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ABSTRACT 

Broccoli (Brassica oleracea L. var. italica) is a cool-weather vegetable that is grown for its 

edible flowering heads and stalks. Broccoli inflorescences are immature plant organs with high 

respiration rates, resulting in a rapid loss of quality after harvest. The effects of cooling and 

storage methods on postharvest broccoli quality were evaluated based on metabolite contents of 

broccoli samples stored for 0, 7, 14, 21, 28, and 35 days. Sugar and organic acid contents were 

measured for broccoli harvested Fall 2018. Contents were compared for two cultivars 

(‘Diplomat’ and ‘Arcadia’) and two temperature treatments (not precooled and stored at 6 

[superscript zero] ⁰C, and precooled with an ice slurry and stored at 0 ⁰C in ice). Glucosinolate, 

volatile, carotenoid, and chlorophyll contents were measured for broccoli harvested Summer 

2019. Contents were compared for two cultivars (‘BH053’ and ‘Emerald Crown’) and two 

temperature treatments (precooled with top icing and stored at 7 ⁰C, and precooled with an ice 

slurry and stored at 0 ⁰C in ice). Cultivar, storage temperature, and storage time significantly 

affected metabolite contents in broccoli. Sucrose content was significantly greater for 

‘Diplomat,’ while organic acid content was greater for ‘Arcadia.’ Carotenoid, and chlorophyll 

contents were significantly greater for ‘BH053,’ while glucosinolate and dimethyl disulfide 

content was significantly greater for ‘Emerald Crown.’ Broccoli stored at 7 ⁰C had significantly 

greater dimethyl disulfide contents while broccoli stored at 0 ⁰C had significantly greater sucrose 

and glucosinolate contents. Sugars, organic acids, carotenoids, and chlorophyll significantly 

decreased within 21 days during storage, while glucosinolates were unaffected by storage time. 

However, the sulfur-containing volatiles increased from 21 to 35 days. These results indicate that 

the postharvest quality of broccoli was significantly greater for ‘Diplomat’ than for ‘Arcadia,’ 

and greater for ‘BH053’ than for ‘Emerald Crown.’ In addition, these results suggest that storage 



iii 

 

at lower temperatures helps to maintain postharvest quality of broccoli by decreasing the loss of 

nutritionally important glucosinolates and sugars, while preventing the production of volatiles 

responsible for off-odors. 
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INTRODUCTION 

 Broccoli (Brassica oleracea L. var. Italica) is a cool-season cabbage species belonging to the 

mustard family (Brassicaceae), characterized by its green inflorescences and stalks (King and 

Morris, 1994). Cultivation of Brassica plants is thought to have originated near the eastern 

Mediterranean area, and broccoli was domesticated in southern Italy (Buck, 1956). Today, 

broccoli is a popular vegetable consumed worldwide due to its vitamin, mineral and 

phytonutrient contents.  

 Temperature and duration of storage are key factors in determining the storage life of 

broccoli (Hackert, 1987; Pramanik et al., 2006). The loss of cellular energy reserves through 

respiration causes a loss in the nutritional quality, flavor, and salable weight of produce (Hansen 

et al., 1992; King et al., 1994). Lowering the temperature during storage increases the 

postharvest life of fruits and vegetables by lowering respiration rates (Batal et al., 1982; Kader et 

al., 2003). Because broccoli has a higher rate of respiration than most vegetables, it is crucial to 

maintain cool temperatures throughout the entire postharvest handling and shipping process 

(Forney et al., 199).  

 California is responsible for over 90% of the total broccoli production in the nation, followed 

by Arizona (5%) (USDA Economic Research Service, 2011). Consequently, most of the fresh 

broccoli sold in the Eastern U.S. has been processed and shipped thousands of miles across the 

country before reaching supermarkets. Due to its high respiration rate, broccoli has a shelf life of 

2-3 weeks, leaving little time between arrival at the supermarket and consumption before losing 

consumer acceptability. Establishing a locally sourced broccoli industry on the East Coast of the 

United States will reduce the time between harvesting and consumer availability (Atallah et al., 
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2014; Fan et al., 2014). Therefore, localization of the broccoli industry along the East Coast 

would help reduce the time between harvest and consumption for East Coast consumers, 

resulting in fresher, higher-quality broccoli (Wheeler et al., 2018). In addition, localization of the 

broccoli market will reduce the cost of shipping, as well as, reduce the carbon footprint. It’s 

estimated that increasing the Eastern market acreage by 30%, would decrease the usage of diesel 

fuel by 63,000 gallons per year, reducing CO2 emissions by 1.4 million pounds per year (Atallah 

et al., 2014; Fan et al., 2014). 

 During postharvest senescence, produce quality decreases over time due to the breakdown of 

cellular components, resulting in the loss of nutritionally important compounds (King et al., 

1994). The quality of fruits and vegetables can be determined analytically by measuring the 

concentration of sugar, organic acid, glucosinolate, volatile, carotenoid, and chlorophyll 

contents. Total and individual concentrations of these compounds differ among cultivars, as well 

as change over time due to postharvest senescence, and the sensory perception of quality is 

affected as a result (Bruckner et al., 2005; Farnham and Kopsell, 2009; Pellegrino et al., 2019).  

Therefore, measuring the effect of different  cooling/storage methods on these biochemical 

compounds for different cultivars will help to determine the proper shipping and storage 

conditions for maintaining the postharvest quality of broccoli that will be grown and distributed 

along the East Coast. 
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ORGANIC ACIDS, AND THE SUGAR/ACID RATIO IN BROCCOLI 
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Abstract 

Broccoli (Brassica oleracea L. var. italica) is a cool-weather vegetable that is grown for its 

edible flowering heads and stalks. Broccoli inflorescences are immature plant organs with high 

respiration rates, resulting in a rapid loss of quality after harvest. The effects of cooling and 

storage methods on the postharvest quality of broccoli were evaluated based on primary 

metabolite contents. Changes in sugar and organic acid content were investigated for two 

cultivars (‘Diplomat’ and ‘Arcadia’), two temperature treatments (not precooled and stored at 6 

⁰C, and precooled with an ice slurry and stored at 0 ⁰C in ice), and six different days in storage 

(0, 7, 14, 21, 28, and 35 days). Cultivar significantly affected sucrose content, malic and citric 

acid content, and the sugar/acid ratio. Sucrose content was significantly greater for ‘Diplomat’ 

than for ‘Arcadia.’ Citric acid, malic acid, total organic acid contents, and the sugar/acid ratio 

were significantly greater for ‘Arcadia’ than for ‘Diplomat.’ Storage time significantly affected 

all sugar contents (sucrose, glucose, and fructose), all organic acid contents (malic and citric), 

and the sugar/acid ratio. Average total sugar contents significantly decreased at 7 and 28 d in 
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storage but did not significantly change from 7 to 21 d or from 28 to 35 d. Organic acid contents 

significantly decreased at 7 and 14 d, then remained stable from 14 to 35 d. The sugar/organic 

acid ratio significantly decreased at 7 d, significantly increased at 21 d, and significantly 

decreased at 28 d but did not significantly change from 7 to 14 d or from 28 to 35 d. Interactions 

of cultivar and storage time significantly affected fructose, citric acid, and total organic acid 

contents. Fructose content in ‘Diplomat’ significantly decreased at 7 d and significantly 

increased at 21 d. After that, fructose content did not significantly change from 21 to 35 d. For 

‘Arcadia,’ fructose content decreased at 7 d and significantly increased at 35 d but did not 

significantly change from 7 to 28 d. Citric acid and total organic acid contents in ‘Diplomat’ did 

not significantly change during storage, while citric and total organic acid contents for ‘Arcadia’ 

significantly decreased at 7 and 14 d but did not significantly change from 14 to 35 d. 

Interactions of cultivar and storage temperature had a significant effect on the sugar/acid ratio. 

For ‘Diplomat,’ broccoli stored at 6 ⁰C had a significantly greater sugar/acid ratio than broccoli 

stored at 0 ⁰C in ice, while storage temperature did not significantly affect the sugar/acid ratio for 

‘Arcadia.’ The sugar/acid ratio in broccoli stored at either temperature was significantly greater 

for ‘Diplomat’ than for ‘Arcadia.’ Results from this study show that cultivar and storage time 

were the main determinants of sugar content, organic acid content, and the sugar/acid ratio. 

Significantly greater sucrose levels indicate reduced metabolic activity for ‘Diplomat’ compared 

to ‘Arcadia,’ and a significantly higher sugar/acid ratio indicates potentially increased sweetness 

and consumer acceptance for ‘Diplomat’ broccoli compared to ‘Arcadia.’ Greater sucrose 

content accompanied by a higher sugar/acid ratio suggests broccoli quality is greater for 

‘Diplomat’ than for ‘Arcadia.’ Results from this study also confirm that lower storage 
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temperatures help maintain postharvest quality of broccoli by reducing the rapid depletion of 

sucrose through metabolic activities, resulting in decreased deterioration rates.  

Introduction 

 The United States (U.S.) broccoli industry is currently centered on West Coast production. 

California is responsible for over 90% over the total broccoli production in the nation, followed 

by Arizona (5%) (USDA Economic Research Service, 2011). Consequently, most of the fresh 

broccoli sold in the Eastern U.S. has been processed and shipped thousands of miles across the 

country before reaching supermarkets. Establishing a locally sourced broccoli industry on the 

East Coast will reduce the time between harvest and consumer availability (Atallah et al., 2014; 

Wheeler et. al., 2018). Broccoli is known to have a high respiration rate and these changes in the 

time between harvesting and consumer availability have potential consequences on postharvest 

physiology.  Postharvest senescence of broccoli is accompanied by the degradation of 

metabolites through respiration (Hasperué et al., 2015; King and Morris., 1994), resulting in a 

loss of nutritional and sensory quality (Bruckner et al., 2005; Hansen et al., 1997; Pellegrino et 

al., 2019).  

 Sugars are primary metabolites that serve as the main energy source for respiration, and act 

to serve as precursors for lipid, protein, and polysaccharide biosynthesis (Duffus and Duffus, 

1984). Because broccoli inflorescences are immature organs with high rates of respiration, they 

require large amounts of sugars to maintain postharvest quality (Lemoine et al., 2008). Cultivar 

has an impact on the expression of genes that regulate sugar synthesis and consumption as 

metabolic substrates (Rosa et al., 2001). These metabolic pathways can be altered by storage 

conditions, subsequently affecting the rate of postharvest senescence (Pramanik et al., 2006). As 
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sugars serve as the primary energy source for metabolism, sugar levels are closely associated 

with the physiological and biochemical properties of vegetables (Tian et al., 2016).  

 Organic acids are important metabolites required for the maintenance of postharvest 

vegetable quality (Ferreres et al., 2007; Vaughan and Gessler, 1997). Organic acids are thought 

to have beneficial health effects due to their antioxidant activity (Ayaz et al., 2006), and are often 

used as antioxidants or acidulants in food industries (Cunha et al., 2002; Shui and Leong, 2002). 

Organic acids are also known to affect the organoleptic properties in many fruits and vegetables 

(Vale et al., 2015; Vaughan and Geissler, 1997). Species, cultivar, tissue type, and storage 

conditions have all been shown to influence organic acid contents (King and Morris, 1994; 

Lopez-Bucio et al., 2000; Souse et al., 2009; Vale et al., 2015) The main organic acids in 

broccoli are citric and malic acid, which are mainly produced by the tricarboxylic acid (TCA) 

cycle in mitochondria of plant cells (Murcia et al., 2000). Storage temperature and time influence 

the metabolic rate of plants, consequently affecting the rate of organic acid formation and 

consumption (Carrari and Fernie, 2006). As primary metabolites involved in the synthesis of 

cellular tissues, postharvest quality is closely associated with organic acid content in horticultural 

crops (Schouten et al., 2016; Zapata et al., 2013).  

 Flavor is one of the main factors affecting quality and consumer acceptability of fruits and 

vegetables. Sweetness and bitterness are key attributes of broccoli flavor (Pellegrino et al., 

2019). Although bitterness is often associated with glucosinolate contents in broccoli (Bhandari 

et al., 2014), the details of this association are still unclear (Bell et al., 2017). The sugar/acid 

ratio is commonly used as an index of quality and acceptability of produce (Paull, 1999), and an 

increased sugar/acid ratio is known to contribute to the bitterness in other Brassica species 
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(Fukuda et al., 2016). Therefore, the sugar/acid ratio in broccoli may also be a contributing factor 

in determining flavor quality and acceptability. 

  For this study, changes in sugar contents, organic acid contents, and the sugar/acid ratio in 

broccoli was investigated for two cultivars (‘Diplomat’ and ‘Arcadia’), two temperature 

treatments (not precooled and stored at 6 ⁰C, and ice slurry cooled and stored at 0 ⁰C in ice), and 

six different days in storage (0, 7, 14, 21, 28, and 35 days). This will help  determine the proper 

shipping and storage conditions for maintaining the postharvest quality of broccoli that will be 

distributed along the east coast. 

Materials and Methods 

 Plant materials and storage. 

 Broccoli was supplied by a small-scale producer located in East Tennessee. Broccoli was 

grown according to recommended management practices for the southeastern U.S. (Kemble et 

al., 2017). Broccoli was harvested when the majority of the heads had reached commercial 

maturity. The average head diameter was 9.2 cm ± 1.2. Two cultivars of broccoli, ‘Diplomat’ 

and ‘Arcadia’ were harvested on 13 Nov. 2018. The average head diameter was 9.3 cm ± 1.2 for 

‘Diplomat’ and 9.1 cm ± 1.3 for ‘Arcadia.’ Each cultivar was separated into two treatment 

groups immediately after harvest. One treatment group was placed into waxed corrugated boxes 

and not precooled, while the other treatment group was cooled by submerging in an ice slurry. 

Broccoli was then transported to The University of Tennessee Institute of Agriculture for cold 

room storage. The internal temperature for non-iced broccoli was 6 ⁰C ± 2 when it reached the 

storage cooler (Fig. 1). Broccoli from this treatment group was then placed in cold storage and 

kept in waxed corrugated boxes without ice. The cold room temperature was maintained at 6 ⁰C 

± 0.4 and the internal broccoli temperature was maintained at 6 ⁰C ± 0.5. For the other treatment 
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group, broccoli that was placed in an ice slurry was cooled to 0 ⁰C ± 0.4 at 1 h after the slurry 

was applied. Broccoli from this treatment group was then placed in cold storage and kept in 

coolers filled with ice. The cold room was temperature was maintained at 4⁰C ± 0.1 and the 

internal broccoli temperature was maintained at 0 ⁰C ± 0.4 (Fig. 1). Internal broccoli 

temperatures were recorded every 30 min with Watch Dog® data loggers  (Spectrum® 

Technologies, Inc., Aurora, IL, USA).  

 Postharvest analysis. 

 Broccoli was removed from storage at 0, 7, 14, 21, 28, and 35 d. Three replications, 

consisting of two broccoli heads per replication, were subsampled for each cultivar and treatment 

combination. For each replication, 30 ± 1 g fresh tissue was placed into plastic bags and stored in 

a -80 ⁰C freezer overnight, and then freeze-dried the following day. Freeze-dried tissue was 

ground to a fine powder, using a mortar and pestle in liquid nitrogen, for extraction and analysis. 

 Sugars, extractions and analysis. 

 Sugars were extracted from broccoli tissues using a modified version of the method by 

Kerepesi et al. (1996). A 0.1 g ± 0.01 subsample of homogenized tissue was weighed into a 16 x 

100 mL glass centrifuge tube and 2.5 mL of water purified by reverse osmosis (RO water) heated 

to 80 ⁰C was added to each sample. Centrifuge tubes were vortexed, shaken at 60 rpm for 15 

min, and centrifuged at 4400 gn for 20 min. The supernatant was then transferred into a new 

centrifuge tube. This process was repeated one more time for the remaining precipitate. The 

liquid supernatant was then filtered twice, once through a 0.45 µm Nylon filter and once through 

a 0.20 µm Nylon filter, into a 12 x 13 mm clear crimp top high performance liquid 

chromatography (HPLC) vial.  
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 Sugars were analyzed using an Agilent 1200 series HPLC unit with an evaporative light 

scattering detector (Agilent Technologies, Santa Clara, CA). The column temperature was set at 

80⁰Cfor a 300 x 7.7 mm i.d. 8 µm analytical scale Hi-Plex Ca column equipped with a PL Hi-

Plex Ca 7.7 x 50 mm i.d. guard cartridge (Agilent Technologies, Santa Clara, CA). The flow rate 

was set at 0.600 mL min-1, and 5.0 µL of each sample were injected for a total run time of 25 

min per sample. Separations were achieved isocratically using a mobile phase of 100% water. 

Sucrose, glucose, and fructose peaks were assigned based on external standards. Sugars were 

expressed on a dry mass basis in mg·g-1. Data were collected, recorded, and integrated using 

ChemStation Software (Agilent Technologies, Palo Alto, CA). 

 Sugars, extractions and analysis. 

 Organic acids were extracted from broccoli tissues using a modified version of the method by 

Barickman et al. (2016). A 0.1 g ± 0.01 subsample of homogenized tissue was weighed into a 15 

mL plastic centrifuge tube and 2.5 mL of 80% ethanol/20% RO water was added. Samples were 

then placed in an ultrasonic bath for 5 min, then centrifuged at 1090 gn for 5 min. The 

supernatant was then transferred to a 16 x 100 mL glass centrifuge tube. This process was 

repeated one more time for the remaining precipitate. The supernatant was then evaporated to 

dryness using a nitrogen stream. Dried samples were dissolved in 5.0 mL of RO water. The 

liquid was then filtered twice, once through a 0.45 µm Nylon filter and once through a 0.20 µm 

Nylon filter, into a 12 x 13 mm clear crimp top HPLC vial. 

 Organic acids were analyzed using a 1200 series HPLC unit with a refractive index detector 

(Agilent Technologies, Santa Clara, CA). The column temperature was set at 50 ⁰C for a 300 x 

7.7 mm i.d., 8 µm analytical scale Hi-Plex Ca column, equipped with a Zorbax NH2 4.6 x 12.5 

mm i.d. guard cartridge (Agilent Technologies, Santa Clara, CA). The flow rate was set at 0.600 
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mL·min-1, and 10 µL of each sample were injected for a total run time of 20 min per sample. 

Separations were achieved isocratically using a mobile phase of 100% 0.05 M H2SO4. Malic acid 

and citric acid peaks were assigned based on external standards. Organic acids were expressed 

on a dry mass basis in mg·g-1. Data were collected, recorded, and integrated using ChemStation 

Software (Agilent Technologies, Palo Alto, CA). 

 Statistical Analysis. 

 SAS statistical software (9.4 for Windows; SAS Institute, Cary, NC) was used for data 

analysis. Cultivar, storage temperature, storage time, and their interactions were treated as fixed 

factors, while replication was considered the random factor. Analysis of variance (ANOVA) tests 

were performed using the GLIMMIX procedure, and means were compared by the least 

significant difference (LSD) test (α = 0.05). ANOVA results are presented for sugars (Table 1), 

organic acids (Table 2), and the Sugar/acid Ratio (Table 3).  

Results 

 Sugars, effects of cultivar. 

 Cultivar had a significant impact on sucrose (F = 7.84, df = 1, 46, and p  ≤ 0.01) content 

alone (Fig. 2). ‘Diplomat’ had significantly higher average total sucrose content compared to 

‘Arcadia.’  

 Sugars, effects of cooling/storage method. 

 Storage temperature significantly affected sucrose (F = 6.79, df = 1, 46, and p ≤  0.05) 

content alone (Fig. 3). Broccoli that was precooled with an ice slurry and stored at 0 ⁰C in ice had 

significantly higher sucrose content than broccoli that was not precooled and stored at 6 ⁰C. 

 Storage time significantly affected all sugars measured (Fig. 4). Sucrose (F = 43.67, df = 5, 

46, and p ≤ 0.0001), glucose (F = 2.22, df = 5, 46, and p ≤ 0.0001), fructose (F = 16.07, df = 5, 
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46, and p ≤ 0.0001), and total sugar (F = 23.26, df = 5, 46, p ≤ 0.0001) contents significantly 

decreased during storage for 35 d. Sucrose content significantly decreased at 7 and 14 d in 

storage, then increased at 21 d, but not significantly. After that, sucrose content significantly 

decreased at 28 d, then increased at 35 d, but not significantly. Glucose content significantly 

decreased at 7 d in storage, then decreased at 14 d and increased at 21 d, but not significantly. 

After that, glucose content significantly decreased at 28 d, then significantly increased at 35 d. 

Fructose content significantly decreased at 7 d in storage, then decreased at 14 d, but not 

significantly. Fructose content significantly increased at 21 d, then decreased at 28 d, but not 

significantly, then remained stable from 28 to 35 d in storage. Total sugar contents significantly 

decreased at 7 d in storage and remained stable from 7 to 14 d, then increased at 21 d, but not 

significantly. After that, total sugar contents significantly decreased at 28 d, then increased at 35 

d, but not significantly.  

 Sugars, interaction of cultivar and storage method. 

 Sugar contents were not significantly affected by the interaction of cultivar and storage 

temperature (Table 4). The interaction between cultivar and storage time significantly affected 

fructose (F = 2.43, df = 5, 46, and p ≤ 0.05) content alone (Table 5). For ‘Diplomat,’ fructose 

content significantly decreased at 7 d in storage and remained stable from 7 to 14 d, while 

fructose content for ‘Arcadia’ significantly decreased at 7 d, then decreased at 14 d, but not 

significantly. After that, fructose content for ‘Diplomat’ significantly increased at 21 d, then 

decreased at 28 and 35 d, but not significantly. In contrast, fructose content for ‘Arcadia’ 

remained stable from 14 to 21 d, then decreased at 28 d, but not significantly. After that, fructose 

content for ‘Arcadia’ significantly increased at 35 d in storage. Sugar contents were not 
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significantly affected by the interaction of storage temperature and storage time (Table 6) or by 

the interaction of cultivar, storage temperature, and storage time (Table 7).  

 Organic acids, effects of cultivar. 

 Cultivar had a significant impact on all organic acid contents measured (Fig. 5). Citric acid 

(F = 33.46, df = 1, 46, and p ≤ 0.0001), malic acid (F = 34.09, df  = 1, 46, and p ≤ 0.0001), and 

total organic acid (F = 34.85, df = 1, 46, and p ≤ 0.0001) contents were significantly greater for 

‘Arcadia’ than for ‘Diplomat.’ 

 Organic acids, effects of cooling/storage method. 

 Storage temperature did not significantly affect any of the organic acids measured (Fig. 6). 

There were no significant differences in organic acid contents for broccoli that was precooled 

with an ice slurry and stored at 0 ⁰C in ice and broccoli that was not precooled and stored at 6 ⁰C. 

 Storage time had a significant impact on all organic acids measured (Fig. 7). Citric acid (F = 

17.67, df = 5, 46, and p ≤ 0.0001), malic acid (F = 11.19, df = 5, 46, and p ≤ 0.0001), and total 

organic acid (F = 14.62, df = 5, 46, and p ≤ 0.0001) contents significantly decreased during 

storage for 35 d. Citric, malic, and total organic acid contents significantly decreased at 7 and 14 

d in storage, then remained stable from 14 – 35 d.  

 Organic acids, interaction of cultivar and storage method. 

 Organic acid contents were not significantly affected by the interaction of cultivar and 

storage temperature (Table 8). The interaction between cultivar and storage time significantly 

affected both citric acid (F = 3.70, df = 5, 46, and p ≤ 0.01) and total organic acid (F = 2.90, df = 

5, 46, and p ≤ 0.05) contents in broccoli (Table 9). For ‘Diplomat,’ both citric and total organic 

acid contents significantly decreased during storage, but not significantly. In contrast, both citric 

and total organic acid contents for ‘Arcadia’ significantly decreased at 7 and 14 d in storage, then 
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continued to decrease from 21 to 35 d in storage, but not significantly. Citric and total organic 

acid contents were significantly greater for ‘Arcadia’ than for ‘Diplomat’ throughout the first 21 

d in storage. After that, there was no significant difference between organic acid contents for 

‘Diplomat’ and ‘Arcadia.’ Organic acid contents were not significantly affected by the 

interaction of storage temperature and storage time (Table 10) or by the interaction of cultivar, 

storage temperature, and storage time (Table 11).  

 Sugar/acid ratio, effects of cultivar. 

 Cultivar had a significant impact on the sugar/acid ratio (F = 30.77, df = 1, 46, and p ≤ 

0.0001) in broccoli (Fig. 8). The average total sugar/organic ratio was significantly greater for 

‘Diplomat’ than for ‘Arcadia.’  

 Sugar/acid ratio, effects of cooling/storage method. 

 Storage temperature did not significantly affect the sugar/acid ratio (Fig. 9). There was no 

significant difference in the sugar/acid ratio for broccoli that was precooled with an ice slurry 

and stored at 0 ⁰C in ice and broccoli that was not precooled and stored at 6 ⁰C. 

 Storage time significantly affected the sugar/ acid ratio (F = 4.54, df = 5, 46, and p ≤ 0.01) in 

broccoli (Fig. 10). The sugar/ acid ratio significantly decreased at 7 d in storage, then increased 

at 14 d, but not significantly. After that, the sugar/organic acid ratio significantly increased at 21 

d, then significantly decreased at 28 d, then increased at 35 d, but not significantly.  

 Sugar/organic acid ratio, interaction of cultivar and storage method. 

 The interaction between cultivar and storage temperature had a significant impact on the 

sugar/acid ratio (F = 4.20, df = 1, 46, and p ≤ 0.05) in broccoli (Fig. 11). For ‘Diplomat,’ the 

sugar/organic acid ratio was significantly greater for broccoli that was not precooled and stored 

at 6 ⁰C than for broccoli that was precooled with an ice slurry and stored at 0 ⁰C in ice. In 
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contrast, for ‘Arcadia,’ storage temperature had no effect on the sugar/organic acid ratio. The 

sugar/organic acid ratio was significantly greater for ‘Diplomat’ stored at and 0 ⁰C than for 

‘Arcadia’ stored at either temperature. The sugar/acid ratio was not significantly affected by the 

interaction of cultivar and storage time (Table 12), the interaction of storage temperature and 

storage time (Table 13), or the interaction of cultivar, temperature, and storage time (Table 14).  

Discussion 

 Sugars, effects of cultivar. 

 Sugars are primary compounds involved in plant metabolism, serving as an energy source 

and building blocks for compound synthesis (Rosa et al., 2001). They serve as precursors for the 

biosynthesis of lipids, proteins, polysaccharides, and other compounds (Duffus and Duffus, 

1984), and can regulate plant growth by acting as a signal molecule, which alters enzyme activity 

and gene expression (Bhandari and Kwak, 2015a; Cheng et al., 2002). Sugar profiles are 

dependent on many factors, including genotype, cultivar, tissue type, developmental stage, and 

growing season (Bhandari and Kwak, 2015a; Hodges et al., 2006; Hounsome et al., 2008; Nunes, 

2008; VandenLangenberg et al., 2012).  

 Previous studies have found glucose and fructose to be more abundant than sucrose 

(Hasperué et al., 2014; Hasperué et al., 2015; Nishikawa et al., 2005). In this study, glucose was 

found to be the most abundant sugar, followed by fructose and sucrose. Similarly, previous 

studies have found glucose to be the main sugar in ‘Green Belt’ (King and Morris, 1994), 

‘Amagi,’ Baeridom,’ Cheongjae,’ ‘Grace,’ ‘Grandeur,’ ‘JikNok No. 28,’ NokJae,’ ‘NokYeom 

No. 1,’ TS-2319,’ and ‘YuDoRi No. 1’ (Bhandari and Kwak, 2015a) broccoli cultivars. Rosa et 

al. (2001) found that glucose was also the most abundant sugar found in secondary 

inflorescences of ‘Bejo,’ ‘Durango,’ ‘Green Valiant,’ ‘Legend,’ ‘Marathon,’ ‘Shogun,’ ‘SK3,’ 
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and ‘SK4’ cultivars. In contrast, fructose was the most abundant sugar in primary inflorescences 

of  ‘Bejo,’ ‘Claudia,’ ‘Durango,’ ‘Green Valiant,’ ‘Legend,’ ‘Marathon,’ ‘Senshi,’ ‘Shogun,’ 

SK3,’ ‘SK4,’ and ‘Tokyodome’ broccoli cultivars (Jahangir et al., 2008; Rosa et al., 2001), white 

cabbage (Rosa et al., 2001), and kale (Ayaz et al., 2006). Genetic influences may shift the 

metabolic pathway in favor of glucose accumulation (Rosa et al., 2001). Thus, the greater 

glucose content compared to fructose may be due to genetic factors controlling the metabolism 

of glucose in broccoli, which is determined by cultivar.   

 Results from this study show that sucrose content was significantly greater for ‘Diplomat’ 

than for ‘Arcadia.’ Similarly, previous studies have found differences in sucrose contents among 

‘Amagi,’ Baeridom,’ Cheongjae,’ ‘Grace,’ ‘Grandeur,’ ‘JikNok No. 28,’ NokJae,’ ‘NokYeom 

No. 1,’ TS-2319,’ and ‘YuDoRi No. 1’ (Bhandari and Kwak, 2015a), ‘Emperor,’ ‘Marathon,’ 

Shogun’ (Bruckner et al., 2005), and various other broccoli cultivars (Rosa et al., 2001). In 

contrast, Siomos et al. (2004) found that sugar contents were not significantly different among  

‘Marathon’ and ‘Samurai’ broccoli cultivars. Bhandari and Kwak (2015a) also found significant 

differences in glucose, fructose, and total sugar contents among cultivars, and Rosa et al. (2001) 

found a significant difference among broccoli cultivars for fructose and total sugar contents as 

well. In contrast, glucose, fructose, and total sugar contents in this study were not significantly 

influenced by cultivar alone. Sucrose is the main translocated sugar and is either stored or 

metabolized in sinks, and it can be cleaved by either sucrose synthase or invertase activities. 

Sucrose synthase, in the presence of uridine 5’-diphosphate (UDP), converts sucrose to UDP-

glucose and fructose, while sucrose invertase hydrolyzes sucrose, cleaving it into glucose and 

fructose (Rosa et al., 2001). Results from this study support the premise that variation in sucrose 

content is more dependent on cultivar than either glucose or fructose contents in broccoli 
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(Bhandari and Kwak, 2015b). Greater sucrose content in ‘Diplomat’ may be due to the genetic 

control of enzyme activity, leading to increased invertase and/or synthase activities that resulted 

in decreased sucrose content for ‘Arcadia.’ However, Sucrose synthase may also lead to sucrose 

synthesis in some fruits and vegetables (Pramanik et al., 2004). Thus, greater sucrose content in 

‘Diplomat’ may actually be due to greater sucrose synthesis as a result of increased synthase 

activity in broccoli. 

 Although fructose content was not significantly affected by cultivar alone, the interaction 

between cultivar and storage time did have a significant impact on fructose content in this study. 

Fructose content did not significantly change among cultivars during storage from 0 to 14 d. 

However, fructose content was significantly greater at 21 d for ‘Diplomat’ than for ‘Arcadia.’ 

Fructose content continued to decrease from 21 to 35 d for ‘Diplomat,’ but not significantly, 

while fructose levels for ‘Arcadia’ decreased from 21 to 28 d, but not significantly, then 

significantly increased at 35 d. Fructose content in broccoli may be under genetic and/or 

environmental control, so the relative content among cultivars may be due to different hydrolysis 

pathways or changes in the type/activity of hexokinases in broccoli tissues (Rosa et al., 2001). 

Hexokinases have a preferential substrate affinity to fructose in some plant species, and 

fructokinases are known to be substrate-inhibited by fructose accumulation (Quick and Schaffer, 

1996).  Results from this study suggest that the variation in fructose content among cultivars 

during storage may be due to a shift in the metabolic pathways as a result genetic influence. 

 Sugars, effects of cooling/storage method. 

  Broccoli inflorescences are immature organs with high respiration rates, resulting in a high 

requirement of sugars to maintain postharvest quality (King and Morris, 1994). Sugars play a key 

role in the quality and shelf life of broccoli, serving as the main source of energy for many 
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chemical reactions responsible for the synthesis of new compounds and maintaining tissue 

integrity (De Vries, 1975; Hasperué et al., 2016). Many studies have associated the rate 

senescence with sugar content in broccoli (Hasperué et al., 2011; Nishikawa et al., 2005; van 

Doorn, 2004). Sugar losses during storage are due to their consumption as a respiratory substrate, 

as well as their transformation into cell wall material (Pramanik et al., 2006). Because sugar 

serves as an important energy source and is a main substrate for respiration, sugar levels are 

thought to be closely related to the physiological and biochemical properties of vegetables (Tian 

et al., 2016). 

 Sucrose content alone was significantly affected by storage temperature. The average total 

sucrose content was significantly greater for broccoli that was cooled with an ice slurry and 

stored at 0 ⁰C in ice than for broccoli that was not precooled and stored at 6 ⁰C. Similarly, 

previous studies found that broccoli sucrose content decreases at a slower at lower storage 

temperatures (Page et al., 2001; Downs and Somerfield, 1997; Pramanik et al., 2004; Xu et al., 

2016; Pogson et al., 2004; McKenzie et al., 2004). For this study, broccoli sucrose content at 0 

and 7 d in storage was significantly greater for broccoli stored at 0 ⁰C than at 6 ⁰C. When 

harvested, immature broccoli heads suffer from severe stress that leads to the expression of genes 

controlling the onset of senescence. Expression of broccoli senescence genes are activated within 

24 h of harvest (Chen et al., 2008; Coupe et al., 2004; Eason et al., 2005; Hasperué et al., 2016; 

Page et al., 2001). As broccoli heads are harvested while florets are still immature, they require a 

continuous supply energy to support high respiration rates (King and Morris, 1994). Because 

sucrose is one of the main compounds consumed in metabolic reactions, sucrose content in 

broccoli stored at air temperature drops by 50% within 6 hours after harvest (Downs et al., 

1997). Postharvest sugar losses are determined by respiration rate, and increased storage 
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temperature leads to greater respiration rates in broccoli (Tian et al., 2016). Thus, greater sucrose 

content at 0 and 7 d for broccoli stored at 0 ⁰C was most likely a result of decreased metabolic 

activity in response to lower storage temperature compared to 6 ⁰C. It may have also been due to 

rapid cooling to 0 ⁰C within 1 h after harvest, leading to less severe effects from harvesting. 

Sucrose contents for broccoli stored at 0 ⁰C significantly decreased at 7 and 14 d, while sucrose 

content in broccoli stored at 6 ⁰C only significantly decreased at 7 d. Sucrose contents did not 

significantly change after that for either storage temperature. Because sucrose content was 

significantly greater and continued to decrease for a longer period of time for broccoli stored at 0 

⁰C than at 6 ⁰C, this suggests that sucrose content may have been depleted to a non-functional 

level for metabolism (King and Morris,1994) during the first 7 d of storage for broccoli stored at 

6 ⁰C, while sucrose contents were not completely depleted until after 14 d for broccoli stored at 0 

⁰C. Sucrose levels at 0 d were significantly greater for broccoli cooled with an ice slurry and 

stored at 0 ⁰C in ice, indicating that both precooling and storage temperature have a significant 

effect on sucrose content. Thus, precooling with an ice slurry and maintaining a storage 

temperature of 0 ⁰C leads to higher quality broccoli by reducing the metabolic activity, and 

preserving sucrose content.  

 In this study, total sugar contents significantly decreased during storage for 35 d. Similarly, 

previous studies found that total sugar contents decreased in broccoli stored for 3 d at 20 ⁰C 

(King and Morris, 1994), 5 d at 22 ⁰C under continuous low intensity white light (Büchert et al., 

2011), 4 d at 15 ⁰C in control and treated with 1-methylcyclopropene (Xu et al., 2016), 0, 14, or 

21 d at 4 ⁰C (Hasperué et al., 2015), 12 and 16 d at 5 ⁰C (Cefola et al., 2015), 30 d at 5 ⁰C (Tian 

et al., 2016), and  35 or 70 d at 1 ⁰C (Pogson et al., 1997). Previous studies found that sucrose 

content decreased in broccoli stored for 3 d at 20 ⁰C (King and Morris, 1994; McKenzie et al., 
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2004), 5 d at 20 ⁰C after low intensity light treatments (Lemoine et al., 2008), 4 d at 15 ⁰C with 

or without 1-methylcyclopropene treatment (Xu et al., 2016), 7 and 14 d at 1 ⁰C (Pramanik et al., 

2006), 21 d at 4 ⁰C (Hasperué et al., 2015), and 35 or 70 d at 1 ⁰C (Pogson et al., 1997). In this 

study, sucrose content significantly decreased in broccoli stored for 35 d. In contrast, Hasparue et 

al. (2016) observed an increase in sucrose content in broccoli stored for 35 and 42 d at 5 ⁰C. In 

this study both glucose and fructose contents decreased in broccoli stored for 35 d. Similarly, 

glucose and fructose contents decreased in broccoli when stored for 4 d at 20 ⁰C after low 

intensity light treatments (Favre et al., 2018; Lemoine et al., 2008), 5 d at 25 ⁰C under hydrogen 

sulfide fumigation (Li et al., 2014), 5 d at 22 ⁰C under continuous low intensity white light 

(Büchert et al., 2011), 4 d at 15 ⁰C with or without 1-methylcyclopropene treatments (Xu et al., 

2017), 4 d at 20 ⁰C with or without sucrose feeding (Xu et al., 2016), 35 or 42 d at 5 ⁰C 

(Hasperué et al., 2016), 30 d at 5 ⁰C (Tian et al., 2016), 0, 14, or 21 d at 4 ⁰C (Hasperué et al., 

2015), and 35 or 70 d at 1 ⁰C (Pogson et al., 1997). In contrast, some studies reported stable 

glucose and fructose levels in broccoli stored for, 3 d at 20 ⁰C in air or controlled atmosphere 

conditions (McKenzie et al., 2004) and 7 or 14 d at 1 ⁰C (Pramanik et al., 2006). Sucrose 

contents significantly decreased at 7 and 14 d, while glucose and fructose contents only 

significantly decreased at 7 d in storage. This may have been due to increased activity of sucrose 

degrading enzymes, such as invertase or sucrose synthase, acting on sucrose to produce hexose 

(glucose and fructose) (Schouten et al., 2016). Hexose sugars can then be oxidized as a source of 

energy for biosynthetic processes (Li et al., 2017). Results from this study suggest that sucrose 

was consumed in the formation of glucose and fructose during the first 14 d of storage, which led 

to greater sucrose losses than either glucose or fructose during this time. Both sucrose and 

glucose increased at 21 d, but not significantly, while fructose content significantly increased at 
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21 d. Similarly, both sucrose and glucose contents significantly decreased at 28 d, while fructose 

content remained stable from 21 to 28 d. After that, sucrose and fructose contents remained 

stable from 28 to 35 d, while glucose contents significantly increased. Metabolic activity in 

broccoli decreases as the duration of storage at lower temperatures increases (Coupe et al., 

2003). The variation in sugar contents from 21 to 35 d may have been due to the activation or 

inhibition of different genes controlling metabolic activity in broccoli, leading to changes in 

individual sugar compounds at different lengths of time during storage. An increase in fructose 

content at 21 d and increased glucose at 35 d may have a result of cell wall material breakdown, 

increasing the amount of soluble sugars (Li et al., 2017). 

  Organic acids, effects of cultivar. 

 Organic acids play an important role in maintaining the postharvest quality of fruits and 

vegetables (Ferreres et al., 2007; Vaughan and Geissler, 1997) and contribute to a healthy diet 

(Ayaz et al., 2006). They are also used as antioxidants or acidulants in many food industries 

(Cunha et al., 2002; Shui and Leong, 2002) and are important factors for the organoleptic 

properties in produce (Vale et al., 2015; Vaughan and Geissler, 1997). It is known that organic 

acid content contributes to flavor in horticultural crops (Davies et. al., 1981). Increased sourness 

is commonly attributed higher organic acid contents, which often has a negative effect on 

consumer preference (Casals et al., 2011). Organic acid profiles are dependent on many factors, 

including species, cultivar, developmental stage, tissue type, growing conditions, and harvesting 

conditions (Lopez-Bucio et al., 2000; Sousa et al., 2009; Vale et al., 2015). 

 Citric and malic acids are the main organic acids commonly found in many Brassica species 

(Ayaz et al., 2006; Fernandes et al., 2007; Ferreres et al., 2007; Ferreres et al., 2006; Sousa et al., 

2005; Sousa et al., 2009). Broccoli used in this study contained both citric and malic organic 
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acids. Malic acid was the most abundant organic acid in both ‘Diplomat’ and ‘Arcadia’ cultivars. 

Similarly, King and Morris (1994) found that malic acid was the most abundant organic acid in 

‘Green belt’ broccoli. In contrast, previous studies found that citric acid was the most abundant 

in ‘Parthenon’ (Zapata et al., 2013) and ‘Calabrese’ (Vale et al., 2015) broccoli cultivars, as well 

as cabbage (Ferreres et al, 2006) and kale (Ayaz et al., 2006). Whether citric or malic acid is the 

most abundant organic acid in broccoli may depend on the TCA cycle (Fernie et al., 2004). After 

glycolysis, hexoses combine with an intermediate to form citrate, which is turned into malate. 

After that, malate is either consumed to restart the TCA cycle or used to begin hexose synthesis 

during gluconeogenesis. Schouten et al. (2016) demonstrated that greater hexose breakdown, 

followed by increased hexose synthesis from the breakdown of malate in gluconeogenesis, 

results may higher levels of citrate. Thus, higher levels of citric acid may be due to increased 

hexose turnover.  

 In this study, cultivar had a significant impact on average total organic acid contents in 

broccoli. Citric, malic, and total organic acid contents were significantly greater for ‘Arcadia’ 

than for ‘Diplomat.’ Similarly, previous studies found significantly higher organic acid contents 

for ‘Marathon’ compared to ‘Samurai’ (Siomos et al., 2004), and ‘Hartland’ compared to ‘Sairin’ 

(Pramanik et al., 2004). Cultivar effects on organic acids have also been observed in other 

Brassica species, such as pak choi (Kim et al., 2017). Interaction between cultivar and storage 

time also significantly affected both citric and total organic acid contents in broccoli. Citric and 

total organic acid contents were significantly greater for ‘Arcadia’ than for ‘Diplomat’ from 0 to 

21 d in storage but did not significantly change after that. Both citric and total organic acid 

contents significantly decreased at 7 and 14 d for ‘Arcadia,’ then continued to decrease, but not 

significantly. In, contrast, citric and total organic acid contents decreased throughout storage but 
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did not significantly change for ‘Diplomat.’ The expression of genes controlling organic acid 

synthesis can change among different plant cultivars (Ayaz et al., 2006). Substrate availability is 

also a determining factor in the formation of organic acids (Rontein et al., 2003). Sucrose acts as 

a substrate, and is cleaved into glucose or fructose, which serve as the immediate precursors in 

organic acid formation (Schouten et al., 2016). Significantly greater organic acid contents in 

‘Arcadia’ compared to ‘Diplomat’ broccoli may have been due to increased metabolic activities 

controlling the conversion of sucrose into hexoses that were then used for the formation of 

organic acids. This is supported by significantly lower sucrose contents in ‘Arcadia’ compared to 

‘Diplomat,’ indicating that greater amounts of sucrose in ‘Arcadia’ may have been consumed for 

the formation of organic acids. The increased rate of decline in organic acid content during 

storage for ‘Arcadia’ compared to ‘Diplomat’ may have been due to increased metabolic activity 

in ‘Arcadia,’ which resulted in a faster rate of organic acid depletion. The less severe decrease in 

organic acid contents for ‘Diplomat,’ accompanied by significantly greater sucrose contents, 

compared to the rapid decline in organic acid contents and significantly lower sucrose levels for 

‘Arcadia,’ indicates that ‘Diplomat’ broccoli was less metabolically active during storage. As 

decreased metabolic activity during storage is associated with increased postharvest broccoli 

quality (King and Morris, 1994), results from this study suggest that ‘Diplomat’ broccoli quality 

is superior to that of ‘Arcadia.’  

 Organic acid, effects of cooling/storage method. 

 Storage temperature is the main factor influencing the rate of deterioration and potential 

market life of broccoli (Mitchell, 2002; Pramanik et al., 2004). Organic acids are important 

attributes of quality (King and Morris, 1994), which have an impact on the organoleptic 

properties as well (Siomos et al., 2004). Storage temperature and length of time have an effect on 
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the conversion of sugars and acids in plants (Carrari and Fernie, 2006). In the TCA cycle, 

sucrose is converted into hexoses by hydrolyzing enzymes (Koch, 2004). Hexoses then combine 

with an intermediate to form citrate. Citrate is converted to malate, and malate is then either 

consumed to restart the cycle or used for hexose synthesis during gluconeogenesis (Schouten et 

al., 2016). The rate of metabolism is influenced by storage temperature, which affects the rate of 

biosynthesis and breakdown of organic acids (Pramanik et al., 2004). 

 King and Morris (1994) found that organic acid contents decreased and were totally depleted 

in broccoli stored for 1 d at 20 ⁰C, while Zapata et al. (2013) found that citric acid content 

decreased in broccoli stored for 2 and 5 d at 20 ⁰C, but remained stable from 5 to 8 d. They also 

found that malic acid content decreased at 2, 5, and 8 d. For this study, broccoli was either not 

precooled and stored at 6 ⁰C or cooled with an ice slurry and stored at 0 ⁰C in ice. Results from 

this study indicated that storage temperature did not have a significant impact on organic acid 

contents. However, storage time significantly affected both citric and malic acid contents in 

broccoli. Citric, malic, and total organic acid contents significantly decreased at 7 and 14 d in 

storage. In contrast, Pramanik et al. (2006) found that malic and citric acid contents remained 

stable in broccoli stored for 7 and 14 d at 1 ⁰C, but decreased when transferred to storage at 20 

⁰C. 

 Sucrose is a substrate, while fructose and glucose are intermediates consumed in the 

formation of organic acids (Kays, 1991; Pramanik et al., 2004). A rapid decline was observed for 

broccoli sugar contents, as well as organic acid contents, during the first 14 d in storage. As 

sugars and organic acids are both consumed in the formation of cellular materials, the rapid 

decline in both sugars and organic acids is most likely due to increased metabolic activity as a 

result of harvesting stress (Tietz and Wild, 1991). Although organic acid formation may have 
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been occurring during this time, both organic acids and sugars were also probably being oxidized 

(King and Morris et al., 1994). Thus, the rate of organic acid oxidation may have been too great 

for the rate of organic acid synthesis to compensate for this loss, resulting in a net loss of both 

sugar and organic acid contents. As a result of substrate depletion, long term storage of fruits and 

vegetables leads to a reduction in metabolism (Toivonen et al., 1997). Therefore, the rapid 

decrease and subsequent stabilization of organic acid contents in broccoli during storage may 

have been caused by metabolic changes due to substrate, i.e. sugar, depletion (Pramanik et al., 

2006).  

 Sugar/organic acid ratio, effects of cultivar. 

 Flavor is of one of the main factors affecting quality and consumer acceptability of fruits and 

vegetables (Montero et al., 1996). Often, the balance between sweetness, due to sugar contents, 

and sourness, due to organic acid contents, is an important determining factor of quality in many 

horticultural crops (Shamaila et al., 1992; Shaw et al., 1990). Sweetness and bitterness are key 

attributes influencing flavor in broccoli (Pellegrino et al., 2019). Bitterness is often attributed to 

glucosinolate content in broccoli, while sweetness is attributed to sugar content, and it is thought 

that an increase in sugar levels may help to mask the bitterness associated with glucosinolate 

contents (Bhandari and Kwak 2015b; Schohnof et al., 2004). However, there is no direct 

relationship between bitterness with glucosinolate, nor sweetness with sugar, content alone (Baik 

et al., 2006; Bell et al., 2017). The perception of bitterness is commonly confused with sourness 

among untrained panelists (Gregson and Baker, 1973), and organic acids contribute to the 

bitterness in other Brassica species (Fukuda et al., 2016). Thus, it may be that increased 

sourness, as a result of increased organic acid contents, plays a role in the perception of the bitter 

taste associated with broccoli.  
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 Cultivar is one of the determining factors of produce quality (Lee and Kader, 2000), and It 

has been demonstrated that cultivar has a significant impact on the sugar/acid ratio in many 

fruits, including apple (Hecke et al., 2006), raspberry (Shamaila et al., 1993), strawberry (Pineli 

et al., 2011), cherry (Dever et al., 1996), pomegranate (Al-Said et al., 2009), pear (Chen et al., 

2007), pineapple (Bartolome et al., 1995), and tomato (Mohammed et al., 1999) fruits. However, 

Siomos et al. (2004) found no significant difference in the sugar/organic acid ratio among 

‘Marathon’ and ‘Samurai’ broccoli cultivars. In contrast, results from this study indicate that 

sugar/acid ratios in broccoli are significantly affected by cultivar. The sugar/acid rate was 

significantly greater for ‘Diplomat’ than for ‘Arcadia.’ To our knowledge, results from this study 

are the first to confirm that cultivar does have a significant impact on the sugar/acid ratio in 

broccoli. The expression of genes involved in the biosynthesis and consumption of sugars and 

organic acids during postharvest storage is often determined by cultivar (Bhandari and Kwak, 

2015a; Rosa et al., 2001; Quick and Schaffer, 1996). Thus, differences in the sugar/organic acid 

ratio among cultivars may be due to differences in the expression of genes involved in sugar and 

organic acid metabolism (Zhang et al., 2020). Because increasing the sugar/organic acid ratio 

increases the sweetness and reduces the sourness, a higher sugar/organic acid ratio leads to 

improved flavor and consumer acceptability in fruits, such as tomatoes (Malundo et al., 1995). 

Results from this study suggest that a higher sugar/acid ratio may result in higher quality, in 

terms of sensory perception, for ‘Diplomat’ than for ‘Arcadia’ broccoli.   

 Sugar/organic acid ratio, effects of cooling/storage method. 

 The sugar/acid ratio is often used as in index of quality and consumer acceptability of fruits 

(Paull, 1999; Siomos et al., 2004), and the relationship between the sugar/acid ratio and produce 

quality has been extensively studied for many horticultural crops (Beckles 2012; Casals et al., 
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2011; Charles et al., 2016). Previous studies have investigated the impact of storage conditions 

on sugars and organic acids in broccoli (King and Morris, 1994; Pramanik et al., 2006; Zapata et 

al., 2013), and the effect of growing conditions on the sugar/acid ratio has been studied for 

broccoli (Siomos et al., 2004) and other Brassica plants (Qui et at., 2013). However, to our 

knowledge, the effect of cooling/storage method on the ratio of sugars to organic acids has not 

been previously studied for broccoli.  

 The sugar/acid ratio during storage significantly decreased at 7d, then significantly increased 

at 21 d. After that, the sugar/acid ratio significantly decreased at 28 d and slightly increased at 35 

d, but not significantly. Organic acid contents significantly decreased at 7 and 14 d, then 

remained stable. An increase in the sugar/acid ratio at 21 d can be attributed to increased sugar 

contents, mainly fructose, at 21 d in storage. This increase in sugar/acid ratio may have been a 

result of a decline in metabolic activity, or the breakdown of cellular wall components as 

broccoli tissues were deteriorated, resulting in increased sugar contents at 21 d but no change in 

organic acid contents (Lemoine et al., 2007). 

 Although cooling/storage temperature alone did not have a significant impact on sugar/acid 

ratios in broccoli, the interaction between cultivar and storage temperature on the sugar/acid ratio 

was significant. For ‘Diplomat,’ storage at 6 ⁰C resulted in a significantly higher sugar/acid ratio 

compared to storage at 0 ⁰C, while storage temperature had no effect on ‘Arcadia.’ This may be 

due to a difference in the expression of genes controlling the metabolic activity in response to 

different temperatures (Escalona et al., 2006). The enhanced expression of genes controlling 

sucrose hydrolyzing enzyme activity occurs during postharvest senescence of broccoli (Coupe et 

al., 2003). The higher sugar/acid ratio for ‘Diplomat’ stored at 6 ⁰C compared to 0 ⁰C is due to 

lower fructose and glucose contents for ‘Diplomat’ stored at 0 ⁰C, which may have been caused 
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by a higher conversion rate of sucrose into glucose and fructose as a result of increased invertase 

or synthase activities (Toivonen et al., 1997). This may have occurred because of increased stress 

during precooling and/or storage. The increased storage temperature for ‘Diplomat’ broccoli may 

have led to increased expression of genes controlling sucrose hydrolysis, as a response to greater 

stress experienced after harvest compared to broccoli cooled with an ice slurry (Coupe et al., 

2003). Interestingly, this effect was not observed in ‘Arcadia,’ which had roughly equal 

sugar/acid ratios for broccoli stored at 0 ⁰C compared to 6 ⁰C. This may be due to genetic 

differences among cultivars, resulting in different patterns of gene expression in response to 

harvesting stress (Page et al., 2001). For ‘Arcadia,’ the sugar/acid ratio was significantly lower 

than it was for ‘Diplomat,’ due to significantly greater organic acid levels. Sucrose levels were 

also significantly lower for ‘Arcadia’ than for ‘Diplomat.’ This may have been a result of 

increased metabolic activity for ‘Arcadia,’ which converted sucrose into fructose and glucose, 

then glucose/fructose into organic acids at a faster rate than ‘Diplomat’ (Schouten et al., 2016). 

Although the sugar/acid ratio was roughly equal for ‘Arcadia’ stored at either temperature, the 

sucrose content was significantly lower for ‘Arcadia stored at 6 ⁰C compared to 0 ⁰C, while 

sucrose content was not significantly different for ‘Diplomat’ stored at either temperature. These 

results indicate that ‘Diplomat’ broccoli may have a greater ability to regulate metabolic activity 

in response to different cooling/storage conditions, suggesting that ‘Diplomat’ is superior to 

‘Arcadia’ in terms of maintaining postharvest quality.  

  Although the compositional quality of ‘Diplomat’ broccoli may have been improved by 

storage at lower temperatures, the significantly lower sugar/acid ratio for broccoli stored at 0 ⁰C 

may have led to a decrease in the sensory perception of quality. Thus, investigating the impact of 

sugar/acid ratios on the sensory perception of quality in broccoli would help to determine the 
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appropriate storage conditions for a balance between the maintenance of compositional and 

sensory quality of broccoli during postharvest storage.  

Conclusion 

 Results from this study show that cultivar, storage temperature, and storage time significantly 

influence postharvest broccoli quality. Cultivar and storage time were the main determinants of 

sugar content, organic acid content, and the sugar/acid ratio. However, sucrose content and the 

sugar/acid ratio in broccoli was dependent on storage temperature as well.  

 For sugars, only sucrose was significantly affected by cultivar alone, while interactions of 

cultivar and storage time significantly affected fructose alone. The variation in fructose content 

among cultivars may have been due to the expression of different genes controlling the balance 

between fructose synthesis and degradation during postharvest storage of broccoli (Rosa et al., 

2001). Because sucrose is the main energy source consumed during respiration of plants, sucrose 

losses are thought to mirror the rate of senescence (King and Morris, 1994). As a signaling 

molecule, the rapid loss of sucrose after harvest is thought control gene expression during 

senescence. Sucrose decline is correlated with increased invertase activity, thereby increasing the 

rate of irreversible sucrose hydrolysis into glucose and fructose (Eason et al., 2007). Thus, 

significantly greater sucrose content suggests superior postharvest quality for ‘Diplomat’ 

compared to ‘Arcadia’ broccoli cultivars.  

 The sugar/acid ratio significantly decreased from 0 to 7 d, began to increase from 7 to 14 d, 

then significantly increased from 14 to 21 d. After that, the sugar/acid ratio significantly 

decreased from 21 to 28 d and slightly increased from 28 to 35 d, but not significantly. Variation 

in the sugar/acid ratio from 14 to 35 d can be attributed to variations in sugar contents at this 

time. Both sugar and organic acid contents significantly decreased during storage. All sugars 
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(sucrose, glucose, and fructose) significantly decreased at 7 d but only sucrose content 

significantly decreased from 7 to 14 d. Fructose content alone significantly increased from 14 to 

21 d, while sucrose and glucose increased slightly, but not significantly. Fructose content 

remained stable from 21 to 35 d, while both sucrose and glucose significantly decreased from 21 

to 28 d. Glucose content significantly increased from 28 to 35 d, while sucrose increased, but not 

significantly. Variation in individual sugar contents, particularly after 21 d in storage, may have 

been due to the breakdown of cell wall materials, resulting in higher sugar contents for different 

compounds at different lengths of storage. However, as respiration is known to decline during 

cold storage (Toivonen et al., 1997), this variation may have been due to alterations in 

metabolism as storage time increased. Organic acid contents significantly decreased from 0 to 7 

and 7 to 14 d, then remained stable from 14 to 35 d. Rapidly declining organic acid contents 

during the first 14 d of storage suggest that they were being consumed as metabolism substrates 

during this time. The subsequent stabilization after 14 d suggests that metabolic activity had been 

reduced as a result of substrate depletion.  

There was no significant difference in glucose or fructose contents, which are the main 

contributors to total sugar content, among cultivars. The higher sugar/acid ratio for ‘Diplomat’ is 

due to lower organic acid contents compared to ‘Arcadia.’ Arcadia had significantly greater 

organic acid levels from 0 to 28 d in storage. This may have been a result of different gene 

expression rates during development, indicated by initially higher organic acid contents after 

harvest, or it may be due to a difference in metabolic pathways during storage. Although storage 

temperature did not affect the sugar/acid ratio for ‘Arcadia,’ significantly lower sucrose content 

was observed for ‘Arcadia’ broccoli stored at 6 ⁰C compared to 0 ⁰C. However, sucrose content 

for ‘Diplomat’ was unaffected by temperature. This suggests that metabolic activity in ‘Arcadia’ 
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was significantly greater when stored at 6 ⁰C. However, equal sucrose levels for ‘Diplomat’ 

stored at either temperature indicates that the difference in storage temperature on sucrose 

consumption was less severe for ‘Diplomat’ compared to ‘Arcadia.’ This may have been due to 

decreased invertase or synthase activities as a result of lower storage temperature, indicating 

decreased metabolic activity. As sucrose is hydrolyzed into hexoses by invertase and synthase 

enzymes (Schouten et al., 2016), a lack of invertase activity may have been responsible for the 

lower glucose and fructose levels in ‘Diplomat’ stored at 0 ⁰C compared to 6 ⁰C. These results 

suggest that ‘Diplomat’ broccoli may have a greater ability to regulate and optimize sugar 

metabolism in response to different storage temperatures during postharvest storage.  
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Appendix 

Table 1. Analysis of variance results for sugar contents in broccoli for ‘Diplomat’ and 

‘Arcadia,’ not precooled and stored at 6 ⁰C compared with ice slurry cooled broccoli stored at 

0 ⁰C in ice, when stored for 0, 7, 14, 21, 28, and 35 days. 

Source of Variance Sucrose Glucose Fructose Total Sugars 

Cultivar (C)  * z NS NS NS 

Treatment (T) * NS NS NS 

Storage Time (S) *** *** *** *** 

C x T NS NS NS NS 

T x S NS NS NS NS 

C x S NS NS * NS 

C x T x S NS NS NS NS 

z Significance is denoted by NS, *, **, ***: Non-significant or significant at p ≤0.05, 0.01, and 

0.001, respectively. 
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Table 2. Analysis of variance results for organic acid contents in broccoli for ‘Diplomat’ and 

‘Arcadia,’ not precooled and stored at 6 ⁰C compared with ice slurry cooled broccoli stored at 

0 ⁰C in ice, when stored for 0, 7, 14, 21, 28, and 35 days. 

Source of Variance Malic Acid Citric Acid Total Organic Acids 

Cultivar (C)  *** z *** *** 

Treatment (T) NS NS NS 

Storage Time (S) *** *** *** 

C x T NS NS NS 

T x S NS NS NS 

C x S NS ** * 

C x T x S NS NS NS 

z Significance is denoted by NS, *, **, ***: Non-significant or significant at p ≤0.05, 0.01, and 

0.001, respectively. 
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Table 3. Analysis of variance results for the sugar/acid ratio in broccoli for ‘Diplomat’ 

compared with ‘Arcadia,’ not precooled and stored at 6 ⁰C compared with ice slurry cooled 

broccoli stored at 0 ⁰C in ice, when stored for 0, 7, 14, 21, 28, and 35 days. 

Source of Variance Sugar/Acid Ratio 

Cultivar (C)  *** z 

Treatment (T) NS 

Storage Time (S) ** 

C x T * 

T x S NS 

C x S NS 

C x T x S NS 

z Significance is denoted by NS, *, **, ***: Non-significant or significant at p ≤0.05, 0.01, and 

0.001, respectively. 
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Table 4. Average sugar contents in broccoli (mg·g-1 dry mass), across time, for ‘Diplomat’ and 

‘Arcadia,’ and broccoli that was not precooled and stored at 6 ⁰C compared with ice slurry cooled 

broccoli stored at 0 ⁰C in ice. 

Cultivar (C) 

Storage 

Temperature 

(T) Sucrose Glucose Fructose Total 

Diplomat 6 ⁰C   52.06 a zy 178.19 a 127.95 a 358.20 a 

 

0 ⁰C 58.91 a 145.31 b   107.84 ab   312.06 ab 

Arcadia 6 ⁰C 32.65 b 140.15 b   105.36 ab 278.16 b 

 

0 ⁰C 51.12 a   149.11 ab 104.04 b   304.27 ab 

Interaction  

Effects   NS x NS NS NS 

zMeans are the average of three replications, two broccoli heads for each cultivar and storage 

temperature combination, and samples stored for 0, 7, 14, 21, 28, and 35 days. 

yFor each individual sugar, letters beside means for one cultivar and storage temperature that 

are not different from letters beside means for other cultivars and storage temperatures, are not 

significantly different by the LSD test (α = 0.05). 

xSignificance of interaction effects between cultivar and storage temperature on sugar contents 

are denoted by NS, *, **, ***: Non-significant or significant at p ≤ 0.05, 0.01, and 0.001, 

respectively. 

 
 

 



49 

 

 

Table 5. Average sugar contents in broccoli (mg·g-1 dry mass), stored at both temperatures, for 

‘Diplomat’ compared with ‘Arcadia,’ and compared during storage at 0, 7, 14, 21, 28, and 35 

days. 

Cultivar 

Storage  

Time (d) Sucrose Glucose Fructose Total 

Diplomat 

0     134.95 a zy 280.83 a 203.25 a 619.03 a 

7   60.20 b   144.38 bc     79.47 de   284.06 bc 

14       39.41 bcd     132.34 bcd     90.12 de     261.87 bcd 

21     47.29 bc 180.02 b   136.01 bc 363.32 b 

28   22.40 d   115.63 cd     110.76 cde   248.78 cd 

35     28.66 cd   117.28 cd     87.77 de   233.71 cd 

Arcadia 

0 113.18 a 251.95 a   173.38 ab 538.52 a 

7   54.06 b   138.52 bc      97.94 cde   290.52 bc 

14   23.20 d   110.48 cd    76.60 de   210.29 cd 

21    28.73 cd     131.97 bcd   88.91 de   249.62 cd 

28  16.37 d   77.65 d  75.54 e 169.55 d 

35  15.75 d 157.21 bc  115.83 cd   288.80 bc 

Interaction 

Effects     NS x NS * NS 
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Table 5. Continued. 

  

zMeans are the average of three replications, two broccoli heads for each cultivar and storage 

temperature combination, and samples stored for 0, 7, 14, 21, 28, and 35 days. 

yFor each individual sugar, letters beside means for one cultivar and storage time that are not 

different from means for letters beside other cultivars and storage times, are not significantly 

different by the LSD test (α = 0.05). 

xSignificance of interaction effects between cultivar and storage time on sugar contents are 

denoted by NS, *, **, ***: Non-significant or significant at p ≤ 0.05, 0.01, and 0.001, 

respectively. 
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Table 6. Average sugar contents in broccoli (mg·g-1 dry mass), for both cultivars, that was not 

precooled and stored at 6 ⁰C compared with ice slurry cooled broccoli stored at 0 ⁰C in ice, and 

compared during storage at 0, 7, 14, 21, 28, and 35 days. 

Storage  

Temperature 

Storage 

Time (d) Sucrose Glucose Fructose Total 

6 ⁰C 

0    109.66 b zy 262.03 a 186.83 a 558.53 a 

7    41.75 de       134.45 bcde     73.86 cd   250.06 bc 

14    31.68 de   151.25 bc   103.92 bc   286.86 bc 

21    28.30 de     146.68 bcd 113.37 b   288.35 bc 

28  18.55 e     107.57 cde   105.70 bc   231.80 bc 

35    24.20 de   153.02 bc 116.27 b   293.49 bc 

0 ⁰C 

0 138.47 a 270.75 a 189.80 a 599.02 a 

7   72.51 c   148.46 bc   103.55 bc 324.52 b 

14     30.93 de     91.56 de   62.80 d 185.30 c 

21   47.72 d 165.31 b   111.55 bc 324.58 b 

28   20.22 e   85.70 e       80.62 bcd 186.54 c 

35   20.21 e       121.48 bcde     87.30 bcd   229.02 bc 

Interaction 

Effects    NS x NS NS NS 

zMeans are the average of three replications, two broccoli heads for each cultivar and storage 

temperature combination, and samples stored for 0, 7, 14, 21, 28, and 35 days. 
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Table 6. Continued. 

yFor each individual sugar, letters beside means for one storage temperature and storage time 

that are not different from means for letters beside other storage temperatures and storage 

times, are not significantly different by the LSD test (α = 0.05). 

xSignificance of interaction effects between storage temperature and storage time on sugar 

contents are denoted by NS, *, **, ***: Non-significant or significant at p ≤ 0.05, 0.01, and 

0.001, respectively. 
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Table 7. Average sugar contents in broccoli (mg·g-1 dry mass), for ‘Diplomat’ compared with ‘Arcadia,’ broccoli that was not 

precooled and stored at 6 ⁰C compared with ice slurry cooled broccoli stored at 0 ⁰C in ice, and compared during storage at 0, 7, 14, 

21, 28, and 35 days. 

Cultivar 

Storage 

Temperature 

Storage  

Time (d) Sucrose Glucose Fructose Total 

Diplomat 

6 ⁰C 

0       118.33 ab zy 286.17 a 204.82 a 609.32 a 

7      49.97 def       141.44 defg   56.08 h      247.49 cdef 

14        45.36 defg      178.00 cde      120.20 cdef   343.57 cd 

21        43.17 defg      195.81 bcd       160.63 abcd   399.61 bc 

28      20.47 efg       126.47 defg      120.74 cdef      267.68 cdef 

35      35.07 efg       141.22 defg        105.22 defgh      281.52 cdef 

0 ⁰C 

0 151.58 a    275.50 ab 201.67 a 628.74 a 

7     70.43 cd     147.32 def      102.87 efgh     320.62 cde 

14      33.46 efg      86.67 fg     60.03 gh   180.16 ef 

21     51.41 de       164.22 cdef        111.40 defgh     327.03 cde 

28      24.32 efg     104.79 efg      100.78 efgh    229.88 def 
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Table 7. Continued.  

Diplomat 0 ⁰C 35      22.25 efg      93.34 fg       70.32 fgh    185.91 def 

Arcadia 

6 ⁰C 

0   100.99 bc      237.90 abc     168.85 abc   507.74 ab 

7      33.53 efg       127.45 defg        91.65 efgh      252.62 cdef 

14      18.00 efg       124.50 defg        87.64 efgh    230.15 def 

21   13.43 g      97.54 fg      66.12 fgh  177.09 ef 

28    16.62 fg      88.67 fg        90.62 efgh    195.91 def 

35   13.33 g       164.82 cdef       127.31 bcde     305.46 cde 

0 ⁰C 

0   125.37 ab    266.00 ab   177.92 ab 569.30 a 

7     74.60 cd     149.59 def       104.22 efgh     328.41 cde 

14      28.41 efg      96.46 fg       65.57 fgh    190.43 def 

21        44.04 defg       166.41 cdef      111.70 defg     322.14 cde 

28    16.12 fg     66.62 g     60.46 gh 143.19 f 

35      18.18 efg     149.61 def      104.36 efgh       272.14 cdef 

Interaction 

Effects 

 

 NS x NS NS NS 
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Table 7. Continued. 

zMeans are the average of three replications, two broccoli heads for each cultivar and storage temperature combination, and samples 

stored for 0, 7, 14, 21, 28, and 35 days. 

yFor each individual sugar, letters beside means for one cultivar, storage temperature, and storage time that are not different from 

letters beside means for other cultivars, storage temperatures, and storage times, are not significantly different by the LSD test (α = 

0.05). 

xSignificance of interaction effects among cultivar, storage temperature, and storage time on sugar contents are denoted by NS, *, 

**, ***: Non-significant or significant at p ≤ 0.05, 0.01, and 0.001, respectively. 
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Table 8. Average organic acid contents in broccoli (mg·g-1 dry mass), across time, for 

‘Diplomat’ compared with ‘Arcadia,’ and broccoli that was not precooled and stored at 6 ⁰C 

compared with ice slurry cooled broccoli stored at 0 ⁰C in ice. 

Cultivar 

Storage  

Temperature Malic Citric Total 

Diplomat 6 ⁰C     4.69 b zy 3.80 b   8.49 b 

 

0 ⁰C 5.30 b 4.42 b   9.71 b 

Arcadia 6 ⁰C 9.07 a 7.66 a 16.73 a 

 

0 ⁰C 7.56 a 6.95 a 14.51 a 

Interaction 

Effects   NS x NS NS 

zMeans are the average of three replications, two broccoli heads for each cultivar and storage 

temperature combination, and samples stored for 0, 7, 14, 21, 28, and 35 days. 

yFor each individual organic acid, letters beside means for one cultivar and storage temperature 

that are not different from letters beside means for other cultivars and storage temperatures, are 

not significantly different by the LSD test (α = 0.05). 

xSignificance of interaction effects between cultivar and storage temperature on organic acid 

contents are denoted by NS, *, **, ***: Non-significant or significant at p ≤ 0.05, 0.01, and 

0.001, respectively. 
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Table 9.  Average organic acid contents in broccoli (mg·g-1 dry mass), stored at both 

temperatures, for ‘Diplomat’ compared with ‘Arcadia,’ and compared during storage at 0, 7, 

14, 21, 28, and 35 days. 

Cultivar 

Storage  

Time (d) Malic Citric Total 

Diplomat 

0        7.20 cd zy   6.48 c 13.69 c 

7      6.51 cde     5.94 cd   12.45 cd 

14      4.45 def      3.67 def     8.12 de 

21   3.01 f  2.31 f   5.33 e 

28    4.26 ef    3.04 ef     7.30 de 

35      4.52 def    3.20 ef     7.72 de 

Arcadia 

0 14.07 a 14.39 a 28.46 a 

7  10.03 b   9.80 b 19.83 b 

14     7.54 bc   6.42 c 13.97 c 

21       6.58 cde       5.25 cde   11.83 cd 

28       6.24 cde        4.18 cdef    10.43 cde 

35        5.43 cdef        3.78 cdef      9.21 cde 

Interaction 

 Effects 

   NS x ** * 

zMeans are the average of three replications, two broccoli heads for each cultivar and storage 

temperature combination, and samples stored for 0, 7, 14, 21, 28, and 35 days. 
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Table 9. Continued. 

  

yFor each individual organic acid, letters beside means for one cultivar and storage time that 

are not different from letters beside means for other cultivars and storage times, are not 

significantly different by the LSD test (α = 0.05). 

xSignificance of interaction effects between cultivar and storage time on organic acid contents 

are denoted by NS, *, **, ***: Non-significant or significant at p ≤ 0.05, 0.01, and 0.001, 

respectively. 
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Table 10. Average organic acid contents in broccoli (mg·g-1 dry mass), for both cultivars, that 

was not precooled and stored at 6 ⁰C compared with ice slurry cooled broccoli stored at 0 ⁰C in 

ice, and compared during storage at 0, 7, 14, 21, 28, and 35 days. 

Storage 

Temperature 

Storage  

Time (d) Malic Citric Total 

6 ⁰C 

0     10.74 a zy 10.50 a 21.24 a 

7       8.62 abc     8.16 ab   16.78 ab 

14       6.20 cde     4.97 cd   11.17 cd 

21   5.04 e   3.66 d   8.70 d 

28     5.39 de   3.47 d   8.86 d 

35     5.29 de   3.64 d   8.92 d 

0 ⁰C 

0   10.54 ab 10.37 a   20.91 ab 

7      7.92 bcd     7.59 bc   15.51 bc 

14    5.80 de     5.12 cd   10.92 cd 

21  4.55 e   3.91 d   8.46 d 

28 5.11 e   3.76 d   8.87 d 

35 4.66 e   3.34 d   8.01 d 

Interaction 

Effects   NS x NS NS 

zMeans are the average of three replications, two broccoli heads for each cultivar and storage 

temperature combination, and samples stored for 0, 7, 14, 21, 28, and 35 days. 
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Table 10. Continued. 

yFor each individual organic acid, letters beside means for one storage temperature and storage 

time that are not different from letters beside means for other storage temperatures and storage 

times, are not significantly different by the LSD test (α = 0.05). 

xSignificance of interaction effects between storage temperature and storage time on organic 

acid contents are denoted by NS, *, **, ***: Non-significant or significant at p ≤ 0.05, 0.01, 

and 0.001, respectively. 
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Table 11. Average organic acid contents in broccoli (mg·g-1 dry mass), for ‘Diplomat’ 

compared with ‘Arcadia,’ broccoli that was not precooled and stored at 6 ⁰C compared with ice 

slurry cooled broccoli stored at 0 ⁰C in ice, and compared during storage at 0, 7, 14, 21, 28, 

and 35 days. 

Cultivar 

Storage  

Temperature 

Storage  

Time (d) Malic Citric 

Total 

Diplomat 

6 ⁰C 

0           5.79 defghi      5.45 efg      11.25 defg 

7           6.59 defghi        6.13 defg      12.72 defg 

14         4.99 efghi        3.91 efgh        8.89 efgh 

21  2.09 i   1.19 h   3.28 h 

28         4.88 efghi      3.29 fgh      8.17 fgh 

35      3.81 ghi     2.83 gh     6.65 gh 

0 ⁰C 

0        8.62 bcde      7.52 cde    16.14 cde 

7          6.43 defgh        5.76 defg      12.19 defg 

14      3.92 ghi      3.43 fgh      7.35 fgh 

21      3.94 ghi      3.44 fgh      7.38 fgh 

28    3.64 hi     2.78 gh     6.42 gh 

35         5.23 efghi      3.57 fgh        8.80 efgh 

Arcadia 6 ⁰C 

0 15.69 a 15.55 a 31.24 a 

7  10.65 bc   10.19 bc   20.83 bc 

14            7.41 cdefgh        6.04 defg        13.45 cdefg 

21        7.99 cdef        6.12 defg        14.11 cdefg 

28           5.91 defghi      3.65 fgh        9.55 efgh 

zy 



62 

 

 

Table 11. Continued. 

 

Arcadia 

 35           6.76 cdefgh        4.44 efgh      11.20 defg 

 

0 ⁰C 

0   12.45 ab   13.23 ab   25.68 ab 

 7       9.41 bcd       9.42 bcd     18.84 bcd 

 14          7.68 cdefg        6.81 cdef      14.49 cdef 

 21         5.16 efghi         4.39 efgh        9.55 efgh 

 28          6.58 defgh         4.73 efgh      11.31 defg 

 35       4.10 fghi       3.12 fgh      7.21 fgh 

 Interaction  

Effects 

 

NS x NS NS 

 zMeans are the average of three replications, two broccoli heads for each cultivar and storage 

temperature combination, and samples stored for 0, 7, 14, 21, 28, and 35 days. 

yFor each individual organic acid, letters beside means for one cultivar, storage temperature, 

and storage time that are not different from letters beside means for other cultivars, storage 

temperatures, and storage times, are not significantly different by the LSD test (α = 0.05). 

xSignificance of interaction effects among cultivar, storage temperature, and storage time 

organic acid contents are denoted by NS, *, **, ***: Non-significant or significant at p ≤ 

0.05, 0.01, and 0.001, respectively 
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Table 12. Average sugar/acid ratio in broccoli (mg·g-1 dry mass), stored at both temperatures, 

for ‘Diplomat’ compared with ‘Arcadia,’ and compared during storage at 0, 7, 14, 21, 28, and 

35 days. 

Cultivar 

Storage  

Time (d) 

Sugar/Acid  

Ratio 

Diplomat 

0    52.13 a zy 

7   22.72 bc 

14 35.22 b 

21 58.63 a 

28 35.74 b 

35   27.48 bc 

Arcadia 

0   21.07 bc 

7 16.51 c 

14 16.30 c 

21   27.40 bc 

28 18.06 c 

35   25.39 bc 

Interaction Effects   NS x 

zMeans are the average of three replications, two broccoli heads for each cultivar and storage 

temperature combination, and samples stored for 0, 7, 14, 21, 28, and 35 days. 
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Table 12. Continued. 

yLetters beside sugar/acid means for one cultivar and storage time that are not different from 

letters beside means for other cultivars and storage times, are not significantly different by the 

LSD test (α = 0.05). 

xSignificance of interaction effects between cultivar and storage time are denoted by NS, *, **, 

***: Non-significant or significant at p ≤v0.05, 0.01, and 0.001, respectively. 
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Table 13. Average organic acid contents in broccoli (mg·g-1 dry mass), for both cultivars, that 

was not precooled and stored at 6 ⁰C compared with ice slurry cooled broccoli stored at 0 ⁰C in 

ice, and compared during storage at 0, 7, 14, 21, 28, and 35 days. 

Storage  

Temperature 

Storage  

Time (d) 

Sugar/Acid  

Ratio 

6 ⁰C 

0      41.72 ab zy 

7 15.79 d 

14       28.54 abcd 

21   42.81 ab 

28     26.57 bcd 

35       30.65 abcd 

0 ⁰C 

0     31.48 abc 

7    23.44 cd 

14    22.97 cd 

21  43.21 a 

28      27.20 bcd 

35    22.22 cd 

Interaction 

 Effects NS x 

zMeans are the average of three replications, two broccoli heads for each cultivar and storage 

temperature combination, and samples stored for 0, 7, 14, 21, 28, and 35 days. 
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Table 13. Continued. 

yLetters beside sugar/acid means for one storage temperature and storage time that are not 

different from letters beside means for other storage temperatures and storage times, are not 

significantly different by the LSD test (α = 0.05). 

xSignificance of interaction effects between storage temperature and storage time on the 

sugar/acid ratio are denoted by NS, *, **, ***: Non-significant or significant at p ≤ 0.05, 0.01, 

and 0.001, respectively. 
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Table 14. Average sugar/acid ratio in broccoli (mg·g-1 dry mass), for ‘Diplomat’ compared with 

‘Arcadia,’ broccoli that was not precooled and stored at 6 ⁰C compared with ice slurry cooled 

broccoli stored at 0 ⁰C in ice, and compared during storage at 0, 7, 14, 21, 28, and 35 days. 

Cultivar 

Storage  

Temperature 

Storage  

Time (d) 

Sugar/Acid 

Ratio 

Diplomat 

6 ⁰C 

0      63.38 ab zy 

7    19.28 efg 

14      38.56 cdef 

21 72.09 a 

28        32.51 cdefg 

35        33.98 cdefg 

0 ⁰C 

0     40.88 cde 

7        26.26 cdefg 

14        31.88 cdefg 

21   45.17 bc 

28      38.97 cdef 

35       20.99 defg 

Arcadia 6 ⁰C 

0       20.06 defg 

7  12.40 g 

14   18.53 fg 

21  13.53 g 

28       20.63 defg 

35         27.32 cdefg 
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Table 14. Continued. 

 0 ⁰C 

0       22.08 defg 

7       20.62 defg 

14  14.07 g 

21    41.26 cd 

28  15.44 g 

35         23.46 cdefg 

Interaction  

Effects 

 

NS x 

zMeans are the average of three replications, two broccoli heads for each cultivar and storage 

temperature combination, and samples stored for 0, 7, 14, 21, 28, and 35 days. 

yLetters beside sugar/acid means for one cultivar, storage temperature, and storage time that 

are not different from letters beside means for other cultivars, storage temperatures, storage 

times are not significantly different by the LSD test (α = 0.05). 

xSignificance of interaction effects between cultivar, storage temperature, and storage time are 

denoted by NS, *, **, ***: Non-significant or significant at p ≤ 0.05, 0.01, and 0.001, 

respectively. 
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 Fig. 1. Mean internal broccoli temperature for broccoli cooled with 

top icing and stored 6 ⁰C, and broccoli cooled with an ice slurry and 

stored at 0 ⁰C. Postharvest broccoli temperatures were recorded 

every 30 minutes during field cooling and transportation to cold 

room storage. Means are the average of three replications per 

cultivar and storage temperature combination. 
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Fig. 2. Average sugar contents in broccoli, across time for both storage 

temperatures, for ‘Diplomat’ compared with ‘Arcadia’ broccoli. Means 

are the average three replications, two broccoli heads for each cultivar 

and storage temperature combination, and samples stored for 0, 7, 14, 

21, 28, and 35 days. Letters above an individual sugar for one cultivar 

that are not different from letters above that sugar the other cultivar, are 

not significantly different by the LSD test (α = 0.05). 
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 Fig. 3. Average sugar contents in broccoli, across time for both 

cultivars, that was not precooled and stored at 6 ⁰C compared with 

ice slurry cooled broccoli stored at 0 ⁰C in ice. Means are the 

average three replications, two broccoli heads for each cultivar and 

storage temperature combination, and samples stored for 0, 7, 14, 

21, 28, and 35 days. Letters above an individual sugar for one 

storage temperature that are not different from letters above that 

sugar for the other storage temperature, are not significantly 

different by the LSD test (α = 0.05). 
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Fig. 4. Sugar contents in broccoli, for both cultivars and storage 

temperatures, compared during storage at 0, 7, 14, 21, 28, and 35 

days. Means are the average three replications, two broccoli heads 

for each cultivar and storage temperature combination. Letters 

above an individual sugar for one storage time that are not different 

from letters above that sugar for other storage times, are not 

significantly different by the LSD test (α = 0.05). 
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Fig. 5. Average organic acid contents in broccoli, across time for 

both storage temperatures, for ‘Diplomat’ compared with ‘Arcadia.’ 

Means are the average three replications, two broccoli heads for 

each cultivar and storage temperature combination, and samples 

stored for 0, 7, 14, 21, 28, and 35 days. Letters above an individual 

organic acid for one cultivar that are not different from letters 

above that organic acid for the other cultivar, are not significantly 

different by the LSD test (α = 0.05). 
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Fig. 6. Average organic acid contents in broccoli, across time for 

both cultivars, that was not precooled and stored at 6 ⁰C compared 

with ice slurry cooled broccoli stored at 0 ⁰C in ice. Means are the 

average three replications, two broccoli heads for each cultivar and 

storage temperature combination, and samples stored for 0, 7, 14, 

21, 28, and 35 days.  Letters above an individual organic acid for 

one storage temperature that are not different from letters above 

that organic acid for the other storage temperature, are not 

significantly different by the LSD test (α = 0.05). 
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Fig. 7. Average organic acid contents in broccoli, for both cultivars 

and storage temperatures, compared during storage at 0, 7, 14, 21, 

28, and 35 days. Means are the average three replications, two 

broccoli heads for each cultivar and storage temperature 

combination. Letters above an individual organic acid for one 

storage time that are not different from letters above that organic 

acid for other storage times, are not significantly different by the 

LSD test (α = 0.05). 
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Fig. 8. Average sugar/acid ratio in broccoli, across time for both 

storage temperatures, for ‘Diplomat’ compared with ‘Arcadia.’ 

Means are the average three replications, two broccoli heads for 

each cultivar and storage temperature combination, and samples 

stored for 0, 7, 14, 21, 28, and 35 days. Letters above one cultivar 

that are not different from letters above another cultivar, are not 

significantly different by the LSD test (α = 0.05). 

 

a

b

0

5

10

15

20

25

30

35

40

45
S

u
g
a
r/

A
ci

d
 R

a
ti

o
 (

m
g
·g

-1
)

Diplomat

Arcadia



77 

 

 

  

Fig. 9. Average sugar/acid ratio in broccoli, across time for both 

cultivars, that was not precooled and stored at 5 ⁰C compared with 

ice slurry cooled broccoli stored at 0 ⁰C in ice. Means are the 

average three replications, two broccoli heads for each cultivar and 

storage temperature combination, and samples stored for 0, 7, 14, 

21, 28, and 35 days. Letters above one storage temperature that are 

not different from letters above the other storage temperature, are 

not significantly different by the LSD test (α = 0.05). 
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Fig. 10. Average sugar/acid ratio in broccoli, for both cultivars and 

storage temperatures, compared during storage at 0, 7, 14, 21, 28, 

and 35 days. Means are the average three replications, two broccoli 

heads for each cultivar and storage temperature combination, and 

samples stored for 0, 7, 14, 21, 28, and 35 days. Letters above one 

storage time that are not different from letters above other storage 

times, are not significantly different by the LSD test (α = 0.05). 

 

ab

c

bc

a

bc

abc

0

5

10

15

20

25

30

35

40

45

50

0 7 14 21 28 35

S
u

g
a
r/

A
ci

d
 R

a
ti

o
 (

m
g
·g

-1
)

Sugar/Acid Ratio



79 

 

 

  

 

 

 

 

 

 

  

 

Figure 11. Average sugar/acid ratio in broccoli, across time, for 

‘Diplomat’ compared with ‘Arcadia,’ and broccoli that was not 

precooled and stored at 6 ⁰C compared with ice slurry cooled 

broccoli stored at 0 ⁰C in ice. Means are the average three 

replications, two broccoli heads for each cultivar and storage 

temperature combination, and samples stored for 0, 7, 14, 21, 28, 

and 35 days. Interaction effects between cultivar and storage 

temperature were significant (P ≤ 0.05). Letters above one cultivar 

and storage temperature that are not different from letters above 

other cultivars and storage temperatures, are not significantly 

different by the LSD test (α = 0.05). 
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CHAPTER 2: EFFECTS OF COOLING AND POSTHARVEST STORAGE 

METHODS ON GLUCOSINOLATES AND VOLATILES IN BROCCOLI 
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Abstract 

Broccoli (Brassica oleracea L. var. italica) is a cool-weather vegetable that is grown for its 

edible flowering heads and stalks. Glucosinolates and volatiles affect the nutritional, flavor, and 

aroma characteristics associated with broccoli quality. Cooling and postharvest storage 

conditions affect the quality of broccoli by altering the levels of glucosinolate and volatile 

contents. Changes in glucosinolate and volatile contents were investigated for two cultivars 

(‘BH053’ and ‘Emerald Crown’), two temperature treatments (precooled with top icing and 

stored at 7 ⁰C, and precooled with an ice slurry and stored at 0 ⁰C in ice), and six different days in 

storage (0, 7, 14, 21, 28, and 35 days). Cultivar and storage temperature significantly affected the 

total glucosinolate content in broccoli. ‘Emerald Crown’ had significantly higher levels of indole 

and total glucosinolates than ‘BH053.’ Broccoli stored at 0 ⁰C had significantly higher levels of 

aliphatic, aromatic, and total glucosinolates compared to broccoli stored at 7 ⁰C. ‘Emerald 

Crown’ had significantly higher levels of glucoprogoitrin, glucoraphanin, gluconapin, 
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glucoerucin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin. ‘BH053’ had 

significantly higher levels of epiprogoitrin and glucosinalbin. Broccoli stored at 0 ⁰C had 

significantly higher levels of epiprogoitrin, glucosinalbin, glucobarbarin, glucoerucin, 

gluconasturtiin, glucobrassicin, 4-methoxyglucobrassicin, and glucoraphanin than broccoli stored 

at 7 ⁰C. Average total glucosinolate content remained stable throughout the duration of storage. 

The sulfur-containing volatile dimethyl disulfide was significantly greater for ‘Emerald Crown’ 

than for ‘BH053.’ Dimethyl disulfide content was significantly greater for broccoli stored at 7 ⁰C 

than for broccoli stored at 0 ⁰C. Both sulfur-containing volatiles, dimethyl disulfide and dimethyl 

sulfide, began to increase at 21 d in storage, and reached their highest level at 35 d in storage. 

The cooling/storage method had no effect on (E)-2-pentenal, propanal, or 2-ethylfuran contents. 

‘Emerald Crown’ had significantly higher levels of (E)-2-Hexenal than ‘BH053.’ (E)-2-Hexenal 

content significantly decreased throughout the entire 5-week duration of storage. This study 

suggests that storage at lower temperatures helps to maintain postharvest quality of broccoli by 

decreasing the loss of nutritionally important glucosinolates, while preventing the production of 

volatiles responsible for off-odors. 

Introduction 

The United States (U.S.) broccoli industry is currently centered on West Coast production. 

California is responsible for over 90% of the total broccoli production in the nation, followed by 

Arizona (5%) (USDA Economic Research Service, 2011). Consequently, most of the fresh 

broccoli sold in the Eastern U.S. has been processed and shipped thousands of miles across the 

country before reaching supermarkets. Establishing a locally sourced broccoli industry on the 

U.S. East Coast will reduce the time between harvesting and consumer availability (Atallah et 

al., 2014; Wheeler et al., 2018). Broccoli is known to have a high respiration rate, and these 
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changes in the time between harvesting and consumer availability have potential consequences in 

postharvest physiology. Postharvest senescence of broccoli is accompanied by the degradation of 

metabolites through respiration (Hasparue et al., 2015; King and Morris., 1994). The loss of 

metabolites varies among cultivars and affects nutritional quality, as well as perceived sensory 

quality, of broccoli (Bruckner et al., 2005; Hansen et al., 1997; Pellegrino et al., 2019). 

Glucosinolates are sulfur-containing compounds that are found in Brassica crops. The 

glucosinolate molecule is comprised of a b-thioglucoside N-hydroxysulphate, which has a side 

chain and b-D-glucopyranose moiety (Hansen et al., 1995). Glucosinolates have three classes: 

aliphatic, indole, and aromatic. Classes depend on their amino acid precursor. For aliphatic  

glucosinolates, amino acid precursors include alanine, leucine, isoleucine, valine, and 

methionine. Precursors for aromatic and indole glucosinolates are phenylalanine or tyrosine and 

tryptophan, respectively (Ishida et al., 2014). Glucosinolates are biologically inactive until they 

have been hydrolyzed enzymatically to their breakdown products by the enzyme myrosinase 

(Kushad et al., 1999). Nutritionally important glucosinolates include sinigrin, glucobrassicin, 

neoglucobrassicin, 4-methoxyglucobrassicin, glucoraphanin, gluconasturtiin, and glucoerucin. 

Sinigrin and gluconasturtiin interrupt the cell cycle and cause apoptosis in cancer cells (Bell et 

al., 2018; Engel et al., 2002; Fenwick et al., 1983; Jakubikova et al., 2005; Sultana et al., 2003; 

Van Doorn et al. 1999). The indolyl glucosinolates (glucobrassicin, neoglucobrassicin, and 4-

methoxyglucobrassicin) may inhibit prostate cancer (Sarkar et al., 2004; Fenwick et al., 1983). 

Glucoraphanin also suppresses the formation of prostate cancer (Beaver et al., 2017; Bell et al., 

2017; Jones et al., 2006), and glucoerucin inhibits the proliferation of prostate and 

adenocarcinoma cells (Bennet et al., 2002; Jirovetz et al., 2002; Melchini et al., 2013). 

Glucoraphanin (aliphatic) comprises over half of the total glucosinolates found in broccoli. Other 
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common glucosinolates in broccoli belonging to the aliphatic class include sinigrin, progoitrin, 

gluconapin, as well as the indole glucosinolate, glucobrassicin (Badelek et al., 2012). 

Glucosinolate levels at harvest are mainly determined by genetic factors but can also be 

influenced by growing environment (Hanschen et al., 2014). Postharvest storage conditions, such 

as temperature and length of storage period, can also affect glucosinolate content (Jones et al., 

2006; Paulsen et al., 2018; Verkerk et al., 2009).  

In humans, glucosinolates act as chemoprotective agents, which have an influence on 

carcinogenesis during cancer development. Isothiocyanates and indoles, which are both autolytic 

breakdown products of glucosinolates, protect against many types of cancer at various stages of 

development, including the induction of phase II enzymes (detoxifying) and inhibition of phase I 

enzymes (activation) (Hanschen et al., 2012). The most effective glucosinolates for inducing the 

phase II enzymes that neutralize potential carcinogens in mammalian cells are sulforaphane, 

iberin, and erucin (Fahey et al., 2002; Hecht 2000; Zhang et al., 1994), which are the hydrolysis 

breakdown products of glucoraphanin, glucoiberin, and glucoerucin isothiocyanates, respectively 

(Velasco et al., 2008). Phase I enzymes metabolically activate most carcinogens in human cells. 

Inhibition of these phase I enzymes is required for the breakdown of some glucosinolates. 

Another potential chemo preventative mechanism of glucosinolates is their ability to regulate 

cancer cell development by interrupting the cell cycle and inducing apoptosis, and reducing 

metastasis and tumor growth. Also, these glucosinolate breakdown products have been known to 

block estrogen receptor function, preventing some cervical and breast cancers (Nilsson et al., 

2006). 

Volatiles impact the quality of broccoli by affecting flavor and aroma, which is known to 

change during postharvest storage (Zapata et al., 2013). Sulfur compounds are responsible for the 
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characteristic aroma associated with broccoli, and account for over 50% of the total volatile 

content in broccoli. Sulfuric volatiles are also the main chemicals responsible for off-odors 

produced by broccoli during senescence (Vidal-Aragon et al., 2009). These volatiles are formed 

due to cellular deterioration of lipid membranes and loss of intracellular compartmentalization, 

allowing enzymatic reactions to occur (Caleb et al., 2016; Forney et al., 1998). Previous studies 

have shown that increased membrane deterioration occurs at higher temperatures, which 

enhances aroma development (Chin et al., 1993; Dan et al., 1997). Because membrane 

deterioration is temperature dependent, different storage temperatures can result in the 

production of different volatiles (Jacobsson et al., 2004). Ketones and aldehydes make up less 

than 1% of the total volatile compounds found in broccoli. However, as aldehydes have a low 

olfactory detection threshold (i.e. highly sensitive) and characteristic aromas, this group of 

volatiles might play a part in broccoli aroma. (E)-2-hexenal is formed by the oxidative 

degradation of unsaturated fatty acids (Yu et al., 2009). It is described as having aromatic notes 

similar to freshly cut grass and bitter almonds (Vidal-Aragon et al., 2009). Aldehyde and ketone 

volatile contents tend to decrease during storage (Luo, 2018). 

This study aims to measure the effects of cooling and postharvest storage method on the 

glucosinolate and volatile contents for two cultivars of broccoli. This will help to determine the 

proper storage conditions for maintaining postharvest quality of broccoli grown and distributed 

along the U.S. East Coast. 
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Materials and Methods 

 Plant materials and storage. 

 Broccoli was supplied by the Upper Mountain Research Station in Laurel Springs, North 

Carolina. Broccoli was grown according to recommended management practices for the 

southeastern U.S. (Kemble et al., 2018). Broccoli was harvested when the majority of the heads 

had reached commercial maturity. The average head diameter was 8.4 cm ± 1.5. Two cultivars, 

‘BH053’ and ‘Emerald Crown,’ were harvested on 31 July 2019 and 5 Aug. 2019, respectively. 

The average head diameter of ‘BH053’ was 8.2 cm ± 1.4, while the average head diameter of 

‘Emerald Crown’ was 8.7 cm ± 1.5. Each cultivar was separated into two treatment groups 

immediately after harvest. One treatment group was cooled by top icing to remove field heat, 

while the other treatment group was cooled by submerging in an ice slurry. Broccoli was then 

transported to The University of Tennessee Institute of Agriculture for cold room storage. Top 

iced broccoli was cooled to 16 ⁰C ± 4 when it reached the storage cooler (Fig. 12) and the top 

icing had melted during transportation. Broccoli from this treatment group was then placed in 

cold storage and kept in waxed corrugated boxes without ice. The cold room temperature was 

maintained at 6 ⁰C ± 0.4 and the internal broccoli temperature was maintained at 7 ⁰C ± 1. For 

the other treatment group, broccoli that was placed in an ice slurry was cooled to 1 ⁰C ± 1 at 2 h 

after the slurry was applied. Broccoli from this treatment group was then placed in cold storage 

and kept in coolers filled with ice. The cold room temperature was maintained at 4⁰C ± 0.2 and 

the internal broccoli temperature was maintained at 0 ⁰C ± 0.3 (Fig. 12). Internal broccoli 

temperatures were recorded every 30 min with Watch Dog® data loggers (Spectrum® 

Technologies, Inc., Aurora, IL, USA). 
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 Postharvest analysis 

Broccoli was removed from storage at 0, 7, 14, 21, 28, and 35 days. Four replications of 

‘BH053’ and three replications of ‘Emerald Crown,’ consisting of two broccoli heads per 

replication, were subsampled for each cultivar and treatment combination. For each replication, 

3.0 g ± 0.1 fresh tissue was placed into clear glass headspace vials for immediate volatile 

analysis, and 30 g ± 1 fresh tissue was placed into plastic bags and stored in a -80 ⁰C freezer 

overnight, and frozen tissue was freeze-dried the following day. Freeze-dried tissue was ground 

to a fine powder, using a mortar and pestle in liquid nitrogen, for extraction and analysis. 

 Glucosinolate extraction and analysis 

Glucosinolates were extracted from broccoli tissue using a modified version of the method 

by Charron et al. (2005), and desulphated based on the procedure by Raney and MacGregor 

(1990). A 0.2 g ± 0.01 subsample of finely ground broccoli tissue was placed into a 16 x 100 mm 

glass centrifuge tube. 2.0 mL of methanol, 0.1 mL of 0.6 M barium-lead acetate, and 1.0 mL of 

benzyl glucosinolate standard solution were added to the centrifuge tube. Centrifuge tubes were 

shaken at 60 rpm for 60 min, then centrifuged at 2000 gn for 20 min. Next, 0.5 mL of supernatant 

from each sample was added to a 1.0 mL column containing 0.3 mL DEAE Sephadex A-25 

(Sigma-Aldrich). Columns were washed with 900 mL of 67% methanol, 900 mL of pyridine 

acetate, and 3.60 mL of water purified by reverse osmosis (RO water). A 0.5 mL solution of 

sulfatase was then added to each column. The following day, 900 mL of RO water was eluted 

through the columns and collected in 12 x 13 mm clear standard crimp top vials. 

Desulphonated glucosinolates were separated using an Agilent 1100 series high-performance 

liquid chromatography unit with a photodiode array detector (Agilent Technologies, Santa Clara, 

California). The column temperature was set at 40 ⁰C for a reverse-phase 250 x 4.6 mm i.d., 5 
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mm Luna C18 column (Phenomenex, Torrance, California) at a wavelength of 230 nm. The flow 

rate was set at 1.0 mL·min-1. The gradient elution was set to 100% pure water for 1 min, 

followed by a linear gradient to 75% water and 25% acetonitrile over 15 min. This was held 

constant for 5 min before returning to 100% pure water for 5 min. A comparison of retention 

times of authentic standards was used to identify glucosinolates (Hansen et al., 1995; Kushad et 

al., 1999). Glucosinolates were expressed on a dry mass basis in mg·g-1. Data were collected, 

recorded, and integrated using ChemStation Software (Agilent Technologies, Palo Alto, 

California). 

 Volatile extraction and analysis 

Whole floret tissue samples were collected immediately after removal from storage, and 3.0 

g ± 0.1 of broccoli was weighed into a headspace vial for immediate analysis. 

Volatiles were analyzed using an Agilent series 6890 Network Gas Chromatography System 

with an Agilent series 5973 Mass Selective Detector and a G1888 Agilent series and a Headspace 

Sampler (Agilent Technologies, Santa Clara, California). Volatiles were identified based on 

previously calibrated standard curves. Data were collected, recorded, and integrated using 

ChemStation Software (Agilent Technologies, Palo Alto, California). 

 Statistical analysis 

SAS statistical software (9.4 for Windows; SAS Institute, Cary, North Carolina) was used for 

the analyses of data. Cultivar, storage temperature, storage time, and their interactions were 

treated as fixed factors, while replication was considered the random factor. Analysis of variance 

(ANOVA) tests were performed using the GLIMMIX procedure, and means were compared by 

the least significant difference (LSD) test (α = 0.05). ANOVA results are presented for 

glucosinolates (Table 15) and volatiles (Table 16). 
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Results  

 Glucosinolates, effects of cultivar. 

Cultivar had a significant impact on 4-methoxyglucobrassicin (F = 23.34, df = 1, 57, and p ≤ 

0.0001), neoglucobrassicin (F = 32.32, df = 1, 57, and p ≤ 0.0001), gluconasturtiin (F = 7.96, df 

= 1, 57, p ≤ 0.01), glucosinalbin (F = 11.62, df = 1, 57, and p ≤ 0.01), glucoraphanin (F = 13.24, 

df = 1, p ≤0.001), epiprogoitrin (F = 142.46, df = 1, 57, and p ≤ 0.0001), progoitrin (F = 43.06, df 

= 1, 57, and p ≤ 0.0001), glucoerucin (F = 46.59, df = 1, 57, and p ≤ 0.0001), gluconapin (F = 

11.10, df = 1, 57, and p ≤ 0.01), total indole (F = 32.81, df = 1, 57, and p ≤ 0.0001), and total 

glucosinolate (F = 15.89, df = 1, 57, and p ≤ 0.001) contents (Table 17). ‘Emerald Crown’ had 

significantly higher levels of 4-methoxyglucobrassicin, neoglucobrassicin, gluconasturtiin, 

glucoraphanin, progoitrin, glucoerucin, gluconapin, total indole, and total glucosinolate contents, 

while ‘BH053’ had significantly greater glucosinalbin and epiprogoitrin contents. For ‘BH053,’ 

glucobrassicin was the most dominant glucosinolate, followed by glucoraphanin and 

neoglucobrassicin. Neoglucobrassicin, glucobrassicin, and glucoraphanin were the dominant 

glucosinolates for ‘Emerald Crown.’ 

 Glucosinolates, effects of cooling/storage method. 

Storage temperature significantly affected glucobrassicin (F = 7.95, df = 1, 57, and p ≤ 0.01), 

gluconasturtiin (F = 9.31, df = 1, 57, and p ≤ 0.01), glucoraphanin (F = 7.85, df = 1, 57, and p ≤ 

0.01), epiprogoitrin (F = 34.00, df = 1, 57, and p ≤ 0.0001), glucobarbarin (F = 5.24, df = 1, 57, 

and p ≤ 0.05), total aliphatic (F = 8.70, df = 1, 57, and p ≤ 0.01), total aromatic (F = 8.77, df = 1, 

57, and p ≤ 0.01), and total glucosinolate (F = 5.80, df = 1, 57, and p ≤ 0.05) contents (Table 18). 

Broccoli that was ice slurry cooled and stored at 0 ⁰C in ice had significantly higher 

glucobrassicin, gluconasturtiin, glucoraphanin, and glucobarbarin contents than broccoli that was 
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top icing cooled and stored at 7 ⁰C without ice. Broccoli stored at 7 ⁰C had significantly higher 

epiprogoitrin content than broccoli stored at 0 ⁰C in ice. Storage time alone did not significantly 

impact glucosinolate content (Table 19). 

 Glucosinolates, interaction of cultivar and storage method. 

Interaction effects between cultivar and storage temperature were significant for 

epiprogoitrin (F = 142.46, df = 1, 57, and p ≤ 0.001) content alone (Table 20). For ‘BH053,’ 

epiprogoitrin content was significantly greater for ice slurry cooled broccoli stored at 0 ⁰C in ice 

than for top icing cooled broccoli stored at 7 ⁰C. For ‘Emerald Crown,’ epiprogoitrin levels were 

unaffected by storage temperature and were significantly lower than epiprogoitrin levels for 

‘BH053’ stored at either temperature.  

Interaction effects between cultivar and storage time were significant for glucobrassicin (F = 

2.64, df = 5, 57, and p ≤ 0.05), 4-methoxyglucobrassicin (F = 4.08, df = 5, 57, and p ≤ 0.01), 

gluconasturtiin (F = 2.44, df = 5, 57, and p ≤ 0.05), glucosinalbin (F = 4.28, df = 5, 57, and p ≤ 

0.01), epiprogoitrin (F = 4.38, df = 5, 57, and p ≤ 0.01), total aliphatic (F = 2.59, df = 5, 57, and p 

≤ 0.05), and total aromatic (F = 2.94, df = 5, 57, and p ≤ 0.05) contents (Table 21 and 22). 

Glucobrassicin, 4-methoxyglucobrassicin, and gluconasturtiin contents were significantly greater 

for ‘Emerald Crown’ than for ‘BH053’ at 0 d in storage. After that, glucobrassicin levels did not 

vary significantly for either cultivar. 4-methoxyglucobrassicin content at 14 and 21 d was 

significantly greater for ‘Emerald Crown’ than for ‘BH053’ but then decreased for the remaining 

days in storage. For ‘BH053,’ 4-methoxyglucobrassicin remained stable. Gluconasturtiin content 

did not significantly vary for either cultivar. However, gluconasturtiin levels decreased during 

storage for ‘Emerald Crown’ but increased for ‘BH053.’ Glucosinalbin levels decreased 

throughout the first 28 d in storage for ‘Emerald Crown,’ then increased at 35 d, but not 
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significantly. For ‘BH053,’ glucosinalbin content significantly increased at 14 d, then 

significantly decreased at 21 d but did not significantly vary after that. Glucosinalbin levels were 

significantly greater for ‘BH053’ than for ‘Emerald Crown’ at 14 and 28 d in storage. 

Epiprogoitrin levels decreased for ‘Emerald crown’ at 7 d, but not significantly, then remained 

stable. In contrast, epiprogoitrin content significantly increased at 7 d, then remained stable. 

Total aliphatic and aromatic glucosinolate contents were significantly greater for ‘Emerald 

Crown’ than for ‘BH053’ at 0 d in storage. For ‘BH053,’ total aliphatic contents remained stable 

throughout the entire duration of storage, while total aliphatic contents for ‘Emerald Crown’ 

significantly decreased from their initial levels at 14 d and remained stable after that. Total 

aromatic contents were significantly greater than their initial levels at 14 and 21 d in storage, but 

did not significantly vary other than that. In contrast, total aromatic contents decreased 

throughout storage for ‘Emerald Crown,’ but were only significantly lower than their initial 

levels at 28 d in storage.  

Interaction effects between storage temperature and storage time were significant for 4-

methoxyglucobrassicin (F = 3.00, df = 5, 57, and p ≤ 0.05), glucosinalbin (F =2.80, df = 5, 57, 

and p ≤ 0.05), glucoerucin (F = 2.72, df = 5, 57, and p ≤ 0.05), and epiprogoitrin (F = 3.64, df = 

5, 57, and p ≤ 0.01) contents (Table 23). 4-methoxyglucobrassicin content was significantly 

greater for broccoli stored at 0 ⁰C on the day of harvest but significantly decreased at 7 d, then 

continued to decrease for the remaining duration of storage, but not significantly. In contrast, for 

broccoli stored at 7 ⁰C without ice, 4-methoxyglucobrassicin content significantly increased at 14 

d, then began to decrease, but not significantly. Glucosinalbin content remained stable 

throughout the entire 5-week duration of storage for broccoli stored at 0 ⁰C in ice, and was 

significantly greater than glucosinalbin content for broccoli stored at 7 ⁰C at 35 d. Glucosinalbin 
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content significantly increased at 14 d for broccoli stored at 7 ⁰C, then began to decrease. 

Epiprogoitrin levels decreased throughout the duration of storage for broccoli stored at 7 ⁰C, but 

not significantly. For broccoli stored at 7 ⁰C, epiprogoitrin levels significantly increased at 28 d, 

then significantly decreased at 35 d in storage. Compared to storage at 7 ⁰C, broccoli stored at 0 

⁰C had significantly higher epiprogoitrin content when in storage for 14, 28, or 35 d. 

The interaction between cultivar, cooling temperature, and storage time significantly affected 

4-methoxyglucobrassicin (F = 2.39, df = 5, 57, and p ≤ 0.05) and epiprogoitrin (F = 4.38, df = 5, 

57, and p ≤ 0.001) contents (Table 24). For ‘BH053,’ 4-methoxyglucobrassicin content did not 

significantly vary during storage for broccoli stored at either temperature. However, 4-

methoxyglucobrassicin content for ‘Emerald Crown’ significantly increased at 14 d for broccoli 

stored at 7 ⁰C, then significantly decreased at 28 d and remained stable from 28 to 35 d. In 

contrast, 4-methoxyglucobrassicin content significantly decreased at 7 d for broccoli stored at 0 

⁰C, then continued to decrease and was no longer detected when stored for 35 d. Epiprogoitrin 

content did not significantly vary for broccoli receiving either treatment for ‘Emerald Crown.’ 

For ‘BH053,’ epiprogoitrin content significantly decreased at 28 d for broccoli stored in 7 ⁰C. In 

contrast, epiprogoitrin levels significantly increased at 7, 14, and 28 d for broccoli stored at 0 ⁰C 

in ice, then significantly decreased at 35 d in storage. 

 Volatiles, effects of cultivar. 

Cultivar had a significant effect on the dimethyl disulfide (F = 36.81, df = 1, 57, and p ≤ 

0.0001) and (E)-2-hexenal (F = 5.28, df = 1, 57, and p ≤ 0.05) contents in broccoli (Fig. 13 and 

14). ‘Emerald Crown’ had significantly higher dimethyl disulfide and (E)-2-hexenal contents 

than ‘BH053.’ 
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 Volatiles, effects of cooling/storage method. 

Storage temperature had a significant effect on the dimethyl disulfide (F = 24.65, df = 1, 57, 

and p ≤ 0.0001) content alone (Fig. 15). Dimethyl disulfide content was significantly greater for 

top icing cooled broccoli stored at 7 ⁰C than for ice slurry cooled broccoli stored at 0 ⁰C in ice. 

Storage time had a significant effect on dimethyl disulfide (F = 9.04, df = 5, 57, and p ≤ 0.0001), 

dimethyl sulfide (F = 23.50, df = 5, 57, and p ≤ 0.0001), (E)-2-hexenal (F = 7.91, df = 5, 57, and 

p ≤ 0.0001), (E)-2-pentenal (F = 9.91, df = 5, 57, and p ≤ 0.0001), 2-ethylfuran (F = 10.86, df = 

5, 57, and p ≤ 0.0001), and propanal (F = 5.65, df = 5, 57, and p ≤ 0.001) contents (Figs.16 – 19). 

Dimethyl disulfide concentration significantly decreased at 7 d in storage, then significantly 

increased at 21 d in storage. Dimethyl disulfide content continued to increase at 28 and 35 d in 

storage and reached a final content level that was significantly greater than the initial value at 

harvest. Dimethyl sulfide significantly decreased from its initial value at 7 d in storage, then 

significantly increased at 28 and 35 d and reached a final content level that was significantly 

greater than its initial value at harvest. Propanal content significantly increased at 7 d in storage, 

then decreased at 14 and 21 d in storage, but not significantly. Propanal levels significantly 

decreased at 28 d, then remained stable from 28 to 35 d in storage. (E)-2-hexanal content 

remained stable throughout the first 14 d in storage, then significantly decreased at 21 d. After 

that, (E)-2-hexenal content decreased at 28 d, but not significantly, and was no longer detected 

when stored for 35 d. Both (E)-2-pentenal and 2-ethylfuran contents significantly increased at 7 

d, then significantly decreased at 21 d, and were no longer detected when stored for 35 d. 

 Volatiles, interaction of cultivar and storage method. 

Dimethyl sulfide (F = 4.43, df = 5, 57, and p ≤ 0.01) content alone was significantly affected 

by the interaction between cooling/storage temperature treatment and storage time (Fig. 20). For 
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broccoli stored at 7 ⁰C without ice, dimethyl sulfide contents were only significantly greater than 

their initial levels at 35 d in storage. For broccoli stored at 0 ⁰C in ice, dimethyl sulfide contents 

significantly decreased at 7 d in storage. After that, dimethyl sulfide levels began to increase for 

the remaining weeks in storage, but were only significantly greater than their initial levels when 

stored for 35 d. 

Interaction effects between cultivar and storage time were significant for dimethyl disulfide 

(F = 10.98, df = 5, 57, and p ≤ 0.0001), dimethyl sulfide (F = 7.37, df = 5, 57, and p ≤ 0.0001), 

(E)-2-hexenal (F = 4.91, df = 5, 57, and p ≤ 0.001), (E)-2-pentenal (F = 6.68, df = 5, 57, and p ≤ 

0.0001), 2-ethylfuran (F = 6.20, df = 5, 57, and p = 0.0001), and propanal (F = 2.88, df = 5, 57, 

and p ≤ 0.05) contents (Table 25 ). For ‘BH053,’ dimethyl disulfide contents significantly 

decreased from their initial contents at 7 d in storage. At 21 d, dimethyl disulfide contents began 

to increase, but not significantly. For ‘Emerald Crown,’ dimethyl disulfide contents increased 

throughout the duration of storage but were only significantly greater from their initial levels at 

28 and 35 d in storage. For ‘BH053,’ dimethyl sulfide contents significantly decreased from their 

initial levels at 7 d in storage. Dimethyl sulfide levels remained stable until they significantly 

increased at 35 d in storage. For ‘Emerald Crown,’ dimethyl sulfide contents were only 

significantly greater from their initial levels when stored for 28 and 35 d. For ‘BH053,’ (E)-2-

hexenal, (E)-2-pentenal, propanal, and 2-ethylfuran contents were only detected during 7 – 28 d 

in storage. For ‘Emerald Crown,’ propanal was detected throughout the entire duration of 

storage, (E)-2-hexenal and 2-ethylfuran were only detected during 0 – 21 d in storage, and (E)-2-

pentenal contents were only detected during 0 – 14 d in storage. When present, (E)-2-hexenal 

levels remained stable for ‘BH053’ but significantly decreased at 21 d in storage for ‘Emerald 

Crown.’ (E)-2-pentenal levels significantly increased at 14 d, then significantly decreased at 28 d 
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for ‘BH053,’ while (E)-2-pentenal contents significantly increased at 7 d and remained stable 

from 7 to 14 d in storage for ‘Emerald Crown.’ Propanal contents only significantly decreased at 

28 d in storage for ‘BH053,’ while propanal contents decreased throughout the entire duration of 

storage for ‘Emerald Crown,’ but not significantly. For ‘BH053,’ 2-ethylfuran contents 

significantly decreased at 21 d, then significantly increased at 28 d in storage. For ‘Emerald 

Crown,’ 2-ethylfuran contents increased at 7 d in storage, then decreased at 14 and 21 d, but not 

significantly. 

Discussion 

 Glucosinolates, effects of cultivar. 

Glucosinolates contribute to the taste and flavor of Brassica crops (Schonhof et al., 2004), 

and are thought to be responsible for the bitterness associated with these plants (Bell et al., 2017; 

Drewndowski et al., 2000). Sinigrin, glucoiberin, and glucoraphanin are glucosinolates that have 

been associated with typical Brassicaceae flavors. Higher glucosinolate levels in broccoli are 

linked with stronger flavor, but levels too high can negatively impact consumer acceptance (Bell 

et al., 2017; Hansen et al., 1997). Sinigrin, gluconapin, progoitrin and epiprogoitrin, 

glucobrassicin, neoglucobrassicin, and 4-methoxyglucobrassicin have been identified as the main 

glucosinolate compounds responsible for bitterness (Engel et al., 2002; Jones et al., 2006; 

Frandsen et al., 2014). Isothiocyanates (ITC) of sinigrin (allyl ITC) and gluconapin (3-Butenyl 

ITC) are also responsible for pungent or acrid flavors and aromas (Bell et al., 2018; Depree et al., 

1999), and the aromatic hydrolysis product of glucosinalbin (4-Hydroxybenzyl ITC) can cause 

an intense burning sensation when consumed (Ghawi et al., 2014). Glucosinolates, such as 

glucoraphanin, glucoerucin and glucoiberin, are not associated with bitterness in Brassica 

vegetables. Breakdown products of glucoraphanin and glucoiberin are semi-volatile and are 
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unlikely to contribute greatly to flavor (Traka et al, 2009). Glucoerucin has a “radish” aroma, but 

a low intensity (Raffo et al., 2018). In arugala, glucoraphanin and glucoerucin were not 

significantly correlated with bitterness or consumer rejection (Bell et al., 2017). Off-odors are 

also often attributed to glucosinolate and isothiocyanate contents in broccoli. These odors are 

often described as “sulfurous,” “earthy,” or “musty” (Chen et al., 2017). Although previous 

studies (Baik et al., 2003; Cartea et al., 2008) reported that sulfides and VOCs, rather than 

glucosinolates, significantly affected taste and flavor in Brassica plants, recent studies have 

found that glucosinolates and ITCs may have a very low detection threshold and could contribute 

to flavor and aroma more than previously realized (Bell et al., 2017). Glucosinolates and their 

degradation products also receive much attention due to their beneficial health effects (Bell et al., 

2017). Sinigrin, glucobrassicin, neoglucobrassicin, 4-methoxyglucobrassicin, glucoraphanin, 

gluconasturtiin, and glucoerucin are nutritionally important compounds known for their role in 

the prevention of cancer development and cardiovascular and neurodegenerative disorders (Bell 

et al., 2017; Dinkova-Kostova et al, 2012; Giaccopo et al., 2017; Halkier et al., 2006; Hayes et 

al., 2008), while epiprogoitrin and progoitrin are potentially harmful glucosinolates. Their 

breakdown product, goitrin, competes for iodine in humans. For thyroid impaired or iodine 

deficient individuals, this can cause the condition known as goiter (Steinmetz et al., 1991). 

Glucobrassicin is the most abundant glucosinolate reported for ‘Parthenon,’ ‘Monaco’ 

(Fernández-Leon et al., 2012), ‘Marathon’ (Rosa and Rodrigues, 2001; Rybarczyk-Plonska et al., 

2016; Vallejo et al., 2003), ‘Shogun’ (Kushad et al., 1999), and ‘Legacy’ (Paulsen et al., 2018) 

broccoli. However, other studies reported glucoraphanin as the dominant glucosinolate in 

‘Sebastian’ (Cieślik et al., 2007), ‘Youxiu’ (Jia et al., 2009), ‘Lvxiong’ (Yuan et al., 2010), 

‘Beneforte’ (Bell et al., 2018), and others (Jones et al., 2006; Oliviero et al., 2012; Song and 
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Thornalley, 2007). In this study, glucobrassicin was the most abundant glucosinolate for 

‘BH053,’ while neoglucobrassicin was dominant for ‘Emerald Crown.’ Although glucoraphanin 

and glucobrassicin appear to be the major glucosinolates present in broccoli, other glucosinolates 

have shown cultivar-dependent distribution patterns. Significant differences among multiple 

cultivars have been reported for progoitrin, glucoraphanin, sinigrin, gluconapin, glucoerucin, and 

glucobrassicin (Bhandari et al., 2014). The interaction between cultivar and storage time 

significantly affected epiprogoitrin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, 

glucosinalbin, total aliphatic, and total aromatic contents in broccoli. These compounds, except 

for glucosinalbin, either increased or remained stable during storage for ‘BH053,’ but decreased 

during storage for ‘Emerald Crown.’ Glucosinalbin content for ‘BH053’ increased throughout the 

first 28 d in storage, then decreased at 35 d. For ‘Emerald Crown,’ glucosinalbin content 

decreased throughout the first 28 d, then increased at 35 d. Aliphatic glucosinolates remained 

stable throughout storage for ‘BH053,’ while aliphatic contents for ‘Emerald Crown’ 

significantly decreased at 14 d in storage, then remained stable from 14 to 35 d. Aromatic 

glucosinolates increased at 7, 14, and 28 d in storage for ‘BH053,’ but not significantly. Although 

not significant, aromatic glucosinolate contents decreased at 7 and 28 d in storage, then increased 

at 35 d for ‘Emerald Crown.’ Aliphatic glucosinolates, such as epiprogoitrin, are predominately 

under genetic control (Magrath et al., 1994), while indole glucosinolates, such as glucobrassicin 

and 4-methoxyglucobrassicin, are thought to be determined by environmental and physiological 

factors (Kushad et al., 1999; Mithen et al., 1995). Differences in cultivar for both aliphatic and 

indole glucosinolates suggest that both genetic and environmental/physical factors may have 

played a role in regulating glucosinolate concentrations in broccoli. Results from this study show 

that ‘Emerald Crown’ had significantly higher initial levels of nutritionally important 
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glucosinolates, glucobrassicin, 4-methoxyglucobrassicin, and gluconasturtiin. However, ‘BH053’ 

was able to prevent the loss of these glucosinolates in storage. Thus, the quality of broccoli after 

long term storage may be higher for ‘BH053’ than for ‘Emerald Crown.’ Although the presence 

of glucoraphanin and glucoerucin, non-taste affecting compounds, was significantly higher for 

‘Emerald Crown,’ it’s sensory quality may be adversely affected due to significantly higher 

levels of glucosinolates that may contribute to bitterness, such as progoitrin, gluconapin, 4-

methoxyglucobrassicin, and neoglucobrassicin (Bell et al., 2017). 

 Glucosinolates, effects of cooling/storage method. 

Glucosinolate levels at harvest are mainly determined by genetic factors but can also be 

influenced by growing environment (Schreiner, 2005; Charron and Sams, 2004) and postharvest 

storage conditions (Jones et al., 2006; Rybarczyk-Plonska et al., 2015; Verkerk et al., 2009). The 

rate of cellular damage increases during storage at higher temperatures, affecting glucosinolate 

content (Latté et al., 2011).  In this study, epiprogoitrin, glucoraphanin, glucobarbarin, 

glucobrassicin, gluconasturtiin, average aliphatic, average aromatic, and average total 

glucosinolate contents were significantly greater for broccoli precooled with ice and stored at 0 

⁰C in ice than for broccoli precooled with top icing and stored at 7 ⁰C. The interaction between 

storage temperature and storage time significantly affected epiprogoitrin, glucoerucin, 

glucobrassicin, 4-methylglucobrassicin, and glucosinalbin contents. In this study, glucobrassicin 

significantly decreased at 35 d in storage for broccoli precooled with an ice slurry and stored at 0 

⁰C in ice, but remained stable throughout the entire duration of storage for broccoli precooled 

with top icing and stored at 7 ⁰C. However, previous studies found that glucobrassicin remained 

stable for broccoli stored for 28 d at 1 to 2 ⁰C (Winkler et al., 2007) and for broccoli stored 21 d 

at 4 ⁰C (Paulsen et al., 2018). In this study, 4-methoxyglucobrassicin content significantly 
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increased at 14 d in storage at 7 ⁰C, then began to decrease for the following weeks in storage. 

Similarly, previous studies reported that 4-methyoxyglucobrassicin contents increased for 

broccoli stored for 21 d at 4 ᵒC (Paulsen et al., 2018), 5 d at 4 ⁰C (Rodrigues and Rosa et al., 

1999), and 7 d at 4 ⁰C (Rybarczyk-Plonska et al., 2015). In contrast, 4-methoxyglucobrassicin 

content decreased throughout the entire duration of storage for broccoli stored at 0 ⁰C in ice. 

Glucosinalbin content significantly increased at 14 d in storage at 7 ⁰C, then began to decrease. 

For broccoli stored at 0 ⁰C, glucosinalbin content decreased at 14 d in storage, then increased at 

28 and 35 d, but not significantly. In this study glucoerucin content increased during storage at 7 

⁰C but decreased for broccoli stored at 0 ⁰C in ice. In contrast, Pardo et al. (2014) reported stable 

levels of glucoerucin for broccoli stored for 3 d at 15 ⁰C. In this study, epiprogoitrin increased at 

7 and 14 d, then decreased during in storage at 7 ⁰C. For broccoli stored at 0 ⁰C, epiprogoitrin 

increased at 14 and 28 d in storage, then decreased at 35 d. Rodrigues and Rosa (1999) found 

that progoitrin remained stable for broccoli stored for 5 d at 4 ⁰C in cling wrap, while others 

reported a significant decrease in progoitrin content for broccoli stored for 5 d at 4 ⁰C (Jia et al., 

2009). For broccoli precooled with top icing and stored at 7 ⁰C without ice, total glucosinolate 

content remained stable throughout the entire duration of storage. Similarly, previous studies 

found that total glucosinolate content remained stable for broccoli stored for 5 d at 4 ⁰C 

(Rodrigues and Rosa, 1999), 4 or 7 d at 4 ⁰C (Rybarczyk-Plonska et al., 2015), 7 d at 4 to 8 ⁰C 

(Song and Thornally, 2007), 7 d at 4 ⁰C in modified atmosphere packaging (MAP) (Rangkadilok 

et al., 2002), 21 d at 4 and 8 ⁰C in MAP (Paulsen et al., 2018), 21 d at 1 to 2 ⁰C (Fernández-Leon 

et al., 2013), and 28 d at 1 ⁰C (Winkler et al., 2007). In contrast, total glucosinolate content 

significantly decreased for broccoli precooled with an ice slurry and stored at 0 ⁰C in ice. 

Similarly, Vallejo et al. (2003) found a decrease in total glucosinolate content in packaged 
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broccoli stored for 7 d at 1 ⁰C. Stable glucoraphanin levels were reported for broccoli stored for 

28 d at 1 to 2 ⁰C (Winkler et al., 2007), and 10 d at 4 ⁰C (Rangkadilok et al., 2002). Although 

glucoiberin, progoitrin, gluconasturtiin, and neoglucobrassicin contents remained stable, 

glucobrassicin and glucoraphanin contents significantly decreased in primary florets stored for 5 

d at 4 ⁰C (Rodrigues and Rosa, 1999). Paulsen et al. (2018) found that glucobrassicin and 

neoglucobrassicin contents remained stable for broccoli stored for 21 d at 4 ⁰C. They also 

reported stable glucoraphanin levels during storage for 14 d at 4 ⁰C but decreased glucoraphanin 

content at 21 d. In this study, glucoraphanin and neoglucobrassicin contents significantly 

decreased at 7 d, then remained stable. However, these compounds remained stable throughout 

the entire 5-week duration of storage for broccoli precooled with top icing and stored at 7 ⁰C . 

Storage conditions, such as temperature and time, affect both total and individual 

glucosinolate contents in broccoli (Paulsen 2018). Glucosinolate content in storage is dependent 

on two mechanisms, hydrolysis and biosynthesis. A balance between these two mechanisms may 

help prevent the loss of glucosinolates during storage, but these mechanisms are still unclear 

(Fernández-Leon et al., 2013; Rybarczyk-Plonska et al., 2016). Results from this study suggest 

that the expression of genes controlling the biosynthesis of nutritionally important 

glucosinolates, 4-methoxyglucobrassicin and glucoerucin, may have been activated at 14 d of 

storage for broccoli precooled with top icing and stored at 7 ⁰C, but not for broccoli precooled 

with an ice slurry and stored at 0 ⁰C in ice. Studies report that stresses, such as high temperatures, 

cause activation of primary and secondary metabolism, which increases glucosinolates during 

postharvest storage (Villarreal-Garcia et al., 2016). Thus, increased levels of 4-

methoxyglucobrassicin and glucoerucin during storage at 7 ⁰C may have been a result of greater 

tissue damage that occurred during the longer precooling phase, which caused the expression of 
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genes controlling glucosinolate biosynthesis (Torres-Contreras et al., 2017). The significant loss 

and subsequent stabilization of 4-methoxyglucobrassicin and glucoerucin at 7 d in storage for 

broccoli precooled with an ice-slurry and stored at 0 ⁰C in ice supports this idea. Levels of these 

compounds may have been significantly higher on the day of harvest because precooling with an 

ice slurry helped to slow down the rate of respiration faster than top icing, decreasing the rate of 

deterioration (Deschene et al., 1991; Jacobsson et al., 2014; Nilsson, 2000). This would have 

prevented myrosinase from coming into contact with glucosinolates (Latté et al., 2011), 

preventing the immediate loss of 4-methoxyglucobrassicin and glucoerucin. Because these 

compounds significantly decreased at 7 d in storage at 0 ⁰C, the rate of deterioration may not 

have been great enough to initiate biosynthesis but did allow for hydrolysis to occur (Grubb and 

Abel, 2006). However, this may not be true for other health promoting glucosinolates, including 

glucobrassicin, neoglucobrassicin, glucoraphanin, and gluconasturtiin. In contrast to 4-

methoxyglucobrassicin and glucoerucin, both glucobrassicin and gluconasturtiin slightly 

increased at 28 d for broccoli stored at 0 ⁰C in ice but increased at 7 d for broccoli stored at 7 ⁰C. 

Thus, biosynthesis of new glucobrassicin and gluconasturtiin compounds seems to have been 

activated for broccoli stored at either temperature but occurred earlier for broccoli stored at 7 ⁰C. 

Similar to 4-methoxyglucobrassicin and glucoerucin, neoglucobrassicin content significantly 

decreased, then remained stable throughout storage at 0 ⁰C in ice. However, neoglucobrassicin 

content remained stable throughout storage at 7 ⁰C. This may have been due to a balance 

between mechanisms controlling biosynthesis and hydrolysis (Paulsen et al., 2018), which 

allowed neoglucobrassicin levels to remain stable during storage. These results suggest that 

maintenance of healthful glucosinolates is influenced by precooling and subsequent storage 
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conditions, and that the degree to which glucosinolates are affected by these conditions varies for 

individual compounds. 

 Volatiles, effects of Cultivar. 

Flavor and aroma are important indicators of quality in produce (Ye et al., 2017). The 6-C 

aldehyde, (E)-2-Hexenal, has a characteristic green odor associated with the sensory perception 

of freshness (Hatanaka et al., 1996), and plays an important role in the flavor of Brassica 

vegetables (Banerjee et al., 2013). (E)-2-pentenal is monosaturated fatty aldehyde, described as 

having a fresh fruit odor and flavor (Maga 1981; Ullrich and Grosch, 1988), while propanal is a 

saturated 2-C aldehyde, described as having a solvent, pungent odor. The furan compound, 2-

ethylfuran, has a sweet, roasted, coffee odor (Birch et al., 2012). These compounds are formed 

by enzymatic oxidation of fatty acids. Sulfurous compounds are problematic in Brassicas 

because of their low detection threshold in humans (0.04 ppb) (Bell et al., 2017; Lindsay et al., 

1986). Sulfides, including dimethyl disulfide and dimethyl sulfide, are responsible for off-odors 

released by broccoli during senescence, and are often associated with undesirable aroma and 

flavor attributes (Bell et al., 2017; Chin et al., 1993; Engel et al., 2002; Forney et al., 1991; 

Hansen et al., 1992; Jacobsson et al., 2004). 

Volatile contents vary according to species, cultivar, and developmental stage of the plant 

(Schaich et al., 2012). Distribution of these compounds have a significant impact on the aroma 

and quality of vegetables (Banerjee et al., 2013). Previous studies have used sulfurous compound 

contents to compare cultivars (Di Cesare et al., 2001). Vidal-Aragon et al. (2009) found 

significantly higher levels of dimethyl disulfide for ‘Merit’ than for ‘Marathon,’ ‘Nubia,’ 

‘Parthenon,’ Samson,’ or ‘Shena.’ However, they did not observe a significant difference in 

dimethyl sulfide content among cultivars. Although there was no significant difference in the 
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average total dimethyl sulfide content, average total dimethyl disulfide was significantly greater 

for ‘Emerald Crown’ than for ‘BH053.’ Dimethyl disulfide and dimethyl sulfide contents 

decreased at 7 d in storage, then began to increase at 21 d in storage and continued to increase for 

‘BH053.’ These results are similar to those reported for ‘Marathon,’ in which dimethyl disulfide 

also significantly decreased at 7 d in storage (Caleb et al., 2016). In contrast, dimethyl disulfide 

and dimethyl sulfide contents of ‘Emerald Crown’ only began to increase at 28 d in storage. 

Sulfide contents vary widely among cultivars and maturity stage in Brassica species (Raseetha et 

al., 2013). Availability of precursors for hydrolysis, presence of enzymes, and accessibility 

between substrate and enzymes are key factors involved in volatile formation (Hansen et al., 

1996). Genetic variation among cultivars may affect the presence of volatile precursors, such as 

glucosinolates (Lewis and Fenwick 1987). Cultivar may also have an effect on S-methylcysteine 

sulfoxide (SMCO) content as well (Bradshaw and Borzucki, 1983). Dimethyl disulfide originates 

from either the rupture of S-methyl-Lcysteine sulphoxide (Di Pentima et al., 1995) or from 

methanethiol (Chin and Lindsay, 1994), while dimethyl sulfide can be derived from S-methyl 

methionine. The rate of deterioration may also differ among cultivars, which would affect 

presence and accessibility between substrate and enzymes (Hansen et al., 1996). Thus, the 

significant difference in sulfurous volatile production for these two cultivars may be due to the 

genetic control of key factors relating to volatile formation during postharvest storage of 

broccoli. 

Volatiles detected in this study were consistent with those responsible for the green leaf 

aroma in Brassica plants (Jirovetz et al., 2002). Aragon et al. (2009) found significantly greater 

levels of (E)-2-hexenal content for ‘Merit’ and ‘Nubia’ than for ‘Marathon,’ ‘Parthenon,’ 

‘Samson,’ Serydan,’ or ‘Shena.’ In this study, (E)-2-hexenal content was significantly greater for 
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‘Emerald Crown’ than for ‘BH053.’ For ‘Emerald Crown,’ propanal content decreased 

throughout the duration of storage, and (E)-2-hexenal, (E)-2-pentenal, and 2-ethylfuran were 

only detected during the first 14 or 21 d in storage. In contrast, for ‘BH053,’ these compounds 

were not detected on the day of harvest or at 35 d in storage. Lipase enzymes hydrolyze fatty 

acids, releasing them from membrane lipids. Fatty acids are then acted upon by lipoxygenase and 

hydroperoxide lyase, leading to formation of aldehydes and furan (Banerjee et al., 2013; 

Hatanaka et al., 1996). Genetic differences among cultivars may play a role in regulating 

lipoxygenase activity in broccoli (Raseetha et al., 2014). This would explain the difference 

between volatile contents for ‘Emerald Crown’ and ‘BH053.’ However, because these volatiles 

are associated with wounded tissues in plants, significant variation among cultivars may be due 

to the rate of tissue deterioration (Banerjee et al., 2013). 

 Volatiles, effects of storage/cooling method. 

Tissue disruption and cellular deterioration are thought to enhance aroma production 

(Jacobsson et al., 2004; Tulio et al., 2013; Chin and Lindsay et al., 1993). Sulfur compounds are 

derived from sulfur precursors or from degradation of volatiles derived from glucosinolate 

breakdown (Banerjee et al., 2013). Temperature influences changes in aroma compounds during 

storage (Raseetha et al., 2014). Higher storage temperatures lead to increased cellular damage, 

which allows enzymes to mix uncontrollably with potential substrates, producing sulfurous 

volatiles (Travers-Martin et al., 2008). During storage, S-methylmethionine is degraded to S-

methylmethionine sulfonium salt to dimethyl sulfide (Scherb et al., 2009), while dimethyl 

disulfide is derived from S-methylcysteine sulfoxide that is acted upon by cysteine sulfoxide 

lyase or from oxidation of methanethiol (Chin and Lindsay, 1994). Caleb et al. (2016) found that 

dimethyl disulfide content significantly increased at 4 d in storage, then significantly decreased 
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at 7 d and remained stable from 7 to 11 d in storage, while dimethyl sulfide content significantly 

increased at 7 d, then remained stable from 7 to 11 d. In this study, dimethyl disulfide content 

alone was significantly affected by treatment, while dimethyl sulfide was the only volatile 

affected by the interaction between treatments and storage time. Dimethyl disulfide content was 

significantly greater for broccoli precooled with top icing and stored at 7 ⁰C than for broccoli 

precooled with an ice slurry and stored at 0 ⁰C in ice. During storage, dimethyl disulfide content 

significantly decreased at 7 d, then significantly increased at 21 d and continued to increase. 

Similarly, Jacobsson et al. (2004) found that production of dimethyl disulfide and dimethyl 

sulfide was greater for broccoli stored at 10 ⁰C compared to 4 ⁰C, and Caleb et al. (2016) found 

that dimethyl disulfide accumulated in the headspace of packaged broccoli stored for 11 d at 10 

⁰C. Chen et al. (2019) found that sulfur compounds significantly increased in broccoli during 

storage for 0, 6, and 12 d at 4 ⁰C, and dimethyl sulfide was reported to increase continually 

during storage for Brassica species (Hacer et al., 2015; Lv et al., 2017). In this study, dimethyl 

sulfide did not significantly increase until 35 d in storage for broccoli stored at 7 ⁰C. For broccoli 

stored at 0 ⁰C, dimethyl sulfide significantly decreased at 7 d in storage, then significantly 

increased at 28 d. However, dimethyl disulfide content was significantly lower at 35 d for 

broccoli stored at 0 ⁰C than for broccoli stored at 7 ⁰C. Sulfide formation is due to several factors, 

including bacterial metabolism, senescence, and tissue damage. Results from this study show 

that increased duration of storage results in production of sulfurous volatiles, which have a 

negative impact on aroma and quality of broccoli. These results indicate that the degree to which 

dimethyl sulfide is affected during storage is dependent on precooling and subsequent storage 

methods. Lower sulfide concentrations for ice slurry cooled broccoli stored at 0 ⁰C in ice suggest 
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that the degree of deterioration was lower than for broccoli cooled with top icing and stored at 7 

⁰C . 

Previous studies have shown that aldehydes and esters are key aroma compounds involved in 

the lipoxygenase pathway (Deza-Durand and Petersen, 2011). Banerjee et al. (2013) found that 

the decrease in linolenic acid was linearly correlated with increased (E)-2-Hexenal content in 

irradiated cabbage. Caleb et al. (2016) found that (E)-2-hexenal was not detected throughout the 

duration of storage for 11 d at 10 ⁰C. They also found that propanal was only detected on the day 

of harvest, and that 2-ethylfuran significantly increased at 4 and 11 d in storage. In this study, 

(E)-2-hexenal, (E)-2-pentenal, and 3-ethylfuran contents increased at 14 d in storage, then 

decreased over 21 and 28 d, and were not detected at 35 d. Propanal decreased throughout the 

entire duration of storage. These compounds, (E)-2-hexenal (Hatanaka et al., 1996), (E)-2-

pentenal (Lund et al., 1996), propanal (Ruiz del Castillo et al., 2010), and 2-ethylfuran (Medina 

et al., 1999; Vichi et al., 2003; Wang et al., 2001) are derived from lipid oxidation of fatty acids 

in plant tissues and are thought to be wound-induced volatiles (Banerjee et al., 2013; Cozzolino 

et al., 2016; Deza-Durand et al., 2014). Lipase enzymes hydrolyze fatty acids, releasing them 

from membrane lipids. Fatty acids are then acted upon by lipoxygenase and hydroperoxide lyase, 

forming aldehydes and alcohols (Hatanaka et al., 1996). The presence of these compounds 

during storage may be due to breakdown of lipid membrane tissues due to senescence. The 

decrease of these compounds in late storage may be due to depletion of fatty acid precursors 

during later stages of senescence. 

Conclusion 

In this study, ‘Emerald Crown’ had significantly higher levels of glucosinolates and sulfurous 

volatiles than ‘BH053.’ As glucosinolate contents began to decrease for ‘Emerald Crown,’ 



107 

 

sulfurous volatile contents began to increase. However, for ‘BH053,’ glucosinolate contents did 

not significantly change throughout the entire duration of storage, while sulfurous volatiles start 

out significantly higher, then decrease before increasing over the last two weeks of storage. 

These results indicate that the effect of storage duration on both glucosinolates and volatiles is 

determined not only by precooling and storage conditions, but also by genetic factors. Other than 

their initial values, there was no significant difference between total glucosinolate contents for 

broccoli stored for 35 d at 0 ⁰C in ice and broccoli stored at 7 ⁰C. However, initial contents were 

significantly greater for broccoli precooled with an ice slurry than broccoli precooled with only 

top icing. Ice slurry cooled broccoli was cooled to 1 ⁰C at 2 h after the slurry was applied, while 

top icing cooled broccoli was cooled to 7 ⁰C at 6 h after top icing was applied. The increased 

cooling time for top iced broccoli may have led to the immediate loss of glucosinolate contents, 

while broccoli that was cooled faster was able to maintain higher levels by preventing the 

hydrolysis of glucosinolates. This is supported by significantly higher initial levels of dimethyl 

disulfide and dimethyl sulfide contents, which may have formed due to the breakdown of 

glucosinolates after harvest. 
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Appendix 

Table 15. Analysis of variance results for glucosinolate contents in broccoli for ‘BH053’ and 

‘Emerald Crown,’ cooled with top ice and stored at 7 ⁰C compared with ice slurry cooled 

broccoli stored at 0 ⁰C in ice, when stored for 0, 7, 14, 21, 28, and 35 days. 

  Indole Glucosinolates 

Source of Variance Glucobrassicin 4-Methoxyglucobrassicin Neoglucobrassicin 

Cultivar (C)  NS z *** *** 

Treatment (T) ** NS NS 

Storage Time (D) NS * NS 

C x T NS NS NS 

T x D NS * NS 

C x D * ** NS 

C x T x D NS * NS 

  Aliphatic Glucosinolates 

Source of Variance Glucoraphanin Epiprogoitrin Progoitrin Sinigrin 

Cultivar (C)  *** *** NS NS 

Treatment (T) ** *** *** NS 

Storage Time (D) NS NS NS NS 

C x T NS *** * NS 

T x D NS ** NS NS 

C x D NS ** NS NS 

C x T x D NS *** NS NS 
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Table 15. Continued.     

  Aliphatic Glucosinolates 

Source of Variance Glucoerucin Gluconapin Glucoiberin Glucobarbarin 

Cultivar (C)  *** ** NS NS 

Treatment (T) NS NS NS * 

Storage Time (D) NS NS NS NS 

C x T NS NS NS NS 

T x D * NS NS NS 

C x D NS NS NS NS 

C x T x D * NS NS NS 

  Aromatic Glucosinolates 

Source of Variance Gluconasturtiin Glucosinalbin 

Cultivar (C)  ** ** 

Treatment (T) ** NS 

Storage Time (D) NS NS 

C x T NS NS 

T x D NS * 

C x D * ** 

C x T x D NS NS 

zSignificance is denoted by NS, *, **, ***: Non-significant or significant at p ≤0.05, 0.01, and 

0.001, respectively. 
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Table 16. Analysis of variance results for volatile contents in broccoli for ‘BH053’ and 

‘Emerald Crown,’ cooled with top ice and stored at 7 ⁰C compared with ice slurry cooled 

broccoli stored at 0 ⁰C in ice, when stored for 0, 7, 14, 21, 28, and 35 days. 

  Sulfurous Volatiles 

Source of Variance Dimethyl Disulfide Dimethyl Sulfide 

Cultivar (C)  *** z NS 

Treatment (T) *** NS 

Storage Time (D) *** *** 

C x T NS NS 

T x D NS ** 

C x D *** *** 

C x T x D NS NS 

  Aldehyde Volatiles Furan Volatiles 

Source of Variance (E)-2-Hexenal (E)-2-Pentenal Propanal 2-ethylfuran 

Cultivar (C)  * NS NS NS 

Treatment (T) NS NS NS NS 

Storage Time (D) *** *** *** *** 

C x T NS NS NS NS 

T x D NS NS NS NS 

C x D *** *** * *** 

C x T x D NS NS NS NS 

zSignificance is denoted by NS, *, **, ***: Non-significant or significant at p ≤0.05, 0.01, and 

0.001, respectively. 
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Table 17. Average glucosinolate contents in broccoli (mg·g-1 dry mass), across time for both 

storage temperatures, for ‘BH053’compared with ‘Emerald Crown.’ 

  Cultivar 

Glucosinolate BH053 

Emerald  

Crown 

Indole Glucosinolates   

Glucobrassicin    18224.57 a zy 20742.02 a 

4-Methoxyglucobrassicin     188.76 b     750.58 a 

Neoglucobrassicin   4352.72 b 52824.24 a 

Aliphatic Glucosinolates   

Glucoraphanin   5381.67 b 12363.95 a 

Epiprogoitrin   3226.01 a     693.79 b 

Progoitrin       63.96 b   2035.87 a 

Sinigrin     721.22 a     793.28 a 

Glucoerucin     252.90 b   1331.02 a 

Gluconapin     214.98 b     430.53 a 

Glucoiberin       88.54 a     101.80 a 

Glucobarbarin       26.97 a       51.17 a 

Aromatic Glucosinolates   

Gluconasturtiin   3740.42 b   5877.34 a 

Glucosinalbin   1917.74 a     842.72 b 

Group Totals   
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Table 17. Continued. 

 

 

  

Aliphatic Glucosinolates    27923.77 a 37272.35 a 

Aromatic Glucosinolates      5662.42 a   6685.32 a 

Indole Glucosinolates      4824.98 b 54955.64 a 

Total Glucosinolates    38409.12 b 98777.59 a 

zMeans are the average of four replications for ‘BH053’ and three replications for ‘Emerald 

Crown,’ two broccoli heads for each cultivar and storage temperature combination, and 

samples stored for 0, 7, 14, 21, 28, and 35 days. 

yFor each individual and grouping of glucosinolates, letters beside means for one cultivar that 

are not different from letters beside means for the other cultivar, are not significantly different 

by the LSD test (α = 0.05). 
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Table 18. Average glucosinolate contents in broccoli (mg·g-1 dry mass), across time for both 

cultivars, for top icing cooled broccoli stored at 7 ⁰C compared with ice slurry cooled broccoli 

stored at 0 ⁰C in ice. 

  

Storage  

Temperature 

Glucosinolate 7 ⁰C 0 ⁰C 

Indole Glucosinolates   

Glucobrassicin   14615.97 b zy 24350.61 a 

4-Methoxyglucobrassicin     452.04 a     487.30 a 

Neoglucobrassicin 20402.31 a 36774.65 a 

Aliphatic Glucosinolates   

Glucoraphanin   6243.18 b 11502.44 a 

Epiprogoitrin   1360.27 b   2559.53 a 

Progoitrin     779.18 a   1338.65 a 

Sinigrin   1098.64 a   1661.81 a 

Glucoerucin     830.22 a     753.71 a 

Gluconapin     259.17 a     386.34 a 

Glucoiberin     116.15 a       74.19 a 

Glucobarbarin       14.88 b       63.25 a 

Aromatic Glucosinolates   

Gluconasturtiin   3669.98 b   5947.78 a 

Glucosinalbin    721.55 a     792.95 a 

Group Totals   
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Table 18. Continued. 

Aliphatic Glucosinolates 24142.29 b 41053.67 a 

Aromatic Glucosinolates  4751.25 b   7596.49 a 

Indole Glucosinolates 21698.27 a 38081.35 a 

Total Glucosinolates 50523.67 b 86662.91 a 

zMeans are the average of four replications for ‘BH053’ and three replications for ‘Emerald 

Crown,’ two broccoli heads for each cultivar and storage temperature combination, and 

samples stored for 0, 7, 14, 21, 28, and 35 days. 

yFor each individual and grouping of glucosinolates, letters beside means for one storage 

temperature that are not different from letters beside means for the other storage temperature, 

are not significantly different by the LSD test (α = 0.05). 

 

 

  



128 

 

Table 19. Average glucosinolate contents in broccoli (mg·g-1 dry mass), for both cultivars and storage temperatures, compared 

during storage at 0, 7, 14, 21, 28, and 35 days. 

 

Storage  

Time (d) 

Glucosinolate 0 7 14 21 28 35 

Indole Glucosinolates       

Glucobrassicin     25125.49 a zy 21151.24 ab 21400.64 ab  17177.62 ab   19459.67 ab  12585.09 b 

4-Methoxyglucobrassicin       712.45 a     442.06 ab   752.21 a      516.94 ab     283.53 b      110.82 b 

Neoglucobrassicin   52650.74 a 32955.24 ab 26640.18 ab  23949.21 ab 18660.69 b  16674.81 b 

Aliphatic Glucosinolates       

Glucoraphanin   13637.62 a   7795.94 ab   9421.72 ab    9714.82 ab     7863.44 ab    4803.31 b 

Epiprogoitrin       1645.01 bc     1965.64 abc 2355.46 a      2025.18 abc     2347.40 ab    1420.72 c 

Progoitrin     1968.69 a   914.85 b   935.44 b    1175.81 ab     826.66 b      532.05 b 

Sinigrin       889.52 a 1210.02 a   614.69 a    532.17 a     963.15 a      333.95 a 

Glucoerucin       947.17 a   629.25 a   727.81 a    833.76 a     829.58 a      784.23 a 

Gluconapin       419.18 a   318.35 a   353.34 a    298.55 a     284.40 a      262.72 a 
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Table 19. Continued.       

Glucoiberin         39.41 b   183.38 a     58.13 b        91.17 ab       108.84 ab          90.07 ab 

Glucobarbarin           21.31 ab       20.67 ab       70.98 ab      85.69 a         6.22 b          29.53 ab 

Aromatic Glucosinolates       

Gluconasturtiin     5322.11 a 4648.49 a 4915.54 a  4849.46 a   5245.01 a    3872.68 a 

Glucosinalbin       1385.67 ab   1378.35 ab 2182.55 a    963.18 b     1123.48 ab      1248.14 ab 

Group Totals       

Aliphatic Glucosinolates   43771.83 a 33585.67 ab 35185.55 ab  31062.19 ab   31900.34 ab  20080.94 b 

Aromatic Glucosinolates     6690.40 a 6009.46 a 7080.72 a  5795.27 a   6351.12 a    5116.25 a 

Indole Glucosinolates   54330.48 a 34046.03 ab 28190.00 ab  25384.42 ab 19778.84 b  17609.09 b 

Total Glucosinolates 104724.76 a 73574.10 ab 70389.52 ab  62173.39 ab   57963.08 ab  42733.82 b 

zMeans are the average of four replications for ‘BH053’ and three replications for ‘Emerald Crown,’ two broccoli heads for each 

cultivar and storage temperature combination, and samples stored for 0, 7, 14, 21, 28, and 35 days. 

yFor each individual and grouping of glucosinolates, letters beside means for one storage time that are not different from letters 

beside means for that carotenoid at other storage times, are not significantly different by the LSD test (α = 0.05). 
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Table 20. Average epiprogoitrin content in broccoli (mg·g-1 dry mass), across time, for 

‘BH053’ compared with ‘Emerald Crown,’ and top icing cooled broccoli stored at 7 ⁰C 

compared with ice slurry cooled broccoli stored at 0 ⁰C in ice. 

  Glucosinolate 

Cultivar 

Storage  

Temperature Epiprogoitrin 

BH053 

7 ⁰C    2226.26 b zyx 

0 ⁰C 4225.76 a 

Emerald Crown 

7 ⁰C   494.27 c 

0 ⁰C   893.31 c 

zMeans are the average of four replications for ‘BH053’ and three replications for ‘Emerald 

Crown,’ two broccoli heads for each cultivar and storage temperature combination, and 

samples stored for 0, 7, 14, 21, 28, and 35 days. 

yInteraction effects between cultivar and storage temperature on epiprogoitrin content in 

broccoli were significant (p ≤ 0.05). 

xFor epiprogoitrin, letters beside means for one cultivar and storage temperature that are not 

different from letters beside means for other cultivars and storage temperatures, are not 

significantly different by the LSD test (α = 0.05). 
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Table 21. Average glucosinolate contents in broccoli (mg·g-1 dry mass), stored at both temperatures, for ‘BH053’ compared with 

‘Emerald Crown,’ and compared during storage at  0, 7, 14, 21, 28, and 35 days. 

  Glucosinolate 

  Indole Glucosinolates Aliphatic Glucosinolates Aromatic Glucosinolates 

Cultivar 

Storage  

Time (d) Glucobrassicin 

4-Methoxy- 

glucobrassicin Epiprogoitrin Gluconasturtiin Glucosinalbin 

BH053 

0     11880.75 b zy     52.16 e   2141.05 bc 1731.66 c         975.20 bcde 

7  18023.10 b     202.35 de 3325.04 a   3264.34 bc   2074.87 bc 

14    24974.56 ab     224.20 de 4070.09 a   4592.16 bc 3787.81 a 

21  15704.32 b     178.58 de 3433.44 a   3699.28 bc     1707.34 bcd 

28    25969.41 ab       311.76 cde 4186.39 a   5852.24 ab  2123.36 b 

35  12795.27 b     163.50 de 2200.07 b   3302.84 bc         837.83 bcde 
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Table 21. Continued. 

  

Emerald  

Crown 

0  38370.23 a 1372.75 a     1796.13 bcd   1148.97 cd 8912.56 a 

7    24279.38 ab       681.76 bcd         681.83 bcde   606.24 d   6032.63 ab 

14  17826.72 b   1280.21 ab       577.30 cde   640.83 d     5238.91 abc 

21  18650.93 b       855.31 abc     219.02 de   616.92 d   5999.64 ab 

28  12949.93 b       255.30 cde   123.61 e   508.42 d   4637.78 bc 

35  12374.91 b     58.14 e       1658.45 bcde   641.38 d   4442.52 bc 

zMeans are the average of four replications for ‘BH053’ and three replications for ‘Emerald Crown,’ two broccoli heads for each 

cultivar and storage temperature combination, and samples stored for 0, 7, 14, 21, 28, and 35 days.  

yInteraction effects between cultivar and storage time on individual glucosinolate contents in broccoli were significant (p ≤ 0.05). 

xFor each individual glucosinolate, letters beside means for one cultivar and storage time that are not different from letters beside 

means for other cultivars and storage times, are not significantly different by the LSD test (α = 0.05). 
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Table 22. Average total aliphatic and aromatic glucosinolate contents in broccoli (mg·g-1 dry 

mass), stored at both temperatures, for ‘BH053’ compared with ‘Emerald Crown,’ and 

compared during storage at  0, 7, 14, 21, 28, and 35 days. 

  

Glucosinolates 

Cultivar 

Storage  

Time (d) 

Aliphatic 

Glucosinolates 

Aromatic 

Glucosinolates 

BH053 

0     18348.27 b zyx   2706.86 c 

7 27694.67 b     5339.21 bc 

14 36360.04 b     8379.97 ab 

21 25917.56 b     5406.62 bc 

28 39306.34 b     7975.60 ab 

35 19914.88 b     4166.28 bc 

Emerald  

Crown 

0 69195.40 a  10673.95 a 

7   39478.07 ab       6679.71 abc 

14 34012.26 b       5781.47 abc 

21 36207.02 b       6183.91 abc 

28 24494.16 b     4726.65 bc 

35 20247.99 b       6066.22 abc 

zMeans are the average of four replications for ‘BH053’ and three replications for ‘Emerald 

Crown,’ two broccoli heads for each cultivar and storage temperature combination, and 

samples stored for 0, 7, 14, 21, 28, and 35 days. 
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Table 22. Continued. 

yInteraction effects between cultivar and storage time on aliphatic and aromatic glucosinolate 

contents in broccoli were significant (p ≤ 0.05). 

xFor each glucosinolate group, letters beside means for one cultivar and storage time that are 

not different from letters beside means for other cultivars and storage times, are not 

significantly different by the LSD test (α = 0.05). 
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Table 23. Average glucosinolate contents in broccoli (mg·g-1 dry mass), for both cultivars, for 

top icing cooled broccoli stored at 7 ⁰C compared with ice slurry cooled broccoli stored at 0 ⁰C 

in ice, and compared during storage at 0, 7, 14, 21, 28, and 35 days. 

  Glucosinolate 

Storage  

Temperature 

Storage  

Time (d) Epiprogoitrin Glucoerucin 

4-Methoxy- 

glucobrassicin Glucosinalbin 

7 ⁰C 

0     1391.88 cde   374.72 b     263.62 cd     640.86 cd 

7   1729.08 cd   600.92 b     370.84 cd     1120.27 bcd 

14   1831.83 cd     932.19 ab   1010.10 ab 2945.15 a 

21     1660.57 cde     942.94 ab       684.13 abc     1044.17 bcd 

28     844.04 de   1078.01 ab     253.83 cd     678.67 cd 

35   704.21 e   1052.57 ab     129.72 cd   162.74 d 

0 ⁰C 

0   1898.13 bc 1519.62 a 1161.28 a     2130.47 abc 

7   2202.20 bc   657.58 b       513.28 bcd       1636.42 abcd 

14   2879.09 ab   523.44 b       494.32 bcd       1419.95 abcd 

21   2389.78 bc   724.57 b     349.75 cd       882.19 bcd 

28 3850.77 a   581.15 b     313.23 cd       1568.30 abcd 

35   2137.23 bc   515.88 b     91.92 d   2333.54 ab 

zMeans are the average of four replications for ‘BH053’ and three replications for ‘Emerald 

Crown,’ two broccoli heads for each cultivar and storage temperature combination, and 

samples stored for 0, 7, 14, 21, 28, and 35 days. 

zyx 
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Table 23. Continued. 

yInteraction effects between storage temperature and storage time on individual glucosinolate 

contents in broccoli were significant (p ≤ 0.05). 

xFor each individual glucosinolate, letters beside means for one storage temperature and 

storage time that are not different from letters beside means for other storage temperatures and 

storage times, are not significantly different by the LSD test (α = 0.05). 
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Table 24. Average glucosinolate contents in broccoli (mg·g-1 dry mass) for ‘BH053’ compared 

with ‘Emerald Crown,’ cooled with top ice and stored at 7 ⁰C compared with ice slurry cooled 

broccoli stored at 0 ⁰C in ice, and compared during storage at 0, 7, 14, 21, 28, and 35 days. 

   Glucosinolate 

   

Indole 

Glucosinolates 

Aliphatic 

Glucosinolates 

Cultivar 

Storage  

Temperature 

Storage  

Time (d) 4-Methoxyglucobrassicin Epiprogoitrin 

BH053 

7 ⁰C 

0         50.56 e zyx     2255.93 efg 

7     132.24 de       3001.61 cdef 

14     342.43 de       3175.21 cdef 

21     218.25 de     2701.64 def 

28     224.09 de     1220.40 ghi 

35     143.16 de     1002.80 ghi 

0 ⁰C 

0     53.75 e       2026.16 efgh 

7     272.46 de    3648.47 cd 

14     105.98 de  4964.97 b 

21     138.91 de    4165.23 bc 

28       399.44 cde  7152.38 a 

35     183.83 de      3397.34 cde 
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Table 24. Continued. 

Emerald  

Crown 

7 ⁰C 

0       476.68 cde   527.83 i 

7       609.43 cde   456.54 i 

14   1677.77 ab   488.45 i 

21   1150.02 bc     619.50 hi 

28     283.57 de   467.68 i 

35     116.27 de   405.63 i 

0 ⁰C 

0  2268.81 a       1770.10 fghi 

7       754.10 cde     755.94 hi 

14       882.65 bcd     793.21 hi 

21       560.60 cde     614.33 hi 

28     227.03 de   549.17 i 

35       0.00 e       877.12 ghi 

zMeans are the average of four replications for ‘BH053’ and three replications for ‘Emerald 

Crown,’ two broccoli heads for each cultivar and storage temperature combination, and 

samples stored for 0, 7, 14, 21, 28, and 35 days.  

yInteraction effects between cultivar, storage temperature, and storage time on individual 

glucosinolate contents in broccoli were significant (p ≤0.05). 

xFor each individual glucosinolate, letters beside means for one cultivar, storage temperature, 

and storage time that are not different from letters beside means for other cultivars, storage 

temperatures, and storage times, are not significantly different by the LSD test (α = 0.05). 

 

 



139 

 

Table 25. Average volatile contents in broccoli (μg‧g-1 fresh weight), stored at both temperatures, for ‘BH053’ compared with 

‘Emerald Crown,’ and compared during storage at  0, 7, 14, 21, 28, and 35 days. 

  Volatile 

  

Sulfurous  

Volatiles 

Aldehyde  

Volatiles 

Furan  

Volatiles 

Cultivar 

Storage 

Time (d) 

Dimethyl 

Disulfide 

Dimethyl 

Sulfide (E)-2-Hexenal (E)-2-Pentenal Propanal 2-Ethylfuran 

BH053 

0       123.88 b zyx 4.47 b 0.00 d   0.00 d 0.00 d   0.00 d 

7     7.98 c 0.78 c   0.34 bc   14.44 cd 0.91 a     28.83 abc 

14     3.67 c 0.96 c     0.40 abc   32.98 ab   0.65 ab 40.56 a 

21   16.69 c 2.00 c   0.29 bc     26.18 abc   0.62 ab   24.81 bc 

28   39.49 c 1.32 c   0.15 cd   14.27 cd   0.07 cd   34.72 ab 

35   53.27 c 7.20 a 0.00 d   0.00 d 0.00 d   0.00 d 
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Table 25. Continued.       

Emerald  

Crown 

0   33.33 c 0.68 c 0.67 a   23.97 bc   0.47 bc   21.95 bc 

7   43.63 c 0.49 c 0.62 a 42.35 a   0.48 bc   37.37 ab 

14   57.10 c 0.79 c   0.49 ab   34.21 ab     0.29 bcd     26.25 abc 

21 137.08 b 0.65 c   0.18 cd   0.00 d   0.15 cd 17.34 c 

28   170.79 ab   6.57 ab 0.00 d   0.00 d   0.06 cd   0.00 d 

35 205.22 a 8.14 a 0.00 d   0.00 d   0.05 cd   0.00 d 

zMeans are the average of four replications for ‘BH053’ and three replications for ‘Emerald Crown,’ two broccoli heads for each 

cultivar and storage temperature combination, and samples stored for 0, 7, 14, 21, 28, and 35 days.  

yInteraction effects between cultivar and storage time on volatile contents in broccoli were significant (p ≤0.05). 

xFor each individual volatile, letters beside means for one cultivar and storage time that are not different from letters beside means 

for other cultivars and storage times, are not significantly different by the LSD test (α = 0.05). 
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 Fig. 12. Mean internal broccoli temperature for broccoli cooled 

with top icing and stored 5 ⁰C, and broccoli cooled with an ice 

slurry and stored at 0 ⁰C. Postharvest broccoli temperatures were 

recorded every 30 minutes during field cooling and transportation 

to cold room storage. Means are the average of four replications for 

‘BH053’ and three replications for ‘Emerald Crown’ per storage 

temperature. 
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Fig. 13. Average dimethyl disulfide contents in broccoli, across time at 

both storage temperatures, for ‘BH053’ compared with ‘Emerald 

Crown.’ Means are the average of four replications for ‘BH053’ and 

three replications for ‘Emerald Crown,’ two broccoli heads for each 

cultivar and storage temperature combination, and samples stored for 0, 

7, 14, 21, 28, and 35 days. Letters above one cultivar that are not 

different from letters above the other cultivar, are not significantly 

different by the LSD test (α = 0.05). 
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Fig. 14. Average (E)-2-hexenal content in broccoli, across time at 

both storage temperatures, for ‘BH053’ compared with ‘Emerald 

Crown.’ Means are the average of four replications for ‘BH053’ 

and three replications for ‘Emerald Crown,’ two broccoli heads for 

each cultivar and storage temperature combination, and samples 

stored for 0, 7, 14, 21, 28, and 35 days. Letters above one cultivar 

that are not different from letters above the other cultivar, are not 

significantly different by the LSD test (α = 0.05). 
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Fig. 15. Average dimethyl disulfide content in broccoli, across time 

for both cultivars, cooled with top icing and stored at 7 ⁰C, 

compared to broccoli cooled with an ice slurry and stored at 0 ⁰C in 

ice. Means are the average of four replications for ‘BH053’ and 

three replications for ‘Emerald Crown,’ two broccoli heads for each 

cultivar and storage temperature combination, and samples stored 

for 0, 7, 14, 21, 28, and 35 days. Letters above one storage 

temperature that are not different from letters above the other 

storage temperature, are not significantly different by the LSD test 

(α = 0.05). 
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Fig. 16. Average dimethyl disulfide content in broccoli, for both 

cultivars and storage temperatures, compared during storage at 0, 7, 

14, 21, 28, or 35 days. Means are the average of four replications 

for ‘BH053’ and three replications for ‘Emerald Crown,’ two 

broccoli heads for each cultivar and storage temperature 

combination. Letters above one storage time that are not different 

from letters above other storage times, are not significantly 

different by the LSD test (α = 0.05). 
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Fig. 17. Average dimethyl disulfide content in broccoli compared 

during storage at 0, 7, 14, 21, 28, or 35 days. Means are the average 

of four replications for ‘BH053’ and three replications for ‘Emerald 

Crown,’ two broccoli heads for each cultivar and storage 

temperature combination. Letters above one storage time that are 

not different from letters above other storage times, are not 

significantly different by the LSD test (α = 0.05). 
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Fig. 18. Average propanal and (E)-2-hexenal in broccoli compared 

during storage at 0, 7, 14, 21, 28, and 35 days. Means are the 

average of four replications for ‘BH053’ and three replications for 

‘Emerald Crown,’ two broccoli heads for each cultivar and storage 

temperature combination. For each individual volatile, letters above 

one storage time that are not different from letters above other 

storage times for that volatile, are not significantly different by the 

LSD test (α = 0.05). 
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Figure 19. Average (E)-2-pentenal and 2-ethylfuran contents (μg‧g-1 

fresh mass) in broccoli compared during storage at 0, 7, 14, 21, 28, 

or 35 days Means are the average of four replications for ‘BH053’ 

and three replications for ‘Emerald Crown,’ two broccoli heads for 

each cultivar and storage temperature combination. For each 

individual volatile, letters above one storage time that are not 

different from letters above other storage times for that volatile, are 

not significantly different by the LSD test (α = 0.05).
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Figure 20. Average dimethyl sulfide content in broccoli, for both 

cultivars, cooled with top ice and stored at 7 ⁰C compared with ice 

slurry cooled broccoli stored at 0 ⁰C in ice, and compared during 

storage at 0, 7, 14, 21, 28, and 35 days. Means are the average of 

four replications for ‘BH053’ and three replications for ‘Emerald 

Crown,’ two broccoli heads for each cultivar and storage 

temperature combination. Letters above one storage temperature 

and storage time that are not different from letters above other 

storage temperatures and times for that volatile, are not 

significantly different by the LSD test (α = 0.05). 
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CHAPTER 3: EFFECTS OF COOLING AND POSTHARVEST STORAGE 

METHODS ON CAROTENOIDS AND CHLOROPHYLL IN BROCCOLI 
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Abstract 

Broccoli (Brassica oleracea L. var. italica) is a cool-weather vegetable that is grown for its 

edible flowering heads and stalks. Carotenoids and chlorophyll affect the organoleptic and 

nutritional characteristics that are associated with broccoli quality. Cooling and postharvest 

storage conditions affect the quality of broccoli by altering the levels of carotenoid chlorophyll 

contents. Changes in carotenoid and chlorophyll contents were investigated for two cultivars 

(‘BH053’ and ‘Emerald Crown’), two temperature treatments (cooled with top icing stored at 7 

⁰C, and cooled with an ice slurry and stored at 0 ⁰C in ice), and six different days in storage (0, 7, 

14, 21, 28, and 35 days). Results from this study indicate that cultivar and storage time 

significantly influence both carotenoid and chlorophyll contents in broccoli. However, storage 

temperature did not appear to have a significant impact on carotenoid or chlorophyll contents. 

Violaxanthin, neoxanthin, antheraxanthin, lutein, β-carotene, α-carotene, chlorophyll a, and 

chlorophyll b contents were significantly greater for ‘BH053’ than for ‘Emerald Crown.’ 

Similarly, all carotenoid and chlorophyll contents significantly decreased during storage. 



152 

 

Violaxanthin, neoxanthin, and antheraxanthin contents significantly decreased at 21 d, while 

lutein and β-carotene contents significantly decreased at 7 d and α-carotene contents significantly 

decreased at 14 d. Chlorophyll a content slightly increased at 7 d, then significantly decreased at 

14 d, while chlorophyll b content steadily decreased throughout the duration of storage. The 

interaction of cultivar and storage time significantly affected β-carotene content alone. β-

carotene content significantly decreased at 7 d for ‘Emerald Crown,’ while β-carotene content 

did not significantly decrease until 21 d for ‘BH053.’ Results from this study indicate that 

carotenoid and chlorophyll contents are more dependent on cultivar and storage time than 

storage temperature. These results show that both carotenoid and chlorophyll contents decrease 

as the duration of storage increases. Although storage temperature did not appear to have a 

statistically significant impact, total carotenoid and chlorophyll contents were slightly greater for 

broccoli cooled with an ice slurry and stored at 0 ⁰C in ice than for broccoli cooled with top icing 

and stored at 7 ⁰C. Due to its significantly greater carotenoid and chlorophyll contents, the 

postharvest quality appears to be significantly greater for ‘BH053’ than for ‘Emerald Crown.’ 

Introduction 

 Broccoli contains high levels of health-promoting antioxidants, including ascorbic acid, 

phenols, flavonoids, and carotenoids, and chlorophyll (Duarte-Sierra et al., 2017; Fernández-

Leon et al., 2013; Li et al., 2014; Raseetha et al., 2013; Vallejo et al., 2003). However, 

senescence is triggered rapidly after harvest, resulting in a loss of quality and marketability 

(King and Morris, 1994). Postharvest senescence of broccoli is accompanied by the degradation 

of metabolites through respiration (Hasparue et al., 2015; King and Morris., 1994), which affects 

the nutritional, sensory, and physiological quality of broccoli (Bruckner et al., 2005; Hansen et 

al., 1997; Pellegrino et al., 2019). 
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The United States (U.S.) broccoli industry is currently centered on West Coast production. 

California is responsible for over 90% of the total broccoli production in the nation, followed by 

Arizona (5%) (USDA Economic Research Service, 2011). Consequently, most of the fresh 

broccoli sold in the Eastern U.S. has been processed and shipped thousands of miles across the 

country before reaching supermarkets. Broccoli is known to have a high respiration rate, and 

these changes in the time between harvesting and consumer availability have potential 

consequences on postharvest physiology. Establishing a locally sourced broccoli industry on the 

East Coast will reduce the time between harvesting and consumer availability (Atallah et al., 

2014; Wheeler et al., 2018).  

 Sensory quality, including color, aroma, flavor, and tissue morphology, is an important factor 

for consumer acceptance of broccoli (Luo et al., 2018). Degradation of carotenoids and 

chlorophyll leads to yellowing in broccoli, which is the main visible symptom of senescence 

(Eason et al., 2005; King and Morris, 1994). In addition, these phytochemical losses lead to a 

loss in nutritional value (Caleb et al., 2016). Plant carotenoids act as antioxidants and play an 

important role in the human diet (Hasperué et al., 2016; Lefsrud et al., 2005). Carotenoids are the 

main dietary source of provitamin A (Farnham and Kopsell, 2009; Jeffery et al., 2003; Lefsrud et 

al., 2005). They may also contribute to the prevention of cancer, cardiovascular diseases, and 

age-related macular degeneration. Chlorophyll also has potential health-promoting benefits, such 

as cancer prevention, antimutagenic activities, and tumor cell apoptosis (Balder et al., 2006; 

Egner et al., 2001; Farnham and Kopsell, 2009). 

Carotenoids are lipid-soluble phytochemicals that span the chlorophyll thylakoid membranes 

and play important roles in light harvesting, photoprotection, and structural stabilization in plants 

(Velasco et al., 2008). The main carotenoids found in broccoli are lutein and β-carotene, an 
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oxygenated xanthophyll and a hydrocarbon carotene, respectively. Other common carotenoids 

found in broccoli include α-carotene, and xanthophyll cycle pigments (zeaxanthin, 

antheraxanthin, violaxanthin, and neoxanthin) (Hasperué et al., 2016; Oelmuller et al., 1985; 

Niyogi et al., 1997). Chlorophyll a and chlorophyll b are found in all green plants and edible 

parts of vegetables (Kidmose et al., 2002). In plants, chlorophyll form photosystem complexes 

that span the thylakoid membranes of chloroplasts and allow plants to absorb energy from light 

(Farnham and Kopsell, 2009). Together, these pigments play an essential role in the maintenance 

of postharvest broccoli quality (Loi et al., 2019). 

Storage conditions impact the appearance and quality of broccoli by altering carotenoid and 

chlorophyll concentrations (Mahn and Reyes, 2012; Serrano et al., 2006). Objectives of this 

study are to quantify the effects of cooling and postharvest storage method on the carotenoid and 

chlorophyll contents for two cultivars of broccoli. This will help to determine the proper storage 

conditions for maintaining postharvest quality of broccoli grown and distributed along the U.S. 

East Coast. 

Materials and Methods 

 Plant materials and storage. 

 Broccoli was supplied by the Upper Mountain Research Station in Laurel Springs, North 

Carolina. Broccoli was grown according to recommended management practices for the 

southeastern U.S. (Kemble et al., 2018). Broccoli was harvested when the majority of the heads 

had reached commercial maturity. The average head diameter was 8.4 cm ± 1.5. Two cultivars, 

‘BH053’ and ‘Emerald Crown,’ were harvested on 31 July 2019 and 5 Aug. 2019, respectively. 

The average head diameter of ‘BH053’ was 8.2 cm ± 1.4, while the average head diameter of 

‘Emerald Crown’ was 8.7 cm ± 1.5. Each cultivar was separated into two treatment groups 
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immediately after harvest. One treatment group was cooled by top icing to remove field heat, while 

the other treatment group was cooled by submerging in an ice slurry. Broccoli was then transported 

to The University of Tennessee Institute of Agriculture for cold room storage. Top iced broccoli 

was cooled to 16 ⁰C ± 4 when it reached the storage cooler (Fig. 12) and the top icing had melted 

during transportation. Broccoli from this treatment group was then placed in cold storage and kept 

in waxed corrugated boxes without ice. The cold room temperature was maintained at 6 ⁰C ± 0.4 

and the internal broccoli temperature was maintained at 7 ⁰C ± 1. For the other treatment group, 

broccoli that was placed in an ice slurry was cooled to 1 ⁰C ± 1 at 2 h after the slurry was applied. 

Broccoli from this treatment group was then placed in cold storage and kept in coolers filled with 

ice. The cold room temperature was maintained at 4⁰C ± 0.2 and the internal broccoli temperature 

was maintained at 0 ⁰C ± 0.3 (Fig. 12). Internal broccoli temperatures were recorded every 30 min 

with Watch Dog® data loggers (Spectrum® Technologies, Inc., Aurora, IL, USA). 

 Postharvest analysis. 

Broccoli was removed from storage at 0, 7, 14, 21, 28, and 35 days. Four replications of 

‘BH053’ and three replications of ‘Emerald Crown,’ consisting of two broccoli heads per 

replication, were subsampled for each cultivar and treatment combination. For each replication, 

30 g ± 1 fresh tissue was placed into plastic bags and stored in a -80 ⁰C freezer overnight, and 

frozen tissue was freeze-dried the following day. Freeze-dried tissue was ground to a fine 

powder, using a mortar and pestle in liquid nitrogen, for extraction and analysis. 

 Carotenoid/chlorophyll extraction and analysis. 

 Carotenoids were extracted from broccoli tissue using the method by Kopsell et al. (2012). A 

0.1 g ± 0.01 subsample of finely ground broccoli tissue was weighed into a 16 x 150 mm glass 

centrifuge tube, then transferred to a tissue grinding tube (Potter-Elvehjem; Kimble Chase-Kontes 
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Glass, Vineland, NJ). Samples were then hydrated with 800 µL of RO water for 10 min. Then, 800 

µL of carotenoid internal standard (Sigma-Aldrich, St. Louis, MO) and 2.5 mL of tetrahydrofuran 

(THF) were added the grinding tube. Samples were homogenized, with a pestle attached to a drill 

press, at 540 rpm. Homogenized samples were transferred back into a 16 x 100 mL glass centrifuge 

tube and centrifuged at 500 gn for 5 min. The supernatant was collected in a graduated glass 

centrifuge tube and kept on ice in a light-blocking container. The remaining precipitate was re-

suspended with 2.0 mL of THF and homogenized using the same process. This procedure was 

repeated for a total of 4 extractions. Using a nitrogen airstream, the supernatant was evaporated to 

0.5 mL, then brought to 5 mL volume with acetone. The liquid sample was then filtered twice, 

once through a 0.45 µm PTFE filter and once through a 0.20 µm PTFE filter, into 12x13 mm light-

blocking crimp top vials. 

 Carotenoids and chlorophyll were separated using an Agilent 1100 series high-performance 

liquid chromatography unit with a photodiode array detector (Agilent Technologies, Santa Clara, 

CA). The column temperature was set at 30⁰Cfor a reverse-phase 250 x 4.6 mm i.d., 5 μm analytical 

scale, 200 A⁰ polymeric C30 column equipped with a 4.0 x 10 mm guard cartridge and holder 

(ProntoSIL; MAC-MOD Analytical, Chadds Ford, PA). Separations were achieved isocratically 

using a binary mobile phase of 11% methyl tert-butyl ether, 88.99% methanol, and 0.01% 

triethylamine. The flow rate was set at 1.0 mL·min-1, and 10.0 μL of each sample were injected 

for a total run time of 58 min per sample. Carotenoids and chlorophyll were assigned based on 

external standards and expressed on a fresh mass basis in μg·g-1. Data was collected, recorded and 

integrated using ChemStation Software (Agilent Technologies, Palo Alto, CA). 
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 Statistical analysis. 

 SAS statistical software (9.4 for Windows; SAS Institute, Cary, NC) was used for the analyses 

of data. Cultivar, storage temperature, storage time, and their interactions were considered fixed 

factors, while replication was considered the random factor. Analysis of variance (ANOVA) tests 

were performed using the GLIMMIX procedure, and means were compared by the least significant 

difference (LSD) test (α = 0.05). ANOVA results are presented for carotenoids (Table 21) and 

chlorophyll (Table 22). 

Results  

 Carotenoids, effects of cultivar. 

 Cultivar significantly affected violaxanthin (F = 27.67, df = 1, p ≤0.0001), neoxanthin (F = 

12.32, df = 1, p ≤0.001), antheraxanthin (F = 10.43, df = 1, p ≤0.01), lutein (F = 31.82, df = 1, p 

≤0.0001), α-carotene (F = 23.75, df = 1, p ≤0.0001), β-carotene (F = 29.73, df = 1, p ≤0.0001), 

and total carotenoid (F = 31.66, df = 1, p ≤0.0001) contents in broccoli. Violaxanthin, 

neoxanthin, antheraxanthin, lutein, α-carotene, β-carotene, and total carotenoid contents were 

significantly greater for ‘BH053’ than for ‘Emerald Crown’ (Table 23).  

 Carotenoids, effects of cooling/storage method. 

 Storage temperature did not significantly affect carotenoid contents in broccoli. Violaxanthin, 

neoxanthin, antheraxanthin, lutein, α-carotene, β-carotene, and total carotenoid contents were not 

significantly different for broccoli cooled with top icing and stored at 7 ⁰C, and broccoli cooled 

with an ice slurry and stored at 0 ⁰C in ice (Table 24).  

 Storage time significantly affected violaxanthin (F = 10.78, df = 5, p ≤0.0001), neoxanthin (F 

=24.58, df = 5, p ≤0.0001), antheraxanthin (F = 25.18, df = 5, p ≤0.0001), lutein (F = 24.88, df = 

5, p ≤0.0001), α-carotene (F = 11.51, df = 5, p ≤0.0001), β-carotene (F = 24.84, df = 5, p 
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≤0.0001), and total carotenoid (F = 24.85, df = 5, p ≤0.0001) contents in broccoli. Violaxanthin, 

neoxanthin, antheraxanthin, lutein, α-carotene, β-carotene, and total carotenoid contents 

significantly decreased in broccoli stored for 35 d at 5 and 0 ⁰C (Table 25). Violaxanthin, 

neoxanthin, and antheraxanthin contents remained stable from 0 to 14 d, then significantly 

decreased at 21 d. After that, both neoxanthin and antheraxanthin contents significantly 

decreased at 28 d and remained stable from 28 to 35 d, while violaxanthin content continued to 

decrease from 21 to 35 d, but not significantly. Both lutein and β-carotene contents significantly 

decreased at 7 d, remained stable from 7 to 14 d, then significantly decreased at 21 d. Lutein 

significantly decreased again at 28 d and remained stable from 28 to 35 d, while β-carotene 

content continued to decrease from 21 to 35 d, but not significantly. α-Carotene significantly 

decreased from its initial content level (0 d) at 14 d, then remained stable from 14 to 21 d. After 

that, α-carotene content significantly decreased at 28 d and remained stable from 28 to 35 d. 

Total carotenoid contents significantly decreased at 7 d, then remained stable from 7 to 14 d. 

Total carotenoid levels significantly decreased at both 21 and 28 d, then remained stable from 28 

to 35 d.  

 Carotenoids, interactions of cultivar and storage time. 

 Interactions of cultivar and storage time significantly affected β-carotene (F = 3.78, df = 5, p 

≤0.01) contents in broccoli. For both ‘BH053’ and ‘Emerald Crown,’ β-carotene contents 

significantly decreased in broccoli stored for 35 d at 5 and 0 ⁰C (Fig. 21). For ‘BH053,’ β-

carotene content decreased at 7 d, then increased at 14 d, but not significantly. After that, β-

carotene content significantly decreased at 21 d, then continued to decrease from 21 to 35 d but 

did not significantly change. In contrast, β-carotene content for ‘Emerald Crown’ significantly 

decreased at 7 d and remained stable from 7 to 14 d. After that, β-carotene content continued to 
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decrease from 14 to 35 d but did not significantly change. β-carotene contents were significantly 

greater for ‘BH053’ than for ‘Emerald Crown’ during the first 14 d in storage. Although slightly 

greater for ‘BH053,’ there was no significant difference among cultivars from 21 to 35 d.   

 Chlorophyll, effects of cultivar. 

 Cultivar significantly affected chlorophyll a (F = 7.95, df = 1, p ≤0.01), chlorophyll b (F = 

22.91, df = 1, p ≤0.0001), and total chlorophyll (F = 13.38, df = 1, p ≤0.001) contents in broccoli. 

Chlorophyll a, chlorophyll b, and total chlorophyll contents were significantly greater for 

‘BH053’ than for ‘Emerald Crown’ (Fig. 22). 

 Chlorophyll, effects of cooling/storage method. 

 Chlorophyll a, chlorophyll b, and total chlorophyll contents were not significantly different 

for broccoli cooled with top icing and stored at 7 ⁰C, and broccoli cooled with an ice slurry and 

stored at 0 ⁰C in ice (Fig. 23). 

  Storage time significantly affected chlorophyll a (F = 7.52, df = 5, p ≤0.0001), chlorophyll b 

(F = 22.93, df = 5, p ≤0.0001), and total chlorophyll (F = 12.22, df = 5, p ≤0.0001) contents in 

broccoli. Chlorophyll a, chlorophyll b, and total chlorophyll contents significantly decreased in 

broccoli stored for 35 d at 5 and 0 ⁰C (Fig. 24). Chlorophyll a content increased at 7 d, but not 

significantly, then significantly decreased at 14 d. After that, chlorophyll a content slightly 

decreased at 21 d, but not significantly, and remained stable from 21 to 35 d. Chlorophyll b 

content significantly decreased from its initial content level (0 d) at 14 d, then significantly 

decreased at both 21 and 28 d, and remained stable from 28 to 35 d. Total chlorophyll contents 

remained stable from 0 to 7 d, then significantly decreased at 14 d. After that, total chlorophyll 

contents decreased at 21 and 28 d, but not significantly, then remained stable from 28 to 35 d.  
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Discussion 

 Carotenoids, effects of cultivar. 

 Broccoli is a good source of provitamin A and other carotenoids correlated with the 

prevention of chronic diseases (Mahn and Reyes, 2012). Increased consumption of vegetables 

with high carotenoid contents can help decrease the incidence of certain forms of cancer (Mayne, 

1996; Podsedek, 2007; Verhoeven et al., 1996), and lutein is known to prevent macular 

degeneration and cataracts of the eye (Krinsky et al., 2003). In plants, carotenoids are correlated 

with chlorophyll contents and the intensity of green pigmentation (Khoo et al., 2011). 

Carotenoids surround chlorophyll complexes along thylakoid membranes, serving as light-

harvesting pigments that protect chlorophyll from photodestructive reactions (Braumann et al., 

1984). Carotenoid pigments are able to prevent oxidative damage to photosynthetic structures by 

binding to singlet oxygen and by quenching excited triplet chlorophyll to dissipate excess energy 

(Farnham and Kopsell, 2009), which helps to maintain broccoli quality during storage. Because 

the green color of broccoli is associated with the perception of freshness, increased carotenoids 

are also essential for the maintenance of sensory quality during storage (Paradis et al., 1996). 

  Carotenoid contents are thought to be primarily dependent on genotype (Ibrahim and Juvik, 

2009; Renaud et al., 2014b). Farnham and Kopsell (2009) reported lutein as the most prevalent 

carotenoid in broccoli, accounting for over 50% of total carotenoids. Similarly, lutein was the 

most abundant carotenoid in both ‘BH053’ and ‘Emerald Crown’ cultivars in this study. In 

contrast, Fernández-Leon et al. (2012) found that β-carotene was the main carotenoid in broccoli. 

However, β-carotene was the second most abundant carotenoid for both cultivars in this study. 

There is conflicting evidence as to whether genotype has the greatest impact on lutein or β-

carotene contents in broccoli. Previous studies found that β-carotene was most dependent on 



161 

 

broccoli genotype (Fernández-Leon et al., 2012; Kurilich et al., 1999). In contrast, others 

reported that lutein was the carotenoid most strongly influenced by genotype (Farnham and 

Kopsell, 2009; Ibrahim and Juvik, 2009; Renaud et al., 2014b). In this study, all carotenoids 

measured (violaxanthin, neoxanthin, antheraxanthin, lutein, α-carotene, β-carotene, and total 

carotenoid contents) were significantly affected by cultivar, and were significantly greater for 

‘BH053’ than for ‘Emerald Crown.’ However, many studies only report differences among 

broccoli cultivars for specific individual carotenoids, mainly β-carotene and lutein. Singh et al. 

(2007) reported that β-carotene and lutein contents were highest for ‘Solar Green,’ while β-

carotene levels were lowest for ‘Fiesta,’ and lutein levels were lowest for both ‘Fiesta’ and 

‘Lucky’ broccoli cultivars. Renaud et al. (2014b) found that ‘Oregon’ had significantly higher β-

carotene and lutein levels compared to ‘Maine.’ Farnham and Kopsell (2009) found that 

‘Marathon’ had the lowest lutein and violaxanthin contents compared to other broccoli cultivars, 

and ‘Green Valiant’ had the highest violaxanthin levels, while lutein was greatest for ‘Fiesta.’ 

However, they found that β-carotene was not significantly different among cultivars. In contrast, 

Kurilich et al. (1999) reported a significant difference among cultivars for both α-carotene and β-

carotene. Fernández-Leon et al. (2012) found that β-carotene was significantly greater for 

‘Parthenon’ than for ‘Monaco’ but reported that lutein was not significantly different among 

cultivars. Results from this study indicate that all individual carotenoids measured were 

significantly influenced by genetic factors.  

 Variation in postharvest carotenoid contents depend on genetic (cultivar), physiological, and 

abiotic factors (Dominguez-Perles et al., 2011; Fernández-Leon et al., 2012). Significantly 

greater carotenoid contents may have been due to the earlier maturation date for ‘BH053’ than 

for ‘Emerald Crown’ or other physical characteristics that are influenced by genotype. Renaud et 
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al. (2014a) found that greater head weight, head diameter, bead size and uniformity, and 

increasing days to maturity were negatively correlated with carotenoid contents. Negative 

correlations between physical characteristics and carotenoid contents may be due to increased 

biomass in certain genotypes that are not accompanied by increased carotenoid synthesis, 

lowering carotenoid concentration (Farnham and Kopsell, 2009). ‘BH053’ was harvested 5 days 

earlier than ‘Emerald Crown’ and had significantly greater levels of carotenoids than ‘Emerald 

Crown,’ indicating that significantly greater contents for ‘BH053’ may be due to the variation in 

physical characteristics that are highly influenced by genotype.  

 Results from this study indicate that postharvest carotenoid contents, including violaxanthin, 

neoxanthin, antheraxanthin, α-carotene, and β-carotene in broccoli are significantly influenced 

by cultivar. Carotenoid variations among these cultivars suggest differences in the health 

promoting properties of broccoli (Kurilich et al., 1999; Singh et al., 2007), as carotenoids are 

nutritional compounds that are related to the prevention of certain cancers and age-related 

macular degeneration (Mayne, 1996; Krinsky et al., 2003; Podsedek, 2007; Verhoeven et al., 

1996). Because yellowing is the main visible sign of broccoli deterioration, the green color of 

broccoli is a characteristic of freshness that is preferred by consumers (Kidmose et al., 2002). 

Recent evidence suggests that increased carotenoid contents result in greener broccoli florets by 

preventing the loss of chlorophyll (Renaud et al., 2014b). In addition to preventing the loss of 

color in broccoli, increased carotenoid contents also help to prevent oxidative damage to broccoli 

tissues during storage, resulting in delayed effects of senescence (Casajús et al., 2019). Thus, 

significantly greater carotenoid contents suggest that ‘BH053’ is superior to ‘Emerald Crown’ in 

terms of compositional, nutritional, and sensory quality. 
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 Carotenoids, effects of cooling/storage method. 

 Carotenoids act as lipid-soluble antioxidants (Hasperué et al., 2013; Loi et al., 2019) that help 

protect cellular membranes by scavenging and quenching free radicals, resulting in delayed 

effects of postharvest senescence (Casajús et al., 2019; Fernández-Leon et al., 2013; Singh et al., 

2007). Storage conditions impact the appearance, nutritional quality, and shelf life of broccoli by 

altering carotenoid concentrations over time (Mahn and Reyes, 2012; Serrano et al., 2006). 

Biochemical reaction rates increase up to threefold for every 10 ⁰C increase in temperature 

(Kader, 1987). Thus, the postharvest quality of broccoli can be improved by lowering storage 

temperatures (Price and Flore, 1993), which reduces respiration rates, prevents enzymatic quality 

losses, and delays senescence (Kidmose et al., 2002). 

 Nath et al. (2011) found that β-carotene losses in broccoli stored for 6 d were significantly 

greater for broccoli stored at 15 ⁰C than at 4 ⁰C. Cogo et al. (2011) found that carotenoids were 

significantly greater for broccoli stored at 1 ⁰C than for broccoli stored at 23 ⁰C. In contrast, other 

studies have observed a linear increase in carotenoid contents with increasing storage 

temperature (Hasparue et al., 2016; Lefsrud et al., 2005). However, carotenoid contents in this 

study were not significantly different for broccoli cooled with top icing and stored at 7 ⁰C, and 

broccoli cooled with an ice slurry and stored at 0 ⁰C in ice. Although storage temperature did not 

have a statistically significant impact on broccoli carotenoids, results from this study show that 

total carotenoid contents were slightly greater in broccoli stored at 0 ⁰C than at 7 ⁰C. Carotenoid 

contents in broccoli may not have been affected by storage temperature because cultivars used in 

this study were less likely to be influenced by storage temperature (Farnham and Kopsell, 2009). 

Therefore, lower temperature may still help to preserve the postharvest quality of broccoli in 

other cultivars that are more influenced by temperature. 
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 Carotenoids are known to decrease during senescence of plants (Biswal, 1995). In this study, 

storage time significantly affected all carotenoids measured. These carotenoids significantly 

decreased in broccoli stored for 35 d. The xanthophyll carotenoids, including violaxanthin, 

neoxanthin, and antheraxanthin, significantly decreased at 21 d. In contrast, β-carotene and lutein 

contents significantly decreased at 7 d, while α-carotene significantly decreased at 14 d. Previous 

studies also found that carotenoid contents significantly decreased in broccoli stored for 5 d at 20 

⁰C (Yuan et al., 2010), 5 d at 25 ⁰C (Li et al., 2014), 7 d at 5 ⁰C (Barth et al., 1996), 19 d at 5 ⁰C 

(Pintos et al., 2020), and 6, 13, 20, and 27 d at 1 to 2 ⁰C (Fernández-Leon et al., 2013). In 

contrast, some studies found that carotenoid contents remained stable in broccoli stored for 7 d at 

1 ⁰C (Cogo et al., 2011), 11 and 19 d at 5 ⁰C (Pintos et al., 2020), and 35 and 40 d at 5 ⁰C 

(Hasperué et al., 2016); while others reported that total carotenoid contents increased in broccoli 

stored for 5 d at 20 ⁰C (Casajús et al., 2019), stored from 2 to 5 d at 23 ⁰C (Cogo et al., 2011), 2, 

3, and 4 d at 22 ⁰C (Hasperué et al., 2016), and 20 d at 4 ⁰C (Loi et al., 2019). However, results 

from this study indicate that postharvest carotenoid contents in broccoli decline with increasing 

storage time.  

 Radical oxygen species are over-produced, and oxidative damage occurs during storage of 

vegetable crops (Li et al., 2014). Carotenoids act as important lipid-soluble antioxidants, 

preventing cellular membrane oxidation by scavenging or quenching free radicals (Apel and 

Hirt, 2004; Fernández-Leon et al., 2013; Li et al., 2014; Noctor and Foyer, 1998; Page et al., 

2001). Increased carotenoid contents in broccoli help maintain postharvest quality by preventing 

cellular membrane and chlorophyll degradation, resulting in less severe tissue damage and 

delayed yellowing during senescence (Renaud et al., 2014b). The main causes of carotenoid 

losses are autooxidation, photooxidation, and coupled lipid oxidation. Autooxidation occurs 
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spontaneously in the presence of oxygen, forming alkylperoxyl radicals that break down 

carotenoids to form epoxides (Kidmose et al., 2002). Photooxidation is affected by light intensity 

in the presence of oxygen. An excited sensitizer produces a singlet oxygen, which is quenched 

by carotenoids, forming cis isomers that result in color changes (Carnevale et al., 1980; Gross, 

1991; Lennersten and Lingnert, 2000; Yanishlieva et al., 1998). Coupled oxidation is associated 

with the lipoxygenase system in vegetables exposed to stress. Lipid peroxidation forms 

peroxides, which oxidize carotenoids by a coupled reaction, resulting in carotenoid decoloration. 

Oxidation rates depend on the availability and presence of specific enzymes, oxygen, and 

antioxidants (Oszmianski and Lee 1990). Among other factors, such as temperature and light, the 

rate of oxidation also depends on individual carotenoid structure (Chen et al., 1994). Thus, 

xanthophyll carotenoids may have decreased slower than carotenes and lutein due to variation in 

these factors during storage.  

 Both β-carotene and lutein contents significantly decreased in broccoli stored for 35 d at 5 

and 0 ⁰C. Similarly, previous studies reported that both lutein and β-carotene contents 

significantly decreased in broccoli stored for 5 d at 25 ⁰C (Li et al., 2014), 6, 13, 20, and  27 d at 

1 to 2 ⁰C (Fernández et al., 2013). However, Nath et al. (2011) reported that β-carotene content 

alone significantly decreased in broccoli stored for 6 d at 15 and 4 ⁰C. In this study, β-carotene 

content was also significantly affected by interactions of cultivar and storage time. For ‘BH053,’ 

β-carotene content remained relatively stable and was significantly greater than β-carotene 

content for ‘Emerald Crown’ throughout the first 21 d in storage. Autooxidation is one of the 

main causes of carotenoid losses during postharvest storage of vegetables (Kidmose et al., 2002). 

Apolar carotenoids, such as β-carotene, are more susceptible to autooxidation than xanthophylls 

(Ramakrishnan and Francis, 1980). Significant interactions of cultivar and storage time for β-
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carotene content may be due to the variation in oxidative activity among cultivars during 

broccoli storage. Greater β-carotene for ‘BH053’ compared to ‘Emerald Crown’ suggests that 

‘Emerald Crown’ was experiencing greater autooxidation activity during storage, which led to 

the significantly greater β-carotene losses. For traits where genotype plays a significant role in 

contributing to variation (mainly β-carotene and lutein), cultivars with a higher concentration 

level tend to also be those that are most stable across environments (Renaud et al., 2014b). Thus, 

greater stability of β-carotene for ‘BH053’ during storage may be due to its increased 

concentration level compared to ‘Emerald Crown.’   

 Chlorophyll, effects of cultivar. 

 Sensory quality, including color, aroma, flavor, and tissue morphology, is an important factor 

for consumer acceptance of broccoli (Luo et al., 2018). Chlorophyll is important for maintaining 

the green color of broccoli, which is associated with freshness and preferred by consumers (Nath 

et al., 2011). Floret yellowing due to chlorophyll catabolism is the main visible sign of 

postharvest deterioration (Costa et al., 2005; Loi et al., 2019). Because the color of fresh produce 

is expected to be as close to the original color at harvest, color changes reflect the loss of quality 

(Gnanasekharan et al., 1992). Chlorophyll may also provide a chemoprotective effect when 

consumed (Feruzzi and Blakeslee, 2007). Activities of dietary chlorophyll may be associated 

with cancer prevention, antimutagenic activities, and induction of tumor cell apoptosis (Balder et 

al., 2006; Egner et al., 2001; Farnham and Kopsell, 2009). Chlorophyll contents in vegetables are 

determined by interactions of biochemical, physiological, and genetic characteristics (Goldman 

et al., 1999; Farnham and Kopsell, 2009; Kopsell et al., 2004; Kopsell et al., 2005; Kurilich et 

al., 1999). 



167 

 

 In this study, chlorophyll a and chlorophyll b contents were significantly greater for ‘BH053’ 

than for ‘Emerald Crown.’ Similarly, Farnham and Kopsell (2009) found that chlorophyll a and 

chlorophyll b levels were significantly affected by genotype. They reported that ‘High Sierra’ 

had the lowest chlorophyll a and chlorophyll b contents, while ‘Futura’ had the highest 

chlorophyll a content, and ‘Green Valiant’ had the highest chlorophyll b contents. They also 

found that found that Chlorophyll b was significantly lower than chlorophyll a in multiple 

broccoli cultivars. Fernández-Leon et al. (2012) also found that ‘Parthenon’ had significantly 

greater chlorophyll a content than ‘Monaco.’ However, they did not observe a significant 

difference between chlorophyll b content among cultivars. In this study, chlorophyll a was 

greater than chlorophyll b contents for both ‘BH053’ and ‘Emerald Crown.’ Carotenoids help 

maintain broccoli quality by preventing the loss of chlorophyll contents (Braidot et al., 2014; 

Noichinda et al., 2007; Tracewell et al., 2001). As expected, ‘BH053’ also had significantly 

greater carotenoid contents than ‘Emerald Crown.’  

 Chlorophyll degradation is a direct cause of yellowing in broccoli (Cai et al., 2019; Fukasawa 

et al., 2010; Hasperué et al., 2015; Hörtensteiner and Kräutler, 2011; Shimoda et al., 2016). 

Dephytilation by the action of chlorophyllase (CHL) was previously thought to be the first step 

in chlorophyll degradation (Benedetti and Arruda, 2002; Harpaz-Saad et al., 2007; Matile et al., 

1999; Takamiya et al., 2000). However, recent studies may indicate that pheophytinase (PPH) 

and pheophorbide a oxygenase (PAO) may be more directly involved in the early stages of 

chlorophyll degradation than CHL (Büchert et al., 2011; Cai et al., 2019). PPH may be involved 

in the dephytilation of pheophytin, generating pheophorbide (Yang et al., 2009). Pheophorbide is 

then consumed by POA to catalyze opening of the pheophorbide porphyrin ring, generating red 

chlorophyll catabolytes (RCC) (Gómezlobato et al., 2011). Reduction of RCC by RCC reductase 
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(RCCR) generates primary fluorescent chlorophyll catabolytes (pFCC) that are translocated to 

vacuoles. pFCCs then undergo modifications and produce non-fluorescent chlorophyll 

catabolites (NCCs) that are stored inside the vacuole (Hörtensteiner , 2006; Schelbert et al., 

2009). Hasperué et al. (2013) found that the expression of one gene controlling CHL activity 

decreased, while expression of the other gene increased in broccoli stored for 4 d at 20 ⁰C. 

Because chlorophyll contents also decreased during this time, they concluded that chlorophyllase 

may be involved chlorophyll degradation. In contrast, Cai et al. (2019) found that chlorophyllase 

activity decreased in broccoli stored for 24 d at 4 ⁰C, while PaO and PPH activity increased. 

Increased PAO and PPH activity led to decreased chlorophyll contents. The expression of genes 

controlling chlorophyllase activity decreased, while the expression of genes controlling PaO and 

PPH increased during storage, indicating that chlorophyllase activity may not be necessary for 

chlorophyll degradation. Because expression of genes controlling enzymatic activity in broccoli 

is influenced by cultivar, the difference in chlorophyll contents among cultivars observed in this 

study may be due to the variation in PAO, PPH, and/or CHL activities. Results from this study 

suggest that ‘BH053’ has the ability to better regulate the expression of genes controlling 

enzymatic activity related to chlorophyll degradation during storage, indicated by significantly 

greater chlorophyll contents, which would result in delayed yellowing for ‘BH053’ compared to 

‘Emerald Crown.’ 

 Chlorophyll, effects of cooling/storage method. 

 Broccoli is a perishable vegetable with a high rate of senescence (King and Morris, 1994). 

During senescence, chlorophyll catabolism leads to a loss of green color, resulting in a loss of 

organoleptic quality (Casajús et al., 2019; Jones et al., 2006). Broccoli inflorescences contain 

hundreds of florets with petals and sepals containing chlorophyll. Energy, nutritional, and 
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hormonal supplies are rapidly depleted after harvest, leading to floret opening and senescence, 

which is accompanied by yellowing and chlorophyll degradation within floret tissues (Li et al., 

2014; Page, et al., 2001). 

 Previous studies have demonstrated that lower storage temperature helps maintain 

chlorophyll contents in broccoli. Lebermann et al. (1968) found that total chlorophyll losses in 

broccoli stored for 16 d were significantly greater for broccoli stored at 7 ⁰C than at 1 ⁰C. Takeda 

et al. (1993) found that chlorophyll losses occurred in broccoli stored at 20 or 23 ⁰C but remained 

constant when stored at 2 ⁰C. Deschene et al. (1991) found that chlorophyll contents significantly 

declined within 4 d at 23 ⁰C and 10 d at 10 ⁰C. Nath et al. (2011) found that chlorophyll losses in 

broccoli stored for 6 d were significantly greater for broccoli stored at 15 ⁰C than at 4 ⁰C. In this 

study, storage temperature did not have a significant effect on chlorophyll contents in broccoli 

stored for 35 d at 0 and 7 ⁰C. Similarly, Boonprasom and Boonyakiat (2010) found that 

chlorophyll contents were not significantly different for broccoli stored at 0 and 7 ⁰C. However, 

chlorophyll contents were significantly greater for broccoli stored at 0 or 7 ⁰C than for broccoli 

stored at 10 ⁰C. Thus, the temperature difference between 0 and 7 ⁰C may not have been great 

enough to significantly influence the variation in broccoli chlorophyll contents observed in this 

study. 

 Although storage temperature did not significantly affect broccoli chlorophyll contents in this 

study, storage time did have a significant impact chlorophyll. In this study, total and individual 

chlorophyll contents significantly decreased in broccoli stored for 35 d at 5 and 0 ⁰C. Similarly, 

previous studies found that chlorophyll contents significantly decreased in broccoli stored for 4 d 

at 15 ⁰C (Yamauchi et al., 1997), 4 d at 20 ⁰C (Hasperué et al., 2011; Hasperué et al., 2013), 5 d 

at 20 ⁰C (Casajús et al., 2019; Yuan et al., 2010), 5 d at 25 ⁰C (Li et al., 2014), 10 d at 7 ⁰C (Zhan 
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et al., 2012), 11 and 19 d at 5 ⁰C (Pintos et al., 2020), 20 d at 4 ⁰C (Esturk et al., 2014), 14 and 21 

d at 4 ⁰C (Hasperué et al., 2015), 20 and 27 d at 1 to 2 ⁰C (Fernández-Leon et al., 2013), and 35 

and 40 d at 5 ⁰C (Hasperué et al., 2016). In contrast, Loi et al. (2019) found that total chlorophyll 

contents significantly increased in broccoli stored for 20 d at 4 ⁰C.  

 Chlorophyll losses have been positively correlated with broccoli deterioration (Aimla-or et 

al., 2010). As broccoli undergoes senescence, chlorophyll degradation, lipid peroxidation, and 

cell death occurs (Gómez-Lobato et al., 2012). Chlorophyll and proteins form light harvesting 

complexes in plants. Prior to chlorophyll degradation, light harvesting complexes must be 

dismantled (Hasperué et al., 2013). Harvesting allows compartmentalized enzymes to mix with 

substrates, which increases the rate of chlorophyll decline (Kidmose et al., 2002). As the 

permeability of cellular membranes change during storage, chloroplast membrane degradation 

and thylakoid membrane deformation lead to the release of chlorophyll attached to the thylakoid 

membrane (Kidmose et al., 2002). Released chlorophyll are then degraded by enzymes, 

including CHL, PPH, and PAO (Hörtensteiner and Krautler, 2011). 

 Harvesting allows compartmentalized enzymes to mix with substrates, which increases the 

rate of chlorophyll decline (Kidmose et al., 2002). Chlorophyll are often oxidized by 

lipoxygenase (LOX), peroxidase (POX), and oxidase enzymes (Gross, 1991). Previous studies 

have found that POX activity is associated with membrane and pigment breakdown (Barth et al., 

1992; Barth et al., 1996). After exposure to stress, fatty acids accumulate in membranes due to 

phospholipid degradation by senescence-related enzymes (Barclay and McKersie, 1994). These 

free fatty acids are then oxidized by LOX, forming hydroperoxides (Whitaker, 1990), which can 

then stimulate the oxidative degradation of chlorophyll (Kidmose et al., 2002; Yamauchi and 

Watada, 1991). Thus, increased POX and LOX activities during storage may have played a role 
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in chlorophyll losses during storage. Results from this study show that chlorophyll degradation 

increased as storage time increased. 

 Interestingly, chlorophyll contents initially increased from 0 to 7 d. This may have been a 

result of metabolic activity and development of the immature floral buds (Carr and Irish, 1997; 

Loi et al., 2019). Previous studies have shown that postharvest chlorophyll losses can be delayed 

by chlorophyll synthesis at the beginning of senescence (Zhuang et al., 1994), which would 

explain the increase in total and chlorophyll a content at 7 d. However, previous studies have 

observed faster turnover rate for chlorophyll b compared to chlorophyll a (Farnham and Kopsell, 

2009; Fernández-Leon et al., 2012; Folley and Engel, 1999). Recent evidence suggests that the 

reduction of chlorophyll b to chlorophyll a is a key first step in the degradation of chlorophyll 

(Hörtensteiner and Krautler, 2011). In leaves undergoing senescence, chlorophyll a is then 

demetallated to pheophytin a prior to dephytilation of pheophorbide a. In contrast, it was 

observed in ripening fruit, that the dephytilation of chlorophyll a into chlorophyllide a (by CHL) 

occurs first. Results from this study indicate that chlorophyll b is degraded during the first 7 d of 

storage, while chlorophyll a is synthesized, suggesting that chlorophyll b is first reduced to 

chlorophyll a prior to dephytilation of chlorophyll a by chlorophyllase (Schelbert et al., 2009; 

Scheumann et al., 1999; Tanaka et al., 1995; Zhan et al., 2012). Thus, the increase in chlorophyll 

a after harvest may have been due to the reduction of chlorophyll b, continued chlorophyll 

synthesis after harvest, or an interaction of these two mechanisms.  

Conclusion 

 Cultivar and storage time had a significant impact on carotenoid and chlorophyll contents in 

broccoli, while storage temperature did not appear to have a significant influence on these 

phytochemicals. There was no significant difference in carotenoid or chlorophyll contents for 
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broccoli cooled with top icing and stored at 7 ⁰C and broccoli cooled with an ice slurry and 

stored at 0 ⁰C in ice. However, both carotenoid and chlorophyll contents were slightly greater for 

broccoli stored 0 ⁰C. This suggests that storage temperature may still play a small role in 

preventing the loss of these compounds.  

 All carotenoids measured, including violaxanthin, neoxanthin, antheraxanthin, lutein, β-

carotene, and α-carotene, were significantly greater for ‘BH053’ than for ‘Emerald Crown.’ 

Similarly, both chlorophyll a and chlorophyll b contents were significantly greater for ‘BH053’ 

than for ‘Emerald Crown.’ Significant differences in the carotenoid and chlorophyll contents 

among broccoli cultivars suggest that these phytochemicals are dependent on genotype. 

Increased carotenoid contents help to prevent oxidative damage and chlorophyll degradation, 

which prevents the loss of nutritional and sensory quality during storage. Results from this study 

suggest that the postharvest quality is greater ‘BH053’than for ‘Emerald Crown’ due to its 

significantly greater carotenoid and chlorophyll contents.   

 Carotenoid and chlorophyll contents in broccoli significantly decreased throughout the 

duration of storage. β-carotene and lutein significantly decreased from their initial values at 7 d, 

while violaxanthin, neoxanthin, and antheraxanthin significantly decreased at 21 d and α-

carotene significantly decreased at 14 d. Chlorophyll a significantly decreased at 14 d after 

slightly increasing at 7 d, while chlorophyll b content steadily decreased throughout storage. As 

carotenoid and chlorophyll contents decreased with increased storage time, results from this 

study indicate that the decrease in postharvest quality of broccoli is apparent at 7 d and becomes 

more severe as time progresses. 
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Appendix 

 

 

Table 26. Analysis of variance results for carotenoid contents in broccoli for ‘BH053’ and 

‘Emerald Crown,’ cooled with top ice and stored at 7 ⁰C compared with ice slurry cooled 

broccoli stored at 0 ⁰C in ice, when stored for 0, 7, 14, 21, 28, and 35 days. 

 

Carotenoid 

Source of Variance Violaxanthin Neoxanthin Antheraxanthin Lutein 

Cultivar (C)   *** z *** * *** 

Treatment (T) NS NS NS NS 

Storage Time (S) *** *** ** *** 

C x T NS NS NS NS 

T x S NS NS NS NS 

C x S NS NS NS NS 

C x T x S NS NS NS NS 
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Table 26. Continued.  

 

Carotenoid 

Source of Variance α-carotene β-carotene Total Carotenoids 

Cultivar (C) *** *** *** 

 
Treatment (T) NS NS NS 

 
Storage Time (S) ** *** *** 

 
C x T NS NS NS 

 
T x S NS NS NS 

 
C x S NS ** NS 

 
C x T x S NS NS NS 

 
z Significance of interaction effects are denoted by NS, *, **, ***: Non-significant or 

significant at p ≤0.05, 0.01, and 0.001, respectively. 
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Table 27. Analysis of variance results for chlorophyll contents in broccoli for ‘BH053’ and 

‘Emerald Crown,’ cooled with top ice and stored at 7 ⁰C compared with ice slurry cooled 

broccoli stored at 0 ⁰C in ice, when stored for 0, 7, 14, 21, 28, and 35 days. 

 

Chlorophyll 

Source of Variance Chlorophyll a Chlorophyll b Total Chorophylls 

Cultivar (C)   *** z *** *** 

Treatment (T) NS NS NS 

Storage Time (S) *** *** *** 

C x T NS NS NS 

T x S NS NS NS 

C x S NS NS NS 

C x T x S NS NS NS 

z Significance of interaction effects are denoted by NS, *, **, ***: Non-significant or 

significant at p ≤0.05, 0.01, and 0.001, respectively. 
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Table 28. Average carotenoid contents in broccoli (µg·g-1 fresh mass), across time for both 

storage temperatures, for ‘BH053’ compared with ‘Emerald Crown.’ 

 

Cultivar 

Carotenoid BH053 Emerald Crown 

Violaxanthin       3.78 a zy   1.53 b 

Neoxanthin   3.91 a   2.79 b 

Antheraxanthin   0.94 a   0.68 b 

Lutein   7.58 a   3.77 b 

α-Carotene   3.93 a   1.62 b 

β-Carotene   4.86 a   2.31 b 

Total 24.69 a 12.87 b 

zMeans are the average of four replications for ‘BH053’ and three replications for ‘Emerald 

Crown,’ two broccoli heads for each cultivar and storage temperature combination, and 

samples stored for 0, 7, 14, 21, 28, and 35 days. 

yFor each individual carotenoid, letters beside means for one cultivar that are not different 

from letters beside means for the other cultivar, are not significantly different by the LSD test 

(α = 0.05). 
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Table 29. Average carotenoid contents in broccoli (µg·g-1 fresh mass), across time for both 

cultivars, for top icing cooled broccoli stored at 7 ⁰C compared with ice slurry cooled broccoli 

stored at 0 ⁰C in ice. 

 

Storage Temperature 

Carotenoid 7 ⁰C 0 ⁰C 

Violaxanthin   2.55 a   2.77 a 

Neoxanthin   3.15 a   3.54 a 

Antheraxanthin   0.78 a   0.83 a 

Lutein   5.72 a   5.63 a 

α-Carotene   2.73 a   2.82 a 

β-Carotene   3.71 a   3.46 a 

Total 18.52 a 19.05 a 

zMeans are the average of four replications for ‘BH053’ and three replications for ‘Emerald 

Crown,’ two broccoli heads for each cultivar and storage temperature combination, and 

samples stored for 0, 7, 14, 21, 28, and 35 days. 

yFor each individual carotenoid, letters beside means for one storage temperature that are not 

different from letters beside means for the other storage temperature, are not significantly 

different by the LSD test (α = 0.05). 

 
  



192 

 

Table 30. Average carotenoid contents in broccoli (µg·g-1 fresh mass), for both cultivars and 

storage temperatures, compared during storage at 0, 7, 14, 21, 28, and 35 days. 

 

Storage Time (d) 

Carotenoid  0 7 14 21 28 35 

Violaxanthin   4.39 a   4.08 a   3.67 a   2.21 b   1.02 bc 0.58 c 

Neoxanthin   4.90 a   5.25 a   4.52 a   3.04 b 1.43 c 0.94 c 

Antheraxanthin   1.36 a   1.13 a   1.13 a   0.73 b 0.30 c 0.20 c 

Lutein 11.04 a   8.20 b   7.51 b   1.50 c 1.85 d 0.95 d 

α-Carotene   5.18 a     3.90 ab   3.52 b   2.98 b 0.85 c 0.21 c 

β-Carotene   7.38 a   4.74 b   5.74 b   1.97 c   1.32 cd 0.36 d 

Total 34.41 a 26.46 b 26.18 b 15.52 c 6.86 d 3.33 d 

zMeans are the average of four replications for ‘BH053’ and three replications for ‘Emerald 

Crown,’ two broccoli heads for each cultivar and storage temperature combination, and 

samples stored for 0, 7, 14, 21, 28, and 35 days. 

yFor each individual carotenoid, letters beside means for one storage time that are not different 

from letters beside means for that carotenoid at other storage times, are not significantly 

different by the LSD test (α = 0.05). 
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Fig. 21. Average β-Carotene contents in broccoli, stored at both 

temperatures, for ‘BH053’ compared to ‘Emerald Crown,’ and 

compared during storage at 0, 7, 14, 21, 28, and 35 days. Means are 

the average of four replications for ‘BH053’ and three replications 

for ‘Emerald Crown,’ two broccoli heads for each cultivar and 

storage temperature combination, and samples stored for 0, 7, 14, 

21, 28, and 35 days. Letters above one cultivar and storage time 

that are not different from letters above other cultivars and storage 

times, are not significantly different by the LSD test (α = 0.05). 
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Fig. 22. Chlorophyll a, chlorophyll b, and total chlorophyll contents 

in broccoli, across time at both storage temperatures, for ‘BH053’ 

compared to ‘Emerald Crown.’ Means are the average of four 

replications for ‘BH053’ and three replications for ‘Emerald 

Crown,’ two broccoli heads for each cultivar and storage 

temperature combination, and samples stored for 0, 7, 14, 21, 28, 

and 35 days. For each individual chlorophyll, letters above one 

cultivar that are not different from letters above the other cultivar 

for that chlorophyll, are not significantly different by the LSD test 

(α = 0.05). 
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Fig. 23. Average chlorophyll a, chlorophyll b, and total chlorophyll 

contents in broccoli cooled with top icing and stored at 7 ⁰C 

compared with broccoli cooled with an ice slurry and stored at 0 ⁰C 

in ice. Means are the average of four replications for ‘BH053’ and 

three replications for ‘Emerald Crown,’ two broccoli heads for each 

cultivar and storage temperature combination, and samples stored 

for 0, 7, 14, 21, 28, and 35 days. For each chlorophyll, letters above 

one storage temperature that are not different from letters above the 

other storage temperature for that chlorophyll, are not significantly 

different by the LSD test (α = 0.05). 
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Fig. 24. Average chlorophyll a, chlorophyll b, and total chlorophyll 

contents in broccoli, for both cultivars and storage temperatures, 

compared during storage at 0, 7, 14, 21, 28, and 35 days. Means are 

the average of four replications for ‘BH053’ and three replications 

for ‘Emerald Crown,’ two broccoli heads for each cultivar and 

storage temperature combination. For each individual chlorophyll 

grouping, letters above one storage time that are not different from 

letters above other storage times for that chlorophyll, are not 

significantly different by the LSD test (α = 0.05). 
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CONCLUSION

 Results from this project indicate that both cultivar and cooling/storage methods have a 

significant impact on the biochemical factors associated with the maintenance of postharvest 

broccoli quality. Results from broccoli cultivars harvested in Fall, 2018 reveal that 'Diplomat' 

had significantly greater sucrose contents and a significantly greater sugar/acid ratio compared to 

‘Arcadia.’ As increased sucrose contents are correlated with delaying the effects of senescence, 

and a higher sugar/acid ratio is often associated with increased consumer acceptance of 

horticultural crops, these results suggest that the postharvest quality of 'Diplomat' is greater than 

that of 'Arcadia.’ Results from broccoli harvested in Fall, 2019 show that ‘BH053’ had 

significantly greater carotenoid and chlorophyll contents than ‘Emerald Crown,’ while 

glucosinolate, dimethyl disulfide, and (E)-2-hexenal contents were significantly greater for 

‘Emerald Crown’ than for ‘BH053.’ Glucosinolates, carotenoids, and chlorophyll offer many 

potential health benefits when consumed, such as the prevention of certain cancers and 

cardiovascular diseases. In addition, carotenoids and chlorophyll are essential for maintaining the 

postharvest sensory quality of broccoli, as increased levels of these metabolites prevent color 

changes associated with senescence. In contrast, glucosinolates are responsible for the bitterness 

in Brassica plants, and dimethyl disulfide is a sulfur-containing volatile that is associated with 

the off-odors produced during broccoli senescence. These results suggest that the sensory quality 

is greater for ‘BH053’ than for ‘Emerald Crown.’ 

 Broccoli has a high rate of respiration due to its developing immature inflorescences. Rapid 

cooling and lower storage temperatures help to reduce the rate of respiration in vegetables, which 

prevents the loss of postharvest quality. As expected, the characteristic metabolites related to 

broccoli quality significantly decreased during storage for 35 d. Broccoli cooled with an ice 
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slurry and stored at 0 ⁰C in ice maintained significantly higher levels of sucrose and health-

promoting glucosinolates, while storage at 7 ⁰C resulted in significantly greater levels of the 

sulfur-containing volatile dimethyl disulfide. Many of the glucosinolates in broccoli have been 

associated with health benefits, and increased sucrose content helps to delay the effects of 

senescence, while dimethyl disulfide production indicates cellular deterioration. Thus, these 

results confirm that storage near 0 ⁰C, accompanied by immediate precooling in the field, help to 

prevent the loss of compounds attributed to the maintenance of physiological, nutritional, and 

sensory quality of broccoli during postharvest storage.
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