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Abstract

A major challenge of the omics-era is identifying how a protein functions, both in terms of its

specific function and within the context of the various biological processes necessary for the

cell’s survival. Key elements necessary for a protein to perform its function are efficient

and accurate protein localization, protein folding, and interactions with other proteins.

Previous work implicated codon usage as a means to modulate protein localization and

folding. Using a mechanistic model rooted in population genetics, I examine potential

selective differences in codon usage in signal peptides (localization) and protein secondary

structures. Although previous work argued signal peptides were under selection for increased

translation inefficiency, I find selection is generally consistent with the 5’-regions of non-

secreted proteins. I also find that previous work was likely confounded by biases in signal

peptide amino acid usage and gene expression. Although the direction of selection on

codon usage is mostly consistent between protein secondary structures, the strength of

this selection does vary for certain codons. After successful folding and localization of

a protein, it must be able to function within the context of other proteins in the cell,

often through protein-protein interactions of metabolic pathways. Previous work suggests

proteins which are part of the same functional processes within a cell are co-expressed across

time and environmental conditions. Using the concept of guilt-by-association, I combine

empirical protein abundances (measured via mass spectrometry) with sequence homology

based function prediction tools to identify potential functions of proteins of unknown function

in C. thermocellum. Building upon the concept that functionally-related genes are co-

expressed within a species, I demonstrate how phylogenetic comparative methods can be

used to detect signals of gene expression coevolution across species while accounting for the

shared ancestry of the species in question.
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Chapter 1

Introduction to the relationship

between codon usage, gene

expression, and protein function

Protein production is one of the most energetically costly processes in the cell (Akashi and

Gojobori, 2002; Lynch et al., 2016; Wagner, 2005). Approximately 30% of total cell mass

is made up of ribosomes, with approximately 80% of these ribosomes actively translating

mRNAs (Arava et al., 2003; Kramer et al., 2009; Shah et al., 2013). It is estimated the cost

of mRNA translation is roughly 125 times more energetically costly (in terms of ATP) to a

cell relative to transcription (Lynch et al., 2016). These costs include translation initiation

and elongation, as well as the cost of synthesizing individual amino acids. Unsurprisingly,

the cell demonstrates many patterns consistent with reducing the cost of mRNA translation.

For example, previous work found more abundant proteins tend to use amino acids which

are cheaper to synthesize (Akashi and Gojobori, 2002; Smith and Chapman, 2010).

The formation of a functional protein does not end upon completion of mRNA translation.

In order for the protein to serve its functional purpose, the protein must form its native

structure and be correctly localized within the cell, a process which will be broadly referred

to as protein biogenesis. Another aspect essential to proper protein function is correct and

efficient association other proteins that form protein complexes (Yewdell, 2001). As these

proteins function as one unit, such as ATPases common to all cells or cellulosome structures
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in cellulolytic bacteria, failure of one protein unit to associate with the rest of the complex

likely reduces the functionality of the protein complex. Failure of the protein to perform its

function is not the only negative fitness consequence to the cell. Energy (usually in the form

of ATP) is wasted by the cell when it creates a non-functional protein. In addition, errors

during protein synthesis can result in aggregating proteins, which can be toxic to the cell

(Bucciantini et al., 2002; Drummond and Wilke, 2008; Feyertag et al., 2017; Geiler-Samerotte

et al., 2011; Gidalevitz et al., 2009; Yang et al., 2012).

1.1 Codon usage bias

There are 61 sense codons (not including 3 stop codons), but there are only 20 canonical

amino acids. Of these amino acids, 18 are coded for by multiple codons, leading some to refer

to the genetic code as degenerate (Crick et al., 1957). However, these codons are not used

uniformly. Many species are observed to have a non-uniform usage of synonymous codons,

which is commonly referred to as codon usage bias (CUB). Although a switch between

synonymous codons was long thought to be evolutionarily neutral as it does not alter the

amino acid sequence (Kimura, 1977), various lines of evidence indicate selection acts on

codon usage.

1.1.1 Evidence for selection for translation efficiency

Even prior to whole-genome sequencing, it was observed that codons were not used in equal

frequencies (Clarke, 1970; Fitch, 1976; Grantham et al., 1980). Although this could possibly

be explained by mutational biases, One of the first lines of evidence suggesting selection acts

on codon usage was provided by Ikemura (1981), who found that tRNA abundances in E.

coli were correlated with codon frequencies. Similar results were found for S. typhimurium

and S. cerevisiae (Ikemura, 1982, 1985). Given this correlation, it was hypothesized codon

usage coevolved with tRNA abundances (Bulmer, 1987), such that synonymous codons

having higher tRNA abundances are usually more efficient. Importantly, many codons are

recognized by the same tRNA, which is possible because non-canonical base pairing can

occur at the third base of the codon. This is known as wobble, and allows most species
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to have an incomplete set of tRNA, meaning not every codon has a corresponding tRNA

with an exactly matching anticodon sequence. However, wobble can reduce the efficiency at

which the tRNA is recognized, leading to less efficient translation compared to the cognate

sequence (Bulmer, 1991; Shah and Gilchrist, 2010).

Support for the translation efficiency hypothesis was dealt a major blow following the

development of ribosome profiling, a sequencing based approach to map currently translating

ribosomes on mRNA (Ingolia et al., 2009). The density of ribosomes found on a codon

is inversely proportional to the average elongation rate of the codon, with codons having

higher ribosome densities (i.e. a ribosome is mapped to the codon more often) having slower

elongation rates. Surprisingly, no anticorrelation was detected between ribosome densities

and estimated codon-specific elongation rates based on tRNA abundances (or tRNA gene

copy numbers) and codon-anticodon binding (Ingolia et al., 2009; Li et al., 2014, 2012; Pop

et al., 2014). However, later work found this was primarily due to an artifact caused by the

translation inhibitor, cycloheximide (Weinberg et al., 2016). Following the alteration of the

ribosome protocol to exclude cycloheximide, a significant, but noisy, correlation was finally

observed between ribosome densities and the inverses of tRNA gene copy numbers (Figure

1.1) (Weinberg et al., 2016). This noise is unsurprising given that tRNA gene copy numbers

do not capture the complexity of the actual elongation process (Shah et al., 2013), variability

in tRNA modifications (Chan et al., 2018), and likely only reflect the evolutionary average

expression of a tRNA instead of condition-specific expression of tRNA (Torrent et al., 2018).
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Figure 1.1: Re-creation of Figure 2A from Weinberg et al. (2016). Results show correlation
between the codon-specific waiting times expected from tRNA gene copy numbers (scaled
by a wobble parameter) and ribosome densities estimated from ribosome profiling.

Under selection for translation efficiency, highly expressed proteins are expected to use

more efficient codons (Bulmer, 1991; Shah and Gilchrist, 2011; Gilchrist et al., 2015). In

support of this hypothesis, highly expressed genes show stronger biases in codon usage,

with the most frequently used codons often correlating with tRNA abundances. Figure 1.2

demonstrates how codon frequencies can vary with gene expression in S. cerevisiae. Consider

the 2-codon amino acid lysine (K). At low gene expression (in this case, taken as the protein

synthesis rate), codon AAA is used more frequently due to mutation biases. However, as

protein synthesis rates increase, thus strengthening selection for translation efficiency, the

frequency of codon AAG increases until it is the most frequently used codon. This in contrast

to amino acid glutamate (Q), where codon CAA is favored by mutation bias and selection,

resulting in it being the most commonly used codon overall.
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Figure 1.2: A re-creation of Figure 6 in Gilchrist et al. (2015). Changes in codon frequencies
for S. cerevisiae as a function of estimated protein synthesis rates. Protein synthesis rates
are binned into groups, with mean codon frequencies represented by the dots. Curves
represent the expected codon frequencies based on estimates of codon-specific pausing times
and mutation bias, as estimated using the ribosomal overhead cost version of the stochastic
evolutionary model of protein production rates (see 2).
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1.1.2 Evidence for selection for translation accuracy

An alternative, but not necessarily mutually-exclusive, hypothesis for genome-wide codon

usage patterns is selection for translation accuracy. Bulmer (1991) argued translation

efficiency better explains synonymous codon usage patterns. However, Akashi (1994) found

that conserved amino acids between Drosophila species had a higher frequency of “optimal”

codons than variable residues (Akashi, 1994). Under the assumption that conserved residues

are more functionally-important than variable residues (i.e. are under stronger purifying

selection), this was interpreted as evidence for selection for translation accuracy. More

specifically, this was taken to indicate selection against missense errors, or the mistranslation

of a codon resulting in the incorrect amino acid being placed in the protein. Missense errors

are expected to occur at rates of 10−4 to 10−3 per codon (Shah and Gilchrist, 2010). Later

work expanded upon the work by Akashi (1994), finding a similar pattern occurs in organisms

ranging from E. coli to humans (Drummond and Wilke, 2008). This led to the development

of the translational robustness hypothesis (Drummond and Wilke, 2008), later renamed

the misfolding hypothesis (Yang et al., 2010), to indicate that selection on codon usage at

conserved was stronger to prevent the mistranslation of sites which are important for the

protein to fold.

Importantly, it is often assumed the most accurate synonymous codon is the codon with

the most abundant tRNA, but a mechanistic model of protein translation suggests it is

the tRNA abundances of both the cognate codon (codon and anticodon sequences match

exactly) and near-cognate (one base mismatch between codon and anticodons) (Shah and

Gilchrist, 2010). Recent work used mass spectrometry to identify and quantify codon-specific

missense error rates across the genome (Mordret et al., 2019). This work found that errors

were most frequent at codons with lower ratio of cognate:near-cognate tRNA, and that these

errors tended to occur at more evolutionarily variable residues. Another critical finding was

these errors tended to occur at sites with lower ribosome densities (via ribosome profiling),

suggesting codons being translated at a faster rate are also translated less accurately. This

is consistent with previous work indicating an efficiency:accuracy trade-off in translation

(Wohlgemuth et al., 2011; Yang et al., 2014; Zaher and Green, 2009, 2010).
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Figure 1.3: Figure 1 from Yang et al. (2010) published under the
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
(https://creativecommons.org/licenses/by-nc-sa/3.0/). Illustration of the misfolding
hypothesis described by Drummond and Wilke (2008); Yang et al. (2010).

Another translation error which can occur is the premature termination of translation,

often referred to as nonsense errors (Eyre-Walker, 1996; Qin et al., 2004; Gilchrist and

Wagner, 2006; Gilchrist et al., 2009). These errors are predicted to occur on the order of

10−5 − 10−4 per codon (Gilchrist et al., 2009; Shah and Gilchrist, 2010; Sin et al., 2016).

Selection against nonsense errors is one explanation for apparent weaker selection on codon

usage at the 5’-ends of genes (Eyre-Walker, 1996; Gilchrist and Wagner, 2006; Gilchrist

et al., 2009; Qin et al., 2004; Stoletzki and Eyre-Walker, 2007) Many organisms demonstrate

increased usage of “non-optimal” or inefficient codons at 5’-ends of genes, which is thought

to reflect weaker selection against nonsense errors. This is based on the idea that nonsense

errors earlier in mRNA translation are less energetically costly to cell than an error later in

translation. It is often assumed the probability of a ribosome experiencing a nonsense error

is inversely proportional to the time it spends paused on a codon. As a result, less efficient

codons are expected to be more prone to nonsense errors. Empirical evidence suggests paused

ribosomes are more likely to interact with ribosome release factors, resulting in a nonsense

errors (Yang et al., 2019). Notably, some work has found weaker selection on codon usage
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at the 3’-termini, as well (Qin et al., 2004). This is thought to reflect that proteins may be

able to adequately function as long as most of the protein has been produced.

1.1.3 Quantifying codon usage bias

Many metrics have been developed to quantify codon usage bias. Here, the primary focus

will be on commonly used metrics relevant to the remainder of this work.

One of the first and still most commonly used measures of assessing biased codon usage in

a gene is the Codon Adaptation Index (CAI) (Sharp and Li, 1987). CAI is a heuristic-based

approach which makes use of a reference set of genes expected to be highly expressed, e.g.

ribosomal proteins. For each amino acid with synonymous variants (i.e. not including

methionine and tryptophan), each codon is assigned a weight based on the relative of

frequencies of the synonymous codons. For an amino acid with naa codons, the weight

for each codon i (which is present in the reference set at frequency fi) is calculated as

wi = fi/max(f1, ...fnaa)

Based on this formula, the most efficient codon will have a weight equal to 1. For a gene

of length L, the CAI value is calculated as the geometric mean of the weights:

CAI =
L∏
i=1

w
1
L
i

From this definition, a gene with perfectly adapted codon usage with have a CAI = 1.

CAI is well-known to be well-correlated with gene expression (dos Reis et al., 2003; Gilchrist,

2007; Fraser et al., 2004).

Another commonly used method for quantifying codon usage bias is by measuring the

degree of adaptation to the tRNA pool, which is the goal of the tRNA Adaptation Index

(dos Reis et al., 2003, 2004). In this case, weights for each codon are based on the abundance

of the corresponding tRNA (or tRNA gene copy number tGCN), as well as the strength of

codon-anticodon interactions (1-sij) between codon i and tRNA species j.
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Wi =
n∑
j=1

(1− sij)× tGCNij

wi =
Wi

maxW1, ...,Wn

Note that wi is relative to all codons, indicating tAI is meant to reflect absolute

translation rates. This can be problematic when using tAI to compare codon usage between

genes or regions, as significant differences in codon usage could actually reflect amino acid

biases(Chaney and Clark, 2015). Finally, tAI value for a gene is calculated in the same

manner as CAI, i.e. based on the geometric mean of wi

tAI =
L∏
i=1

w
1
L
i

Mechanistic models

Despite being one of the oldest metrics to quantify codon usage, CAI remains one of the most

popular metrics for examining codon usage bias or to use as a proxy for gene expression.

However, CAI is a heuristic model which only attempts to describe the relationship between

codon usage and gene expression. One the other hand, tAI adds in the component that

it attempts to link codon usage and translation efficiency with tRNAs. However, tAI does

not actually attempt to model the ribosome elongation process, making it more akin to a

phenomenological model (i.e. consistent with the theory, but not built from first principles

of mRNA translation).

An alternative approach to quantifying selection on codon usage is the use of mechanistic

models, which have the advantage that parameter estimates are more interpretable, as they

are built from first principles as opposed to heuristics. By combining mechanistic models with

models of allele fixation (derived from population genetics principles), it becomes possible

to estimate parameters related to evolutionary processes (i.e. strength and direction of

natural selection or mutation bias, fitness landscapes, etc.). One of the first attempts to
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mechanistically model the link between codon usage and gene expression was by Bulmer

(Bulmer, 1991), which considered the cost of pausing at a codon in terms of the availability

of free ribosomes to the cell. Later work by Gilchrist (Gilchrist, 2007) took a similar approach

of combining a model of translation with population genetics. In the stochastic evolutionary

model of protein production rates (SEMPPR), the primary cost of synonymous codon usage

was taken to be nonsense errors. The original SEMPPR formulation was able to provide

estimates of gene-specific protein production rates from genomic data. Although these

models can provide estimates of the strength of selection on synonymous codon usage, these

estimates are not codon-specific. Later work by Shah and Gilchrist developed the ribosomal

overhead cost version of SEMPPR (ROC-SEMPPR), which was able to estimate codon-

specific parameters related to natural selection and mutation biases for individual codons,

given empirical estimates of protein production rates (Shah and Gilchrist, 2011). Unlike the

original version of SEMPPR (Gilchrist, 2007), ROC-SEMPPR assumed the primary cost

of codon usage was in terms of ribosome pausing, similar to (Bulmer, 1991). Subsequent

versions of the model allowed for the estimation of both protein production rates and codon-

specific parameters (Gilchrist et al., 2015). A more detailed description of ROC-SEMPPR

will be given in Chapter 2.

1.1.4 Codon usage and protein biogenesis

Codon usage and protein secretion

One aspect thought to be impacted by codon usage is protein localization. Although the

number of secretion systems can vary across species, the Sec secretion pathway is found

across all domains of life (Natale et al., 2008; Tsirigotaki et al., 2017). A key feature of

proteins secreted via this mechanism is the signal peptide, a short N-terminal sequence

marking the protein for secretion. Briefly, there are two mechanisms by which proteins

may be secreted in the Sec secretion pathway (Figure 1.4). The SecB:SecA mechanism

occurs post-translationally, in which the SecB chaperone guides the protein to the SecA

receptor located in the inner membrane, although SecB is not always required (Natale et al.,

2008; Tsirigotaki et al., 2017). Unlike the SecB:SecA mechanism, proteins secreted via the
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SRP:FtsY mechanism are localized co-translationally. Protein secreted via the SRP:FtsY

mechanism are more commonly transmembrane proteins, which may or may not contain a

signal peptide, with the first transmembrane region binding the SRP molecule in the latter

case. In bacteria, the post-translational SecB:SecA mechanism is more commonly used for

secreted proteins (Natale et al., 2008).
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Figure 1.4: A modified version of Figure 1A from Freudl (2018), which
was published under the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/). A basic visualization of protein secretion
via the Sec pathway. (1) Co-translational mechanism via SRP. (2) Post-translation pathway
via SecA. Although not specifically shown in this figure, SecB is a post-translationally
interacting protein (PIP) also often plays a role in secretion.

Previous work concluded codon usage may play a role in protein secretion. Early

work based on a small set of sequences found signal peptides had the highest frequency

of inefficient codons in E. coli (Burns and Beachamn, 1985). Additional support for this

hypothesis was later observed upon completion of the E. coli genome combined with high-

throughput signal peptide prediction (Power et al., 2004). Power et al. (2004) argued

this increased usage of inefficient codons could be due to natural selection to promote

efficient secretion. Follow up experiments seemed to suggest inefficient codon usage does

play a functional role in secretion, with optimization of codon usage often resulting in

decreased expression of the protein (Zalucki et al., 2007, 2008, 2011b). In a review of their

work, the authors proposed a hypothesis that inefficient codon usage in signal peptides,

combined with increased translation initiation efficiency, promotes efficient recycling of the

the chaperons (SecB and SRP) during protein secretion by reducing the distance between

actively translating ribosomes (Zalucki et al., 2009, 2011a).
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Given the combination of bioinformatic and empirical results, it is tempting to conclude

the increased frequency of inefficient codons is a by-product of natural selection for

translation inefficiency, as opposed to efficiency, in signal peptides. This line of adaptationist

thinking is common in molecular biology, despite the (in)famous work by Gould and Lewontin

(1979), who warned against such thinking in evolutionary biology. As I show in Chapter 1,

the bioinformatic analysis described in Power et al. (2004) did not adequately control for the

amino acid biases and differences in gene expression when comparing signal peptide codon

usage to other regions of the genome. Given that amino acid constraints can restrict which

codons are observed within a region and that selection on codon usage scales with gene

expression, these two factors must be carefully controlled for in order to make statements

about differential selection on codon usage.

There are also issues with this interpretation from the empirical work. Although previous

clearly demonstrates an effect by altering optimizing codon usage in signal peptides (Zalucki

et al., 2007; Zalucki and Jennings, 2007; Zalucki et al., 2008, 2010, 2011b) the effects of

codon usage at the 5’-termini on protein production are well-established to be true for all

proteins (Frumkin et al., 2017; Goodman et al., 2013; Hockenberry et al., 2014; Shah et al.,

2013). Previous empirical work lacked a control group to test if inefficient codon usage in

signal peptides is more important to the function of the protein than inefficient codon usage

in non-secretory proteins. The experiments described in Zalucki et al. (2008) revealed that

optimization of codon usage of the signal peptide actually increased protein production,

contradictory to their hypothesis suggesting a functional role for the inefficient codons. This

led the author’s to redefine their definition of inefficient codons (only to return to their

original definition in later work (Zalucki et al., 2010, 2011b)), after which optimization of

codon usage generated the desired effect of decreased protein production.

Although later bioinformatic analyses in other species seemed to support this hypothesis,

they were also subject to many of the same criticisms described above for the analysis in E.

coli (Clarke and Clark, 2010; Li et al., 2009; Mahlab and Linial, 2014; Liu et al., 2017). Some

of this work also reached different conclusions using the same species, such as H. sapiens,

despite using a tAI-based metric. An alternative that is able to directly account for potential

biases in comparing codon usage across regions and across genes is ROC-SEMPPR. Chapter
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3 will describe the use of ROC-SEMPPR to test for differential selection on codon usage in

signal peptides of E. coli.

Codon usage and protein folding

Codon usage is also thought to affect the process of protein folding through both prevention

of missense errors (Drummond and Wilke, 2008, 2009) and through alterations to elongation

rates. Although some folding occurs post-translationally, many proteins begin to form

structures co-translationally (Kramer et al., 2009). This usually occurs once the structure,

such as a functional domain, emerges from the ribosome tunnel (approximately 35 codons

long), but secondary structures and even some smaller protein domains can begin to

fold while in the tunnel (Fedyukina and Cavagnero, 2011; Pechmann and Frydman,

2013). Various lines of empirical work indicate changes in elongation rates (modulated

via synonymous codon usage) alter the final fold of the protein (Buhr et al., 2016; Fu et al.,

2016; Holtkamp et al., 2015; Kimchi-Sarfaty et al., 2007; Komar et al., 1999; Krasheninnikov

et al., 1991; Walsh et al., 2020; Yu et al., 2015; Zhou et al., 2013, 2015). Coarse-grained

simulations of protein folding revealed how alterations to elongation rates via codon usage

can impact the co-translational folding process (Ciryam et al., 2013; O’Brien et al., 2014;

Tanaka et al., 2015). A key challenge has been determining general differences in codon

usage as it relates to protein structure. Although many computational studies have found

connections between codon usage and protein structure in organisms ranging from E. coli

to humans, these results are often inconsistent between studies (Brunak and Engelbrecht,

1996; Chaney and Clark, 2015; Chaney et al., 2017; Saunders and Deane, 2010; Tao and

Dafu, 1998). Furthermore, humans typically show very little adaptive codon usage bias due

to their low effective population sizes (Charlesworth, 2009). Note that effective population

size essentially reflects a population’s size if it were behaving as an idealized population

consistent with the assumptions of a population genetics model. If a population were truly

behaving as an idealized population, the effective population size would equal the census

population size. In reality, the effective population size is usually far less than the census

population size.
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Although various approaches have been proposed to examine codon usage as it relates

to protein structure, much of this work is subject to the same criticisms of work linking

codon usage and protein secretion: failure to control for amino acid biases or control for

gene expression (Chaney and Clark, 2015; Cope et al., 2018; Zhou et al., 2009). Much like

with Chapter 3, an alternative approach to testing for differential selection on codon usage

as it relates to protein structure is to use a mechanistic model rooted in population genetics

principles. This should allow us to detect selective differences at a codon-level resolution

while accounting for the background mutation bias, amino acid biases, and gene expression.

Chapter 4 will demonstrate how ROC-SEMPPR can be used to detect differential selection

on codon usage as it relates to protein secondary structure.

1.2 Functional Omics: using transcriptomics and pro-

teomics to detect functionally-related genes

Genomics provides valuable insights into the biological, cellular, and metabolic processes that

can be carried out by an organism, as well as providing insight into an organisms evolutionary

history. However, genomics is limited in terms of the functional insights it can provide. For

example, genomics provides limited information about the expression levels of a gene within a

given environment. Although codon usage is expected to correlate with gene expression, this

is not usually the case for organisms with low effective population sizes, as noted previously

(Charlesworth, 2009). Even for organisms demonstrating a correlation between codon usage

and gene expression, codon usage mainly reflects the evolutionary average value of gene

expression. This may or may not be consistent with the current expression level within a

given environment.

Another challenge to genomics is the characterization of the genes identified by open

reading frame prediction tools, such as Prodigal (Hyatt et al., 2010). As evidenced by the

critical assessment of protein function annotation (CAFA), functional predictions based on

sequence homology have dramatically improved over the past two decades (Jiang et al.,

2016; Radivojac et al., 2013; Zhou et al., 2019). However, a large percentage of proteins
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remain annotated as uncharacterized proteins or hypothetical proteins. For example, in 2016,

3,500 proteins in the Protein Data Bank were classified as uncharacterized proteins (McKay

et al., 2015). The presence of uncharacterized proteins exists even in well-studied model

organisms. For example, only 40% of predicted genes in Arabidopsis thaliana have credible

annotations (Niehaus et al., 2015). Even after a recent attempt to characterize proteins of

unknown function in the S. cerevisiae and human genomes via sequence homology, greater

than 30% of their uncharacterized proteins (600 and 2000 proteins, respectively) remained

uncharacterized (Ellens et al., 2017).

Even among characterized proteins, many annotations lack empirical evidence. For

example, even though 80% of E. coli proteins have functional annotations, only 54% of

these had empirical characterization (Frishman, 2007; Hanson et al., 2010). A major

challenge for researchers interested in characterizing a protein is experiments for direct

functional characterization are low-throughput. An alternative, albeit indirect, approach

for identifying potential functions of proteins is to use identify proteins with which a target

protein interacts, is co-expressed, or shares regulatory elements. This is often referred to as

“guilt-by-association” (GBA) (Ellens et al., 2017; Gillis and Pavlidis, 2011, 2012). Previous

comparisons of protein-protein interactions and co-expressed genes/proteins reveals strong

overlap, suggesting functionally-related proteins are often co-expressed (Jansen et al., 2002).

The development of high-throughput transcriptomic (i.e. RNA-Seq) and proteomic (i.e.

liquid chromatography tandem mass spectrometry, or LC-MS/MS) techniques allow for the

relatively quick measurements of the expression level of a gene or protein. This information

can be used to compare expression between different treatment groups (differential expression

analysis) or compare correlated changes in expression across multiple (> 2) treatments (co-

expression analysis). The latter analysis is often synthesized into a co-expression network,

with nodes representing genes/proteins and edges representing significant correlations in

expression. Clustering of tightly-linked nodes (i.e. groups of nodes which are strongly

correlated) followed by gene set enrichment analysis can reveal functional modules.

Cellulolytic bacteria are of interest due to their ability to convert cellulose to ethanol,

which can be used as a potential biofuel. One of the most commonly studied cellulolytic

bacteria is Clostridium thermocellum. Previous work has found that many proteins annotated

16



as hypothetical proteins in C. thermocellum are detected by LC-MS/MS, often in high

abundance, in cellulolytic conditions, such as growth on switch-grass. Many of these proteins

are differentially expressed across treatments and strains, including a strain subjected

to several rounds of directed evolution following manipulation of the pathway converting

cellulose to ethanol. This suggests some uncharacterized proteins in C. thermocellum may

play a role in the conversion of cellulose to ethanol. Chapter 5 will present an examination of

proteins of unknown function (PUFs) in the cellulolytic bacteria Clostridium thermocellum

using both sequence homology and GBA approaches.

1.2.1 Detecting signals of functional-relatedness across species

GBA approaches can also incorporate information across species. One of the first such

approaches to examine potential functional-relatedness was phylogenetic profiling, which

looks at patterns of the presence and absence of orthologous genes across species (Pellegrini

et al., 1999). Genes which are gained or lost in a correlated manner are hypothesized to

be functionally-related. Under the hypothesis that functionally-related proteins are co-

expressed, it has been hypothesized these protein should also demonstrate coevolution of gene

expression across species. Early work in 4 Saccharomyces species supported this hypothesis

(Fraser et al., 2004). Using CAI as a proxy for gene expression, Fraser et al. (2004) found that

proteins which physically-interacted showed higher correlations between CAI than randomly-

generated pairs of proteins. Later work expanded upon this approach, but largely came to

the same conclusions (Clark et al., 2012; Lithwick and Margalit, 2005; Martin and Fraser,

2018).

A key challenge for determining correlations in traits across species is the issue of non-

independence. Due to shared ancestry (represented by a hierarchical structure called a

phylogenetic tree), species do not truly reflect independent and identically distributed data

points (Felsenstein, 1985). This non-independence leads to an over-estimation of the degrees

of freedom in standard statistical hypothesis testing, such as correlation estimation or linear

regression, leading to higher false positive rates (Felsenstein, 1985). An example of this

is illustrated in Figure 1.5, which represents two traits X and Y simulated independently

across a randomly-generated phylogenetic tree. Comparing the values of the independently
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simulated random traits X and Y across species indicates a moderate signal of correlation

(Figure 1.5A), despite traits X and Y being simulated independently. After correcting for the

shared ancestry using the phylogenetic independent contrasts approach (Felsenstein, 1985),

the significant correlation disappears, consistent with expectations. This has implications

for detecting functionally-linked traits. For example, Barker and Pagel (2005) demonstrated

that analysis of gene presence/absence across species improved when accounting for the

shared ancestry of the species.
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Figure 1.5: Effects of shared ancestry on estimating correlations between independently
simulated random traits X and Y across species. (A) Correlation with out correcting
for phylogeny. (B) Correction for phylogeny using Felsenstein’s phylogenetic independent
contrasts approach (Felsenstein, 1985).

A similar issue arises for comparing gene expression across species. Recent work

demonstrated comparing gene expression across species without controlling for the phylogeny

can be problematic (Dunn et al., 2018). Previous methods for examining gene expression

coevolution attempted to account for shared ancestry in various ways. Fraser et al. (2004)

and Martin and Fraser (2018) tested for signals of coevolution by using a randomly-generated

null to determine statistical significance. The assumption here is the randomly-generated

null group will adequately capture the effects of shared ancestry on correlation estimations.

However, these methods have not actually been tested to determine their abilities to

adequately control for the phylogenetic non-independence.

Another approach is to directly account for the phylogeny in the analysis by using

phylogenetic comparative methods (PCMs). Various approaches have been developed to

investigate the evolution of gene expression using PCMs (Brawand et al., 2011; Schraiber

et al., 2013; Rohlfs et al., 2014; Rohlfs and Nielsen, 2015). However, none of this work has
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directly examined coevolution of gene expression across species. Chapter 6 will examine the

use of PCMs for detecting coevolution of gene expression across species.

1.3 Summary

The goal of the work presented in this dissertation is to broadly examine factors related to

maintaining the protein’s ability to function. This includes aspects related to the protein’s

biogenesis (i.e. localization and folding) and its ability to interact with functionally-related

proteins. My work on protein biogenesis (Chapters 3 and 4) focuses on the potential effects of

codon usage on protein localization (Chapter 3) and secondary structure formation (Chapter

4). Although empirical work indicates codon usage can impact protein biogenesis, my goal

is to find if there are general differences in selection on codon usage protein biogenesis,

which would suggest a mechanistic link between the two. As proteins do not operate in

isolation, Chapters 5 and 6 focus on co-expression and co-evolution of empirical estimates of

gene expression (i.e. mRNA abundances, protein abundances) to detect functionally-related

proteins.

Unlike previous work in this area of research, this work approaches data analysis from

an explicit evolutionary perspective. While much of the work cited in this dissertation

contextualizes their work within evolution, their methods are largely heuristic (i.e. do not

attempt to actually model the evolution of a trait, allele fixation, etc.). Chapters 3, 4, and 6

make use of population genetic and phylogenetic methods for estimating biologically-relevant

parameters. Although Chapter 5 does not make use of these methods for estimating biological

parameters, phylogenetic gene trees and functional annotation tools based on phylogenetic

analysis are used to help delineate potential functions of proteins of unknown function.

Another theme emphasized in this dissertation is the use of informing computational analyses

with empirical data. Although this work is not the first to examine proteins of unknown

function on a broad-scale or examine coevolution of gene expression, few of these studies

inform this analysis with empirical data, such as protein abundances. In contrast, Chapters

5 and 6 make use of empirical gene expression for examining co-expression/coevolution of

functionally-related proteins.
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Chapter 2

Review of methods

As the ribosomal overhead cost version of the stochastic evolutionary model of protein

production rates (ROC-SEMPPR) is used extensively in Chapters 3 and 4, a more detailed

description is provided here. ROC-SEMPPR, was developed from the perspective that

ribosomal pausing leads to an overhead cost in terms of available number of free ribosomes.

As initiation is the limiting step in protein translation, it is expected that reductions to the

pool of free ribosomes will have negative fitness consequences due to overall reductions in

protein production (Bulmer, 1991; Kudla et al., 2009; Shah and Gilchrist, 2011; Shah et al.,

2013). Given that highly expressed genes will require more ribosomes to translate, the cost of

ribosomal pausing will be higher in a highly expressed protein compared to a lowly expressed

protein.

ROC-SEMPPR estimates 3 key parameters: codon-specific pausing times ∆η and

mutation bias ∆M , and gene-specific protein production rates φ. The ∆ indicates that

∆η and ∆M are relative to some pre-defined reference synonymous codon, which has a

fixed value of 0 for both parameters. An important point to make is φ represents the

target production rate of a protein an organism must meet in order to survive. Changes in

synonymous codon usage do not alter φ, but the efficiency at which φ is reached.

∆η represents the differences in the expected cost/benefit ratio of two sequences of

synonymous codons (i.e. a gene). As translation is assumed to occur without error, the

expected benefit of a codon sequence is treated as constant. As the strength of selection

against using a codon is expected to be proportional to the differences in pausing times, ∆η
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represents a measure of the strength and direction of natural selection for a codon. Codons

with greater values of ∆η are less favored (i.e. more costly to the pool of free ribosomes)

by natural selection. Following the work by Sella and Hirsh (2005), Shah and Gilchrist

(2011), Wallace et al. (2013), and Gilchrist et al. (2015) noted that the expected frequency

of observing a codon i (out of naa synonymous codons) in gene g follows a multinomial

logistic regression:

pi =
e−∆Mi−∆ηiφg∑naa

j e−∆Mj−∆ηjφg

ROC-SEMPPR is implemented as a Bayesian model, but its posterior distribution has

no analytical solution. Parameters are estimated using a Markov Chain Monte Carlo

(MCMC) procedure, which attempts to estimate the posterior distribution via a random

walk. Algorithm details can be found in Gilchrist et al. (2015). The current version of ROC-

SEMPPR is implemented in the AnaCoDa R package, of which I am currently a developer

and maintainer (Landerer et al., 2018).

Evaluation of ROC-SEMPPR indicates its parameters are well-correlated with empirical

values. Figure 2.1 shows estimates of protein production rates from ROC-SEMPPR

compared to empirical values for E. coli, which is the model organism used in Chapter

3. Clearly, ROC-SEMPPR’s estimates of protein production rates are well-correlated with

empirical data for E. coli (Pearson correlation ρ = 0.69). Similar results can be seen for S.

cerevisiae in Gilchrist et al. (2015). Comparing ∆η estimates for S. cerevisiae with ribosome

densities estimated from ribosome profiling data also shows a strong correlation (Pearson

correlation ρ = 0.84, Figure 2.2).
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Figure 2.1: Comparison of protein production rates φ estimated from ROC-SEMPPR
with empirical estimates taken from (Li et al., 2014) for E. coli. Figure is adapted from
supplemental material (Cope et al., 2018)
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ROC-SEMPPR assumes selection acts on translation efficiency and does not consider

variation in selection on codon usage within a gene. However, it can be used to test

hypotheses related to differential selection on codon usage within a gene. If given partial

sequences of a gene that correspond to a region hypothesized to be under differential selection,

then ROC-SEMPPR will provide an estimate of the strength and direction of natural

selection (i.e. ∆η) on codon usage for that region. These estimates of ∆η can then be

compared across regions to determine if there are differences in the strength or direction of

selection on codon usage.

Consider two hypothetical regions that might be found across multiple genes (e.g. α-

helices and β-sheets). In region A, every codon is under selection for translation efficiency. In

region B, some portion p of the codons are under selection for translation inefficiency, meaning

selection on these codons is acting in the opposite direction of region A. The remainder of

region B (q = 1− p) is under selection for translation efficiency, as in region A. If we were to

estimate selection in Region B using ROC-SEMPPR, then the ∆η estimates would reflect

a weighted average of the two opposite selective forces. By comparing estimates of ∆η in

regions A and B, we can test if there are differences in the strength or direction of natural

selection on codon usage between the two regions. This is illustrated in Figure 2.3, where

p codons in region B are simulated under selection for translation inefficiency. As is clear,

even with a small portion of codons in region B under selection for translation inefficiency,

this has tangible effects on estimates of ∆η compared to region A. When 50% of the codons

in region B are under selection for translation inefficiency, ROC-SEMPPR is no longer able

to distinguish the selectively-favored codon, resulting in almost all ∆η estimates being near

0 and regression line that is not significantly different from 0.
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ROC-SEMPPR’s ability to detect differential selection on codon usage in real data is

easy to demonstrate. Previous work noted a group of approximately 700 genes in E. coli

were outliers in terms of codon usage, with many of these genes demonstrating a negative

correlation between their Codon Adaptation Index and empirical estimates of gene expression

(dos Reis et al., 2003). It was hypothesized these genes may be the result of relatively recent

horizontal gene transfer events and that their codon usage had not yet evolved to match

the rest of the E. coli genome. Analysis of these hypothesized exogenous genes with ROC-

SEMPPR reveals selection is mostly in the opposite direction of the remaining endogenous

genes in the E. coli genome (Pearson correlation ρ = −0.46, Figure 2.4). This framework will

generally be used for comparing selection on codon usage as it relates to protein secretion

(Chapter 3) and protein secondary structure (Chapter 4).
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Chapter 3

Quantifying codon usage in signal

peptides: Gene expression and amino

acid usage explain apparent selection

for inefficient codons

The following is slightly-modified version of Cope et al. (2018).

Cope, A., Hettich, R., and Gilchrist, M. (2018). Quantifying codon usage in signal

peptides: Gene expression and amino acid usage explain apparent selection for inefficient

codons. Biochimica et Biophysica Acta - Biomembranes, 1860(12).

My primary role on this manuscript was conceptualization of the project, data analysis,

and writing of the manuscript. R. Hettich and M. Gilchrist co-authored the manuscript,

including providing edits.

3.1 Introduction

A secreted protein can broadly be defined as any protein entering a secretory pathway for

transport through a cellular membrane. These proteins serve important cellular functions,

including metabolism and antibiotic resistance (Green and Mecsas, 2016; Saier, 2006).

Secreted proteins also play essential roles in the virulence of pathogenic bacteria (Green
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and Mecsas, 2016). Numerous secretion systems exists and vary between and within taxa

(Green and Mecsas, 2016; Bendtsen et al., 2005; Saier, 2006). Despite the diversity of

secretion pathways, the general secretion pathway, also commonly referred to as the Sec

pathway, is found across all domains of life (Green and Mecsas, 2016; Natale et al., 2008).

In brief, proteins are transported to the SecYEG translocon located in the membrane in a

chaperone-dependent (SecA/B and SRP) or chaperone-independent manner (Natale et al.,

2008; Tsirigotaki et al., 2017). All SecA/B-dependent proteins and chaperone-independent,

as well as some SRP-dependent proteins, contain a short peptide chain located at the N-

terminus of the protein known as the signal peptide (Green and Mecsas, 2016; Natale et al.,

2008; Tsirigotaki et al., 2017). The signal peptide is an essential component of the Sec

pathway, serving as a binding site for the appropriate chaperones and/or helping delay

the folding of the protein (Natale et al., 2008; Tsirigotaki et al., 2017). Although signal

peptides do vary in their amino acid sequences, signal peptides have distinct physicochemical

properties which biases their amino acid usage (Natale et al., 2008; Tsirigotaki et al., 2017;

Zalucki et al., 2009). A signal peptide generally consists of 3 regions: a positively charged

N-terminus, a hydrophobic core, and a polar C-terminus, where the signal peptide is cleaved

from the rest of the protein, sometimes referred to as the ”mature peptide.”

The ability to accurately predict signal peptides is useful for identifying secreted proteins

in non-model organisms; this has led to the development of machine learning approaches

to predict signal peptides which take advantage of the distinct physicochemical properties

of signal peptides, such as SignalP (Petersen et al., 2011). Although the physicochemical

properties of signal peptides are consistent, altering the N-terminus has a range of effects on

protein secretion: from a decrease in the number of proteins secreted to no observable effect

(Inouye et al., 1982; Nesmeyanova et al., 1997; Puziss et al., 1989; Vlasuk et al., 1983). The

variability in the outcomes of neutralizing the N-terminal positive charge led to a search for

other mechanisms which also contribute to the efficacy of protein secretion (Zalucki et al.,

2009, 2011a).

Numerous studies suggests codon usage bias (CUB) – the non-uniform usage of

synonymous codons – contributes to effective protein secretion in E. coli (Burns and

Beachamn, 1985; Power et al., 2004; Zalucki and Jennings, 2007; Zalucki et al., 2008,
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2010, 2011b). Power et al. (2004) found E. coli K12 MG1655 signal peptides are biased

for translation inefficient codons, which are predicted to be translated slower than their

synonymous counterparts. This is in stark contrast to the rest of the E. coli proteome,

where E. coli is biased towards the most efficient codons (Power et al., 2004; Ikemura, 1981).

Li et al. (2009); Liu et al. (2017); Mahlab and Linial (2014) examined the usage of inefficient

codons in signal peptides of S. coelicolor, S. cerevisiae, and various multicellular eukaryotes

and came to similar conclusions when applying codon usage indices such as the Codon

Adaptation Index (CAI) (Sharp and Li, 1987) and tRNA Adaptation Index (tAI) (dos Reis

et al., 2004). Consistent across this work is the interpretation that selection is driving the

apparent increase in inefficient codon usage in signal peptides. Furthermore, Zalucki et al.

(2007) concluded an overabundance of the lysine codon AAA at the second position in the

signal peptide promoted efficient translation initiation.

Zalucki et al. (2009) hypothesized an adaptive role for inefficient codons in the protein

secretion process in which the combination of efficient translation initiation and inefficient

translation reduced the distance between sequential ribosomes along the mRNA, leading to

more efficient recycling of the necessary chaperones. Other explanations for the observed

increase in inefficient codons include the inability of E. coli SRP to induce a translational

pause following signal peptide recognition (Powers and Walter, 1997; Zalucki et al., 2009)

and slowing down the co-translational folding of the protein, as a folded protein cannot

be translocated through the SecYEG translocon (Zalucki et al., 2011a; Power et al., 2004;

Zalucki and Jennings, 2007; Zalucki et al., 2008). If signal peptides have a different CUB

relative to the rest of the genome, then codon-level information could be incorporated into

signal peptide prediction tools.

In contrast Liu et al. (2017) found no significant differences in the ribosome densities

between the signal peptides and the 5’-ends of nonsecretory genes in various eukaryotes.

Ribosome densities are expected to be higher in signal peptides relative to the 5’-end of

nonsecretory genes if selection is acting to increase translation inefficiency in the signal

peptide. Additionally, while both Liu et al. (2017) and Mahlab and Linial (2014) examined

codon usage in relation to secretion in H. sapiens using a metric based on tAI, only Mahlab

and Linial (2014) found results consistent with increased frequencies of inefficient codons
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in signal peptides. From a population genetics perspective, it is surprising statistically

significant results were obtained in a mammal, which usually have little adaptive CUB due to

their lower effective population sizes (Charlesworth, 2009; Lynch et al., 2016). More recently,

Samant et al. (2014) found codon optimization of a signal peptide improved localization of

the protein to the periplasm of E. coli, seemingly contradicting a general role for inefficient

codon usage in signal peptides. A potential reason for these contradictions is the previous

analyses of signal peptide codon usage (Power et al., 2004; Li et al., 2009; Liu et al., 2017;

Mahlab and Linial, 2014) did not adequately account for the effects of mutation bias and

drift in shaping codon usage (Bulmer, 1990; Gilchrist and Wagner, 2006; Gilchrist, 2007;

Gilchrist et al., 2015; Shah and Gilchrist, 2011; Wallace et al., 2013).

We re-examined CUB in signal peptides of E. coli using CAI, tAI, and ROC-SEMPPR - a

population genetics model which accounts for selection, mutation bias, and gene expression

- to determine if selection on codon usage in signal peptides differs from the 5’-ends of

genes. Although we find significant differences in codon usage using CAI and tAI, we

present evidence these differences are due to signal peptide-specific amino acid biases and

differences in the gene expression distributions of genes with and without signal peptides.

When comparing signal peptides and the 5’-ends of genes not containing a signal peptide

with ROC-SEMPPR, we find signal peptide codon usage is consistent with the 5’-ends. We

find selection on codon usage favors the efficient codons, but the strength of selection is

weaker at the 5’-ends, corroborating previous analyses (Power et al., 2004; Gilchrist and

Wagner, 2006; Gilchrist, 2007; Eyre-Walker, 1996; Qin et al., 2004).

Our work demonstrates the value of analyzing CUB from a formal population genetics

framework, as well as highlights potential limitations with using more common metrics such

as CAI for analyzing codon usage on relatively small regions of the genome. Failure to

account for variation in the strength of selection due to variation in gene expression can

lead to conflating mutation bias with selection, resulting in a misinterpretation of observed

codon usage patterns. Our work also illustrates the importance of considering non-adaptive

forces in shaping biological phenomenon before invoking adaptive explanations (Gould and

Lewontin, 1979). We believe this is particularly important in the modern genomic-age when

the combination of large datasets, misinterpretation of p-values, and an inherent bias towards
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adaptationist interpretations can lead to the proliferation of over-interpreted hypotheses

within the biological community.

3.2 Materials and Methods

3.2.1 Signal Peptide Prediction

Signal peptides were predicted using SignalP 4.1 (Petersen et al., 2011) using both the default

cutoff D-score of 0.51 and a more conservative D-score of 0.75. In brief, SignalP consists

of two neural networks, one for determining the amino acid sequence similarity to signal

peptides and the other for identifying the most likely cleavage site. The results of both

neural networks are combined into one value, called the D-score, which ranges between 0

and 1. Setting the cutoff D-score closer to 1 results in a lower false positive rate. A set

of confirmed signal peptides for E. coli K12 MG1655 was taken from The Signal Peptide

Website (http://www.signalpeptide.de/). All analyses in the main text will focus on the

set of signal peptides with D ≥ 0.51 as this set provides us with the most data; analyses

of the D > 0.75 and set of confirmed signal peptides give similar results (see Supporting

Information).

3.2.2 ROC-SEMPPR

Given a set of protein-coding genes, ROC-SEMPPR employs a Markov Chain Monte Carlo

(MCMC) to estimate codon specific parameters for mutation bias ∆M and pausing times

∆η for each codon within a synonymous codon family. In previous work, ∆η was scaled

relative to the most efficient codon, which had ∆η and ∆M values fixed at 0. To avoid

the choice of reference codon affecting our comparisons of CUB between regions, all ∆η

values in this paper are re-scaled by the mean such that these values are centered around 0

for each amino acid. The ∆η values reflect the strength and direction of selection against

translation inefficiency in a set of protein-coding regions (e.g. the signal peptides). A region

with stronger selection against translation inefficiency will have higher ∆η values on average

than a region with weaker selection. Similarly, a region which favors translation inefficiency
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would be expected to have ∆η values which negatively correlate with a region which favors

translation efficiency.

ROC-SEMPPR also estimates an average protein production rate φ for each gene.

It is important to note ROC-SEMPPR is structured such that the average value of φ

across the genome is 1. This choice of scaling means the pausing times ∆η represent the

average strength of selection relative to genetic drift for or against a given codon. We find

ROC-SEMPPR estimated φ values correlate well with empirical measurements of protein

production rates for E. coli (Figure 2.1 and Figure 3.1). If changes in synonymous codon

usage alter the efficiency at which a protein is translated, then such a change will have the

largest impact on the energetic costs of proteins with high production rates, making φ a

more appropriate gene expression metric than say, mRNA abundance or protein abundance.

Thus, we use protein production rates φ as our metric of gene expression. For more details

on ROC-SEMPPR, see Gilchrist et al. (2015). Analysis of CUB with ROC-SEMPPR was

performed using AnaCoDa (Landerer et al., 2018).
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3.2.3 CAI and tAI

Analysis of CUB was also performed using CAI (Sharp and Li, 1987) and tAI (dos Reis

et al., 2004). Both CAI and tAI quantify CUB by assigning weights to the 61 sense codons.

For CAI, each codon is assigned a weight based on its relative frequency to its synonymous

counterparts in a reference set of highly expressed genes, such as ribosomal protein coding

genes. The key assumption of CAI is the most frequent codons in the reference set are

the most efficient codons (Sharp and Li, 1987). In contrast, tAI assigns weights based on

tRNA abundances corresponding to a codon, as well as accounting for codon-anticodon

interactions. The key assumption of tAI is the most efficient codons are usually those with

the most abundant tRNA (dos Reis et al., 2004).

CAI and tAI both range between 0 and 1. A CAI score closer to 1 represents a sequence

which more closely resembles the codon usage of the reference set of genes, while a tAI closer

to 1 indicates a sequence is more closely adapted to the genomic tRNA pool (Sharp and

Li, 1987; dos Reis et al., 2004). Calculations for CAI were performed using the AnaCoDa

(Landerer et al., 2018), while tAI was calculated using the R package tAI (dos Reis, 2016).

3.2.4 Generating Datasets

Previous analysis of the E. coli genome found a set of genes with CAI values that had a

negative correlation with their gene expression estimates (dos Reis et al., 2003). It is believed

many of these genes were the result of horizontal gene transfer and had not yet reached

evolutionary equilibrium with respect to their CUB. We repeated the analysis described in

dos Reis et al. (2003) on the current E. coli K12 MG1655 genome (version 3, NC 000913.3).

Briefly, correspondence analysis was performed using CodonW (Peden, 1999), followed by

clustering based on the principle axis scores using the CLARA algorithm (Maechler et al.,

2018) in R. Our analysis was consistent with the findings of dos Reis et al. (2003), revealing

782 genes with a CUB deviating significantly from the majority of the E. coli genome. We

will refer to this set of 782 genes as the “exogenous” component of the genome and the

rest of the E. coli genome as the “endogenous” for simplicity. All analyses presented will
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consider only “endogenous” genes because the “exogenous” genes may violate the implicit

assumptions of CAI and tAI and the explicit assumptions of ROC-SEMPPR.

Proteins with a signal peptide were split into the signal peptide and the mature peptide

– the segment of the peptide chain after the signal peptide. On average, the signal peptides

were 23 codons long. For comparisons to the 5’-ends of nonsecretory genes – defined here

as those lacking a signal peptide – the first 23 codons of the nonsecretory genes were used.

We note the secretory genes have an average protein production rate φ approximately 10%

higher than that of the nonsecretory genes (φ̄ = 1.08 and φ̄ = 0.992,respectively, Figure 3.2).
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As the strength of selection on CUB scales with protein production rate φ, we created a

control group that eliminates differences in the distribution of φ for the nonsecretory genes

and signal peptide genes. Specifically, the nonsecretory genes were selected using acceptance-

rejection sampling to create the “pseudo-secreted proteins”. In brief, acceptance-rejection

sampling is a procedure for sampling from a population such that its distribution of a metric

for one population mirrors the distribution of the same metric for another population. In

this case, the pseudo-secreted proteins were sampled such that the mean and variance of the

log(φ) values reflected those of the genes with a signal peptide. The CUB signature of a

gene varies with protein production rate φ; thus we can be more confident any differences

seen between genes with a signal peptide and pseudo-signal peptide genes are not due to

differences in their respective φ distributions. All pseudo-secreted proteins were split into two

regions we will refer to as the “pseudo-signal peptides” and the “pseudo-mature peptides”

(the first 23 codons and the remainder of the gene, respectively).
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To assess the performance of CAI and tAI when comparing regions with differences in

the distributions of protein production rates φ and amino acid biases, simulated sequences

were used. Sequences based on the 5’-ends of nonsecretory genes, pseudo-signal peptides,

and signal peptides were simulated using the AnaCoDa package (Landerer et al., 2018).

To normalize for amino acid usage, sequences 23 amino acids in length were randomly

generated to match the amino acid frequencies of the signal peptides. The codon usage

of these sequences was also simulated in AnaCoDa, assuming either the φ distribution of

the nonsecretory genes or the pseudo-secreted proteins. All sequences were simulated using

the pausing times ∆η and mutation bias ∆M parameters estimated from the 5’-end of

endogenous nonsecretory genes.

3.2.5 Analysis of Codon Usage with CAI, tAI, and ROC-SEMPPR

We estimated protein production rates φ by fitting ROC-SEMPPR to the protein-coding

sequences in the E. coli K12 MG1655 genome. Analysis of intragenic (e.g. signal vs.

mature peptides) and intergenic (e.g. pseudo-signal peptides vs. real signal peptides)

CUB was carried out using the mixture distribution functionality available in the AnaCoDa

implementation of ROC-SEMPPR (Landerer et al., 2018). We assumed mutation bias was

consistent for the entire genome; thus, we forced mutation bias ∆M parameters to be equal

across the groups of regions. Each group of regions (e.g. signal peptides, mature peptides,

etc.) was assumed to have an independent set of pausing time parameters, allowing pausing

time ∆η estimates to vary between them. φ was fixed for each region of a gene at the value

estimated when the model was fit to the entire protein-coding sequence. This is done for two

reasons: (a) shorter regions, such as the signal peptide, likely have insufficient information

to accurately estimate φ and (b) this guarantees our gene expression metric has the same

impact on the estimates of ∆η and ∆M for intragenic regions, such as a signal peptide

and its corresponding mature peptide. We note the use of empirical φ estimates in place of

ROC-SEMPPR estimated φ did not impact our interpretations.

A Model-II regression was used to compare estimated pausing times ∆η between regions.

Unlike ordinary least squares, Model-II regression, or errors-in-variables regression, accounts

for errors in both the x and y variables (Sokal and Rohlf, 1995). When both variables are
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subject to error, which is the case for the ∆η estimates, the use ordinary least squares leads

to downwardly biased parameter estimates. A Model-II regression slope β = 1 (or the y = x

line) will serve as the null hypothesis, as this indicates both the strength and direction of

selection between two regions are the same. The intercept parameter was fixed at α = 0

because the ∆η estimates are scaled such that the mean value of ∆η is 0. We note that when

we allowed the α parameter to vary, it was as expected, approximately 0. For more details

on our use of Model-II regression, see Supplementary Methods.

CAI and tAI were used to compare codon usage between signal peptides, 5’-ends,

and pseudo-signal peptides. As recommended by (Sharp and Li, 1987), methionine and

tryptophan were not included when normalizing for the length of the gene in our calculations

of CAI. Statistical significance was assessed using a one-tailed Welch’s t-test in the R

programming language (R Core Team, 2018). R and Python scripts used for this paper

can be found at https://github.com/acope3/Signal Peptide Scripts.

3.3 Results

Our analysis of CUB in signal peptides and the 5’-ends of nonsecretory genes using ROC-

SEMPPR revealed these regions to be indistinguishable. Qualitatively, the expected codon

frequencies for the 5’-ends of nonsecretory genes and the signal-peptides based on the pausing

time ∆η and mutation bias ∆M values estimated from these regions are indistinguishable

(Figure 3.3). Cysteine, aspartic acid, lysine, glutamine, and tyrosine are apparent exceptions,

but only the 95% posterior probability intervals of cysteine and glutamine fail to overlap

with y = x line. When comparing the codon pausing times ∆η of signal peptides to the

5’-ends of nonsecretory genes using a Model-II regression, we find no significant difference

from the y = x line (slope β 95% confidence interval: 0.923 – 1.128, Figure 3.4a). To

determine if differences were not detected due to underlying differences in the distributions

of φ, we compared ∆η estimates from signal peptides and pseudo-signal peptides. Again,

no statistically significant difference from the y = x line was found and the expected codon

frequencies are similar (β 95% confidence interval: 0.939 – 1.149, Figure 3.4b and 3.5).

Similar results are obtained using the signal peptides with a D-score greater than 0.75 or the
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confirmed signal peptides (Figures 3.6a - 3.6b). We also see no significant result when using

empirically estimated φ values (β = 0.908, 95% confidence interval: 0.671 – 1.168), although

these results show much more variability. The increased variability in the ∆η values and

corresponding regression line is unsurprising given the empirically estimated φ values are

subject to significant noise (Figure 3.1), but are, in this case, treated as error free estimates

of a gene’s true φ value.
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Figure 3.5: Comparing expected frequencies of codons as log(φ) varies for pseudo-signal
peptides (solid) versus signal peptides (dashed), as well as the distribution of log(φ) values
for the two groups (panels below the expected frequencies).
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Figure 3.6: (a) Comparison of ∆η estimates for pseudo-signal peptides and signal peptides
with a D-score greater than 0.75. (b) Comparison of ∆η estimates for pseudo-signal peptides
and confirmed signal peptides.

The Model-II regression lines comparing codon pausing times ∆η from the mature vs.

signal peptide comparison and the pseudo-mature vs. pseudo-signal peptide comparison are

similar, providing further evidence the nature and magnitude of selection on codon usage

in signal peptides and the 5’-ends of nonsecretory genes is indistinguishable (Figure 3.7).

The mature vs. signal peptide comparison of ∆η produces a regression line with slope

β = 0.480 (95% confidence interval: 0.428 - 0.574, Figure 3.7a), which is approximately

50% of the slope observed when comparing signal peptides to the 5’-ends of nonsecretory

genes and pseudo-signal peptides. This indicates selection on codon usage in the mature

peptides is stronger than it is in signal peptides, although the nature of selection is still

against translation inefficiency. Similar behavior is observed when comparing ∆η from the

pseudo-mature and pseudo-signal peptides (β = 0.509, 95% confidence interval: 0.490 -

0.533, Figure 3.7a). The slope estimate from the mature vs. signal peptide comparison is

not significantly different from β = 0.509 (two-tailed Z-test, p = 0.0682). Similar regression
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lines would not be expected if differences in selection on codon usage existed between signal

peptides and the pseudo-signal peptides.
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Figure 3.7: (a) Comparing the codon pausing time estimates ∆η between mature peptides
and signal peptide regions. Grey dashed lines represent the 95% confidence intervals of the
regression line. Results show a positive linear relationship (ρ = 0.434) between the ∆η
estimates for the two regions. This indicates codons favored in one region tend to be favored
in the other. (b) Same comparison for pseudo-signal peptide genes. Regression estimates
are indistinguishable from those estimated for the mature and signal peptide comparison
(two-tailed Z-test, p = 0.0682).
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Noting CAI and tAI do not account for the effects of gene expression, mutation bias, drift,

or amino acid biases, we found signal peptides have lower CAI and tAI values compared to

the first 23 codons of nonsecretory genes (one-tailed Welch’s t-test, p < 10−5). This was also

the case when looking at the pseudo-signal peptides, which normalizes for protein production

rates φ. These results with CAI and tAI can potentially be explained by either the preferred

use of inefficient codons in signal peptides or as artifacts of amino acid biases. Signal peptides

have a different amino acid composition from the 5’-end due to the required physicochemical

properties of this region (Figure 3.8). We examined the robustness of tAI and CAI as a

means of quantifying differences in selection on codon usage when underlying differences

between amino acid composition and φ exists using data simulated under the same mutation

bias ∆M and pausing time ∆η parameters. When comparing simulated signal peptides to

simulated 5’-end of nonsecretory genes and simulated pseudo-signal peptides using CAI, the

simulated signal peptides are found to have a significantly lower mean CAI (Welch’s t-test,

p < 0.05) 100% of the time (Figure 3.9A-B), despite the fact the ∆η and ∆M parameters

used to simulate these regions were the same. This suggests differences in amino acid usage

and not adaptation to novel selective forces, explains the lower CAI of the signal peptides.
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simulated nonsecretory 5’-ends, pseudo-signal peptides, and signal peptides in which all
regions were simulated using the same pausing time ∆η and ∆M parameters. (A-B)
The CAI of simulated signal peptides was found to be significantly lower on average at
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simulated pseudo-signal peptides. (C) Adjusting the amino acid frequencies of the 5’-end
of nonsecretory genes to match those of the signal peptides results in a heavily skewed
distribution. (D) Adjusting the amino acid frequencies of the pseudo-signal peptides to
match those of the signal peptides results in a more uniform distribution.
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When using simulated 5’-ends of nonsecretory genes which have amino acid composition

consistent with the signal peptides, the p-values were heavily skewed towards 1. (Figure

3.9C). This odd behavior is due to the differences in the φ distribution differences of the

signal peptide and nonsecretory genes. As the former has a higher mean φ, the signal

peptides on average will have a stronger CUB after normalizing for the amino acid biases. A

one-tailed Welch’s t-test with the alternative hypothesis being signal peptides have a lower

mean CAI, when in reality they likely have a larger mean CAI, would skew the p-value

distribution towards 1. Importantly, ROC-SEMPPR did not detect significant differences

between signal peptides and the 5’-ends of non-secretory genes, despite differences in the φ

distributions (Figure 3.4a). When normalizing for both amino acid usage and φ, significant

differences in CAI are found approximately 4% of the time, which is close to the expected

number of false positives at the 0.05 significance level (Figure 3.9D). Similar results are

seen when using tAI (Figure 3.10). Our results indicate CAI and tAI are prone to inflating

differences in CUB between two regions when differences in φ and amino acid usage are not

accounted for.
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Notably, selection on codon usage near the N-terminus appears to be on average

approximately 50% weaker than the remainder of the gene based on the slopes β. Previous

analyses using a variety of codon usage metrics found CUB near the 5’-end to be weaker

than middle sections of the gene, with these differences being attributed to selection

against nonsense errors and to maintain translation initiation efficiency by reducing mRNA

secondary structure (Eyre-Walker, 1996; Gilchrist and Wagner, 2006; Gilchrist, 2007;

Hockenberry et al., 2014; Qin et al., 2004; Power et al., 2004). We confirm this trend using

ROC-SEMPPR (Figure 3.11).
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Figure 3.11: Variation in the strength of selection on CUB along the length of a gene in E.
coli as represented by the regression slope. The first segment (first 25 codons) is compared to
a later segment (a later segment of 25 codons), with the first segment on the x-axis and the
later segment on the y-axis. This means an increase in slope is consistent with increasing
selection for CUB. Results obtained from simulated data not allowing for strengthening
selection along the gene results in slope estimates centered about 1.0, which is consistent
with what we would expect. Simulations of CUB evolution using the the software described
in (Gilchrist et al., 2009), which allows for nonsense errors, show increasing selection along
the gene. The real E. coli genome shows increasing selection, but plateauing out before the
slope drops towards 1.0. The pattern seen with the real genome is similar to the pattern
seen by (Qin et al., 2004) and is likely due to decreased CUB near the 3’-ends of genes.
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Zalucki et al. (2007) proposed selection for translation initiation efficiency was shaping

signal peptide codon usage, particularly the use of lysine codon AAA, at the second amino

acid position. While AAA appears to be slightly favored in signal peptides, which is not the

case in the pseudo-signal peptides, the 95% posterior probability interval overlaps with the

y = x line (Figure 3.12). If the insignificant increased usage of AAA is due to greater selection

for translation initiation efficiency in signal peptides, then removing the first 3 codons when

analyzing signal peptide codon usage should remove this effect. Doing so results in no change

in the behavior of AAA, suggesting if there is any selection for increased AAA usage in signal

peptides, it is not due to selection for increased translation initiation efficiency (Figure 3.13).

Notably, AAA is both mutationally and selectively-favored for lysine in E. coli. Keeping in

mind selection on CUB is weaker near the 5’-end of the genes in E. coli, the combination of

weaker selection, mutational favorability, and a slight increase in the occurrence of lysine in

signal peptides (Figure 3.8) likely drives up the frequency of codon AAA in signal peptides

relative to the 5’-ends of nonsecretory genes.
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Figure 3.12: Comparison of ∆η values from pseudo-signal peptides and signal peptides by
amino acid. Interestingly, lysine (K) shows a slight but statistically insignificant preference
for codon AAA. Removal of the first 3 codons does not change this pattern (see Figure 3.13).
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Figure 3.13: Comparison of ∆η values from pseudo-signal peptides and signal peptides by
amino acid when the first 3 codons of the signal peptides are removed. Lysine (K) codon
AAA shows no change in behavior, which would not be expected if selection is acting on this
codon to increase translation initiation efficiency.
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3.4 Discussion

We found no evidence in support of the hypothesis of differing selection on codon usage in

signal peptides and the 5’-ends of nonsecretory genes in E. coli when using a mechanistic

model of CUB, which accounts for the effects of selection, mutation bias, gene expression,

and amino acid usage. We find commonly employed codon usage metrics CAI and tAI

produce spurious differences between signal peptides and 5’-ends of nonsecretory genes due

to differences in amino acid usage and gene expression of signal peptide containing genes

relative to the rest of the genome. Importantly, both amino acid usage and φ were significant

confounding factors when analyzing CUB with CAI and tAI – only accounting for one of

these factors still suggested significant differences between the simulated regions. Although

we are not the first to note potential issues with metrics like CAI or tAI for intragenic CUB

analysis (Hockenberry et al., 2014), our results demonstrate these metrics are insufficient for

intragenic CUB analysis when these regions have drastically different amino acid usage or φ

distributions, resulting in incorrect biological interpretation.

This is not to say CUB plays no role in the secretion of specific proteins. For example,

experimental evidence demonstrates codon optimization of the E. coli maltose binding

protein’s (MBP) signal peptide results in a decrease in protein abundance. Evidence suggests

this is due to increased targeting of the codon optimized MBP by proteases due to improper

folding (Zalucki and Jennings, 2007; Zalucki et al., 2010). However, CUB as a means to

guide proper co-translational folding is not a phenomenon unique to proteins with a signal

peptide (Chaney and Clark, 2015; Pechmann and Frydman, 2013; Yu et al., 2015). Although

inefficient codons might be crucial to the fold of certain secreted proteins, our results do not

indicate this is any more or less so than nonsecretory genes.

Although we found no general difference in selection on codon usage between signal

peptides and the 5’-ends, it is possible CUB differences exist between the chaperone-

dependent and chaperone-independent mechanisms of the Sec pathway. Previous analyses

revealed patterns consistent with a region of slower translation at the 5’-ends of trans-

membrane proteins, which are typically secreted via SRP in bacteria (Natale et al., 2008).

(Fluman et al., 2014) found transmembrane proteins in E. coli have a higher frequency
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of “programmed pause sites,” areas of high ribosomal density downstream from Shine-

Dalgarno-like sequences, near the 5’-end. This region of higher ribosomal density was not

observed in periplasmic proteins, which are normally secreted via SecA/B (Natale et al., 2008;

Tsirigotaki et al., 2017). Notably, Mohammad et al. (2016) challenged the assertion that

Shine-Dalgarno-like sequences are responsible for inducing translational pauses in bacteria,

concluding signals previously seen were an artifact of the method for assigning ribosome

occupancy along the transcript. Pechmann et al. (2014) also found a consistent trend of

inefficient codons 35-40 codons downstream of the SRP-binding site in various yeasts species

using a modified form of the tAI. Ribosomal profiling data taken from S. cerevisiae provided

experimental support for this hypothesis, but this analysis was limited to a small, closely-

related phylogeny. Further work is needed to determine the general mechanistic role, if any,

of codon-induced inefficient translation in SRP-dependent protein secretion, as well as to

determine if any specific codon biases exists for SecA/B-dependent or chaperone-independent

secreted proteins.

We do find selection on CUB is weaker at the 5’-ends relative to later portions of the

gene, corroborating previous work (Power et al., 2004; Gilchrist and Wagner, 2006; Gilchrist,

2007; Eyre-Walker, 1996; Qin et al., 2004; Hockenberry et al., 2014). Weaker selection at the

5’-ends is often attributed to selection against nonsense errors and selection against mRNA

secondary structure. Importantly, the advent of ribosome profiling suggested the presence

of high ribosomal density at the 5’-ends, often referred to as the “5’-ramp” (Tuller et al.,

2010). The 5’-ramp was originally thought to be the result of increased selection for slow

translation at the 5’-end to reduce ribosomal interference further down the transcript, but

simulations suggest the 5’-ramp is an artifact of short genes with high initiation rates (Shah

et al., 2013). Selection for co-translational folding is also thought to shape intragenic CUB

(Chaney and Clark, 2015; Pechmann and Frydman, 2013; Yu et al., 2015). Further work is

needed to understand how these various selective forces are balanced to maintain translation

efficiency and efficacious protein biogenesis.

Although it may be tempting to explain statistically significant results in the context of

selection and adaptation, it is important to assert results cannot be explained by nonadaptive

evolutionary forces (e.g. mutation bias and genetic drift) and/or as an artifact of some
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other constraint on the trait of interest (e.g. amino acid biases). We are certainly not

the first to note the importance of considering nonadaptive explanations. Almost four

decades ago, Gould and Lewontin (1979) critiqued the propensity of evolutionary biologists

to invoke natural selection and adaptation without seriously considering possible nonadaptive

explanations. The explosion of genomic data means now, more than ever, biologists should

be hesitant to adopt adaptationist explanations to biological phenomenon without first

investigating if such results could be shaped by nonadaptive forces. The embrace of ”big

data” by biological researchers is a double-edged sword: while we have the ability to

investigate patterns and explore hypotheses which would not have been possible 20 years

ago, the indiscriminate analysis of large datasets can lead to spurious, but statistically

significant p-values, which are often misinterpreted as both evidence of a strong effect

and a small probability of the null hypothesis being true (Wasserstein and Lazar, 2016).

The misinterpretation of p-values and a bias towards adaptationist explanations can be a

dangerous combination, leading to a misinterpretation of results and, in turn, misleading

other researchers.

The development of models incorporating both adaptive and nonadaptive evolutionary

forces will be important for understanding the selective forces shaping complex biological

data. In the case of the studying CUB, codon indices like CAI have long been employed,

but these metrics often are sensitive to and, thus, unable to disentangle the effects of amino

acid and mutation biases from selection. While often good proxies of gene expression, these

indices do not directly incorporate gene expression information into the weights estimated for

each codon. This could lead to further problems of conflating mutation bias with selection

when comparing CUB across regions. In contrast, because ROC-SEMPPR is grounded in

population genetics and thus, is able to decouple selection and mutation bias, it serves as

a more accurate and evolutionarily-grounded tool for the study of CUB. Ultimately, our

work further illustrates the value of employing population genetics models which include

nonadaptive evolutionary forces for analyzing genomic data.
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3.5 Conclusions

Previous work concluded signal peptides in E. coli were under selection for increased

translation inefficiency, supposedly to improve the efficiency of protein secretion. Here, we

demonstrated this previous work was likely an artifact of amino acid biases and differences

in gene expression. Furthermore, we find selection on codon usage in signal peptides is

consistent with selection at the 5’-ends of non-secretory genes when using ROC-SEMPPR, a

population genetics based model which provides codon-level estimates on the strength and

direction of natural selection. This is the first illustration of how ROC-SEMPPR may be

used to test hypotheses related to differences in intragenic codon usage.

3.6 Supporting Information

3.6.1 Assessing ROC-SEMPPR Model Adequacy

(Gilchrist et al., 2015) demonstrated the ability of ROC-SEMPPR to reliably estimate φ

values for S. cerevisiae. Datasets include comparisons to RNA-seq and protein synthesis

rate measurements (Li et al., 2014; McClure et al., 2013; Meysman et al., 2014). RNA-seq

data was also obtained from NCBI accession GSE67218. Here, we perform a similar analysis

to assess the adequacy of ROC-SEMPPR for E. coli. We note we only look at endogenous

genes in this analysis. A common method for estimating protein production rates is to use

the product of a measure of mRNA abundance and a measure of its translation efficiency.

Using empirical data taken from RNA-seq and ribosome profiling measurements in (Li et al.,

2014), we find a high correlation (ρ = 0.69) between the empirical estimates of protein

production rates and the φ estimates from ROC-SEMPPR on the log-scale (Figure 2.1).

Note this data excludes low confidence mRNA abundance measurements (1715 out of 4103

genes) from (Li et al., 2014). A low confidence measurement was defined as one with fewer

than 128 mRNA reads mapped to it during RNA-seq; see (Li et al., 2014) for more details.

Inclusion of the low confidence values when comparing protein production rate φ to the

mRNA abundance measurements has a significant impact on the correlation (decrease from
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ρ = 0.62 to ρ = 0.52). A translation efficiency metric was not calculated for the low

confidence mRNA abundance measurements.

It should be emphasized the ROC-SEMPPR average protein production rates φ represent

an average over cell ages and environmental conditions, whereas empirical measurements

made under a specific set of conditions are subject to experimental noise. (Wallace et al.,

2013) and (dos Reis et al., 2003) demonstrate gene expression measurements can vary across

labs for RNA-Seq and microarray data, respectively. Although within lab measurements of

gene expression are highly correlated, these values can differ significantly when comparing

across labs (Figure 3.1). On average, the ROC-SEMPPR φ estimates correlate nearly as

well with empirical measurements as the between lab empirical measurements. We did

not distinguish between E. coli grown under different conditions or exclude mutants when

comparing within or between lab estimates. Mutant genotypes might result in changes of

expression levels of some genes, but we assumed the overall gene expression profile does not

differ dramatically from the wild-type strain.

Comparing the results of ROC-SEMPPR when treating the endogenous and exogenous

genes as having the same pausing time ∆η and mutation bias ∆M parameters to when

they were allowed to differ, we found the model performed better in the latter case. When

assuming these genes have a different CUB, the ROC-SEMPPR protein production rate

estimates φ show a better fit with the empirical data (ρ = 0.6 versus ρ = 0.65). This fit

improves further by excluding the exogenous genes (ρ = 0.69). Given the exogenous genes

may violate the ROC-SEMPPR assumption of evolutionary stationarity, they were excluded

from all analyses.

3.6.2 Maximum-Likelihood Model-II Regression Approach

For comparing the rescaled ∆η estimates between sets of genes, a Model-II regression was

performed. In contrast to ordinary least squares regression, these regression models allow

for errors in the independent variable. As estimates from ∆η in all regions will be subject

to error, regression via ordinary least squares may provide biased parameter estimates. We

developed our own likelihood based approach. Consider two linearly related parameters x∗
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and y∗ such that

y∗ = β0 + β1x
∗

Instead of observing x∗ and y∗, we observe parameters X and Y , such that

X = x∗ + εx

Y = y∗ + εy

where εx and εy are error terms following the distribution

εx ∼ N(0, σεx)

εy ∼ N(0, σεy)

Let X and Y follow a normal distribution around x∗ and y∗. The likelihood of parameters

β0, and β1 is then

Lik(β0, β1| ~X, ~Y , ~σX , ~σY ) =
N∏
i=1

∫
x∗i

Pr(Xi|x∗i , σXi
)Pr(Y |x∗i , β0, β1, σYi)dx

∗
i

The maximum likelihood search was then performed using the bbmle R package (Bolker

and Team, 2017). We note our maximum likelihood approach allows us to incorporate

information from the Markov Chain Monte Carlo (MCMC) into our calculations, such as the

estimates of the variance for the pausing time ∆η values. This only gives us estimates for the

non-reference codons, but recognizing there is also error in the reference codon contributing to

the observed variances, we re-distributed the total variance for a synonymous codon family

equally amongst its codons. We note that variances of the ∆η were consistent amongst

synonymous codons Given that the mean ∆η estimates is 0, the regression line is expected

to go through the origin (0,0). Thus, we can fit our model assuming y-intercept β0 = 0.
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Chapter 4

Quantifying shifts in natural selection

on codon usage between protein

regions: A population genetics

approach

4.1 Introduction

A protein must fold into its native structure for it to be able to function. Misfolded proteins

are both unable to perform their function and can aggregate or within the cell, disrupting key

cellular processes and leading to the death of the cell (Bucciantini et al., 2002; Drummond

and Wilke, 2008; Feyertag et al., 2017; Geiler-Samerotte et al., 2011; Gidalevitz et al., 2009;

Yang et al., 2012). This forms the basis for a major hypothesis in the field of molecular

evolution (the misfolding hypothesis), which proposes selection on codon usage acts to

prevent misfolding of proteins (Drummond and Wilke, 2008, 2009). However, evidence

suggests only 10% – 50% of missense errors actually impact a protein’s ability function

(Guo et al., 2004; Markiewicz et al., 1994). Codon usage is also thought to modulate protein

folding via changes in the elongation rates at key steps during the co-translational folding

of the protein (Ciryam et al., 2013; O’Brien et al., 2014). Co-translational folding and
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its connection with elongation rates was first hypothesized by Purvis et al. (1987). Since

then, various lines of empirical work indicate changes in elongation rates (modulated via

synonymous codon usage) alter the final fold of the protein (Buhr et al., 2016; Fu et al.,

2016; Holtkamp et al., 2015; Kimchi-Sarfaty et al., 2007; Komar et al., 1999; Krasheninnikov

et al., 1991; Walsh et al., 2020; Yu et al., 2015; Zhou et al., 2013, 2015).

Although empirical evidence clearly supports a connection between codon usage and

protein folding, determining general differences in codon usage as it relates to protein

structure has proven challenging. Despite limited data, early studies detected differences

in codon usage between protein secondary structures in organisms ranging from E. coli to

mammals (Adzhubei et al., 1996; Gupta et al., 2000; Orešič and Shalloway, 1998; Thanaraj

and Argos, 1996), although there were also contradictory studies finding little to no significant

difference in codon usage between protein structures (Brunak and Engelbrecht, 1996; Tao

and Dafu, 1998). Later work concluded most variation in codon usage as it relates to protein

secondary structure are not between secondary structure types, but by location within the

secondary structure (i.e. N-terminus vs. Core vs. C-terminus) (Saunders and Deane, 2010).

More recent studies have attempted comparative approaches for detecting selection on

codon usage related to protein folding. For example, if a region of inefficient translation

increases the probability of the protein reaching its native structure, then selection should

act to maintain this region of slow translation across species. Pechmann and Frydman

(2013) compared protein sequences across various yeast species, delineating each codon in

the sequence as either “optimal” or “non-optimal”, finding distinct enrichments of conserved

codon usage across different protein secondary structures. Later work used an expanded list

of species, including both bacteria and eukaryotes, to look for “conserved clusters of rare

codons” (which is to mean conserved clusters of inefficient codons) (Chaney et al., 2017).

Although Chaney et al. (2017) found significant enrichments related to the folding of protein

domains, they found limited evidence to suggest differences between protein secondary

structures.

Analyses of codon usage as it relates to protein structure are often subject to many of

the same critiques in work examining codon usage as it relates to protein localization (not

controlling for amino acid biases and gene expression) (Cope et al., 2018). However, even
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work that does attempt to control for these factors still have key limitations. As already

noted, previous work often relies on designating all codons a priori as either “optimal” or

“non-optimal,” ignoring the fact that selection on codon usage is a continuum (Pechmann

and Frydman, 2013; Zhou et al., 2009). This approach could potentially mask codon-specific

differences by treating all “non-optimal” or “optimal” codons as one group, such as in

Pechmann and Frydman (2013). Instead of separating codons into discrete groups, some

approaches use metrics like CAI or tAI to essentially compare the average codon usage

bias between protein structures (Zhou et al., 2015; Homma et al., 2016), but previous work

has shown how such metrics can be easily biased (Cope et al., 2018). Approaches looking

for enrichments of conserved regions of (in)efficient/(in)accurate codon usage are certainly

informative, but are limited in that they tell us nothing about the nature of selection on

structural elements where conserved codons were not detected.

An alternative approach to use mechanistic models rooted in population genetics to test

for differences in selection on codon usage between protein structures. This should allow us to

detect codon-specific selective differences while accounting for the background mutation bias,

amino acid biases, and gene expression (Cope et al., 2018). Here, we will demonstrate this

using the ribosomal overhead cost of the stochastic evolutionary model of protein production

rates (ROC-SEMPPR) (Shah and Gilchrist, 2011; Gilchrist et al., 2015) to test for differences

in selection on codon usage between protein secondary structure

4.2 Materials and Methods

4.2.1 Protein secondary structures

Empirically-determined protein secondary structures and corresponding protein sequences

were obtained from the Protein Data Bank (PDB). Residues were grouped into four

overarching categories based on their DSSP classification: α-helix (H, G, I), β-sheet (E,B),

turn (S, T), and coil (.). The coil category reflects any amino acids which did not match

any of the other categories. Protein sequences were aligned to the S. cerevisiae proteome

using BLAST. Sequences were considered mapped if the PDB sequence covered 80% of the
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length of the protein and had a percent identity score of 95% or higher. This provided us

with 1,097 protein sequences with empirically-determined secondary structures. To provide

a more comprehensive analysis of codon usage in secondary structures, protein secondary

structures were predicted for all S. cerevisiae proteins (excluding mitochondrial proteins)

using the PsiPred software (Jones, 1999), resulting in 5,983 secondary structure predictions.

Briefly, PsiPred is a neural network trained to predict protein secondary structures from

protein sequences. PsiPred condenses the secondary structural classifications of DSSP to

α-helices (H), β-sheets (E), and coils (C).

4.2.2 Analysis with ROC-SEMPPR

All analyses of codon usage bias was performed using ROC-SEMPPR with the R package

AnaCoDa (Landerer et al., 2018). ROC-SEMPPR was fit to all nuclear protein-coding

sequences in S. cerevisiae to obtain gene-specific estimates of protein production rates φ

and codon-specific estimates of mutation bias ∆M , as in Cope et al. (2018). Protein-

coding sequences were then partitioned based on the codons corresponding secondary

structure category from either empirical data when available or the PsiPred prediction.

ROC-SEMPPR was fit to each structural category, fixing mutation bias ∆M and protein

production rates φ at their genome-wide values. Furthermore, protein secondary structure

categories were also combined to assess if codon usage between different secondary structures

is consistent, e.g. α-helices and β-sheets were combined into one category as opposed to

treating them as separate categories. All possible combinations of secondary structure

grouping were generated.

Model fits were compared using the Deviance Information Criterion (DIC). Briefly, DIC

is a Bayesian information criterion which tries to balance the overall model fit to the data as

determined by the posterior distribution and the number of parameters used to fit the data.

It is expected that if selection on codon usage differs between two secondary structures, then

models treating these structures as separate categories will better fit the data than model

fits treating the secondary structures as one category.

Comparing models via DIC indicates differences in selection on codon usage between

secondary structures, but does not tell us how they differ. Similar to Cope et al. (2018), we
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broadly compared the ∆η estimates between protein secondary structures using a model-II

regression, which accounts for errors in both the independent and dependent variables (Sokal

and Rohlf, 1995). In this work, we used the Deming Regression, as implemented in the R

package deming. A Deming regression slope β significantly different from 1 (i.e. y = x)

indicates selection on codon usage is, on average, different between the two categories being

compared. As the choice of reference codons for ∆η can change the results of the Deming

regression, we rescaled ∆η of each synonymous codon relative to the mean ∆η, such that each

synonymous codon family had a mean ∆η of 0 (Cope et al., 2018). Importantly, the Deming

regression only tells us if there is a general difference in the strength or direction of selection

on codon usage between two structures, but does not rule out the possibility that selection is

different between secondary structures for specific codons. This information can be obtained

by comparing the ∆η estimates for a codon across secondary structures. Selection for a

specific codon was considered significantly different between protein secondary structures if

the 95% posterior probability intervals do not overlap. Importantly, different nucleotides

in the third position indicate different possible wobble pairings, which could effect aspects

related to both translation efficiency and accuracy (Alkatib et al., 2012; Blanchet et al., 2018;

Crick, 1966; Ou et al., 2019; Percudani, 2001; Rogalski et al., 2008; Wang et al., 2017). ∆η

values were rescaled such that they represented the selection coefficients comparing selection

for purine (A, G) or pyrimidine-ending codons (C, T). In this case, a negative value of

∆η indicates selection favors the codon ending with A or C, while positive values reflects

selection favors the codon ending with G or T.

4.3 Results

Based on empirically-determined secondary structures taken from the Protein Data Bank,

we find that the best overall model describing codon usage variation between secondary

structures groups separates α-helices, β-sheets, and turns and coils (Table 4.1). The

difference between this and the second model (which groups α-helices with β-sheets) is

only 1.16 DIC units. Generally, models that differ by less than 2 DIC units are nearly

indistinguishable. Note that turns and coils grouped together is consistent with many
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secondary structure prediction algorithms, which usually treat coils, turns, and bends as

one category, usually broadly referred to as coil.
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Table 4.1: Comparison of model fits examining variation in codon usage between
empirically-determined protein secondary structures. Models with a DIC score greater than
the null model (no difference in codon usage between secondary structures) were excluded
from the table.

Empirical Secondary Structures

Structure Categories DIC ∆DIC

α-helix β-sheet turn ∪ coil 627304.19 0.00

α-helix ∪ β-sheet turn ∪ coil 627305.35 -1.16

α-helix ∪ turn β-sheet ∪ coil 627316.20 -12.01

β-sheet ∪ coil α-helix turn 627319.32 -15.13

α-helix ∪ turn β-sheet coil 627320.27 -16.08

α-helix β-sheet turn coil 627323.39 -19.20

α-helix ∪ β-sheet turn coil 627324.55 -20.36

α-helix ∪ coil ∪ turn β-sheet 627325.06 -20.87

No separate categories (Null) 627338.65 -34.46

Models were also compared to determine if selection on codon usage varied within

secondary structures. We did not find support for any of the three secondary structure

classifications (based on the best overall model fit in Table 4.1) having differential codon

usage at the termini of secondary structures (Table 4.2). This was regardless of the N-

terminus and C-terminus being treated as separate categories or merged into one category.

This contrasts with the findings of Saunders and Deane (Saunders and Deane, 2010), where

they found most of the variation in codon usage was within secondary structures and that

the termini demonstrated differential codon usage. Importantly, they noted this result was

only significant based on tRNA abundances, but not when using Codon Adaption Index

(CAI) or MinMax%. We also found no support that selection on codon usage at the second

and third positions of the α-helix generally favors inefficient translation (Pechmann and

Frydman, 2013).
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Table 4.2: Comparing models with termini of secondary structures separated from the core
of the structure.

Secondary Structures DIC ∆DIC

Core ∪ Termini 244101.9 0

α-helix Core Termini 244116.1 -14.2

P2 + P3 Remainder 244136.2 -34.2

N-terminus Core C-terminus 244144.8 -42.9

Core ∪ Termini 100067.8 0

β-sheet Core Termini 100090.1 -22.3

N-terminus Core C-terminus 100130.1 -62.3

Core ∪ Termini 237780.6 0

coil ∪ turn Core Termini 237822.6 -41.4

N-terminus Core C-terminus 237872.9 -92.3

As the empirical, PDB-based secondary structures only cover approximately 1/6 of the S.

cerevisiae genome and is ambiguous as to whether selection on codon usage differs between

α-helices and β-sheets, we also compared selection on secondary structures using predicted

secondary structures from PsiPred (Jones, 1999). Results were consistent with those based

on empirical structures (Table 4.1 and Table 4.3): the two best fitting models were (1) α-

helix, β-sheet, and coil (in the case of empirical data, turn ∪ coil), and (2) α-helix ∪ β-sheet

and coil. However, there is a much larger difference in DIC units (∆DIC = -69.0) between

the two best fitting models, suggesting selection on codon usage is different between α-helices

and β-sheets.
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Table 4.3: Comparison of model fits examining variation in codon usage between predicted
protein secondary structures. Models with a DIC score greater than the null model (no
difference in codon usage between secondary structures) were excluded from the table.

Predicted Secondary Structures

Structure Categories DIC ∆DIC

α-helix β-sheet coil 5790000 0.0

α-helix ∪ β-sheet coil 5790069 -69

α-helix β-sheet ∪ coil 5790285 -285

α-helix ∪ coil β-sheet 5790424 -424

No separate categories (Null) 5790621 -621

4.3.1 Comparing selection on codon usage between secondary

structures

Given the model fits indicate differences in selection on codon usage between protein

secondary structure, we compared estimates of ∆η to determine the differences in strength

and direction of selection. Comparing ∆η estimates with a Deming regression revealed only

a significant difference between coils and β-sheets (Deming regression β = 1.054, 95% CI:

1.015 – 1.093, Figure 4.1B). This indicates selection on codon usage is approximately 5%

stronger on β-sheets compared to coils. However, we do not find a significant differences when

comparing α-helices to coils (Deming regression β = 1.026, 95% CI: 0.996 – 1.056,Figure

4.1A) or β-sheets (Deming regression β = 1.011, 95% CI: 0.985 – 1.037,Figure 4.1C). The

lack of an overall significant difference in selection on codon usage between α-helices and

β-sheets is perhaps unsurprising, given that we did not detect a difference based on model

fit when using a smaller dataset.
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Figure 4.1: Comparison of ∆η estimates between different protein secondary structures.
Black dots represent ∆η values for each codon, while error bars represent the 95% posterior
probability intervals. The Deming regression slope and 95% confidence intervals are
represented by solid and dashed black lines, respectively. (A) Coil vs. α-helices. (B)
Coil vs. β-sheet. (C) α-helices vs. β-sheet. Only the coil vs. β-sheet appears to have
significantly different codon usage based on the Deming regression, but this effect is small.

.

Despite 2 of the 3 Deming Regressions being non-significant, examination of the 95%

posterior probability intervals for ∆η reveals significant differences in selection on individual

codons (Figure 4.2). Dividing codons into categories based on physicochemical properties of

the amino acids (to ease visualization and to determine if there are patterns based on amino

acid properties), we find that 10 of the 18 amino acids with more than one synonymous

codon have at least one codon that differs between secondary structures: alanine (A), glycine

(G), aspartic acid (D), serine (S4 and S2), phenylalanine (F), leucine (L), valine (V), lysine

(K), arginine (R), and proline (P). For example, selection on codons GCC (A) and GTA

(V) appears to differ across all 3 secondary structures (Figure 4.2C, F, I). Interestingly,

most of the significantly different codons code for non-polar, hydrophobic amino acids. A

similar analysis breaking up amino acids into those with 2, 4, and 6 synonymous codons

revealed that most of the significant differences were in the 4-codon amino acids (Figure

4.3). Notably, some amino acids demonstrating significantly different codon usage between

secondary structures play specialized roles in the formation of these secondary structures or
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exhibit interesting properties. For example glycine and proline are noted for destabilizing α-

helices and β-sheets (Li et al., 1996). Although avoided in the β-strand portions of β-sheets,

glycine and proline are often used in loops connecting β-strands. Glycines are generally less

destabilizing if found at the termini of α-helices (Serrano et al., 1992) and have been noted

for increasing the flexibility of alpha-helical transmembrane domains (Dong et al., 2012;

Jacob et al., 1999).
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Figure 4.2: Comparison of selection coefficients ∆η for different secondary structures and
amino acid types, normalized such that ∆η represents either selection for codons ending
with a purine (A|G) or pyrimidine (C|T). Positive values represent selection for codons
ending with G or T and negative values represent selection for codons ending with A or C.
An asterisk (*) indicates a codon with non-overlapping 95% posterior probability intervals.
(A–C) Selection coefficients in coils vs α-helices. (D–F) Selection coefficients in coils vs
β-sheets. (G–I) Selection coefficients in α-helices vs β-sheets.
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Figure 4.3: Comparison of selection coefficients ∆η for different secondary structures and
number of synonymous codons per amino acid, normalized such that ∆η represents selection
for codons ending with a purine (A|G) or pyrimidine (C|T). Positive values represent selection
for codons ending with G or T and negative values represent selection for codons ending with
A or C. An asterisk (*) indicates a codon with non-overlapping 95% posterior probability
intervals. (A–C) Selection coefficients in coils vs α-helices. (D–F) Selection coefficients in
coils vs β-sheets. (G–I) Selection coefficients in α-helices vs β-sheets.
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4.3.2 Intrinsically-disordered regions have a minor impact on

results

Zhou et al. (2015) concluded the differences in codon usage between protein secondary

structures were actually driven by differences in selection codon usage in intrinsically-

disordered regions. Although Zhou et al. (2015) found differences in codon usage between

protein secondary structures (also predicted using PsiPred), these differences disappeared

after removing all codons predicted to be in a disordered regions using IUPRED2.

We performed a similar analysis in which codons predicted to be disordered by IUPRED2

were treated as a separate category. Consistent with Zhou et al. (2015), most predicted

disordered regions were also predicted to be coils (Table 4.4). The model fit improved

significantly over the model which only considered the three secondary structure categories

(DIC = 5,789,430, ∆DIC = −570). However, we found that the previously observed

differences between β-sheets and coils disappeared (Figure 4.4). Upon closer examination,

the removal of the disordered regions had a minor impact on the individual ∆η estimates:

most of the codons which were significant before removal of disordered regions remained

significant (Figure 4.5). For example, when comparing β-sheets and coils, codons AAA (K),

GTA (V), and CGC (R) are no longer significantly different after removal of disordered

regions. However, codons GAC (D), TTC (F), GCC (A), GGA (G), GGC (G), TCC (S4),

and CCC (P) all remain significant. The most apparent difference after removal of disordered

regions is codon AGC (S2), which goes from being indistinguishable from its synonym AGT

in coils to being selected against in coils (Figure 4.5A and D).
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Table 4.4: Breakdown of predictions by PsiPred (secondary structures) and IUPRED2
(disordered). Each value represents the number of amino acids falling into the corresponding
categories. The percentages are relative to total number of amino acids predicted to be
structured and disordered.

Structured Disordered

Coil 1,015,435 (0.43) 451,974 (0.79)

α-helix 1,062,128 (0.45) 106,645 (0.19)

β-sheet 281,425 (0.12) 13,899 (0.02)
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Figure 4.4: Comparison of ∆η estimates between different protein secondary structures
after removal of intrinsically disordered regions. Black dots represent ∆η values for each
codon, while error bars represent the 95% posterior probability intervals. The Deming
regression slope and 95% confidence intervals are represented by solid and dashed black
lines, respectively. (A) Coil vs. α-helices. (B) Coil vs. β-sheet. (C) α-helices vs. β-sheet.
Only the coil vs. β-sheet appears to have significantly different codon usage based on the
Deming regression, but this effect is small.
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Figure 4.5: Comparison of selection coefficients ∆η for different secondary structures (after
removal of intrinsically disordered regions), normalized such that ∆η represents selection for
codons ending with a purine (A|G) or pyrimidine (C|T). Positive values represent selection
for codons ending with G or T and negative values represent selection for codons ending with
A or C. An asterisk (*) indicates a codon with non-overlapping 95% posterior probability
intervals.
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4.3.3 Simulations suggest differences in codon usage reflect real

biological signals

It is possible that there are underlying biases in the data that we are not accounting for,

resulting in signals of differential selection on codon usage that are actually artifacts. The

S. cerevisiae genome was simulated treating selection on codon usage within all secondary

structures as the same (i.e. ∆η parameters were the same between secondary structures),

and analyzed with ROC-SEMPPR using the same process as described in Material and

Methods. Unlike the analysis of the real genome, we did not detect any significant differences

in selection on codon usage using the simulated data, consistent with expectations (Figure

4.6). Some codons appear to deviate from the y = x line, but many of these codons tend

to have wider 95% posterior probability intervals. These results suggests the signals we are

detecting from the real S. cerevisiae genome reflect actual differences in selection on codon

usage between protein secondary structures.
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Figure 4.6: Comparison of selection coefficients ∆η estimated from simulated data for
different secondary structures and amino acid types, normalized such that ∆η represents
selection for purine (A|G) or (C|T) ending codons. Positive values represent selection for
codons ending with G or T and negative values represent selection for codons ending with
A or C. An asterisk (*) indicates a codon with non-overlapping 95% posterior probability
intervals. (A–C) Selection coefficients in coils vs α-helices. (D–F) Selection coefficients in
coils vs β-sheets. (G–I) Selection coefficients in α-helices vs β-sheets.

4.4 Discussion

Using a mechanistic model rooted in population genetics, we found evidence that selection on

codon usage varies between protein secondary structures. We find that α-helices, β-sheets,

81



and coils demonstrate subtle but distinct patterns of codon usage bias. Further examination

of the 95% posterior probability intervals for natural selection parameter ∆η reveals 10 of the

18 amino acids with more than one synonymous codon have at least one codon demonstrating

a significant difference in selection between secondary structures. Previous work found

no differences in codon usage between secondary structures after removing intrinsically

disordered regions (Zhou et al., 2015). Using our approach, we found that most codon-

specific differences between secondary structures remained after removal of the intrinsically

disordered regions, contradictory to Zhou et al. (2015). This is because our method allows

for testing for codon-specific differences in selection between secondary structures, which

may have been masked by the CAI-based approach used by Zhou et al. (2015).

Although we detect significant differences in codon usage between secondary structures,

it should be emphasized these differences are small. For the most part, the favored codon

does not change across protein secondary structures. If differences in codon usage between

secondary structures are due to small differences in selection for translation efficiency, then

our results are consistent with the interpretation of Weinberg et al. (2016). Using ribosome

profiling data, Weinberg et al. (2016) found that ribosome densities did significantly differ

between protein secondary structures, but these differences were minor, suggesting selection

for inefficient regions was likely very weak or was present for a small percentage of secondary

structures. We note that from earlier simulations using approximately 1,000 genes, ROC-

SEMPPR was able to clearly detect differences in selection between regions even if only 1%

of sites in a region was under selection for translation inefficiency (Figure 2.3). However, we

detected smaller effects using all nuclear protein-coding genes in S. cerevisiae (approximately

6,000 genes), suggesting the number of sites under different selective pressures between

secondary structures is likely << 1%

Although the difference is small, β-sheets demonstrate the clearest difference in selection

on codon usage, with selection on codon usage approximately 5% stronger in β-sheets

relative to coils. Previous work in S. cerevisiae obtained a similar result, with β-sheets

having the highest frequency of conserved “optimal” codons (Pechmann and Frydman,

2013). Unlike previous work, our approach identifies the specific amino acids and codons

on which selection appears to differ, rather than broadly classifying codons as optimal or
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non-optimal. Pechmann and Frydman (2013) concluded this increased frequency of optimal

codons was due to increased selection for translation accuracy in β-sheets, which have a

greater frequency of hydrophobic amino acids and propensity to aggregate compared to

other secondary structures. Empirical work suggests missense substitutions in β-sheets tend

to be more destabilizing than in α-helices (Guo et al., 2004).

Previous work concluded selection on codon usage varies at the termini of secondary

structures (Pechmann and Frydman, 2013; Saunders and Deane, 2010), but we find no

support for these hypotheses. Notably, Saunders and Deane (2010) concluded codon usage

varied at the N-terminus and C-terminus of secondary structures in E. coli, which was

proposed to help these structures form. However, this result was only statistically significant

only when using tRNA abundances as a metric for translation speed, but was not when

using Codon Adaptation Index (CAI) or MinMax%. Metrics based on tRNA abundances

can be significantly biased by amino acid usage (Chaney and Clark, 2015; Cope et al., 2018),

as they fail to distinguish between absolute and relative rates. Ultimately, these metrics

fail to account for a potential lesser of evils in codon usage: even though an amino acid

may be overall translated inefficiently or inaccurately, one codon may still be relatively more

efficient or accurate such that it can be perceived by natural selection. An example of this

can be seen by contrasting the normalized translation efficiency (nTE) metric described in

Pechmann and Frydman (2013) with ROC-SEMPPR. Based on the nTE metric, the codons

for glutamine (Q) are both labeled as non-optimal in S. cerevisiae. However, when examining

codon frequencies as a function of protein production rates, it is clear the frequency of codon

CAA increases with protein production rates (Gilchrist et al., 2015; Shah and Gilchrist, 2011),

indicating the differences in efficiency or accuracy between CAA and CAG are perceived by

natural selection.

Most of the codons demonstrating significant differences between secondary structures

are 4-codon, hydrophobic amino acids. Notably, hydrophobic amino acids are more likely

to be found buried within the core of the protein. Previous work concluded optimal codons

were preferred at buried sites, which was thought to be due to missense errors in the core of a

protein being more destabilizing than missense errors in the hydrophilic, exposed regions of

the protein (Zhou et al., 2009). Future work will incorporate tertiary structure information to
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determine if the apparent differences in protein secondary structure. Furthermore, previous

work examined the differences in codon usage between structured and disordered regions

(Homma et al., 2016; Zhou et al., 2015). Although we removed disordered regions to

determine if they were a confounding factor in our analysis, we did not directly examine

differences in selection between structured and disordered regions. Future work will examine

differences in selection on codon usage as it relates to structured and disordered regions.

4.5 Conclusions

Empirical work has consistently demonstrated that changes in synonymous codon usage can

alter the fold of the protein. However, a challenge has been identifying how and when codon

usage can alter the fold of the protein. Previous work has largely relied on comparing codon

frequencies between secondary structures (e.g. χ2 tests), comparing differences in heuristic

measures of codon usage (e.g. Codon Adaptation Index) between secondary structures, or

identifying conserved regions of “optimal” or “non-optimal” codon usage across species. An

alternative is to examine selection on codon usage using models rooted in population genetics,

which allow for codon-specific estimates of the direction and strength of selection on codon

usage. Codon-specific estimates of selection can be compared between structural elements to

determine differences in selection, as demonstrated here using protein secondary structures.

However, our work (as well as previous work) cannot distinguish if these differences are

due to factors related to translation efficiency or accuracy. Both translation efficiency and

accuracy are known to impact protein folding. Although it is often assumed the most efficient

codon is also the most accurate, this is not necessarily the case (Shah and Gilchrist, 2010).

Further work is needed to distinguish between these two evolutionary forces using population

genetics-based models, as well as how they shape codon usage in protein structures.

84



Chapter 5

An integrated guilt-by-association

approach to characterize proteins of

unknown function (PUFs) in

Clostridium thermocellum DSM 1313

as potential genetic engineering

targets

The following is a slightly modified version of the manuscript

Poudel, S.*, Cope, A.*, O’Dell, K., Guss, A., Seo, H., Trinh, C., Hettich, R. (2020).

An integrated guilt-by-association approach to characterize proteins of unknown function

(PUFs) in Clostridium thermocellum DSM 1313 as potential genetic engineering targets.

mSystems. In review.

* Suresh Poudel and Alexander L. Cope contributed equally to this work

My contribution to this work included co-expression network construction and analysis,

functional annotation via Pannzer2, phylogenetic tree visualization, and writing of the

manuscript. S. Poudel contributed equally

85



5.1 Introduction

The number of publicly available genomes has increased exponentially since the release of the

first completely sequenced bacterial genome almost two decades ago. While improvements

in sequencing technology have made it possible to quickly sequence and assemble complete

genomes, a remaining challenge is the identification of functional components within the

genome. Following assembly and identification of open-reading frames (ORFs), functional

annotations of ORFs are obtained via sequence homology-based annotation tools. Functional

annotation tools are powerful, but lack of sequence conservation across divergent species

can make it challenging for algorithms to confidently identify potential functions for some

proteins. This is evident by a large number of protein sequences currently lacking functional

annotations, termed here as “proteins of unknown function” (PUFs), despite improvements

in gene identification and functional annotation tools (Webb and Sali, 2014). As defined

here, PUFs refer strictly to proteins labeled as “hypothetical proteins,” “domains of

unknown function” (DUFs), or “uncharacterized proteins.” Although some proteins may

have ambiguous annotations, a vague annotation provides some indication of function. As

of March 2020, a total of 17929 domains were deposited in the Pfam database, with 5792

domains (32% of the total) containing the keyword “unknown function” (Finn et al., 2014).

Reports suggest almost 40% of the Protein Data Bank (PDB) entries are categorized under

“unknown functions” (Nadzirin and Firdaus-Raih, 2012). Previous efforts have been made

to predict the biochemical functions for protein structures of unknown function (Mills et al.,

2015) and to characterize essential DUFs (Goodacre et al., 2013). Empirical functional

characterization of proteins is challenged by the large amount of sequencing data currently

available and the low-throughput nature of characterization experiments. An alternative

approach is to use interaction or co-expression data produced via high-throughput, genome-

scale measurements to identify proteins of known function with which a PUF is associated,

a concept often referred to as “guilt-by-association” (GBA) (Gillis and Pavlidis, 2011, 2012).

GBA operates under the reasonable assumption that if two proteins physically interact

or are co-expressed with one another, they are more likely to be connected in function

(Oliver, 2000). Using the concept of GBA, PUFs that interact or co-express with proteins
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of known function may have similar functional roles, which can be confirmed via targeted

characterization experiments (Gillis and Pavlidis, 2012). Previous work suggested PUFs may

play key roles in the cellular functions of the cellulolytic bacteria, Clostridium thermocellum

and Caldicellulosiruptor bescii, which serve as model organisms for studying solubilization,

destruction, and conversion of lignocellulosic biomass into ethanol. Mass spectrometry (MS)-

based proteomic measurements revealed many PUFs that are detected in high abundance

at different growth conditions in these cellulolytic bacteria, suggesting a possible role in

the metabolism of cellulose or other key cellular processes. Differential protein abundances

of many PUFs depend on the experimental conditions. For example, C. bescii exhibited

differential abundance of 37 PUFs driven by the nature of the cellulosic substrates used in the

growth media (Poudel et al., 2018). Similarly, C. thermocellum possess many PUFs found to

be highly and/or differentially abundant across strains including one wildtype plus 3 mutant

strains (Tian et al., 2016). For example, PUF Clo1313 1790 was highly abundant across

all strains, suggesting an important functional role even in mutants which had undergone

adaptive evolution. Some PUFs were highly abundant in mutants, but not in the wild-

type strain, while other PUFs showed differential abundance across mutant strains. Such

differential and co-expression information can be used to determine conditions which affect

the expression of PUFs and hypothesize possible functional roles. Several attempts have

been made to engineer C. thermocellum strains to produce bioethanol as the major cellulose

degradation product at high yield (Argyros et al., 2011; Deng et al., 2013; Biswas et al.,

2014, 2015; Papanek et al., 2015), but none of these attempts have matched conventional

bioethanol producers, such as Saccharomyces cerevisiae and Zymomonas mobilis. Given

approximately 20% of the C. thermocellum genome consists of PUFs, the goal of this

work is to identify putative functional roles for PUFs in C. thermocellum, with a focus

on PUFs which may play a role in cellulose degradation and ethanol production. A time-

course MS-based proteomics study was performed with C. thermocellum DSM1313 wild-

type (∆hpt) and the evolved LL1210 strain to assess differential and co-expression of PUFs.

The latter strain was chosen to analyze PUF expression in a strain experimentally evolved

to increase ethanol production. Empirical evidence was leveraged with various functional

prediction tools, structural modeling, phylogenetic analysis, and gene regulatory information
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to hypothesize putative functional roles for many PUFs in C. thermocellum. In an attempt

to validate functional predictions derived here, PUF candidates which could be tested and

verified by a measurable phenotype effect, either in-vitro or in-vivo, were identified. This

is a very difficult and unpredictable process with the risk of no positive return. A range

of PUFs were considered and the best validation candidate selected. From this, PUF

WP 003519433.1 was empirically validated, showing clear evidence to support the predicted

alcohol acetyltransferase activity.

5.2 Materials and Methods

5.2.1 Bacterial Strains and Culture Conditions

C. thermocellum strains DSM 1313 ∆hpt (Argyros et al., 2011) and LL1210 (Tian et al.,

2016) were used in this study. Strains ∆hpt and LL1210 were each grown inside a Coy

anaerobic chamber (Coy Laboratory Products, Grass Lake, MI) at 55◦C in quadruplicate

500 mL (total vessel capacity 1L) cultures in MTC5 media supplemented with 2 mM sodium

formate. Samples for proteomic analyses were collected in 50 mL aliquots for timepoints

corresponding to early-log, mid-log, and late-log of growth for both strains. Additional

sample was collected for the lag phase of growth for a total of four sampling events for strain

LL1210. Cells were centrifuged (3,600 g) in 50 mL tubes for 10 min, immediately quenched

with liquid nitrogen, and the supernatants were discarded. The samples were then stored at

-80◦C.

5.2.2 Proteome analyses using LC-MS/MS

The ∆hpt and LL1210 strains of C. thermocellum were proteolytically digested (trypsin)

for nano-LC-MS/MS analysis. An automated 2D LC-MS/MS analysis was carried out for

the peptide samples using an Ultimate 3000 connected in-line with a Qexactive Plus mass

spectrometer (Thermo Scientific). A triphasic MudPIT back column (RP-SCX-RP) was

coupled to an in-house pulled nanospray emitter packed with 30 cm 5m Kinetex C18 RP

resin (Phenomenex). For each sample 12 g of peptides were loaded and cleaned to remove
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salts (if any) and was separated and analyzed across two successive salt cuts of ammonium

acetate (50mM and 500mM), each followed by 105min organic gradient. LC-resolved peptides

were analyzed by data-dependent acquisition (DDA) on the QExactive MS.

5.2.3 MS database searching, data analysis and interpretation

A non-redundant database was made by combining GenBank and RefSeq C. thermocellum

proteome databases. The proteins were grouped at 100% identity using CD-Hit (Li and

Godzik, 2006). MS/MS spectra were searched against this proteome database concatenated

with cRAP databases (ftp://ftp.thegpm.org/fasta/cRAP) consisting of common contami-

nants using Tide-search (Diament and Noble, 2011) keeping a static modification on cysteine

(+57.0214 Da), and a dynamic modification to an oxidation (+15.9949 Da) of methionine.

Tide-search was followed by Percolator (Käll et al., 2007) with default parameters to assign

spectra to peptides (peptide-spectrum matches; PSM). Retention times of each PSM were

extracted parsing mzML file with in-house script and MS1 apex intensities were assigned

using moFF (Argentini et al., 2016). The moFF parameters were set to 10 ppm for the

precursor mass tolerance, 4 minutes for the XIC time window, and 1 minute (equivalent to

60 seconds) to get the apex for the ms2 peptide/feature. The peptide intensities from were

summed to their respective proteins per sample. Protein intensities were then normalized

by protein length and overall abundance per MS run. Each protein required a minimum of 2

peptide and 2 PSMs to become a valid protein. Thus, the obtained normalized intensities of

proteins were considered valid if a protein exists in 2 out of 4 replicates. Protein abundance

distributions were then normalized across samples and missing values imputed to simulate

the mass spectrometer limit of detection.

5.2.4 Generation of co-expression networks

Co-expression networks were generated based on the imputed protein abundances. The use

of co-expression networks to determine proteins of related function is based on the concept

of GBA - proteins (represented by a node) linked in the co-expression network are expected

to reflect a biological relationship. Thus, PUFs and DUFs which are linked with proteins
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of known function are expected to have similar functionality. Networks were generated

for the ∆hpt and LL1210 strains individually, as well as combined data across strains. In

the individual strains, data missing from over 50% of measurements were excluded. For

the combined strains, due to the increased number of timepoints, we increased our missing

data cutoff to those missing in over 75% of measurements. Pairwise Pearson correlations

were calculated from quantile normalized protein abundances across time points. Proteins

were considered connected if they were in the top 1% of the greatest Pearson correlation

coefficients. The Markov Clustering Algorithm (MCL) was used to remove spurious edges

and generate subnetworks of tightly linked proteins, as implemented in the clusterMaker

Cytoscape plug-in (Morris et al., 2011).

Gene Ontology (GO) enrichment analysis was performed for all subnetworks using the

Cytoscape plug-in BINGO (Maere et al., 2005). Subnetworks were also analyzed using

the guilt-by-association R package, EGAD (Ballouz et al., 2017). Subnetworks were also

examined manually to determine if any exhibited an interesting pattern.

Visualization of co-expression networks was performed using the Python library igraph

(Csárdi and Nepusz, 2006), as well as manual manipulation of annotations to improve

readability.

5.2.5 Sequence-based functional predictions

In addition to network analysis, other relevant functional features of PUFs were interrogated

via a suite of protein sequence homology approaches. All tools were run with default

settings unless otherwise stated. To identify possible enzymatic activity, enzyme commission

(EC) numbers and KEGG terms were taken from Pannzer2 (Törönen et al., 2018) and

BlastKoala (Kanehisa et al., 2016), respectively. To allow for more liberal functional

predictions, Pannzer2 was run allowing for 80% minimum alignment length, minimum query

and subject coverage of 0.6, and a minimum of sequence identity of 0.4. Functional/domain

prediction was also performed using eggNOG-mapper (Huerta-Cepas et al., 2017) and

InterProScan (Zdobnov and Apweiler, 2001). Gene Ontology terms were pulled from

Pannzer2, InterProScan, and eggNOG-Mapper. Structural and cellular localization features
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of PUFs were further interrogated using SignalP (Petersen et al., 2011), TMHMM (Krogh

et al., 2001), and Swiss-Model servers to determine relevant structural properties.

5.2.6 Gene regulatory information

Genes which are under the same regulatory control often serve related functions within the

cell. Operon information, including annotations, for C. thermocellum was pulled from the

DOOR database (Mao et al., 2014).

5.2.7 Phylogenetic gene trees

Building a local BLAST database using UniProtKB

To examine possible evolutionary relationships of PUFs with proteins of known function,

phylogenetic gene trees were created. Homologs for the PUFs of interest were found using

blastp in the BLAST+ software suite (Altschul et al., 1990; Camacho et al., 2009). FASTA

files from Swiss-Prot and TreEMBL were downloaded from UniProtKB, and used to create

a custom protein sequence database. All C. thermocellum PUFs and DUFs were queried

against the custom database using an E-value cut off of 10−5. The searches were done in

CADES server at ORNL.

Multiple Sequence Alignment using MAFFT

Following the BLAST homology search, detected homologs for each PUF were aligned using

the multiple sequence alignment (MSA) tool MAFFT (Katoh et al., 2002), using the auto

feature to automatically select an appropriate alignment strategy for the given query. The

estimation of a highly accurate MSA is necessary to have low error rates when computing the

phylogenetic gene trees (Capella-Gutiérrez et al., 2009; Liu et al., 2010) and this was achieved

by using the automated feature of the MSA trimming tool TrimAl (Capella-Gutiérrez et al.,

2009).
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Phylogenetic gene trees using FastTree

FastTree can compute approximately-maximum-likelihood phylogenetic trees from MSA

involving protein sequences or nucleotide sequences (Price et al., 2010). Phylogenetic

genes trees were generated for a protein alignment using the JTT+CAT model, where JTT

(Stamatakis, 2006) is a model for amino acid evolution and CAT is the an approximation

used to account for the varying rates of sequence evolution across amino acid sites (Jones

et al., 1992). Phylogenetic trees were visualized using the ggtree R package (Yu et al., 2017).

5.3 Results

A visual outline of the GBA approach described in this manuscript is presented in Figure 5.1,

which illustrates how the MS-based proteome information is first connected with expression

networks and then interrogated with a variety of informatic and structural prediction tools.

PUFs that revealed strong evidence across multiple GBA lines obviously provided stronger

evidence of putative functional classification. A total of 1975 proteins out of 3033 possible

proteins (65%) were quantified across all time points in both C. thermocellum strains (∆hpt

and LL1210). The overall Venn-diagrams for both strains are shown in Figure 5.2 and reveal

the level of overlap vs. uniqueness. Interestingly, a majority of proteins were observed

in both experimental strains (Figure 5.2C). In both experimental strains, each time point

had several unique proteins. In total, 344 PUFs were identified via LC-MS/MS and were

interrogated with GBA and sequence homology-based analyses.
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Figure 5.1: A pipeline summarizing the guilt-by-association and functional annotation
approaches used in this study. The 344 PUFs measured via LC-MS/MS were subjected to co-
expression analysis using GO enrichment and EGAD. Structural modeling with SwissModel
was used to determine structural templates which best fit a PUFs protein sequence. Domain
and function prediction were performed using InterProScan, eggNOG-mapper, BlastKoala,
and Pannzer2. Phylogenetic gene trees were generated from a homology search in BLAST,
followed by alignment of the top 200 hits and tree construction using FastTree. Regulatory
information based on shared operons was extracted from the DOOR database.
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Figure 5.2: Venn-diagrams of proteins identified across different time points (TP) with
respect to experimental strains and between experimental strains. (A) ∆hpt strain time
points 1 (early log-phase) through 3 (late-log phase). (B) LL1210 strain time points (TP) 1
through 4. (C) ∆hpt versus LL1210.

5.3.1 Comparison of ∆hpt and LL1210 reveals differential protein

expression of both known and unknown (PUF) proteins.

The proteome data was used to investigate the temporal protein abundance patterns in

∆hpt and LL1210 strains. One-way ANOVA revealed 303 and 457 proteins with statistically

significant changes in abundance (p < 0.05) across time points in hpt and LL1210,

respectively. These proteins fall into one of four clusters for each strain based on C-

means clustering of temporal protein abundance profiles. Briefly, two clusters in each

strain indicated enrichment of Gene Ontology (GO) terms (cluster ids hpt C3, hpt C4,

LL1210 C1, and LL1210 C2). Enriched GO terms represented processes related to amino

acid metabolism, chemotaxis, oxidation-reduction process, pyridoxal phosphate binding,

NAD binding, and polysaccharide binding. Notably, each cluster contained PUFs. By GBA,

these PUFs could function in the biological processes and molecular functions represented

by the enriched GO terms.

315 unique proteins, including 46 PUFs, were found to be differentially abundant between

the two strains in at least one time point. For all time points, proteins related to cellular
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motility (chemotaxis, flagella production, etc.) appeared to be up-regulated in the ∆hpt

strain relative to the LL1210 strain. This down-regulation of cellular motility related terms

has previously been observed in the LL1210 strain (Whitham et al., 2018). Given that

cellular motility can be an energetically costly process, the already slow-growing strain with

a heavily perturbed proteome could down-regulate cellular motility processes to channel ATP

to other key cellular processes.

In early-log phase, LL1210 appears to up-regulate proteins related to oxidoreductase

activity, pantothenate catabolism, nitrogen fixation, and nitrogenase activity. Importantly,

previous work in various strains of C. thermocellum has established up-regulation of nitrogen

metabolism as a method for coping with various biological stresses (Yang et al., 2012; Wilson

et al., 2013; Whitham et al., 2018). The increased levels of nitrogen metabolism related

proteins are thought to help the bacteria resume growth (Yang et al., 2012). Of the 53

proteins up-regulated in early-log phase for LL1210, 9 of these are PUFs. In the late-log

phase, GO terms related to oxidoreductase activity and nitrogenase activity also are up-

regulated relative to ∆hpt. The up-regulation of oxidoreductase and nitrogenase related

proteins in LL1210 is likely to help restore redox balance in the cell. Of the 45 proteins

up-regulated in late-log phase for LL1210, 11 of these are PUFs. No enriched GO terms

were found for the up-regulated proteins in LL1210 for mid-log phases 1 and 2.

In contrast, ∆hpt appears to up-regulate processes related to sulfate reduction and

molecular transducer activity, in addition to cellular motility related processes, relative to

the LL1210 strain in the late-log phase. Of the 109 proteins found to be up-regulated in the

hpt strain at late-log phase, 17 were PUFs. Notably, previous work found down-regulation

of sulfate reduction related proteins in LL1210 under pH stress (Whitham et al., 2018). As

with the apparent reduction of cell motility genes, it is thought the down-regulation of sulfate

reduction genes in LL1210 may be to conserve ATP. In total, these differential proteome

results will be used as the starting point for examining the related functionality of the

PUFs, as determined by co-expression network construction. Specific PUFs discussed in this

manuscript (including those in Supplementary Results) will be noted as being differentially

expressed if they fall into one of the 8 temporal clusters or indicate differential expression

between strains at a specific time point.
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5.3.2 Co-expression network analysis

To gain a more global view of the potential role of PUFs in C. thermocellum, co-expression

networks from protein abundance data (whether or not these protein differed significantly

across time points) were created for the individual strains and combining data from both

strains. These co-expression networks were interrogated to identify functionally informative

subnetworks. Following filtering and network clustering by the MCL algorithm, 260 out of

344 PUFs demonstrated significant co-expression patterns with at least one protein, allowing

for the application of GBA approaches to hypothesize potential functions. Note that these

co-expression networks in and of themselves do NOT infer PUF function directly, but rather

are used to provide abundance linkage connections which suggest related metabolic activities

and therefore provide a starting point for the subsequent GBA analyses.

It would be impossible to comprehensively describe all PUFs with sufficient evidence

to hypothesize a potential function from this dataset in this chapter. The section below

details characterization of some of the PUFs deemed to be of interest due to their apparent

relevance in cellulose degradation, ethanol production, and cellular redox balance. Functional

information for several other C. thermocellum PUFs can be found in Table 5.1.
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Table 5.1: A summary of the proteins of unknown function (PUFs) identified as being
strong candidates for further characterization. Some of these PUFs are described in detail
below.

PUF/DUF Possible Function Coexpress Gene Tree Operon Structure

WP 003512015.1 Rubredoxin Y Y NA Y

WP 003519433.1 Alcohol Acetyltrans-

ferase

Y Y NA Y

WP 003516357.1 ABC Transporter Y Y NA Y

WP 003511984.1 Glycoside Hydrolase Y Y NA Y

WP 003518957.1 ABC Transporter

Regulator

Y Y NA Y

WP 003513693.1 Glycoside Hydrolase Y Y Y Y

WP 003515370.1 ABC Transporter Y N Y N

WP 003518396.1 Glycoside Hydrolase Y Y NA Y

WP 003519067.1 NADH

Dehydrogenase

Y Y Y Y

WP 014522642.1 Cellulosome

Structural Protein

Y N N Y*

WP 014522644.1 Cellulosome

Structural Protein

Y N Y Y

WP 014522638.1 Cellulosome

Structural Protein

Y N Y Y*

WP 095522196.1 Cellulosome

Structural Protein

Y N Y Y*
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5.3.3 PUF WP 003512015.1: Evidence for a Rubredoxin protein

GBA evidence suggests that WP 003512015.1 is a rubredoxin, a protein consisting of one

Fe atom that serves as an electron carrier. The empirical evidence here comes primarily

from the LL1210 strain. The LL1210 subnetwork containing WP 003512015.1 is enriched in

the GO term iron ion binding, and EGAD finds this GO term to be predictive within this

subnetwork (Figure 5.3A). Noting rubredoxins contain an iron atom, this is consistent with

WP 003512015.1 as a rubredoxin. Closer examination of this LL1210 subnetwork reveals

WP 003512015.1 shares connections with two pyruvate oxidoreductases. As pyruvate serves

as starting material for the synthesis of valine, this PUF may play a role in the observed

accumulation of valine in the LL1210 strain.
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Figure 5.3: Identification of a possible rubredoxin, PUF WP 003512015.1. (A) Co-
expression subnetwork extracted from LL1210 protein abundance data via MCL. Red and
green nodes indicate PUFs (hypothetical proteins) and DUFs, respectively. (B) Best fitting
structure of known function from PDB, 1H7V, which is a rubredoxin from G. theta (sequence
similarity 0.42 and coverage 0.32).(C) Phylogenetic gene tree for WP 003512015.1 indicates
this protein is closely related to many rubredoxin proteins.
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Sequence homology-based evidence strongly supports WP 003512015.1 as a rubredoxin.

The best fitting structure from SwissModel is a rubredoxin protein found in Guillardia theta

(PDB 1H7V, Figure 5.3B), but many other structures were annotated as rubredoxins or

rubredoxin-like proteins. Furthermore, examination of the phylogenetic gene tree reveals

WP 003512015.1 is closely related to many rubredoxin proteins annotated in UniProt

(Figure 5.3C). Although WP 003512015.1 does not share an operon with any proteins, it

is annotated as a rubredoxin-type Fe(Cys)4 protein in the DOOR database (Mao et al.,

2014), consistent with the co-expression and homology-based analyses. This result also

highlights the limitations of the RefSeq and GenBank repositories to reflect the most up-to-

date functional annotations.

We note that PUF WP 003512015.1 also falls into temporal cluster LL1210 C1, which

is enriched in GO terms related to macromolecule catabolism, polysaccharide-binding,

translational termination, and protein-complex disassembly. Consistent with enrichment

of functions related to macromolecule catabolism and polysaccharide-binding, EGAD finds

GO terms related to xylan metabolic processes and hydrolase activity to be predictive within

the LL1210 subnetwork containing WP 003512015.1. Noting that LL1210 is a mutant strain

driving cellulose degradation towards ethanol production, the additional stress on the cell

by the altered pathway could be compensated for by restoration of redox balance. It is

hypothesized WP 003512015.1 may partially be responsible for assisting in restoration of

redox balance in the LL1210 strain, explaining its observed co-expression with proteins

involved in cellulose degradation.

5.3.4 PUF WP 003516357.1: Evidence for an ABC transporter

PUF WP 003516357.1 is differentially expressed in late log-phase between the ∆hpt and

LL1210 strains, indicating a possible role in cell motility and (transmembrane) signaling

receptor activity. Co-expression support for ABC transporter function is strong. Although

the ∆hpt subnetwork does not have any significant results based on GO-enrichment

analysis or EGAD, WP 003516357.1 is connected to three other proteins: another PUF

(WP 00351867.1), an ABC transporter ATP-binding protein, and a ParA family protein

(Figure 5.4A). The ParA family proteins include membrane-associated ATPases which
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function to position protein structures, including chemotaxis proteins, transfer machinery,

type IV pili, and cellulose synthesis. WP 003516186.1, which is annotated in DOOR and

predicted by Pannzer2 to be a sodium pump decarboxylase subunit gamma, is also present in

the network. Furthermore, WP 00351867.1 is found in a dense subnetwork within combined

strains co-expression network, with EGAD finding GO terms related to ATP-binding, signal

transduction, and phosphorelay sensor kinase activity to be predictive. This network is also

enriched in GO terms mostly related to signal transduction and chemotaxis. Consistent

with this, WP 003516357.1 does appear to be differentially expressed between the ∆hpt and

LL1210 strain, with most of these proteins related to (transmembrane) signal transduction

and chemotaxis.
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Figure 5.4: Identification of a possible ABC transporter, PUF WP 003516357.1. (A) Co-
expression subnetwork extracted from the hpt protein abundance data via MCL. Red and
green nodes indicate PUFs (hypothetical proteins) and DUFs, respectively. (B) Best fitting
structure of known function from PDB, 5IBQ, which is annotated as a probable ribose ABC
transporter, substrate binding protein (sequence similarity 0.27 and coverage 0.67). (C)
Phylogenetic gene tree for WP 003516357.1, which is closely related to proteins related to
ABC transport systems.
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WP 003516357.1 has strong structural support for annotation as an ABC transporter.

A large portion of the protein structures matched to WP 003516357.1 are annotated as

ABC transporters, many of which are specific to carbohydrate/sugar transport. Other

protein structures matched to WP 003516357.1 are consistent with a membrane type protein,

e.g. membrane lipoprotein structures. The best fitting structure of known function is

annotated as a probable ribose ABC transporter, substrate binding protein (PDB 5IBQ,

Figure 5.4B). Additionally, five of the matched structures were related to the transport of

arabinose, a monosaccharide found in the hemicellulose of plant cell walls. WP 003516357.1

is found in the ∆hpt network with an intracellular arabinofuranisodase (WP 003513072.1).

If WP 003516357.1 is involved in arabinose transport, then it is no surprise that it is

co-expressed with an arabinose metabolism protein, as well as the possible cellulosome

PUFs WP 014522642.1 and WP 014522644.1. Taken together, this evidence suggests

WP 003516357.1 is an ABC transporter involved in arabinan degradation and uptake.

In addition to structural evidence, InterProScan annotates this protein as a periplasmic

binding protein and an ABC-transporter, substrate binding protein. The gene tree supports

this protein as an ABC transporter. WP 003516357.1 is most closely related to a membrane

protein, but ABC transporters and ABC-type uncharacterized transporters are also present

in the gene tree (Figure 5.4C).

5.3.5 PUF WP 003511984.1: Evidence for a Glycoside Hydrolase

During the process of our data analysis for this study, we focused attention on PUF

WP 003511984.1, as we had strong GBA evidence that it was a glycoside hydrolase.

Interestingly, in the most recent reannotation of the C. thermocellum genome, this protein

is now labeled as a putative glycoside hydrolase. Since our examination of this protein

was completed in the absence of that information, we hereby present below the evidence

we had that converged on the same functional assignment that the reannotation gave.

WP 003511984.1 was found in subnetworks for both the ∆hpt and LL1210 strains (Figure

5.5A). EGAD revealed predictive GO terms related to carbohydrate metabolism in the ∆hpt

network, while the LL1210 subnetwork was enriched in terms related to racemase activity,

acting on amino acids and derivatives. Racemases are known to use pyridoxal phosphate
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as a cofactor. Previous work suggested that pyridoxal phosphate-dependent enzymes in

C. thermocellum ATCC27405 may be used to re-balance energy requirements during stress

(Yang et al., 2012). Given LL1210 is stressed by a perturbed cellulose degradation pathway,

it seems reasonable a glycoside hydrolase potentially involved in cellulose degradation is

co-expressed with a racemase protein in the LL1210 strain.
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Figure 5.5: Identification of a possible glycoside hydrolase, PUF WP 003511984.1. (A)
Co-expression subnetwork extracted from the ∆hpt (top) and LL1210 (bottom) protein
abundance data via MCL. Red and green nodes indicate PUFs (hypothetical proteins) and
DUFs, respectively. (B) Best fitting structure of known function from PDB, 5OQ2, which is
protein Cwp19 in C. difficile and contains a glycoside hydrolase domain (sequence similarity
0.28 and coverage 0.70). (C) Phylogenetic gene tree for WP 003511984.1 indicates this
protein is closely related to a glycoside hydrolase, but many GTP-binding proteins are also
present.
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Further examination of predicted protein structures also supports WP 003511984.1 as

a glycoside hydrolase. Predicted structures include multiple beta-galactosidase structures,

consistent with results of EGAD related to carbohydrate metabolism. The best matching

structure of known function for WP 003511984.1 is annotated as Cwp19 (PDB 5OQ2). This

protein is found in Clostridium difficile, and the structure represents the glycoside hydrolase

domain of Cwp19 (Figure 5.5B).

The phylogenetic gene tree also indicates WP 003511984.1 is similar in sequence to

glycoside hydrolases (Figure 5.5C). Pannzer2 annotates this protein as a potential glycoside

hydrolase. WP 003511984.1 was predicted to have a signal peptide and a transmembrane

region. Taken together, current evidence strongly suggests this protein is a glycoside

hydrolase, but it should be noted eggNOG-mapper predicts this protein to be a GTP-binding

protein. As noted above, a recent reannotation in the RefSeq database established this as a

putative glycoside hydrolase, consistent with the results presented here.

5.3.6 PUF WP 003519433.1: Evidence and experimental valida-

tion as an alcohol acetyltransferase activity

Exploring WP 003519433.1 at several levels such as annotation using Pannzer2, eggNOG-

mapper, phylogenetic gene trees, and structural modeling all indicated that WP 003519433.1

is a probable alcohol acetyltransferase (Figure 5.6). Co-expression support for this function

was limited, but in the ∆hpt strain, it is connected to a S-malonyltransferase (Figure 5.6A),

whose function is involved in fatty acid biosynthesis. Interestingly, the phylogenetic gene

tree appears to be split between two major groups: one in which many of the proteins are

annotated as an alcohol acetyltransferase or similar function, and a group that is mostly

PUFs (Figure 5.6B). Notably, PUF WP 003519433.1 has a GO term indicating it is possibly

a membrane protein and shares an operon, a key piece of GBA evidence, with a protein

annotated in DOOR as an esterase/lipase (Figure 5.6C). Although GBA support (i.e. co-

expression and operon information) here is modest, the evidence clearly supports a potential

role as an alcohol acetyltransferase when considered in the context of the strong sequence

homology evidence. WP 003519433.1 was selected for further characterization.
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Figure 5.6: Identification of a possible alcohol acetyltransferase, PUF WP 003519433.1.
(A) Co-expression subnetwork extracted from the ∆hpt protein abundance data via MCL.
(B) Partial phylogenetic gene tree for WP 003519433.1, which is closely related to proteins
related to alcohol acetyltransferase. The complete tree contains many proteins annotated
as alcohol acetyltransferases aside from those seen in the partial tree. (C) Cartoon
representation of operon structure according to DOOR database. (D) Best fitting structure
of known function from PDB, 3FOT, which is annotated as a 15-O-acetyltransferase (0.27
sequence similarity and 0.89 sequence coverage).
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To experimentally validate alcohol acetyltransferase activity, WP 003519433.1 was N-

terminus His-tagged and expressed in E. coli. Western blot analysis of the purified

protein clearly indicated successful expression of WP 003519433.1 (Figure 5.7A), which was

then screened against a library of linear C2-C10 alcohols for acetyltransferase functional

activity. Although no activity was observed against these linear alcohols, additional screening

revealed that WP 003519433.1 has activity toward a relatively bulky aromatic alcohol 2-

phenylethyl alcohol (Figure 5.7B and C). The synthesized 2-phenylethyl acetate confirmed

WP 003519433.1 as an alcohol acetyltransferase. As this enzyme is active toward aromatic

alcohols, it likely belongs to EC 2.3.1.- and is different from EC 2.3.1.84 that has substrate

specificity toward short-chain primary alcohols (Layton and Trinh, 2014, 2016a,b; Rodriguez

et al., 2014). To elucidate the functional roles of WP 003519433.1, further investigation

will focus on characterization of C. thermocellum that overexpresses and downregulates this

enzyme under various conditions.
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Figure 5.7: (A) Western blot of WP 003519433.1 expression in E. coli. L: ladder, C:
negative control (no induction), 1: 0.1 mM IPTG, 2: 1 mM IPTG. The red box indicates
the expected protein size, 50.4kDa. (B) Total ion chromatography of high cell density E. coli
whole cell conversion of 2-phenylethyl alcohol into 2-phenylethyl acetate. E. coli harboring
empty plasmid was used a negative control. (C) Mass to charge ratio of the selected 2-
phenylethyl acetate peak.
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5.4 Discussion

Despite improvements in gene annotation procedures, a large percentage of genes remain

annotated as hypothetical proteins or domains of unknown function in commonly used

genome repositories. Although current computational pipelines for functional prediction

tools based on sequence homology are incredibly useful, they are limited to the currently

known protein sequence space and assume sequence similarity implies functional similarity.

A protein which differs significantly from any known protein sequence will present challenges

to current functional prediction tools, which may be especially problematic in cases of under-

studied taxa. Incorporating empirical information, such as co-expression or protein-protein

interaction data, can be helpful in elucidating the function of PUFs under the assumption of

guilt-by-association, in which proteins of similar function are more likely to be co-expressed

and/or interact.

To this end, we performed a comprehensive analysis of PUFs in C. thermocellum using a

combination of co-expression and sequence homology analyses to identify putative functions

for PUFs, with a focus on those potentially related to cellulose degradation, redox balance,

and ethanol production. A total of 344 PUFs were measured via LC-MS/MS. Differential

expression information and co-expression networks were generated using proteomics data

from two strains of C. thermocellum (∆hpt and LL1210). Proteins which were differentially

abundant within and across the strains showed clear enrichment of particular functions,

such as those related to cell motility. As many PUFs demonstrated differential expression

consistent with proteins of known function, it is likely at least some of these PUFs play roles

in these functions under GBA. Importantly, strain LL1210 is an experimentally evolved

strain originating from a strain with knockouts in the ethanol production pathway. Due

to these knockouts, we expect PUFs with potential functional roles in ethanol production

to be up-regulated and/or show different co-expression or temporal patterns relative to the

wild-type ∆hpt. For the co-expression network analysis, 260 PUFs showed significant co-

expression with other proteins, allowing for the application of GBA. Operon information was

also obtained for from the DOOR database, which indicates shared regulatory elements of

PUFs with proteins of known function, providing another form of GBA. GBA evidence
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was combined with sequence homology-based information, including domain prediction,

structural modeling, and phylogenetic gene tree analysis to hypothesize putative functions

for PUFs. These are not meant to serve as official annotations but are predictions which

identify important candidates which should be confirmed via other experimental methods,

such as knockout experiments. Importantly, our combination of GBA approaches with

sequence homology based functional/structural prediction identified a putative alcohol

acetyltransferase for further experimental characterization. Although co-expression support

for this function was modest, it was strongly supported by both sequence homology and

gene regulatory information. Experimental characterization revealed this PUF demonstrates

clear alcohol acetyltransferase activity on aromatic amino acids. While other PUFs had

stronger overall evidence, this PUF was chosen for further characterization in part due to

a clear effect which could be observed readily. A major challenge for targeted experimental

characterization of proteins is the ability to induce a phenotype when experiments are

performed in vivo. Without a clear, detectable phenotype, such experiments are extremely

difficult.

Manual examination revealed some networks that appeared to be less consistent in their

functional representation than others. This is likely due to the relatively small number

of samples used for network construction. The ∆hpt and LL1210 co-expression networks

are based on protein abundance data across 3 and 4 time points, respectively, each with 4

replicates. A larger number of samples, which vary in growth state and growth condition,

would likely result in networks with clearer functional groupings based on co-expression

patterns. Despite a possible lack of statistical power, many subnetworks served as solid

to even strong evidence for hypothesized functions of PUFs. This included an alcohol

acetyltransferase, which had limited support from the co-expression networks, but was clearly

correlated with another acyltransferase.

As part of this analysis, a table (Table 5.1) is provided which summarizes the various

lines of evidence accumulated for the PUFs in this study. It is expected other researchers

will be eager to make use of this table for identifying PUFs of potential interest for further

characterization. The analysis presented here can easily be applied to other microbes of

interest. All functional/structural prediction tools are publicly available, many with easy
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to use web interfaces. Another important take away from this work is the inconsistency in

annotations. Many of the PUFs examined were annotated in the DOOR database, indicating

a need to update RefSeq and Genbank. We are not the first to note this problem but given the

significance of databases like RefSeq for modern biological research, it cannot be emphasized

enough the need to better keep these databases up-to-date.

5.5 Conclusions

Despite improvements to function prediction algorithms based on sequence homology, a large

number of proteins still have no known function. Even those with predicted functions often

lack empirical evidence. A major barrier is the relatively high-cost and low throughput

nature of function characterization experiments. As an alternative, “guilt-by-association”

approaches, such as co-expression or protein-protein interaction data, can be used to provide

some form of empirical evidence. Although this does not provide direct functional evidence,

it can be used to better determine possible functional characterization experiments. In this

work, coexpression analysis from mass spectrometry based proteomics was combined with

various functional prediction tools to identify potential functions for proteins of unknown

function in C. thermocellum. In addition, the prediction of an alcohol acetyltransferase was

confirmed via further characterization experiments. This work further demonstrates the

value of guilt-by-association approaches for identifying putative functions for proteins.
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Chapter 6

Gene expression of

functionally-related genes coevolves

across fungal species: Detecting

coevolution of gene expression using

phylogenetic comparative methods

The following is a slightly-modified version of the following manuscript.

Cope, A., O’Meara, B., and Gilchrist, M. (2020). Gene expression of functionally-

related genes coevolves across fungal species: Detecting coevolution of gene expression using

phylogenetic comparative methods. BMC Genomics. 21 (370).

My primary role on this manuscript was conceptualization of the project, data analysis,

and writing of the manuscript. B. O’Meara and M. Gilchrist assisted in the writing and

editing of this manuscript.

6.1 Introduction

Analysis of high-throughput transcriptomics and proteomics data often focuses on how

changes in environment (e.g. nutrient availability) result in changes in mRNA or protein
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abundances (Dunn et al., 2013). Through the concept of ”guilt-by-association,” genes which

show similar gene expression patterns across conditions are hypothesized to be functionally-

related (Eisen et al., 1998; Grigoriev, 2001; Gillis and Pavlidis, 2011; Michalak, 2008). For

example, in S. cerevisiae, there is significant overlap between the proteins which physically

interact and the proteins which are co-expressed (Ge et al., 2001). Such observations have

naturally led researchers to ask if functionally-related genes show coordinated changes in

expression across conditions, do they also show coordinated changes, or coevolve, across

species.

Previous work supports the hypothesis that gene expression of functionally-related genes

shows stronger signals of coevolution than randomly-generated gene pairs in both unicellular

yeasts and a diverse set of prokaryotes. (Clark et al., 2012; Fraser et al., 2004; Lithwick

and Margalit, 2005). Interestingly, the strength of this signal appeared to vary based on

the functional groupings of the genes in question (Clark et al., 2012). Fraser et al. (2004)

proposed gene expression coevolution could be a useful method for predicting proteins which

are functionally-related.

Most of the previous work examining coevolution of gene expression relied upon the

Codon Adaptation Index (CAI) (Sharp and Li, 1987) as a proxy for gene expression. CAI and

other codon-usage metrics often correlate well with gene expression in many species, but this

is often not the case in species with a strong mutational bias or low effective population sizes,

as is the case in many multicellular eukaryotes (Charlesworth, 2009). In fact, Lithwick and

Margalit (Lithwick and Margalit, 2005) were forced to eliminate organisms from their analysis

which showed little adaptive codon usage. This makes detecting signals from empirical

measures of gene expression, such as from RNA-Seq or mass spectrometry data, particularly

useful for many species where codon usage metrics are a poor proxy for gene expression.

Recent work by Martin and Fraser (2018) demonstrated a method for examining coevolution

of gene expression within sets of functionally-related genes using RNA-Seq data measured

from the Marine Microbial Eukaryotic Transcriptome Project (Keeling et al., 2014).

While it may seem appropriate to simply assess the correlation (e.g. Pearson or

Spearman) between gene expression estimates across species, much like one might do in

a co-expression analysis across conditions, an issue that arises is the non-independence of
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species due to shared ancestry (Felsenstein, 1985). This can result in biases in correlation

coefficients and lead to an inflation of the degrees of freedom, making standard hypothesis

testing inappropriate (Felsenstein, 1985; Rohlf, 2006). Recent work concluded comparative

analysis of gene expression data across species can be confounded by the phylogeny, leading

potentially to incorrect inferences (Dunn et al., 2018). Previous work examining coevolution

of gene expression did not directly account for the phylogeny when estimating correlation

coefficients of gene expression across species, which is thought to reflect the strength of

coevolution between gene pairs. With the exception of Clark et al. (2012), who applied a

transformation to their correlation coefficients originally developed to eliminate phylogenetic

signal from sequence coevolution data (Sato et al., 2005), much of the previous work used a

randomly-generated null distribution created from genes not thought to coevolve as a means

of determining a statistical significance cutoff. Although the use of a randomly-generated

null is likely a better alternative than standard hypothesis testing, a direct assessment of

these approaches’ abilities to adequately control for the phylogeny have not been determined,

to the best of our knowledge.

An alternative solution is to directly account for the phylogeny when assessing coevolution

between pairs of genes using phylogenetic comparative methods (PCMs). Previous efforts

have developed PCMs for examining coevolution of functionally-related genes based on

the presence/absence of genes across species. Barker and Pagel (Barker and Pagel, 2005)

developed what is essentially a phylogenetically-corrected version of phylogenetic profiling,

which looks at the correlated presence/absence of genes across species. Looking across a set

of fungal species and using protein-protein interaction data to determine functionally-related

genes, they found incorporating the phylogeny reduced the false positive rate compared to

a Fisher’s exact test. Of course, this method is not applicable if the genes are present in

all species under consideration, making gene expression a valuable trait for investigating

coevolution of functionally-related genes.

Many PCMs have been developed for studying the evolution of gene expression, although

this work has not focused on detecting coevolution of gene expression. (Bedford and Hartl,

2009; Brawand et al., 2011; Eng et al., 2009; Gu et al., 2013; Liang et al., 2018; Oakley

et al., 2005; Rohlfs et al., 2014; Rohlfs and Nielsen, 2015; Schraiber et al., 2013). Much
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of this work relies on modeling gene expression evolution as an Ornstein-Uhlenbeck (OU)

process (Butler and King, 2004; Hansen, 1997). Modeling trait evolution as an OU process

assumes the trait is evolving around an optimal value. A multivariate version of the OU

model exists (Bartoszek et al., 2012), but the additional parameters used in the model often

requires a greater amount of species-level data to make accurate parameter estimates. Here,

we present an approach which models the coevolution of gene expression, as estimated via

RNA-Seq, for pairs of proteins using the simpler multivariate Brownian Motion (BM) model

(Revell and Collar, 2009; Revell and Harmon, 2008). This approach allows us to estimate

the degree of correlation between two traits over evolutionary time while accounting for the

shared ancestry of the considered species.

We find physically-interacting proteins show, on average, stronger gene expression

coevolution than randomly-generated pairs of proteins using the multivariate BM approach.

We also find phylogenetically-uncorrected correlations tend to inflate estimates of gene

expression coevolution. Unsurprisingly, simulations reveal standard hypothesis testing (i.e.

p < 0.05) using phylogenetically-uncorrected correlations inflates the false discovery rate.

We find determing statistical significance via a randomly-generated null distribution, as

described in Fraser et al. (2004) is a significant improvement over standard hypothesis testing,

but still performs worse than the PCM approach. The method recently described by Martin

and Fraser (2018) was able to obtain a low false discovery rate, but this came at the expense

of statistical power to detect coevolving genes relative to the PCM, which had a comparable

false discovery rate.

We expand upon previous work by looking for potential predictors reflecting the strength

of coevolution between two pairs of proteins. As expected, we find protein pairs with stronger

evidence of functional-relatedness tend show stronger coevolution at the gene expression

level. We also find gene expression level and the number of protein interactions, which are

considered good predictors of evolutionary rate of a gene (Zhang and Yang, 2015), are poor

predictors of the the strength of coevolution between protein pairs. Consistent with previous

results, we also find coevolution of gene expression is an overall weak predictor of protein

sequence coevolution.
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6.2 Methods

6.2.1 Protein Interaction Data

18 fungal species were chosen due to availability of RNA-Seq data and for comparability

to previous studies examining the evolution of functionally-related proteins (Fraser et al.,

2004; Clark et al., 2012; Barker and Pagel, 2005). Consistent with (Fraser et al., 2004)

and (Barker and Pagel, 2005), we use physically-interacting proteins as our test case

for examining functionally-related proteins. The STRING database was used to identify

empirically-determined protein-protein interactions in species for which data was available

(Szklarczyk et al., 2019). We assume these protein-protein interactions are conserved across

all species under consideration. This dataset will be referred to as the “binding group”.

Randomly-generated protein pairs followed by removal of any pairs which were annotated

in the STRING database for the species under consideration, even if the annotation did

not specify a “binding” interaction. Any proteins with overlapping Gene Ontology terms

were removed to control for potential false negatives. This dataset will be referred to as the

“control group”.

6.2.2 Gene Expression Data

Gene expression levels were estimated from publicly available RNA-Seq datasets taken

from SRA using the pseudo-alignment tool, Salmon (Patro et al., 2017). Reads for

each species were mapped against their respective protein-coding sequences taken from

NCBI Refseq/Genbank (O’Leary et al., 2016; Clark et al., 2016), ENSEMBL (Cunningham

et al., 2019), the Joint Genome Institute (Nordberg et al., 2014), the Broad Institute

(https://portals.broadinstitute.org/), the Aspergillus Genome Database (Cerqueira et al.,

2014), or http://www.saccharomycessensustricto.org/ (Scannell et al., 2011). FASTQC was

used to assess the quality of the RNA-Seq reads. If necessary, TrimGalore was used to

remove adaptor sequences (https://www.bioinformatics.babraham.ac.uk/projects/). Gene

expression counts were obtained using Salmon’s built-in ability to control for GC and

position-specific biases, and these counts were converted to the transcripts per million (TPM)
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metric (Wagner et al., 2012). For single-end reads, mean and standard deviation for fragment

lengths were specified to be 200 and 80, respectively, except for S. mikatae, S. paradoxus, S.

paradoxus, for which mean fragment length was specified to be 250 (Yang et al., 2017).

Given the RNA-Seq experiments are often measured different conditions, we only selected

samples from the control conditions, as these are more likely to reflect natural or standard

conditions for a species. For datasets which were time course experiments, we randomly

selected 3 time-points which were well-correlated in gene expression estimates (Pearson

correlation ρ > 0.98). Each RNA-Seq sample/replicate for each species was transformed

to a standard lognormal distribution (i.e. ln(X) ∼ N(0, 1), where X is the gene expression

vector for a species), consistent with the transformation used by (Bedford and Hartl, 2009).

Notably, the log-transformation removes the 0 boundary from the data, which better reflects

the assumptions of Brownian Motion (Garland et al., 1992). A mean and standard error

of normalized TPM values were calculated for each gene across all samples/replicates used.

Genes with missing data, which could be because no ortholog was identified between species

or no gene expression estimate was obtained, were excluded from further analysis.

We note some of the RNA-Seq datasets did not indicate replicates, making it impossible

to estimate a standard error measurement for the analysis. It is generally recommend

measurement error be provided for the analysis of continuous traits during phylogenetic

analysis. As a proxy for the species missing replicates, we used a closely-related species to

provides estimates of the standard error. This included S. paradoxus (proxy: S. cerevisiae),

S. mikatae (proxy: S. bayanus), and N. tetrasperma and N. discreta (proxy: N. crassa).

6.2.3 Ortholog identification

Orthologs for fungal species were taken from FungiDB (Basenko et al., 2018), previous

publications (Scannell et al., 2011; Brion et al., 2016), or the Reciprocal Best Hits BLAST

approach, which was only used for N. castellii. Proteins with an annotated paralog in the

FungiDB or previous literature were excluded from the analysis, as introduction of a paralog

could impact the gene expression of the original gene. This eliminated 3669 possible genes.
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6.2.4 Phylogenetic tree construction

Codon alignments of 59 complete, randomly chosen nuclear ORF were performed using

TranslatorX using the MAFFT option followed by GBlocks filtering to remove poorly aligned

regions (Abascal et al., 2010). These alignments were concatenated, followed by phylogenetic

tree estimation using RAxML with a partitioned GTR-Γ fit allowing rate parameters for the

third codon position to vary from the first and second codon position. C. neoformans was

designated as an outgroup. The Brownian Motion model assumes branch lengths of the

phylogenetic tree are proportional to time (Garland et al., 1992; O’Meara et al., 2006). To

convert the RAxML phylogenetic tree to an ultrametric tree with branch lengths in millions

of years, treePL (Smith and O’Meara, 2012) was used to date the tree, taking the divergence

time of S. cerevisiae and C. neoformans (723 millions of years ago (MYA), from TimeTree

(Kumar et al., 2017)) as a calibration point. The final phylogenetic tree used for all analyses

can be observed in Figure 6.1. A summary of the species used, the RNA-Seq data used, and

the availability of protein-protein interaction data from STRING can be found in Table 6.1.
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Table 6.1: Basic information on species used in analysis, including the citation
corresponding to the RNA-Seq data used and whether or not STRING data was available
at the time of analysis. STRING indicates if the species has data available in STRING at
the time of this study.

Species Sequence Accession (Citation) STRING

S. cerevisiae SRA417121 (Kelliher et al., 2016) Yes

S. paradoxus SRA423931 (Yang et al., 2017) No

S. mikatae SRA423931 (Yang et al., 2017) No

S. bayanus SRA246981 (Alcid and Tsukiyama, 2016) No

S. kudriavzevii SRA246981 (Alcid and Tsukiyama, 2016) No

L. kluyverii ERA489180 (Brion et al., 2016) Yes

N. castellii SRA246981 (Alcid and Tsukiyama, 2016) No

C. glabrata SRA185486 (Linde et al., 2015) Yes

C. albicans SRA756982 (del Olmo Toledo et al., 2018) Yes

C. parapsilosis SRA645737 (Turner et al., 2018) Yes

F. graminearum SRA436010 (Puri et al., 2016) Yes

M. oryzae SRA107966 (Choi et al., 2015) Yes

A. fumigatus SRA551938 (Manfiolli et al., 2017) No

A. nidulans SRA742708 (Pidroni et al., 2018) Yes

N. crassa SRA059445 (Wang et al., 2012, 2014; Lehr et al., 2014) Yes

N. discreta SRA178585 (Wang et al., 2012, 2014; Lehr et al., 2014) No

N. tetrasperma SRA178586 (Wang et al., 2012, 2014; Lehr et al., 2014) No

C. neoformans SRA417121 (Kelliher et al., 2016) No
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6.2.5 Analysis of Gene Expression Data

Analyses and visualizations were performed using the R programming language.

Coevolution of gene expression was broadly examined using the Covariance Ratio test

implemented in geomorph (Adams, 2016; Adams and Collyer, 2019, 2020). Briefly, this test

compares the degree of covariation between traits within predefined modules to covariation

between modules. In this case, modules were defined as groups of tightly-linked proteins

within a protein-protein interaction network. Modules were determined by applying the

Markov Clustering algorithm (as implemented in the clusterMaker2 Cytoscape plug-in

(Morris et al., 2011)) to the protein-protein interaction data using the STRING confidence

scores as edge weights. The Covariance Ratio test was applied to all modules with at least

15 proteins. A covariance ratio score of 1 indicates covariance of a trait between modules

is equal to the covariance within modules. The closer the covariance ratio is to 0, the more

modular the data (i.e. the greater the covariance of a trait within modules is relative to

between modules).

Gene expression evolution was modeled as a multivariate Brownian Motion process using

the R package mvMORPH (Clavel et al., 2015) in order to examine the strength of

coevolution between pairs of proteins (as opposed to coevolution within modules). Briefly,

the evolutionary rate matrix for multivariate Brownian Motion represents both the trait

variances on the diagonal for the individual gene expression values, as well as the trait

covariance between the gene expression estimates on the off-diagonal. The evolutionary

correlation coefficient ρC reflects the degree to which gene expression estimates are correlated

over evolutionary time and can be calculated from the evolutionary rate matrix (Revell and

Collar, 2009; Revell and Harmon, 2008; Clavel et al., 2015). The evolutionary correlation

coefficient ρC will from here on out be referred to as the “phylogenetically-corrected

correlation” to emphasize this statistic accounts for the shared ancestry of the species.

Likewise, we will refer to the Pearson correlation coefficient ρU (estimated via the R built-in

function cor.test()) as the “phylogenetically-uncorrected correlation”, as this statistic ignores

shared ancestry and uses variances and covariances estimated from the data at the tips of

the tree.
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Appropriateness of the Brownian Motion for modeling trait evolution was assessed

as described in (Revell, 2010). Briefly, phylogenetic independent contrasts (PICs) and

standardized variances (Felsenstein, 1985) were calculated from gene expression data for

each ortholog set using the pic() function from the ape R package (Paradis and Schliep,

2019). Pairs of genes containing a significant correlation (i.e. p < 0.05) between PICs and

standardized variances, which indicates violation of Brownian Motion assumptions (Garland

et al., 1992; Revell, 2010), were excluded from further analyses.

Under no coevolution of gene expression, the expected value for the phylogenetically-

corrected correlation ρC is 0.0. A one-sample t-test was performed to assess if the mean

value of ρC for the binding and control groups were significantly different from 0.0. Under

the hypothesis that gene expression coevolves between proteins which physically-interact,

we expect the mean value of ρC for the binding group to be significantly different from 0.

In contrast, we do not expect the mean value of ρC for the control group to be significantly

different from 0. A Welch’s t-test was also used to assess if the mean values of ρC were

significantly different from each other. Similar tests were performed for the phylogenetically-

uncorrected correlations ρU .

The phylogenetically-corrected correlation ρC , which reflects the strength of gene

expression coevolution between two genes, was compared to metrics associated with

functional-relatedness of two genes. We expect stronger coevolution of gene expression

between proteins which are more functionally-related. As a metric of functional-relatedness

for each interaction, we used the STRING confidence score, which factors in both

empirical/computational evidence supporting an interaction, as well as evidence from closely-

related species. Similarly, one might expect proteins sharing a greater number of overlapping

Gene Ontology (GO) terms to be more functionally-related.

It is well-established both gene expression and number of interactions in a protein-protein

interaction network impact the evolutionary behavior of a protein (Drummond and Wilke,

2008; Fraser et al., 2002); thus, we also tested if such protein-level properties also impact

the strength of coevolution between two proteins. We hypothesized proteins pairs which are,

on average, more highly expressed and involved in more interactions would show stronger

coevolution of gene expression. For each protein pair in the binding group, the mean degree

122



(i.e. the average number of interactions for each protein) and the mean phylogenetically-

corrected average gene expression value were calculated. The phylogenetically-corrected

average gene expression value for a protein is taken as the ancestral state value estimated at

the root of the tree by mvMORPH.

Furthermore, previous studies have examined the relationship between sequence evolution

and gene expression evolution (Clark et al., 2012; Fraser et al., 2004). We compared our

estimates of gene expression coevolution to measures of sequence evolution taken from Clark

et al. (2012). Clark et al. (2012) also examined gene expression coevolution using the

Codon Adaptation Index (CAI), which allowed us to compare our results based on empirical

estimates of gene expression with a commonly-used proxy based on codon usage (Sharp and

Li, 1987).

To determine if functional-relatedness, gene expression, number of protein interactions,

and sequence coevolution have an impact on the strength of gene expression coevolution,

a weighted rank-based (i.e. robust to non-normality in data) Spearman correlation ρS was

used to reduce the impact of proteins found in multiple pairs. Weights for the weighted

Spearman correlation ρS for each protein pair were calculated as

Weight =
1

2

(
1

N1

+
1

N2

)
where Ni is the the number of times protein i appears in the binding group. Confidence

intervals and p-values for the weighted Spearman correlations were calculated using the R

package boot (Canty and Ripley, 2017; Davison and Hinkley, 1997).

To assess the impact of proteins found in multiple pairs on differences observed between

the binding and control groups, we generated 200 subsets of the binding and control datasets

in which a protein was only allowed to appear, at maximum, in one protein pair per

dataset. Each subset was restricted to a maximum size of 200 protein pairs. For each

subset, the mean was calculated for ρC and ρU , creating a distribution of means. Scripts

and for performing phylogenetic analysis and post-analysis of the results can be found at

https://github.com/acope3/GeneExpression coevolution.
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6.2.6 Assessing accuracy of methods for detecting coevolution of

gene expression

Data simulated under Brownian Motion were used to assess the ability to detect coevolution

of gene expression (see Supporting Information section for details). Briefly, protein pairs

from the binding set were simulated allowing for coevolution (i.e. the covariance term for

the simulations was allowed to be non-zero), forming the simulated binding set. On the other

hand, protein pairs from the control set were simulated forcing independent evolution of gene

expression (i.e. the covariance term between them was set to 0 in the simulations), forming

the simulated control set. The number of true positives (significant result from simulated

binding set), true negatives (non-significant result from simulated control set), false positives

(significant result from simulated control set), and false negatives (non-significant result from

simulated binding set) were determined using the statistical tests described below. From

these, a true positive rate (TPR, proportion of significant results from the simulated binding

set) and a false positive rate (FPR, proportion of significant results from the simulated control

set) were calculated to assess statistical power and specificity of each method. Similarly, a

false discovery rate (FDR, proportion of false positives out of all significant results from

both the simulated binding and simulated control sets) to determine potential trade-offs

between statistical power and specificity for each method. Finally, an overall accuracy score

(proportion of true positives and true negatives out of all simulated protein pairs) was

calculated for each method.

For the PCM approach, protein pairs were considered coevolving if a Likelihood Ratio

test (as implemented in mvMORPH) comparing the model allowing coevolution of gene

expression to a null model forcing independent evolution of gene expression had a Benjamini-

Hochberg corrected p-value < 0.05. Similarly, for the non-PCM approach (cor.test()

function in R), protein pairs were considered significantly coevolving if the phylogenetically-

uncorrected correlation ρU had a Benjamini-Hochberg corrected p-value < 0.05

Previous work proposed using randomly-generated null distributions (i.e. the control

group) as a means of determining statistically significant gene expression coevolution using

phylogenetically-uncorrected correlations. This approach is thought to be an adequate
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approach to control for the phylogeny when the phylogeny is unknown (Martin and Fraser,

2018). We implement approaches similar to those described in Fraser et al. (2004) and

Martin and Fraser (2018) using both the phylogenetically-uncorrected and phylogenetically-

corrected correlations.

Fraser et al. (2004) compared the relative histograms of correlations from a binding

and a control group to determine the bin at which the relative frequencies of the binding

group were greater than the control group for all subsequent bins. Pairs of proteins were

considered significantly coevolving if they had a correlation greater than this point. To assess

the accuracy of this method, we split both the binding and control groups into training and

test sets (80% and 20% of the data, respectively). The binding and control training sets

were used to determine the significance cutoff, while the test sets were then used to assess

the accuracy of this approach.

Martin and Fraser (2018) presented an approach to determine if gene sets (i.e. more

than 2 genes) showed significant coevolution of gene expression by comparing the median

phylogenetically-uncorrected correlation to the median correlations from 10,000 randomly-

generated gene sets. As we only deal with protein pairs, we compared the number of times

(out of 1000) a randomly-generated protein pair had a correlation greater than the correlation

of the target protein pair. This procedure was repeated for each protein pair in the binding

and control groups. A p-value for each pair was calculated as described in Martin and Fraser

(2018), and a p-value cutoff was empirically-determined such that the false discovery rate

was approximately 5%.

We note accuracy scores can be skewed by large differences in the size of the binding and

control groups. For example, if a method is underpowered and the size of the control group

is much larger than the binding group, then failure to detect significant differences in the

binding group is heavily outweighed by successfully not detecting significant differences in

the control group. This results in a higher, and potentially misleading, accuracy score for

the method. To account for this, each method was assessed using a subsample of the control

group which is the same size as the binding group. Model assessments were made 100 times

to obtain mean TPR, FPR, FDR, and overall accuracy scores.
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6.3 Results

The phylogenetic tree used in our analysis is shown in Figure 6.1. Overall, the normalized

gene expression data are moderately to strongly correlated between all species (Figure 6.2).

Clearly, species which are more closely-related tend to show stronger correlations between

normalized gene expression values, consistent with expectations. The Candida species appear

to be exceptions, but these yeast demonstrate pathogenic traits, which could partially explain

some of these differences, as well as why two of these species (C. glabrata and C. parapsilosis)

appear to be better correlated with the pathogenic Aspergillus species.
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Figure 6.1: Dated phylogenetic tree with RAxML bootstrap support. Branch lengths are
in millions of years.
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Figure 6.2: Heatmap demonstrating the correlation between normalized gene expression
values of the 18 fungal species. Species which are more closely related tend to show higher
correlations in overall gene expression patterns. Candida species appear to be exceptions,
although gene expression is still moderately correlated with the other Saccharomycotina
species.

128



After filtering proteins based on missing data or violation of the Brownian Motion

assumption, our binding (proteins with evidence of physically interacting, which we expect to

show signals of coevolution) and control datasets (randomly-generated pairs not expected to

show signals of coevolution) contained 3,091 and 13,936 protein pairs respectively, consisting

of 648 unique proteins. We note similar patterns are observed if not excluding genes which

violate the BM assumption, although the signal appears weaker.

6.3.1 Interacting proteins demonstrate clear coevolution of gene

expression

To broadly examine coevolution of gene expression between physically-interacting proteins,

a phylogenetically-corrected Covariance Ratio test (as implemented in the R package

geomorph (Adams, 2016; Adams and Collyer, 2019, 2020)) was applied to protein modules

found within the protein-protein interaction network (see Methods). We found covariance

between gene expression was, on average, greater within protein interaction modules

compared to between modules (Covariance Ratio score = 0.8672, p = 0.001). This indicates

gene expression within tightly-linked groups of physically-interacting proteins show greater

signals of coevolution than between proteins which spuriously interact.

Gene expression evolution was modeled as a multivariate Brownian Motion (BM) process

using the R package mvMORPH (Clavel et al., 2015) in order to estimate coevolution of

gene expression between pairs of proteins. This approach provides an estimate of the degree

of correlation between two traits (in this case, our estimates of gene expression) across

species that accounts for the phylogeny (see Methods for more details). We will refer to this

correlation estimate as the phylogenetically-corrected correlation ρC . The phylogenetically-

corrected correlation ρC distributions for the binding and control groups show striking

differences (Figure 6.3). Binding proteins have a mean phylogenetically-corrected correlation

of ρ̄C = 0.45, which is significantly different from the expected value of 0.0 if there was no

coevolution of gene expression (One-sample t-test, 95% CI: 0.436 – 0.464, p < 10−200).

In contrast, the randomly-generated control group, which is not expected to show signals

of coevolution, had a a much lower (but still significant) mean phylogenetically-corrected
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correlation of ρ̄C = 0.03 (One-sample t-test, 95% CI: 0.025 – 0.037, p < 10−23). Although

the mean phylogenetically-corrected correlation for the control group is significantly different

from 0.0, it is important to note two things: (1) even though we did our best to eliminate

possible false negatives in the control group, it is unlikely all false negatives were eliminated

and (2) this is consistent with previous work by Fraser et al. (2004), who also had random

control groups which were not centered around 0. As is clear from the 95% confidence

intervals, the difference between the mean phylogenetically-corrected correlations for the

binding and control distributions is statistically significant (Welch’s t-test, p < 10−200).

Despite the small, but statistically significant, deviation from 0 of the control group, the

binding group shows a clear skew towards stronger coevolution between protein pairs than

is observed in the control group, as expected.
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Figure 6.3: Comparing phylogenetically-corrected and uncorrected correlations.
Comparing the distributions of the (Left) phylogenetically-corrected correlation ρC and the
(Right) phylogenetically-uncorrected correlation ρU for the binding (purple) and control
(yellow) groups. (Left) Mean values for the binding and control group phylogenetically-
corrected correlation ρC distributions are 0.45 (95% CI: 0.436 – 0.464) and 0.03 (95%
CI: 0.025 – 0.037), respectively. (Right) Mean values for the binding and control group
phylogenetically-uncorrected correlation ρU distributions are 0.51 (95% CI: 0.497 – 0.523)
and 0.08 (95% CI: 0.074 – 0.086), respectively
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We find a weak, but significant, positive correlation between the STRING confidence

scores and phylogenetically-corrected correlations ρC (Weighted Spearman Rank Correlation

ρS = 0.32, 95% CI: 0.274 – 0.371, p < 10−37, see Methods), indicating interactions which are

more likely to be true and conserved show stronger coevolution of gene expression (Figure

6.4). A similar result is obtained when using a metric of functional similarity between

proteins based on overlapping Gene Ontology terms (Figure 6.5).
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Figure 6.4: Effects of functional-relatedness on phylogenetically-corrected
correlation ρC. Positive weighted Spearman rank correlation (ρS = 0.32, p < 10−37)
between the STRING score and phylogenetically-corrected correlation ρC indicates more
confident and/or conserved interactions tend to have higher ρC , indicating stronger
coevolution at the gene expression level.
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Figure 6.5: Pairs of proteins with more overlapping GO terms tend to show stronger
coevolution of gene expresssion (Weighted Spearman Rank Correlation ρS = 0.36, 95% CI:
0.306 – 0.408, p < 10−41). The Jaccard Index reflects functional similarity between two
proteins based on GO terms.
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We also compared our phylogentically-corrected approach to a phylogenetically-uncorrected

approach ρU (the Pearson correlation coefficient, Figure 6.3). Qualitatively, a similar

pattern to the phylogenetically-corrected correlations ρC is observed: binding proteins show

correlations positively skewed away from 0, consistent with stronger coevolution of gene

expression between the interacting pairs. Interacting proteins had a mean phylogenetically-

uncorrected correlation of ρ̄U = 0.51 (One-sample t-test,95% CI: 0.497 – 0.523, p < 10−200).

In contrast, randomly-generated protein pairs had a mean phylogenetically-uncorrected

correlation ρ̄U = 0.08 (One-sample t-test, 95% CI: 0.074 – 0.086, p < 10−141). As with the

phylogenetically-corrected correlations, the control group deviates significantly from the null

expectation of 0.0; however, the phylogenetically-uncorrected correlation deviates further

from the expectation than the phylogenetically-corrected correlations. This is consistent

with potential biasing of correlation estimates due to treatment of non-independent species

data as independent (Felsenstein, 1985; Rohlf, 2006).

Simulations were performed to confirm potential problems with the use of non-

phylogenetic methods for comparing gene expression across species. Results show failure

to account for the phylogeny on data simulated under the null hypothesis of no coevolution

between gene expression results in an increase in the false discovery rate (FDR, Table 6.2),

consistent with expectations. However, the distribution of ρU simulated under no coevolution

differs from the distribution of ρU from the real data. In the case of simulated data in which

no coevolution was allowed, the distribution of phylogenetically-uncorrected correlations ρU

is centered around 0.0, unlike in the real data, but shows a broadening of the distribution

compared to the phylogenetically-corrected correlations ρC .

Instead of determining statistical significance for the phylogenetically-uncorrected cor-

relations ρU using p < 0.05, we used approaches similar to those described byFraser et al.

(2004) and Martin and Fraser (2018). We found the method described in Fraser et al. (2004)

to have a greater true positive rate (TPR) compared to the PCM (0.511 compared to 0.476),

but still had an inflated false discovery rate (FDR) of 0.156, although this was a significant

improvement over standard hypothesis testing (Table 6.2). An approach similar to Martin

and Fraser (2018) was actually underpowered compared to the PCM, with a true positive

rate (TPR) of 0.305, when controlling the FDR to be 0.05. This method had the overall
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worst accuracy of 0.644. Unsurprisingly, both methods described by Fraser et al. (2004) and

Martin and Fraser (2018) are improved when using the phylogenetically-corrected correlation

ρC . When the data is consistent with a Brownian Motion process, methods based on ρC are

superior to the methods based on ρU .
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Table 6.2: Highlighting issues with not correcting for phylogeny. Comparison of 4
methods for detecting coevolution of gene expression using data simulated under Brownian
Motion. The 4 methods represent the multivariate Brownian Motion (BM) PCM described
in this manuscript, hypothesis testing with the phylogenetically-uncorrected correlation, the
method described in Fraser et al. (2004), and the method described in Martin and Fraser
(2018). Mean and standard deviations for true positive rates (TPR), false positive rates
(FPR), false discovery rate (FDR), and overall accuracy (Acc.) are reported. Standard
deviations are reported in parentheses.

Method ρ TPR

(S.D)

FPR

(S.D)

FDR

(S.D)

Acc.

(S.D)

PCM ρC 0.476

(0.0004)

0.026

(0.0030)

0.053

(0.0056)

0.725

(0.0013)

cor.test() ρU 0.574

(0.0006)

0.209

(0.0075)

0.267

(0.0068)

0.682

(0.0035)

Fraser et al. (2004) ρC 0.567

(0.0363)

0.053

(0.0152)

0.084

(0.0212)

0.757

(0.0148)

ρU 0.511

(0.0432)

0.097

(0.0285)

0.156

(0.0316)

0.708

(0.0144)

Martin and Fraser (2018) ρC 0.476

(0.0108)

0.025

(0.0008)

0.050

(0.0010)

0.726

(0.0051)

ρU 0.305

(0.0155)

0.016

(0.0010)

0.050

(0.0015)

0.644

(0.0073)
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We note these methods all have fairly low true positive rates (TPR). We hypothesized part

of this could be due to the presence of false positives in the binding group, which are unlikely

to show much coevolution of gene expression, resulting in protein pairs in the simulated data

with potentially small effects unlikely to be detected with only 18 species. After excluding

potential false positives in the binding group (i.e. protein pairs with a STRING Score <

400), the TPR and overall accuracy of all methods increased (Table 6.3). However, the

general pattern remained the same: when data is consistent with a phylogenetic model of

trait evolution (which is the case for our simulations), the methods based on correcting for

the phylogeny are superior.
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Table 6.3: Performance metrics for 18 species fungal tree using simulated data for detecting
coevolution. By excluding potential false positives from the simulated binding group (i.e.
STRING Score < 400), the overall accuracy of the methods improves, but the approaches
based on the phylogenetically-corrected correlation ρC remain superior.

Method ρ TPR

(S.D)

FPR

(S.D)

FDR

(S.D)

Accuracy

(S.D)

PCM ρC 0.568

(0.0003)

0.031

(0.0037)

0.051

(0.0056)

0.769

(0.0018)

cor.test() ρU 0.640

(0.0011)

0.216

(0.0102)

0.252

(0.0087)

0.712

(0.00346)

Fraser et al. (2004) ρC 0.629

(0.0531)

0.041

(0.0195)

0.060

(0.0234)

0.794

(0.0189)

ρU 0.578

(0.0426)

0.086

(0.0293)

0.128

(0.0314)

0.746

(0.0162)

Martin and Fraser (2018) ρC 0.580

(0.0121)

0.031

(0.0009)

0.050

(0.0009)

0.775

(0.0057)

ρU 0.390

(0.0195)

0.021

(0.0013)

0.050

(0.0015)

0.685

(0.0092)
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6.3.2 Gene expression and number of interactions are poor pre-

dictors of coevolution of gene expression

It is well-established both gene expression and location in a protein-protein interaction

network significantly impact the evolutionary behavior of a protein (Fraser et al., 2002;

Drummond et al., 2005a,b; Feyertag et al., 2017; Gilchrist et al., 2015). One might expect

an imbalance in the number of proteins involved in a greater number of interactions or

more highly expressed interactions to have a more negative impact on fitness, leading to

greater constraints on the evolution of gene expression. However, we find both the number

of interactions and the gene expression to be weak predictors of the strength of coevolution

of gene expression. Based on the number of interactions for each protein in our binding

dataset, the weighted Spearman rank correlation between the number of interactions and

the phylogenetically-corrected correlations ρC is ρS = 0.26 (Figure 6.6A, 95% CI: 0.196

– 0.315, p < 10−16), indicating protein pairs involved in more interactions tend to show

stronger constraint on the evolution of gene expression. Surprisingly, the mean ancestral

gene expression estimates are negatively correlated with the phylogenetically-corrected

correlations ρC , with ρS = −0.09 (Figure 6.6B, 95% CI: - 0.143 – -0.035, p = 0.00131).

140



ρS = 0.26

−1.0

−0.5

0.0

0.5

1.0

0 1 2 3 4
Log(Mean Degree)

ρ C

Mean Number of Interactions vs. Phylogenetically−Corrected Correlation
per Protein Pair

A

ρS = − 0.09

−1.0

−0.5

0.0

0.5

1.0

0 1 2
Mean Ancestral Gene Expression Estimate (Log scale)

ρ C

Mean Ancestral Gene Expression vs. Phylogenetically−Corrected Correlation
per Protein Pair

B

Figure 6.6: Effects of number of interactions and gene expression on strength of
coevolution. The relationship of (a) the mean degree (average number of interactions
between a protein pair) and (b) mean ancestral gene expression estimate with the
phylogenetically-corrected correlation ρC for the binding group. Both protein pair metrics
are weakly, but significantly correlated with the phylogenetically-corrected correlation ρC :
weighted Spearman rank correlation ρS = 0.26 (p < 10−16) for mean degree and ρS = −0.09
(p = 0.00131) for mean ancestral gene expression. This suggests both metrics are poor
predictors of the strength of coevolution of gene expression between protein pairs.
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Given phylogenetically-corrected correlations ρC correlate with the number of interactions

and mean ancestral gene expression, differences between the binding and control groups in

terms of number of interactions and gene expression could introduce small biases when

comparing the ρC distributions. The average mean ancestral gene expression estimate

distributions for the binding and control group are extremely similar (0.414 vs. 0.416,

respectively, Welch’s t-test, p = 0.8316). This makes differences in the gene expression

distributions an unlikely source of bias when comparing the binding and control groups. To

determine if protein membership causes biases in the results, 200 subsets of the binding and

control groups were sampled, restricting a protein appearing in each group a maximum of

1 time. The 200 subsets resulted in distributions of the mean phylogenetically-corrected

correlations ρ̄C , which were qualitatively consistent with the full datasets. We do note there

appears to be less of a difference between the binding and control group ρ̄C distributions

compared to ρ̄C estimated from the full dataset (Figure 6.7). This could be due to the

representation of certain proteins in the binding group inflating the correlation, or could be

due to decreased power to detect differences due to the significantly reduced dataset. Despite

this, the overall interpretation is the same: interacting proteins show greater coevolution at

the gene expression level than randomly generated pairs of proteins.
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Figure 6.7: Distributions reflect mean phylogenetically-corrected ρ̄C and phylogenetically-
uncorrected ρ̄U estimates for each of the 200 re-samplings of the binding and control datasets,
in which each protein is restricted to being in only one pair per dataset, at max. Results
are mostly consistent with results not restricting protein membership, although there does
appear to be less discrepancy between the binding and control groups.
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6.3.3 Coevolution of gene expression weakly reflects coevolution

of protein sequences

Previous work found an overall weak correlation between coevolution at the protein sequence

level and coevolution at the gene expression level based on CAI (Clark et al., 2012; Fraser

et al., 2004). Using estimates of protein sequence coevolution across a yeast phylogeny taken

from Clark et al. (2012), we found protein sequence coevolution and the phylogenetically-

corrected correlations ρC were weakly, but significantly correlated (Weighted Spearman Rank

correlation ρS = 0.10, 95% CI: 0.037 – 0.155, p = 0.0015, Figure 6.8A). We also found a

significant correlation between our phylogenetically-corrected correlation ρC and the measure

of gene expression coevolution from Clark et al. (2012) (Weighted Spearman Rank correlation

ρS = 0.22, 95% CI: 0.171 – 0.275, p < 10−16, Figure 6.8B). Notably, we find overall better

agreement between CAI and empirical-based measures of coevolution for protein pairs which

are, on average, more highly expressed (Weighted Spearman Rank correlation ρS = −0.12,

95% CI: -0.176 – -0.065, p < 10−4). This is unsurprising, given that many highly expressed

genes are likely to be housekeeping genes, such as ribosomal proteins, and thus highly

expressed across most conditions and evolutionary time, making CAI a reliable proxy for

gene expression in these cases.
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Figure 6.8: Comparison to other coevolution metrics. (a) Comparing coevolution of
gene expression, represented by the phylogenetically-corrected correlation ρC , and protein
sequences, taken from Clark et al. (2012). There is a weak but significant correlation
(Weighted Spearman Rank Correlation ρS = 0.10, p = 0.0015) between the measures of
gene expressions and protein sequence coevolution. (b) A similar comparison using the
measures of CAI coevolution from Clark et al. (2012). Again, there is a weak, but significant
correlation (Weighted Spearman Rank correlation ρS = 0.22, p < 10−16).
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6.4 Discussion

A broad-scale analysis based on the Covariance Ratio test (Adams, 2016; Adams and Collyer,

2019) found coevolution of gene expression was stronger within groups of tightly-linked

protein interactions compared to coevolution between proteins with weaker or no interactions

(Covariance Score = 0.8672, p = 0.001). Consistent with this, we find physically-interacting

proteins show a clear signal of gene expression coevolution compared to randomly-generated

pairs of proteins, with mean phylogenetically-corrected correlations ρ̄C of 0.45 vs. 0.03,

respectively. We find interacting proteins are correlated with the STRING confidence score

(weighted Spearman Rank correlation ρS = 0.32), indicating protein-protein interactions

with stronger evidence of being true and conserved show stronger coevolution of gene

expression, on average. We also find the number of protein-protein interactions a protein is

involved in and its gene expression level – two common metrics known to affect the evolution

of protein sequence – are overall weak predictors of gene expression coevolution. Protein

pairs involved in more interactions do tend to show stronger gene expression coevolution

(weighted Spearman rank correlations ρS = 0.26), consistent with the idea that proteins

involved in more interactions in a protein-protein interaction network have more constraints

on the evolution of their gene expression. Surprisingly, highly expressed protein pairs actually

tended to show weaker coevolution of gene expression (weighted Spearman rank correlation

ρS = −0.09). We also find an overall weak correlation between gene expression coevolution

and protein sequence coevolution (weighted Spearman rank correlation ρS = 0.10), consistent

with previous work (Clark et al., 2012; Fraser et al., 2004). We speculate this is because

relatively small regions of two protein sequences may be important for the proteins to be able

to bind, forcing strong sequence coevolution at the binding sites, but weaker coevolution for

the remainder of the protein sequences.

Surprisingly, there was overall poor agreement between CAI coevolution from Clark et al.

(2012) and our measure of of gene expression coevolution based on empirical RNA-Seq data

(weighted Spearman Rank correlation ρS = 0.22). The stronger correlation between ρC

and CAI coevolution compared to protein sequence coevolution is unsurprising. CAI and

similar codon usage metrics often show moderate to strong correlations with empirical gene
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expression estimates (Clark et al., 2012; Fraser et al., 2004; Gilchrist et al., 2015; Gilchrist,

2007; dos Reis et al., 2003). However, the correlation between ρC and CAI coevolution is

still very weak, indicating these measures of gene expression coevolution can give radically

different interpretations about the degree of gene expression coevolution at the individual

protein-pair level. It is worth noting that our estimates of gene expression coevolution and the

estimates from (Clark et al., 2012) do not come from the same 18 species. Clark et al. (2012)

also used 18 fungal species, 11 of which are from the Saccharomyces or Candida genera,

of which 7 overlap with the species used in this study. This undoubtedly introduced noise

into these comparisons, but there are additional reasons to expect discrepancies between

coevolution estimates based on CAI and empirical gene expression measurements. CAI,

as well as other proxies for gene expression based on codon usage, reflect the evolutionary

average expression level for a given gene (assuming strength of selection on codon usage scales

with gene expression), but this may not reflect expression of a gene for a given experimental

treatment (Clark et al., 2012; Fraser et al., 2004; Drummond and Wilke, 2008; Gilchrist et al.,

2015; Gilchrist, 2007; Shah and Gilchrist, 2011). Additionally, empirical gene expression is

subject to measurement error, which will also increase the discrepancy between CAI and gene

expression, particularly for low to moderate expression genes (Gilchrist et al., 2015; Wallace

et al., 2013). Fortunately, many PCMs allow for the incorporation of measurement error of

a trait, which can be estimated via experimental replicates. Furthermore, using multivariate

PCMs allows for the treatment of gene expression measured under various conditions as

separate traits (Dunn et al., 2013).

Unlike previous approaches, our results are based on both a multivariate PCM and

empirical gene expression data. This offers two clear advantages. One advantage is our

approach directly accounts for the phylogeny, recognizing the non-independence of species,

allowing for standard hypothesis testing. Although previous efforts attempted to control

for the phylogeny by using randomly-generated null distributions to determine statistical

significance for phylogenetically-uncorrected correlations, our simulations indicate these

approaches are generally worse than phylogenetic-based approaches if the underlying model

of gene expression evolution is consistent with the BM model (Table 6.2). The second

advantage is while CAI often correlates well with gene expression in organisms with a high
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effective population size (Charlesworth, 2009), low effective population size species often

show little adaptive codon usage bias, making CAI a poor proxy for gene expression. As a

result, the use of empirical gene expression measurements are highly valuable for studying

the evolution of gene expression, as others have noted (Dunn et al., 2013).

Our results indicate this multivariate PCM could be used to identify functionally-related

proteins. However, simulations indicate more species might be needed to have sufficient

statistical power (see Table 6.2), although this could vary depending on the tree and data

in question. In theory, it is possible to expand this approach to test for gene expression

coevolution in larger gene sets or correlate changes in gene expression with changes in

other phenotypes, such as body size (see (Clavel et al., 2015) for more details on using

mvMORPH). With that in mind, recent work finds multivariate PCMs are in need of

improvement, as parameter estimation accuracy decreases quickly as the number of traits

(i.e. parameters) increases (Adams and Collyer, 2018). For now, it appears best to restrict

the analysis to as few traits as possible when using approaches like mvMORPH. Alternative

approaches to examine coevolution of gene expression with more than 2 genes include the

Covariance Ratio test (Adams, 2016; Adams and Collyer, 2019) and the approach described

by Adams and Felice using partial least squares (Adams and Felice, 2014). Unlike the

Covariance Ratio test, which reflects the degree of coevolution within modules of traits (in

this case, gene expression), the approach described by Adams and Felice tests for coevolution

between modules. Another alternative is the method developed by Martin and Fraser (2018).

We note very few traits in biology likely evolve in a true Brownian Motion manner

(Felsenstein, 1985). Consistent with this, most of the genes in our dataset violated the BM

assumption based on the test proposed by Garland et. al. (Garland et al., 1992). Although

the Ornstein-Uhlenbeck (OU) model may be a more appropriate model, and is used in many

other PCMs for examining gene expression evolution, it often requires more species to make

accurate parameter estimates. As we only used 18 fungal species, we opted to use the simpler

BM model combined with filtering of genes which significantly deviated from the assumptions

of BM (Garland et al., 1992). Based on our results, inclusion of genes which violate the BM

assumption does not change overall conclusions of this work, but it does appear to weaken

some of the observed patterns. These analyses are exactly the same as described above, but
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includes genes for which gene expression evolution is better described by other models of

trait evolution, such as the OU process. Given these models often incorporate additional

parameters to describe trait evolution across species, incorrectly using the BM model likely

results in inaccurate estimates of ρC and a weakening of the some of the patterns we observe

when filtering out genes violating the BM assumption. Future work should focus on the

examination of coevolution of gene expression using the OU model. A major advantage of

PCMs is other models can easily be incorporated into the analysis of the trait, with the

best model being determined via a hypothesis testing (e.g. Likelihood ratio test) or model

comparison (e.g. AIC) framework.

We also note comparison of RNA-Seq data across species presents its own challenges

(Dunn et al., 2013; Wagner et al., 2012; Musser and Wagner, 2015). For our analysis, we

transformed species-level data to a standard lognormal distribution, consistent with previous

work using microarray data (Bedford and Hartl, 2009). While other methods for normalizing

RNA-Seq measurements for across species exist, our results indicate transformation to the

standard lognormal was suitable for the purpose of determining if functionally-related genes

show stronger coevolution of gene expression than randomly-generated pairs. To the best of

our knowledge, there is no current consensus on the best approach for comparing RNA-Seq

measurements across species. Brawand et. al. (Brawand et al., 2011) developed a method for

normalizing gene expression by identifying the genes with the most conserved ranks across

samples, calculating species-specific scaling factors to make the median expression of these

conserved rank genes equal across all species, and using those scaling factors to re-scale all

gene expression estimates. Dunn et. al. (Dunn et al., 2013) proposed a method based

on comparing fold-changes (differential expression) across species-specific samples, which

assumes a clear control and experimental condition and these measurements exists for all

species under consideration. Muesser and Wagner (Musser and Wagner, 2015) proposed a

method for re-scaling the TPM metric based on the largest genome in the dataset, but this

assumes the genes represented in the smaller genomes are subsets of the genes in the larger

genome, which was not the case for our data based on the orthologs we identified.

The RNA-Seq data used in this study were pulled from various non-related experiments

which differed in terms of protocols, sequencers, sequencing depth, read type (single vs.
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paired), experimental conditions, and other factors which could impact the quantifications. It

cannot be understated that this also introduces large amounts of variability to the quantified

RNA-Seq data, making comparisons across species even more difficult. We attempted to

control for this by using Salmon’s abilities to automatically adjust quantifications based

on biases its detects within the RNA-Seq reads, as well as using the control conditions for

each species for our analysis. Undoubtedly, this did not control for all of the variability

introduced by pulling data from different experiments. Despite this, we were still able to

pick up evolutionary signals indicating coevolution of gene expression. Additionally, the

normalized gene expression data used here were moderately to strongly correlated across

species (Figure 6.2) and species which were more closely related tended to show higher

correlations, consistent with expectations. However, analyses attempting to make more

precise conclusions about the evolution or coevolution of gene expression should ideally use

measurements produced under better controlled conditions. Future efforts in this area may

consider using proteomics data instead of transcriptomics data. Previous work finds protein

abundances appear to be more conserved between species compared to mRNA abundances,

which could indicate stronger selection on maintaining the former (Laurent et al., 2010).

Finally, our analysis does not directly account for possible discordance between the

species tree and the gene trees of the protein pairs used. This was done out of practicality,

as mvMORPH only takes into account one phylogenetic tree. Although we eliminate

one possible source of discordance by removing genes with evidence of gene duplications,

other possible sources include introgression, incomplete lineage sorting (ILS), and horizontal

gene transfer (HGT) (Maddison, 1997). Removal of protein pairs with genes marked as

possible introgression or HGT events from a population genomics study on 1,011 S. cerevisiae

isolates (Peter et al., 2018) had little impact on the phylogenetically-corrected correlation

ρC distributions for the binding and control sets. Although this does not exclude ILS as a

source of discordance, previous work found ILS reduced phylogenetic signal as estimated by

Pagel’s λ, which reflects similarity to a BM process (Mendes et al., 2018; Pagel, 1999). Based

on this, we speculate many genes subject to ILS may have been eliminated by filtering out

genes inconsistent with the BM process. Further work is needed to understand the effects of

ILS and other sources of gene tree discordance on multivariate trait evolution.
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6.5 Conclusions

Given our results and the ease of use of many tools implementing PCMs, we strongly

recommend the use of PCM approaches when performing interspecies analysis. The

phylogenetic research community has databases where phylogenetic trees can be easily

accessed, such as TreeBase (Piel et al., 2009). If a phylogenetic tree is not available for

the species of interest, multiple sequence alignment tools and phylogenetic tree estimation

tools have made building a reasonable phylogenetic tree efficient and easy, even for non-

computational researchers. The phylogenetics community has made access to complex

phylogenetic parameter estimation accessible via open-source, easy-to-use R packages, such

as mvMORPH (Clavel et al., 2015). Although we strongly recommend the use of PCMs for

interspecies data analysis, we emphasize that such approaches come with their own challenges

and, in some cases, the PCM may not perform better than standard statistical approaches

(see (Revell, 2010) for more details). Even so, approaches for assessing the impact of shared

ancestry on the data still requires the generation of a phylogenetic tree and analysis of

the trait in a phylogenetic context. Rohlfs et. al. also suggested PCMs likely will not

provide different results from non-PCMs if analyzing gene expression for a small number of

species, with a larger number of species resulting in more complex phylogenetic patterns and

complicating the downstream data analyses (Rohlfs and Nielsen, 2015). Researchers should

assess the impact of phylogeny of their data and make the appropriate decisions on what

tools best answer the questions at hand.

6.6 Supporting Information

6.6.1 Quantifying functional-relatedness via Gene Ontology terms

One might imagine proteins which have more overlapping GO terms are involved in more of

the same functional processes, and thus would show stronger coevolution of gene expression.

To quantify functional-relatedness via GO terms, the Jaccard index was used. Briefly, or a
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protein pair with GO terms A and B, the Jaccard Index is defined as

Jaccard Index =
|A ∩B|
|A ∪B|

6.6.2 Simulations

All simulations were carried out using mvMORPH. Data were simulated from the binding

group allowing evolutionary covariance term CovE to be non-zero and simulated data from

control group forcing CovE = 0. The binding group was simulated using the corresponding

MLEs of the evolutionary rate matrix and ancestral state estimates from the real data. The

control group was simulated similarly, but the evolutionary covariance CovE parameter was

fixed to be 0.0 (i.e. independent evolution of gene expression). Simulations used standard

error estimates from the real data.
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Chapter 7

Summary and Perspective Comments

7.1 Overview

The age of genomics sequencing has provided researchers with massive amounts of new data.

Since the sequencing of the first genomes in the 1990s, the number of publicly-available

genomes has increased exponentially. A key challenge to researchers is identifying the

functional components of a genome, as well as how these components function in the context

of their biological processes. A protein must form its correct structure and be localized

correctly in order to perform its function, as well as be able to function with other proteins

as part of metabolic pathways and regulatory networks.

In this dissertation, I investigated various hypotheses on the maintenance of function of

individual proteins relating to localization (Chapter 3) and structural properties (Chapter

4) via codon usage bias. Chapter 3 investigated a hypothesized role for codon usage

in maintaining efficient and effective protein secretion. Previous work concluded signal

peptides were under natural selection for increased translation inefficiency. However, by

using a mechanistic model rooted in population genetics, our work found that selection

on codon usage in signal peptides was consistent with the 5’-ends of non-secretory genes.

Instead, previous work was likely due to biases in amino acid biases of signal peptides

and differences in gene expression between species. Using a similar framework as in

Chapter 3, Chapter 4 further investigated the relationship between codon usage and protein

secondary structure. We found that different protein secondary structures had overall similar
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codon usage patterns, but did detect codon-specific differences in selection on codon usage.

Unlike previous work, our work has the advantage of providing codon-specific estimates

of the strength and direction of natural selection within secondary structures. This is

contrary to previous work, which often simplifies codon usage into classes of “optimal” and

“non-optimal,” codons or averages over codon-specific effects using metrics like the Codon

Adaptation Index.

As proteins do not operate in isolation, functionally-related proteins are expected to be

co-expressed or physically-interact. Using the concept of guilt-by-association, we generated

co-expression networks from high-throughput mass spectrometry based proteomics data for

C. thermocellum. By combining co-expression analysis with various sequence homology based

function prediction tools, we hypothesized functions for various proteins of unknown function

in C. thermocellum, with a special focus on proteins that may be relevant to the conversion

of cellulose to ethanol (Chapter 5). If functionally-related genes are co-expressed across

conditions and time, it is only natural to suspect these same genes coevolve at the gene

expression level across species. Using a phylogenetic comparative method in which gene

expression was modeled as a Brownian Motion process, we found that functionally-related

genes demonstrated stronger signals of coevolution compared to randomly-generated pairs

(Chapter 6). The phylogentic analysis performed in Chapter 6 could potentially be used for

hypothesizing potential functions of PUFs.

7.2 Perspectives

7.2.1 Molecular spandrels

Gould and Lewontin (1979) described the concept of an evolutionary spandrel in their

(in)famous paper “The Spandrels of San Marco and the Panglossian Paradigm: A Critique of

the Adaptationist Programme.” Briefly, Gould and Lewontin (1979) described the artwork

and architecture in the central dome of St. Mark’s Cathedral in Venice, Italy. The dome

sits atop four rounded arches, resulting in the formation of four spandrels (triangular spaces

between two arches and the dome), each of which contains an elaborate design. The artwork
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is so well-designed, it might be suspected that the architecture was designed to accommodate

the plans of the artist. In reality, the spandrels are merely an architectural constraint of

placing a dome on top of four rounded arches, with the artwork being designed to make

use of this constraint. Gould and Lewontin argued evolutionary biologists were prone to

adaptive storytelling: a trait is observed, therefore it must have been selected for. These

traits, which they referred to as “spandrels,” may actually be the result of a development or

physical constraints of the organism in question.

I believe the previously observed codon usage patterns in signal peptides discussed in

Chapter 3 are an excellent example of a molecular spandrel. While signal peptide sequences

vary, they do have fairly specific amino acid properties: a positively-charged N-terminus,

a hydrophobic core, and a polar C-terminus. This will bias the amino acids present in the

signal peptides, placing a constraint on the codon usage for signal peptides. As demonstrated

by simulations, the same effect observed in previous work (Power et al., 2004) can be re-

created even if selection on codon usage in signal peptides no different than selection at the

5’-ends of non-secretory genes.

Results from ribosome profiling have also led to another potential example of a molecular

spandrel. A common feature of ribosome profiling experiments is higher ribosome densities

at the 5’-end of transcripts, with a gradual decrease over approximately 30-50 codons (Ingolia

et al., 2009). The led to the development of the 5’-ramp hypothesis, which proposes that the

usage of slow codons at the 5’-end is due to selection to prevent ribosome queuing (Tuller

et al., 2010, 2011). This is an adaptationist alternative to the nonsense error hypothesis,

which states that this increased frequency of slow codons is due to weakened selection

against ribosome drop-off (Gilchrist et al., 2009; Kurland, 1992). Simulations using a whole-

cell model of translation suggested the 5’-ramp was an artifact of short, highly expressed

genes with fast initiation rates (Shah et al., 2013). Further work suggested the 5’-ramp

was partially an artifact of ribosome profiling experiments performed using cycloheximide

(Weinberg et al., 2016). Although a small 5’-ramp is still observed in ribosome profiling

experiments not using cycloheximide, all 61 codons showed an approximately 33% increase

in densities within the 5’-ramp region, suggesting the ramp is largely independent of codon

usage. This was hypothesized to be due to overall slower elongation at the beginning of
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translation independent of codon usage, which could be caused by the continued engagement

of initiation factors with the 80S ribosome (Weinberg et al., 2016).

7.2.2 Selection for translation efficiency or accuracy

In the field of codon usage bias, it is often assumed that translation efficiency and accuracy

go hand-in-hand; however, previous work suggests the most efficient codon is not necessarily

the most accurate (Shah and Gilchrist, 2010). Previous work has often used the terms

“optimal” or “preferred” to broadly describe codons which are assumed to be both the most

accurate and most efficient. For example, Pechmann and Frydman (2013) delineated all

codons as either optimal or non-optimal. When describing regions of conserved non-optimal

codon usage, they took the efficiency perspective, believing this indicated regions of slow

translation for to assist in the folding of certain secondary structures. On the other hand,

conserved regions of optimal codons were interpreted as strong selection against missense

errors in structures such as β-sheets. A clear example of this comes from previous work

examining differences in codon usage between structured and disordered regions (Zhou et al.,

2015; Homma et al., 2016). Both studies found disordered regions had an increased frequency

of non-optimal codons. Homma et al. (2016) concluded the increased usage of non-optimal

codons reflected weakened selection against missense errors. Zhou et al. (2015) concluded

the increased usage of non-optimal codons was an adaptation to slow down translation to

assist in the co-translational folding of upstream structures.

Chapter 4 also looked for differences in selection on codon usage related to protein

secondary structures. Although I speculate on the potential causes of differential selection, it

is extremely difficult to say if these differences are due to selective forces related to efficiency

or accuracy. To the best of my knowledge, this is true of all current metrics for estimating

codon usage bias. Although methods like ROC-SEMPPR are a step forward because they

provide estimates of selection on codon usage within a region, further work is needed to

develop models which can incorporate the benefit of accurate translation along with the cost

of inefficient translation.
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7.2.3 Machine learning and mechanistic models during the omics

era

Machine learning approaches are well-suited for extracting patterns from noisy data. This

has made machine learning a popular technique during the omics era. Machine learning

approaches have been used used extensively in the life sciences, ranging from de-novo peptide

sequencing (Gessulat et al., 2019; Tran et al., 2017) to clinical predictions (Luo, 2015). The

availability of large population genomic datasets has even allowed machine learning to carve

out a niche in population genetics, with techniques being developed for the detection of

selective sweeps (Schrider and Kern, 2016, 2018). Given the abilities of machine learning, it

is natural to question what role mechanistic models have in the life sciences going forward

(Baker et al., 2018)?

For the most part, machine learning approaches are better equipped for making

predictions from biological data than mechanistic models. However, our goal as life

science researchers is not always to predict biology, but to understand biology. While

some machine learning techniques, such as decision trees, can provide some sense of the

importance of different factors in explaining biological variation, the mechanistic link between

these factors is unclear. Other machine learning approaches, such as neural networks,

are often described as black boxes: the links between factors are hidden from the user.

On the other hand, mechanistic models make it clear what is being modeled, allowing

for the comparison of theory with data. However, mechanistic models also often make

simplifying assumptions about the underlying biological process in order to make fitting the

data tractable. Mechanistic models and machine learning approaches should be viewed as

complimentary approaches for biological data analysis, with the latter pulling patterns from

large-scale data and the former being used to test causal hypothesis about the patterns.

7.2.4 The role of mass spectrometry in molecular evolution

Mass spectrometry has potential to be an invaluable analytical technique for the field

of molecular evolution. In the life sciences, liquid chromatography coupled with tandem

mass spectrometry (LC-MS/MS) is often used to identify and quantify the proteome of an
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organism. However, LC-MS/MS based techniques have also been developed for measuring

protein synthesis rates (as opposed to abundances, e.g. pSILAC (Riba et al., 2019), Punch-P

(Aviner et al., 2013)), protein-protein interactions (Smits and Vermeulen, 2016), and protein

degradation rates, to name just a few potential applications. Given that many of these factors

are thought to partially explain some of the evolutionary patterns observed in proteins across

species, it seems mass spectrometry will play an important source of empirical evidence for

the field of molecular evolution (Drummond and Wilke, 2009).

7.2.5 The misfolding hypothesis

One of the major hypotheses to emerge in the field of molecular evolution over the last

decade is the misfolding hypothesis (formerly, the translational robustness hypothesis). The

misfolding hypothesis is thought to explain the slower evolutionary rate (as measured by

the ratio of nonsynonymous to synonymous substitutions) of highly expressed genes and the

use of supposedly accurate codons at evolutionarily conserved sites (Drummond and Wilke,

2008; Yang et al., 2010). However, empirical support for this hypothesis is lacking.

In theory, mass spectrometry is the ideal technique for detecting missense errors in a

high-throughput manner at a proteome scale (Drummond and Wilke, 2009). The main

challenge of detecting missense errors (which occur at a rate of 10−4 - 10−3 per codon)

at a proteome-scale is being able to achieve a signal against the background proteome.

Mordret et al. (2019) demonstrated a recent approach for detecting missense errors, which

they demonstrated in both E. coli and S. cerevisiae. This work found that error prone codons

were the ones with highest ratio of near-cognate to cognate codons, consistent with previous

theoretical work (Shah and Gilchrist, 2010). Furthermore, missense errors tended to occur

at more evolutionarily variable residues and residues which were more destabilizing to the

protein (as determined via simulations). Residues with higher missense error rates tended

to have lower ribosome densities (suggesting faster elongation rates), even after controlling

for codon usage. Translation is noted for having a speed-accuracy trade-off (Johansson

et al., 2012; Wohlgemuth et al., 2011). This suggest a mechanism by which elongation is

slowed down at certain sites, independent of the codon being translated, in order to ensure

accurate translation. Previous work proposed that mRNA was more structured around
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functionally-important sites in order to slow down elongation enough to allow for more

accurate translation (Yang et al., 2014).

Mass spectrometry has also recently been used to provide empirical evidence that

more abundant proteins are under selection to be more stable. Leuenberger et al. (2017)

demonstrated a mass spectrometry technique for measuring the unfolding temperatures of

proteins. They found that more highly abundant proteins tended to have higher melting

temperatures. This was viewed as evidence in support of the misfolding hypothesis, but this

dataset has been controversial. A re-analysis of the data from Leuenberger et al. (2017)

concluded there was minimal evidence to support this hypothesis (Plata and Vitkup, 2018).

However, this work was recently called into question by Razban (2019), who noted many of

the assumptions in (Plata and Vitkup, 2018) did not hold upon further scrutiny. The main

point issued by Razban (2019) is the unclear relationship between unfolding temperatures

of proteins and its corresponding free energy ∆G . Based on recent controversies, it is

clear further work is needed to understand the relationship between unfolding temperatures

and overall protein stability. If these current controversies can be resolved, the technique

proposed by Leuenberger et al. (2017) could be invaluable for understanding the constraints

of stability on protein evolution.

7.2.6 Coevolution of protein abundances across species

Chapter 5 demonstrated how empirically-measured protein abundances could help elucidate

the functional roles of proteins of unknown function. Although mRNA abundances are often

used for similar co-expression analysis studies, it is well-known that mRNA abundances

only partially explain the variance of protein abundances (Liu et al., 2016). Interestingly,

previous work found that protein abundances tend to be more conserved across species

than mRNA abundances (Laurent et al., 2010; Weiss et al., 2010). It seems that if part

of this selective pressure is to maintain efficient protein-protein interactions, then this

would primarily operate at the protein abundance (rather than mRNA abundance) level.

Chapter 6 illustrated the use of detecting coevolution of gene expression based on RNA-

Seq measurements (i.e. mRNA abundances), indicating that such signals of coevolution

are found at the mRNA abundance level. However, mass spectrometry-based proteomics
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measurements could prove to be better than mRNA abundances for detecting coevolving

(and presumably, functionally-related) genes.

7.3 Going forward

This work has largely demonstrated the value of using evolutionary methods for testing

hypotheses related to the maintenance of a protein’s function. However, there are various

ways to build upon this work. One key aspect is to better understand the sources of conflict

between empirical and computational analyses. For example, Chapter 3 demonstrated

selection on signal peptides is consistent with the 5’-ends of non-secreted genes. However,

empirical work with specific proteins suggests optimizing codon usage in signal peptides can

negatively impact protein localization. A key question is when and why does using certain

codons negatively impact protein localization. Furthermore, Chapter 3 only examines codon

usage in signal peptides of E. coli, where most protein secretion occurs post-translation

(Natale et al., 2008). Future work will want to expand this analysis to eukaryotes, in which

most secretion occurs co-translationally instead of post-translationally. Although Chapter

4 demonstrates there are selective differences on codon usage between protein secondary

structures, we cannot say if these differences are related to efficiency or accuracy. As already

discussed, models which are able to separate out the effects of selection for translation

efficiency and accuracy will be critical to understanding how these factors shape intragenic

codon usage patterns, and how these variations are related to protein biogenesis. Even so,

the work here demonstrates how methods like ROC-SEMPPR can be used to test hypotheses

related to the evolution of codon usage bias.

Chapters 5 and 6 demonstrated how empirical data can be used to assist in the

identification of functionally-related proteins. However, this work only scratches the surface

of what is possible. Despite finding solid evidence of co-expression which supports sequence-

based functional annotation for certain proteins of unknown function (Chapter 5), these

networks were constructed from relatively few biological samples. Similarly, although we were

clearly able to detect coevolution of gene expression across species (Chapter 6), the data were

taken from disparate RNA-Seq measurements, introducing both technical noise and biological
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variability. The power of these approaches will only be improved via the use of larger, better

controlled datasets. Future work would likely benefit from incorporating multiple-omics

scale measurements, such protein-protein interaction data, or using both mRNA and protein

abundance estimates (which reveal signals of post-transcriptional regulation). Although the

work presented in Chapters 5 and 6 had limitations related to the empirical data, the results

demonstrate that these approaches are still useful for detecting co-expression/coevolution of

functionally-related proteins.
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for the Evolution of Gene Expression. Mol. Biol. Evol., 26(10):2363–2372, oct 2009.

ISSN 1537-1719. doi: 10.1093/molbev/msp149. URL https://academic.oup.com/mbe/

article-lookup/doi/10.1093/molbev/msp149. 115

A Eyre-Walker. Synonymous Codon Bias is Related to Gene Length in Escherichia coli:

Selection for Translational Accuracy? Mol. Biol. Evol., 13(6):864–872, 1996. 7, 32, 53, 59

Daria V. Fedyukina and Silvia Cavagnero. Protein Folding at the Exit Tunnel.

Annu. Rev. Biophys., 40(1):337–359, jun 2011. ISSN 1936-122X. doi: 10.1146/

annurev-biophys-042910-155338. URL http://www.annualreviews.org/doi/10.1146/

annurev-biophys-042910-155338. 14

Joseph Felsenstein. Phylogenies and the Comparative Method on JSTOR. Am.

Nat., 125(1):1–15, 1985. URL https://www.jstor.org/stable/2461605?seq=

1{#}metadata{_}info{_}tab{_}contents. xiv, 17, 18, 19, 115, 122, 135, 148

F Feyertag, P M Berninsone, and D Alvarez-Ponce. Secreted Proteins Defy the Expression

Level-Evolutionary Rate Anticorrelation. Mol. Biol. Evol., 34(3):692–706, 2017. doi:

10.1093/molbev/msw268. 2, 64, 140

Robert D Finn, Alex Bateman, Jody Clements, Penelope Coggill, Ruth Y Eberhardt,

Sean R Eddy, Andreas Heger, Kirstie Hetherington, Liisa Holm, Jaina Mistry, Erik

L L Sonnhammer, John Tate, and Marco Punta. Pfam: the protein families database.

Nucleic Acids Res., 42(Database issue):D222–30, jan 2014. ISSN 1362-4962. doi:

10.1093/nar/gkt1223. URL http://www.ncbi.nlm.nih.gov/pubmed/24288371http://

www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3965110. 86

173

http://www.ncbi.nlm.nih.gov/pubmed/29059321 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5714238
http://www.ncbi.nlm.nih.gov/pubmed/29059321 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5714238
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msp149
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msp149
http://www.annualreviews.org/doi/10.1146/annurev-biophys-042910-155338
http://www.annualreviews.org/doi/10.1146/annurev-biophys-042910-155338
https://www.jstor.org/stable/2461605?seq=1{#}metadata{_}info{_}tab{_}contents
https://www.jstor.org/stable/2461605?seq=1{#}metadata{_}info{_}tab{_}contents
http://www.ncbi.nlm.nih.gov/pubmed/24288371 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3965110
http://www.ncbi.nlm.nih.gov/pubmed/24288371 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3965110


Walter M. Fitch. Is there selection against wobble in codon-anticodon pairing? Science (80-.

)., 194(4270):1173–1174, dec 1976. ISSN 00368075. doi: 10.1126/science.996548. 2

N Fluman, S Navon, E Bibi, and Y Pilpel. mRNA-programmed translation pauses in the

targeting of E. coli membrane proteins. Elife, 3:e03440, 2014. doi: 10.7554/eLife.03440.

58

Hunter B Fraser, Aaron E Hirsh, Lars M Steinmetz, Curt Scharfe, and Marcus W Feldman.

Evolutionary rate in the protein interaction network. Science, 296(5568):750–2, apr 2002.

ISSN 1095-9203. doi: 10.1126/science.1068696. URL http://www.ncbi.nlm.nih.gov/

pubmed/11976460. 122, 140

Hunter B Fraser, Aaron E Hirsh, Dennis P Wall, and Michael B Eisen. Co-

evolution of gene expression among interacting proteins. Proc. Natl. Acad.

Sci. U. S. A., 101(24):9033–8, jun 2004. ISSN 0027-8424. doi: 10.1073/

pnas.0402591101. URL http://www.ncbi.nlm.nih.gov/pubmed/15175431http://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC439012. xii, 8, 17, 19, 114,

116, 117, 123, 125, 130, 135, 136, 137, 139, 144, 146, 147

Roland Freudl. Signal peptides for recombinant protein secretion in bacterial expression

systems. Microb. Cell Fact., 17(1):52, mar 2018. ISSN 14752859. doi: 10.

1186/s12934-018-0901-3. URL https://microbialcellfactories.biomedcentral.

com/articles/10.1186/s12934-018-0901-3. xiii, 12

Dmitrij Frishman. Protein annotation at genomic scale: The current status. Chem. Rev.,

107(8):3448–3466, aug 2007. ISSN 00092665. doi: 10.1021/cr068303k. 16

Idan Frumkin, Dvir Schirman, Aviv Rotman, Fangfei Li, Liron Zahavi, Ernest Mordret,

Omer Asraf, Song Wu, Sasha F. Levy, and Yitzhak Pilpel. Gene Architectures that

Minimize Cost of Gene Expression. Mol. Cell, 65(1):142–153, jan 2017. ISSN 10974164.

doi: 10.1016/j.molcel.2016.11.007. 13

Jingjing Fu, Katherine A. Murphy, Mian Zhou, Ying H. Li, Vu H. Lam, Christine A. Tabuloc,

Joanna C. Chiu, and Yi Liu. Codon usage affects the structure and function of the

174

http://www.ncbi.nlm.nih.gov/pubmed/11976460
http://www.ncbi.nlm.nih.gov/pubmed/11976460
http://www.ncbi.nlm.nih.gov/pubmed/15175431 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC439012
http://www.ncbi.nlm.nih.gov/pubmed/15175431 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC439012
https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-018-0901-3
https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-018-0901-3


Drosophila circadian clock protein PERIOD. Genes Dev., 30(15):1761–1775, aug 2016.

ISSN 15495477. doi: 10.1101/gad.281030.116. 14, 65

Theodore Garland, Paul H. Harvey, and Anthony R. Ives. Procedures for the Analysis of

Comparative Data Using Phylogenetically Independent Contrasts. Syst. Biol., 41(1):18–

32, mar 1992. ISSN 1063-5157. doi: 10.1093/sysbio/41.1.18. URL https://academic.

oup.com/sysbio/article/41/1/18/1617342. 118, 119, 122, 148

Hui Ge, Zhihua Liu, George M. Church, and Marc Vidal. Correlation between transcriptome

and interactome mapping data from Saccharomyces cerevisiae. Nat. Genet., 29(4):482–

486, dec 2001. ISSN 1061-4036. doi: 10.1038/ng776. URL http://www.ncbi.nlm.nih.

gov/pubmed/11694880http://www.nature.com/articles/ng776z. 114

Kerry A. Geiler-Samerotte, Michael F. Dion, Bogdan A. Budnik, Stephanie M. Wang,

Daniel L. Hartl, and D. Allan Drummond. Misfolded proteins impose a dosage-dependent

fitness cost and trigger a cytosolic unfolded protein response in yeast. Proc. Natl. Acad.

Sci. U. S. A., 108(2):680–685, jan 2011. ISSN 00278424. doi: 10.1073/pnas.1017570108.

2, 64

Siegfried Gessulat, Tobias Schmidt, Daniel Paul Zolg, Patroklos Samaras, Karsten

Schnatbaum, Johannes Zerweck, Tobias Knaute, Julia Rechenberger, Bernard Delanghe,

Andreas Huhmer, Ulf Reimer, Hans Christian Ehrlich, Stephan Aiche, Bernhard Kuster,

and Mathias Wilhelm. Prosit: proteome-wide prediction of peptide tandem mass spectra

by deep learning. Nat. Methods, 16(6):509–518, jun 2019. ISSN 15487105. doi:

10.1038/s41592-019-0426-7. 157

Tali Gidalevitz, Thomas Krupinski, Susana Garcia, and Richard I. Morimoto. Destabilizing

Protein Polymorphisms in the Genetic Background Direct Phenotypic Expression of

Mutant SOD1 Toxicity. PLoS Genet., 5(3):e1000399, mar 2009. ISSN 1553-7404. doi:

10.1371/journal.pgen.1000399. URL https://dx.plos.org/10.1371/journal.pgen.

1000399. 2, 64

175

https://academic.oup.com/sysbio/article/41/1/18/1617342
https://academic.oup.com/sysbio/article/41/1/18/1617342
http://www.ncbi.nlm.nih.gov/pubmed/11694880 http://www.nature.com/articles/ng776z
http://www.ncbi.nlm.nih.gov/pubmed/11694880 http://www.nature.com/articles/ng776z
https://dx.plos.org/10.1371/journal.pgen.1000399
https://dx.plos.org/10.1371/journal.pgen.1000399


M A Gilchrist. Combining Models of Protein Translation and Population Genetics to Predict

Protein Production Rates from Codon Usage Patterns. Mol. Biol. Evol., 24(11):2362–2372,

2007. doi: 10.1093/molbev/msm169. 8, 10, 32, 53, 59, 147

M A Gilchrist and A Wagner. A model of protein translation including codon bias, nonsense

errors, and ribosome recylcing. J. Theor. Biol., 239:417–434, 2006. 7, 32, 53, 59

M A Gilchrist, P Shah, and R Zaretzki. Measuring and Detecting Molecular Adaptation

in Codon Usage Against Nonsense Errors During Protein Translation. Genetics, 183:

1493–1505, 2009. doi: 10.1534/genetics.109.108209. xvi, 7, 54, 155

M A Gilchrist, W C Chen, P Shah, C L Landerer, and R Zaretzki. Estimating Gene

Expression and Codon-Specific Translational Efficiencies, Mutation Biases, and Selection

Coefficients from Genomic Data Alone. Genome Biol. Evol., 7:1559–1579, 2015. xiii, 4, 5,

10, 22, 32, 34, 61, 66, 83, 140, 147

Jesse Gillis and Paul Pavlidis. The Impact of Multifunctional Genes on “Guilt by

Association” Analysis. PLoS One, 6(2):e17258, feb 2011. doi: 10.1371/journal.pone.

0017258. URL http://dx.plos.org/10.1371/journal.pone.0017258. 16, 86, 114

Jesse Gillis and Paul Pavlidis. ”Guilt by association” is the exception rather than the rule

in gene networks. PLoS Comput. Biol., 8(3), mar 2012. ISSN 1553734X. doi: 10.1371/

journal.pcbi.1002444. 16, 86, 87

Norman F. Goodacre, Dietlind L. Gerloff, and Peter Uetz. Protein domains of unknown

function are essential in bacteria. MBio, 5(1), dec 2013. ISSN 21612129. doi: 10.1128/

mBio.00744-13. 86

Daniel B. Goodman, George M. Church, and Sriram Kosuri. Causes and effects of N-

terminal codon bias in bacterial genes. Science (80-. )., 342(6157):475–479, oct 2013.

ISSN 10959203. doi: 10.1126/science.1241934. URL http://www.ncbi.nlm.nih.gov/

pubmed/24072823. 13

176

http://dx.plos.org/10.1371/journal.pone.0017258
http://www.ncbi.nlm.nih.gov/pubmed/24072823
http://www.ncbi.nlm.nih.gov/pubmed/24072823


S J Gould and R C Lewontin. The Spandrels of San Marco and the Panglossian Paradigm:

A Critique of the Adaptationist Programme. Proc. R. Soc. London, 205(1161):581–598,

1979. 13, 32, 60, 154

R Grantham, C Gautier, and M Gouy. Codon frequencies in 1 9 individual genes confrm

consistent choices of degenerate bases according to genome type. Nucleic Acids Res., 8

(9):1893–1912, 1980. 2

E R Green and J Mecsas. Bacterial Secretion Systems - An overview. Microbiol Spectr., 4

(1), 2016. doi: 10.1128/microbiolspec.VMBF-0012-2015. 29, 30

A. Grigoriev. A relationship between gene expression and protein interactions on the

proteome scale: analysis of the bacteriophage T7 and the yeast Saccharomyces cerevisiae.

Nucleic Acids Res., 29(17):3513–3519, sep 2001. ISSN 13624962. doi: 10.1093/nar/29.17.

3513. URL https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/29.

17.3513. 114

Xun Gu, Yangyun Zou, Wei Huang, Libing Shen, Zebulun Arendsee, and Zhixi Su.

Phylogenomic Distance Method for Analyzing Transcriptome Evolution Based on RNA-

seq Data. Genome Biol. Evol., 5(9):1746–1753, sep 2013. ISSN 1759-6653. doi:

10.1093/gbe/evt121. URL https://academic.oup.com/gbe/article-lookup/doi/10.

1093/gbe/evt121. 115

Haiwei H. Guo, Juno Choe, and Lawrence A. Loeb. Protein tolerance to random amino acid

change. Proc. Natl. Acad. Sci. U. S. A., 101(25):9205–9210, jun 2004. ISSN 00278424.

doi: 10.1073/pnas.0403255101. 64, 83

S. K. Gupta, S. Majumdar, T. K. Bhattacharya, and T. C. Ghosh. Studies on the

relationships between the synonymous codon usage and protein secondary structural units.

Biochem. Biophys. Res. Commun., 269(3):692–696, mar 2000. ISSN 0006291X. doi:

10.1006/bbrc.2000.2351. 65

Thomas F. Hansen. STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS

OF ADAPTATION. Evolution (N. Y)., 51(5):1341–1351, oct 1997. ISSN 00143820.

177

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/29.17.3513
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/29.17.3513
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evt121
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evt121


doi: 10.1111/j.1558-5646.1997.tb01457.x. URL http://doi.wiley.com/10.1111/j.

1558-5646.1997.tb01457.x. 116

Andrew D. Hanson, Anne Pribat, and Valérie de Creécy-Lagard. ’Unknown’ proteins and
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