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ABSTRACT 

Subaerial biofilms (SABs) grow at the interface between the atmosphere and rock surfaces 

in terrestrial and subterranean environments around the world. Multi-colored SABs colonizing 

relatively dry and nutrient-limited cave surfaces are known to contain microbes putatively 

involved in chemolithoautotrophic processes using inorganic carbon like carbon dioxide (CO2) or 

methane (CH4). However, the importance of CO2 and CH4 to SAB biomass production has not 

been quantified, the environmental conditions influencing biomass production and diversity have 

not been thoroughly evaluated, and stable carbon and nitrogen isotope compositions have yet to 

be determined from epigenic cave SABs. The purpose of this study was two-fold: (i) to quantify 

the proportion of biomass in cave SABs that could be derived from chemolithoautotrophic 

processes using stable carbon and nitrogen isotope analysis, and (ii) to characterize and quantify 

taxonomic groups capable of chemolithoautotrophy using molecular techniques. Bulk stable 

isotope analysis of biomass carbon had δ13C [delta 13-C] values between -35 and -46‰ [per mil], 

which were more negative than would be predicted if SAB biomass was due to heterotrophic 

assimilation of organic carbon having δ13C values of -21 to -25‰. Using isotopic compositions of 

end-member compounds, two-member mixing models indicated that 31‒100% of total biomass 

carbon could be produced via CO2-derived carbon, and 32‒66% of total biomass carbon could be 

due to CH4-derived carbon incorporation. Nitrogen isotope analyses confirmed the presence of 

nitrifying and nitrogen-fixing microbes, which was supported by 16S rRNA gene sequence 

analyses that retrieved high relative abundances of putative chemolithoautotrophs belonging to the 

families Nitrosococcaceae, Nitrosomonadaceae, and Nitrospirales, as well as Pseudonocardiaceae. 

Pseudonocardiaceae are in the Actinobacteria phylum and can potentially fix CO2. Overall 

microbial community composition significantly correlated with moisture content, and the relative 

abundances of Pseudonocardiaceae increased as moisture content decreased. Consequently, dry 

cave-wall habitats may select for Pseudonocardiaceae, as primary colonizers, that make the habitat 

conducive for other microbial groups like nitrogen cycling chemolithoautotrophs and eventually 

heterotrophs. Chemolithoautotrophy and nitrogen cycling in cave SABs are likely important for 

terrestrial cave food webs, although their contributions to providing organic carbon and nitrogen 

sources to nutrient-limited cave ecosystems will require additional research. 
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CHAPTER ONE 

INTRODUCTION 

Caves are characterized by complete darkness, relatively constant temperature, high 

relative humidity, and low nutrient input that results in oligotrophic (nutrient-limited) ecosystem 

conditions (Wilkens et al., 2000). Diverse communities of microbes and troglobitic (cave obligate) 

and troglophilic (cave facultative) animals that live in cave ecosystems can be supported from the 

input of photosynthesis-derived organic matter from the surface, which drives heterotrophic 

metabolism (Poulson & Lavoie, 2000; Wilkens et al., 2000; Simon et al., 2003), as well as from 

chemolithoautotrophic microbial communities that produce their own source of organic carbon by 

“fixing” inorganic carbon dioxide (CO2) (Ortiz et al., 2014). Some chemolithoautotrophs oxidize 

reduced inorganic chemical compounds like hydrogen sulfide (H2S), ferrous iron, nitrite, or 

ammonia (Ehrich et al., 1995; Klotz et al., 2006; Amils, 2011), whereas others use methane (CH4) 

and other single-carbon (C1) compounds for energy and carbon sources (Hanson & Hanson, 1996). 

However, the relative importance of heterotrophic and chemolithoautotrophic carbon metabolisms 

to cave microbial communities remains poorly understood, especially in the vadose (i.e., dry, 

subaerial, terrestrial) zones of epigenic cave and karst systems.  

Most research concerning microbial carbon cycling in the subsurface has been done in 

aquatic ecosystems, such as, for example, the Nullarbor caves in Australia (Holmes et al., 2001; 

Tetu et al., 2013), groundwater in the Edwards Aquifer, Texas (Hutchins et al., 2016), a stream in 

Organ Cave, West Virginia (Simon et al., 2003), a mineral spring in southern Germany (Karwautz 

et al., 2017), and a karst subterranean estuary in the Yucatan peninsula, Mexico (Brankovits et al., 

2017; Brankovits & Pohlman, 2020). Studies of microbial carbon cycling in karst vadose zones 

have mostly focused on hypogenic cave systems formed by sulfuric acid speleogenesis with 

elevated concentrations of dissolved and atmospheric gases that can be oxidized by 

chemolithoautotrophs (Vlasceanu et al., 2000; Macalady et al., 2006, 2007; Porter et al., 2009; 

Jones et al., 2011; Karwautz et al., 2017). In epigenic caves without elevated levels of reduced 

gaseous compounds, as well as basaltic lava tube caves, cave walls and sediment banks are still 

habitats for extensive, multi-colored subaerial biofilms (SABs) (e.g., Schabereiter-Gurtner et al., 

2002, 2004; Barton et al., 2007; Barton et al., 2010;  Pašić et al., 2010; Porca et al., 2012; Hathaway 
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et al., 2014; Ortiz et al., 2014; Riquelme et al., 2015; Lavoie et al., 2017; Gonzalez-Pimentel et al., 

2018; Marques et al., 2018; Zhao et al., 2018; Luis-Vargas et al., 2019).  

Microbial communities associated with SABs exist on rock and sediment surfaces across 

a diverse range of climates and environments (Gorbushina, 2007; Gorbushina & Broughton, 2009; 

Choe et al., 2018). Rock surfaces are generally considered extreme habitats due to nutrient 

limitation and desiccation stress (Villa et al., 2016). In general, SABs are comprised of relatively 

self-sufficient, complex, and symbiotic communities (Gorbushina & Broughton, 2009; Villa et al., 

2016), with SABs from surface (i.e., photic) ecosystems including abundant CH4-oxidizing (i.e., 

methanotrophic) (Kussmaul et al., 1998) and CO2-fixing (i.e., photoautotrophic and 

chemolithoautotrophic) metabolic groups (Gorbushina, 2007; Li et al., 2016; Villa et al., 2016). 

Within rock surface or photic SAB communities, there is dependence on CO2 fixed by 

photoautotrophic and chemolithoautotrophic organisms, nitrification and nitrogen cycling, as well 

as the potential importance of alternative carbon sources, such as CH4. Nitrifying bacteria in SABs 

are also involved in rock weathering (Abdulla, 2009; Frey et al., 2010). A recent investigation of 

SAB microbial communities on castle walls in the United Kingdom by Zanardini and colleagues 

(2019) reveal abundant putative chemolithoautotrophs, in addition to photoautotrophic 

cyanobacteria, and 16S rRNA sequence representatives demonstrate a complete nitrogen cycle 

from the SABs, including nitrogen fixation (e.g., Azospirillium), ammonia oxidation (e.g., 

Nitrosospira), nitrite oxidation (e.g., Nitrospira), and denitrification (e.g., Rhodobacter).  

Because cave environments cannot support photoautotrophic CO2 fixation, cave SABs may 

instead rely on CO2 fixation via chemolithoautotrophy, such as CO2 fixation via nitrification (Ortiz 

et al., 2014). Microbial community composition analyses based on 16S rRNA gene sequence 

taxonomy of cave SABs in carbonate cave systems (e.g., Porca et al., 2012; Ortiz et al., 2014; 

Marques et al., 2019) and lava tubes (e.g., Hathaway et al., 2014; Riquelme et al., 2015; Lavoie et 

al., 2017; Gonzalez-Pimentel et al., 2018; Luis-Vargas et al., 2019) include putative 

chemolithoautotrophs, including ammonia-oxidizing and nitrite-oxidizing bacteria, potentially 

CO2-fixing Actinobacteria, and methanotrophs. In addition, two metagenomic studies show 

genetic potential for chemolithoautotrophic CO2 and CH4 fixation in SABs (Ortiz et al., 2014; 

Wiseschart et al., 2019). Even preliminary 16S rRNA analyses of SABs from East Tennessee 

carbonate caves (Engel et al., 2017) reveal high proportions of putative methanotrophs of the order 
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Rhizobiales, putative ammonia-oxidizing chemolithoautotrophs of the families Nitrosococcaceae 

and Nitrosomonadaceae (Klotz et al., 2006; Prosser et al., 2014), and possible CO2-fixers of the 

order Pseudonocardiales (Lynch et al., 2014). However, aside from these investigations reliant on 

molecular genetics, there have only been two studies that used stable isotope tracers to evaluate 

whether active chemolithoautotrophic metabolic processes are responsible for microbial biomass 

production, and both were from hypogenic caves with acidophilic SABs dominated by sulfur-

oxidizing bacteria (Vlasceanu et al., 2000; Engel et al., 2001). In addition, there has been limited 

research to understand nutrient resources that could support SAB communities or the spatial 

variability of cave SAB communities across microenvironmental gradients, such as with respect 

to water and/or nutrient availability.  

Research Objectives and Hypotheses 
The main research objectives for this thesis are to (i) determine environmental drivers of 

spatial variation in cave SAB microbial community compositions within and between cave 

systems, and (ii) characterize the contribution of chemolithoautotrophic pathways to biomass 

production within SABs. The hypotheses tested were: 

1) Cave SAB microbial community composition, and specifically overall diversity and dominant 

microorganisms, would be more similar between areas of a cave that have similar 

environmental conditions and expected nutrient availability. 

2) Biofilms in areas with lower availability of organic carbon from percolating water or flooding 

stream water (e.g., on relatively dry surfaces) would have higher relative abundances of 

chemolithoautotrophs compared to SABs growing in areas actively exposed to allochthonous 

organic carbon input.  

3) Bulk stable carbon isotope compositions (δ13C) of SAB biomass would support the presence 

chemolithoautotrophic functions, such as CO2 fixation and/or CH4 oxidation, and correspond 

to relative abundances of those taxonomic groups based on 16S rRNA gene sequence data. 

4) Based on the prevalence of putative nitrifiers in cave SABs, as well as the overall potential 

nitrogen limitation in caves which may result in nitrogen (N2) fixation or diazotrophy to 

supplement nitrogen resources, bulk stable nitrogen isotope analysis on SAB biomass are 

expected to show relatively low δ15N values consistent with those produced via N2 fixation 

and/or nitrification, as opposed to positive δ15N values consistent with denitrification or 

assimilation of organic nitrogen.  
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The caves selected for this study were near Knoxville, Tennessee, and had easy access, 

abundant SABs, and outflowing streams with evidence of flooding during rain events. Based on 

previous aqueous geochemistry sampling, the cave streams also had comparable nutrient levels. 

Available nutrients and environmental conditions (e.g., temperature, humidity, moisture, and wet-

season flooding height and frequency) were measured at each SAB sampling site. The taxonomic 

identities and relative abundances of SAB microbial communities were assessed from 16S rRNA 

gene sequences obtained from environmental DNA. 16S rRNA genes can hint to putative 

metabolic functions associated with certain taxa, such as CO2 fixation or CH4 oxidation, but 16S 

rRNA genes cannot give precise information about metabolic activity. Therefore, δ13C analyses of 

SABs were done to evaluate the contribution of CO2 and/or CH4-derived carbon to SAB biomass. 

Although stable isotope ratio analyses have been used to differentiate between heterotrophic and 

chemolithoautotrophic contributions to carbon cycling in cave and karst systems (e.g., Sarbu et al., 

1996; Hutchins et al., 2016), use of δ13C analysis to understand the metabolism of microbial 

communities from SABs in epigenic carbonate cave systems has not been done previously. 

Thesis Organization 
This thesis is organized with four additional chapters. Chapter Two includes a literature 

review of the current knowledge of cave microbial communities associated with SABs and how 

tracing carbon sources to microbial communities can be accomplished. Chapter Three describes 

the methods used in this research, from sampling procedures to data analysis and statistical 

evaluation of the results. Chapter Four outlines the results for cave environmental conditions, 

stable isotope analysis, and microbial community analysis. Chapter Five includes the discussion, 

which is divided into three sections based on evaluations of the research hypotheses. The first 

section summarizes the taxonomic groups in the SABs in comparison to other studies and assesses 

the potential metabolisms of the most prevalent groups. The second section evaluates the 

importance of moisture, as an important environmental driver, on SAB diversity, and the third 

section of the chapter discusses the evidence for chemolithoautotrophic carbon fixation in the 

SABs and the implications for the different autotrophic pathways for the cave ecosystem.  Finally, 

Chapter Six presents the main conclusions drawn from this study and a discussion of future 

research directions.   
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CHAPTER TWO 

LITERATURE REVIEW 

 Subaerial Biofilms in Caves 
Subaerial biofilms (SABs) form at the interface between air and solid substrates in a wide 

variety of climates and conditions, including in polar, arid, tropical, and subterranean 

environments (Gorbushina & Broughton, 2009; Villa et al., 2016). Cave-wall SABs are abundant 

in caves around the world, including basaltic lava tubes and carbonate caves, where they exist as 

visible, multi-colored colonies on bare rock and sediment surfaces (Vlasceanu et al., 2000; Barton 

et al., 2007; Hathaway et al., 2014; Ortiz et al., 2014; Lavoie et al., 2017; Gonzalez-Pimentel et 

al., 2018; Marques et al., 2019). Cave SABs experience similar limitations to nutrient and water 

availability as SABs in surface, non-cave environments (Villa et al., 2016). The microbial 

communities in SABs in epigenic cave systems have relatively low taxonomic diversity and are 

often dominated by a few organisms from the phyla Actinobacteria and Proteobacteria (Ortiz et 

al., 2014; Tomczyk-Żak & Zielenkiewicz, 2015; Marques et al., 2019). Although cave SABs can 

be morphologically distinct, most notably in their pigmentation, which can be yellow, blue, pink, 

or white, color does not usually link to the dominance of specific taxonomic groups (Gonzalez-

Pimentel et al., 2018). Cave SAB microbial community composition does vary by geographic 

location, substrate mineralogy, carbon input, and microenvironmental conditions within and 

between caves (Barton et al., 2007; Ortiz et al., 2014; Zhao et al., 2018; Marques et al., 2019). 

Ventilation created by airflow patterns between passages at different elevations can affect passage 

air and rock temperature and relative humidity, as well as alters ambient concentrations of gases 

(Tomczyk-Żak & Zielenkiewicz, 2015), which correspond to differences in the distribution of 

microbial groups (Porca et al., 2012; Ortiz et al., 2014). Growth of extensive biofilms in some 

caves demonstrates the apparent success of microbial communities to these conditions, but there 

has been limited research to understand the nutrient resources that could support the communities.  

Taxonomic Diversity of Cave SABs Compared to Other Habitats 
The most abundant taxa found in cave SABs include Actinobacteria, specifically from the 

orders Euzebyales and Pseudonocardiales, Proteobacteria, including members of the Chromatiales 

and Xanthomonadales, as well as Acidobacteria and Nitrospirae (e.g., Riquelme et al., 2015). 

These cave-wall SAB microbial communities are similar across vast geographic distances and 

from geologically distinct systems, including from basaltic lava tubes in the Azores Islands, 
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Portugal, the Canary Islands, Spain, and from Hawai’i and New Mexico, USA (Hathaway et al., 

2014; Riquelme et al., 2015; Lavoie et al., 2017; Gonzalez-Pimentel et al., 2018; Luis-Vargas et 

al., 2019), as well as from limestone caves in China (Wu et al., 2015), USA (Barton et al., 2007), 

and Slovenia (Porca et al., 2012). For instance, the genus Euzebya has been found to dominate 

SABs in lava tubes and carbonate caves around the world (e.g., Hathaway et al., 2014; Riquelme 

et al., 2015; Yun et al., 2016; Gonzales-Pimentel et al., 2018) and the Pseudonocardiales 

commonly dominate SABs from lava tubes (Riquelme et al., 2015; Gonzalez-Pimentel et al., 

2018), limestone caves (Schabereiter-Gurtner et al., 2004; Barton et al., 2007; Wu et al., 2015; 

Lavoie et al., 2017; Wiseschart et al., 2019; Zhu et al., 2019), and from cave paintings on sandstone 

(Duan et al., 2017). Even in studies that did not identify Actinobacteria beyond the level of class, 

Actinobacteria, in general, dominate cave-wall weathered rock samples, which indicates potential 

selectiveness of this environment for certain microbial groups (Yun et al., 2015).  

Ammonia-oxidizing and nitrite-oxidizing bacteria, including members of the orders 

Nitrosococcales, Nitrosomonadales, and Nitrospirales have also been identified commonly in cave 

environments. At the genus level, Nitrosococcus is abundant across geographically and 

geologically distinct caves (Porca et al., 2012; Tomczyk-Zak & Zeilenkiewicz, 2015; Wu et al., 

2015; Marques et al., 2019). But, recent re-classification of the genus Nitrosococcus from the 

family Chromatiales to Nitrosococcales (within the Gammaproteobacteria) in the Silva reference 

database now complicates interpretation of some older literature. Additional sequence analyses 

will be needed to confirm whether uncultured members of the order Chromatiales in cave-wall 

SABs from three studies, two in lava tubes and the other in limestone caves in Spain and Slovenia, 

are Nitrosococcales (Porca et al., 2012; Gonzalez-Pimentel et al., 2018; Luis-Vargas et al., 2019). 

Ammonia-oxidizing bacteria (AOB) of the family Nitrosomonadaceae have been found in Movile 

Cave, which is characterized by high input of CH4, and a Slovenian limestone cave, but are not 

commonly reported at the family or genus level in the majority of cave SAB studies (Hutchens et 

al., 2003; Pašić et al., 2010; Tomczyk-Zak & Zeilenkiewicz, 2015). However, this family belongs 

to the order Burkholderiales, which is common in cave microbial community studies (Zhao et al., 

2007; Pašić et al., 2010; Wiseschart et al., 2018). Potential nitrite-oxidizing bacteria of the phylum 

Nitrospirae are also frequently identified in lava tube and carbonate cave microbial communities 

(Hathaway et al., 2014; Ortiz et al., 2014; Lavoie et al., 2017; Thompson et al., 2019). 
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Microbial community composition of cave-wall SABs also somewhat resemble those from 

SABs in non-cave environments, although the body of literature discussing microbial community 

structure of SABs on stone surfaces and monuments has largely been separate from that of cave-

wall biofilms, with rare citations between the cave SAB and surface SAB literature. Of course, a 

major environmental difference between cave SABs and those found on the surface is the presence 

of sunlight, which results in surface SABs containing a large proportion of phototrophic 

prokaryotes and eukaryotes (Gorbushina et al., 2007; Choe et al., 2018). These phototrophic 

organisms provide the primary source of carbon via CO2 fixation to heterotrophic members of the 

community, including heterotrophic bacteria and fungi (Villa et al., 2016). However, despite 

differences in community composition, surface and cave SABs share challenges associated with 

growth on solid surfaces with limited nutrient availability. These conditions likely produce 

functionally similar communities among the surface and cave environments (Zanardini et al., 

2019). Desiccation resistance and the ability to manufacture organic carbon and nitrogen from 

inorganic nutrient sources via photoautotrophy, chemolithoautotrophy, methanotrophy, or 

diazotrophy appear to be the primary functions of SAB communities, regardless of the presence 

of light (Villa et al., 2016; Zanardini et al., 2019). Photic SABs also are colonized by 

chemolithoautotrophs, including nitrifiers and methanotrophs, as well as nitrogen-fixing 

organisms similar to cave SABs (Kussmaul et al., 1998; Mansch & Bock, 1998; Villa et al., 2018; 

Zanardini et al., 2019).  

Other extreme environments that could be considered analogous to both photic and cave 

SABs include rocky soils from arid to cold climates. For instance, members of the family 

Pseudonocardiaceae are not commonly reported in photic SAB microbial communities, but this 

family is abundant in desert soils and cave SABs. Lavoie et al. (2017) found higher proportions of 

Pseudonocardiaceae in cave SABs compared to overlying surface desert soils. This group can fix 

atmospheric CO2 and metabolize C1 compounds to supplement limited organic carbon resources 

(Lynch et al., 2014; Mohammadipanah & Wink 2016; Ji et al., 2017). Other members of this 

family, including Pseudonocardia dioxanivorans, are also nitrogen-fixers, which could enable 

them to supplement limited nitrogen resources (Mahendra & Alvarez-Cohen, 2005).  

The dominance of certain Actinobacteria, ammonia-oxidizers, and nitrifiers in cave 

environments may distinguish cave SABs from SABs in other environments. Although caves are 
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characterized by relatively stable temperature and high humidity, most caves are nutrient-limited, 

so successful microbial groups would need to make the most of inadequate resources or be able to 

use alternative sources of nutrients. Therefore, the existence of so-called endemic or cave-adapted 

microbial groups has been long debated in the cave literature (Lavoie et al., 2017; Thompson et 

al., 2019), particularly when considering the most likely mechanisms for caves to become 

colonized by microbes, such as through meteoric water and soil percolation through fractures in 

the overlying epikarst or from flooding cave streams (Yun et al., 2016; Lavoie et al., 2017; Zhao 

et al., 2018; Thompson et al., 2019). However, more research is needed to demonstrate if and how 

the cave-wall environment selects for specific taxonomic and functional microbial groups from 

source inocula that may be comprised of many more functionally diverse microbes from the 

surface or other proximal environments. 

Carbon Metabolism in Cave Microbial Communities 
In carbon-limited cave environments, some microbes can utilize inorganic carbon sources 

(i.e., CO2, bicarbonate, CH4, etc.) via chemolithoautotrophy and supplement organic carbon 

availability. Cave microbial communities can contain abundant taxa putatively involved in 

methanotrophy (e.g., Methyloligellaceae) (Zhao et al., 2018; Wiseschart et al., 2019), diazotrophy 

(Marques et al., 2019), and chemolithoautotrophic processes such as nitrification or ammonia 

oxidation (e.g., by Nitrosococcus spp., Nitrosomonas spp., Nitrospirae, and Nitrospinae) (Ortiz et 

al., 2014; Gonzalez-Pimentel et al., 2018; Marques et al., 2019; Wiseschart et al., 2019; Zhu et al., 

2019). Although the inference of metabolic function from taxonomic identity is not always reliable 

(e.g., based on 16S rRNA gene sequence similarity), certain functions, like methanotrophy and 

chemolithoautotrophic ammonia oxidation, are conserved within known phylogenetic groups (e.g., 

Klotz et al., 2006). Therefore, the taxonomy of these organisms is a relatively good indicator of 

their metabolic potential. Other studies show the relative abundances of various taxonomic groups 

and pathways associated with methanotrophic or chemolithoautotrophic functions via analysis of 

16S rRNA gene sequences (Hathaway et al., 2014; Ortiz et al., 2014; Gonzalez-Pimentel et al., 

2018; Zhao et al., 2018; Marques et al., 2019; Wiseschart et al., 2019), metagenomics (Ortiz et al., 

2014; Wiseschart et al., 2019), or by using quantitative PCR of genes for specific functions, such 

as for the particulate methane monooxygenase (pMMO) enzyme pathway (Zhao et al., 2018). For 

instance, in Kartchner Caverns, Arizona, metabolic pathways for the chemolithoautotrophic CO2 

fixation are overrepresented in cave communities compared to surface soil communities, which 
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suggests that there is a reliance on chemolithoautotrophy in the cave compared to heterotrophic 

metabolism of photosynthetically-fixed organic carbon from the surface (Ortiz et al., 2014).  

Cave microbial communities consisting of methanotrophs have also been implicated in net 

CH4 removal from cave air from various caves around the world (Webster et al., 2016; Waring et 

al., 2017; Zhao et al., 2018). Net removal of atmospheric CH4 from caves is based on two 

observations: (i) frequently measured sub-atmospheric CH4 levels in caves and (ii) CH4 detected 

entering a cave at entrances or from fractures but that could not be measured at some distance from 

an input location within cave passages (Webster et al., 2016; Waring et al., 2017). A recent study 

from cave sediments in Manao-Pee Cave, Thailand, determined that CH4 oxidation may contribute 

up to 20.5% of energy metabolism within the cave microbial ecosystem (Zhao et al., 2018). 

However, despite numerous studies that consider the possibility of chemolithoautotrophy in cave 

SABs based on putative taxonomic function and genetic potential (Schabereiter-Gurtner et al., 

2004; Barton et al., 2007; Porca et al., 2012; Ortiz et al., 2014; Tomczyk-Żak & Zielenkiewicz 

2015; Gonzalez-Pimentel et al., 2018; Zhao et al., 2018; Marques et al., 2019; Wiseschart et al., 

2019), these molecular methods cannot discriminate between living, dormant, or dead organisms, 

and do not demonstrate active metabolic functions.  

Tracing Carbon & Nitrogen Sources 
Carbon stable isotope ratio (δ13C) analysis is a useful tool for tracing sources of carbon in 

ecosystems. Due to the distinctive carbon isotope ratios of biomass produced through 

chemolithoautotrophy (Preuß et al., 1989), δ13C analysis has been used in aquatic cave ecosystems 

to determine chemolithoautotrophic carbon fixation and the transfer of fixed carbon within cave 

food webs (Vlasceanu et al., 2000; Engel et al., 2001; Hutchens et al., 2003; Simon et al., 2003; 

Opsahl & Chanton, 2006; Porter et al., 2009; Hutchins et al., 2016; Karwautz et al., 2017; 

Brankovits et al., 2017; Brankovits & Pohlman, 2020). For instance, bulk carbon isotope analysis 

of caddis fly and chironomid larvae in surface streams has also shown evidence for the importance 

of CH4-derived carbon to aquatic food webs, even in photosynthetic ecosystems (Bell et al., 2014; 

Sampson et al., 2019). In addition, δ13C analysis can show recycling of isotopically light (i.e., low 

δ13C values) carbon within biofilms (Staal et al., 2007). Although multiple studies have 

successfully applied bulk δ13C analysis and stable carbon isotope tracing to the investigations of 

carbon metabolism in aquatic karst biofilms and microbial mats (e.g., Vlasceanu et al., 2000; 

Simon et al., 2003; Hutchins et al., 2016), there have been limited studies using these methods for 
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cave-wall SABs (Vlasceanu et al., 2000; Engel et al., 2001; Karwautz et al., 2017). These former 

investigations were from hypogenic caves and of unusual cave-wall biofilms with extensive 

mucous-rich biomass (referred to as snottites) dominated by acidophilic sulfur-oxidizing or other 

bacteria. However, cave SABs common to epigenic carbonate caves and lava tubes tend to have 

considerably less biomass, typically form isolated colonies or groups of colonies that are only 

millimeters in diameter and only hundreds of microns thick. This restrictive size may explain 

earlier inabilities to obtain enough material for isotopic analyses.   

Bulk stable carbon isotope ratios of microbial biomass are determined by (i) the isotopic 

composition of carbon that is being assimilated and (ii) fractionation factors of the irreversible 

enzymatic pathways involved in metabolism of that original carbon source. The two carbon 

isotopes that are measured for these analyses are 12C and 13C, and discrimination for the lighter 

isotope (12C) versus the heavier isotope (13C) during chemolithoautotrophic processes will result 

in biomass and organic carbon that is isotopically lighter than the isotopic composition of the initial 

inorganic sources (e.g., CO2) (Vieth & Wilkes, 2010). Chemolithoautotrophic pathways can have 

some of the largest fractionation effects (Preuß et al., 1989). Conversely, the carbon isotope 

composition of biomass produced from heterotrophy will be the nearly the same as the original 

carbon source isotope composition (i.e., organic carbon) (Palmer et al., 2001). Differences in 

isotopic composition are expressed in delta () notation, which is the ratio of 13C/12C of a sample 

compared to a standard. This value for the ratio, 13C, is reported in per mil (‰).  

To differentiate between inorganic and organic carbon sources, the δ13C values of each 

potential endmember source must be measured, and the fractionation effect associated with each 

metabolic pathway must be known. Hypothesized carbon sources to cave SABs include (i) 

allochthonous dissolved organic carbon (DOC) from the surface and originally photosynthetically-

produced organic matter, (ii) dissolved inorganic carbon (DIC) that could be as bicarbonate, 

originating from the dissolution of carbonate bedrock and delivered through percolating meteoric 

water or flooding stream water, (iii) atmospheric and dissolved CO2, or (iv) atmospheric or 

dissolved CH4. For instance, if a cave SAB was composed of predominately heterotrophs that were 

consuming photosynthetically-derived organic carbon, which can have δ13C values generally from 

-5 to -35‰ (Vieth & Wilkes, 2010), then the predominately heterotrophic biomass would likely 

have a C value between -5 and -35‰.   
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The Calvin-Benson-Bassham (CBB) Cycle is responsible for the reduction of CO2 to 

glucose in most chemolithoautotrophs via the enzyme ribulose-1,5-bisphosphate carboxylase 

(Rubisco), but other pathways used by microbes perform similar enzymatic functions, such as the 

reductive pentose-phosphate, reductive acetyl-coA, reductive-TCA cycle pathways, as well as the 

3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) cycle, dicarboxylate/4-hydroxybutyrate 

(DC/4-HB) cycle, and the 3-hydroxypropionate (3-HP) bicycle (Preuß et al., 1989; Hügler & 

Sievert 2011). Biomass produced by Rubisco typically results in δ13C values about -20 to -35‰ 

lower (i.e., more negative) than the original inorganic carbon source isotopic composition (Preuß 

et al., 1989).  Biogenic CH4 is isotopically lighter than CO2 (CCH4 values of -55 to -85‰), and 

methanotrophic “fixation” of CH4 produces microbial biomass with C values of -85‰ to -110‰ 

(Vieth & Wilkes, 2010). Thus, the presence of CO2- or CH4-derived carbon from 

chemolithoautotrophy would likely result in cave SAB biomass C values (CSAB) that are 

lower than -35‰. However, it is also possible that CSAB values for microbial biomass derived 

from CO2 or CH4 fixation could be even lower, depending on initial δ13C values of DIC (δ13CDIC) 

and δ13C values of CH4 (δ
13CCH4), as well as fractionation factors of each enzymatic pathway.  

Genomic analysis of 16S rRNA gene sequences obtained from microbial biomass cannot 

indicate whether putative pathways are active or important to community function, even though 

relatively conserved functions associated with certain taxonomic groups could provide information 

about putative function. Therefore, for this thesis research, microbial community composition 

analyses from 16S rRNA sequences used to determine the presence of taxa putatively associated 

with certain functions were paired with δ13C analysis of cave SABs and endmember carbon sources 

to determine whether the putative metabolic chemolithoautotrophic activities likely explain the 

isotopic compositions of cave SAB biomass. 

Furthermore, since microbial nitrogen cycling pathways, such as nitrification, are tied to 

both carbon and nitrogen isotope compositions of microbial biomass, bulk δ15N measurements 

were also used to provide information about nitrogen cycling within the potentially nutrient-

limited cave SABs. The primary microbial processes that fractionate nitrogen isotopes include 

fixation of atmospheric N2 via the reduction of N2 to ammonia, nitrification via the oxidation of 

ammonia to nitrite and then to nitrate, assimilation of nitrogen sources, and denitrification via the 

reduction of nitrate to nitrous oxide (N2O) and finally N2 gas (Casciotti & Buchwald, 2012). By 
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converting nitrate to N2 gas, denitrification enriches the remaining nitrate in 15N isotopes by +13 

to +40‰, thereby resulting in positive δ15NNO3 values (Barford et al., 1999; Waser et al., 1998; 

Ryabenko, 2013). Preferential uptake of isotopically light nitrate by microbes also fractionates 

nitrogen isotopes by ~ 6‰ when nitrate is not limiting, which produces higher δ15NNO3 values in 

the nitrate pool and lower bulk δ15N values for microbial biomass (Waser et al., 1998; Ryabenko, 

2013). A similar process occurs during the uptake of ammonia, but the fractionation between 

ammonia and biomass is more dramatic and has been measured at -16.1 to -23.8‰ in E. coli 

experiments (Vo et al., 2013). Nitrification fractionates nitrogen isotopes between reactant 

(ammonia) and product (nitrate) by -12 to -29‰ and can produce soil nitrate with δ15N values 

between -10.4 and -5.8‰, such as in hardwood forest flood leachate (Spoelstra et al., 2007). The 

uptake of isotopically light nitrate or ammonia by microbes, and the fractionation associated with 

uptake, can then result in lower δ15N values for bulk microbial biomass compared to the original 

nitrogen isotope composition (Spoelstra et al., 2007).  

Nitrogen fixation by free-living diazotrophs involves preferential uptake of N2 enriched in 

the lighter 14N isotope. As the standard for a measurement of stable nitrogen isotope composition, 

atmospheric N2 has a δ15N value of ~0‰ and incorporation of fixed nitrogen into microbial 

biomass results in biomass with lower δ15N values (Dojani et al., 2007). Free-living diazotrophs 

fractionate nitrogen isotopes by about -2.5‰ between the reactant (N2) and product (ammonia) 

(Craine et al., 2015). In this study, bulk δ15N values were measured to explore potential nitrogen 

cycling pathways utilized by cave SABs, specifically the presence of nitrogen fixation and/or 

nitrification within these biofilms, as indicated by the prevalence of AOB found in previous 16S 

rRNA sequencing studies. However, interpretations of bulk nitrogen isotope compositions are 

difficult to perform because the microbial processes that affect biomass and inorganic or organic 

nitrogen δ15N values are not well constrained and knowing the availability of multiple nitrogen 

sources and their δ15N values are analytically challenging. 
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CHAPTER THREE 

MATERIALS AND METHODS 

Site Descriptions 
The two study caves (KN14 and RN5) are separated by 65 kilometers in the Appalachian 

Valley and Ridge (AVR) Province of Eastern Tennessee, one in Knox County (KN) and the other 

in Roane County (RN). The specific cave names are withheld to keep the locations private, but the 

naming with county abbreviation and cave number is linked to the Tennessee Cave Survey (TCS) 

scheme, from which access can be requested at http://www.subworks.com/tcs/. Despite the 

distance between the caves, they are found in stratigraphically adjacent and mineralogically similar 

lower Ordovician formations (Figure 3.1), formed by the abundant thrust faulting in the AVR 

Province that created each valley and ridge being comprised of repeating geologic units. Generally, 

the soluble carbonate units make up the valleys and erosion-resistant siliciclastic units make up 

the ridges in the AVR Province (Figure 3.1). According to geologic maps of the area, KN14 formed 

in the Kingsport Formation and RN5 formed in the overlying Mascot Dolomite Formation, which 

are described as being dolomitic with chert nodules (Hardeman et al., 1966).      

The main passages of both caves contain perennially outflowing streams. The origin of the 

outflowing stream in KN14 is a spring within the cave, but the origin of the stream in RN5 is 

unknown. The elevations of KN14 and RN5 cave entrances are approximately 299 m and 274 m 

above sea level, respectively. Both cave passages are at the foot of a bluff. Based on the change in 

elevation from the cave entrances to the tops of each bluff measured using elevation profiles in 

Google Earth Pro, the thickness of bedrock and soil overlying RN5 and KN14 are approximately 

52 m and 18 m, respectively. Although RN5 runs more than 200 m horizontally into the side of 

this bluff, the main room in KN14 is very close, no more than 30 m, from the side of the bluff. In 

addition, the area above the main room in KN14 is steep, rocky, and more sparsely forested, but 

the area directly above RN5 is relatively flat, based on elevation profiles, and heavily forested.  

Some fresh clay deposition was present in KN14 within a meter of stream base level, which 

is indicative of potential flooding. In RN5, a thin layer of soft sediment covers much of the rock 

surface in the main passage. This sediment layer is up to 3 mm thick, comprised of very fine-

grained carbonate silt, and is consistent with descriptions of carbonate silt produced on rock 

surfaces via weathering of the underlying carbonate bedrock (Hajna, 2003). Seepage in this thin 

sediment layer was associated with microbial growth that followed distinct flow paths on the cave 

http://www.subworks.com/tcs/
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walls (Figure 3.2). No debris (e.g., branches, leaves, or garbage) was observed in either cave, 

indicating that there has not been a large or recent flood event. Possible frequent flooding levels 

in RN5 were suggested by deposition of a dark clay, which was distinct from the light-colored 

carbonate sediment, on the cave wall and within a half meter of the base-level stream surface. This 

sediment had a distinct collection of colonies (Figure 3.2). There were multiple areas in both caves 

where water drips or seeps into the cave passage, and many wet areas were associated with SABs 

(Table 3.1).  

Environmental Conditions 
The two cave study sites were chosen because of their ease of access, presence of perennial 

outflowing streams, and abundant SABs. Six biofilm sampling sites were chosen in each cave 

(Table 3.1), including SABs near stream level and SABs from upper, drier passages. A total of 

three sampling trips were conducted over the study period. The first sampling trips occurred on 1 

and 2 February 2020, when both cave sites were visited. The major tasks accomplished during this 

initial trip were: (i) deployment of stream water level and temperature/humidity data loggers; (ii) 

measurement of ambient environmental data, including temperature, moisture, CO2 and CH4 

concentrations in cave air and outside, and vertical distance of each site from stream level; (iii) 

measurement of pH, temperature, and major ion analysis of drip water and streams; (iv) collection 

of gas and water from drip areas and streams, as well as carbonate samples from each site, for δ13C 

analysis of DIC, bedrock CaCO3, and atmospheric CO2; and (v) collection of SAB biomass using 

swab and scraping methods. Subsequent sampling trips were done to collect additional drip water 

and stream water for nutrient analysis, as well as to monitor temperature at each sampling site. 

Stream level variation and flooding frequency in both cave streams were determined with 

HOBO® U20L water depth (i.e., stage) data loggers (Onset Computer Corporation, Bourne, MA, 

USA) deployed from February to May, which was part of the winter-wet season and into drier-

spring season. The data loggers were placed in PVC housing to keep from being removed during 

potential storm events. Local barometric pressure obtained from the weather station at McGhee 

Tyson Airport (KTYS, GHCND:USW00013891) in Knoxville, TN, and the data were downloaded 

via the Iowa State University- Iowa Environmental Mesonet (https://mesonet.agron.iastate.edu/ 

request/download.phtml?network=TN_ASOS#) and used to calculate water depth in meters from 

absolute pressure, according to manufacturer instructions (Onset Computer Corporation, Bourne, 

MA, USA). Water level accuracy is from 1.0 to 2.0 cm with ±0.3% pressure error at a stable 
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temperature. Continuous monitoring of temperature and relative humidity (RH) at a single location 

in each cave was done from February to May by using weatherproof HOBO® U23 Pro V2 

temperature/RH dataloggers (Onset Computer Corporation). Surface (i.e., outside) temperature 

and RH were measured with a data logger placed outside in Knoxville for the duration of the study 

period. Accuracy for temperature and RH is less than ±3.5% and 2.5%, respectively, with a 

resolution of 0.05%. Data were acquired from the data loggers using a HOBO® Optic USB Base 

station and compatible coupler interfaced with a computer.  

Cave air was collected immediately after entering an area where sampling would take 

place, and before other members of the team entered the area, to prevent human breath 

contamination. Gas samples were collected in triplicate from cave air into evacuated 60 mL serum 

vials with butyl rubber caps and aluminum crimp-seals, and dissolved CO2 and CH4 concentrations 

were measured in triplicate for each cave stream after headspace equilibration in 60 mL serum 

bottles. Measurements for CO2 and CH4 were done using a SRI 8610C gas chromatograph (GC) 

(SRI Instruments, Torrance, CA, USA) with a thermal conductivity detector and flame ionization 

detector with methanizer, respectively, and standard curves for CO2 and CH4 concentrations. 

Dissolved gas concentrations were calculated based on the volume of water collected and Henry’s 

Law constant for each gas. Determination of the δ13C of CO2 was done in triplicate using Labco 

Exetainer® (Lampeter, Wales, United Kingdom) 12 mL glass vials inside and outside the cave. 

Vials were flushed three times with ambient air prior to filling with cave air. 

Ambient environmental conditions were collected at each site prior to biofilm sampling, 

including substrate moisture, air, water and cave-wall temperature, and air RH. Although moisture 

was a potentially important nutrient source and was readily evident as water beaded up on the rock 

or on SABs, sufficient moisture could not be collected. However, moisture content of the cave-

wall substrate was measured with an AccuMASTER model 7445 Duo Pro Pin & Pinless Moisture 

Meter (Calculated Industries, Carson City, NV, USA), with the electromagnetic pad sensor and a 

reported accuracy of ±3%. Substrate temperature at each site was measured using a model 1022D 

Dual Laser Digital Infrared Thermometer (Etekcity Corporation, Anaheim, CA, USA), with ±2% 

or 2oC accuracy. These measurements were done over the four months, for a total of three time 

points for both caves.  



 

16 

 

Additional environmental data included bedrock carbonate rock samples at each biofilm 

sampling site and water. Collection of water for major ion concentrations was done by using sterile 

10 mL HSW Norm-Ject syringes (Henke-Sass, Wolf, Germany) from the stream and from two 

active drip water locations in each cave. Drip locations were chosen, where possible, from SAB 

sampling locations. Depending on drip rates, several active drips had to be sampled within the 

same area at the same time, specifically along a single fracture, to obtain enough volume. Drip 

rates were not quantified, but the presence or absence of dripping was noted during each visit 

(Table 3.1). Drip sites 1 or 2 in KN14 were periodically dry after a few weeks without rain, but 

RN5 drip sites were active throughout the study period. All water samples were filtered to 0.2 m 

using Whatman filters into clean Nalgene HDPE bottles. Water samples for cation analysis were 

preserved with trace metal grade nitric acid to pH 2. All samples were stored at 4ºC prior to 

analyses.  

Major ions, including chloride, nitrate, sulfate, sodium, potassium, and ammonium, for 

example, were measured using a Dionex Integrion High Pressure Ion Chromatograph (HPIC) 

(Thermo Scientific, USA) within 48 hours of collection. Standard curves of known concentrations 

of each analyte were used, with method detection limits based on the lower limit of each standard 

curve. Instrument error for each analyte was quantified by replicate injection of samples, and errors 

for analytes which could be measured above detection limit are listed with the following detection 

limits:  Detection limits for measured anions were 1 ±0.01 mg/L for chloride, 1 ±0.01 mg/L for 

nitrate, 1 mg/L for nitrite, 1.5 ±0.02 mg/L for sulfate, 1 mg/L for bromide, and 1.5 mg/L for 

phosphate. Detection limits for measured cations were 2.5±0.3 mg/L for calcium, 1.25 ±0.14 mg/L 

for magnesium, 1 ±0.15 mg/L for sodium, 2.5 ±0.01 mg/L for potassium, and 1.25 mg/L for 

ammonium. Alkalinity data were obtained by titration with 0.1N H2SO4 during a previous 

geochemical analysis of the cave streams (obtained 11 and 28 July 2019), and were compared to 

the DIC concentrations obtained during δ13C analysis in this study. 

Biofilm Sample Collection 
Samples for DNA and carbon and nitrogen analyses were collected from six areas of each 

cave (Table 3.1). Biofilm sampling sites 1 to 4 in RN5 are illustrated in Figure 3.2. Because 

biomass for different SAB areas and colonies varied (Figure 3.3), and was insufficient for all 

analytical needs, biomass was collected using two different methods, which resulted in a nested 
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experimental design for sample collection and the intended purpose of each sample (Figure 3.4). 

The first method for DNA analyses only used BD BBL CultureSwab sterile media-free rayon-

tipped swabs to obtain biomass (Thermo Fisher Scientific, Waltham, MA, USA). Three swabs 

were used for each site. The second method for DNA analysis, lyophilization, and isotope analysis 

involved scraping biofilms into 1.5 mL Eppendorf tubes with a sterile inoculating loop. All biofilm 

material was stored at -80oC prior to DNA extraction and lyophilization, which was done using a 

Labconoco freeze dry system. Each sampling method resulted in sufficient biomass to perform 

DNA extractions from the six sites in both caves and to obtain δ13C and δ15N data from all 

scrapings, but duplicate extractions of scraped material from some sites was impossible due to low 

biomass.  

Stable Isotope Analyses and Inorganic Carbon Measurements 
Carbon and nitrogen isotope compositions were measured separately using a Thermo 

Finnigan Delta+XL mass spectrometer and Thermo Scientific GasBench II gas chromatograph  for 

carbonates, dissolved inorganic carbon (DIC), and dissolved organic carbon (DOC), and a Costech 

EA gas chromatograph for biomass organic carbon (GC-IRMS) at the University of Tennessee 

Stable Isotope Laboratory. Each of the measurements are described separately. 

Water samples for the δ13C measurement of DIC and DOC were collected in 12 mL 

Exetainer vials that had been muffled to remove any organic carbon contamination, evacuated and 

flushed with helium, and contained 10 drops of H3PO4 to acidify samples and remove inorganic 

carbon upon injection of filtered water into the closed vials. Samples were stored at 4ºC and 

allowed to return to room temperature before analysis. DIC concentrations and δ13C were 

measured from CO2 in the headspace of each acidified vial. Following the removal of DIC via 

acidification and subsequent measurement of DIC δ13C from CO2 in the vial headspace, DOC was 

also measured from these vials by addition of potassium persulfate, which oxidizes organic carbon 

to CO2. The CO2 in the headspace after initial acidification (δ13CDIC) and oxidation (δ13CDOC) are 

measured at each respective step by GC-IRMS and reported relative to the Pee Dee Belemnite 

(PDB) standard (Lang et al., 2011). Blanks were run for the vials, H3PO4, and potassium persulfate 

oxidizing reagent. δ13C of CO2 (δ
13CCO2) from cave air and outside air was measured directly from 

sealed Exetainer vials filled at ambient pressure. Lab air served as the blank. Additionally, solid 

carbonate samples were homogenized using an agate mortar and pestle, then acidified with 
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phosphoric acid to release CO2, which was measured for δ13C with GC-IRMS (Paul & Skrzypek, 

2007).  

For δ13C analysis of SAB biomass, inorganic carbon (i.e., carbonate) was removed from 

the lyophilized SAB material by acidification with 0.2 N HCl and air-drying overnight. 

Unacidified lyophilized material was also used for δ15N analysis of SAB material. δ15N values are 

compared to atmospheric nitrogen (N2) as the standard. The instrument standard deviation for δ15N 

was 0.3‰.  

The instrument standard deviation for δ13C analysis of SAB biomass was 0.1‰. Standards 

used for δ13C analysis of SAB biomass and DOC were acetate (acetCOST) and UT729, calibrated 

against the international standards USGS40 and USGS41. Standard error among three technical 

replicates, which consisted of three subsets of homogenized material from the one original sample, 

was 0.5‰ for δ13CSAB. Carbonate standards were ANUM1 and CALSED, which were calibrated 

to LSVEC and NBS19 international standards. The standard error between three technical 

replicates, which consisted of three subsets of homogenized material from the one original sample, 

was 0.06‰ for δ13C of carbonate samples. In-house standards used for δ13C analysis of cave air 

CO2 were ANUM1 and CALSED, which were calibrated to the international standards LSVEC 

and NBS 19. The standard error of δ13CCO2 between triplicate vials collected at each site was 0.4‰.  

δ13C analysis of CH4 (δ
13CCH4) from cave and outside air, which was collected in muffled 

12 mL Exetainer vials filled to ambient pressure, was performed at the University of California‒

Davis Stable Isotope Facility by first concentrating CH4 using a Thermo Scientific Precon 

concentration unit, followed by stable carbon isotope ratio measurement using a Thermo Scientific 

Delta V Plus isotope ratio mass spectrometer. In-house standards were UCDM1, UCDM2, 

Beecher, AH024079, and 043332T. The standard error of δ13CCH4 between triplicate vials collected 

at each site was 0.4‰ and instrument standard deviation among reference materials was 0.14‰. 

DNA Extractions and 16S rRNA Gene Sequencing 
Extraction of nucleic acids was performed on swabs and biofilm scrapings from each 

location using DNeasy PowerSoil DNA Isolation kits, following manufacturer instructions 

(Qiagen, Hilden, Germany), but modified to ensure lysis of Actinobacteria and other Gram-

positive bacteria. Specifically, as recommended in kit protocol, an incubation step at 70ºC for 10 

minutes was added to the protocol prior to the bead beating step. The concentrations of extracted 

DNA were estimated by using a NanoDrop 2000c UV/Vis spectrophotometer (Thermo Fisher 
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Scientific) that measured the absorbance ratios at both 260/280 nm and 260/230 nm. The success 

of DNA extractions was also verified using agarose gels and gel electrophoresis.  

Homogenized sample extractions were used to sequence the V4 region of the 16S rRNA 

gene using Illumina MiSeq sequencing technology (Molecular Research LP, Shallowater, TX). 

Briefly, the primers used were 515F and 806R, a barcode was included on the forward primer, and 

amplification was performed using a Qiagen HotStart Taq Plus Master Mix kit (Thermo Fisher 

Scientific) for 30 cycles of denaturing at 94ºC for 30 sec, annealing at 53ºC for 40 sec, and 

elongation of 72ºC for 1 min. Barcoded samples were pooled and purified using Ampure XP beads 

prior to Illumina sequencing, according to manufacturer’s instructions. Raw sequence files for 

each sample were submitted to the NCBI Sequence Read Archive under the BioProject 

PRJNA649551 (http://www.ncbi.nlm.nih.gov/bioproject/ PRJNA649551), under the BioSample 

accession numbers SAMN15679595 - SAMN15679649.  

16S rRNA Sequence Analysis 
Following unbinning of paired-end raw sequence files and removal of primers and linker 

sequences using MRDNA FASTqProcessor software (MRDNA, Shallowater, TX), sequence 

processing and taxonomic identification was performed using MOTHUR v.1.44.1, according to the 

standard operating procedure for MiSeq technology (Schloss et al., 2009; Kozich et al., 2013; 

Schloss, 2020). Briefly, paired end sequences were aligned and combined based on quality scores 

associated with each base pair using the make.contigs command, followed by removal of 

sequences of the wrong length (greater than 275 bp) and sequences with ambiguous bases. The 

remaining sequences were aligned to the SILVA v.138 database (Quast et al., 2013; Yilmaz et al., 

2014) and sequences with poor alignment were removed. Detection and removal of chimera were 

also done in MOTHUR using the vsearch command, and sequences identified as Eukarya, Archaea, 

mitochondria, or otherwise unidentified sequences were also removed.  

Sequences were clustered at 97% sequence identity into operational taxonomic units 

(OTUs) and taxonomic identity was assigned to each OTU based on the SILVA v.138 reference 

database. This cutoff was used because strains belonging to the same species have been frequently 

shown to have more than 97% 16S rRNA sequence similarity (Konstantinidis & Tiedje, 2005). 

Microbial community composition across all samples were analyzed using the phyloseq package 

in R. Because putative functions associated with certain taxa can give valuable information about 

the functional potential of the community, functional information associated with the taxonomic 
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identities of abundant OTUs were investigated (Kozich et al., 2013). A literature review was 

performed on taxonomic groups and functional information obtained from descriptions of cultured 

representatives are discussed. Alpha diversity at the genus level across all samples and between 

caves was quantified using the phyloseq package function estimate_richness. Specifically, Chao1, 

Shannon, and Simpson diversity indices were applied to the dataset. 

Statistical Analyses 
Environmental variables were confirmed to be drawn from a normal distribution using the 

Shapiro-Wilk normality test and were z-score transformed for comparability within the models. 

No other data transformations were required. A Levene’s test to determine data homogeneity of 

variance in R was done prior to all Tukey’s Honest Significant Difference (HSD) post-hoc tests 

performed to determine significant differences between samples for environmental data. For 

comparisons between two groups, Welch’s two-sample t-tests were used. Microbial data based on 

presence/absence of sequences from MOTHUR were used in the R package phyloseq (McMurdie & 

Holmes, 2013). Because the relevant research questions focus on the putative function of certain 

taxa, analyses were performed from the genus to phylum level, and sequence counts for OTUs 

with identical taxonomic assignments at the genus level were combined. Taxonomic identities, 

environmental data from the day of biofilm sampling, and sequence counts were imported into R 

as a phyloseq object for analysis using phyloseq and vegan packages.  

For statistical tests comparing microbial community composition between caves, sequence 

count data were averaged for replicate swabs and scrapings at each site to avoid inflation of degrees 

of freedom when comparing microbial communities between caves. For analyses of differences 

among sites within each cave, biological replicates accounted for variation at each site. To account 

for different sequencing depths between samples and replicates, all data analyzed using 

multivariate statistics were rarefied to the lowest sequencing depth prior to analysis using the 

phyloseq function rarefy_even_depth. Averaged sequencing counts between field replicates 

yielded between 129,770 and 272,251 reads, with an average of 187,021 reads across all sample 

sites, and 129,770 reads was used as the lowest sequencing depth for rarefication. To explore 

patterns in microbial community structure among cave SABs, Bray-Curtis similarity between 

caves and sites within caves was measured and represented as principal coordinate analysis 

(PCoA) plots.  
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Related to the overarching hypotheses for this research, permutational multivariate analysis 

of variance (PERMANOVA) tests were performed to investigate the following sub-hypotheses:  

(i) Microbial community composition is driven by microenvironmental community variation 

more than geographic distance and communities will, therefore, be more similar between 

environmentally similar sites from both caves. To test this hypothesis, community composition 

was compared between caves.  

(ii) Differences in microbial community composition within caves are driven by 

microenvironmental conditions that may differ between sampling sites, primarily substrate 

(i.e., cave wall) temperature and moisture. To test this hypothesis, microbial communities were 

compared based on moisture content and temperature at each site within caves on the day of 

SAB collection.  

(iii) Carbon isotope composition of cave SABs is influenced by microbial community 

composition, namely the presence of certain taxonomic groups that have the capability to fix 

CH4 or CO2. To test this hypothesis, microbial community compositions were compared based 

on the measured δ13C values from each site within the two caves.  

(iv) Based on findings from previous studies, microbial community composition does not differ 

significantly by biofilm color, specifically white, yellow, and pink. To test this hypothesis, 

microbial community composition of cave SABs were compared based on biofilm color within 

and across both caves.  

PERMANOVA tests were used to test hypotheses that would determine whether variation 

in microbial community composition between and within caves could be explained by variations 

in environmental conditions, δ13C value, or biofilm color. Because some of the SABs did not 

directly correspond to drip locations, the only quantitative data at each SAB sampling site were 

substrate temperature and moisture content. Prior to performing PERMANOVA tests, the 

betadisper function in vegan was used to test for equal dispersion of groups that were to be 

compared, between (i) caves, (ii) temperature and moisture, (iii) carbon isotope compositions, and 

(iv) cave SAB color. Equal dispersion was found within caves (p-value = 0.333), within sites (p-

value = 0.154), within environmental variable groups (moisture p-value = 0.09) and between 

biofilms of different color for all samples and within caves (p-value = 0.150). Therefore, 

assumption of equal dispersion is met for performing PERMANOVA.  
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Due to the nested design of the study (Figure 3.4), the vegan function adonis in R was used 

by setting strata at the level of cave ID. This was to account for error that could result from 

differences in community composition that cannot be easily measured, such as evolutionary history 

of the cave or flooding disturbance frequency throughout the lifetime of a SAB. Accounting for a 

nested random effect in the model discounts some error that could be created by distance and 

enables the model to show if remaining patterns in community composition are sustained across 

the caves. In addition, although biofilm color is included to describe predictors of community 

composition in cave SABs based on results from the literature that suggests community 

composition correlates to color, this has not been thoroughly tested. Therefore, the inclusion of 

color here is to test correlations among community composition and stable isotope composition or 

environmental variables.  

Correspondence analysis was used to illustrate patterns in microbial community 

composition and their correlation to changes in moisture content and carbon isotope composition. 

Due to arch effects produced through canonical correspondence analysis (CCA) (Paliy & Shankar, 

2016), detrended correspondence analysis (DCA) was used to show correlations between 

environmental variables, using the bioenv function, and microbial community structure, and to test 

for significance in these correlations. To compare environmental variables within DCA models, 

values were z-score transformed, as indicated in the corresponding data tables. In addition, the top 

20 taxa across both caves and within each cave were selected using the taxa_sums function in the 

phyloseq package and plotted using DCA to investigate which taxa were affected by environmental 

variables (i.e., moisture). 

Mantel tests were also performed using the mantel function from the vegan R package 

(Oksanen et al., 2019). The Pearson’s product moment correlation method was applied to the 

correlation of Bray-Curtis dissimilarity matrices of rarefied genus-level bacterial abundance and 

Euclidian distance matrices of environmental data to test the hypothesis that microbial community 

composition is correlated to temperature and moisture content.  

To quantify the correlation between taxa and environmental variables, Pearson’s product 

moment correlation coefficients were found between the top 20 most abundant families within 

each cave and moisture content, as well as the SAB’s δ13C value. The top 20 most abundant 

families across all sites comprised 79% of the overall 16S rRNA sequences in KN14 and 69% in 
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RN5. Families that showed significant Pearson’s product moment correlation (i.e., p-value > 0.05) 

to either of these variables were determined. 

 

Table 3.1: Descriptions of the location and biofilm morphology specific to each of six sites 

in caves KN14 and RN5 on 1 and 2 February 2020. 
Cave 

ID 

Site 

ID 
Site Description Drip? Biofilm Description 

KN14  

1 

Low-hanging rock with wet surface 

and slow, active sheet flow across a 

flowstone speleothem 

Yes, but 

periodically 

dry  

Scattered pink/white colonies, 

some small blue colonies 

2 

Low-hanging rock with wet surface; 

occasional water flowing down rock 

surface and dripping over biofilms 

Yes, but 

periodically 

dry 

Yellow-blue encrustation/sheet 

biofilm on lower sides of rock; 

nodules of precipitated calcite 

located on upper side of rock 

3 
Clay bank next to breakdown pile 

where stream sinks and exits room  
No 

Pink and white isolated to 

merged colonies 

4 
Rock layer with active drip and soda 

straw formation (speleothem) 

Sampled 

drip #1; 

periodically 

dry 

Yellow, large isolated colonies 

that formed sheet near drip point 

5 

Ceiling of main room, flat sloped 

rocks on either side of a fracture 

with active dripping 

Sampled 

drip #2 

White to pink with sheet 

morphology, no isolated 

colonies 

6 Rock in upper passage, wet surface  No 
White, isolated to coalescing 

colonies 

RN5 

1 
Clay layer over limestone within 0.3 

m from stream surface at base flow  
No; stream 

Pink to white, raised isolated 

colonies, and gray to blue flat 

isolated colonies 

2 
Carbonate mud deposited over 

limestone  
No Large, isolated yellow colonies 

3 
Carbonate mud deposited over 

limestone  
Yes 

Large area with scattered, small 

white to yellow colonies, 

following dripline 

4 Chert nodule  Yes 
White to yellow scattered, small 

colonies 

5 

Flat limestone low-hanging ceiling 

near a vertical fracture with several 

drip points  

Sample 

drip #1  

White to yellow scattered, small 

colonies 

6 
Carbonate mud on ceiling in upper 

passage  
No Isolated yellow colonies 
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Figure 3.1: Geologic map of Appalachian Valley and Ridge karst in the Knoxville, 

Tennessee using data from the USGS TN Geologic Map 

(https://mrdata.usgs.gov/geology/state/state.php?state=TN). Locations of cave sites used in 

this study are indicated by triangles. 
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Figure 3.2: Cross-section of the RN5 cave passage showing normal water level (solid blue 

line) and possible frequent water level fluctuations based on clustering of biofilms within 

less than a meter of the water surface (light blue dotted line). Maximum flood level ~0.5 m 

and frequent flooding level ~ 0.25 m are based on HOBO water level logger data from the 

study period (Brown dotted line, blue dotted line). Numbers denote biofilm sampling 

locations. 
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Figure 3.3: Biofilm color and morphology at each sampling site. White bar lengths 

represent approximately 0.5 cm. Red arrows represent examples of sampled SABs. Images 

without red arrows depict “sheet-like” biofilms that cover the entire pictured surface. 
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Figure 3.4: Cave SAB sampling design, showing each of six total sites within each cave and 

the samples collected from each site. At least one scraping (noted as dark blue or green) 

and three swab replicates (noted as light blue or yellow), for a minimum of four samples 

per site, were used for DNA analysis, whereas scraping samples only were used for δ13C 

analysis. 
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CHAPTER FOUR 

RESULTS 

Environmental Conditions and Nutrient Sources 

Stream level fluctuations and flooding frequency 

Vertical distances from the stream level to SAB sampling sites were measured at the time 

of collection and data logger deployment. This level was set as the “base stream level” (Figure 

4.1). Vertical distances from the stream to SAB sites are listed on Table 4.1. The stream levels 

were continuously logged for 81 days, from 2 February to 19 April 2020 (Figure 4.2). Water level 

infrequently dropped, by at most 2.3 cm, below base stream level in KN14, and at most by 12 cm 

in RN5. Timings of stream level fluctuations were similar between both caves, with peak flooding 

occurring within a day of heavy local rainfall (Figure 4.1). Changes in base stream level that 

exceeded +10 cm occurred for 94% and 28% of this time in KN14 and RN5, respectively. Changes 

of more than +20 cm occurred for 74% (KN14) and 7% (RN5) of this time. Fluctuations of more 

than 0.5 m were common in KN14, where levels rose higher than +0.5 m for 23% of the study 

period, but rare occurrences in RN5, representing less than 1% of the study period. Flooding 

frequency at different water level heights for both caves are shown in Figure 4.2. 

The maximum changes in water levels were +2.4 m and +0.59 m for KN14 and RN5, 

respectively (Figure 4.1). The lowest sampled SAB sites in KN14 (i.e., sites 1, 2, and 3) were 

located 0.9, 0.95, and 1.05 m above base stream level , respectively, and the frequency of flooding 

exceeding the height of these three sites was 5.1% of the study period, which corresponded to 

approximately 4 days that SABs would have been flooded. KN14 site 5 was located 1.5 m from 

stream base level and was exposed briefly to stream water for up to 28 hours during the study 

period (i.e., flooding frequency at +1.5 m = 1.3%). In contrast, the lowest RN5 SAB site (site 1) 

had colonies between 10 and 20 cm from the stream surface. This site was exposed to stream water 

for a minimum of 5 and a maximum of 22 days. All other sites in RN5 were located above the 

maximum flooding height and, therefore, had no exposure to stream water during the study period.  

Cave temperatures, relative humidity, and substrate moisture 

Cave air temperatures increased with greater vertical distances above both stream base 

levels, which has implications for SAB development (Figure 4.3). During the study period, the 
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average local surface temperatures was 14.2 ºC (ranging from -3.07 to 26.72 ºC). At the KN14 

datalogger location, cave air temperature varied and closely followed fluctuations in surface 

temperatures (Figure 4.4), with an average of 11.46 ºC. To evaluate whether cave air temperatures 

were more stable away from the stream, the data logger in KN14 was relocated to about 0.5 m 

from the stream level for about one month after the start of the study and in hopes the water level 

would not rise above the logging location (these data are shown between the dotted lines on Figure 

4.4, ending 19 March 2020). Cave air temperature near the stream was more variable and lower 

temperatures corresponded to localized pulses in water height that followed rainfall events. At the 

RN5 data logger location, however, cave air temperature was stable and varied within the accuracy 

of the instrument, from 14.29 to 14.43 ºC (Figure 4.4).  

Proximity to stream level, flooding history, and thermal gradients within cave passages 

have the potential to affect substrate moisture content and passage ventilation, which have 

important implications for SAB development and gas exchange. After the data loggers equilibrated 

to the cave temperature (about 1 day), RH values were 100% for both caves during the study. The 

percent moisture of the cave walls ranged from 19‒84% in KN14 and 63‒100% in RN5 (Table 

4.1), and SAB sites proximal to the stream or active drips had higher moisture content. Differences 

in moisture content between the caves were statistically significant (Welch’s two-sample t-test, p-

value = 0.02), with no sites at KN14 being completely saturated (i.e., 100% moisture content) and 

more sites in KN14 having lower moisture content overall, even though KN14 had more frequent 

passage flooding.  

CO2 and CH4 concentrations and isotopic compositions 

Lower moisture content on the walls, despite 100% RH, could be due to greater ventilation 

and exchange of air of different temperatures between the cave passages and surface, which could 

also be reflected in cave air gas concentrations, specifically CO2. Although both caves had 

significantly higher CO2 concentrations compared to outside air (Tukey’s HSD tests for KN14 vs 

outside, p-value = 0.002; RN5 vs outside, p-value < 0.001), which suggested a buildup of CO2 

inside the caves, cave air CO2 concentrations were also significantly higher in RN5 than KN14 

(Tukey’s HSD test p-value = 0.005), which implies KN14 may be more ventilated (Figure 4.5). 

The air temperature data also support that KN14 has higher ventilation capacity and frequency 

compared to RN5 (Spötl et al., 2005) (Figure 4.4). 
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Although other studies report net depletion of CH4 in cave air (Waring et al., 2017), CH4 

concentrations measured in this study did not differ significantly from atmospheric levels (Figure 

4.6). CH4 was measured at 1.89 (±0.16) ppmv outside the caves, which is consistent with average 

ground-level, modern-day atmospheric CH4 concentrations from the literature (Webster et al., 

2015), although the δ13CCH4 value for outside air was -44.6 ±0.3‰ (Table 4.6), which was higher 

than measured for air in other studies at ~-47‰ (Quay et al., 1999; Dlugokencky et al., 2011). 

Cave air CH4 in KN14 was similar to outside atmospheric levels at 1.94 (±0.16) ppmv, with 

δ13CCH4 values being -43.4 ±0.1‰. Cave air in RN5 was lower than atmospheric levels at 1.65 

(±0.18) ppmv with δ13CCH4 values being -42.9 ±0.4‰. The in-cave gas concentrations, as well as 

between caves and outside air, were not statistically significant (Figure 4.6; Tukey’s HSD test, p-

value > 0.05), and the isotope compositions were also not significantly different between the two 

caves using Tukey’s HSD test (p-value = 0.267), but were significantly different between to 

outside air and caves (p-value = 0.007 for KN14, p-value < 0.001 for RN5). However, at the 

resolution of sampling in this study, CH4 concentrations in the cave were nearly indistinguishable 

from outside the cave atmospheric levels, and assessment of net production or depletion of CH4 in 

cave air, which has been measured from other caves (e.g., Waring et al., 2017), as well as 

determination of potential source(s) of CH4 to the systems are not possible without additional 

sampling.  

Elevated CO2 concentrations in caves, relative to atmospheric CO2 levels, have been 

attributed to CO2 production through respiration in overlying soil and within caves (Spötl et al., 

2005; Mattey et al., 2016). If caves are not well-ventilated, then isotopically light CO2 accumulates 

(Spötl et al., 2005). CO2 concentrations and isotopic compositions from KN14 and RN5 cave air 

were measured to determine the extent of ventilation and potential effect of respiration on δ13CCO2 

values (Table 4.6, Figure 4.5). Average δ13CCO2 values for KN14 and RN5 were -14.4‰ and               

-19.4‰, respectively, whereas the average measured outside air δ13CCO2 value was -9.7‰ (Table 

4.6). Tukey’s HSD tests showed statistically significant differences in δ13CCO2 values between both 

caves (p-value < 0.001) and between each cave and outside CO2 (p-value < 0.001). Higher CO2 

concentrations and more negative δ13CCO2 values for RN5 indicate less ventilation, which is also 

matched by stable air temperatures for RN5 (Figure 4.4). However, because cave ventilation is 

influenced by temperature differences, it is possible that, at other times of the year (e.g., in the 
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summer when no gas exchange might occur, senu lato Spötl et al., 2005), CO2 concentrations and 

isotopic compositions could vary. 

Drip water and stream geochemistry  

Major ion concentrations, dissolved gases (CO2 and CH4), DIC, and DOC were measured 

from two drip sites and the stream water from each cave, listed in Table 4.1 and Table 4.2. 

Ammonium, nitrite, bromide, and phosphate were below detection limit in all samples. These 

aqueous concentration data were used to evaluate potential nutrient availability and variability 

through time, as well as potential sources for the nutrients for SABs (e.g., natural, from geological 

and biogeochemical sources, or from anthropogenic activity).  

Of all the measured ions, nitrate can serve as an important nutrient source. At KN14, drip 

water nitrate concentrations were similar through time but changed when rates slowed; nitrate 

concentration increased from ~2 mg/L to 6.9 mg/L at one site during a period of lower flow 

compared to earlier sampling times (Table 4.2). Nitrate concentrations in RN5 were lower than 

KN14 and did not vary significantly through time (Table 4.2). Nitrate concentrations above 3 mg/L 

as N or 13.3 mg/L as NO3
- are consistent with literature values indicating probable contamination 

from anthropogenic sources, such as human waste or fertilizers (Power & Schepers, 1989), such 

that nearby septic tank effluent could be responsible for higher cave stream nitrate concentrations.  

The DIC concentrations include dissolved CO2, bicarbonate (HCO3
-), carbonate (CO3

2-), 

and carbonic acid (H2CO3) species. Alkalinity measures the sum of titratable bases, which is 

dominated by bicarbonate in karst waters; consequently, DIC and alkalinity values should be 

comparable (Table 4.3). Dissolved CO2 concentrations were similar through time and 

demonstrated that only a small fraction of the DIC was as dissolved CO2 at the measured pH values 

(Table 4.4). DIC concentrations for KN14 were slightly higher than in RN5 where DIC 

concentrations in drips were higher than in the cave stream (Table 4.3). δ13CDIC values in both 

caves ranged from -15.4 to -12.2‰ with a standard error of 1.1‰ between the means of sample 

sites and both caves (Table 4.6, Figure 4.7). Analysis of variance (ANOVA) and a Tukey’s HSD 

post-hoc test showed no significant differences in δ13CDIC values between the caves (p-value > 

0.05), but there was significant variation between sites within caves (Figure 4.7). For biofilms 

exposed to meteoric water at drip points or to the cave stream, DIC could be one of the primary 

sources of inorganic carbon to chemolithoautotrophs (See Chapter 2). 
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Differences in δ13CDIC values could be attributed to differences in the carbonate bedrock 

δ13C composition. Both caves formed in geologically similar dolomitic rock, and the δ13C values 

of carbonate rock samples for all but two sampling sites ranged from -0.54 to -2.0‰ (Table 4.5, 

Figure 4.8), which is consistent with other values for marine carbonates that range from -4 to +4‰ 

relative to PDB (Clayton & Degens, 1959). Two carbonate substrate samples from KN14 sites 1 

and 4, both speleothems, had δ13C values of -9.0 ±0.32 (n = 3) and -8.9 ±0.03‰ (n = 3), 

respectively, which are consistent with literature values for freshwater-precipitated secondary 

carbonates (Clayton & Degens, 1959). 

Dissolved CH4 values ranged from 0.14‒0.22 ug/L in both cave streams over two sampling 

dates, which corresponds to 8.7‒13.7 nmol/L CH4 (Table 4.4).  Dissolved CH4 concentrations from 

the two cave streams were not significantly different from each other, but both streams had 

concentrations that were higher than would be expected if dissolved CH4 was in equilibrium with 

atmospheric CH4, which would be approximately 2.8 nmol/L (Table 4.4). 

Drip water and stream DOC and isotope compositions 

KN14 drip water had elevated DOC concentrations compared to drip water at RN5 (Table 

4.3), which were more consistent with literature reports of oligotrophic conditions at 2 mg C/L 

DOC or less (Kaplan & Newbold, 2000). But, KN14 drip water DOC concentrations were still 

below what has been reported for the rare maximum concentrations of 5.0 mg C/L for limestone 

aquifers (Kaplan & Newbold, 2000). Considering that there is more epikarst (i.e., overburden) at 

RN5 than KN14, which would affect the time water takes to move through the epikarst, as well as 

processes like organic matter sorption to minerals and/or DOC consumption by microbes (Kaplan 

& Newbold, 2000), this may explain why RN5 had lower drip water DOC concentrations (Pabich 

et al., 2001). However, DOC concentrations are only one parameter to consider; measurements of 

DOC quality (i.e., biodegradability) like fluorescence are needed to understand how distance 

travelled through the epikarst may affect the nature of the DOC, as well as to evaluate the quality 

of DOC between the drip water and cave stream water (Fellman et al., 2008).  

The δ13C of DOC could also be used to understand the source and nature of DOC. The 

δ13CDOC values for all water samples ranged from -25.7 to -20.8‰ with a standard error of 2.1‰ 

between the means of sample sites across both caves (Table 4.6 and Figure 4.9). Comparison of 

overall δ13CDOC values using ANOVA and a Tukey’s HSD post-hoc test revealed statistically 
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significant differences between caves (p-value = 0.003). Average δ13CDOC values in RN5 were 

more negative, at -25.2 ±1.02‰ (n = 3), compared to values from KN14, at -21.4 ±0.56‰ (n = 3). 

No statistically significant difference was found between sampling sites in cave RN5, but there 

was some variation in δ13CDOC values between sampling sites in KN14 (Figure 4.9).  

Biofilm Carbon and Nitrogen Isotope Compositions  
Average δ13CSAB values from each site for both caves ranged from -35.3 ±1.1‰ to -46.7 

±0.2‰, with 63% of the values falling below -40‰ (Table 4.7 and Figure 4.10). The lowest value 

recorded for all data was at RN5 site 4 (-46.7 ±0.2‰) compared to the minimum value for KN14 

(-42.6 ±0.2‰). There were no statistically significant differences between δ13CSAB values in the 

two caves using a Welch’s two sample t-test assuming unequal variance (p-value > 0.05). 

However, a Tukey’s HSD post-hoc test revealed statistically similar δ13CSAB values between 

samples accounting for variation among replicates; these designations are shown in Figure 4.10. 

The δ13C values for bedrock, DIC, DOC, and CO2 and CH4 from the cave air were compared to 

evaluate potential inorganic and organic sources for SAB communities and to determine if 

microbial groups in SABs produced a distinctive carbon isotope signature indicative of 

chemolithoautotrophy, and δ13CSAB values were lower than any of the other measured carbon 

sources (Figure 4.11).  

Although the δ15N values of various nitrogen-containing compounds could not be 

measured from the cave air, rock, or water for this study, and the δ15N values of unacidified SAB 

biomass (δ15NSAB) were not replicated due to low nitrogen content and insufficient material, 

measurements were done to evaluate if there would be potential differences in nitrogen metabolism 

among the SAB microbial communities. δ15NSAB values ranged from -6.3 to +1.0‰ in KN14 and 

-11.9 to -4.2‰ in RN5 (Table 4.7 and Figure 4.13). There were statistically significant overall 

differences in δ15NSAB values between the two caves, with generally more negative values 

measured in RN5, relative to atmospheric nitrogen (Welch’s two-sample t-test assuming unequal 

variance, p-value = 0.011) (Figure 4.12). Average δ15NSAB values across sampling sites within 

each cave were -2.4 ± 3.1‰ in KN14 and -7.8 ± 2.8‰ in RN5 (Table 4.7 and Figure 4.12).  

Microbial Community Analysis 
Biofilm diversity 

Alpha diversity measurements for each SAB site were determined at the genus level using 

Chao1, Shannon, and Simpson indices (Figure 4.14). Although Chao1 indices are used as a 
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measurement of richness, or the number of different genera present in the biofilm, the Shannon’s 

index considered both richness (the number of genera) and evenness (the relative abundance of 

each genus). Simpson’s index is considered a measure of the dominance of certain groups on a 

scale of 0 (no dominance) to 1 (complete dominance). Values for Shannon’s diversity index across 

all KN14 SAB sites ranged from 2.73 (site 1) to 3.69 (site 5), and across all RN5 sites from 3.23 

(site 1) to 4.09 (site 6). Simpson’s index of diversity in KN14 ranged from 0.72 (site 1) to 0.91 

(site 5) and from 0.85 (site 1) to 0.95 (site 2) in RN5 (Table 4.8). Comparison of alpha diversity 

between the two caves, as measured by Shannon and Simpson metrics, showed lower overall 

diversity in KN14 compared to RN5 (Welch’s two sample t-test, p-value < 0.001). Chao1 indices 

showed higher mean genera richness in KN14 compared to RN5 (Figure 4.14). But, because the 

Chao1 index values ranged from 635 to 745 in KN14 and 565 to 767 in RN5 (Table 4.7), the 

differences were not statistically significant (Welch’s two-sample t-test, p-value = 0.2111). These 

results demonstrate that SABs in KN14 had lower evenness due to the dominance of a few groups 

and lower overall population diversity (Kim et al., 2017). 

Based on the average rarefied abundances of each bacterial order (Table 4.9 and Figure 

4.15), SABs from KN14 were dominated by Pseudonocardiales, followed by Rhizobiales, 

Steroidobacterales, and Burkholderiales, which matched what the alpha diversity analyses 

suggested with relatively high Simpson’s indices. The overall SAB community compositions in 

RN5 had nearly equal abundances of Pseudonocardiales, Nitrosococcales, and Euzebyales (Table 

4.8), with other abundant taxa including Burkholderiales, Rhizobiales, and Nitrospirales. Among 

the Pseudonocardiales, the genus Crossiella was abundant in both caves, and an unnamed genus 

within the Nitrosococcales (wb1-P19) and the genus Euzebya were also prevalent in both caves 

(Table 4.10). Nitrospira spp. were ubiquitous in low abundances across all sites in both caves, and 

an unclassified genus belonging to the Rhizobiales family Methyloligellaceae was the most 

abundant putative methylotroph across both caves (Table 4.10).  

Despite the overall similarity in bacterial groups at the order levels, PERMANOVA 

analyses indicated that the community compositions in both caves at the genus level were 

significantly different, with 84.1% of the variance in the data explained by differences inherent to 

each cave (R2 = 0.841, p-value = 0.005). This is represented graphically as a PCoA of all the SAB 

samples (Figure 4.16). Significant differences were also found between sites within each cave 
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based on the PERMANOVA (KN14 p-value < 0.001; RN5 p-value < 0.001). Collectively, these 

results suggest that SAB communities from the same cave were more similar to each other than 

between SABs in the other cave, but that SAB communities also significantly differed among 

sampling sites in both caves. 

Community composition and environmental variables 

Because moisture content and temperature differed between the two caves, covariation 

between these variables, as well as biofilm color and carbon isotope composition, with community 

composition were investigated using various statistical analyses, as outlined in Chapter 3. 

According to PERMANOVA, temperature and biofilm color could not explain differences in SAB 

community composition, but moisture content could (p-value = 0.011) (Table 4.11). However, 

DCA of all SAB communities across both caves did not confirm significance among δ13C values 

and community composition, despite a significant relationship indicated in the PERMANOVA test 

(p-value = 0.270). The DCA suggested a strong relationship between community composition and 

moisture content (Table 4.12 and Figure 4.16), although this was also supported by a Mantel test 

suggesting temperature and community composition correlated (p-value < 0.05; Table 4.12). Upon 

further analysis, Mantel tests using a moisture dissimilarity matrix revealed a significant 

correlation between community composition and moisture in KN14 but not RN5, and that 

temperature was not a significant predictor of community composition across sites in either cave 

(p-value > 0.05). Pearson’s product moment correlations using the relative abundances of the top 

20 most abundant orders (Table 4.14 and Table 4.15 for KN14 and RN5, respectively) suggested 

there were significant negative correlations between moisture and relative abundances for 

Azospirillales, Steroidobacteriales, Pseudonocardiales, Sphingomonadales, and Rhizobiales (i.e., 

as moisture increased, relative abundances of taxa decreased), but positive correlations for 

Burkholderiales and Nitrosococcales (i.e., as moisture increased, relative abundances of taxa 

increased). 

PERMANOVA and DCA were used to evaluate community composition and other 

variables separately within KN14 (Table 4.16 and Table 4.17) and for RN5 (Table 4.18, Table 

4.19, and Figure 4.18). Although covariate interactions among each of these variables were 

evident, significant interactions were noted for KN14 between δ13C value and biofilm color (p-

value = 0.003), moisture (p-value = 0.038), and temperature (p-value = 0.044), as well as between 
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biofilm color and temperature (p-value = 0.001) and temperature and moisture (p-value = 0.001) 

(Table 4.17 and Table 4.16). For RN5, there were significant interactions between community 

composition and δ13C values, percent moisture, and biofilm color, as well as between percent 

moisture and biofilm color. The DCA model for RN5 showed statistically significant correlations 

among microbial community composition and moisture content and δ13C value (Table 4.18 and 

Table 4.19), but only moisture, not δ13C value, was found to significantly correlate to microbial 

community composition in KN14 (Table 4.16 and Table 4.17). According to DCA, SAB carbon 

isotope compositions in RN5 explained 56.1% of variance and moisture content explained 28.8% 

(Table 4.19 and Figure 4.18), while moisture content explained 73.6% of the variance in microbial 

community composition for KN14 (Table 4.16 and Figure 4.18).  

For KN14, SAB color (i.e., white or yellow) could explain 34.3% of the total variance 

within communities using PERMANOVA tests, although color covaried with percent moisture 

(30.3%). When both biofilm color and moisture content were included in the same model, color 

only accounted for 17.4% of variance. Collectively, these results support past research that specific 

taxa have distinct colony colors (Lavoie et al., 2017), and contrast other research that found no 

significant difference in community composition based on biofilm color (Hathaway et al., 2014). 

Although interactions among these variables likely complicate their interpretation, it is possible 

that community composition and color may be significantly linked to moisture content. 

Correlations between taxa and SAB isotope compositions 

Bulk δ13CSAB values significantly correlated to community composition in RN5 but not in 

KN14. Negative correlations between the relative abundances of specific taxa and δ13CSAB values 

(i.e., taxon abundance increases with lower δ13C values) could indicate that those taxa may be 

responsible for generating those carbon isotope signatures, for example, via chemolithoautotrophic 

carbon fixation (Table 4.14 and Table 4.15) (See Chapter 5). In KN14, negative correlations 

between taxon abundance and δ13C values were found for Blastocatellia family 11-24_fa, 

Hyphomicrobiaceae, Rhizobiaceae, and Reyranellaceae. These taxa were more abundant in SABs 

with lower δ13CSAB values, and their abundances significantly correlated with changes in δ13CSAB 

values (Table 4.14 and Table 4.15). Of these families, the 11-24_fa and Rhizobiaceae also 

correlated positively with moisture content. Nitrosococcaceae also negatively correlated with 

δ13CSAB values, but this was not statistically significant, possibly due to covariance with moisture.  
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For RN5, taxa that negatively correlated to δ13CSAB values included Euzebyaceae, 

Nitrosomonadaceae, unclassified Rhizobiales, Beijerinckiaceae, and Anaerolineaceae. 

Nitrosomonadaceae also positively correlated to moisture content. For instance, Nitrosococcaceae 

dominated several SABs, ranging from 5.5 to 22% relative abundances for RN5 sites. 

Nitrosomonadaceae ranged from 0.43 and 2.3% of all bacterial 16S rRNA sequences in this study 

across both caves and also have conserved putative function as chemolithoautotrophic ammonia 

oxidizers (Alfreider et al., 2018). Although these families both correlated significantly with 

moisture content, and Nitrosomonas abundance correlated significantly with carbon isotope 

composition in RN5 only, the relationship between the more abundant Nitrosococcaceae and 

δ13CSAB values was not statistically significant (Table 4.11). In addition, Pseudonocardiaceae also 

positively correlated with δ13CSAB values in RN5 but not in KN14 (Table 4.11 and Table 4.12). 

However, due to significant covariance of this family with moisture, covariate interactions 

between the two variables may complicate interpretation of these results.  

Several families negatively correlated to bulk δ15NSAB values, including Beijerinckiaceae, 

Inquilinaceae (order Azospirillales), Xanthomonadaceae, and Rhizobiales incertae sedis (Table 

4.14 and Table 4.15). At the family level, Beijerinckiaceae are associated with aerobic N2 fixation 

and some members can also perform methylotrophy and methanotrophy (Marín & Arahal, 2014). 

Close relatives to unclassified Beijerinckiaceae and unclassified members of Rhizobiaceae and 

Hyphomicrobiaceae had low relative abundances but were ubiquitous in all samples and negatively 

correlated to δ15NSAB values (KN14 r = -0.8, RN5 r = -0.4), although the Rhizobiaceae and 

Hyphomicrobiaceae also negatively correlated with δ13CSAB values. The Hyphomicrobiaceae 

identified in this study were mainly comprised of close relatives to the genus Hyphomicrobium, 

which are generally aerobic chemoorganoheterotrophs that grow in oligotrophic conditions and on 

C1 compounds, including methanol (Oren et al., 2014). The families Xanthomonadaceae and 

Rhizobiaceae, and members of the Azospirillales, contain taxa that are known to be free-living 

diazotrophs (Steenhoudt, & Vanderleyden, 2000; Desgarennes et al., 2014).  

In reality, the presence of any observable correlation between microbial community 

composition and δ13C depends on (i) proportionality between the amount of isotopically light 

carbon derived from the metabolism of certain groups and their abundance in a SAB, and (ii) the 

abundance of 16S rRNA sequences that accurately reflect the activity and contribution of taxa to 
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community metabolism. Because these assumptions may not be true, interpretation of correlations 

are presented here with caution. 
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Cave ID Site ID Vertical dist. from 

stream (m) 

Temp (ᵒC) % Moisture 

(pad) 

KN14 

1 0.9 9.7 44.8 

2 0.95 9.9 19.9 

3 1.05 9.8 55.5 

4 2.15 10.5 19.0 

5 1.5 10.1 73.9 

6 2.35 11.2 84.0 

RN5 

1 0.2 13.8 100 

2 0.98 14.0 62.6 

3 0.98 13.9 72.9 

4 1.23 14.0 89.7 

5 1.85 13.8 99.9 

6 5.0+ 13.0 88.7 

Table 4.1: Ambient environmental conditions at each cave SAB cave wall sampling 

site on the day of biofilm sampling (February 1 or 2, 2020). 
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Date Analyte 
KN14 RN5 

drip 1 drip 2 stream drip 1 drip 2 stream 

2/2/2020 

pH 8.06 8.23 7.34 8.06 NA1 7.26 

Temp. (ᵒC) 10.6 10.8 13.4 15.7 NA 14.4 

Cl
-
 (mg/L) 0.64 0.58 3.94 1.20 0.91 2.35 

SO
4

2-
 (mg/L) 5.09 4.74 4.19 1.85 5.69 1.52 

NO
3

-
 (mg/L) 1.30 2.07 6.18 1.10 1.89 4.33 

Na
+
 (mg/L) 3.98 2.36 5.38 2.43 4.14 3.08 

K
+
 (mg/L) 1.36 0.19 0.95 0.05 BDL2 0.32 

Mg
2+

 (mg/L) 16.23 13.12 18.66 21.28 22.99 16.51 

Ca
2+

 (mg/L) 47.03 49.70 48.56 30.04 36.29 31.61 

3/19/2020 

Analyte drip 1 drip 2 stream drip 1 drip 2 stream 

pH 7.89 7.64 7.23 7.65 8.04 7.05 

Temp. (ᵒC) 13.5 13.9 13.9 14.0 14.3 14.4 

Cl
-
 (mg/L) 0.54 0.51 3.93 1.19 0.67 2.02 

SO
4

2-
 (mg/L) 4.46 4.42 4.02 1.02 3.83 1.46 

NO
3

-
 (mg/L) 1.22 1.74 5.42 0.64 0.73 3.29 

Na
+
 (mg/L) 2.15 1.23 2.42 1.33 1.20 3.17 

K
+
 (mg/L) 1.29 0.21 0.88 0.05 BDL 0.25 

Mg
2+

 (mg/L) 16.78 14.63 18.58 21.78 22.25 14.18 

Ca
2+

 (mg/L) 50.96 54.33 47.94 31.67 35.79 27.51 

5/16/2020 

Analyte drip 1 drip 2 stream drip 1 drip 2 stream 

 pH 7.71 7.83 7.31 8.02 8.37 7.23 

Temp. (ᵒC) 14.4 14.6 14.9 14.7 15.0 14.5 

Cl
-
 (mg/L) 0.78 0.75 3.97 1.39 1.17 2.40 

SO
4

2-
 (mg/L) 6.74 4.91 4.54 1.50 4.12 2.07 

NO
3

-
 (mg/L) 1.40 6.86 5.68 0.97 2.06 4.22 

Na
+
 (mg/L) 3.49 2.07 5.19 4.33 3.20 4.66 

K
+
 (mg/L) 0.53 1.38 0.96 0.12 BDL 0.41 

Mg
2+

 (mg/L) 15.08 13.47 18.45 19.65 19.07 17.79 

Ca
2+

 (mg/L) 53.65 43.31 45.89 28.55 29.36 33.92 

1 BDL = below detection limit  

Table 4.2 Environmental data collected over time in drip locations and cave streams of both caves, 

including pH, temperature, and measurable anion concentrations. 
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Table 4.3: DIC and DOC concentrations in drip water and cave streams measured on 

5/20/2020 (n = 3). Alkalinity data from previous analysis (on 19 June 2019) was used to 

validate DIC concentrations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.4: Dissolved CO2 and CH4 concentrations in cave streams measured in triplicate on 

two dates (n = 3).   

Water source 

ID  

Associated 

SAB site ID 

DIC  

(mg CO3/L) 

Alkalinity 

(mg CO3/L) 

DOC  

(mg C/L) 

KN14 drip 1 KN14 site 4 256.5 - 4.75 

KN14 drip 2 KN14 site 5 254.0 - 4.66 

KN14 stream KN14 sites 1‒3 260.1 255.2 3.71 

RN5 drip 1 RN5 site 5 218.4 - 1.34 

RN5 drip 2 RN5 site 6 222.3 - 2.72 

RN5 stream RN5 site 1 196.2 192.6 2.32 

Water source 

ID 
Date 

Associated 

SAB site ID 

Dissolved 

CO2 

(mg/L) 

Dissolved 

CH4 

(g/L) 

KN14 stream  
02/02/2020 KN14 1‒3 6.05 0.22 

03/19/2020 KN14 1‒3 8.18 0.14 

RN5 stream  
02/02/2020 RN5 site 1 5.47 0.17 

03/19/2020 RN5 site 1 8.84 0.14 



 

42 

 

Table 4.5: Averaged δ13C values and standard deviations of carbonates (δ13CCaCO3) from 

each sampling site. Technical replicates (n = 3) consisted of homogenized material from the 

same site. δ13CCaCO3 values are given relative to the PDB standard. NA denotes sites where 

substrate was collected but did not contain carbonate (e.g., clay for KN14‒3 and RN5‒1 or 

chert for RN5‒4) and δ13CCaCO3 could not be measured.  

   
SAB site ID δ13CCaCO3  

KN14 1 -9.03 ± 0.32 

KN14 2 -0.59 ± 0.07 

KN14 3 NA  

KN14 4 -8.88 ± 0.03 

KN14 5 -0.70 ± 0.03 

KN14 6 -1.21 ± 0.01 

RN5 1 NA 

RN5 2 -1.51 ± 0.03 

RN5 3 -1.58 ± 0.04 

RN5 4 NA 

RN5 5 -1.99 ± 0.03 

RN5 6 -1.88 ± 0.02 
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Table 4.6: Averaged δ13C values and standard deviations (replicates n = 3) measured for 

DIC, CO2, and CH4 in cave air, and DOC, all reported as per mil (‰) relative to the PDB 

standard. 

 

Water collection site δ13CDIC  δ13CCO2 δ13CCH4 δ13CDOC 

KN14 drip 1 -13.03 ± 0.02 - - -22.50 ± 0.73 

KN14 drip 2 -15.24 ± 0.004 - - -20.75 ± 0.91 

KN14 stream -14.16 ± 0.16 - - -21.19 ± 0.59 

Cave air KN14 - -14.00 ± 0.40 -43.44 ± 0.05 - 

Outside air KN14 - -10.07 ± 0.36 -44.34 ± 0.24 - 

RN5 drip 1 -13.95 ± 0.03 - - -24.92 ± 0.66 

RN5 drip 2 -14.20 ± 0.04 - - -25.66 ± 0.24 

RN5 stream -15.63 ± 0.04 - - -24.87 ± 0.40 

Cave air RN5 - -19.40 ± 0.39 -42.93 ± 0.42 - 

Outside air RN5 - -9.34 ± 0.34 -44.81 ± 0.17 - 
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Table 4.7: Averaged bulk δ13C values (n = 3) and standard deviations of homogenized SAB 

samples (δ13CSAB) from each site, as well as bulk δ15N values (n = 1). δ13C and δ15N values 

are given relative to PDB and air‒N2, respectively. See Chapter 3 for details about the 

methods. 

   

SAB site ID δ13CSAB δ15NSAB 

KN14 1 -42.45 ± 0.58 -1.02 

KN14 2 -40.56 ± 0.19 -5.98 

KN14 3 -41.83 ± 0.35 +0.22 

KN14 4 -38.30 ± 1.18 -2.55 

KN14 5 -42.65 ± 0.16 -6.25 

KN14 6 -35.31 ± 1.08 +1.01 

RN5 1 -44.89 ± 0.50 -4.19 

RN5 2 -38.07 ± 0.43 -6.09 

RN5 3 -44.85 ± 0.51 -9.50 

RN5 4 -46.70 ± 0.17 -8.53 

RN5 5 -42.68 ± 0.57 -6.32 

RN5 6 -36.10 ± 0.31 -11.88 
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Table 4.8: Average alpha diversity measurements at the genus level across SAB sampling 

sites in both caves. Field replicate sequence counts were averaged (n = 4).  

  

Cave ID KN14 RN5 

Site 1 2 3 4 5 6 1 2 3 4 5 6 

Chao1 745.7 680.9 682.4 723.2 635.0 778.8 733.0 587.8 571.2 565.1 627.1 767.2 

Shanno

n 
2.73 3.09 2.84 2.83 3.69 3.29 3.23 4.06 3.85 3.70 3.94 4.09 

Simpson 0.72 0.81 0.75 0.73 0.91 0.82 0.85 0.95 0.93 0.93 0.94 0.94 
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KN14 Order 
Avg. % 

Abundance 
RN5 Order 

Avg. % 

Abundance 

Pseudonocardiales  44.21 Pseudonocardiales 13.71 

Rhizobiales  6.80 Nitrosococcales 13.55 

Steroidobacterales  4.23 Euzebyales 13.08 

Burkholderiales  3.63 Burkholderiales 5.59 

SBR1031  3.51 Bacteria_unclassified 4.40 

11-24 3.04 Rhizobiales 4.12 

Solirubrobacterales  2.36 Nitrospirales 3.13 

Nitrospirales  2.19 Gammaproteobacteria_unclassified 2.74 

Gemmatales  2.00 Gemmatales 2.02 

Azospirillales  1.97 Alphaproteobacteria_unclassified 1.66 

Xanthomonadales  1.61 11-24 1.63 

Bacteria_unclassified  1.57 bacteriap25_or 1.60 

Sphingomonadales  1.44 PLTA13 1.46 

Gemmatimonadales  1.30 Chitinophagales 1.32 

Alphaproteobacteria_unclassified  1.10 Pirellulales 1.22 

Steroidobacterales    1.04 Steroidobacterales 0.97 

Table 4.9: Average relative abundances of taxa by order in each cave (KN14 and RN5). 

Abundances for each replicate and across cave sampling sites were averaged to summarize 

abundant taxa in each cave. 
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Table 4.10: Average relative abundance of genera across all sampling sites in both caves. 

Genera with relative abundance greater than 0.15% are shown. 

Genus 
KN14.

1.avg 

KN14.

2.avg 

KN14.

3.avg 

KN14.

4.avg 

KN14.

5.avg 

KN14.

6.avg 

RN5.

1.avg 

RN5.

2.avg 

RN5.

3.avg 

RN5.

4.avg 

RN5.

5.avg 

RN5.

6.avg 

Crossiella 52.34 42.10 49.05 51.15 27.08 41.00 1.00 16.81 15.42 14.49 14.95 17.89 

wb1-P19 0.08 0.07 0.09 0.08 0.07 0.15 21.30 5.93 13.50 12.02 14.07 14.26 

Euzebya 0.21 0.20 0.20 0.24 0.16 0.16 30.73 0.00 0.01 15.61 0.00 0.44 

Bacteria 

_unclassified 
1.10 1.09 1.51 0.62 1.95 3.09 2.17 4.01 5.23 4.30 6.98 3.67 

Nitrospira 1.89 0.84 2.43 1.13 2.66 4.28 3.78 6.04 2.54 1.32 3.48 1.67 

Euzebyaceae 

_unclassified 
0.00 0.00 0.00 0.00 0.00 0.00 4.90 0.26 13.81 8.21 3.23 1.39 

11-24_ge 5.99 0.33 4.80 0.27 5.29 1.58 1.31 3.63 1.17 1.24 1.29 1.21 

Steroidobacter 1.95 5.32 2.45 2.79 6.34 3.55 0.71 1.19 0.86 0.51 0.10 2.13 

A4b_ge 4.11 0.91 5.41 0.36 4.56 5.34 0.67 1.30 0.56 0.35 0.23 0.68 

Gammaproteo-

bacteria_ 

unclassified 

1.08 0.25 0.18 0.52 0.96 0.34 0.67 0.97 1.77 2.39 7.34 3.30 

uncultured 1.22 0.91 1.91 0.53 2.45 2.02 0.67 2.81 1.03 1.24 1.26 1.95 

Alphaproteo-

bacteria_ 

unclassified 
0.29 0.65 0.75 0.37 3.71 0.81 1.79 3.13 1.33 1.47 1.20 1.09 

Comamonad-

aceae_ 

unclassified 
2.49 0.62 1.81 0.33 2.43 1.45 0.94 0.71 0.44 0.40 0.45 0.74 

Inquilinus 0.06 6.40 0.06 5.19 0.06 0.04 0.04 0.21 0.00 0.04 0.00 0.43 

PLTA13_ge 0.18 0.76 0.42 0.83 0.83 0.27 1.25 1.31 1.61 2.17 1.66 0.89 

uncultured 1.43 1.87 0.93 1.08 1.27 2.35 0.28 0.06 0.47 0.39 0.31 0.85 

bacteriap25_ge 0.13 0.40 0.31 0.14 0.29 0.20 0.29 1.58 2.47 1.39 2.61 1.23 

NB1-j_ge 0.52 0.09 2.45 0.09 0.73 0.78 1.11 1.41 0.68 0.61 0.82 0.52 

uncultured 0.20 1.92 0.33 1.46 0.64 1.01 0.40 0.33 0.81 0.43 0.78 0.83 

SWB02 0.40 0.61 1.26 0.19 1.35 0.69 1.17 1.32 0.57 0.41 0.20 0.80 

Methyloligell-

aceae_ge 
0.26 0.26 0.27 0.98 0.82 0.30 0.16 0.42 0.55 0.92 0.38 3.10 

Luteimonas 0.69 3.30 0.19 3.05 0.69 0.12 0.04 0.00 0.05 0.02 0.01 0.03 

Xanthobact-

eraceae_ 

unclassified 
0.15 2.05 0.03 2.75 0.29 0.23 0.06 1.44 0.15 0.20 0.07 0.48 

Burkholderi-

ales 

_unclassified 
0.23 0.28 0.15 0.23 0.73 0.46 0.74 1.22 1.03 0.79 1.03 0.94 

Terrimonas 0.14 1.33 0.06 0.55 0.11 0.24 0.85 1.60 0.78 0.66 0.81 0.56 

B1-7BS_ge 0.00 0.00 0.07 0.00 0.00 0.00 0.25 1.30 1.52 0.96 2.84 0.57 

uncultured 0.07 0.15 0.13 0.23 0.28 0.14 0.16 2.44 0.67 0.74 0.72 0.93 

Hyphomicro- 

bium 
0.83 0.46 0.73 0.60 0.93 0.38 0.17 1.33 0.27 0.39 0.30 0.24 

Sphingomonas 0.38 3.09 0.25 0.64 0.63 0.44 0.27 0.01 0.06 0.01 0.03 0.71 

uncultured_ge 0.32 1.02 0.18 0.80 0.89 1.15 0.02 0.14 0.10 0.18 0.29 1.15 

MND1 0.50 0.35 0.21 0.17 0.29 0.85 0.40 0.25 0.68 0.68 1.25 0.38 

RB41 0.32 1.06 0.13 0.38 0.59 0.72 0.66 0.26 0.08 0.05 0.27 1.40 

Haliangium 0.29 0.63 0.19 0.46 0.53 0.40 0.34 0.35 0.52 0.72 0.67 0.63 
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Genus 
KN14

.1.avg 

KN14

.2.avg 

KN14

.3.avg 

KN14

.4.avg 

KN14

.5.avg 

KN14

.6.avg 

RN5.

1.avg 

RN5.

2.avg 

RN5.

3.avg 

RN5.

4.avg 

RN5.

5.avg 

RN5.

6.avg 
Vicinamibacter

-aceae_ge 
0.46 0.59 0.37 0.27 0.48 1.21 0.36 0.85 0.43 0.38 0.19 0.62 

Blastocatell-

aceae 

_unclassified 

0.87 0.28 0.18 0.24 0.98 0.74 0.22 0.49 0.21 0.24 0.28 1.05 

Pedomicrobium 0.57 0.45 1.03 0.42 1.28 0.52 0.11 0.52 0.13 0.13 0.12 0.40 

67-14_ge 0.12 0.34 0.05 0.93 2.26 0.23 0.03 0.06 0.06 0.07 0.06 1.36 

Nordella 0.28 0.79 0.41 0.60 1.13 0.45 0.19 0.25 0.32 0.30 0.16 0.53 

OM190_ge 0.15 0.25 0.36 0.15 0.34 0.40 0.74 0.45 0.62 0.58 0.75 0.47 

uncultured 1.02 0.05 1.56 0.10 1.36 0.05 0.21 0.04 0.10 0.16 0.08 0.22 

Hyphomicrobia

-ceae_unclass-

ified 

0.35 0.56 0.33 0.26 0.67 0.33 0.14 0.98 0.15 0.20 0.16 0.79 

Rhizobiaceae 

_unclassified 
1.38 0.32 0.37 0.20 1.66 0.55 0.07 0.09 0.03 0.05 0.01 0.09 

IMCC26256_ge 0.02 0.15 0.03 0.51 0.08 0.05 0.15 0.87 1.20 0.93 0.21 0.61 

uncultured 0.53 0.14 0.54 0.13 0.23 0.32 0.27 0.54 0.64 0.39 0.45 0.60 

Subgroup_2_ge 0.06 0.00 0.03 0.01 0.05 0.11 0.19 3.14 0.61 0.16 0.39 0.02 

TRA3-20_ge 0.26 0.18 0.41 0.10 0.17 0.60 0.88 0.32 0.54 0.29 0.69 0.14 

Gemmataceae 

_unclassified 
0.23 0.15 0.46 0.13 0.42 0.36 0.18 0.61 0.38 0.21 0.48 0.70 

uncultured 0.03 0.09 0.03 2.30 1.55 0.10 0.01 0.00 0.00 0.00 0.00 0.00 

CCM11a_ge 0.23 0.22 0.24 0.07 0.17 0.26 0.26 0.96 0.38 0.31 0.55 0.38 

Pirellula 0.27 0.09 0.65 0.05 0.30 0.23 0.28 1.18 0.32 0.20 0.16 0.26 

Pseudonocardia 0.74 0.27 0.56 0.28 0.26 0.36 0.03 0.08 0.23 0.17 0.06 0.79 

uncultured_ge 0.13 0.18 0.30 0.10 0.35 0.24 0.18 0.65 0.32 0.19 0.31 0.60 

Gaiella 0.36 0.35 0.17 0.38 0.18 0.36 0.05 0.34 0.16 0.23 0.11 0.81 

Latescibacter-

ota_ge 
0.06 0.01 0.33 0.04 0.18 0.49 0.28 0.18 0.55 0.35 0.74 0.24 

Gemmati-

monadaceae_ 

unclassified 
0.14 0.31 0.19 0.16 0.29 1.03 0.12 0.12 0.08 0.09 0.18 0.49 

Conexibacter 0.06 0.94 0.05 0.48 1.00 0.21 0.01 0.00 0.09 0.11 0.12 0.12 

Subgroup_17_ 

ge 
0.16 0.08 0.16 0.03 0.20 0.32 0.19 0.32 0.47 0.65 0.43 0.11 

Panacagri-

monas 
0.58 0.97 0.30 0.23 0.30 0.41 0.09 0.08 0.01 0.01 0.01 0.02 

Sphingomonad-

aceae_ 

unclassified 
0.64 0.38 0.15 0.45 0.18 0.13 0.40 0.13 0.18 0.11 0.07 0.17 

Planctomycet-

ota 

_unclassified 
0.02 0.02 0.03 0.05 0.14 0.04 0.20 0.69 0.46 0.35 0.75 0.25 

Subgroup_10 0.27 0.42 0.17 0.25 0.62 0.31 0.14 0.02 0.22 0.17 0.11 0.28 

Steroidobacter-

aceae_ 

unclassified 

0.04 1.33 0.04 1.19 0.08 0.04 0.02 0.01 0.01 0.00 0.00 0.02 

Parcubacteria 

_unclassified 
0.08 0.01 0.11 0.02 0.07 0.04 0.19 0.12 0.26 1.20 0.62 0.07 

uncultured 0.08 0.13 0.38 0.03 0.13 0.03 0.51 0.36 0.24 0.43 0.39 0.05 

Table 4.10 continued 
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Genus 
KN14

.1.avg 

KN14

.2.avg 

KN14

.3.avg 

KN14

.4.avg 

KN14

.5.avg 

KN14

.6.avg 

RN5.

1.avg 

RN5.

2.avg 

RN5.

3.avg 

RN5.

4.avg 

RN5.

5.avg 

RN5.

6.avg 

SM1A02 0.06 0.04 0.11 0.03 0.06 0.09 0.20 1.39 0.21 0.17 0.20 0.15 

RBG-13-54-

9_ge 
0.01 0.05 0.01 0.08 0.05 0.09 0.10 0.23 0.75 0.34 0.75 0.23 

Actinobacteria 

_unclassified 
0.10 0.06 0.08 0.23 0.06 0.11 0.10 0.02 0.36 0.32 0.22 0.89 

uncultured_ge 0.67 0.13 0.34 0.06 0.45 0.34 0.15 0.09 0.07 0.03 0.06 0.08 

mle1-7 0.04 0.24 0.09 0.08 0.14 0.04 0.29 0.54 0.34 0.30 0.24 0.08 

Pla4_lineage_ge 0.05 0.03 0.06 0.02 0.07 0.05 0.22 0.19 0.44 0.41 0.57 0.21 

Subgroup_22_ 

ge 
0.05 0.02 0.06 0.02 0.20 0.10 0.16 0.18 0.38 0.19 0.73 0.20 

Pirellulaceae 

_unclassified 
0.08 0.16 0.09 0.10 0.15 0.22 0.10 0.34 0.20 0.13 0.24 0.45 

uncultured_ge 0.07 0.16 0.13 0.14 0.14 0.40 0.16 0.08 0.19 0.09 0.21 0.49 

Rokubacteri-

ales_ge 
0.05 0.07 0.07 0.03 0.15 0.15 0.16 0.50 0.23 0.16 0.32 0.32 

Subgroup_7_ge 0.15 0.31 0.03 0.31 0.22 0.38 0.05 0.17 0.05 0.04 0.06 0.39 

Rhizobiales 

_unclassified 
0.09 0.09 0.04 0.06 0.12 0.18 0.39 0.10 0.40 0.35 0.15 0.20 

Chloroflexi 

_unclassified 
0.06 0.01 0.22 0.03 0.25 0.08 0.09 0.47 0.33 0.23 0.18 0.21 

A0839_ge 0.02 0.03 0.18 0.04 0.13 0.03 0.27 0.44 0.42 0.26 0.18 0.06 

Solirubrobacter 0.02 0.47 0.01 1.00 0.08 0.17 0.01 0.00 0.00 0.00 0.00 0.22 

MB-A2-108_ge 0.08 0.09 0.09 0.32 0.04 0.31 0.01 0.04 0.08 0.10 0.54 0.28 

IS-44 0.19 0.20 0.18 0.09 0.37 0.45 0.33 0.05 0.02 0.02 0.06 0.00 

uncultured_ge 0.05 0.04 0.18 0.04 0.07 0.05 0.39 0.39 0.10 0.46 0.13 0.08 

SC-I-84_ge 0.07 0.29 0.05 0.32 0.20 0.45 0.04 0.06 0.09 0.03 0.11 0.22 

Acidibacter 0.10 0.22 0.29 0.16 0.30 0.10 0.08 0.04 0.07 0.11 0.08 0.22 

Pedosphaerace

ae_unclassified 
0.13 0.12 0.14 0.06 0.13 0.17 0.20 0.08 0.21 0.11 0.27 0.12 

Dongia 0.08 0.05 0.28 0.06 0.11 0.19 0.10 0.26 0.11 0.17 0.02 0.29 

uncultured_ge 0.03 0.11 0.07 0.08 0.13 0.01 0.21 0.34 0.18 0.21 0.27 0.11 

Omnitrophal-

es_ge 
0.01 0.01 0.05 0.01 0.01 0.04 0.12 0.05 0.54 0.27 0.59 0.03 

JG30-KF-

CM45_ge 
0.14 0.37 0.12 0.27 0.37 0.11 0.03 0.07 0.03 0.04 0.01 0.13 

MBNT15_ge 0.07 0.09 0.11 0.03 0.22 0.03 0.27 0.31 0.14 0.11 0.16 0.16 

AKYG587 0.01 0.04 0.13 0.11 0.09 0.02 0.17 0.57 0.07 0.02 0.05 0.42 

Bacteroidia 

_unclassified 
0.04 0.12 0.04 0.12 0.10 0.14 0.21 0.13 0.18 0.16 0.29 0.11 

uncultured_ge 0.00 0.00 0.00 0.00 0.00 0.00 0.09 1.33 0.03 0.01 0.12 0.02 

WD2101_soil 

_group_ge 
0.08 0.21 0.03 0.07 0.04 0.07 0.12 0.47 0.19 0.01 0.05 0.26 

Obscuribacter-

aceae_ge 
0.00 0.01 0.03 0.01 0.02 0.01 0.15 0.73 0.21 0.18 0.17 0.06 

KD4-96_ge 0.17 0.13 0.12 0.16 0.16 0.48 0.02 0.02 0.06 0.07 0.04 0.15 

JGI_0001001-

H03 
0.08 0.04 0.02 0.06 0.03 0.16 0.29 0.01 0.18 0.16 0.26 0.28 

Gemmata 0.30 0.14 0.15 0.07 0.14 0.20 0.06 0.25 0.01 0.03 0.02 0.15 
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Genus 
KN14

.1.avg 

KN14

.2.avg 

KN14

.3.avg 

KN14

.4.avg 

KN14

.5.avg 

KN14

.6.avg 

RN5.

1.avg 

RN5.

2.avg 

RN5.

3.avg 

RN5.

4.avg 

RN5.

5.avg 

RN5.

6.avg 
Acidobacteriae 

_unclassified 
0.02 0.01 0.03 0.01 0.09 0.02 0.04 0.79 0.08 0.04 0.09 0.13 

Dadabacteri-

ales_ge 
0.00 0.00 0.01 0.00 0.00 0.00 0.18 0.57 0.21 0.13 0.27 0.01 

Beijerincki-

aceae 

_unclassified 
0.06 0.13 0.02 0.09 0.18 0.05 0.03 0.03 0.23 0.42 0.08 0.09 

Rhodanobacter

aceae_unclass-

ified 
0.08 0.01 0.71 0.01 0.18 0.06 0.13 0.01 0.04 0.07 0.09 0.03 

Candidatus 

_Omnitrophus 
0.04 0.01 0.07 0.01 0.04 0.04 0.10 0.15 0.20 0.21 0.52 0.09 

KF-JG30-

C25_ge 
0.00 0.01 0.00 0.00 0.02 0.36 0.02 0.10 0.20 0.35 0.27 0.03 

Pajaroellobacter 0.08 0.04 0.09 0.03 0.53 0.05 0.04 0.06 0.09 0.13 0.09 0.10 

SJA-28_ge 0.00 0.01 0.00 0.02 0.05 0.01 0.04 0.07 0.59 0.27 0.18 0.07 

Reyranella 0.11 0.21 0.28 0.08 0.16 0.03 0.05 0.11 0.05 0.08 0.05 0.09 

Pla3_lineage_ge 0.02 0.02 0.04 0.01 0.08 0.08 0.14 0.40 0.14 0.10 0.16 0.12 

Ellin6067 0.10 0.05 0.06 0.04 0.18 0.11 0.11 0.15 0.10 0.16 0.11 0.10 

Phycisphaerae 

_unclassified 
0.00 0.00 0.00 0.01 0.02 0.01 0.10 0.67 0.11 0.05 0.15 0.10 

Bryobacter 0.08 0.08 0.11 0.05 0.09 0.16 0.16 0.09 0.12 0.06 0.05 0.17 

Pedosphaer-

aceae_ge 
0.05 0.09 0.25 0.05 0.07 0.14 0.13 0.08 0.13 0.04 0.09 0.09 
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Table 4.12: Results of the DCA model that included predictors for SAB community 

composition across both caves. Statistical significance is indicated by bold-font for p-values 

below an alpha value of 0.05. 

 

 

 

 

 

 

Table 4.13: Mantel test results for Pearson’s’s product moment correlation between SAB 

microbial community and (i) temperature and (ii) moisture content between caves and 

between sites within each cave. Statistical significance is indicated by bold-font for p-values 

below an alpha value of 0.05. 

   

Predictor Variable (z-score transformed) F.Model R2 p-value 

δ13CSAB 4.768 0.161 0.014 

% moisture 9.330 0.315 0.039 

Cave ID 6.355 0.060 0.856 

Temperature 0.560 0.019 0.853 

Biofilm color 4.098 0.276 0.356 

Both Caves Variables DCA1 DCA2 R2 p-value 

δ13CSAB -0.952 0.305 0.256 0.268 

Moisture content 0.985 0.174 0.638 0.001 

Predictor 

Variable 

Microbial 

Community 

Mantel statistic r p-value 

Temperature Between caves 0.7278 0.001 

Temperature Within RN5 -0.1641 0.561 

Temperature Within KN14 -0.4365 0.976 

% Moisture Between caves 0.4522 0.004 

% Moisture Within RN5 0.2429 0.210 

% Moisture Within KN14 0.5536 0.032 

Table 4.11: Results of PERMANOVA models that included 13C, moisture content, cave 

ID, temperature, and biofilm color as explanatory variables for microbial community 

composition across both caves. Statistical significance is indicated by bold-font for p-values 

below an alpha value of 0.05. 



 

52 

 

Table 4.14: KN14 Pearson’s correlation results showing the relationship between substrate 

moisture, δ13C and δ15N, and taxa abundance. Statistical significance is indicated by bold-

font for p-values below an alpha value of 0.05. 

  

   

KN14 Family 

percent 

moisture 

correlation 

r p-value 

δ13C 

correla-

tion 

r p-value 

δ15N 

correla-

tion 

r p-value 

Pseudonocardiaceae ‒ -0.42 0.027 NA 0.11 0.576 + 0.55 0.003 

(Blastocatellia) 11-24_fa + 0.49 0.009 ‒ -0.67 0 NA 0.14 0.498 

(Aerolineae) A4b + 0.8 0 NA -0.15 0.459 + 0.43 0.025 

Comamonadaceae + 0.67 0 NA -0.32 0.109 NA 0.23 0.239 

Nitrospiraceae + 0.73 0 NA 0.28 0.163 + 0.41 0.035 

Steroidobacteraceae NA -0.11 0.588 NA -0.08 0.71 ‒ -0.6 0.001 

Hyphomicrobiaceae NA 0.35 0.078 ‒ -0.56 0.003 NA -0.32 0.101 

Gemmataceae + 0.69 0 NA -0.13 0.522 NA 0.15 0.459 

Nitrosomonadaceae + 0.53 0.004 NA 0.36 0.068 NA 0.09 0.663 

Sphingomonadaceae ‒ -0.57 0.002 NA -0.07 0.737 ‒ -0.56 0.003 

Reyranellaceae NA 0.33 0.089 ‒ -0.72 0 NA 0.02 0.915 

Xanthomonadaceae ‒ -0.8 0 NA 0.1 0.621 ‒ -0.5 0.008 

Xanthobacteraceae ‒ -0.72 0 NA 0.17 0.39 NA -0.29 0.137 

NB1-j_fa + 0.43 0.026 NA -0.23 0.244 + 0.52 0.006 

Gemmatimonadaceae NA -0.24 0.22 + 0.54 0.004 NA -0.24 0.235 

Solirubrobacteraceae NA -0.26 0.189 NA 0 0.994 ‒ -0.6 0.001 

Inquilinaceae ‒ -0.71 0 NA 0.15 0.44 ‒ -0.48 0.038 

Beijerinckiaceae NA -0.03 0.876 NA -0.24 0.231 ‒ -0.8 0.001 

Rhizobiaceae + 0.41 0.031 ‒ -0.47 0.014 NA -0.28 0.154 
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RN5 Family percent 

moisture 

corre-

lation 

r p-value δ13C 

corre-

lation 

r p-

value 

δ15N 

correl-

ation 

r p-

value 

Pseudonocardiaceae – -0.39 0.041 + 0.42 0.027 – -0.54 0.003 

Euzebyaceae NA 0.36 0.059 – -0.66 0.001 + 0.4 0.037 

(Aerolinae) A4b – -0.68 0.001 + 0.5 0.007 NA 0.16 0.418 

Steroidobacteraceae NA -0.31 0.109 + 0.58 0.001 – -0.75 0.009 

Hyphomicrobiaceae – -0.58 0.001 + 0.61 0.001 NA -0.04 0.838 

Gammaproteobacteria 

_unclassified 
– 0.48 0.01 NA 0.09 0.665 NA -0.07 0.727 

Gemmataceae – -0.51 0.006 + 0.75 0.001 NA -0.2 0.297 

Nitrosomonadaceae + 0.37 0.051 – -0.46 0.015 + 0.43 0.0216 

Blastocatellaceae NA 0.09 0.646 + 0.65 0.001 – -0.49 0.008 

Pirellulaceae – -0.67 0.001 + 0.57 0.001 NA -0.16 0.423 

Xanthobacteraceae – -0.67 0.001 + 0.6 0.001 NA -0.04 0.837 

Chitinophagaceae – -0.42 0.026 + 0.46 0.015 NA 0.06 0.771 

Methyloligellaceae NA 0 0.982 + 0.6 0.001 – -0.78 0.001 

Nitrosococcaceae + 0.64 0.001 – -0.36 0.059 NA 0.22 0.269 

Anaerolineaceae NA 0.14 0.464 – -0.47 0.012 NA -0.18 0.365 

Rhizobiales_unclassified NA 0.09 0.645 – -0.49 0.008 NA -0.05 0.789 

Beijerinckiaceae NA -0.12 0.556 – -0.47 0.011 – -0.4 0.037 

Nitrospiraceae NA -0.28 0.152 NA 0.21 0.293 + 0.48 0.01 

Rhizobiales 

Incertae_Sedis 
NA 0.05 0.817 NA 0.37 0.055 – -0.85 0.001 

Table 4.15: RN5 Pearson’s correlation results showing the relationship between substrate 

moisture, δ13C and δ15N, and taxa abundance. Statistical significance is indicated by bold-

font for p-values below an alpha value of 0.05. 
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Table 4.16: DCA model results specific to SABs within KN14, demonstrating the 

relationship between moisture content, δ13C, and microbial community composition. 

Statistical significance is indicated by bold-font for p-values below an alpha value of 0.05. 

 

 

 

 

 

 

 

 

 

Table 4.18: RN5 PERMANOVA model results showing the relationship between predictor 

variables, and microbial community composition. Statistical significance is indicated by 

bold-font for p-values below an alpha value of 0.05. 

 

 

 

KN14 Variable DCA1 DCA2 R2 p-value 

δ13CSAB 0.976 -0.219 0.075 0.382 

Moisture content -0.949 0.315 0.736 0.001 

Temperature 0.122 0.993 0.044 0.550 

KN14 Predictor Variable F.Model R2 (total = 1) p-value 

δ13CSAB 3.248 0.115 0.016 

Moisture content 10.87 0.303 0.001 

Temperature 1.783 0.067 0.131 

Biofilm color 13.03 0.343 0.001 

Total between site IDs 11.62 0.734 0.001 

RN5 Predictor Variable F.Model R2 (total = 1) p-value 

δ13C of SABs 5.602 0.178 0.002 

% moisture 4.861 0.158 0.003 

Temperature 2.768 0.096 0.019 

Biofilm color 8.241 0.397 0.001 

Total between site IDs 9.123 0.675 0.001 

Table 4.17: KN14 PERMANOVA model results showing the relationship between 

predictor variables and microbial community composition. Statistical significance is 

indicated by bold-font for p-values below an alpha value of 0.05. 
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Table 4.19: DCA model specific to RN5 comparing microbial community structure to δ13C 

and moisture content of the substrate (i.e. cave wall). Statistical significance is indicated by 

bold-font for p-values below an alpha value of 0.05. 

 
RN5 variable DCA1 DCA2 R2 p-value 

δ13C value of SAB -0.865 0.501 0.5606 0.001 

% moisture 0.675 0.739 0.2875 0.011 
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Figure 4.1: Stream level fluctuations and flooding frequency in KN14 (blue) and RN5 

(yellow). Change in water depth is reported relative to t0 = 0 m for the measured stream 

surface level at the start of the study. Daily rainfall is shown in black.  
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Figure 4.2: Flooding height and frequency in KN14 (blue) and RN5 (yellow) cave 

streams. 
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Figure 4.3: Cave-wall temperature variation at SAB sampling sites at the beginning of 

the study and based on vertical distance from the stream base level at t0 = 0 m. Light 

blue = KN14; Yellow = RN5. Solid lines represent the outside temperature on the 

sampling day for each cave, and colored dot-dash lines represent the stream 

temperatures. The black dotted line represents the average annual surface 

temperature. 
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Figure 4.4: Cave air temperature over time from winter (February 2, 2020) to late spring 

(April 17, 2020), showing more variation in temperatures in the cave site KN14 (blue) than 

in RN5 (orange). Dotted blue lines represent the approximate time in which the data logger 

in KN14 recorded temperatures in the main cave stream passage, but the data logger was 

placed in an upper passage of the cave prior to and after this period, to establish whether 

cave air temperature near the stream was more variable than away from the stream. 
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Figure 4.5: Comparison of CO2 concentrations in cave air in February between cave 

locations and outside measurements. Letters denote statistically significant differences 

among samples despite variation in replicate measurements based on a Tukey’s HSD test 

(p-value < 0.05, n = 3).  
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Figure 4.6: Comparison of CH4 concentrations in cave air in February between cave 

locations and outside measurements. Letters denote the absence of statistically significant 

difference in CH4 concentration among these locations based on Tukey’s HSD test (p-value 

> 0.05, n = 3). 
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Figure 4.7: δ13C of dissolved inorganic carbon (DIC) measured from filtered water 

samples of meteoric water (drips) and cave streams. δ13CDIC values are reported relative 

to PDB. Letters denote significant differences among values using Tukey’s HSD test (p-

value < 0.05, n = 3). 

 

Figure 4.8: δ13C values of rock (i.e., carbonate) substrates at each site relative to PDB (n  

= 3). 
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Figure 4.9: δ13C of dissolved organic carbon (DOC) measured in two drip water sites and 

the stream in both caves (relative to PDB). Letters indicate significant differences among 

sites based on the results of a Tukey’s HSD test (p-value < 0.05, n = 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: δ13C values of subaerial biofilms (SABs) at each sampling site for both caves. 

δ13C values are relative to the PDB standard. Letters denote statistical differences among 

samples determined by Tukey’s HSD test (p-value < 0.05). 
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Figure 4.11: Summary of δ13C values (relative to PDB) for all samples, including SAB 

biomass (n = 6 per cave), DOC and DIC in drip water (n = 2 per cave), CO2 and CH4 in the 

cave air, and rock (i.e., carbonate) substrate from each site and each cave. Data are 

reported in Tables 4.5 and 4.6.  

  

δ
1

3
C

 (
‰

) 



 

65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

δ
1
5
N

S
A

B
 (

‰
) 

Figure 4.12: Comparison of bulk δ15N values measured from all SAB samples from each 

cave (n = 6). δ15N values are reported relative to air-N2. 
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Figure 4.13: δ15N values measured from all SAB samples from each cave without 

replication. δ15N values are reported relative to air-N2.   
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Figure 4.14:  Composite evenness (Chao1, left panel) and diversity index (Shannon, center 

panel; Simpson, right panel) values for all SAB samples from each cave. 
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Figure 4.15: Average relative abundances of taxa at the order level for all sampling sites (1‒6) in each cave (KN14 and 

RN5). Sequence abundances were averaged between replicates. Only orders with relative abundances greater than 

1.0% are shown. 
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Figure 4.16: PCoA plot showing Bray-Curtis similarity between microbial community 

composition at the genus level for all replicates collected at each sampling site. Ellipses 

represent where 95% of the data fall. 
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Figure 4.17: A) DCA plot showing differences in microbial community structure across all 

sampling sites in both caves. B) DCA plot revealing relationships among microbial 

community structure at the order level and changes in δ13CSAB (p-value = 0.30) and 

moisture content (p-value = 0.013). Color gradient represents δ13CSAB values. 
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Figure 4.18: DCA plots (panels A and B are the same for RN5; panels C and D are the 

same for KN14) showing relationships among microbial community structure, δ13CSAB, and 

percent moisture across both cave sites. Panels B and D show order-level correlations 

among taxa and overall community structure. Color gradients for each set of plots 

represent differences in δ13CSAB values.  
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CHAPTER FIVE 

DISCUSSION 

Prevalent Taxonomic Groups in Subaerial Biofilms from Cave Environments 
Overall SAB bacterial community compositions for KN14 and RN5 caves agree with 

findings from earlier cave SAB studies that report SABs are dominated by Actinobacteria and 

Proteobacteria phyla and have relatively low diversity (e.g., Porca et al., 2012; Tomczyk-Zak & 

Zeilenkiewicz, 2015; Wu et al., 2015; Gonzalez-Pimentel et al., 2018; Luis-Vargas et al., 2019; 

Marques et al., 2019). Specifically, Shannon diversity indices from KN14 and RN5 were like those 

calculated for SABs in lava tubes, with values ranging from 1.0 to 5.68 (e.g., Lavoie et al., 2007; 

Riquelme et al., 2015; Gonzalez-Pimentel et al., 2018; Luis-Vargas et al., 2019). The relative 

abundances of actinobacterial orders Pseudonocardiales, which dominated SABs from KN14, and 

Euzebyales, which were more prevalent in RN5, were also consistent with abundances retrieved 

from lava tube and carbonate cave SABs (Hathaway et al., 2014; Riquelme et al., 2015; Duan et 

al., 2017; Gonzalez-Pimentel et al., 2018).  

Consequently, it is not surprising that searching for close relatives for KN14 and RN5 

genera using the Basic Local Alignment Search Tool (BLASTn) for the NCBI database revealed 

that the highest sequence similarities were also to uncultured bacteria from the earlier cave studies. 

For instance, the most similar sequences (with 98% or greater sequence similarity) to sequences 

from KN14 and RN5 were related to the Pseudonocardiaceae genus Crossiella and uncultured 

bacteria obtained from geographically distinct SAB colonies on the walls of lava tubes (Northup 

et al., 2011; Riquelme et al., 2015; Luis-Vargas et al., 2019), as well as a Slovenian limestone cave 

(Pašić et al., 2010). However, the only cultured Crossiella representatives are from Japanese soil 

(Labeda, 2001) and horse placentas (Donahue et al., 2002), which means that the cave 

representatives are likely new species. In general, members of Pseudonocardiaceae are abundant 

in desert soils (Lynch et al., 2014) and can potentially withstand extreme conditions 

(Mohammadipanah & Wink, 2016). Members of this family are also considered metabolically 

flexible because some possess genes for complete CO2 fixation via the CBB pathway, although 

others grow heterotrophically (Lynch et al., 2014). In arid environments, Pseudonocardiaceae are 

suspected to utilize atmospheric CO2 as a source of carbon due to extreme nutrient limitation 

(Lynch et al., 2014).  
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Similarly, Euzebya spp. from KN14 and RN5 had 98% or greater sequence similarity to  

uncultured bacteria identified from lava tubes, including the Chimalacatepec lava tube system in 

Mexico (Luis-Vargas et al., 2019; accession number: MK311202), a lava tube in the Azores 

(Northup et al., 2011; accession number: JF265714), an Hawaiian lava tube (Northup et al., 2011; 

accession number: KC569846), and a lava tube in the Canary Islands (unpublished data by J. 

Gonzalez-Pimentel, accession number: LT854958). Gonzalez-Pimentel et al. (2018) found that 

Euzebyales were the most metabolically active members of lava tube SABs. However, cultured 

representatives of this genus, which include aerobic chemoorganoheterotrophs, are from marine 

environments (Kurahashi et al., 2010; Yin et al., 2018), again emphasizing the potential novelty 

of the cave SAB species.  

Sequences from KN14 and RN5 that were affiliated with the unclassified group wb1-P19 

from the Nitrosococcales, which is an order within the Gammaproteobacteria, shared 99% or 

greater sequence with SAB bacteria from a Slovenian carbonate cave (Porca et al., 2012; accession 

number: HE602817) and tan and yellow SAB colonies in an Azores lava tube (Northup et al., 

2011; accession numbers: JF265778, HM749682), as well as to bacteria from a stream in 

Mammoth Cave, Kentucky (R. Fowler, unpublished data; accession number: GQ500804) and from 

an Illinois aquifer (Flynn et al., 2013; accession number: KC605633). Members of this order, and 

specifically Nitrosococcaceae, are putative chemolithoautotrophic AOB (Klotz et al., 2006). Also, 

members of the Nitrospira phylum (Nitrospirales) have been previously identified from cave SABs 

(e.g., Pašić et al., 2010 Riquelme et al., 2015), and all are chemolithoautotrophic nitrite-oxidizers 

(e.g., Ehrich et al., 1995). Both KN14 and RN5 SABs had low relative abundances of Nitrospirales, 

and specifically Nitrospira spp., although all RN5 unflooded sites and site 6 in KN14 (i.e., also 

not flooded) had higher relative abundances of Nitrospira spp. compared to the flooded sites, 

which may because some taxonomic groups prefer drier conditions.  

Close relatives of an unclassified genus belonging to the Methyloligellaceae were the most 

abundant putative methylotrophs in KN14 and RN5, but other putative C1-metabolizing (i.e., 

methanotrophic) bacterial groups, including the Methylomirabilaceae, Methylacidiphilaceae, 

Methylococcales, Methylomirabilia, Rhizobiales, and Verrucomicrobia, were related to 

unclassified, uncultured representatives from a range of habitats, including caves. Although many 

methanotrophs require CH4 concentrations higher than ambient atmospheric levels to grow, some 
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bacteria possess the ability to grow at atmospheric levels of CH4 (Tveit et al., 2018). These 

methanotrophs, referred to as the “upland soil cluster γ,” have been identified in soils, as well as 

cave microbial communities (Zhao et al., 2018). Interestingly, evolutionary relatedness between 

the particulate methane monooxygenase enzyme pathway and ammonia monooxygenase pathway 

commonly results in co-oxidation of CH4 by ammonia-oxidizers (Holmes et al., 1995). In fact, 

members of both Nitrosococcaceae and Nitrosomonadaceae (Gammaproteobacteria), which were 

represented in the top 20 most abundant taxa in the KN14 and RN5 SAB communities, actively 

oxidize and incorporate carbon from CH4 oxidation (Jones & Morita, 1983; Klotz et al., 2006). 

Nitrifiers are also known to contribute to the uptake of CH4 in forest soils where they compete 

with methanotrophs for CH4 oxidation (Goldman et al., 1995). Therefore, despite low relative 

abundances of putative methanotrophs in the cave SABs, ammonia-oxidizers could co-oxidize 

CH4 as a carbon source.  

Although this study was the first to attempt to measure bulk δ15NSAB measurements from 

cave SABs, low overall nitrogen content and insufficient material resulted in only single 

measurements from each SAB site. Therefore, interpretation of the results is limited, especially 

because δ15N values of nitrogen sources, including nitrate and ammonium in drip water and 

streams, would also be needed. Nevertheless, low δ15NSAB values and the corresponding presence 

of several putative diazotrophic taxa potentially supported the hypothesis that N2 fixation is likely 

occurring in SAB communities. However, there were differences in δ15NSAB values between the 

caves and lower δ15NSAB values were associated with some putative N2-fixing organisms but not 

putative nitrifiers (Table 4.14 and Table 4.15). N2 fixation by free-living diazotrophs fractionates 

ca. -2.5‰ from N2 (~0‰), and ammonia produced through diazotrophy or delivered to the SABs 

could be fractionated even further through assimilation by microbes, which would result in 

biomass with low δ15NSAB values, such as those observed at sites 2 (-5.98‰) and 5 (-6.25‰) in 

KN14 and all sites in RN5 (-4.19 to -11.88‰). In addition, oxidation of this ammonia to nitrate 

via nitrification, or ammonia delivered to the biofilm through percolating meteoric water or 

streams, would produce nitrate enriched in 14N, which could then be assimilated by SABs into 

biomass. The significantly lower δ15NSAB values in RN5 compared to KN14 also coincide with 

significantly higher overall relative abundance of the AOB Nitrosococcaceae in RN5.   
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Influence of Moisture on Subaerial Biofilm Diversity 
The main goals of measuring cave environmental conditions were to evaluate potential 

sources for nutrients and to determine which variables could explain variations in bacterial 

community composition, such as moisture content. One of the research hypotheses predicted that 

variation in SAB microbial community diversity would be driven by environmental variation 

within the caves more than geography. This hypothesis has been tested in other studies, including 

for cave SABs, where examination of physically distant lava tube communities concluded that 

geographic barriers play the most important role in determining taxa abundances (Hathaway et al., 

2014; Gonzalez-Pimentel et al., 2018). Explanation for these geographic rather than environmental 

controls stems from the idea that individual caves and their overlying epikarstic soils have unique 

characteristics that are unquantifiable but that also affect variance in taxonomic data (Hathaway et 

al., 2014). But, multiple other studies for surface (i.e., phototrophic) SABs in soils across 

geographic distances indicate that moisture content is the most important driver for bacterial 

biomass production (Serna-Chavez et al., 2013) and that duration of wetness is more important 

than the amount of precipitation (e.g., Gladis-Schmacka et al., 2014; Prieto et al., 2020).  

Most of the environmental variables measured in this study did not explain variation in 

SAB community composition, but there were statistically significant correlations identified 

between diversity and moisture content at each SAB site for both caves (Table 4.10 and Figure 

4.17). Not only do cave streams or drips provide water to surfaces that SABs can then colonize, 

but exposure to different water sources by proximity to periodic or frequent flooding and dripping 

would also affect nutrient availability for SABs. SABs in KN14 were exposed to stream water at 

least once during the study, with three sites being frequently flooded (sites 1, 2, and 3) (Figure 

4.1), and sites 3 and 6 had no active drips (Table 3.1). In contrast, only one site in RN5 (site 1) 

was frequently flooded by the stream and all other RN5 sites were not flooded (Figure 4.1); sites 

2 and 6 had no active drips (Table 3.1). The DOC concentrations in KN14 stream and drip water 

were higher during the study period than what would be considered oligotrophic conditions 

(Kaplan & Newbold, 2000), which implies that SABs exposed to stream and/or dripping water 

have more readily available organic carbon sources for metabolism than SABs away from an active 

water source. Even the lower, oligotrophic DOC concentrations for RN5 drips would provide some 

organic carbon to SABs. Moreover, SABs near water sources could also have access to and use 

nitrate or other nutrients.  
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These findings differ slightly from previous research of lava tube SABs in the Azores and 

Hawai`i, where microbial taxa abundances in the different caves are influenced predominately by 

rock organic carbon, nitrogen, and copper content (Hathaway et al., 2014), although moisture 

content was not measured in that study. In another cave microbial community study, moisture was 

not measured from cave walls but water content of cave sediments was found to significantly 

influence microbial diversity (Zhu et al., 2019). Moisture of weathered rock surfaces was measured 

in a study on methanotroph abundance in cave microbial communities, but the results of these 

analyses were not reported (Zhao et al., 2018). As such, measuring this environmental variable for 

future cave SAB studies will be important.  

Another hypothesis that was tested as part of this research predicted that SABs in areas 

with lower organic carbon availability from flooding stream or percolating water (e.g., growing on 

relatively dry surfaces) would have higher relative abundances of chemolithoautotrophs compared 

to SABs growing in areas actively exposed to allochthonous carbon input. Based on comparisons 

with environmental conditions, proximity of SAB colonies to moisture sources, which could 

provide access to carbon and other nutrients, may select for certain taxa, with lower moisture 

selecting for Pseudonocardiaceae but higher moisture selecting for Nitrosococcaceae (Tables 4.13 

and 4.14). Specifically, where Pseudonocardiaceae abundances were lower, SABs were dominated 

by Nitrosococcaceae (Tables 4.8 and 4.9, Figure 4.14). Pseudonocardiaceae have the capacity for 

CO2 fixation (e.g., Lynch et al., 2014; Mohammadipanah & Wink, 2016) but Nitrosococcaceae are 

also chemolithoautotrophs (Klotz et al., 2006). Therefore, the hypothesis is partially supported 

because under high and low moisture content, the potential for SAB communities to be comprised 

of chemolithoautotrophs was equally possible. 

Chemolithoautotrophic Carbon Fixation in Subaerial Biofilms 
Only two other isotope studies for cave SABs are known, both from hypogenic caves with 

SABs dominated by sulfur-oxidizing and acidophilic microbes (Vlasceanu et al., 2000; Engel et 

al., 2001), which makes this the first study to evaluate the potential contribution of 

chemolithoautotrophy to epigenic cave SABs using isotope tracers. This research proposed the 

hypothesis that δ13C values for cave SAB biomass would support the presence of 

chemolithoautotrophic functions, such as CO2 fixation and/or CH4 oxidation, and correspond to 

relative abundances of those taxonomic groups based on 16S rRNA gene sequence data. From 

other studies, the primary source of carbon to cave bacterial communities in epigenetic caves and 
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lava tubes is assumed to be from photosynthetically-derived, allochthonous organic carbon, which 

could be delivered through streams, percolating meteoric water at drip sites, or animals (Poulson 

& Lavoie, 2000). However, because nutrient availability and access to DOC or other nutrients for 

cave-wall SABs can be limited or insufficient to sustain adequate growth, community members 

may need to supplement their carbon needs by relying on chemolithoautotrophy (e.g., Ortiz et al., 

2014), which has been suggested for cave SABs in the literature but not demonstrated.  

To test the hypothesis, carbon isotope measurements were completed for the cave SABs 

and potential carbon sources (e.g., DOC, DIC, and atmospheric CO2 and CH4), or estimates from 

the literature were used for sources whose δ13C values could not be measured in this study (i.e. 

dissolved CH4). If the microbial communities within cave SABs rely solely on allochthonous 

organic carbon for biomass production, then the δ13CSAB values would be comparable to the local 

δ13CDOC values. The δ13CDOC values in KN14 and RN5 averaged -21.4 ±0.56‰ (n = 3) and -25.2 

±1.02‰ (n = 3), respectively. In contrast, δ13CSAB values ranged from -46.7‰ to -35.3‰, with 

63% of the δ13CSAB values being lower than -40‰ (Tables 4.5 and 4.6, and Figure 4.11) , which is 

lower than would be expected for exclusively heterotrophic metabolism of DOC. Regarding DIC 

and atmospheric gases, based on drip water δ13CDIC values in KN14 (-12.9 ±1.8‰, n = 3) and RN5 

(-13.0 ±0.45‰, n = 3) (Table 4.4), if the chemolithoautotrophic CBB cycle was solely responsible 

for CO2 fixation and fractionating the carbon isotopes via the Rubisco enzyme (i.e., by -20 to -

35‰) (Preuß et al., 1989), then chemolithoautotrophic biomass δ13C values could fall between 

approx. -33‰ to -48‰. However, SABs are also potentially able to utilize gaseous CO2 in the 

cave. For KN14, δ13CCO2 was similar (-14.4‰) to δ13CDIC (-11.3 to -14.5‰), but δ13CCO2 in RN5 

was lower at -19.4‰ compared to δ13CDIC values (-12.6 to -15.1‰), likely due to microbial 

respiration in the soil and low ventilation rates in RN5. If the inorganic carbon source was cave air 

CO2 instead of DIC, then the chemolithoautotrophic biomass δ13C values would fall between -34.4 

and -49.4‰ for SABs in KN14 and between -39.4 and -54.4‰ for SABs in RN5.  

Under the assumption that the CBB pathway alone is responsible for fixing CO2 (as DIC 

or gaseous CO2) and that inorganic carbon fixation is the only process responsible for the low 

δ13CSAB values, then the expected proportion of carbon derived from DIC can be calculated using 

a two-member mixing model (Belle et al., 2014) between heterotrophic biomass (~δ13CDOC) and 

estimated autotrophic biomass. Autotroph biomass estimates were calculated for each SAB 
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sampling site depending on the local DIC and CO2 measurements made at each site and using the 

expected fractionation range for Rubisco. For instance, RN5 site 1 was very close to the stream 

and stream δ13CDIC values were used to calculate autotroph biomass, but drip δ13CDIC values were 

used for this calculation for adjacent biofilm collection sites. Estimated proportions of DIC and 

CO2-derived carbon were then calculated using the following isotope mass balance constraint:  

 

Equation 5.1   δ13CSAB = x* δ13Cautotroph + (1-x)* δ13Cheterotroph 

 

where x represents the relative proportion of bulk biomass carbon (δ13CSAB) derived from 

the two potential carbon metabolic pathways represented in this model: (i) δ13Cautotroph, which is 

the estimated δ13C value for chemolithoautotrophic biomass produced through CO2 fixation and 

based on carbon sources (i.e., δ13C values of DIC and cave air CO2 measured in this study) and the 

fractionation factor associated with CO2 fixation using the Rubisco enzyme and the CBB pathway, 

and (ii) δ13Cheterotroph, which is the estimated δ13C value for heterotrophic biomass produced through 

the consumption of organic carbon sources (i.e., δ13CDOC in drip water and streams) and assuming 

no fractionation of carbon isotopes between source and the produced microbial biomass.  

Consequently, to explain the measured carbon isotope compositions of cave SABs using only CO2 

fixation through the CBB pathway and heterotrophic consumption of DOC, 46%‒100% of the 

biofilm-supplied carbon would need to be derived from DIC or 31‒100% derived from cave air 

CO2 (Table 5.1). For SABs with δ13CSAB values that were more negative than -40‰, CO2-derived 

carbon would need to make up between 67% and 100% of all biofilm-supplied carbon derived 

from DIC or 56‒100% derived from cave air CO2. For SABs with the lowest δ13C values (i.e., 

RN5 site 4), this would require between 96 and 100% of all biofilm-supplied carbon to be obtained 

through chemolithoautotrophic CO2 fixation starting from DIC or between 71 and 100% starting 

from cave air CO2 (Table 5.1).  

Alternatively, methanotrophy and/or methylotroph metabolism of isotopically light, C1 

compounds, such as CH4, methanol, and carbon monoxide, fractionates carbon during fixation into 

biomass and could also be responsible for the low δ13CSAB values. When the source of CH4 to 

methanotrophs is biogenic CH4, which typically has δ13C values between -85 to -55‰, 

methanotrophic biomass δ13C values fall between -110 and -85‰ (Vieth & Wilkes, 2010). 
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However, fractionation of carbon isotopes between CH4 and microbial biomass can vary greatly 

between type I and II methanotrophs (Templeton et al., 2006). The fractionation factor for CH4 

oxidation is ~1.015 for type II methanotrophs and 1.006 for type I methanotrophs, which 

corresponds to carbon isotope fractionations of -15‰ and -6‰ from reactant (i.e., CH4) to product 

(i.e., biomass), for type II and type I methanotrophs, respectively (Templeton et al., 2006).  

Although type II methanotrophs, which are mainly members of the class 

Alphaproteobacteria and include the genera Methylocystis, Methylocella, Methylocapsa, and 

Methylosinus, generally thrive in environments with low levels of oxygen and elevated 

concentrations of CH4, some type II methanotrophs, including the upland soil cluster γ and some 

Methylocapsa spp., can grow solely on CH4 oxidation at low concentrations (Deng et al., 2019; 

Tveit et al., 2019). Some type I methanotrophs, such as those of the family Methylococcaceae, can 

also grow in CH4-limited environments (Hanson & Hanson, 1996). Growth at low levels, like those 

of the caves, contradicts previous indications that CH4 oxidation was kinetically impossible (e.g., 

Bender, 1992). Therefore, because the most abundant putative methanotrophic group identified in 

this study was the family Methyoligellaceae (0.3 - 3.1‰), a member of the Alphaproteobacteria 

class and potentially a type II methanotroph, the fractionation factor for type II methanotrophs 

were used to estimate the δ13C values of methanotrophic biomass and, subsequently, the proportion 

of biomass needed to explain the observed δ13CSAB values. Based on the δ13CCH4 values, which 

were -43.4‰ and -42.9‰ in KN14 and RN5, respectively, and a fractionation of -15% between 

source CH4 and biomass, methanotroph biomass produced from the consumption of atmospheric 

CH4 would produce a δ13C value of ~-58‰.  

Estimates of heterotrophic biomass δ13C values were again derived from local δ13CDOC 

values relevant to each site. Using the methanotrophy estimate and assuming that the cave SABs 

were comprised only of carbon derived from DOC and CH4, a two-member mixing model was 

used to calculate the proportion of CH4-derived carbon needed to explain measured δ13CSAB values 

according to the following formula:  

Equation 5.2   δ13CSAB = x* δ13Cmethanotroph + (1-x)* δ13Cheterotroph 

where x represents the relative proportion of bulk biomass carbon (δ13CSAB) derived from 

the two potential carbon metabolic pathways represented in this model: (i) δ13Cmethanotroph, which 
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is the estimated δ13C value for methanotroph biomass, and (ii) δ13Cheterotroph, which is the estimated 

δ13C value for heterotrophic biomass produced through the consumption of organic carbon sources 

(i.e., δ13CDOC in drip water and streams) and assuming no fractionation of carbon isotopes between 

source and the produced microbial biomass. Therefore, assuming only methylotrophic and/or 

methanotroph and heterotroph metabolisms in the SABs, between 32% and 66% of carbon derived 

from CH4 could explain the δ13CSAB values (Table 5.1).  

Because the δ13CSAB values are lower than would be expected if heterotrophs were 

assimilating DOC alone, the end-member mixing models support the hypothesis that 

chemolithoautotrophy contributes to SAB biomass because chemolithoautotrophy via the CBB 

pathway can result in the low δ13CSAB values for SAB biomass, with a smaller but no less 

significant contribution from methanotrophy (Table 5.1). Given the higher relative abundance of 

putative CO2-fixing bacteria compared to putative methanotrophs, specifically members of the 

orders Pseudonocardiales and Nitrosococcales, with lower abundances of Nitrospirales and 

Rhizobiales (Table 4.9 and Figure 4.14), CO2 fixation is likely the most important metabolic 

function contributing to the observed negative bulk δ13CSAB values.  Specifically, the relative 

abundances of Pseudonocardiaceae, Nitrosococcaceae, Nitrospiraceae, and Nitrosomonadaceae 

were collectively 25‒59% of all the taxa in the SABs, which compares well with the minimum 

proportions needed to explain δ13CSAB values derived from DIC and or cave air CO2, being between 

40‒96% or 31‒71%, respectively (Figure 5.1). When considering the summed relative abundances 

of putative methylotrophs, including the Methyloligellaceae and Methylomirabila, unclassified 

members of the family Rhizobiales, which include methanotrophs, and members of the AOB 

families Nitrosococcaceae and Nitrosomonadaceae capable of mixotrophic growth on CH4, the 

proportion of putative methanotrophs is 2.2‒22% of the overall SAB communities (Figure 5.2). 

However, the estimated proportion of CH4-carbon needed to explain δ13CSAB values ranged from 

32‒66% (Figure 5.2).  

Collectively, these estimates provide a starting point to consider the role of autotrophy to 

cave SABs. The assumptions necessary to make the two end-member mixing calculations are 

likely unrealistic, as it is probably more realistic to consider that there are multiple sources of 

carbon being used by the SAB microbes over a long period of time. A multi-member mixing model 

may be more accurate to address these complexities. Similarly, recycling of carbon by 
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heterotrophs, and potential incorporation of localized, isotopically lower CO2 from respiration, 

which is known to occur within phototrophic biofilm communities (Staal et al., 2007), could also 

be considered through modeling. Moreover, it is possible that not all the metabolisms are known 

well enough for many of the bacterial groups within the SABs, and there is the potential for 

chemolithoautotrophic contributions from Archaea, which were not investigated in this study but 

could add to the relative proportions of different autotrophs in the SABs (e.g., Figure 5.1). There 

is also no knowledge of SAB growth or microbial metabolic rates, succession patterns, live-dead 

proportions, or SAB ages. These aspects should be addressed with additional research and 

potentially different experimental methods that could assess metabolic activity using RNA-based 

approaches or to quantify abundances using quantitative methods, such as quantitative PCR of 

specific metabolic gene linked to specific taxonomic groups.   
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Site ID δ13C 

biofilm  

(‰) 

δ13C 

DIC  

(‰) 

δ13C 

CO2  

(‰) 

δ13C 

DOC  

(‰) 

Autotroph 

biomass 

max (‰) 

Autotroph 

biomass 

min (‰) 

Proportion 

autotroph 

carbon 

(~DIC) 

Proportion 

autotroph 

carbon 

(~CO2) 

Proportion 

methanotroph 

carbon 

KN14 1 -42.45 -14.53 -14.0 -22.50 -34.53 -49.53 0.74 -1.0 0.75-1.0 0.56 
KN14 2 -40.56 -14.53 -14.0 -22.50 -34.53 -49.53 0.67 - 1.0 0.68-1.0 0.51 
KN14 3 -41.83 -14.53 -14.0 -22.50 -34.53 -49.53 0.71 - 1.0 0.73-1.0 0.54 
KN14 4 -38.30 -14.53 -14.0 -22.50 -34.53 -49.53 0.58 - 1.0 0.60-1.0 0.44 
KN14 5 -42.65 -11.26 -14.0 -20.75 -31.26 -46.26 0.86 - 1.0 0.78-1.0 0.59 
KN14 6 -35.31 -11.26 -14.0 -20.75 -31.26 -46.26 0.57 - 1.0 0.52-1.0 0.39 
RN5 1 -44.89 -15.06 -19.4 -24.87 -35.06 -50.06 0.79 - 1.0 0.68-1.0 0.60 
RN5 2 -38.07 -12.59 -19.4 -24.92 -32.59 -47.59 0.58 - 1.0 0.45-0.91 0.40 
RN5 3 -44.85 -12.59 -19.4 -24.92 -32.59 -47.59 0.88 - 1.0 0.68-1.0 0.60 
RN5 4 -46.70 -12.59 -19.4 -24.92 -32.59 -47.59 0.96 - 1.0 0.74-1.0 0.66 
RN5 5 -42.68 -12.59 -19.4 -24.92 -32.59 -47.59 0.78 - 1.0 0.60-1.0 0.54 
RN5 6 -36.10 -13.40 -19.4 -25.66 -33.40 -48.40 0.46 - 1.0 0.36-0.76 0.32 

Table 5.1: Estimated proportions of carbon derived from CO2 or CH4 based on two-member 

mixing models between putative chemolithoautotrophic or methanotrophic biomass compared 

with heterotrophic biomass. Upper and lower limits are based on uncertainties of biomass δ13C 

values found in the literature. For example, uncertainty in autotrophic biomass δ13C values are 

based on variability in Rubisco fractionation factors starting from CO2 to produced biomass, 

whereas the upper and lower limits of CH4-derived carbon estimates are based on literature 

information about fractionation factors for methanotrophic metabolism and biomass 

production. 
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Figure 5.1: Summed relative abundances of putative obligate chemolithoautotrophs at the 

family level, including Nitrosococcaceae, Nitromonadaceae, and Nitrospiraceae, are shown 

as orange bars. Relative abundances of obligate chemolithoautotrophic families summed 

with Pseudonocardiaceae, a potential CO2-fixer, are shown in yellow. Black bars represent 

the calculated minimum proportion of DIC-derived carbon needed to explain the observed 

δ13CSAB values for each SAB and grey bars show this proportion based on the δ13C of cave-

air CO2 (See Table 5.1). 

 

 

 

Figure 5.2: Summed relative abundance of putative methanotrophs at the family level, 

Methyloligellaceae, Methylomirabilaceae, and Methylacidiphilaceae, are shown as blue 

bars. The total abundance of these groups including relative abundance of the AOB 

Nitrosococcaceae, Nitrosomonadaceae, and unclassified members of Rhizobiales which has 

the potential to oxidize or co-oxidize CH4, is shown in green. Black bars represent the 

calculated proportion of CH4-derived carbon needed to explain the observed δ13CSAB values 

for each SAB (See Table 5.1). 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

 Cave SAB δ13C values in two East Tennessee carbonate caves were low, between -35.3 

and -46.7‰, with eight out of twelve SABs having δ13C values lower than -40‰. Because 

heterotrophic consumption of organic matter does not significantly fractionate carbon isotope 

compositions, cave SABs dominated by heterotrophic metabolism of organic carbon would be 

expected to display bulk stable isotope values in the same range as measured δ13CDOC. However, 

as shown by consistently lower values across SABs within caves and between two caves, cave 

SAB δ13C values could not be explained solely by consumption of organic matter. The results of 

δ13C analysis of cave SABs instead strongly indicate active microbial incorporation of isotopically 

light carbon, such as derived from CO2 or CH4 via chemolithoautotrophy. Although previous cave 

SAB research has shown the potential for CO2 fixation by SABs (e.g., Ortiz et al., 2014; 

Wiseschart et al., 2019), the results of this study provide evidence for active incorporation of 

chemolithoautotrophically-fixed carbon into SAB biomass and may indicate a reliance on 

chemolithoautotrophic carbon fixation to supplement limited carbon resources within the cave 

ecosystem.  

 Partially supporting this conclusion, microbial community composition analysis based on 

relative abundances of 16S rRNA sequences from specific taxonomic groups also revealed an 

abundance of putative, metabolically flexible, potential CO2-fixing group Pseudonocardiaceae and 

obligate, chemolithoautotrophic nitrifying bacteria (Nitrosococcaceae, Nitrosomonadaceae, and 

Nitrospiraceae). In addition, microbial communities were strongly influenced by moisture, with 

Pseudonocardiaceae being most abundant in areas with lower moisture content. Although no direct 

correlation was identified between Pseudomonadaceae relative abundances and δ13CSAB values, 

the putative function could partially explain the low δ13CSAB values in some SABs. Preliminary 

measurement of bulk δ15NSAB values also indicated the potential active involvement of 

chemolithoautotrophic nitrifiers, such as members of the family Nitrosococcaceae, and potentially 

N2-fixers, such as members of the family Beijerinckiaceae, in the nitrogen cycling of cave SABs. 

The strong influence of moisture on SAB microbial community composition supported the 

hypothesis that environmental conditions drive differences in SAB microbial community 

compositions within caves, but additional environmental factors driving these differences are 
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possible. Moreover, if Pseudonocardiaceae are involved in CO2 fixation, then their higher relative 

abundances in drier areas of the caves could also support the hypothesis that nutrient limitation in 

areas with limited DOC input, for example from percolating meteoric water, would select for 

chemolithoautotrophic microbial groups. However, members of this group are known to form 

spores that are resistant to desiccation (Franco & Labeda, 2014), and are found in abundance in 

desert soils (Lynch et al., 2014), possibly indicating a general resilience in drier conditions. 

Because the microbial community composition of SABs in the caves was consistent with 

results from earlier cave SAB studies in lava tubes and carbonate caves, at least among the most 

dominant taxa, it is likely that similar SAB bulk δ13C values and metabolic functions, particularly 

related to chemolithoautotrophy, would exist in other locations. Future directions to study SABs 

from caves using molecular methods should include (i) comparison of SAB microbial community 

composition via 16S rRNA sequences between this study and others to determine the phylogenetic 

relatedness of top taxa between locations, as well as the overall similarity between community 

structure and composition between these SABs, and (ii) metagenomic analysis of cave SABs to 

determine the abundance of genes associated with CO2 fixation and CH4 oxidation pathways 

compared to carbon isotope composition and microbial community structure. In addition, although 

16S rRNA microbial community composition of cave SABs have been well-characterized, 

application of methods to investigate active SAB metabolic function are needed, such as the 

measurement of bulk carbon and nitrogen isotope analysis of SABs from more caves in East 

Tennessee and elsewhere, and incubation experiments showing (i) CO2 and CH4 consumption and 

production rates, (ii) δ13C of CO2 and CH4 resulting from isotope fractionation between source 

carbon and biomass, and (iii) identification of CO2- and CH4-fixers using DNA- or RNA-based 

isotope probing experiments. Finally, the relative abundances and roles of archaea and fungi in 

cave SABs may provide vital information about carbon fixation, CH4 cycling, and heterotrophic 

carbon (re)cycling in the subaerial cave biofilms and should also be investigated.   
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VITA 

 

 Vickie Frazier was born in Florida and grew up sorting through seaweed on the beach to 

find seahorses and brittle stars and swimming in Florida’s springs. As the daughter of two teachers, 

she had the privilege of being enrolled in both of their classes at some point and having to call her 

father “Mr. Frazier.” Driven by the desire to not be a teacher, as well as an interest in being a 

forensic pathologist in high school, she pursued a bachelor’s degree in, for some reason, 

Microbiology at the University of South Florida. That choice turned out to be an amazing fit. 

Microbiology course requirements also made her realize an unexpected love for organic chemistry 

and she took a job tutoring organic chemistry students, already fulfilling her family legacy. Since 

she never had the desire to attend medical school, she fell into research at an environmental 

microbiology lab at USF that studied biofilms growing in the submerged Swiss cheese that is the 

Florida carbonate platform. Although she had thought she loved microbiology before, the 

realizations that microbes were more than just pathogens, and that biofilms grew on more 

interesting things than catheters seemed to perfectly unite Vickie’s love of puzzles and her 

fascination with nature. Through this lab, she became interested in geology, environmental 

microbiology, and scuba diving, and decided to try to pursue all those things at once. Her newfound 

interest in geology and caves brought her to Tennessee, where she has had the opportunity to learn 

geology as well as continue to build on her background in microbiology. She has now written this 

thesis and gotten certified as a cave diver, but it’s the middle of a pandemic so who knows what’s 

next.    
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