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ABSTRACT 
 
The 3D structure of a protein can be fundamentally useful for understanding protein function. In 

the absence of an experimentally determined structure, the most common way to obtain protein 

structures is to use homology modeling, or the mapping of the target sequence onto a closely 

related homolog with an available structure. However, despite recent efforts in structural biology, 

the 3D structures of many proteins remain unknown. Recent advances in genomic and 

metagenomic sequencing coupled with coevolution analysis and protein structure prediction have 

allowed for highly accurate models of proteins that were previously considered intractable to 

model due to the lack of suitable templates. Structural models obtained from homology modeling, 

coevolution-based modeling, or crystallography can then be used with other computational tools 

such as small molecule docking or molecular dynamics (MD) simulations to help understand 

protein function, dynamics, and mechanism. 

 

Here coevolution-based modeling was used to build a structural model of the HgcAB complex 

involved in mercury methylation (Chapter I). Based on the model it was proposed that conserved 

cysteines in HgcB are involved in shuttling mercury, methylmercury, or both. MD simulations and 

docking to a homology model of E. coli inosine monophosphate dehydrogenase (IMPDH) 

provided insights into how a single amino acid mutation could relieve inhibition by altering protein 

structure and dynamics (Chapter II). Coevolution-based structure prediction was also combined 

with docking, and experimental activity data to generate machine learning models that predict 

enzyme substrate scope for a series of bacterial nitrilases (Chapter III). Machine learning was also 

used to identify physicochemical properties that describe outer membrane permeability and efflux 

in E. coli and P. aeruginosa and new efflux pump inhibitors for the E. coli AcrAB-TolC efflux 

pump were identified using existing physicochemical guidelines in combination with small 

molecule docking to a homology model of AcrA (Chapter IV). Lastly, quantum 

mechanical/molecular mechanical simulations were used to study the mechanism of a key proton 

transfer step in Toho-1 beta-lactamase using experimentally determined structures of both the apo 

and cefotaxime-bound forms. These simulations revealed that substrate binding promotes catalysis 

by enhancing the favorability of this initial proton transfer step (Chapter V). 
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INTRODUCTION  
 
Protein structures can provide valuable insights into enzymatic function. The overall fold, domain 

architecture, and spatial arrangement of residues involved in substrate recognition and catalysis all 

provide useful clues. In the absence of an experimentally determined structure, modeling is an 

alternative approach. When suitable templates are available, homology modeling is often the 

method of choice. However, the accuracy of the modeled structure depends on various factors, 

including scoring functions and conformational sampling strategies.1 Homology model accuracy 

also depends on the quality of the template as well as the sequence similarity to the query sequence. 

However, templates are not available for many proteins. In the absence of suitable templates, 

models can be generated by using coevolutionary information obtained from large multiple 

sequence alignments of homologs to the target protein. Here, pairs of amino acids that are found 

to coevolve in sequence space are expected to be in close proximity to one another in the folded 

protein. Using this information, contact restraints can be derived and used to generate accurate 

structural models that reach homology level accuracy.2-6 

 

Structural models and experimentally determined structures generated by any or all of these 

approaches can then be further studied with other computational tools to address questions 

pertaining to the structure, dynamics, functions, and mechanisms of various bacterial proteins. For 

example, molecular dynamics (MD) simulations can be used to investigate conformational 

changes in a protein upon mutation. Meanwhile, docking of small molecule ligands can be used to 

identify substrates for an enzyme and quantum mechanical/molecular mechanical (QM/MM) 

simulations can be used to study enzyme mechanisms in detail.  

HgcAB 
 
The hgcAB gene pair has been identified anaerobic bacteria and archaea that methylate mercury 

(Hg). 7-10 The hgcAB gene pair occurs in only ~1.4% of sequenced microbial genomes and deletion 

of hgcA, hgcB, or both has been show to completely eliminate methylmercury (MeHg) 

production.11 Despite the rare occurrence of hgcA and hgcB in sequenced genomes, 

microorganisms with these genes are found throughout the world in highly diverse anaerobic 

settings. However, bacteria that methylate Hg are no less susceptible to Hg toxicity than those that 

do not, suggesting that it is not a mechanism for Hg detoxification.12 
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Through protein sequence analysis, HgcA was predicted to consist of an N-terminal corrinoid (i.e., 

vitamin B12) binding protein (CBD) homologous to the corrinoid iron-sulfur protein (CFeSP) 13-15  

and a C-terminal transmembrane domain (TMD) that consists of five helices.7 Similar to CFeSP, 

HgcA was also predicted to have a “cap helix” that interacts non-covalently with the corrinoid. 

This helix contains several highly conserved residues, including a strictly conserved Cys that is 

absent in the CFeSP sequence. This Cys residue has been suggested to bind to the corrinoid 

cofactor based on observations from homology modeling. Site-directed mutagenesis experiments 

revealed that Ala or Thr mutations of this Cys (Cys93 in Desulfovibrio desulfuricans ND132) 

abolished Hg methylation, while mutation to His retained some activity.16 Unlike the CBD, the 

TMD of HgcA lacks detectable sequence homology to any available protein structures. This 

domain has been shown to be essential for Hg methlylation activity, as  C-terminal truncation 

mutants that removed the TMD are unable to methylate Hg.16 

 

Bioinformatics analysis has suggested that HgcB is a bacterial ferredoxin with two separate 

CxxCxxCxxxCP motifs. These motifs are known to bind [4Fe-4S] clusters. HgcB also contains a 

strictly conserved Cys (Cys73 in D. desulfuricans ND132), located near the second [4Fe-4S]-

binding motif. Mutation of this residue to Ala has been shown to eliminate Hg methylation in 

vivo.10 There are also two additional Cys residues (Cys94 and Cys95 in D. desulfuricans ND13) 

at the C-terminus. For both of these Cys residues, Ala mutations have been shown to abolish Hg 

methylation activity, but single Cys mutants were not affected, suggesting that at least one of these 

Cys residues is required. Sequence homologs of HgcB have variable sequence length and number 

of C-terminal Cys residues. 

 

HgcA and HgcB are expressed at very low levels,17,18 making it particularly challenging to isolate 

and purify sufficient quantities of these proteins from the native host. Heterologous overexpression 

is difficult as Hg methylating microorganisms are obligate anaerobes and exposure to oxygen stops 

MeHg production.19 In addition, the uptake of corrinoids is tightly regulated20 and the iron-sulfur 

clusters require the proper machinery for assembly.21 The TMD also poses a challenge in structure 

determination, as transmembrane proteins are difficult to crystallize. Lastly, structure 

determination of transmembrane proteins such as the TMD remains challenging for X-ray 

crystallography, nuclear magnetic resonance, and cryo-EM. 
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Structural models of the HgcAB complex would provide valuable insight into the biochemical 

mechanism of Hg methylation. These structures can be obtained using coevolution analysis. This 

method requires a large multiple sequence alignment and the massive amount of sequence data 

available provide a large number of diverse protein sequences. Recently, it was shown that highly 

accurate structures can be obtained using coevolution analysis on sequences obtained from 

metagenomes.22 Due to the rarity of these genes in sequence genomes and the large number of 

sequences required to generate accurate contacts from coevolution analysis, metagenomes can be 

crucial for generating accurate models of the HgcAB complex. In Chapter I this complex is 

confirmed to bind corrinoid and iron-sulfur clusters, as predicted previously and models of the 

HgcAB complex were generated using metagenome sequences for coevolution analysis (Figure 

1A).  In addition, the relevant cofactors are incorporated to generate a complete model of the 

complex that is used to provide mechanistic insights into how microorganisms methylate Hg. 

IMPDH 
 
Microbes are able to utilize a wide array of compounds as carbon and energy sources. By 

expanding the range of compounds, a particular organism can use, new environmental niches can 

be accessed, and microbes can be engineered to use new feedstocks. In nature, horizontal gene 

transfer (HGT) allows for transfer of catabolic pathways between bacterial strains. In the 

laboratory setting metabolic engineering can be used for transferring pathways.23, 24 However, 

these engineered pathways often fail to function properly in the host, requiring optimization to 

minimize deleterious interactions.25,26, 27 

 

Pathways for catabolism of lignin-derived aromatic compounds are found to be widespread in 

nature28, and often undergo HGT.29 Previous metabolic engineering efforts have attempted to 

generate strains of Escherichia coli that use lignin-derived compounds (i.e., 4-hydroxybenzoate, 

4-HB) as sole energy sources.30, 31 However, introduction of the relevant pathways was not enough 

to enable growth. To overcome this issue, directed evolution was used to select for strains with 

improved growth in order to identify causal mutations that improve function of this engineered 

pathway. An extension of this work optimized these pathways for phenylpropanoid catabolism in 

E. coli and point mutations in the host were able to readily alleviate limitations in pathway activity. 

In one of these pathways, 4-hydroxybenzaldehyde, a pathway intermediate, inhibited purine 
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nucleotide biosynthesis. Interestingly, this inhibition was relieved by single amino acid 

replacements in the enzyme inosine-5′-monophosphate dehydrogenase (IMPDH). In Chapter II 

homology models of IMPDH were generated for small molecule docking to predict the inhibitor 

binding site followed by MD simulations to understand the structural and dynamic changes 

between the wild-type and mutant enzyme that lead to inhibition relief (Figure 1B). 

Nitrilase  
 
Enzymes are often able to accept multiple molecules as substrates and knowledge about the 

repertoire of substrates a given enzyme prefers (also known as substrate scope) can provide 

information about biological pathways and insights for metabolic engineering. Sequenced based 

methods are effective at predicting information about the broad categories of molecules that may 

act as substrates for a given enzyme to provide valuable information about potential protein 

function (i.e. active site residues, gene ontology terms, conserved domains), but are unable to 

predict the substrate scope. BRENDA32  is a manually curated database of ~84,000 enzymes that 

contains information about substrate specificity, but is limited to only experimentally verified 

systems. The ability to predict the substrate scope of an enzyme based on limited experimental 

data would be beneficial to studying enzyme function. 

 

Several efforts have been used to predict substrate specificity. For example, the substrate 

specificity of an enoyl-acyl carrier protein reductase was predicted using small molecule docking 

of putative substrates to an available crystal structure.33 As mentioned previously, structural 

modeling (i.e., homology or coevolution-based modeling) can be used in the absence of an 

available crystal structure. These models can then be used for computational docking of ligands.34-

36 However, docking studies often are unable to differentiate between ligands with similar 

scaffolds and docking also neglects to account for chemical reactivity, making it challenging to 

predict enzymatic activity.37 Combining information from structural modeling, docking, and other 

sources such as physicochemical properties of the ligand and the enzyme active site is expected to 

help overcome some of these limitations observed from docking to structural models of proteins. 

 

Machine learning (ML) has recently been applied to a variety of problems in fields such as 

quantum mechanics, physical chemistry, and biophysics. For example, channelrhodopsin was 
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engineered with higher light sensitivity using directed evolution in combination with information 

from protein sequence and contact maps generated from crystal structures.38 ML has also shown 

to be a promising way to predict substrate specificity.39, 40 Recently, a decision tree-based classifier 

that incorporated sequence information and physicochemical properties of substrate donor and 

acceptor molecules with experimental activity data was able to accurately predict enzymatic 

activity (~90%).41An extension of this approach would be to directly incorporate 3D structural 

information. 

 

Nitrilases are a family of enzymes that hydrolyze nitrile compounds to their corresponding 

carboxylic acids and ammonia. This enzyme family has a broad scope and is found in a wide range 

of organisms. These enzymes are involved in a variety of biological processes in addition to 

degradation of toxic nitrile compounds.42 In plant-microbe interactions these enzymes are of 

interest for improving food crop production, as they are thought to be involved in hormone 

synthesis, nutrient assimilation, detoxification, and modulation of plant development and 

physiology.43 In addition, nitriles are of interest in drug design.44, 45 In general, nitrilases fall into 

three categories of substrate specificities: aliphatic, arylaceto-, and aromatic nitrilases.43, 46 

However, existing sequence-based annotations are limited in their ability to classify nitrilases. 

 

Functional screening of microbial metagenomes has led to the identification of a diverse collection 

of nitrilases and reactivity toward specific substrates was found to be strongly correlated with 

phylogenetic relationships.44 To evaluate a large number of putative nitrilases, a high-throughput 

method is essential. Various fluorogenic or chromogenic activity assays are available to do so.45, 

47, 48 Recently, a chromogenic method was developed to screen nitrilases produced in crude cell 

extracts which alleviates purification steps and facilitates screening.49  

 

Shifts in substrate specificity were observed within specific subfamilies, suggesting that subtle 

changes in sequence can noticeably alter their substrate scope.44  Chapter III describes an 

integrated and modular approach that combines experimental activity assays with coevolution-

based protein structure prediction, small molecule docking, and calculation of physicochemical 

properties of a series of 12 bacterial nitrilases and a set of 20 nitriles (Figure 1C). This information 

is then used to train various machine learning classifiers to predict enzyme substrate scope. 
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Antibiotic outer membrane permeability and efflux 
 
Bacteria are developing resistance to antibiotics at an alarming rate through an arsenal of resistance 

mechanisms and understanding these various resistance mechanisms is important for developing 

strategies to overcome multi-drug resistance and restore antibiotic effectiveness. The presence of 

multidrug resistant strains in clinics often leave clinicians with no therapeutic options and the 

discovery of new antibiotics that are active against these pathogens is a major challenge.50 

 

Compared to Gram-positive bacteria, Gram-negative bacteria are more resistant to antibiotics. 

Gram-negative cell envelopes are comprised of the outer membrane (OM) that provides protection 

from toxic molecules and enzymatic attacks. The OM is an asymmetric bilayer of 

lipopolysaccharides and phospholipids along with both substrate-specific channels and non-

selective porins.51, 52 The inner membrane is a phospholipid bilayer that contains multidrug efflux 

pumps that protect intracellular functions by expelling small, toxic molecules from the cell.53 The 

low-permeability of the OM coupled with active efflux in the inner membrane provides two 

synergistic barriers that are responsible for antibiotic resistance in Gram-negative bacteria. In 

particular, efflux is considered a major bottleneck in addressing multidrug resistance54 and the 

discovery of new antibiotics is hindered by the lack of practical rules to maximize OM 

permeability and minimize active efflux.55, 56 

 

Separation of these two barriers allows for  different sets of rules to be established that define OM 

permeation and efflux.57 To investigate efflux in the absence of the OM barrier, a hyperporination 

approach can be used that facilitates control of OM permeability in Gram-negative cells through 

inducible expression of a chromosomally encoded open pore.58 The deletion of efflux pumps 

allows for OM permeability to be characterized without concern for the effect of efflux. Different 

classes of antibiotics can also be used to further investigate the individual and synergistic 

contributions of these two barriers. b-lactams (BLs) and fluoroquinolones (FQs) have been 

extensively developed and remain the major antibiotics administered in clinics. FQs target DNA 

replication by inhibiting DNA topoisomerases. Thus, to be effective, these antibiotics must 

penetrate both the outer and inner membranes and evade efflux pumps. In contrast, BLs act in the 

periplasm. The different targets for BLs and FQs allow for further investigation into the barriers 

limiting antibiotic activity in Gram-negative bacteria. 
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Pseudomonas aeruginosa and E. coli are two Gram-negative pathogens that differ significantly in 

their permeability barriers, despite having similar OM lipid compositions.51, 59, 60 These two species 

differ in the composition and structure of their major general porins. E. coli has~200,000 copies 

per cell of OmpF/C porins, which have a molecular mass cutoff of ~600 Da, allowing for a 

significant portion of antibiotics to permeate.61 In contrast, P. aeruginosa only utilizes substrate-

specific porins to take up small compounds.62 P. aeruginosa has shown susceptibility to FQs and 

some BLs, suggesting alternate routes of OM permeation. Fortunately, hyperporination negates 

the differences in OM permeability in these two species. 57, 58 

 

AcrAB-TolC is the main efflux pump in E. coli, which, which consists of three main components, 

AcrB, AcrA and TolC that assemble in 3:6:3 stoichiometry to span the entire cell envelope.63 AcrB 

is a homotrimer with an integral membrane domain, a periplasmic porter domain that binds and 

extrudes substrates, and a docking domain that interacts with AcrA.64, 65 AcrA consists of α-

hairpin, lipoyl, β-barrel, and membrane-proximal domains. TolC is a trimeric protein that consists 

of a b-barrel domain embedded in the OM and a periplasmic a-helical coiled-coil domain.66  

 

An effective efflux pump inhibitor must first bypass the OM. Recently, random forest ML was 

used to help determine that small-molecule compounds containing amine functional groups were 

most likely to accumulate in E. coli, and incorporation of a primary amine into the Gram-positive 

antibiotic deoxynybomycin resulted in a new antibiotic with broad-spectrum activity against 

multidrug-resistant Gram-negative bacteria.67 In addition to containing an amine, antibiotics that 

were polar, amphiphilic, relatively rigid, and had low globularity were found to be more likely to 

permeate. In Chapter IV (Figure 1D) random forest classification is used to identify molecular 

properties of antibiotics that are associated with their activities, measured as minimum inhibitory 

concentrations in P. aeruginosa and E. coli strains with controlled permeability barriers. 

Physicochemical property guidelines are then used to identify novel efflux pump inhibitors. 

b-lactamase 
 
Enzymatic inactivation is often the preferred mechanism of resistance, as enzymes can catalyze 

chemical transformations that inactivate an entire class of antibiotics. The most extensively studied 

enzymatic inactivation mechanism is the inactivation of BL antibiotics by β-lactamase enzymes. 
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Since their introduction into the clinic, BLs have revolutionized medicine.68, 69 However, the 

development of antibiotic resistance is inevitable. Despite the wide variety of BL antibiotics 

available today, resistant strains pose a threat to public health.  

 

Sequence homology is used to divide β-lactamases into four classes (A-D).70 Typical class A β-

lactamases include extended-spectrum β- lactamase (ESBL) cefotaxime-resistant (CTX) M-type 

enzymes. CTX-M-type CTX-M ESBLs can inactivate monobactam antibiotics  and all generations 

of cephalosporins.70-72 Toho-1 is a class A CTX-M-type ESBL β-lactamase composed of two 

highly conserved domains.73 All class A β-lactamases, including Toho-1, utilize a serine 

nucleophile to cleave the β-lactam bond. Several detailed mechanisms have been proposed for this 

reaction.74-77 One way to differentiate between these mechanisms is to unambiguously identifying 

key protonation states and hydrogen-bonding interactions of the catalytically important residues 

and the substrate. Neutron crystallography is ideally suited to experimentally determine 

protonation states as it allows for hydrogen atom positions to be determined. 

 

QM/MM calculations can provide key mechanistic insights that are complementary to 

crystallographic experiments by allowing for detailed inspection of short-lived intermediates and 

transition states and the quantification of reaction energetics of enzymatic reactions. 

Configurational sampling is required to provide information about free energies and can be 

achieved using umbrella sampling by running a series of restrained simulations along the reaction 

coordinate, in this case a hydrogen atom transfer. However, the computational cost of QM/MM 

umbrella sampling with density functional theory is high as it requires calculations at the quantum 

mechanical level at each timestep. Instead, semiempirical QM methods are often used to perform 

these calculations. Previous QM/MM studies of class A β-lactamases have focused on the 

acylation78-81and deacylation steps82, 83, and have helped establish likely mechanisms for BL 

inactivation. However, the effect the substrate has on this mechanism has not yet been investigated. 

In Chapter V X-ray and neutron crystallography is combined with QM/MM simulations to address 

this question using protonation states confirmed crystallographically (Figure 1E). 
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Figure 1. Schematic overview of chapters. (A) In Chapter I coevolution-based structural modeling is used to build a model of the HgcAB complex 
involved in mercury methylation. (B) In Chapter II homology modeling, docking, and molecular dynamics (MD) simulations are used to investigate 
how a single amino acid mutation relieves inhibition of E. coli inosine monophosphate dehydrogenase (IMPDH) by 4-hydroxybenzaldehyde (C) 
Chapter III describes the use of coevolution-based structure prediction, docking, and machine learning to predict the enzyme substrate scope of a 
series of bacterial nitrilases. (D) In Chapter IV machine learning is also used to identify physicochemical properties that define antibiotic permeability 
and efflux in E. coli and P. aeruginosa. Physicochemical property filters are then used to discover novel efflux pump inhibitors (EPIs) for the E. coli 
AcrAB-TolC efflux pump by docking to AcrA. (E) Chapter V describes the use of MD and quantum mechanical/molecular mechanical (QM/MM) 
free energy simulations of apo and cefotaxime-bound b-lactamase to investigate how substrate binding affects catalysis.
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CHAPTER I 
 

COEVOLUTION-BASED STRUCTURE PREDICTION OF THE HGCAB COMPLEX 
INVOLVED IN MERCURY METHYLATION 
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Abstract 
Bacteria and archaea possessing the hgcAB gene pair methylate inorganic mercury (Hg) to form 

highly toxic methylmercury. HgcA consists of a corrinoid binding domain and a transmembrane 

domain, and HgcB is a dicluster ferredoxin. However, their detailed structure and function have 

not been thoroughly characterized. We modeled the HgcAB complex by combining metagenome 

sequence data mining, coevolution analysis, and Rosetta structure calculations. In addition, we 

overexpressed HgcA and HgcB in Escherichia coli and confirmed spectroscopically that they bind 

cobalamin and [4Fe-4S] clusters, respectively, and incorporated these cofactors into the structural 

model. Surprisingly, the two domains of HgcA do not interact with each other, but HgcB forms 

extensive contacts with both domains. The model suggests that conserved cysteines in HgcB are 

involved in shuttling HgII, methylmercury, or both. These findings refine our understanding of the 

mechanism of Hg methylation and expand the known repertoire of corrinoid methyltransferases in 

nature.  
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Introduction 
Anaerobic bacteria and archaea possessing the hgcAB gene pair methylate inorganic mercury (Hg) 

to form methylmercury (CH3Hg+),7-10 a potent neurotoxin. Deletion of hgcA, hgcB, or both 

completely abolishes the ability of microorganisms to make methylmercury. These genes are 

distributed somewhat sporadically among various Proteobacteria (Deltaproteobacteria), 

Firmicutes, and Euryarchaeota. They are also found in some Chloroflexi (Dehalococcoides), 

Chrysiogenetes, Nitrospirae, and others.  

 

The hgcAB gene pair is relatively rare, occurring in only ~1.4% of sequenced microbial genomes.11 

Nevertheless, microorganisms harboring these genes are distributed worldwide in highly diverse 

anaerobic settings including soils, sediments, periphyton, rice paddies, invertebrate digestive 

tracts, and various extreme environments. It is not known why microorganisms methylate Hg, but 

this process is generally not thought to be a Hg detoxification mechanism because microorganisms 

harboring hgcAB genes are apparently no less susceptible to Hg toxicity than those lacking them.12 

 

Protein sequence analysis revealed that HgcA (a subset of the CO dehydrogenase/acetyl-CoA 

synthase delta subunit family, PF03599) is a corrinoid (i.e., vitamin B12-dependent) protein 

consisting of an N-terminal corrinoid binding domain (CBD) and a C-terminal transmembrane 

domain (TMD) with five TM helices.7 The CBD of HgcA bears homology to the C-terminal 

domain of the large subunit of the corrinoid iron-sulfur protein (CFeSP) from the Wood-Ljungdahl 

pathway in acetogenic bacteria.13-15  

 

HgcA was predicted to include a “cap helix” in its CBD similar to that in CFeSP.13 The cap helix 

in CFeSP interacts noncovalently with the a face of the corrinoid cofactor. In HgcA, the putative 

cap helix region includes several highly conserved residues, one of which is a strictly conserved 

Cys residue (Cys93 in Desulfovibrio desulfuricans ND132), that is not present at the corresponding 

position in the sequence of CFeSP. On the basis of its position in a homology model of the CBD, 

this Cys residue was predicted to bind the corrinoid cofactor in a cobalt-thiolate, or “Cys-on” 

configuration.7 Findings from in vivo site-directed mutagenesis experiments are consistent with 

Cys-on cofactor binding.16 Mutation of Cys93 to Ala or Thr resulted in a complete loss of Hg 

methylation activity, but a His mutant, which can presumably still coordinate with Co, retained 
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partial activity. In addition, substitution of several amino acids in the cap helix region with a helix-

breaking Pro residue drastically reduced or completely abolished activity. A quantum chemical 

study showed that Cys-on coordination promotes the exchange of one organometallic (Co–C) bond 

for another (Hg–C).84 Recently, the first example of Cys-on coordination in a protein was observed 

for the bacterial vitamin B12 transporter BtuM co-crystallized with cobalamin.85  

 

The TMD of HgcA has no detectable sequence homology (i.e., BLAST E-value < 10) to any 

structurally characterized protein. C-terminal truncation mutants of HgcA in which the TMD was 

deleted by introducing a stop codon after the nucleotides encoding either amino acid 166 or 187 

were both unable to methylate Hg, indicating that this domain is essential for activity.16 

 

HgcB is a 10.2 kDa bacterial ferredoxin (Pfam entries PF13237 and PF00037) that includes two 

CxxCxxCxxxCP motifs, which are known to bind [4Fe-4S] clusters. In addition, HgcB includes 

another strictly conserved Cys (Cys73 in D. desulfuricans ND132), located ~12 residues 

downstream of the second [4Fe-4S]-binding motif, and up to four additional Cys residues at its C-

terminus. Two cysteines are present at the C-terminus of ND132 (Cys94 and Cys95). Homologs 

of HgcB have variable sequence length, in particular in the tail region near the C-terminus. 

Mutation of Cys73 to Ala completely abolished Hg methylation in vivo.10 Mutation of either C-

terminal cysteine (Cys94 or Cys95) individually to Ala did not affect Hg methylation activity, but 

mutation of both residues simultaneously to Ala led to a 95% reduction in activity compared to the 

wild-type. Thus, at least one Cys is required at the C-terminus for maximal Hg methylation 

activity. 

 

In a proteomics study of Geobacter sulfurreducens PCA, another confirmed Hg-methylating 

bacterium, HgcA and HgcB were not detected due to low protein abundance.17 In a subsequent 

study of D. desulfuricans ND132, HgcA was detected in low abundance but HgcB was again not 

detected.18 Thus, isolation and purification of sufficient quantities of protein from a native host are 

expected to be challenging. Heterologous overexpression of HgcA and HgcB is complicated by a 

number of factors. For example, many Hg-methylating organisms are obligate anaerobes. Based 

on the proposed Hg methylation cycle, maintaining a low redox potential is essential for the 

function of HgcA and HgcB. It has been demonstrated that exposure to oxygen inhibits MeHg 
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formation in cell lysates of D. desulfuricans ND132.19 In addition, incorporation of the corrinoid 

cofactor and [4Fe-4S] clusters is nontrivial in heterologous hosts such as Escherichia coli because 

the uptake of corrinoids is tightly regulated20 and overexpression of recombinant proteins increases 

the demand on the machinery required to assemble iron-sulfur clusters.21 Lastly, although 

tremendous progress has been made in recent years, structure determination of transmembrane 

proteins with X-ray crystallography, nuclear magnetic resonance, or cryo-electron microscopy 

remains a challenge. 

 

In the absence of an experimentally determined structure, structural modeling is a viable means 

for obtaining mechanistic insight into protein function. Homology modeling is generally the 

method of choice, provided that suitable template structures are available. When templates are 

lacking, however, models can be generated by leveraging coevolution information inferred from a 

multiple sequence alignment. Pairs of amino acids that coevolve are likely to be in close spatial 

proximity in the folded protein. Thus, by imposing contact restraints derived from coevolution 

analysis with ab initio protein modeling, accurate structural models can be obtained.2-6 

 

Coevolution analysis requires as input a multiple sequence alignment with a large number of 

sequences. The massive amount of data available in public repositories such as the UniRef100 

database86 and the DOE Joint Genome Institute (JGI) metagenome database87 provide a rich source 

of diverse protein sequences. Recently, it was shown that the combination of metagenome 

sequences, coevolution analysis and Rosetta protein structure calculations can produce highly 

accurate structures.22 For a multiple sequence alignment, when the effective number of sequences 

divided by the square root of the sequence length L is greater than 64 (where the effective number 

of sequences is defined as 1 over the number of sequences within 80% identity), then homology 

model-level accuracy or better can be obtained. 

 

Structural models of HgcA and HgcB would provide valuable insight into the biochemical 

mechanism of Hg methylation. Here we express HgcA and HgcB individually in E. coli and show 

by UV-visible spectroscopy that they indeed bind corrinoid and iron-sulfur cofactors, as predicted 

from previous bioinformatics analyses. We then combine metagenome-based protein structure 

calculations to generate models of the individual domains of HgcA and of HgcB. We then show 
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how these domains assemble to form the HgcAB complex and incorporate a vitamin B12 corrinoid 

cofactor and two [4Fe-4S] clusters into the model. In addition, we analyze more than 4,300 

genomic and metagenomic sequences of HgcA to show that the evolution of this enzyme family 

has been marked by extensive horizontal gene transfer. A large diversity of HgcA is present in 

organisms that have not yet been cultured. 

 
Methods 

For experimental details see: 

Cooper, C.J., Ovchinnikov, S., Zheng, K., Rush, K.W., Podar, M., Pavlopoulos, G., Kyrpides, 

N.C., Johs, A., Ragsdale, S.W., and Parks, J.M. Structure determination of the HgcAB complex 

using metagenome sequence data: insights into the mechanism of mercury methylation. Commun. 

Biol. 2020. DOI: 10.1038/s42003-020-1047-5. 

 
MSA generation and coevolution analysis 

The sequences of HgcA and HgcB from D. desulfuricans ND13288 (UniProt IDs: F0JBF0 and 

F0JBF1, respectively) were selected for 3D structural modeling. In microbial genomes, hgcB is 

nearly always located immediately downstream of hgcA, which facilitated generation of the paired 

multiple sequence alignment. Initial alignments were generated by searching the UniProt20 

database (2015_06) with hhblits89 from HH-Suite90 and then filtering the results with hhfilter to 

remove sequences with >90% identity and columns with more than 50% gaps. A hidden Markov 

model (HMM) was then generated from the alignment with hmmbuild from HMMER version 

3.1b1 with default parameters, and hmmsearch was used to search a combined database consisting 

of JGI metagenomes (IMG/M)87 and the UniRef100 database.86 Filtering was performed to 

generate the final paired alignment. GREMLIN91, 92 was used to perform the coevolution analysis 

and predict intra- and interdomain contacts. A single GREMLIN calculation was performed on the 

paired multiple sequence alignment. The GREMLIN output provides predicted contacts that are 

ranked based on the strength of the coevolution signal between residue pairs. These raw contacts 

were then normalized and reweighted according to a previously described model that estimates the 

contact prediction accuracy from the normalized GREMLIN scores, the number of sequences in 

the MSA, and the length of the query sequence.6 
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HH∆ calculation 

hhsearch from HH-Suite was used to search the PDB70 database of hidden Markov models 

(HMMs) for homologous proteins with known structures using the HgcAB query HMM as input. 

For the resulting list of potential templates, HH∆ was calculated to determine if the multiple 

sequence alignment was closer to the query protein than a given structural homolog.91 

Ab initio modeling 

The approach used to generate the model has been described previously.22 Briefly, individual 

domains were folded with the standard Rosetta ab initio structure prediction method using 

restraints derived from the coevolution analysis. For each domain, we generated 10,000 models 

with sigmoidal restraints, 10,000 models with sigmoidal restraints and bounded restraints (with 

bounded restraints applied only during the centroid stage), and 4,000 map_align models with 

sigmoidal and bounded restraints. The program map_align22 identifies structural homologs by 

aligning contact maps predicted from coevolution analysis with contacts in experimentally 

determined structures, in this case a subset of the Protein Data Bank with a maximum of 30% 

mutual sequence identity.93 

 

The first nine residues of HgcA were excluded from the model because they are not highly 

conserved. The last ten residues of HgcB were not included in initial modeling but were added 

after the complex was assembled. Models were ranked by the sum of their Rosetta energy94 and 

restraint score (scaled by a factor of 3). A diverse set of 30 top-scoring models selected on the 

basis of their pairwise TMscore95 was then used as input for iterative hybridization.1 The 

RosettaScripts interface96 was used for both the map_align models and for iterative hybridization. 

Modeling of [4Fe-4S] clusters 

Consistent with the expected Cys coordination patterns from other dicluster ferredoxins, such as 

that from Clostridium acidurici (PDB entry 2FDN),97 preliminary de novo models of HgcB with 

coevolution restraints suggested that one [4Fe-4S] cluster is bound to Cys20, Cys23, Cys26, and 

Cys60 and another is bound to Cys50, Cys53, Cys56, and Cys30. Thus, after a preliminary model 

of the HgcAB complex was generated, additional restraints were included in subsequent hybrid 

modeling to enforce geometries consistent with cluster binding. The C-terminal tail of HgcB was 

also introduced at this step. All Cys restraints were generated on the basis of the 0.94 Å resolution 
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crystal structure of ferredoxin from C. acidurici (PDB entry 2FDN) and were the average values 

for the corresponding residues in each cluster. Harmonic distance restraints of 6.4 +/- 0.5 Å were 

applied to all pairs of Sg atoms among the four cysteines coordinated to each [4Fe-4S] cluster. 

Harmonic angle restraints were applied to Ca-Cb-Sg angles in each Cys residue as follows: Cys20 

and Cys50, 114.6 +/- 1 deg; Cys23 and Cys53, 116.9 +/- 1 deg; Cys26 and Cys56, 112.9 +/- 1 deg; 

Cys30 and Cys60, 108.9 +/- 1 deg. Circular harmonic restraints were applied to the C-Ca-Cb-Sg 

dihedrals in each cysteine as follows: Cys20 and Cys50, 56.1 +/- 2.3 deg; Cys23 and Cys53, -52.7 

+/- 2.3 deg; Cys26 and Cys56, -71.6 +/- 2.3 deg; Cys30 and Cys60, 58.4 +/- 2.3 deg. Explicit [4Fe-

4S] clusters were placed into the final model by aligning the Sg atoms of cluster-binding cysteines 

of the model with those in 2FDN. 

Modeling of the corrinoid cofactor 

The specific corrinoid cofactor used by HgcA differs from organism to organism. For example, 

the corrinoid used by most species of Geobacter is 5-hydroxybenzimidazolyl cobamide. However, 

the cofactor used by ND132 is not known, so B12 was used. The cofactor was first placed in the 

binding pocket by superposing the CBD onto an X-ray structure of CFeSP. Polar residues in the 

CBD of CFeSP that interact with the B12 cofactor are conserved in HgcA. Thus, the following 

harmonic distance restraints were applied to facilitate cofactor binding in the HgcAB model: Thr60 

(Og1)–B12 (N3B), 2.9 +/- 0.1 Å; Thr66 (Og1)–B12 (O4), 2.7 +/- 0.2 Å; Val91 (N)–B12 (O4), 3.0 +/- 

0.05 Å; Ala153 (N)–B12 (O6R), 3.1 +/- 0.2 Å. Cys93 in HgcA was modeled as a chemically 

modified residue consisting of a coordinating bond between Sg and the Co center in vitamin B12 

with a harmonic distance restraint of 2.5 +/- 0.1 Å and a Cb-Sg-Co harmonic angle restraint of 108 

+/- 5 degrees. We then generated 1,500 models with the Rosetta Relax application.98 The model 

with the lowest Rosetta score was selected as the final model. The Dali web server99 was used to 

identify structures in the PDB with folds that are similar to those of the HgcA and HgcB models. 

Figures were generated with PyMOL version 2.2.0.100 

Phylogenetic analysis 

HgcA sequences identified in UniRef100 and IMG/M included 296 sequences from genomes of 

isolated bacteria and archaea and from taxonomically assigned uncultured organisms (assembled 

genomes from single cells or metagenomes), as well as ~4,200 sequences (after filtering to a 90% 
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identity cutoff) identified in bulk metagenomes. The sequences were aligned with Muscle (v. 

3.8.425)101 in Geneious (version 10)102 and the alignment trimmed to eliminate highly variable 

positions (<30% overall similarity). A phylogenetic tree was constructed using FastTree (v. 

2.1.12)103 and visualized in iTOL.104 

Results  
We cloned and expressed full-length HgcA from D. desulfuricans ND132 heterologously in E. 

coli as an N-terminal His-tagged construct (His-HgcA) (Figure 2A in Appendix I).105 Similarly, 

HgcB was produced separately as a maltose-binding protein fusion construct (MBP-HgcB). 

Electronic spectra of HgcA and HgcB 

After purifying each protein, we obtained UV-visible spectra to confirm cofactor binding. The 

characteristic UV-visible peaks of dicyanocobalamin are 367, 540 and 580 nm.106, 107 We obtained 

a spectrum from KCN and heat-treated His-HgcA (95 °C for 20 min) and compared it to that of 20 

µM dicyanocobalamin dissolved in the same phosphate buffer (Figure 2B). Both spectra show the 

characteristic peaks of dicyanocobalamin, demonstrating that HgcA indeed binds cobalamin. 

Sodium dithionite (1 mM) was added to 12.5 µM HgcB (25 µM [4Fe-4S] cluster), quenching the 

absorbance in the 300-500 nm region, as is characteristic of reduced [4Fe-4S] cluster proteins 

(Figure 2C). 

 

Lack of suitable templates for homology modeling 

Structural models of HgcA published to date are limited to the core of the CBD.7, 108 To determine 

whether including coevolutionary information is likely to provide more information for structural 

modeling of HgcA and HgcB than homology modeling, we searched a nonredundant subset of 

structures in the Protein Data Bank and calculated HH∆ for potential templates. HH∆ values less 

than 0.5 for a query and template sequence are generally considered to be good candidates for 

template-based modeling, whereas those with values greater than 0.5 are not. The lowest HH∆ 

value for the paired alignment of HgcA and HgcB is 0.77 (Table 1 in Appendix I), with the top 

hit corresponding to an X-ray structure of the corrinoid iron-sulfur protein CFeSP (PDB entry 

4DJD).14 However, only the core of the CBD is covered by the template. No structures in the PDB 

were identified by hhsearch that could serve as templates for the TMD of HgcA. The lowest HH∆ 
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value for a template that covers HgcB is 0.92 for the Fe hydrogenase from D. desulfuricans (PDB 

entry 1HFE).109 

Multiple sequence alignments and contact map predictions 

To obtain a sufficient number of sequences for coevolution analysis, we searched a large master 

database comprising JGI metagenomes and the UniRef100 database for sequence homologs of 

HgcA and HgcB. Initial searches identified 7,505 and 19,317 putative HgcA and HgcB sequences, 

respectively. We then exploited co-occurrence and adjacency to generate a paired alignment of 

HgcA and HgcB. After pairing of HgcA and HgcB sequences based on whether two hits were from 

the same metagenomic contig, we obtained 3,025 sequences. We used 90% identity filtering to 

remove redundant sequences (2,432), but later reweighted by 80% identity to obtain the effective 

number of sequences (1,783). From the paired alignment, the estimated contact prediction 

accuracy is Nf = seq/√len = 87.1 for the 419 amino acids in HgcA and HgcB remaining after 

trimming regions at the N- and C-termini that are not well constrained by predicted contacts. This 

Nf value indicates that HgcA and HgcB are excellent candidates for structural modeling guided by 

coevolution-based contact restraints. 

Structural modeling 

Intra- and interdomain residue-residue contacts were predicted by performing a coevolution 

analysis of the HgcAB paired alignment. Surprisingly, the contact map includes very few predicted 

contacts between the two domains of HgcA (Figure 3). Gly33 is predicted to interact with Val186, 

and Leu32 is predicted to interact with Tyr189. In addition, Val173 and Thr174 are both predicted 

to interact with Glu179, but these residues are located near the boundary between the two domains. 

However, there is clear evidence for several contacts between the CBD of HgcA and HgcB. 

CBD of HgcA  

Rosetta modeling guided by coevolution analysis revealed that the core of the CBD of HgcA 

adopts a Rossmann fold with five b sheets, four major a-helices and two short helical regions 

(Figure 4). An additional a-helix is present near the N-terminus. A search of the Protein Data 

Bank with the Dali web server revealed several proteins with structural similarity to the CBD 

model (Table 2). As expected, the protein with the greatest structural similarity to the CBD of 

HgcA is CFeSP (PDB entry 2YCL, Z-score = 14.2). The sequence identity between the CBD of 
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HgcA (residues 15-166) and CFeSP (residues 291-445) is only 27%, but the binding pocket that 

accommodates the nucleotide tail of the cofactor is similar in the two proteins.7 Besides the four 

conserved hydrogen bonds that were used as distance restraints (see Methods), the B12 cofactor 

forms hydrogen bonds with several other residues in the model (Figure 4 and Table 2). 

TMD of HgcA 

The TMD consists of five TM helices, with helix 4 forming a central stalk that is mostly surrounded 

by helices 1, 2, 3 and 5 (Figure 5). Helices 1 and 2 are the longest, both consisting of 31 residues. 

Helix 5 includes 29 residues and helix 4 includes 24. Helix 3 is the shortest, comprising 21 

residues. Based on the coevolution analysis, all adjacent pairs of helices in the model are predicted 

to be in contact with each other except for helices 1 and 5 (Figure 5B). A search of the Protein 

Data Bank with the Dali web server identified structural similarity between the TMD of HgcA and 

several membrane proteins (Table 4). Interestingly, the top hit is an X-ray structure of the 

homodimeric Mg2+ transporter MgtE from Thermus thermophilus (PDB entry 2YVX, Z-score = 

6.8).110 

HgcB 

HgcB consists of an N-terminal core domain with a typical [4Fe-4S] ferredoxin fold111 followed 

by an a-helical extension and a disordered tail at its C-terminus (Figure 6). The core domain of 

HgcB (residues 12-68) displays the same two-fold pseudosymmetry as the bacterial ferredoxin 

from Clostridium acidurici97 and other ferredoxins. In addition, it is structurally similar to 

numerous proteins including heterodisulfide reductase, tungsten formylmethanofuran 

dehydrogenase subunit FwdA, photosystem I subunit PsaC, and adenylylsulfate reductase (Table 

5). A similar a-helical extension is present in some ferredoxins, such as that from Thauera 

aromatica.112 However, the additional disordered tail at its C-terminus appears to be unique to 

HgcB.  

 

Cysteine residues 20, 23, 26 and 60 bind cluster A and residues 50, 53, 56, and 30 bind cluster B. 

The strictly conserved Cys73 in HgcB is located at the beginning of the a-helical extension and is 

located ~13 Å from the nearest Fe atom in cluster B in the model (Figure 6B). The number of 

cysteines and the total number of residues in the disordered tail vary among HgcB orthologs. Of 
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the 2432 sequences in the paired alignment, 1943 have at least one additional Cys located 

downstream of Cys73 and 1317 have two or more C-terminal cysteines. The majority of these 

sequences were obtained from metagenomes, so it is likely that some are truncated at their termini. 

Thus, these counts represent a lower bound for the number of cysteines located at or near the C-

terminal tail of HgcB. 

Assembly and analysis of the HgcAB complex 

Using the top predicted interdomain contacts to guide docking of the individual domains together 

(Figure 7A), we generated a model of the HgcAB complex. Based on the ratio of the number of 

contacts in the model to those expected from the coevolution analysis given the number of 

sequences in the paired alignment and the GREMLIN score,6 the estimated accuracy of the model, 

Rc, is 0.87. Rc values for native proteins range from 0.7 to 1.2. Thus, in general the HgcAB 

structural model fits the predicted contact set well (Figure 7B). 

Interfacial residues 

In the assembled complex (Figure 8), residues in the CBD of HgcA interact with the core of HgcB 

via several polar contacts: Gly96 (O)–Arg58 (NE), Gly132 (N)–Asn59 (OD1), Thr131 (OG1)–

Asn59 (OD1), Arg136 (NH1)–Pro61 (O), Gly132 (O)–Ser25 (OG), Glu168 (OE2)–Lys2 (NZ), 

and Val (N)–Pro31 (O) (Figure 9 and Table 6). Polar contacts between residues in the TMD of 

HgcA and HgcB include: Asn245 (O)–Arg5 (NH1), Arg250 (NH2)–Arg5 (O), Arg250 (N)–Asp8 

(OD2), and Tyr303 (O)–Asp8 (N). The a-helical extension of HgcB interacts with TM helices 4 

and 5 in HgcA, which protrude above the expected position of the membrane head groups. All 

contacts between the C-terminal extension and the TM helices of HgcA are nonpolar. 

 

The distance between the closest Fe atom in cluster B and Co in the assembled model is 14.9 Å. 

The strictly conserved Cys73 in HgcB is located at the beginning of the C-terminal extension and 

is oriented away from the corrinoid in the CBD (Figure 8). The C-terminal cysteines in HgcB 

(Cys94 and Cys95) are located at the end of a long, disordered tail, which is likely to be highly 

flexible. Both Cys73 and the B12 cofactor are accessible by Cys94 and Cys95, suggesting a possible 

role of the cysteine pair in the transfer of Hg2+, [CH3Hg]+, or both.  
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Oligomerization state 

Several pieces of evidence suggested that HgcAB could function as a dimer of heterodimers, i.e., 

(HgcAB)2: (i) Helices 1 and 5 in the TMD are not predicted to contact each other (Figure 5), which 

suggests that the TMD may not form a tight, cylindrical bundle but may instead be more open or 

splayed out and may interact with another protein. (ii) The closest structural homolog to the TMD 

model identified by the Dali server is a homodimeric Mg2+ transporter (PDB entry 2YVX).110 (iii) 

There appears to be self-complementarity in the shape of the HgcAB subunit, particularly in the 

TMD. (iv) Three functionally important residues in HgcB, Cys73, Cys94 and Cys95 are all 

oriented away from the B12 cofactor in the HgcAB model (Figure 8), but these residues in one 

HgcB protomer would be oriented toward the corrinoid in the opposite HgcA protomer in a dimer 

of heterodimers model. (v) Some of the predicted contacts, particularly in the TMD, are relatively 

long in the model and could potentially be interpreted as inter-oligomeric contacts. We therefore 

explored this possibility by performing symmetric docking113 of two copies of HgcAB using 

ambiguous restraints. However, we found that the inter-oligomeric contacts were all longer and 

therefore less favorable than those in the original HgcAB model (Figure 7). Thus, the present 

coevolution analysis appears to support a 1:1 rather than a 2:2 oligomerization state. 

Phylogenetic analysis 

In addition to providing input for coevolution analysis, the deep multiple sequence alignment 

obtained in this work enables an unprecedented phylogenetic analysis of HgcA diversity in nature. 

It has been shown previously that the phylogeny of HgcAB is not congruent with that of Bacteria 

and Archaea species, suggesting the genes have been horizontally transferred across the different 

microbial lineages.11 The more than tenfold expansion of the number of available sequences based 

on more recent metagenomes and additional cultured organisms provides much deeper insight into 

the diversity of Bacteria and Archaea that we predict to be able to methylate mercury, in a variety 

of environments. Although HgcA sequences from methanogens appear to remain confined to a 

single major clade, the genes from important methylating bacteria such as Deltaproteobacteria and 

Firmicutes are distributed across three or four distinct clades, suggesting multiple horizontal gene 

transfer events followed by independent diversification (Figure 11). The various groups of HgcA 

also include sequences from a variety of cultured bacterial phyla (including Chloroflexi, 

Nitrospirae, Spirochaetes, Bacteroidetes) but also phyla with few or no cultured representatives 
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(e.g., Raymondbacteria, Saganbacteria, Lentispherae). Several archaeal phyla with no cultured 

representative also appear to include potential methylators, such as Heimdallarchaeota and 

Theionarchaea. Interestingly, distinct sequence clades composed of dozens of metagenomic 

sequences cannot be assigned to any specific microbial taxa, suggesting we still have much to learn 

about the diversity of bacteria and archaea that can methylate mercury. 

 
Discussion 

We have combined coevolution-based contact prediction and Rosetta modeling to generate a 

model of the HgcAB complex, which is responsible for Hg methylation in anaerobic 

microorganisms. This system is challenging to model because HgcA includes a transmembrane 

domain with no detectable sequence homology to any structurally characterized protein, and the 

complex consists of a unique heterodimeric structure in which the two domains of HgcA do not 

interact with each other but are instead bridged by interactions with HgcB. In addition, both 

proteins bind complex metal cofactors, which we have confirmed experimentally through 

heterologous expression and UV-visible spectroscopic characterization. These cofactors, vitamin 

B12 and two [4Fe-4S] clusters were incorporated into the model, which is consistent with available 

data from in vivo site-directed mutagenesis experiments targeting highly conserved residues in 

both HgcA and HgcB.16 

 

Some of the predicted residue-residue contacts in the fully assembled model are longer than 

expected (Figure 7), suggesting that structural rearrangements (i.e., domain motions) may occur 

during catalysis.114 The closest Fe atom from [4Fe-4S] cluster B is ~15 Å from the Co center in 

the B12 cofactor. However, it is likely that the CBD can move slightly closer to enable efficient 

electron transfer. Corrinoid-dependent enzymes with Rossmann domains often bind to (β/α)8 

triosephosphate isomerase (TIM) barrel proteins to perform tightly controlled radical chemistry.115 

In addition, the CBD of the closest known homolog of HgcA, the corrinoid/iron-sulfur protein 

(CFeSP), is known to undergo large-scale conformational rearrangements, as revealed by X-ray 

co-crystal structures with its methyltransferase, a TIM barrel protein.14 In the HgcAB model, the 

CBD is oriented toward the expected location of the membrane surface (Figure 8). Such a 

conformation would preclude the approach and binding of a relatively large TIM barrel protein, 
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suggesting that movement of the CBD would be required to accommodate a TIM barrel protein as 

a methyl donor. 

 

The C-terminal tail of HgcB from D. desulfuricans ND132 includes a pair of cysteine residues 

(Cys94 and Cys95). Pairs of cysteines are commonly observed in proteins and enzymes involved 

in metal trafficking and detoxification, such as the proteins and enzymes encoded by the mer 

operon in Hg-resistant bacteria.116 For example, the mercuric reductase (MerA), which catalyzes 

the reduction of HgII to Hg0, includes two Cys residues at its C-terminus that acquire HgII and then 

transfer it to another pair of Cys residues in the active site. Whereas a double mutant of MerA in 

which both C-terminal Cys residues were substituted with Ala retained less than 0.1% of wild-

type activity, a single Ala mutant maintained the same activity as the wild-type enzyme when an 

exogenous small-molecule thiol was present.117 These findings suggest that when one of the Cys 

residues in the pair is replaced with Ala, a small molecule thiolate can substitute for the missing 

Cys to satisfy the valence of HgII. However, loss of both Cys residues completely eliminates the 

tether that binds and properly positions HgII, resulting in a major reduction in activity.  

 

Formation of MeHg by HgcAB has been previously proposed to proceed through a multi-step 

reaction involving (i) reduction of the corrinoid cofactor to form a CoI species, (ii) methylation of 

the CoI center to form a CH3-CoIII species, and (iii) methyl transfer to a HgII substrate to form 

[CH3HgII]+ (Figure 12A).7 The reduction step is presumed to be carried out by HgcB. The 

reduction potentials of the [4Fe-4S] clusters in HgcB and the corrinoid bound to HgcA have not 

been reported. However, parallels to CFeSP, in which a single [4Fe-4S] cluster serves a reductive 

activation role,118, 119 would put the CoII/I couple below -500 mV versus SHE. Loss of the axial 

Cys93 ligand is expected upon reduction to CoI to give a four-coordinate complex, which is 

supported by DFT calculations.84 Subsequent oxidative addition of the methyl group and 

coordination of Cys93 from HgcA by the reduced corrinoid form the proposed active species for 

mercury methylation. The Hg substrate that is then methylated by HgcA to produce methylmercury 

is not known but is assumed to be a HgII bis(thiolato) species. 

 

Our model provides insight into how HgcAB orchestrates the transfer and transformation of Hg. 

Specifically, we propose that Cys94 and Cys95 from HgcB acquire HgII (from an unknown source) 
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and deliver it to the corrinoid cofactor for methylation (Figure 12B). The Hg methylation step has 

been proposed to proceed through either a methyl anion transfer or radical ligand exchange 

pathway.7, 84 A relativistic DFT study found that the latter pathway is energetically more favorable 

when spin-orbit effects were taken into account.120 Assuming that the reaction proceeds through 

radical ligand exchange, a crosslinked HgcB-Cys94/95(Sg)–CoIII–(Sg)Cys93-HgcA intermediate 

would be formed. Reduction of the Co center to CoI would then release both thiolate ligands and 

allow the C-terminal tail to deliver [CH3Hg]+ to Cys73 from HgcB. Either of the C-terminal 

cysteines (Cys94/95) could facilitate delivery of the [CH3Hg]+ product, as only a single Cys 

thiolate is required to bind this species. An exogenous thiolate, possibly a cysteine residue on a 

protein, would then displace Cys73 to liberate [CH3Hg]+ from HgcB, completing the reaction 

cycle. We expect that this structural model of HgcAB will facilitate the development of hypotheses 

addressing more detailed structural and functional questions that can then be tested experimentally. 
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Appendix I 
Tables 

Table 1. HHsearch results for HgcAB 

PDB ID Coverage Prob (%) HH∆ Description 
4DJD_C 0.37 100 0.77 5-methyltetrahydrofolate corrinoid/Fe-S protein  
2H9A_A 0.37 100 0.78 CO dehydrogenase/acetyl-CoA synthase, Fe-S 

protein 
1HFE_L 0.22 99.5 0.92 Fe-only hydrogenase 
3GYX_B 0.19 99.4 0.93 adenylylsulfate reductase 
1DWL_A 0.13 99.3 0.93 ferredoxin I 
1F2G_A 0.13 99.3 0.93 ferredoxin II 
1JNR_B 0.19 99.3 0.93 adenylylsulfate reductase 
1XER_A 0.07 99.3 0.93 ferredoxin 
4ID8_A 0.14 99.3 0.93 putative ferredoxin 
1IQZ_A 0.16 99.3 0.93 ferredoxin 

 
 
 
 
Table 2. Top ten Dali results for the CBD of HgcA versus PDB25 

PDB ID Z-score RMSD (Å) N_res %ID Description 
2YCL_A 14.2 2.7 442 27 CO dehydrogenase corrinoid/iron-sulfur 

protein 
3D0K_B 5.9 3.1 293 9 putative poly(3-hydroxybutyrate) 

depolymerase LpqC 
2DST_A 5.5 3.5 122 16 hypothetical protein TTHA1544 
3B48_F 5.1 3.2 135 5 uncharacterized protein 
3GDW_B 4.9 3.6 138 5 sigma-54 interaction domain protein 
2XDQ_A 4.8 3.8 425 7 light-independent protochlorophyllide 

reductase 
3LFH_B 4.7 3.4 144 11 phosphotransferase system 
1CVR_A 4.6 3.1 433 7 gingipain R 
6HSW_A 4.6 3.5 422 14 carbohydrate esterase family 15 domain 

protein 
5ELM_B 4.4 3.5 236 16 Asp/Glu racemase family protein 
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Table 3. Interactions between the B12 cofactor and residues in the CBD of HgcA 

B12 atom CBD atom Distance (Å) 
N3B Thr60 (OG1) 2.9a 
N3B Ala61 (N) 3.3 

O4 Thr66 (OG1) 3.0a 
O2 Thr66 (OG1) 3.2 
N52 Gly88 (O) 2.8 
O51 Asn90 (N) 2.7 
O3 Asn90 (ND2) 2.8 
O4 Val91 (N) 3.0a 
O5 Trp92 (N) 2.9 
O39 Lys97 (NZ) 2.9 
O7R Gln127 (O) 3.0 
O6R Ala153 (N) 3.2a 
O8R Ala153 (N) 3.1 

a Interactions in CFeSP that was used as distance restraints for docking B12 into the HgcAB model 
 
 
 
 

Table 4. Top ten Dali results for the TMD of HgcA versus PDB25 

PDB ID Z-score RMSD (Å) N_res %ID Description 
2YVX_A 6.8 3.8 442 12 Mg2+ transporter MgtE 
4TQ4_D 6.5 4.9 290 9 prenyltransferase 
6IU4_A 5.6 3.7 225 10 iron transporter VIT1 
5YCK_A 5.6 7.3 449 5 multidrug efflux transporter 
6FV7_A 5.5 7.9 421 6 multidrug resistance transporter Aq_128 

5EDL_A 5.4 4.5 197 6 
S-component of ECF transporter, Putative 
HMP/thiamine permease protein YkoE 

3FNB_A 5.4 4.9 374 6 acylaminoacyl peptidase, hydrolase 

5WEO_A 5.3 5.5 989 5 
glutamate receptor 2, voltage-dependent 
calcium channel 

4IDN_B 5.3 4.7 423 3 atlastin-1, hydrolase 
2XZE_A 5.1 2.9 141 7 stam-binding protein, hydrolase/transport 

 
  



28 
 

Table 5. Top ten Dali results for HgcB versus PDB25 

PDB ID Z-score RMSD (Å) N_res %ID Description 
5ODC_A 8.0 6.2 653 27 heterodisulfide reductase 
5T5M_F 7.9 3.4 342 31 tungsten formylmethanofuran dehydrogenase  
5T5I_P 7.8 1.3 81 39 tungsten formylmethanofuran dehydrogenase  
5OY0_c 7.8 2.9 81 27 photosystem I trimer 
3GYX_B 7.7 4.3 166 33 adenylylsulfate reductase 
5C4I_E 6.9 2.3 312 24 oxalate oxidoreductase subunit alpha 
1SIZ_A 6.7 2.1 66 26 ferredoxin 
3J16_B 6.4 6.9 608 24 ribosomal protein 
1XER_A 6.2 1.4 103 35 ferredoxin 
1IQZ_A 5.6 2.2 81 18 ferredoxin 

 
 
 
 
 
Table 6. Polar interactions between HgcA and HgcB in the HgcAB model 

 HgcA HgcB 

C
B

D
-H

gc
B

  
(c

or
e)

 

Gly96 (O) Arg58 (NE) 
Thr131 (OG1) Asn59 (OD1) 

Gly132 (O) Ser25 (OG) 
Gly132 (N) Asn59 (OD1) 
Arg136 (NH1) Pro61 (O) 
Glu168 (OE2) Lys2 (NZ) 
Val173 (N) Pro31 (O) 

T
M

D
-

H
gc

B
 

(t
ai

l)
 Asn245 (O) Arg5 (NH1) 

Arg250 (NH2) Arg5 (O) 
Arg250 (N) Asp8 (OD2) 
Tyr303 (O) Asp8 (N) 
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Figures 

 

 
Figure 2. Purification and UV-visible spectroscopy of HgcA and HgcB. (A) SDS-PAGE gel of 
purified HgcA. The bands enclosed in the red rectangle are HgcA in elution buffer and after buffer 
exchange, respectively, as verified by western blot analysis using an antibody against the His-tag. 
(B) UV-visible spectrum of dicyanocobalamin (orange) and cofactor extracted from purified, His-
tagged HgcA by heating to 95 °C with KCN (blue). HgcA was dissolved in phosphate buffer (50 
mM K2HPO4, 100 mM NaCl, 10% glycerol, 2 mM BME, 10 mM imidazole, pH 7.4). (C) UV-
visible spectrum of oxidized, as-isolated MBP-HgcB (HgcBox) and MBP-HgcB after reduction 
with sodium dithionite (HgcBred). See ref 105 for experimental methods. 
 
 
 
 

 
Figure 3. HgcAB contact map predicted from coevolution analysis of the paired multiple sequence 
alignment. Contacts are shown in shades of blue (darker blue = higher probability) and contacts 
from X-ray structures of homologs are shown in grey. Individual domains are labeled and 
interdomain contacts are circled in red. 
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Figure 4. Model of the corrinoid binding domain of HgcA. (A) predicted contacts shown as yellow 
bars and residues colored according to sequence conservation (dark blue = highest) and (B) model 
including the B12 cofactor. Key residues and distances are shown. 
 
 
 
 
 

 
Figure 5. Model of the transmembrane domain of HgcA. (A) Predicted contacts are shown as 
yellow bars and residues are colored according to sequence conservation (dark blue = highest). (B) 
Model rotated ~90 degrees forward to show a ‘top’ view from the cytoplasmic side. Each helix is 
shown in a different color. 
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Figure 6. Model of HgcB. (A) Predicted contacts are shown as yellow bars and residues colored 
according to sequence conservation (dark blue = highest). (B) Location of conserved Cys residues 
and incorporation of [4Fe-4S] clusters. 
 
 
 
 
 

 
Figure 7. Assembly of the HgcAB model. (A) Top interdomain contacts (yellow) in the HgcAB 
complex predicted from the coevolution analysis. (B) Interdomain contacts in the assembled 
HgcAB complex after docking. Colors: Dark blue, CBD of HgcA; light blue, TMD of HgcA; light 
green, core of HgcB; dark green, C-terminal extension of HgcB. (C) Predicted contacts in the 
HgcAB model color coded by Ca-Ca distance. Colors: green (<5 Å), yellow (5-10 Å), red (>10 
Å). Residues with distances >10 Å are labeled. All labels refer to the residue from HgcA followed 
by the residue from HgcB except P69-W81, for which both residues are from HgcB. 
 

F159-D28 E139-S25

P306-T68

P69-W81

K311-V10

W292-S79
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Figure 8. Model of the HgcAB complex. 
 
 
 
 
 

 
Figure 9. Polar contacts between (A) CBD and HgcB and (B) TMD and HgcB. 
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Figure 10. Oligimerization state of HgcAB. (A) Dimer-of-heterodimers model generated by 
applying ambiguous restraints during symmetric docking of two HgcAB heterodimers. One 
HgcAB heterodimer is shown in dark gray and the other is shown in light gray. Predicted residue-
residue contacts within a single HgcAB dimer are shown as yellow lines. Only contacts with 
probability >0.99 are shown. Representative examples of contacts that could potentially be 
satisfied between two separate heterodimers are shown as orange and red lines. (B) Stacked bar 
chart of possible contacts. The contacts are ordered by predicted probability with the highest on 
the left. In all cases the contacts within a single HgcAB heterodimer were shorter and therefore 
more favorable than inter-heterodimeric restraints, suggesting that the coevolution analysis 
supports a 1:1 HgcAB model rather than a 2:2 (HgcAB)2 model.  
 
 
 
 
 
 

 
Figure 11. Phylogenetic tree of HgcA. See Methods for details. 
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Figure 12. Mechanistic insights. (A) Proposed Hg methylation cycle from refs 7, 84 and 120. (B) 
Proposed pathway for HgII acquisition, methylation, and [CH3Hg]+ release. 
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CHAPTER II 
 

UNDERSTANDING THE DYNAMICS UNDERLYING HOW A SINGLE AMINO ACID 
MUTATION RELIEVES INHIBITION OF INOSINE MONOPHOSPHATE 

DEHYDROGENASE (IMPDH) 
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Abstract 
A microbe’s ecological niche and biotechnological utility are determined by its specific set of co-

evolved metabolic pathways. The acquisition of new pathways, through horizontal gene transfer 

or genetic engineering, can have unpredictable consequences. Here we show that two different 

pathways for coumarate catabolism failed to function when initially transferred into Escherichia 

coli. Using laboratory evolution, we elucidated the factors limiting activity of the newly acquired 

pathways and the modifications required to overcome these limitations. Both pathways required 

host mutations to enable effective growth with coumarate, but the necessary mutations differed. In 

one case, a pathway intermediate inhibited purine nucleotide biosynthesis, and this inhibition was 

relieved by single amino acid replacements in IMP dehydrogenase. A strain that natively contains 

this coumarate catabolism pathway, Acinetobacter baumannii, is resistant to inhibition by the 

relevant intermediate, suggesting that natural pathway transfers have faced and overcome similar 

challenges. Molecular dynamics simulation of the wild type and a representative single-residue 

mutant provide insight into the structural and dynamic changes that relieve inhibition. These 

results demonstrate how deleterious interactions can limit pathway transfer, that these interactions 

can be traced to specific molecular interactions between host and pathway, and how evolution or 

engineering can alleviate these limitations.  
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Introduction 
Microbes can use a wide variety of compounds as carbon and energy sources. Expanding the 

breadth of compounds that a strain can catabolize can allow access to new environmental niches 

or enable engineered microbes to use new feedstocks. Correspondingly, catabolic pathways are 

frequently transferred between strains, either in nature through horizontal gene transfer (HGT) or 

in the laboratory through metabolic engineering.23, 24 However, newly-acquired pathways often 

fail to function effectively in their new host.25 In these cases, productive use of a new pathway 

may require post-transfer refinement to optimize expression and minimize deleterious 

interactions.26, 27 The pathway activity immediately following transfer may be very different from 

the potential activity after optimization, complicating predictions about engineering or HGT. 

 

We have explored this issue using pathways for catabolism of lignin-derived aromatic compounds, 

since these pathways are widespread in nature,28 are often transferred by HGT,29 have 

biotechnological applications,121 and involve challenging biochemistry.122 We previously 

constructed strains of E. coli that grow with the model lignin-derived compounds protocatechuate 

(PCA) and 4-hydroxybenzoate (4-HB) as sole sources of carbon and energy using the 3,4-cleavage 

pathway for protocatechuate catabolism from Pseudomonas putida and a 4-hydroxybenzoate 3-

monooxygenase from P. putida or Paenibacillus sp. JJ-1b.30, 31 Introduction of the relevant 

catabolic pathways was not sufficient to enable rapid growth with either carbon source. We then 

used experimental evolution to select for strains with improved growth. By resequencing the 

evolved variants and reconstructing mutations in the parental strains, we identified causal 

mutations that improved function of the heterologous pathway. 

 

In this work, we extended those pathways to allow growth with a model phenylpropanoid, 

coumarate. There are two known oxidative routes for coumarate catabolism, differing in their 

specific reaction chemistry and resulting intermediates (Figure 13 in Appendix II). These 

pathways are exemplified by the hca pathway from Acinetobacter baylyi ADP1123 and the cou 

pathway from Rhodococcus jostii.124 Both pathways begin by conjugating the phenylpropanoid 

substrate to coenzyme A. The hca pathway then uses a retro-aldol reaction to produce an 

intermediate benzaldehyde derivative, while the cou pathway uses a hydrolytic retro-Claisen 

reaction to produce the benzoate derivative directly. Since these two phenylpropanoid pathways 
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use different biochemistry and intermediates, their interactions with the host may also differ 

substantially.125 Identifying the likeliest pairing of host and pathway, either for engineering or 

HGT, will depend on understanding the specific challenges imposed by each potential pathway 

and the mechanisms to overcome these challenges available to the host. 

 

Using a combination of engineering and evolution, we constructed and optimized both 

representative pathways for phenylpropanoid catabolism in E. coli. We show that pathway activity 

is initially limited due to pathway-specific molecular interactions that can readily be alleviated 

through point mutations to the host. Similar compensatory mechanisms are present in a strain that 

natively contains the appropriate pathway. Molecular dynamics simulations of the wild-type and 

mutant enzymes demonstrate how subtle modifications to the enzyme distant from the active site 

can relieve inhibition while preserving catalysis. Identifying and alleviating the specific molecular 

interactions between an engineered metabolic pathway and its heterologous host will aid our 

efforts to rapidly engineer metabolic capabilities. 

Methods 
For experimental details see: 
 
Close, D.M., Cooper, C.J., Wang, X., Chirania, P., Gupta, M., Ossyra, J.R., Giannone, R.J., Engle, 

N., Tschaplinski, T.J., Smith, J.C., Hedstrom, L., Parks, J.M., and Michener, J.K. Horizontal 

transfer of a pathway for coumarate catabolism unexpectedly inhibits purine nucleotide 

biosynthesis. Mol. Microbiol. 2019, 112, 1784-1797. 

 
Homology modeling 

To generate models of IMPDH from E. coli (accession number P0ADG7) with the corresponding 

cofactors and substrates, HHpred126 was used to search the Protein Data Bank for suitable 

structural templates. Five templates were chosen based on their similarity to the query sequence, 

inclusion of cofactors and substrates, or both (Table 7 in Appendix II). The sequences were 

aligned with MAFFT (L-INS-i)127 (Figure 14) and homology models were generated using 

RosettaCM 128 with fragment files obtained from the Robetta web server.129, 130 The top-scoring 

model was used for docking.  
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The flap containing the catalytic dyad (R401 and Y402) is not resolved in most X-ray crystal 

structures of IMPDH but is present in the structure of the phosphate-bound “apoenzyme” from 

Bacillus anthracis (PDB entry 3TSB).131 Thus, we used this structure as a template to generate 

homology models of E. coli IMPDH in the closed conformation and the top scoring model was 

selected to generate a model of the C305-XMP* covalent intermediate for molecular dynamics 

simulations. Sequences were aligned with MAFFT (L-INS-i) (Figure 15). 

Ligand docking 

Structure files in mol2 format for IMP (ZINC04228242), NAD+ (ZINC08214766), and 4-

hydroxybenzaldehyde (ZINC00156709) were obtained from http://zinc.docking.org.132 

RosettaLigand133 was used to dock 4-hydroxybenzaldehyde into the active site of the IMPDH 

model following a previously described protocol.34 Top binding poses were ranked on the basis of 

their ‘interface_delta’ score in Rosetta energy units. 

Molecular dynamics simulations 

Initial coordinates for XMP were extracted from the crystal structure of B. anthracis IMPDH 

complexed with XMP (PDB entry 3TSD), and the covalently bound C305-XMP* complex was 

generated for chain A using the Molefacture plugin in VMD.134 The force field toolkit (ffTK) 

plugin in VMD was used to generate CHARMM-compatible force field parameters for C305-

XMP*. Gaussian09135 was used to perform geometry optimizations, compute Hessian matrices, 

and calculate water interaction energies of the C305-XMP* fragment. NAMD 2.11 was used for 

charge, bond, angle, and dihedral optimization.136 

 

The CHARMM36 force field137 and TIP3P water model138 were used to describe the protein and 

solvent, respectively. Each system (wild-type and mutant) was solvated in a periodic box of 168 

Å × 168 Å × 104 Å and 0.15 M KCl ions were added using CHARMM-GUI,139 resulting in a 

system of ~274,000 atoms. All-atom molecular dynamics (MD) simulations were performed using 

the OpenMM 7.0 package140 with GPU acceleration using CUDA 7.2. Ten thousand steps of 

energy minimization were performed to eliminate clashes, followed by equilibration in the NPT 

ensemble at 310 K. Temperature was maintained using the Langevin thermostat with a damping 

coefficient of 1 ps-1. To enable a 5-fs time step, which was used in all simulations, all bond lengths 

were constrained to their equilibrium distances and the masses of hydrogens were repartitioned to 
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the parent heavy atoms.140 Five separate runs of 100 ns each were performed for both the wild type 

and mutant IMPDH and the last 50 ns of each run was used for analysis. 

 
Results 

Combining engineering and evolution enabled coumarate catabolism 

We designed and synthesized two constructs containing genes for phenylpropanoid import and 

degradation, each of which converts coumarate into 4-hydroxybenzoate (Figure 13).141 Each 

pathway was introduced into E. coli strains, JME38 and JME50, that had previously been 

engineered to grow with 4-HB using pobA and praI, respectively.31 None of the engineered strains 

acquired the immediate ability to grow with coumarate as the sole source of carbon and energy. 

 

To understand the factors preventing pathway function, we used experimental evolution to select 

for strains with the ability to catabolize coumarate. Three replicate cultures of each engineered 

strain were propagated in minimal medium containing 1 g/L coumarate (~6.1 mM). After 300 

generations, individual mutants were isolated from each population and characterized for growth 

with protocatechuate (PCA), 4-HB, coumarate, and caffeate. Representative isolates were chosen 

for each replicate population for further characterization. All isolates could grow with PCA and 

coumarate, though growth with caffeate and 4-HB varied between replicates.141  

Genome resequencing and reconstruction identified causal mutations 

The genomes of the selected isolates were resequenced to identify new mutations. Several of the 

mutations have previously been described for their effects on catabolism of 4-HB, such as 

synonymous mutations to the gene encoding the 4-hydroxybenzoate monooxygenase pob.A.31 

Among the strains with the hca pathway, five of the six isolates had additional mutations to the 

native gene guaB, encoding inosine monophosphate (IMP) dehydrogenase (IMPDH), and to the 

intergenic region between hcaB and hcaC in the engineered pathway. The exception was JME96, 

which had a mutation to rpoS, encoding the RNA polymerase sigma factor σ38, that is expected to 

be highly pleiotropic.142 

 

In the strains with the cou pathway, the acquired mutations were less consistent across replicates, 

with several mutations to genes that are expected to be pleiotropic. However, parallel mutations 

were observed in JME106 and JME109, with mutations to both couL and nadR. The mutations to 
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couL, which encodes the CoA ligase, were coding mutations, L192R and S134Y. NadR is involved 

in both regulation and catalysis for NAD salvage.143 One of the mutations to nadR led to a 

frameshift that precisely removed the C-terminal ribosylnicotinamide kinase (RNK) domain, 

which converts N-ribosylnicotinamide into β-nicotinamide mononucleotide during NAD 

salvage.143 Similarly, the second nadR mutation also occurred in the RNK domain. The 

physiological consequences of these mutations are unclear. 

To test the causality of the identified mutations, we reconstructed representative mutations in the 

engineered parental strains. We assumed that parallel mutations to a given gene produced similar 

effects, and therefore only tested one representative mutation (e.g. D243G in guaB). Two 

mutations, to pobA and hcaABCK, were necessary for growth with coumarate in JME64, while a 

third mutation to guaB significantly increased growth.141 Similarly, mutations to pobA, 

couLHTMNO, and nadR were all required for growth with coumarate using the cou pathway in 

JME65. 

 

Parallelism of mutations within replicates of a pathway, but divergence between pathways, 

strongly suggests that the mutations are specific to a particular pathway. To test this hypothesis, 

we replaced the hca pathway in JME131 with either the wild-type or evolved cou pathways. 

Neither strain was able to grow with coumarate as the sole source of carbon and energy. 

Inhibitory crosstalk between engineered and native pathways limits function 

A mutation to guaB was necessary for growth with coumarate using the hca pathway. IMPDH, 

encoded by guaB, converts inosine monophosphate (IMP) to xanthosine monophosphate (XMP) 

with the reduction of NAD+ during guanine nucleotide biosynthesis.144 Five independent amino 

acid replacements in IMPDH were identified: A48V, D243G, G330D, L364Q, and P482L. IMPDH 

uses different conformations to catalyze each step of the catalytic cycle: an open conformation for 

hydride transfer that produces a covalent intermediate with the catalytic C305 (E-XMP*) and a 

closed conformation for hydrolysis of the E-XMP* (Figure 16). We generated homology models 

of wild-type E. coli IMPDH in both the closed and open conformations. The mutations are distant 

from each other and from the active site, with no obvious effect on catalysis (Figure 17).  
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To understand the consequences of these mutations, we measured metabolite levels in the parent 

and engineered strains during growth with coumarate. Consistent with our genetic analysis above, 

we chose to focus on the D243G mutation. Compared to the D243G guaB mutant (JME131), the 

strain with wild type guaB (JME129) showed higher levels of inosine nucleotides. We 

hypothesized that growth with coumarate led to inhibition of IMPDH and accumulation of IMP, 

and that this inhibition was relieved in the guaB mutants. To determine whether inhibition of 

nucleotide biosynthesis limited growth with coumarate, we supplemented the growth medium with 

guanosine. Addition of guanosine increased growth with coumarate in a strain with the wild-type 

IMPDH, but not the mutant.  

 

Mutations to guaB improved growth with the hca pathway but not with the cou pathway. The hca 

pathway produces an intermediate, 4-hydroxybenzaldehyde, that is not present in the cou pathway 

(Figure 13). To test whether this intermediate was responsible for the inhibition of IMPDH, we 

grew strains containing WT and mutant IMPDH in varying concentrations of 4-

hydroxybenzaldehyde.141 Both strains were inhibited by high concentrations of 4-

hydroxybenzaldehyde, but the mutation to guaB decreased inhibition.  

 

Next, we purified WT and mutant IMPDH and measured inhibition in vitro with 4-

hydroxybenzaldehyde. This compound is a weak inhibitor of WT EcIMPDH, with a Ki,app of 320 

± 20 µM. Introduction of the D243G replacement had little effect on catalytic activity but increased 

the Ki,app to 1250 ± 50 µM, indicating a substantial reduction of inhibition in the mutant. The hca 

pathway that we used came from A. baylyi ADP1, and we hypothesized that the native IMPDH of 

this strain would have faced similar selective pressures to minimize inhibition by 4-

hydroxybenzaldehyde. As a surrogate, we tested the IMPDH of A. baumannii, since this strain 

contains a homologous hca pathway (83-94% amino acid identity) and IMPDH (91% amino acid 

identity). As predicted, the A. baumannii IMPDH has a Ki,app of 720 ± 30 µM, substantially higher 

than that of wild-type EcIMPDH. 

Subtle changes in enzyme dynamics relieve inhibition while maintaining catalysis 

To gain insight into possible mechanisms of inhibition by 4-hydroxybenzaldehyde, we measured 

enzyme activity at varying inhibitor concentrations. 4-hydroxybenzaldehyde is an uncompetitive 
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inhibitor with respect to IMP and a noncompetitive (mixed) inhibitor with respect to NAD+ for 

both wild type and D243G EcIMPDH.141 Similar patterns of inhibition have been observed for 

compounds that bind in the NAD+ site.131 In addition, we computationally docked 4-

hydroxybenzaldehyde to a model of wild-type IMPDH in the open conformation of the apoenzyme 

as well as to IMP-bound and IMP/NAD+-bound states. In both the apoenzyme and IMP-bound 

models, the majority of the top poses of 4-hydroxybenzaldehyde were found to occupy the NAD+ 

binding site, approximately 20 Å from D243 (Figure 18 and Table 8). Therefore, to relieve 

inhibition by 4-hydroxybenzaldehyde, the D243G substitution would need to perturb the structure 

or dynamics of the distant active site. 

 

Understanding the mechanism of this perturbation required additional analysis. The hydrolysis of 

E-XMP* is the slow step in the IMPDH reaction, so E-XMP* is the predominant enzyme 

complex.144 Therefore, a decrease in the affinity of 4-hydroxybenzaldehyde for E-XMP* can 

account for resistance to inhibition. Hydrolysis of E-XMP* requires a conformational change 

wherein a mobile protein flap folds into the cofactor binding site. We assessed the effect of the 

D243G mutation on the active site by performing MD simulations of wild-type and D243G mutant 

IMPDH in the covalently bound E-XMP* state using the closed conformation model, since the 

flap is disordered in crystal structures of the open conformation. In the simulations of the wild-

type E. coli IMPDH, D243 forms stable hydrogen bonds with the side chains of K87 and R219 

and also with the backbone of V220 (Figure 19A). In the absence of this hydrogen bonding 

network in the mutant (Figure 19B), G243 adopts two different conformations, one that resembles 

the wild type in which G243 is close to but not interacting with K87, R219, and V220, and another 

in which G243 is positioned farther away from these residues when a new hydrogen bond is formed 

with Q272 (Figure 19C). However, it was not obvious how these local changes around the 

mutation site propagate to the active site, which is located on the opposite side of the b-barrel.  

 

To identify changes in protein dynamics resulting from the D243G mutation, we calculated root-

mean-squared fluctuations (RMSFs) for chain A in both the wild-type and mutant. In both systems, 

high RMSFs were observed over the entire flap region (Figure 20). Upon inspection of specific 

interactions of flap residues, we found that the mutation leads to changes in hydrogen-bonding 

interactions with other residues on chain A or the adjacent chain D (Figure 21 and Figure 22). 
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These interactions resulted in reorientation of a loop on the flap that could alter inhibitor binding. 

R386 interacts with D50 and D410 interacts with H432 on chain D more frequently in the wild 

type than in the mutant. Interestingly, other interactions between flap residues are observed more 

frequently (i.e. R386-E418, S399-D410, S405-D410) in the mutant. S405 and D410 also have 

additional hydrogen bonding interactions with residues on chain D that differ between the wild-

type and mutant. S405 forms a hydrogen bond with N26 on chain D more frequently in the mutant 

than the wild type. In contrast, D410 forms a hydrogen bond with R439 on chain D more frequently 

in the wild type than the mutant. In addition, the covalent intermediate also forms a hydrogen bond 

with the side chain of E415 more frequently in the mutant than the wild type. Despite these changes 

in flap conformations and dynamics, the catalytic dyad remains in close proximity to the covalent 

intermediate, poised for catalysis (Figure 23).  

 

RMSF analysis also revealed that helix a2 (residues 76-89) and helix a8 (residues 230-241) 

fluctuate more in the mutant than in the wild type (Figure 20). Helix a8 is downstream of the 

mutation site (Figure 24A). Therefore, the higher fluctuations of this helix and the adjacent helix 

a2 in the mutant are likely due to the loss of the hydrogen bonding network formed by D243 with 

K87, R219, and V220 as well as the formation of a new hydrogen bond between G243 and Q272 

in the mutant. The N-terminal end of helix a2 and the C-terminal end of helix a8 are located near 

the NAD+ binding site, which is also the predicted binding site for 4-hydroxybenzaldehyde based 

on docking to the open conformation model (Figure 18). Therefore, these perturbations to helices 

α2 and α8 represent another mechanism for the D243G mutation to affect inhibitor binding.  

 

To understand the mechanism by which helix dynamics could affect inhibitor binding, we 

combined these MD results with our previous docking studies. In six of the top 10 docking poses, 

the phenolic hydrogen of the inhibitor forms hydrogen-bonding interactions with either the side 

chain or backbone of D248. The carbonyl oxygen of the inhibitor also interacts with the side chain 

of S250 (Figure 24B). D248 and S250 are located on the b-sheet (b11) downstream of the 

mutation site and are in close proximity to helices a2 and a8 as well as the loop on the flap that 

showed different interactions in the wild-type and mutant simulations. Thus, changes in the 

structure and dynamics of these regions around the NAD+ binding site likely disrupt inhibitor 

access and binding.  
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Discussion 
In this work, we have recapitulated the process of HGT and demonstrated the necessity for host 

adaptations to accommodate the hca pathway in both E. coli and A. baumannii. We identified a 

novel interaction between the newly introduced pathway and the endogenous metabolism, as well 

as the physiological and biochemical consequences of this interaction. Finally, we demonstrated 

how single point mutations to an essential host protein alter its conformational dynamics to prevent 

binding of the novel inhibitor while still preserving catalysis.  

Highly similar hca pathways are present in various beta- and gamma-proteobacteria. Further HGT 

of this pathway would require either a host with an IMPDH homolog that is resistant to inhibition 

by 4-hydroxybenzaldehyde, or post-transfer selection for mutations that relieve inhibition. 

Understanding these types of limitations on HGT, and the mechanisms by which organisms evolve 

to avoid them, will aid in our ability to predict and manipulate horizontal gene transfer.26, 27 

 

In combination, our results suggest that introduction of the hca pathway allowed only limited 

growth with coumarate because accumulation of 4-hydroxybenzaldehyde inhibited the native E. 

coli IMPDH. This inhibitory crosstalk results in nucleotide starvation and impairs growth and 

phenylpropanoid catabolism. Mutations to guaB prevent inhibition by 4-hydroxybenzaldehyde and 

allow growth with coumarate. There is no a priori reason to expect that a pathway for degradation 

of an aromatic compound would interact with a native pathway for nucleotide biosynthesis. 

Phenolic amides such as feruloyl amide have been shown to inhibit a different step in nucleotide 

biosynthesis,145 but neither the substrate nor products of coumarate degradation are toxic at the 

relevant concentrations.30, 31 These types of inhibitory cross-talk are likely to be common with 

heterologous engineered metabolic pathways, though they are rarely identified and alleviated.125, 

146, 147  

 

In particular, inhibition of microbial growth by aldehydes is commonly observed, though the 

mechanisms of toxicity can rarely be traced to a specific interaction.148-150 Enzymatic pathways 

have frequently evolved to limit the release of free aldehydes, for example through enzymatic 

channeling.151 It is unclear whether channeling between HcaA and HcaB limits the release of free 

aldehydes in either the native or heterologous hosts. Mutations that increase tolerance to free 

aldehydes generally do so either by increasing export of the toxic compound or by performing 
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redox chemistry to remove the aldehyde functionality.152 In this work, we have shown an example 

of aldehyde toxicity that acts through a single protein and can be relieved by point mutations to 

the associated gene. For the D243G mutant, biochemical assays revealed mixed inhibition that was 

relieved through mutation. Other examples of nonspecific toxicity may prove to be similarly 

specific when characterized fully. 

 

MD simulations provided insight into how a single amino acid substitution distant from the active 

site could relieve inhibition while maintaining catalysis. The mutation is located at the N-terminal 

end of b11, which is near the NAD+ binding site where the inhibitor was predicted to bind based 

on docking calculations. The simulations showed local changes in the hydrogen bonding networks 

at the mutation site, which led to changes in the dynamics of the catalytic flap and helices a2 and 

a8 near the inhibitor binding site. In addition, the catalytic dyad showed only minor perturbations 

and remained poised for catalysis.  

 

Across the replicate populations, many mutations were highly pleiotropic, including large 

insertions and deletions flanked by insertion sequences as well as mutations to core transcriptional 

machinery such as rho and rpoB. Duplications frequently spanned the insertion sites for engineered 

operons, suggesting that expression of the heterologous genes was limiting. By comparing across 

replicates, we were able to identify a set of point mutations that allowed growth with coumarate 

as the sole source of carbon and energy. However, a reconstructed strain containing these 

mutations does not grow as quickly with coumarate as the evolved isolates, suggesting that some 

of the remaining mutations provided additional fitness benefits.141  

 

The two 4-HB monooxygenases, praI and pobA, are 60% identical at the nucleotide level, and the 

associated enzymes have 54% amino acid identity. We previously demonstrated that these 

enzymes required different optimization solutions to enable growth with 4-HB.31 In contrast, in 

this experiment, the evolutionary solutions were very similar. Even in the optimized strain, 

JME131, the growth rate with coumarate was lower than the growth rate with PCA. We 

hypothesize that the conversion of coumarate into 4-HB is the rate-limiting step, and that the 

conversion of 4-HB into PCA by either enzyme was sufficient under these circumstances. 
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Multiple mutations were identified in the heterologous cou and hca pathways. In the hca pathway, 

these mutations served to increase expression of the pathway, either through pathway duplication 

or by intergenic mutations that affected translation, specifically increasing expression of the CoA 

ligase HcaC. The cou pathway mutations were coding mutations to a single gene, the couL that 

encodes a CoA ligase, and decrease expression of that enzyme.141 These differential evolutionary 

responses could arise from different initial expression levels of the two CoA ligases, for example 

due to the placement of couL at the beginning of an operon and hcaC at the end. Further 

biochemical analysis will be required to precisely identify the consequences of these mutations. 

 

We have described the use of experimental evolution to identify and alleviate deleterious 

interactions between engineered metabolic pathways for coumarate catabolism and native 

pathways for nucleotide biosynthesis and cofactor salvage. Many engineered pathways place a 

substantial burden on the production host yet understanding and accommodating these interactions 

remains challenging. Evolution can simplify this optimization process by directly selecting for 

mutations that eliminate the inhibition. As we did with guaB, researchers can then work backwards 

from the evolutionary solutions to understand the factors that were initially limiting productivity 

and the biochemical solutions to overcome those problems. By solving more problems of this sort, 

we will develop design rules for future forward engineering of metabolic pathways and better 

predictions of the likelihood of pathway transfer by HGT. 
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Appendix II 
Tables 

Table 7. Templates used to model the open and closed conformations of E. coli IMPDH 

State PDB ID Organism Resolution (Å) E-value % ID Cofactors 
Open  4X3Z Vibrio cholerae 1.62 3.3e-34 86 NAD, 

XMP 
1ZFJ Streptococcus 

pyogenes 
1.90 9.8e-55 56 IMP 

5AHN Pseudomonas 
aeruginosa 

1.65 4.8e-59 66 IMP 

2CU0 Pyrococcus horikoshii 2.10 2.9e-47 49 XMP 
1VRD Thermotoga maritima 2.18 8.3e-47 56 n/a 

Closed 3TSB Bacillus anthracis 2.60 N/A 55 PO4 
 
 
 
 
Table 8. Binding energies for the top five poses obtained from docking 4-hydroxybenzaldehyde 
to the apoenzyme, IMP-bound, and IMP/NAD+-bound states of IMPDH 

interface_delta (Rosetta energy units) 
apoenzyme IMP-bound IMP/NAD+-bound 

-11.5 -12.4 -10.3 
-11.0 -12.2 -9.4 
-10.6 -12.1 -9.3 
-10.6 -12.1 -8.9 
-10.5 -11.4 -8.7 
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Figures 

 
Figure 13. Two routes to convert the phenylpropanoid coumarate to 4-HB (the hcaABC pathway 
from A. baylyi ADP1 and the couLMNO pathway from R. jostii). 4-HB is then oxidized to PCA. 
For simplicity, cofactors and the resulting acetyl-CoA are not shown. 
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Figure 14. MAFFT (L-INS-i) multiple sequence alignment of IMPDH from A. baumannii, E. coli, 
and multiple template sequences used for structural modeling of the open conformation of E. coli 
IMPDH. Selected residues (gray) were trimmed at the N- and C-termini and were not included in 
the models. 
 
 
 
 

 
Figure 15. MAFFT (L-INS-i) alignment of E. coli IMPDH with the B. anthracis template 
sequence of the closed conformation that contains the catalytic flap (PDB entry 3TSB). Selected 
residues (gray) were trimmed at the C-terminus and were not included in the models. 
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Figure 16. IMPDH mechanism. IMPDH transitions between two conformations, an open 
conformation for rapid substrate binding and hydride transfer and a closed conformation for the 
slower hydrolysis step. In the closed conformation, a mobile protein flap folds into the cofactor 
binding site. 
 
 
 
 

 
Figure 17. Beneficial mutations to IMPDH are distant from the active site. (A) Structural model 
of E. coli IMPDH colored by chain. (B) Chain A of IMPDH in the closed conformation, 
highlighting the loop containing C305-XMP* and the active site flap containing the R401-Y402 
catalytic dyad. 
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Figure 18. Top 5 predicted docking poses for 4-hydroxybenzaldehyde to the open conformation 
model of IMPDH in various enzyme states. (A) Apoenzyme, (B) IMP-bound, and (C) IMP/NAD+-
bound IMPDH. The top five docking poses are shown in each case. 4-hydroxybenzaldehyde 
carbons are shown in cyan. All other carbons are shown in yellow. Molecules in transparent 
representation are shown for reference but were not included in the docking. All hydrogens are 
omitted for clarity. 
 
 
 
 
 

 
Figure 19. A beneficial mutation to IMPDH affects enzyme structural dynamics. Hydrogen bond 
network around the D243G mutation site for (A) wild-type and (B) mutant IMPDH from MD 
simulations. (C) Heavy atom distance distributions from five independent simulations. 
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Figure 20. RMSF analysis of wild-type and mutant IMPDH. (A) RMSF of the chain A core 
domain of wild-type and mutant IMPDH from MD simulations. CBS domains and termini are 
highly dynamic and were excluded. The helix residues are indicated with grey boxes. Residues 
with RMSF values > 0.75 Å are shown on the model for (B) wild-type and (C) mutant. 
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Figure 21. The D243G mutation alters the conformation of several residues on the catalytic flap. 
Hydrogen bond network around the catalytic flap for (A) wild-type and (B) mutant IMPDH from 
MD simulations. (C) Heavy atom distance distributions from the individual, independent 
simulation runs of the closed conformation model are shown. 
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Figure 22. Changes in the conformation of residues on the catalytic flap in MD simulations of (A) 
wild type and (B) mutant IMPDH in the closed conformation. (C) Heavy atom distance 
distributions for residues near the catalytic dyad and C305-XMP* loop of chain A that have 
different interactions with other chain A residues or with residues on chain D between the wild-
type and mutant. 
 
 
 
 
 

 
Figure 23. C-alpha conformations of the catalytic dyad in the wild-type (blue) and mutant (red). 
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Figure 24. Summary of wild-type and mutant IMPDH simulations. (A) Selected snapshots of the 
flap from MD simulations of wild-type and mutant IMPDH in the closed conformation. Ca atoms 
of key residues whose interactions differ between wild type and mutant simulations (D50, R386, 
S399, S405, D410, E418) are shown as spheres and labeled. A selected docking pose is shown for 
4-hydroxybenzadehyde in the IMP-bound open conformation after superposition with the closed 
conformation snapshots. (B) Selected docking pose showing 4-hydroxybenzaldehyde interactions 
with residues D248 and S250. Flap residues were omitted as they were not resolved in the 
templates used to model the open conformation. 
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CHAPTER III 
 

MACHINE LEARNING-BASED PREDICTION OF ENZYME SUBSTRATE SCOPE: 
APPLICATION TO BACTERIAL NITRILASES 
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Text and figures are taken from the following: 

Mou, Z.#, Eakes, J#., Cooper, C.J., Foster, C.M., Standaert, R.F., Podar, M., Doktycz, M.J., Parks, 

J.M. Structure-based prediction of enzyme substrate scope with machine learning: Application to 

bacterial nitrilases. In review. DOI: https://doi.org/10.22541/au.158888180.03951231 

# These authors contributed equally to this work. 

 

Experiments were performed by J.E., C.M., M.J.D.; C.J.C. and J.M.P. built structural models; Z.M. 

performed ligand docking; C.J.C. and Z.M. calculated descriptors, performed machine learning 

analysis, and generated figures; Z.M., C.J.C., and J.M.P prepared the manuscript with input from 

all other authors. 

Abstract 
Predicting the range of substrates accepted by an enzyme from its amino acid sequence is 

challenging. Although sequence- and structure-based annotation approaches are often accurate for 

predicting broad categories of substrate specificity, they generally cannot predict which specific 

molecules will be accepted as substrates for a given enzyme, particularly within a class of closely 

related molecules. Combining targeted experimental activity data with structural modeling, ligand 

docking, and physicochemical properties of proteins and ligands with various machine learning 

models provides complementary information that can lead to accurate predictions of substrate 

scope for related enzymes. Here we describe such an approach that can predict the substrate scope 

of bacterial nitrilases, which catalyze the hydrolysis of nitrile compounds to the corresponding 

carboxylic acids and ammonia. Each of the four machine learning models (logistic regression, 

random forest, gradient-boosted decision trees, and support vector machines) performed similarly 

(average ROC = 0.9, average accuracy = ~82%) for predicting substrate scope for this dataset. The 

approach is intended to be highly modular with respect to physicochemical property calculations 

and software used for docking and modeling. 
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Introduction 
Many enzymes are capable of accepting multiple molecules as substrates. Knowledge of the 

repertoire of substrates for a given enzyme, often referred to as substrate scope, is informative for 

elucidating biochemical pathways and also for metabolic engineering. Standard sequence-based 

annotation methods are generally highly effective at identifying (super)family membership, 

conserved domains, sequence signatures, active site residues, and assigning gene ontology (GO) 

terms for sequences with detectable homology to proteins of known function but fall short of 

predicting substrate scope. The BRENDA enzyme database currently contains manually curated 

information on ~84,000 enzymes including classification nomenclature, biochemical reaction, 

substrate specificity, structure and other attributes, but is limited to experimentally verified 

systems.32  

 

Beyond the primary amino acid sequence, protein structures provide insight into enzymatic 

function. The overall protein fold, domain architecture, and spatial arrangement of residues 

involved in substrate recognition and catalysis all provide useful clues to function. Homology 

modeling is often used to generate structural models of proteins when suitable templates are 

available. However, the accuracy of modeled structures depends on various factors, including the 

similarity between the query sequence and the template(s). Scoring functions and conformational 

sampling strategies also play a role in model accuracy.1  

 

A combination of molecular docking of putative substrates to an available X-ray crystal structure, 

QM calculations of substrate reactivity, and experimental enzyme activity assays predicted 

substrate specificity of an enoyl-acyl carrier protein reductase (FabI).33In the absence of a crystal 

structure, homology modeling can be used in the context of ligand docking.34-36 However, 

molecular docking studies often struggle to differentiate between ligands with similar scaffolds 

due to inaccuracies in the models and in scoring functions. In addition, docking is insufficient to 

predict enzymatic activity because it does not account for chemical reactivity.37 Some of these 

limitations can be overcome by combining complementary information from modeling, docking 

and other sources. For example, a combined analysis of genomic context, homology modeling and 

metabolite docking was used to identify substrate specificities of multiple enzymes encoded in a 

bacterial gene cluster.153 
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Machine learning (ML) is widely applicable to a variety of problems from fields such as quantum 

mechanics, physical chemistry, biophysics, and physiology. For example, a Gaussian process 

model that incorporated information from protein sequence and contact maps derived from crystal 

structures was used in combination with directed evolution to engineer channelrhodopsin with high 

light sensitivity.38 ML has also shown promise in predicting substrate specificity. For example, a 

support vector machines (SVM) approach was used to predict substrate specificity of adenylation 

domains in non-ribosomal peptide synthases from physicochemical properties of active site amino 

acids.39A related method extended this approach to predict specificity by incorporating active site 

structural information from sequence alignments to a template from a homologous structure.40 

Using SVM coupled with an active learning approach to prioritize compounds for experimental 

testing to provide maximal benefit to the model, substrates were predicted for four different 

enzymes with an accuracy of ~80%.154 Enzymatic activity of 107 glycosyltransferase superfamily 

1 (GT1) sequences from Arabidopsis thaliana was predicted with an accuracy of ~90% using a 

decision tree-based classifier that incorporated local sequence information, physicochemical 

properties of substrate donor and acceptor molecules, and experimental activity data.41 

 

Nitrilases are a family of the carbon-nitrogen hydrolase superfamily that catalyze the hydrolysis 

of nitrile compounds to their corresponding carboxylic acids and ammonia (Eq. 1). They are an 

example of an enzyme family with broad scope and are found in a range of eukaryotic and 

prokaryotic organisms. Nitrilases play an important role in many biological processes, such as the 

degradation of toxic nitrile compounds, metabolism and generation of hormones, and synthesis of 

signaling molecules.42 In the context of plant-microbe interactions, they are believed to play a role 

in hormone synthesis, nutrient assimilation, detoxification, and modulation of plant development 

and physiology, making them attractive for improved food crop production.43In addition, nitriles 

are desirable for their use in efficient chemo- and enantioselective synthesis of carboxylic acids, 

making them attractive for drug design.44, 45 Typically, nitrilases are classified into three categories 

according to their substrate specificities: aliphatic, arylaceto-, and aromatic nitrilases.43, 46 In terms 

of chemistry and reactivity, Enzyme Commission numbers have been assigned for aliphatic (EC 

3.5.5.7) and arylacetonitrilases (EC 3.5.5.5). However, no broad category of aromatic nitrilases 

has been defined. Thus, existing sequence-based annotations are limited in their ability to classify 

nitrilases. 
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(Eqn. 1) 

 

Various nitrilase activity assays have been described and are based on either fluorogenic or 

chromogenic substrates or pH indicator methods.45, 47, 48 Recently, a chromogenic method was 

developed as a convenient means to screen recombinantly produced nitrilases in crude cell 

extracts.49 Alleviating purification steps facilitates high-throughput screening and evaluation of 

diverse, potential substrates. 

 

High-throughput methods are essential for evaluating the large number of putative nitrilases being 

identified through genome sequencing techniques. For example, functional screening of microbial 

metagenomes from a wide range of environments has led to the identification of a diverse 

collection of nitrilases. These efforts have facilitated characterization of the relationship between 

gene sequence and substrate specificity based on experimental evaluation of the hydrolysis of 

diverse nitrile substrates.44Three substrates, mandelic acid, phenyl lactic acid and 4-cyano-3-

hydroxybutyric acid, were of particular interest due to their potential use in stereospecific 

pharmaceutical biosynthesis. Reactivity toward specific substrates as well as enzymatic 

stereoselectivity were found to be strongly correlated with the phylogenetic groupings of 

individual nitriles in sequence clades or clusters. Because most tested nitrilases were identified in 

metagenomic libraries and affiliation to specific organisms could not be determined, it is unknown 

if substrate specificity is linked to microbial taxonomy. More in depth analysis of some of the 

nitrilase subfamilies identified positive selective pressure for evolving novel substrate specificities 

and enantioselectivity, suggesting that these enzymes can undergo subtle site changes that alter 

their repertoire of accepted substrates.155 Because shifts in substrate specificity and 

enantioselectivity were found associated with distinct sequences in specific subfamilies previously 

characterized for several substrates, we selected nine nitrilases from that study for in-depth 

enzymatic characterization and structural modeling. We also included two closely related putative 

nitrilases identified from bacterial genomes that potentially play roles in interactions with plant 

roots.156  
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Here we describe an integrated and modular approach in which we combine protein structural 

modeling, ligand docking, and physicochemical property calculation with experimental activity 

assays. We use this information to train several machine learning classifiers to predict enzyme 

activity for a set of bacterial nitrilases toward a library of 20 nitrile substrates. For this dataset, 

cross-validation revealed that that all four ML methods showed similar performance in predicting 

substrate scope. 

Methods 
For experimental details see: 

Mou, Z., Eakes, J., Cooper, C.J., Foster, C.M., Standaert, R.F., Podar, M., Doktycz, M.J., Parks, 

J.M. Structure-based prediction of enzyme substrate scope with machine learning: Application to 

bacterial nitrilases. DOI: https://doi.org/10.22541/au.158888180.03951231 

 
Phylogenetic analyses 

Nitrilase sequences were selected for structural and enzymatic analyses based on prior substrate 

specificity data and were aligned along with related sequences from sequenced microbial genomes 

using Muscle v3.8101 in Geneious v9.102 Nitrilase sequences from plants were also included as an 

outgroup. A phylogenetic tree was constructed using FastTree v. 2.1.12.103  

Structural modeling 

The amino acid sequences of 12 target nitrilases were aligned with Clustal Omega (Figure 26).157 

The GREMLIN web server91 was used to search the UniProt20 database for sequence homologs 

of each nitrilase, perform coevolution analysis, and identify potential structural templates from the 

Protein Data Bank. We used the 3.1 Å X-ray crystal structure of a bacterial nitrilase (Nit6803) 

from Synechocystis sp. PCC6803 (UniProt ID Q55949, PDB entry 3WUY) as a template and to 

generate a Rosetta symmetry file.158 For all 12 putative nitrilases, the top template was 3WUY and 

the sequences were all covered well by the full Synechocystis sp. PCC6803 sequence (>81%). 

Structural modeling was supplemented with residue-residue contact restraints obtained from the 

coevolution analysis. We used map_align (https://github.com/gjoni/map_align) to align the 

contact maps to the top ten templates22 identified by hhsearch. Due to the presence of inter-

oligomeric contacts, dimer symmetry was defined based on 3WUY and this crystal structure was 

used as the master template for modeling. Fragments were obtained from the Robetta server. 
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RosettaCM128 was then used to generate at least 5,000 models of each protein. We selected the top 

ten models based on the sum of the Rosetta energy and coevolution restraint score and aligned the 

models to the template dimer. For each protein, we selected the model with the lowest Rosetta 

score that had a low (< 3.5 Å) backbone RMSD to the 3WUY dimer and an “open” active site in 

which the volume of the active site (residues within 10 Å of Ca of the catalytic Cys) calculated 

with POVME 2.0159 was greater than 50 Å3. 

Docking and docking descriptors 

Three-dimensional structures of each nitrile were obtained from the ZINC database.160 The 

geometry of each nitrile was optimized using density functional theory at the B3LYP/6-31G(d,p) 

level of theory in the gas phase.161, 162 All quantum mechanical (QM) calculations were performed 

with Gaussian 16, revision A.03.135 Restrained electrostatic potential (RESP) charges163 were 

calculated at the HF/6-31G(d) level of theory in the gas phase. The optimized geometries and 

RESP charges were then used for docking with Rosetta Ligand.133, 164 The REF2015 score 

function165 was used for both homology modeling and docking. The center of mass of Sg from 

Cys, Oe2 from Glu and Nz from Lys in the catalytic triad was used as the initial docking site. We 

generated 5,000 docked models for each nitrile-nitrilase combination and selected the final docked 

pose based on the docking energy (interface_delta). Additional components of the Rosetta docking 

score were also included as descriptors for RF. These components included the following 

interfacial interaction energy terms: full-atom vdW attraction (fa_atr), electrostatics (fa_elec), 

vdW repulsion (fa_rep), hydrogen bonding terms (hbond_bb_sc and hbond_sc), and solvation 

energy (fa_sol). 

Physicochemical descriptors 

“Classical” 2D and 3D physicochemical descriptors were calculated with MOE.166 QM descriptors 

included atomic partial charges computed from natural population analysis167 and Merz-Singh-

Kollman (MK) charges168, 169 the C and N atoms of the cyano group, highest occupied molecular 

orbital (HOMO) energy, lowest unoccupied molecular orbital (LUMO) energy, molecular dipole 

moment, and molecular volume.  
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Active site descriptors 

The active site of each enzyme-ligand pair was defined as all protein and ligand atoms within 10 

Å of the Cα atoms of the catalytic triad. ProtDCal170 was used to calculate active-site descriptors 

including thermodynamic indices of the folded and extended protein state, topographic indices, 

physicochemical and structural composition indices. 

Machine learning and statistical analysis  

The scikit-learn package (version 0.22) was used to perform the binary classification analysis 

using four ML methods including two decision tree-based ensemble methods: random forest 

(RF)171 and gradient boosted decision trees (GBDT)172, as well as a kernel-based method, support 

vector machines (SVM)173, and logistic regression (LR). For this analysis, experimentally 

measured activities of < 2 mM ammonia were considered inactive and descriptors with high 

correlation to other descriptors (≥ 0.9) were removed. All statistical analyses and plotting were 

performed with Python 3.7 using Pandas, Numpy, and Matplotlib. 

 

Results 
We reasoned that protein structural modeling and ligand docking combined with physicochemical 

properties that describe the ligand and its reactivity could be used synergistically to predict 

substrate preferences. Structural modeling provides insight into overall protein folds and the 

arrangement of residues in the active site. Docking scores provide approximations of binding 

affinities but do not account for reactivity, which can be instead quantified by computing QM 

properties of the nitriles that depend on electron density and molecular orbitals. Additional 

molecular properties of the nitriles can be taken into account by calculating classical 

physicochemical descriptors (e.g., van der Waals surface area and related quantities). As a test 

case we selected bacterial nitrilases, which catalyze the hydrolysis of nitriles to form the 

corresponding carboxylates and ammonia (Eqn. 1). To create an effective training set, we selected 

a set of 12 nitrilase sequences (Figure 27) and evaluated their activity computationally and 

experimentally against a set of representative aliphatic, aromatic and arylaliphatic nitriles. The 

various descriptors and experimentally determined activity data were then used the machine 

learning classifiers to predict enzyme substrate scope. 
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Sequence selection and structural modeling 

Standard sequence-based approaches generally cannot assign substrate preferences at the 

individual molecule level. Thus, we developed a structure- and property-based ML approach to 

predict substrate scope using bacterial nitrilases as a test case. Previously, 137 unique nitrilase 

sequences were identified by screening more than 600 environmental samples from terrestrial and 

aquatic environments.44 The enzymes were then expressed heterologously and assayed for their 

ability to catalyze the enantioselective hydrolysis of three pharmaceutically relevant nitriles, 3-

hydroxyglutaronitrile (3HGN), mandelonitrile (MA), and phenylacetaldehyde cyanohydrin 

(PAC), to form the corresponding carboxylic acids. Phylogenetic analysis of these sequences 

identified six distinct sequence clades that exhibited varying reactivities and enantioselectivities 

toward the three substrates. For example, nitrilase 1B15 hydrolyzed all three substrates with an 

enantiomeric excess for the corresponding R isomeric product ranging from 33 to 100%. In 

contrast, 1B16 exhibited S enantioselectivity toward 3HGN and PAC, but did not hydrolyze MA. 

From this set of 137 nitrilases, we selected a small representative set of nine enzymes from among 

three sequence clades. Greater emphasis was placed on two adjacent subclades (1A and 1B), but 

we also selected one sequence each from clades 2 and 3.  

 

To date, only a few structures of nitrilases have been determined with X-ray crystallography. One 

such structure is that of Nit6803 from Synechocystis sp. PCC6803 (PDB entry 3WUY)158, which 

is a member of sequence clade 1B (Figure 27). This enzyme hydrolyzes a broad range of nitriles, 

including aliphatic and aromatic mono- and dinitriles. In addition, we included two putative 

nitrilases identified in the genomes of plant rhizosphere-associated bacteria. These enzymes were 

selected on the basis of their similarity to sequences from subclade 1A and also to the structural 

template Nit6803. These 11 sequences have varying degrees of sequence identity to Nit6803 and 

range from 32-71% with a sequence coverage of at least 81%. We used the structure of Nit6803 

as a template to generate homology models of a selected set of 20 nitriles (Figure 25) from among 

these substrate categories based on previous data sets44, 49 and docked them to each enzyme model 

and also to the Nit6803 crystal structure (Figure 28). We then calculated various QM and classical 

physicochemical properties for each nitrile and additional active-site properties from the docked 

poses. 
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Enzyme activity assays  

Target nitrilases were expressed heterologously in E. coli and were prepared as crude extracts.174 

These enzyme-containing extracts were added to solutions containing a selected nitrile and 

enzymatic activity was measured using a semi-quantitative colorimetric assay optimized for crude 

extracts based on a previously described method.49 

 

All 12 enzymes were active toward at least one nitrile (Figure 29). In general, catalytically active 

enzymes tend to hydrolyze multiple nitriles with no obvious patterns in activities. Not surprisingly, 

docking scores do not correlate with enzymatic activity (Figure 30). We observed negligible 

activity (i.e.,  < 2) toward all aliphatic nitriles except for 2-methylglutaronitrile. Interestingly, 

1B15 and 1A8 were the only enzymes that did not display activity toward this nitrile. Furthermore, 

1B15 was the only enzyme that had no activity toward aliphatic or aromatic nitriles. Thus, 1B15 

is specific for arylaliphatic nitriles but is only moderately active for 3-phenylpropionitrile and 

cinnamonitrile. No appreciable activity was measured for any enzyme with 2-aminobenzonitrile 

or 2,6-dichloroaminobenzonitrile. 2A6 was active toward all arylaliphatic nitriles except 

cinnamonitrile and was the only enzyme that hydrolyzed mandelonitrile and a-methylbenzyl 

cyanide. 

Prediction workflow  

Having obtained the experimental activity assay data, structural models, docked ligand, and 

calculated descriptors, we trained various binary classification ML models to predict substrate 

scope for bacterial nitrilases. Because the activity assays are semi-quantitative, we used a binary 

classification approach to predict whether a given enzyme is active or inactive toward a given 

nitrile according to a chosen activity threshold. We considered four different activity thresholds 

(1, 2, 3 and 4 mM) for classifying nitrilase activity and selected a threshold of 2 mM ammonia to 

define enzyme-substrate pairs with negligible activity as being essentially inactive. Thus, activities 

below 2 mM were considered inactive. 

 

To determine whether the use of oversampling techniques could be used to generate better models, 

a variety of synthetic minority oversampling technique (SMOTE)175 methods were tested. For grid-

search hyperparameter tuning and cross-validation we used an 80/20 training/test set split. We 
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further tested the robustness of the models by performing leave-n-protein-out tests, which were 

conducted by randomly and phylogenetically leaving out n = 1, 2, 3, 4 or 6 proteins during training 

and then using them as test sets. 

 

We analyzed the performance of four different ML methods that are generally considered suitable 

for datasets of this size. These methods included random forest (RF), gradient-boosted decision 

trees (GBDT), logistic regression (LR), and support vector machines (SVM). For this dataset, 

which has a ratio of inactive:active substrates of 2:1 using a cutoff of 2 mM ammonia, 

oversampling did not significantly improve model performance. All four ML methods perform 

similarly as evaluated by performing tenfold cross-validation (Figure 31A). The average areas 

under the ROC curve (ROC_AUC) were all ~0.90 and the models had average accuracies of 79-

83%. The methods also performed similarly for the test set with the exception of the recall metric, 

for which GBDT did not perform as well as the others (Figure 31B). Although the test set was 

used to assess classification predictions on completely unseen data, it only reflects a single, 

randomly chosen subset of the data. Thus, model performance from the test set does not necessarily 

reflect the overall robustness of the model.  

 

We further assessed the robustness of the different ML methods by leaving out one enzyme at a 

time, training separate models on the remaining eleven enzymes, and then predicting the substrate 

scope for the left-out enzyme (Figure 31C). All four ML methods performed similarly for 

ROC_AUC, accuracy, and precision. However, RF performed the best for F1 and recall. We then 

randomly removed two, three, four, and six of the twelve proteins and observed that RF 

performance was similar the other methods and for some metrics outperformed GBDT, LR, and 

SVM.174 In addition to randomly leaving out proteins, we also removed two, three, four, and six 

proteins according to their order and proximity in the phylogenetic tree to investigate the 

contribution of phylogenetic relationships on model performance. As observed for the random 

leave-out tests, RF generally performed similar to or outperformed the other methods in some 

metrics. 

Discussion 
Here we have developed an approach for predicting substrate scope for enzymes by combining 

structural modeling, docking, physicochemical properties and various machine learning methods 
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(Figure 32). Rather than generating a large training set, we sought to explore the limits of accuracy 

of the model by training the ML model on a relatively small amount of targeted in vitro enzyme 

assay data. The time and expense involved with generating and screening enzymes demands 

effective in silico approaches. Here, the use of crude extracts that contain heterologously produced 

enzymes combined with an automated, colorimetric activity assay facilitated construction of an 

effective training set. Our approach enables accurate predictions of substrate scope for a series of 

aliphatic, aromatic, and arylaliphatic nitriles by including descriptors for the enzymes, substrates 

and their interactions in ML models.  

 

Given a phylogenetic tree and sparse activity data, it may be difficult to identify trends in substrate 

scope. In some cases, sequences that have high sequence identity show similar trends in substrate 

preference. For example, 1A1 and 1A2 are closely related (85% identical) and their substrate 

scopes differ only for the substrate 4-(dimethylamino)benzonitrile (Figure 29). 1B16 and 3WUY 

are also closely related (71% identical) and show similar patterns in activity (90% overlap in 

substrate scope). However, PMI28 and 1A8 are 88% identical but differ markedly in their 

respective substrate scopes. PMI28 displays activity toward 12 of the 20 nitriles spanning all three 

classes, making it one of the most active enzymes tested. In contrast, 1A8 is only active toward 

two aromatic nitriles. In other cases, distantly related sequences share similar substrate 

preferences. For example, 1A17 and 3WUY (51% identical) have the same substrate scope except 

that 4-nitrophenylacetonitrile is not hydrolyzed by 3WUY. Therefore, predictions of the substrate 

scope of an enzyme often cannot be made based on phylogenic analysis alone. In addition, subtle 

changes in the amino acid composition of the active site or in the chemical structure of the substrate 

may lead to differences in activity. In the present case, active enzymes tend to have high activity 

for many nitriles. However, in other cases it will not be known beforehand how much of the 

specificity space will be covered by the proteins or the substrate library. In such cases, active 

learning approaches in which the training data are augmented iteratively to optimize model 

performance, are expected to be particularly useful.154 

 

Substituent effects play an important role in determining reactivity. For example, 2-

aminobenzonitrile and 2,6-dichloroaminobenzonitrile are both aromatic nitriles with substituents 

that are ortho to the cyano group. In contrast to the other aromatic nitriles, these two molecules 
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were not hydrolyzed by any of the nitrilases tested. This large difference in reactivity may be due 

to the steric hindrance of the ortho functional groups or substituent effects. The two dinitriles were 

readily hydrolyzed by most enzymes, with the exceptions of 1A8 and 1B15 toward 2-

methylglutaronitrile and 1A1, 1A2, and 1B15 toward isophthalonitrile. These dinitriles have high 

activities compared to the mononitriles, suggesting that both nitrile groups in the dinitriles were 

hydrolyzed. In a dinitrile, the conversion of one nitrile substituent to a carboxylate will alter the 

solubility and electrostatic properties of the resulting intermediate, which could affect the binding 

affinity and reactivity of the secondary substrate.  

 

In a previously proposed catalytic mechanism for nitrilases176, the first step of the reaction consists 

of a series of proton transfer steps involving the catalytic Cys, the cyano group, and an ordered 

water molecule, resulting in the formation of a thioimidate intermediate. Geometries of catalytic 

residues across a given enzyme family tend to be well conserved (i.e. RMSD < 0.5 Å) and it has 

been shown that incorporating this information in the form of geometric constraints can improve 

model quality.177 Furthermore, docking results can potentially be improved by including additional 

restraints that account for specific interactions between the enzyme and putative substrates (i.e., 

selecting for catalytically relevant orientations). As enzymes preferentially bind transition states 

over ground states of substrates, it could be beneficial to include information about transition states 

in the docking calculations. Performing docking with a transition state mimic is a promising 

approach that can provide improved accuracy compared to ground state docking.178 Most of the 

nitrile substrates considered in the present work are relatively rigid and extensive conformational 

sampling was not required. However, for other cases with more flexible ligands, conformational 

sampling may be critical and should therefore be included. 

 

RF models performed as well as, or in some cases better than, the other three ML methods. Unlike 

kernel-based methods (i.e., SVM), decision tree-based methods (i.e., RF) allow for calculation of 

variable importance of each descriptor. For the nitrilase example, we used an 80:20 split of the 

data and calculated the variable importance for 20 independent runs initiated with different random 

seeds. Descriptors from all four categories were present in the top 10 most important descriptors 

over the 20 runs (Figure 33). Thus, including complementary information from each category 

indeed contributes to the predictive value of the model. QM descriptors do not appear frequently 
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in the top 10, suggesting that descriptors intended to account for chemical reactivity are not as 

important as other properties for obtaining accurate predictions. In the present case, the QM 

descriptors are all similar among the 20 nitriles. For example, the natural population analysis 

(NPA) partial charge on the nitrile carbon ranges from 0.25 to 0.3. In contrast, MOE descriptors 

capture more global properties of the substrate molecules and are therefore more informative for 

classification. Although there are more ligand descriptors (MOE and QM) than those that contain 

information about the ligand in the context of the protein from the docked pose, docking and 

ProtDcal descriptors comprise the majority of the top 10 lists (Figure 33). Thus, for this system 

the descriptors that encode information from the structural models and docked poses are 

informative for accurately predicting substrate scope. 

 

The approach developed here was designed to be highly modular, with readily swappable 

computational components. For example, protein modeling could be performed with other 

software such as I-TASSER179-181, MODELLER182,SWISS-MODEL183, and others. Similarly, 

ligand docking could be performed with software such as Glide184, AutoDock Vina185, and many 

others. Alternatives for calculating physicochemical descriptors include Rcpi186, 

PaDEL187,Mordred188 and essentially any quantum chemistry software. As expected, single amino 

acid substitutions can cause large changes in reactivity or specificity that would not be identified 

based on a phylogenetic analysis of the full sequence. In principle, our approach can capture these 

subtle effects if they lead to substantial changes in active site properties. Compared to sequence-

based approaches189, the modular, structure-based machine learning approach described here is 

more flexible, and should be readily extensible to enable prediction of substrate scope for many 

classes of enzymes. In addition, the experimental assays used are scalable for high-throughput 

applications. The application of advanced computational methods will lead to a better 

understanding of enzyme structure-function relationships and metabolic processes. 
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Appendix III 
Figures 

 
Figure 25. Nitriles used in this study to screen for nitrilase activity. See ref 174 for additional 
details on experimental methods. 
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Figure 26. Clustal Omega alignment of target nitrilase sequences. Residues in gray were excluded 
from the models because they were not resolved in the template. 
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Figure 27. Phylogenetic tree of a family of nitrilases that encompass the enzymes used in this 
study (grey). The scale bar indicates the inferred number of substitutions per site. Enzymes for 
which an X-ray structure is available are indicated with a red star. Two putative nitrilases from 
plant root-associated bacteria are indicated with a black star. 
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Figure 28. Nitrilase models and docking. (A) Structural model of a representative nitrilase 
(PMI26) with the catalytic triad of chain A shown as ball and stick and colored by element. (B) 
Residues within 10 Å of the catalytic triad. (C) Selected docked poses of nitriles are shown as 
sticks and colored by element with different colored carbons for each nitrile. Side chain carbons 
of the catalytic triad are shown in green. 
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Figure 29. Activity data (ammonia concentration in mM) for putative nitrilases with 20 nitrile 
substrates obtained from cell extracts at 50% dilution. Background color to the activity data values 
is added as a visual aid in estimating relative enzyme-substrate activity. See ref 174 for additional 
details on experimental methods. 
 
 
 
 

 
Figure 30. Experimental nitrilase activity (ammonia concentration in mM) versus Rosetta docking 
score. See ref 174 for additional details on experimental methods. 
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Figure 31. Machine learning model metrics. (A) Tenfold cross-validation (B) 80/20 test set and 
(C) leave-one-protein-out tests for a set of bacterial nitrilases and nitrile substrates. Error bars 
indicate the standard error of the mean (s.e.m.) with n = 10 for A and n = 12 for C. 
 
 
 
 

 
Figure 32. Graphical overview of the structure-based approach to predict the substrate scope of 
enzymes. After target selection, structural models are generated for docking and descriptor 
calculation and targets are cloned, expressed, and extracted for screening. The experimental 
activity data and calculated descriptors are then used to train an RF classification model that can 
then be used to predict substrate scope. 
 

A B C



77 
 

 
Figure 33. Analysis of descriptor categories. (A) Number of descriptors per category used for ML 
model building. (B) Descriptor counts for the top 10 features in 20 random seeds. Descriptors are 
colored by category (MOE = orange, QM = gray, docking = blue, ProtDCal = red). Error bars 
indicate the standard error of the mean (s.e.m.) with n = 20. 
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CHAPTER IV 
 

MOLECULAR PROPERTIES THAT DEFINE THE ACTIVITIES OF ANTIBIOTICS 
AND IDENTIFICATION OF NOVEL EFFLUX PUMP INHIBITORS 
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Abstract 
The permeability barrier of Gram-negative cell envelopes is the major obstacle in the discovery 

and development of new antibiotics. In Gram-negative bacteria, these difficulties are exacerbated 

by the synergistic interaction between two biochemically distinct phenomena, the low permeability 

of the outer membrane (OM) and active multidrug efflux. In this study, we used Pseudomonas 

aeruginosa and Escherichia coli strains with controllable permeability barriers, achieved through 

hyperporination of the OMs and varied efflux capacities, to evaluate the contributions of each of 

the barriers to protection from antibacterials. We analyzed antibacterial activities of β-lactams and 

fluoroquinolones, antibiotics that are optimized for targets in the periplasm and the cytoplasm, 

respectively, and performed a machine learning-based analysis to identify physicochemical 

descriptors that best classify their relative potencies. Our results show that the molecular properties 

selected by active efflux and the OM barriers are different for the two species. Antibiotic activity 

in P. aeruginosa was better classified by electrostatic and surface area properties, whereas 

topology, physical properties, and atom or bond counts best capture the behavior in E. coli. In 
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several cases, descriptor values that correspond to active antibiotics also correspond to significant 

barrier effects, highlighting the synergy between the two barriers where optimizing for one barrier 

promotes strengthening of the other barrier. Thus, both barriers should be considered when 

optimizing antibiotics for favorable OM permeability, efflux evasion, or both. Inhibition of 

multidrug efflux pumps is a promising approach for reviving the efficacy of existing antibiotics. 

Using existing physicochemical property guidelines in combination with computational ligand 

docking, we identified a new class of inhibitors of E. coli AcrAB-TolC. Six molecules with a 

shared scaffold were found to potentiate antibiotic activity. 
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Introduction 
Gram-negative bacteria are notoriously more resistant to antibiotics than Gram-positive bacteria. 

The major reason for this resistance is that Gram-negative cell envelopes comprise two membranes 

of different compositions and functions.55, 190, 191 The outer membrane (OM) is an asymmetric 

bilayer of lipopolysaccharides (LPS) and phospholipids with non-selective porins and substrate-

specific channels embedded therein.51, 52 The major function of the OM is protection from toxic 

molecules and enzymatic attacks in a hostile environment. The inner, or cytoplasmic, membrane 

is a phospholipid bilayer that is responsible for diverse physiological and metabolic functions. It 

also contains multidrug efflux pumps that protect intracellular functions by actively removing 

small, toxic molecules and peptides from the periplasm and cytoplasm.53 The two barriers-the 

passive, low-permeability OM and active efflux in the inner membrane-act synergistically and are 

the major factors that are responsible for the intrinsic resistance of Gram-negative bacteria to a 

broad range of antimicrobial agents.57, 192 In addition, the orthogonal to the OM sieving properties 

of the inner membrane are also thought to affect the intracellular accumulation of antibiotics 191. 

 

The antibiotic resistance of Gram-negative pathogens has become particularly worrisome with the 

emergence of multidrug resistant strains in clinics, which often leave clinicians with no therapeutic 

options.50 The discovery of new antibiotics that are active against these pathogens is hindered by 

low hit rates in screening efforts and by the lack of practical rules to maximize OM permeability 

and minimize efflux.55, 56 The latter problem has been identified as a major bottleneck in addressing 

emerging multidrug resistance in clinics.54 

 

To establish rules based on molecular properties that define antibiotic permeation, the two 

permeability barriers (OM and efflux) must be analyzed separately to define the factors 

contributing to each barrier.57 For this purpose, we developed a hyperporination approach that 

facilitates control of OM permeability in Gram-negative cells through the inducible expression of 

a chromosomally encoded open pore (Pore) with a 2.4-nm internal diameter 58. The expression of 

the Pore effectively and non-selectively allows influx of antibiotics and reduces the barrier 

constant, B, which is defined as the ratio of maximum attainable drug fluxes across the outer 

membrane into the cell and out of the cell via the efflux transporter.192 The overexpression and 
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deletion of efflux pumps, on the other hand, allows manipulation not only of B, but also the efflux 

constant, KE, which measures efflux efficiency for a given antibiotic.192-195 

 

We focused on understanding interactions between the permeability barriers of Gram-negative 

bacteria and the antibacterial activities of b-lactams (BLs) and fluoroquinolones (FQs). 

Representatives of these antibiotic classes have been extensively developed and remain the major 

antibiotics administered in clinics. FQs target DNA replication by inhibiting DNA topoisomerases 

and, hence, to reach their targets must penetrate both the outer and inner membranes and evade 

efflux pumps. In contrast, transpeptidases, which are targeted by BLs, are located in the periplasm 

and these antibiotics are optimized to penetrate only across the OM and to evade efflux from the 

periplasm. Thus, the two classes differ significantly in their structures and physicochemical 

properties and contain determinants that are recognized by these different barriers. 

 

Antibacterial activities were analyzed in two Gram-negative species that differ significantly in 

their permeability barriers: P. aeruginosa and E. coli. Although the lipid compositions of the OMs 

overall are similar between these two species 51, 59, 60, they differ in the composition and structure 

of their major general porins. The OM of E. coli contains ~200,000 copies per cell of OmpF/C 

porins, which have a molecular mass cutoff of ~600 Da. As a result, a significant number of 

antibiotics are active against this species.61 In contrast, P. aeruginosa lacks such large general 

porins and instead utilizes substrate-specific porins of the Occ family to take up small compounds 

such as monosugars and amino acids.62 Nevertheless, this species is susceptible to FQs and some 

BLs, suggesting alternative routes of permeation across the OM. Hyperporination of the OM 

through the expression of large non-specific pores negates the differences in permeabilities of the 

OMs in P. aeruginosa and E. coli and allows evaluation of the contributions of these barriers 

toward antibacterial activities. 57, 58 

 

Cryo-EM structures have been determined for the assembled AcrAB-TolC efflux pump, which 

consists of three main components, AcrB, AcrA and TolC (Figure 34A in Appendix IV). AcrB 

is a homotrimeric protein that consists of an a-helical integral membrane domain, a periplasmic 

porter domain that binds and extrudes substrates, and a docking domain that interacts with AcrA.64, 

65 AcrA is a membrane fusion protein that consists of four domains: α-hairpin, lipoyl, β-barrel, and 
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membrane-proximal (Figure 34B). TolC is a trimeric protein that consists of a b-barrel domain 

embedded in the OM and a periplasmic a-helical coiled-coil domain.66 AcrB, AcrA, and TolC 

assemble in a 3:6:3 stoichiometry196 to form a complex that spans the entire Gram-negative cell 

envelope.63 In E. coli, inactivation of a single gene, tolC, leads to the complete loss of efflux across 

the OMs, because all efflux pumps capable of efflux across the OMs in this species depend on 

TolC. 197-199 In contrast, the major efflux pumps of P. aeruginosa are encoded in the same operons 

as specific tolC homologs, and each pump is functionally independent from the others. 200 Hence, 

multiple pumps must be inactivated to deplete the efflux capacity of P. aeruginosa and the 

differences between the barriers are further evident in the genetic make-up of their respective 

efflux pumps. 

 

Identifying molecular properties that govern antibiotic activity in the presence and absence of the 

two barriers is expected to provide strategic guidelines for optimizing compounds against gram-

negative bacteria. 191 Recently, random forest (RF) machine learning was used establish a set of 

rules for favorable accumulation of antibiotics in E. coli.67, 201, 202 Liquid chromatography with 

tandem mass spectroscopy (LC–MS/MS) analysis revealed that small-molecule compounds 

containing amine functional groups were most likely to accumulate in E. coli cells, with primary 

amines having the highest accumulation.67 Incorporation of a primary amine into the Gram-

positive antibiotic deoxynybomycin (6DNM) resulted in a new antibiotic (6DNM-NH3) that 

exhibited broad-spectrum activity against a panel of multidrug-resistant Gram-negative bacteria. 

In addition to containing an amine, antibiotics that tended to be successful at bypassing the OM 

permeability barrier were polar, amphiphilic, relatively rigid, and had low globularity. 

 

We identify molecular properties of antibiotics that are associated with their activities, measured 

as minimum inhibitory concentrations (MICs), in P. aeruginosa and E. coli strains with controlled 

permeability of the OMs and variable efflux capacities. We also describe the characteristics of 

antibiotics that display activity when both the efflux and OM barriers are removed (P∆6-Pore and 

∆TolC-Pore), when only efflux (P∆6 and ∆TolC) or the OM barrier is removed (PAO1-Pore and 

WT-Pore), and in the corresponding wild-type strains (PAO1 and WT). To establish these 

associations, we use RF classification to extract physicochemical properties of antibiotics that 

separate them based on the contributions of these two barriers. Our results show that molecular 
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properties selected by active efflux and the OM barriers are different for E. coli and P. aeruginosa. 

By combining existing physicochemical rules for OM permeability and efflux in E. coli in with 

computational docking, in vitro binding assays, and in vivo potentiation assays in bacterial strains 

with controllable permeability barriers we identified six molecules with a shared scaffold that 

potentiate the antibiotic activity of erythromycin and novobiocin in hyperporinated E. coli cells 

and in wild-type strains of both A. baumannii and K. pneumoniae. 

 

Methods 
For additional experimental details see: 
 
Cooper, S.J., Krishnamoorthy, G, Wolloscheck, D, Nguyen, J, Walker, J.K., Rybenkov, V.V., 

Parks, J.M. and Zgurskaya, H.I. Molecular properties that define the activities of antibiotics 

in Escherichia coli and Pseudomonas aeruginosa. ACS Infect. Dis. 2018, 4, 1223–1234. 

and 

Green, A.T., Moniruzzaman, M., Cooper, C.J., Walker, J.K., Smith, J.C., Parks, J.M., Zgurskaya, 

H.I. Discovery of multidrug efflux pump inhibitors with a novel chemical scaffold. BBA General 

Subjects. 2020, 1864, 129546. 

 

Experimental MIC and MPC measurements 

All strains201 were grown in Luria-Bertani broth at 37˚C with shaking. Susceptibilities of cells to 

different classes of antibiotics were determined by 2- and 4-fold dilutions as described 

previously.57, 58 Therefore, MIC ratios of 2-4-fold changes are within error of the assay. For RF 

classification of MICs and MIC ratios, the lowest MIC in the range was used. Antibiotics were 

purchased from MicroSource Discovery Systems, Inc. and Sigma-Aldrich. All minimal inhibitory 

concentration (MICs) determinations were done at least twice. For EPIs, minimal potentiating 

concentration (MPC) was defined as a concentration of a compound that decreases the MIC of an 

antibiotic by four (MPC4) or more fold. 

Physicochemical property calculation 

Three-dimensional structures of antibiotics used in RF classification were obtained from the ZINC 

database.132, 203 Marvin calculator plugins204 were used to calculate the most likely tautomeric and 

protonation states at pH 7.4. Geometries were optimized with the Amber12:EHT molecular 
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mechanics force field205 implemented in MOE version 2015.206 MOE was then used to calculate 

>300 2D and 3D molecular descriptors207, and the resulting descriptor values were analyzed with 

respect to the MIC and MIC ratio data. Descriptors with standard deviations equal to zero were 

discarded. Redundant descriptors (i.e., correlation coefficients > 0.85) were identified and 

removed using the findCorrelation function in the R package caret.208 A total of 143 descriptors 

were used for P. aeruginosa, and 142 descriptors for E. coli (Table 9 in Appendix IV). Prior to 

analysis, the descriptor values were scaled and centered so they all had the same variance. 

RF analysis of MICs and MIC ratios 

RF combines the information from numerous decision trees to obtain a consensus classification of 

“high” or “low” activity (MICs) or barrier effects (MIC ratios) from molecular descriptor values. 

At each node of a tree, RF determines which descriptor from a randomly selected subset of 

descriptors best separates the antibiotics in the training set classified as “high” from those that are 

classified as “low”. Each time a descriptor is selected as the best splitter, a best split value, or 

threshold (T), is obtained based on the descriptor values for that subset of antibiotics. The threshold 

values for each descriptor were averaged over all occurrences in each model (Tavg) to obtain 

general guidelines for desirable descriptor values.  

 

R version 3.3.2209 was used to perform the RF analysis of molecular descriptors. RF scripts were 

adapted from Richter et al., and classification was performed with caret using tenfold cross 

validation repeated ten times on a set of 2000 decision trees. The RF classification models were 

assessed with receiver operating characteristic (ROC) curves and confusion matrices. The top 20 

descriptors for each set of response variables (MICs or MIC ratios) were determined by 

quantifying the overall variable importance of the machine learning model using the out-of-bag 

error, i.e., the decrease in classification accuracy when a single descriptor is removed. Scatter plots 

containing the Tavg, Tmin, and Tmax values were generated with ggplot2 for the top 20 descriptors 

with natural log-transformed MICs and MIC ratios. 

Ensemble docking of primary amines to AcrA 

We used the Tranche Browser to search a subset of the ZINC 15 database 160 for 3D representations 

of in-stock primary amines with “standard” reactivity, molecular charge in the range of -2 to 2 at 

pH “ref” or “mid”, log P between 2.5 and 3, and no molecular weight cutoff, resulting in ~1.8M 
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small molecules (as of November 26, 2018). Alternate protonation and tautomeric states at pH 7.4 

were included for each molecule. We then selected for primary amines, resulting in 22,842 

compounds. From this list we selected molecules that are relatively rigid (number of rotatable 

bonds £ 4), polar (dipole moment ³ 5.5 D), amphiphilic (amphiphilic moment ³ 4.0 Å2), and have 

low globularity (£ 0.14).67, 201 Molecular properties were calculated with MOE 2016.206  

 

Previously, we generated a full-length model of AcrA from E. coli, performed a 50-ns molecular 

dynamics simulation of the model, and extracted 29 representative conformations using RMSD 

clustering.210 In the present work, ensemble docking211 to each of these 29 conformations was 

performed at four sites (E67 (site I), K241 (site II), I343 and I252 (site III), and F81 and F254 (site 

IV), Figure 34B) with VinaMPI using a 25 Å x 25 Å x 25 Å docking search space and an 

exhaustiveness of 10.212 Of the resulting ~50 top compounds selected based on docking score at 

any site, commercially available compounds were purchased from ChemBridge (San Diego, CA). 

 

Results and Discussion 
MICs and MIC ratios  

To determine how active efflux and the OM permeability barrier contribute to the activities of 

antibiotics, we selected 64 representatives of the BLs (cephalosporins (CEFs), penicillins (PENs), 

and meropenem) and FQs. These antibiotics differ significantly in their structures and properties, 

ranging in molecular mass from less than 300 Da to 650 Da, with log D7.5 values from -3 to ~4 and 

log P(o/w) values varying from -2 to 3.5. In addition, we included a few representatives belonging 

to other classes of antibiotics that have been analyzed previously57, 58: two macrolides 

(azithromycin and erythromycin), the activities of which were strongly affected both by active 

efflux and OM permeability, chloramphenicol, which was weakly affected by both efflux and the 

OM barrier, and gentamicin, the activity of which was not affected by the OM. 

 

MICs of antibiotics were measured in E. coli WT, the efflux-deficient variant ∆TolC, and the pore-

producing derivatives WT-Pore and ∆TolC-Pore.58 For P. aeruginosa, four strains were also 

analyzed: the wild type PAO1, strain P∆6 lacking six efflux pumps (∆mexAB-oprM, ∆mexCD-

oprJ, ∆mexXY, ∆mexJKL, ∆mexEF-oprN, ∆triABC), and their pore-producing derivatives, PAO1-

Pore and P∆6-Pore, respectively.213 All strains were previously shown not to have significant 
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growth defects, and to differ dramatically in their susceptibilities to various classes of antibiotics. 

All strains were previously shown not to have significant growth defects, and to differ dramatically 

in their susceptibilities to various classes of antibiotics. 

 

For E. coli WT cells, MICs could be measured for all tested antibiotics, whereas the MICs of ~30% 

of the antibiotics were too high to be determined in P. aeruginosa PAO1 cells (Figure 35 and 

Figure 36). However, the MICs of all antibiotics could be determined in P∆6-Pore, highlighting 

the large contribution of the permeability barriers in this species toward antibiotic activities. To 

normalize to the differences in biochemical potency among compounds, our key measured 

parameters were efflux ratios and OM barrier ratios, defined as MICparent/MICmutant, for efflux 

mutants and hyperporinated mutants, respectively. 

 

Cephalosporins 

These antibiotics were relatively potent against E. coli, with the lowest MICs against WT in the 

low nanomolar range, but not against P. aeruginosa, for which the most potent representatives had 

MICs in the mid to low micromolar range (Figure 35 and Figure 36). This gap in CEF potency 

can be attributed to both the species-specific differences in permeability barriers and the expression 

of chromosomal BLs in P. aeruginosa strains.214, 215 The combination of these two factors resulted 

in about half of the analyzed CEFs lacking appreciable activities against the wild-type PAO1 

strain. However, in both species the activities of almost all CEFs were potentiated by 

hyperporination of the OM, inactivation of efflux, or both, albeit to different degrees. As a result, 

besides the BLs, all CEFs had a measurable MIC in the minimal barrier P∆6-Pore strain with the 

most potent activities in the mid nanomolar range. This result suggests that in P. aeruginosa 

strains, the permeability barriers are synergistic with BLs and contribute significantly to resistance 

against these antibiotics.  

 

Interestingly, in both species CEFs were modestly (≤ fourfold) affected by efflux deletions. In P. 

aeruginosa, the exceptions were ceftibuten (8-fold), cefotaxime and cefepime (16-fold) and 

cefmenoxime (64-fold), whereas in E. coli, cefuroxime was potentiated 16-fold upon efflux 

activation (Figure 37). In contrast to efflux, the effect of hyperporination was species-specific. 

With a few exceptions, the hyperporinated E. coli cells were only slightly more susceptible to 
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CEFs (≤ fourfold) than WT cells (Figure 35 and Figure 37). Cefonicid, cefoperazone, and 

cefuroxime were among the most limited (16-fold) by the E. coli OM barrier. In P. aeruginosa on 

the other hand, the effect of hyperporination was more drug specific. Some CEFs were not 

significantly affected by hyperporination in P. aeruginosa (e.g., cefdinir and cefalonium), whereas 

others were significantly limited by the OM barrier (e.g., cefotaxime, and cefmenoxime).  

 

The increased potency of CEFs in the barrierless strains highlights the synergistic effect of active 

efflux and the OM barrier. In most cases, P. aeruginosa P∆6-Pore cells were ≥ 16-fold more 

susceptible to CEFs than the wild-type PAO1 cells, with the exceptions of cefalonium, 

cefoperazone, cefprozil, and cefuroxime. Ceftriaxone and cefmenoxime were the most potentiated 

CEFs (≥ 256-fold). In contrast, most CEFs were not affected significantly (≤ fourfold) by removal 

of the OM barrier and inactivation of efflux in E. coli (e.g., cefepime and cefalonium). Other CEFs 

such as cefdinir and cefuroxime had activities that were potentiated greater than 32-fold upon 

removal of both barriers (Figure 36 and Figure 37). 

 

Penicillins 

Like CEFs, these antibiotics differ significantly in their activities against E. coli and P. aeruginosa 

and are affected by the OM, active efflux, and BLs. In general, the MICs of PENs in both species 

were in the micromolar and millimolar ranges. However, unlike CEFs, the effects of active efflux 

and hyperporination on the activity of PENs spanned orders of magnitude in both species.  

 

PENs were either poor substrates of P. aeruginosa efflux pumps (e.g., penicillin and amoxicillin) 

or excellent substrates (e.g., ampicillin and methicillin) (Figure 35 and Figure 37). Likewise, in 

E. coli PENs were either poor substrates of efflux pumps in E. coli (e.g., amoxicillin and 

ampicillin), or excellent substrates (e.g., cloxacillin and dicloxacillin), the activities of which 

increased by 512-fold upon the removal of efflux compared to WT (Figure 36 and Figure 37). In 

both P. aeruginosa and E. coli, most PENs were significantly limited by the OM barrier. Some 

PENs, such as piperacillin, azlocillin, and nafcillin were minimally affected by hyperporination of 

PAO1-Pore. In contrast, activities of other PENs including ampicillin, methicillin, and cloxacillin 

were all potentiated by ≥ 16-fold. In E. coli, greater than fourfold increases in potentiation were 

observed in hyperporinated cells compared to WT cells for all PENs except ampicillin, 
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carbenicillin, and hetacillin, with maximal increases in activity of 64-fold for piperacillin and 

azlocillin. 

 

P∆6-Pore cells were in general ≥ 16 times more susceptible to all PENs (Figure 37). The activities 

of several PENs were highly limited by both barriers in P. aeruginosa, including carbenicillin, 

nafcillin, and azlocillin (≥ 103-fold). The susceptibility of ∆TolC-Pore cells increased at least 

eightfold compared to WT cells for all PENs, with maximum increases of 512-fold for cloxacillin, 

dicloxacillin, nafcillin, and oxacillin. Thus, the structural differences of PENs and CEFs lead to 

dramatic effects in both the antibiotic permeation across the OM and active efflux avoidance. 

 

Fluoroquinolones 

Unlike BLs, FQs are highly potent against both species, but on average P. aeruginosa PAO1 was 

16-fold less susceptible to these antibiotics than E. coli WT. Accordingly, the FQ MICs in PAO1 

were in the low micromolar to high nanomolar range, whereas in E. coli, with a few exceptions, 

the MICs of FQ were in the sub micromolar range. 

 

FQs were relatively good substrates of efflux pumps in both species. In P aeruginosa, most FQs 

were potentiated by at least 16-fold upon efflux deletion, except for difloxacin (fourfold). In E. 

coli, FQs such as sparfloxacin and nadifloxacin were good substrates of efflux pumps, as 

evidenced by the potentiation of their activities in ∆TolC cells (64-fold and 256-fold, respectively) 

(Figure 35). Other FQs such as prulifloxacin and sarafloxacin only showed a fourfold increase in 

susceptibility upon removal of efflux capabilities. Unlike BLs, most FQs were not significantly 

affected by the removal of the OM barrier (≤ fourfold) in either species. However, the 

susceptibility of PAO1-Pore cells toward moxifloxacin and nadifloxacin increased 16-fold 

compared to PAO1, whereas WT-Pore was 16-fold more susceptible than WT for nadifloxacin 

(Figure 36 and Figure 37).  

 

However, even such small changes in the permeation across the OM contributed significantly to 

the FQ potency when synergized with active efflux. In general, P∆6-Pore cells were ≥ 64 times 

more susceptible to FQs than WT. Furthermore, the activities of certain FQs were potentiated by 

more than a thousand-fold in P∆6-Pore cells compared to PAO1 cells. For example, among the 
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FQs flumequine and nadifloxacin were potentiated ≥ 103-fold. In E. coli ∆TolC-Pore, most FQs 

displayed eightfold or greater potentiation, although norfloxacin, pefloxacin, pazufloxacin, 

prulifloxacin and sarafloxacin were potentiated by only fourfold upon removal of both barriers.  

 

Taken together, these results show that in P. aeruginosa and E. coli strains the MICs of tested 

antibiotics ranged from millimolar to sub-nanomolar values, and their potencies varied 

dramatically depending on the presence or absence of one or both permeability barriers. 

Molecular property fingerprints of MICs and MIC ratios  

We used RF classification to dissect the specific effects of OM permeability and efflux that limit 

antibiotic activity. Specifically, we identified the most important physicochemical properties, i.e. 

those that resulted in the largest decrease in accuracy upon removal, for classifying the relative 

potency of the antibiotics in mutant strains and wild-type strains (as measured by MIC) and the 

dependence of the antibacterial activities on efflux, the OM barrier, or both (as measured by MIC 

ratios). We performed RF classification on 143 descriptors for P. aeruginosa and 142 descriptors 

for E. coli (Table 9). E. coli MICs < 4 µM were classified as low, i.e. active. However, because 

P. aeruginosa shows greater resistance to antibiotics, antibiotics classified as low had MICs < 20 

µM. All other MICs were classified as high (i.e., inactive). For both species, MIC ratios < 4 were 

classified as low, or having no significant barrier effect, and MIC ratios > 4 were considered to 

show a significant barrier effect. 

 

The most important molecular descriptors identified by RF classification provide a “fingerprint” 

that describes the molecular characteristics that best distinguish between high and low 

classifications for each set of MICs or MIC ratios. The descriptors belong to eight aggregate 

categories: charge, connectivity, molecular topology number of selected atom or bond types, 

physical properties, potential energy, shape, and surface area (Table 9). 

 

Charge Properties 

These descriptors quantify electrostatic properties in a molecule or portion of a molecule. Partial 

charges calculated with the partial equalization of orbital electronegativity (PEOE) method216 are 

the most prevalent charge descriptors identified from the RF analysis. Several of these descriptors 
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map charges to specific van der Waals surface area (VSA) regions (e.g., fractional negative, or 

total negative VSA). This category is prominent for both P. aeruginosa and E. coli MICs and MIC 

ratios. Charge properties are abundant in the top descriptors for P. aeruginosa, comprising 8-10 of 

the top 20 descriptors for each strain. However, for E. coli MICs, charge descriptors are less 

abundant (≤ 7 of the 20). Compared to MICs, the MIC ratios feature fewer charge descriptors (4-

8 of the top 20 for P. aeruginosa MIC ratios, and 2-5 for E. coli). For both E. coli and P. 

aeruginosa, efflux ratios (PAO1/P∆6, PAO1-Pore/P∆6-Pore, WT/∆TolC, and WT-Pore/∆TolC-

Pore) include the most charge descriptors, suggesting that electrostatic properties may help in 

distinguishing between antibiotics that are significantly limited by the efflux barrier and those that 

are not. 

 

Atom connectivity, shape, and molecular topology 

Connectivity and topological descriptors represent molecules as graphs in which vertices 

correspond to atoms, and edges correspond to bonds. These descriptors are not abundant in the 

fingerprints of either species. ∆TolC-Pore is the only strain that contains a connectivity descriptor, 

along with the MIC ratios WT-Pore/∆TolC-Pore and PAO1/P∆6-Pore. This category is absent 

from the top 20 list in P. aeruginosa MICs and appears only sparingly among all E. coli strains 

except for ∆TolC-Pore. ∆TolC/∆TolC-Pore, PAO1/P∆6-Pore, PAO1/PAO1-Pore, and PAO1-

Pore/P∆6-Pore also contain shape descriptors. In contrast to shape and connectivity descriptors, 

most MIC or MIC ratio fingerprints contain topological descriptors. Five of the top 20 descriptors 

for WT-Pore are topological, incorporating measures of the partition coefficient, partial charges, 

or polarizability. However, the descriptor fingerprints for other E. coli strains contain two 

topological descriptors. This category is highly abundant in the E. coli ratios WT/∆TolC-Pore and 

WT/WT-Pore, (8 and 7 of the top 20, respectively), indicating that molecular topology may be 

relevant for distinguishing antibiotics that are severely limited by hyperporination in the presence 

and absence of efflux compared WT.  

 

Atom and bond counts 

Examples of these descriptors include the numbers of hydrogen bond donor atoms (adon), aromatic 

rings, and oxygen atoms, as well as measures of flexibility in the form of total and fractional 

rotatable bond counts. The fingerprints for all strains of P. aeruginosa contain a single atom or 



92 
 

bond count descriptor, and all E. coli strains include 2-4 descriptors in this category. These 

descriptors are present in the fingerprint of all ratios except for WT/WT-Pore and PAO1/P∆6-

Pore.The top descriptor lists for ∆TolC-Pore and WT-Pore ∆TolC-Pore each include four atom or 

bond count descriptors. Thus, certain descriptors in this category may be useful for classifying 

antibiotic activity in the absence of efflux in E. coli. 

 

Physical Properties 

Physical properties such as molecular weight, solubility coefficient, and partition coefficient, are 

commonly considered in drug design. Descriptors of this type are present for all MICs except P∆6. 

E. coli MIC ratios all list 2-4 descriptors physical property descriptors, and the ratios WT/∆TolC-

Pore and WT/WT-Pore have the most physical descriptors. The trend is similar for P. aeruginosa, 

with PAO1/P∆6-Pore and PAO1/PAO1-Pore having the most physical descriptors among P. 

aeruginosa MIC ratios. Thus, common metrics used in rational drug design classify antibiotics in 

the OM ratios better for E. coli than for P. aeruginosa. 

 

Potential Energy Descriptors 

Potential energy descriptors quantify energetic contributions from, for example, van der Waals 

(VDW) effects or solvation. Similar to physical properties, these descriptors appear in the 

fingerprints for all MICs and MIC ratios in both species at least once. The wild-type and 

hyperporinated strains contain two potential energy descriptors in both species, but the efflux-

deficient strains contain only a single descriptor in this category. 

 

Surface Area Properties 

Surface area (SA) descriptors are the second most abundant descriptor category, with all MIC and 

ratio fingerprints including 2-8 occurrences. Many of these descriptors are based on either the total 

or subdivided VSA of a molecule combined with another property such as lipophilicity (SlogP and 

log P(o/w)), hydrophobicity, shape, or connectivity. Compared to E. coli, the respective ratios in P. 

aeruginosa have more descriptors in this category, highlighting the differences between the two 

species. The descriptor fingerprints for hyperporinated strains in both species contained five SA 

descriptors, suggesting that these descriptors can distinguish active from inactive antibiotics in the 

presence of only the efflux barrier. 



93 
 

P. aeruginosa and E. coli permeability barriers select for different molecular properties 

To provide a set of descriptor guidelines that are favorable for antibiotic potency in the presence 

and absence of efflux and OM barriers, we selected from among the top descriptors those that trend 

with MICs and/or MIC ratios. To identify the “optimal” descriptor values for active antibiotics, 

we determined the average best split value or threshold (Tavg) that separates high and low MICs or 

ratios in the RF analysis. As in previous studies, antibiotics were grouped on the basis of how their 

antibacterial activities were affected by the OM barrier and active efflux barriers. 57 

 

The OM barrier 

Antibiotic properties that are favorable for OM permeation were captured in the MIC fingerprints 

of the efflux-deficient PD6 and DTolC strains and in the fingerprints of the MIC ratios for cells 

with hyperporinated and intact OM barriers, i.e., PD6/PD6-Pore, PAO1/PAO1-Pore, 

DTolC/DTolC-Pore and WT/WT-Pore. Antibiotics with high OM barrier ratios were classified as 

being strongly affected by permeation across the OM. This group includes BLs, predominantly 

CEFs.  

 

The properties that trend with changes in MICs in both DTolC and PD6 strains are rigidity and 

VDW potential energy (Evdw) (Table 10). The most potent antibiotics have high values for Evdw, 

with average threshold values of 4.1 kcal mol-1 for DTolC and 4.6 kcal mol-1 for PD6. Molecular 

rigidity was quantified here as the fraction of rotatable bonds (brotR = brotatable/btotal). Rigid antibiotics 

(i.e., brotR below Tavg of 0.2) were more active against both E. coli and P. aeruginosa in the absence 

of efflux, suggesting that less flexible molecules more readily overcome the OM barrier in both 

species. Rigidity was previously found to be important for increasing accumulation in wild-type 

E. coli.217 

 

As mentioned previously, charge properties are more abundant in the P. aeruginosa fingerprints. 

Several charge descriptors trend with antibiotic potencies in PD6 but not in DTolC cells. In general, 

the most effective antibiotics have larger dipole moments (Tavg = 5.5 D), suggesting that molecules 

with greater charge separation more readily permeate the OM in P. aeruginosa. Both fractional 

positive water accessible SA (FASA+) and fractional negative VSA (PEOEVSA FNEG) provide 
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information about favorable charge distributions in these molecules. Antibiotics with a high 

FASA+ (Tavg = 0.5) and a low PEOEVSA FNEG (Tavg = 0.5) generally have low MICs. However, these 

descriptors trend with MICs in other P. aeruginosa strains as well (Table 10), suggesting their 

importance in antibiotic permeation across both barriers. 

 

From the high PAO1/PAO1-Pore ratios, the OM barrier of P. aeruginosa counterselects for 

antibiotics with a high principal moment of inertia in the Y direction (pmiY, Tavg = 2930). PmiY is 

not present in the WT/WT-Pore fingerprint and, therefore, is specific for the P. aeruginosa OM 

barrier. Antibiotics that show a significant barrier effect in PD6/PD6-Pore generally have high 

negative and fractional negative VSA (PEOEVSA NEG, Tavg = 141 Å2 and PEOEVSA FNEG, Tavg = 0.4), 

and low VSA with SlogP values in the range of 0 to 0.1 (SlogPVSA3, Tavg = 62.8 Å2). The same 

trends are evident for PEOEVSA NEG (Tavg = 210 Å2) and SlogPVSA3 (Tavg = 20.5) in the corresponding 

E. coli DTolC/DTolC-Pore ratio.  

 

Thus, several descriptors that trend with MICs or MIC ratios are common for the OM barriers of 

both E. coli and P. aeruginosa. For example, rigid molecules more readily permeate the OM in 

both species. On the other hand, charge and shape descriptors are characteristic only for the OM 

barrier in P. aeruginosa. 

 

The active efflux barrier 

Descriptors that quantify the effect of the active efflux barrier are present in the fingerprints for 

PAO1-Pore and WT-Pore MICs. They are also present in MIC ratios PAO1-Pore/PD6-Pore, 

PAO1/PD6 in P. aeruginosa, and WT-Pore/DTolC-Pore and WT/DTolC in E. coli. In both species, 

FQs are the dominant antibiotics limited by this barrier. Meropenem is known to cross the OM of 

P. aeruginosa using the amino acid-specific channel OprD218. This carbapenem is a substrate of 

the P. aeruginosa efflux pumps. In contrast, in E. coli meropenem potency is strongly limited by 

OM permeation, but not by efflux. 

 

For PAO1-Pore, active antibiotics have a balance of fractional positive and negative SA, with high 

FASA+ (Tavg = 0.5) and low PEOEVSA FNEG (Tavg = 0.5) and a high dipole moment (Tavg = 5.6 D). As 
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observed with the OM barrier, antibiotics with the greatest activity against PAO1-Pore are more 

rigid (brotR Tavg = 0.2).  

 

The top descriptors, that trend with the PAO1/PD6 ratio, are primarily charge descriptors. 

Interestingly, relative positive partial charges (PEOERPC+, Tavg = 0.1) trend with both the PAO1/PD6 

and PAO1-Pore/PD6-Pore efflux ratios, but not with the OM ratios. Thus, P. aeruginosa efflux 

pumps may select for antibiotics with high positive partial charges. In addition, rigid antibiotics 

have higher PAO1/PD6 ratios, suggesting that P. aeruginosa efflux pumps may favor rigid 

molecules. Lipophilicity trends with PAO1-Pore/PD6-Pore ratios. The more lipophilic molecules 

tend to have higher values for this ratio. Thus, a metric such as SlogP (Tavg = -0.53), which is often 

considered for maximizing membrane permeability, may also promote efflux in P. aeruginosa.  

 

In E. coli, active antibiotics in WT-Pore have Evdw values above ~4 kcal mol-1. However, charge 

descriptors are mostly absent for this strain and do not show any notable trends with MICs or ratios 

in E. coli (Table 10). Antibiotics that are significantly limited by active efflux in the presence of 

the OM barrier in E. coli (WT/DTolC) have log P(o/w) and SlogP values greater than 1.3 and -0.7 

respectively, indicating that lipophilicity plays a role in efflux pump specificity. Similarly, 

antibiotics with high WT-Pore/DTolC-Pore ratios have log P(o/w) and SlogP values greater than the 

average thresholds of 1.5 and -0.5, respectively. 

 

Thus, the lipophilic properties identified by RF for active efflux are similar in both species. These 

descriptors may be useful for guiding the prediction of antibiotic potencies and the effects of efflux. 

In addition, partial positive charges in antibiotics are selected by active efflux in P. aeruginosa. 

OM and active efflux synergy 

Some antibiotics are strongly affected both by hyperporination and efflux inactivation. In both 

species, FQs, macrolides and BLs are all included in this group. Antibiotics with activities that 

were significantly affected by the removal of both barriers (PAO1/PD6-Pore and WT/DTolC-Pore) 

generally have positive log P(o/w) values (Table 10). Interestingly, the average threshold for log 

P(o/w) in WT/DTolC-Pore (Tavg =  0.7) is higher than for PAO1/PD6-Pore (Tavg =  -0.9). Lipophilicity 
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(SlogP) values greater than the average threshold are associated with high PAO1/PD6-Pore and 

WT/DTolC-Pore ratios with values of -0.6 and -0.9, respectively. In E. coli, brotR is an important 

feature for describing the differences in antibiotic effectiveness between the maximal and minimal 

barrier strains. In general, rigid molecules have lower WT/DTolC-Pore ratios (Tavg = 0.2), and thus 

antibiotics below this threshold value were often limited by both barriers.  

 

PD6-Pore and DTolC-Pore are minimal-barrier strains in which both barriers have been removed. 

The positive trends of MICs in these strains with the lipophilic descriptors logP(o/w) and SlogP and 

the rigidity descriptor brotR are consistent with the trends in the respective MIC ratios described 

above (Table 10). In addition, FASA+ is also a top descriptor for PD6-Pore, with active antibiotics 

having higher values than Tavg = 0.5.  

 

Taken together, these results show that several top descriptors identified by RF classification trend 

with MICs and/or MIC ratios in P. aeruginosa and E. coli and that these descriptors vary between 

species and barriers. In several cases, optimizing for one barrier promotes strengthening of the 

other barrier, suggesting a synergistic relationship between the OM and efflux barriers. For 

example, rigid antibiotics (e.g., FQs) are more active against PD6 and thus, more readily permeate 

the OM in P. aeruginosa, but these antibiotics are also often excellent substrates of efflux pumps. 

The activity of antibiotics in P. aeruginosa is primarily captured by charge and surface area 

descriptors, whereas properties identified for the E. coli barriers point to the role of topology, 

physical properties, and atom or bond counts. The calculated threshold values of these descriptors 

provide guidelines that may be useful for selecting or designing antibiotics with favorable 

properties to overcome these barriers. 

Chemical structure and descriptor relationships 

The top descriptors described above are sensitive to small changes in the chemical structures of 

antibiotics. For example, the CEFs ceftriaxone and cefepime (Table 11) differ by the cyclic 

substitutions at position 3 of the cephalosporin nucleus. These two antibiotics were active against 

both E. coli and P. aeruginosa, but differed significantly in the effects of efflux and the OM barrier 

(Figure 35 and Figure 36). Cefepime, with a methylpyrrolidine substitution at position 3, was not 

sensitive to efflux or the OM barrier in E. coli but was affected strongly by both barriers in P. 
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aeruginosa. In the case of P. aeruginosa, cefmenoxime, which has a methyltetrazole group at this 

position, was further affected by both barriers with a thousand-fold increase in activity compared 

to WT. Although cefepime and cemenoxime have similar values for FASA+, PEOERPC+, adon, and 

brotR, cefmenoxime has a higher fractional and total negative SA, whereas cefepime has a higher 

dipole moment, Evdw, and lipophilicity (Figure 38). 

 

The aminopenicillins amoxicillin and ampicillin differ by the presence of a hydroxy group at C4 

in the phenyl ring (Table 11). These two aminopenicillins had high MICs in PAO1, but both are 

relatively active against WT (Figure 35 and Figure 36). In E. coli, the activity of these antibiotics 

was mainly limited by the OM barrier. For P. aeruginosa either inactivation of efflux or 

hyperporination was required to obtain a measurable MIC for ampicillin. In contrast, both 

inactivation of efflux and hyperporination was needed to obtain a measurable MIC for amoxicillin. 

These two antibiotics have similar descriptor values for several properties such as brotR, SlogPVSA3, 

and FASA+, but ampicillin has a higher dipole moment, lipophilicity, Evdw, and pmiY (Figure 38). 

Amoxicillin has a higher adon as a result of its additional hydroxyl group, which may decrease the 

effect of the OM barrier, at least in E. coli. 

 

For FQs, difloxacin differs from sarafloxacin by the presence of a methyl group at N4 in the 

piperazinyl ring and sarafloxacin is a stronger base and is more hydrophilic (Table 11). Difloxacin 

has a higher total and fractional negative SA, SlogP, and pmiY, and a lower dipole moment than 

sarafloxacin (Figure 38). In P. aeruginosa both of these antibiotics were affected by the removal 

of both barriers, but only sarafloxacin was significantly limited by efflux alone. In both species 

hyperporination did not greatly limit antibiotic activity (< 4-fold change) (Figure 35). However, 

in E. coli active efflux provided a significant barrier to overcome for difloxacin but not sarafloxacin 

(Figure 36).  

 

The activities of most FQs were mainly limited by active efflux. The exceptions are moxifloxacin 

and nadifloxacin, which also showed OM barrier limitations and an even greater increase in 

activity in the minimal-barrier strains, reflecting the synergy of these barriers (Table 11). Several 

of the top descriptors differ between these two antibiotics. For example, moxifloxacin has a higher 

dipole moment, pmiY, and SlogPVSA3, but nadifloxacin has a higher negative SA and an additional 
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hydrogen bond donor. Moxifloxacin, a fourth generation FQ belonging to the 6-

hydrogenquinolones, bears a cyclopropyl group at N1 coupled with a C8 methoxy and a 

pyrrolopyridine at C7. The bulky heterocyclic group and overall lipophilicity strongly affect both 

the permeation across the OM and the effect of active efflux. Chemically, nadifloxacin has a 

lipophilic tricyclic benzoquinolizine core, with a 4-hydroxypiperidino moiety at the C8 position. 

This singular moiety lacks a distal basic functionality, which is unusual for a side chain of a 

quinolone, as all marketed quinolones bear side chains with a basic functionality, thereby 

providing two or three ionizable groups compared with only one for nadifloxacin (pKa = 6.8). Thus, 

even small changes in the chemical structures of antibiotics such as a single substituent change can 

significantly affect one or more descriptors that capture the behavior of the OM barrier, active 

efflux, or both. 

Identification of EPIs using physicochemical property filters 

An important feature of OM-permeable compounds is the presence of a cationic amine, with 

primary amines being the most permeable. However, primary amines are relatively rare in 

chemical databases. For example, only ~0.1% of the ChemBridge Microformat Set contains this 

functional group.67 Of the limited number of amines, antibacterials should also be relatively rigid, 

polar, amphiphilic, and have low globularity. To generate a focused library of molecules that could 

potentially serve as efflux pump inhibitors, we searched a subset of the ZINC database and 

performed additional filtering for compounds with appropriate properties. We then docked the 

resulting ~1,400 compounds to an ensemble of conformations of monomeric AcrA at four different 

potential binding sites and selected compounds based on docking score. Of the resulting ~50 top 

predicted binders, 34 commercially available compounds were purchased and tested 

experimentally. 

 

To qualify as EPIs, compounds must satisfy at least three criteria: (i) they must enhance the 

activities of antibiotics that are effluxed in strains containing functioning pumps, (ii) they must not 

significantly potentiate the activities of antibiotics in strains that lack efflux pumps, and (iii) must 

interact with AcrA or AcrB.219, 220 MPC4 values to measure antibiotic potentiation of novobiocin 

and erythromycin and surface plasmon resonance (SPR) were used to identify six compounds that 

meet these criteria. Interestingly, the six compounds that potentiate antibiotics and bind AcrA all 
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are substituted 4(3-aminocyclobutyl)-pyrimidin-2-amine compounds. Each of these six 

compounds has low globularity (0.05-0.12), few rotatable bonds (2-4), relatively high dipole 

moment (5-10 D) and relatively high amphiphilic moment (~4.5-7). The most favorable docking 

score for each compound corresponds to binding at either site II or site III, which flank the b-barrel 

domain of AcrA (Figure 39). 

 

We also tested the six top hits for their ability to potentiate the activity of novobiocin and 

erythromycin in four other Gram-negative pathogens. These compounds did not potentiate 

antibiotic activity in P. aeruginosa or E. cloacae. However, some of these compounds increased 

the efficacy of novobiocin and erythromycin as measured by MPC4 in wild-type cells of both A. 

baumannii (up to 8-fold) and K. pneumoniae (up to 2-fold). This result suggests that these 

compounds have broad-spectrum activity and permeate the OM of A. baumannii better than the 

OM of E. coli.  

Conclusions 
The OM barrier and efflux synergistically limit antibiotic activity in Gram-negative bacteria. In 

the present study, we have used P. aeruginosa and E. coli strains with controlled OM permeability 

and varying efflux capacity to identify trends in the antibacterial activities of CEFs, PENs and 

FQs. In addition to high-affinity target binding, OM permeation should be maximized and efflux 

should be minimized to obtain optimal antibacterial activity. Using RF classification, we have 

identified properties that distinguish between antibiotics with high and low antibiotic activities 

(MICs) in the various strains and identify the properties related to the effect of altering the OM 

permeability and efflux barriers (MIC ratios). 

The top descriptors for P. aeruginosa are dominated by electrostatic properties. Active antibiotics 

have a higher dipole moment and antibiotics with low dipole moments are significantly limited by 

the OM barrier. On the other hand, partial positive charges trend specifically with the efflux ratios. 

Rigid antibiotics and antibiotics with high VDW energies (EVDW) were more active against both E. 

coli and P. aeruginosa. Lipophilicity (log P(o/w) and SlogP) trend positively with efflux ratios in 

both species and classify antibiotics in the OM ratios better for E. coli than for P. aeruginosa, 

likely the result of the more complex barriers in P. aeruginosa.  
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The physicochemical properties identified here reflect chemical bias toward CEFs, PENs and FQs. 

However, performing a similar predictive analysis on diverse molecular libraries is expected to be 

beneficial for identifying new antibiotics or EPIs. The differences in rules between P. aeruginosa 

and E. coli suggest that different properties may need to be targeted for optimization of antibiotics 

against different species. Furthermore, we have shown that the properties selected as important for 

the OM barrier ratios differ significantly from those for the efflux ratios and that these two barriers 

can work together to develop resistance to antibiotics. Therefore, we recommend that 

antimicrobials should be optimized to evade efflux and enhance OM permeability simultaneously. 

 

Using existing physicochemical guidelines as filters in combination with ensemble docking, in 

vitro binding studies, and in vivo potentiation assays in bacterial strains with controllable 

permeability barriers, we identified a new class of EPIs with activity against several Gram-

negative bacteria. Six molecules with a shared scaffold were found to potentiate the antibiotic 

activity of erythromycin and novobiocin in hyperporinated E. coli cells and in wild-type strains of 

both A. baumannii and K. pneumoniae. 
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Appendix IV 

Tables 

Table 9. Descriptor categories and number of descriptors in each category 

 
 
 
 
 

Table 10. Average threshold values for top descriptors that trend with MICs and MIC ratios 

 
a Descriptor negatively trends with MICs (i.e., active antibiotics generally have descriptor values 
above Tavg) or MIC ratios (i.e., significant barrier effects are often observed in antibiotics with 
descriptor values below Tavg).  
b Descriptor positively trends with MICs (i.e., active antibiotics generally have descriptor values 
below Tavg) or MIC ratios (i.e., significant barrier effects are often observed in antibiotics with 
descriptor values above Tavg).  
c No trend between descriptor and MIC or MIC ratio values.  

Descriptor category
Number of Descriptors

P. aeruginosa E. coli

charge 33 32
connectivity 1 1
molecular topology 18 18
natoms , nbonds 17 16
physical properties 14 14
potential energy 9 10
shape 9 9
surface area 42 42

total 143 142
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PEOE_RPC+ 0.1b 0.1b

PEOE_VSA-2 21.9b 17.0b 16.9b 15.3b 30.5b 21b 24.9b 20.4b 17.9c 26.7a

PEOE_VSA_FNEG 0.5b 0.5b 0.4b 0.3b 0.4b 0.39b

PEOE_VSA_NEG 170b 171b 141b 167c 170c 210b 210b

a_don 1.5b 2.3c 2.3a

b_rotR 0.2b 0.2b 0.2b 0.2b 0.2b 0.2a 0.2a 0.2a

logP(o/w) 0.2a -0.9b 0.8b 0.7b -0.1c 1.5b 1.3b
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P. aeruginosa E. coli P. aeruginosa E. coli
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Table 11. Example CEFs, PENs, and FQs highlighting how small changes in antibiotic structure 
contribute to differences in MIC ratios and molecular descriptors. See ref 201 for additional 
details on experimental methods 
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Figures 

 

Figure 34. Structure of the E. coli efflux pump AcrAB-TolC. (A) Cryo-EM structure of the 
AcrAB-TolC complex (PDB Entry 5NG5) shown in cartoon and surface representations. 
Individual subunits of TolC (purple), AcrA (dark green), and AcrB (blue) are shown. (B) Sites I-
IV on AcrA used for docking are color coded by domain: a-hairpin (light green), lipoyl (orange), 
b-barrel (yellow) and membrane-proximal (red). Residues used to define the center of each site 
are shown as spheres and colored by domain.  

 

I (E67) II (K241)

III 
(I252, I343) 

IV
(F81,F254) 

A B
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membrane-proximal (MP)
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Figure 35. Scaled MICs and MIC ratios for antibiotics in P. aeruginosa sorted by antibiotic class 
and PAO1 MIC from lowest to highest within each class. Values were natural log-transformed and 
then scaled between 0 and 1. Gray squares indicate MIC ratios that are outside of the measurable 
range. MICs (green) report on relative potency and MIC ratios (blue) report on the dependence of 
antibiotic activity on efflux, the OM barrier, or both. See ref 201 for additional details on 
experimental methods.  
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Figure 36. Scaled MICs and MIC ratios for antibiotics in E. coli sorted by WT MIC from lowest 
to highest. Values were natural log-transformed and then scaled between 0 and 1. MICs (green) 
report on relative potency and MIC ratios (blue) report on the dependence of antibiotic activity on 
efflux, the OM barrier, or both. See ref 201 for additional details on experimental methods. 
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Figure 37. P. aeruginosa and E. coli MIC ratios colored by class (CEF=blue, PEN=orange, 
FQ=gray, other=gold) for (A) the “barrierless” ratio (PAO1/P∆6-Pore), (B) only efflux pump 
deletion (PAO1/P∆6), and (C) only hyperporination (PAO1/PAO1-Pore), (D) the “barrierless” 
ratio (WT/∆TolC-Pore), (E) only efflux pump deletion (WT/∆TolC), (F) only hyperporination 
(WT/WT-Pore). Only MIC ratios with measurable values are shown. The fold changes in MICs 
are shown on the X-axes and the number of antibiotics with the corresponding fold changes in 
MICs are on Y-axes. See ref 201 for additional details on experimental methods. 
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Figure 38. Selected top molecular descriptors from RF classification of antibiotics with activity 
against P. aeruginosa and E. coli. Descriptor values were scaled between 0 and 1 and colored blue, 
with darker blue indicating higher descriptor values. Minimal values for a given descriptor are 
shown in white. 
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Figure 39. Highest-scoring docked pose for the six compounds that bind to AcrA and potentiate 
antibiotic activity (top). Individual snapshots of AcrA were aligned to chain A (colored by domain) 
in the cryo-EM structure of the AcrAB-TolC complex (PDB entry 5NG5), which is shown in 
cartoon and surface representations (green = AcrA, blue = AcrB). Individual docking poses for 
each of the six compounds highlighting interactions with residues in AcrA colored by domain 
(bottom). See ref 201 for additional experimental details. 
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CHAPTER V 
 

SUBSTRATE BINDING INDUCES CONFORMATIONAL CHANGES IN A CLASS A  b-
LACTAMASE THAT PRIME IT FOR CATALYSIS 
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Abstract 
The emergence and dissemination of bacterial resistance to β-lactam antibiotics via β-lactamase 

enzymes is a serious problem in clinical settings, often leaving few treatment options for infections 

resulting from multidrug-resistant superbugs. Understanding the catalytic mechanism of β-

lactamases is important for developing strategies to overcome resistance. Binding of a substrate in 

the active site of an enzyme can alter the conformations and pKas of catalytic residues, thereby 

contributing to enzyme catalysis. Here we report X-ray and neutron crystal structures of the class 

A Toho-1 β-lactamase in the apo form and an X-ray structure of a Michaelis-like complex with 

the cephalosporin antibiotic cefotaxime in the active site. Comparison of these structures reveals 

that substrate binding induces a series of changes. The side chains of conserved residues important 

in catalysis, Lys73 and Tyr105, and the main chain of Ser130 alter their conformations, with Nζ 

of Lys73 moving closer to the position of the conserved catalytic nucleophile Ser70. This 

movement of Lys73 closer to Ser70 is consistent with proton transfer between the two residues 

prior to acylation. In combination with the tightly bound catalytic water molecule located between 

Glu166 and the position of Ser70, the enzyme is primed for catalysis when Ser70 is activated for 

nucleophilic attack of the β-lactam ring. Quantum mechanical/molecular mechanical (QM/MM) 

free energy simulations of models of the wild-type enzyme show that proton transfer from the Nζ 

of Lys73 to the Oε2 atom of Glu166 is more thermodynamically favorable than when it is absent. 

Taken together, our findings indicate that substrate binding enhances the favorability of the initial 

proton transfer steps that precede the formation of the acyl-enzyme intermediate.  
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Introduction 
Since their fortuitous discovery and introduction into the clinic, b-lactam antibiotics have 

revolutionized medicine.68, 69 With their ability to imitate units of the bacterial cell wall during cell 

wall synthesis, they inhibit cell wall regeneration during the autolysis and rebuilding process in 

the cell, thus causing cell death.70, 221 However, the development of acquired and evolved 

resistance by bacteria is inevitable. Despite the wide variety of β-lactam antibiotics available today, 

there are constantly emerging threats to public health from resistant strains. Four mechanisms are 

used individually or in combination by resistant bacteria to overcome β-lactam antibiotics: (i) 

mutations in the active site of penicillin binding proteins (PBPs) that result in reduced affinity of 

antibiotics for PBPs, (ii) decreased expression of outer membrane proteins that give β-lactams 

access to the cell wall building region in the periplasm, (iii) expression of efflux pumps that expel 

β-lactams and other substances that are harmful to the cell, and (iv) the production of β-lactamases, 

which inactivate β-lactam antibiotics.222 

 

β-lactamases are divided into four classes (A-D) on the basis of sequence homology.70 Apart from 

the class B metalloenzymes, which require two Zn2+ ions in the active site to function70, 223, 224, β-

lactamases are serine-reactive hydrolases. Typical class A β-lactamases include sulfhydryl 

variable (SHV), Temoniera (TEM), and extended-spectrum β- lactamase (ESBL) cefotaxime-

resistant (CTX) M-type enzymes. CTX-M-type β-lactamase enzymes are often encountered in 

bacterial intraabdominal and urinary tract infections. CTX-M ESBLs can inactivate first-, second-

, and third- generation cephalosporins and monobactam antibiotics.70-72 In combination with their 

broad substrate profile, these β-lactamases create challenges for clinical treatment and increase 

mortality rates. 

 

Due to its potent activity against extended-spectrum cephalosporins, drugs that reach the spinal 

fluid in a high enough concentration to treat meningitis, Toho-1 is a class A CTX-M-type ESBL 

β-lactamase of particular interest.225-227 Common to other class A β-lactamases, Toho-1 is 

composed of two highly conserved domains, α/β and α, the interface of which forms the active site 

cavity.73 Like all class A β- lactamases, Toho-1 employs an active site serine nucleophile (Ser70) 

to cleave the β-lactam bond of the substrate in a two- step acylation-deacylation reaction cycle that 

leads to overall hydrolysis (Figure 40 in Appendix V). Various detailed mechanisms have been 
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proposed for the formation of the acyl-enzyme intermediate during catalysis.74-77 Differentiating 

between these mechanisms can be facilitated by unambiguously identifying key protonation states 

and hydrogen-bonding interactions of the catalytically important residues and the substrate. 

Neutron crystallography is ideally suited to experimentally determine protonation states. Our 

previous studies have shown that both Glu166 and Lys73 can undergo changes in protonation state 

upon binding of transition state analogues228 and during the formation of the acyl-enzyme 

intermediate.229, 230  

 

Quantum mechanical/molecular mechanical (QM/MM) calculations can provide key mechanistic 

insights that are complementary to experiments. For example, this approach allows detailed 

inspection of short-lived intermediates and transition states and the quantification of reaction 

energetics of enzymatic reactions. To obtain meaningful results, solvent effects must be properly 

taken into account. Long-range electrostatic effects are known to contribute significantly to the 

structure and properties of biomolecules.231 Most often in QM/ MM simulations, a nonperiodic 

water droplet model is used, and this approach has been shown to capture long-range electrostatic 

interactions sufficiently well in comparison to periodic simulations with QM/MM-Ewald 

approaches.232 Configurational sampling is required to provide information about free energies and 

can be obtained using umbrella sampling. The computational cost of performing QM/MM 

umbrella sampling with density functional theory (DFT) is quite high. Thus, a common approach 

is to perform the simulations with a computationally efficient semiempirical QM method. 

However, semiempirical methods are generally less accurate than DFT. Their accuracy can be 

improved by computing potential energies with DFT-based QM/MM calculations and then 

accounting for thermal and entropic effects by performing configurational sampling with semi- 

empirical-based QM/MM simulations. 

 

Previous QM/MM studies of class A β-lactamases have focused on the acylation78-81and 

deacylation steps82, 83, and some of these studies have helped establish likely mechanisms for β-

lactam inactivation. However, the specific contributions of the substrate in modulating proton 

transfer free energies has not been investigated. Thus, in the present work, we have combined X-

ray and neutron crystallography with QM/MM simulation to identify key factors that contribute to 

catalytic rate enhancement by a class A β-lactamase. By generating a Ser70Ala mutant of Toho-1 
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β-lactamase and obtaining a crystal structure with the substrate cefotaxime, we have captured the 

preacylation complex. This approach allowed us to scrutinize the conformations and protonation 

states of key active site residues as β-lactam hydrolysis is poised to occur. Our findings provide 

evidence in support of a concerted base hypothesis originally proposed by Mobashery and co-

workers.78 Specifically, they reveal concerted changes in the conformations of several residues 

upon substrate binding and the presence of a hydrogen bond network capable of facilitating 

cleavage of the β-lactam bond. Furthermore, our QM/MM free energy simulations show that the 

presence of the cefotaxime substrate alters the relative proton affinities of key catalytic residues, 

facilitating proton transfers prior to acylation. Recent high-resolution crystal structures of CTX-

M14, another class A β-lactamase, in complex with a conjugated penicillin233 and boronic acid 

inhibitors234 have indicated that changes in the protein microenvironment upon binding of small 

molecules can induce protonation state changes.  

 

Methods 
For experimental details see: 
 
Langan, P.S., Vandavasi, V.G., Cooper, S.J., Weiss, K.L., Ginell, S.L., Parks, J.M., and Coates, 

L. Substrate binding induces conformational changes in a class A β-lactamase that prime it for 

catalysis. ACS Catal. 2018, 8, 2428-2437. 

Simulation system setup 

The program antechamber from the AMBER 14 suite of programs235 was used to assign general 

Amber force field236 parameters for cefotaxime. AM1-BCC atomic partial charges237, 238 were 

calculated with the program sqm.239  

 

The 2.1 Å neutron structure of Arg274Asn/Arg276Asn Toho-1 β-lactamase240 was used to 

generate the apoenzyme model. The 1.1 Å X-ray structure of Ser70Ala/Arg274Asn/Arg276Asn 

Toho-1 β-lactamase with cefotaxime determined in the present study241 was used to generate the 

cefotaxime-bound model with Ala70 converted back to Ser. The ff14SB force field242 and TIP3P 

water model138 were used to describe the protein and solvent, respectively. Each system was 

solvated in a periodic box with a 20 Å margin between the protein and the sides of the box. The 

charge of the cefotaxime system was neutralized by adding a single sodium ion. No ions were 
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added to the apoenzyme system. Thus, although crystallization was carried out in high ionic 

strength buffers, all simulations were performed under low ionic strength conditions.  

 

All protonation states and active-site hydrogen-bonding patterns in the apoenzyme and 

cefotaxime-bound models were assigned directly from the corresponding neutron structures. The 

protonation states and hydrogen-bonding patterns are consistent in both structures. Unfortunately, 

it was not possible to trap the substrate without mutating a catalytic residue, in this case Ser70. 

Although it is possible that mutating Ser70 to Ala could alter active site pKa values, we do not 

expect that it would change the protonation states.  

Classical MD simulations 

Initial relaxation of the system consisted of 250 steps of steepest descent minimization followed 

by 750 steps of conjugate gradient minimization. During all MD simulations, a time step of 2 fs 

was used, and covalent bonds to hydrogen atoms were constrained to their equilibrium distances 

with the RATTLE algorithm.243 A cutoff of 8 Å was used for van der Waals interactions, and long-

range electrostatic interactions were computed with the particle mesh Ewald (PME) method.244, 245 

Each system was heated to 300 K with a Langevin thermostat over 50 ps in the canonical (NVT) 

ensemble with a 5.0 kcal mol-1 Å-2 harmonic restraint applied to all heavy atoms of the protein, 

substrate, and the active site water molecule. Next, a 50 ps equilibration was performed in the 

isothermal-isobaric (NPT) ensemble to adjust the pressure of the system to 1 atm, again with the 

same 5 kcal mol-1 Å-2 harmonic restraint. An additional 200 ps equilibration was then performed 

with a 1 kcal mol-1 Å-2 restraint on all Cα atoms, cefotaxime heavy atoms, and the active site water 

molecule. Production MD simulations were then performed in the NPT ensemble for >10 ns with 

no restraints. All classical MD simulations were performed with pmemd.  

QM model calculations 

To identify a suitable level of theory with which to describe the QM subsystem in the QM/ MM 

calculations, we performed a set of model calculations on selected amino acid side chains. The 

M06-2X global hybrid density functional246 and 6-311++G(2d,2p) basis set were previously shown 

to provide an accurate description of proton transfers between amino acids, yielding a mean 

unsigned error of 1.0 kcal mol-1 and maximum error of 1.4 kcal mol-1 for proton affinities at 0 K 

in comparison to benchmark CCSD(T)/CBS values (Table 12 in Appendix V).247 In that work, 
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geometries were optimized at the CPCM/MP2/6-311++G(d,p) level of theory. We followed the 

same procedure but reoptimized the geometries of the Asp, Ser, and Lys side chains at the CPCM/ 

M06-2X/6-31G(d) level of theory and then calculated gas-phase single-point energies with the 

larger 6-311++G(2d,2p) basis set. The resulting errors relative to the benchmark values were 0.2, 

1.4, and 1.3 kcal mol-1 for Asp, Ser, and Lys, respectively, indicating that M06-2X/6-31G(d) 

geometries and M06-2X/6-311++G(2d,2p) single-point energies provide quite accurate proton 

affinities and are expected to be useful for quantifying proton transfer energetics in the present 

enzyme system.  

QM/MM system preparation 

A spherical water droplet model was used for all QM/MM simulations. For the apo and 

cefotaxime-enzyme systems, a single snapshot was chosen near end of each classical MD 

simulation trajectory, and all water molecules greater than 36 Å from Cα of Ser70 were removed. 

The entire protein was enclosed within the spherical solvent shell. Prior to performing QM/MM 

calculations, the energy of the system was minimized for 20000 steps.  

 

For both the apoenzyme and cefotaxime-enzyme model, the side chains of Ser70, Lys73, Glu166, 

and one active site water molecule were included in the QM subsystem. Hydrogen link atoms were 

used to saturate the valences of the covalent bonds at the QM/MM boundary. The substrate was 

included in the MM region for the cefotaxime-bound model. The total charge of the QM subsystem 

was zero for both models. No cutoffs were used for the nonbonded interactions in the QM/MM 

calculations.  

Potential energy profiles 

We performed a series of restrained geometry optimizations using a generalized reaction 

coordinate approach.248 Geometries were considered converged when the RMS gradient dropped 

below 10-2 kcal mol-1 Å-1. The reaction coordinate corresponded to the Lys73 catalytic base 

mechanism proposed by Mobashery and co-workers.78 They also considered an alternative 

pathway in which Glu166 serves as the catalytic base that deprotonates Ser70 through a water 

molecule. However, this pathway was found to have a 4 kcal mol-1 higher energy barrier that the 

Lys73 general base pathway. Thus, we simply chose to focus on the Lys73 pathway in our work. 

The same atoms were used to define the reaction coordinate for both the apoenzyme and 
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cefotaxime-enzyme models (Figure 41).  

The restraint energy, U, was defined as  

U = k(w1|d1| + … + wn|dn|–d0)2 (Eqn. 2)  

where k is the force constant in kcal mol-1 Å-2, wn are the restraint weights, dn are the interatomic 

distances, and d0 is a distance offset parameter that is adjusted at each step along the reaction path. 

A force constant of 2000 kcal mol-1 Å-2 was used, and the reaction coordinate was adjusted in 

increments of 0.1 Å. We modified the program sander to allow up to six interatomic distances to 

be included in the generalized reaction coordinate. All atoms greater than 24 Å from Cα of Ser70 

were restrained during the potential energy profile calculations. All restrained geometry 

optimizations were performed sequentially in both the forward and reverse directions until smooth, 

continuous paths were obtained.  

The following interatomic distances and weights were used:  

d1 = Glu166(Oε)−water(H), w1 = -1.0  

d2 = water(H)−water(O), w2 = 1.0  

d3 = water(O)−Ser70(Hγ), w3 = -1.0  

d4 = Ser70(Hγ)−Ser70(Oγ), w4 = 1.0 

d5 = Ser70(Oγ)−Lys73(Hζ), w5 = -1.0 

d6 = Lys73(Hζ)−Lys73(Nζ), w6 = 1.0  

QM/MM free energies 

Performing Born-Oppenheimer MD simulations with a DFT description of the QM subsystem 

requires considerable computational resources. However, analogous simulations with a 

semiempirical Hamiltonian are much less computationally demanding and can provide reasonably 

accurate free energies in many cases. The PM6 Hamiltonian was developed to provide accurate 

geometries and energies of many types of molecules.249 Although proton affinities computed with 

PM6 exhibit errors on the order of 2-4 kcal mol-1 for the side chains of Lys, Ser, and Glu,250 we 

expect that performing umbrella sampling along a predefined reaction coordinate should provide 

meaningful estimates of thermal and entropic contributions. Thus, to combine the accuracy of DFT 

for the underlying energetics with the computational efficiency of PM6 for sampling, we first 
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computed DFT/MM potential energies and then added a free energy correction computed with 

PM6/MM at each reaction coordinate value:  

%! = &! 	()062-/))) + %!"#$$ 	(0)6/))) 
where  

%!"#$$(0)6/))) = %!%&	(0)6/)))–&!'( 	(0)6/))) 
For the umbrella sampling simulations, PM6/MM geometries obtained from restrained 

optimizations were used as initial structures for umbrella sampling simulations, which were 

performed at the same level of theory. We used the same reaction coordinate as for the restrained 

optimizations, but in this case the force constants for the harmonic restraints were set to 300 kcal 

mol-1 Å-2 for each simulation window. Atoms greater than 24 Å from Cα of Ser70 were restrained 

with a force constant of 5 kcal mol-1 Å-2. The time step was set to 1 fs, and the temperature was 

maintained at 298 K with a Langevin thermostat and a collision frequency of 10 ps-1. After 5 ps 

MD equilibration, we performed 25 ps production sampling at 298 K for each replica. The potential 

of mean force (PMF) for each system was obtained with the weighted histogram analysis method 

(WHAM)251 implemented in the program WHAM. Statistical errors were estimated using 

bootstrapping with 100 samples. All classical MD and QM/MM simulations were performed with 

AMBER 14.235 For the QM/MM calculations with DFT, the AMBER 14/Gaussian 09135 interface 

was used. 

Results and Discussion 
Substrate-free structures 

Previously, we have used neutron and X-ray crystallography to determine the side- chain 

orientations, water positions, protonation states, and hydrogen-bonding networks in the active sites 

of some of the reaction states of Toho-1 with both substrate-free and substrate-bound enzyme.240, 

252 In comparison to previously determined structures of the wild-type apoenzyme, the X-ray and 

neutron structures in this study show no perturbation to the active site as a result of the Ser70Ala 

mutation. In the X-ray and neutron structures of the apoenzyme, Lys73 appears in a single 

conformation oriented toward Ser130 and forming hydrogen bonds with the carbonyl group of 

Ser130 (2.79 Å, ESD 0.02 Å), Oγ of Ser130 (2.95 Å, ESD 0.02 Å), and OD1 of Asn132 (2.66 Å, 

ESD 0.02 Å) (Figure 42). The omit nuclear density maps in the neutron structure show a 

definitively protonated Lys73 in the ND3+ form in this conformation, indicating that this residue 
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is the donor group in all three hydrogen bonds. However, we note that the absence of the Ser70 

side chain in the Ser70Ala mutant could potentially alter the pKa of Lys73 and thus its protonation 

state relative to the wild-type enzyme. In addition, the pH of crystallization was slightly acidic 

(6.1), which may also have affected the protonation state of Lys73.  

Enzyme-substrate complex 

The enzyme-substrate complex is identical to the substrate-free complex with the following 

exceptions. In the X-ray structure of the enzyme-substrate complex, cefotaxime has a refined 

occupancy of 66% and Lys73 is present in two conformations, one of which is identical to its 

conformation in the substrate-free enzyme (Figure 42). The refined occupancy for the Lys73 

conformation corresponding to that found in the substrate-free complex (A conformation) is 36%, 

whereas the refined occupancy for the second Lys73 conformation (B conformation) is 64%. In 

the A conformation, Lys73 forms hydrogen-bonding interactions with the carbonyl of Ser130 (2.74 

Å, ESD 0.05 Å), Oγ of Ser130 (2.95 Å, ESD 0.07 Å), and Oδ1 of Asn132 (2.74 Å, ESD 0.05 Å) 

and is presumed to be fully protonated, as in the neutron structure of the substrate-free enzyme.  

 

In contrast, in the B conformation Lys73 interacts with the catalytic water molecule (2.89 Å, ESD 

0.03 Å), Oδ1 of Asn132 (2.76 Å, ESD 0.03 Å), and Oγ of Ser130 (3.06 Å, ESD 0.06 Å). The 

catalytic water molecule forms hydrogen bonds with Lys73 (B) (2.89 Å, ESD 0.03 Å), Oδ1 of 

Asn170 (2.81 Å, ESD 0.03 Å), and Oε2 of Glu166 (2.56 Å, ESD 0.03 Å) (Figure 42). The catalytic 

water is therefore likely to be coordinated such a way that it accepts hydrogen in a hydrogen bond 

with Lys73 and it donates hydrogen in a hydrogen bond with Oε2 of Glu166, thus providing a 

possible proton transfer pathway between Lys73 and Glu166. The B factors are particularly low 

for all atoms in the side chain of Lys73 in both X-ray structures (all are less than 10 Å2), enabling 

these discrete conformations to be visualized.  

 

Protonation states of the key catalytic residues Lys73 and Glu166 in the precovalent state of class 

A β-lactamases have been debated for decades. Lys73 has been proposed to be either cationic 

(−NH3+) or neutral (−NH2)76, which lead to different mechanisms for the formation of the acyl-

enzyme intermediate (Figure 40). The results from this study allow us to resolve between these 

alternatives.  
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In the unprotonated form, Lys73 would act as the general base to activate Ser70 directly for the 

attack on the β-lactam ring of the substrate. A QM/MM study of TEM-1 β-lactamase with 

penicillanic acid substrate investigated the identity of the general base in the acylation step.78 That 

study provided evidence for a concerted base mechanism in which a proton is transferred from 

Lys73 to Glu166 through an active site water molecule and Ser70. The authors proposed that 

substrate binding alters the pKas of Lys73 and Glu166. The proton transfer results in a Michaelis 

complex in which all key residues, Ser70, Lys73, and Glu166, are neutral. A neutral Lys73 would 

then deprotonate Ser70 to activate it for nucleophilic attack on the β-lactam ring. Experimental 

verification of these results has been challenging due to the transient nature of the Michaelis 

complex and the high reactivity of β-lactamases. Substrate binding can alter the protein 

microenvironment and thus the pKas of catalytic residues. In β-lactamases, these effects could 

potentially help drive proton transfer in the precovalent Michaelis complex (Figure 40), 

facilitating the acylation step of the reaction.  

 

As the separately refined occupancies of the cefotaxime substrate (66%) and the B conformation 

of Lys73 (64%) are nearly equivalent, it is highly likely that the conformation of Lys73 is directly 

altered by the binding of cefotaxime in the active site cavity. Superimposing the substrate-free 

structure of Toho-1 β-lactamase Arg274Asn/Arg276Asn, which possesses Ser70, with the 

cefotaxime- bound structure described in the present work yields an RMSD for main chain atoms 

of 0.28 Å, indicating that the two structures are nearly identical. In the cefotaxime-bound structure, 

Nζ of Lys73 in the B conformation lies just 2.39 Å away from Oγ of Ser70 in the 2ZQ8 structure, 

whereas this distance increases to 3.30 Å in the A conformation. Thus, upon binding of cefotaxime, 

Lys73 moves closer to Ser70 to enable proton transfer from Lys73 to Ser70.  

 

The catalytic water molecule in the cefotaxime-bound structure of the Ser70Ala mutant is located 

2.56 Å away from Oε2 of Glu166 and 2.36 Å from Oγ of Ser70 (PDB ID 2ZQ8). This orientation 

provides a clear pathway for a proton to be transferred from Ser70 to a negatively charged Glu166 

via the catalytic water. The B conformation of Lys73 is also ideally positioned to transfer a proton 

to Ser70 simultaneously with the protonation of Glu166, which would result in the formation of a 

precovalent complex in which Ser70, Lys73, and Glu166 are all neutral. The protonation state of 
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Glu166 in the 15 K X-ray substrate-free crystal structure was deduced by comparing the difference 

in carboxyl bond lengths with their estimated standard deviations (ESDs). The unrestrained 

carboxyl bond lengths for Glu166 refined to essentially equal bond lengths, i.e., 1.26 Å (ESD = 

0.02 Å) for the Cδ−Oδ1 bond and 1.25 Å (ESD = 0.02 Å) for the Cδ−Oδ2 bond, indicating that an 

anionic Glu166 is poised to accept a proton from the catalytic water.  

To determine whether the presence of the substrate alters proton transfer energetics prior to 

acylation, we performed QM/MM free energy simulations with models of the substrate- free and 

cefotaxime-bound enzyme and compared the free energy profiles for the proton transfers in each 

system. We generated a model of the cefotaxime-bound structure by replacing Ala70 in the 

Ser70Ala mutant with the native Ser. For the substrate-free model, we used the neutron structure 

of substrate-free Toho-1 β-lactamase published previously.240,45 It has been shown that proton 

transfer from Lys73 to Glu166 via Ser70 and an active site water molecule is energetically 

favorable for TEM-1 β-lactamase with penicillanic acid as the substrate.78,38 Therefore, this 

reaction pathway was considered in the present simulations.  

 

The QM/MM optimizations indicate that the proton transfers are concerted and synchronous in 

both the apoenzyme and the cefotaxime-bound system (Figure 43), as evidenced by a single free 

energy barrier in each case (Figure 44). For the substrate-free model the estimated proton transfer 

free energy barrier is 5 kcal mol-1, with the product state (i.e., neutral Lys73 and neutral Glu166) 

being 2.5 kcal mol-1 higher in energy than the reactant state (i.e., cationic Lys73 and anionic 

Glu166). These relative free energies are consistent with the neutron crystal structure of the 

apoenzyme, in which Lys73 is cationic and Glu166 is anionic. For the cefotaxime- bound model 

we obtained a computed proton transfer barrier of 2.8 kcal mol-1 and a reaction free energy of -6.2 

kcal mol-1. Thus, the presence of the cefotaxime substrate clearly alters the relative pKas of Lys73 

and Glu166 to facilitate proton transfer from Lys73 to Glu166, as proposed previously.78 Of 

course, acylation cannot occur in the absence of substrate, but this comparison enables 

quantification of the role of the substrate toward catalyzing its own hydrolysis.  

 

In the substrate-free structure, Tyr105 also appears in a single conformation in which its phenolic 

hydroxy group forms a hydrogen bond with a water molecule (2.60 Å) that also forms a hydrogen 

bond with the main chain carbonyl of Tyr129 (2.76 Å). In the substrate-bound structure with 
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cefotaxime, Tyr105 is present in two conformations. In the first conformation (A), which has a 

separately refined occupancy of 34%, the hydroxy group of Tyr105 interacts again with a water 

molecule (2.61 Å) that also forms a hydrogen bond with an adjacent water molecule (2.80 Å). 

However, in the second conformation (B), which has a refined occupancy of 66%, the hydroxy 

group of Tyr105 forms a direct hydrogen bond with the main-chain carbonyl of Tyr129 (2.57 Å). 

In this conformation, Tyr105 forms several close contacts with the main-chain atoms of Tyr129 

and Ser130, which in turn induce a slight change in the conformation of the main chain around the 

carbonyl group of Ser130 that helps trigger the formation of the B conformation of Lys73. The B 

factors are low for most of the atoms in the side chain of Tyr105 in the cefotaxime-bound X-ray 

structure (~12 Å2 on average), which enables these discrete conformations to be visualized. The 

movement of Tyr105 is likely to be driven by the binding of the cefotaxime substrate, which has 

an identical separately refined occupancy value of 66%, due to multiple hydrophobic interactions 

between the phenol ring of Tyr105 and the dihydrothiazine ring of cefotaxime. This finding agrees 

with several earlier studies which have shown that, while not a catalytic residue, Tyr105 is 

important for catalytic efficiency.252  

Conclusions 
By using a combination of neutron and X-ray crystallography, we have determined the protonation 

states of Lys73 and Glu166 in the active site of the precovalent complex. Using occupancy 

refinement, we have observed how the binding of the cefotaxime substrate initiates several 

conformational changes from Tyr105 to Ser130 and then Lys73. This conformational change in 

the side chain of Lys73, which is directly induced by cefotaxime binding, places the enzyme into 

a catalytically competent state. Our findings are consistent with the concerted base hypothesis 

originally proposed by Mobashery and co-workers.78 They proposed that substrate binding triggers 

proton transfer from Lys73 to Glu166 through Ser70 and an active site water molecule. The 

resulting neutral Lys73 then deprotonates Ser70 to facilitate nucleophilic attack on the β-lactam 

ring. We performed QM/MM free energy simulations of the initial proton transfer steps to quantify 

the role of the substrate cefotaxime in facilitating the reaction. We found that proton transfer from 

Lys73 to Glu166 is more thermodynamically favorable when the substrate is bound. The present 

study fills in considerable detail on the structure and energetics of the proton relay network in the 

active site of a class A β-lactamase in the precovalent complex. Our structures also reveal 

concerted changes in the conformations of several residues upon substrate binding and the 
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presence of a hydrogen bond network capable of facilitating cleavage of the β-lactam bond. 

Although we did not directly observe catalysis in action, these three crystal structures two X-ray 

and one neutron supported by extensive QM/MM calculations, provide a compelling case for the 

most likely catalytic route.  
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Appendix V 
Tables 

Table 12. Proton affinitiesa (kcal mol-1) for selected amino acid side chains calculated at the 
M06-2X/6-311++G(2d,2p)//CPCM/M06-2X/6-31G(d) level of theoryb and benchmark 
CCSD(T)/CBS//CPCM/MP2/6-311+G(d,p) values.  

Amino acid M06-2X CCSD(T) Error 
Asp- 349.61 349.80 0.20 
Ser - 376.62 377.90 1.40 
Lys 226.68 228.03 1.30 
MUE   1.00 

a zero-point-exclusive proton affinity at 0 K 
b a single dihedral angle was constrained during geometry optimization in some cases to prevent 
intramolecular hydrogen bonding 
c Error = CCSD(T)–DFT  
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Figures 

 
Figure 40. Catalytic mechanism of class A β-lactamase inactivation of a β-lactam substrate. A 
serine nucleophile cleaves the β-lactam bond of the substrate in two steps, acylation and 
deacylation, which lead to hydrolysis: First, the pre-covalent enzyme-substrate complex is formed 
and the acylation reaction is initiated (1). General base-catalyzed nucleophilic attack on the β-
lactam carbonyl by the serine hydroxy group proceeds through a tetrahedral intermediate (2) and 
forms a transient acyl-enzyme adduct (3). The acyl-enzyme adduct (3) undergoes general base-
catalyzed attack by the hydrolytic water molecule and forms a second tetrahedral intermediate 
during deacylation (4), which subsequently collapses to form a post-covalent complex (5) prior to 
release of the hydrolyzed product. 
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Figure 41. Atoms used to define the generalized reaction coordinate in the QM/MM simulations. 

 
 

 
Figure 42. Structures of substrate-free and cefotaxime-bound active sites of the Ser70Ala Toho-1 
mutant. Electron density 2Fo-Fc maps are represented at a s level of 1.0. (A, C) cefotaxime-free 
structure shown in cyan. Nitrogen atoms are shown in blue, carbon in cyan, sulfur in gold, and 
oxygen in red with the catalytic water molecule shown as a red sphere. (C) Distances (in Å) 
between Lys73 and close contacts are labeled. (B, D) The cefotaxime-bound structure is shown in 
yellow. Cefotaxime carbons are shown in green and protein carbons are shown as yellow sticks. 
(D) Both conformations are shown for Tyr105, Ser130, and Lys73. Conformations A and B are 
shown with the B conformations accommodating cefotaxime within the active site. For clarity, 
electron density is shown only for certain active sites residues. See ref 241 for details on 
experimental methods. 
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Figure 43. Reaction path for QM/MM simulations. Reactant (left), transition state (middle) and 
product (right) states for the transfer of a proton from Lys73 to Glu166 through Ser70 and the 
active-site water molecule in the cefotaxime-bound enzyme. 
 
 
 
 

 

Figure 44. Computed free energy profiles for proton transfer from Lys73 to Glu166 through Ser70 
and the active-site water molecule in the substrate-free (black) and cefotaxime-bound enzyme 
(blue). 
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CONCLUSIONS 

Overview 

 
The 3D structure of a protein can be fundamentally useful to understanding its function. The most 

common way to obtain a structure of a protein in the absence of an X-ray, cryo-EM, or NMR 

structure is to use homology modeling, or the mapping of the target sequence onto a closely related 

homolog with an available structure. However, despite recent advances and efforts in structural 

biology, the 3D structure of many protein families remains unknown. Recent advances in genomic 

and metagenomic sequencing combined with coevolution analysis and protein structure prediction 

have allowed for highly accurate structural modeling of proteins previously considered intractable 

to model due to the lack of suitable templates.6, 22 Models generated by any or all of these 

approaches can then be further studied with other computational tools such as molecular dynamics 

(MD) simulations, docking of small molecule ligands to identify substrates, machine learning 

(ML) and quantum mechanical/molecular mechanical (QM/MM) free energy simulations to study 

reaction mechanisms. Here these various computational approaches were combined with predicted 

or experimentally determined structures to better understand the structure, dynamics, functions, 

and mechanisms of various bacterial proteins (Figure 1). 

Structural modeling of the HgcAB complex provides insights into the mechanism of bacterial 

mercury methylation 

 
By using metagenome-based protein structure calculations to generate models of the individual 

domains of HgcA and of HgcB valuable insights were obtained into the biochemical mechanism 

of Hg methylation in anaerobic microorganisms (Chapter I). HgcA is predicted to consist of two 

domains, the cobalamin binding domain (CBD) and a transmembrane domain (TMD). HgcB is 

predicted to have a dicluster ferredoxin fold. UV-visible spectroscopy of HgcA and HgcB 

heterologously expressed in E. coli confirmed that that these proteins do in fact bind vitamin B12 

corrinoid and iron-sulfur cofactors, respectively (Figure 2), as predicted from previous 

bioinformatics analyses. These cofactors were then incorporated into the structural models and 

used coevolution-restraints to predict how these domains assemble to form the HgcAB complex 

from D. desulfuricans ND132 (Figure 8).  
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Based on coevolution analysis, the two domains of HgcA were not predicted to interact with each 

other, but rather both interact with HgcB (Figure 3). In addition, the TMD of HgcA did not have 

any detectable sequence homology with available crystal structures (Table 1). Furthermore, the 

interdomain contacts are not all fully satisfied, suggesting that domain motion may occur (Figure 

7). The [4Fe-4S] clusters are located far away (~15 Å) from the Co center of the corrinoid cofactor. 

Therefore, the CBD of HgcA may move closer to the [4Fe-4S] clusters for efficient electron 

transfer. The corrinoid/iron-sulfur protein (CFeSP), the closest known homolog of the CBD, has 

been shown to undergo large-scale conformational rearrangements. These rearrangements were 

observed in crystal structures upon binding to a (β/α)8 triosephosphate isomerase (TIM) barrel 

protein that acts as a methyltransferase.115 In the model of the HgcAB complex the CBD is oriented 

towards the membrane surface and would need to rearrange to accommodate a TIM barrel protein 

as a methyl donor. HgcB includes a pair of cysteine residues (Cys94 and Cys95) located at its C-

terminus. Pairs of cysteines are commonly observed in proteins and enzymes involved in metal 

trafficking and detoxification. For example, the mercuric reductase catalyzes the reduction of HgII 

to Hg0. This protein contains two Cys residues at its C-terminus that acquire HgII for transfer to 

another the pair of Cys residues in the active site active site.  

 

The mechanism of MeHg formation by HgcAB has been proposed to involve reduction of the 

corrinoid cofactor by HgcB, methylation of the Co center, and methyl transfer to a Hg substrate. 

Based on insights from our model, we propose that Cys94 and Cys95 from HgcB acquire HgII and 

deliver it to the corrinoid cofactor for methylation (Figure 12). Assuming that the reaction 

proceeds through radical ligand exchange, formation of a crosslinked HgcB-Cys94/95(Sg)–CoIII–

(Sg)Cys93-HgcA intermediate would occur. Both thiolate ligands would then be released upon 

reduction of the Co center and either of the C-terminal cysteines (Cys94/95) would be able to 

deliver [CH3Hg]+ to Cys73 from HgcB. To complete the reaction cycle an exogenous tholate (i.e. 

cysteine residue on a protein) would then liberate [CH3Hg]+ from HgcB.  

 

These mechanistic insights obtained from our structural model are consistent with known 

experimental data and will facilitate the development of hypotheses that address more detailed 

structural and functional questions which can then be tested experimentally. For example, polar 

residues identified in the model to be located at the interface of individual domains of HgcA and 
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HgcB could be mutated to determine if in vivo mercury methylation activity is reduced. When an 

in vitro methylation system becomes available, similar experiments could be performed to measure 

the effects of mutation on interprotein binding, electron transfer, or methylation kinetics. In 

addition, this work demonstrates how coevolution-based analysis can be used to predict the 

structures of protein-protein complexes. Similar approaches could be applied to identify additional 

binding partners of HgcA and HgcB (e.g., the electron donor, methyl donor, other membrane-

associated proteins). We hypothesize that an efflux pump may associate with HgcAB to enable 

rapid export of methylmercury. In the absence of sufficient sequences for coevolution analysis as 

described here to predict binding partners, deep-learning based approaches could be used for 

contact prediction (i.e. RaptorX-contact253, 254) and structural modeling (i.e. AlphaFold255 or 

DMPFold256), as these methods have been shown to produce accurate structures from multiple 

sequence alignments with fewer sequences (~100) than with conventional coevolution-based 

approaches. 

Subtle changes in the dynamics of the D243G mutant of IMPDH relieves inhibition and 

maintains catalysis 

 
Introduction of the hca pathway in E. coli resulted in only limited growth with coumarate because 

accumulation of 4-hydroxybenzaldehyde inhibited the native inosine monophosphate 

dehydrogenase (IMPDH). Engineered pathways can put a substantial burden on the host (i.e. 

inhibiting an enzyme involved in purine biosynthesis). Directed evolution can be used to select for 

mutations that alleviate deleterious interactions between engineered metabolic pathways. Here, a 

series of single point mutations in IMPDH were identified that were able to relieve inhibition by 

4-hydroxybenzaldehyde (Chapter II). Biochemical assays also confirmed that inhibition is relieved 

in the D243G mutant. This mutation is located at the N-terminal end of b11, which is near the 

NAD+ binding site where the inhibitor was predicted to bind based on docking to a homology 

model of IMPDH in the open conformation (Figure 18 and Table 8). Surprisingly, this mutation 

is located ~20 Å from the active site and did not appear to affect catalysis. 

 

To investigate how a single point mutation to an essential host protein can affect inhibitor binding 

at the distant active site while also maintaining catalysis we built a homology model of E. coli 

IMPDH in the closed conformation and ran MD simulations of the wild-type and D243G mutant. 
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In the wild-type simulations, the side chain of D243 forms stable hydrogen bonds with residues 

K87, R219, and V220 (Figure 19). In the mutant, G243 can no longer form these hydrogen bonds 

and instead interacts with Q272. Meanwhile, the catalytic dyad located on the opposite side of 

the mutation containing b-barrel remained poised for catalysis by showing only minor 

perturbations in dynamics (Figure 23). Thus, it was still not clear how the mutation propagates 

changes to the active site. 

 

To further identify changes in protein dynamics resulting from the D243G mutation, root-mean-

squared fluctuations (RMSFs) were calculated in both the wild-type and mutant (Figure 20). In 

both systems high RMSFs were observed over the entire region containing the catalytic flap. Upon 

inspection of specific interactions of flap residues, the mutation was found to lead to changes in 

hydrogen-bonding interactions with various nearby residues that results in  reorientation of a loop 

located on the flap that could be responsible for altering inhibitor binding (Figure 21 and Figure 

22). In addition, helices a2 and a8 were found to fluctuate more in the mutant than in the wild-

type (Figure 20). Helix a8 is downstream of the mutation. Therefore, the increased fluctuations 

in this region are likely due to the loss of the hydrogen bonding network D243 can form. In 

addition, N-terminal end of helix a2 and the C-terminal end of helix a8 are located near the NAD+ 

binding site. Hydrogen bonding interactions were observed between 4-hydroxybenzaldehyde and 

residues D248 and S250 located on a b-sheet just downstream of the mutation site and in close 

proximity to helices a2 and a8 (Figure 24). Taken together, changes in the structure and dynamics 

of these regions likely disrupts inhibitor access and binding to the NAD+ binding site. Follow-up 

MD simulations could be performed in the presence of the inhibitor, which would require 

straightforward force field parameterization of 4-hydroxybenzaldehyde. Additional computational 

studies could also use MD simulations to investigate the changes in dynamics of other point 

mutations that relieved inhibition and similar kinetics experiments could be used to measure 

enzyme activity in these mutants. 

Structure-based prediction of enzyme substrate scope in bacterial nitrilases 

 
Protein structures provide insight into substrate scope, or the repertoire of substrates for a given 

enzyme. 3D structures also provide information about the overall fold of the protein as well as 

domain architecture and special arrangement of residues that can be useful in determining 
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biochemical pathways and providing clues about enzyme function. Here ML was used to predict 

substrate scope for a series of bacterial nitrilases by combining structural modeling, docking, and 

physicochemical property calculations with experimental in vitro enzyme assays (Figure 32). 

Using different machine learning models our approach obtained accurate predictions of substrate 

scope for a series of aliphatic, aromatic, and arylaliphatic nitriles by including descriptors for the 

enzymes, substrates and their interactions in the models (Chapter III).  

 

Given a phylogenetic tree and sparse activity data (Figure 27 and Figure 29), it may be difficult 

to identify trends in substrate scope. In some cases, highly identical sequences can have similar 

substrate scopes (i.e., 1A1 and 1A2). However, sequence similarity is not always a good indicator 

of overlap in substrate scope, as seen in the markedly different activities of PMI28 and 1A8 (88% 

sequence identity), as subtle changes in the amino acid composition of the active site may lead to 

substantial differences in activity (Figure 26 and Figure 29). In contrast, distantly related 

sequences can have overlapping substrate scopes (i.e., 1A17 and 3WUY). Therefore, the substrate 

scope of an enzyme often cannot be accurately predicted based on inferences from phylogenic 

analysis alone. 

 

To obtain more accurate predictions of substrate scope several machine learning models were 

generated (random forests (RF), support vector machines (SVM), gradient-boosted decision trees, 

and logistic regression). RF models performed as well as, or in some cases better than, the other 

three ML methods (Figure 31). Unlike kernel-based methods (i.e., SVM), decision tree-based 

methods (i.e., RF) allow for calculation of variable importance of each descriptor. In the RF model 

the top descriptors for accurately predicting substrate scope were often those that encode 

information from the structural models and docked poses (Figure 33). 

 

As expected, small changes in sequence can cause large changes in specificity that would not be 

identified based on a phylogenetic analysis of the full sequence. In principle, our approach can 

capture these subtle effects if they lead to substantial changes in active site properties. Nitrilases 

are only one example where structure-based enzyme substrate scope prediction was applied. To 

adapt this approach to other types of enzymes the types of features used for machine learning 

would need to be carefully considered. Thus, this structure-based approach to predicting enzyme 
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substrate scope was designed to be highly modular. More specifically, physicochemical properties 

could be tailored to the enzymes of interest or calculated using different methods. For example, 

the types of properties that were used to describe the CºN bond in nitriles are highly specific to 

this system and may not be widely applicable to other cases. In addition, QM geometries and 

properties, structural modeling, and ligand docking could be performed with other software 

packages and physicochemical properties/molecular fingerprints can be calculated with freely 

available software such as rdkit.257 

 

To apply this approach to other types of enzymes, consideration also needs to be taken with respect 

to the type of machine learning methods used. The experimental assay used for nitrilase activity is 

semi-quantitative and so binary classification was used with a cutoff of 2 to allow for residual 

fluorescence in the assay results. For experimental data that is more quantitative (i.e., experimental 

binding affinities), regression may be a more suitable approach. It is also often beneficial to test 

multiple machine learning methods and evaluate their performance. Our system consisted of only 

12 proteins and 20 substrates, resulting in 240 possible pairs to be used for machine learning. This 

dataset, while small, was large enough to produce accurate binary classification models using 

logistic regression, support vector machines, and two tree-based methods, random forest and 

gradient boosted decision trees. All four methods generally had similar performance and there are 

a variety of other machine learning algorithms available. However, using deep learning-based 

methods would require much larger data sets for training. 

Overcoming antibiotic resistance 

 
Bacteria are developing various resistance mechanisms to antibiotic treatments at an alarming rate 

and resistance has been detected against every approved antibiotic on the market. Antibiotic 

resistance can develop through (i) target modification, preventing drugs from binding and 

exhibiting activity, (ii) enzymatic inactivation, leading to degradation products that lack antibiotic 

activity, (iii) altering membrane composition to prevent antibiotics from entering bacterial cells, 

and (iv) using active efflux pumps that expel antibiotics out of cells. Understanding these various 

mechanisms of antibiotic resistance is important for developing strategies to overcome multi-drug 

resistance and restore antibiotic effectiveness. 
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Overcoming antibiotic resistance to Gram-negative bacteria is challenging due to synergistic 

interactions between two barriers: the low permeability of the outer membrane (OM) and active 

multidrug efflux pumps. These barriers can be separated by using strains of Gram-negative 

bacteria that have hyperporinated OMs, lack efflux pumps, or both. Using these various strains of 

E. coli and P. aeruginosa with controllable permeability and efflux barriers the activities of β-

lactam and fluoroquinolone antibiotics were experimentally measured (Figure 35 and Figure 36). 

This activity data was then used identify physicochemical descriptors that best classify their 

relative potencies in the different strains (Chapter IV). 

 

One way to identify properties that trend with antibiotic activity is to make use of the variable 

importance calculations from tree-based methods such as RF, as other machine learning methods 

such as support vector machines are less interpretable. In addition, RF is appropriate for a dataset 

of this size, with experimental activities in the form of minimum inhibitory concentration data for 

~50 antibiotics against each of the four strains in both E. coli and P. aeruginosa. Minimum 

inhibitor concentration data is discrete rather than continuous, making it suitable for binary 

classification rather than regression.  

 

Using physicochemical properties of the antibiotics as features to build binary classification 

models using RF, we were able to identify which features were most important for generating 

accurate models of the activities in the different strains and species. The physicochemical 

properties selected by active efflux and the OM barriers were different for the two species. For P. 

aeruginosa antibiotic activity was better classified by electrostatic and surface area properties, 

whereas topology, physical properties, and atom or bond counts were important for E. coli (Figure 

38). Interestingly, active antibiotics also suffered from significant barrier effects, highlighting the 

synergy between the two barriers where optimizing for one barrier promotes strengthening of the 

other barrier. Thus, optimizing molecules with favorable physicochemical properties to overcome 

both barriers should be considered. These properties provide a set of chemical guidelines that can 

be used for development and optimization of future antibiotics. 

 

One way to restore the activity of existing antibiotics is to identify inhibitors of multidrug efflux 

pumps (EPIs, Figure 34). Similar to antibiotics, these molecules can be optimized to follow the 
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physicochemical property guidelines that promote OM permeability and minimize efflux. Using 

these existing filters in combination with ligand docking, a new class of inhibitors of E. coli 

AcrAB-TolC was identified (Figure 39). These six molecules had a shared scaffold and were 

found to potentiate antibiotic activity to varying degrees in different Gram-negative bacteria.  

 

In addition to these six molecules identified as EPIs, we have docked all ~250,000 purchasable 

primary amines from the ZINC15 database to AcrA, as compounds that contain primary amines 

have been shown to permeate the OM. Docking was done to the 29 snapshots previously described 

and at all four sites on AcrA and ~50 compounds have been selected for experimental assays to 

measure antibiotic potentiation. We have also built coevolution-based models of AdeA and AdeI, 

which are AcrA analogs in the pathogen Acinetobacter baumannii. Future work will involve 

docking our primary amine library to conformations from MD simulations of these two proteins 

to prioritize compounds for experimental testing. These experiments will include antibiotic 

potentiation assays measuring minimum potentiating concentrations to assess the ability of the top 

predicted compounds to restore antibiotic activity of a known antibiotic that would otherwise be 

effluxed from the cell in the absence of an efflux pump inhibitor. The different hyperporinated and 

efflux-deficient strains of various Gram-negative bacteria could be used to identify specific 

barriers that limit efficacy of antibiotics or efflux pump inhibitors. This information could then be 

used to guide rational design of compounds with improved properties that enhance the desired 

activity. Surface plasmon resonance or a related technique could be used to verify binding of 

compounds to AdeA or AdeI predicted by the docking calculations. 

 

Enzymatic inactivation of antibiotics is another primary mechanism of antibiotic resistance. The 

inactivation of β-lactam antibiotics, such as penicillin and amoxicillin, by β-lactamase enzymes is 

among the most extensively studied. β-lactam antibiotics fight bacterial infections by disrupting 

bacterial cell wall synthesis, resulting in cell death. A detailed understanding of this inactivation 

mechanism will inform the development of strategies for overcoming resistance to this commonly 

prescribed class of antibiotics. The first step of this inactivation reaction involves a proton transfer 

from Lys73 to Glu166 through Ser70 and an active site water molecule (Figure 40). By using a 

combination of neutron and X-ray crystallography, the protonation states of Lys73 and Glu166 in 

the active site of the precovalent (cefotaxime-bound) complex were determined (Figure 42). These 
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protonation states are consistent with the concerted base hypothesis78 where substrate binding 

triggers this proton transfer and the resulting neutral Lys73 deprotonates Ser70 to then perform a 

nucleophilic attack on the β-lactam ring of cefotaxime. Cefotaxime binding was also found to 

initiate several conformational changes in the binding site.  

 

To further investigate the role of the substrate on this initial proton transfer step and to quantify 

the role of the substrate in facilitating this reaction, QM/MM free energy simulations were 

performed on both the apo and cefotaxime-bound forms of this enzyme (Figure 43). The QM/MM 

simulations indicate that the proton transfers are concerted and synchronous in both the apoenzyme 

and the cefotaxime-bound system, as seen in the single free energy barrier in each case (Figure 

44). In the apoenzyme the estimated proton transfer free energy barrier is ∼5 kcal/mol, with the 

product state (i.e., neutral Lys73 and neutral Glu166) being 2.5 kcal/mol higher in energy than the 

reactant state (i.e., cationic Lys73 and anionic Glu166). These relative free energies are consistent 

with the neutron crystal structure of the apoenzyme, in which Lys73 is cationic and Glu166 is 

anionic. For the cefotaxime bound model the proton transfer barrier was computed to be 2.8 

kcal/mol with a reaction free energy of -6.2 kcal/mol. Thus, this proton transfer was found to be 

more thermodynamically favorable when the substrate is present and the presence of the 

cefotaxime substrate alters the relative pKa values of Lys73 and Glu166 to facilitate this reaction. 

Future work could involve using QM/MM simulations to investigate the remaining steps of this 

reaction in the presence of cefotaxime to provide additional insights into the effect of substrate 

binding on this reaction. 
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