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ABSTRACT 
 

Peptide identification is at the core of bottom-up proteomics measurements. However, even with 

state-of the-art mass spectrometric instrumentation, peptide level information is still lost or missing 

in these types of experiments. Reasons behind missing peptide identifications in bottom-up 

proteomics include variable peptide ionization efficiencies, ion suppression effects, as well as the 

occurrence of chimeric spectra that can lower the efficacy of database search strategies. Peptides 

derived from naturally abundant proteins in a biological system also have better chances of being 

identified in comparison to the ones produced from less abundant proteins, at least in regular 

discovery-based proteomics experiments. This dissertation focused on the recovery of the 

“missing or hidden proteome” information in complex biological matrices by approaching this 

challenge under a peptide-centric view and implementing different liquid chromatography tandem 

mass spectrometry (LC-MS/MS) experimental workflows. In particular, the projects presented 

here covered: (1) The feasibility of applying a liquid chromatography-multiple reaction monitoring 

MS methodology for the targeted identification of peptides serving as surrogates of protein 

biomarkers in environmental matrices with unknown microbial diversities; (2) the evaluation of 

selecting unique tryptic peptides in-silico that can distinguish groups of proteins, instead of 

individual proteins, for targeted proteomics workflows; (3) maximizing peptide identification in 

spectral data collected from different LC-MS/MS setups by applying a multi-peptide-spectrum-

match algorithm, and (4) showing that LC-MS/MS combined with de novo assisted-database 

searches is a feasible strategy for the comprehensive identification of peptides derived from native 

proteolytic mechanisms in biological systems. 
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CHAPTER 1                                                                                                             
Introduction to mass spectrometry-based proteomics and overview of 

research topics covered in this dissertation 

 

 1.1 The advent of MS-based proteomics in the biological sciences. 
 

1.1.1 Functional genomics and the wholistic view of biology. 

The development of large-scale DNA sequencing technologies of the 90’s provided an 

unprecedented molecular understanding of biological systems at an incredible pace.1 In 1995 the 

complete cellular genome of the bacterium Haemophilus influenzae was obtained,2 and in a span 

of 8 years, the first draft of the human genome was essentially finished.3 Even model organisms 

such as Saccharomyces cerevisae turned out to be more complex than initially thought i.e., from 

the 2000 genes previously characterized with traditional biochemical experiments to over 6000 

found by genomics analyses.4, 5 By expanding the scope of biological investigations, gene 

sequencing quickly introduced an era of discovery-driven research, in which the components of 

the system under investigation are collected irrespective of any hypothesis of how they might 

work.5, 6  

As time kept passing by, however, the amount of information provided by genome 

sequencing with its fast discovering rates, surpassed the time it took to functionally characterize 

new genes, and databases quickly started to fill with sequences lacking functional annotations. 

Thus, cell and molecular biology research needed of new experimental approaches that could 

keep up with the enormous and rapid amounts of information provided by genomics, while at the 

same time providing of creative ways of how to handle, analyze, store and share biological data. 

The responses that came out of these efforts led to the generation of several new “omics” 

research fields, mainly transcriptomics and proteomics.5-7 

Transcriptomics studies have been considered as a starting point to survey gene 

expression as the most direct product of a gene is an RNA transcript. The comprehensive 

interrogation of the identity and quantity for the complete set of transcripts in a cell directly reflects 

the activation of functional elements in the genome in a certain developmental state or 

physiological condition. Even when the genome is static in nature,8 the activity of genes is 

dynamic, and in every organism, subsets of genes get transcribed for subsequent functional roles.  

Amongst the two most employed approaches available for transcriptomics profiling, are 

hybridization (e.g. microarray) and sequencing (e.g. RNA-seq),  the former being  high-throughput 
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and of generally low-cost making it widely popular in studies of various biological systems.9, 10 

However, next-generation sequencing has made it feasible to achieve deeper sequencing of the 

transcriptome with high resolution and dynamic range, alongside independence from existing 

genome information, and clear determination of transcription boundaries.11 

Proteomics developments started in the late 20th century with the introduction of matrix-

assisted laser desorption/ionizations (MALDI) and electrospray ionization (ESI) by Koichi Tanaka 

and John B. Fenn, respectively.12, 13 These two “soft” ionization techniques were the main drivers 

that allowed the use of mass spectrometry (MS) to analyze proteins and then peptides due to 

their ability of ionizing large and labile molecules. Importantly, the introduction of ESI enabled the 

interfacing of liquid chromatography (LC) to MS for protein and peptide characterization. The most 

notable feat was that by the group of Donald Hunt at the University of Virginia, in which using LC-

MS, 19 major-histocompatibility-complex (MHC) class I-bound peptides were partially sequenced 

by the combined use of LC-MS,14 an achievement that over the years would lead to a decrease 

in the use of Edman degradations,15 which are based on the stepwise reaction of the N-terminal 

amino acids in a protein or peptide (up to 50 amino acids long) with phenylisothiocyanate and 

cyclic cleavage of the labeled amino acids without disrupting other peptide bonds.  

With the ability to detect and sequence femtomolar amounts of peptides via LC-MS/MS, 

the challenge was now to assemble them back to their original proteins. This task was achieved 

by some research groups around the world16, 17 which introduced the use of MS/MS spectra-to-

protein search algorithms, a bioinformatics success that until now remains at the core of bottom-

up proteomics approaches. Continual improvements in protein extraction and enzymatic 

digestions, peptide separations via LC instrumentation and mass spectrometers providing higher 

scan speeds, mass resolution and accuracy; the field of proteomics has opened an era of 

comprehensive characterization for protein sequence identification and quantification in which 

each protein is not studied individually but under the context of interconnected systems. 

Successful applications of LC-MS for proteomics analysis have provided protein-level functional 

view for metabolic activities in various biological systems, from single bacteria isolates, higher 

order eukaryotes, to complex microbial communities.18-20 

 

1.1.2 Proteomics gives meaning to genomics and transcriptomics information.  

Two polymeric strands of complementary deoxyribonucleotides form the DNA double 

helix. The genetic information carried by the linear sequence of deoxyribonucleotide subunits is 

further transferred to an intermediary RNA molecule that is then translated to a protein consisting 
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of a sequence of amino acids. This flow of genetic information from DNA to proteins 

(DNA→RNA→Protein) is the well-known central dogma of biology.5, 21 However, with the advent 

of OMICS technologies, we have now realized that there are exceptions to the dogma. More 

complex organisms are known to possess smaller numbers of genes, yet they express twice or 

thrice more proteins than less complex organisms. For example, in higher eukaryotes more than 

50% of genes code for more than one protein, whereas in yeast and filamentous fungi, ~90% of 

genes encode one protein per gene.8   

Even when the genome content in an organism does not change, its products do. The 

differential expression of genes is required to form distinct transcripts and proteins that control 

distinct functions. Thus, in comparison to the genome, the transcriptome and proteome are 

considered dynamic entities, because they can differ from cell to cell and even within the same 

cell type, at different stages of activity or development.22, 23 The dynamic nature of the 

transcriptome and proteome provides valuable information when studying functional relationships 

between genes.24  

Although mRNA quantification has been used as a proxy for measuring changes of protein 

abundance and has informed about many cellular responses, proteins provide a closer look to 

the functional activities of cells.25, 26 In contrast to mRNA, proteins are the effectors and regulators 

of essentially all cellular processes in an organism.27 Across species, proteins constitute about 

50% of the dry mass of a cell and reach a remarkable total concentration of 2–4 million proteins 

per cubic micrometer or 100–300 mg per ml.26 The extensive proteome network of the cell adapts 

dynamically to genetic perturbations and thereby defines the functional state and determines the 

phenotypes of a cell.  

Interestingly, with the advances in OMICs technologies, the general consensus nowadays 

in cell biology research is that mRNA levels cannot be consistently relied upon to predict protein 

abundance.4 Amongst the reasons are the complexity of post-transcriptional regulation processes 

(i.e., riboswitches) as well as the multitude of post-translational modifications (PTM) in a protein 

such as phosphorylation, acetylation, and glycosylation that act as signals in information 

processing or as marks that mediate protein associations.4, 28, 29 Although one can attribute the 

discrepancy between mRNA and protein levels to measurement variability and noise in data, 

some studies have shown that this correlation reflects underlying biological mechanisms.30, 31   

Examples of the correlation between transcriptomics and proteomics data have been 

registered across various domains of life. For example, studies in different developmental stages 

of the human blood fluke Schistosoma japonicum concluded that around 40%–60% of the proteins 

detected in S. japonicum were consistent with its transcripts.32 In yeast, it has been found that for 
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some genes, while the mRNA levels were of the same value, protein levels varied by more than 

20-fold.30 Conversely, for some other genes, the transcript levels varied by 30-fold, while proteins 

level remained invariant. In higher eukaryotes, such in the livers of mice treated for different 

periods of time with three different peroxisome proliferative activated receptor agonist, the results 

shown that the differential expression of mRNAs explained at most 40% of the differential 

expression of proteins.31 Even in the small genome containing organohalide respiring bacteria 

Dehalococcoides mccartyi, poor correlation of mRNA- and protein abundance for four tested 

genes was explained by varying ribosome content and cell decay.33  

These examples highlight the importance of proteomics data and how its integration with 

transcriptomics can provide better or new insights into the regulation of cellular processes at a 

genome-wide scale. Whereas a strong correlation between both transcriptomic and proteomic 

data can serve as confirmation for an induced response to a treatment, the lack of strong 

correlation can also help detect experimental errors or hint to the possibility of a biological 

uncoupling between mRNA and protein expression.34, 35 Studying the levels of proteins in an 

organism offers insights to analyze translational status or post-transcriptional regulations and 

even by itself, it can also be applied to observe effects that may not be apparent by considering 

mRNA levels exclusively. MS-based proteomics can reveal the protein content of subcellular 

structure and organelles, provides an alternative to discern higher-order structural features of 

protein complexes, and contributes to functional evidence that is helpful in the characterization of 

metabolic pathways.28     

 

1.1.3 The practical implications of proteomics in biological research. 

Before the advent of system-wide technologies, individual genes and their products, or 

small clusters of related components in specific biochemical pathways, were studied by 

techniques including, for example, site-directed mutagenesis, Western blotting, in vitro protein 

assays, and in vivo cell imaging.36 The contributions of these now considered “classical” 

experimental techniques has been invaluable to assess the presence, sequence, function, and 

biochemical mode of action of one or a few specific proteins;4 however, the data they provide 

open a small window into the mechanisms governing the organization of the cell and highlight 

only a small part of a large interconnected network of functionally and physically interacting 

proteins. 

Instead, technological and experimental advances in mass spectrometry-based 

proteomics, comprising mainly of comprehensive protein sequence databases (derived from 
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genomics and transcriptomics); sensitive and accurate MS instrumentation; an emerging 

collection of software that can match MS spectra to protein databases; and protein separation 

technologies like liquid-chromatography,4, 28 have allowed this technique to be now at the center 

of systems biology studies, in which, not only one or a few distinct proteins are analyzed each 

time, but the interplay of multiple ones and their roles as members of larger systems or networks 

are studied.37  

The impact that modern proteomics methods have had in our understanding of proteins 

under the systems biology context can be summarized into four principal applications that are 1) 

mining, 2) protein-expression profiling, 3) protein-network mapping, and 4) mapping of protein 

modifications.4  

  In mining, proteomics has been used to make an inventory of the content of all or all the 

possible proteins in a sample.37, 38 Although it can be considered a “brute-force” approach, the 

advantage of complete and high quality protein databases with computational algorithms able to 

match spectral data to peptides and proteins with adequate control of false positive hits, makes 

proteomics mining a feasible strategy to confirm what could only be inferred from gene-expression 

data or generate comprehensive proteome maps that can later be used as references for more 

in-depth investigations. Early examples of mining involve large-scale proteome maps of 

microorganisms such as yeast39 or the bacterium Deinococcus radiodurans with products from 

more than 60% of the genes identified.40 

The most common and versatile use of large-scale MS-based proteomics has been to 

document the expression of proteins as a function of a cell or tissue state.4, 41 In protein-expression 

profiling studies relative or absolute quantitative values of the observed proteins at different states 

(i.e., developmental, disease, physical stimulus, etc.), are measured to infer, for example, 

statistically significant changes of protein A to protein A in condition A to B, and attribute the 

change in expression to that particular condition(s). Expression profiling studies have found an 

appeal for biomedical applications as a means of detecting potential targets for drug therapy in 

disease, where normal and diseased cells or tissues are compared to determine which proteins 

are expressed differently in one state compared to the other.4, 24, 42-44  

Proteins rarely function alone, instead, they depend on the association of various 

components into macromolecular complexes. The interactions between proteins determine the 

functions of signal-transduction cascades and biosynthetic or degradation pathways.4 One of the 

most commonly employed experimental techniques coupled to MS detection is affinity -capture, 

where taking advantage of relative abundance levels of “prey” proteins and the endogenously 

expressed “bait” ones, complete interactome maps in cells can be drafted.8, 37, 45 For example, a 
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study with 11 human cell types, determined the relative changes of the protein components of 

182 complexes under five different temporal states.46 Other more specialized and elegant ways 

of studying complexes involve native mass spectrometry or MS based identification of crosslinked 

residues (XL-MS),37, 47 which has been used in combination with cryo-electron microscopy to 

identify substrate binding sites in molecular chaperones or to provide additional data to 

complement molecular dynamics simulations.48-50  

Finally, the dynamic nature of the proteome in any organism is due in part to the variety 

of post-translational modifications (PTMs) that act to promote or repress the targeting, structure, 

function, and turnover of proteins.4, 41 Although modified proteins can be detected with antibodies, 

one question that is not always answered in such experiments is the specific location site of the 

particular modification.4 MS based proteomics is ideally suited to study PTMs because changes 

in the labeling of amino acids are reflected by shifts in mass that can be located with the resolution 

of a single amino acid through peptide-fragment ion spectra.37 Regularly, mapping of protein 

modifications via mass spectrometry requires of specialized PTM enrichment strategies to 

overcome the expected natural abundance variance of modified peptides and/or proteins in a 

cells or tissue.51, 52 The most frequently studied types of PTMs via MS/MS are phosphorylation, 

ubiquitylation, the addition of ubiquitin-like proteins, glycosylation, methylation, acetylation and 

other types of acylation.37 The study of PTMs by MS has been particularly gaining traction in the 

last years, as new roles for “well-studied” PTMs are being found in common organisms. For 

example, the lysine acetylation and succinylation in rice (Oryza sativa) has recently been 

implicated in seed development.53  

 

 1.2 Overview of MS-based proteomics for biological research. 
 

1.2.1 Mass spectrometry bottom-up proteomics as the powerhouse for large-
scale/high-throughput analysis of proteomes. 

Mass spectrometry (MS) based proteomics research is usually conducted in two ways: 

“bottom-up” and “top-down”. Top-down approaches involve the MS analysis of intact proteins54 

and their proteoforms, encompassing all forms of genetic variation, alternative splicing of RNA, 

and PTMs.55 Although in principle top-down approaches seem like the most straightforward way 

for the detection and quantification of multiple proteins in a sample, analytical and technical 

challenges such as the difficulty of solubilizing and ionizing entire proteins; the separation of 

protein mixtures prior to MS analysis; the low sensitivity of measurements;56 and the complexity 
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of matching intact and fragmented proteoform MS data to a protein sequence,57 have limited their 

application to the broad study of the proteome.    

Instead, bottom-up proteomics approaches, which are based on the mass spectrometric 

measurement of peptides generated by the enzymatic digestion of proteins,37 are nowadays the 

standard for large-scale and high-throughput analyses of complex samples. Although in principle 

the digestion of proteins to peptides increases the complexity of the samples under study; the 

mass ranges and predictive tandem MS (MS2 or MS/MS) fragmentation patterns of peptides, 

compared to those of large intact proteins,28 makes them more compatible with MS 

instrumentation capabilities.  

Until today, hundreds of bottom-up proteomics studies across all domains of life have been 

published with the overarching goal of having a better understanding of the biological processes 

occurring in cells and tissues.18, 58-60 Depending on the scope of the study, proteomics analyses 

include not only the identification of proteins, but also the nature and position of any 

posttranslational modifications (PTMs); the interpretation of dynamic quantitative changes 

between conditions; and/or the study of protein conformations or interactions within larger protein 

complexes or in the context of biological networks or pathways.  

Generally, there are three approaches of how to achieve the aforementioned research 

goals with bottom-up proteomics and these are:28, 37 (1) Global (also known as shotgun or 

discovery) proteomics by means of data-dependent acquisition (DDA), aimed at achieving 

unbiased and complete coverage of the proteome; (2) targeted proteomics using multiple reaction 

monitoring (MRM) or parallel reaction monitoring (PRM), usually performed after discovery 

proteomics experiments and that is aimed at the reproducible, sensitive and high-throughput 

identification and quantification of a subset of known peptides of interest; and (3) multiplexed 

fragmentation of all peptides that elute from liquid chromatography by data-independent 

acquisition (DIA), which is nowadays seeing an increase of use in biological applications and is 

aimed at generating comprehensive peptide fragment-ion maps for a sample. In this dissertation, 

global proteomics by DDA and targeted proteomics using MRM were employed in the studies 

presented in Chapters 3-5. 

 

1.2.2 Global proteomics by data-dependent acquisition-mass spectrometry (DDA-
MS). 

In global proteomics studies, peptide and protein identifications are maximized to give a 

comprehensive catalogue of analytes in unknown samples or explaining the biological 
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process(es) under study. A complete and reliable MS based proteome map is also a prerequisite 

for the development of targeted mass spectrometry techniques, as well as for DIA strategies.  

After enzymatic digestion of proteins to peptides, the mass spectrometer is used to identify 

the sequence of all peptide ions (charged peptides) through the generation of a diagnostic MS/MS 

peptide fragment ion spectrum.24 The identified peptide sequences must then be assigned to the 

proteins they originate from, through a nontrivial process called protein inference which is most 

commonly performed with bioinformatic software that match peptides to proteins in a database 

(i.e., a FASTA file with protein sequences).61    

Traditionally, global or discovery proteomics are based on a spectra collection strategy 

known as data dependent acquisition (DDA)28 (Figure 1.1.A). According to this approach, mass 

spectra of all the peptide ion species that coelute at a specific time from chromatography 

(precursor-ion spectra) are recorded at the MS1 (or full scan) level.62 Depending on the intensities 

of the recorded precursor ions, the instrument then determines groups of precursors that are 

isolated and then fragmented to generate fragment ion-spectra or MS2 level scans.63 Because of 

its dependency on the intensity of the peptide precursor ions detected at the MS1 level, global 

proteomics by DDA is subject to preferentially fragment high-abundant precursors while low 

abundant ones may not be sampled.63 However, one way to increase the sensitivity of these 

analyses is by limiting the redundant fragmentation of abundant precursor, so that ions selected 

for fragmentation are temporarily excluded in the following scans over a determined time. This 

instrumental technique, known as dynamic exclusion,64 improves the number of MS/MS spectra 

collected and, consequently, the number of identified peptides and proteome coverage.65 

However, even with dynamic exclusion, low intensity ions coeluting with high intensity peptides 

may still not be identified making it one of the main limitations of global proteomics by DDA. 

 

1.2.3 Targeted proteomics by multiple reaction monitoring-mass spectrometry 
(MRM-MS). 

Complementary to global proteomics approaches, in targeted proteomics experiments, 

the goal is not to maximize peptide and protein detection, but to monitor and quantify, with 

sensitivity and throughput, selected proteins of interest.66 Due to its focused and sensitive nature, 

targeted proteomics is the gold-standard in biomarker development studies by proteomics and it 

has lately been regarded as a technique that may replace Western-Blot or antibody-based assays 

in the near future.67  
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Using pre-existing information, such as that derived from global proteomics, characteristic 

peptides ions from proteins of interest are selectively isolated and then fragmented over their 

chromatographic elution time. Most of the targeted proteomics assays are performed in triple 

quadrupole mass spectrometers (QQQ) via a spectral data collection method known as multiple 

reaction monitoring-mass spectrometry (MRM-MS).68 In MRM-MS, distinct pairs of precursor ion 

masses and cognate fragmentation masses, derived from existing datasets or large-scale spectral 

libraries, are used for sensitive and specific determination of these pairs or transitions (Figure 1.1 

B).69  

Although QQQs have lower resolution and mass accuracy compared to the high-end mass 

spectrometers used in traditional global proteomics experiments; QQQ instrumentation offers the 

ability to detect peptides (and metabolites) that can vary in their abundance ranges by up to three 

to four orders of magnitude in linear response, as well as high speed of spectra acquisition which 

leads to good ion statistics and sensitivity.69, 70 Due to these characteristics, large number of 

samples may be interrogated for quantitative abundance values of a predetermined number of 

peptides without the need for time-consuming global proteomics experiments. Alongside the 

robust and economical triple quadrupole instruments, high-resolution instruments such as 

quadrupole orbitraps are used increasingly for targeted analysis, a variant known as parallel 

reaction monitoring because it utilizes the entire MS2 spectrum as oppose to certain fragment 

ions from a precursor.71 
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Figure 1.1 Types of tandem mass spectrometry acquisition methods used in this dissertation.  

For clarity of presentation, three peptides are shown in each case (square, circle and hexagon 
shapes). (A) In data-dependent acquisition (DDA), peptides are selected for fragmentation based on 
intensity thresholds. Common setups include the analysis of the top 5, 10 or 15 most abundant 
peptides eluting at a given time. In this example, the peptide marked with “1”, as representation of 
abundance, is selected in the first mass analyzer of an instrument (MS1), fragmented in a collision 
cell, and the resulting fragments analyzed by a second analyzer (MS2). The process is then repeated 
for different precursors (i.e., second and third place in abundance). MS/MS spectra recordings 
collected in DDA are better visualized using the mass-intensity dimension. (B) In multiple reaction 
monitoring (MRM) mode, the instrument cycles through a series of predefined sets of precursor-
fragment ion pairs (also known as transitions). In this example, a precursor ion is selected in the first 

mass analyzer, fragmented in the collision cell, but instead of measuring every possible fragment ion, 
just three fragments are monitored. MRM signals are better visualized as a series or overlapping peaks 
from the measurement of each transition in the time-intensity dimension.  
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1.2.4 Relative label free and absolute quantification of proteins in bottom-up 
proteomics. 

Quantification is at the heart of every bottom-up proteomics study today. However, peptide 

and protein quantitation by LC-MS/MS is not a trivial task. Although it would seem intuitively to 

quantify peptides in a spectrum based on their MS-derived spectral peak intensities, these do not 

often correlate with their relative abundance within a given analyzed sample.72 This scenario is 

even true for peptides originating from the same protein after enzymatic digestion and that in 

theory are present in equimolar amounts. Several factors impact the way how peptides ionize 

before entering the MS instrument and thus, their signal intensities. Amongst these factors are 

ion suppression events that can be a consequence of the coelution of components from the 

solvent and sample during chromatography;73 or the varying physicochemical properties of each 

peptide that make them amenable to ionization (i.e., hydrophobic peptides ionize more efficiently 

than hydrophilic peptides).74  

Therefore, to achieve an adequate level of quantitative accuracy, each individual peptide 

and/or protein are compared between different samples or experimental conditions.75 Hence, 

several MS based strategies have been developed to achieve this form of relative quantitation. 

These strategies can be distinguished by the goal and scope of each experiment. Broadly, relative 

quantification strategies in proteomics are classified into two groups: Those using stable isotope 

labeling and those that are label-free (LFQ), the latter, being the focus of this dissertation.  

As the name implies, relative LFQ techniques do not employ any stable isotopes to label 

different protein/peptide samples. In comparison to label-based approaches, LFQ approaches are 

easier to implement, cheaper, and offer the ability to quantify a larger number of proteins with a 

wider dynamic range, albeit, at the cost of sacrificing some level of quantitation accuracy.65, 76 The 

two most commonly used LFQ techniques are based on spectral-counting (also known as ion-

counting) and peak-intensity principles.77  

In the spectral counting (SC) method, the number of MS/MS spectra collected for a given 

protein across multiple LC-MS/MS runs provides the values necessary for relative quantification.78 

This method is based on the empirical observation that the more abundant proteins are in a 

sample, they yield a larger number of proteolytic peptides which are more likely to be sampled 

and consequently, provide higher numbers of spectra.78 Relative quantification of proteins via SC 

is then achieved by comparing the number of spectra between a set of runs. Although this 

approach seems intuitive and attractive in practical terms, SC is nowadays considered more as a 

“semi-quantitative”79 approach because in reality, the spectrum count of each peptide in a run 

varies according to their chromatographic elution profile (i.e., peak width and retention time);75 in 
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addition, it has been reported that the method is not sensitive enough to detect subtle fold changes 

and that it tends to overestimate low-abundance peptides.80, 81  

In the case of relative quantification by peak intensity, peptide chromatographic peak 

areas or heights in different samples are obtained from extracted ion chromatograms (XICs) and 

these values are used for quantification. Initially, peaks need to be filtered from background noise 

and neighboring peaks and then isotopic patterns assigned by spectra deconvolution.72 

Subsequently, retention times are adjusted to correctly match corresponding m/z peaks of 

different LC-MS/MS runs. Finally, the normalized peak area or height enables accurate matching 

and quantification values which can then be treated by statistical tests to measure significant 

abundance changes. XIC-based methods are consistently more sensitive and accurate than SC 

when using high-resolution mass spectrometers because these instruments can discriminate 

between coeluting peptides of similar mass while allowing the accurate mapping of XIC to a 

peptide.75 XIC-based quantitation is also capable of accurately discerning fold changes as low as 

1.1 compared to the SC limit of ~ 1.4.82, 83 

Besides the relative quantification of proteins, sometimes it is necessary to quantify low-

abundance proteins in a sample or determine absolute amounts of proteins in complex mixtures 

(i.e., molar amounts). These types of quantitation are frequently applied in a more targeted 

context, rather than proteome wide and using specialized forms of MS, such as multiple reaction 

monitoring (MRM) via tandem MS.68 Absolute quantification relies on the addition of known 

concentration of isotopically labeled peptide standards to a sample. These standards are identical 

to the endogenous peptides in the sample but are distinguished by a shift in mass as they have 

an incorporated stable isotope in their sequences (i.e., 13C, 15N).84 Stable isotope-labelled 

standards and endogenous peptides coelute during chromatography and absolute quantification 

is achieved by comparison of the peak area abundances of the internal standard peptide with the 

corresponding native counterpart.70, 84  

Absolute quantification via isotopically labeled standards, also known as AQUA,70 

expands the quantitative capabilities of MS proteomics beyond relative comparisons, to the 

calculation of molar amounts of specific proteins in complex mixtures allowing one to even 

determine the stoichiometries of individual members in protein complexes. AQUA peptides are 

the gold-standard for absolute quantification via bottom-up proteomics and have found a niche in 

research dealing with protein biomarker development, where accurate quantification is critical to 

establish limits of detection and quantitation.   
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 1.3 Bottom-up proteomics in environmental microbiology applications. 
 

1.3.1 The role of bottom-up proteomics in microbial environmental bioremediation. 

Anthropogenic activities cause the release of as many as 100,000 compounds in the 

environment including petroleum derived and polycyclic aromatic hydrocarbons (PAHs), 

polychlorinated biphenyls (PCBs), pesticides, therapeutic drugs transitions metals, 

nitroaromatics, quinones and other electrophiles.85 These molecules have hazardous health 

effects not only in humans but in the flora and fauna of ecosystems, and at the same time, can 

be effectors behind the disequilibrium of microbial diversity that is essential in the regulation of 

global nutrient cycles.86   

Although ways to combat the negative impact of contaminants in the environment involve 

the use of chemical cleanup methods, more recent technologies exploit the knowledge of the 

metabolic potential of living organisms in removing natural and xenobiotic pollutants. These 

bioremediation techniques have the broad goal of transforming or degrading contaminants into 

nonhazardous or less hazardous chemicals and act as an ecofriendly and cost-effective 

alternative to more traditional cleanup methods.87, 88 

Importantly, the metabolic activities of bacteria, as well as their dynamic behavior and 

ability to survive under extreme conditions, makes them the most important group of organisms 

that are investigated for their potential in bioremediation.88 In fact, a large number of bacteria have 

been reported for the degradation of different industrial wastes such as dyes, hydrocarbons, 

chlorinated aromatics, pesticides and heavy metals.  

The use of gene-centric approaches to interrogate bacterial communities in the 

environment has led to the discovery of unique bacteria with bioremediation potential that were 

not accessible by traditional microbiology techniques, and in certain cases it has facilitated their 

subsequent isolation and culture-dependent characterization; untargeted-nucleic acid 

measurements of bacterial communities can be benefited from global proteomics profiling,89 

because the catalysts responsible for contaminant transformation are proteins expressed by the 

bacteria. Furthermore, when trying to determine functionality in environmental bacterial samples, 

mRNA and protein levels are generally not strongly correlated;29 and this case is especially true 

for bacteria living in perturbed systems.90  

Thus, the mere study of individual genes and their regulation is not enough to fully 

understand microbial adaptation strategies of bacteria living in polluted environments and post-

genomic/transcriptomic analyses involving proteomics, are needed to investigate the physiology 
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of complex microbial consortia at a molecular level. The functional insights provided by global 

proteomics studies are useful to fill in the gap between the genetic potential and functional 

diversities in microbial communities. In terms of bioremediation, proteome analysis can be used 

to confirm the occurrence of specific metabolic activities of candidate bacteria with detoxification 

abilities, tolerance to extreme environments and respiratory versatilities. In addition, the detection 

of new catalytic enzymes in novel metabolic pathways, or of known proteins with marked changes 

in their relative abundances in the proteomes of microbes in response to contaminants, can assist 

in finding protein biomarkers or bioindicators that have the potential to monitor the dynamics and 

sustainability of environmental quality.87 

 

1.3.2 From the clinic to the river: Environmental monitoring of protein biomarkers 
with targeted mass spectrometry. 

Over the last decade, the emerging field of environmental microbial proteomics has 

contributed to the determination of molecular mechanisms of microorganisms living in various 

natural and polluted soil types, aquatic bodies and other environmental matrices, such as organic 

wastes and mine spoils. The global profiling of proteins in microbial isolates or mixtures in the 

environment has revealed taxa contributing to the expression of proteins and functional pathways 

between enriched and control ecosystems.91 Comprehensive proteomics approaches have 

provided the identification of key proteins involved in molecular responses related to xenobiotic 

toxicity, homeostasis or contaminant degradation.87, 91-93 For example, proteomic analysis of 

toluene-grown Pseudomonas putida DOT-TIE revealed the participation of four stress proteins 

such as GroES, cold shock protein CspA2, translational elongation factor EF-Tu and a xenobiotic 

reductase (XenA) in the tolerance of the bacteria to the solvent.94 Another case includes the citrate 

synthase (gtlA) enzyme in Geobacter which abundance correlates with the activity of this bacteria 

during in situ bioremediation of soluble uranium U(VI) to insoluble U(IV).95 

Such information is not only useful to understand the catalytic roles of microbes, but is 

also helpful in determining sets of biomarker proteins which could be monitored in environmental 

samples to provide evidence of the exposure or effects of one or more chemical pollutants, or to 

determine the presence and contaminant degrading activity of an organism of interest.96 Indeed, 

the identification of key proteins and catabolic enzymes from bacteria in the environment has 

been envisioned as a promising way, other to gene-based approaches, to show that specific 

bioprocesses are occurring in a sample and/or that a particular set of conditions that favor the 
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degradation of a contaminant or class of contaminants is present.97  However, challenges in the 

detection of specific enzymes in complex environmental samples exist.  

One of the biggest challenges is the detection of key proteins that can be of very low 

abundance in an environmental matrix compared to others. Global bottom-up proteomics 

techniques are generally biased towards finding peptides of the most abundant proteins in a 

sample. Thus, due to the wide dynamic range of proteins that can be present at any time in an 

environmental sample, biomarker proteins can be missed in global or discovery-based proteomics 

analyses, especially if the conditions for their expression are not optimal. Besides, other 

interfering substances that can be present in environmental matrices can compromise the quality 

of protein identification by mass spectrometry (i.e., presence of humic acids98). Ideally too, 

absolute quantitative information from the measurement of these proteins could be more valuable 

to environmental diagnoses comparing levels of biomarkers within a sample at different conditions 

or derived from different sampling sites than the relative abundance and largely descriptive 

information provided by global proteomics approaches.92  

For these purposes, targeted proteomics approaches via multiple-reaction monitoring or 

parallel-reaction monitoring (explained in section 1.2.3) provide technical advantages to the 

environmental monitoring of proteins of interest compared to global qualitative approaches. Not 

only are the latter techniques more sensitive,68 thus increasing the chances of circumventing the 

issues of low protein abundance and recoveries that are characteristic from environmental 

samples; but in addition, they allow to test multiple samples in a fraction of the time that it takes 

to run and analyze samples by global proteomics which could be useful when monitoring multiple 

samples for environmental hazard assessment or bioremediation effectiveness. Targeted 

proteomics also provides an interesting advantage to other protein-based identification methods 

like western-blots in which multibiomarker tests targeting up to 100 proteins could be developed 

to monitor a wide range of biological responses without the need of developing specific antibodies 

for every target. Absolute quantitative information from proteins in the attomole-nanomole range 

can also be obtained from targeted proteomics techniques with the use of heavy-labeled peptide 

standards.70  

Although most of targeted proteomics research has been developed and conducted with 

microbial isolates99, 100 or clinical samples (i.e., plasma),101, 102 the selectivity, dynamic range and 

reproducibility of targeted proteomics assays make them ideal for quantification of specific 

peptides and proteins in complex environmental samples.103 Chapter 3 provides a glimpse of the 

combined uses of global proteomics to selected specific peptides from reductive dehalogenases 

expressed by different strains of the anaerobic bacteria Dehalococcoides mccartyi (Dhc) during 
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dechlorination of polycyclic aromatic hydrocarbons,104, 105  and for the first time, their identification 

in contaminated groundwater via targeted proteomics which is the first step towards the 

development of an absolute quantitative assay to measure these proteins in sites undergoing 

active Dhc-mediated bioremediation.    

 

1.4 Isolation interference in bottom-up proteomics experiments. 
 

1.4.1 The occurrence of chimeric spectra in DDA bottom-up proteomics 
experiments. 

In discovery-based bottom-up proteomics experiments where MS spectra data is collected 

via data-dependent acquisition (DDA), peptides derived from the enzymatic digestion of proteins 

in a sample are separated with liquid chromatography (LC), ionized via electrospray and then 

detected by MS scans which report the mass-to-charge (m/z) values of the ionized molecules. 

The peptide precursor ions (or peptides with a charge state) that enter the mass spectrometer are 

further isolated based on their MS1 scan intensities and then fragmented to generate MS2 or 

MS/MS fragmentation spectra. The combination of both MS1 and MS2 information is then used to 

identify peptides and proteins in sequence databases.  

Thus, although it can be said that the most decisive parameter that determines which 

peptides are observed in a DDA bottom-up proteomics experiment is their natural abundance in 

a sample, this is not always the case. Since thousands of peptides are separated with LC before 

MS detection, it is expected than more than one peptide ion could enter the mass spectrometer 

at any given time. The coelution of peptides in LC introduces an element of randomness in each 

run, as the appearance of a precursor ion spectrum at a given chromatographic retention time will 

never be completely identical between runs (including biological and technical replicates). 

Besides chromatographic conditions (discussed in more detail in Chapter 2), another DDA 

setting that impacts the collection of MS/MS spectra is the precursor isolation width. The isolation 

width is defined as the m/z range that the MS detector uses to isolate the precursor ions. In simple 

terms, this works as a window that sits on top of the most abundant precursor monoisotopic peak 

and which results on its isolation along with some of its isotope peaks, but potentially of other 

coeluting peptides with a similar m/z as well. Setting the isolation width too narrow will result in 

loss of sensitivity, and in extreme cases cut out a portion of the ion packets, thus resulting in 

inaccurate measurements. In contrast, a wide isolation window may result in co-isolation and co-

fragmentation of even more neighboring peptides resulting in unidentifiable or low scoring spectra.  
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In a typical DDA setup, isolation widths may range from 1 to 3 m/z, and it has been 

suggested that these values give the best tradeoff between sensitivity and selectivity. However, 

despite advances in LC-MS/MS instrumentation, and due to the complexity of the samples 

analyzed in bottom-up proteomics, the co-elution, co-isolation and co-fragmentation of two or 

more peptide ions with similar m/z at any given retention time still occurs. The MS/MS spectra 

that results from these cases are known as chimeric or mixture spectra (Figure 1.2). The more 

conservative estimates of chimeric spectra in proteomic DDA-based research are calculated as 

over 11.2% of all MS2 spectra acquired,106 but others have calculated this to be as high as 50% 

or more.107-109 

Chimeric spectra in proteomics studies has negative effects that compromise peptide and 

protein identification as well as relative quantification. First, the identification of peptides based 

on their MS/MS spectra becomes more difficult because, for example, many database search 

engines use the number of unassigned fragment ion peaks (which increases for chimeric spectra) 

for scoring. Insufficient spectral quality due to low signal intensity and the presence of unexpected 

modifications also exacerbates this issue.  In addition, chimeric spectra reduces the accuracy of 

quantitative isobaric tagging-based quantification methods such as isobaric Tags for Relative and 

Absolute Quantifications (iTRAQ) or Tandem Mass Tag (TMT) strategies in which the contribution 

of reporter ion intensities from co-fragmented peptides, causes the under-estimation of 

protein/peptide abundance differences (a phenomenon termed as “ratio compression”).110-112   

 

 

 

 

Figure 1.2 Chimeric spectra in LC-MS/MS bottom-up proteomics experiments.(A) A three-
dimensional map of peptide precursor ions with signals in gray, pink, red, and green. The grey, red 
and pink precursor coelute at a given retention time and have close m/z values. (B) MS1 scans of the 
three coeluting precursors. By DDA, the grey precursor and its isotopes would be targeted for 
fragmentation, however, due to the presence of the other interfering precursor, more than one 
precursor ion and their isotope peaks within the isolation window are sent to fragment. (C) The MS/MS 

spectrum contains fragment ions from the three precursor ions. Fragment ions from the grey precursor 
have higher chances of being assigned to a peptide sequence compared to the fragments from the 
other contaminating precursors.  
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1.4.2 Exploiting chimeric spectra in database-based peptide searches to increase 
proteome depth. 

The complexity of the peptide mixtures and the limitations of the current MS technology 

make chimeric spectra unavoidable in bottom-up proteomics experiments.107 However, various 

approaches have been proposed to overcome their occurrence. These approaches can be 

categorized into experimental and computational. On the experimental side, specialized methods 

of acquiring data such as triggering MS/MS at or near chromatographic elution peak to minimize 

co-selection and fragmentation, or reduce the size of isolation windows, have been tested, 

however, at the expense of sensitivity. Another alternative is to improve the chromatographic 

resolution of peptides eluting into a mass spectrometer to minimize peptide coelution, such as 

using orthogonal chromatographic separations or separations based on ultra-high performance 

liquid chromatography (see section 2.3), with the former having a penalty of increased measured 

times and the latter of affording costly equipment.  

Computationally, although chimeric spectra in bottom-up proteomics is known to reduce 

peptide identification rates of algorithms used in database searches, they also present the 

opportunity to identify more than one peptide from a MS/MS spectrum. In addition, software that 

can deconvolute chimeric spectra is more attractive in terms of sensitivity, cost and analysis time. 

The new approach used by these algorithms of finding “more than one peptide per MS/MS 

spectrum” challenges the “one peptide per MS/MS spectrum” dogma of conventional database-

driven algorithms and they require further adaptation of computational workflows, with the biggest 

challenge being the scoring and validation of chimeric spectra.108 The confident score of the most 

abundant peptide in a spectrum is not easily comparable to the score of a second coeluting 

peptide, for example. Even in regular database searches, some spectra may receive higher 

scores than others because they have more peaks or because their precursor mass results in 

more peptide candidates from database for consideration.113, 114 Therefore, it has been suggested 

that scoring functions that account for spectrum or peptide-specific effects can make the score 

more comparable and thus help assess the confidence of identifications across different 

spectra.108  

In theory, methods that consider more than one peptide per MS/MS spectrum can 

potentially double the sensitivity in recovering peptide information from chimeric MS/MS spectra. 

Although this goal has not been achieved, improvements in scoring functions as well as better 

management of computational resources, have enabled the development of several software 

options for chimeric spectral deconvolution that are able to identify more peptides than their single 

search counterparts. Early software like ProbIDTree, for example was able to increase peptide 
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identification rates between 20-30% compared to the popular search engine SEQUEST.115 

Andromeda, another widespread used search engine in bottom-up proteomics, was able to 

increase peptide identifications by ~ 10% when enabling the identification of the second least 

abundant precursor ions in chimeric spectra to a dataset published originally without it.116 The 

DeMix algorithm demonstrated peptide identification efficiencies that were 1.5 times higher than 

that of Andromeda and 2.5 times higher than Mascot, albeit at reduced computational speeds.117 

More recently, the search engine Amanda, which is optimized for high resolution and high mass 

accuracy data, has been modified to deconvolute chimeric spectra via an optimized algorithm that 

considers retention time for scoring and validation of spectra, showing impressive gains of up to 

63% more unique peptides compared to a conventional search strategy.118  

With all the available tools, what is then limiting their widespread use by the bottom-up 

proteomics community? A limitation is that they typically replace the search engine in the data 

analysis, potentially disrupting pipelines already established and relied upon in laboratories; while 

another one is to methodologically demonstrate the identification gains that these tools provide in 

a wide array of LC-MS/MS workflows, such as those considering less advanced HPLC peptide 

separations to more sophisticated ones, or in other words if it is worth exploring the idea of using 

a multiple-peptide matches-per-spectrum (mPSM) database search strategy. In this dissertation, 

the research presented in Chapter 4 tested the capabilities of the most recent iteration of the 

search engine Amanda across several LC setups and other factors influencing the acquisition of 

chimeric spectra in the analysis of HeLa cell tryptic digests and suggest that this can be a strategy 

to increase throughput and depth in bottom up experiments.  

 
 

1.5 LC-MS/MS based peptidomics. 
 

1.5.1 Small and mighty: Proteolytic cleavage products (PCPs) across different 

domains of life.  

Amongst the group of low molecular weight organic analytes (defined arbitrarily by a MW 

cutoff <18 kDa) mediating different biological processes in organisms are peptides or proteolytic 

cleavage products (PCPs) of less than 100 amino acids in length. These molecules are the 

products of either native protein turn-over or protein maturation events (Figure 1.3). PCPs in the 

latter group can be further classified as functional, bioactive peptides or non-functional remnants 

of the protein maturation process.  
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Figure 1.3 Biological origins of PCPs. (A) PCPs can be the products of protein degradation/turnover 
mechanisms. (B) Bioactive and non-functional PCPs can be produced from the maturation of a protein 
precursor, for example, a precursor with a N-terminal signal sequence; a precursor protein with NSS 
and other domains, or from a protein precursor without a NSS. The mechanisms of how these PCPs 

are produced may or may not be understood. Bioactive PCPs in different organisms have structural 
characteristics such as post-translational modifications (PTMs).  
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Particularly, bioactive PCPs in prokaryotes and eukaryotes have been linked to cell 

development and division,119-121 cell-to-cell communication122 and environmental response.123 

Intriguingly, bioactive PCPs have also become the targets of bioanalyses for biomedical and 

agricultural applications.124-127  

Protein turnover is an indispensable process for cell maintenance and regulation that is 

coordinated by the action of proteases and peptidases. For example, the mammalian proteasome 

cleaves ~70% of intracellular proteins and is recognized as a dynamic complex that modulates 

cellular function in health and disease.128 In the same manner, for plants, different proteases and 

peptidases participate in events like protein remobilization on leaf senescence,129, 130 the 

breakdown of storage proteins during seed germination,131, 132 and the recycling of misfolded and 

damaged proteins.133 Thus, PCPs derived from protein turnover events contribute to the total pool 

of native peptides in a cell.  Although the products of protein turnover can act as sources of 

nutrient recycling in cells (i.e., in plants) many of their functions remain to be characterized.  

Bioactive PCPs instead are the products of protein maturation and their functions have 

been studied with more detail. These types of PCPs can be synthesized by the removal of a N-

terminal signal sequence (NSS) in a nonfunctional precursor or, alternatively, a precursor can be 

enzymatically modified in other regions to yield a mature form.134, 135 Most bioactive PCPs in cells 

are secreted to the extracellular space where they have regulatory functions mostly through the 

interactions with specific receptors. Notable examples of bioactive PCPs from protein precursors 

include plant antimicrobial peptides (AMPs)133, 135 and neuropeptides in mammals which signal 

between neurons and influence a wide range of physiological processes.134, 136 Bioactive PCPs 

differ vastly in amino acid composition, length, 3D structure, and function.  

Discovery and characterization of PCPs has benefited from the application of MS 

techniques. These techniques are part of a specific subdiscipline of proteomics termed 

peptidomics. Peptidomics is defined as the comprehensive characterization of the total peptide 

content in a biological system using MS.134, 137  Typically, peptidomics studies are focused on 

bioactive molecules but products from the transient degradation of proteins are also captured on 

them. Although both peptidomics and proteomics are related, there are fundamental differences 

between these fields. For example, experiments in the former field use enrichment strategies to 

optimize the identification of as many endogenous peptides as possible, and the absence of an 

enzymatic digestion step is also a common characteristic of them that helps to capture native 

proteolytic mechanisms. Although it may seem that peptidomics experiments are easier to 

conduct than proteomics ones there are several factors that make peptidomics a bit more 

challenging than proteomics, these are explained in the next section.   
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1.5.2 Challenges in the identification of PCPs by LC-MS/MS: Natural protein 
dynamic ranges, databases and PTMs. 

Several optimization strategies to improve PCPs detection by MS-based global 

peptidomics have been deployed and each one covering different biological and methodological 

challenges that are consequences of their low molecular weights (4–10 kDa), low abundances 

and transient expressions, sequence diversity, as well as complications in data analysis.  

Regarding sample preparation, the separation of PCPs both from small molecules (i.e., 

metabolites, salts, detergents) as well as from larger proteins needs to be addressed before 

analysis by MS. For example, it is well known that in blood serum and plants tissues, where the 

dynamic range of protein concentrations varies by ~10 orders of magnitude,138, 139 the natural 

abundances of proteins like albumin and RuBisCO, respectively, can hinder the detection of low-

abundance proteins and peptides.140, 141 Thus, experimental strategies that enrich for PCPs in 

different biological matrices have been successfully applied. Methods include 2D separations with 

gels,142 differential solubilization,139 organic solvent precipitation138, 143 and the use of molecular 

weight cut-off filter membranes.144, 145 The parallel combination of several separation schemes 

has also been reported.9 

Endogenous peptides range considerably in size and properties, which makes them 

technically challenging to work in mass spectrometry. Because of their size, PCPs may not 

contain a cleavage site for protease digestion, or they can yield short fragments which in 

consequence reduces the fidelity of identifications mapped to protein databases. Therefore, 

peptidomics experiments usually omit steps of enzymatic digestion which is also helpful in 

capturing native proteolytic mechanisms.  Native peptides can also yield charged molecules with 

+5 and +10 charge states, which complicates the deconvolution of data by MS software.146  

Another challenge in peptidomics research is how to map the identified peptides to protein 

precursors. In proteomics there is no need to identify every possible peptide from a protein to 

positively identify it, and proteins with single identifications are usually discarded; but in 

peptidomics, it is possible to have identifications based on single peptides.147 If doing regular 

database searches, that is, mapping of collected spectra to peptides and proteins in a database,  

peptidomic analyses need to allow for a range of cleavage sites and post-translational 

modifications (PTMs).148 For example, several bioactive peptide families from plants contain 

PTMs on their Pro and Tyr residues,135 while neuropeptides in mammals may present a range of 

modifications in Ser, Thr, Tyr or Asp residues.134 Without the constraints of sites for trypsin or 

another protease in the data analysis, database searches can become a real challenge, and the 
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false positive rate of peptidomics identifications compared to proteomics has been estimated that 

it could be 100 times higher.147  

To alleviate these issues, researchers have employed samples known to be enriched in 

endogenous peptides and reduced databases with known families of bioactive peptides as well 

as their potential variants. However, this sort of “targeted’ approach hinders the identification of 

novel or less characterized peptide species.  Besides the use of specific protein databases for 

MS-based proteomics identification, technical improvements in de novo peptide sequencing 

algorithms, which derive peptide sequence information directly from the mass spectral peaks and 

not from protein databases, has now become an attractive alternative to broadly profile the 

presence of endogenous PCPs. This resource has also been coupled to database searches in a 

hybrid approach called de novo-assisted peptide database search.149 Chapter 5 describes in 

detail LC-MS/MS peptidomics workflow that was applied for the comprehensive identification of 

PCPs in the symbiotic interactions between a species of the perennial plant Populus and the 

ectomycorrhizal basidiomycete Laccaria bicolor. Such workflow involved some of the 

experimental techniques and the de novo-assisted peptide database search strategy mentioned 

here.  

 

 1.6 Dissertation summary.  
 

Peptide identification is at the core of bottom-up proteomics workflows. Although the 

identification of peptides is more amenable to the technological capabilities of liquid 

chromatography and mass spectrometry when compared to intact proteins, the complexity of the 

samples analyzed in bottom-up studies make it unavoidable for some peptide identification 

information to be lost. In this dissertation, different MS based proteomics methodologies and 

technological advances were explored to detect and rescue peptides of interest in complex 

biological matrices, akin to the analogy of finding peptide mass “needles” in a haystack of protein 

diversity. 

Chapter 3 shows the first published demonstration of the feasibility of deploying a targeted 

bottom-up proteomics approach in environmental samples for the identification of specific 

peptides that can serve as surrogates to confirm the presence or absence of bacterial proteins 

with bioremediation potential. Chapter 4 evaluates the in-silico selection of  minimum lists of 

unique peptides found amongst groups of functionally related glycoside-hydrolase proteins, and 

which could be used in a targeted proteomics experiment to determine the presence of these 

groups of proteins in anaerobic bioreactors, instead of individual proteins that are part of a group. 
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Chapter 5 evaluates the performance of a new software package to improve proteome depth and 

coverage by rescuing peptide identifications buried under chimeric spectra and suggests a new 

experimental strategy to employ in bottom-up global proteomics experiments. In Chapter 6 some 

of the recent experimental and bioinformatics approaches to detect and quantify endogenous 

produced peptides in organisms by MS/MS were evaluated. Specifically, the diversity of peptides 

expressed in a symbiotic plant-fungal root system was characterized and based on relative 

abundance values, analytes with potential roles in the establishment of the association between 

organisms were identified.  Finally, Chapter 7 presents a perspective of the newest technological 

advances in the field of bottom-up MS proteomics and describes how these may be applicable to 

the studies presented here and the benefits they would provide. 

Herein, broad explanations of the experimental methods including protein extraction and 

digestion protocols; LC-MS/MS instrumentation for global and targeted proteomics, as well as 

computational algorithms used to develop Chapters 3-5 are presented. Detailed Materials & 

Methods sections can be found in each chapter.   
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CHAPTER 2                                                                                               
Experimental methodologies, mass spectrometry instrumentation and 

bioinformatic approaches used for proteomics analyses in this dissertation 
 

2.1 Overview of a bottom-up proteomics workflow.  
 

In general, every bottom-up experiment consists of f ive major stages which are adapted 

each time according to the sample under analysis and these are (1) protein extraction, (2) protein 

digestion, (3) peptide analysis by nano-liquid chromatography (LC) and MS/MS detection, (4) 

database searches, and (5) downstream processing of data (Figure 2.1).24, 36, 37, 41  

Sample preparation for bottom-up proteomics experiments can be basically summarized 

into protein extraction and digestion. Cells are lysed using a combination of detergents like SDS, 

sonication or bead beating. After a round of centrifugation, proteins are recovered and then 

submitted to denaturation with a chaotrope, disulfide bridge blocking and protease digestion.36 In 

general, trypsin digestion is preferred due to its ability of generating peptides that are on average 

~ 14 amino acids in length and ~1.8 kDa in molecular weight and which are amenable to the 

subsequent electrospray ionization process.150, 151 In addition, after extracting proteins from cells 

or tissues, some protocols employ SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

fractionation to analyze fractions of interest.8 Gel bands containing the proteins of interest are 

excised and then digested in situ using trypsin or any other protease, and then extracted. 

Before peptide mixtures are introduced into the mass spectrometer, they are separated 

by one or more steps of high-pressure liquid chromatography in very fine capillaries which are 

connected in line with the MS instrument. This step is crucial as it improves the detection 

capabilities of the instrument by de-complexing the samples under analysis. As a hypothetical 

example, it has been described that any typical human cell may be able to yield ~ 6 million tryptic 

peptides.4 In addition, the small internal diameter (~3-5 µM) of the LC nanocolumns ensure that 

the best sensitivity and efficiency of separation are achieved.36, 152 As peptide mixtures become 

more complex, orthogonal chromatographic separations that exploit different physicochemical 

characteristics of peptides such as hydrophobicity (i.e., reverse phase C18) and charge (strong 

cation-exchange, SCX) can improve the resolution of the separations. Multiple solvent gradient 

strategies are used to elute the peptides from the chromatographic columns into the MS 

instrument, but the most common ones employ chromatographic gradients that change the 

percentage of organic solvent (i.e., acetonitrile) from low to high. 
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Figure 2.1 Overview of a bottom-up proteomics experimental pipeline. A typical bottom up MS-

based proteomics experiment consists of five stages. First, proteins are extracted from the biological 
system under investigation (i.e., cell lysate or tissues). Proteins are then enzymatically digested to 
peptides, as these are more amenable to the operational capabilities of a mass spectrometer. Peptide 
mixtures are then separated by one or more steps or liquid chromatography and eluted into an 
electrospray ion source where they are nebulized in small, highly charged droplets. Peptides enter the 
mass spectrometer as protonated molecules where they are analyzed using different modes of spectra 
data acquisition. The MS and MS/MS spectra are stored and matched against protein sequence 
databases using computational search algorithms. Finally, post-processing of the data with adequate 
statistical testing highlights groups of proteins relevant to the biological problem under investigation.  
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During peptide elution, an electric potential is placed on the liquid flowing from the LC 

column causing the solution to spray.36 The spray is a fine mist of droplets that encompass the 

peptide ions as well as components from the LC mobile phase.4 These droplets are then 

desolvated by either applying heat or a curtain of nitrogen gas from which peptide ions are 

liberated. Peptide ions pass from the electrospray source into the mass analyzer, were the 

majority of the remaining solvent from the droplets is pumped away by the vacuum system.4 

Different theoretical models dealing with the formation of droplets and the liberation of ions have 

been proposed (explained in more detail in section 2.4), but both agree that the efficiency of how 

each molecule ionizes, depends on their physicochemical propierties.36     

Inside the mass spectrometer, mass spectra of the peptides eluting at a certain time point 

are taken, which in literature are commonly referred as MS1 spectra or “normal mass spectra”. 

Through a series of real-time software decisions, MS1 peptide precursor ions are prioritized for 

fragmentation and a series of “tandem MS”, MS/MS-, MS2- or fragmentation spectra are captured 

for each precursor ion.24, 37 As mentioned in Chapter 1, the most common spectral acquisition 

mode run in bottom-up proteomics experiments is by data-dependent acquisition (DDA) which is 

a  process that consist of the isolation of a given peptide precursor ion, fragmentation with 

energetic collision with gas, and recording of the MS/MS spectrum.24 The MS and MS/MS spectra 

are typically acquired for about one second each and stored for matching against protein 

sequence databases via software algorithms.24  

The databases for protein identification can be derived from public repositories of protein 

sequences like NCBI or Uniprot or be sample specific and generated from genomic or 

transcriptomic sequencing information. Proteins in the database are digested in-silico to generate 

predicted peptides which are subsequently fragmented in-silico to obtain predicted fragmentation 

patterns. The experimental precursor mass is used to search for predicted peptides, and the 

experimentally generated MS/MS spectra can be matched to predicted fragmentation patterns to 

determine peptide sequences. Once peptide sequences are determined, they are traced back to 

the source proteins. Finally, post-processing of the data employing different statistical analyses, 

ensures that groups of observed proteins are relevant for the biological phenomenon under 

investigation.  

Here in, background information pertinent to the workflow of the different bottom-up mass 

spectrometry-based proteomics techniques employed in the development of Chapters 3-5, 

including sample preparation, and mass spectrometry measurement and data analysis, is 

presented while detailed protocols are outlined in the “Experimental procedures” sections of each 

chapter.   
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2.2 Protein extraction and digestion.  
 

2.2.1 Being mindful about the sample: Considerations before starting a bottom-up 
proteomics experiment.  

Modern bottom-up mass spectrometry techniques have been deployed to analyze a wide 

range of samples with environmental and clinical importance. The current technology used for 

bottom-up proteomics studies is nowadays sufficiently advanced to provide the in-depth 

characterization of very distinct biological matrices,37 including, for example, acid mine drainage 

biofilms153 and cerebrospinal fluid.154 However, an initial understanding of their complexities helps 

informing the steps to take in an experimental workflow. Thus, although every bottom-up 

proteomics pipeline consists of the four steps described in section 2.1, each one has to be 

adapted according to the samples under analysis and the overall goal of the study.41   

Prokaryotic and eukaryotic cells are very different in size and complexity. The genome 

sizes of bacteria, plants and humans, or even between different species of bacteria and plants, 

may translate into very different numbers of proteins that can be expressed at any given time or 

condition in a cell. When proteins are digested, and depending on which protease is used, the 

number of peptides analyzed by LC-MS/MS can be in the hundreds of thousands or even more. 

For example, a theoretical calculation in a human cell puts the number of peptides that could be 

produced with a trypsin mediated digestion near the 6 million.4 Depending on how complex the 

peptidome background is, the type of LC separation to employ is critical in order to minimize 

coelution of peptides and ion suppression events.   

The types of organic structures that are part of cells also determine the procedures to 

conduct for protein recovery. Due to the presence of multiple layers of cellulose, plant cells are 

particularly strong and difficult to disrupt; while bacterial cells are easier to break,155 but within 

them, Gram-positive bacteria cells are more troublesome to work with due to the presence of a 

thick layer of peptidoglycan and lipoteichoic acid surrounding the membrane.156  

The natural abundances of proteins in a given sample impacts the ability to detect targets 

of interest by bottom-up proteomics. Proteins can be expressed at levels as low as 101-102 

proteins per cell, although some are expressed at much higher levels as 104-106 proteins per cell.4  

Depending on the goal of the study, one may be interested in the identification of less abundant 

proteins. For instance, bottom-up proteomics pipelines that study proteins in plasma and try to 

determine biomarkers of clinical interest, are always confronted with the challenge that the 

dynamic range of protein abundances is 10 orders of magnitude in concentration from albumin to 



29 
 

the least abundant proteins.157 In these cases, protein depletion or enrichment strategies can be 

employed to increase the chances of identifying targets of interest.158 

Recovery of biomass from bacterial cell isolates in suspension to bacterial cells from 

environmental samples is different. Low complexity samples like microbial pure cultures, defined 

enrichments, or symbioses (i.e., co-cultures) usually comprise one or few species that are present 

in high cell numbers, whereas environmental samples such as those derived from soils, 

sediments or aquatic sources may comprise different species and be characterized by low 

microbial biomass levels.72 For example, in marine water columns, cell numbers range from 5 x 

104 to 5 x 105 cells per mL.159 In order to obtain sufficient cell material, water volumes from 1L to 

20L need to be processed by differential filtration.72 Aside from their characteristic low protein 

abundance, environmental samples can contain perturbing substances that impact the 

measurement of peptides by MS. In soils, the most representative case is the presence of humic 

acids which are known to cause unwanted modifications in proteins,160 suppress the electrospray 

ionization of analytes,161 and make loading samples to LC columns harder due to flow 

obstructions.162 

These initial sample considerations are examples that can dictate the success of  bottom-

up proteomics experiments.   

 

2.2.2 Cell lysis and protein extraction via the SDS-TCA and CME methods. 

The goal of cell lysis and protein extraction protocols is to recover as much protein as 

possible while minimizing contamination by other biomolecules that are present in the sample 

(i.e., lipids, cellulose, nucleic acids, etc.).4 Depending on the type of samples, some protocols 

may need to homogenize tissues first, employing treatments with beads, sonication and/or liquid 

nitrogen.155 After tissue disruption, cells are lysed with physical and/or chemical-based methods, 

but most commonly with a combination of both so as to physically break apart cell walls and 

membranes and then allowing the chemical agent to solubilize proteins.155, 163 In addition, some 

protocols may employ protease inhibitors like phenylmethylsulfonyl fluoride (PMSF),4 or 

ethylenediaminetetraacetic acid (EDTA),164 to increase the yield of protein extraction, as the 

rupture of cellular structures provokes the liberation of hydrolytic enzymes that degrade proteins 

slowly.155   

Briefly, physical methods of cells lysis include ultra-sonication, bead osmotic shock, 

freeze/thawing treatments and mechanical blending;165 while chemical lysis methods commonly 

employ detergents, which aid in destabilizing the structure of cell membranes, breaking lipid-
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protein interactions and solubilizing proteins.155 The choice of detergent is a critical decision step 

in bottom-up proteomics sample preparation protocols as some of them are known to interfere 

with enzymatic digestions, and most of them interfere with LC-MS/MS, sometimes damaging 

mass spectrometers and clogging LC columns.166 Thus, factors such as the critical micelle 

concentration (CMC), or the ability of detergents to form micelles that can affect their efficacy and 

posterior removal from a sample, are important considerations when preparing a lysis buffer.163 

It is worth mentioning that lysis, extraction, and protein denaturation can all happen in the 

same step with certain experimental protocols. In this dissertation, the projects developed and 

presented in Chapters 3-5 all used a combination of either sonication or bead beating of cells in 

lysis buffer containing between 2-4% SDS. SDS has reported CMC values of 6-8 mM and its 

micelles have an approximate molecular weight (MW) of 17.8 kDa,163, 167 which means that it can 

be removed easier from a solution by buffer exchange or dialysis when compared to other 

detergents like Triton X-100 or Tween 80.163      

Once the cells are lysed, they need to be separated from any other biomaterials and 

detergents. Since the presence of lipids and genomic DNA is known to cause MS signal 

suppression and chromatographic interference,163 their removal is important. This can be 

achieved by precipitating proteins out of the cell lysate solution using trichloroacetic acid (TCA)168-

170 and rounds of centrifugation, which is one of the most popular procedures to eliminate nucleic 

acids, polysaccharides and salts from the cell lysate solution.155 In general, getting rid of other 

biomolecules helps in acquiring “cleaner” spectra from which to obtain protein identification data. 

TCA precipitation can then be followed by detergent removal using cold acetone (0 to -20 °C).163 

Acetone is effective in removing SDS from proteins precipitated by TCA and is added to sample 

mixtures to a composition of 80%.171 This method was employed for samples in Chapter 3. 

Another form of protein precipitation and clean up technique is methanol-chloroform 

precipitation (CME).163, 172 This technique is particularly efficient in recovering membrane 

proteins.163, 173 In the CME methodology, methanol, chloroform and water in volume ratios of 4:1:3 

are added to cell lysate solutions followed by three additional volumes of methanol. Briefly, 

proteins are first separated from other unwanted materials on the water-organic interface and are 

then pelleted by “washing” the sample with methanol. The efficiency of this procedure has been 

described to approach 100% for a variety of protein concentrations and detergent solutions.163 

CME was the main protein recovery strategy employed for samples prepared in Chapter 5 of this 

dissertation.  

At the end of protein precipitation methods, it is common to have a protein pellet that is 

often dried to some extent. This situation, added to the high degree of protein heterogeneity, and 
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the stability of protein-protein interactions can complicate their downstream processing by any 

enzymatic digestion method.155 Hence, protein pellets need to be solubilized back in an adequate 

buffer containing several additives that prevent protein aggregation. 

 

2.2.3 Protein solubilization with urea or SDC buffers and DTT and IAA. 

Strategies for fully resolubilizing protein pellets involve the use of buffers with additives 

that help in denaturing proteins and maintaining them in solution, as well as other physical 

treatments like vigorous vortexing174, 175, ultra-sonication174, 176 or shaking. The three main classes 

of additives added to re-solubilization buffers are: (1) chaotropes, which are used to prevent 

protein aggregation; (2) detergents, that increase the solubility of several proteins; and (3) 

reducing agents, that “break” disulphide bonds in proteins.4, 155, 177  

Chaotropes disrupt hydrogen bonds and inter- and intra- molecular hydrophobic 

interactions in proteins by altering the solution ionic strength and pH. Thus, these agents 

destabilize or denature the native structures of macromolecular protein assemblies.4, 155, 177  In 

particular, urea has been widely used in proteomics experiments at concentrations between 8-9 

M to help maintain proteins in solution.155 One consideration when using urea as the main 

chaotrope, however, is that heating must be avoided in order to prevent its hydrolysis and other 

non-desirable side reactions;155 as such, physical treatments like ultra-sonication and incubations 

in thermomixers are not recommended to be used in concert. In this dissertation, urea was 

primarily used for protein denaturation in the development of Chapter 3.  

As an alternative to chaotropes, detergents can be used typically in concentration ranges 

that vary between 1-4%.155 Detergents are useful in preventing hydrophobic interactions, but 

careful selection of which of them to use and how compatible are they with remaining experimental 

steps are important considerations. In particular, sodium deoxycholate (SDC), which is a soft ionic 

detergent,163 has been employed in recent bottom-up proteomics approaches as a substitute of 

SDS, due to observed reductions in technical variation during sample preparation,178 its ability to 

increase the solubility of hydrophobic proteins, and compatibility with downstream trypsin 

digestion.179 SDC is also easily removed after peptide digestion by crashing it out of solution with 

the addition of formic acid and then adding a water-immiscible organic solvent such as ethyl 

acetate,180 into which the detergent is transferred while digested peptides can be recovered in the 

aqueous phase. This strategy was employed for the experiments in Chapter 5.   

To prevent protein renaturation before enzymatic digestion, a reduction step of disulfide 

bridges in proteins is conducted with agents like dithiothreitol (DTT) or dithioerythritol (DTE) .4, 177  
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This step is often followed with the addition of reagents such as iodoacetamide (IAA), that are 

used to alkylate free sulfhydryl groups in proteins,155 in order to protect them from re-oxidation 

events. Through the entirety of this dissertation, the combined actions of DTT and IAA were used 

in the steps of protein solubilization. Importantly, one must also be aware that some of the agents 

mentioned here (i.e., IAA181) may produce unwanted effects in the sample if left for extended 

periods of time or used under the wrong temperatures; but it is through experimentation as well 

as tricks learned in the art of sample preparation that they are used in different degrees and 

combinations. 

 

2.2.4 Protein digestion in MS bottom-up proteomics with trypsin.  

If there is one protein to which proteomic scientists own their career to is trypsin. Trypsin 

is considered as the gold standard of protein digestions in bottom-up proteomics protocols due to 

its robustness, specificity and broad availability at a reasonable cost.4, 28, 150, 177, 182 Specifically for 

LC-MS/MS applications, companies sell trypsin as a highly purified enzyme that is extracted from 

either porcine or bovine pancreas. Trypsin is a serine protease that cleaves exclusively at the 

carboxyl side of arginine (R) or lysine (K) residues in a protein, unless either of these are followed 

by a proline residue. Compared to other proteases that act only on one amino acid, the dual 

specificity of trypsin means that it acts more frequently in proteins in theory producing more tryptic 

peptides for analysis. For example, a 50 kDa protein will yield about 30 tryptic peptides.4  

Because of the spacing of R or K amino acids in a protein, which is approximately one 

residue per every 10–12 amino acids,155 trypsin generates peptides that are of suitable lengths 

(~10-15 amino acids)183 and MWs (~ 5-30 kDa)150, 155 to chromatographic separation and that fall 

within the ideal mass range of mass spectrometers.182 In addition, the presence of C-terminal 

lysine or arginine residues is beneficial, as they efficiently protonate under acid conditions and 

this in turn helps peptides to ionize and to produce rich fragmentation spectra that enhances 

protein identification.28, 155, 182 In fact, a protein can be confidently identified with the information 

produced by only one tryptic peptide.4 Other advantages of trypsin for bottom up proteomics work 

is that the enzyme  displays good activity both in solution and in in-gel digestion protocols.4  

As with any other reagent used in bottom-up pipelines, some considerations are important 

when using trypsin for protein digestion. In this sense, digestion conditions like time, temperature, 

pH and enzyme-to-protein ratios can influence the specificity and efficiency of trypsin.151 It has 

been recommended that in order to maximize protein identification in global proteomics studies, 

a digestion of pH 7, temperature of 37 °C and enzyme-to-protein ratio of 1:50 can maximize 
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protein identification.182 The latter parameter varies in published articles where the values can 

range from 1:100 to as high as 1:2.5,183-188 with targeted proteomics studies using lower enzyme-

to-protein ratios to maximize peptide yield. Regarding time, this factor also changes from study to 

study, but it is common practice to incubate protein samples with trypsin for 1-3 hours and then 

conduct a second round of overnight digestion.155  

 Importantly, although it has many advantages for bottom-up proteomics, trypsin is not 

free of flaws. For some applications, it has been reported that the short length of tryptic peptides 

(≤ 6 residues) are not optimal for MS fragmentation and can restrict proteome coverage.189 Other 

studies have reported that whenever there are cases of adjacent K or R residues in a protein, 

trypsin will prefer to act on those that are located on its C-terminus side, and will fail to produce 

peptides from its N-terminus.183 PTMs can also inhibit trypsin cleavage.190, 191  

In this dissertation, trypsin digestion was used to produce peptides for subsequent 

measurement through LC-MS/MS although, due to the different applications presented in Chapter 

3-5, with digestion parameters adapted each time.  

 

2.2.5 Peptide clean up before loading into a LC column.  

Peptide mixtures should ideally be loaded into a LC column without any compounds that 

may compromise their MS/MS detection. Excess salts or trace amounts of detergents are known 

to interfere with peptide ionization and add chemical noise in the mass spectra.158 Additionally, 

detergents can clog LC columns, and salts can accumulate in the ion transfer capillary of the 

mass spectrometers.192 For these reasons, peptide sample cleanup procedures are important to 

perform before LC-MS/MS.193 These protocols can be either on-line using trap columns or off-line 

using several commercially available products.158  

On-line cleanup/desalting occurs as the sample moves through a pre-column that is 

connected to the analytical LC column where peptide separation takes place; however, the initial 

flow-through going through the pre-column is diverted to waste. After peptides have been washed 

extensively, they can now be eluted into the analytical column. For off-line cleanup/desalting, 

devices that employ reversed-phase stationary resin (i.e., C18) packed in pipet tips, spin columns, 

or syringes are used. These products have varying binding capacities ranging from 1 to 25 µg 

protein.192 For example, StageTips, are ordinary pipette tips with inserted small disks made of 

beads with reverse phase surfaces embedded in a Teflon mesh.194 The fixed nature of the beads 

allows flexible combination of disks with different surfaces (i.e., cation-exchange or anion-
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exchange) to obtain multi-functional tips.194 C18 stage tips were used in Chapter 3, while C18 spin 

columns were employed for peptide cleanups in Chapters 4 and 5.   

In addition to peptide clean-up, all the peptide mixtures obtained at the end of every 

experimental protocol in Chapters 3-5 were concentrated using a SpeedVac and then 

resuspended in a solvent mixture whose organic content and pH matched the starting 

chromatographic conditions in each case.  

 

2.3 Peptide separation by nanoLC.   
 

2.3.1 Basics of peptide chromatographic separation by nanoLC.   

The number of peptides that can be produced from a proteolytic digestion protocol 

presents an analytical challenge to any modern mass spectrometer. For instance, even in a 

common bacterial system, theoretical calculations have predicted that the number of peptides 

produced could be higher than 62,500 and these could have abundance differences higher than 

105.195 Thus, ways to de-complex, or simplify a peptide mixture, before it is measured with a mass 

spectrometer are necessary. This goal has been achieved with nano liquid chromatography 

(nanoLC), which is a fully automated form of liquid chromatography, that allows to separate 

peptides with high speed, resolution and sensitivity.196  

Similar to the more traditional high-performance liquid chromatography (HPLC) at the 

microscale level, in nanoLC, chromatographic columns with small internal diameters ≤ 100 µM,36, 

197, 198 and packed with a stationary phase, are used to inject peptide mixtures. Peptides bind to 

the stationary phase and are then separated by flowing a mobile phase at nL min-1 flow rates that 

changes its composition over time either in variable steps or continuously.36, 197 The low volumes 

and flow rates of nanoLC are beneficial to the electrospray ionization (ESI) technique, which acts 

like a concentration-dependent detector in mass spectrometers, and help improve the detection 

sensitivity of the measurements.36, 196  

By exploiting the physicochemical properties of the naturally occurring L-α-amino acids 

found in proteins,196 optimal stationary phases as well as mobile phase compositions may be 

selected to achieve a successful chromatographic separation of peptides in bottom-up proteomics 

experiments. For example, the number and distribution of charged groups on the side chains of 

amino acids influences the polarizability and ionization status of a peptide, as well as their 

hydrophobicity.196 Thus, chromatography modes that make use of peptide hydrophobicity, like in 

reverse phase (RP) chromatography, or charge, like in ion exchange (IEX) chromatography; can 
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be used independently or in combination to deconvolute samples reaching a mass spectrometer. 

Other separation modes in bottom-up proteomics research are hydrophilic interaction (HILIC) 

chromatography; and affinity chromatography (including immobilized metal ion-affinity and 

biospecific chromatography).8, 72, 198  

In this dissertation work, RP and strong cation exchange (SCX) separations were used for 

the diverse proteome measurements presented through Chapters 3-5. Both types of separation 

are described in more detail in the following subsections.  

 

2.3.2 HPLC vs. UHPLC  

With the goal of improving analyses times, while at the same time maintaining acceptable 

chromatographic resolution in a complex peptide mixture, improvements to conventional 

nanoHPLC strategies have been tested in bottom-up proteomics experiments. One of those 

developments is ultra-high-pressure liquid chromatography (UHPLC). Compared to conventional 

nanoHPLC which uses pumps and plumbing that can support flow backpressures up to 450 bar, 

nanoUHPLC uses instrumentation that can tolerate up to 1400 bar197, 199 allowing the use of 

smaller inner diameter columns packed with stationary phases made of particles sizes with 

diameter sizes < 2 µM,200 instead of stationary phases consisting of particles having diameter 

sizes of 5 µM that are employed in nanoHPLC.   

The decrease in stationary phase particle sizes and internal diameter of analytical columns 

and plumbing has brought many benefits to peptide detection with tandem mass spectrometry. 

One of those is greater column efficiency, measured by the number of theoretical plates, which 

can be described as a number of imaginary layers across the length of column in which an analyte 

is in equilibrium with the stationary and mobile phases. The plate model theory states that the 

higher the number of theoretical plates in a column at a given length, the better the quality of the 

column and the narrower the peaks.196 Columns packed with stationary phases < 2 µM and used 

in combination with UHPLC pumps, have many more theoretical plates than columns used in 

HPLC separations (Figures 2.2 A-B). The former translates into narrower chromatographic peak 

widths at baseline that are on average 2-4 seconds compared to 10 seconds in HPLC,201 which 

in turns improves the resolution of peptide separation, with some studies reporting improvements 

by a factor of 3 when conducting UHPLC versus HPLC under similar analysis times.202, 203  

Better chromatographic resolution also means that regions in a chromatogram that look 

crowded in HPLC can be better differentiated in UHPLC and this improves peptide identification 

by computational algorithms. Furthermore, the narrower peak elution profiles also improves 
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column capacities, or the number of peaks that can be accommodated in certain column 

segments, which consequently brings a reduction in the number of analytes that coelute at a given 

time and hence, less chance of chimeric spectra occurrence204  which is an ever present problem 

in bottom-up experiments and is described in more detail in section 1.4.  

The sharpening of chromatographic peaks in UHPLC also boosts the sensitivity of the 

analysis.204  Peptides that were undetectable in HPLC due to broader chromatographic elution 

profiles, can now present higher chromatographic peak areas in UHPLC that allow for their 

sequencing via MS/MS. Increases in sensitivity when compared to traditional HPLC have been 

reported. Other advantages of UHPLC compared to HPLC runs are shorter analysis times 205 and 

the use of small sample volumes (≥ 0.5 µL).206 Interestingly, the introduction of UHPLC to bottom-

up proteomics analyses have enabled “single-shot” proteomics studies, in which complex 

proteomes are analyzed in-depth with the aid of long 1D chromatographic columns (25-50 cm) 

and LC gradients (300-500 mins).152, 200, 204, 207   

However, the main disadvantage of UHPLC is that the equipment to run these types of 

experiments is more expensive than that used by HPLC and its correct implementation requires 

of delicate handling and expertise. Thus, alternatives to increase throughput and depth in bottom-

up analyses using regular HPLC have been tested. In fact, one of those ways was explored in 

more detailed in the research presented in Chapter 4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2 1D-liquid chromatography setups. The square grids below each column represents the 
number of theoretical plates. (A) One-dimensional (1D) separation with a C18 packed column using 
particle sizes > 2 µM employed with HPLC pumps. (B) 1D separation employing C18 particle sizes < 
1.7 µM and typically employed with UHPLC pumps due to the high backpressure caused by the 
decrease in particle sizes.  
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2.3.3 Reverse phase liquid chromatography (RP-LC).  
 

Reverse phase liquid chromatography (RP-LC) exploits peptide hydrophobicity to 

separate peptides in a column.4, 8 In this type of chromatography, the stationary phase consists 

of a nonpolar phase, which in bottom-up proteomics is usually made of C18  chains that are bound 

to base silica material.72 Peptides are first loaded to the analytical column in an acidic mobile 

phase containing a low percentage of organic solvent. After peptides are retained, elution 

happens by gradually increasing the content of organic solvent in the mobile phase over time. 

The retained peptides elute in order of increasing hydrophobic interaction with the stationary 

phase; with peptides having lower hydrophobicity eluting first.4 

In case of samples that are suspected to have low amounts of peptides, trap columns (∼ 

10–20 mm length) with larger inner diameters (usually 300 µm) can be used for enrichment;72 

alternatively, they can be used to perform desalting washes of peptides retained in the stationary 

phase. These trap columns can be operated either off-line or on-line196 with the main C18 

separation column. In the off-line mode, peptide mixtures can be loaded to the trap column and 

subsequently desalted using a pressure cell to then be interfaced with the separation column in 

the LC instrument. Instead, in the online mode, the LC instrument is configured to do automatic 

valve switching which allows the selection of mobile phase pathways for first loading the peptides 

into the trap column (without loading them into the separation column), then do desalting (without 

sending the flow through to the separation column) and finally conduct the analytical separation.  

Although RP-LC separation is reproducible, selective, and effective for the separation of 

peptides in bottom-up proteomics,198 it may reach its limits with samples of high complexity. After 

enzymatic digestion, the thousands or hundreds of thousands of peptides in a sample may exceed 

the peak capacity of RP-LC columns. The co-elution of too many peptides as well as their large 

ion abundance differences may also cause undesirable ion suppression events during 

electrospray ionization. Hence, separations that can provide increased peak capacities and 

resolving power can improve peptide detection, thereby increasing proteome coverage and 

dynamic range.208 

 

2.3.4 Two-dimensional liquid chromatography (2D-LC).   

Before the adoption of UHPLC systems for reverse phase-based separations, 

multidimensional separation techniques were introduced as an alternative to increase the 

separation power provided by RP-HPLC. Multidimensional LC couples two (or more) different 

consecutive LC chromatographic separation methods (or dimensions, hence the name 
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“multidimensional”) to improve peptide separation.209 To increase the resolving power of any 

multidimensional LC system, the chromatographic phases need to be “orthogonal” to each other 

or, in other words, exploit different physical properties of peptides such as charge, hydrophobicity 

or molecular weight210  while at the same time being technologically feasible to implement.   

For bottom-up proteomics in particular, two-dimensional strategies that combine the use 

of SCX, as first dimension, and RP, as second dimension, have been widely employed and 

adapted over the years.208 Especially with the demonstration conducted by the Yates group in the 

seminal paper introducing the applicability of the multidimensional protein identification 

technology (MudPIT), as an alternative to “gel-free” separation method, the strategy of combining 

SCX with RP became widely adopted. This application demonstrated that it was capable of 

identifying ~25% of the complete yeast proteome within a single experiment.39 

In a 2D-LC system including SCX as first dimension and C18 as second dimension 

(Figure 2.3), peptides are first loaded into a SCX packed column in acidic mobile phase (pH < 

4.0). This causes amino acid residues in peptides to be protonated and able to interact with the 

negative charged sulfonyl groups of the SCX resin.72 Each peptide adsorbs to the SCX resin with 

affinities that are proportional to the overall number of positive charges on them.4 Once peptides 

are loaded, elution happens gradually or stepwise with mobile phase “pulses” or “steps” at 

increasing salt concentrations.4, 72 Each salt pulse releases different groups of peptides that are 

captured on a RP column which is positioned downstream of the SCX column. In the RP column, 

peptides are separated based on hydrophobicity in similar fashion to a regular one-dimensional 

RP-LC strategy.  

The fractionation based on electrostatic interaction is highly orthogonal to RP.72 Similarly 

as using a trap column for 1D-RP-LC, chromatographic separations in a 2D strategy can be 

executed off-line, for example, by manual collection of peptide fractions from SCX; or on-line, 

involving a valve switching mechanism with an adequate setup so as not damage any component 

of the system with the different mobile phases used.211 The performance of a 2D separation was 

compared to a RP-UHPLC strategy in Chapter 4.   

 

 
 
 



39 
 

 

Figure 2.3 2D-liquid chromatography setup.  A 2D separation strategy exploiting the orthogonality 
of a strong cation exchange (SCX) packed column interfaced with a C18 packed column is shown.  

The square grids below each column represents the number of theoretical plates.  
 
 
 

2.4 Fundamentals of electrospray ionization (ESI). 
 

ESI is the process by which gas-phase peptide ions are produced in the source of a mass 

spectrometer to enable subsequent mass analysis.4 ESI is classified as a soft-ionization 

technique, which means that hardly any internal energy is transferred to the ions thus minimizing 

in-source fragmentation signficantly.62 In this technique, a protonated or deprotonated molecule, 

represented by the symbols [M+H]+ or [M−H]−, can be generated, respectively. In particular, for 

the analysis of peptides in bottom-up LC-M/MS, [M+H]+ peptide ions are produced and measured 

as their positive charge is favorable for fragmentation via MS/MS and several of their LC 

chromatographic characteristics are improved at acidic pH.4 The presence of multiple proton-

accepting sites in peptides (i.e., amine groups), and in particular of those derived by tryptic 

digestion (bearing lysine or arginine residues), causes them to exist as a mixture of singly, doubly 

or triply charged ions in solution.4  

The ESI process involves the placement of an electric potential of 2-3 kV between the 

liquid flowing from the LC column through a fused silica column or needle, and the counter-

electrode in the mass spectrometer (Figure 2.4).22 In the positive ion mode and for ionic analytes, 

such as positively charged peptides, the electric field, when turned on, goes inside the solvent 

carrying the molecules. This causes the polarization of the charged molecules in the liquid. In the 

positive mode, an enrichment of positive ions occurs near the surface of the solvent meniscus 

leaving the fused silica or needle, while negative ions, if present, try to get away from it.212 These 

polarizing forces cause the formation of the “Taylor cone”213, in which the distortion of the 

meniscus creates a cone-shaped spray that points towards the counter electrode of the mass 
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spectrometer. The increase of surface due to the cone formation is resisted by the surface tension 

of the liquid.212 

If the applied field is sufficiently high the spray tip becomes unstable and a fine jet emerges 

from it. The surface of the jet is charged by an excess of positive ions. The repulsion between the 

charges on the jet causes the jet to break up into small charged droplets.212 The size of the 

droplets formed from the cone jet is dependent on its diameter and studies have proposed and 

observed that the majority of the droplets produced have approximately the same size.214, 215 The 

droplets are positively charged due to an excess of positive electrolyte ions at the surface of the 

cone and the cone jet. As charged droplets get expelled and travel towards the mass 

spectrometer, the solvent that they carry gets evaporated, causing their shrinkage and an 

increase in the electric field the electric field normal to their surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Illustration of the electrospray ionization process.  Protonated peptide mixtures are 
separated by liquid chromatography and then sprayed from the front-column emitter towards the mass 
spectrometer. Initially, large solvent droplets containing hundreds, or thousands of peptide ions are 
sprayed. As these droplets move towards the heated capillary in the spectrometer, solvent evaporates 
from the surface of the droplets, and ions are forced together until charge repulsion causes  peptide 
ions to leave the droplet. The high voltage potential placed between the emitter and the mass 
spectrometer pulls the ions into the high vacuum region of the latter  
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As the droplets get smaller, the increasing repulsion between the charges at their surfaces 

increases and it overcomes the cohesive force of their surface tension. This phenomenon leads 

to the fission of the droplets that releases a series of small and charged secondary or progeny 

droplets. This condition of instability, is also called Coulomb fission or “explosion”, and is 

explained by the Rayleigh equation216:  

 

𝑄𝑅𝑦 = 8𝜋(𝜀0𝛾𝑅3)1/2    

Where:  

 
QRy = Charge of the droplet 

𝛾 = surface tension of the solvent  

R = radius of the droplet  

𝜀0= electrical permittivity  

 
The shrinkage of the droplets at constant charge fission at or near the Rayleigh limit, and 

the release of a jet of small, monodisperse charged progeny droplets has been confirmed by a 

number of experiments.212 Further evaporation of the solvent leads to a higher occurrence of 

droplet fissions. Ultimately, very small charged droplets enter the mass spectrometer and lead to 

the formation of gas-phase ions by processes which are mainly explained by two theoretical 

models.  

The first model is the charge-residue model of Dole.217 In this model, the sequence of 

droplet disintegration proceeds until the microdroplets contain only one preformed analyte ion per 

droplet. By evaporation of the solvent, the preformed analyte ion is released to the gas phase.  

The second model is the ion-evaporation model proposed by Iribarne and Thomson,218 in which 

gas-phase ions are released from highly charged microdroplets, because the local field strength 

is high enough for preformed ions to be emitted into the gas phase.62 Both of these models are to 

some extent complementary and there is no consensus of which one is actually more important 

in the actual ion production of a particular analyte.  

Given the importance of droplet evaporation during ESI, the generation of  smaller droplets 

is more favorable in term of sensitivity and the ability to preserve noncovalent molecular 

associates. This can be achieved by using nanoLC, where the analyte is sprayed, for example, 

from silica capillary with tip diameters of 1–5 μm rather than from the 100 to 150-μm tips that are 

used in conventional ESI. This mode of operation is called nanoESI and usually allows the use of 

gentler operating conditions such as temperature, gas flows, and needle voltages.219 Compared 
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to conventional ESI, decreasing the flow rate to nL/min rates, leads to increased ionization 

efficiency by 50~60%, greater sensitivity and better tolerance to the salts and other impurities.  

nanoESI has become the most used ionization technique in peptide and protein analysis and as 

such all the MS instruments used for the experiments in Chapters 3-5 used a nanoESI source.  

 

 2.5 Fundamentals of mass spectrometric detection.  

 

2.5.1 Figures of merit in mass spectrometric detection.  

There are several types of mass spectrometers available for the detection and 

measurement of peptides in bottom-up proteomics; however, the type of results obtained are 

heavily influenced by the capabilities of each instrument as well as the complexity of the sample 

under study. Hence, before introducing the most common types of spectrometers used in bottom-

up proteomics work, and describing in more detail the specific ones employed in this dissertation, 

it is important to first define the analytical figures of merit that are used to evaluate the 

performance of each type of instrument. These figures of merit are: mass resolution, mass 

accuracy, and the acquisition speed, or the time needed to acquire one data point in a 

chromatogram.62  

The resolution, also known as the “resolving power” of an instrument, is defined as the 

ability to distinguish two ions with similar mass-to-charge (m/z).72 More specifically, and according 

to the International Union of Pure and Applied Chemistry (IUPAC) definition, mass resolution is a 

dimensionless unit that is the product of 𝑚 ∆𝑚⁄ , where m is the mass of the ion and Δm is either 

the peak width at full-width-half-maximum (FWHM) between two equal-intensity peaks, or at a 

10% valley definition between two equal-height peaks.8, 220, 221 Typically, mass spectrometers (or 

more rigorously mass analyzers) can provide unit-mass resolution or high-mass resolution.62 

Instruments that provide high-mass resolution are able to differentiate the isotope clusters of a 

compound which enables the detection of the “monoisotopic ion”, or the ion that is composed of 

only one isotope of each element (i.e., 1H, 12C, 14N and 16O).72 An example of how the resolving 

power of a mass analyzer impacts peptide identification in bottom-up proteomics is shown in 

Figure 2.5.  
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Figure 2.5 Mass resolution in mass spectrometry-based bottom-up proteomics studies impacts 

the correct identification of peptides. (A) Two peptides with similar monoisotopic mass generate 
doubly charged ions with close m/z values. (B) Simulation of isotope profiles of both peptides in (A) 
using a resolving power (RP) of 1000 which is typical of standalone quadrupoles or ion trap mass 
analyzers. (C) Simulation of isotope profiles of both peptides in (A) using a RP of 60,000 which is 
available in Thermo Scientif ic Q Exactive hybrid mass spectrometer. The MS-Isotope program of the 
Prospector suite of proteomics tools was used to generate the isotope profiles.   

 
 

The mass accuracy of an instrument determines how close the experimental mass values 

for ions (accurate mass) in a sample are to their theoretical ones (exact mass).4 Low-resolution 

instruments generally allow the m/z determination for single-charge ions with an accuracy of ± 0.1 

units (in nominal mass).62 While instruments that provide high-mass resolution, as mentioned 

before, enable the determination of a monoisotopic mass with accuracies that are better than ± 

0.01 Da,72 referring to the masses of the most abundant natural isotopes of the elements present 

in the ion or molecule. In practice, to achieve mass accuracies that are between the operational 

parameters of each instrument, these need to be m/z calibrated as needed with special solutions 

recommended by the manufacturers. For high-resolution instruments, the accuracy is expressed 

either as an absolute mass error or as a relative error (in ppm), and this is calculated from:62  

 

(𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑚𝑎𝑠𝑠 − 𝑒𝑥𝑎𝑐𝑡 𝑚𝑎𝑠𝑠)

(𝑒𝑥𝑎𝑐𝑡 𝑚𝑎𝑠𝑠)
 𝑥 106 
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Mass accuracy is an important parameter for the identification of biomolecules in mass 

spectrometry, because the experimental mass values of ions are often compared to exact  mass 

values calculated by software such as those used in peptide/protein database searches in bottom-

up proteomics.4  

Scan speed or the acquisition rate of an instrument,200 refers to the number of spectra that 

is acquired per unit time in a particular m/z range. Fast scan speeds are required for rapidly 

changing events such as to monitor peptides coming out from chromatography.221 For example, 

in global proteomics studies using data-dependent acquisition, mass spectra are continuously 

acquired between a low m/z and a high m/z range within a preset period of time (mostly ≤1 s).62  

Sensitivity in mass spectrometry measurements has two widely accepted definitions: (1) 

It can refer to the change in signal per unit change in concentration of analyte;222 or (2)  it can be 

described as the smallest amount of an analyte that can be detected at a certain defined 

confidence level or from background noise.4 Considering this latter definition, the limit of detection 

(LOD) is determined from the analyte signal-to-noise ratio (S/N) and is the lowest concentration 

of a molecule where its signal can be distinguished from system noise.223 Instead, the limit of 

quantification (LOQ) is defined as the lowest amount of an analyte in a sample that can be 

quantitatively determined with precision and accuracy.222 Both LOD and LOQ values are usually 

plotted in calibration curves which depict a range of concentration-response values that can be 

measured with reliability and reproducibility.  

 

2.5.2 Overview of tandem mass analyzers and detectors used in bottom-up 
proteomics applications.  

Mass spectrometers measure the mass-to-charge ratio (m/z) of gas phase ions,23 or in 

proteomics, of peptide ions. The three main components that made up a mass spectrometer are 

the ion source, which produces the ions from the sample (i.e., the nanoESI source); the mass 

analyzer, which resolves ions based on their m/z ratio; and finally, the detector that as the name 

implies, records the number of ions that are resolved by the mass analyzer.4, 23, 72 All the data or 

spectra are plotted as a function of ion abundance versus m/z which can then be retrieved for 

manual or computational-assisted interpretation. From these m/z values the mass of the analytes 

can later be determined.  

Mass analyzers are central to MS technology. At the most fundamental level, analyzers 

use some type of static or dynamic electric and magnetic fields to selectively separate ions. For 

bottom-up proteomics applications, and importantly, workflows that use nanoESI sources, the 
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most common types of analyzers employed are quadrupoles, ion traps (quadrupole ion trap, linear 

traps, Orbitraps) and time-of-flight (TOF) analyzers.4 Although most of these analyzers may be 

used as stand-alone systems, most often they are combined into hybrid systems that allow the 

collection of tandem MS data from which peptide sequences can be deduced.62 All of them vary 

in their physical principles and analytical performance (Table X), however, they all are used in 

bottom-up proteomics to perform the measurement of peptide ions through tandem MS/MS. 

The high-speed data acquisition in mass spectrometers needs to be backed by fast 

electronics, including analog-to-digital converters (ADCs).224 Electron multipliers are the most 

widely used types of detectors used in combination with quadrupole and ion-trap instruments.62 

Detection of ions in multipliers is based on the repeated emissions of secondary electrons, 

resulting from the repeated collisions of energetic particles at a suitable surface. With TOF 

instruments, microchannel plate (MCP) detectors, which are arrays of miniature electron 

multipliers oriented parallel to one another, are applied, as they are more suitable for ion detection 

when the ion beam is more spread in space.225 In orbitrap MS systems, the signal of all ions with 

different m/z values is based on the detection of high-frequency image currents.226  

The projects presented in Chapters 3-5 of this dissertation employed a triple quadrupole 

and a hybrid Orbitrap analyzers to conduct targeted and global proteomics analyses of the 

samples under study, respectively. Their operational principles are described in more detail in the 

following sections and their performance metrics summarized in Table 2.1.  

 

 

Table 2.1 Performance metrics of the instruments used in this dissertation 

Instrument 
Mass 

resolution 

Mass 

accuracy✝  

Mass 

range 
Sensitivity 

Data 
acquisition 

speed 

TSQ 
Quantum 

Ultra 
Discovery 

Max 

Up to 7500 
(FWHM) at 
m/z 508 of  

polytyrosine 

300- 500 
ppm  

10-

1500  
Da 

Picomoles-
Femtomole 

Up to 5000 
Da/sec 

 

Q Exactive 
Plus 

Up to  

140,000- 
280,000 at 

m/z 200 

 

1 – 3 ppm 50-
6000 

Da  

 

Attomole-
Femtomole 

Up to 12 Hz 

resolution 
setting of  17,500 

at m/z 200 

           

 
 

✝ Mass accuracy range calculated for molecules at m/z 300-500.  
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2.5.2.1 Targeted proteomics via multiple reaction monitoring MS on a triple 

quadrupole (MRM-MS).  
 

The triple quadrupole is a hybrid MS system that is well suited for targeted proteomics 

studies that collect spectral data via MRM-MS. To understand its basic mechanism of operation, 

it is important to first describe a quadrupole and how it works. A quadrupole is a mass analyzer 

that is made of four circular-shaped rods that are arranged in parallel.4, 62 By applying direct 

current (DC) and radiofrequency (RF) voltages to the rods, a dynamic electromagnetic field is 

produced which results in a complex oscillating movement of the ions from beginning to end of 

the analyzer.4, 72 Depending on the DC/RF combinations applied to the rods, ions with different 

m/z values can be transmitted to the detector one after another. The transmission of distinct ions 

by continuously changing the voltages can be mathematically modeled with the Mathieu 

differential equations.227   

 Quadrupoles are low resolution mass analyzers that provide mass accuracies <0.3 Da 

and scan speeds as high as 10 000 u/sec in a mass range of 10–2000 Da.62, 72 When three 

quadrupoles are combined in series, they form a triple quadrupole instrument (also known as 

“triple quad” or “QqQ”). A QqQ is composed of two quadrupoles, “Q1” and “Q3”, that are controlled 

by DC and RF potentials and act as mass filters that transmit ions of given m/z ratios; both of 

them are separated by a quadrupole “q2”, which is operated in the RF-only mode.4 In q2, 

fragmentation of ions is achieved by collision-induced dissociation (CID), in which neutral gas 

atoms, for example argon, are used to impart internal energy to the bonds of the ions under 

analysis, causing them to break.37 These fragment ions can then be separated according to their 

m/z by Q3 and then passed to the ion detection system.   

The research project presented in Chapter 3, used a TSQ Quantum Ultra instrument 

manufactured by Thermo Fisher Scientific (Figure 2.6). The TSQ mass spectrometer consists of 

an ion source interface, ion optics, mass analyzer section (quadrupoles), and an ion detection 

system. The instrument can be interfaced with several ionization sources, but for the experiments 

in Chapter 3 a nano-ESI source was employed. The ion source interface consists of elements 

that help in ion desolvation and maintain vacuum inside the system. The ion optics focus the ions 

produced in the electrospray source and transmit them to the mass analyzer, these are divided in 

Q00 ion optics, which are located closer to the ion source interface, and Q0 ion optics. The mass 

analyzer region consists of quadrupoles Q1, Q2, Q3 and three lens sets with diverse functions 

including, for example, minimizing collision gas entering to Q1 (lens L22 and L21) and Q3 (lens 

L32 and L33) from Q2; retain collision gas in Q2 (lens L23 and L31); shield from the different 

voltages applied to the quadrupoles and focus the ion beam. According to the manufacturer, the 
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design of the Q2 quadrupole, which are quadrupole rods bent through a 90-degree arc, is helpful 

in preventing the transmission of unwanted neutral species to the detector, thus lowering the noise 

level in the data. Finally, the TSQ instrument is equipped with a high-sensitivity detection system, 

located at the rear of the vacuum manifold behind the mass analyzer which has been designed 

to increase signal and decrease noise levels. 

The TSQ quantum can be operated to collect MS1 signals from all ions coming the 

ionization source or in the “full-scan” mode, but alternatively, and more frequently, it is used to 

selectively induce the fragmentation and detection of ions coming to the ion source. This type of 

spectral data acquisition is known as multiple reaction monitoring-mass spectrometry (MRM-MS) 

and is the basis of targeted proteomics measurements. On MRM-MS, the voltage settings applied 

to Q1 only allow peptide ions with specific m/z to pass through it. Ions then enter q2 where they 

collide with the neutral gas to produce fragment ions and neutral fragments. The fragment ions 

are then analyzed based on their m/z by Q3, which scans repeatedly over a mass range.  Although 

they lack mass accuracy and resolution, MRM-MS measurements are more reproducible and 

sensitive than DDA methods used for global proteomics applications. Another advantage is the 

ability to determine absolute abundance values from the peptides and proteins under study 

using,228 for example, the AQUA strategy described in section 1.2.2. In theory, up to 1000 proteins 

can be targeted in a single LC-MRM-MS run after careful selection of ion transitions.228 Due to 

their consistency and quantitative accuracy, targeted proteomics measurements provide an 

alternative to test biological hypotheses generated from global proteomics approaches.229 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Schematic of the TSQ Quantum Ultra mass spectrometer used for targeted 
proteomics measurements via MRM-MS for the project presented in Chapter 3. Image taken from 
the hardware manual provided by Thermo Scientif ic.  
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2.5.2.2 Global proteomics through spectral data-dependent acquisition on a Q 

Exactive hybrid quadrupole-Orbitrap. 
 

The Orbitrap mass analyzer was developed 20 years ago230 and it is considered a 

technical improvement to linear ion traps. Different than quadrupoles, where ions are measured 

and fragmented “on the fly”,4 in ion traps, ions are collected and stored over time in order to 

perform MS/MS analyses. The Orbitrap is an electrostatic trap that consists of two outer 

electrodes and a central electrode to which a constant electrostatic potential is applied.72 Ions are 

attracted to the inner electrode where they orbit around it while at the same time maintaining an 

axial oscillation with a frequency that is characteristic of their m/z values.23 Ions of different 

velocities spread into rings with different rotational frequencies, but same axial frequency.72 The 

image currents that are generated from these movements are captured by two outer electrodes 

and Fourier transformed into the time domain to produce mass spectra.23  

Orbitraps provide high mass resolutions of up to 240,000 that contribute to measure 

analytes with mass accuracies < 3 ppm of up 4000 m/z.72 The operational characteristics of 

Orbitraps make them ideal instrument for experiments that try to identify all possible proteins in a 

complex sample and those global proteomics strategies using spectral data-dependent 

acquisition (DDA). Although stand-alone orbitrap systems have been produced, Orbitraps are 

combined in hybrid systems to perform tandem MS analyses of peptides.62 In fact, the first 

commercial introduction of the Orbitrap analyzer was as a hybrid instrument combining a low 

resolution linear-ion trap with the high-resolution Orbitrap (LTQ-Orbitrap).231    

Nowadays, however, of the many possible Orbitrap configurations, hybrid quadrupole–

orbitrap analyzers are widely used in bottom-up global proteomics research.37 These type of 

instruments were first introduced by Thermo Scientific with its Q Exactive line of instruments. In 

particular, the projects presented through Chapters 3-5 used a Q Exactive Plus spectrometer to 

acquire global proteomics data via DDA. This instrument consists of six main components, 

including the ion source, an injection flatapole that pre-filter ions according to their m/z ratios, a 

quadrupole mass filter for precursor ion selection, curved linear trap (C-trap), a high energy 

collision cell (HCD cell), and Orbitrap analyzer (Figure 2.7).  

Briefly, on DDA acquisition, ions coming from the electrospray source are transmitted into 

the quadrupole via the flatapole that acts like an ion focus device and as an ion-prefiltering device. 

The proprietary technology by Thermo is called the “Advanced axial beam guide” and uses an 

axial bent flatapole that reduces noise by preventing neutrals and high-velocity clusters from 

entering the quadrupole. The segmented quadrupole, known as the “HyperQuad”, transmit and 

filter ions according to their m/z ratios but with improved transmission efficiencies to that of a 
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regular quadrupole. Upon finding the presence of the most intense or abundant analytes due to 

the nature of the DDA mode, the HyperQuad  isolates sends them into the “C-trap”, which is a  

“C”-shaped RF-based quadrupole where the ions are cooled and aligned using nitrogen gas.72, 

232 The ions are then injected into the Orbitrap analyzer to acquire MS1 spectra. Besides, to 

acquire MS/MS data, the unit-mass resolved peptide precursor ions selected by the quadrupole 

are also passed through the “HCD collision cell”,62 which consists of higher-energy RF-only 

collision octapoles where the precursor ions are fragmented. The resulting product ion packets 

are then injected tangentially72 into the Orbitrap mass analyzer for detection. This process keeps 

repeating until the most abundant precursor ions eluting at a given time are fragmented and mass 

analyzed.   

The Q Exactive Plus offers mass resolutions up to 140,000 at m/z 200, with mass 

accuracies < 3 ppm in a range between 50-6000 m/z. Furthermore, because high-collision 

energies generate more fragment ions that can be measured with high mass resolution and 

accuracies in the Orbitrap, the identification of peptides and proteins in a complex mixture by 

database search algorithms is improved.  

 
 
 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 2.7 Schematic of the Q Exactive Plus mass spectrometer used for global proteomics 
measurements via DDA in Chapters 3-5. Image taken from the hardware manual provided by 
Thermo Scientif ic.  
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2.6 Fundamentals of tandem MS (MS/MS).  
 

Tandem mass spectrometry, commonly abbreviated as MS/MS or MS2,8, 38 involves the 

mass analyses of precursor ions as well as of their fragment or product ions in regular mass 

analyzers like ion traps, or in hybrid instruments like a Q Exactive. The process is also described 

as the acquisition of MS1 spectra from precursor ions of interest and of their fragment ions or 

MS2 spectra. MS/MS improves the specificity of peptide detection in bottom-up proteomics 

experiments and enhances the signal-to-noise ratio of the collected spectra. When MS/MS 

spectra is acquired in mass analyzers that allow the collection of ions over time and their 

fragmentation like ion traps, the process is referred as “tandem-in-time”; whereas in instruments 

like  QqQ, in which ions are not accumulated over time and fragmentation occurs in a different 

mass analyzer, the process is referred as “tandem-in-space”. There are multiple methods to 

induce the fragmentation of peptide precursor ions in a mass spectrometer but the most common 

ones used for structural elucidation of peptides obtained from protease digests are: (1) collisional 

induced dissociation (CID),62 in older instruments like ion traps or TOF analyzers, and (2) higher 

energy collisional dissociation (HCD) in more newer instruments like the hybrid Q Exactive Plus.  

In CID, precursor peptide ions are allowed to collide with inert gas atoms (i.e., Helium, 

nitrogen or argon) in an ultrafast collision event (~10-15 sec).62, 233 Some of the kinetic energy is 

converted into internal vibrational energy, which ultimately (and preferentially) breaks the amide 

bonds in peptides. This type of fragmentation produces series of b and y fragment ions on the 

structures of peptides that can be useful to determine their amino acid sequences (Figure 2.8).38, 

62, 234 In HCD fragmentations, helium is preferentially used as the collision gas and the collisions 

impart several thousands of electron-volts of energy instead of the <100 eV in CID.62 Generally 

speaking, more informative and complex spectra is obtained from HCD, because of a wider range 

of potential fragmentation pathways.62   

Other types of fragmentation that are employed in bottom-up proteomics but are used for 

specialized applications such as to determine the location of PTMs in peptide sequences or 

proteins are electron-capture dissociation (ECD) and electron-transfer dissociation (ETD). Both 

of these techniques are based on the interactions of multiple-charge peptides ions with low energy 

electrons (~ 1 eV) to produce the cleavage of the N-Cα bond in peptides.235-237 In ECD, the low 

energy low-energy free electrons are generally generated from an electron-emitting surface, while 

in ETD, electrons are transferred to protonated peptides from radical anions of compounds such 

as fluoranthene.62, 72 ETD and ECD produce c and z fragment ion structures from precursor 

peptides while keeping PTMs intact.62   
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Figure 2.8 Example of the most common fragment ions observed and used during the analysis 

of peptides/proteins by bottom-up proteomics. (A) The backbone of the bovine serum albumin 
tryptic peptide “AWSVAR” shows the corresponding C-terminal y-ions and N-terminal b-ions that can 
be generated during fragmentation using collision induced dissociation (CID) or high-energy collision 
induced dissociation (HCD). (B) Shows the sequence and monoisotopic mass of the different fragment 
ions illustrated in (A), for example, the y4 fragment ion is made of amino acids “S-V-A-R” and has a 
mass of 432.256 Da.  

 

 

 2.7 Downstream processing of MS/MS data in global and targeted proteomics.  
 

2.7.1 Introduction to database search driven algorithms in bottom-up global 
proteomics research. 

In this dissertation, two approaches to analyze global proteomics data from bottom-up 

proteomics pipelines were used: Database search strategies conducted through the application 

of different software for the projects described in Chapters 3 and 4; and de novo-assisted 

database searches through the PEAKS software, used in Chapter 5 (Figure 2.9). Descriptions of 

each strategy and software package employed are presented in the following sections.      
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Figure 2.9 Peptide identification strategies used in this dissertation. (A) An acquired MS/MS 
peptide spectrum in a bottom-up proteomics run. (B) Peptide identif ication performed by database 

searching where experimental MS/MS spectra is correlated with theoretical spectra predicted for each 
peptide contained in a protein sequences database. This strategy was employed in Chapters 3 and 4. 
(C) The de novo-assisted database searching strategy of the software PEAKS was used in Chapter 
5. Through a sophisticated algorithm, PEAKS computes a de novo sequence with local confidence 
score on each amino acid, represented here by the percentages shown above each residue. Setting 
up a confidence threshold of < 30%, for example, low confidence amino acids are substituted by their 
mass values, represented here with *. The sequence tag is then mapped to a protein database. The 
CAA score reported by the software is the number of common amino acids in the alignment.   
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2.7.1.1 Peptide identification by database searching.  
 

The manual interpretation of peptide tandem MS spectra to derive peptide sequences is 

an error-prone and time-consuming process that is exacerbated with the hundreds of thousands 

of spectra that can be collected in global proteomics analyses of cell cultures or communities of 

microorganisms. These reasons have enabled the development of computational algorithms or 

programs that are used to directly correlate peptide ion spectral MS1 and MS/MS (MS2) data, as 

well as their respective intensities, to candidate peptide sequences in a database without having 

to interpret each MS/MS spectrum manually.  

Today, more than a dozen database search algorithms, each providing technical 

advantages such as faster computational times, improved confidence scores, and better 

accessibility to users without strong computational backgrounds are available for large-scale 

protein identification. In addition, the database search approach fits well with the emerging 

database resources brought about by genome sequencing which each day keeps providing of 

more accurate and complete protein databases.4  

The first algorithm or engine to identify proteins by matching MS/MS data to database 

sequences was SEQUEST, introduced by the Yates group in 1995.16 SEQUEST core 

functionalities have been adapted and improved in many other programs developed over the 

years,116, 238-242 including the ones used in this dissertation. Thus, a brief description of these core 

functionalities is warranted to have a better understanding of the new capabilities provided by 

other software. 

 In brief, SEQUEST (as well as other database search algorithms) take three main inputs 

from the user: a peak list containing the spectra to search, a sequence database ( i.e., a FASTA 

file), and the search settings to match the search to the experimental setup (i.e., protease used 

and type of instrument employed).243The software then performs the following steps: in-silico 

digestion of the protein database, spectrum preprocessing, matching, preliminary scoring and 

cross-correlation analysis.  

Before the search starts, the protein database is digested in-silico to produce a candidate 

peptide list.4 The user has to specify digestion parameters such as maximum amino acid length 

and the protease that was used in the experiment, for example. Once the search starts, each 

experimental MS/MS spectrum in the form of instrument proprietary files is “cleaned” by keeping 

the top 200 most abundant m/z values. This process ensures that noisy spectra are removed from 

further analysis thus improving the performance and accuracy of the subsequent steps. Next, the 

algorithm uses peptide precursor m/z values and their MS/MS data, detected in the experiment 
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and registered in the RAW file, to select candidate peptides in the database. Importantly, this 

process is constrained to a user defined mass tolerance which impacts the number of peptide 

candidates that the algorithm considers for matching. In-silico MS/MS spectra are then generated 

from each of the candidate peptide sequences in the database and compared to the experimental 

MS/MS spectra. A preliminary score to determine how well a theoretical versus experimental 

spectrum match one another is computed taking into consideration the (1) the summed intensity 

of matched ions, (2) the continuity of each fragment ion series and (3) the percentage of ions 

found versus those that were expected. This preliminary score acts as a filter to select the top five 

hundred peptide candidate sequences to compute a cross correlation score (Xcorr) of them, which 

represents an average of differences between the experimental to the in-silico generated m/z 

values. In addition, SEQUEST also uses another score, named DeltCn, that captures the scoring 

difference between the lowest ranked peptide scores and the XCorr value of the best match which 

informs the user how well the software was able to separate the top peptide-spectrum match 

(PSM) compared to the second best PSM.  

Around the time that SEQUEST was released there was no control of the quality of the 

matches that were assigned by the software. Although the algorithm was scoring the best peptide 

sequence match to a given experimental spectrum, it could not efficiently distinguish  matches of 

poor quality.4, 244 Thus, the user had to go back to the raw spectral data and use a combination of 

knowledge and visual inspection to decide which matches to accept and which ones to reject. 

This type of approach, however, made comparisons between datasets subjective and once again 

time-consuming. Therefore, more practical ways to classify correct and incorrect PSMs 

assignments were developed.  

Today, proteomic studies use statistical approaches to provide a global assessment of  

confidences and estimate a false discovery proportion (FDP) of false positive hits in a dataset, or 

those PSMs accepted by the algorithm, but that are not real hits. This FDP is more commonly 

known in proteomics research as the false discovery rate (FDR), although this has been regarded 

as an oversimplification of the term.245 FDRs can reflect the overall credibility of the identified 

PSMs in a study.246 In bottom up proteomics, the most commonly used and accepted method for 

computing the FDR is the target-decoy strategy (TD).247 Simply, the strategy requires that all 

experimental MS/MS spectra are searched against the reference protein database (target) 

appended with a reversed, shuffled, or randomized version of itself (decoy).248 

The underlying assumption in TD is that the number of false PSMs in a decoy search will 

follow the same search score distribution as sequences matches from the target database.248 

Therefore, an entire data set can be filtered at various search score cut-offs, and a corresponding 
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FDR can be computed as (2 ∗ 𝑁𝑑
𝑁𝑡 ⁄ ) ∗ 100, where Nd is the number of decoy peptide matches 

and Nt is the total number of matches.249 An acceptable FDR should be conservative such that it 

ensures that the number of false discoveries selected does not exceed the number of estimated 

and accepted ones245 with these values ranging in literature from 1% to 5%. The FDR calculation 

can be performed by the same PSM software or by taking the results to standalone programs like 

Percolator, which is a popular semi-supervised machine learning algorithm that dynamically 

learns to separate target from decoy peptide-spectrum matches.250 Once an acceptable FDR is 

achieved and the PSMs have been statistically validated, protein identifications can then be 

inferred, and if desired, quantified, from the detected peptides. 

With each passing day, new search engines are being developed and improvements in 

computational speed and lower FDRs, especially in PTM analyses, are being implemented or 

have been implemented in old ones.244 For example, one of the newest iterations of SEQUEST, 

SEQUEST-HT, takes advantage of multi-core CPUs to improve its informatic speed as well as of 

a new algorithm to optimize peptide sequence database management, in addition, the program 

is able to handle fragmentation data from ETD or HCD approaches251 bringing its capabilities up 

to date.  

 

2.7.1.2 Protein inference.  
 

After a list of confident PSMs has been obtained, the next step is to assemble the identified 

peptides back into proteins and provide statistical confidence levels for each of them to arrive to 

a meaningful biological explanation. However, this task is not trivial. Because the connectivity 

between peptides and proteins is lost in bottom-up proteomics pipelines, the assembly of peptides 

back into proteins is challenging.  

The diversity of proteins sizes in any given organism, may led to a very small number of 

confident peptide identifications available for small proteins. In addition, and because of their 

different physicochemical properties, even peptides originating from the same protein are not 

equally likely to be identified in proteomics experiment. Although with proper statistical control at 

the PSM level the identification of a single peptide can be enough to provide evidence of the 

presence of a certain protein in a sample, this is not enough to discriminate between two proteins 

sharing extensive homology which is a common situation in the proteomes of higher eukaryotes 

organisms like plants and humans. 

The presence of shared or degenerate peptides252 in a proteome is particularly 

troublesome and has not found common ground in the proteomics community. To date, groups 
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around the world use a diverse set of approaches to tackle the problem of protein inference and 

these can be grouped in:61, 252 (1) Rule based strategies, such as methods that disregard shared 

peptides from the dataset and only consider confident peptides that are unique, or those mapped 

to only one protein;253 (2) combinatorial optimization algorithms, or methods that rely on 

constrained optimization formulations of the protein inference problem resulting, for example, in 

the minimal protein lists that cover some or all confidently identified peptides; and (3) probabilistic 

inference algorithms that formulate the problem probabilistically and assign identification 

probabilities for each protein in a database.  

Each of these methods have their advantages and disadvantages. For example, those 

that only consider unique peptide identifications may see a significant loss of protein information 

in datasets from eukaryotic organisms which can lead to underestimations of protein content due 

to the presence of shared peptides originating from whole-genome duplications, protein families 

or alternative splicing variants. Because of this, several suggested guidelines on how to deal with 

the protein inference problem have been published254, 255 and by far the most commonly 

suggested strategy is the minimum set cover formulation (MSC).  

In the MSC, a minimal list of proteins based on the principle of parsimony coupled with an 

Occam’s razor constraint, is used to explain all the identified peptides in a dataset.61 This 

approach classifies proteins by their level of ambiguity:61 proteins that consist of only distinct 

peptides are classified as distinct proteins; proteins are classified as differentiable when they 

contain at least one peptide that is unique to that protein, as well as one or more peptides that 

map elsewhere in the proteome; indistinguishable proteins consist of  only shared peptides and in 

these scenarios it is recommended to collapse all of these proteins into a single entry in the protein 

summary report as there is often no basis to eliminate any of them. 

Like FDR software, multiple protein inference software options are available. In this 

dissertation, MSC approaches were used in all the programs used to derive proteins.  Minimal 

lists have several advantages that allows a consistent calculation of the number of proteins 

identified in the experiment and simplifies the interpretation to only those proteins that are 

conclusively determined to be present in the sample. 
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2.7.2 Overview of database search engines used in this dissertation. 

 

2.7.2.1 Myrimatch-IDPicker.   
 

A computational pipeline consisting of the open-source software Myrimatch and IDPicker, 

were used to obtain global proteomics information from the experiments presented in Chapter 3. 

Peptide sequences were derived from the database search algorithm MyriMatch; while proteins 

were assembled with IDPicker, an algorithm which assembles a minimum protein list from peptide 

identifications filtered to a specified FDR.  

Myrimatch238 was developed based on the foundations of SEQUEST but improved the 

matching criteria of experimental tandem spectra to theoretical spectra to provide more confident 

results. Its first step is a tunable preprocessing step that ranks fragment ions by their intensity and 

retains, by default, only 98% of ions in each scan. All the retained peaks are divided into three 

classes based on their intensities (i.e., high, medium, and low). As such, the highest intensity 

class is expected to have the least number of peaks, while the lowest intensity class will have 

many more peaks.  

The second step consists on the in-silico generation of theoretical MS/MS spectra from all 

possible peptides in a protein database. To achieve the latter, MyriMatch employs basic 

fragmentation rules but also a novel system for modeling fragments by considering ion charge 

state differences. The third step is the comparison of acquired experimental spectra to the 

predicted one. In this process, the measured m/z value are first matched to the predicted m/z 

values based on the type of instrument used and by coupling the intensity class information. For 

each experimental spectrum, the software examines each m/z location and computes two 

probabilistic scores. The “MVH score” is based on a multivariate hypergeometric distribution of 

hits, while the “mzFidelity score” is based on a distribution of fragment mass errors. The algorithm 

then uses the MVH scores to rank the candidate peptide sequences and, when needed, it uses 

the mzFidelity score as a tiebreaker. Finally, a cross-correlation (Xcorr) value is computed to 

independently validate the best PSM ranked by the MVH score. 

The list of best scoring PSMs from Myrimatch is then imported to IDPicker256 to assemble 

a list of proteins. IDPicker contains a module for calculating confidently identified peptides using 

an FDR-based approach. The peptides that are accepted based on an FDR threshold are used 

to compute a minimal list of proteins.252 The algorithm starts by collapsing a peptide-protein 

bipartite graph such that all peptides and proteins connected to the same proteins and peptides 

are grouping into nodes containing multiple peptides or proteins. It then finds a set of disconnected 
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subgraphs within a bipartite graph using a depth-first search. Finally, it performs an MSC 

optimization in each of those subgraphs.  

 

2.7.2.2 CharmeRT.  
 

Chapter 4 evaluated the performance of the computational framework CharmeRT which 

consists of the peptide identification algorithm MS Amanda257, developed specifically for high 

accuracy/high-resolution mass spectrometry data, and Elutator, which is a mPSM validator that 

improves upon the principles of Percolator. Both tools are included in Proteome Discoverer, a 

commercial software licensed by Thermo Fisher Scientific that comprises a selection of mass 

spectrometry-related tools. 

MS Amanda comprises three major steps: spectrum preprocessing, matching of 

theoretical-to-experimental spectra, and probabilistic scoring. In the preprocessing step, 

precursor ion peaks are removed from the list of experimental spectra, and MS/MS spectra are 

cleaned by only selecting between 1 to 10 of the most intense peaks in segments of 100 Da. 

Afterwards, in-silico generated fragment ions of each candidate peptide precursor (targets and 

decoys) from the protein database are matched to the best experimental precursors and their 

fragments within specified MS1 and MS2 mass tolerances. The software then proceeds to 

probabilistic scoring of PSMs, which according to the authors is based on a binomial distribution 

function that incorporates peak intensities to determine favorable outcomes (successes) and 

possible outcomes (sample space) in a specific manner. Importantly, the version of MS Amanda 

used in the CharmeRT framework includes a “second search” approach that assigns more than 

one peptide precursor ion to experimental spectra and in this way, deconvolutes chimeric 

spectra.118 

The validation of the multiple PSMs (mPSMs) that can be identified by MS Amanda is 

done through Elutator. This tool utilizes additional information not considered in Percolator, such 

as peptide elution retention time predictions, as well as recalibrated masses for precursors and 

fragment ions to improve the validation of mPSMs.118 According to the original paper, the 

combined use of Elutator with MS Amanda increased the numbers of identified PSMs by 17-51% 

for the first search and between 106-149% for PSMs derived from second searches in a HeLa 

proteome dataset compared to a version of CharmeRT in which no retention time prediction was 

used in Elutator. This means that the impact that auxiliary information used in Elutator has on the 

identification of mPSM benefits spectra of lower quality or that derived from chimeric spectra.   
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2.7.2.3 De novo-assisted peptide database searches with PEAKS.  
 

Alternative to the popular database searching algorithms to identify peptides and proteins 

in a bottom-up global proteomics experiment, the deduction of amino acid sequences from 

MS/MS spectra can also be conducted via de novo algorithms. De novo peptide sequencing is 

independent of protein databases and is analogous as to search for a peptide in a space 

containing all possible peptides.249 Historically, de novo algorithms have been deemed to give 

less accurate results than their database counterparts, as well as to be less efficient due to the 

non-restricted search space that comes with a cost in computational time and resources. 

However, with the introduction of high-resolution MS instruments, the performance of de novo 

sequencing software has been significantly improved.  

One of those software packages is PEAKS,149 a commercial software released in 2002 by 

Bioinformatic Solutions and that has become an industrial standard for automated de novo 

sequencing.249 PEAKS has the capability of incorporating de novo sequencing results into 

database searches.149 According to its developers, the combination of de novo sequencing to 

improve the creation of a preliminary list of protein or peptide candidates with an improved scoring 

function results in significantly improved sensitivity and accuracy. This mode of operation, more 

commonly known in the field as de novo-assisted database search, was employed in Chapter 5 

of this dissertation to identify small endogenous proteins (≤ 100 amino acids) and/or their peptide 

products in a plant-microbial interface system. Although more details are described in Chapter 5, 

it is important to state right now that these biomolecules were not submitted to any in vitro 

enzymatic digestion treatment before (i.e., with trypsin). Avoiding this step means that their 

identification by MS/MS captures important cellular processes such as endogenous 

posttranslational processing.  

In particular, combining de predictability of de novo searches to identify small endogenous 

proteins or peptides in any biological system is advantageous due to the following reasons: (1) 

There is no need to generate an in-silico peptide library via regular database search that can 

cover potential or expected enzymatic cleavages occurring naturally in a system. Database 

search algorithms are particularly not efficient in the computational resources they use when 

conducting an “open-search” to generate multiple versions of proteins (i.e., digested with trypsin, 

chemotrypsin, LysC, etc); and (2), since small protein products may not be well represented in a 

database, having information that is not biased towards the use of one may help identify novel 

proteins for analysis.  
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In total, PEAKS DB performs six algorithm steps to identify peptides from tandem MS 

spectra and this has been summarized with ease and described in more detail in the original 

publication to which the reader is referred to.149  

 

2.7.3 Targeted proteomics data analyses with Skyline.  

In Chapter 3, a targeted proteomics methodology was developed and applied to 

groundwater samples to investigate the presence of bacterial biomarkers of interest. Targeted 

proteomics has gained significant attention in proteomics research due to the specificity, 

sensitivity and robustness that it brings to the identification and, most importantly, absolute 

quantification of predetermined peptides acting as surrogates for specific proteins (targets) that 

are present within a large dynamic concentration range in complex matrices.103, 258 Thus, even if 

bottom-up global and targeted proteomics experiments measure peptides in a sample, the type 

of data acquired from each experiment looks quite different and needs to be processed and 

interpreted by computational pipelines adapted to their particular requirements.  

Technological advances in mass spectrometry instrumentation and the promise that global 

proteomics had for systems biology investigations, led to the early emergence of software 

packages that were specifically intended to deal with the complexity of the spectral data acquired 

through DDA approaches. Thus, when targeted proteomics investigations started to have an 

active role in research, software tools to analyze the spectral data collected from these types of 

experiments lagged behind. Although early efforts tried to breach the gap in bioinformatic 

developments, the tools that came out of it were limited in scope and the field was mainly 

dominated by proprietary software specific to a particular instrument vendor.259 Hence, to tackle 

these issues and provide users with an open-source alternative that at the same time could 

facilitate sharing of data files and methods between multiple instruments, the MacCoss 

Laboratory at the University of Washington started the development of the Skyline project.  

Skyline259 is a windows client application for building and analyzing selected reaction 

monitoring (SRM)/multiple reaction monitoring (MRM), parallel reaction monitoring (PRM – 

targeted MS/MS and DIA/SWATH), and targeted DDA data. Over the last ten years, the project 

commanded by Brendan McLean, its main developer, has become a standard in commercial 

and academic targeted proteomics research around the world. The appealing of the software is 

its focus on end user design which allows to create complete targeted proteomics pipelines all 

the way from method development (reviewed in Section 1.2.1.2) through data analysis, with 

ease. 260  Due to its capabilities and broad adoption by the community, Skyline was used in 
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Chapter 3 of this dissertation to test MRM-MS methods and analyze the results obtained from 

them. 

Without going into many details in MRM-MS method building, Skyline works like a text 

editor document in which a user can input protein sequences, digest them in-silico with a 

protease and generate lists of transitions, consisting of peptide ion precursors and fragment 

ions, that can be imported to an instrument (for this dissertation, a triple quadrupole) for 

acquisition via MRM-MS. Skyline also provides additional support for more advanced 

techniques like “scheduling” which enables the measurements of tens to hundreds of individual 

peptides by allowing only a subset of the targeted peptides to be measured in a given time 

window.228 Options to optimize collision energies for each measured peptide, so as to get 

adequate fragment ion intensities, are also available.   

Once an MRM-MS run or sample campaign is over, Skyline can take as input multiple 

raw spectral files in either instrument-vendor specific or generic formats and process them 

sequentially or in parallel to identify the targeted peptides and calculate their peak areas. Peak 

detection and integration in Skyline is composed of six algorithm steps that are:260 (1) 

Chromatographic extraction, (2) Resampling, (3) Peak detection, (4) Peak grouping, (5) Peptide 

identification and, (6) Peak area calculation. These steps, specifically for processing of MRM-

MS data, are summarized below.  

First, Skyline extracts the necessary information like m/z, retention times and intensities 

from the measured chromatograms in each MRM-MS raw file. The success of this step depends 

on the adequate initial setup of the instance of Skyline that will be used to import the results, 

such as retention time window width or the mass accuracy of the instrument that was employed 

to take the measurement. Then, Skyline conducts resampling, in which it calculates an interval 

in a peak that captures as much MS2 information as possible. This is done through linear 

interpolation and normalizes the irregular collection of MS2 scans that are common in all tandem 

mass spectrometry data acquisition types.260 The resampled data are then searched for areas 

that represent peaks and this is performed by the Chromatogram Retention time Alignment and 

Warping for Differential Analysis of Data (CRAWDAD) Peaks algorithm,261 which finds a set of 

local maxima, local minima and inflection points forming a viable peak. 

The next step is to create peak groups for each targeted peptide and/or its modified 

versions (i.e., heavy labeled standards). Due to the nature of the MRM data acquisition type, 

specific pairs of peptide precursor-fragment ions or transitions are measured over a certain 

period of time (i.e., when it elutes from the LC), so the extracted ion chromatogram of a peptide 

resembles a collection of peaks that coelute at a specific time. During peak grouping, Skyline 
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considers similarity with apex retention time (RT), start RT, and end RT that are drawn from the 

local maxima and inflection points from the resampling step.260 After groups of peaks have been 

defined, the program now performs “peak picking” which is the evaluation of multiple peak 

groups that can represent the peptide of interest. During this step, the top 10 peak groups are 

assessed for seven different features (i.e., log intensity, coelution count, shape score, etc) that 

are weighted with particular coefficients and summed to give a final score to the peak group. 

Finally, Skyline calculates peak areas, or areas under the curve (AUCs) for the selected peak 

groups and reports them in ion counts units. In this process, the software integrates the area 

within the peak boundaries and subtracts the background areas from it. Total area values sum 

the AUC values of coeluting transition chromatograms. In addition, and particularly important for 

absolute quantification, the software can calculate the amount of endogenous peptide present in 

a sample by single point calibrations to a heavy standard or by a calibration curve.  

Once raw data are automatically processed, Skyline creates visual displays of the data 

that allow researchers to quickly inspect its quality and identify issues with it. Although automated 

peak detection and boundary settings are generally reliable in Skyline, and with each software 

update there have been refinements to the peak picking process or bug fixes, manual curation of 

the data ensures reliable identification and quantification of each targeted peptide. For example, 

the software can show detailed chromatograms for each peptide with peak boundaries and 

indicators for retention time and dot product correlation scores of MRM spectral data of each 

picked peak compared to DDA spectral data captured in the same or other instrument. Retention 

times and peak areas can be plotted and grouped by proteins or by replicate groups allowing to 

check the reproducibility of the measurements. The mass error of each selected peak, which is 

calculated in Skyline as a weighted mean of the mass error in all the integrated points across the 

annotated chromatogram,260 can be inspected to detect interference at the transition level. 

Certainly, the manual curation process of targeted proteomics data in Skyline can be a bit time 

consuming, however, the software makes it more amenable to the end user. Examples of this 

process will be shown in Chapter 3.  

 

2.8 Post-processing of bottom-up proteomics data.  

 
The amount of information obtained from bottom-up proteomics experiments, especially 

in global proteomics studies, can be overwhelming. The dissection or interpretation of the 

matrices or lists of peptides and proteins obtained in proteomics experiments is a multifaceted 

process that integrates different aspects of bioinformatics and statistics.262 This is particularly true 
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for those studies that seek to answer questions of primary scientific interest through the 

interrogation of protein abundance values that can be considered as a true reflection of the state 

between samples. In global studies, normalization and missing value imputation are two steps 

that occur before applying any statistical inference test to a dataset.263 

Normalization is the process of removing systemic bias in LC-MS/MS data that are 

introduced during the various steps of sample processing and data generation.264 For example, 

differences in the amounts of sample loaded for analysis, ionization efficiencies in complex 

samples, degradation of packing material in LC columns, and drifts in the performance of mass 

spectrometers over time,263, 265 all have the potential to influence the measured peptide and 

protein expression levels leading to erroneous conclusions from a quantitative perspective. Data 

normalization reduces the effect of these sources of bias. Normalization strategies have been 

reported to be dataset dependent,266 and each address systematic bias differently. For example, 

global adjustment techniques try to center intensity values of peptides around the global mean, 

median or some other fixed value in a dataset and they can correct for differences in the amount 

of sample loaded for analysis, but it cannot capture more complex biases.263 Instead, scatterplot 

smoothing techniques such as lowess regression267 are able to capture non-linear intensity-

dependent biases and are therefore more flexible than global adjustments.263 

After normalization, another key challenge in quantitative proteomics studies is to address 

missing peptide abundance values. These cases are more prevalent in global proteomics studies 

than in targeted ones, where as much as 50% of peptide values can be missing in datasets.268,  

269  There are multiple reasons behind peptide missing values but, broadly, they can be caused 

by biological, analytical or unknow effects. In fact, the underlying mechanisms of these types of 

missing values have been categorized by statisticians as independent of the value itself or missing 

at random (MAR) or dependent on the data, also known as not missing at random (NMAR) 

values,269 and they are not particular to proteomics but can occur in other types of techniques 

yielding matrices of experimental data such as in microarray-based gene expression.  

Missing information in global proteomics datasets can have negative effects in the 

interpretation of meaningful biological data as it prevents the complete and accurate extraction of 

quantitative protein values and functional information.269 Although one can ignore missing values 

from the data, this option would dramatically reduce the size and completeness of it and some 

important biological information may escape analysis. Fortunately, however, as with the case of 

transcriptomics and microarray data analysis, numerous methods of data imputation for 

proteomics have been reported to tackle the issue of missing peptide values and have been 
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suggested to be contextualized according to each dataset, proportion of missing values and their 

nature.268  

In the present work, the random tail imputation (RTI) approach269 was employed to treat 

missing values in global proteomics data. RTI performs well in the presence of left-censored 

missing values,268 which for MS based proteomics analysis are frequent, as peptides whose 

abundance are close enough to the limit of detection of the instrument have a higher rate of 

presenting missing values.268 The assumption is that the proteomics dataset can be modeled by 

an empirical abundance distribution and that the majority of the missing data are left-censored 

and can be drawn from the tail of the distribution.263, 269 For the global proteomics data presented 

in Chapters 3-5, distributions with mean and standard deviations simulating low abundance 

values below the noise level were computed first, and then missing values were imputed with 

random numbers generated from this distribution. The values imputed in such way vary thus 

diminishing the effects of variance underestimation.  

After data has been normalized and imputed, the next step is to find protein abundance 

changes that can provide meaningful information to the goal of the study. For this purpose, a 

significance test can be carried out. Statistical tests are based on the idea that false discoveries 

are extremely frequent, unlike true discoveries, which are scarce. Thus, if enough data is 

available, a “null hypothesis”, or a standard based on false discoveries in the data, can be 

established and based on this null hypothesis and its distribution, the similarity between a putative 

discovery and the null distribution can quantified by a test statistic. Concretely, for any given 

quantified protein, the null hypothesis is that of nondifferential abundance or at last that the 

difference in abundance can be explained by random fluctuation. Thus, by rejecting a null 

hypothesis and accepting the alternative hypothesis or that a protein exhibits differential 

expression not explained by random fluctuations, a list of significant proteins can be identified. 

Accordingly, the similarity between the abundance changes of a protein compared to a null 

distribution of abundances can be measured using any statistic of the Student family. Because 

the Student’s statistics are difficult to interpret, they are replaced by p-values which for 

proteomics, values below 0.05 or 0.01 are values used to reject the null hypothesis. Depending 

on the comparisons, other statistical tests like ANOVA can be implemented, such as with the data 

presented in Chapter 5.  

Finally, there are many ways to visualize the curated results from a bottom-up proteomics 

experiment. Qualitative data such as the number of peptides and proteins identified within 

replicates and conditions can be shown in bar charts,270 and common and/or unique sets of 

proteins identified in one or up to four conditions271 can be clearly illustrated with Venn diagrams. 
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Quantitative proteomics data is commonly displayed through volcano plots in which the fold 

change (log2 transformed) is plotted versus the p-value (-log10 transformed).272 This kind of plot 

highlights proteins with high fold changes and low p-values and is well suited for illustrating 

changes in large datasets. Individual expression levels of hundreds or even thousands of proteins 

across multiple conditions can be visualized by color intensity in heatmaps. Unsupervised 

hierarchical clustering of the data in heatmaps enables the visualization of groups of proteins 

which expression can be up- or downregulated in certain conditions. PCA plots are also ways to 

investigate underlying differences between replicates and conditions in quantitative proteomics 

results.273 Multiple software packages are available to researchers such as Perseus262 or 

InfernoRDN274 to visualize proteomics results.  
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CHAPTER 3                                                                                                           
Evaluation of the application feasibility of a LC-MRM-MS targeted proteomics 

approach for the detection of Dehalococcoides mccartyi protein biomarkers in 

chloroethene contaminated groundwater 
 
Text and figures were adapted from the following published journal article:  
 

Villalobos Solis, M.I., Abraham, P.E., Chourey, K., Swift, C.M., Löffler, F.E. and Hettich,  
R.L. (2019) Targeted detection of Dehalococcoides mccartyi microbial protein biomarkers as  
indicators of reductive dechlorination activity in contaminated groundwater. Scientific Reports, 9. 
 
Authors contributions: Manuel Ivan Villalobos Solis (M.I.V.S.) planned the study alongside 
Robert L. Hettich (R.L.H.) and Frank E. Löffler (F.E.L.). M.I.V.S. and Karuna Chourey (K.C.) 
collected biomass from groundwater samples. M.I.V.S. and K.C. prepared samples for global and 
targeted proteomics. M.I.V.S. developed the MRM assay, performed proteomics data analyses 
and wrote the main manuscript. Paul E. Abraham provided critical reviews and proof -read the 
manuscript. All authors reviewed and approved the final version of the manuscript. 
 

Notes: Supplemental figures and tables mentioned in text are available at 
https://doi.org/10.1038/s41598-019-46901-6 and their numbering reflects that of the online 
material.  
 

3.1 Introduction. 
 

Dehalococcoides mccartyi (Dhc) bacteria are key players in bioremediation strategies for 

groundwater aquifers contaminated with the industrial solvents tetrachloroethene (PCE) and 

trichloroethene (TCE), which are common groundwater pollutants classified as toxic and 

carcinogenic to humans. Specialized Dhc bacteria grow under anoxic conditions by deriving 

energy from the reductive dechlorination of PCE, TCE, and the degradation products cis-1,2-

dichloroethene (cis-DCE) and vinyl chloride (VC) to ultimately yield environmentally benign 

ethene.275-279 The ability of some Dhc strains to detoxify chlorinated ethenes makes them also 

functionally unique compared to other bacterial groups such as Geobacter, Dehalobacter, 

Desulfitobacterium, Sulfurospirillum, which are not able to reduce PCE beyond cis-DCE.276 

Various Dhc strains have been maintained in axenic cultures or in consortia supplied with 

a chlorinated ethene as electron acceptor, and several reductive dehalogenase (RDase) genes 

and their products have been identified as biomarkers of dechlorination activity.33, 278, 280 

Quantitative polymerase chain reaction (qPCR) measurements of the Dhc 16S rRNA gene and/or 

RDase genes in contaminated groundwater enabled comparative studies of the distribution and 

abundance of Dhc strains and RDase genes in response to bioremediation treatment (i.e., 

bioaugmentation and/or biostimulation).281-283 However, as with other existing nucleic acid-based 

https://doi.org/10.1038/s41598-019-46901-6
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measurement approaches, the challenge of qPCR measurements of 16S rRNA gene and/or 

specific RDase genes is their inability to reveal the actual metabolic activity. Several studies have 

demonstrated that the sole presence of RDase genes and also their transcripts does not 

necessarily correlate with dechlorination activity.284-287 

Consequently, proteomics approaches to measure the expression levels of proteins 

involved in the reductive dechlorination processes of Dhc has been gaining traction in recent 

years. One of these approaches is targeted proteomics via liquid chromatography-multiple 

reaction monitoring-mass spectrometry (LC-MRM-MS), which enables the absolute quantification 

of proteins of interest by measuring proteotypic peptides derived from their enzymatic digestion. 

Although the application of LC-MRM-MS to pure and mixed cultures of Dhc has been 

demonstrated, its utility to groundwater collected from sites impacted with chlorinated ethenes 

remains to be proven.33, 103, 288 Herein, we aimed to test the feasibility of developing and 

implementing a targeted proteomics approach via LC-MRM-MS for the detection of Dhc proteins 

to inform about Dhc reductive dechlorination activity in groundwater samples from sites impacted 

with chlorinated ethenes. 

To effectively track the presence of the targeted Dhc biomarker proteins, we first selected 

candidate proteotypic peptide sequences observed in high-mass-accuracy/high-resolution global 

proteomics datasets of actively dechlorinating pure cultures of Dhc strains 195, FL2, and BAV1. 

After signal evaluation of the selected peptides by LC-MRM-MS on a triple quadrupole mass 

spectrometer, the most robust and reproducible transitions (pairs of peptide precursor and 

fragment ions m/z values) were used to detect the targeted Dhc proteins in groundwater collected 

from six geographically distinct locations. Peptide identifications in groundwater samples were 

supported by comparing their fragmentation profiles to those obtained from pure cultures or, in 

several cases, by comparing fragmentation profiles and retention times to spiked-in, unlabeled, 

synthetic peptide standards. Furthermore, 16S rRNA gene qPCR and global proteomics 

measurements performed for each groundwater sample allowed a comparative assessment with 

the LC-MRM-MS data. 

 

3.2 Experimental procedures. 
 

3.2.1 Dehalococcoides mccartyi (Dhc) cultures and growth conditions. 

Biological duplicates of actively dechlorinating axenic cultures of Dhc strains 195 and FL2, 

known to express the RDase TceA (TCE→VC and ethene), as well as strain BAV1, which 
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expresses the BvcA RDase (DCEs→VC→ethene), were prepared and used to monitor the 

abundances of the targeted Dhc proteins in both global and targeted proteomics measurements. 

For the purpose of method development, the targeted proteomics approach also used a culture 

of the PCE-to-ethene dechlorinating Bio-Dechlor INOCULUM (BDI) consortium known to contain 

several Dhc strains and a PCE-to-cis-DCE-dechlorinating Geobacter lovleyi strain,277 amended 

with PCE as electron acceptor. Cultures were grown in completely synthetic, defined mineral salts 

medium as previously described.289 Approximately 100 mL of culture (~1x1010 cells) were passed 

through Sterivex 0.22 µm filter units (EMD Millipore Corporation, Billerica, MA, USA) to collect the 

biomass. Filters were stored at -80ºC prior to protein extraction and digestion. Dhc cell numbers 

were calculated by qPCR measurements of 16S rRNA genes as previously described.280 The 

known Dhc genomes contain a single copy of the 16S rRNA gene and RDase genes, and the 

gene copies were measured with qPCR equal the Dhc cell numbers.290 

 

3.2.2 Biomass recovery from groundwater samples.  

Biomass was obtained from volumes of groundwater samples collected from sites 

impacted with chlorinated ethenes. Sample 33NA-4 (360 mL) was collected from a contaminated 

site in Brazil. Samples M17 (745 mL), M18 (1,350 mL), 97 (1,000 mL), 116 (962 mL), and 129 

(964 mL) were collected from contaminated sites in the United States. The entire volumes of 

groundwater were filtered through Sterivex 0.22 µm pore-size filter units to concentrate the 

biomass and then stored at -80°C prior to protein extraction and digestion.  

 

3.2.3 Sample preparation for global and targeted proteomics analyses.  

Filtered cells from axenic cultures of Dhc strains 195, FL2, BAV1 (n=2 biological 

replicates), the BDI Consortium, as well as the M17, M18, 97, 116 and 129 groundwater samples 

(n=1) were processed by adding 2 mL of SDS lysis buffer (4% SDS in 100 mM Tris‐HCl, pH 8.0) 

to the Sterivex cartridges followed by incubation in a water bath at 97ºC for 15 minutes and 

incubation at room temperature for 1 hour. The SDS lysis buffer was recovered and the filters 

rinsed once more with fresh lysis buffer. As previously described, proteins were extracted from 

cell lysates by trichloroacetic acid (TCA) precipitation and proteolytically digested with trypsin 

following denaturation and disulfide bonds being reduced and blocked.291  

Frozen filter membranes with biomass from the 33NA4 groundwater sample (n=1) were 

removed from the cartridges and cut into ~ 1 cm pieces using a sterilized razor blade and then 
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suspended in 5 mL of SDS lysis buffer (5% SDS in 50 mM Tris-HCl, pH 8.5; 0.15 M NaCl, 0.1 mM 

EDTA; 1mM MgCl2; 50 mM DTT). Cells were heat-lysed as described earlier292 and the 

supernatant containing the whole cell lysate transferred to new tubes. Proteins were then 

precipitated by TCA. Lysate mixes were centrifuged at 21000 g x 20 min to obtain a protein pellet 

which was washed with chilled acetone, air dried and solubilized in 6M guanidine buffer293. 

Following protein solubilization, proteolysis was initiated using trypsin. All peptide solutions were 

desalted on 200µL C18 stage tips (Thermo Scientific, Waltham, MA) and stored at -80ºC prior to 

global proteomics analysis. For targeted proteomics runs, volumes of processed samples were 

loaded directly onto capillary back columns and desalted off-line.  

 

3.2.4 Global proteomics of axenic cultures and groundwater samples. 

Global proteomics measurements of the axenic cultures of Dhc strains 195, FL2 and BAV1 

(n=2 biological replicates), the BDI consortium (n=3 technical replicates), as well as groundwater 

samples (n=3 technical replicates) were obtained with an Orbitrap Q Exactive Plus mass 

spectrometer (Thermo Fisher Scientific, San Jose, CA) equipped with a nano-electrospray (ESI) 

source and interfaced with a Proxeon EASY-nLCTM 1200 system. Proteolytic peptide aliquots from 

pure cultures (1 µg), consortium BDI (2 µg), and groundwater samples (2 µg) were suspended in 

solvent A (0.1% formic acid, 2% acetonitrile) and injected onto a 75 μm inner diameter 

microcapillary column packed with 35 cm of Kinetex C18 resin (1.7 μm, 100Å, Phenomenex, 

Torrance, CA). Peptides were separated using a 90 minutes gradient at a flow rate of 250 nL/min 

from 2 to 30% solvent B (0.1% formic acid, 80% acetonitrile), followed by an increase to 40% 

solvent B within 10 minutes and a 10-minute equilibration with 98% solvent A. Specific details of 

the MS/MS data acquisition parameters have been reported previously.294  

Tandem MS spectra from pure cultures of Dhc strains 195, FL2, BAV1, and the BDI 

consortium culture were searched against individual or concatenated databases of Dhc strains 

downloaded from UniProt (for strains 195, GT, VS, CBDB1, BAV1 02/2017). The IGS Annotation 

Engine was used for structural and functional annotation of the Dhc strain FL2 protein sequences 

(http://ae.igs.umaryland.edu/cgi/index.cgi, Reference: PMID:21677861) and the web-based tool 

Manatee was used to view and download protein annotations (http://manatee.sourceforge.net/). 

The tryptic digest of the BDI consortium was searched with a database assembled from the 

proteomes of the six strains of Dhc and Dehalobacter restrictus DSM 9455 (Supplementary 

Table S5). Spectral data collected from groundwater samples were searched against a database 



70 
 

encompassing the proteomes of bacterial isolates known to coexist with Dhc or known to inhabit 

aquifer and sediments (Supplementary Table S7).  

In addition to common contaminant proteins, the reversed protein sequences were 

appended and used as decoys to discern the false-discovery rate (FDR) at the spectral level. For 

standard database searching, the tandem fragmentation spectra (MS/MS) were searched with 

Myrimatch v2.2 algorithm4 set to parameters described before.5 Resulting peptide spectrum 

matches were then imported, filtered and organized into proteins with IDPicker v.3.16 software. 

To achieve a final peptide-level confidence > 99% (or false discovery rate FDR < 1%), proteins 

were identified with at least two distinct peptides sequences and a minimum spectra of 2 per 

protein. 

Protein intensity values from each global proteomics dataset were calculated by summing 

together the MS1-level intensities of peptide precursors that were derived from IDPicker using 

IDPQuantify.295  Extracted ion chromatograms (XICs) were identified using ± 30 s lower and upper 

retention time tolerance and ± 10 ppm lower and upper chromatogram tolerance. Protein 

abundance values were normalized by dividing the protein intensity values by their length (i.e., 

number of amino acids), performing a log2 transformation, and mean central tendency adjusted 

with the software platform Inferno RDN (https://omics.pnl.gov/software/infernordn).  

Using the Perseus software,262 we removed proteins in pure cultures of Dhc strains 195, 

FL2 and BAV1 that were stochastically sampled by requiring quantified proteins to be observed 

in both biological replicates per strain. For the BDI consortium and groundwater sample sets (n= 

2 and 3 technical replicates, respectively) proteins observed in at least one run were considered 

for comparison to targeted results as their sporadic identification by global proteomics may have 

been due to their low biological abundances and thus we could have a probability of observing 

them employing LC-MRM-MS. Missing values were then imputed with random numbers from a 

simulated Gaussian distribution of low abundant proteins (down-shift value of 2.5 and width of 

0.3).  All proteins identified by LC-MS/MS were clustered at > 85% amino acid sequence identity 

with the UClust algorithm of the analysis tool USearch v10.0.296 Venn diagrams were generated 

with the web application jvenn (http://jvenn.toulouse.inra.fr/app/index.html). 

 

3.2.5 RDase phylogenetic tree construction. 

To provide insight into the diversity of the RDases sequences present in the proteomes of  

Dhc strains 195, FL2, and BAV1, their phylogenetic relationships were evaluated with the software 

MEGA 7.297 A total of 52 RDases and two outgroup RDase sequences from Desulfitobacterium 
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hafniense strain Y51 (Q8L172) and Dehalobacter restrictus DSM 9455 (AHF10441) were aligned 

with the MUSCLE algorithm.298 All columns in the alignment of the protein sequences containing 

gaps and missing data were eliminated, leaving a total of 56 amino acid positions in the final 

dataset. A phylogenetic tree using the Maximum Likelihood algorithm based on the JTT matrix -

based model was then constructed.297, 299 Initial trees for the heuristic search were obtained 

automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distance 

estimates using a JTT model, and then selecting the topology with superior log likelihood value. 

Estimation of the relative confidence scores in phylogenetic groups were determined by using 

1000 bootstrap replications of the data set.300 The tree was rooted with the outgroup RDase 

sequences from Desulfitobacterium hafniense strain Y51 and Dehalobacter restrictus DSM 9455. 

 

3.2.6 LC-MRM-MS method development. 

Initial lists of peptides (7-18 amino acids, without Methionine residues) and their transitions 

(+2 charged precursors, singly charged y3 to terminal y-fragment series) from the targeted 

proteins identified in data-dependent global proteomics analyses of axenic cultures of strains 195, 

FL2 and BAV1, were evaluated by analyzing 500 ng, 2 µg and 8 µg of total tryptic digests via LC-

MRM-MS.   

For each measurement, peptides were loaded onto capillary back-columns (150 µm x 120 

mm) packed with ~ 50 mm Kinetex 5 µm C18 resin and chromatographically separated on in-

house pulled nanospray emitters (100 µm x 170 mm) packed with ~ 160 mm of Kinetex 5 µm C18 

resin. Chromatographic separation consisted of a linear gradient of solvent B (70% acetonitrile, 

0.1% formic acid) at 300 nL/min from 2 to 60% within 90 minutes. After each sample run, wash/re-

equilibration runs were queued. The TSQ instrument was operated with a dwell time of 20 ms, 

scan width set at 0.002 m/z, and Q1/Q3 at 0.70 full width at half maximum (FWHM). Spray voltage 

and capillary temperature settings in the ion source were set at 1.75 kV and 270°C. Collision 

energies for each peptide were calculated using the default linear equation specific to a Thermo 

Scientific TSQ Ultra instrument provided in the Skyline environment. Raw LC-MRM-MS spectral 

data collected were imported into the software package Skyline v3.7 (http://skyline. 

maccosslab.org) 260, 301 and the signals were manually analyzed to determine the quality of the 

peptide signals in an extracted ion chromatogram (XIC).  

In addition, peptide sequence specificities were also assessed in-silico with the Tryptic 

Peptide Analysis tool of Unipept 3.2 and Protein BLAST searches. Briefly, The Peptidome 

Clustering tool of the web application Unipept 3.2302 was used to compare the percentages of 
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pairwise similarity between the in-silico generated peptidomes of six Dhc strain proteomes 

databases (i.e., Dhc strains 195, FL2, VS, GT, BAV1, and CBDB1) against the peptidomes of 

representative bacterial isolates that have been obtained from groundwater, aquifer, sediment, or 

soil (see SI for additional information). Peptidome similarity percentages were calculated based 

on the minimum similarity method and then clustered by the UPGMA algorithm. To assess if other 

protein records stored either at UniProt or NCBI could produce the selected peptides before 

monitoring in groundwater, in-silico specificities were evaluated using the Tryptic Peptide Analysis 

tool of UniPept 3.2 (equating isoleucine and leucine residues) and Protein BLAST searches 

against non-redundant protein sequences (replacing the N-terminus of each peptide with either K 

or R residues, respectively). Peptides were deemed as Dhc-specific if they were not found in the 

proteins of any other bacterial species by means of both in-silico searches.  

 

3.2.7 Analyses of the commercial bioaugmentation culture BDI and groundwater 
samples by LC-MRM-MS. 

Peptide and transitions signals selected before were monitored in technical triplicate runs 

of consortium BDI and groundwater samples using the same LC-MRM-MS setup as for pure 

cultures. Amounts of tryptic digests analyzed were 4 µg of BDI sample; 10 µg of  M17, M18, 97 

and 129 groundwater samples; and 20 µg of groundwater samples 33NA4 and 116. To validate 

peptide identifications in complex samples, we required the following criteria: (A) Co-elution of all 

selected transitions per peptide; (B) average dot-product (dotp) correlation scores > 0.80 for 

transition intensity ratios between the signals detected in groundwater to those observed in the 

respective pure culture; and (C) peptide signal reproducibility in all technical runs. (D) For a subset 

of the target proteins (n=6), we required strong agreement between the average transition ratios 

(dotp > 0.80) and retention times (≤ 3 mins differences) of the endogenous peptides with spiked-

in synthetic unlabeled peptide standards. 

For the six target proteins, a collective set of 11 synthetic unlabeled peptide standards 

were purchased as purified lyophilized solids (>95%, Thermo Scientific, Waltham, MA) and 

reconstituted to standard solutions in solvent A (peptides marked with Δ in Supplementary Table 

S3). A total of 5 pmol of each peptide standard were spiked to 4 µg of BDI sample; 10 µg of M17, 

M18, 97 and 129 groundwater samples; and 20 µg of groundwater samples 33NA4 and 116. For 

additional validation, high-mass-accuracy / high-resolution global proteomics data filtered at a 

peptide false discovery rate (FDR) level < 1% were used to verify the presence of the target 

peptides and proteins in the groundwater samples. 
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3.3 Results & Discussions.  

3.3.1 Global proteomics exploration of axenic Dhc cultures enables selection of 
candidate peptides for targeted proteomics.  

The global proteomics datasets (Supplementary Table S1) collected from measurements 

of pure cultures of Dhc strains 195, FL2, and BAV1 provided a set of candidate peptide sequences 

from housekeeping and reductive dechlorination biomarker proteins (Table 3.1) that were the 

starting point for the targeted method development (Figure 3.1).33, 103, 288  
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Table 3.1 Dhc protein biomarkers used as initial targets in this study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Targeted 

biomarker 
[Designation] 

Biomarker 
description  

Strain 
195 a 

Strain 
FL2 b 

Strain 
BAV1 a 

60 kDa chaperonin 

[GroEL] 

Housekeeping 

protein. Informs 

presence of  Dhc. 

Q3Z6L3 demc_1274 ABQ17815 

Formate 

dehydrogenase, 

alpha subunit 

[FdhA]c 

General marker of  
active dechlorination 

processes. Q3ZA14 demc_808 ABQ16756 

Trichloroethene 

reductive 

dehalogenase 

[TceA] 

Process specif ic 
marker of  active 

dechlorination 
(TCE→VC) 

Q3ZAB8 demc_738 ✖d 

Vinyl chloride 

reductive 

dehalogenase 

[BvcA] 

Process specif ic 
marker of  active 
dechlorination 

(DCEs, VC → 
Ethene) 

✖ ✖ ABQ17429 

Elongation factor Tu 
[EF-TU] 

Housekeeping 
protein. 

General 
activity/presence of  

Dhc. 

Q3Z7S9 demc_108 ABQ17463 

Ribosomal protein 

L7/L12 [rpL7/L12] 

Housekeeping 

protein. 
General 

activity/presence of  

Dhc. 

Q3Z7T6 demc_114 ABQ17470 

BNR/Asp-box repeat 
domain protein 

[S-layer] 

Structural protein. 
Presence of  Dhc. Q3Z6N3 demc_1296 ABQ17793 

a Protein database f rom Dhc strains 195 and BAV1 were downloaded f rom Uniprot (IDs. UP000008289 

and UP000002607, respectively).b The IGS Annotation Engine was used for structural and functional 

annotation of  the Dhc strain FL2 sequences (http://ae.igs.umaryland.edu/cgi/index.cgi, Reference:  

PMID:21677861) and the web-based tool Manatee was used to view and download protein annotatio ns 

(http://manatee.sourceforge.net/).c Dhc bacteria are unable to grow using formate. Cells extracts lack 

any formate dehydrogenase ability. Recent work has assigned the FDH protein and its subunits an 

electron transfer role to the RDases during reductive dechlorination reactions. See Kublik et al., (2016) 

for more details.d ✖ - protein is not present in the respective proteome.  
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Figure 3.1 Workflow for the selection of peptide signals in pure cultures of Dhc strains 195, FL2 
and BAV1. Each peptide peak group was submitted to a series of validation and refinement steps to 
identify peptide candidates having consistent fragmentation patterns,  linearity in AUCs and ability to 
be generated upon tryptic digestion in groundwater monitoring. ** Only available for 11 targeted 
peptides.  

 
 
 
 

Global proteomics analyses resulted in proteome coverages of 59%, 57%, and 60% for 

Dhc strains 195, FL2, and BAV1, respectively. These percentages are close to the ~60% that has 

been obtained before in shotgun proteomics studies of Dhc strains 195, CBDB1, and DCMB4.103, 

303-305 Overall, the analytical dynamic range of the proteome measurements spanned ~5 orders 

of magnitude. All the targeted housekeeping and structural proteins (i.e., chaperonin GroEL, S-

layer associated protein) and those indicative of active dechlorination (i.e., FdhA, TceA, and 

BvcA) ranked amongst the top 50% most abundant proteins (Figure 3.2A). Each biomarker was 

also found with similar normalized intensities within each strain dataset (Supplementary Figure 

S1). The resulting percentages of sequence coverages and the number of peptide spectrum 

matches per target protein demonstrated comparable efficiencies of tryptic digestion achieved 

between the Dhc strains included in the analysis (Figures 3.2B & 3.2C). 
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Figure 3.2 Global proteomics metrics from the analyses of three pure cultures of Dhc. Relative 

percentage of contribution to the total intensity of the proteins identif ied with a peptide -level confidence 
> 99% in the global proteomic analysis of axenic cultures of Dehalococcoides mccartyi strains 195, 
FL2 and BAV1. Targeted proteins ranked amongst the numbers of proteins contributing to half of the 
total measured intensities (below the dashed line, numbers next to strain names). (B) Targeted protein 
sequence coverages obtained from the cultures processed in this study. (C) Total number of peptide 
spectrum matches (PSMs) for each targeted protein. RDases per strain are homologues of TceA in 
strain 195 and FL2, and BvcA in strain BAV1. The numbers in the bar chart (represented by light 
colors) are the fraction of +2 peptide charged precursors meeting the selection criteria for LC-MRM-
MS analysis described in Materials & Methods.  

 

 

The expression of FdhA proteins observed in cultures of strains 195, FL2, and BAV1 is in 

agreement with studies that have reported high abundance values of these proteins compared to 

RDases and hydrogenases in Dhc pure and Dhc-containing mixed cultures that are actively 

dechlorinating.104, 105, 306-308 In addition, measured mRNA levels of the Fdh subunits have been 

reported to be dependent on the presence of a chlorinated electron acceptor but not on the 

presence of hydrogen.309 Recent studies of the Fdh complex of Dhc strain CBDB1 (iron-sulfur 

molybdoenzyme complex I (CISM)) revealed a tight spatial association between FdhA and the 

RDase CbrA (ID. CbdbA194).310 Supported by in-vitro dehalogenation activity assays, these 

observations suggest that FdhA serves an integral role in the respiratory chain of Dhc (i.e., FdhA 
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serves as an electron-channeling module between the Hup hydrogenase and the RDase),311 and 

as such, can serve as a general biomarker of Dhc dechlorination activity. 

RDases enzymes are biomarkers of active dechlorination processes and can provide 

additional information regarding specific chlorinated compounds that undergo reductive 

dechlorination. The types of chlorinated compounds used by RDases makes the Dhc group 

functionally diverse.306, 312-314 The TceA RDase in the proteomes of strains 195 and FL2 and the 

BvcA RDase in the proteome of strain BAV1 were observed amongst the top five most abundant 

proteins in each dataset, respectively. 

Sequence identities of the protein biomarkers selected in each strain were also evaluated. 

In total, 617 protein groups (> 85% amino acid sequence identity) were common between the 

three Dhc strains analyzed (Figure 3.3). These protein groups encompass homologues of the 

targeted GroEL, EF-TU, rpL7/L12, and FdhA proteins. Interestingly, the putative S-layer sequence 

of strain BAV1 and the annotated S-layer proteins of strains 195 and FL2 did not group together. 

The TceA homologues of strains 195 and FL2 clustered at 99% identity, while RDase BvcA was 

found amongst the 61 unique protein groups of strain BAV1. These observations highlight that 

candidate peptide sequences from protein biomarkers can target multiple Dhc strains or can be 

potentially used as strain-specific targets when monitoring mixed cultures or environmental 

samples. 

 
 
 
 
 
 

 

Figure 3.3 Number of protein groups (> 85% sequence identity) identified in each culture.  
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In addition to the TceA homologues and BvcA, 18 other RDases were identified in these 

shotgun proteomics measurements, albeit, at lower abundances (Supplementary Figures S2A-

C). The protein sequence coverages of the other identified RDases were on average below 60%, 

except for two other RDases (demc_816 in strain FL2 and Q3Z6A6 in strain 195). The 

identification of multiple RDases in actively dechlorinating Dhc cultures is related to the various 

sets of RDase genes present in single Dhc genomes (i.e., 17 rdhA genes in strain 195, 24 rdhA 

genes in strain FL2, and 11 rdhA genes in strain BAV1308). The co-expression of RDases by single 

Dhc strains has been reported before and has been hypothesized as a mechanism of adaptation 

to use naturally occurring and anthropogenic organohalogens.290, 315 

To provide insight into the diversity of the expressed RDases and better validate the 

biomarker selection, we evaluated the phylogenetic relationships between the RDases present in 

the proteomes of Dhc strains 195, FL2, and BAV1. The selected TceA homologues from strains 

195 and FL2 formed a subcluster, while the targeted BvcA did not group with any of the remaining 

RDases, nor did any of the second most abundant RDases in each dataset cluster with any of the 

targeted enzymes (Supplementary Figure S2). These results demonstrate the sequence 

conservation of TceA and BvcA as compared to other RDases expressed by other or the same 

Dhc strains. Moreover, the substrate ranges of TceA homologues and BvcA are known, while the 

participation of other RDases in reductive dechlorination reactions remains to be proven 

experimentally.308 The higher expression and sequence coverages obtained for the TceA and 

BvcA RDases (Supplementary Figures S2A-S2C) resulted on average in four times higher 

numbers of tryptic peptides than those obtained for other expressed RDases, which was helpful 

for the development of the targeted assay. 

3.3.2 Selection of Dhc MRM-MS observable peptides and in-silico evaluation of 
their biological specificities. 

Evaluation by LC-MRM-MS was conducted on 79, 81, and 66 peptides from the targeted 

proteins previously identified in the global proteomics datasets of cultures of Dhc strains 195, FL2, 

and BAV1, respectively. By examining three different loading amounts of total digested protein 

(i.e., 500 ng, 2 µg, and 8 µg) and manually analyzing the data to determine the quality  of the 

resulting peptide signals, 29 peptides and 142 transitions from the digest of strain 195, 22 peptides 

and 107 transitions from strain FL2, and 17 peptides and 83 transitions from strain BAV1, were 

selected. Examples of the type of signals chosen and discarded from these steps are shown in 

Supplementary Figures S3 and S4. From this initial selection, the top five transitions ranked by 
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contribution to total area under the curve (AUC) per peptide were preserved, resulting in a total 

of 55 peptides (unique and shared between strains) equivalent to 270 transitions. 

Essential for targeted proteomics experiments is to ensure that the selected peptides 

uniquely identify the proteins of interest.228 The coexistence of multiple Dhc strains with other 

bacterial species in groundwater 276, 289, 290, 316 creates a challenge for the selection of unique 

peptides. A preliminary in-silico comparison between several Dhc proteomes, as well as the 

proteomes of other organohalide-respiring bacteria commonly found in groundwater aquifers or 

sediments, demonstrated that Dhc strains shared greater similarities (≥ 47%) amongst their 

peptidomes compared with those of other bacterial species (≤ 4% similarity between the 

proteomes of Dhc strains 195 and VS with Dehalogenimonas lykantroporepellens strain BL-DC-

9) (Supplementary Figure S5). Although this analysis supported the development of a Dhc 

species-level targeted proteomic assay and its application to contaminated groundwater, the 

sequence specificities of each remaining peptide candidate selected were further assessed 

individually with the Tryptic Peptide Analysis tool of Unipept 3.2 and Protein BLAST searches. 

Peptides were deemed as Dhc specific when they were not found in any other bacterial protein 

sequence available in UniProt and NCBI nr databases, and when several strains shared the 

candidate peptide sequence by means of both-silico searches; as semi-specific, when they were 

found in proteins derived from related organohalide-respiring bacteria; and as non-specific, when 

they were found in proteins of non-organohalide respiring bacteria. Compiled results from these 

in-silico searches are presented in Supplementary Table S2. 

Out of the seven peptides selected for monitoring the presence of the housekeeping 

chaperonin GroEL, peptide DGVITIEESR was the only one non-specific to Dhc, which was 

surprising considering that homologues of this protein are found in diverse bacterial classes.317 

From the targeted EF-TU proteins, peptide TTLTAAITR was found in more than 100 UniProt 

protein entries, and similar observations were made for peptide ELTSLGLK from the ribosomal 

protein L7/L12. The presence of peptides DGVITIEESR, TTLTAAITR, and ELTSLGLK in the 

proteomes of non-organohalide respiring bacteria prompted us to remove them from the list of 

selected peptides, which resulted in the loss of the rpL7/L12 marker protein from the assay. 

Candidate peptides from the annotated FdhA (general biomarker of Dhc activity) and S-

layer (structural housekeeping) proteins were specific to Dhc and in certain cases provided strain 

level resolution. For example, the in-silico analysis demonstrated that the FdhA peptides 

GTELISVDCR and SELEVISSLFSR were specific to Dhc strain 195, while peptide 

TDNNTNYSYINAIK was specific to the FdhA in Dhc strain BAV1. All peptides of the S-layer 
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protein were specific to five or less Dhc strain proteomes stored in UniProt, a useful characteristic 

for environmental monitoring of certain Dhc strains. 

The expression of RDases from bacteria other than Dhc can complicate their exclusive 

use as specific biomarkers of Dhc-mediated reductive dechlorination in groundwater.287 For 

example, the in-silico searches of the six peptides selected in total for TceA and BvcA RDases 

revealed that these are also found in RDase sequences of other organohalide-respiring bacteria 

like Dehalogenimonas. Thus, the information that the shared RDase peptides selected here could 

provide in contaminated groundwater needs to be interpreted in concert with information from 

other biomarker proteins, such as FdhA, to have a more direct line of evidence that Dhc -specific 

biologically driven dechlorination is happening at a site.  

Additionally, the identification of shared RDase peptides in an MRM assay, combined with 

other experimental measurements like Dhc 16S rRNA gene-targeted qPCR, can provide insights 

into the identity of the bacterial species carrying out dechlorination processes. Altogether, these 

observations suggested that a panel of protein biomarkers should be utilized for the most detailed 

characterization of Dhc mediated dechlorination processes in groundwater. Supplementary 

Table S3 shows the complete list of peptides and their transition m/z values per protein used for 

LC-MRM-MS analysis of groundwater. 

 

3.3.3 Application of the selected biomarkers for targeted proteomics analyses in 

the PCE-to-ethene dechlorinating consortium BDI. 
 

Peptides and transitions selected in axenic Dhc cultures were initially tested in a tryptic 

digest of the nonmethanogenic PCE-to-ethene dechlorinating BDI consortium. BDI harbors 

multiple Dhc microorganisms, including strains BAV1, FL2, and GT.277, 318 The known microbial 

diversity of BDI allowed an easier validation of peptide identification with criteria that included, 

amongst others, the comparison of dot-product (dotp) correlation scores for transition intensity 

ratios between the signals detected in samples to those observed in pure cultures or to samples 

spiked with 5 pmol of internal standards (Supplementary Table S4). 

Through LC-MRM-MS analyses, 13 peptides were identified out of the 37 that were 

targeted. Among these, GroEL peptides with high representation in the proteomes of multiple 

strains of Dhc were observed (Figure 3.4). However, we also detected the presence of the more 

conserved GroEL peptide LEGDEATGVSIVR, which according to the UniPept searches, is only 

present in the proteomes of Dhc strains 195, KBTCE2, CG4 and KBTCE3 (Supplementary Table 

S2). Interestingly, in relation to the identification of peptide LEGDEATGVSIVR, we also detected 

the EF-TU peptide NSFPGDEIPIVR, which is specific to the proteomes of the same Dhc strains 
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as peptide LEGDEATGVSIVR, thus suggesting that these microorganisms are part of the Dhc 

population in BDI.     

Active dechlorination activity was inferred through the presence of four FdhA peptides and 

one of the targeted TceA peptides. As with the previous cases of the GroEL peptide 

LEGDEATGVSIVR and the EF-TU peptide NSFPGDEIPIVR, the FdhA peptide 

GSAGEYPVICTTVR found in the proteomes of strains 195, KBTCE2, CG4 and KBTCE3 also 

suggested the involvement of these strains in dechlorination processes. In fact, the additional 

detection of the TceA peptide YFGASSVGAIK, which acts as a marker of specific functional 

information (i.e., TCE→VC, ethene transformations), and is also found in the proteome of Dhc 

strain 195, narrowed down the possibility that this strain was present in culture BDI. 

Hence, to inquire in the evidence provided by targeted proteomics about the presence of 

additional but not yet recognized Dhc strains in consortium BDI, we decided to explore the 

microbial diversity of this culture by means of high-mass-accuracy /high- mass-resolution global 

proteomics analyses. By assembling a proteome database of other known strains of Dhc, the BDI 

spectral data indeed shown that organisms representing Dhc strain 195 were present this culture, 

as we were able to detect unique peptides matching proteins specific to certain strains (i.e., to the 

S-layer protein of Dhc strain 195). The complete list of protein identifications in BDI is presented 

in Supplementary Table S8. 

 
 
 
 
 
 

 

 

 

 

 

 

Figure 3.4 LC-MRM-MS Dhc biomarker identification in a tryptic digest of the PCE-to-ethene 

dechlorinating consortium BDI. The Fig. shows the average raw peak area under the curve (AUC) 
values of the targeted peptides identif ied in three technical replicate LC-MRM-MS runs. Error bars are 
the standard error of the mean. Peptides marked with Δ were identif ied with supporting evidence from 
spiked-in unlabeled standards. The inserts below the graph show the specificities of the peptides, 
determined in-silico, to the proteomes of the six most common isolates of Dhc bacteria.  
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Global proteomics analyses also revealed the absence of the BvcA enzyme in BDI, which 

agreed with the targeted results. This information was also corroborated with prior qPCR 

experiments showing that Dhc strain BAV1 carrying the bvcA gene was lost from consortium BDI 

after transfer with PCE.276  The lack of Dhc bacteria expressing BvcA in BDI seems to be 

compensated, however, with bacteria expressing VcrA (i.e., strains GT and VS). VcrA was not 

targeted in the MRM assay due to the lack of pure cultures of strains GT and VS, but expression 

levels of this enzyme were confirmed by global proteomics in consortium BDI, where it may play 

a role in the dechlorination of cis-DCE to ethene. The involvement of microorganisms expressing 

VcrA, was also supported by the targeted detection of FdhA peptides matching to the proteomes 

of Dhc strains VS and GT.  

 

3.3.4 Application of the selected biomarker panel for targeted proteomics 
analyses of chloroethene contaminated groundwater. 

 
Seven groundwater samples collected from various international sites impacted with 

chlorinated ethenes were analyzed by targeted proteomics. Amongst the identified contaminants 

were TCE, cis-DCE and VC. These compounds are substrates and intermediates of the anaerobic 

reductive dechlorination reactions carried out by Dhc bacteria that ultimately yield ethene as the 

end product. Ethene was detected in these samples at various concentrations.  The detection and 

concentrations of these chemicals provide some level of information about the degree of 

dechlorination in each sample and are tabulated for each groundwater sample in Supplementary 

Table S6). 

qPCR measurements performed on groundwater samples M17, M18, 97, 116, and 29 

(33NA4 samples for DNA extraction were not available) showed average total bacterial 16S rRNA 

gene copies/mL values ranging from 2.6x107 ± 1.4x106 in sample 116 to 9.8x105 copies/mL ± 

4.9x105 in sample M18 (Figure 3.5). qPCR measurements of 16S rRNA genes of relevant 

organohalide respirators (Dhc, Dehalobacter, and Dehalogenimonas) demonstrated the presence 

of Dhc bacteria in all samples, with the highest abundance of Dhc 16S rRNA genes quantified in 

sample M17. At the M17 sampling location, Dhc represented ~20% of the total bacterial 16S rRNA 

genes (2.0x105 ± 1.7x103 copies/mL). According to empirical information from bioremediation site 

regulators, they have found that values higher than 1 x105 copies/mL of organohalide respirators 

such as Dhc are needed for observable dechlorination to occur.  Thus, the qPCR data above 

suggested that M17 has appropriate Dhc cellular abundance for dechlorination, whereas the other 

samples has cellular abundances that appear to be below this minimum threshold. 
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Figure 3.5 qPCR measurements of bacterial, Dhc, Dehalobacter and Dehalogenimonas 16S 

rRNA gene copy numbers. Gene copy numbers of tceA and bvcA are also shown. Values are given 
on a log scale and each bar represents one DNA extraction quantif ied in triplicate. DNA-based 
analyses were not performed for sample 33NA4 due to limited availability. tceA genes were detected 
but not quantif iable in samples M17 and M18.  

 
 
 

As discussed previously, the identification of Dhc genes does not necessarily indicate that 

Dhc is actively dechlorinating TCE or any other chlorinated ethene. Amongst the reasons for this 

observation are the lack of correlation between dechlorination activity and the abundance of Dhc 

16S rRNA genes and the variable translation rates of RDase transcripts observed in pure and 

mixed cultures.286, 287 Additionally, in groundwater samples, Dhc microorganisms may be present 

but not contributing significantly to dechlorination processes due to inhibitory mechanisms (i.e., 

the presence of perfluoroalkyl acids319) or competition with other organohalide-respiring bacteria 

having more favorable chances of growth. Due to these factors, the identification of Dhc protein 

biomarkers of dechlorination would provide more definitive information about whether Dhc active 

involvement in the dechlorination processes in these samples.   

Analysis of the groundwater samples included in this study by targeted proteomics, 

identified Dhc biomarker proteins and peptides only in groundwater samples M17 and 33NA4 

(Figure 3.6).  A few of the other samples were viscous and consisted of black oily, sticky material 

that complicated filtering in Sterivex cartridges and potentially limited DNA and protein extraction 
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and subsequent measurement.  This may be an issue in general sampling at some sites but was 

beyond the scope of this manuscript.   

GroEL proteins were observed in both M17 and 33NA4 samples and were identified by 

peptides that are highly conserved across the proteomes of multiple Dhc strains, including those 

of the six isolates (Figures 3.6A and 3.6B). Besides detection of GroEL in both M17 and 33NA4 

samples, targeted peptides from the housekeeping EF-TU and structural S-layer biomarkers were 

also detected in groundwater M17 (Figure 3.6B). For example, the EF-TU peptide 

ILDTAEPGDAVGLLLR, which differs by a single threonine residue compared to the peptide 

identified in consortium BDI, and is present in multiple Dhc strains, demonstrated the utility of 

targeted proteomics to differentiate single amino acid changes in the sequences of the analytes. 

The additional detection of the S-layer peptide AGIIDVPATADDATK in sample M17, which is 

found in four Dhc proteomes, including those of strains GT and FL2, also suggested that specific 

Dhc strains were present in this sample. 

Evidence of dechlorination activity was obtained by the detection of two and three FdhA 

peptides in samples M17 and 33NA4, respectively (Figures 3.6A and 3.6B). Common between 

both samples was the detection of the FdhA peptides ALGIVYLDSQAR and SELEVISSLLSR, 

which can be found in 25 and 19 Dhc proteomes, respectively, of the 31 Dhc proteomes available 

in UniProt (as of July 2018). Peptide ALGIVYLDSQAR has been selected as MRM target for 

absolute protein abundance quantification in published reports examining pure and mixed Dhc 

cultures,33, 103 which also points to its high conservation amongst Dhc strains and robust 

characteristics for mass spectrometric analyses. In addition to the ALGIVYLDSQAR and 

SELEVISSLLSR peptides, the detection of the FdhA peptide TDTNDYSYVNAIK in groundwater 

sample 33NA4 suggested that organisms representing Dhc strains 195, KBTCE2, CG4 and 

KBTCE3, were involved in active dechlorination.  

Supporting the FdhA observations in samples M17 and 33NA4 and hence, the potential 

of active dechlorination, we also identified a TceA peptide in sample 33NA4 and a BvcA peptide 

in M17. For instance, the TceA peptide YFGASSVGAIK in sample 33NA4 (Figure 3.6B) 

suggested the involvement of Dhc strains expressing the tceA RDase (e.g., strains 195 and FL2) 

in the dechlorination reactions leading to the transformation of TCE to VC and ethene. Similarly, 

the BvcA peptide STVAATPVFNSFFR in sample M17 (Figure 3.6A), pointed to active 

transformation reactions of cis-DCE to ethene by strain BAV-type Dhc.  
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Figure 3.6 LC-MRM-MS Dhc biomarker identification in a tryptic digest of groundwater samples 
M17 and 33NA4. Average raw peak area under the curve (AUC) values of the targeted peptides 
identif ied in LC-MRM-MS runs of tryptic digests from groundwater samples (A) M17 and (B) 33NA4, 
respectively. Error bars are the standard error of the mean (n= 3 technical replicates). Peptides marked 
with Δ were identif ied with supporting evidence from spiked-in unlabeled standards. The inserts below 
each graph show the specificities of the peptides, determined in-silico, to the proteomes of the six 
most common isolates of Dhc bacteria. 

 

 

The data provided by LC-MRM-MS thus contrasted with the initial qPCR information, in 

which Dhc 16S rRNA genes were detected in all groundwater samples, but peptides of the 

targeted proteins were not identified in four of them (M18, 97, 116, or 129). This suggested that 

either the targeted proteins were not expressed in these samples, the proteins were of too low 

abundance to be detected by targeted proteomics, or the enzymatic digestion of the proteins in a 

sample could have produced a different set of peptides to the ones targeted. To provide insight 

into these issues, high-mass-accuracy and high-mass-resolution global proteomics data was also 

collected. For this purpose, the proteomes of six Dhc isolates and other bacteria that have been 

isolated from aquifers or sediment material contaminated with organic chlorinated compounds 

were combined into a database for MS spectra search (Supplementary Table S7). 

Global proteomics revealed that the samples having the highest numbers of Dhc protein 

identifications were samples M17 (125 groups) and 33NA4 (38 groups), in which peptides from 

Dhc biomarkers were also detected by LC-MRM-MS. Indeed, the Dhc dechlorination biomarkers 

BvcA for sample M17, TceA for 33NA4, and FdhA for both, were also identified in the global 

proteomics datasets (Supplementary Table S8). The detection of TceA in sample 33NA4 and 
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the absence of Dhgm proteins by global analyses suggested that the YFGASSVGAIK peptide 

detected before by targeted proteomics had a Dhc origin. We also observed that except for S-

layer proteins that were identified by a different set of peptides to the ones targeted in samples 

129 and 116, all the other Dhc biomarkers were not detected by means of global proteomics 

analyses in samples 129, 116 and 97 (Supplementary Table S8) which largely agreed with the 

targeted proteomics results. In groundwater M18, instead, Dhc GroEL, EF-TU and S-layer 

proteins were identified but with a different set of peptides. The low numbers of Dhc protein groups 

detected in samples M18, 129, 116 and 97, which included proteins that are not directly involved 

in mediating dechlorination processes, in combination with the aforementioned Dhc 16S rRNA 

gene data, suggested that Dhc cells were present but not actively dechlorinating in these samples 

or expressing levels of proteins that fall below the detection limits of the proteomics approach.    

 

3.4 Conclusions. 
 

This work demonstrates that the identification of Dhc biomarker proteins in contaminated 

groundwater through targeted proteomics is feasible. Although the approach presented here 

requires further optimization to provide absolute protein abundance metrics (i.e., molar amounts), 

the panel of proteins and peptides selected should be useful for further development of a robust 

quantitative assay.  

Successful implementation of targeted proteomics for Dhc containing groundwater, in 

comparison to pure or mixed anaerobic bacterial cultures, requires knowledge of the specificity of 

the peptides selected from Dhc biomarkers in a broader microbiological context. The in-silico 

peptidome analyses conducted in this study suggested that a panel of Dhc specific and semi-

specific peptides (albeit, found in other bacteria with dechlorination capabilities) from proteins 

relevant to dechlorination activities (FdhA and RDases), should be used in concert to provide a 

more accurate identification of Dhc in samples. 

Regarding this last point, environmental studies utilizing targeted proteomics to monitor the 

presence and infer the activity of Dhc microorganisms in contaminated groundwater, need to 

define the goal of their research – i.e., is it important to know the presence of active dechlorination 

in general, or is it also necessary to resolve down to the species/strain level what microbe ( i.e., 

Dhc strain) is most active? These are distinct questions – in many cases, the former question can 

take precedence at sites impacted with specific chlorinated pollutants. Either way, the information 

provided by targeted proteomics in combination with data contributed by other well-established 

technologies like qPCR, can offer a more complete view of key microbes and their activ ities 
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contributing to contaminant detoxification. Results from gene-centric qPCR and proteomics will 

provide better guidance on bioremediation decisions, assist remediation project managers to 

efficiently manage remediation, and provide regulators with a relevant line of evidence that 

contaminant attenuation is occurring. 

 Contrary to regular targeted proteomics workflows, this project highlighted the use of semi-

specific peptides to target dechlorination biomarkers and how it was still possible to employ them 

to obtain useful information regarding the presence of biomarkers in a sample. Of course, this is 

also related to the question under investigation, but this feature made us wonder of the capability 

of targeted proteomics methodologies to provide information on groups of functionally related 

proteins, instead of individual analytes, by making use of shared peptides between them. 

Provided that these groups of proteins can inform about certain biological processes that are 

necessary for the stable functioning of a system, or that they can inform about some aspect of 

the underlying biology within it, then, the first step would be to evaluate how feasible is to select 

shared peptides amongst these proteins. This question was evaluated in the next chapter of this 

dissertation.     
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CHAPTER 4                                                                                                                     
In-silico assessment of the selection of a minimal set of unique peptides 

for glycoside-hydrolases families for the development of a targeted 

proteomics methodology:  Demonstrations with a global non-system 

specific and a system-specific approach 
 
 

Authors: Villalobos Solis, M.I., Chirania, P. and Hettich, R.L.  
 
Authors contributions: Manuel Ivan Villalobos Solis (M.I.V.S.) planned the study alongside 
Payal Chirania (P.C.) and Robert L. Hettich (R.L.H.). P.C. developed all Phyton scripts to parse 
and condense metadata. M.I.V.S. analyzed the data, consulted references, and reported findings. 
R.L.H provided reviews to the study.   
 

 

4.1 Introduction. 
 

Lignocellulosic biomass that is the residual product from activities like agriculture, forestry, 

food-processing, industry and wastewater treatment, consists of ~ 75% of polysaccharides that 

can be used to produce biofuels (i.e., ethanol) and biogas (i.e., mixture of CO2, methane and other 

trace gases).320, 321 Lignocellulosic biomass does not compete directly with food or feed crops for 

biofuel production and high biomass can be obtained with low inputs of energy, water, fertilizers, 

and pesticides.320, 322 However, the extraction of the energetic content from lignocellulosic 

biomass is a challenge. Lignocellulosic materials are made primarily of cellulose (35-50%), 

hemicellulose (15-35%), the non-polysaccharide aromatic polymer lignin (10-35%), and to a 

lesser extent of pectin, proteins, ash, salt and minerals.323-325 These components create a highly 

resistant and recalcitrant structure that is difficult to degrade chemically and enzymatically.  

One approach to release the energetic content of lignocellulose consists in employing the 

native metabolic capabilities of aerobic and anaerobic microorganisms like fungi and bacteria to 

deconstruct lignocellulose into its fundamental components. Biological delignification and 

depolymerization of polysaccharides found in lignocellulose have been gaining momentum over 

the past decade due to advantages like mild reaction conditions, less energy demands, and less 

waste generation compared to chemical pretreatment/enzymatic hydrolysis.326-328  

Particularly for the release of free sugars from polymers buried in lignocellulose, research 

has focused on the different types of carbohydrate active enzymes (CAZymes) that aerobic and 

anaerobic bacteria use to hydrolyze lignocellulose biomass.329 From the CAZymes, the group that 

are primarily involved in the breakdown of polysaccharides found in lignocellulose are bacterial 
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free or cell-associated glycoside hydrolases (GHs).330 GHs are enzymes that hydrolyze the 

glycosidic linkage between two carbohydrates or between a carbohydrate and a non-

carbohydrate group.331, 332 The enzymatic activities of bacterial GHs in lignocellulosic 

environments are broadly classified in:331, 333, 334 (a) endoglucanases, that hydrolyze the internal 

glycosidic bonds along a cellulose chain; (b) exoglucanases, that act first on reducing and 

nonreducing ends of a cellulose chain and then hydrolyze the rest of the substrate in a processive 

manner; and (c) β-glucosidase, that hydrolyze only terminal, non-reducing glucose units from 

soluble cellodextrin and cellobiose.  

The ability of bacterial communities to degrade cellulose/hemicellulose through the 

expression of GHs and other CAZymes has been employed in biochemical transformation 

technologies for bioenergy production. One of such technologies is the production of biogas from 

lignocellulose containing wastes (i.e., woody biomass and municipal solid waste) in anaerobic 

digesters (ADs). In these types of bioreactors, the metabolic capacity of hydrolytic bacteria is 

synergistically combined with the activity from other “satellite” acidogenic, acetogenic, and 

methanogenic microbes.335-338 Hydrolytic bacteria in these consortia use CAZymes to 

depolymerize polysaccharides into simple sugars that fermentative bacteria use to transform to 

organic acids. The acidogenic bacteria then convert these acids into H2, CO2, and acetate, which 

in turn methanogenic archaea transform to methane and CO2. 339, 340 In return for the provision of 

substrate, satellite microbes may provide essential nutrients and vitamins that the cellulolytic 

degrading bacteria can use, or they could provide protective agents against the inhibitory effects 

of certain products released during the metabolic cross-talk.329, 337   

The success of ADs to use complex polysaccharides as source for biogas depends on the 

activity of cellulose-hydrolyzing bacteria.341 Therefore, it has been recommended that anaerobic 

digesters start with an inoculum containing such type of bacteria.336 However, even with a starting 

bacterial community, physical, chemical and biological variables can impact the hydrolytic 

performance of a bioreactor.340 For example, when highly lignified or high crystalline cellulose 

substrates are used as feedstock in an AD, hydrolysis can underperform.339 Microbial composition 

in ADs is also known to be impacted by operational parameters like pH, temperature and the 

presence of other substances like ammonium nitrogen.342, 343 Therefore, it is important to 

understand what type of cellulose-degrading microorganisms survive in bioreactor environments 

and what is known about their metabolism.336 

Communities of microbes living in ADs have been studied with the application of -omics 

measurements. Metagenomics studies have provided insights in community structure and 
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metabolic potential,339, 341-344 while metatranscriptomics and metaproteomics investigations have 

linked genetic information to function.345-348 Metagenomics studies have described the 

predominance of the bacterial Firmicutes, Bacteroidetes and Proteobacteria phyla in biogas 

communities and have highlighted their high polysaccharide hydrolytic potentials.347-349 

Importantly, these studies have also demonstrated that the relative abundance of bacterial and 

archaeal phyla depends on process conditions.350 Likewise, metatranscriptomics and 

metaproteomics data have helped put into perspective the metabolic capacity of microbial 

communities. Specially, metaproteomics has been useful in observing protein patterns in ADs 

communities in response to environmental and operational parameters. For example, glycoside 

hydrolases with multiple enzymatic functions like endoglucanases, beta-galactosidases, alpha-L-

fucosidases, alpha-amylases, xylanases and others have been characterized and their 

expression assigned to specific bacterial genera and even species.347-349, 351, 352   

There is no doubt that our molecular understanding of metabolic potential and function 

within ADs for biogas production has been greatly improved due to the combined application of 

omics approaches; however, they are time-consuming and labor-intensive to perform and it is 

difficult to envision them as routine methods to monitor the molecular-level performance of an AD. 

Data derived from omics techniques could be employed to develop faster and more convenient 

assays to inform of the molecular changes occurring in a bioreactor.  

Indeed, metagenome information has been used to develop RT-qPCR biomarker assays 

targeting the V6-V8 regions of the 16S rRNA gene of specific bacterial taxa that can inform about 

the potential of these microorganisms to contribute to hydrolytic and acidogenesis processes in 

ADs.353 In this sense, metaproteomics has also the potential to help identify sets of proteins and 

their shifts in expression patterns that could be used to monitor the metabolic performance of ADs 

microbial communities or that could be employed as predictive indicators of process failure.354, 355 

For example, variations in the abundance levels of methyl-coenzyme M reductase, which is a key 

enzyme in all methanogenic pathways and is highly expressed in biogas reactor systems,347, 355, 

356 has been proposed as a predictive biomarker of acidification conditions.357 

Hydrolysis of polysaccharides is an essential metabolic step in the production of biogas. 

Several metaproteomic studies have identified and quantified abundance levels of GHs relative 

to changes in the operational parameters of anaerobic digesters. In this sense, groups of GHs 

can act as biomarkers of the ability of a system to degrade polysaccharides. Thus, it is plausible 

to think that monitoring only the presence of these enzymes and their abundance changes in 

anaerobic digesters could provide of faster decision-making capabilities to adjust operational 
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parameters concerning the disposition of a digester or the microbial communities thriving within it 

to degrade polysaccharides. Therefore, instead of investigating the expression of every protein in 

an anaerobic digester, unique peptides representing groups of GHs could be detected by targeted 

proteomics techniques faster and with more sensitivity than by executing complete 

metaproteomics experiments.  

A key element to any targeted proteomics study is the selection of a set of peptides that 

can uniquely identify proteins of interest in a biological background without being redundant to 

others. GHs are an extensive group of proteins classified into more than 100 families based on 

amino acid similarities and 3D structure.358-360 Because of the diversity of families and number of 

proteins belonging to them, in this project we specifically elaborate on the challenges associated 

in selecting unique peptides in-silico not for individual GH enzymes but for selected families of 

GHs. This process was demonstrated using two approaches.  

The non-system specific approach involved the use of a curated database from 

http://www.cazy.org/ which is the largest repository that comprises genomic, structural and 

biochemical information on GHs found in all kingdoms of life, as well as of others CAZymes 

involved in the biosynthesis and modification of carbohydrates and glycoconjugates.360 In 

contrast, a system-specific approach used a  published dataset of 1401 high-quality and medium-

high quality metagenome-assembled genomes (MAGs) published by Campanaro et al., 2019 as 

part of the biogas microbiome project (https://biogasmicrobiome.env.dtu.dk/).361 This dataset is 

the most complete repository of genomes in anaerobic digestors up to date and provides with a 

realistic community of microorganisms (and their proteomes) living in these environments.  

 

4.2 Materials & Methods. 
 

4.2.3 CAZyDB.07312019 from dbCAN2 meta site.  

For the non-system approach of peptide selection, the database CAZyDB.07312019.fa 

stored in the automated Carbohydrate-active enzyme ANnottation (dbCAN2) meta server 

(http://bcb.unl.edu/dbCAN2/)362 was used. This is a pre-computed file with GenBank proteins 

annotated as CAZymes by the CAZy database. CAZyDB.07312019.fa has a total of 1,365,566 

non-duplicate protein sequences including glycoside transferases (GTs), glycoside hydrolases 

(GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), auxiliary activities (AAs) and 

https://biogasmicrobiome.env.dtu.dk/
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carbohydrate-binding modules (CBMs). The same protein can have more than one annotation 

(i.e., Protein X can have a GH 5 domain and contain several CBM modules).      

4.2.4 Unique tryptic peptides from GH proteins compared to backgrounds of other 

CAZymes. 

Protein sequences belonging to distinct GH families were removed from 

CAZyDB.07312019.fa. The remaining sequences were used to create independent CAZy protein 

backgrounds for each family. Databases of proteins in a GH family were clustered at 100% 

sequence identity with USearch v10.0.240296 (command cluster_fast). Target sequences and 

backgrounds were then loaded to the software Skyline260 to select unique tryptic peptides (6-25 

amino acids in length, without Met or Cys residues, and excluding the first 24 N-terminal amino 

acids of each protein) against the backgrounds.  

4.2.5 Generation of a minimum list of unique tryptic peptides for GH families.  

Lists of unique peptides against backgrounds and the proteins they mapped to were ran 

through an in house developed Python 3 script to select the minimum number of peptides between 

proteins in a GH family considering each protein is captured only once. Figure 4.1A shows an 

example of how the script works starting with a list of seven proteins each containing different 

proportions of six peptides which can be shared or unique. The script first assembles groups of 

peptides and proteins like those shown in Figure 4.1B and then orders them based on groups 

capturing the greatest number of proteins. In this example, peptide 1, which is the most shared 

peptide amongst all considered proteins, is found in a total of four proteins. This group of 4 

proteins that have peptide 1 is then compared to protein groups captured by other peptides. Based 

on this comparison, if a protein that has peptide 1 is found in a group with fewer number of 

proteins, the protein is removed from it. In this case, proteins are removed from peptides 2 and 3, 

while peptide 4 loses all its proteins and is removed from further analysis. This cycle repeats but 

now with the second largest group of proteins sharing a peptide which in this case is peptide 5. 

Following this example, the final minimum list of peptides will have peptide 1 capturing four 

proteins (A, D, E, F), peptide 5 capturing two proteins (C, G) and either peptides 3 or 6 capturing 

one protein (B) as shown in Figure 4.1C.  
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Figure 4.1 Example showing the process to select the minimum number of unique tryptic 
peptides and their associated number of protein seeds in different GH families.  Descriptions of 
(A), (B) and (C) are presented in the text above this figure.   

 

 

This bioinformatic approach ensures that proteins in a GH family are selected based on 

shared peptides that meet the selection criteria and after they are compared to peptides 

generated from background proteins. Even though this will not be ideal to target specific proteins 

sequences within a family (i.e., a GH3 protein versus another GH3 protein) it ensures that the 

final peptide list is not overwhelmingly large and impractical for targeted proteomics applications.  

4.2.6 Super kingdom taxonomy of groups of proteins having unique peptides 
selected from the CAZy database. 

Taxonomical information at the superkingdom level of the protein sequences captured by 

the minimal lists of peptides obtained for different GH families in CAZyDB.07312019.fa was 

investigated. For this purpose, GH protein accessions and the taxa they belong to were extracted 

from the CAZy database (http://www.cazy.org/) using the cazy-parser tool.363 Scientific names of 

organisms were then used to retrieve taxa ID and lineage information from NCBI using the R 

package taxonomizr (https://cran.r-project.org/web/packages/taxonomizr/index.html).  

 

http://www.cazy.org/
https://cran.r-project.org/web/packages/taxonomizr/index.html
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4.2.7 Re-processing of 1401 MAGs in dbCAN2.  

Predicted genes and coding sequences (CDS) data from 1401 bacterial and archaeal 

high-quality (HQ) [Completeness > 90%, Contamination < 5%] and medium-high quality (MHQ) 

[90% > Completeness ≥70%; 5% < Contamination < 10%] MAGs reported in Campanaro et al., 

2019361 were kindly provided by the first author of the study. The biogas microbiome project was 

a collaborative effort in which 134 published datasets (~0.9 Tbp sequence data) derived from a 

wide range of different biogas reactor systems (full scale biogas plants and laboratory-scale 

bioreactors) fed with complex carbohydrates, proteins and lipids, were re-analyzed by means of 

comprehensive metagenome-centric analyses. The provided CDS were annotated using Prodigal 

v2.6.2 ran in normal mode. According to the Campanaro et al., 2019 study  these predicted 

proteins were used to predict CAZymes with the Carbohydrate-active enzyme ANnottation 

(dbCAN2) meta server (http://bcb.unl.edu/dbCAN2/).362 Since the protein fasta files from Prodigal 

lacked annotation information, CAZy annotation was performed again in order to identify individual 

CAZymes in each MAG for further in-silico analyses of unique peptides. The dbCAN2 searches 

in this chapter were performed using the HMMER364, DIAMOND365 and Hotpep366 tools. Proteins 

annotated by ≥ 2 tools were only considered to define CAZymes. HMMER annotations took 

priority over DIAMOND and Hotpep tools. In case where no HMMER annotation was obtained, 

common annotations between DIAMOND and Hotpep were only considered, otherwise, they were 

discarded.  

4.2.8 Selection of unique tryptic peptides from GH families in the biogas 
microbiome MAGS and generation of a minimum list of peptides.  

Protein sequences from GH families with the highest representation across all MAGs were 

removed from their original proteome files. The remaining protein sequences in each MAG were 

used to create independent protein backgrounds for selection of unique peptides. The first 24 N-

terminal amino acids from the targeted GH sequences were removed using an in house 

developed script. Targets and backgrounds were then tryptic digested in-silico using the prot2pept 

command of the Unipept367 command line interface (CLI) 

(https://unipept.ugent.be/clidocs/prot2pept). Tryptic peptides of 6-25 amino acids in length, and 

without Met or Cys residues were filtered from the resultant target peptidomes. Peptidomes from 

targets and backgrounds were then compared and unique peptides mapping only to targeted GH 

sequences selected. Lists of unique peptides against backgrounds and the proteins they mapped 

to were ran through the in house developed Python3 script to select the minimum number of 

peptides representing all proteins in a GH family.  
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4.3 Results & Discussion. 
 

4.3.1 A minimum set of unique peptides distinguishing between GH families using 
sequence information from CAZyDB.  

Due to the availability of online resources, and because our goal was to target families of 

GHs and not individual proteins, we tested an approach of in-silico peptide selection that retained 

the least number of peptides while capturing all the sequences contained in a given GH family 

after peptide selection and peptidome comparisons (see Materials & Methods section). In this 

sense, a reduced list of unique peptide sequences could, in a broad scale, differentiate between 

GH family groups (i.e., GH family 3 vs GH family 10) in a targeted proteomics setup.  

For this purpose, a curated protein fasta file from the CAZy database was downloaded. 

This fasta file included a total of 1,365,566 non-duplicated protein sequences including all 

annotated GH proteins to date as well as other groups of CAZymes. From this file, we first decided 

to focus on members of GH families with known and diverse enzymatic activities and mechanisms 

acting on the hydrolysis of celluloses and hemicelluloses (Table 4.1). These GH families also 

covered a wide distribution of organisms in all super kingdoms of life (archaea, bacteria, 

eukaryotes, and viruses). In addition, the number of protein sequences per GH families available 

in the database varied widely giving us a chance to better explore the minimum peptide set list 

approach. Apart from these reasons, these types of CAZy families have been commonly observed 

in different metaproteomics experiments that have analyzed diverse fungal and bacterial 

communities directly extracted from the environment or grown in laboratory settings.368-376  

After comparison of the set of peptides derived from clustered protein sequences (seeds) 

of each GH family database versus those derived from the sequences of the remaining CAZymes 

minus the subset of proteins under analysis, we found that > 700 peptides per family are able to 

capture most of the protein seeds, while at the same time maintaining specificity to each family 

(Figure 4.2A). This suggests that while there is some degree of tryptic peptide redundancy within 

proteins in GH families, several protein seeds can be identified by single unique peptides. In fact, 

26%, 27%, 37%, and 76% of the unique peptides in the GH1, GH3, GH9, and  GH51, families 

were peptides matching to unique proteins (i.e., one peptide → one protein), respectively, 

whereas every protein in the GH10 family was represented by a single peptide. 
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Table 4.1 GH families selected for testing the in-silico development of a minimum list of unique 

peptides able to differentiate between groups of enzymes using sequence information from 

CAZyDB.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GH family Enzymatic activities 

# of protein 

seeds in 
CAZyDB 

1 β-glucosidase, β-galactosidase, 6-phospho-β-glucosidase and 6-
phospho-β-galactosidase, β-mannosidase, β-D-fucosidase and 

β-glucuronidase 

14367 

3 Exo-acting β-D-glucosidases, α-L-arabinofuranosidases, β-D-
xylopyranosidases, N-acetyl-β-D-glucosaminidases and N-

acetyl-β-D-glucosaminide phosphorylases  

16148 

9 Primarily endo-glucanases and a few endo-xyloglucanases, 
mixed-linkage endo-glucanases and exo-beta-glucosaminidases 

2548 

10 Most of  the enzymes are endo-beta-1,4-xylanases A few 
show endo-beta-1,3-xylanase activity. 

3195 

51 Most of  the enzymes are L-arabinofuranosidase but few 

members are also classif ied as 
β-1,4-endoglucanases 

2418 
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Figure 4.2 Minimum number of unique tryptic peptides and their associated number of protein 
seeds in different GH families. (A) Total number of unique peptides selected for each GH family 
after comparison to other proteins in CAZyDB and the protein seeds in which they are found. (B) Top 
10 tryptic peptides (from blue bars in A) ranked by the highest number of protein seeds coverage in 
each family. (C) Percentages of total proteins in GH families covered by top 10, 50 and 100 peptides 
ranked by protein coverage.  

 
 

The maximum number of total proteins that a peptide was able to capture in each of the 

targeted GH families varied between 1682 peptides for the GH1 family to 1 peptide for the GH10 

family (Figure 4.2B).  When categorizing peptides by % of proteins covered, we found that 100 

peptides in the GH1, 3 and 9 families, covered more than 50% of all protein seeds, whereas for 

GH51 and 10 families, the lack of shared peptides meant than more than 100 peptides were 

necessary to cover at least 50% of the proteins in these groups (Figure 4.2C).   

 

 

 

 



98 
 

Unique peptides did not map to any conserved regions in GHs. For example, when GH1 

proteins were analyzed with the ScanProSite tool,377 two conserved regions identified were an N-

terminal signature and an active site motif (Figure 4.3). The in-silico approach to generate 

peptides in this study did not consider any of the first 24 N-terminal amino acids in proteins due 

to the potential presence of cleavable N-terminal signal peptides, so it was not unexpected that 

none of the selected peptides mapped to these regions. However, the unique peptides selected 

did not map to active sites either. For the cases shown in Figure 4.3, the active site of several of 

these proteins was represented by the sequence LFIVENGFG which was not part of any of the 

unique peptides identified. We believe that the variability of the adjacent amino acids next to active 

sites in GHs, as well as the number and type of potential amino acids that can be part of their 

active sites, may explain the lack of tryptic peptides covering this region in our approach. Besides, 

tryptic peptides that could be produced near active site regions of GHs did not meet adequate 

properties for their selection after in-silico digestion of proteins (i.e., lengths > 25 amino acids) or 

even if they were present, they did not capture as many proteins as other peptides. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Examples of GH1 protein sequences analyzed with ProSite Scan . The unique tryptic 
peptide TSIAWTR (in blue lined box) was amongst the 922 minimum unique peptides that covered 
1682 GH1 proteins but did not map to any of the conserved sites on these sequences.  
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4.3.2 Unique tryptic peptides selected for group of GHs in CAZyDB can separate 
groups of proteins based on their superkingdom origins.   

CAZyDB contains protein sequences from different domains of life including bacteria, 

archaea, eukaryotes, and viruses. As there may be more sequence similarity between proteins 

belonging to the same superkingdom, we decided to look at the number of unique peptides 

selected for each GH family in CAZyDB under a taxonomical perspective. Interestingly, peptides 

identified in each family provided a broad level of taxonomical resolution regarding groups of 

proteins belonging to organisms in the same superkingdom. For example, 9 of the top 10 peptides 

ranked by protein coverage for GH1 family were specific to bacterial GH proteins while the 

remaining peptide FSISWSR covered a higher percentage of GH sequences of eukaryotic origin 

(Figure 4.4A). A similar case was observed with protein sequences belonging to the GH51 family. 

In contrast, 9 out of the top 10 tryptic peptides in the GH9 family covered on their majority 

eukaryotic GH proteins, while peptide NNPDYLPQYGFFNAK was only part of bacterial GH 

proteins.   

Based on these observations we then investigated the total amount of peptides necessary 

to cover proteins according to their taxonomical origins. As observed in Figure 4.4B, a smaller 

number of peptides in each of the targeted GH families can indeed provide a level of taxonomical 

resolution compared to the original numbers selected when broadly categorizing families of GHs. 

For example, if considering only bacterial GH9 proteins, the total amount of peptides needed to 

cover all of them is reduced to approximately half of the original number. Although the number of 

peptides is still high to cover bacterial proteins in certain families like in GH10, GH3, and GH51, 

this observation demonstrates how one can adapt the use of unique peptides for GH families to 

provide different levels of information in a biological system.  
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Figure 4.4 Peptide classification by taxonomy using sequence information from CAZyDB. (A) 
Stacked bars showing the classification of groups of proteins captured by peptides based on their 
taxonomical origins at the superkingdom level. (B) Number of peptides from the ones selected to cover 
proteins by superkingdoms. NA, lacks annotation at the superkingdom level.  
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4.3.3 Narrowing down the number of unique peptides by constraining the proteome 
space.  

The results and observations presented from the determination of a minimum set of 

peptides from sequences extracted directly from CAZyDB taught us that even though protein 

sequences belonging to these same family of GHs do not share higher amounts of tryptic peptides 

between them (>700 in each case), it was encouraging to assess, that at least for some families 

like GH1, GH3 and GH9, 50% or more of the proteins selected in each family after peptide 

evaluation and comparison to background proteomes could still be covered with 100 peptides, 

which is a more manageable number of analytes. It was also interesting to uncover that tryptic 

peptides can provide some taxonomical resolution compared to others within same families which 

could be useful to target proteins of specific origins.  

Large-scale targeted proteomics studies have used between 300-600 peptides to identify 

and quantify proteins of interest in a sample.378, 379 Although some of the numbers presented 

before fall within this range, to increase the chances of developing a more manageable minimal 

list of unique peptides for groups of GH families, the proteome space for consideration could be 

reduced. Besides, all the selected peptides derived from the CAZyDB analysis still need to be 

evaluated for uniqueness when put into a biological context. In other words, these peptides need 

to be compared against the peptidome of other organisms found in a sample of interest. Thus, 

instead of determining which other proteins in databases could also yield the tryptic peptides 

selected here, we turned our attention to defined and realistic microbial communities like the ones 

found in anaerobic digesters used for biogas production. For this purpose, data available from the 

biogas microbiome project was considered by applying all the bioinformatic analysis conducted 

so far.361  

4.3.4 Taxonomic diversity of the 1401 high-quality (HQ) and medium-high-quality 
(MHQ) MAGs in the biogas microbiome.  

 Hydrolysis of polysaccharides is an important step in the anaerobic digestion food chain 

happening in anerobic digesters (ADs) using different lignocellulosic feedstock like animal manure 

and crop silage.336, 380 In the original paper by Campanero et al., 2019, the coding sequences of 

1401 HQ and MHQ MAGs were predicted with Prodigal v2.6.2 and then CAZymes annotated 

using the dbCAN2 software. Although more in-depth functional analyses of CAZymes present in 

the MAGs were conducted in the Campanero et al., 2019 publication, such as enrichment of 

functional CAZyme classes to hypothesize relevant participation of microbial phyla in the 
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degradation of complex carbohydrates; here, we decided to focus on all these MAGs to evaluate 

the feasibility of selecting unique peptides for GH families in a comprehensive background of 

microorganisms representative of communities thriving within a biogas reactor environment.  

In total, 96.1% of the MAGs provided were of bacterial origin and the remaining 3.9% were 

of archaeal origin (Figure 4.5). These percentages are common in microbial communities in 

biogas production. The highest number of HQ and MHQ bacterial MAGs belonged to the 

Firmicutes phylum. Amongst the bacterial phyla, several had been associated with the 

degradation of polysaccharides in ADs fed with lignocellulosic biomass including for example, 

members in the Firmicutes, Bacteroidetes, Fibrobacter, Spirochaetes and Thermotoga336, 381. 

Other phyla are less known to be involved in the hydrolysis of polysaccharides, but the study by 

Campanero et al., 2019 hypothesized, based on functional enrichment, that MAGs belonging to 

Candidatus Hydrogenedentes, the Armatimonadetes, Lentisphaerae and Planctomycetes are 

also potentially involved in this process. In fact, one metaproteomics study that characterized the 

microbial community of an industrial biogas reactor fed with food waste as dominant feedstock 

operating at thermophilic temperatures (60°C) and elevated levels of free ammonia found that 

Planctomycetes were metabolically active in the hydrolysis of carbohydrates.352  

The biogas microbiome also consists of other populations of satellite microorganisms that 

act in concert with hydrolytic bacteria to produce methane as the end product in a digester337. 

Groups of bacteria in the anaerobic digestion of lignocellulose material are linked to each other 

as the products produced from one group serve as substrates for another. Besides hydrolysis, 

other metabolic mechanisms include acidogenesis, acetogenesis and methanogenesis335, 340. 

MAGs from these other satellite microbes were also identified in Campanero et al., 2019. For 

example, several MAGs belonged to methanogenic Archaea. The HQ and MHQ Archaeal MAGs 

found in Campanaro et al., 2019 were classified in five phyla, including the broad group of 

Euryarchaeota, which contained genera like Methanobacterium, Methanosarcina, 

Methanoculleus and Methanocorpusculum, from which several species have been isolated 

before.382 Apart from methanogenesis, substrates like acetate, carbon dioxide and hydrogen can 

be used by groups of bacteria to produce alternative products, and several MAGs from these 

study also possessed the genetic potential to fix carbon in pathways including the phosphate  

acetyltransferase-acetate kinase pathway, the reductive acetyl-CoA pathway and the reductive 

pentose phosphate cycle. 
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Figure 4.5 Number of HQ & MHQ MAGs identified in the biogas microbiome project.  MAGs were 
assigned to different phyla classifications based on tiered taxonomical assignment strategy described 
in the original paper by Campanaro et al., 2019. The inset shows the total percentages of MAGs per 
superkingdom. N/A- MAGs not assigned at the phylum level.  

 
 

4.3.5 Distribution of GHs and other CAZymes in the proteomes of the 1401 MAGs.  

The number of proteins predicted in each MAG varied considerably (Figure 4.6). For 

bacterial sequences, the Planctomycetes phylum had the largest median number of 4061 proteins 

and contained the largest bacterial proteome with 9288 predicted proteins assigned to a MAG 

from the Rhodopirellula genus. The smallest bacterial proteomes were from four MAGs in the 

Parcubacteria phylum with a median of 574 proteins. In terms of archaea the singly identified 

Candidatus Lokiarchaeota MAG had the highest number of proteins (5276) while the singly 

Candidatus Woesearchaeota (DHVEG-6) MAG had the least number of proteins (715).   

Due to the distinct metabolic specialization of different microbes during the anaerobic 

digestion of lignocellulose material, the numbers of CAZymes found in their proteomes were 

expected to be variable. In total, 62,627 CAZymes were annotated across 1399 MAGs.  
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Figure 4.6 Distribution of the sizes of the predicted proteomes from the HQ & MHQ quality 
MAGs from the biogas microbiome project. The provided CDS were annotated using Prodigal 
v2.6.2 

 
 
 

CAZyme annotation included all the different categories of enzymes described in the CAZy 

database apart from others like cohesin and S-layer homology domains which are structural 

components of bacterial cellulosomes.383 The boxplots presented in Figure 4.7 show the % of 

CAZymes in the different proteomes grouped at the phylum level. The median percentage of 

CAZymes found per phylum was below 4%, which is consistent with the general abundance range 

of 1-3% of these enzymes from the total gene content of all living organisms and with the >3% of 

the gene content of organisms with specialized functions like the breakdown of complex 

carbohydrates found in lignocellulose.384-386 The bacterial phylum having MAGs with highest 

median percentages of CAZymes in their proteomes was that of Bacteroidetes, while Caldiserica 

had the lowest median percentages.  
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Figure 4.7 CAZymes annotated in the proteomes of different phyla. Box plots (left) show the 
percentage of CAZymes annotated in the proteomes of different bacterial and archaeal phyla using 
dbCAN2. The number of annotated MAGs per phylum are shown in parenthesis. Pie charts (right) 
show the relative fraction of different CAZyme classes, which include AAs (enzymes of the auxiliary 
activities), CBMs (carbohydrate binding modules), CEs (carbohydrate esterases), GHs (glycoside 
hydrolases), GTs (glycosyltransferases), and PLs (polysaccharide lyases). Some proteins were also 
annotated with cohesin and S-layer homology domains, which are involved in cellulosomes structure 

and formation.  MAGs lacking annotations at the phylum level are not shown. 
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Not surprisingly, MAGs from bacterial phyla like Bacteroidetes, Fibrobacteres, 

Verrumicrobia, and Planctomycetes which are known to degrade various complex carbohydrates 

from plant/algae material rich environments, were amongst the top phyla having the highest 

percentages of CAZymes in their proteomes. However, other less studied taxa, like MAGs 

assigned to Candidatus Hydrogenedentes, Candidatus Marinimicrobia, and candidate division 

BRC1 also ranked high. The pie charts in Figure 4.7 show that all these phyla have higher 

fractions of carbohydrate degrading CAZymes like glycoside hydrolases (GHs), carbohydrate 

esterases (CEs), and polysaccharide lyases (PLs). More than 50% of the identified CAZymes in 

these phyla were GH proteins, although this situation was similar in other 11 bacterial phyla 

proteomes including Fusobacteria, Thermotogae, and Firmicutes.   

CAZymes were also annotated in the proteomes of archaeal MAGs with median 

percentages by phylum below 2%. A large fraction of the annotated CAZymes in archaeal phyla 

were glycosyl transferases (GTs), which are involved in the transfer of sugar moieties to specific 

acceptor molecules. Archaea members are known to contain several genes expressing GTs in 

part due to their intricate protein N-glycosylation mechanisms. In fact, GT2 and GT4 families 

predominate in Archaea387 and this was observed in members of the Euryarchaeota phyla, in 

which the 47 MAGs proteomes annotated with CAZymes contained on average 10 more times 

GT2 and GT4 proteins compared to the numbers of other GT families. Members from the archaea 

are known to use a wider variety of sugar subunits for N-glycosylation compared to eukaryotes 

and bacteria. It is hypothesized that N-glycosylation in archaea may contribute to their ability to 

survive or adapt to harsh environments, and some research has implicated it in cell structural 

support and protein assembly and function.388   

The only distinctive case of CAZymes found in archaeal phyla was that of the single MAG 

assigned to Candidatus Lokiarchaeota, where 94% of identified CAZymes were GHs and the 

remaining ones were annotated as CBM and CE modules. However, metatranscriptome analyses 

have revealed the expression of ORFs with similarity to glycoside hydrolases in members of the 

Candidatus Lokiarchaeota group, and anaerobic utilization of carbohydrates has been described 

as one of their metabolic capacities.389  
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4.3.6 A unique set of peptides for GH families in in the biogas microbiome.  

 Proteins from GH families with the highest numbers of representatives across every MAG 

in the biogas microbiome were submitted to the bioinformatics pipeline of before to find the 

minimum set of unique tryptic peptides on each of them (Table 4.2). Of note, we just wanted to 

show examples of the selection of unique peptides in a realistic biological system, but one would 

ideally select families of GH proteins that could act as indicators of the stable hydrolytic functioning 

of a bioreactor or that can tell something of the underlying biology within it.  

 As observed in Figure 4.8A the number of peptides per each of the five selected families 

were still above 700 but in this case we did not observe equal number of proteins to peptides as 

was the case with GH family 10 when using the CAZyDB data. This information demonstrates 

that the number of shared tryptic peptides amongst groups of GHs is still not as high as expected 

even within more related organisms living in a specialized environment. The maximum numbers 

of proteins covered by a peptide were 68, 47, 51, 29 and 13 in GH families 13, 3, 2, 43, and 23, 

respectively (Figure 4.8B). The top 10 peptides ranked by coverage of proteins in each GH family 

were able to cover between 7%-10% of the total proteins considered for analyses (Figure 4.8C). 

Different than in the previous case of using all the information related to CAZyDB, 200 peptides 

in GH families 1,3,and 9 are able to cover ~ 50% of all proteins in each of them while more than 

200 peptides are necessary to cover 50% or more of the total proteins in GH families with more 

specialized polysaccharides degrading functions such as GH51 and GH10.  

 Redundancy of tryptic peptides amongst families of GHs expressed by microorganisms 

found in specialized systems have not been studied before; however, due to the number of 

peptides we obtained for each family, we suspected that there is enough sequence variability 

between different groups of microorganisms that peptides could again provide some level of 

information regarding the taxonomical origins of the proteins they are derived from. By 

determining which peptides are specific to certain phyla, reduced number of peptides could in 

theory be used to target GH families from specific microbes.   
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Table 4.2 GH families selected from the biogas microbiome data for testing the in-silico 
development of a minimum list of unique peptides able to differentiate between groups of 
enzymes.   

 

 

 

 

 

GH family Enzymatic activities 
# of protein 

seeds across 
every MAG 

 

13 

Some enzymatic activities include:  α-amylase, oligo-1,6-

glucosidase, α-glucosidase, pullulanase, cyclomaltodextrinase,  
maltotetraose-forming α-amylase, isoamylase, dextran glucosidase, 
trehalose-6-phosphate hydrolase, among others acting on complex 

polysaccharides 

 

4024 

 

2 

Most common activities include β-galactosidases, β-

glucuronidases, β-mannosidases, exo-β-glucosaminidases and, in 
plants, a mannosylglycoprotein endo-β-mannosidase 

 

 

2182 

3 Exo-acting β-D-glucosidases, α-L-arabinofuranosidases, β-D-
xylopyranosidases, N-acetyl-β-D-glucosaminidases and N-acetyl-β-

D-glucosaminide phosphorylases 

2134 

 
 

43 

 
The major activities reported are α-L-arabinofuranosidases, endo-

α-L-arabinanases (or endo-processive arabinanases) and β-D-

xylosidases 

 
1465 

 
23 

 
GHs in this family are lytic transglycosylases of  both bacterial and 

bacteriophage origin, and family G lysozymes of  eukaryotic origin. 
Both of  these enzymes are active on peptidoglycan, but only the 

lysozymes are active on chitin and chitooligosaccharides.  

 
 

1090 

https://www.cazypedia.org/index.php/Exo
https://www.cazypedia.org/index.php/Endo
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Figure 4.8 Minimum number of unique tryptic peptides and their associated number of protein 
seeds in different GH families. (A) Total number of unique peptides selected for each GH family 
after comparison to other proteins in CAZyDB and the protein seeds in which they are found. (B) Top 
10 tryptic peptides (from blue bars in A) ranked by the highest number of protein seeds coverage in 

each family. (C) Percentages of total proteins in GH families covered by top 10, 50 and 100 peptides 
ranked by protein coverage. 
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4.3.7 Unique tryptic peptides selected for group of GHs in the gas microbiome can 
separate groups of proteins based on their taxonomical origins.   

In biogas reactors and plants, the hydrolytic ability of anaerobic bacteria of transforming 

polysaccharides into low molecular weight intermediates that can be used by other microbes 

during the anaerobic digestion food chain is a key element to the success to these types of 

systems.336 The biogas microbiome data provided phylum-level information of all MAGs that were 

re-annotated using dbCAN2. Hence, we decided to use this data to categorize the peptides we 

selected and the proteins they mapped to based on their phylum-level origins.  

Figure 4.9A shows the top 10 peptides ranked by coverage of number of proteins that 

were specific to individual phyla contributing to proteins in each GH family. As a first observation, 

we noticed that Firmicutes and Bacteroidetes proteins in families GH13, GH3, GH2, and GH43 

were amongst the ones with most representation captured by the top 10 peptides in each dataset. 

In terms of peptides found only in proteins of one phylum, in family GH43, for example, peptides 

ITQDGR, VYVYGSHDR, WYALLFGDR were identified only in proteins from MAGs assigned to 

the Firmicutes while peptide YLFWGSFR was specific to Bacteroidetes proteins. In family GH23, 

many more peptides covered proteins from single phyla like was the case of five peptides mapping 

exclusively to proteins from Bacteroidetes, three peptides found only in proteins originated from 

Proteobacteria, and one peptide that mapped only to Firmicutes proteins.  

From the total number of peptides selected for each GH family, we also calculated how 

many of them were necessary to cover all proteins related to phyla with high hydrolytic potential 

in anaerobic environments (Figure 4.9B). As observed, between 195-854 peptides are necessary 

to cover all Firmicutes proteins in each of the analyzed GH families while the numbers were less 

for other phyla. These numbers consider shared proteins amongst phyla so it is expected that the 

numbers could be less if one is indeed only looking to target proteins from a specific phylum and 

not any other one. These findings are important from a microbiological point of view, as members 

of the hydrolytic Firmicutes and Bacteroidetes phyla are the most commonly found in biogas 

plants,336 so it may be possible to target GH proteins that are only derived from these phyla.  
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Figure 4.9 Peptide classification by taxonomy using sequence information from the biogas 
microbiome MAGs. (A) Stacked bars showing the classification of groups of proteins captured by 
peptides based on their taxonomical origins at the superkingdom level. (B) Number of peptides from 
the ones selected to cover proteins by superkingdoms. NA, lacks annotation at the superkingdom 

level.  
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4.3.8 Unique tryptic peptides selected for group of GHs in the gas microbiome 

can separate groups of proteins based on their enzymatic specificity.    

Several GH families are populated with enzymes having different substrate specificities.390 

Such substrate specificity is expressed in the enzymatic commission numbers (EC) given to an 

enzyme.391 For example, enzymes in family GH3 are known to have dual or broad substrate 

specificities with respect to monosaccharide residues, linkage position and chain length of the 

substrate.392 Depending on the type of lignocellulose material fed to an anaerobic digester, sets 

of GHs with more or less specialized enzymatic activities and substrate affinities may become 

more important for the successful degradation of complex polysaccharides. This reason led us to 

explore the idea if peptides from selected families of GHs could also provide resolution of groups 

of proteins within the same family with different enzymatic activities. To check whether this was 

true, we employed the Ghost Koala annotation pipeline393 to retrieve EC numbers for all the GHs 

captured by different peptides in the biogas microbiome.  

Interestingly, we observed that the unique peptides we selected grouped proteins within 

GH families based on different EC numbers. In Figure 4.10, we can observe, for example, that 

out of the 1055 peptides originally selected for family GH2, 443 peptides are only found in GH2 

proteins with beta-galactosidase activity (EC 3.2.1.23) while 196 are specific to GH2 proteins that 

have beta-mannosidase activity (EC.3.2.1.31). Even in the GH13 family, which is known to 

contain ~30 different enzymatic specificities394, discrete groupings of peptides and proteins 

according to EC numbers were observed. For example, to target GH13 proteins with Amylo-(1,4 

to 1,6)transglucosidase (EC 2.4.1.18) activity, 247 peptides are necessary, while proteins that 

were annotated as  Cyclomaltodextrinases (EC 3.2.1.54), Glucan 1,4-alpha-maltohydrolases 

(3.2.1.133) and Neopullulanases (3.2.1.135) can be differentiated from other GH13 proteins by 

189 peptides.  

 This differentiation given by the peptides selected here could be useful to target specific 

groups of GH proteins by substrate affinity in a bioreactor and opens the possibility of monitoring 

enzymes, independent of their families, but grouped under several EC numbers.    

 

 

 

 

 

 

http://www.brenda-enzymes.org/enzyme.php?ecno=2.4.1.18
http://www.brenda-enzymes.org/enzyme.php?ecno=3.2.1.133
http://www.brenda-enzymes.org/enzyme.php?ecno=3.2.1.135
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Figure 4.10 Functional classification of groups of proteins captured by numbers of unique 
peptides.  Functional annotation of proteins captured by unique peptides was done with Ghost Koala. 
N/A= lacks annotation. 
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4.4 Conclusions. 
 

In this project we have explored the in-silico selection of a minimum set of unique peptides 

targeting groups of proteins in GH families. Contrary to most common targeted proteomics 

workflows, we decided to make use of shared peptides within proteins in families of GHs to 

capture all proteins that passed our peptide selection criteria as well as comparisons to 

background peptidomes. During our analyses we found that the amount of tryptic peptides specific 

to GH families either using sequence information derived from CAZyDB or the biogas microbiome 

project were relatively high (>700 in each case); however, these peptides can be adapted to 

provide different degrees of taxonomical information or even EC number distinction for the case 

of peptides identified from the biogas data. The high number of tryptic peptides identified for GH 

proteins was also useful to determine that it may be possible to find unique peptides for individual 

GH proteins even within the same family (i.e., a GH3 protein versus another GH3).  

As we mentioned before, large-scale targeted proteomics studies have employed between 

300-600 peptides to target different proteins, however, in less biologically complex systems when 

compared to biogas reactors or plants.378, 379 Thus, reducing the number of peptides to more 

manageable amounts (<100), if possible, will be a future goal of this work. Other in-silico 

strategies to try out with the purpose of reducing the number of shared peptides amongst proteins 

can include the digestion of protein targets and background databases with enzymes other than 

trypsin that could for example, exploit the sequence similarities of active site regions found in 

several GH families. Of note, after the initial in-silico determination of a set of peptides, these 

analytes need to be tested experimentally to select the ones that can provide adequate signals in 

a mass spectrometer. This process further reduces the list of initial peptide candidates albeit at 

the expense of losing some of the proteins of interest.  

Targeted proteomics promises a way to identify and quantify proteins in anaerobic 

digesters that can serve as indicators of the hydrolytic capacity of the system. As of now, several 

other techniques that measure biodegradable organics present in the sludge fraction of a 

bioreactor (i.e., oxygen content, C/N ratios measurement) are employed to evaluate the 

performance of the anaerobic digestion process in faster ways, but these metrics lack molecular-

level resolution. In terms of protein abundance, the hydrolytic capacity of anaerobic digesters has 

been assessed by isolating active enzymes from different sample fractions and conducting in-

vitro substrate-degradation assays to characterize their enzymatic activity, but these do not reveal 

sequence-level identities of the CAZymes that are actively participating in the process and neither 

of their microbial origins.332, 395 Thus, information derived from metaproteomics studies and 
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adapted to develop targeted proteomics assays could get us closer to the high-throughput 

identification of functional biomarkers for biogas reactors and plants.  

 The development of targeted proteomics assays relies on lists of protein targets that are often 

selected based on experimental data obtained in global proteomics experiments. Common 

workflows for designing targeted proteomics studies also use peptide information collected from 

global approaches to choose those analytes that can provide not only analytical specificity to 

proteins of interest, but that are also able to provide intense signals and adequate fragmentation 

profiles by tandem mass spectrometry. These peptides then become protein surrogates and 

primary carries of quantitative information. However, in typical global proteomics experiments 

some of these peptides may be hidden in the spectral data that is collected. One reason of  why 

this happens is due to the prevalent occurrence of chimeric spectra in LC-MS/MS based global 

proteomics runs, which causes peptide information to be lost during database searches. In the 

next chapter the problem of chimeric spectra occurrence in LC-MS/MS global proteomics using 

spectral data-dependent acquisition was explored under different experimental conditions to 

evaluate the opportunity of recovering missing peptide identification data from these types of 

experiments.  
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CHAPTER 5                                                                                                                         
An updated perspective on deconvoluting chimeric MS/MS spectra by liquid 

chromatography and precursor isolation and their subsequent assignment by a 

multi-peptide-spectrum match algorithm 
 
Text and figures were adapted from the following published journal article:  
 
Villalobos Solis, M.I., Giannone, R.J., Hettich, R.L. and Abraham, P.E. (2019) Exploiting the 
Dynamic Relationship between Peptide Separation Quality and Peptide Coisolation in a Multiple 
Peptide Matches-per-Spectrum Approach Offers a Strategy To Optimize Bottom-Up Proteomics 
Throughput and Depth. Analytical Chemistry, 91, 7273-7279. 
 

Authors contributions: Manuel Ivan Villalobos Solis (M.I.V.S.) planned the study alongside Paul 
E. Abraham (P.E.A.) and Richard J. Giannone (R.J.G.).  M.I.V.S executed all the experiments 
and collected all the spectral data. M.I.V.S. and P.E.A. analyzed the results and wrote the main 
manuscript. R.J.G and Robert L. Hettich provided critical reviews and proof-read the manuscript. 
All authors reviewed and approved the final version of the manuscript. 
 

Notes: Supplemental figures and tables mentioned in text are available at 
10.1021/acs.analchem.9b00819 and their numbering reflects that of the online material.  
 

5.1 Introduction. 
 

Despite advances in mass accuracy, resolving power, and scan speeds in mass 

spectrometry instrumentation, one of the remaining challenges of any high-throughput bottom-up 

proteomics experiment is that only a fraction of the collected tandem mass spectra (MS/MS) can 

be assigned to peptide sequences with high confidence (usually ≤ 60%).107 Although several 

reasons contribute to this effect,109 one that has been under scrutiny by the proteomics community 

is the occurrence of chimeric spectra (also known as mixture or co-fragmented spectra). 

Chimeric spectra are the result of the co-isolation and co-fragmentation of two or more 

peptide precursor ions with similar m/z and retention time. The complex nature of the samples 

commonly analyzed in bottom-up proteomics (>100,000 detectable peptide species) and the m/z 

isolation widths typically used in data-dependent acquisition  (DDA) experiments (2-4 m/z)107, 109 

can result in chimeric spectra representing 50% of the total MS/MS data collected.109 Recent 

investigations employing tryptic digests of Henrietta Lacks’ ‘Immortal’ Cell Lines (HeLa) cells 

demonstrated that even in experiments with a narrow isolation width of  2 m/z, 39% of the total 

MS/MS spectra collected is chimeric.118 

The negative effects of chimeric spectra in proteomics studies have been well-studied. 

For example, in database-driven peptide and protein identifications, the presence of chimeras 

deteriorates the search scores of true peptide assignments given by algorithms such as MASCOT 
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and SEQUEST.109 In addition, chimeric spectra reduces the accuracy of quantitative isobaric 

tagging-based quantification methods such as iTRAQ or TMT, in which the contribution of reporter 

ion intensities from co-fragmented peptides, causes the under-estimation of protein/peptide 

abundance differences (a phenomenon termed as “ratio compression”).110-112 Due to these issues, 

experimental and computational approaches that minimize the negative impact of chimeric 

spectra in bottom up experiments have been developed. 

Reducing the complexity of samples prior to MS analysis has the advantage of minimizing 

the chance of co-eluting peptides.396, 397 By exploiting independent physicochemical properties of 

peptides, protocols coupling orthogonal chromatographic separations before MS detection have 

shown improved separation resolutions and increased peptide and protein identifications, albeit 

at the cost of increased analysis times.398-400 With the introduction of ultra-high-pressure 

chromatography (UHPLC), a new era of high-quality one-dimensional separations has 

resurfaced. The use of chromatographic pumps that can tolerate up to 10,000 psi and stationary 

phases with particles sizes of < 2 µM diameter,200, 205 not only has afforded narrower peptide 

elution profiles and increased ion sensitivities, but the improved column capacities also reduces 

co-elution of peptides and hence, the occurrence of chimeric spectra.107 This mode of operation 

has enabled “single-shot” proteomics studies, in which complex proteomes are analyzed in-depth 

with the aid of 1D reverse phase chromatographic columns of 50 cm or more in length and 

effective LC gradients times ranging from 300-500 mins.152, 200, 204, 401 Although 1D-UHPLC 

(including “one-shot” separations) and 2D-HPLC based separations reduce the occurrence of 

chimeric spectra, even under the best chromatographic separations, the co-elution of thousands 

of peptides is still unavoidable.107 

Computationally, database searching algorithms aiming to deconvolute chimeric spectra 

collected in DDA experiments have been developed.115, 402-405 These algorithms make use of the 

multiple peptides-per-spectrum-match approach (mPSM) that, in comparison to most commonly 

employed search strategies using a single-peptide match-per-spectrum approach (sPSM), try to 

assign more than one peptide per MS/MS spectrum. A newly developed computational workflow 

called CharmeRT demonstrated substantial improvement in peptide identifications when 

compared to other methods.118 This was achieved by implementing a second search strategy 

coupled with a highly accurate retention time prediction algorithm method. The second search 

option of CharmeRT is integrated into the database search engine MSAmanda, with validation of 

multiple peptide assignments to a given MS/MS spectrum performed by Elutator, a new tool built 

upon the foundations of Percolator that incorporates retention time (RT) prediction in FDR 

calculations. The impact of having RT prediction in FDR evaluations of first and second searches 
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translated into 25%-62% more peptide identifications in runs of HeLa tryptic digests compared to 

more frequently used database search workflows.  

Further advancements in LC and MS technology will continue to improve the limit of 

detection for peptide sequencing in complex mixtures; however, these alone are unlikely to solve 

the problem with chimeric spectra. We contend that a concomitant evaluation of LC configurations 

and mPSM search algorithms is required to further increase the number of detectable peptides. 

Therefore, our study was designed to systematically evaluate several LC peptide separation 

techniques, ranging from short HPLC gradients to UHPLC and orthogonal separations, as well as 

precursor isolation m/z windows, to better understand the effects of each on the subsequent 

assignment of MS/MS spectra by a traditional sPSM search strategy compared to a mPSM one, 

specifically CharmeRT. 

 

 5.2 Experimental procedures. 
 

5.2.1 Standard samples for LC-MS/MS analyses.  

Commercial Pierce HeLa Protein Digest Standards were purchased from Thermo Fisher 

Scientific (20 µg total amounts). The lyophilized peptides were resuspended in 40 µL of water 

with 0.1% formic acid as per the manufacturer instructions. Stock solutions of ~0.5 µg/µL were 

frozen at -80°C and used as needed. Volumes equivalent to 2 µg of HeLa protein digest were 

analyzed each time using different LC setups and gradients as described below. 

5.2.2 1D-LC-MS/MS runs of HeLa tryptic digest standards. 

1D-LC-MS/MS runs were carried out using a Proxeon EASY-nLC 1200TM system (Thermo 

Fisher Scientific) interfaced with a Q Exactive Plus (Thermo Fisher Scientific) mass spectrometer 

equipped with a nano-electrospray source. For HPLC measurements, peptides were loaded in 

mobile phase A (0.1% formic acid, 2% acetonitrile) each time onto a trap column (150 mm x 100 

μm ID) packed in-house with ~10 cm of 5 μm Kinetex C18 resin (Phenomenex). Peptide separation 

was conducted on an analytical column (250 mm x 75 μm ID) packed in-house with 5 μm particle 

size Kinetex C18 resin using a linear gradient from 2 to 22% of mobile phase B (0.1% formic acid, 

80% acetonitrile) at a flow rate of 300 nL/min over 90, 210, or 240 min depending on the 

experiment. Each gradient was followed by an increase to 35% B within 5 minutes, a 5 mins hold 

in 35% B, and afterwards a decrease to 2% B in 5 minutes. 
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To test the effects of smaller particle diameter size in number of identifications, the same 

LC gradients were used in an UHPLC setup, where the trap and analytical front columns were 

packed with 1.7 μm particle size Kinetex C18 resin. In addition, HeLa peptides were separated with 

an analytical 500 mm x 75 μm ID column packed with 1.7 μm Kinetex C18 which was placed in a 

column heater (Sonation GmbH) at a temperature of 60°C. The linear gradient for this 

configuration was from 2 to 22% solvent B over 500 mins at a flow rate of 250 nL/min. 

Optimization of relevant MS parameters in the Q Exactive instrument were performed and 

were found to agree well with the Q Exactive benchmarking study.406 In brief, mass spectra were 

acquired with the Q Exactive Plus instrument in a top 10 data-dependent acquisition setup. 

Peptide precursor MS spectra was collected within 300 to 1500 m/z with automatic gain control 

(AGC) target value of 3 × 106 at a resolution of 70,000 with a maximum injection time (IT) of 25 

ms. Precursor ions with charge states ≥2 and ≤ 5 and intensity threshold of 1.6 × 105 were selected 

for higher-energy C-trap collision dissociation (HCD) with a normalized collision energy of 27 eV. 

Peptide precursor ions collected from the 1D HPLC and UHPLC gradient runs were isolated using 

a 1.6 m/z isolation width; whereas for the best gradients under HPLC or UHPLC conditions (see 

Results & Discussions), precursor m/z isolation widths of 0.8 and 3.0 m/z were additionally 

employed in order to test the effects of co-isolation interference. Fragment ion spectra were 

always acquired at a resolution of 17,500 at m/z 200 with an AGC target value of 1 × 105 and 

maximum IT of 50 ms. Dynamic exclusion was set to 20 s to avoid repeated sequencing of 

peptides. All runs were conducted in triplicate. 

 

5.2.3 2D-LC-MS/MS runs of HeLa tryptic digest standards. 

2D LC-MS/MS runs were performed using a Vanquish UHPLC interfaced with a Q 

Exactive Plus mass spectrometer (Thermo Fisher Scientific) outfitted with a 100 µM ID triphasic 

precolumn (RP-SCX-RP) coupled to a 250 mm x 75 µM ID nanospray emitter packed with 250 

mm of 5 µm Kinetex C18 RP resin.407 For each sample, 2 µg of HeLa peptides were loaded to the 

precolumn by direct flow (2 µL/min) then separated and analyzed across two successive salt cuts 

of ammonium acetate (35 mM and 500 mM), with each cut followed by a 210 min, split-flow (300 

nL/min) organic gradient, wash, and re-equilibration: 0% to 2% solvent B over 2 min; 2% to 22% 

solvent B over 208 min; 22% to 50% solvent B over 10 min; 50% to 0% solvent B over 10 min, 

hold at 0% solvent B for 15 min. Peptides were loaded with mobile phase A onto an in-house 

assembled 100μm ID fritted precolumn packed with 10 cm of 5 μm particle size Luna strong-

cation exchange resin (SCX; Phenomenex). Mass spectra from the eluting peptides was collected 
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using the same MS and MS/MS parameter settings on the Q Exactive Plus instrument as in the 

1D-LC-MS/MS runs. 

5.2.4 PSMs, peptide, and protein identifications by database search. 

All MS/MS spectra collected were processed in Proteome Discoverer v.2.2. (PD) with 

MSAmanda v.2.2 and Percolator. Spectral data were searched against the most up-to-date 

human reference proteome database from UniProt (ID. UP000005640) to which common 

laboratory contaminants were appended. The following parameters were set up in MSAmanda to 

derive fully-tryptic peptides: MS1 tolerance = 5 ppm; MS2 tolerance = 0.02 Da; missed cleavages 

= 2; Carbamidomethyl (C, +57.021 Da) as static modification; oxidation (M, +15.995 Da) and 

carbamylation (n-terminus, +43.006 Da) as dynamic modifications. The percolator FDR threshold 

was set to 1% at the PSM and peptide level. In addition, MS/MS spectral data were searched with 

MSAmanda in which a second search option was enabled and Elutator v2.2 (the CharmeRT 

workflow). Parameters applied for MSAmanda second search were as described in the original 

CharmeRT publication, with the exception that a maximum of 3 additional precursors per PSMs 

were searched (referred as second searches).118 The Elutator FDR threshold was set to 1% at 

the PSM and peptide level. 

5.2.5 Assessment of the performance of each 1D and 2D LC-MS/MS runs.  

The following identification parameters were considered to assess the performance of 

each 1D and 2D LC-MS/MS runs: number of protein groups, number of modification-specific 

peptides with charge (referred to as peptide analytes), number of peptides without modification 

and charge (referred to as peptide sequences) and number of peptide-spectrum matches (PSMs). 

In addition, we considered the precursor isolation interference percentage calculated by Proteome 

Discoverer, as a measure of chimerism in the spectra collected: 

Eq.1 % 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 100 × [1 − (
𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟  𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛  𝑤𝑖𝑛𝑑𝑜𝑤

𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦  𝑖𝑛 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛  𝑤𝑖𝑛𝑑𝑜𝑤
)] 

The full width at half-maximum (FWHM) region was calculated for each LC configuration 

using the FeatureFinderMetabo node408 of OpenMS409 using default parameters except for the 

expected chromatographic peak width (in seconds) setting, which was optimized for each 

configuration. All spectral data collected in this study was deposited at the ProteomeXchange 

Consortium via the MASSIVE repository. The project accession is PXD012635 and reviewers can 

access the data under the username reviewer64304@ebi.ac.uk and password qd5l9bhm. 
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5.3 Results & Discussions.  
 

5.3.1 Performance metrics across a range of nanoLC peptide separation 
techniques. 

Two common LC peptide separation techniques are HPLC and UHPLC. The former 

employs analytical columns packed with stationary phases having particle sizes > 2 µM and flow 

rates that operate below 450 bar,410 while the latter uses stationary phases with particle sizes ≤ 2 

µM that drive the backpressure of the LC system to 600-1300 bar.205 Our approach started with 

investigation of the performance of 5 µM C18 packed HPLC and 1.7 µM C18 packed UHPLC 

columns (250 mm x 75 μm ID) employing three different linear gradient lengths from 2 to 22% 

solvent B over 90 min, 210 min and 240 min at a constant flow rate of 300 nL/min. 

Not surprisingly, the 1D-UHPLC setups outperformed 1D-HPLC in average number of 

identifications across the different gradients tested, with the best performance achieved in the 

longer analysis time. For example, in the 240 min gradient, the average numbers of PSMs, peptide 

sequences, peptide analytes and protein groups were 18%, 56%, 58% and 42% higher than the 

values obtained for HPLC (Figures S-1A-D). These data are undoubtedly explained by UHPLC 

providing narrower FWHM and boosting the sensitivity of the analysis with increased ion 

intensities (Figure S-2).204 In addition, the overall improved chromatographic resolution provided 

by UHPLC setups identified >90% of all the identified HPLC peptides and further yielded between 

38-44% new peptide sequences and 25-32% new protein groups not found by their HPLC 

counterparts (Figure S-1E). 

The comparison across gradient time lengths on the same LC setups demonstrated that 

the increase in linear gradient times was more beneficial for UHPLC. For both UHPLC and HPLC, 

the change from 90 to 210 min increased the average number of PSMs by more than 90% per 

platform, with at least 10% increases in the numbers of peptide analytes, peptide sequences and 

protein groups. When the gradient lengths were adjusted from 210 min to 240 min, minor returns 

in the number of identifications were still observed for the UHPLC setup, with a maximum gain of 

12% in the number of PSMs and less than 5% for the remaining identifications. However, for 

HPLC only an increase of 6% PSMs was observed at 240 min, but the numbers of the other 

identifications were reduced between 2%-4%, thereby suggesting longer gradients for the HPLC 

column results in diminishing returns. In general, the effect observed in the 240 min HPLC can be 

explained by the peak dilution phenomena, in which the use of long gradients with large particle 

sizes causes a decrease in peak heights which is accompanied by a loss of sensitivity and 

resolution.411, 412 
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One way to combat peak dilution is to use extra-long 1D UHPLC columns (> 30 mm) or to 

fractionate the sample via 2D HPLC. While long 1D-UHPLC analytical columns have been shown 

to offer in-depth proteome analyses with comparable identification metrics to 2D-HPLC 

chromatography, these different modes of enhanced LC likely lead to differing degrees of co-

isolation. Therefore, both 2D-HPLC and long 1D-UHPLC configurations were employed to assess 

their overall influence on chimeric MS/MS spectra. As such, a 2D-HPLC separation strategy was 

evaluated where peptides were first loaded onto a triphasic precolumn and analyzed over two salt 

cuts, each followed by a 210 min organic gradient, for a total measurement time of 420 minutes. 

For the long 1D-UHPLC analytical column, a 500 mm long 1D-UHPLC column was evaluated in 

which separation occurred over a 500 min organic gradient. As observed in Figures 5.1A-D, the 

percentage increases in the average number of identifications were significant for both the 2D-

HPLC and the 1D-UHPLC 500 min runs when compared to the results from the 250 mm HPLC 

and UHPLC configurations tested. 

5.3.2 Comparison of precursor isolation interferences across a range of nanoLC 
peptide separation techniques. 

An obvious benefit provided by enhanced LC separation is a reduction in the number of 

co-eluting peptides. As fewer peptides with similar m/z ratios co-elute, the amount and degree of 

interfering precursor ions during isolation is expected to decrease. To evaluate this premise 

across the tested LC configurations, the degree of isolation interference imparted by co-eluting 

peptides was computed. 

Given the already established relationship between precursor ion abundance and the 

degree of isolation interference in MS/MS spectra,109 the median isolation interference 

percentages of identified PSMs in each LC-MS/MS run were plotted against different ranges of 

precursor ion abundance (Figure 5.1E). As expected, higher precursor abundances have lower 

median isolation interferences in each LC configuration. In general, the majority of PSM precursor 

abundances ranged from 1e07-1e10. In this range, higher median isolation interference was 

observed in the 1D-HPLC setups relative to the 1D-UHPLC setups, while the lowest isolation 

interferences were found in the 500 min 1D-HPLC runs and 2D-HPLC. Between these more 

specialized LC setups, precursors identified in the 2D-HPLC runs had a slightly lower median 

isolation interference percentage. Plotting the 2D-HPLC values for the independent fractions of 

peptides collected at each salt pulse revealed similar median isolation interference percentages 

across both fractions, suggesting they have similar peptide complexity (Figure S-3). 
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Figure 5.1 Results from the LC-MS/MS analyses of 2µg of HeLa digest using different LC 
configurations. (A-D) Comparison of the average number of identif ications between runs employing 
different gradient times under HPLC (250 mm x 75 μm column ID, 5 μm C18 particle size) and UHPLC 
setups (250 mm x 75 μm column ID, 1.7 μm C18 particle size). The alternative 1D-UHPLC 500min 
(500 mm x 75 μm column ID, 1.7 μm C18 particle size) and 2D-HPLC (250 mm x 75 μm column ID, 5 
μm C18 particle size) setups are also shown. Error bars are the standard error of the mean (n= 3 
technical replicates). Percentage increase in the average number of identif ications of 2D-HPLC and 
UHPLC 500 min compared to 1D-UHPLC 240min runs are shown in each graph as examples (solid 

and dashed lines, respectively). (E) Boxplots showing the median isolation interference of all identif ied 
PSMs precursors across a range of abundances in all initial LC configurations tested. A distribution of 
the total number of PSMs precursors per abundance ranges is also shown in blue bars. All spectral 
data were searched with Amanda-Percolator. 
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5.3.3 Evaluation of the CharmeRT mPSM search algorithm across different LC 
peptide separation techniques.  

Dorfer et al. (2018) benchmarked CharmeRT against other widely used search algorithms, 

including MSAmanda, and demonstrated improved measurement depth. However, an in-depth 

evaluation of the performance gains across a broad range of peptide separation techniques has 

not been reported. Therefore, our objective was to compare the CharmeRT workflow (mPSM) 

against its foundational algorithms, MS Amanda and Percolator (sPSM), across the various LC 

configurations implemented. As expected, the application of CharmeRT increased the average 

numbers of identified PSMs between 31%-63% for the HPLC runs, 56%-58% for the UHPLC runs, 

and up to 64% and 26% for the more specialized 2D-HPLC and 500 min 1D-UHPLC runs, 

respectively. These numbers translated to increases in the number of peptide sequences 

identified overall with gains of 32%-55% per HPLC run, 45%-41% per UHPLC, 51% per 2D-HPLC 

and 22% per 500 min 1D-UHPLC (Figure 5.2). The percentage gains in the average number of 

peptide sequences did not translate into comparable percentage of increases in the average 

number of protein groups; however, this observation is expected to vary across different peptide 

mixtures. Nearly all peptides and protein groups identified with MSAmanda-Percolator were also 

found with CharmeRT (Figure S-4). Moreover, most peptides identified from the second search 

mapped to protein groups identified in the first search (Figure S-5). Overall, these observations 

agreed well with results reported in the original CharmeRT publication. 

A major goal of this study was to better understand how varying the quality of peptide 

separation influences the performance of the CharmeRT search strategy and to determine 

whether one could achieve similar depth using either a UHPLC with MSAmanda-Percolator or an 

HPLC configuration with CharmeRT. A comparison of the average number of PSMs, peptide 

analytes, and peptide sequences between these two approaches revealed that HPLC combined 

with CharmeRT provided substantially more identifications than the conventional UHPLC 

Amanda-Percolator search (Figure 5.2). More importantly, comparable performance was 

observed between the HPLC 210 min CharmeRT and UHPLC 240 min Amanda-Percolator using 

the shorter analytical column (250 mm x 75 μm ID). Intriguingly, this observation suggests that 

peptide separation of a complex mixture on a HPLC column with shorter gradient times in 

combination with a mPSM search workflow can achieve identification metrics comparable to 

results given by a UHPLC column and a sPSM search strategy. 
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Figure 5.2 Results from the LC-MS/MS analyses of 2µg of HeLa digest using different LC 
configurations and MS/MS spectra search algorithms.  (A-D) Bar charts depicting the average 
numbers of identif ications obtained from the spectral data collected for each LC setup tested (x-axis) 
and searched with Amanda-Percolator or the CharmeRT workflow. Percentage increase or decrease 

of the CharmeRT results compared to the ones obtained with Amanda-Percolator are shown above or 
close to each pair of bars per LC setup. Error bars are the standard error of the mean (n= 3 technical 
replicates). 
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Next, the degree of overlap between the newly identified peptides provided by either 

UHPLC or the application of CharmeRT was evaluated. More specifically, the newly identified 

peptide sequences and protein groups identified from HPLC runs searched with CharmeRT were 

compared to the results obtained from their UHPLC counterparts searched with MSAmanda-

Percolator (Figure S-6). These comparisons demonstrate that the newly identified peptides for 

both approaches were mostly complementary, with only a small overlap (~10%). 

When comparing the CharmeRT performance between 2D-HPLC and the 1D-UHPLC 500 

min gradient runs (500 mm x 75 μm ID), the 2D-HPLC measurements had the highest percentage 

gains in terms of average number of PSMs, peptide analytes, peptide sequences and protein 

groups (64%, 63%, 51%, 13%, respectively) (Figure 5.2), despite 2D-HPLC having the least 

interference (Figure 5.1E). To explore this further, the total number of PSMs derived from the 2D-

HPLC and 1D-UHPLC 500 min setups at different ranges of isolation interference were binned 

and quantified based on their CharmeRT search depth (Figure 5.3, isolation width 1.6 m/z). 

Interestingly, across every isolation interference bin, the 2D-HPLC configuration afforded 2-4x 

more CharmeRT gains relative to the 1D-UHPLC 500 min configuration. Additionally, a greater 

search depth (i.e., a higher percentage of scans having 2-3 additional precursors derived from 

second searches) was observed at higher isolation interference ranges in 2D-HPLC. After 

exploring accompanying data related to data quality and PSM scoring, it’s not immediately 

obvious what metrics explain this phenomenon. However, a likely explanation is that the 2D 

separation scheme, which reduces the complexity of the loaded peptide mixture for each salt 

pulse, retains the CharmeRT performance gains like the 1D-HPLC 210 min separation scheme, 

whereas the 1D-UHPLC 500 min CharmeRT performance gains suffers from dilution of lower 

abundant secondary precursors. 
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Figure 5.3 Search depth achieved by CharmeRT in the spectral data collected through 
specialized LC modes of operation. Results from (A) 2D-HPLC and (B) 1D-UHPLC 500 mins runs 
at different isolation windows. Histograms of the number of PSMs per isolation interference range and 
identif ied in the first search of CharmeRT are shown. The colored stacked bars below each histogram 
represent the percentage (above each stacked bar) of PSMs identif ied in the first search of CharmeRT 
from which no additional PSMs derived from second search were identif ied (green color, Depth 1); 
from which just one additional PSM was identif ied (orange color, Depth 2, i); from which two additional 
PSMs were identif ied (green color, Depth 2, ii); from which three additional PSMs were identif ied (pink 
color, Depth 2, iii). 

 

 
 
 
 
 
 
 
 
 
 
 
 



128 
 

5.3.4 Evaluation of spectra collected from LC peptide separation techniques with 
different isolation widths and searched with CharmeRT.  

Widely acknowledged, precursor isolation widths can impact the performance in LC-

MS/MS measurements: narrower isolation widths lead to loss in signal and wider isolation widths 

results in more precursor co-isolation/co-fragmentation. As previously demonstrated by Dorfer et 

al., (2018) applying wider isolation widths during data acquisition improves the performance gains 

of the CharmeRT workflow. Therefore, our approach was to evaluate different isolation widths 

across the different LC configurations applied in this study. 

To this end, three isolation widths (0.8, 1.6 and 3.0 m/z) that encompass the range often 

employed in LC-MS/MS measurements were applied and performance assessed across the 1D-

HPLC 210 min and 1D-UHPLC 240 min setups, which gave the highest numbers of average 

identifications across each configuration either when the results were searched with Amanda-

Percolator or CharmeRT, as well as the 1D-UHPLC 500 min and 2D-HPLC setups.  

At each isolation width, the 1D-HPLC 210 min runs had the highest precursor isolation 

interference medians, followed by the 1D-UHPLC 240 min runs. The 1D-UHPLC 500 min and 2D-

HPLC setups presented similar isolation interference values (Figure 5.4A). Given the lower signal 

and reduced potential for co-fragmentation, the narrower isolation width of 0.8 m/z had the fewest 

identifications and lowest gains by the CharmeRT workflow (Figures 5.4B and S7). Similar to the 

results observed above, CharmeRT gains in peptide and protein group identifications were higher 

in the HPLC configurations relative the UHPLC setups, particularly the 2D-HPLC which 

experienced the widest range in peptide identifications across the three different isolation widths. 

In agreement with the original CharmeRT publication, our results revealed CharmeRT 

improvements as isolation widths increased, except for the 1D-UHPLC 500 min configuration. 

This is counterintuitive, as the increase in precursor isolation interference becomes seemingly 

more favorable for the CharmeRT workflow (Figure 5.3, isolation width 3 m/z and Figure S-8). 

This novel insight into mPSM expectations implies that long 1D-UHPLC gradient times do not 

experience the same benefit in the CharmeRT workflow as observed for the 2D-HPLC and other 

more common HPLC configurations tested in this study. 
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Figure 5.4 Results from the spectral data collected with a range of isolation windows from the 
best LC configurations. (A) Boxplots showing the median isolation interference of all identif ied PSMs 
precursors from the spectral data of the optimized LC gradients collected under a range of isolation 
windows. (B) Bar charts depicting the average numbers of peptide sequences and protein groups 
obtained from the spectral data collected for each LC setup (x-axis) under a range of isolation 
windows. Percentage increase or decrease afforded from the CharmeRT results compared to those 
from Amanda-Percolator are shown above or close to each pair of bars per setup and isolation window. 
Error bars are the standard error of the mean (n= 3 technical replicates). The average numbers  of 
PSMs and peptides analytes are presented in Figure S-8. 
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5.4 Conclusions. 
 

 By using state-of-the-art LC-MS platforms, proteomes of simple organisms can now be 

sequenced to near completion in just over an hour.413 However, comparable coverage is still not 

readily achieved in more complex peptide mixtures, like those derived from higher-order 

eukaryotes or microbial communities. While steady advancements in MS technology and LC will 

continue to transform the achievable throughput and depth of proteomic analyses, the results 

presented herein suggest that a better understanding of the dynamic relationship between peptide 

separation and co-fragmentation can be leveraged by mPSM approaches, such as CharmeRT, 

to enhance saturation in peptide identifications with minimal measurement duration or without 

advanced LC configurations, i.e., 500 mm long, heated, UHPLC-driven peptide separations. 

Moreover, this approach coupled to more specialized LC configurations, like 2D-HPLC, offers 

even greater depth when compared to more traditional single-PSM approaches. 

While our results revealed an improvement in peptide separation leads to the expected 

increases in the number of peptides identified, similar gains can be achieved using shorter 

gradients coupled with a mPSM approach. This performance differential became less as the 

peptide separation improved. This observation has substantial implications for LC-MS/MS 

approaches that use HPLC columns, as it suggests that a new approach towards improving 

peptide identification rates is to reduce peptide separation while employing a mPSM approach. 

Moreover, for the 250 mm x 75 μm ID HPLC and UHPLC columns, a similar depth can be 

achieved when HPLC measurements employ the CharmeRT workflow. Importantly, this suggests 

that research laboratories separating complex mixtures on a HPLC column with shorter gradient 

times can achieve comparable identification metrics as if the sample were separated on a UHPLC 

column. 

Many LC-MS proteome specialists view the use of longer columns packed with sub-2 μm 

separation particles, as the most direct configuration toward improving peptide identifications.204 

Yet, our results offer an alternative perspective, in which the application of CharmeRT performed 

substantially better for a 2D-HPLC strategy when compared to a long 1D-UHPLC column. 

Therefore, the 2D-HPLC strategy combined with mPSM represents the best path toward 

improving the number of detectable peptides, enabling a more rapid and comprehensive 

proteome analysis when compared to the longer UHPLC columns. Moreover, because the 

demands of UHPLC configurations require LC platforms that withstand very high pressures, which 

are often unavailable to non-specialists, MS/MS spectral data derived from HPLC separations 

searched with a mPSM approach could become broadly adopted by the proteomics community. 
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The occurrence of chimeric spectra in global proteomics experiments using data-

dependent acquisition are but one of the reasons behind missing peptide identifications. Other 

causes are variable peptide ionization efficiencies and ion suppression effects. On the biological 

side, peptides derived from naturally abundant proteins have better chances of being identified in 

comparison to the ones produced from less abundant proteins. Related to this point, a vast 

amount of research now agrees that amongst the molecules in a cell controlling important process 

such as cell-to-cell signaling, differentiation, growth, and defense are endogenous or native 

peptides of very low abundance that can be products of protein maturation, turnover or small open 

reading frames. If global proteomics suffers from all these issues, how can we increase the 

chances of identifying such part of the proteome that is subjected to dynamic range constrains? 

This issue was explored in more detail in the following chapter.  
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CHAPTER 6                                                                                                                       
LC-MS/MS based discovery and characterization of proteolytic cleavage products 

(PCPs) produced during the mutualistic symbiotic interactions between the 

perennial plant Populus X canescens and the ectomycorrhizal basidiomycete 

Laccaria bicolor 
 

Text and figures were adapted from the following manuscript submitted and under revision in the 
Molecular Plant-Microbe Interactions Journal (Revised version submitted on April 3rd, 2020). 

 

Manuel I. Villalobos Solis, Suresh Poudel, Clemence Bonnot, Him K. Shrestha, Robert L. 
Hettich, Claire Fourrey, Francis Martin, and Paul E. Abraham.  (2019) Regulation at the plant-
microbe interface: Discovery and characterization of signaling polypeptides using high-
performance tandem mass spectrometry 
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Notes: Both M.I.V.S and S.P. are first authors of this study. Supplementary tables are included in 
the online version of dissertation as downloadable files and their numbering reflect the one 
followed in this chapter.  

 

6.1 Introduction. 
 

The plant peptidome encompasses a mixed array of low-molecular weight peptides (<10 

kDa), or proteolytic cleavage products (PCPs), that are derived from endogenous cellular 

mechanisms of proteolysis acting in protein turnover,414 or in the maturation of large protein 

precursors.133, 415 PCPs from protein turnover processes may not have pronounced cellular effects 

in plants but may act as sources/reservoirs of nitrogen.130-132, 416 By contrast, the group of PCPs 

derived from protein maturation processes have key roles in plant growth and development, 

reproduction, and stress responses.133, 135 These types of bioactive PCPs include well studied 

families of plant peptide hormones that are classified according to primary sequence 

characteristics.135 

Plant PCPs also fulfill diverse roles in the different types of symbiotic interactions with 

microorganisms in the environment.417 Although PCPs that are the products of protein turnover 

events have not been directly implicated in biological functions during symbioses, it is interesting 

to note that the machinery behind protein degradation appears to be affected in plants undergoing 

symbiotic relationships with microbes, where the process is deemed essential for cellular 
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maintenance.418-420 Regarding bioactive PCPs, several of them have been characterized as 

molecular intermediaries in the responses that plants induce on associated microbiota.421-424 

Amongst the different microbial signals that a plant perceives at any time are microbial bioactive 

PCPs, which have been shown to alter their hosts cellular behavior in order to survive.425-428 

The discovery and characterization of PCPs in plants and in plant-microbe interactions 

have been expedited with the application of experimental mass spectrometry (MS) methodologies 

that have used biomaterial known to be enriched in selective families of PCPs or genetically 

altered to overexpress them, followed by purification or enrichment strategies, and in some cases 

mapping of spectral data to custom-made databases containing known PCP precursors and/or 

alternate sequence versions of bioactive PCPs.415, 429-439 

All these studies have demonstrated the advantage of MS methodologies for the large-

scale identification of PCPs in plants and plant-microbial interactions; however, they have also 

highlighted several technological challenges associated with their application including the 

relatively natural low abundance of PCPs, as well as undefined proteolytic processing and 

unusual post-translational modifications that are normal sequence features on them. 

Furthermore, several of these studies were also tailored specifically for the detection of known 

PCPs families. Thus, alternative MS approaches that can provide a wider image of known or 

unknown PCPs involved not only in plants but in plant-microbe interactions are needed. 

One of such alternatives is to explore the capabilities of searching MS spectral data with 

de novo database-assisted searches.440 In de novo database-assisted searches peptide 

sequence tags derived directly from a MS/MS spectrum are used to better select candidate 

peptides in a database.149, 441 In this way, de novo circumvents the low sensitivity and impractical 

implementation of deriving in-silico spectra from database searches with nonspecific cleavage 

rules;441, 442 or of narrowing the scope of identifications by searching spectral data against 

databases that identify selected groups of PCPs. 

Combined with experimental practices that enrich peptides < 10 kDa in samples from 

tissues and cells,138, 139, 142, 144, 145, 429, 435 tandem mass spectral peptide sequencing via de novo-

assisted database searches could provide a feasible way to comprehensively detect endogenous 

groups of PCPs produced in tissues of plants and in cells of microbes undergoing symbiosis. In 

this study, we thus explored the feasibility of the application of 10 kDa MWCO filters to enrich 

PCPs in biomaterial directly extracted from Populus X canescens plants grown in vitro with the 

ectomycorrhizal basidiomycete Laccaria bicolor. Interestingly, recent publications on the 

symbiosis between Populus trees and L. bicolor, have shown that the establishment and 

regulation of this interaction is driven by effector-like PCPs derived from small protein 
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precursors;443, 444 however, the comprehensive profiling of all types of PCPs expressed in active 

ectomycorrhizal Populus roots is still missing in literature. 

To benchmark the performance of our approach before its application to the Populus-L. 

bicolor system, and evaluate the confidence levels of the de novo results, standardized samples 

containing constant amounts of undigested Escherichia coli K12 proteome backgrounds as well 

as digested Universal Proteome Standard (UPS1) tryptic digests and variable concentrations of 

known absolute quantification (AQUA) heavy-labeled peptide standards were analyzed. After 

peptide enrichment using 10 kDa MWCO filters, it was possible to reproducibly recover 

quantifiable information from UPS1 peptides and AQUA peptide standards.  

When applied to the Populus-L. bicolor system, our methodology was able to identify 

PCPs involved in biological processes other than in the plant-fungi interaction, such as PCPs 

representing the bioactive form of the Populus Photosystem II complex 5 kDa (PsbTn) protein in 

plant leaves. A differential PCP abundance analysis determined a total of 157 PCPs that were 

significantly more abundant in root tips with established ectomycorrhiza when compared to root 

tips without established ectomycorrhiza and extramatrical mycelium of L. bicolor, thus suggesting 

roles in the mutualistic interactions between both organisms. Of these, 96 PCPs mapped to 69 L. 

bicolor proteins, 56 PCPs mapped to 64 Populus proteins and 5 PCPs were shared between 12 

Populus and 6 L. bicolor proteins, respectively. These findings demonstrate that global profiling 

of PCPs via LC-MS/MS with de novo-assisted database search could significantly advance the 

comprehensive understanding of the role of these molecules in plant-microbe interactions, and 

highlights the general applicability of this experimental strategy to acquire direct evidence of PCPs 

from different plant tissues. 

 
 

6.2 Experimental procedures. 
 

6.2.1 E. coli background proteome sample preparation. 

A crude E. coli K12 proteome was prepared to provide a sample matrix for known target 

peptides for benchmarking. Briefly, an E. coli cell pellet (OD 0.4) was suspended in lysis buffer 

(2% sodium deoxycholate (SDC) in 100 mM NH4HCO3 (ABC)), disrupted by sonication (30% 

amplitude, 10 s pulse with 10 s rest, 2 min total pulse time) and boiled for 5 min. Crude protein 

extract was precleared via centrifugation for 15 min at 14,500 rpm and quantified with a 

Nanodrops spectrophotometer (Thermo Scientific). The precleared protein extract was then 

adjusted to 10 mM dithiothreitol (DTT) and incubated under constant shaking for 30 min at 37°C 
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(600 rpm, Eppendorf Thermomixer) to avoid endogenous peptide cyclization or unwanted protein 

interactions. Cysteines were then blocked with 30 mM iodoacetamide (IAA) to prevent reformation 

of disulfide bonds. The E. coli proteome sample was stored at -20°C until further use. 

6.2.2 Universal Proteomics Standard (UPS1) sample preparation. 

One vial of UPS1 (Sigma) was solubilized in cell lysis buffer (2% SDC in 100 mM ABC). 

Proteins were reduced with 10 mM DTT and incubated at 35°C under constant shaking for 30 min 

(600 rpm, Eppendorf Thermomixer). Afterwards, proteins were alkylated with 30 mM IAA followed 

by a 15 min incubation at room temperature in the dark. The UPS1 sample was submitted to a 3 

hours trypsin digestion (1:20, enzyme to protein ratio) at room temperature under continuous 

shaking followed by an overnight trypsin digestion using the same enzyme to protein ratio at 37°C 

under continuous shaking. The UPS1 tryptic digest was stored at -20°C until further use. 

6.2.3 Heavy-labeled peptide standards. 

A total of 17 AQUA Ultimate (>97% purity) labeled peptide standards (Thermo Scientific) 

were combined in a standard solution using 100 mM ABC as dilution buffer to individual 

concentrations of 10 fmol/µL. The AQUA mix was stored at -20°C until further use. 

6.2.4 Preparation of master mixes for benchmarking the performance of a 10 kDa 
enrichment strategy of PCPs and their dentification/quantification via de novo-

assisted database search.  

The master mix for benchmarking the identification of small peptides by the informatics 

pipeline was prepared on top of Vivaspin 500 μL centrifugal filter units (MWCO 10kDa, Millipore 

Sigma). To each filter, volumes equivalent to 100 µg of E. coli proteome and 0.24 µg of digested 

UPS1, and volumes equivalent to 1000, 750, 500, 250 and 125 fmol of each standard in the AQUA 

mix were pipetted (n=3 experimental replicate per standard concentration). Additionally, volumes 

equivalent to 100 µg of E. coli proteome were also pipetted into three filters and used as 

background controls. 

All samples were then centrifuged for 30 min at 12,000 g to remove proteins from the E. 

coli background proteome or undigested proteins from the UPS tryptic digest. The flow-through 

was collected and acidified with 1% formic acid to precipitate SDC. Hydrated ethyl acetate was 

added to each sample at a 1:1 (v/v) ratio three times to effectively remove SDC. Samples were 

then placed in a SpeedVac Concentrator (Thermo Fischer Scientific) to remove ethyl acetate. The 

peptide-enriched flow throughs were desalted on Pierce peptide desalting spin column (Thermo 
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Scientific) as per the manufacturer instructions. After speed-vac concentration, dry peptide 

samples were suspended in 10 µL of 0.1% formic acid solution and placed in autosampler vials. 

 
6.2.5 1D-LC-MS/MS of master mixes samples. 

A Proxeon EASY-nLC 1200TM system (Thermo Fisher Scientific) interfaced with a Q 

Exactive Plus (Thermo Fisher Scientific) mass spectrometer equipped with a nano-electrospray 

source were used to conduct 1D-LC-MS/MS analyses. Injection volumes of 2µL of each master 

mix (n= 15) were loaded in mobile phase A (0.1% formic acid, 2% acetonitrile) onto a trap column 

(150 mm x 100 μm ID) packed in-house with ~10 cm of 1.7 μm Kinetex C18 resin (Phenomenex). 

Peptide separation was performed on an analytical column (300 mm x 75 μm ID) packed in-house 

with 1.7 μm particle size Kinetex C18 resin using a linear gradient from 2 to 22% of mobile phase 

B (0.1% formic acid, 80% acetonitrile) at a flow rate of 300 nL/min over 90 min.  

Mass spectra were acquired with the Q Exactive Plus instrument in a top 10 data-

dependent acquisition setup. MS spectra were collected within 300 to 1500 m/z with automatic 

gain control (AGC) target value of 3 × 106 at a resolution of 70,000 with a maximum injection time 

(IT) of 25 ms. Precursor ions with charge states ≥2 and ≤ 5 and intensity threshold of 1.6 × 105 

were isolated using a 1.6 m/z isolation width for higher-energy C-trap collision dissociation (HCD) 

with a normalized collision energy of 27 eV. MS/MS spectra were acquired at a resolution of 

17,500 at m/z 200 with an AGC target value of 1 × 105 and maximum IT of 50 ms. All spectral 

data collected in this study was deposited at the ProteomeXchange Consortium via the MASSIVE 

repository. The project identifier is MSV000084471 and the data can be reviewed under the 

username “MSV000084471_ reviewer” and password “Martin”. 

 

6.2.6 Preparation of Populus X canescens with or without Laccaria bicolor 
ectomycorrhizae samples. 

The hybrid Populus X canescens (Populus tremula x Populus alba line INRA 717-1-B4) 

clones were micropropagated in vitro and grown in half -strength Murashige and Skoog (MS/2) 

medium in a growth chamber at 24°C under a 16-h photoperiod. The dikaryotic vegetative mycelia 

of strain S238N of the ectomycorrhizal fungus Laccaria bicolor were maintained on modified 

Pachlewski agar medium P5 at 25°C in the dark.445  

For in vitro coculture of poplar with L. bicolor, we used a sandwich system described 

before.446 The Petri dishes were incubated for 2 weeks vertically in a growth chamber at 20°C 

under a 16-h photoperiod. From these co-culture plates, we collected extramatrical mycelium, 
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ectomycorrhizal lateral roots, non-mycorrhizal lateral roots and leaves. Leaves from control plants 

(no ECM fungi) were harvested on plant grown separately but in the same in vitro conditions. 

Cuttings of Populus X canescens (synonymous P. tremula x P. alba; INRA clone 717-1B4) 

of 1 cm diameter and 15 cm were planted in pots containing 5 L of sterile sand and grown in a 

greenhouse irrigated twice a day with 20 mL of nutrient solution (8 μM KNO3, 8 μM 

Ca(NO3)2.4H2O, 3 μM NaH2PO4, 3 μM MgSO4.7H2O, 0.2 μL/L of Kanietra solution (COFAZ, 

Paris). Xylem sap was extracted by natural root pressure after 7 weeks of growth. To ensure 

xylem sap flow, poplars were watered with the nutrient solution two hours before sap collection. 

Using a razor blade, poplars were then decapitated by transversal section of their stem 3cm above 

its branching point from the cutting. To avoid contamination of the sap by other tissues of the 

stem, the cell layers surrounding the stele were removed with care around the section site with a 

scalpel on a surface of 1 cm length. After cleaning with deionized water and drying with tissues, 

the exposed stele was attached tightly to 3 cm of Tygon ND 100-65 tubes (Saint-Gobain 

Performance plastics, Courbevoie, France) of appropriate inner diameter with microporous tape 

(Urgo, Chenove, France). Flowing xylem sap was collected regularly with a micropipette from the 

Tygon tubes. Samples were stored on ice during sampling. 150 μL of sap per poplar was collected 

over three hours from 16 poplars. The sap from four poplars was pooled to produce one sample 

before flash freezing the samples in liquid nitrogen. 

6.2.7 PCPs extraction from Populus X canescens and Laccaria bicolor samples. 

All samples derived from the ectomycorrhizal and non-ectomycorrhizal interactions of 

Populus X canescens with L. bicolor were processed to recover endogenous polypeptides for LC-

MS/MS analysis. Briefly, grounded samples were placed in 1ml lysis buffer (2% SDC in 100 mM 

ABC), vortexed and then placed in a heat-block for 5 min at 90°C. Afterwards, samples were 

disrupted by sonication (program: 30% amplitude, 10 s pulse with 10 s rest, 2 min total pulse time) 

and boiled for an additional 5 min at 90°C. After recovering the supernatant via centrifugation, the 

samples were adjusted to 10mM DTT and incubated under constant shaking for 30 min at 37°C 

(600 rpm, Eppendorf Thermomixer). Cysteines were then blocked with 30 mM iodoacetamide 

(IAA) to prevent reformation of disulfide bonds.  

To separate the low molecular weight fraction of the proteome, samples were transferred 

into 10kDa MW cutoff centrifugal filter units and then centrifuged for 30 min at 12,000 xg. The 

peptide-enriched flow-throughs were collected into fresh Eppendorf tubes and acidified with 1% 

formic acid to precipitate residual SDC. Samples were then placed in a SpeedVac Concentrator 

(Thermo Fischer Scientific) to remove ethyl acetate. Peptide samples were desalted on Pierce 
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peptide desalting spin column (Thermo Scientific) as per the manufacturer instructions. After 

speed-vac concentration, dry samples were suspended in 10 µL of 0.1% formic acid solution and 

placed in autosampler vials. 

6.2.8 1D-LC-MS/MS of Populus X canescens with or without Laccaria bicolor 
samples.  

All samples were analyzed on a Q Exactive Plus mass spectrometer (Thermo Fischer 

Scientific) coupled with a with a Proxeon EASY-nLC 1200 liquid chromatography (LC) pump 

(Thermo Fisher Scientific). Peptides were separated on a 75 μm inner diameter microcapillary 

column packed with 50 cm of Kinetex C18 resin (1.7 μm, 100 Å, Phenomenex) that was heated 

to 60 °C in a Phoenix S&T NanoLC column heater. For each sample, a 2 μg aliquot was loaded 

in buffer A (0.1% formic acid, 2% acetonitrile) and eluted with a linear 90 min gradient of 2 – 20% 

of buffer B (0.1% formic acid, 80% acetonitrile), followed by an increase in buffer B to 30% for 10 

min, another increase to 50% buffer for 10 min and concluding with a 10 min wash at 98% buffer 

A. The flow rate was kept at 200 nL/min. MS data was acquired with the Thermo Xcalibur software 

version 4.27.19 using the topN method where N could be up to 10. Target values for the full scan 

MS spectra were 1 x 106 charges in the 300 – 1,500 m/z range with a maximum injection time of 

25 ms. Transient times corresponding to a resolution of 70,000 at m/z 200 were chosen. A 1.6 

m/z isolation window and fragmentation of precursor ions was performed by higher-energy C-trap 

dissociation (HCD) with a normalized collision energy of 30. MS/MS scans were performed at a 

resolution of 17,500 at m/z 200 with an ion target value of 1 x 106 and a maximum injection time 

of 50 ms. Dynamic exclusion was set to 20 s to avoid repeated sequencing of peptides. 

6.2.9 PSMs, peptide, and protein identifications by PEAKS. 

The raw data were interrogated by de novo-assisted database searching against the 

Populus trichocarpa v3 reference proteome coupled to the L. bicolor UniProt reference proteome 

(UP000001194) accompanied with common contaminant proteins using PEAKS DB, PEAKS 

PTM and PEAKS SPIDER in PEAKS X Studio (Bioinformatics Solutions, Waterloo, Canada). The 

peptide and fragment ion mass tolerances were set to ±10 ppm and ±0.02 Da, respectively. The 

enzyme parameter was set to “no enzyme”. Features associated with chimera scan were enabled. 

De novo ALC score was set at >90%. A false discovery rate of 1% was applied to accept the 

peptide sequences and a minimum of three peptides were required to identify a protein. For 

PEAKS DB, carbamidomethylation (+57.02) of cysteine was set as fixed modification and 

oxidation (+15.99) of methionine was set as a variable modification. PEAKS PTM algorithm was 
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used to identify other common modifications in PCPs by allowing the search against all possible 

modifications from the Unimod database. Similarly, PEAKS SPIDER algorithm was used to detect 

any possible de novo sequencing errors and homology peptide mutations. 

For differential abundance analysis of PCPs involved in ECM interactions between 

Populus and L. bicolor, peptide data from the Populus roots with and without ECM, as well as L. 

bicolor extramatrical mycelium sample sets, were filtered to remove all peptides, that were present 

in only 1/3 replicates. All peptides present in 2/3 biological replicates were considered valid for 

quantitative analysis. Missing data were imputed by random numbers drawn from a normal 

distribution (width = 0.3 and downshift = 2.8 using Perseus software (http://www.perseus-

framework.org)262. The resulting matrix was subjected to ANOVA (p < 0.05) followed by post-hoc 

Tukey test (Family-Wise Error Rate < 0.05) to assess peptide abundance differences between 

the different experimental groups. The entire filtering and statistical analyses were done using an 

in-house developed python script. 

 

6.3 Results & Discussion. 
 

6.3.1 Benchmarking the identification and quantitation of PCPs. 

The low nanomolar to mid picomolar concentrations to which bioactive PCPs are thought 

to be active, and which experimental measurements in plant tissue cultures have found,435, 447 

prompted us to evaluate the quantitative accuracy and reproducibility of recovering peptides < 10 

kDa from a molecular weight-spin column enrichment strategy. For this purpose, we created a 

standard benchmarking sample that contained invariable amounts of proteolytically digested 

universal proteomics standard (UPS1 – 48 proteins, 5 pmol each), combined with invariable 

amounts of an E. coli crude protein extract to best mimic small endogenous peptides at relatively 

low abundances within a complex proteome background. In addition, equimolar solutions of 17 

heavy AQUA synthetic peptide (Table 6.1) standards in different molar amounts (injection 

volumes equivalent to 12, 25, 50, 75 or 100 fmol of each standard) were also spiked into the mix 

of E. coli proteins and UPS1 peptides (Figure 6.1) for quantitative benchmarking. 
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Table 6.1 Heavy peptide standards (>97% purity) spiked into constant amounts of background 
E. coli proteome and UPS tryptic digest used  to benchmark the de novo peptide identification 
and quantification pipeline. Peptide standards were derived from proteins of Sphingobium sp. 
(Strain NBRC 103272/SYK-6). A 2 µL injection volume of each benchmark sample was analyzed by 
LC-MS/MS. The injection volume is equivalent to 12.5, 25, 50, 75 and 100 fmol for each peptide 
standard. Residues in red are heavy versions of amino acids containing 13C and 15N isotopes.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heavy Peptide Sequence Precursor m/z Precursor Charge 

IALAGAGAFGEK 556.8131 2 

AEQAAEVAAK 498.2660 2 

YDDLVTGK 459.7365 2 

LVDDAPK 383.2152 2 

SVAPLVADYADR 643.8343 2 

GLVIDAGVR 455.2732 2 

AIYAQGTVK 479.7760 2 

VFTAQR 366.2073 2 

ADESAYLDEWNLTPAAK 951.4539 2 

LFSTDGK 388.2074 2 

GGYFLAEDLPADTATR 853.9166 2 

GLVAPTGDETR 563.2923 2 

ETIEANQLR 542.2870 2 

GIDPTTGHYFDDTK 525.5786 3 

YIDALDISDQER 724.3505 2 

EFDLNFIDK 574.7893 2 

LISDPEELSK 569.8077 2 
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Figure 6.1 Computational and experimental strategies followed for the identification and 
quantification of small endogenous polypeptides . (A) Samples consisting of 0.24 µg of tryptic 

digested UPS, 100 µg of  E. coli protein and different fmol amounts of heavy labeled AQUA peptides 

were prepared in triplicates on top of 10kDa spin filters. (B) After centrifugation, the flow-throughs were 

collected and 2 μL of each sample were analyzed via LC-MS/MS using a Q Exactive Plus instrument 

(n = 3 experimental replicates). (C) UPS1 and AQUA peptides were identif ied by PEAKS de-novo 

sequencing of MS/MS spectral data. The number of UPS peptide-spectrum matches (PSMs) and 

proteins were compared to values obtained by the de novo-assisted database search strategy 

performed with PEAKS. In addition, MS1 peak areas of the spiked AQUA standards were compared 

to values obtained with Skyline. 
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The UPS1 peptides and AQUA standards were identified by de novo peptide sequencing 

using PEAKS.448 The PEAKS software is recognized as a standard for automated peptide de novo 

sequencing, which also introduced the capability of incorporating de novo results into its database 

search algorithm to improve the sensitivity and accuracy of the identifications.149 In particular, de 

novo-assisted database search is useful for novel PCP identification as the exact mechanisms of 

how these molecules are originate is not well-understood and biasing the results towards the use 

of an experimental protease and a database digested with specific in-silico rules would hinder the 

characterization of PCP. 

Overall, the de novo-assisted database peptide sequencing reliably identified a similar 

number of peptide-spectral matches (PSMs) across the experimental benchmark dataset (Figure 

6.2A) and identified over 55% of the UPS1 proteins in each sample (Figure 6.2B), despite the E. 

coli crude lysate representing ~99% of the collected peptide biomass during enrichment (based 

on BCA assay). In addition, all the 17 AQUA peptides spiked into samples were identified. 

The calculated peak area for each AQUA peptide provided by PEAKS was also compared 

to manually curated data obtained with Skyline, which is another popular software that provides 

an alternative to extract MS1-level abundances of a relatively low number of peptides.449 In this 

way, we evaluated PEAKS capabilities of providing quantitative values that could be used for 

relative quantification of novel PCPs identified in complex biological matrices. 

As observed in Figure 6.2C, for the spiked AQUA peptide standards, excellent agreement 

between the Skyline MS1 extracted AUCs and PEAKS AUCs were observed (R2 > 0.98). In terms 

of individual peptide responses (Figure 6.2D), the lowest R2 value observed was for peptide 

ADESAYLDEWNLTPAAK (R2 = 0.808) while the best linear response at increasing amounts of 

injected standards was that from peptide EFDLNFIDK (R2 = 0.936). Overall, the measured 

changes in linear responses demonstrated the ability to accurately recover peptide quantitative 

information from a complex proteome background after filtration through a 10 kDa membrane 

filter, data acquisition via state-of-the-art tandem mass spectrometry, and post-processing using 

PEAKS. 
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Figure 6.2 Performance of 10 kDa membrane filtering and PEAKS software for peptide 
identification. For this study we identif ied peptides from the UPS standards by de novo analysis and 

extracted quantitative information from the AQUA peptide standards spiked into E. coli and UPS 

backgrounds after 10kDa membrane filtering 15 samples x 17 peptides = 255 data points). ( A) The 

number of total identif ied PSMs for the benchmarking samples and (B) the total number of identif ied 

UPS1 proteins are provided. (C) Scatter plot of peptide peak areas reported by PEAKS compared to 

those identif ied by automatic and manual validation in Skyline. (D) Linear fit regression analyses of 

AQUA standards areas under the curve responses according to their molar amounts spiked into 

benchmarking sample sets. Coefficient of determination values (R2) are shown in each graph. 
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6.3.2 Identification metrics of PCPs from Populus and its ectomycorrhizal symbiont 
L. bicolor.  

The 10 kDa enrichment strategy with the de novo sequencing assisted MS/MS database 

search was applied to Populus tissues (i.e., xylem sap, roots, leaves) with or without established 

L. bicolor ectomycorrhizae (ECM) as well as extramatrical L. bicolor mycelium (Lb EXM) (Figure 

6.3A). At a false-discovery rate (FDR) of < 1% at the peptide level, the sample types varied in the 

total numbers of identified PCPs as well as their similarity to each other (Figure 6.3B, horizontal 

bars in UpSet plot). Overall, the measured PCPs had similar peptide lengths (median length of 

21 amino acids) and number of basic residues (average of 1) (Figure 6.4) as to what is generally 

reported in conventional peptide sequencing studies.450 

Across all datasets, 4564 PCPs were identified from which 1653 and 2859 mapped 

exclusively and respectively to Populus and L. bicolor proteins, while 52 PCPs were shared 

amongst a number of proteins highly conserved between both organisms such as elongation 

factors and histones (Supplementary Table S6.1, see PCPs and Proteins information). Amongst 

all sample types, the highest numbers of unique PCPs were detected in Lb EXM and mycorrhizal 

roots (Figure 6.3B, vertical bars in UpSet plot). PCPs identifications detected across multiple 

samples were also observed. The datasets with the greatest number of overlapping PCPs were 

those of leaves with and without ECM, which is to be expected given the ECM interaction largely 

affects roots tissues. Additionally, we noticed a significant number of PCPs in common between 

the Lb EXM samples and the roots samples with and without ECM. 

Bioactive PCPs can be occupied by post-translational chemical modifications that 

influence structure and their biological activity.135 For example, the CLE and CEP families have 

hydroxyprolines that are glycosylated with L-arabinose. 145, 431, 435, 451 Of the total number of PCPs 

identified in each dataset, 19-33% contained post-translational modifications or amino acid 

substitutions as found by the PEAKS PTM and PEAKS Spider modules of the de novo assisted 

database searches, respectively. With the PEAKs software considering 313 natural modifications 

reported in the Unimod database, we observed PTMs that are likely introduced during sample 

preparation as well as those that are presumed to occur in vivo and have biological significance, 

like methylation and phosphorylation (Figure 6.5).  

In the context of sample sets, PCPs matched to a maximum number of 522 proteins (Lb 

EXM samples) and a minimum number of 87 proteins (xylem sap samples) in the database 

(Figure 6.3C, horizontal bars in UpSet plot). Like the peptide-level observation, we observed 

substantial overlap in the proteins detected in the Lb EXM, poplar roots with established ECM 

and roots without ECM (Figure 6.3C, vertical bars in UpSet plot). 
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Figure 6.3 Proteomics metrics of the Populus X canescens and Laccaria bicolor PMI system. 

(A) Illustration of the in-vitro sandwich type system used to harvest different P. X canescens extracts 

and L. bicolor extramatrical mycelium. Xylem sap was obtained from plants growing in pots of sterile 

sand and grown in a greenhouse and is not depicted in this figure. (B) The UpSetR plot depicts the 

intersection between PCPs identif ied per experiment type. Horizontal bars indicate the total number 

of PCPs detected in each experiment (unique + shared); vertical bars depict the number of jointly 

identif ied PCPs. (C) The UpSetR plot depicts the intersection between proteins to which PCPs mapped 

per experiment type. Horizontal bars indicate the total number of proteins detected in each experiment; 

vertical bars depict the number of jointly identif ied proteins.   

 

 

 

 

 

 



146 
 

 
 
Figure 6.4 Length and basic residue distribution of all identified PCPs (unique & shared) across 
datasets. Colors overlaid on each histogram represent the number of basic amino acids (Lys, Arg or 
His) found in each PCP. Lb EXM – L. bicolor extramatrical mycelium. ECM – Ectomycorrhiza.  
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Figure 6.5 Counts of the top 10 most represented PTMs in PCPs identified in different sample 
types. All PCPs identif ied by the PEAKS PTM module in each dataset were considered to plot the 
counts of PTMs observed (Note: The same peptide can have more than one PTM).   
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6.3.3 De novo database-assisted searches enable the identification of non-
functional and functional PCPs in the peptidome of different sample types. 

PCPs derived from the action of proteolytic mechanisms during protein turnover and 

during protein maturation contribute to the total pool of native peptides in a cell. In plants, protein 

turnover is a fundamental component in plant development. 133, 414, 452 As such, PCPs derived from 

the degradation of functional proteins can represent a significant fraction of a cell peptidome, but 

many of their functions are not well understood.415 On the contrary, several families of bioactive 

PCPs in plants are derived from protein precursors during certain conditions, like in the presence 

of microbial pathogens or of heavy metals, and many of their functions have been characterized. 

Nevertheless, methodologies that can globally profile the expression of both types of PCPs 

directly in plant tissues and in their microbial partners are still lacking, but our experimental 

approach can potentially fill this void. 

In our datasets, many PCPs mapped to housekeeping proteins like ribosomal subunits, 

elongation factors and RuBisCO subunits (Supplementary Table S6.1). The role of these PCPs 

in ECM samples or samples without ECM were not further investigated or directly compared, but 

it is interesting to point that a recent study reported an increase of protein turnover in leaves of 

Populus × canescens plants inoculated in vitro with the ECM forming fungi Paxillus involutus in 

comparison to control plants.420 Similar observations have also been made for arbuscular 

mycorrhizal symbiotic systems grown in lab. 418, 419 Hence, our MS methodology, in combination 

with others like traditional proteomics, could be useful for more in-depth investigations on the 

plant proteolytic “degradome” 133, 414 by directly analyzing PCPs abundance changes from plant 

tissues experiencing plant-microbial interactions compared to controls. 

Apart from detecting members of the degradome our approach was able to capture 

previously reported endogenous mechanisms of protein maturation happening in different sample 

types. For example, we were able to identify PCPs that mapped to the N- and C-terminus regions 

of histone H2BK4 of L. bicolor, suggesting a histone clipping mechanism,453, 454 (Figure 6.6A) and 

PCPs in Populus leaves that mapped to the proposed mature form of protein PsbTn (~ 3 kDa), 

which is the smallest subunit of the Photosystem II complex (Figure 6.6B).455  In addition, we 

observed several uncharacterized PCPs that may point to unknown mechanisms of protein 

maturation; for example, N-terminus PCPs mapping specifically to the cysteine-rich domain 

(CFEM) of a glycosylphosphatidylinisotol (GPI) anchored protein of L. bicolor, the former being a 

domain that is common only to fungal extracellular membrane proteins (Figure 6.6C).456  
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Figure 6.6 Visual representations of detected PCPs (highlighted in grey and in red letters) 

produced as results of known and hypothesized protein maturation mechanisms in Populus 
and L. bicolor samples. (A) PCPs mapped to the N-terminus and C-terminus regions of L bicolor 
histone H2BK4 in L. bicolor extramatrical mycelium (Lb EXM) as well as root with and without 
established ECM. (B) The mature form of protein PsbTn from the Photosystem II complex of Populus 
was identif ied in leaves with and without ECM. (C) Identif ied PCPs from a CFEM-domain containing 
protein with a predicted GPI-anchored site. PCPs spanned most of the CFEM domain. Peptide 
mapping data is from Lb EXM. 
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6.3.4 Comparative quantitative analysis of PCPs defines a set of significant 
analytes in ectomycorrhiza symbiosis between Populus X canescens and L. 

bicolor. 

A differential expression analysis of PCPs and the proteins they mapped to in root samples 

with or without ECM and Lb EXM was useful to narrow the dataset into groups of PCPs with 

biological significance in the symbiotic associations between plant and fungus. Overall, 398 PCPs 

were differentially abundant (ANOVA p-value < 0.05; Supplementary Table S6.2) between roots 

with and without established ECM and Lb EXM. To further delineate the relevancy of PCPs to Lb 

symbiosis with Populus roots, TukeyHSD post-hoc test was performed to quantify abundance 

differences between relevant sample groups. Based on this analysis, a total of 157 PCPs were 

determined to be significant in the mutualistic interactions between Populus and L. bicolor. Of the 

157 PCPs, 96 mapped to 69 L. bicolor proteins, 56 mapped to 64 Populus proteins and 5 were 

shared between 12 Populus and 6 L. bicolor proteins, respectively. 

 Like other large-scale ‘omic’ analyses, measured differences between relative 

abundances of analytes can be explained by numerous phenomena. Regarding PCPs, 

quantitative differences can arise from several levels of regulation (e.g. the amount of protein 

expression, the rate of protein translation, protein and peptide turnover rates, post-translational 

modifications, etc.) and therefore, while we highlight several intriguing observations below and 

their likely implications, the mechanism(s) regulating these differences are largely unknown. 

 

6.3.4.1 L. bicolor endogenous peptides associated with symbiosis with Populus. 
 

Of the 157 PCPs determined to be significant in the mutualistic interactions between 

Populus and L. bicolor 96 PCPs mapped to 69 L. bicolor proteins (Figure 6.7A). Amongst the 

differentially abundant L. bicolor PCPs in root with established ECM compared to Lb EXM were 

those belonging to a variant of the cysteine-rich C-terminus of the L. bicolor Mycorrhiza-Induced 

Small Secreted protein MiSSP7.6, that in our database is annotated as MiSSP7.7 and has 97.3% 

pairwise identity to MiSPP7.6 (Figure 6.7B). The SignalP-5.0457 and Phobius458 webservers 

agreed on the presence of a signal peptide on the first 21 amino acid residues of MiSSP7.7. It 

has been previously reported that MiSSP7.6 is secreted by L. bicolor and later imported into 

Populus cells as a mature peptide of 54 amino acids. The matured MiSSP7.6 PCP localizes in 

the nuclei of plant cells where it interacts with Zinc-Finger transcription factors belonging to the 

Myb/SANT-like DNA-binding domain protein family.427 The C-terminal PCP detected in this study 

may point to a plausible mechanism of protein maturation.  
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Figure 6.7 L. bicolor proteins from significant upregulated peptides associated with ECM. (A) 
A total of 96 PCPs mapped to 69 L. bicolor proteins, amongst them, a MiSSP7.7 protein (97.3% identity 
to MiSSP7.6 reported in literature, highlighted in yellow). (B) The region to which identif ied PCPs 

mapped to MiSSP7.6 is highlighted in grey color. A predicted signal peptide in the protein is al so 
shown.   
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In addition, we identified 4 putative small secreted proteins of < 250 amino acids (B0FD3, 

B0D9T2, B0DP29 and B0DXP4) 459 lacking functional annotation. As research on the symbiosis 

between Populus and L. bicolor has been uncovering novel SSPs derived from both organisms 

necessary for the establishment and regulation of the symbiotic association of L. bicolor and 

Poplar, 427, 428, 443, 444 this dataset contributes additional novel protein candidates associated with 

ectomycorrhizal symbiosis. 

Another group of expressed PCPs in roots with ECM that mapped to several L. bicolor 

proteins involved in the detoxification of reactive oxygen species (ROS). This observation is likely 

related to the type of stress responses that mycorrhizal fungi can induce to plants which include 

the generation of ROS species like hydrogen peroxide, superoxide anion, and hydroxyl radicals. 

460 Amongst those proteins, we identified a tyrosinase (B0DMA1) that provides resistance against 

reactive oxygen species and phenolic compounds during early symbiosis,461 a cysteine 

peroxiredoxin (B0CY32) and a manganese  peroxidase (B0DVT9).  

Interestingly, amongst the differently expressed L. bicolor proteins we also identified PCPs 

that mapped to a lectin-related tectonin 1 protein (B0D1K0). In general, fungal lectins are best 

known to be part of the defense mechanisms against soil microbes and predators that act by 

targeting glycoepitopes in the cells surfaces of the latter;462 however, fungal lectins that recognize 

host cell glycans in ectomycorrhiza, albeit, not specifically in Populus – L. bicolor ECM, have also 

been hypothesized to help mediate the adhesion of partners to hosts.463 Interestingly, a study 

investigating the molecular mechanisms behind the physical interactions of Laccaria 

bicolor S238N hyphae and its mycorrhiza-helper bacteria Pseudomonas fluorescens BBc6R, 

found upregulation of the L. bicolor tectonin 2 gene, where it was suggested to have a role in cell-

to-cell recognition.464 Thus, it is plausible to hypothesize that the tectonin 1 found here has a 

similar function to tectonin 2, but with Poplar root cells instead, and opens an interesting 

experimental opportunity for its functional validation.  
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6.3.4.2 Populus X canescens endogenous peptides associated with symbiosis with 

L. bicolor. 
 

Overall, the majority of the 56 Populus PCPs found to be significant in ectomycorrhizal root 

compared to Lb EXM mapped to proteins related to stress response mechanisms (Figure 6.8A), 

with the metallothionein (MT) protein family being highly represented (Figure 6.8B). During 

endomycorrhizal symbiosis, metallothionein proteins are generally hypothesized to provide 

protection against oxidative stress including the one caused by heavy metals.465, 466 Interestingly, 

the differentially abundant polypeptides map exclusively to the N-terminus and C-terminus of 

these proteins, which are both cysteine-rich regions. An intriguing explanation for the specific 

mapping to these regions is that Populus MTs experience post-translational cleavage, a largely 

overlooked regulatory mechanism for this protein family. Cleavage of MT by proteases has been 

shown to be largely dependent on the loading of the protein with heavy metals467 and occurs 

among the large stretch of amino acid residues separating the cysteine-rich domains.468 A study 

on a plant MT expressed in E. coli showed that the linker region was sensitive to the bacterial 

proteolytic system; 469 however, whether this process occurs in nature or its functional importance 

in symbiosis has not yet been shown. 

Additionally, PCPs mapped to Populus house-keeping proteins involved in protein 

expression machinery (i.e., subunits of ribosomal proteins) and/or components of active cell 

signaling/communication systems (i.e., ADP/ATP carrier proteins and metal transport proteins). 

Similar observations have been reported at the transcript level in active ECM symbiosis between 

Pisolithus tinctorius and Eucalyptus globulus where the authors concluded that this was expected 

due to intense bilateral metabolic transfers and high assimilative activity.470 Of note, although we 

cannot accurately pinpoint to specific mechanisms of how the PCPs observed from these proteins 

are being produced endogenously, there is no indication in literature that such molecules are 

further processed to mature PCPs and thus, we can hypothesize that mechanisms of protein 

turnover or degradation are the most plausible explanations behind their identification by our 

experimental approach. Complementary proteomics analyses measuring the relative levels of 

protein precursors from which these PCPs are derived from can confirm the natural degradation 

of these proteins and/or provide a different functional perspective from pools of PCPs, similar to 

what others have found before.415 
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Figure 6.8 Populus X canescens proteins from significant upregulated PCPs associated with 

ECM. (A) A total of 56 PCPs mapped to 64 Populus proteins, amongst them, proteins related to stress 
protection like metallothioneins (highlighted in yellow). Other PCPs mapped to Populus house-keeping 
proteins involved in protein expression machinery and/or signaling systems. (B) Example of one of the 
six metallothionein-like type 2 proteins identif ied (ID. Potri.001G041300.1). All identif ied PCPs from 
this protein mapped to its N- and C-terminus regions (highlighted in grey).   
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6.3.4.5 Differentially abundant PCPs shared between L. bicolor proteins and 
Populus X canescens proteins. 
 

The five differentially expressed and shared PCPs between Populus and L. bicolor 

mapped mainly to functional domains of polyubiquitin and ubiquitin proteins which are well 

conserved proteins across life.471 Ubiquitins can be found as monomers and polymers and have 

distinct roles in intracellular protein degradation via the proteasome pathway.472, 473 Several 

studies have demonstrated high and significant expression of ubiquitin genes in the establishment 

of ectomycorrhizal symbiotic associations. For example, in the Eucalyptus globulus-Pisolithus 

tinctorius ectomycorrhiza, upregulation of plant derived transcripts encoding components of the 

ubiquitin pathway were reported, where it was hypothesized that these proteins help mediating 

the downregulation of plant protein synthesis in colonizing roots.470 Another study analyzing the 

transcriptional responses in the ECM interaction between the basidiomycete Paxillus involutus 

and its host birch Betula pendula compared to extramatrical mycelium, shown a polyubiquitin that 

was upregulated by 4.2-fold in ECM.471 In addition, the generation of reactive oxygen species like 

hydrogen peroxide is known to induce the expression of polyubiquitin in cells as a mechanism of 

detoxification 460 and in this study we saw significant expression of fungi ROS-related enzymes in 

root with ECM. 

 

6.4 Conclusions. 
 

Over the last couple of years an increasing body of evidence at the transcript level has 

demonstrated the expression of bioactive PCPs in biotrophic plant-fungal associations. However, 

direct evidence of the products of genes and transcripts believe to be involved, or participating in 

ECM establishment and/or regulation, is still lacking in literature, but can certainly provide a new 

layer of evidence in the functional understanding of these molecules. As certain characteristics 

typical of endogenous PCPs in any biological system can make their identification laborious and 

difficult (i.e., unknown cleavage specificity, the presence of multiple PTMs, and relatively low 

natural abundances), experimental approaches that can comprehensively identify them with 

sensitivity and specificity are most welcome. 

In this study, we systematically investigated the use of a 10 kDa membrane filtering 

strategy to enrich and quantify Populus and L. bicolor PCPs expressed in active mycorrhizal 

lateral root tips and identified novel peptide sequences using LC-MS/MS with de novo-assisted 

database search strategy. Particularly, de novo-assisted database searches offer a way to detect 
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functional products of genes and transcripts without biasing the identification towards the use of 

specific proteases or cleavage mechanisms like in traditional large-scale protein studies. 

The differential expression analysis of PCPs conducted throughout this study enumerated 

PCPs that have a role in the symbiotic interactions between both Populus and L. bicolor and 

provide theories of their biosynthetic origins. For example, we found evidence of a L. bicolor PCPs 

mapping to the C-terminal region of a MiSSP7.6 protein, or of PCPs that mapped to N-terminus 

and C-terminus regions of Populus metallothionein proteins that are related to stress responses 

happening during the formation of ECM. These cases highlighted the utility of the LC-MS/MS 

methodology to capture potential mechanisms of endogenous protein maturation. Interestingly 

several PCPs mapped to small L. bicolor proteins of unknown function from which four were 

predicted to be secreted. 

Housekeeping proteins supporting the crosstalk and metabolic adjustments between plant 

and fungi such as transporters and ribosomal proteins, were also detected. It was hypothesized 

that the identification of PCPs, and their PTMs, mapping to these types of proteins are related to 

turnover/degradation proteolytic mechanisms which are supposed to be upregulated in AM and 

ECM symbioses.418-420 Their detection may prove useful alongside relative measurements of 

protein precursors to determine if such proteins are being subjected to natural turnover or if these 

PCPs serve another role in the symbiotic system under study. Overall, this study provides 

experimental support for a quantitative strategy to investigate the global expression of PCPs in 

PMI systems allowing to identify those with potential roles in their associations. 
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CHAPTER 7                                                                                                                 
Outlook, challenges, and conclusions 

 

7.1 The potential of targeted proteomics to monitor environmentally relevant 

microorganisms in bioremediation.  
 

Anthropogenic pollutants are found worldwide. The expansion of human population and 

its related activities such as industrial production processes and agriculture has led to an increase 

in the amounts of toxic organic and inorganic compounds that are released in the environment. 

To partially alleviate this global problem, active research on naturally occurring microorganisms 

at contaminated sites that can degrade, transform, or accumulate a wide range of hazardous 

compounds such as hydrocarbons, heavy metals, pesticides and chlorinated compounds88 has 

sparked interest into harnessing their intrinsic metabolic capabilities as a sustainable way to 

degrade and detoxify contaminants in the environment. These strategies, known as monitored 

natural attenuation (MNA) strategies,97 differ to others that employ genetically modified or non-

native species, and require a deep understanding on microbial physiology and the cellular 

processes behind contaminant degradation. 

As with other areas of microbiological research, the application of ‘omics’ technologies to 

this field has not only greatly improved our fundamental understanding of the biology of these 

microorganisms under controlled conditions; but they have also allowed their direct study in 

contaminated environments, which has provided information on complex microbial dynamics 

happening in situ.87 The latter has been particularly useful because unlike laboratory-scale 

simulations, the application of MNA strategies takes place across environments with different 

geochemical gradients, and diverse geophysical and hydrological complexities474 typically 

involving the presence of more than one contaminant and of different strains of microbes with 

specialized metabolic capacities. 

In particular, the application of quantitative proteomics techniques for bacterial-mediated 

bioremediation research provides critical insights into important cellular activities with temporal 

and spatial resolution. Different than genes and/or transcripts, proteins are the direct catalysts 

behind the variety of metabolic responses exerted by bacteria to contaminants in the environment.  

Proteome analysis of these environmentally relevant group of microorganisms, either growing 

under laboratory-controlled conditions or directly from environmental samples, can be used to 

identify and compare the suite of expressed proteins from a particular sample in a particular state, 

in order to elucidate metabolic pathways or identify group of proteins that can potentially be used 

as biomarkers that register the desirable degradation response to a contaminant in the 
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environment.  Measuring proteins in bacteria provides direct and relevant information that can be 

used to show that certain bioprocesses are occurring in situ and/or evaluate a certain set of 

conditions that favor the degradation of a contaminant or class of contaminants.  

As a case example, genomics, transcriptomics and proteomics research on the anaerobe 

Dehalococcoides mccartyi (Dhc) bacteria has provided enough gene and protein level evidence 

over the years to assess the metabolic capabilities of Dhc bacteria to transform chlorinated 

ethenes to benign ethene via the expression of reductive dehalogenase enzymes (RDases). Early 

proteomics studies, for example, focused on the identification of RDase enzymes on cultures of 

Dhc bacteria amended with different organohalides as electron acceptors and in varying degrees 

of concentrations, which allowed to gain a deeper understanding of the overall physiological 

activity of the organism. Proteomics research on Dhc bacteria has also enabled a refined 

validation of transcriptome results, as it has been observed in some cases that transcripts are not 

always translated into functional proteins. Improvements in sample preparation and MS 

technologies have enabled a deeper Dhc proteome coverage with percentages in different Dhc 

strains ranging from 60-72% up to the ~ 9% that was reported in earlier studies.  

The application of proteomics techniques to Dhc research has sparked the interest of the 

research community of employing proteomics techniques for more specialized applications like in 

situ monitoring of bacteria in contaminated groundwater as well as calculations of protein 

activities. Indeed, directly applying proteomics to groundwater could provide information into the 

actual functional activities of Dhc associated with each sample and complement state-of-the art 

gene-targeted approaches that are commonly used to monitor Dhc cell abundances in situ. These 

two goals are also appealing to site manager regulators that look to know if Dhc is present in a 

site, at what levels, and if the bacteria are performing the desirable pollutant degrading activity. 

One mode of MS data collection that can be used to answer these questions is targeted 

proteomics via MRM-MS or PRM-MS. Monitoring specific Dhc RDases in groundwater with 

sensitivity and in a faster way than with global proteome measurements, can in theory allow the 

determination of Dhc bacteria in a contaminated site while at the same time providing relevant 

information for the potential of enzymatically driven dechlorination. Furthermore, the shift from 

relative to absolute quantitation can be used to calculate enzymatic degradation rates. 

Few studies have explored the use of targeted proteomics for the organohalide respiration 

capabilities of Dhc bacteria, but the systems under investigation have been restricted to anaerobic 

mixed cultures grown in the laboratory. The results presented in those studies have provided 

levels of targeted protein copy numbers per cell and even enzymatic kinetic rates. However, 

transitioning this knowledge from simpler cultures to groundwater, where multiple metabolic 
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processes mediated by taxonomically diverse bacteria are simultaneously happening is not trivial. 

For instance, peptides selected in targeted studies that act as surrogates to monitor the 

expression and calculate absolute abundance levels of a protein, can be not specific when 

analyzing an environmental sample. Such a case was demonstrated with the study presented in 

Chapter 3 of this dissertation, where the specificity of each selected peptides had to be compared 

in-silico to the proteomes of other known type of bacteria living in groundwater or even on a 

broader taxonomical context.  

Importantly, the natural dynamic ranges of proteins expressed in an environmental sample 

as well as other interferences can impact the detection of Dhc RDases in these types of samples, 

and even when targeted proteomics provides sensitivities that are 1-2 orders of magnitude higher 

than global measurements, targeted peptides and proteins may still not be detected. This 

demonstrates the need of identifying peptides by this method as a first step to plan and execute 

their absolute quantitation, which was the main goal of Chapter 3. It is expected that the list of 

peptides selected in this study can then be useful for the development of a quantitative study, as 

several of these peptides were detected in different groundwater matrices and their specificities 

checked. Further studies could evaluate the dynamic ranges of these peptides and provide 

estimates of the number of protein copies per volume of groundwater.  

The application of targeted proteomics technology for protein analysis in the field of 

environmental biotechnology is still in its infancy but when combined with adequate functional 

genomic/proteomic analysis of degradative bacteria can potentially yield information of 

genes/proteins acting as bioindicators of important metabolic process in the environment. A 

recent example includes the quantitative measurement of nitrogen regulatory proteins, with 

peptides capable of distinguishing proteins derived from either Prochlorococcus and 

Synechococcus cyanobacteria living in sea samples collected form the Central Pacific Ocean.475 

Interestingly, the applications of targeted proteomics are not only limited to bacteria, but recent 

efforts have also been applied to higher organisms. For example, in the sentinel amphipod 

Gammarus fossarum, a targeted proteomics method using MRM-MS was recently developed for 

the simultaneous quantification of 38 peptides reporting for 25 proteins, whose changes in 

abundance act as sensitive indicators for the presence of contaminants in river water.476  

These are just some examples of studies demonstrating the use of targeted proteomics 

strategies to monitor protein biomarkers in the environment, and the advantage that it provides 

but many more are yet to come in the next years.  
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7.2 Measurement of groups of proteins by targeted proteomics to monitor 

metabolic processes in anaerobic bioreactors for biogas production.  
 

Biogas is one of the products obtained from the microbial-mediated anaerobic degradation 

of organic materials with high lignocellulose content like food, municipal, and agricultural wastes. 

Production of biogas in anaerobic digesters holds great potential for the generation of electricity 

and vehicle fuel. The application of molecular “omics” techniques to anaerobic digesters has now 

enabled a more detailed understanding of the microbial metabolic processes occurring during the 

production of biogas. Particularly, metaproteomics has linked genetic information to the functional 

characterization of microbial communities thriving in anaerobic environments and has provided 

information on regulatory processes necessary for enzyme production. Amongst other 

advantages of metaproteomics is also the potential to identify proteins, and/or their temporal shifts 

in abundances, in response to environmental and operational parameters which could be used to 

monitor the performance of an anaerobic digestor, for example, of either of its stable or unstable 

operation.  

In fact, several publications in the field have mentioned an interest in the use of proteins 

that are highly expressed during the process of biogas formation as functional biomarkers that 

could act as predictive biomarkers of perturbations in a system.354, 355, 477 One of those examples 

are variations in the abundance levels of the methyl-coenzyme M reductase, a key enzyme in all 

methanogenic pathways from which decrease in abundance has been correlated to acidification 

conditions in biogas plants.357 Besides proteins in methanogenesis, other proteins of potential 

interest could be glycoside hydrolases (GHs) which are important for the deconstruction of 

polysaccharides buried in lignocellulosic material. Hydrolysis of sugar polymers is considered a 

bottleneck in the anaerobic digestion process because it can either underperform or outperform 

other metabolic steps based on initial conditions, i.e., the use of highly lignified substrate sources. 

Although metaproteomics approaches to reveal protein content and abundance in anaerobic 

digesters can in theory improve process efficiency and stability, the amount of time and effort 

required behind these types of experiments limits them to be performed routinely and in as many 

samples as possible. However, targeted proteomics experiments present an interesting 

alternative to discovery-based proteomics measurements of proteins as they allow for flexible, 

quantitative, and relatively routine measurement of hundreds of peptides within a shorter time 

frame.478 Compared to immunoassays, targeted proteomics also features faster assays 

development and deployment and in principle can distinguish similar proteoforms such as 

isoforms and post-translational modified proteins.479   
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In Chapter 4, the initial steps in the development of a targeted proteomics assay to detect 

GHs in anaerobic digesters that could provide information of the hydrolytic performance of the 

latter, were presented. However, different than in the development of other targeted proteomics 

assays, which are defined by the selectivity of peptides to specific proteins, it was decided to 

show the selection of unique peptides capturing entire families of GHs. Some of these peptides, 

although shared amongst individual members in a family, were specific to GH families meaning 

that they cannot be produced from other proteins in the background nor found across different 

families. Provided that sufficient data acquisition has suggested the expression of groups of GHs 

at determined ratios to be indicative of the hydrolytic capacity of a digester, then monitoring groups 

of proteins without necessarily knowing the signal contribution of specific proteins in a group could 

provide of a faster assessment of the hydrolytic capacity of a reactor.  

It was observed that several of the selected peptides mapped exclusively to GHs 

belonging to different microbes but also to GHs with different enzymatic substrate affinities within 

same families of enzymes. The latter characteristic may be even more important for anaerobic 

digesters as the starting substrates can vary widely in their lignocellulosic content. Chapter 4 is 

just the beginning of the development of a targeted proteomics assay and more work is required 

to get a more manageable number of peptide candidates capturing groups of GHs to test 

experimentally in a mass spectrometer. As proteins give the most direct evidence of the 

functionality of active organisms within microbial communities, targeted proteomics is an 

interesting alternative to metaproteomics and immunoassays towards the detection of proteins 

biomarkers in selected metabolic routes in anaerobic digesters.  
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7.3 Getting more out of DDA-collected spectra in bottom-up proteomics 

experiments. 
 

The interpretation of the thousands or hundreds of thousands of peptide sequences in a 

protein database and their assignment to experimental spectra is a key challenge of MS-based 

bottom-up proteomics experiments. After a peptide is fragmented in the mass spectrometer, a 

series of characteristic set of ions, such as y- and b-ions, are used by a search engine to compute 

the probability that an experimental spectrum represents an amino acid sequence in a database.  

These peptide assignments are often achieved through scoring of the experimental spectrum 

relative to a theoretical spectrum of a candidate peptide.480 By setting up a score significance 

threshold, peptides that are above the threshold are accepted, while peptides with a lower score 

are rejected. Thus, the success that any given search engine has of finding and assigning the 

correct peptide to a mass spectrum depends of how many fragment ions are characteristic for a 

particular peptide sequence and how many other peptides are present in the database.481 

Therefore, when two or more different peptides of similar masses co-elute within the same time 

window in a data-dependent acquisition procedure (see section 1.1.2), the fragment ions of these 

“interfering” peptides, add to the uncertainty of peptide identification.482  

Chimeric spectra (see section 1.4.1) are unavoidable in LC-MS/MS bottom up proteomics 

experiments that analyze complex biological mixtures. As mentioned before in Chapter 4, several 

studies have reported that the percentage of chimeric spectra collected in bottom-up proteomics 

experiments analyzing single cell isolates can be as high as 50% of the total data,109 with newer 

studies using state-of-the art mass spectrometer, putting this percentage close to 39%.118 Thus, 

it is safe to assume that even greater percentages are expected in experiments analyzing 

samples that are the target of metaproteome studies. Interestingly, one study reported that even 

when every possible peptide precursor ion could be targeted for fragmentation in a LC-MS/MS 

experiment via DDA, cofragmentation of precursor ions would be unavoidable as many peptides 

coelute from the liquid chromatography part of the experiment.107 The same study also suggested 

two ways of solving this issue: Computationally and/or by improving the capabilities of MS 

technology by affording high resolution precursor selection.  

 Computationally, and in order to correctly assign multiple peptides to the concurrent 

product ion spectra, conventional database algorithms have been improved over time and some 

of them were already described in section 1.4.2. The project presented in Chapter 3, evaluated 

the performance of the CharmeRT computational workflow to deconvolute chimeric spectra under 

different LC setups and isolation windows commonly employed in bottom-up proteomics research 

and proposed that when combined with database engines using the multiple peptides-per-
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spectrum-match approach (mPSM), like CharmeRT, HPLC configurations can still provide 

comparable identification metrics to UHPLC configurations that overall improve chromatographic 

peptide resolution and lower peptide coisolation, but that are difficult and costly to implement.  

However, besides specialized software that is tailored to deconvolute chimeric spectra in 

proteomics data, other interesting alternatives are coming to light. For example, two research 

groups483, 484 have reported substantial improvements in the accurate prediction of theoretical 

fragment ion spectra that is used in database search by using deep learning, a branch of machine 

learning algorithms.485 In brief, these algorithms are trained on large dataset of experimental 

fragment ion spectra, but different than other methods, they can more accurately predict fragment 

ion intensities, by taking into consideration additional factors like collision energy and 

fragmentation modes. These accurate reference spectra are then used for matching against 

experimental spectra from either DDA or DIA experiments.480 These studies reported small 

increases in the number of peptide identifications at 1% FDR, but both algorithms provided higher 

identification gains when searching large databases, such as those that would be typical used for 

metaproteomics.480 One of those studies483 concluded by stating that one potential use of deep 

learning algorithms could be in deconvoluting chimeric spectra, perhaps by better differentiating 

clusters of “contaminating” fragment spectra based on similarities to training datasets, or by 

combining information from predicted retention time profiles of peptide sequences that can co-

elute under different chromatography conditions. 

Besides the use of deep learning algorithms, developments in LC-MS/MS instrumentation 

can also help in the task of increasing measurement depths to what has already been collected. 

For example, newer types of mass spectrometers, like the Orbitrap Fusion Lumos Tribrid486 

instrument provides resolving power up to 500,000 FWH at m/z 200 and scan rates up to 20 Hz, 

and it would be interesting to compare how the improved mass resolution helps in the process of 

selecting precursor ions that are targeted for MS/MS fragmentation. In the same way different 

modes of LC operation are being explored to counter, in part, the effects of coelution in bottom-

up proteomics experiments. For example, one group explored a multiple solvent approach of 

resolving peptides from a HeLa cell digest consisting of consecutive and separate gradient runs 

using acetonitrile, methanol, and acetone, to reduce the effect of coelution and ion suppression. 

Their strategy resulted in almost a 30% increase in the number of peptide identifications 

compared to a simple technical triplicate of the same digest but using a typical single acetonitrile 

solvent gradient.487 Another group explored temperature manipulation at different stages of a two 

LC column setup and suggested that loading peptides at subambient temperature (0 °C) could 

improve the characterization of hydrophilic peptides, which do not resolve quiet well in proteomics 
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experiments, by providing narrower peak shapes; but that also heating of the main analytical 

column could help improving chromatographic resolution by reducing peak widths and facilitate 

peptide elution.488  

Due to the nature of the samples analyzed by bottom-up global LC-MS/MS proteomics 

experiments, and of the data-dependent spectral acquisition mode used typically on them, some 

level of peptide information often escapes these types of analyses in the form of chimeric spectra. 

The occurrence of chimeric spectra lowers the rate of peptide spectral matches that are assigned 

by common database search algorithms, but they also present an opportunity to increase 

measurement depth. Although for low complexity samples, such as single cell isolates, the depth 

of measurement achievable today be enough to answer the questions under investigation, studies 

analyzing higher complexity samples, could benefit from the application of bioinformatic software 

or experimental tools that can recover more information from chimeric spectra, or lower their 

chances of occurrence, respectively. As database search algorithms get improved and LC-

MS/MS instrumentation cheaper, deconvoluting chimeric spectra from any given LC-MS/MS 

bottom-up proteomics dataset could become a routinely step of any proteomics pipeline.   
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7.4 Advantages of LC-MS/MS peptidomics to uncover bioactive peptides in 

different systems. 
 

The discovery of peptides of less than 100 amino acids that exist within cells and tissues 

of different organisms across prokaryotes and eukaryotes have provided new insights into 

diversity of molecules that govern the functionality of biological systems. These molecules are 

involved in important biological roles including translational control, cell-to-cell communication, 

development and protection mechanisms.489-492 While gene-based methods and targeted protein-

based methods like western blots have been the main tools used for the discovery and 

characterization of endogenous peptides, the application of LC-MS/MS based methodologies has 

provided comprehensive evidence of their expression and stability. LC-MS/MS peptidomics 

workflows aim to detect and identify endogenous peptides in a biological system with molecular 

weights ranging between 0.5-15 kDa.137 Although peptidomics has borrowed from analytical LC-

MS/MS proteomics strategies,493 there are fundamental differences and considerations that need 

to be addressed when planning an experiment of the latter type.  

One of those considerations is the distinct biosynthetic origins of endogenous peptides. In 

diverse organisms, these origins may not only include protein maturation mechanisms or natural 

turnover but also small, and in many cases, unannotated open reading frames. Each of these 

origins reflect the acting of frequently unknown proteolytic mechanisms; post-translational 

modifications, and the co-existence of different versions of peptides derived from the same gene 

or precursor in a sample. Thus, to capture the biological origins of these peptides, LC-MS/MS 

based peptidomics strategies may not necessarily require the enzymatic digestion of the 

sample147 (i.e., the use of trypsin), and in some cases, this may be even detrimental for their 

identifications, due to the limited number of cleavage sites available on them.  

The issue gets further complicated when deciding how to search spectral data derived 

from endogenous peptides. Typical LC-MS/MS based proteomics employ databases that are pre-

digested in-silico to generate a list of theoretical peptides and spectra that is matched to 

experimental data; however, without the constraints of sites for proteases in peptidomics data 

analysis, database searches can become a real challenge. Using multiple proteases for in-silico 

digestions not only increases the search space and computational resources needed to assign 

peptide sequences to experimental spectra, but, false positive rates can also reach very high 

levels compared to traditional proteomics.147 Other studies, especially in plants, have used 

custom-made databases including known variants of families of endogenous peptides, but this  

limits the scopes of identifications or works better with those analytes that have been studied with 

more detail. In addition, peptidomics studies may also rely on single identifications, as peptides 
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can originate from small protein precursors or, as mentioned before, be directly translated from 

sORFs that, in addition, may not be represented in protein databases.494 Besides these issues, 

others, like the relative natural abundance of peptides in a proteome (compared for example to 

housekeeping proteins), their variable sizes (2-100 amino acids) and properties, can make their 

identification by MS troublesome.  

 Several of these issues were taken into consideration in the development of the research 

project presented in Chapter 6 of this proposal. Here, a method of identifying natural occurring 

peptides or proteolytic cleavage products (PCPs) relevant in the establishment of ectomycorrhizal 

symbiotic associations between the basidiomycete Laccaria bicolor and the perennial plant 

Populus X canescens, through LC-MS/MS was developed. This dual system presents a good 

opportunity to test the capabilities of a LC-MS/MS based peptidomics approach to provide 

experimental evidence of the expression of native peptides at a global scale. An increasing body 

of gene-based bioinformatic research has shown the presence of small secreted proteins (≤ 250 

amino acids) in the genomes of Populus and L. bicolor,495, 496 and experimental data has 

demonstrated different levels of gene/transcript-level upregulation during their mutualistic 

interactions.497-501 Moreover, there is specific protein-level evidence of the mechanisms of some 

small secreted proteins from L. bicolor, such as the mature form of the MiSSP7.2 protein (68 

amino acids) that acts by stabilizing the Populus jasmonic acid signaling repressor PtJAZ6,497 or 

more recently of four Populus secreted peptides and small proteins (ranging from 69 to 263 amino 

acids) that localize to the nucleus of L. bicolor, with two of them impacting hyphal growth and 

morphology.444  

As many of these small secreted proteins in Populus and L. bicolor do not have 

characterized mechanisms of expression, it was decided not to use any protease for their 

identification via LC-MS/MS so not to bias the analysis towards specific groups of peptides or 

hinder their identification due to limited cleavage sites. Furthermore, an enrichment protocol using 

10 kDa filter membranes was used to deplete high abundant molecular weight proteins and/or 

their proteolytic residues that could interfere with their identification due to electrospray signal 

suppression, for example. The workaround to a regular database search was found in de novo-

assisted database searches, a capability implemented in the proteomics software PEAKS.149 As 

the name implies, this mode of database search derives peptides sequence information from 

experimental spectral data without relying on reference theoretical spectra generated from the in-

silico digestion of a proteome database. However, in contrast to stand-alone de novo sequencing, 

the sequence tags identified de novo are used to identify proteins in a database.  
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The application of this peptidomic approach to Populus tissues, including leaves and roots, 

as well as roots with established L. bicolor ectomycorrhiza identified 1660 and 2870 Populus and 

L. bicolor unique PCPs, respectively, having a median length of 21 amino acids. These PCPs 

mapped to diverse proteins in the database and were able to capture previously reported 

endogenous mechanisms of protein maturation. One example was the mature form of protein 

PsbTn (~ 3 kDa) in Populus leaves, which is the smallest subunit of the Photosystem II complex. 

Besides qualitative information, comparison of relative abundance values of PCPs demonstrated 

upregulation of 157 analytes in root tips with established ectomycorrhiza when compared to root 

tips without established ectomycorrhiza and free-living mycelium of L. bicolor. These PCPs 

mapped to 64 Populus proteins and 69 L. bicolor proteins in our database, with several of them 

previously implicated in biologically relevant associations between plant and fungus. L. bicolor, 

for example, expressed proteins involved in the detoxification of reactive oxygen species which 

are known to be induced during the formatting of mycorrhiza. Interestingly, the peptidome method 

was also able to identify small secreted proteins, four of them without functional annotations and 

another annotated as a MiSSP 7.6, from which it was plausible to hypothesize a knew mechanism 

of protein maturation as the only peptides that mapped to it were exclusive to its C-terminus. 

Although no predicted small secreted proteins from Poplar were identified in this study, the PCPs 

identified mapped to stress related proteins like metallothioneins, an observation that has been 

also captured in gene-based studies.  

Endogenous peptides have been regarded as the “rising stars in the proteome”.502 A 

recent issue of the journal Proteomics highlighted the functional importance that these molecules 

have in diverse organisms across different domains of life. With advances in RNA-seq and better 

bioinformatic approaches for in-silico prediction, new regions in the genomes of even “well-known” 

model organisms like E. coli and Arabidopsis thaliana with peptide encoding potential are being 

discovered.59, 503 However, as the same Proteomics issue also mentioned, is the integration of 

different sources of evidence that needs to become mainstream to detect and assess the coding 

potential of such regions. Peptides derived from the maturation of annotated proteins, but with 

unknown endogenous proteolytic mechanisms are also not exempt from this view. This is where 

the power of LC-MS/MS peptidomics comes handy. The ability to detect and quantify the 

expression of peptides under different conditions, not only can corroborate data derived from 

gene-based techniques, but it can also, in a high-throughput fashion provide evidence of novel 

molecules that can be candidates of further experimentation. With more technical advances in 

LC-MS technology, but also in computational algorithms for peptide sequencing such as with 
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better de novo spectra assignments,504 LC-MS/MS peptidomics will become a powerhouse for 

the study of these “long overlooked, small… but mighty!”502 molecules.  

 

7.5 Concluding perspective.  
 

Liquid chromatography interfaced with tandem mass spectrometry has enabled and widen 

the scope of protein-based knowledge to our understanding of the inner mechanisms of cells. 

From the early discovery and characterization of a dozen-to-hundreds of proteins to current nearly 

70-80% of complete proteome coverage on bacterial isolates, the in depth characterization of the 

proteome has allowed researchers to understand that the array of proteins in an organism is a 

dynamic and interconnected entity regulating multiple biological functions. However, as with every 

other technique used in biology, proteomics by LC-MS/MS is not exempt of challenges. Some of 

them include the lack of relatively streamlined experimental approaches for the recovery of 

proteins from different sample types and the amount of initial material necessary to perform these 

types of analyses when compared to genomics or transcriptomics. Likewise, there is no standard 

sequencing platform and the high costs of state-of-the-art equipment, which keeps getting better 

over time, has confined most of high-impact proteomic analyses to a small number of laboratories 

around the world.  

Despite these challenges, proteomics nowadays is sufficiently advanced to warrant the 

characterization of a great variety of biological systems. Modern mass spectrometry techniques 

have been deployed to analyze unique sample types with biological and clinical importance, from 

bacterial communities thriving in acid mine drainage to cerebrospinal fluids. Although it may seem 

with discomfort to more traditional researchers that proteomics enables the free conception of 

hypotheses, this has facilitated a variety of follow-up experiments that have accelerated biological 

research. It is the opinion of this author that the era of forming scientists specialized in the lifelong 

learning of a few dozen of proteins will be even more challenged in the upcoming years as the 

comprehensive characterization of the proteome becomes a routine and while proteomics 

remains a rapidly developing and open-ended endeavor.  

Besides the broader molecular understanding of organisms contributed by global LC-

MS/MS proteomics approaches, the adaptability of mass spectrometry has been demonstrated 

with other more specialized techniques like targeted proteomics via multiple reaction monitoring 

mass spectrometry. This technique has provided effective ways to address the identification and 

absolute quantification of proteins of interest spanning wide dynamic ranges in cells. The non-
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scanning nature of MRM proteomics improves sensitivity relative to how data is collected in global 

proteomics approaches like data-dependent acquisition. In addition, targeted proteomics provides 

interesting advantages over techniques like Western Blot and ELISA assays including the ability 

to analyze with specificity and sensitivity multiple protein targets at a time and not needing to use 

antibodies. As technology gets more financially accessible, and software for data analysis more 

user friendly, we may see targeted proteomics replace these traditional biomolecular techniques 

at least in laboratories doing recurrent analyses of hundreds of samples like hospitals, clinics, 

environmental monitoring labs, and others. 

As the reader noticed throughout this dissertation, several challenges of LC-MS/MS 

bottom up proteomics were tackled using different biological systems (i.e., groundwater, HeLA 

cells, plant, and fungi extracts). This not only demonstrates the multifaceted characteristic of 

proteomics but also its robustness as technology. Interestingly, these two attributes are also 

shaping a new generation of researchers with all-around knowledge, those that can interpret and 

condense enormous of data no matter of its origins to uncover the underlying biology within it.  
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