
Alec Yen, Yaw Mensah, Mark Dean

SABR: Development of a Neuromorphic Balancing Robot

Introduction

Background
DANNA 2 (Dynamic Adaptive Neural Network Array) is a brain-

inspired computing model developed by the TENNLab at the

University of Tennessee, Knoxville. It is the successor the original

DANNA, a neuromorphic hardware implementation [1]. The

model follows a spiking neural network model using

neuromorphic elements of neurons and synapses [2].

The models are trained using evolutionary optimization (EO). A

population of random networks are evaluated using a designed

fitness function. Each iteration, the networks with the highest

fitness are combined and mutated to create a new population [2].

Research Goals
Design a two-wheeled, self-adjusted balancing robot (SABR)

Balance the robot using traditional control algorithms

Balance the robot using a neuromorphic model (DANNA 2)

Design and Modelling

Components
• Lithium Polymer 12V Battery

• Inertial Measurement Unit

• 12V DC Motors

• Raspberry Pi 3B+

• PYNQ FPGA

Sensor Data
• Angular Position θ

• Angular Velocity dθ

• Translational Position x

• Translational Velocity dx

Mathematical Model
The two-wheeled balancing robot can be loosely categorized as an

inverted pendulum, with the addition of DC motor characteristics.

The velocity and acceleration of the pendulum system and of the

wheels were characterized based on balancing robot studies [3].

Using these and the Euler method, the system was simulated in

code.

The Network

Neuromorphic Implementation

Simulated Network Implementation
Using the mathematical model, networks were trained to balance the system

in simulation. Different networks were implemented and tested on a

Raspberry Pi. The network above indicates the best model trained thus far.

The network demonstrates correct balancing response and can balance for a

brief period of time (around 5 seconds). However, the network has not

provided strong enough motor output to keep the system from falling at

larger angles.

Conclusions and Future Work

We successfully implemented control algorithms to balance a robot using a

traditional implementation. Neuromorphic implementation has been trained

to balance in simulation, however the physical application has not yet

successfully balanced.

• The nature of the discrete output bins of the neuromorphic

implementation limits the ability of the robot to balance itself with higher

resolution.

• Refining the mathematical model to incorporate friction, slippage, and

other imperfections could benefit the neuromorphic implementation’s

accuracy.

Future work will also include implementing the neuromorphic model on

a PYNQ FPGA by generating and loading the FPGA with a Linux-based

operating system.

DANNA 2 Input
The network’s input is rate-coded, meaning it uses multiple pulses of

the same weight rather than a single pulse of different weights. Each

input has 2 neurons (or bins). There is one bin for negative values and

positive values. The raw scalar values are converted to 1 to 10 pulses.

DANNA 2 Output
The motor speed is determined by 2 output neurons using a vote

count. The number of times each neuron pulses in a given network run

time indicates the number of “votes” to move left or move right. The

difference is found and scaled to determine the duty-cycle (PWM) to

drive the motors. There are 17 discrete bins of possible PWM outputs.

DANNA 2 Training
The network was trained to encourage 3 parameters:

• Survival - The network should balance in the model for as long as

possible (a max of 5 minutes in simulation was established).

• Stability - The network should minimize oscillations.

• Symmetry - The network should provide opposite output given

opposite input.

Traditional Implementation

PID Loop
The inverted pendulum problem is a classic problem from control

theory. Like many control problems, it can be solved traditionally

using a proportional-integral-derivative (PID) loop (depicted above).

The robot balances in a very stable manner, even returning to its

original x-position after being pushed.

θ

dθ

x

dx

Motor PWM (at time 𝑡𝑖)
= 𝐾𝑝|θ × θ(𝑡𝑖)

+ 𝐾𝑖|θ × σ𝑖=0 θ(𝑡𝑖)

+ 𝐾𝑑|θ × [θ(𝑡𝑖) - θ(𝑡𝑖−1)]

+ 𝐾𝑝|𝑥 × x(𝑡𝑖)

+ 𝐾𝑑|𝑥 × [x(𝑡𝑖) - x(𝑡𝑖−1)]

Send PWM Signal

to Motors

(-255 to 255)

Sample every 10 ms

Literature Cited
1. J. P. Mitchell, M. E. Dean, G. R. Bruer, J. S. Plank, and G. S. Rose. “DANNA 2: Dynamic adaptive neural

network arrays.” Proceedings of the International Conference on Neuromorphic Systems, July 2018. 10.

2. M. E. Dean, C. D. Schuman, and J.D. Birdwell. “Dynamic Adaptive Neural Network Array.”

Unconventional Computation and Natural Computation. Springer International Publishing, 2014. 129-141.

3. C. Sundin, and F. Torstensson. “Autonomous balancing robot.” 2012.

Visit our website at

neuromorphic.eecs.

utk.edu

