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ABSTRACT 

Water temperature is an important determinant of species distributions in flowing 

freshwater environments, however anthropogenic climate change threatens many freshwater 

species as suitable habitat shifts upslope or is expunged. These distribution changes will depend, 

in part, upon within-reach temperature heterogeneity and its potential to provide cold refugia. 

We monitored stream temperatures at 162 locations in six streams of the Little River watershed 

(Blount County, TN) during the summer of 2018 with the goal of assessing fine scale 

temperature heterogeneity (FSTH) and identifying local environmental factors driving within-

reach temperature heterogeneity. Overall, we show that FSTH increases with mean air 

temperature and stream size, as well as from high to low elevation. Even so, FSTH was greater 

among reaches and seasons than it was within them, suggesting limited thermal refugia. These 

findings suggest that thermally sensitive biota will need to move to upslope reaches to seek 

thermal refuge as climate warming progresses. These findings also validate stream temperature 

modeling and mapping applications performed at the spatial resolution of confluence-to-

confluence stream reaches based on GIS data layers. 

 

Keywords: climate change, fish conservation, thermal refugia 

 

  



INTRODUCTION 

Water temperature is an important determinant of ecological processes and species 

distributions in freshwater ecosystems. It influences growth and metabolic rates of individuals, 

abundance and distribution of populations, and trophic interactions within communities (Boltaña 

et al. 2017, Cassie 2006, Winder 2004). Temperature regimes in flowing freshwaters vary along 

natural environmental gradients. For example, water temperature generally increases along the 

fluvial gradient (from small, high elevation streams to large, low elevation streams) and may also 

be impacted by gradients of groundwater input, snowmelt, or solar radiation (Caissie 2006, 

Fullerton et al. 2015). In addition to natural gradients, anthropogenic activities alter water 

temperatures in freshwater ecosystems in numerous ways. Water temperature is directly 

influenced by rising air temperatures resulting from climate change and indirectly influenced by 

landscape alterations, such as land use change, reduced riparian shading, or flow modification, 

which impact air/water temperature relationships (Woodward et al. 2010, Torgersen et al. 1999). 

Temperature alterations may negatively impact freshwater biodiversity by inducing habitat loss, 

range shifts, and novel species assemblages (Comte et al. 2013).  

Recently documented trends and future projections indicate that populations of stream-

dwelling organisms have and will continue to shift their distributions upslope and poleward to 

track suitable thermal habitat as a consequence of climate change. For example, Comte & 

Grenouillet (2013) found that most of the 32 species analyzed in French streams shifted their 

distributions upslope between the 1980s and 2000s. Similarly, Hickling et al. (2006) documented 

that 15 freshwater fish species and 14 aquatic insect taxa in Britain had shifted their distributions 

poleward and upslope during the middle and late 20th century. Forecasting studies project a 

continuation of warming impacts through the remainder of the 21st century. For example, Troia 

& Giam (2019) projected an increase in extreme heat events for streams in the southern 

Appalachian Mountains (southeastern USA) under 21st century climate change and a 

concomitant increase in the risk of physiological stress of four endemic fishes. Wenger et al. 

(2011) projected upslope shifts and distributional declines of native salmonid fishes in the Rocky 

Mountains (western USA) over the same time period. Whether these future projections come to 

fruition will depend, in part, on whether organisms have access to thermal refugia within their 

current geographic ranges (Hannah et al. 2014). For example, Isaak et al. (2017) demonstrated 

that high gradient stream reaches in the mountainous western United States will slow the upslope 

shift of isotherms, thus providing slow-climate-velocity refugia for thermally sensitive taxa. A 

shared assumption of these studies is that organisms responding to rising temperatures and 

seeking thermal refugia perceive thermal heterogeneity among, rather than within, stream 

reaches. 

Another potential source of thermal refugia is fine-scale thermal heterogeneity (hereafter 

‘FSTH’). FSTH refers to variations within broader water temperatures due to local factors such 

as riparian shading, groundwater inputs, flow, or thermal stratification (Arscott et al. 2001). This 

local environmental complexity increases habitat scale thermal variation, giving rise to 

ecologically important thermal refugia. Species can utilize microhabitats created by FSTH to 

exist at the extremes of their thermal tolerances (Cassie 2006). This is exemplified in a study 

examining behavioral thermoregulation of brook and rainbow trout in an Adirondack river. With 

summer water temperatures reaching the near lethal maximum for salmonids, the two trout 

species were able to use areas of thermal refuge near groundwater inputs to maintain average 

body temperatures cooler than ambient river temperatures (Baird & Krueger 2003).  With 

warming climate trends on the rise, FSTH within waterways could be an important buffer for 



cool water species that would otherwise suffer habitat loss due to increased water temperatures. 

To mitigate species loss and better understand the impacts rising temperatures will have on 

species distribution and survival, it will be increasingly important to study these fine scale 

temperature occurrences.  

Employing statistical models that identify environmental conditions driving water 

temperatures and that accurately predict water temperatures across stream networks is becoming 

increasingly important for conservation efforts. Such regional models typically predict water 

temperature at the spatial resolution of confluence-to-confluence stream reaches (hereafter 

‘reaches’) because this is the scale at which GIS-derived landscape predictors are available 

(DeWeber & Wagner 2014, Isaak et al. 2017, Troia et al. 2019). For example, the National 

Hydrography Dataset (NHD) and the auxiliary StreamCat dataset facilitate the modeling and 

mapping of water temperature variation among the 2.65 million reaches in the contiguous United 

States (Hill et al. 2016, McKay et al. 2012). Nevertheless, these reach-resolution models do not 

account for FSTH maintained by riparian canopy gaps, groundwater input from the stream bed or 

bank, vertical thermal stratification in deep slow-flowing pools, and isolation of flow in off-

channel habitats. High resolution modeling of regional temperature variations is much needed. 

More accurate models will decrease the disparity between modelled conditions and the true 

environmental conditions to which species are exposed. Fine scale temperature models will serve 

as better predictors for ecosystem management, which will be vital as temperatures rise over the 

next century.  

In this study, we monitored stream temperatures at 162 locations in six streams of the 

Little River watershed (Blount County, TN) with the goal of assessing FSTH and the local 

environmental factors with which FSTH correlates. We established monitoring locations along 

gradients of landscape alteration, elevation, and stream size to identify both natural and 

anthropogenic drivers of FSTH. We sought to determine the extent and cause of FSTH 

occurrence within confluence to confluence points of stream reaches within the Little River 

watershed, as well as how FSTH varies between reaches. We also examined the relative 

influence of spatial and temporal variation on the stream temperatures. We predict that FSTH 

occurrence will increase with frequency as stream catchment size increases and elevation 

decreases because larger, slower streams at lower elevations typically are less mixed and, thus, 

more thermally heterogenous. We also predict that FSTH will be dependent upon other local 

environmental factors. 

 

METHODS 

Study Sites 

 We monitored water temperatures in six stream reaches within the Little River watershed 

(Figure 1). The Little River watershed is a tributary of the Tennessee River System, drains 

portions of the Blue Ridge Mountains and Ridge and Valley ecoregions, and hosts a rich variety 

of endemic fishes and other aquatic organisms (Stein 2002). Reaches were selected to represent 

gradients of elevation, land use and stream size (i.e., catchment area) (Table 1). Three reaches 

were established within the Great Smoky Mountain National Park, and drained high elevation 

forested portions of the Blue Ridge ecoregion. The other three reaches drained comparatively 

lower elevation portions of the Ridge and Valley ecoregion with higher agricultural land cover. 

Elevation, catchment area, reach length, and landscape characteristics were derived from the 

NHD and StreamCat datasets (Hill et al. 2016, McKay et al. 2012).  

 



Field Methods 

Within each of the six reaches, we established nine transects, each with three water 

temperature monitoring points (N = 27 monitoring points per reach). At each monitoring point, 

one Ibutton temperature loggers (Thermochron DS1922L) was deployed in a silicone caulk-

sealed PVC housing to prevent exposure to moisture and secured in position by chaining the 

housing to a boulder or tree root. At each transect, a fourth logger was deployed on the north side 

of a tree trunk in open PVC housings to monitor air temperature All temperature loggers were 

programed to record temperature every 15 minutes. 

Transects were spaced approximately uniformly along the length of each reach, but were 

positioned such that the diversity of mesohabitats (pool, riffle, run, side channel), riparian 

canopy gaps, and channel azimuths were proportionally represented. Within each transect, 

monitoring points were positioned in the mid channel and left and right margins (or side channel 

if present). To test for vertical thermal stratification in deep pools (sensu Nelson et al. 1994), 

buoyed logger systems were deployed at the three transects representing the deepest and slowest-

flowing pools. At these transects, one logger was deployed at the bottom of the streambed, while 

another logger was secured to a foam buoy floating above the bottom logger. The top loggers 

attached to buoys were positioned approximately 5cm below the surface of the water. All other 

loggers recorded water temperatures at the bottom of streambeds. 

We monitored temperatures at each of the six reaches during an early summer period (31 

May to 14 July) and late summer period (24 July to 6 September). During each monitoring 

period, loggers were deployed for three consecutive days (Table 1). At each monitoring point, 

GPS coordinates were recorded, as was canopy cover (using a concave spherical densiometer), 

stream depth, logger vertical position (vertical distance from streambed), and lateral distance 

from bank.  

 

Data Analysis 

Data were analyzed in R using fBasics, car, lme4, ggplot2, chron, gridExtra, MuMIn, 

tidyr, pacman, packages. To ensure that only accurate temperature readings were used for data 

analysis, boxplots of outlier temperature data were made and reviewed in R. Resulting outliers 

were reviewed in the time series data from logger recordings. Flagged temperature recordings 

from before and after deployment and removal times were removed. Outliers that appeared to be 

due to recording errors were also removed. In most cases of data removal, it was due to point 

errors, where only one or two temperature recordings required removal from the time series. 

Occasionally, due to weather or circumstance, loggers were dislocated or exposed to air during 

the recording period. In such cases, all time series data recorded by the dislocated logger was 

removed.  

Next, all temperature recordings from loggers in buoy pairs were isolated in the data for a 

separate analysis. Mixed effects models and paired boxplots were employed to compare 

temperatures from bottom and top loggers for each transect, site, and week. Upon finding that 

there was no significant difference in temperatures recorded at the top and bottom of buoy pairs, 

all top buoy temperature recordings were removed from the data set, leaving 24 logger time 

series recordings for each site. All temperatures in the following analyses are derived from 

loggers positioned at the bottom of streambeds.  

After editing the temperature data, there were three full days of temperature recordings 

for each stream reach per monitoring period.  A time series plot was used to show the 

temperatures of the 24 loggers within upstream and downstream reaches over the course of the 



three days, where temperature is logged every fifteen minutes. Linear regression plots were 

employed to visualize the standard deviation of the mean and mean maximum temperatures per 

stream reach for each of the three days in relation to elevation and stream size, as well as mean 

air temperatures for each monitoring period. Additionally, linear regression and mixed effects 

models were used to assess the effect on FSTH of environmental variables (canopy cover, lateral 

distance from bank). 

 

RESULTS 

Comparison of the temperature data by monitoring period revealed that mean temperature 

ranges were marginally smaller and mean stream temperatures were marginally warmer during 

the later monitoring period. Temperatures ranged approximately 1-2 degrees Celsius in upstream 

reaches and 2-3 degrees Celsius in downstream reaches during the early monitoring period and 

approximately 1-2 degrees Celsius in upstream and downstream reaches during the later 

monitoring period (Table 2). On average, stream temperatures were approximately 1 degree 

Celsius warmer during the later monitoring period (Table 2). Overall, downstream temperatures 

displayed greater variation between logger temperature recordings, while upstream temperatures 

were less variable. Even so, temperatures within the same reach tracked each other relatively 

closely, and there was greater FSTH between reaches than there was within reaches (Figure 2).  

FSTH varied predictably with reach-level environmental variables. Specifically, FSTH of 

mean maximum stream temperatures was positively correlated with catchment area and mean air 

temperature and negatively correlated with elevation (Figure 3). There was no apparent 

correlation between FSTH of mean water temperatures and any of the reach-scale predictor 

variables (catchment area, mean air temperature, and elevation) (Figure 3). Therefore, 

subsequent analyses were performed using only mean maximum stream temperature metrics.  

There was a significant temporal effect on mean maximum stream temperatures at the 

logger-scale, but, unlike at the reach scale, there was no significant spatial effect. Vertical 

position of buoyed loggers did not yield a significant difference between mean maximum 

temperatures (season 1: t = -1.6655, df = 17, p-value = 0.1141; season 2: t = -1.6434, df = 17, p-

value = 0.1187). Summary statistics of mixed effects models revealed monitoring period had a 

significant effect on mean maximum stream temperatures; however, also revealed canopy cover 

and lateral distance from bank to have no significant impact (season: t= 17.0765738, lateral 

position: t= 0.2944239, canopy cover: t= -0.2865618) (Figure 4). This suggests there is a 

temporal effect on water temperature at the point resolution; however, because lateral position 

and canopy were not significant, there was not a spatial effect on temperature at the point 

resolution.  

 

DISCUSSION 

Freshwaters are among the most diverse ecosystems in the world and are 

disproportionately affected by climate change due to isolated habitat and species’ limited 

dispersal ability (He et al. 2019, Woodward et al. 2010). Specifically, rising annual temperatures 

due to anthropogenic activity threaten many freshwater species as suitable habitats are shifted or 

expunged (Knouft & Ficklin 2017). In a study examining brook and rainbow trout populations in 

Southern Appalachian streams, a predicted 53%-97% of trout habitat is to be lost due to 

temperature increases (Flebbe et al. 2006). Similarly, a study encompassing 57 fish species in the 

U.S. predicted that thermal habitat for cool water fish species could be reduced by 36% due to 

climate change (Cassie 2006). Such predictions are of major conservation concern as freshwater 



biodiversity continues to decline at a faster rate than is observed in marine or terrestrial systems 

(Harrison et al. 2018). 

These predictions are hinged on the assumption that within-reach temperatures are 

uniform, with little or no opportunity for thermal refugia between confluence-to-confluence 

segments of a stream reach. Our findings support such predictions drawn from reach level 

temperature modeling. Mean heterogeneity across reaches for maximum daily temperature 

(mean range across reaches = 1.22°C) and minimum daily temperature (mean range across 

reaches = 0.80°C) was below 2°C in the observed segments of the Little River watershed. Thus, 

the prediction error of reach-resolution models (i.e., 1-2°C) is consistent with the within reach 

variation observed in the present study. In environments of limited thermal refugia such as in this 

study, species may be forced to shift their distributions to track their thermal tolerances.   

Though there was modest FSTH in lower elevation streams, heterogeneity observed in 

this study was predominantly explained by reach-scale environmental factors (i.e. elevation and 

stream size). Moreover, while there was a significant temporal effect on FSTH at the point 

resolution, there was no significant environmental effect. This suggests that fish must disperse to 

streams of different size and elevation rather than utilize microhabitats created by 

geomorphological units if they are to find refuge from thermal maxima. However, dispersal is 

dependent on upstream connectivity and individual dispersal ability of each species (Troia et al. 

2019). Thus, conservation efforts in systems with limited thermal refugia should be focused on 

smaller-bodied species with limited dispersal abilities. Systems of reduced connectivity with 

numerous small-bodied fishes are therefore of special conservation concern. This bears special 

significance in Southern Appalachia, where small-bodied minnows and darters are the two most 

species rich groups found in the region (Troia et al. 2019).  

Though our study supports the accuracy of reach resolution temperature models that are 

currently used in climate predictions, special conservation efforts should be made to protect 

stream habitats found to offer viable thermal refugia. Our study lends support for current climate 

predictions in water systems such as the Little River watershed; however, such predictions may 

not be as accurate in more thermally heterogenous systems witnessed in other studies (i.e. Baird 

& Krueger 2003; Ebersole, Liss, & Frissell 2001; Kaandorp V. et al. 2019; Kanno et al. 2014; 

Nielson et al.1994). For instance, brook and rainbow trout were able to use areas of thermal 

refuge to maintain average body temperatures cooler than that of an Adirondack river (Baird & 

Krueger 2003). Additionally, steelhead in Northern California streams were documented relying 

on thermally stratified pools to avoid main water temperatures at the high extreme of their 

tolerance (Nielson et al.1994). Often, these studies found groundwater input to play a major role 

in FSTH occurrence (Baird & Krueger 2003; Kaandorp V. et al. 2019; Kanno et al. 2014; and 

Mollenhauer et al. 2019). In systems with more groundwater contributions, finer scale modeling 

may be more appropriate.  

In fact, the most thermally heterogeneous stream reach observed in this study, Ellejoy 

Creek, displayed thermal patterns that indicate groundwater contributions. Two loggers, each 

located on different transects, recorded consistently cooler daytime stream temperatures than 

those of the rest of the reach. These patterns were present in both the early and late summer 

seasons. Ellejoy creek also owes some of its thermal heterogeneity to another, unexplained 

pattern. Two loggers within the same transect recorded warmer daytime stream temperatures and 

cooler nighttime temperatures in both the early and late summer seasons. Despite this unique 

thermal pattern, environmental variables including canopy cover, lateral distance from bank, and 

logger depth were consistent with those of the rest of the reach. The loggers were in areas of high 



canopy cover (100%) and all were under 2 meters from the bank and between 30-60 cm in depth. 

This suggests that ground water and another environmental variable not captured within this 

study may impact within-reach temperature at the point scale. 

Thus, it is possible that our study deviated from similar studies due to spatial and 

logistical limitations. Though loggers were placed at a fine resolution and in areas of habitat 

anomalies, much of the stream system could not be monitored. Consequently, it is possible to 

have missed recording key factors that influence FSTH such as areas of groundwater input. The 

duration and timing of monitoring periods in this study is another such noteworthy limitation. 

Temperatures at each of the 162 points were only monitored for three days per monitoring period 

(a total of six days at each of the 162 points) and none of the three days overlapped between sites 

(only one stream reach was monitored at a given time). This study would be improved with a 

longer monitoring duration and synchronized monitoring of all sites to better account for daily 

fluctuations in FSTH due to meteorological or flow conditions. For these reasons, our study may 

underestimate the thermal heterogeneity occurring within the Little River watershed.  

In conclusion, freshwater fish populations must track thermally suitable habitat as 

isotherms continue to shift in the twenty-first century. Other studies have found that fishes 

accomplish this by means of dispersing up the fluvial gradient and engaging in behavioral 

thermoregulation by occupying microhabitats (Comte & Grenouillet 2013, Baird & Krueger 

2003, Nielson et al.1994).  Our findings indicate limited opportunity for the latter in our study 

system, because we observed minimal fine scale thermal heterogeneity within the Little River 

watershed during the monitoring period. Rather, further movements to reaches of different size 

and elevation appear to provide the only opportunity to access substantially (i.e., more than 1-

2°C) warmer or colder temperatures. This dispersal will be dependent on upstream connectivity 

and individual dispersal ability of each species (Troia et al. 2019).  
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TABLES 

Table 1: Site information (elevation, catchment area, reach length, and percent forest) for each 

of the six stream reaches. 

  MP WP EP El Na LR 

Reach characteristics       
 In GSMNP Yes Yes Yes No No No 

 Length (m) 1,687 2,300 3,850 923 1,315 3,310 

    Percent Forest 99.62 99.41 99.43 56.29 41.65 79.74 

 Latitude * 35.6076 35.6568 35.6684 35.7739 35.8133 35.8000 

 Longitude * -83.6375 -83.7102 -83.6997 -83.8233 -83.8835 -83.8874 

 Elevation (masl) * 787 353 352 268 254 254 

 Catchment area (km2) * 17 47 154 94 46 705 

       
Monitoring period       
 Early summer       
  Day 1 12-Jun 31-May 6-Jul 5-Jun 19-Jun 12-Jul 

  Day 2 13-Jun 1-Jun 7-Jul 6-Jun 20-Jun 13-Jul 

  Day 3 14-Jun 2-Jun 8-Jul 7-Jun 21-Jun 14-Jul 

 Late summer       
  Day 1 21-Aug 5-Aug 4-Sep 24-Jul 15-Aug 29-Aug 

  Day 2 22-Aug 6-Aug 5-Sep 25-Jul 16-Aug 30-Aug 

  Day 3 23-Aug 7-Aug 6-Sep 26-Jul 17-Aug 31-Aug 

* At downstream end of reach. 

 

  



Table 2: Displays minimum, mean, and maximum water and air temperatures for all six stream 

reaches during each monitoring period. 

  Early summer   Late summer 

  Min. Mean Max.   Min. Mean Max. 

Water temperature        
 MP 14.3 15.1 16.1  15.0 16.9 17.9 

 WP 16.1 17.4 18.8  17.5 18.9 20.5 

 EP 17.9 19.3 21.8  20.0 21.7 23.1 

 El 16.7 20.0 22.8  20.5 22.1 24.5 

 Na 20.2 21.5 23.5  19.2 20.9 23.8 

 LR 23.2 25.1 26.9  22.3 24.1 27.0 

        
Air temperature        
 MP 15.9 17.9 24.1  12.7 18.4 21.4 

 WP 16.8 20.2 28.2  17.6 22.0 29.3 

 EP 18.5 21.3 29.8  18.1 21.8 27.3 

 El 12.2 19.4 29.4  16.1 21.8 31.0 

 Na 20.0 23.4 33.9  17.8 23.4 34.7 

 LR 20.5 25.4 34.7   19.3 23.5 33.7 



FIGURES 

Figure 1. Locations of six water temperature monitoring reaches in the Little River watershed 

and nine transects within each reach. The green lined denotes the upper portion of the watershed 

located within Great Smoky Mountains National Park. Reach abbreviations are: Middle Prong 

Little River (MP), West Prong Little River (WP), East Prong Little River (EP), Ellejoy Creek 

(El), Nails Creek (Na), and Little River proper (LR).  

Figure 2. Time series showing water temperature and air temperature among monitoring points 

from six reaches (different rows) during early summer (left column) and late summer (right 

column) monitoring periods. Each colored line is a different water temperature logger (N = 27 

per reach) and each black line is different air temperature logger (N = 9 per reach). Reach 

abbreviations are: Middle Prong Little River (MP), West Prong Little River (WP), East Prong 

Little River (EP), Ellejoy Creek (El), Nails Creek (Na), and Little River proper (LR). 

Figure 3. Standard deviation (SD) of mean and mean maximum stream temperatures plotted 

against reach-scale environmental factors: reach elevation, reach catchment size, and mean reach 

air temperature. SD of mean maximum temperatures is positively correlated with stream size and 

mean air temperature for summer seasons 1 &2, and negatively correlated with elevation. SD of 

mean temperatures was not correlated with any of the reach-scale environmental factors.  

Figure 4. Plotted regression estimates of a linear mixed effects model testing the impact of 

temporal (season) and spatial (lateral position and canopy cover) factors on mean maximum 

stream temperatures at the logger-scale. There was a significant temporal effect, but no 

significant spatial effect on temperature.  
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