in this case six of the Eucrites. Figure 39 shows the 
asteroid slopes as a function of BIIC and BIC superimposed onto the meteorites plot 
from Figure 8. 

  

3.3.4 Modified Band I “centers” 

In § 3.1.6 I showed that combining the three parameters of BIC, BIM and BIS produced 
alternative Band I centers for HEDs, which, when propagated through the nominal BIC 
equation, yielded mineralogy very similar to the EMPA values. Here, we use the 
equations (3, 4 and 5) to calculate the modified Band I centers for the V-types. Table 13 
summarizes the means of all Band I “centers” I tested for both the meteorites and 
asteroids. The table also shows the derived mol% FsI from using only the real blue edge 
(hereafter “nominal”) BIC Calibration equation. I did not apply temperature corrections 
to the modified BICs because they were derived from band centers that had already 
been temperature-corrected.  
 These modified band centers are more of an empirical correction than a physical 
phenomenon. Figure 40 summarizes the mol% Fs calculated from several different 
methods, all for the real, 2.5 µm edge combination. Note the anomalously high value for 
the mean BICmod (0.945 µm) and the FsI (57.1 mol%) resulting from using them as 
inputs into the regular BIC calibration equation. Based on this overestimation, we 
conclude the original offset equation produced from using only the HEDs is not effective 
for deriving mineralogy for the V-type asteroids.  

71



72

Figure 39: Shows how slopes change. Discs are real blue edge slope magnitudes between 
0.003 and 0.265. Circles are false blue edge slopes with magnitudes between .069 and 
.542. The 2.5 µm red edge was used.
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Table 13: Various mean Band I “centers” and derived mol% Fs. Temp-corrected 
B1Cs were used for the offset equation which produced the BICmods.                 
† from 13 HEDs and V-types

13 HEDs  
Band I 

“centers” (µm)

V-types   
Band I 

“centers” (µm)

FsI (mol%) from 
BIC Equation

B1 Min .932 ± .007 .923 ± .006 31.1

B1 Center (non-
temp-corrected) .934 ± .008 .929 ±.005 38.2

B1 Center (temp-
corrected) - .936 ± .005 47.2

BICmod (13 HEDs) .934 ± .008 .945 ± .009 57.1

BICmod_2 (all†) .933 ±.008 .936 ±.006 46.2

BICmod_quad (all†) .933 ±.008 .935 ±.005 45.9



 It is notable that the mean BICmod_2 is identical to the mean temp-corrected 
BICs, and only 0.001 µm shorter than the mean BICmod_quad. The derived molar contents 
from these equations is shown in Figure 41. FsI from using the temp-corrected BICs is 
very close to the FsI from using both the BICmod_2  and BICmod_quad centers. In order to 
know which of the latter two “centers” produces results most similar to nominal B1C 
results, I plot the modified centers against the nominal BICs in Figure 42. Figure 42a 
plots the BICmod_2 centers, and Figure 42b plots the BICmod_quad centers. A slope of 
unity would signify that the modified centers are identical to the nominal BICs. 
Although Figure 42a exhibits a linear fit closer to unity, with a slope of 0.97, then 
Figure 42b, with a slope of 0.93, it has a smaller R2 value of 0.71, compared with the 
Figure 42b R2 value of 0.81. The greater scatter in the data in Figure 42a prompts me 
to conclude that BICmod_2 may not not more useful than BICmod_quad despite its 0.97 
coefficient.  

3.3.5 HED Analog Zones 

A chief goal of researching asteroids is matching them up with their meteorite analogs. 
Deriving mol% Fs and Wo is one way to compare the V-types and HEDs. If a meteorite 
shares the geochemistry with an asteroid, then an argument can be made that that the 
meteorite was ejected from that asteroid. This helps identify potential parent bodies for 
the meteorites as well as the dynamic and thermal history of the asteroid belt. For the 
HED - V-type connection, identifying if the asteroids are more howardite, eucrite, or 
diogenite-like can help: identify if there are multiple parent bodies for the basaltic 
achondrites; provide additional evidence for how Vesta formed and differentiated (see 
McSween et al. 2013 for a thorough summary); and generally increase our understanding 
on how the inner solar system bodies formed. Since the derived molar contents rely upon 
band parameters, we can identify where the asteroidal band centers and BAR lie in the 
HED zones identified in § 3.1.7.  
 Figure 43 shows where the V-type band centers from the real blue edge over-plot 
onto the HED zones delineated earlier in Figure 16. 14 of the 17 V-types lie within the 
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Figure 41: 6 different calculations of derived mol% Fs from using various Band I 
“centers” in the same nominal BIC calibration equation, as well as FsI derived from 
the BIM calibration equation. Also shown is FsII and Fs ave. 
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Figure 43: HED Analog Zones for the real blue edge. V-types (diamonds) are 
plotted onto the eucrite zone (blue polygon), howardite zone (red polygon) and 
diogenite zone (green polygon). Vesta is the black star. 



zones, with one on the cusp. Only three lie in the howardite zone, two of which overlap 
the eucrite zone, suggesting that they may be cumulate eucrites rather than howardites. 
Vesta lies in the eucrite zone. None of the asteroids plot near the diogenite zone. This 
supports earlier research which has found a dearth of diogenitic asteroids in the solar 
system (Burbine et al. 2001). This is thought to be because the diogenite material lies 
deep inside Vesta, and if the V-types are mostly ejecta from collisions of minor bodies 
with Vesta, then it would be difficult to explain a scenario in which a large amount of 
diogenitic material could be excavated from Vesta without being mixed with eucritic 
material (which lies closer to the surface), resulting in howardite-like compositions.  
 Figure 44 is like Figure 43 except for the false blue edge band centers. This 
contrasts with the previous figure in that eight asteroids lie outside of the zones, 
although three are right on the cusp of the eucrite zone. Only one asteroid lies inside the 
howardite/cumulate eucrite zone. The preponderance of asteroids outside of the zones in 
Figure 44 does not mean that their compositions are not analogous to HEDs; rather, it 
suggests that the band centers calculated from a false blue edge are prone to error when 
it comes to assigning meteorite analogs.  
 In § 3.1.7, Figure 18 showed the three meteorite subtype areas as a function of 
BIIC and BAR for the 53 HED sample. In Figure 45 I present the V-type data points in 
a likewise manner, with the means and 1-σ standard deviation of the HEDs represented 
by crossbars for reference. Since Figure 18 shows significant overlap between the eucrites 
and howardites, we can interpret the asteroid data points in Figure 45 as suggestive of 
both subtypes. Prima facie, this appears to clash with the meteor analog assignments of 
Figure 43. However, regarding that figure, notice that it is the BICs that lift the 
asteroids out from the howardite zone and into the eucrite zone. Therefore, BIICs are 
not entirely effective in separating the HED subtypes from one another. Moskovitz et al. 
(2010) found that their sample of near-earth V-type asteroids plotted farther to the 
right (larger BARs) then my sample. This could be attributed to compositional 
differences between the two samples, or to different band analysis techniques. Unlike the 
case with the HEDs, there is no obvious trend with Band I slope. This could suggest a 
somewhat uniform geochemistry for the V-types studied in this thesis, or other, 
unaccounted-for surface effects that homogenize the band parameters for asteroids.  
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Figure 44: HED Analog Zones for the false blue edge. V-types (diamonds) are 
plotted onto the eucrite zone (blue polygon), howardite zone (red polygon) 
and diogenite zone (green polygon). Vesta is the black star. 

Figure 45: Pink circles are V-types from the real, 2.5 µm edges, with their 1-sigma 
standard deviation shown in the upper right corner. The blue, red and green 
crosshairs are HED means and 1-sigma standard deviation for the eucrites, 
howardites and diogenites, respectively. The bubble diameter signifies Band I slope.



 The third method of displaying HED zones that I explore in this thesis is the 
Gaffey plot, shown in Figure 46. Four of the asteroids lie outside of the BA zone, with 
BARs higher than the HED BARs.  

3.3.6 SNR50  

In § 3.2 I showed that decreasing the SNR of the HEDs resulted in different equations 
and calculated mineralogy compared to the clean spectral sets. The coefficient of 
determination R2 and RMS for the Fs calibration equations noticeably increased, but 
only slightly changed for Wo, compared with those values from the clean Burbine 
sample spectral set. In this section, I present the derived mineralogy from using the V-
type band parameters in the SNR50 equations, and compare it to the results from the 
clean calibration equations.  
 Table 14 shows summarizes the SNR50 mol% Fs results as compared to the clean 
spectra results. The table is organized so that the first row contains results from the 
clean spectra, with the following row containing the results from the noisy spectra, using 
the same band parameter and corresponding equation calculated from that parameter. 
In most cases, the mean Fs rose by roughly 1 mol% when going from the clean equations 
to the SNR50 equations (∆mol%). The most notable exception to this is the false BIC 
results, which lowered by 2.8%, which highlights the volatility of a truncated blue edge. 
The derived FsI from these false BICs and equations are over 55 mol%. The real BIM 
∆mol% also lowered, but only by 0.5%, demonstrating that BIMs from un-truncated 
Band I spectra are robust to the noise-level of the spectra. However, as with the case 
presented immediately above (false BIC results), the derived mol% FsI from these 
centers are very far in value from the composition of the HEDs — only in this case the 
value is far lower than expected, by about 10 mol%. 
 In terms of derived Fs from a single absorption feature (that is either Band I or 
Band II), the SNR50, 2.4 µm edge combination gives the closest mol% Fs to the Burbine 
sample EMPA values. This similarity is likely just a coincidence occurring because of the 
different band parameter methods, and it should not be interpreted as having some 
physical meaning.  
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Figure 46: Gaffey plot with the 17 V-type asteroids shown with 1-sigma error bars. The real, 2.5 µm 
edges were used. The thick blue rectangle denotes my HED zone fro this thesis. 

Gaffey’s HED zone
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Table 14: Asteroid mean Fs mol% from different 
calibration equations.  Fs Ave is the average of Band I 
and Band II results form the real, 2.5 edges.                                                            
∆mol% shows change from the Clean results to the 
corresponding SNR50 results.                                           
The last three rows show meteorite Fs.

Calibration Equations 
coming from various 
band “centers” & edges 

Asteroid 
Mean Fs 
mol%

∆ mol%(SNR - 
Clean)

Clean Real BIC 47.2

SNR50 Real BIC 48.0 0.9

Clean False BIC 58.9

SNR50 False BIC 56.0 -2.8

Clean Real BI mins 33.1

SNR50 Real BI mins 32.6 -0.5

Clean False BI mins 34.6

SNR50 False BI mins 35.2 0.5

Clean 2.5 µm BIIC 40.0

SNR50 2.5 µm BIIC 40.8 0.8

Clean 2.45 µm BIIC 40.3

SNR50 2.45 µm BIIC 41.2 0.9

Clean 2.4 µm BIIC 41.0

SNR50 2.4 µm BIIC 42.0 1.1

Clean Real, 2.5 Fs ave 43.6

SNR50 Real, 2,5 Fs ave 44.4 0.8

Various sets of Meteorites mean Fs mol%

13 HEDs EMPA 43.9

13 HEDs Clean & SNR50 
Real, 2.5 µm

43.9

53 HEDs Clean Real 2.5 
µm

43.6



 Fs ave is computed by averaging the derived mineralogy from Band I and Band 
II. For Band I, either the BIC or the BIM can be used, with each one having two 
iterations, depending on which terminal blue edge is chosen — real or false. Band II has 
three different BIIC values depending on which terminal red edge is chosen. For the 
clean spectral set, these parameters can be combined in different ways to form 12 
different values for Fs ave. Likewise, the SNR50 spectral set produces 12, for a total of 
24 different values of mean asteroidal Fs ave. Figure 47 displays theses values in a bar 
chart. The real, 2.45 edge combination using the BICs (as opposed to the BIMs) yields 
the closest mean spectrally derived Fs to the Burbine sample EMPA Fs, only 0.1 mol% 
lower. The real blue edge, 2.5-µm red edge combination using the BICs yields an 
identical mean value to the set of 53 HEDs, even though there is no a priori reason to 
assume that would be the case, especially considering the disparity between Band I and 
Band II molar results. However, it does suggest that if one can obtain spectra with 
complete absorption features between 0.7 and 2.5 µm, or even 2.45 µm, then the 
procedure utilized to calculate Fs ave is a wise one. 
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Chapter 4  ☽  Discussion 

I will discuss two themes here. First, I discuss the relationship between the calibrations 
and the HED zones. Specifically, I will demonstrate how the location of regions in band 
parameter space designed to identify meteorite analogs is sensitive to the band 
parameter analysis used. This analysis investigates meteorite zones in band parameter 
space designed to identify general HED-like mineralogies and to separate howardite-, 
eucrite-, and diogenite-like mineralogy for asteroids.. These discussion will lead to a 
series of recommended uses of the calibration equations presented in the results aimed at 
providing he community with prescriptions to best retrieve mineralogy from remote 
observations of V-type asteroids. 
 Second, I will discuss the disparity of calculated molar chemistry between Band I 
and Band II for the V-types in this study. The derived FsI from the BIC equations are 
~4 mol% higher than that of the HEDs, and the derived FsII from the 2.5 µm red edge 
BIIC equations are ~4 mol% lower than that of the HEDs, so that the average from FsI 
and FsII almost equals the EMPA values of the Burbine sample, as well as the 
calculated Fs ave from the greater 53 HED sample. Since we assume that the HEDs are 
representative of the V-type asteroids, I look for a physical mechanism that shifts BICs 
and BIICs in equal, but opposite ways so that the average comes out close to the 
expectation.  

4.1   Calibrations and Meteorite Zones 

Burbine et al. (2007, 2009) produced the first set of calibration equations calculated 
using the true molar contents of HEDs. 11 years later Burbine et al. (2018) produced a 
new set of equations using the same EMPA values from those same 13 meteorites, but 
using different band parameters. In this thesis, I present several new equations, once 
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again using the same Burbine sample. This demonstrates the lack of data available for 
formulating new calibrations for Vesta-like meteorite analogs. Only one of the 13 in this 
sample set is a howardite, which is defined as a meteorite having a eucrite:diogenite 
mixing ratio of 10:1 (Delaney et al. 1983). Since howardites have band centers and mol% 
values near the middle of the range comprising the band centers and mol% values of the 
Burbine sample, it doesn’t effect the calibration as heavily as the diogenites, which 
constrain the calibration at the lower values. Although there are only two diogenites in 
the Burbine sample, the addition of more diogenites with known EMPA mol% values 
would probably not effect the calibration drastically. For example, Figure 26 in § 3.2.1 
displays two calibration equations very different from one another (the clean false blue 
edge BIC equation, and the SNR50 false blue edge BIC equation), yet when they are 
used on the asteroid BICs, they result in only a ~3 mol% difference, which is well within 
the uncertainties of both equations.  
 My results showed that different calibrations yield different results when deriving 
molar contents for V-type asteroids. This is true in two senses: one, for different versions 
of the same type of calibration — for example the Burbine et al. (2009) BIC equation, 
and my BIC equation; and two, for equations produced by different band parameters — 
for example my BIM equation, and my BIC equation; or the 2.5 µm red edge BIIC 
equation, and the 2.45 µm red edge BIIC equation. In all, there are 35 different 
calibration equations covered in this thesis. Some of them produce similar mol% values, 
while others do not. In § 3.1.5 and § 3.2.4 (frequency analysis) I showed that using band 
parameters in equations that were produced by different, incompatible band parameter 
techniques, yield incorrect mineralogical determinations. Therefore it is important that a 
researcher use the calibration equations that are applicable to the band parameter 
analysis methods they used, or to derive their own equations. Specifically, an equation 
that most closely matches the assignment of the blue edge and red edges should be used 
if individualized calibration equations are not used. In cases where NIR only data is 
available, the 0.8-µm false blue edge equation that best matches the band parameter 
analysis’s choice of red edge should be used. For all studies of asteroids with SNR ~50, 
the set of SNR50 equations should be used to have realistic estimates for the mol% 
uncertainties. 
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 In § 3.1.5 I suggested that because the SNR50 false blue edge BIM equation, Fs I 

(  4.1) = 1380.8 × BIM - 1241.4, has a lower RMS error, that it might return derived 
asteroidal mineralogy more closely resembling the HEDs than the other Band I 
equations. Table 14 shows that the mean mol% Fs for the V-types using that equation is 
35.2 mol%. While, compared with results from the other three BIM equations, this value 
is closer to both the Band II results as well as the mean HED mineralogy (43.6 mol% 
Fs), it is over twice the RMS error (2-σ) of the calibration equation away from the mean 
HED mineralogy. 35.2 mol% severely underestimates the expected mineralogy of the V-
types. Since averaging this value with the already low FsII values yields incorrect, and 
likely underestimated, mineralogical results, I do not recommend using the Band I 
minimum in the case when only incomplete spectra are obtained in the Band I 
wavelength range. Rather, I recommend dispensing with the Band I equations 
altogether, and just using the SNR50 FsII equation from the 2.4 µm red edge. However, 
if a researcher finds that the SNR50 false blue edge equation returns reasonable results 
within one standard deviation of the HEDs mol% Fs (because their data set will be 
different from mine), then I recommend that they average FsII with FsI. Although the 
mean derived FsI from that equation is higher than expected (56 mol%) for my V-types, 
averaging that value with SNR50 FsII from the 2.5 µm red edge gives a mean value of 
48.4 mol% Fs for the V-type asteroids, which is not too far from the 43.9 mol% Fs for 
the Burbine sample, and within the RMS error of many of the calibration equations 
presented in this thesis.  
 These different calculated V-type mineralogies based on which calibration 
equation is used, and if it matches the edge choices for the band parameter analysis 
used,   results in different chemical compositions, but it also effect the meteorite analog 
assignments. This can be seen in the three different types of zoning spaces: BIC vs. BIIC 
(Figs., 15 & 16 for HEDs; Figs. 36 & 37 for V-types), BIIC vs. BAR (Fig. 16 for HEDs; 
Fig. 38 for V-types) , and BIC vs. BAR (Fig. 18 for HEDs & Fig. 39 for V-types., also 
called the Gaffey plot. The first two attempt to separate the three basaltic achondrite 
subtypes (howardites, eucrites and diogenites) from each other, while the last one is 
meant to separate one type of meteorite from another type, such as the HEDs from the 
ordinary chondrites. None of the zones, initially delineated with the clean spectral set 
(See Section 3.1.7), changed as a result of adding noise to the Burbine sample spectra, 
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although an increase in variance of the SNR50 band parameters is noted (Fig. 27). The 
zones in the BIC vs. BIIC space, and the Gaffey plot, moved significantly when going 
from the real to the false blue edge. The meteorite zones are strongly dependent on the 
choice of blue edge. This shows that care in meteorite analog assignment needs to be 
taken for NIR-only asteroid data sets. If a researcher naively uses the canonical HED 
zone from Gaffey et al. (1993), or the howardite-eucrite-diogenite zones from Moskovitz 
et al. (2010), then they may conclude that their asteroids in their sample are not 
representative of HEDs and may be better classified as S-types. The S- and V-types 
have significantly different formations and thermal histories, so these errors could lead to 
missed opportunities to deepen our understanding on the formation and evolution of the 
asteroid belt and the solar system. For those uninitiated in asteroid research, this may 
seem to be an obtuse mistake that would not be common, but the use of the Gaffey et 
al. (1993) HED zone has not been updated since publication, and is used in nearly every 
VNIR spectral analysis of asteroids. The nearly 30-year old band parameter analysis 
methods of Gaffey et al. (1993) have also been long outdated by the more modern 
methods presented here and used by others (naming only a small subset: Burbine et al., 
2007, 2009, 2018; Moskovitz et al., 2010; Reddy et al., 2012; Cloutis et al, 2013; Lindsay 
et al., 2015; Hardersen et al., 2018; etc.). If possible, I recommend a future researcher to 
redraw those zones according to their band parameter analysis methods, or use the 
either the zones shown in this thesis that best match their band parameter analysis. 
 I did not plot the BIIC vs. BAR zones for the false blue edge, but since it’s x-axis 
is the BAR, like the Gaffey plot, then the subtype zones would shift to longer 
wavelengths, in a manner likewise to the Gaffey plot. I leave it to a future researcher to 
redraw those zones if it serves their purpose. 

4.2  FsI versus FsII 

As stated in the previous section, the calibration equations presented here produce a 
wide range of asteroidal mineralogical determinations. Among them, there are two kinds 
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of equations in particular that command the most attention: the BIC and BIIC 
equations governing derived FsI and FsII, respectively. As is seen in Table 12,  the Band 
I Fs mineralogy is an overestimate compared to the average for HEDs, and the Band II 
Fs mineralogy is an underestimate for all of the asteroids. This is concerning because if 
V-type spectra are analogous to HED spectra, and the calibration equations reliably 
return mineralogy, then the calibration equations should give the same derived 
mineralogy, within the RMS error. This casts doubt on how applicable the HED 
calibrations equations are to V-type asteroids. In this section, I explore potential causes 
to the different Band I and Band II results, and look for potential solutions to increase 
confidence that we can retrieve mineralogy from V-type asteroid spectra using band 
parameter analysis methods. The potential causes I consider are temperature 
corrections, SNR level, Band I slope, space weathering (SW), and composition.  

Burbine et al. (2009) responded to this FsI vs. FsII discrepancy by averaging the results. 
However, Burbine et al. (2018) responded by choosing FsI, and ignoring FsII. The reason 
they gave was that BIICs were more heavily influenced by temperature corrections than 
BICs. and since they chose to not perform temperature corrections on their band 
centers, then by using the band centers that were less influenced by temperature (the 
BICs), they could have greater confidence in their derived mineralogy. However, their 
sample of V-types came from the NEA population of asteroids, whereas my sample is 
from the Main Belt. Temperature corrections did not act on their sample in such a way 
as to bring the band centers into closer agreement with the band centers of the HEDs. 
However, in my case it did, and I therefore chose to use the temperature corrections (see 
§ 3.3.1). Burbine et al’s (2018) mean FsII was, like the mean FsII from my sample, lower 
than the HED mol% Fs, and also lower than the calibration error (in my case, most of 
the six versions of FsII were within RMS error). Whereas their mean NEA sample FsI 
was 43 mol%, a less than 1 mol% difference from the EMPA mean. It therefore makes 
sense that they would choose to regard the FsI results with confidence, since they agree 
with the HED FsI. However, what then are we to make of their low FsII mean of 35 
mol%?  
 To see if temperature corrections can help to explain the FsI vs. FsII discrepancy, 
I examined  the V-types FsI - FsII against the surface equilibrium temperature of 
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asteroids in Figure 48. The blue disks are the values from band centers that have not 
been corrected for temperature, and the green triangles are from the centers that have 
been temperature-corrected. If temperature-corrections could help to explain the FsI vs. 
FsII discrepancy, then we would expect the blue data points to approach zero relative to 
the blue points. However, I found the opposite trend. The discrepancy between FsI and 
FsII has worsened after temperature corrections. Therefore while important to account 
for in a band parameter analysis, the temperature of the asteroids does not explain this 
disparity.  

I introduced noise into the Burbine sample in order to calculate more realistic 
calibrations for V-type asteroids. It is possible that the lower signal-to-noise data could 
lead to differences in band parameters. One of the stronger telluric water absorptions 
spans 1.8 - 2.1 µm, which overlaps with the location of Band II Center. The SNR over 
this wavelength range was reduced to approximately 25 to simulate the decrease in 
signal due to telluric water. This could lead to a systematic error in measuring the Band 
II Center, and thus cause a disparity between mineralogy from Band I and Band II. If 
the difference in SNR between the meteorites and asteroids are responsible for the Band 
I versus Band II divergence, then FsI - FsII from the SNR50 calibration equations would 
be closer to zero than FsI - FsII from the clean equations. However, as seen in Table 14, 
the derived mineralogy changed very little in response to the added spectral noise. 
Although FsII did increase by ~1 mol%, approaching the ~43 mol% of the HEDs, FsI 
sometimes increased, and sometimes decreased. In order to explain the FsI vs. FsII 
division, the combination of an increasing FsI and a decreasing FsII would have to 
approach the HED mean 43.6 mol% Fs, within RMS error. Since this does not occur, I 
conclude that the noise-level of the spectra are not responsible for the FsI vs. FsII 
disparity. 

Figure 38 in § 3.3.3 shows that V-type Band I Slopes are much greater than the HED 
slopes. The band center is defined as the point of maximum absorption for an 
absorption feature and is found by dividing the reflectance values of the absorption 
feature by this slope. This procedure is designed to eliminate the variable of slope to 
determine the maximum of absorption rather than the minimum reflectance value which 
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Figure 48: Plots the difference in FsI and FsII for the 17 V-type asteroids. The blue dots are the non-
temperature-corrected data points, and the green triangles are temperature-corrected.  



is a function of absorption and slope. The mineral chemistry determines the location of 
maximum absorption. This leads to the expectation that the higher Band I Slopes for 
the V-types should not affect the determined BICs, and the calibration equations should 
reliably return asteroid surface mineralogy. The fact that this is not the case indicates 
that there is a physical mechanism that is increasing the slopes for the asteroids and 
altering the band centers. 
 An exception to the above slope argument is the case of using the 0.8 µm false 
blue edge. While measuring a continuum and correcting for it returns the maximum 
absorption, it only works if the full wavelength range of the band is available. For 
example, my false blue edge cuts off the reflectance maximum near 0.75 µm, which is 
required to estimate the continuum. This imposes an artificially high Band I Slope, 
which will lead measuring an artificially high BIC. For the HEDs, this problem of 
artificially high BICs is corrected by the the calibration process. However, the greater 
Band I Slope for the V-types compared to the HEDs results increases the problem 
resulting with artificially high BICs that are not commensurate with the increase from 
false blue edge used on HEDs. Since the Fs and Wo mineralogy determined by the 
calibration equations is directly proportional to BIC, this larger artificial increase to V-
type BICs will cause an overestimation of mineralogy when using the false blue edge 
calibration equations on asteroid data. This effect can be seen by the high FsI average of 

58.9  10.8 for V-types in Table 12. Because of this problem, I recommend that for NIR 
only V-type data sets, mineralogy is best determined using BIIC and their 
corresponding equations with recognition that mineralogy is likely a few percent 
underestimate. 

The above analysis points toward a physical mechanism that is increasing Band I Slopes 
and BICs while simultaneously decreasing BIICs. One possible explanation is that 
asteroids are space weathered. The term “space weathering” encompasses the processes 
which alter the surface compositions of asteroids, as well as other solar system bodies 
lacking atmosphere and large magnetic fields (Hapke 2001; Chapman 2004, Fulvio 2012). 
These include solar wind, cosmic rays, and micrometeorite impacts (Brunetto et al. 
2015). SW has been invoked for many years (Chapman, 1979, 2004; Clark et al. 2002) as 
a possible explanation of the mismatch between S-type asteroids and the OCs. Many 
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laboratory experiments have attempted to mimic SW by altering the surfaces of 
meteorites (Hapke, 1965; Moroz et al. 1996; Sasaki et al. 2001; Strazzulla et al. 2005; 
Marchi et al. 2005; Brunetto et al. 2006b; Loeffler et al. 2008a, 2009; Wasson et al. 2009; 
Fu et al., 2012; Fulvio et al. 2012). Since pyroxenes are a large component of OCs, as 
well as HEDs, the effects of these SW experiments on mineral end members, lunar 
samples and simulants, and OCs are generally applicable to HEDs. The result is a 
reddening of the spectrum, as well as darkening of the absorption features (Brunetto et 
al. 2015 and references therein). A reddening of the spectrum translates as higher slopes. 
Fulvio (2012) points out that the BIS is highly representative of SW alteration (see 
Hiroi & Sasaki 2001; Strazzulla et al. 2005) and the Bus-DeMeo taxonomy uses slope as 
a proxy of space weathering (DeMeo et al. 2009). However, as discussed above, the 
reddening of the slope in itself is not diagnostic of differing mineralogy.  
 The prevailing belief is that SW does not effect the band centers of silicate 
absorptions (Brunetto et al. 2015). However, Moskovitz et al. (2010) reports on two sets 
of SW experiments that have been performed on HEDs. The Bereba eucrite was 
subjected to ion irradiation to simulate solar wind particles in Vernazza et al. (2006), 
and the eucrite Millbillillie was subjected to laser irradiation to simulate micrometeorite 
impacts in Wasson et al. (1997, 1998). Moskovitz et al. (2010) performed a band 
parameter analysis on the resulting spectra, which returned a fascinating trend: in both 
cases, the BICs shifted to longer wavelengths, while the BIICs shifted to shorter 
wavelengths. This corresponds to higher FsI and lower FsII values, which suggest space 
weathering as the mechanism for the disparity in FsI and FsII in my V-type sample. A 
caveat is that the fully irradiated spectra no longer resemble the spectra of V-type 
asteroids, and Moskovitz et al. (2010) suggests this is due to the irradiation process used 
producing large particle sizes, and therefore should not be considered an analog for 
space weathered V-types. However, since the shift in BIIC is in the correct direction to 
explain my derived Band II mineralogy, this suggests that SW could help to explain the 
FsI/FsII conundrum. Additional experiments showing spectra from a continuum of 
irradiation levels on more HED meteorites could elucidate this phenomenon.  

Finally, there is the case that HEDs and V-type surfaces have different compositions or 
some non-space weathering surface effect that creates the FsI and FsII differences. 
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Laboratory measured spectra of pyroxenes, HEDs, and other meteorites also have 
covered a wide range of sample preparation and measurement techniques included  
particle size distributions, phase angle, temperature, and composition (Cloutis et al. 
1986; Gaffey et al. 1993; Gaffey et al. 2002; Burbine et al. 2002, 2007, 2009, 2018; Klima 
et al. 2007, 2011; Dunn et al. 2010; Sanchez et al. 2012; Reddy et al. 2012), none of 
which offer a simple explanation of what causes this FsII and FsII difference in 
meteorites  Additionally, given the long established link based on the similarity of HED, 
4 Vesta, and V-type spectra, composition is an unlikely scenario, but it should not be 
fully discounted. To resolve this problem, more laboratory experiments simulating space 
weathering and a larger sample of asteroid spectra with measured band parameters are 
required. It was my goal in this thesis to give future band parameter analysis asteroid 
researchers new tools with which they can address this problem, as well as more 
accurately determined band parameters. As it stands, I suggest caution in using band 
parameters to definitely determine composition. If band parameters are used, however, 
and if the full Band I feature is available, then the average of FsI and FsII should be 
used since it results in an answer that appears to best match expectation.  
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Chapter 5  ☽  Conclusions 

In this thesis, I have performed an extensive band parameter analysis on a sample of 13 
HEDs whose true mineralogical molar contents are known, and derived new calibration 
equations. I also calculated the band parameters of a sample of 53 HEDs and 17 V-type 
asteroids. In particular:  

• Using reflectance spectra of HEDs with known mineralogy, I produced a suite of new 
calibration equations to retrieve mineralogy from V-types asteroids. The calibration 
equations used a real blue edge and a false blue edge of 0.8 µm and three red edges of 
2.40, 2.45, and 2.50 µm. These were chosen to mimic NIR-only data asteroid data 
(false blue edge) and the observational limitations longword of 2.40 µm of the most 
often used telescopes with NIR spectrometers. 

• I provide the first available calibration equations to be used for NIR-only V-type data 
sets. This allows researchers the ability to estimate mineralogy for V-types without the 
need for follow-up visible-light observations made at a separate telescope facility under 
different observing conditions. 

• To generate calibration equations that have molar percentage uncertainties 
representative of what can be obtained from asteroid spectra with an signal-to-noise 
ratio (SNR) ~50, I degraded the laboratory spectra of the Burbine sample to asteroid-
like SNR and redefined calibration equations. We recommend using this set of 
equations over the ‘clean’ when determining the mineralogy of asteroids. 

• I provide a variety of explorations in different ways of using and modifying measured 
band parameters to maximize the usefulness of past and future asteroid studies. 

• The traditionally used meteorite zones were updated to our more modern band 
parameter analysis technique, which is more similar to other currently used techniques 
than to the method used by Gaffey et al. (1993) that established the original HED 
zone in BIC vs. BAR space. I also provide newly determine meteorite zones applicable 
to NIR only data. 

• I provide the following recommendations for using calibration equations 

94



• If using published equations, choose the equations that best match your edge choices 
and details of your band parameter analysis. 

• If possible, use the Burbine sample to generate calibration equations for your band 
parameter analysis method. 

• Using the average of mineralogy determined from BIC (FsI & WoI) and BIIC (FsII 
& WoII) gives mineralogy most similar to the averages of HEDs. I recommend using 
this average when determining mineralogy of V-type asteroids. 

• Due to artificially inflated 0.8-µm false blue BIC values for V-types asteroids, I 
recommend using BIIC calibration equations if only NIR data is available. The 
results will be a slight underestimate. 

• However, if your V-type asteroids sample possesses false blue edge BIC values 
that are not overly inflated, then I recommend averaging the false blue edge FsI 
results with the FsII results.  

• Mineralogy calibration equations for V-types systemically overestimate mineralogy 
using BICs and underestimate mineralogy using BIICs. For this reason, I conclude 
that in their current form, these calibration equations will have systematic error that 
must be noted. 
• A potential explanation for this difference is space weathering. 

The above conclusions highlight a few salient themes to be taken away from this thesis. 
First, calibration equations and meteorite zones derived from band parameter analyses 
are sensitive to the method of the band parameter analysis. Moving forward, asteroid 
researchers using band parameter analyses to determine V-type mineralogy should 
develop their own analytical tools or follow the recommendations summarized above. 
Second, due to the differences in FsI and FsII, the application of calibration equations to 
V-type asteroids should be taken with caution, and applied with the caveat that FsI is 
likely an overestimate and FsII is likely an underestimate. The work presented here 
suggest space weathering on V-type asteroids may be the driving physical mechanism. 
To resolve this issue, we need more HEDs with measured mineralogy and reflectance 
spectra, laboratory studies simulating space weathering, and a larger sample of V-type 
asteroids with visible and near-infrared spectra 
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