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Abstract 

 Battery energy storage is poised to play an increasingly important role in the modern 

electric grid.  Not only does it help with peak shaving and shifting for renewable resources like 

wind and solar, it can also provide a host of other ancillary grid-stabilizing services.  Cost 

remains a limiting factor in deploying energy storage systems large enough to provide these 

services on the scale required by an electric utility.  Secondary-use electric vehicle batteries are a 

source of inexpensive energy storage systems that are not yet ready for disposal but are no longer 

appropriate for vehicle applications.  However, the wide range of manufacturers using different 

battery chemistries and configurations mean that integrating these batteries into a large-format 

system can be difficult.  This work demonstrates methods for the autonomous integration and 

operation of a wide range of stationary energy storage battery chemistries.  A fully autonomous 

battery characterization is paired with a novel system architecture and transactive optimization to 

create a system which can provide utility-scale energy services using a multitude of battery 

chemistries in the same system.  These claims are verified using a combination of in-situ testing 

and a computer modelling testbed.  Results are presented which demonstrate the ability of the 

proposed method to combine a wide range of batteries into a single system. 
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Chapter 1 - Introduction 

 In the coming decade, energy storage technologies are expected to revolutionize the 

electric grid. Whether energy storage is used to support grid-scale solar or wind plants or placed 

in a homeowner’s backyard to provide load shifting, peak shaving, and solar mitigation, energy 

storage will help usher in a transformation of how electricity is bought and sold.  The growth in 

energy storage interests and deployments is coming for a host of reasons.  

Global energy policy has been increasing restrictions on carbon emissions in a push to 

move electricity generation towards renewable resources such as wind, solar, tidal, and 

hydroelectric. These resources often need some form of energy storage to convert the time the 

energy is produced to the time the energy is consumed.  In the United Kingdom, environmental 

objectives have targeted an 80% reduction of greenhouse gases between 1990 and 2050.  The 

United States has similarly targeted a 26-28% reduction of carbon emissions between 2005 and 

2025 with a goal of 80% reduction by 2050 [1].  Yet, electricity demand grows all the while with 

an expected growth in demand of 25% during the same period [2].  With these policy changes 

and the rapidly increasing popularity of solar and wind, renewable resources are beginning to 

take a significant hold on the global energy market.   In 2013, global PV capacity was estimated 

to have reached 139 GW with a projected exponential growth [3].  Similarly, wind power’s 

steady growth resulted in a 2013 capacity of 318 GW [4].  Yet, intermittency remains an 

impediment to further integration of renewables given that solar irradiance and wind are not 

constant year-round or even day-to-day. Energy storage enables increased renewable penetration 

by managing the intermittency of solar and wind.  When renewable generation cannot meet 

demand requirements or exceeds consumer demand, energy storage is able to act as a buffer to 

provide or absorb energy to and from the grid.  Past issues with peak energy supply has led to 
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questions of why more grid energy storage does not currently exist.  Summertime rolling 

blackouts have become common in states like California where supply cannot meet peak demand 

on hot days [5].  As recently October of 2019, PG&E has implemented rolling blackouts for over 

150,000 customers with California Edison cutting power to more than 300,000 people.  The 

measures reduce transmission demand and are an attempt to prevent failed lines from starting 

wildfires [6].  Energy storage could help with intermittency problems and provide peak demand 

relief; especially in a state with 13.8% renewable penetration and plans to continue increasing 

renewables and eliminating coal and nuclear energy generation [7].  In most cases, the answer 

comes down to cost versus useful product lifetime.  

Today, the expected time to recoup the cost of an energy storage investment often 

exceeds the expected life of the system.  For example, older lead-acid battery technologies 

require low capital investment, but face problems with the number of charge/discharge operating 

cycles being in the range of one or two thousand.  Lithium-ion (Li-ion) can cycle tens of 

thousands of times but are prohibitively expensive with costs typically exceeding $300 per kWh 

[8].  For newer systems like redox flow batteries (RFB) promising high capacities at a low 

$/kWh cost, utilities show hesitance to invest in what they deem untested or incomplete 

technologies.  Cost reduction of all storage methods has been a thematic focus of most US 

energy storage programs since the DOE first reported on energy storage in 2003.  In 2013, the 

DOE proposed a short-term energy storage goal for 2019 of approximately $250/kWh with a 

long-term goal reducing the price to $150/kWh by 2023 [9]. Sandia National Lab (Sandia) and 

the Electric Power Research Institute (EPRI) showed that most demonstrated energy storage 

technologies cannot yet meet these goals as of 2013 [10]. In 2015, the Lithium-Ion industry was 

evaluated by Nykvist et al.  In their work, summarized in Figure 1.1, they found that price 
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reductions and forecasts were not predicted to reach below $150/kWh until sometime after 2030 

[11].  Bloomberg New Energy Finance (BNEF) followed with another evaluation in 2017 with a 

report that suggested batteries could theoretically be produced in a Korean production facility in 

2017 for $162/kWh and reach cost targets as low as $74/kWh by 2030.  However, BNEF is 

careful to note that these are production costs and are not commercial pricing suggestions [12]. 

In meeting a reasonable ROI, cost of the energy storage is one issue, and the value 

achievable by performing ancillary services to either offset load or earn credit from a utility is 

another value stream.  Energy storage systems have been demonstrated to cover a wide-reaching 

range of methods and applications.  Figure 1.2 gives a generalization of the portfolio of grid 

 

Figure 1.1 - Li-Ion pricing and forecasts from 2006 to 2030 as presented by Nykvist et al. [11] 
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applications which range in power level from 1 kW to 1 GW with best suited energy storage 

technologies mapped by capacity ranging from seconds to hours [13]. 

Providing reliability through uninterrupted power services has been the driving force 

behind much of the past energy storage work.  Besides preventing nuisance interruptions or 

mitigating the need for load-shedding activities, there is a large financial incentive to provide 

uninterrupted power.  Lawrence Berkley National Lab (LBNL) performed a survey in 2004 

estimating the financial impact of short-term power interruptions on various power sectors.  In 

their study, they demonstrated that an hour-long outage could cost an industrial customer up to 

$3,253.  Commercial customers would be less impacted by an hour-long outage with an estimate 

of only $886.   In Figure 1.3, the estimated financial impact of power interruptions is shown by 

 

Figure 1.2 - Energy storage technologies and their capabilities [13]. 
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energy sector with a total yearly estimate of around $79 billion [14].  For commercial and 

industrial consumers, these values are easy to estimate given that power outages result in 

calculable losses from production downtime.  For residential consumers, financial losses from a 

blackout are more difficult to calculate since this value largely rests on how much worth the 

customer attributes to having energy in the home. 

To provide additional value to ESS and offset the cost, services beyond back-up power 

have been explored.  In Table 1.1, a list of energy storage services are presented and described.  

These services are often difficult to provide with traditional generation resources [10].  Many of 

the services described in Table 1.1 have been demonstrated using various energy storage types.  

Some have been implemented on megawatt-scale flow batteries while others have been shown 

on kilowatt-scale residential energy storage devices.  In 2015, Starke et al. present a “community 

energy storage” device capable of providing power quality, retail energy time-shifting, and 

demand charge management services for a small number of residential consumers.  Their work 

demonstrated the ability of a 25 kW, 50 kWh secondary-use battery energy storage system to 

provide power factor correction, load-correction, load-leveling, and peak shaving operation [15].  

Other demonstrations can be found in the 2013 DOE report on the utilization of ESS [16]. 

 

Figure 1.3 - LBNL cost of power interruption breakdown [14] 
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Table 1.1 - Electrical energy storage services and their typical parameters 

Name Typical Size 
Discharge 

Duration 

Min. Cycles 

per Year 
Description 

Bulk Energy Services 

Energy Time-

Shift 

(Arbitrage) 

1-500 MW < 1 hour 250 + 
Shift energy from peak production times to peak 

consumption times from PV and/or wind farms 

Electric 

Supply 

Capacity 

1-500 MW 2-6 hours 5-100 Scheduled and used just like a generator (hydro) 

Ancillary Services 

Regulation 10-40 MW 15-60 min 250-10,000 Control-area specific maintenance of frequency 

Spinning, Non-

Spinning, 

Supplemental 

Reserve 

10-100 MW 15-60 min 20-50 
Used in place of spinning reserve generators, but 

with little to no losses while idling 

Voltage 

Support 
1-10 MVAR N/A N/A 

Support system voltage by injecting or absorbing 

reactive energy (real power not needed) 

Black Start 5-50 MW 15-60 min 10-20 
Energize transmission lines to bring power plants 

back on line after a catastrophic grid failure 

Load 

Following 
1-100 MW 15-60 min N/A 

Similar to damping variability in wind and PV, ES 

can dampen variability in load as well. 

Frequency 

Response 
Variable Seconds N/A 

Helps when freq. suddenly drops due to the 

sudden loss of a generator or transmission line. 

Transmission Infrastructure Services 

Upgrade 

Deferral 
10-100 MW 2-8 hours 10-50 

Mitigate the need for new transmission equipment 

by providing small generation boosts 

Congestion 

Relief 
1-100 MW 1-4 hours 50-100 

Store energy at low congestion times and use to 

reduce peak transmission capacity requirements  

Distribution Infrastructure Services 

Upgrade 

Deferral 
.5 -10 MW 1-4 hours 50-100 

Offset peak load to help mitigate the need for new 

generation assets to be built. 

Voltage 

Support 
.5-10 MW 1-4 hours 50-100 

Provide voltage sag support along distribution 

feeder when heavy loads could result in an under-

voltage event 

Customer Energy Management Services 

Power Quality 
100kW –   

10 MW 

10 sec –  

15 min 
10-200 

On-site storage monitors power quality and 

discharges/charges to smooth power to the load 

Power 

Reliability 

Load-

dependent 

Length of 

outage 
High 

Storage systems allow customers to island and 

self-power during system outage events 

Retail Energy 

Time-Shift 
1-1000 kW 1-6 hours 50-250 

Also called “peak-shifting,” customers store 

energy at off-peak times and discharge at peak 

times 

Demand 

Charge 

Management 

50 kW -    

10 MW 
1-4 hours 50-500 

Also a time-shifting function, but used to reduce 

energy consumption during peak demand-charge 
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Secondary-Use Batteries 

 Widespread adoption of energy storage has been limited by high capital costs and low 

return-on-investment (ROI) figures. For example, residential customers looking to obtain a 25 

kWh battery system for home use would still be looking at a $6500 cost using the DOE’s cost 

goal of $250/kWh for 2019.  After adding in the bulk-of-system cost components including an 

inverter and other installation hardware, a unit capable of providing residential ancillary services 

and limited black-out services could end up with costs exceeding $10,0001.  While this may be a 

feasible option for some consumers, this likely does not have economic merit for most 

consumers [15].  In a 2011 report, Oak Ridge National Laboratory (ORNL) proposed the 

adoption of used electric vehicle (EV) batteries as a source of inexpensive batteries for energy 

storage [17].   

Second-life (or secondary-use) batteries for energy storage are taken from EVs or PHEVs 

at the end of the battery system’s useful life.  A secondary-use battery can be defined as any 

battery pack that has been used to the point where only 70-80% of the initial rated capacity 

remains [17].  As with solid-state lighting devices, these end of life (EOL) conditions are defined 

at these values because there is no sharp drop-off that signals EOL like an incandescent light-

bulb burning out.  Instead, a device is guaranteed to stay above an operational threshold for a 

given time window.  For example, a new Nissan Leaf is capable of a minimum 60 miles of range 

for 6-10 years.  While the car starts with 83 miles of range, the vehicle is guaranteed to operate 

over 60 until end of life is reached [18].  While this depends heavily on the usage of the car, the 

ongoing assumption is that the 30 kWh battery pack in the car would still maintain at least 21 

 
1 This assumes an inverter cost of approximately $2000, which is approximately the current cost of a 10-kW 

commercial solar inverter.  It also assumes $1500 in skilled labor for installation.   
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kWh of energy storage capacity.  Capacity is used as a primary metric since cycle life can be 

harder to predict since it can change as the use-case for the energy storage device changes. 

The early adopters of EVs and PHEVs have begun to see the end of useful life.  

Additionally, manufacturing flaws or other warranty-replacement issues have resulted in 

increased availability of used batteries. As a result, the availability of these used vehicle battery 

packs has begun to significantly increase and will continue to increase as the sales of EVs and 

PHEVs continue to grow as sales data show in Figure 1.4.  Cooling of the market and the dip in 

2015 were caused by a significant decrease in gas prices in 2014 and 2015 [19].  The ongoing 

decision for most original equipment manufacturer (OEMs) is whether these systems should be 

destroyed, recycled, or reused. Presently many of these systems are being shelved with the hope 

of developing rapid reprocessing. Spiers New Technologies (SNT), a battery reprocessing plant, 

reports storing nearly 1500 vehicle battery packs from Nissan vehicles alone.   

An evaluation of reuse led to the 2011 study, and ORNL predicted that these batteries 

could be sold for as little as $75-250/kWh, far below the DOE’s 2019 target of $250/kWh [17].  

Nissan, maker of the Leaf electric vehicle, has valued their spent battery packs at $1000 as part 

of their upgrade program to replace current vehicle owners’ spent batteries [20].  Assuming a 

spent pack contains 70% of its initial 24 kWh of energy, this means that the battery could be 

resold by Nissan at around $60/kWh.  With minimal repackaging and grading processes, this 

number could beat the DOE target in a much shorter time window than developing technologies.  

Some predictions like those in Figure 1.1 do not see commercial prices reaching $150/kWh until 

2030 or later.  Others, like BNEF, see the manufacturing costs for new batteries finally 

approaching $75 /kWh around 2030, but do not mention a possible retail cost for the same 

prediction [12]. 
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Figure 1.4 – EV and PHEV sales by the Alternative Fuels Data Center. 

 

With utilities searching for ES technology capable of 100 kWh to 1 MWh of storage, 

secondary-use EV systems should not be overlooked.  For example, the Leaf battery packs 

currently in storage at SNT come to approximately 38 MWh of storage.  Assuming 25% of these 

units are serviceable for vehicles and another 25% are destined for recycling, this still leaves 19 

MWh of inexpensive storage medium.  With an appropriate hardware and software architecture 

for incorporating these units into an ES system, many utilities could afford to invest in ES to 

mitigate the growing amount of intermittent renewable energy. 

Purpose of this Project  

 A major impediment to providing affordable energy storage is the wide variety of battery 

types available.  As shown in Table 1.2, different vehicle manufacturers use a variety of battery 

chemistries, resulting in an array of pack voltages, capacities, and capabilities.  Many full-

electric or PHEV vehicles use various Li-ion chemistries while hybrid EVs or “e-assist” vehicles 
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utilize smaller Li-Ion packs or nickel-metal-hydride (NiMH).  This poses a challenge to 

developing a uniform grid-interface since the source of the energy can have many different 

limiting factors.  Additionally, these packs of different size, capacity, and voltage will not have 

all aged equally.  Due to variations in manufacturing, individual cell aging, and total cycling, 

batteries of the same type could still end up behaving differently.  Cell aging is often captured 

using the term “State of Health” (SOH).  State of Health is most often defined by the measured 

capacity of the battery versus the initial capacity and by a measurement of the internal resistance 

of the battery.   

Integrating vehicle battery packs into a common system for grid energy storage is a 

challenge. The challenge comes in the variation of voltage, capacity, and response ranges 

because of different chemistries and battery pack ages.  Figure 1.5 shows the various battery 

module configurations along with the module voltage and cell configuration information which 

are being used throughout this work.  For this work, a battery module is the smallest discrete unit 

that a pack can be broken down into.  A cell will be defined as a sealed, prepared unit which 

could theoretically be separated from the whole module; though in most cases, this would prove 

time consuming and difficult.  As an example, a Nissan Leaf battery pack contains 48 battery 

modules.  Each module consists of four cells with two parallel groups in series (denoted 2P2S).  

Table 1.2 - Characteristics of various EV battery packs currently available for secondary-use applications. 

Vehicle 
Battery 

Chemistry 

Rated 

Capacity (Ah) 

Capacity 

(kWh) 

Pack Voltage 

(V) 

Nominal Cell 

Voltage (V) 

Nissan Leaf LiMn2O4 33.1 24 403.2 3.8 

Chevy Volt NMC-LMO 50 18.4 395 3.75 

Fiat 500e Li-ion 60 24 364 4.01 

BMW i3 Li-ion 60 22 360 3.75 

Toyota Prius NiMH 6.5 1.31 288 7.2 
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Effectively, this means there are 48 modules containing 96 measurable cells in a pack, but 192 

pouch cells in the entire system. The goal of this work is to demonstrate an autonomous 

methodology for the seamless integration of a wide range of battery systems using a framework 

which is independent of these features. 

In the following chapter, a review of medium-scale battery energy storage systems and 

associated technologies is presented to depict existing battery grid integration frameworks.  

Chapter 3 will describe the methods used to autonomously identify battery chemistry and 

parameters along with results from testing.  Chapter 4 will present a software and hardware 

architecture for multi-chemistry utility-scale battery energy storage.   In Chapter 5, an 

implementation of the agent-based software will be presented, tested, and deployed for a related 

project.  This will be followed by a description of the transactive optimization method designed 

to control the BES and the results from implementation in Chapter 6.  To close, Chapter 7 will 

present a summary of the research, conclusions, and a discussion of future related work.  

Nissan Leaf Fiat 500e BMW i3 Toyota Prius 

 
 

 
 

3.3 - 4.15 V 2.8 – 4.15 V 3.1 – 4.15 V 6.5 – 9.2 V 

20 Ah/cell 60 Ah/cell 0.92 Ah/cell 7 Ah/cell 

2P2S 5S (or 6S) 54P2S 6S 

Figure 1.5 – Examples of differing battery form factors and parameters 
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Chapter 2 - Review of Autonomous Multi-Chemistry ES Systems 

 Battery systems composed of multiple aged batteries or different chemistry units that 

were also capable of self-diagnostics and chemistry identification were not present in the 

literature.  However, the concepts behind a multiple energy source grid-connected inverter has 

been thoroughly explored in previous work such as Hybrid Energy Storage Systems (HESS) and 

other grid-scale energy storage devices.  In this chapter, the architecture of grid interconnected 

energy storage systems is reviewed.  Additionally, control and optimization methods for these 

types of systems are investigated. This is followed by a discussion of energy storage autonomy 

and how systems today monitor batteries operating in a storage system. 

Energy Storage System Architectures 

At their core, all energy storage systems (ESSs) consist of a power conditioning system 

(PCS) and a form of energy storage element.  The purpose of the PCS is to manage the 

bidirectional power flow between the AC electric grid and energy storage medium which is 

usually DC.  The last stage of the PCS usually consists of a power electronic system (PES) called 

an inverter that converts DC to AC for grid interconnection. For an inverter to be able to control 

bi-directional power flow, the voltage level of the dc connection must be increased above the 

bridge rectification voltage of the inverter.  In a typical six-switch inverter for a three-phase 

system, the reverse conduction body diodes of the switches will act as a full-bridge rectifier if the 

DC voltage on the input does not exceed the natural rectification voltage of the AC connection.   

For a three-phase system, this voltage is calculated as: 

𝑉𝑑𝑐 =
3 ∗ √3 ∗ 𝑉𝑝𝑒𝑎𝑘

𝜋
 𝑤ℎ𝑒𝑟𝑒 𝑉𝑝𝑒𝑎𝑘 = √2 ∗ 𝑉𝑟𝑚𝑠_𝑙𝑛 (2.1) 
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On a three phase – 480 Vac system, this means that the DC voltage must exceed 648 Vdc to 

prevent the body-diodes from performing uncontrolled rectification.  Not accounting for voltage 

drops across the switches or passive components, this is also the minimum voltage required to 

synthesize real power only; with an inverter having both real and reactive capabilities needing a 

much higher DC-link voltage.  Higher DC-link voltages also enable the inverter to push power 

onto the grid more easily. 

For safety reasons, most battery stacks do not have nominal voltages high enough to push 

onto a distribution network or even a 480 Vac bus.  In fact, most systems are designed to have 

DC link voltages below 600 Vdc to avoid internal isolation issues with the batteries and to 

reduce the need for cables with larger insulation, which occupy more volume.  To achieve higher 

voltages, another set of converters is often used to boost the voltage.  Figure 2.1 demonstrates the 

first way this can be achieved in a single-source system where the voltage is boosted first with a 

dc/dc converter and then sent through an inverter to connect to the grid.  Often, the inverter 

coupled to the grid through a 1:1 ratio isolation transformer, but with the proper attention to 

grounding, this step may be eliminated.  Alternatively, the power can be inverted first and then 

sent through a boosting AC transformer to couple to the grid as Figure 2.2 shows [21] [22].  

These two system topologies represent the most basic form of energy conversion for energy 

storage.  The switch configuration of the internal dc/dc and dc/ac converters can be changed to 

suit the needs of the energy source and the grid interconnection.  When another energy storage 

source medium is added to this type of system, the system complexity increases and is the focus 

of the following discussions. 
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Figure 2.1 – Single source system with DC/DC boost converter and grid-connected inverter 

 

 

Figure 2.2 – Single source system grid connected through a boosting transformer 
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Hybrid Energy Storage Systems 

Integrating a second energy source has been previously explored with hybrid energy 

storage systems.  Whether integrating a supercapacitor or a superconducting magnetic energy 

storage (SMES), many have proposed variants on a combination of active and semi-active 

topologies.  In both cases, the architecture follows the same basic principle outlined in Figure 

2.1.  By closely regulating the DC bus, an excessive amount of current or voltage ripple can be 

prevented from appearing on the battery.  Figure 2.3 represents a semi-active architecture where 

a power-dense ES device regulates the DC bus voltage through a direct connection and a DC/DC 

converter regulates current flow to a more energy-dense ES element.  In a system such as this, 

the power-dense ES device must be a fast-responding element such as a SMES or supercapacitor 

in order to reduce the presence of high-current pulses that usually degrade batteries [23] [24]. 

Another architecture for DC hybridization is the parallel active system shown in Figure 

2.4.  Here, both energy storage elements use a dc/dc converter to carefully control the 

bidirectional power flow to their respective element.  A system such as this can be used to pass 

the bulk of high power pulses to either energy source depending on the present condition of each 

 

 

Figure 2.3 – Semi-active system topology with multiple storage elements 
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ES element.  The authors of [23] conclude that this topology gives the best results for a HESS, 

but this comes with increased cost and slightly reduced reliability due to the greater number of 

switches.  Both architectures provide a means for integrating two energy storage mediums, but 

only the second can expand to incorporate a larger number of energy storage elements. 

Furthermore, the control systems architectures for this HESS have been limited to two sources 

and have not proven modular expandability. 

Multi-Modular Storage Systems 

 For the autonomous multi-chemistry BES to be easily expanded, system modularity is 

desired.  As mentioned above, cell-level systems are being omitted from this discussion of 

energy storage devices since this type of architecture would be prohibitively expensive in a 

secondary-use type system where battery modules are already constructed.  However, the 

architecture and terminology used to describe these systems can be applied at a higher level to a 

multi-chemistry system.  Most of the modular architectures can be split into two groups; 

cascaded (or series) systems and parallel systems.  Cascaded systems involve configurations like 

 

Figure 2.4 - The parallel-active configuration for HESS 
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those shown in Figure 2.5(a-c), while parallel systems are like those in Figure 2.6(a-c) and 

Figure 2.4 [25]. 

 Cascaded systems follow the same basic architecture described in Figure 2.2, but differ in 

how the post-inverter voltage boost is achieved.  Figure 2.5(a) shows a cascaded PWM converter 

where each converter synthesizes a part of the AC waveform.  In this topology, the AC 

waveform is split into smaller sections and each device is only responsible for providing the 

power needed to synthesize one part of the waveform.  As such, much lower voltages are needed 

since the systems are in series and the voltages stack across the synthesized waveforms.  These 

systems can achieve very good AC output with a THD of less than 3.5% even at very high power 

levels [26].  Additionally, this architecture meets the criteria of keeping the independent battery 

stack voltages low since the converters are in series.   

Figure 2.5(c) uses the idea of a series boost to gain the same voltage boosting effect.  

However, instead of using a dc/ac converter on each battery section, the current flow from each 

cell is regulated by a dc/dc converter which then feeds the DC link of a dc/ac converter.  This 

architecture was used in 2014 for the design of a cell-level charge balancing controller [27].  For 

 

   

(a) Cascaded dc/ac inverters (b) Cascaded dc/dc/ac converters (c) Series dc/dc with dc/ac inverter 

Figure 2.5 - Series-style multi-modular architectures. 
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this application the voltages per cell are in the range of 3 to 24 Vdc.  The last of the series 

configurations, Figure 2.5(b), operates like the one shown in Figure 2.5(a), but has the added 

benefit of a dc/dc converter to isolate the ES element from the AC converter.  Operationally the 

series modules in this system are like the first conversion strategy demonstrated in Figure 2.1. 

 Benefits to using a cascaded architecture include lower required DC voltages per pack 

while still maintaining the same AC output voltage.  A 2014 reliability review of BES converters 

also calculated that series-connected systems are, on average, lower cost and more reliable to run 

[25].  A significant drawback to the cascaded architectures is that individual battery packs could 

not be charged while another pack is being discharged.  The grid must be involved in all energy 

transactions between the various energy storage elements, which means that internal balancing 

cannot occur without grid energy exchange.  Also, if individual packs can no longer supply the 

voltage or power needed to sustain their part of the AC waveform, the system would no longer 

be able to provide any power, even if other packs were still mostly charge.  With the architecture 

shown in Figure 2.5(a), if a storage element fails, it can be bypassed only if the remaining pack 

voltages are high enough to support the AC waveform production.  This means that the system 

can only afford a certain number of battery failures before it must be decommissioned, despite 

several healthy storage elements remaining.  This makes this system conducive to using many 

identical battery systems in order to prolong the life of a newly manufactured system and less 

appealing when a variety of capacities and chemistries are present. 

 Parallel multi-modular architectures can require higher battery voltages like in Figure 

2.6(a) because they must be able to synthesize the full AC bus voltage.  However, systems like 

this are favored when micro-grid controls are already in place.  For instance, in 2014 the CERTS 

team proposed and demonstrated a P vs. f droop-controlled energy storage micro-grid.  In this 
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work, the authors connected several energy storage elements to an existing 480 Vac 3Ø grid and 

demonstrated the abilities of secondary-use batteries to respond to grid-islanding events [28].  A 

demonstration of this architecture was completed in Zhangbei, China as a 14 MW Li-Ion BESS.  

The system was split into nine separate units of varying sizes connected to a local micro-grid 

through nine transformers [29].  This parallel architecture was also used in the simulation of a 

HESS using a Li-ion BESS and SMES for smoothing the output of a wind-farm.  To reduce the 

required DC voltage, a dc/dc converter can be added before the dc/ac inverter.  Essentially, this 

is the same configuration as Figure 2.6(a) but using the two-stage energy conversion system that 

was detailed in Figure 2.1.  This approach of integrating multiple energy storage elements in the 

style of an AC microgrid was shown to be robust but did require one controller monitoring all 

devices simultaneously [30].  This means there must be constant and fast communications 

between the grid-connected devices in order to dispatch the system in an optimal way. 

 As previously mentioned, the parallel structure of Figure 2.6(c) has been used for several 

years by HESS groups.  In 2011, the authors hybridized a super-cap onto a lead-acid battery 

 

   

(a) parallel dc/ac inverters (b) parallel dc/dc/ac converters  (c) parallel dc/dc with a dc/ac inverter 

Figure 2.6 - Parallel-style multi-modular architectures 
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system using this architecture.  The system used three dc/dc converters to interface with the lead-

acid battery system, a supercapacitor, the regenerative braking component, and a dc/ac converter 

for the electric motor.  Through simulation, the authors found this architecture reduced the 

demand on the battery system by as much as 20% [31].   

Tesla Motors began an attempt to patent this class of architectures in 2016, but as of 

January 2018, the patent has yet to be awarded.  As described in the patent, the system consists 

of a parallel and series group of batteries connected to a DC/DC converter.  Strings of two 

battery packs are placed in series with the center-point of the battery tied to ground.  This creates 

a positive voltage from one stack and a negative from the other.  This is done to reduce the 

voltage-ratings of the cables while still maintaining a positive to negative dc-link high enough to 

convert to 480 Vac.  Multiple of these units are then placed in parallel to increase capacity.  

Subsequently, a plurality of these DC/DC converters are connected to a main DC/AC converter 

which can then interface with more energy storage units through an AC micro-grid like Figure 

2.6(a).  Figure 2.7 shows a reduced electrical model of the system proposed by Tesla’s un-

awarded patent.  Each battery symbol represents an entire battery.  The patent shows a system 

where up to sixteen 6.5 kWh battery units are placed in parallel behind a DC/DC converter [32].  

This seemingly solves both the voltage issues and capacity issues that most of the above system 

topologies have encountered.  However, placing batteries directly in series and parallel relies on 

the capacities and internal resistances of the units being nearly identical. In most cases, this 

means the battery packs should not only be new units, but also intentionally matched for ideal 

operating conditions.  While this could be done with second-life batteries, it would be difficult 

since matching battery characteristics requires extensive measurements to be made of every cell 



21 

 

within a used EV pack.  This process would also significantly increase the cost associated with 

recycling secondary-use ES elements. 

Optimization of BESS 

 Architectural complexity, while improving usability and efficiency, can increase until the 

cost of the power electronics converters far outweighs the cost of the batteries.  Without an 

effective monitoring, optimization, and control strategy, the batteries could be dispatched in a 

manner that quickly degrades the system without maximizing the benefits.  Previous works have 

implemented many different optimization strategies for controlling the energy flow in and out of 

batteries.  Typical optimization strategies focus on providing the maximum amount of service, 

regardless of the monetary value.  This method can be refined so that the energy storage system 

provides service whenever the monetary value to the owner or consumer is maximized.  

Additionally, considerations for battery lifetime can be added to maximize battery profits while 

 

Figure 2.7 - A reduced section of the system proposed by Tesla.   
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extending battery life.  The ES optimizations presented here focus on single-element 

optimization.  Multi-element ES optimizations are largely absent from the literature.  In their 

place, transactive optimization methods used with microgrids will be presented.  These could be 

adapted for use in a multi-battery energy storage system. 

Optimization for Maximum Service 

 In Chapter 1, Table 1.1 detailed the many services that can be provided by an ESS.  

Among these services is demand-charge management, which can be enacted using techniques 

such as peak shaving and shifting.  Peak shaving is the action of storing energy during off-peak 

times and pushing it back to the grid to reduce peak load.  For instance, a 2 MW BESS system 

attached to a substation for electric urban rail transit, energy from regenerative braking was 

stored during off-peak.  During peak energy-use times, the energy was discharged back into the 

substation to offset the energy-use of the trains.  However, choosing how much energy to store 

during off-peak time and when to dispatch it during a peak requires an optimization to reduce the 

peak power draw of the train system.  The optimization is then constrained to prevent over-

charging or over-discharging the BESS.  Adding this system optimization aided in the 

determination of a peak power threshold, over which the BESS would either absorb power 

during off-peak times or release power to the system to reduce demand during peak times [33]. 

{
 
 

 
 𝐹1 = (

1 − ∑ 𝐸𝑠𝑢𝑏,𝑒𝑠𝑠(𝑖)
𝑛
𝑖=1

∑ 𝐸𝑠𝑢𝑏(𝑖)
𝑛
𝑖=1

) ∗ 100%

𝐹2 = (
1 − ∑ 𝑃𝑠𝑢𝑏,𝑒𝑠𝑠

𝑝𝑒𝑎𝑘 (𝑖)𝑛
𝑖=1

∑ 𝑃𝑠𝑢𝑏
𝑝𝑒𝑎𝑘(𝑖)𝑛

𝑖=1

) ∗ 100%

 (2.2) 

−𝑃𝑏𝑎𝑡𝑡,𝑚𝑎𝑥 ≤ 𝑃𝑏𝑎𝑡𝑡−𝑟𝑒𝑓 ≤ 𝑃𝑏𝑎𝑡𝑡,𝑚𝑎𝑥 
(2.3) 

∆𝑈𝑑𝑖𝑠 ≥ 0, ∆𝑈𝑐ℎ𝑎𝑟 ≥ 0 
(2.4) 
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 The objective function for this optimization is shown in (2.2).  Here, Esub(i) and Psub
peak(i) 

are the output energy and peak power of the substation if it did not contain energy storage.  

Esub,ess(i) and Psub,ess
peak(i) are for a station containing energy storage.  By maximizing these 

functions, the optimization could determine how to dispatch the ESS.  To prevent charging or 

discharging too quickly, the system is constrained by (2.3).  To ensure that the correct amount of 

energy is being charged and discharged and the system is not expected to provide or absorb more 

energy than it contains, the system is also constrained by (2.4).  These values (ΔUchar, ΔUdis) are 

determined by a genetic algorithm in a way that maximizes energy savings and minimizes peak 

power at the substation [33].  While this type of optimization may result in the best service 

provided to the system, it does not take in to account the possibility for the ES to earn revenue 

for performing these ancillary services.  Given that capital costs of energy storage have long 

been a concern, it would be better if the system could maximize the revenue generated from 

providing these services. 

Increasing ES Value Through Optimization 

 Wu et al. have shown through a simulated energy storage system that the dispatch of an 

ES device can be optimized to capture multiple services with the goal of maximizing the revenue 

generated by the unit [34].  Revenue generation is dependent on the services provided and the 

perceived value to the utility.  In this work, an optimal control strategy for BES is proposed that 

uses a look-ahead window to balance the service capacity of the battery on an hour-by-hour 

basis.  Each hour, the optimization problem is solved to determine a base operating point for the 

battery.  This base operating point is the amount of power that the unit exchanges with the AC 

grid.  Linking these optimization windows together provides a unique challenge when dealing 

with revenue maximizing optimizations.  Without interconnection between the windows, the 
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system may earn a significant revenue in one hour but not leave enough energy for the system 

for future use, which would decrease the overall revenue of the system.  In the objective 

function, (2.5), used to achieve this goal, the net revenue generated from trading energy with the 

grid (λkpk) and the balancing services (βkrk) provided to the grid are maximized within similar 

constraints to those listed in (2.3) and (2.4) [34]. 

max
𝑝𝑘
+,𝑝𝑘

−,𝑝𝑘,𝑝𝑘
𝑏𝑎𝑡𝑡,𝑙𝑘,𝑟𝑘

+,𝑟𝑘
−
∑[𝜆𝑘𝑝𝑘 + 𝛽𝑘

+𝑟𝑘
+ + 𝛽𝑘

−𝑟𝑘
−]

𝐾

𝑘=1

 (2.5) 

In the first term, the hourly energy price (λk) is multiplied by the net power exchange (pk) 

with the grid to give the net value generated from buying or selling power.  The second term 

(βk
+rk

+) gives the revenue generated by absorbing power from the grid as a service while the 

third term (βk
-rk

-) gives the revenue generated by pushing power to the grid as a service.  

Together, these three terms are maximized over a 24-hour window and a dispatch schedule is 

generated for the battery system.  This objective function is appropriately constrained to limit the 

amount of energy that the battery can supply or absorb and the rate at which it performs these 

actions.  A final constraint is given that sets the desired end-of-day SOC for the battery so that at 

the end of any given 24-hour window, the battery is not left exhausted of all energy.  To verify 

the optimization, the algorithm was tested in simulation on a system based on a real-life 4 MW, 

16 MWh flow-battery.  The results showed that over a 20-year lifespan, the system could 

generate $26.6 million in revenue.  When the capital costs of $14.8 million and operating costs 

of ~$5.5 million are deducted from this number, the total profit return came in at $6.5 million 

[34].  While this system provides promising numbers, it does not take in to account the reduction 

in life over time that a traditional battery system will suffer.  Flow batteries experience aging like 

traditional storage mediums, but preventative maintenance can refresh the battery to the initial 
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specifications and the cost of this maintenance can be absorbed into operating costs.  With 

traditional Li-ion batteries, the aging processes are not easy to reverse, if they are reversible at 

all.  If the battery does not make it to 20 years, then the revenue earned may not outweigh the 

system capital cost. 

Optimizing to Account for Battery Lifetime 

 Cycle life, which is a component of battery lifetime, has been a concern for BES systems 

and a major impediment to their widespread adoption.  The optimization must be constrained to 

prevent overcharge or over-discharge which can significantly degrade the lifetime of the system.  

However, heavy cycling at high charge and discharge rates can also impact the life of the battery 

[35].  Works investigating EV charging stations have studied these effects extensively.  In fact, 

EVs using “fast-charging” stations at 50 kW rates often only charge the batteries to 80% to avoid 

doing damage to the battery system [36] [37].  Optimizations attempting to target battery life 

mainly do so through two methods.  First, the power variation to and from the battery is limited 

so the system is not constantly ramping up and down.  The other method is to mathematically 

place a weight on cycling the battery such that the system only dispatches the battery if the 

benefit outweighs the negative effects on the battery.  As the battery ages, the objective weight 

increases to make it harder to dispatch the system, thus prolonging the battery life. 

 Looking at how hybrid energy storage systems are managed provides an example of 

prolonging battery lifetime by minimizing the amplitude of power (and subsequently current) 

variations.  For instance, batteries discharged or charged at a steady current instead of a 

sinusoidal or rapid step-change current have been shown to have longer lives than their 

counterparts.  It should be noted that intermittent testing using current pulses will not cause 

significant degradation, but that consistent large amplitude current variations should be avoided.  



26 

 

In a work which paired a supercapacitor with a lithium-ion battery, the authors designed an 

optimization which minimized the amplitude and variation of the current requests to the battery 

[38]. Minimizing the current amplitude means the battery is not cycled as hard, which reduces 

the internal temperature of the battery.  In turn, this reduces the thermal cycling of the battery.  

Mitigating the thermal cycling and temperatures of the battery can help prolong lifetime.  

Different reactions can occur in the battery as temperature increases.  These “side-chain” 

reactions can cause permanent damage to the battery since many are irreversible once they have 

occurred.  Some can even plate lithium out of the battery and cause internal short-circuits [39]. 

The authors of [38] capture this idea by creating a utility function for the battery as 

shown in (2.6).  The battery lifetime, ubatt, is comprised of uave, the current amplitude, and udif, 

which is the current variation 
𝑑𝐼𝑏𝑎𝑡𝑡

𝑑𝑡
.  The coefficients a and b are designed to normalize these 

equations to 0 when the maximum current level is reached, or the maximum current ramp rate is 

reached.  Both of these values are user defined based on the power ripple limits placed on the 

system.  A similar function is generated for the capacitor which aims to maximize the energy 

efficiency of the supercapacitor. 

𝑢𝑏𝑎𝑡𝑡 = 𝑤𝑎𝑣𝑒𝑢𝑎𝑣𝑒 + 𝑤𝑑𝑖𝑓𝑢𝑑𝑖𝑓  𝑤ℎ𝑒𝑟𝑒:  

𝑢𝑎𝑣𝑒 = 1 − 𝑎(𝐼𝑏𝑎𝑡 − 𝐼𝑎𝑣𝑒)
2 (2.6) 

𝑢𝑑𝑖𝑓 = 1 − 𝑏(𝐼𝑏𝑎𝑡𝑖 − 𝐼𝑏𝑎𝑡𝑖−1)
2  

These utility functions can then be combined into a single objective function using a 

weighted-sum to balance the minimization of the system.  The weighted-sum approach uses 

coefficients for each objective (ubat and ucap) which add up to 1 and are strictly between 0 and 1 

to balance the goal of the optimization.  For instance, if the aim of the system is to lower the 
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current amplitude, then the current variability must be allowed to be higher than usual.  In (2.7) 

the objective function for the HESS is shown.  The system is constrained to stay within the upper 

and lower current limits of the battery and supercapacitor.  It is also constrained so that the 

currents between the supercapacitor, the battery, and the load must add to zero.  This means if 

the system is pushing power to the load, but the supercapacitor needs to charge, then the battery 

must provide all the energy [38].   

𝑓𝑚𝑖𝑛 = −𝑤𝑎𝑣𝑒𝑢𝑎𝑣𝑒 − 𝑤𝑑𝑖𝑓𝑢𝑑𝑖𝑓 − 𝑤𝑐𝑎𝑝𝑢𝑐𝑎𝑝 (2.7) 

 Essentially this optimization (along with other similar methods), attempts to extend the 

life of the battery in an ES by reducing the amount the system is cycled and the severity of the 

cycling regardless of the value to the battery owner.  In fact, the authors of [40] developed an 

optimization which reduces the frequency of charging and discharging cycles and makes sure 

that each cycle is as shallow as possible.  As the value-based optimizations demonstrated, this 

will reduce the overall revenue gained from the system.  Barnes et al propose a system which 

attempts to marry these together into a planning tool that optimally selects battery chemistry and 

size for a future system by evaluating the net present value of a variety of proposed systems and 

their potential benefit over a predetermined planning period [41]. 

Net present value (NPV) measures the value of a project while accounting for the time 

value of money.  By using NPV, an optimization can pursue different project options and create 

a plan which best suits the needs of the project (or constraints).  The optimization can select 

different battery chemistries based on the cost, efficiency, and lifetime of the units as determined 

by calculated figures of merit for each chemistry (shown in Figure 2.8).  NPV can also be used to 

determine the instantaneous value of the components of a system pro-rated over the system life. 
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By combining these with the constant-Ah model2 for battery lifetime and comparing it to 

estimated time-of-use (TOU) scheduling over the lifetime of the system, the optimization can 

select the right battery chemistry and capacity to provide the maximum value to the selected 

system.   

 

𝑓 = (𝑐𝑐𝑜𝑛𝑣 + 𝑐𝑠𝑖𝑡𝑖𝑛𝑔 +∑𝑐𝑛
′𝐸𝑛

𝑟

𝑁

𝑛=1

) + 𝑟1
𝑦𝑒𝑎𝑟𝑙𝑦

∑
(1+ 𝛼)𝑦−1

(1 + 𝑖)𝑦

𝑌

𝑦=1

− 𝑐𝑜𝑚∑
1

(1 + 𝑖)𝑦

𝑌

𝑦=1

 (2.8) 

𝑟1
𝑦𝑒𝑎𝑟𝑙𝑦

=∑𝑑𝑘 ∑(𝑐𝑖 + 𝑐𝑘,𝑚
𝑒𝑙𝑒𝑐)∆𝑡𝑘,𝑚𝑝𝑘,𝑚

𝑀𝑘

𝑚=1

𝐾

𝑘=1

 (2.9) 

 In the first term (𝑐𝑐𝑜𝑛𝑣 + 𝑐𝑠𝑖𝑡𝑖𝑛𝑔 + ∑ 𝑐𝑛
′𝐸𝑛

𝑟𝑁
𝑛=1 ) of (2.8), the capital cost of the unit is 

estimated for each chemistry, n, and the rated capacity, 𝐸𝑛
𝑟.  The cost per unit energy is 

accounted for by 𝑐𝑛
′ .  To account for the converter and siting costs, cconv and csiting are added to 

 
2 The constant-Ah model of a battery’s life is a simplified measurement of how many cycles a battery can perform.  

Lifetime is measured in terms of Ah and is assumed to be roughly independent of depth of discharge.   

 

Figure 2.8 - Battery chemistry figures of merit normalized to fit on a scale of 0 to 100 [42]. 
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this first term.  The second term gives the annual revenue as a function of the revenue earned 

during the first year of operation.  It is assumed this will increase over the duration of the project, 

Y, as energy costs rise.  The first-year revenue is estimated using (2.9) to consider different 

pricing structures depending on the season.  This term determines how much revenue the unit 

will generate over the stated project lifetime.   Yearly operating and maintenance costs are 

assumed to decrease over the life of the project.  Lifetime of the battery unit is accounted for in 

the constraints on the objective function.  In addition to constraining the problem with round-trip 

efficiencies and the energy limits of the battery, the battery is monitored to ensure that as it 

cycles the capacity fades and it becomes unable to cycle as deeply [42].  This is accounted for in 

(2.10). 

𝑌∑𝑑𝑘

𝐾

𝑘=1

∑ Δ𝑡𝑘,𝑚𝑝𝑛,𝑘,𝑚
𝑑

𝑀

𝑚=1

≤ 𝐸𝑛
𝑓0𝐸𝑛

𝑟𝑎𝑡𝑒𝑑 (2.10) 

This novel method includes a basic model for battery life in the planning stages of the 

system to make sure that the battery can always provide the necessary resources over the life of 

the project.  Instead of just extending the life of the battery, the authors give monetary value to 

the battery’s life.  This means that depending on the capital costs of the system, it could be more 

valuable to the system to run the battery very hard and degrade the cells quickly because more 

revenue can be extracted from the system.  An online optimization which uses a similar valuation 

technique to give monetary value to an active battery’s life has not yet been demonstrated in 

literature.  Each of the three methods demonstrated above were designed to work for a single 

battery energy storage.  Multi-element storage would need to be treated as a single element to 

utilitize these strategies.  A single centralized optimization would be needed to collect 
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information about every ES element and optimize the system as one unit.  Alternatively, 

transactive methods for optimization may be used to distribute the process. 

Transactive Optimization using an Energy Market 

ES optimization methods in the literature predominantly focus on the dispatch of a single 

unit connected to a distribution network or microgrid.  Expanding these methods to optimally 

dispatch multiple ES units while having the unit act as a single ES would result in a complex, 

centralized optimization with intimate knowledge of every attached storage element.  Scaling the 

system to include a large array of ES elements could result in an optimization which is 

cumbersome and does not solve very quickly.  Transactive optimization techniques focus on 

distributing the system decision making such that individual elements bid into a central energy 

market with a preference for operation based upon a local optimization.  System dispatch is 

determined by a central controller which aggregates the operating preferences from the 

individual units and optimally arranges these preferences to meet the external demands on the 

system.  At a transmission and distribution level, transactive energy markets have defined grid 

operations for decades.  Traditional grid power generation entities bid into an energy market with 

operating preferences scaled to an energy production cost.  These bids are selected by system 

operators to provide power in the most inexpensive manner while also focusing on reliability.   

This idea of an energy market has made its way to utilities as distributed energy resources 

(DERs) and intelligent loads have become more popular on distribution networks and microgrids 

since it alleviates the decision making load on a central controller while also limiting the amount 

of information that must be provided by prosumers3 [43].  Optimally and autonomously 

 
3 Prosumers are owners of distributed generation and load assets capable of responding to utility dispatch signals. 
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dispatching these resources has been the focus of research into transactive market systems where 

prosumers can express their operating preferences by exchanging pricing data with a centralized 

controller [44].  Transactive systems have been described for multiple levels of distribution from 

neighborhood smart-device control, to microgrids, to networked microgrids [44] [45] [46].  This 

discussion will focus on two examples from the literature of transactive methods on a 

distribution network. 

Coordinating PHEV Charging 

A prime example of transactive energy control is coordinating charging between a fleet 

of PHEVs or EVs.  Shifting or reducing peak energy demands by the chargers while meeting 

vehicle availability needs creates the basis of a problem widely studied since the large demands 

created by fleets of charging EVs can pose a threat to microgrid stability.  Many authors have 

proposed using timeslots and priority algorithms to solve this problem.  In Cramer et al, a 

market-based approach is used to continuously re-prioritize the charging needs of a network of 

PHEVs to reduce peak power consumption while also meeting the charging needs in the 

available window [47].  In their proposed method, each networked charger reports a “willingness 

to charge” to a central decision-maker in the form of a linear bid function.  This function relates 

the preferred charging power level to the price that the charger is willing to pay to charge.  Using 

(2.11), the bid is determined as a function of the time-to-departure, tdep, and the energy needed to 

charge, ΔE.  A caveat to this equation is that if tdep is greater than 12 hours, then it is assumed to 

be 12 hours.  This assumption can be made because the window of time for the optimization is 

12 hours.  Therefore, if the time to departure exceeds this window, it can just be assumed to be 

the length of the optimization window. 
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𝑝𝑟 = 1 − (
1

2
∗
∆𝑡𝑑𝑒𝑝

12
+
1

2
∗
∆𝐸

𝐸𝑚𝑎𝑥
) (2.11) 

 Based on the present grid pricing and conditions, the central control sets a producer bid 

function where the willingness to deliver energy from the grid increases as the collective average 

price offered by the chargers increases.  Essentially, this means that as chargers increase their 

price (through willingness to charge), the amount of power delivered by the grid increases.   

The main goal of Craemer’s work was to use a market based control method to reduce the 

necessary communications between the chargers and the central controller while using a 

traditional peak reduction technique and meeting the charging needs of the PHEVs.  This showed 

promise in that the necessary data traffic was reduced by 80% while meeting the demands of the 

vehicles 95% of the time over a 24 hour period.  It also demonstrates a simple, but effective 

transactive method for coordinating ES charging.  Present transactive methods for EV charging 

lack the ability for the vehicles to push power back to the grid and earn revenue for providing 

grid services. 

Distributed Transactive Optimization 

Another example of transactive optimization comes from a study which aimed to increase 

internal micro-grid reliability and stability and decrease reliance on spinning reserve generation 

and the grid connection.  The authors defined two types of resources in a micro-grid: flexible 

resources, such as ES, with controllable power outputs and noncontrollable resources, such as 

load or renewables, which produce or consume power based on a forecasted schedule.  Using a 

24 hour look-ahead window, the power production and consumption of non-controllable 

resources is forecasted using weather and behavioral models.  During the window, if the 

noncontrollable resource is over or under producing, it contacts its neighboring resources to 
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either sell or buy energy to make up the difference to the forecasted value.  Flexible, or elastic, 

neighbors bid on the opportunity to provide or absorb the excess energy.  

 In their proposed method, the authors fully distribute the optimization process by having 

each flexible resource perform an optimization which maximizes its personal welfare.  Each non-

controllable resource optimizes the price which it offers to other units to prevent the need to sell 

energy back to the grid or purchase energy from the grid (assuming this will provide the least-

ideal market partner) using a neural network.  A neural network is used so that a fixed resources 

can adjust their pricing based on past performance metrics.  Meanwhile, flexible resources aim to 

maximize the revenue earned through energy exchange with other resources.  Global constraints 

on the net power exchange and prices are determined by a master device monitoring the 

microgrid condition.  These constraints are placed on all connected devices.   

Having each resource optimize its own response reduces the need for large amounts of 

published data on the network.  The only data passed between devices is price signals and power 

requests.  However, the authors concluded that the real-time nature of the optimization required 

unrealistic time-sensitive networking to ensure that the system converged to a globally optimal 

condition.  Without tracking when price signals and requests were being issued, the system could 

easily fall to non-optimal results [43]. 

Transactive optimization techniques provide an opportunity to reduce the computational 

workload associated with finding a globally optimal operating state for large system.  However, 

the transactive methods for energy storage demonstrated in the literature largely focus on 

coordinating EV charging or on highly-complex micro-grid management strategies.  For an 

autonomous multi-chemistry battery energy storage system, a simple transactive optimization is 

desired which separates optimal system dispatch from individual battery system optimization.  
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Using this method can provide a flexible and expandable system by distributing the optimization 

back to the devices,  This helps de-couple the control of the energy storage elements from the 

utility control of the multi-element system. 

Parameterization of Secondary-Use Batteries 

In Chapter 1, the various battery chemistries used in electric vehicles and stationary 

energy storage devices were introduced.  Secondary-use batteries were presented as a viable 

alternative to newly manufactured batteries due to the less restrictive energy and power density 

needs for stationary energy storage and a significantly lower cost factor.  For this research, a 

plug-and-play interface has been proposed for integrating all types of batteries into one device.  

To safely and optimally manage the varying types of energy storage, the battery chemistry and 

capacity must be known.  In almost all large-scale ES systems, both these values are already 

known since the unit is installed new with name-plate capacities.  However, in a large system of 

multiple different chemistries and capacities, it would be prudent to automate these processes. 

Battery Chemistry Identification 

Battery identification aids in accurately measuring SOC and SOH, since battery charge 

and discharge curves depend heavily on the electrochemical features of each battery chemistry.  

The electrochemistry of the battery determines the relationship between the remaining energy 

content and the voltage of the battery.  SOC algorithms heavily depend on the open-circuit 

voltage of the battery to determine a starting-point for charge-counting SOC calculations.  Thus, 

understanding the battery chemistry in use is pivotal to estimating the battery state.  Most 

importantly, a battery should not be charged without first understanding which chemistry is in 

use and the capacity and voltages of the overall pack.  While battery chemistry can be inputted 

manually by a technician, a system to verify settings can ensure safety and decrease manual set-
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up time.  It can also be used to detect anomalous behavior that could indicate a bad battery pack.  

Previous work has focused on the design of chemistry identification algorithms for the charging 

of small capacity portable electronics. 

A frequently used method for determining battery chemistry is pulse discharging of a 

system.  The terminal voltage of a battery is monitored as it undergoes discharge current pulses 

and the voltage waveforms are recorded.  As shown in the generalized sample in Figure 2.9, 

discharge pulsing the battery and then recording the voltage as it settles can help give a 

qualitative guess to battery chemistry.  Voltage settling is the electrochemical reaction of the 

battery returning back to an equilibrium state after charging or discharging.  Nickel-metal-

hydride batteries exhibit fast voltage settling, while lead acid batteries settle over a much longer 

period, and Lithium-ion chemistries exhibit a settling time somewhere in the middle [48].   

In their paper, “A Self Adaptable Intelligent Battery Charge for Portable Electronics,” 

Abeyrante et al. show a method for quantitatively identifying a battery’s chemistry using these 

 

 

Figure 2.9 - Generalized sample of a pulse charge identification of battery chemistry. 
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features.  In this work, a portable electronics charger is proposed which can differentiate between 

Li-Ion, NiMH, and SLA.  Using a similar test set-up like the one shown in Figure 2.10, the 

authors performed a pulsed-discharge of the cells at a constant current and recorded the battery 

terminal voltage from a near-full charge to a near-empty charge.  Results are like those show in 

Figure 2.11.  As expected, the voltage of a battery under load drops compared to the open circuit 

voltage, Voc.  As the battery discharges, the Voc and Vloaded voltages drop in tandem.  However, 

as the battery nears depletion, the voltages begin to diverge.  The speed and magnitude of this 

divergence is independent of many battery parameters, but fully related to battery chemistry [49].   

The pulse discharge is performed by turning a relay on and off.  As indicated in Figure 

2.12, the relay is turned off at Va, disengaging the constant current load, and turned back on at 

Vb, placing a load on the battery.  By measuring the voltage at these points, a voltage differential 

can be determined through simple subtraction of Va from Vb.  When this is performed for every 

discharge pulse, a graph of differential voltage versus depth of discharge can be produced as 

shown in Figure 2.13. 

 

Figure 2.10 - A simplified circuit diagram of the experimental set-up. 
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Figure 2.12 - A close-up of two open-circuit pulses.  Va represents the time when the relay is opened and the load 

disconnected.  Vb represents the point when the relay is closed and the load connected 

 

Figure 2.11 - An example pulse discharge test showing the change in Voc and Vloaded with time.  Data is from 

completed work. 
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Figure 2.13 - a graph of transient voltage difference measured from a test.  P1 and P2 represent the linear area of 

the curve that can be used to measure the gradient. 

The authors note that the section of the curve marked P1-P2 in the figure is approximately 

linear.  This gradient, which was dubbed Gbatt, is unique for each battery chemistry regardless of 

the terminal voltage of the battery or the battery capacity.  The gradient is calculated using (2.12) 

where the percent discharge is determined by estimating the energy that has left the battery 

versus the total capacity of the battery.  It should be noted that all of this is done at a constant 

current.  A flaw in this method is that it assumes previous knowledge of the total capacity of the 

battery, as indicated by the inclusion of the Qtot term in the equation below [49].   

𝐺𝑏𝑎𝑡𝑡 =
(𝑉1 − 𝑉2)

(𝑄1%−𝑄2%)
  𝑤ℎ𝑒𝑟𝑒 𝑄𝑖% = [

𝐼𝐷𝐶 × ∆𝑡

𝑄𝑡𝑜𝑡
] (2.12) 

However, Gbatt is a simple slope between two points as demonstrated in (2.13).  By 

making the gradient independent of capacity, it can be measured while data is being taken.  

Additionally, it means that no knowledge of the battery needs to be known before taking the 

measurement [50]. 
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𝐺 =
𝑑𝑉

𝑑𝑡
=

1

2𝑑𝑡
(𝑉𝑖+1 − 𝑉𝑖−1) 

(2.13) 

In a paper containing continued work, the same authors demonstrate clearly that the 

gradients for each battery chemistry are unique enough that they may be sorted into bands for 

identification by a simple algorithm on an embedded controller.  Table 2.1 shows a series of 

example tests run by these authors.  Two problems exist with this method.  First, the algorithm 

can deplete the battery below conventionally safe levels if an automatic shutoff system is not 

included.  Second, previous work in the literature demonstrating this method has only done so on 

small-capacity, low-voltage cells intended for use in portable electronics. 

Battery Capacity Measurement 

 Knowing the capacity of a battery system is critical to its operation.  Battery capacity is 

the amount of energy that the system can store when charged to the top of the cell voltage range 

(Vmax).  Capacity (C) is used to calculate SOC and can be used to determine safe discharge rates 

for a battery.  Capacity can be easily measured through a timed discharge at a constant current. 

Even at a non-constant discharge rate, the integral of a current curve vs time can be found to give 

a capacity in amp-hours (Ah).  This method is recommended for use by the US Advanced 

Battery Consortium (USABC) in their Battery Test Manual for Hybrid Electric Vehicles [51]. 

Table 2.1 - Results showing various battery capacities and terminal voltages resulting in very similar gradients 

for single chemistry types.  Results from original authors of [50] 

Battery Chemistry Terminal Voltage (V) Capacity (Ah) Idc (mA) Gbatt (V) 

Lead Acid 6 4.50 600 1.10 

Lead Acid 6 4.50 200 1.00 

Lead Acid 6 7.00 600 0.80 

NiMH 4.8 0.90 200 2.60 

NiMH 3.6 0.65 200 2.25 

Li-Ion 3.7 1.05 200 0.19 

Li-Ion 3.6 0.85 200 0.23 
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 Perceived battery capacity can change with the rate of discharge.  A battery under heavy 

discharge for a short period of time may appear to have less energy capacity than one that is 

lightly discharged for a long period of time.  This is due to the voltage drop phenomenon 

previously discussed.  For this reason, the USABC test manual recommends performing a static 

discharge test at a discharge rate of C/3 from Vmax to Vmin.  This rate is defined as the “current 

corresponding to the manufacturer’s rated capacity for a three-hour discharge.”  Using this test, 

USABC has standardized the measurement of capacity across electric vehicles.  For instance, if 

the battery’s rated capacity is 60 Ah, the test would statically discharge the battery from its 

maximum operating voltage to its minimum operating voltage at a rate of 20 A.  Then, the 

capacity could be measured by (2.14). 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝐴ℎ) = 𝐼𝐷𝐶 ∗
∆𝑡

3600
 (2.14) 

 However, given an unknown battery of unknown capacity, this method should not be 

used since the nameplate capacity (C) of the battery is unknown.  Discharge rates that are too 

high could damage the battery.  Rates that are too low will take much longer and provide an 

unrealistic estimation of capacity.  To solve this issue, the authors of [49], who developed the 

chemistry identification technique, proposed using the results of the pulsed discharge test.  Based 

on many experiments, the authors estimated that the linearized gradient typically represents 

approximately 5% of the total charge of the battery.  Using (2.14) from above, this can be 

expressed as shown in (2.15).  Therefore, the capacity of the battery can be found by re-

arranging the equation to look like (2.16).  This process estimates the amount of energy 

discharged by the battery for a known period and assumes that it comprises 5% of the total 

energy contained within the battery.  Extrapolating from there, the total capacity of the battery 
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can be found.  This method can easily provide a false reading of capacity since it is extrapolating 

the total capacity from a relatively small window. 

∆𝑄% = 5 = (
𝐼𝐷𝐶 × ∆𝑡

𝑄𝑡𝑜𝑡
) × 100 (2.15) 

𝑄𝑡𝑜𝑡 = (
𝐼𝐷𝐶 × ∆𝑡

5
) × 100 = (𝐼𝐷𝐶 × ∆𝑡) × 20 (2.16) 

 Other methods of “blind” capacity measurement have been proposed which similarly 

pulse-discharge or pulse-charge the battery and use complex learning algorithms or data-fitting 

techniques to guess the capacity from a short window of battery data [52] [53].  However, these 

are meant for in-situ measurements to determine the current SOC of a battery system.  Since the 

USABC manual already has a static-discharge test, and the pulse discharge test is done over the 

entire discharge range of the battery, it seems that using the Coulomb counting method to 

estimate and then verify the capacity of a battery would be more reliable.  Yet, a method such as 

this has yet to make an appearance in the literature. 

State of Health Estimation 

 With the battery chemistry and capacity verified, the next step is determining the State of 

Health of the battery.  This is valuable information since it can be used to provide more accurate 

SOC readings and will be used to prolong the battery’s life through optimal cycling 

management.  State of Health (SOH) is a nebulous term when discussing EV batteries.  Two 

degradation parameters are most often used to quantify the health of the battery; the capacity of 

the battery and the power capability.  Battery capacity measurement techniques were discussed 

in detail above.  Power capability is measured by characterizing the electrical properties of a 

battery.  Most often, the internal impedance is cited as the parameter most heavily influencing 

the power capability.  Determining the internal impedance can be done in many ways as 
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illustrated in Figure 2.14.  What follows is a brief discussion of methods.  Although this project 

will not be proposing a novel health measurement, it is worth understanding how health is 

measured. 

The top group of methods (electrochemical impedance spectroscopy) is a complex 

laboratory measurement technique which provides highly sensitive models of the battery 

parameters.  So sensitive, in fact, that they can be affected by the environment the battery is 

tested in such as proximity to magnetic objects, temperature, etc.  Active EIS uses an active 

signal generator to excite the battery with small amounts of sinusoidal currents at different 

frequencies.  By recording the resulting voltage response, the impedance can be calculated at 

 

Figure 2.14 - Battery parameter estimation techniques for SOH measurement [54]. 
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each frequency using a Fourier transform.  From this, a Bode plot of the battery can then be 

generated.  Passive EIS is performed similarly but uses the incident fluctuations of current 

caused by loading the battery to provide the frequencies instead of actively generating 

frequencies and pushing them through the battery.  Both techniques require careful 

measurements that are tightly time-correlated and result in measurements that are closely linked 

to temperature, SOC, and SOH. 

The middle group uses various algorithms to tune an equivalent circuit model (ECM) to 

match data being measured from the actual battery.  This method is favored by EV 

manufacturers for parameterization because it can be executed on a finished battery pack without 

special equipment.  Using an automatic battery cycler or a large bidirectional DC supply, the 

battery is charged and discharged for quick pulses for t intervals of 5-10% of the SOC of the 

battery.  USABC recommends performing the pulses every 10% in what they call the Hybrid-

Power Pulse Characterization test (HPPC) [51].  The voltage response of the battery as well as 

current values are recorded and used to curve-fit a multi-node ECM to the battery response.  

Figure 2.15 shows a typical seven-node ECM used for parameterization.  Various techniques can 

be used to perform this curve-fitting but Kalman filters are preferred for Li-ion chemistries while 

Voc

R0

R1 R2

C1 C2

Vbatt

 

Figure 2.15 - A seven-node equivalent circuit model for state of health determination. 
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easier-to-use Recursive Least Squares (RLS) fitting is more often used on NiMH batteries.  

Kalman filters tend to provide more accurate battery models, however they are computationally 

more burdensome than the RLS method.  Other works have proposed using genetic algorithms or 

machine learning to refine this process, but industry has not picked up on these methods yet [54].  

Populating the ECM results in the internal impedance of the battery being well-defined. 

The last group operates very similar to the ECM, but instead of populating an electrical 

model of the battery, data is used to populate an electro-chemical model of the battery.  Like the 

middle methods, linear or sigma-point Kalman filters may be used to estimate the internal battery 

energy, conductivity of electrolyte, and SoC.  These parameters are then used to draw 

conclusions about the internal resistance of the battery.  Literature is lacking when it comes to 

using this method in an online battery system.  Additionally, the electrochemical models are 

computationally more intense to run than the simple curve fitting algorithms above, making them 

less appealing for deployment on a battery system [55].  For this project, an ECM will be used in 

accordance with the recommendations from the Battery Test Manual for Hybrid Electric 

Vehicles.  The test procedure for a HPPC has been well defined and proven to give stable results 

for EV batteries. 

Chapter Summary 

Above, the literature was reviewed for battery energy storage hardware architectures, 

health and life optimizations, and battery parameterization techniques, which are all critical 

components to developing an autonomous multi-chemistry battery energy storage system.  This 

chapter demonstrated the lack of several key enabling technologies in the literature.  First, 

several viable architectures have been demonstrated.  Yet none of these systems incorporate 

multiple battery types of different ages into a single unit.  Next, a review of optimization 
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literature showed that previous optimization objectives focus on either maximizing battery 

service or prolonging battery life.  Currently, no methods assign a value to the life of the battery 

and optimize to achieve a maximum profit regardless of the impact on battery lifetime.  This is 

critical since the most valuable use of a battery may not be to extend its life indefinitely.  

Additionally, transactive methods for optimization were explored as an alternative to the 

centralized single-ES methods commonly found in the literature.  Finally, chemistry 

identification and parameterization techniques were reviewed.  Many methods and techniques 

were found, yet none of them focused on automating the process.  Instead, most techniques were 

focused on taking measurements for analytical studies of batteries or for future implementation 

into portable electronics. Missing from the literature was an autonomous method for chemistry 

identification and parameterization.  In the next chapter, an overview will be given of an 

autonomous multi-chemistry battery energy storage system which fills in the missing 

components from literature. 
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Chapter 3 - Autonomous Battery Parameterization 

 Battery chemistry identification and parameterization is a feature for an advanced system 

containing mixed battery chemistries.  Understanding the chemistry of an energy storage 

component helps parameterize the current and voltage characteristics.  In Chapter 2, the 

processes for chemistry identification, capacity determination, and impedance measurements 

demonstrated in the literature were described.  However, previous work in this area falls short of 

autonomous identification on an unknown high capacity, multi-cell battery.  Specifically, the 

autonomous method developed and demonstrated in this work affirms that pulse testing can be 

scaled from small cells, to strings of cells in series and parallel. 

This chapter describes the automation process developed to determine the chemistry and 

capacity of an unknown battery pack.  The goal of this research is to create an autonomous 

program that tests an unknown battery and produces reliable chemistry identification and 

capacity measurements.  Results are presented which demonstrate the ability of the system to 

accurately parameterize the battery given a fully executed test.  A discussion of the results 

including errors will close the chapter. 

Method 

 Building on methods developed by the USABC and Ayoub et al., the autonomous 

parametrization process shown in Figure 3.1 was developed and demonstrated to work on high-

capacity and multi-cell battery systems [49].  To begin, the battery is charged to approximately 

100% SOC by monitoring the terminal voltage.  This is followed by executing a test to determine 

the pulse length and current (depth) necessary for a fast, but safe chemistry identification.  This 

is followed by running the chemistry identification test, which produces pulse data that is then 
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used to determine the battery chemistry and an estimated capacity.  Pulse data can also be used to 

perform hybrid power pulse characterization (HPPC) curve fitting as described by USABC to 

estimate internal resistance and parasitic battery losses.  For this work, the HPPC data are saved 

but not used to determine battery health.  Instead, battery chemistry and capacity were 

determined to be enough to perform a system-level optimization.   The decision to omit this data 

will be further discussed in the conclusions section as well as Chapter 4 when the architecture of 

the distributed optimization is presented.  This section describes each of these test sub-

components in further detail. 

Charging to 100% State of Charge 

In Figure 3.2, a flow diagram is presented which shows the program logic used to 

determine when the battery under test has achieved a near 100% charge.  Since the battery 

chemistry is as-yet unknown, a 10 A charging current is used since this value is much less than 

the maximum allowable charging current for most EV battery systems [52].  Terminal voltage is 

measured at five second intervals and two timesteps are compared.  When the voltage difference 

Start Charge to 100%
Determine Pulse 

Depth and Length
Chemistry ID Test

Static Discharge Test HPPC Curve Fitting

Battery 
Chem

Capacity 
Estimate

Battery 
Capacity

Battery 
Health

Pulse 
Data

 

Figure 3.1 – High-Level process to determine battery parameters autonomously. 
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between two timesteps becomes zero or negative, charging is stopped, and the system rests for 

60 minutes.  This rest time is used to allow any thermal effects from charging to dissipate and 

allow the open-circuit voltage of the battery to settle.  Lithium-ion batteries do not require this 

rest time other than to prolong life, but NiMH cells will demonstrate widely varying capacities if 

not rested post charging.  Once this period has elapsed, the open-circuit voltage (Voc) is measured 

and is passed to the next process to determine the pulse depth and length.  The voltage of the 

highest cell is also noted at this point. 

Determining Pulse Depth and Length 

As the battery is discharged under a constant current load, the open-circuit voltage falls at 

a slower rate than the loaded voltage (Vload).  Mapping these voltage differences across the 

discharge range of a battery produces a unique voltage gradient per chemistry that is independent 

of capacity, terminal voltage, temperature, and discharge rate.  Breaking down the voltage 

gradient graph into component parts is important to understanding how the pulse depth and 

length can be determined autonomously.  Figure 3.3 shows an example gradient.  First, the 

Start Charging
Idc = 10A

Check for End of 
Charge

ΔV ≤  0 End Chargingyes

no

Rest 60 minMeasure Voc
Determine Pulse 

Depth and Length

 

Figure 3.2 – Process for determining if a battery has reached full charge based on voltage. 
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“plateau” period of the graph represents the normal, near linear discharge of the battery where 

the Voc and Vload fall at nearly the same rate.  As the battery nears empty, the gradient rises into 

the linear zone where the Vload decreases more quickly than Voc.  During the peak, the battery is 

nearly depleted the gradient reaches a local maximum and begins to decrease.  This indicates that 

one or more cells in the string is fully depleted and testing should stop. 

For this identification method to work, the current pulses used to determine the battery 

chemistry must have consistent length and be discharged at a constant current, but since the 

discharge current is independent, it can be increased to run the pulse discharge test more quickly.  

The higher the discharge current, the more energy will be discharged with each pulse and the 

greater the different in terminal voltage at the end of each unloaded pulse.  From measuring the 

ΔV values across batteries from a variety of OEMs at a variety of pulse depths, a convenient rule 

 

Figure 3.3 - An example voltage gradient with the three zones of the process. 
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of thumb was derived qualitatively.  The quickest test results came from setting the pulse depth 

to a current such that the difference between the Voc and Vload value (known as ΔVg) was 

approximately 0.1% of the pack Voc measured while the battery was full charged.  Setting the 

current lower than this extended the test length unnecessarily.  Using a current that gave a larger 

ΔV often meant that finding a linear section of the gradient was difficult because of a lack of 

data points off which to base the calculation.   

The value of 0.1% was found by evaluating nine early data runs on lithium-ion Leaf cells 

and noting the peak difference during the plateau part of the voltage gradient graph.  Three data 

sets gave between 3 and 5 linear data points on the chemistry identification part of the gradient 

curve.  Together, the ΔV during the plateau period for each of these runs averaged 0.12% of the 

Voc for the attached cells.   This was reduced to 0.1% to ensure that a minimum of 3 data points 

are found in the linear period.  The procedure shown in Figure 3.4 was then developed to find the 

pulse depth and breadth to execute the fastest test for an unknown battery. 
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Figure 3.4 - Iterative method to determine depth and length of the chemistry ID pulses 

 



51 

 

  To begin, the pulse is set to a low current and short duration.  A single pulse cycle is 

executed and the ΔVg analyzed versus 0.1% of Voc.  If this condition has not been met, the pulse 

depth is increased in 1 A increments and re-executed given that it is under a pre-specified current 

safety limit.  While this safety limit can be arbitrary, 20A was chosen for this algorithm because 

this value would not be overly taxing on most present vehicle batteries.  Additionally, it was 

within the agreed-upon safety limitations of the experimental set-up described in the next 

section.  Should the current limit be reached before the voltage difference satisfies the depth 

requirement, the pulse length is doubled, and the test re-executed.  Once the pulse length and 

depth have been determined, this information is recorded and used to then execute the pulse 

discharge test.   

Pulse Discharge Parameterization Test 

 Previous research in the literature executed the pulse discharge test over the entire 

discharge range of the battery.  Ending the test was signaled by the battery no longer providing 

the constant current required.  However, as Figure 3.3 shows, the linear zone of the voltage 

difference curve used to identify the battery occurs before the graph of ΔV experiences a local 

maximum; which is a salient feature that can be used to terminate the pulse test.  To shorten the 

test time and prevent discharging the battery to nearly 0% SOC, a differential monitor was set up 

using the method shown in Figure 3.5. 

 The test begins with a charge-to-full using the method described earlier to ensure that the 

process of determining pulse depth and breadth has not brought the battery too close to the linear 

zone.  Pulse discharge testing begins after the battery has rested and uses the parameters 

determined in the previous step.  For each pulse step, the voltage gradient, Vg, is calculated using 

(3.1) with the completion of each cycle from Voc to Vload.  
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𝑉𝑔 = 𝑉𝑜𝑐 − 𝑉𝑙𝑜𝑎𝑑 (3.1) 

Testing ceases when the measured Vg stops increasing and begins to decrease.  This is 

detected by taking the difference between the current Vg and previous Vg.  This difference will 

keep increasing until the end of the linear zone.  To verify that the data is nearing a true 

maximum, three consecutive differences must indicate that Vg is decreasing within a +/- 0.2 V 

margin of error to cease the test.  These steps were taken to ensure that noise in the data did not 

cause a test to prematurely stop.  The slope of the linear zone is then calculated using (3.2) where 

n is the pulse count of the final cycle which was executed. This calculation disposes of the three 

consecutive decreasing measurements and produces a gradient based on the last three measured 

points, which are assumed to be nearly linear.  This assumption was demonstrated to be valid by 

comparing the results of data sets that were analyzed by hand versus identification performed 

autonomously and getting proper battery identifications. 
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Figure 3.5 - Flow chart outlining the process used to execute the pulse test autonomously.  
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𝑉𝑐ℎ𝑒𝑚 = 
𝑉𝑔𝑛−3 − 𝑉𝑔𝑛−5

2
 (3.2) 

From here, the chemistry is determined via a look-up table.  Bands for gradient 

identification were determined qualitatively based on testing various OEM batteries in many 

different series and parallel configurations.  These values were also compared to those found by 

Ayoub et al in the literature and found to be consistent even from single, low capacity cells to 

large multi-cell arrangements [49].  Based on the consistency of the bands, a look-up table is 

deemed the best option for chemistry ID.  If a battery’s gradient falls outside of these ranges or 

the data is otherwise imperfect, the battery is flagged for manual inspection and re-testing.  Pulse 

data is then passed to the static discharge test to obtain an estimate of battery capacity. 

Static Discharge Test for Capacity 

 In Chapter 2, USABC’s static capacity test is described, providing a method for verifying 

the nameplate capacity of a known battery.  Using an unknown battery with this test would be 

difficult since the discharge rate for the test is dependent on the capacity of the battery; 

specifically 1/3 of the nameplate capacity.  To automate this process and allow for an unknown 

battery to be tested, the capacity is first estimated by measuring the energy discharged during the 

pulse-discharge test.  The capacity estimate is found using (3.3), which counts the number of 

loaded pulses executed during the pulse discharge test and multiplies by the pulse length in 

seconds to determine an “on” time.  The total time is then multiplied by the current to get an 

estimate of system capacity in ampere-seconds (As). Finally, the value is divided by 3600 to 

convert the value to the standard capacity unit of ampere-hours (Ah).   

𝑄𝑒𝑠𝑡 =
𝑁𝑙𝑜𝑎𝑑 ∗ 𝑇𝑝𝑢𝑙𝑠𝑒 ∗ 𝐼𝑝𝑢𝑙𝑠𝑒

3600
 (3.3) 
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Since the battery was left discharged at the end of the previous test, the pack and 

minimum cell voltages are noted and the system is then charged back to full using the method 

from Figure 3.2.  The the battery is discharged to the minimum pack voltage noted from the 

previous test at a constant rate of 1/3 * Qest per the USABC Battery Manual method.  Like in 

(3.3), the capacity is calculated by multiplying the time it took to discharge the entire battery by 

the rate at which the discharge was performed.  This is shown in (3.4).  To verify the accuracy of 

the measurement, the battery is cycled from full to empty two more times, with each of the 

measured capacities logged.  If these capacities are within +/- 5% of one another, then the 

measurements are averaged and presented as the system capacity.  If not, the system is flagged 

for further testing. 

𝑄 =
𝑇𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ∗ 𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

3600
 (3.4) 

 In order to verify that the methods described above produce the desired results, a battery 

parameterization test stand was designed and constructed.  The following section provides a 

description of the test setup used to validate the autonomous parameterization techniques. 

Experimental Set-Up 

 To validate the method above, a battery parameterization test-stand was constructed.  The 

test-stand uses a DC power supply for charging, a current-controlled load for discharging, and a 

data acquisition (DAQ) system to take and log the data.  Figure 3.6 shows an electrical schematic 

for the test-stand.  The battery under test can be electrically isolated from both the charging 

circuit and the discharging circuit by keeping both switch sets open.  Fuses in the circuit are to 

protect both the battery and the programmable devices from any over-current situations from 
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faulty wiring or a backwards connection.  The safety diode on the charging circuit prevents the 

battery from accidentally injecting current into the supply.  The DC voltage setpoint on the 

power supply was set based on the measured terminal voltage. 

Figure 3.7 shows a picture of the constructed system mounted into a 19” rack for ease of 

access to components.  Omron MY2N DPDT relays were used as the charging and loading 

relays.  These were chosen since they were rated to handle up to 60Vdc and 20A. Current 

sensing was performed by LEM HX 20-P sensors, which was selected because they have a 

selectable measurement range which could be set to +/- 20A.   Voltage measurements were taken 

directly by a National Instruments (NI) 9220 synchronous analog input module as part of the NI 

cRIO 9068 that was used for data acquisition and relay control.  While the NI 9220 can sample 

data at a minimum of 2000 Hz, the necessary data resolution was only needed as sub-second and 

data was down sampled to10 Hz.  The voltage produced by the LEM HX 20-P was also sampled 

by this module. 

DC
DC Power 

Supply

Programmable 
CC Load

Safety Fuses 
(20A)

Battery 
Under Test

Loading 
Relay

Charging 
Relay

Safety Diode

Vbatt

Ibatt

 

Figure 3.6 - Circuit diagram of power components in the parameterization test-stand. 
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Figure 3.7 - The testing apparatus used to execute the pulse-discharge test on the battery. 
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Calibration of the measurement devices was performed by replacing the battery under test 

with a DC power supply and closing the loading relay. Voltage measurements were confirmed 

using a calibrated multimeter, and the NI module needed no scaling.  Calibration of the current 

sensor was performed by setting the programmable load to a known value between 0 and 10 A in 

2 A increments.  The measurement was confirmed on a calibrated multimeter.  The calculated 

scale and offset were then used to turn the signal measured by the cRIO to a current 

measurement accurate to within +/- 0.2 A.   

Table 3.1 shows the battery testing configurations that were used to verify the 

autonomous parametrization process described above in the Methods section.  Two chemistries 

of Li-ion were used from a first generation Nissan Leaf and a BMW i5.  Nickle-metal hydride 

batteries from a second generation Toyota Prius were also tested alongside a handful of various 

SLA batteries.  Nissan Leaf batteries were chosen due to their abundance in the secondary-use 

space.  Despite the BMW i5 batteries being less prevalent in the market, they were included in 

tests since the internal battery format differs significantly from that of a Nissan Leaf.  Fiat 500e 

batteries were available for testing but could not be tested beyond a single module due to 

laboratory regulations limiting the available energy and the physical configuration of the module. 

As a control, each battery configuration was tested manually with data analysis occurring 

after the test, and then it was tested again using the autonomous procedure.  The values for 

manual parameterization versus autonomous were then compared to each other and to the 

nameplate values given by the battery supplier.  In the next section, results for these tests are 

presented and analyzed in depth. 
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Table 3.1 - A list of battery configurations and nameplate capacities run to test the autonomous parameterization 

techniques presented in this research. 

Vehicle Model Chemistry 
Configuration 

(Modules) 

Min. Voltage 

(V) 

Max Voltage 

(V) 

Capacity 

(Ah) 

Nissan Leaf 

Li-Ion 

(Set 1) 

Single+ 5.6 8.3 38.9 

2 Series 11.2 16.6 38.9 

2 Parallel+ 5.6 8.3 77.8 

2P2S 11.2 16.6 77.8 

4 Series 22.4 33.2 38.9 

Li-Ion   

(Set 2) 

Single 5.6 8.3 37.6 

2 Series 11.2 16.6 37.6 

2 Parallel 5.6 8.3 75.2 

2P2S 11.2 16.6 75.2 

BMW i5 Li-Ion 

Single 5.6 8.4 99* 

2 Series 11.2 16.6 99* 

2 Parallel 5.6 8.4 198* 

Fiat 500e 

Li-Ion   

(Set 1) 

Single Module 

(5 Series) 
14.5 20.75 60* 

Li-Ion   

(Set 2) 

Single Module 

(5 Series) 
14.5 20.75 60* 

Toyota Prius 

NiMH   

(Set 1) 

Single+ 3.5 7.2 6.8 

2 Series 7 14.4 6.8 

2 Parallel+ 3.5 7.2 13.6 

NiMH   

(Set 2) 

Single 3.5 7.2 5.6 

2 Series 7 14.4 5.6 

2 Parallel 3.5 7.2 11.2 

NiMH    

(Set 3) 

Single 3.5 7.2 0.8 

2 Series 7 14.4 0.8 

2 Parallel 3.5 7.2 1.6 

4 Series 14 28.8 0.8 

4 Parallel 3.5 7.2 3.2 

N/A 

Lead-Acid     

(Set 1) 
Single+ 11.9 12.7 12 

Lead-Acid 

(Set 2) 

Single 11.9 12.7 4.5* 

2 Series 23.8 25.4 4.5* 

2 Parallel 11.9 12.7 9* 
* Indicates a nameplate capacity based on a new battery.  Actual present capacity is unknown. 
+ Results from this test were published in [56] 
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Results 

 For each battery configuration shown in Table 3.1, a manual test was run where 

identification and parameterization was performed using data analysis tools in NI Diadem.  This 

section will demonstrate the manual process for identifying the battery chemistry and capacity.  

These values are then presented alongside of battery parameters obtained using the autonomous 

method presented above. 

Manual Battery Parameterization 

 Determining the chemistry identification gradient manually requires analyzing each pulse 

cycle to find the peak voltage during unloaded recovery as well as the lowest voltage (valley) 

during battery loading.  National Instruments Diadem software was used to perform these 

operations since the data was recorded as TDMS databases and the software excels at handling 

large datasets.  Diadem software provides tools to calculate peaks and valleys in a dataset given a 

search window width and either a maximum value or minimum value based on whether valleys 

or peaks are desired.  As an example, the dataset shown below in Figure 3.8 was analyzed 

manually and the results follow.  Data shown is for a 4.5 Ah lead-acid battery discharged with 1 

A pulses.  Each pulse was 200 seconds in length, with the battery terminal voltage measured at a 

down-sampled frequency of 30 Hz4. 

Peaks were found using a window width of 4500 samples (~ 150 seconds) and a 

minimum threshold of 5 V.  Valleys were found using the same Diadem tool in valley mode with 

a window width of 4500 samples and a maximum threshold of 12.5 V.  The tool identifies the 

window location of each peak and valley, making it simple to align the results and ensure each 

 
4 Many manual tests were run at various data collection frequencies before the rate of 10 Hz was decided upon for 

the final test configuration.  Data collection speeds showed no signs of affecting the resulting data. 
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peak and valley align with their corresponding value from the same pulse.  Figure 3.9 shows the 

results. As expected, the shape follows that of the outline of the raw dataset. 

 From here, each valley is subtracted from the corresponding peak from the same pulse to 

give a voltage difference plot as shown in Figure 3.10.  From this chart, the linear zone can then 

be approximated and used to determine the voltage gradient for identification.  For this battery 

the points chosen to calculate the slope and obtain the identification gradient are highlighted in 

orange.  Based on the values given, the identification gradient for this battery is 0.75 V, which 

places it in the range of a lead-acid battery.  Further manual identification results are presented in 

the following subsection alongside the results from autonomous identification tests. 

 

Figure 3.8 - Raw terminal voltage data for a single 12 Ah lead-acid battery. 
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Figure 3.10 – The voltage difference between the peaks and valleys shown above 
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Figure 3.9 – The result of finding the peaks and valleys of the raw dataset.    
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 The final step in the manual parameterization process is to calculate the estimated 

capacity and compare it to the autonomous parametrization data.  Since the capacity 

determination is done using a modified version of USABCs static discharge test, the same 

autonomous capacity test was used to verify the estimation on both sets of test results.  Figure 

3.11 shows how the current pulses remained consistent until right after the linear portion of the 

voltage difference curve.    The current tapers at the end of testing as the battery nears 100% 

DOD.  For the capacity estimation, only pulses that sustained the full 1A current for the entire 

200s pulse cycle were chosen; resulting in a pulse count of 71.  Using (3.3) from above, this 

results in an estimate capacity of 3.94 Ah.  This is approximately 87% of the nameplate capacity 

of the battery. However, it should be noted that these lead-acid batteries were recovered from a 

gently used uninterruptible power supply (UPS), so they may have experienced some health 

degradation before testing. 

 

Figure 3.11 - Battery current from the pulse-discharge test shown above. 
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Autonomous Battery Parameterization 

 Results from the autonomous battery testing are presented in Table 3.2 alongside their 

counterparts from manual testing.  Autonomous testing followed the procedure outlined in the 

Methods section of this chapter.  In the case of a failed test or misidentified battery, it was 

repeated until a successful test was obtained, or the test failed three times. 

Discussion and Conclusions 

 Analysis of the voltage gradients for identification above shows that despite the various 

test configurations and differences from the manual testing values, the autonomous battery 

parameterization process still results in clear battery chemistry identification bands.  Li-ion can 

be defined as a gradient between 0 and 0.6 V, lead-acid as between 0.7 and 1.8 V, and NiMH as 

anything between 1.9 and 3.5 V.  These bands worked well for identification if the pulse test 

could fully execute.  However, sometimes the tests would fail repeatedly resulting in the system 

rejecting the battery for autonomous parameterization.   

Failed tests are defined as ones which reach near 100% depth of discharge (DoD) without 

ever having three consecutive pulses with decreasing slope to trigger the end of the test.  When 

the battery nears 100% DoD, it will be unable to provide the requested current which indicates to 

the decision-making tree that the battery is fully discharged, but not identified.  Most often, this 

occurred when a string of series-cells became significantly unbalanced from one another.  Figure 

3.12 shows an example of one test where this occurred and the resulting voltage difference 

curve.  Each jagged slope is the result of one cell of the series reaching empty before the next.  

Most often, this occurred with the NiMH Toyota Prius batteries. 
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Table 3.2 - Test results from running manual parameterization techniques alongside the autonomous method. 

Chemistry 
Config. 

(Modules) 

Manual   

Gbatt (V) 

Auto. 

Gbatt (V) 

Manual 

Qest (Ah) 

Auto. 

Qest (Ah) 

Qnameplate 

(Ah) 

Leaf 

Li-Ion 

(Set 1) 

Single+ 0.20 0.18 36.2 35.4 38.9 

2 Series 0.32 0.33 34.4 33.1 38.9 

2 Parallel+ 0.17 0.21 71.4 69.9 77.8 

2P2S 0.22 0.24 72.7 70.0 77.8 

4 Series 0.11 0.14 33.3 33.6 38.9 

Leaf 

Li-Ion   (Set 

2) 

Single 0.59 0.42 38.0 38.1 37.6 

2 Series 0.47 0.26 37.7 36.5 37.6 

2 Parallel 0.41 0.40 74.1 72.2 75.2 

2P2S 0.38 0.49 69.9 68.9 75.2 

BMW 

Li-Ion 

Single 0.40 0.43 80.2 80.0 99* 

2 Series 0.29 0.32 80.6 80.1 99* 

2 Parallel 0.27 0.27 159 157 198* 

Fiat 

Li-Ion       

(Set 1) 

Single 

Module     

(5 Series) 

0.18 0.20 44.3 43.3 60* 

Fiat 

Li-Ion       

(Set 2) 

Single 

Module     

(5 Series) 

0.09 0.12 48.5 48.5 60* 

Prius NiMH   

(Set 1) 

Single+ 2.13 2.28 6.62 6.48 6.5 

2 Series 2.60 2.71 6.55 6.54 6.5 

2 Parallel+ 2.54 2.78 12.8 12.1 13.6 

Prius NiMH   

(Set 2) 

Single 2.13 2.28 1.87 1.63 2.5 

2 Series 2.25 2.30 2.33 2.21 2.5 

2 Parallel 2.44 2.45 4.99 5.01 5.0 

Prius NiMH    

(Set 3) 

Single 2.41 2.40 0.83 0.77 0.8 

2 Series 2.38 2.40 0.78 0.77 0.8 

2 Parallel 2.02 2.22 1.53 1.59 1.6 

4 Series Failed to execute 0.8 

4 Parallel 2.55 2.63 3.05 3.02 3.2 

Lead-Acid     

(Set 1) 
Single+ 0.89 1.21 11.88 11.87 12 

Lead-Acid 

(Set 2) 

Single 0.75 0.81 3.94 4.11 4.5* 

2 Series 1.11 1.15 3.95 4.07 4.5* 

2 Parallel 1.08 1.22 8.16 8.13 9* 
* Indicates a nameplate capacity based on a new battery.  Actual present capacity is unknown. 

+ Results from this test were published in [56] 

 

 



65 

 

One explanation of this phenomenon is because each Prius NiMH battery is six cells in 

series with no balancing, regulation, or bypass resistors.  When single cells drain faster than their 

counterparts, they reach a point when the voltage behavior collapses, and the cell essentially 

becomes a resistor in series with the rest of the battery.  This is evidenced in Figure 3.12 where 

the terminal voltage falls rapidly, stabilizes, and then falls again.  In this case, two cells stopped 

producing a voltage, though the current demand was still being met by the remaining cells.  As 

the cell recovers, the terminal voltage experiences strange surges as the individual cells recover 

as well.  However, this behavior is not good for the battery and is indicative of cells with uneven 

aging.  This means that as the battery modules age, any unbalance can be exacerbated since the 

module has no way of accounting for the issue.  This hypothesis is supported by data that showed 

older, low capacity modules had a higher rate of incomplete pulse-testing than the newer, less 

 

Figure 3.12 - An example of NiMH cells reversing voltage.  
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aged modules. While the lack of a battery management system (BMS) may seem like an 

oversight, for new NiMH batteries, self-balancing is all that is required. 

 Further investigation of Table 3.2 shows that the autonomously determined chemistry 

identification gradients were on average about 5-10% higher than the ones determined manually.  

Since this resulted in a +5-10% offset, the ability of the autonomous identification algorithm was 

not affected.  However, it is helpful to understand why this occurred.  Some difference between 

hand-calculated values and automatically generated values is to be expected.  The consistently 

higher nature can most likely be attributed to the fact that the identification algorithm is using the 

last three values with the highest slope between them before the difference curve reached the 

local maximum.  During manual identification, it was easier to pick out a larger linear area of the 

curve, which would end up averaging the slope slightly lower. 

 Capacity estimations between the autonomous and manual methods were also 

consistently different.  When performed autonomously, the capacity measurements typically 

resulted in a slightly lower capacity estimate.  This can be attributed to the fact that the tests 

ended earlier than the manual tests, resulting in fewer full-current pulses to be counted towards 

the capacity estimation.  As examination of Table 3.2 reveals, these estimates were still within 

20% on average, which means that the impact on the static-discharge test is minimal.  Changes to 

the measured capacity of the battery are going to appear when the discharge rate is significantly 

different between measurements.  Modifying the discharge rate by tenths of amps will have less 

impact on the capacity measurement of the battery.   

 Given that the autonomous method produced differing results for capacity from the 

manual tests, the accuracy of the tests may come into question.  While the results were slightly 

different, they still resulted in consistent identification of the battery chemistry and an 



67 

 

approximation of the usable capacity.  It is important to differentiate that the capacity 

measurement presented here is the usable capacity of the battery versus the nameplate capacity 

of the battery.  When batteries are used in an actual system, often the entire capacity is not used 

in order to avoid damaging the cells.  For instance, in the residential energy storage system 

discussed in Chapter 7, the battery is only allowed to charge to 80% SOC and only discharged as 

low as 20% SOC.  The operable range inside of these values is the true usable capacity of the 

battery without the voltage getting too high or too low and possibly resulting in severe battery 

degradation.  Having a measurement of the usable capacity of the system means it can operate 

more safely within the limits of the system. 

 Finally, while the pulse data was recorded and could be used to perform a Hybrid Power 

Pulse Characterization (HPPC) test on the battery modules as initially discussed, it was decided 

that it would not be necessary for this work.  HPPC can provide a moderately accurate 

measurement of the internal resistance of the battery system at various frequencies, giving good 

model of the battery behavior.  However, without an exhaustive look-up table of previous tests to 

measure these resistances against, these values become little more than an approximation of the 

internal system losses.  For that reason, it was decided to log the pulse data for the tests but not 

execute the HPPC.  Companies like SNT and OEMs log thousands of module tests to get a 

statistical approximation of measured internal resistance versus capacity to approximate where a 

battery falls in its lifecycle.  Unfortunately, this data is often proprietary since it gives valuable 

performance data for the battery chemistries being used.   

While health data is important to the architecture described in the following chapter, 

capacity and chemistry play a more pivotal role in determining the dispatch value of a battery in 

the multi-chemistry system.  In the future, the health results from an HPPC could be used to 
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more accurately approximate the remaining life cycles on a battery and give a slightly better 

valuation for the connected unit.  For now, a significant value increase has already been achieved 

by limiting the amount of time a technician must interact with an energy storage unit to get it up 

and running.  An autonomous battery parameterization technique has been demonstrated which 

allows for an unknown battery to be installed and characterized with minimal technician 

interaction.  Using this information to optimally dispatch a multi-chemistry system using a 

distributed control and actuation architecture is the focus of the following chapters. 
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Chapter 4  – Architecture for Control, Actuation, and Optimization 

 Chapter 2 described common architectures and electrical topologies for large-scale 

energy storage.  Present methods often increase system voltage by making large series strings of 

batteries.  The system energy capacity is then increased by placing these high-voltage strings in 

parallel.  Examples of this method can be found in Tesla’s patent for their large-scale energy 

storage system or from Mercedes Benz’s large-format energy storage [32] [57].  When using 

secondary-use batteries, creating large groups of parallel batteries for a high capacity system can 

be difficult because of the various types of EV batteries.  To circumvent this issue a system 

architecture is proposed where battery units of various capacities and voltages are intertied 

through parallel DC/DC converters to allow carefully controlled dispatch of the different energy 

storage elements.  The topology chosen for the multi-chemistry system is shown in Figure 4.1 

and functions as a DC microgrid with a point of common coupling (PCC) to the grid through a 

high-power DC/AC inverter. 

 Each DC/DC node of the system contains an energy storage element with management 

and monitoring system, a power electronics converter (PEC), and an energy storage module 

controller (ESMC).  The ESMC provides a modular, agent-based interface for interpreting and 

executing controls between each component of the converter node and the system-level controls.  

Communications between the ESMC and the central system controller are handled using an 

application programming interface (API).  Energy is added and removed from the utility-scale 

energy storage through the DC/AC inverter node.  Contained within this node is the PEC and the 

central system controller (CSC), which manages the system-wide operational state as well as the 

status of the locally connected inverter.  The CSC creates and maintains a transactive energy 

market with each of the connected ESMCs as a ‘customer’ in order to optimally dispatch the 
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system and obtain the maximum value over the life of the connected energy storage elements.  

Like the ESMC, the CSC uses a modular, agent-based approach to monitoring and managing the 

various locally and remotely connected devices.  Agent-based interfaces with power electronics 

systems have previously been explored in the literature [58] [59].  This chapter will present the 

architecture and control methods used in the CSC and ESMC to achieve distributed control. 

Overview of Agent-based Control Nodes 

 An agent-based architecture was chosen for the control nodes due to their modularity and 

novel method for integrating a wide range of physical components.  In an agent framework, 

separate applications running on the same computational device interchange data with a shared 

message bus.  Agents can be added or removed as necessary to interface with different devices 

 

Figure 4.1 – System architecture and electrical topology of the multi-chemistry BES [58] 
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that may be attached to the control node.  Figure 4.2 shows the basic building block used to 

develop a generic converter node.  Each node requires an energy source agent, a power 

electronics converter interface agent, a communications agent, and an intelligence agent to 

coordinate the actions of the other agents.  Depending on the application of the node, extra 

agents are needed to generate pricing signals or provide specific communications abilities.  

Using an agent framework allows these items to be added to the system without completely 

reconfiguring the communication structure.   

Central System Controller 

 Co-located with the DC/AC inverter that is serving as the PCC with the grid, the central 

system controller (CSC) serves as the coordinating controller for the transactive architecture as 

well as the intelligence for the inverter.  A map of the agent framework used in the CSC is shown 

in Figure 4.3.  Each agent in the framework serves a distinct purpose and runs as a separate 

application with constant access to any information published to the internal message bus of the 
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AGENT 

PLATFORM

AGENT

External 
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AGENT

Intelligence

Linux 
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Figure 4.2 - General agent structure of a node [60] 
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computer.  The following provides a description of the purpose and basic operation of each agent 

in the CSC.   

Utility Agent 

The utility interface agent acts as the system contact to the outside world.  It can be 

adapted to use the communications protocol of the utility’s choice, provided a system set-point is 

communicated at least every 5 minutes.  Data about system status, present energy availability, 

and power level are collected by the utility interface from the message bus and made available to 

the utility by this agent as well.  For this research, the utility agent provides a central graphical 

user interface (GUI) to interact with and view the status of the entire ESS.  The utility interface 

agent also allows different use-cases to be loaded for testing the system response under a variety 

of dispatch scenarios.  This is done by specifying a “dispatch-script” for the system to follow 

over time.  

Each script divides a 48-hour window into five-minute windows of desired positive 

(charging) or negative (discharging) power dispatch.  Five-minute intervals were chosen since 

this provides plenty of time for the transactive optimization to solve, while also not requiring the 
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Figure 4.3 - Central system controller agent framework [58] 
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system state change too rapidly.  For example; a single 50 kW, 150 kWh battery5 discharging at 

full power could only discharge approximately 4.17 kWh of energy in a given 5-minute interval 

or about 2.78% of the battery capacity.  This means that if a battery is nearing its charge and 

discharge state of charge (SOC) limits, the system will not be able to exceed those limits by more 

than three percentage points.  It is common for the power limit of the battery to be de-rated 

towards the SOC limits as well, so the maximum energy transfer could even be less than 3% 

[60]. 

Intelligence Agent 

 Set-point and system state change requests are passed from the utility interface to the 

intelligence agent for processing.  Possible system states include standby, start-up, on-grid 

normal, shutdown, error, and lockout.  Based on information collected from the inverter agent 

and the energy storage modules, the intelligence agent makes decisions about whether it is 

possible and safe to energize the system.  When the agent receives a start-up command and has 

no system-wide errors, it changes states to begin operation.  

 Upon initialization, the intelligence agent locks-out the system and requires that a “Clear 

Errors” message be received from the utility in order to move the system to the standby state.  

This is done to ensure that after a service interruption, the system does not restart in an unsafe 

manner by responding to old commands.  After clearing system errors and receiving the start-up 

command, the intelligence agent performs a series of checks to make sure that executing the 

start-up sequence will not damage any sub-systems.  An energization sequence is then executed.  

If the start-up is performed successfully, the agent moves to the “on-grid normal” state and 

 
5 A typical utility-scale battery energy storage system would contain 3+ hours of energy at the maximum rated 

power. 
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signals the inverter agent to start normal operation.  Once in the normal state, the system 

monitors for any errors or a shutdown command.  When one of these triggers occurs, the system 

either quickly shuts down (error), or signals for the system to shut down by tapering power 

transfer, and then executing a shut-down sequence. 

 Should an error occur resulting in a lockout, the system must be reset from this state by 

the utility with a “Clear Errors” message to the CSC.  The intelligence agent would then move to 

the standby state and wait for the next start-up command while watching for possible system 

errors.  If the system shuts down normally, then the agent will automatically move to standby 

once shutdown is completed. 

Inverter Agent 

 The intelligence agent helps coordinate the actions of the inverter and the rest of the 

energy storage system.  When the intelligence sends a command to the inverter agent, it 

processes the information and sends the appropriate commands over a communications protocol 

such as TCP/IP, UDP, or ModBus to the inverter controller.  In order to control the inverter and 

energize the system successfully, the inverter agent must be able to control a contactor on the DC 

side of the inverter as well as a contactor on the grid side of the inverter.  The states of these 

contactors, as well as the present state of the power stage must be communicated to the inverter 

agent along with voltage, current, power, and frequency measurements.  This information is used 

by the inverter agent and intelligence agent to determine if the ESS should be in an operational 

state. 

The inverter agent monitors the incoming data from the power stage for several errors 

shown in Table 4.1.  Note that these errors occur on a timescale of tens to hundreds of 

milliseconds rather than microseconds.  The inverter agent still relies on the signal processor of 



75 

 

the inverter to identify transient problems with AC or DC voltage and shut down appropriately.  

However, if the system drifts towards an unsafe operating point, the inverter agent can shut the 

system down using a standard de-energization procedure instead of just aborting energy transfer 

mid-operation.  For example, if the temperature of the power stage approaches a limit, the 

inverter can ramp the power-setpoint to zero and then de-activate the system. 

As an example, the residential ESS inverter agent allowed the AC voltage to drift +/- 5% 

of the nominal grid voltage.  If an over or under-voltage was sustained for at least 4 cycles (~68 

ms), then the intelligence agent would execute a normal system shutdown.  However, should a 

more severe voltage event occur and take the system +/- 10% of nominal, then the digital signal 

processor (DSP) would deactivate the power stage and open the protection contactors after at 

most a quarter cycle (~4.2 ms).  DC voltage protection actions can happen even faster on the 

DSP since the measurement is not a periodic signal. 

 For this research, the inverter agent was designed to start-up and behave as if a 100 kW 

power stage were being controlled.  This power rating is re-configurable through a configuration 

file.  Instead of executing communications with an outside device, the inverter agent contains a 

simple model of a power electronics converter that assumes that the system will remain under 

Table 4.1 - Sample of errors that trigger a system shutdown 

Name Tolerance Description 

AC Over/Under Voltage +/- 5% 
An RMS voltage measurement (5 cycle average) arrives 

that is too low or too high, causing a safe shut-down 

Inverter Communications 

Timeout 
10 seconds 

Communications is lost with the high-speed inverter 

controller.  No up-to-date data means the system must 

shut down by removing DC voltage 

DC Over/Under Voltage 950-1050 Vdc 
The DC voltage measurement (16 ms average) of the bus 

goes outside of the safe operating range. 
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normal operating conditions.  The assumptions are that the DC link will remain fixed at 1000 

Vdc and the grid connection will remain steady at 480 Vac.  

While these assumptions do not cover transient converter interactions and behaviors, they 

provide a basis for testing the operation of the communications systems and control algorithms.  

That means the data being relayed by the model to the inverter agent is more important than 

testing real-world transients.  However, real-world testing of an agent-based system will be 

discussed more in Chapter 5 with a residential agent-based ESS.  To verify function error 

detection, manual input was added to cause DC and AC voltage and current deviations outside of 

the configured limits.   

Transactive Optimization Agent 

 Dispatch of each ES element in the multi-chemistry system is determined by the 

transactive optimization agent.  This agent requires a price curve and present status from each of 

the attached energy storage elements.  Based on the status of each attached system (lockout, 

standby, or normal), the transactive optimization agent determines whether the unit should be 

included in the dispatch scheduling of the system. This way, a unit with an error will be left out 

of the system optimization.  The transactive optimization agent also uses this to recalculate the 

dynamic total system capacity and the present available capacity (SOC) of the larger ESS.  These 

values are communicated with the utility agent so that the end-user is aware of any system 

problems impacting capacity. 

Every five minutes, an optimization uses the price curves, statuses, and the utility 

dispatch request to maximize the obtainable value from the system.  It is important to note that 

the optimization is only using the price curve data from each ESMC to make the determination 

of the dispatch level for the attached energy storage unit.  This simplifies the centralized 
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optimization, while allowing each battery to manipulate its price curve to obtain its desired 

dispatch value.  Instead of the optimization having a series of weighted objectives to balance 

battery life, value, and usage for each unit, each battery determines the best balance of life and 

use by assigning it value.  The central optimization dispatches the system to minimize the cost to 

operate the battery system. 

Internal Communications Agent 

 The last agent in the CSC is the internal communications agent that allows it to 

communicate with the RESTful API server that provides inter-device communication.  The 

server, represented in Figure 4.1 as a cloud-based device, is an application programming 

interface (API) that provides a publish/subscribe based messaging bus similar to that used 

internally in each computer.  The internal communications agent subscribes to any data posted 

with a prescribed heading on the API and downloads that data at regular intervals.  If a device 

disappears from the API or ceases to update, the internal communications places the unit in an 

error state which removes the device from the optimization.  When a new device appears on the 

API, the internal communications agent creates a new ESMC object on the internal message bus 

to relay the received data to the other agents.  Each agent using this data automatically retrieves 

the data it needs.  For example, the transactive optimization agent will retrieve the price signal 

from the server and incorporate the new device into the next optimization cycle. 

 When the transactive optimization solves, the internal communications agent posts the 

results of the optimization alongside the requested dispatch for each ESMC to the API server.  

Results are published as either “optimal”, “infeasible”, or “standby.”  The first two states are 

only produced when the system is running successfully, and the optimization is running on 
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regular intervals.  The Standby State is used when the inverter is not energized, and the system is 

waiting for a dispatch command from the utility agent. 

Energy Storage Module Controller 

 Each DC/DC converter in the system has an agent-based energy storage module 

controller (ESMC) paired with the high-speed converter controller.  Like the CSC, the ESMC 

coordinates the actions of the DC/DC converter, the attached energy storage element, and 

regulates the data interaction between the ESMCs and the CSC.  It also creates and manages the 

role that the energy storage element plays in the transactive architecture by manipulating a price 

signal that is sent to the CSC.  Figure 4.4 illustrates a map of the agent framework developed to 

universally work with a range of energy storage devices [58].   

Internal Communications Agent 

 Like the CSC, an internal communications agent acts as the interface to other devices in 

the system.  Using the same RESTful API server, data is published along with an identification 

code so that the CSC can uniquely identify each attached ESMC.  This agent published on a 

regular five second interval whether the data on the message bus has been updated or not.  If no 
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Figure 4.4 - Agent framework of an ESMC [58] 
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data is present for a value, an empty string is published in its place.  To avoid creating multiple 

copies of data on the server or overwriting an existing ESMC with a duplicate name, the internal 

communications agent first polls the API server to check if an ESMC object exists with its 

identification code.  If the server responds with an internal “404 – not found” error, then the 

agent sends a request to the server to create a new ESMC object at that address.  If the ESMC 

has not attempted to post data before but receives anything other than a 404 error, then the 

internal communications agent posts an error to the message bus to inform the intelligence agent 

that there is a duplicate device on the system.  This is done to prevent one device from over-

writing data from another just because they happen to have the same identification code.   

 Each time the communications agent posts new data to the API server, it also checks for 

new commands from the CSC.  If data is present and the timestamp of the data has updated since 

the last set of data, the then agent processes the data packet and posts the dispatch information 

from the CSC to the internal message bus for other agents.  If data is present, but the timestamp 

has not updated, the agent increments an error timer.  Should the error timer reach 6 consecutive 

failures, the agent assumes that the CSC has lost communications with the API server and 

stopped updating.  An error is posted to the internal message bus alerting the intelligence agent 

to a loss of communications.  Unless the ESMC losses communications with the API server, a 

case where no data is present should not occur.  However, in the case of missing data, an error is 

sent to the intelligence agent so the system can safely shut down.  Monitoring the inter-device 

communications enables the distributed nature of the controls.  While high-speed data transfer is 

not necessary between devices, reliable and consistent data access allows safe operation of the 

devices.   
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Converter Agent 

 Like the inverter agent in the CSC, the converter agent provides an interface with the 

DC/DC converter that is controlling power flow in and out of the energy storage element.  When 

commands are received from the ESMC intelligence agent, the converter agent processes the 

command and then sends the appropriate command via the pre-selected communications 

protocol.  The power stage control device (DSP, FPGA, microcontroller) that is sending PWM 

signals to the power stage must communicate voltage, current, and power measurements to the 

converter agent.  This information, along with input and output contactor states are received, 

processed for errors such as over/under voltage and over/under current, and then passed to the 

intelligence agent to determine the operational state of the system.  This is done so that if a 

different DC/DC converter is used, the interface may be changed without having to change the 

overall control mechanism found in the intelligence agent. 

 In this work, the converter agent does not communicate with an external converter 

controller.  Instead, the agent is configured to start-up and behave as a 50 kW power stage.  The 

power limits of the DC/DC converter can be altered using a configuration file as necessary to 

demonstrate a variety of power stages.  This is important later for testing the transactive 

optimization system where testing a variety of different power level converters will help 

determine the effectiveness of the optimization.  A simple model of the converter is used in this 

agent which assumes that the DC input will vary between 370 and 440 Vdc while the output of 

the converter will remain fixed at 1000 Vdc.  The converter is also assumed to have a stable 

power ramp rate of 25 kW/s such that any change in power set-point can be successfully 

executed in a single 5 second optimization time step if necessary.  As discussed in the CSC 



81 

 

inverter agent, these assumptions are made so that the communications and optimization 

infrastructure may be tested. 

Battery Management System (BMS) Agent 

 Interfacing with the wide range of battery management systems available from original 

equipment manufacturers (OEMs) and commercial off-the-shelf (COTS) suppliers requires the 

use of a BMS agent to manage a common data interface for the intelligence agent.  To determine 

which data and control parameters are needed to properly control a BMS, several COTS BMS 

units were analyzed for the data that they publish or that are required for safe operation.  Table 

4.2 provides an overview of these 13 critical parameters.   Other data is typically available from 

the BMS but may not be necessary for the BMS agent to operate properly.  BMS units from 

OEM developers for EV batteries were excluded from this analysis.  These developers (LG 

Table 4.2 – Common battery parameters required by the BMS Agent 

Name Unit Parameter Description 

Vbatt V Battery Pack Voltage Voltage of the battery pack measured from the most positive 

terminal to the most negative terminal of the battery. 

Ibatt A Pack Current Current flow measured on the positive side of the battery.  

Positive is discharging, negative is charging current 

SOC % State of Charge An estimate of the total remaining energy in the battery, 

calculated by the BMS’s internal algorithm 

Cell_Vmin V Minimum Cell Voltage Cell voltage of the cell with the lowest voltage 

Cell_Vmax V Maximum Cell Voltage Cell voltage of the cell with the highest voltage 

Cell_Vavg V Average Cell Voltage Average cell voltage across the entire pack 

Tempmax ˚C Highest Pack 

Temperature 

Highest measured temperature in the container across all 

thermistors (cell or ambient) 

Tempmin ˚C Lowest Pack 

Temperature 

Lowest measured temperature in the battery across all 

thermistors (cell or ambient) 

Tempavg ˚C Average Pack 

Temperature 

Average across all thermistors in the battery (cell or ambient) 

DCL A Discharge Current Limit Maximum discharge current before the BMS faults and opens 

to isolate the battery for protection. 

CCL A Charge Current Limit Maximum charge current before the BMS faults and opens to 

isolate the battery for protection. 

Status N/A Activation Status Present status of the system.  Activated/deactivated 

Control N/A Start/Stop Control Control channel to intertie or disconnect the battery 
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Chem, Panasonic) often do not allow third-party interfaces with their communications bus in 

order to protect the proprietary state-estimation and charge-balancing algorithms implemented on 

the BMS.  However, given knowledge of the communications protocol and a list of data 

registers, any OEM BMS could be added later as long as the 13 parameters identified by this 

work are included. 

 The values shown above in Table 4.2 represent the control parameters that the BMS 

agent monitors to maintain safe operation of the energy storage element.  Like the intelligence 

agent, a state engine is used to monitor the present battery conditions and raise an error if the 

conditions reach an untenable state.  Should an error occur, the BMS agent immediately sends a 

shutdown command to the BMS while also publishing an error to the message bus so that the 

ESMC converter and intelligence agents can execute an emergency shutdown.  The error engine 

in the BMS agent monitors for the following conditions shown in Table 4.3.  The bounds on 

these conditions are set via a configuration file since they can change from battery to battery 

based on size and cell configuration.   

 

Table 4.3 – Errors monitored by the BMS agent 

Error Limits Result Description 

Operational SOC Limit 

Reached 

Op_SOCmin , 

Op_SOCmax 

Once error is sent to Intel. agent, 

waits for shut-down command 

from Intel. 

Limits set ~5% inside of the actual 

SOC cut-off of the BMS to prevent a 

“hard” shutdown 

SOC Limit Reached SOCmin, 

SOCmax 

Immediately sends the shut-

down command to the BMS 

Set just inside the BMS limits (~1%) 

and mainly used to prevent the ESS 

from starting energy transfer 

Over/Under DC Input 

Voltage 

DC_inmin, 

DC_inmax 

Immediately sends shut-down 

command to the BMS 

Attempts to protect the battery from 

voltages outside of the normal 

charge/discharge range 

Over/Under Pack 

Temperature 

T_packavg Once error is sent to Intel. agent, 

waits for shut-down command 

from Intel. 

Ensures that the battery temperature 

does not get close to the limits 

Over/Under Cell 

Temperature 

T_Cellmin, 

T_Cellmax 

Once error is sent to Intel. agent, 

waits for shut-down command 

from Intel. 

Checks that any individual cell is not 

approaching the thermal limits.  

Executes a “safe” shutdown 
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 For most systems, monitoring SOC provides a good estimate of the operational state of 

the battery.  However, knowing information such as cell voltage, and pack voltage allows for the 

BMS error engine to make more informed decisions about the operational state in extreme 

conditions, such as the sudden failure of individual cells, unexpected transient voltages, or when 

operating near temperature boundaries.  While the BMS monitors these parameters as well and 

will protect the battery when necessary, it will also perform these shutdown actions abruptly and 

without first issuing a warning6.  Having the agent monitor these values using custom conditions 

set within the bounds of the BMS allows the agent to recognize unsafe operating conditions 

earlier and safely shut down the system instead of abruptly opening the electrical connection 

with the energy storage element.  This can prevent cascading failures in the system that may 

result from the sudden transients that would occur. 

 For integration with the architecture described in this project, a simple battery model was 

implemented in the BMS agent in place of communications with an actual BMS.  Using a linear 

charge counting equation (4.1),the model adjusts the present battery SOC at a rate that is 

proportional to the current power output of the system.  Based on the direction of the power flow 

and the length of the model timestep, energy is either added or subtracted from the present 

energy contents of the battery.  This also allows for accelerated testing by adjusting the model 

time-step (Δt) to represent longer amounts of time.  For normal operation, this parameter would 

be equivalent to the model loop execution time. 

𝑆𝑂𝐶𝑛 = 𝑆𝑂𝐶𝑛−1 + 
𝑃 × ∆𝑡

𝑄𝑡𝑜𝑡𝑎𝑙
 (4.1) 

 
6 In general, the COTS BMS units evaluated do not provide a warning signal.  However, the Nuvation HV BMS can 

provide a warning signal.  Since this feature is not common, it is assumed no warning will be given by the BMS. 



84 

 

 In (4.1), Qtotal is the energy capacity of the battery in watt-hours (Wh), P is the present 

power dispatch in watts (W), and n is the current iteration of the program.  It is important to note 

that for this model, a positive power flow represents a charging current, while a negative power 

flow represents a discharging current.  While this is the reverse of the direction chosen by most 

COTS BMS units, these signs are most commonly used by the utility industry to define ES 

power flow.  Additionally, it should be noted that an efficiency of 100% is assumed to simplify 

the battery model.  This is done because battery efficiencies are non-linear and would need to be 

included in the model as a piece-wise function. 

As the SOC approaches the extremes of the operational range (Op SOC), the power 

capability is de-rated by adjusting the current limit on the battery.  For example, as the SOC 

approaches within 5% of the minimum SOC value the maximum discharge power limit will fall 

linearly until it reaches 0 W when the SOC is at minimum.   This is part of the model because all 

the COTS BMS units studied for this work included a similar power de-rating mechanism as the 

batteries approach the SOC limits.   This helps prevent the unit exceeding SOC limits if the 

timing of the communications encounters an error, since the unit will automatically begin to 

power down.  Many BMS’s also de-rate the power limits of the system based on temperature 

readings.  However, since a nominal temperature of 23 ˚C is assumed for each battery, this is not 

a necessary part of the model. 

Price Signal Agent 

 Battery system control often requires knowledge of most, if not all, of the 13 parameters 

described above.  However, the distributed transactive architecture used for this work requires 

each energy storage device to reduce these 13 variables to a simple price signal consisting of 3 

parts.  The first part is the linear price signal.  The second part is the power limits in both the 
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charge and discharge directions.  The last part is the present status of the system which only 

includes an active/standby/error status and the present power output of the unit.  The price signal 

agent of the ESMC is where this simplification of parameters occurs. 

 The price signal agent retrieves the needed information on the battery and the converter 

status from the internal message bus of the ESMC.  Using this information, the three components 

of the price signal are determined and pushed back to the message bus.  A new price signal is 

generated every two seconds and pushed to the message bus, where it is sent to the CSC by the 

communications agent.  Regardless of whether the system is presently charging, discharging, or 

in standby, the price signal is always calculated for both the charge and discharge directions.  

This is done to ensure that the CSC has the most up-to-date system price curve at all times in 

case the dispatch request from the utility to the CSC shifts suddenly. 

The price signal is sent to the communications agent via the VOLTTRON message bus, 

where it is packaged with other system information as well as identifying messages into a single 

JSON string.  Using JSON provides a simplified way to package and interpret data between the 

communication agents in the ESMC and CSC. 

Intelligence Agent 

 Once the CSC has negotiated a dispatch plan for the system, the power set-point is 

received by the communications agent and posted to the intelligence agent.  Like the intelligence 

agent in the CSC, the primary function of the ESMC intelligence agent is to monitor data from 

the ESMC agents for errors and to provide a safe start-up and shutdown sequence for both 
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normal and fault scenarios.  To track the system state, a state machine is used which allows the 

system to be in standby, start-up, normal, shut-down, error, or lockout as shown in Figure 4.5. 

 Upon powering-on and receiving the first commands from the CSC, the intelligence 

agent will begin in “lockout” and require that a “clear errors” command is sent.  This is a 

safeguard so that the system does not come online during the middle of system operations and 

jump to an infeasible state causing damage. Once the ESS is in standby, if a valid power set-

point is received from the CSC then the intelligence agent will begin a start-up sequence.  This 

involves communicating with the BMS and converter agents to energize the converter in a safe 

manner based on measurements from these agents.  Upon successful start-up the system 

transitions to the “normal” state.  Once in the normal state, the intelligence agent monitors the 

message bus for errors from the other agents as well as communications errors. 

Lockout

Standby

Start-up

Normal

Shutdown

Error

Clear Errors

Start-up

Received

Successful

Start-up
Error!

Error!

Shutdown

Received

Automatic

Shutdown

No Errors

Errors

Error!

 

Figure 4.5 - ESMC state machine including state triggers 
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Summary 

 The parallel DC/DC topology proposed for the multi-chemistry battery energy storage 

system requires a series of duplicate energy storage modules.  However, flexible integration with 

a wide range of hardware is desired, which necessitates modular software.  Using an agent-based 

architecture for the system-level control of the energy-storage modules allows for integration 

with multiple types of hardware.   This means duplicate software can be used on several identical 

ESMCs while communicating with a range of BMS units and converters, reducing system 

integration costs by simplifying the communications between the PECs and the other system 

devices.  In the following chapter, a residential energy storage deployment using an agent-based 

architecture will be presented and discussed.  
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Chapter 5 - Energy Storage Integration Demonstrations 

 A significant hurdle currently facing second-life battery systems is integration cost.  

Battery systems must be graded and integrated with a new BMS system before they can be sold 

as a reliable second-life system.  The ability to integrate a secondary-use system with a variety of 

PECs without changing the BMS or communications method is important to reducing integration 

cost.  In general, a flexible unit capable of working with many PEC platforms provides more 

value than a unit that is tightly integrated with one or two PEC manufacturers. 

In Chapter 4, a BMS agent was described which provides a universal interface between a 

converter intelligence agent and the BMS device which is measuring and collecting data from the 

battery system.  It was determined that the battery could be safely monitored and controlled 

using a short list of critical variables such as SOC, voltage, and current.  To demonstrate the 

feasibility of this method, this chapter will present two residential energy storage deployments 

using three different battery devices.  For each battery device, the method used to interface 

between the BMS and system controller will be described and evaluated.  A successful 

demonstration of the agent-based BMS will allow energy storage elements with different BMS 

units to interface with an agent-based inverter without significant changes to the software 

operating the energy storage system.  This is an important cost-reducing measure that will enable 

more widespread use of secondary-use batteries.    

Direct BMS Integration 

Traditionally, communications between the battery management system and inverter of 

an energy storage system are tightly integrated between the devices.  The device (DSP, FPGA) 

controlling the high-speed switching of the inverter also communicates with the BMS and 
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manages start-up and shut-down sequencing for the ESS.  This means that energy storage 

solutions are often created to only work with a limited number of power conditioning systems.   

For example, the Tesla Powerwall residential ESS is only sold with a supported “Backup 

Gateway” from Tesla which provides the power management and conditioning for the attached 

batteries [61]. Similarly, the RESU system from LG Chem has a limited number of PCS devices 

with which it is compatible for residential energy use [62].  As system size increases, the level of 

integration required between the PCS and the energy storage element tends to increase as well.  

Therefore, switching to a different power stage from a separate manufacturer becomes more 

difficult.   

AMIE Residential Energy Storage 

Based on the industry model, a residential energy storage (RES) system was created for 

the Advanced Manufactured Integrated Energy (AMIE) demonstration at ORNL.  In this system, 

a selection of batteries from two FIAT 500E electric vehicles were assembled into an air-cooled 

battery with a commercial off-the-shelf (COTS) BMS as shown in Figure 5.1(a).  A stack of 104 

cells from the FIAT battery systems was used since the nominal cell voltage at 50% SOC is 

~3.95 Vdc.  The number of batteries was chosen such that the nominal pack voltage is ~410 Vdc, 

meaning that an additional DC/DC converter would not be needed before the DC/AC inverter (as 

discussed in Chapter 2.3).  Assuming a capacity near 60 Ah based on the original specifications 

and low mileage on these EV packs, this gives the assembled pack a capacity of ~ 24 kWh.  Data 

acquisition and state estimation for the pack is provided by the Orion BMS shown in Figure 

5.1(b), which measures pack and cell voltages, current, and temperatures.  Based on this 

information, the BMS provides an SOC and available capacity estimate.  It uses the controller 

area network (CAN) communications protocol for transmitting this data and receiving 
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commands.  The commercial-off-the-shelf (COTS) Orion BMS from Ewert Energy Systems was 

chosen based on recommendations from the battery supplier, Speirs New Technologies (SNT). 

Power conditioning for the AMIE RES is performed in a second container and consists of 

an AgileSwitch 30 kW power stage, capacitors for DC filtering, inductors for AC filtering, and a 

National Instruments cRIO 9039.  This FPGA-based device has been configured with the 

necessary analog and digital control modules to perform the inverter controls as well as high-

level device coordination duties.  Contactors to isolate the power stage from the battery and the 

grid are also included in order to allow the PCS to protect itself in the event of a fault on either 

the grid or battery side.  Figure 5.2 shows a simplified electrical diagram of the system.  Control 

of the contactors, as well as the closed-loop inverter controls providing PWM signals to the 

power stage is handled by the cRIO 9039 device located inside the metal cage seen in the front-

view of the inverter container shown in Figure 5.3. Communications to the BMS are also 

handled by the cRIO controller in addition to externally interfacing with the home energy  

 
 

(a) Array of FIAT 500E batteries (b) The BMS in the battery container 

Figure 5.1 - Photos of the AMIE Second-Life Battery System 
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Figure 5.3 - Front-view of the AMIE power conditioning container 
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management system (HEMS) that handles dispatching the battery.  The power stage, filters, and 

other high-voltage electrical components are located behind plexiglass to minimize exposure to 

hazardous voltage. 

 Figure 5.4 shows a high-level diagram of the AMIE energy storage system.  

Communications interconnections are shown in the diagram to specify how the system 

communicates between devices.  Note that each device must communicate with the field 

programmable gate array (FPGA) on the cRIO, which runs a single piece of code at high speed.  

When integrating the battery and power stage together, CAN decoding for interpreting data from 

the BMS had to be built directly into the high-speed inverter controller.  The CAN addresses 

were known and specifically monitored by the FPGA on the cRIO.  When new data arrives, it is 

internally published to the real-time (RT) computer co-located on the cRIO-9039.  The real-time 

layer of the computer monitors the data from the BMS as well as its own sensors for error 
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Figure 5.4 - High-level diagram of the control devices in the AMIE ES 
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conditions in the battery and the PCS.  The FPGA also provides the closed-loop controls that 

execute the switching on the power stage. 

When the battery needs to be replaced, the BMS would have to be the same as the current 

configuration for the integration to be seamless.  Should the new BMS have data located at 

different CAN addresses, the FPGA code (which also executes the closed-loop inverter controls) 

would have to be updated and re-verified as functional.  If the communications protocol of the 

BMS were to be updated to ModBus or RS-232, hardware would have to change as well since 

CAN required the installation of a special module in the cRIO-9039.  All these steps represent 

significant integration time increases. 

Lessons Learned from Direct Integration 

 The secondary-use residential energy storage system described above was successfully 

operated as part of the AMIE demonstration.   Figure 5.5 shows the unit installed under the 

“back porch” of the residence.  The battery unit functioned as expected for several 

demonstrations, but over time experienced significant voltage deviations (shown in Figure 5.6) 

that the BMS could not overcome with traditional balancing.  This occurred because the batteries 

had been integrated into the system without being graded or tested meaning that significant 

differences in battery health were present that were untested.  In Chapter 1, the importance of 

matching battery health and capacity as part of the secondary-use integration process was 

discussed.  Over time, the differences in health meant that weaker cells were more heavily taxed 

by charge-discharge cycling and degraded quickly, exacerbating the cell voltage disparities.  At 

first, faulty battery modules were replaced, but this meant replacing five or six cells every time 

an individual cell went bad because of the FIAT module configuration.  Eventually, replacing  
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Figure 5.5 - AMIE ES installed at the evaluation site [74] 

 

 

Figure 5.6 - Cell voltage and balancing data from the Orion BMS 
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modules became too time consuming to keep the unit running and replacing the battery unit 

seemed to be the more viable solution. 

When investigating options to replace the batteries of the ESS with a commercial storage 

solution from SNT or another vendor, it became apparent that the tight integration between the 

BMS and the inverter was a detriment.  Changing the number of cells in the system or re-

addressing where data appears on the CAN protocol requires software modifications to the base 

code.  If a different communications protocol were to be used, changes to the hardware could be 

required which would result in costly configuration changes.  For example, the cRIO platform 

used in the AMIE ES demonstration costs approximately $10,000 with the CAN module 

contributing $700 to the cost.   

To reduce integration time, improve system flexibility, and reduce cost, three features are 

needed.  First, to allow the system to interact with a range of BMS options, a program 

communicating with the BMS should run separately and asynchronously with the power stage 

controls.  This allows programming alterations to be made without impacting the inverter 

controls.  Next, changing the communications protocol should not require significant hardware 

changes to the system that increase cost.  Using a platform which requires specialized hardware 

interfaces contributes to cost and increases integration time.  Finally, changing the BMS that is 

controlling the battery should not result in having to change any safety features of the power 

conditioning system.  Re-certifying that all the safety systems in the PCS operate with a new 

battery system adds significant time to the integration process. 

Agent-Based BMS Integration 

 Based on the lessons learned from the AMIE ES integration project, an agent-based 

energy storage was developed for the Grid Modernization Laboratory Consortium (GMLC) 
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residential energy storage project [59] [60].  The goal of this project was the creation of a low-

cost residential energy storage solution which provides significant financial benefit to the 

homeowner when coupled with a residential rate structure that charges for on and off-peak 

energy usage.  Like the design of the CSC and ESMC agent frameworks, the GMLC residential 

energy storage uses an agent platform to support integration with various hardware to lower the 

overall system cost and integration time.  Chapter 4 provides a detailed description of an agent-

based architecture for integrating a wide range of PECs and BMS units.  The following is a 

description of the agent-based system constructed for the GMLC project and its use as a testbed 

for verifying the principles of the BMS agent with real battery systems. 

Agent-based RES for BMS Integration Testing 

Figure 5.7 shows an overview of the agent-based system used in the project as well as the 

hardware interfaces.  The integration and interoperability of a variety of BMS units was tested 

using the PCS and agent platform developed for the GMLC as a testbed.  Each component of the 

energy storage system shown below was designed, constructed, and tested with the assistance of 

the Electric Energy Systems Integration team at ORNL. 

Power Conditioning System 

Due to the lack of commercially available 10 kW bidirectional power stages, the ORNL 

power electronics team designed and constructed a custom unit for this project shown in Figure 

5.8.   It consists of a 240 Vac single phase power stage using IGBTs with an L-C input filter and 

a large inductor on the AC output.  With forced-air cooling, the power stage is capable of more 

than 25 kW but has been derated to 10 kW for the purposes of this project.  Current and voltage 

measurements are read by a Texas Instruments 28377 digital signal processor (DSP) which also 

provides closed-loop current control and generates PWM signals.  An interface board between  
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Figure 5.7 - System diagram of the agent-based RES 
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the power stage and the DSP is used to condition and isolate the measurement and PWM signals.  

This is done to properly scale the signals so that a variety of power stages can be used instead of 

just the custom unit designed for this project.  The DSP communicates with the converter agent 

of the agent-framework using the User Datagram Protocol (UDP) for fast data communications.  

As Figure 5.7 shows, this then communicates with the agent platform where operational 

decisions are made. 

Agent Platform 

The agent platform is similar in design to the Energy Storage Module Controller (ESMC) 

from Chapter 4 and auto-launches upon powerup of the small form factor computer running 

Ubuntu Linux version 16.4.10.   Key differences between the frameworks include the lack of a 

pricing agent and the use of communications with actual hardware for both the converter and 

BMS agents instead of hardware models.  A pricing agent is not needed since the dispatch of this 

unit is determined externally by a remotely located master controller and sent to the unit through 

the API agent.  This API agent collects operational data on the RES, which it sends to the master 

controller for monitoring, data storage, and control.  When new commands are posted by the 

master controller, the API agent downloads the operating mode and dispatch command and 

updates the control state of the intelligence agent accordingly.  While this is like the intra-system 

communications described for the multi-chemistry BES, it includes extra layers of security and 

handshaking between the API agent and the server to ensure that the communications cannot be 

maliciously interrupted or intercepted.  Like the intelligence agent in the ESMC, the intelligence 

agent in the RES platform coordinates the start-up, normal, and shutdown actions of the other 

agents.  The final agent shown in Figure 5.7 is the BMS agent, which is identical to the one 
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outlined for the ESMC in Chapter 4, except that it has been configured to also interact with the 

energy storage systems described below and not just a battery model.   

Secondary-Use Residential Energy Storage Systems 

Two secondary-use battery units were tested during the GMLC RES project.  Both units 

use 54 Nissan Leaf Generation 1 modules for a total measurable cell count of 108.  Like the 

AMIE ES, this gives both units a nominal pack voltage at 50% SOC of ~410 Vdc.  Both units 

were certified by SNT to contain 38 Ah which gives a useable storage capacity of 14 kWh.  

These specifications were primarily chosen based on battery module availability from SNT and 

the desired pack voltage to avoid the use of a separate DC/DC converter to boost the voltage.   

The first unit, named the Watt Mini 1.5, is shown in Figure 5.9(a) and uses the same 

Orion BMS used in the AMIE ES.  It is supplemented with a custom Energy Storage System 

Control Board (ESS-CB) built by SNT to monitor and control the DC contactor states and 

provide a pre-charging circuit.  Pre-charging is performed in most ES units to protect the PCS 

and batteries from excessive in-rush currents when the DC link is energized.  The Orion BMS 

and ESS-CB uses the CAN communications over RS-485.  The second unit, named the Watt 

Mini 2.0, uses a modular BMS from Nuvation Energy Systems called the Nuvation High Voltage 

(HV) BMS.  This ES, shown in Figure 5.9(b), can communicate using the CAN protocol.  

However, Modbus-TCP was chosen for increased communications reliability in an environment 

prone to electromagnetic interference (EMI) from the PCS.  SNT also transitioned to this BMS 

because it includes DC contactor control, eliminating the need for the custom ESS-CB. It also 

has Underwriters’ Laboratory (UL) approval, which is necessary for the final residential 

deployment. 
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(a) (b) 

Figure 5.9 - Two RES units using different COTS BMS units 

Testbed Implementation 

 The agent platform, PCS, and battery systems described above provided the components 

for testing the ability to quickly integrate and change BMS units.  However, this still requires a 

grid connection to test bidirectional energy transfer.  Since verifying the state-machine operation 

of the BMS agent requires intentionally faulting the system, a safer option is to use a four-

quadrant grid emulation tool like the Ametek RS90 instead of an actual grid connection.  The 

implemented testbed is shown in Figure 5.10.  Since the PCS of this system was designed for 

240 Vac single-phase operation, the grid emulator was programmed to behave like this type of 

grid connection.  Later iterations of the testbed included metering of the AC connection for 3rd 

party measurement and verification, but data presented in the testing and results section below 
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was collected by the inverter and verified using a Tektronix Oscilloscope paired with a 

Yokogawa Power Analyzer.   

BMS Agent Implementation 

  During the discussion of the ESMC BMS Agent in Chapter 4, the details of a state 

machine for controlling the start-up, operation, and shut-down procedures are described.  The 

same agent and state machine are used to communicate with and control the BMS hardware used 

in the two batteries shown in Figure 5.9(a-b).  Using the BMS agent to interface with real 

hardware requires switching the source of the battery data from the internal battery model to the 

communications protocol and addresses of a chosen system.  This is done in a configuration file 

that is read when the BMS agent is first launched during the commissioning of the RES system.  

Figure 5.11 shows an example configuration file which has been set-up to launch the BMS agent 

to communicate with the Nuvation High Voltage BMS via Modbus-TCP.  Specifically, this file 

240 Vac 
Grid Emulator

10 kW 
Agent-Based PCS

14 kWh 
Watt Mini 2.0

DC LinkAC Connection

U
D

P

C
A

N

Agent Computer

 

Figure 5.10 - The RES testbed used for BMS testing 
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has been configured to communicate with the Watt Mini 2.0 in the testbed described above.  

While the BMS agent operates, this information is used to inform decisions about the locations 

and methods used to read data from the battery and where commands are sent to start and stop 

power transfer from the Watt Mini 2.0.   

 For example, when the BMS agent first starts the core function that reads data from a real 

BMS or the battery model, the configuration file is checked.  If it is a known BMS, then the 

agent attempts to open communications with the device.  If opening the communications channel 

fails, or the type of BMS is not yet supported by the BMS agent, then an error state is triggered, 

and an error message is displayed by the agent.  In the case of the Nuvation Energy BMS, the 

communications core opens a Modbus-TCP connection to the IP address specified in the 

configuration file and begins reading the BMS data at regular intervals.  Similarly, when the 

intelligence agent of the RES signals the BMS agent to transition to “start-up,” the state-engine 

 

Figure 5.11 - Example BMS agent configuration file for the Watt Mini 2.0 
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performs BMS-dependent actions.  After checking which BMS is being used, the agent sends the 

proper start-up command over Modbus-TCP or CANBUS and then waits for the 

acknowledgement command to be read back.  If completed successfully, the BMS agent moves 

to the “normal” state.  If the BMS and battery system fail to acknowledge the command and 

energize, then the process is attempted two more times before the BMS agent transitions to an 

“error” state and signals the RES intelligence agent that a problem has occurred with the battery 

system.  

 To integrate a new BMS, the communications protocol (data addresses and types) must 

be added to the BMS agent under the communications core as a new BMS type.  The user 

manual for the Nuvation HV BMS specifies the communications addresses for each of the 13 

parameters identified in Chapter 4.  Each piece of necessary data is matched with data type, 

address, and any scaling factors required to retrieve the properly formatted data.  This 

information is then paired with the variable that is used in the decision making process within the 

agent.  An example of the portion of code which provides this functionality for the Nuvation 

BMS using Modbus-TCP is shown in Figure 5.12. The internal agent variable (in this case 

self.BMS.Status.Measurements.DC_Voltage) is matched with the result of retrieving certain data 

from the BMS.  In this case, the MESA-ESS7 standard is being used, which provides a base 

address for certain data sets followed by an offset to retrieve specific pieces of data.  For CAN 

data frames, slightly more processing is involved, but the retrieved information is stored in the 

same variable name.  This means that a single BMS agent can only communicate with one BMS 

at a time, but multiple BMS agents can be launched in parallel as necessary. 

 
7 MESA was formerly an acronym when it was part of the Sun-Spec Alliance, but is now the name of the 

organization spearheading open standards for energy storage communications [73]. 
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Once the process of matching data to BMS agent variables is completed, switching 

between different BMS hardware or the battery model only requires changing the model and 

communication mode specified in configuration file.  An additional benefit to this method allows 

the SOC, voltage, and capacity limits to be set without significant programmatic changes as well, 

so that batteries of various sizes and configurations can all be used with this interface. 

BMS Testing and Results 

 Preliminary testing demonstrated the ability of the BMS agent to communicate with the 

two different battery units used in the RES testbed described above, two identical BMS agents 

were launched simultaneously, but configured to communicate with either the Orion BMS via 

CAN or the Nuvation BMS via Modbus-TCP.  In Figure 5.13, the two BMS agents running side-

by-side can be seen.  Comparing the two agents, there are no noticeable differences in the data 

available to the agent-based RES system.  From the perspective of the intelligence agent of the 

RES, there is no difference between the batteries except for slight changes in nameplate capacity, 

with the Watt Mini 1.5 being listed as 16 kWh instead of 14 kWh in order to account for slight 

miscalculations by the BMS in estimating SOC.  Each unit can be treated identically during the 

regular operational sequences. 

 

Figure 5.12 - Example pairing code between BMS and Agent variables 
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Both the Watt Mini 1.5 and 2.0 systems communicated successfully with the agents with 

minor errors to the data structures resulting in misread values at first.  However, these were 

easily corrected since both battery units provided other means to verify that the values being 

communicated were correct.  One problem encountered on the Watt Mini 2.0 was the SOC 

estimation of the pack.  At a pack voltage of 380 Vdc, the state estimation algorithm estimated a 

1% state of charge.  This meant that the agent would error upon launch, lockout, and refuse to 

come out of an error state.  To avoid this problem, the minimum allowable SOC had to be 

lowered in the BMS configuration file to 0%.  This allows the system to launch and come out of 

the error state so that it can at least begin to charge. 

Watt Mini 2.0 System Failure 

 While the Watt Mini 2.0 successfully integrated with the BMS agent, power transfer tests 

were never successful.  The Watt Mini 2.0 uses a modular BMS from Nuvation Energy which 

has a proprietary communications bus between the various data acquisition modules and the 

master controller.  If too many errors are accumulated on this bus during operation, the BMS will 

 

Figure 5.13 - Demonstration of two BMS agents communicating with two BMS units 

Watt Mini 1.5 

CAN 
Watt Mini 2.0 

Modbus TCP 
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open the battery contactors to interrupt energy transfer since it assumes the battery is 

experiencing possible problems.  While power transfer was not successful, these failed tests did 

help verify the error behavior of the BMS agent’s state engine.  When the Nuvation would abort 

power transfer, the BMS agent recognized that, despite being in the “Normal” state where they 

should be closed, the K-High and K-Low contactors were open.  This immediately sends the 

BMS agent to the “Error” state.  Upon receiving an error from the BMS agent, the remainder of 

the agent-platform from the testbed performs the necessary actions to quickly and safely shut 

down the system.  This includes having the PCS open both DC and AC contactors and informing 

the master controller that an error has occurred in the battery via the API agent. 

Fault Mode Effects Analysis (FMEA) Testing 

 Developing a robust agent-based system for deployment means that each failure point 

must be reinforced to prevent damaging or catastrophic failures from occurring.  As discussed 

above, system testing involves intentionally and unintentionally faulting the system to observe 

the behavior and inspecting the results.  Performing a Fault Mode Effects Analysis (FMEA) on 

the BMS agent system involves analyzing each of these failure points and determining the 

frequency and severity at which they can occur.  Before significant power transfer testing or 

deployment, this analysis is used to develop a series of tests to stress the system and ensure that 

safety measures operate and prevent dangerous faults from occurring.   

 In Table 5.1, an example of the FMEA performed on the interconnection between the 

Watt Mini 1.5 and the agent-framework is given.  As the chart shows, each failure point is given 

a severity and frequency grade, which in turn denotes the overall fault severity as a color.  This is 

based off of an Occupational Health and Safety Administration (OSHA) chart show in Table 5.2.  
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Safeguards taken to prevent this failure method, as well as the software actions that are 

automatically executed are shown in the final column of Table 5.1.  While the Frequency and 

Severity ratings are qualitative values, they help provide insight to how dangerous a fault is 

perceived to be. 

 Results from the FMEA are used to add protections or safety mechanisms if the risk 

factor falls in the orange or red areas of Table 5.2.  They are also used to develop tests to ensure 

that the safety mechanisms respond as expected in the case of a fault.  For example, the first 

entry in Table 5.1 was tested by pressing the emergency stop (E-Stop) on the Watt Mini 1.5 

while the power conditioning system was discharging the system at 1 kW.  Pressing the E-Stop 

Table 5.1 - Sample of cases from the FMEA of the RES 

Failure Causes Consequences F S Risk Safeguards 

HVDC 

Unplugged 

(while live) 

User error, 

cable stress 

DC link broken, possible 

arc in connector 

U L UL Inv agent detects loss of 

voltage, opens DC contactor, 

shuts BMS agent down 

(opens battery contactors) 

HVDC cable 

severed (DC 

short 

circuit) 

Accident, 

cable stress 

DC link broken, exposed 

HVDC, short-circuit 

current of battery is 2.5 

kA 

R H RH Inv. Agent detects loss of 

voltage, aborts power transfer.  

Battery HVDC is fused at 

60A, fuses blow, eliminating 

HVDC 

CAN cable 

becomes 

disconnected 

(while live) 

Accident, 

cable stress, 

user error 

BMS and BMS agent lose 

communications, cannot 

send signal to shut down 

battery 

R L RL BMS agent detects loss of 

comms, enters error state.  

Intelligence agent aborts 

power transfer, opens 

contactors, will not restart. 

CAN cable 

becomes 

disconnected 

(while idle) 

Accident, 

cable stress, 

user error 

BMS and BMS agent lose 

communications, cannot 

send start-up signal. 

R L RL BMS agent detects loss of 

comms, enters error state.  

Intelligence agent cannot 

execute start-up sequence, 

system will not energize 

SOC value 

outside safe 

range 

Battery drift, 

parasitics, 

accident 

Battery could overcharge 

or undercharge, creating 

permanent damage to the 

battery 

U M UM BMS agent faults, issuing 

shut-down command to both 

the BMS and the intelligence 

agent. System de-energizes 

DC Voltage 

outside safe 

range 

(battery V) 

Grid event, 

battery 

problem 

Battery could overcharge 

or undercharge, creating 

permanent damage to the 

battery 

U M UM BMS agent faults, issuing 

shut-down command to both 

the BMS and the intelligence 

agent. System de-energizes 
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breaks the DC connection between the battery and the inverter, thus emulating a cable break 

between the devices.  This test was repeated while the system was in standby (no power, de-

energized), idle (no power, energized), and finally while the system was charging and 

discharging at a rate of 1 kW.  Table 5.3 shows a sample of tests that were performed on the RES 

test system to verify fault mode operation before it was deployed.  Tests included on this chart 

were for faults which effect the battery and BMS agent.  Additional testing was performed to 

verify the error behavior of the power conditioning system and API connectivity. 

 

 

 

 

Table 5.2 - OSHA hazard determination table 

       Freq. 

Risk 

Rare 

 (R) 

Unlikely 

(U) 

Occasional 

(O) 

Frequent 

 (F) 

Very Low 

(V) 
VR VU VO VF 

Low 

(L) 
LR LU LO LF 

Medium 

(M) 
MR MU MO MF 

High  

(H) 
HR HU HO HF 
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Table 5.3 - Sample of experiments used to test fault modes of the battery system 

Test ID # Fault Under Test Safe Faulting Procedure Expected Result Pass/Fail 

1.1 CAN loss while 

system in standby 

Before system 

energization, remove CAN 

cable.  Attempt system 

start-up. 

System should attempt 

start-up.  When contactors 

do not close.  Start-up 

fails 

Pass 

1.2 CAN Loss while 

system is idle 

Attempt system start-up.  

Upon energization, 

remove CAN cable 

Start-up will complete 

successfully. 30 s after 

cable is remove, system 

should error and shutdown 

Pass 

1.3 CAN loss while 

system is charging at 

1 kW 

Attempt system start-up.  

Send -1 kW set-point.  

Once power is stable, 

remove CAN cable 

Start-up will complete 

successfully. 30 s after 

cable is remove, system 

should error and shutdown 

Pass 

1.4 CAN loss while 

system is 

discharging at 1 kW 

Attempt system start-up.  

Send 1 kW set-point.  

Once power is stable, 

remove CAN cable 

Start-up will complete 

successfully. 30 s after 

cable is remove, system 

should error and shutdown 

Pass 

2.1 Removal/severing of 

HVDC cable while 

system in standby 

Before system 

energization, press battery 

E-stop.  Attempt system 

start-up. 

System should attempt 

start-up.  When no DC-

link voltage is detected.  

Start-up fails 

Pass 

2.2 Removal/severing of 

HVDC cable while 

system in standby 

Attempt system start-up, 

upon energization, press 

battery E-Stop. 

Start-up will complete 

successfully.  When E-

stop is pressed, BMS 

agent will fault and shut-

down the system 

Pass 

2.3 Removal/severing of 

HVDC cable while 

system is charging at 

1 KW 

Attempt system start-up 

Send -1 kW set-point.  

Once power is stable, 

press battery E-Stop 

Upon E-Stop, PCS should 

fault in ~4ms with a “DC 

overvoltage” error and 

shutdown safely DC link 

should not be greater than 

500 Vdc on oscilloscope 

at any point during fault 

Pass 

2.4  Removal/severing of 

HVDC cable while 

system is 

discharging at 1 KW 

Attempt system start-up 

Send 1 kW set-point.  

Once power is stable, 

press battery E-Stop 

Upon E-Stop, PCS should 

fault in ~4ms with a “DC 

undervoltage” error and 

shutdown safely 

Pass 
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Power Transfer Testing 

To verify the successful integration of the BMS agent with the rest of the agent-based 

energy storage platform, short and long-term testing was performed on the RES testbed.  The 

first tests consisted of charge cycling the Watt Mini 1.5 battery at various rates to confirm the 

stability of the agents and their interactions.  One such test is shown in Figure 5.14 where the 

battery was fully charge cycled.  The jumps in SOC are where the BMS performed a “drift-point 

adjustment” to the SOC calculation based on its internal algorithm.   

Several times during this series of tests, the grid emulator experienced internal errors 

resulting in the loss of the grid as measured by the PCS.  This inadvertently ended up testing the 

error capability of the RES system in the same way the failures on the Watt Mini 2.0 tested the 

 

Figure 5.14 - Example of ES full cycle at 4.5 kW 
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error engine of the BMS agent.  When the grid voltage drops to zero, the DSP first measures the 

loss of the grid via its AC measurement and immediately halts power transfer and electrically 

isolates the PCS by opening the AC and DC contactors on either side of the power stage.  An 

error is simultaneously reported to the converter agent which enters an error state preventing 

energy transfer from being accidentally restarted before the error is cleared.  Upon receipt an 

error state, the intelligence agent instructs the BMS agent to send the shut-down command to the 

Watt Mini 1.5 thus completing the error process and safely isolating the system.  When the unit 

was being prepared for deployment, this failure mode was tested several more times and the 

speed at which the shutdown occurred was measured.  On average, the DSP isolated the PCS 

within 16 ms and the BMS had completely shut down within 4 seconds as measured by an 

oscilloscope and stopwatch respectively. 

Another long-term energy transfer test was to allow the RES to run continuously with the 

set-point being dispatched remotely over a server from a central optimization service.  This test 

demonstrated that the energy storage can cycle and respond to a continuous stream of power 

setpoints over a long period of time in a stable manner.  Results from one such test are shown in 

Figure 5.15, where the unit ran autonomously for approximately 8 hours.  In this case, the goal of 

the optimization was to dispatch the RES in such a manner that it would earn the most revenue 

based on the given utility price signal (shown by a dotted black line). 
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Using a combination of these long-term tests, short-term pulse testing, and fault mode 

testing, the RES testbed using the BMS agent with the Watt Mini 1.5 was eventually determined 

to be stable for deployment.  The agent-based PCS, battery unit, and agent platform were 

deployed at a residence in Bear Creek, NC for further testing in a real-world and unpredictable 

environment.  Figure 5.16 shows the deployed Watt Mini 1.5 and PCS on a concrete pad outside 

of the home.  The computer running the agent platform is located inside the PCS container and 

uses the homeowner’s internet service to connect to the API server and master dispatch 

controller located remotely at SNT in Oklahoma City, OK.  A full description of the deployed 

system, as well as testing results from running net-zero services on the house can be found in 

[63]. 

 

Figure 5.15 - Price optimized testing of the RES 
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Discussion and Summary 

 Using an agent-based architecture to integrate a variety of BMS units significantly 

increases the speed at which the energy storage element of the residential storage systems could 

be exchanged.   In the first generation produced for the AMIE demonstration platform, having 

the BMS communications hard coded directly into the inverter controls provided a convenient 

method for ensuring safe operations of the unit by having the inverter directly monitor and 

control the battery system.  However, the reduced ability to swap for a different battery system 

from another manufacturer or use different communications protocols prevented this method 

from being useful on future projects. 

 

Figure 5.16 - Deployed and tested RES using the BMS agent and agent-based inverter 
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 Using the agent framework on the GMLC RES project aided in the on-time completion 

and deployment of the unit.  Late in the project, the battery manufacturer changed the BMS 

being used to monitor and control the system since it eliminated the need for custom 

manufactured parts that did not carry Underwriters Laboratory (UL) approval.  As described 

above, integration of the new BMS with a different communications protocol took very little 

time.  When the Watt Mini 2.0 battery system experienced power transfer issues shortly before 

the planned deployment date, switching back to the first unit using the known reliable BMS was 

a matter of changing the configuration file in order to continue testing and deployment with the 

Watt Mini 1.5. 

 This chapter compares two energy storage projects using different methods to integrate 

incoming data from battery systems.  Use of the agent-based framework provided a robust yet 

flexible method for ensuring that an energy storage system could reliably communicate with 

many different BMS options.  While these specific examples only contain one energy storage 

element running through a single-stage power conditioning system, it provides a proof-of-

concept for agent-based systems.  Since the control software is independent of the size and 

configuration of the energy storage and converter systems, it can be assumed that these same 

frameworks can work on a larger scale for the multi-chemistry system described in Chapter 4. 
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Chapter 6 - Distributed Control through Transactive Optimization  

In Chapter 4, the agent-based architecture for controlling the multi-chemistry battery 

energy storage was described with a focus on the interactions between agents and the control 

systems.  With an agent framework in place that has been demonstrated to be reliable and robust, 

the next step is to control a multi-converter system as a single unit.  A review of the literature in 

Chapter 2 showed that the traditional method for controlling an energy storage unit with multiple 

storage elements involves controlling all the converters as a single system.  Just like the AMIE 

RES unit from Chapter 5, this reduces the flexibility and modularity of the system since it 

requires a tight integration between the converters and a central high-speed controller.  This 

chapter proposes a transactive optimization that allows a central controller to distribute control 

responsibility to any number of attached energy storage elements within the agent framework.  

Demonstration of the transactive optimization will be done using the battery and converter 

models within the agent framework discussed in Chapter 4.  Finally, the chapter will close with a 

discussion of the results. 

Transactive Control Overview 

 Transactive systems are frequently discussed in the literature, from traditional systems 

used in transmission and distribution, to newer applications proposed to regulate and schedule 

electric vehicle charging [64] [65].  Most systems follow a producer-consumer model where 

energy producers bid into the market with a cost ($/kWh) versus power (kW) curve.  For large 

generation assets, such as a nuclear power station, power is produced most efficiently and at 

lower per-kW costs when the asset is providing nearly 100% of available power.  Thus, a bid is 

produced much like the one shown in Figure 6.1(a), where the per kilowatt cost of energy 

becomes cheaper as the plant is asked to produce more energy.  Bids from multiple suppliers are 
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then stacked based on price which produces an aggregate price curve like the one shown in 

Figure 6.1(b), which is based off of a 2008 generation stack from PJM  [66].  Prices shown in the 

latter increase because generation assets which cost more to activate are called upon when the 

power demand is higher.  The steps seen in the curve are when different producers take over.  

For instance, the first small area is large renewable farms, followed by nuclear energy, then coal 

assets, and finally natural gas.  This asset order has since changed as natural gas becomes 

cheaper. The grid manager (usually an Independent System Operator or Real Time Operator) 

then compares this aggregate price curve to the present demand from the loads on the grid and 

decides which producing entities to buy energy from to minimize the overall cost. 

 Utilities and others in the literature have been developing similar transactive systems in 

which energy consumers such as residential or industrial customers bid-in to the utility with a 

“willingness to buy” price curve specifically for use with electric vehicles [47] [67].  To spread 

the impact of electric-vehicle charging, the authors developed a transactive method for 

sequencing the charging of EVs and PHEVs.  Instead of all vehicles charging as soon as they are 

  

(a) – Generation asset bid curve (b) – Aggregate cost to meet demand 

Figure 6.1 - Traditional price curves for large generation assets [66] 
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connected, they must bid into a market with a “willingness to buy” asymptotical bid function like 

the one shown in Figure 6.2.  The vehicle estimates a time-of-next-departure, at which point the 

battery must be fully charged.  As the time-to-departure (Δtdep) shrinks, the price the EV is 

willing to buy electricity increases.  This occurs asymptotically until the vehicle can no longer 

achieve a full charge.  Each EV submits this bid function to a central “producer” whose 

willingness to produce energy increases linearly with price.  This way, each EV or PHEV will 

only begin to charge as it approaches the time-of-departure and will charge at higher powers as 

the departure window closes. 

 Still other systems have been proposed and implemented which use an optimized price 

curve based on forecasted energy usage.  These forecasts are used to predict magnitude and 

timing of energy demand, which can then be used to develop a 24 to 48-hour price schedule.  If a 

home energy management system (HEMS) is in use that receives a price signal, it can be used to 

drive down usage during peak times and shift that usage.  Traditionally, energy storage systems 

 

Figure 6.2 - Asymptotical bid function increasing price as departure time nears. 
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use an implementation of this last method.  Energy is stored during “off-peak” price periods and 

then used to offset load consumption during peak periods.  This was demonstrated by the 

Community Energy Storage (CES) project as well as the GMLC-RES project presented in the 

previous chapter.  Manipulating the price signal provides a pseudo-transactive method for 

controlling the time and magnitude of net energy consumption from the grid.  

 For this project, a combination of the first two methods is developed where the ES 

simultaneously submits bids exhibiting different prices for both a willingness to buy (charge) and 

price for the remaining energy in the system (discharge).  The following section describes the 

transactive method, price determination algorithm, and an overview of how it is incorporated 

into the agent framework from Chapter 4.  

Distributed Transactive Energy Market 

An important aspect to the transactive energy market developed for this project is that 

energy has a different value during charging and discharging.  Both values are calculated as a 

function of the “remaining charge capacity” of the individual battery system and determined 

locally by the energy storage.  In other methods, the value of the energy being purchased or sold 

by an energy storage is determined by the utility.  The proposed method internalizes the price 

signals and builds an internal energy market, which means that the value of energy in the battery 

systems is independent of the external market. 

Energy Market Overview 

Creating the internal market starts with having each ESMC evaluate the economic value 

for battery performance based on local BMS and converter data and use this data to develop a 

bid curve.  An example of a bid curve for three energy storage systems is presented in Figure 6.3. 
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Each bid curve is shared with the CSC and processed based on the utility dispatch request to 

generate an optimized dispatch for the entire ESS.  In this work, it is assumed that dispatch  

power requests are sent by a master controlling entity such as a utility distribution energy 

resource management system (DERMS) or microgrid controller.  Based on previous integration 

experience, this is a good assumption since adding an interface to manipulate other utility signals 

into a power setpoint is trivial.  However, other approaches to generate a schedule for the ESS 

system can be used and developed within the utility interface agent.  The utility interface can 

also be developed to accommodate any number of different communication protocols. 

The price curve is posted to the REpresentational State Transfer (RESTful) API along 

with a system status indicating whether the attached ESMC is presently active.  Once a dispatch 

request is posted to the CSC message bus from the utility interface agent, the optimization agent 

retrieves the compiled price signals from the transactive communication agent.  A value-based 

 

Figure 6.3 - Example price curves for three ES units at ~50% SOC 
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optimization is performed resulting in a power dispatch level for each attached ESMC.  The 

resulting dispatch signals for each energy storage element are then posted to the API server for 

retrieval by the ESMCs. The ESMCs act on these signals to create a change in power level or the 

activation or deactivation of the attached ES.  This action, determined by the intelligence, is then 

translated into setpoints and control commands which are then pushed out to the relevant agents.   

Power setpoints are pushed to the DC/DC converters which ramp to the setpoint 

according to their capabilities.  Meanwhile, the DC/AC inverter monitors the DC bus voltage and 

adjusts power flow to and from the grid to keep the DC link within a set voltage range.  This 

method for power dispatch and DC bus regulation has been well demonstrated for multi-level 

converters [68] [69].  Finally, measurements are collected by the BMS and converter agents and 

the process is repeated until the system encounters an error or is otherwise taken offline.  Figure 

6.4 shows the data movement described above between the ESMC, API, and CSC devices. 

 

Figure 6.4 - Data flow between the CSC, API, and ESMC 
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Price Signal Generation 

For determination of the bid curve, the ESMC calculates the net present value (NPV) of 

the lifetime energy production of the attached battery system.  The NPV calculation uses the 

capital cost of the system (capex) over the lifetime energy of the system as shown in (6.1) [41].  

This calculation is used as a baseline to determine the value of each kilowatt-hour of energy in 

the battery over the entire life of the battery.  While this value can shift with the battery usage 

and the cycle-life, it is a good approximation for determining price.   Weighting variables can be 

added later to account for other system factors such as charge/discharge rate or capacity fade. 

𝑁𝑃𝑉 (
$

𝑘𝑊ℎ
) =

𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 ($)

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) × 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑘𝑊ℎ)
 (6.1) 

 

In a multi-chemistry and multi-aged system, other factors can also weight the system 

behavior, such as round-trip efficiency and power capability.  To capture these other factors, a 

traditional corner-price is extended in the negative-y direction and calculated as a two-quadrant 

corner-price for the battery system.  Much like a traditional corner price, each ES has a linear 

price which is based on the maximum power capability and the present value of the charge-

capacity of the system [47].  Power limits on the y-axis are based on the maximum charging 

(positive) and discharging (negative) rates of the system as reported by the BMS.  The present 

system value (PSV – γ), is determined using (6.2), which calculates the discharged energy 

content as a function of the state of charge (SOC) of the battery system and assigns a value based 

on the NPV calculation.  

𝛾𝑝𝑟𝑒𝑠. = (𝑁𝑃𝑉) × (1 −
𝑆𝑂𝐶

100%
) 

(6.2) 
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The value calculated in (6.2) represents the available charge capacity of the system rather 

than the remaining energy capacity.  This approach was chosen to capture positive and negative 

power flow as charging and discharging respectively. Furthermore, the objective is to reduce the 

availability of the battery system as the SOC reaches min and max values (high SOC battery unit 

is available at low cost for discharging, and at low SOC, the unit is not available as costs are 

high.) An example is shown in Figure 6.5. This allows the CSC to stack the energy resources 

based on cost optimization to maximize value during charging and minimize value during 

discharging, which should provide the best balance of total system performance. 

The bid curve is calculated using the PSV as the x-intercept and the maximum power 

limits as fixed points at the minimum and maximum energy values.  Charging and discharging 

 

Figure 6.5 - Example present value versus state of charge. 
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bid equations are shown in (6.3) and (6.4) respectively where γmin is the minimum value of (6.2) 

and γmax is the maximum system value of (6.2), and λc and λd are the bid cost values.  Pcmax and 

Pdmax are the maximum charge and discharge power limits.  Since the bid curves are linear and 

follow a y=mx+b fit, the communication of the information from EMSC to CSC is limited to the 

m and b variables for both the charge and discharge directions. Power limits obtained from the 

converter and BMS are communicated as well to constrain the optimization. 

𝑃𝑐 =
−𝑃𝑐𝑚𝑎𝑥

(𝛾 − 𝛾𝑚𝑖𝑛)
(𝜆𝑐) +

𝑃𝑐𝑚𝑎𝑥 ∗ 𝛾

(𝛾 − 𝛾𝑚𝑖𝑛)
 (6.3) 

𝑃𝑑 =
−𝑃𝑑𝑚𝑎𝑥
(𝛾𝑚𝑎𝑥 − 𝛾)

(𝜆𝑑) +
−𝑃𝑑𝑚𝑎𝑥 ∗ 𝛾

(𝛾𝑚𝑎𝑥 − 𝛾)
 (6.4) 

Optimizing the Bid Curves 

Even though the costs generated for the bid curves are only internal to the energy storage 

system, optimization methods used to perform value-based optimizations apply to the bid curves 

produced.  For this linear optimization, the objective for optimizing the reported bid curves is to 

minimize the cost of operating the ESS in the next time interval.  The objective function contains 

both the proposed charge (λc) and discharge (λd) costs of all units as represented in (6.5). 

min[𝜆𝑐 + 𝜆𝑑] (6.5) 

To constrain the optimization problem, the bid curves, requested utility dispatch, power 

limits, and power flow direction are considered.  First, the cost to charge and cost to discharge 

are rewritten as a function of the bid curves received from N energy storage units.  These are 

represented as the summations shown in (6.6) for charging and (6.7) for discharging.  A binary 

charge/discharge variable has been added a well, represented by bc and bd respectively. 
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𝜆𝑐 = ∑[−(
𝛾𝑛 − 𝛾𝑚𝑖𝑛𝑛
𝑃𝑐𝑚𝑎𝑥𝑛

)(𝑃𝑐𝑛 − 𝑏𝑐 (
𝑃𝑐𝑚𝑎𝑥𝑛 ∗ 𝛾𝑛

𝛾𝑛 − 𝛾𝑚𝑖𝑛𝑛
))]

𝑁

𝑛=1

 (6.6) 

𝜆𝑑 =∑[−(
𝛾𝑚𝑎𝑥𝑛 − 𝛾𝑛

𝑃𝑑𝑚𝑎𝑥𝑛
)(𝑃𝑑𝑛 − 𝑏𝑑 (

𝑃𝑑𝑚𝑎𝑥𝑛 ∗ 𝛾𝑛

𝛾𝑚𝑎𝑥𝑛 − 𝛾𝑛
))]

𝑁

𝑛=1

 (6.7) 

Optimization Constraints 

To ensure that the power dispatch of all units reaches the requested dispatch from the 

utility, a constraint is added to the optimization given as (6.8).  This specifies that the sum of the 

charging and discharging (negative power flow) dispatches must be equivalent to the Pdispatch.  

This equation gives the appearance that units could simultaneously charge and discharge if the 

dispatch power is reached. However, this is prevented by the binary variable constraint discussed 

below. 

𝑃𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ = ∑(𝑃𝑐𝑛 − 𝑃𝑑𝑛

𝑁

𝑛=1

) (6.8) 

To ensure that each energy storage unit remains within the power limits, the optimization 

is constrained in both the charge and discharge direction by the power limit sent by each ESMC 

with the bid curve.  The minimum and maximum charge and discharge limits for the battery 

system are given as (6.9) and (6.10) respectively. 

0 ≤  𝑃𝑐𝑛 ≤ 𝑏𝑐 ∗ 𝑃𝑐𝑚𝑎𝑥𝑛  (6.9) 

0 ≤  𝑃𝑑𝑛 ≤ 𝑏𝑑 ∗ 𝑃𝑑𝑚𝑎𝑥𝑛 (6.10) 

The binary charge/discharge variable, bc/bd, is included to drive the power limit 

constraint to zero for the unused direction of power flow.  For example, if a unit is charging, it 

cannot be discharging, therefore 0 ≤ Pd ≤ 0 limiting the discharge power to 0 kW while the unit 

charges.  All units are assumed to be operating simultaneously, hence the use of a universal 
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binary variable.  When combined with (6.11), this ensures that all operating ESMCs are 

dispatched either to charge or discharge simultaneously.  This is done to prevent the system from 

charging one battery while discharging another unit since this is inherently less efficient when 

converter losses are considered.   

𝑏𝑐 + 𝑏𝑑 ≤ 1 (6.11) 

Constraint Modification 

 Results from running this optimization demonstrated that the universal binary variable 

had a negative impact on total system capacity since it resulted in the optimization being 

infeasible once any single energy storage unit reached either the top or bottom of its SOC range.  

These results will be discussed later in this chapter.  To account for this problem, individual 

charge/discharge variables are used to constrain the energy storage units as shown in (6.11). 

 This is used in conjunction with universal binary variables, βc and βd, to ensure that if a 

given energy storage unit is dispatched, then the power flow is in the same direction as the other 

active units.  This is done using (6.12) and (6.13) to sum the individual binary variables and 

ensure that they only sum to the number of ES units, N.  When combined with the universal 

binary constraint shown in (6.14), this results in individual units being able to activate or 

deactivate while keeping unidirectional power flow among multiple units.  

𝑁 × 𝛽𝑐 ≥∑𝑏𝑐𝑛

𝑁

𝑛=1

 (6.12) 

𝑁 × 𝛽𝑑 ≥∑𝑏𝑑𝑛

𝑁

𝑛=1

 (6.13) 

𝛽𝑐 + 𝛽𝑑 ≤ 1 (6.14) 
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Optimization Output 

The result of the optimization is a set of dispatch power setpoints for the battery systems.  

These are distributed through communication with the API as described above.  Once 

distributed, the optimization agent waits 30 seconds, then re-runs the process with the updated 

price curves from the ESMCs.  If an infeasible result is found, the optimization obtains the latest 

price curve data from the server and is immediately rerun.  If no feasible solution is found within 

3 attempts, a power setpoint of zero is posted to the API for all ESMCs.  Repeated dispatch 

commands of zero cause the ESMC units to deactivate and deenergize to an idle state. 

This solution was chosen because it could be used to help trigger the utility dispatch used 

to test the charge and discharge cycling of the optimization.  When the utility agent measured 

zero power output from the unit, it would flip the sign of the dispatch command to have the unit 

start dispatching in the opposite direction.  However, as discussed in the conclusions of this 

chapter, other solutions are possible.  For example, individual units at their limits could shut 

down, removing themselves from the optimization and allowing the remaining system to operate.  

While other solutions are available, this one was chosen for the simplicity and to help trigger 

dispatch cycling. 

Virtual System Testbench 

 Verification of the transactive optimization method described above was performed on a 

networked testbed using the agent framework described in Chapter 4.  Instead of communicating 

with hardware for the BMS, DC/DC converters, and central inverter, these individual 

components were modelled in software within their respective agents.  Their behavior was 

approximated using simple models since plans for this work include integrating the transactive 

control system with a more complex hardware-in-the-loop testbed.  Using a virtual testbench 
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allows for the acceleration of the time constant as well.  Each component in the testbed runs 10x 

faster than it would normally, with the optimization being run every 3 seconds. The hardware 

used in the testbed is shown in Figure 6.6. 

The networked testbed uses four Raspberry Pi 3 B+ single-board computers running 

Raspbian Linux in conjunction with a laptop computer running Ubuntu Linux version 16.04 

LTS.  The Linux operating system is preferred on the single-board computers for its low 

overhead and simple integration with the Python 2.7 code language and the VOLTTRON agent 

environment [70].  Ubuntu Linux was chosen on the laptop for similar reasons including the pre-

existing integration with the VOLTTRON agent system.    Three of the single-board computers 

are used as energy storage module controllers with the fourth being used to host the RESTful 

API server.  The central system controller and utility dispatch schedule are run on the laptop 

 

Figure 6.6 - Agent-Framework and Transactive Optimization Testbed [58] 
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computer because the optimization solving software could not be installed on the ARM-style 

processor found in a Raspberry Pi. 

Energy Storage Module Controller Implementation 

 Each of the three Raspberry Pi units running the ESMC software were assigned battery 

parameters in accordance with the test plan described below.  These parameters, which include 

capacity, cycle life, power limit, and cost define the linear battery model that is used in the BMS 

agent of the ESMC.  Rather than connecting to a real BMS or using a complex battery model, a 

linear battery model is utilized in the BMS agent.  As is common in real battery systems, the 

SOC is limited to a range of 20-80%.  As Figure 6.7 shows, standard lithium-ion battery 

behavior over this range is nearly linear, indicating that a linear battery model will accurately 

represent the system behavior. 

 To capture this behavior, a charge-counting approximation is used which relates the rate 

of charge or discharge (current) to the SOC as shown in (6.15) where k is the iteration number, 

 

Figure 6.7 – Li-Ion discharge curve with linear portion highlighted. 
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Δt is the iteration length in seconds, and Ecapacity is the battery energy capacity.  Using this 

equation, the SOC will rise and fall at a rate that is proportional to the power output level. 

𝑆𝑂𝐶𝑘 = 𝑆𝑂𝐶𝑘−1 +
𝑃𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ ∗ ∆𝑡

𝐸𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 (6.15) 

In addition to this model, dynamic power limits are used at either end of the SOC range to 

represent a common behavior in battery management systems, which is to limit power flow as 

the system nears the upper and lower charge limits.  These dynamic limits are represented as a 

series of ‘if’ statements in the code, which reduce the power capability of the system as the 

energy storage unit nears the SOC limits.  These can best be represented by the piecewise 

equations shown in (6.16) for charging and (6.17) for discharging.  The upper and lower limits of 

80% were chosen since they are extremely common in battery systems to prevent overcharge and 

over-discharge, which can both be damaging to the battery.  However, these limits are not hard-

coded into the BMS agent, instead being set externally from a configuration file.  Therefore, if a 

certain battery allows for a wider range of operation, these limits can be changed to reflect that.  

The same is true for the 25% and 75% values, which are instead calculated as 5% away from the 

upper and lower limits. 

𝑃𝑐𝑙𝑖𝑚𝑖𝑡 = {  

0
80% − 𝑆𝑂𝐶

5
∗ 𝑃𝑐𝑚𝑎𝑥

𝑃𝑐𝑚𝑎𝑥

     

𝑖𝑓 𝑆𝑂𝐶 ≥ 80% 

𝑖𝑓 75% ≤ 𝑆𝑂𝐶 < 80%

𝑖𝑓 𝑆𝑂𝐶 < 75%

 (6.16) 

𝑃𝑑𝑙𝑖𝑚𝑖𝑡 =

{
 

 
  

0 𝑖𝑓 𝑆𝑂𝐶 ≤ 20%
𝑆𝑂𝐶 − 20%

5
∗ 𝑃𝑑𝑚𝑎𝑥 𝑖𝑓 20% < 𝑆𝑂𝐶 ≤ 25%

𝑃𝑑𝑚𝑎𝑥 𝑖𝑓 𝑆𝑂𝐶 > 25%

 (6.17) 

 The converter agent contains a model which represents the local bidirectional converter 

as a state engine as depicted in Figure 6.8 and operates as an ideal DC/DC converter.  Any power 

setpoint is processed quickly, and the device is assumed to have a stable ramp-rate of 15 kW/s.  
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Based on presently available 100 kW converters, these assumptions can be made with confidence 

[71].  The converter model uses the state engine to respond to all intelligence agent commands to 

simulate real system behavior.  Additionally, it contains the ability to fault the converter as 

necessary to test protection capabilities.  Such protections include under and over-voltage 

protections to prevent equipment damage in the event of transient events on the battery side or 

inverter side of the converter. 

Central System Controller Implementation 

 Just as the ESMC contained models of the battery system and DC/DC converter, the CSC 

interacts with an inverter model and a simulated utility.  A similar state-engine to the one shown 

in Figure 6.8 is utilized by the inverter agent to model the system behavior and respond to all 

intelligence agent commands.  One difference is that the power throughput of the inverter is 

dependent on the sum of the power being supplied or absorbed by the individual DC/DC 

converters.  This information is read from the API server by the intelligence agent and reported 

 

Figure 6.8 – State machine for modelling converter behavior 
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to the inverter.  Using this method best simulates one proposed method for the physical system 

implementation that is proposed in Chapter 7 under Future Work.  Rather than the inverter 

operating at a fixed setpoint, it uses a “DC-bus droop” based control to monitor the DC bus and 

adjust power flow accordingly to maintain a fixed bus voltage.  For this research, the assumption 

is made that this method from literature is effective and results in stable system behavior [68] 

[69]. 

 Instead of interfacing with a separate dispatch program, the utility agent contains a script-

reading program to generate utility dispatch commands like the one shown in Figure 6.9.  Two 

control modes are allowed by the utility agent.  The first is user-generated dispatch where a user 

may input dispatch commands, and the second is scripted mode.  When in scripted mode, the 

utility agent follows a pre-programmed dispatch schedule.  For this system, a positive power 

dispatch indicates charging and a negative power dispatch indicates discharging. 

 Optimization is performed using the PuLP library for Python 2.7 within the optimization 

agent.  PuLP provides an easy-to-use interface to the COIN-OR “Branch and Cut” (CBC) open-

source solver.  Other Python MILP librarys and solving tools have since been tested, but PuLP 

provided the simplest interface with reliable results from the CBC solver. 

 

Figure 6.9 – Example dispatch schedule programmed into Utility Agent 
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Optimization Testing Plan 

 The virtual system testbench provides insight into whether the interactions between the 

various agents, devices, and models are behaving as expected.  Testing the transactive element of 

the multi-chemistry battery energy storage system is done by modifying the various elements 

that contribute to the price-signal generation and system optimization.  Each test in the plan 

shown in Table 6.1 changes one fundamental part of the transactive equation over three separate 

energy storage components.  The values used are approximations for real-life systems based on 

investigations into the size of currently available systems and ongoing energy storage 

deployment projects with utilities.  Cost estimations were made based on a $50/kWh capacity 

estimation and a fixed inverter cost. Cycle life was chosen based on new batteries. 

Results and Discussion 

 Using the optimization testing plan in conjunction with the virtual system testbench, 

simulations of the optimization and system behavior were generated for each test.  In the 

following section, a failed first attempt at optimization will be discussed that was tested using the 

same methods.  This will be followed by a presentation of the results using a single universal 

charge/discharge binary variable.  The section will close with results from an optimization that 

Table 6.1 - Parameters for Testing Optimization Functionality 

Test Initial SOC (%) Power Rating (kW) 
Energy Rating 

(kWh) 
Capex ($) 

1 
ES-1 ES-2 ES-3 

100 400 80k 
70 50 30 

2 50 
ES-1 ES-2 ES-3 

400 80k 
100 75 50 

3 50 100 
ES-1 ES-2 ES-3 

80k 
400 300 200 

4 50 100 400 
ES-1 ES-2 ES-3 

80k 60k 40k 
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was run under the modified constraints that were developed to allow the system to run individual 

energy storage units as necessary.   

Early Optimization Results 

 First attempts at the transactive optimization system resulted in heavy system oscillations 

like the version of Test 2 shown in Figure 6.10.  Oscillations like these can occur when the 

optimization finds multiple optimal results and just picks one.  In the next cycle, the optimization 

may pick a much different dispatch for the units. 

 

 

Figure 6.10 - Oscillations in dispatch results from multiple optimal solutions 
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 In particular, the root cause of these results was improper programming of the cost 

variable in the optimization.  Part of what makes a transactive market work is that the chosen 

cost at which energy is purchased or sold is the same across all the bidding elements.  In this first 

implementation of the optimization algorithm, cost could differ from unit to unit because of a 

programming error.  This meant that instead of “stacking” the energy from various units, the 

optimization could pick and choose whatever operating points satisfied the optimization for the 

individual energy storage units.  As shown above in Figure 6.10, this results in the optimization 

oscillating between multiple possible solutions. 

Universal Charge/Discharge Binary Variable Results 

 Following the test plan outline above in Table 6.1, the optimization utilizing the universal 

charge/discharge binary variable was tested on the virtual system testbench8.  In the first test, 

three identical units are configured with SOCs at 70%, 50% and 30%.  The results shown in 

Figure 6.11 demonstrate that despite different initial starting conditions, the battery systems 

converge to similar SOCs at which point the dispatch is balanced across the three units.   During 

charging, the optimization charges the lowest SOC unit first since the price signal offers the best 

energy value.  Discharging mode sees the highest SOC unit dispatched at the highest level since 

it offers the best value.  This behavior is expected for three identical units with different initial 

SOC measurements.  The slight dispatch deviations at the SOC extremes are caused by the 

dynamic power limits implemented on the battery model. 

 
8 Results from these tests were published in the IEEE Energy Conversion Congress and Exposition (ECCE) 

conference proceedings in October 2019 [ECCE CITE]. 
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Figure 6.11 - Dispatch of three units with different initial SOCs 

 

 Next, the energy storage units are reconfigured such that they have three different power 

capabilities including 100 kW, 75 kW, and 50 kW.  Each unit is started at 50% SOC and 

charging commences at the optimization-determined dispatch levels.  Results from this test are 

shown in Figure 6.12.  The energy storage units participated proportionally to the power ratings.  

Since each battery system has the same capex, the larger power rating unit will have a lower 

apparent energy value and is thus utilized more.  This leads more quickly to a depleted system, 

which can be observed in the results.  As the dynamic power limit lowers the output on the first 

unit, the remaining two battery systems ramp up to compensate.  One issue that arises from this 

result is that the system will have significant unused capacity within the other two energy storage 

units as a result of the optimization stopping once the least expensive unit reaches its SOC limits. 
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Figure 6.12 - Dispatch of three units with varying power ratings 

 

 In test 3, the three energy storage units are given differing energy storage capacities of 

200 kWh, 300 kWh, and 400 kWh.  As the testing table shows, the power ratings and capex are 

set to be consistent across the units and the SOC is reset to 50% for all units.  Figure 6.13 shows 

the results from the virtual system testing.  Based on the NPV calculation, the unit with the east 

capacity ends up with the highest value energy when compared to units with equivalent capital 

cost.  The inverse is true for units with high capacities, which end up with lower NPV.  Because 

the optimization favors charging units with higher value first and discharging lower value units 

first, the lowest capacity unit is charged at the highest rate and discharged at the lowest rate.  

Conversely, the highest capacity unit is charged at the lowest rate but takes the biggest share of 

the dispatch during discharging. 
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Figure 6.13 - Dispatch of three units with varying energy capacity 

 

 Finally, the capital costs for three units were changed to $40k, $60k, and $80k.  These 

values are based off a battery cost estimation of $100/kWh, $150/kWh, and $200/kWh 

respectively for a 400 kWh system.  These numbers assume that the cost of the BMS 

components are included in the ES cost.  Consequently, these numbers tend to be low but will 

demonstrate the relationship between energy storage units with different capex values as 

perceived by the optimization. 

 Results from the fourth test with varying capital costs are shown in Figure 6.14.  When 

all other NPV contributing factors are equal, higher capex results in a higher system valuation 

than an identical system of lower capital cost.  This results in similar behavior from the 
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optimization as the previous test.  The unit with the most expensive capex has the highest value, 

resulting in the unit being chosen first to charge and last to discharge.  Meanwhile, the system 

with the lowest capex ends up dominating the discharge dispatch and not receiving much energy 

during charging periods.  Over time, this causes the SOCs of multiple units to diverge, which the 

high value unit remaining at a high SOC and the low value unit discharging to a low SOC.  As 

Figure 6.14 shows, this test was run for several extra cycles to ensure that the optimization 

makes the same decisions over multiple charge/discharge cycles.  This divergence of units can be 

seen as a positive for lifetime management, but a negative for total system performance.  Since 

 

Figure 6.14 - Dispatch of three units with different capital costs 
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the use of the higher value unit is limited, the battery will experience an overall greater lifetime.  

However, since neither of the other two units can cycle through their entire functional range 

because of this higher value unit, the overall system performance is negatively impacted. 

A single system-wide binary variable that limits charging and discharging proves 

problematic in the last two tests, causing the system SOC to diverge over time and limit the 

perceived system capacity.  One way to note this is the scale of the x-axis of Figure 6.12 versus 

Figure 6.13.  In test 1, the discharge time at 150 kW is approximately 1250 iterations.  However, 

in the last two tests the discharge time is only 800 iterations.  This ~30% reduction in capacity is 

due to the optimization being unable to discharge the system when any single ES unit reaches a 

minimum SOC limit.  The problem becomes infeasible and power transfer ceases. 

Individual Charge/Discharge Binary Variable 

 Discussed above, one possible solution to this problem is allowing the optimization to 

“switch” ES units on and off, if they are transferring power in the same direction as the other 

connected devices.  To test this method, the first test from the Table 6.1 was run once more on 

the virtual system testbed.  The results using the 150 kW utility dispatch system, shown in Figure 

6.15, are nearly identical to the results from the universal binary.  Under normal conditions 

where all units are within their SOC ranges, this result is expected.  However, when one unit 

exceeds the SOC range, rather than turning the unit “off” as the individual binary variables 

allow, the solution becomes infeasible.  This is indicative of a problem with the mathematical 

formulation of the optimization constraints. 
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Figure 6.15 - Test 1 results with new optimization constraints 

 

Another test was run on the individual binary variables optimization to verify that the 

problem was with the optimization constraints.  This time, using the same system parameter 

values from Test 1 above, the utility dispatch request was manually adjusted to 100 kW to 

observe the system response.  As shown in Figure 6.16 during the 0 to 500 time interval, 

dispatching the system at 100 kW causes the optimization to shut off two systems in order to 

carry the dispatch burden with just a single inverter.  However, the solution appears incorrect 

since the first unit chosen to charge has the highest SOC.  When it becomes incapable of 

charging, the logical unit with the lowest SOC takes over.  However, when unit #3’s SOC 

matches or exceeds the SOC of #2 (same price curve), the optimization does not choose to share 

the burden between the ES devices.   
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Figure 6.16 - Various manual dispatch tests demonstrating optimization behavior 

 

After 550 iterations the setpoint was increased to 101 kW and the optimization chose a 

solution where the units shared the dispatch equally but used all three ES units instead of 

choosing to turn off the first unit (near maximum SOC).  These issues point to a unique problem 

in the formulation of the value-based optimization.  However, one way to avoid the problem is to 

use the ESMCs themselves to remove units close to maximum SOC from the optimization 

equation.  Since the optimization is dynamic and based on the number of bids present on the API 

server, having an ESMC cease sending a bid function will remove the ES unit from the 

optimization.  While this solution is not ideal, it does allow for an extended operational range for 

the energy storage system as a whole. 
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Conclusions 

 Distributing system control aids in achieving one of the goals for this research, which is 

flexible and modular hardware and software.  In Chapter 5, the agent framework used to 

integrate with a wide range of battery hardware was presented, demonstrated, and shown to be 

effective in both an energy storage testbed and a project deployment.  This chapter presented and 

demonstrated, through a virtual system, a reconfigurable software platform capable of integration 

with a wide range of battery technologies.  The same BMS agent demonstrated in Chapter 5 was 

upgraded to include a battery model and re-used for this research on the virtual system testbed. 

 A crucial component of the software platform is the transactive energy market which 

enables distributing control back to the individual energy storage modules.  Chapter 2 showed 

that other multi-chemistry systems investigated in the literature use centralized control that is 

tightly integrated with each energy storage component.  In this system, limiting data and control 

information transmitted between the ESMCs and central system controller allows control 

decisions to be made more quickly, even if they do not provide a solution that is 100% optimal.  

At the scale of the virtual system testbench described here, limiting data-flow may not seem 

critical.  However, growing this system to utility-scale energy storage requires dozens of 

elements.  At these larger levels, a decentralized, lightweight control system is desired. 

 Results from the virtual testbench demonstrate a value-based optimization capable of 

dispatching the energy storage system in a logical and effective manner using limited data and by 

sending few commands.  The flexibility of using the system was demonstrated with the multiple 

changes to the optimization that could be made without affecting the software on the ESMCs.  In 

Chapter 7, future work to improve the optimization further will be proposed.  Additionally, a 

hardware-in-the-loop upgrade to the virtual system testbed will be discussed. 
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Chapter 7 – Summary, Conclusions, and Future Work 

Summary of Completed Work 

 Integrating a wide range of batteries starts with the ability to characterize the various 

types of batteries presently used in both stationary and vehicle applications.  Previous work in 

the literature developed chemistry identification and capacity measurement techniques designed 

for use with small-capacity (<15 Wh) batteries for portable electronics.  The chemistry 

identification techniques were designed for use with portable electronics chargers to allow a 

single charger to charge a wide array of devices.  Improvements to capacity measurements are 

ongoing as they provide a crucial way to characterize new types of batteries as they are 

developed.   

Expanding these techniques and automating the characterization process is the first 

contribution of this work.  Through the development of a battery characterization testbench and 

subsequent testing, the chemistry identification techniques previously described in the literature 

were adapted and scaled for use in multi-cell systems.  Chapter 3 presents results demonstrating 

that high-capacity (320 – 1290 Wh) multi-cell strings could be properly identified using the 

autonomous algorithms developed for this research.  Furthermore, the same data used for 

identification can be reused as a capacity estimate to aid in the measurement of the battery 

system capacity.  Rather than relying on technician input, an autonomous battery chemistry 

identification and capacity measurement has been shown to successfully measure these battery 

parameters.  Data was taken for a wide range of EV, HEV, and PHEV battery types at various 

ages and states of health in order to verify that the autonomous system is reliable.  Knowing the 

capacity, voltage, and battery type is crucial to controlling single battery systems.  Integrating 
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multiple battery systems together into a utility-scale grid-connected energy storage provides the 

next challenge.   

Previous multi-element battery work in the literature focused around the integration of 

one or two batteries into a system with supercapacitors or other fast energy storage components.  

These methods focus on rapid, centralized control for use with busses, trains, or electric power 

substations. These configurations were shown to not be modular or easily expandable to larger 

systems.  Other work demonstrated large-scale battery energy storage using new Li-Ion batteries 

in large arrays of series and parallel systems.  Through parallel DC/DC converters, these large 

arrays of batteries are interfaced with a single inverter to the grid.  While this method provides 

the modularity desired, grouping batteries in large parallel/series arrays can be time-consuming 

since they must be age, capacity, and voltage matched; which is not ideal for the use of second-

life batteries.  However, this idea can be adapted through hardware and software design to be an 

ideal system for integration with secondary-use batteries.  Utility-scale battery energy storage 

architectures paired with a decentralized communications and control architecture form the 

hardware backbone of the agent-framework proposed in this work. 

In the literature, systems using the parallel DC/DC converter architecture centralize the 

control of all converters in one place, typically co-located with the central inverter.  Developing 

and demonstrating a decentralized, flexible agent-based system using transactive optimization 

was the second significant contribution of this research.  Each DC/DC converter in the system 

uses an agent framework locally situated to simplify communications between the battery 

management system, the converter, and the central control.  The flexibility provided by using the 

agent framework allows the system to integrate with a wide range of different batteries from 

many different manufacturers.  Using the residential energy storage test system, the agent-based 
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integration between the various components was stress-tested through a series of power tests 

paired with fault mode effects testing.  To further demonstrate the software flexibility, two 

different battery management systems were integrated with the residential energy storage system 

using the same BMS agent.  These tests were deemed successful since errors could be quickly 

detected and the system protected from dangerous fault conditions.  With local control of each 

DC/DC converter demonstrated as well as a framework for the control of the central DC/AC 

inverter, the final step is to control and dispatch multiple energy storage units together as a single 

system. 

In the literature, large energy storage systems are most commonly controlled as single 

elements due in large part to the fact that using large amounts of new batteries allows this type of 

system dispatch to be the most logical.  However, when using batteries of different capacities, 

power capabilities, lifetimes, and costs, it is important that the units are dispatched in a manner 

to maximize their potential value over the course of their lives.  This work developed a 

transactive energy market methodology that allows each energy storage to decide the local value 

of the energy contained in the battery.  These values, which are SOC, power, capacity, cost, and 

lifetime dependent, are communicated to a central optimization as a bid into the transactive 

market.  Using a value-based linear optimization, the dispatch of the units is then decided by the 

central system controller and sent back to the units for execution of the dispatch commands.   

Demonstrating the transactive energy market on the agent-based framework for the 

energy storage system was done on a virtual system testbed developed using similar agents to the 

ones used on the residential energy storage testbed.  Results from testing the optimization in 

several different scenarios show that the system can optimize the system as expected using only 

the transactive data provided by each energy storage.  This is a significant change in energy 
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storage optimization from previous methods described in the literature which rely on having 

detailed data about each battery system being used.  The results also demonstrated that the 

proposed decentralized software architecture and transactive system can be used to dispatch the 

system to meet a proposed dispatch signal from a utility.  Through the multiple iterations of 

central optimization and price-signal generation, the flexibility of the proposed software system, 

for integration on a large scale across dozens of energy storage elements, was shown to be 

effective.   

Future Work 

 While this work provides numerous advancements towards a modular and flexible multi-

chemistry utility-scale battery energy storage system, it is also clear that there are many 

opportunities to continue this work and expand upon these results.  This section will provide 

several opportunities for continuing this research including the integration of the control system 

with a hardware-in-the-loop control testbed. 

 Health evaluation of secondary-use batteries was briefly mentioned in Chapter 3during 

the discussion of battery parameterization.  It is assumed that capacity provides an indicator of 

the health of the battery, therefore further explorations into determining State of Health (SOH) 

could be omitted.  This decision was made, in part, because most State-of-Health algorithms 

compare a set of internal resistance measurements of the battery to a large data-set of measured 

batteries to determine the approximate State-of-Health.  However, extending the lifetime of the 

secondary-use systems could be done more effectively if the remaining cycle-life could be 

estimated alongside the capacity of the attached system.  Working with EV manufacturers to 

understand the life-cycle of a given battery could provide insights allowing secondary-use 

batteries to last even longer or be designated for use in different types of grid applications.  
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Ongoing research at Dalhousie University shows that the grid use-case significantly impacts the 

remaining cycle-life of a secondary-use battery [72].  Therefore, having insight to the remaining 

health of the battery could provide the system control with better information to dispatch the 

system in a way that increases the value obtained from the second-life battery systems. 

 Increasing system value can also be done through improvements to the transactive 

optimization system.  Presently, the optimization obtains a snapshot of data about the batteries 

through a price curve, receives an instantaneous dispatch command from the utility, and best 

decides the system dispatch based on these parameters.  The result of this optimization will 

therefore be locally optimal for the system, yet it does not consider the best way to dispatch the 

system over time.  Future work for the transactive optimization includes modifying the 

transactive market to function on a 24 or 48 hour “look-ahead” schedule based on the utility 

dispatch requirements over the same time period.  This would mean that the bid curves would 

need to be translated so that they also accounted for how long the energy storage would be at a 

certain power level. Essentially, the energy storage would send a 3-dimensional bid function 

where energy value changes based on the power level of the dispatch and the duration of the 

desired dispatch at that level.  Furthermore, with knowledge of the battery health, these bid 

curves could be modified so that certain types of batteries are chosen for different dispatch 

commands, such as frequency regulation, PV smoothing, or bulk energy dispatch, based on the 

type of dispatch for which the battery is best suited. 

 Finally, an opportunity exists to upgrade the virtual system testbench to provide a more 

accurate model of the system interactions of the multi-chemistry system.  The virtual system 

testbed presented in Chapter 6 provides an environment in which to test the distributed control 

architecture and transactive optimization.  Converter and BMS models are used in the energy 
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storage module controllers to emulate the average behavior of the DC/DC converter and the 

battery for each ESMC.  Similarly, the central system controller contains a state machine which 

models the average behavior of the DC/AC inverter.  In this work, the virtual system testbench 

provides the necessary infrastructure to verify the communications and control architecture.  

However, this leaves an opportunity to integrate the system with real DC/DC and inverter 

controllers to see how these high-level controls handle transient events and other power 

electronics phenomena.  One method to execute these tests is to integrate the hardware 

controllers with a power electronics simulation tool like the OPAL-RT real time digital 

simulator.  This will provide an accurate platform to test if the asynchronous control method 

proposed above can work with real converters in a physical system without the dangers 

associated with working on high-voltage batteries at high power.  A suggestion for the system 

implementation can be found in Figure 7.1. 

Conclusions 

 Energy storage technologies are poised to revolutionize the electric grid.  However, high 

costs versus system lifetime and new technology adoption hesitance prevent utilities from 

implementing energy storage at scale.  Secondary-use batteries provide a promising source of 

inexpensive energy storage as first generation EVs, HEVs, and PHEVs reach the end of their 

expected lives.  However, differing form factors, voltages, and capacities provide an obstacle to 

rapid integration of these batteries to large-scale energy storage systems.  Present utility-scale 

BES systems utilize large counts of new batteries for easy parallelization to increase system 

capacity.  These methods cannot be replicated with secondary-use systems because of the 

differing ages and battery chemistries. 
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To overcome these obstacles and create a modular and expandable utility-scale energy 

storage system, a system is proposed which uses software and hardware systems to increase 

modularity while decreasing complexity, enabling the use of a wider range of batteries including 

secondary-use units, new batteries, and even flow batteries.  These novel systems were 

demonstrated using a mixture of hardware testbenches and virtual software systems.  Results 

presented demonstrate that the autonomous battery parameterization, software architecture, and 

transactive optimization can work together to create a unified system for the integration of many 

different batteries. 

 

Figure 7.1 - Architecture for future work to integrate with a power electronics testbed 
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