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Chapter 1 

Prelude 

It is fascinating that Nature should produce such complicated structures with compounds such 
as SiC, Cdh, and ZnS, all of which have a very simple proportion of atoms in them. If one just 
picks up at random one crystal of any of these materials, out of an as grown bunch of crystals, 
that tiny speck of the material can have one of several hundred structures - some ordered, some 
randomly faulted and some with non-random faulting. Which one will it have and why? 

M. T. Sebastian and P. Krishna [60] 

Perhaps the most fundamental questions we can ask about a solid are "What is it made of?" and 
"How are the constituent parts assembled?" This is so elementary, and yet so basic to any detailed 
understanding of the thermal, electrical, magnetic, optical, and elastic properties of materials. At the 
beginning of the twenty-first century, concern over the placement of the atoms in a solid seems quaint 
and anachronistic, more suited to the dawn of the twentieth century. X-ray diffraction, electron 
diffraction, optical microscopy, x-ray diffraction tomography, to name a few, are powerful techniques 
to uncover structure in solids. With this arsenal of tools, and the efforts of many researchers, 
surely we can have nothing novel to say about the discovery and description of structure in solids, 
save perhaps the refinement of well-worn techniques or the analysis of particularly obstinate cases. 
But careful examination of present technology reveals that while we are quite good at finding and 
describing periodic order in nature, cases that lack such order are much more difficult. Certainly in 
the complete absence of structural order, as in a gas, statistical methods exist that permit a satisfying 
understanding of the properties of the system without knowing ( or even wanting to know) the details 
of the microscopic placement of the constituents. But it is the in-between cases, where order and 
disorder coexist, that has proven so elusive to both analyze and describe. In this thesis, we will tackle 
these in-between cases for a special type of layered material, called polytypes. They exhibit disorder 
in one dimension only, making the analysis more tractable. We will give a method for determining 
the structure of these solids from experimental data and demonstrate how this structure, both the 
random and the non-random part, can be compactly expressed. From our solution, we will be able 
to calculate the effective range of the inter-layer interactions, as well as the configurational energies 
of the disordered stacking sequences. 

Zinc sulfide would seem a rather unpretentious material. Its stoichiometry is simple enough, 
the proportion of zinc to sulphur atoms is 1:1. Each zinc atom is tetrahedrally coordinated to 
four sulphur atoms and vice versa. It is known to crystallize into the face-centered cubic (fee) 
structure - alternately called cubic zinc sulfide, zinc blende or the sphalerite structure - at low 
temperatures. In this configuration, one can think of the zinc atoms as forming an fee lattice and 
the sulphur atoms forming an inter-penetrating fee lattice displaced from the latter one by one
quarter of a body diagonal [45]. For our purposes, it is useful to look along the [111] direction 
of the conventional unit cell. Taking a zinc atom at the origin of the this cell, we see that the 
zinc atoms are arranged hexagonally in the (111) plane with sulphur atoms residing a quarter body 
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process, called the 1:-machine, directly from the data itself. This model is the optimal, minimal 
and unique description of the process. So far, computational mechanics has been applied to both 
artificial systems such as cellular automata [36], the logistic map [17] [80], and the one-dimensional 
Ising model [22] (15], as well as more physical systems like the dripping faucet [29], atmospheric 
turbulence [50], and geomagnetic data [12]. 

It is worth mentioning that our technique for 1:-machine reconstruction is novel. Instead of the 
usual situation of analyzing a data stream or long sequence of symbols, our information about the 
underlying process comes in the form of two-layer correlation functions. We will find that they 
provide only impoverished information about the process and impose severe restricts on the classes 
of processes we will be able to detect. We adopt this method not for its superiority to previous 
methods, but out of necessity. Nonetheless, we will find that it gives a reasonable answer to our 
problem. While our method is specifically directed towards machine reconstruction in a particular 
polytypic material, ZnS, we hope that concepts and techniques explored here will prove useful in 
machine reconstruction from other kinds of power spectra. 

The plan for the rest of this thesis is as follows. Since computational mechanics is not a common 
tool in most physicists' tool chest, we will devote chapter 2 to explaining the basic ideas and providing 
definitions for some the quantities we will use subsequently. In chapter 3 we will very briefly discuss 
the experimental details of the data we will use to infer the underlying process. In chapter 4, 
we show how correlation information can be extracted from the experimental data. In chapter 
5, in order to build intuition, we give examples of the different diffraction patterns arising from 
different, fake processes. In chapter 6, we discuss our technique for 1:-machine reconstruction from 
two-layer correlation functions. In chapter 7, we provide examples of 1:-machine reconstruction from 
diffraction spectra of known processes. In chapter 8, we give a discussion of previous models of 
disorder in layered solids and show how they relate to 1:-machines. In chapter 9, we employ this 
machinery on real experimental data for ZnS and give the models for the underlying process. In 
chapter 10, we present our conclusions and possible directions for future work. 



Chapter 2 

A Brief Introduction to 
Computational Mechanics 

Computational mechanics is not familiar to most physicists. We will therefore give a brief introduc
tion to the ideas leading up to computational mechanics as well as an overview of the theory itself. 
There are several good references available on computational mechanics and the interested reader 
is urged to consult these for a much more detailed exposition. These references include Crutchfield 
and Feldman [15] [16], Feldman [22] [23], Feldman and Crutchfield [24] Shalizi [61], Shalizi and 
Crutchfield (62], Hanson [36] and Young [80]. 

2.1 The Intellectual Precursors of Computation Mechanics 

Computational mechanics arises from the marriage of three distinct lines of thought: symbolic 
dynamics, language theory and information theory. Since we borrow terminology and concepts from 
each to formulate computational mechanics, let us consider each separately. 

2.1.1 Symbolic Dynamics 

In the study of nonlinear dynamical systems, discretizing the formalism can greatly facilitate the 
analysis. While some systems are naturally discrete, most are not and it is therefore necessary to 
introduce a some kind of discretization process. One way to do this is to describe a dynamical system 
by using a map [77] [66] [47]. Maps of course can be use to describe other systems, but the motivation 
for their study in physics is the connection to dynamical systems. Maps have the convenient property 
of being discrete in time, and we can additionally impose a partition B = {B 1 ,B2,---,Bb} on the 
other dynamical variables. Doing so, we associate some B; E B with the state of the system with 
each iteration of the map. In this way, we can build up a sequence of symbols describing the time 
evolution of the system. Symbolic dynamics [6] [8] [37] [44] is nothing more than the study of such 
a symbol sequence. From the sequence generated from an appropriate choice of B, it is possible to 
determine if the orbit of the trajectory is periodic or not, and put a lower bound on the entropy 
production of the system. 

The slicing of a continuum into finite number of wedges may seem severe, and one may think 
that this is artificial in some way. Much of our experience in the macroscopic domain points to a 
continuous world. Our measuring instruments - our basic tools for empirical discovery - however are 
not. In the process of measurement, we must always face the fact that there is some finite resolution 
and we can not distinguish structure on a scale smaller than this. So partitioning the world into 
cells is really not so far from our practice. 
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the derivation of the word. Finally, F are the actual production rules we use make words. We write 
them as P ➔ Q, and this simple means we replace P with Q. We consider several examples. 

Example 2.1 Let us construct the grammar for the language that allows every word over an al
phabet A = {O, 1}. So let us take Ar = {O, 1} and AN = {S}. The production rules F are 
just 

S ➔ .\ 

S ➔ OS 

S ➔ lS 

To make a word, one starts with S and can use any of the substitution rules. We can quit when 
there are no more symbols from AN in the word. So, to get the empty string ,\ we use the first rule 
and stop. To generate the string 11, we say S ➔ lS ➔ llS ➔ llA ➔ 11. In this fashion, these 
three rules allow us make all possible words composed from the alphabet Ar= {O, 1}. 

Example 2.2 Let us examine a more difficult example. Suppose we want to generate the language 
such that there are no two adjacent Os, i.e., '00' is a forbidden word. Let us take Ar= {O, 1} and 
AN = { S} as before. We can accomplish this with the following production rules 

S ➔ .\ 

S ➔ OlS 

S ➔ lS 

The second rule requires that we always follow a O with a 1. This language is called the golden mean 
language, and we will discuss it in more detail in a later chapter. 

Example 2.3 As a final example, let us consider the language such that between any two Os there 
is an even number of ls. Another way of saying this is that the set of forbidden words can be 
expressed as Fe = {012k+ 10} with k a non-negative integer. Let us once again take Ar = {O, 1} 
and AN = { S} as before. We generate this language with the following production rules 

S ➔ .\ 

S ➔ llS 

S ➔ OS 

The second rule insures that we always make ls in pairs. This language is called the even language, 
and we will also discuss it in more detail in a later chapter. 

We can now define a regular language: 

Definition 2.2 A grammar G = (VN, Vr,S, F) is said to be regular if every rule in F has the form 
either A ➔ PB or A ➔ P where A,B EVN and PE Vf. 

Vf is the set of all words over Vr. From the definition, we can see that the three examples of 
languages introduced above are all regular languages. Higher level languages are defined by relaxing 
the restrictions on word production. 
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1 

1 0 

0 

Figure 2.2: The finite automaton for the golden mean language. The golden mean language is the set of 
all words over A E {O, 1} that do not contain two consecutive Os. This automaton clearly does not generate 
two consecutive Os, as emission of a O on the transition from state ql to state q2 is always followed by the 
emission of a 1 back to state q2. 

accepted. Otherwise, we reject it and determine that the proposed string is not part of the language. 
If, when the string is entirely read in, the final state is an accepting state, then we say that the 
string is in the language. For our purposes, we can treat all states as accepting states. Figure 2.2 
shows the finite automaton for the golden mean language. Let us give a formal definition to a finite 
automaton. 

Definition 2.3 We define a finite automaton M as an ordered quintuple (N, A, 8, S, NF), where N 
is a finite set of states, A is a finite alphabet, 8 is transition function, S is a start state, and NF is 
a set of accepting states, NF ~ N. 

The transition function 8 just tells us how one state evolves into another on emission of a symbol a. 
That is, 8(Ni, a) is a state for each state .N; ~ N, and symbol a. 8(N;,, a) may not be defined for all 
M and a, in which case the transition is not allowed. 

It is helpful to distinguish between different kinds of graphs. Let us call a finite automaton 
deterministic if the symbol emitted at each edge takes the system to a definite state. For example, 
suppose that the transition from q3 to q0 in figure 2.1 is labeled with a O instead of a 1. Then if 
we are at state q3, emission of a zero does not uniquely define the next state. Figure 2.1 would still 
be perfectly fine finite automaton, but we would call it nondeterministic. Determinism then here 
means something a little different than what a physicist might think. Determinism does not imply 
that each state has a unique successor state, but rather that each state on emission of a particular 
symbol has a unique successor state, provided such a transition is allowed. It can be shown that any 
nondeterministic finite automaton can be written as an equivalent deterministic finite automaton, 
although in general the deterministic version has exponentially more states. 
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There are several ways one can interpret equation 2.1. One is that H gives the average number 
of yes-no questions that one needs to ask to determine the value of X, if the questions are chosen 
optimally. Another is that we can interpret H as the expectation value of the surprise, where the 
surprise is defined as ( - log Pr(x)). This makes some sense, in the following way. For very common 
events, Pr(x) is not too far from one, so ( - log Pr(x)) is small indicating that we are not so 'surprised' 
when we see x. However, for rare events, Pr(x) is small making (- log Pr(x)) large, indicating we 
are 'surprised' to see x. To get the expectation value of the surprise, we multiply the surprise by 
the probability of seeing each event, Pr(x), and sum over events. This is just H. Of course we 
should not overlook the similarity of equation 2.1 to the thermodynamic entropy S written in terms 
of canonical probabilities (52] as 

(2.2) 

with P; = exp-;E• and I:; P; = l. (E;, Z, {3, and k have their usual thermodynamic meanings here.) 
There are several other entropies defined in information theory, and we list them now. They 

involve two distributions, let us call them X and Y, and take values from the finite sets A and 
13 respectively. As usual, we denote the variable with capital letters and the particular value it 
assumes in lower-case. Let us first fix some notation. We define the joint probability Pr(x, y) to be 
the probability that X = x and Y = y. We define the conditional probability Pr(xly) = P;~(;~l. 
With these definitions in place, we define the joint entropy of two variables as 

H[X, Y] = - L Pr(x, y) log Pr(x, y). 
(x,y)EAxB 

(2.3) 

We can also define the conditional entropy of one variable on another in terms of their joint entropy 
as 

H(XIY] = H[X, Y] - H(Y]. (2.4) 

The interpretation of H(XIY] is simple enough. It represents the uncertainty remaining in X once 
we know Y. 

Finally, let us define mutual information between two random variables X and Y. 

'°' Pr(x,y) 
I[X;Y] = L, Pr(x,y)log Pr(x)Pr(y) 

(x,y)EAxB 

(2.5) 

We can interpret I as the reduction in the uncertainty in one variable due to knowledge of another. 
We note that I is symmetric in its arguments, as I[X;Y] = I(Y;X]. 

2.2 Computational Mechanics 

Let us now give a brief account of computational mechanics, aiming at providing an intuitive un
derstanding rather than formal discourse. For all of the technical details, proofs, and mathematical 
rigour, as well as a more detailed and complete disquisition, the reader is referred to [16] [62] (61]. 
The basic paradigm of computational mechanics is stated easily enough. We assume an observer 
has access to a one-dimensional data stream (often called a measurement channel) that is produced 
by some system. The data can be discrete, or we can apply some discretization process to make it 
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We should mention a few properties of causal states. First, by the construction given, we see 
that they are minimal. By this we mean that they have no unnecessary structure in them. To 
eliminate any structure would be to throw away important predictive information. We could always 
add more structure, more complexity, but this would not improve the predictive power of the model. 
It would only mean that we are carrying around more information than we need. Secondly, also 
by construction, they are maximally prescient. Since we have kept all information that is shown to 
have predictive value, no other formulation can have more predictive power. The causal states have 
as much predictive power as the underlying process will allow. Lastly, causal states are unique. Up 
to a trivial relabeling of states, the causal states are admit no reformulation. 

We can now imagine that we have found the states as given in, say, figure 2.3. We have been 
observing the process for a very long time and let us say we know what causal state we are in. 
We observe another symbol. This new symbol becomes part of the history, and this new history 
must belong to some causal state we have listed. (This can be true in the limit of having seen some 
infinite past. Theorists are allow such luxuries.) So we say that, upon seeing a new symbol, we 
make a transition to another causal state. That is, we can think of transitions connecting causal 
states on the emission of a symbol. This is reminiscent of a finite automaton, and in fact we can 
treat causal states connected in this way as a finite automaton. When we do so, we have have an 
€-machine. Graphically, an €-machine looks just a finite automaton, except that there are conditional 
probabilities attached to the arcs. 

Let us mention a few properties of €-machines. First it turns out that they are deterministic. 
There is a unique successor state for each causal state on the emission of an allowed symbol. The 
machine is also Markovian. That is, knowledge of the current causal state is sufficient for optimal 
prediction. We do not need to know the history of past states. Finally, €-machines are the maximally 
accurate predictors with the minimal statistical complexity (we define statistical complexity below). 
They are the best one can do, and they invoke the least complexity to do it. It is tempting to think 
of €-machines as stochastic versions of finite automata, and indeed there are resemblances. But 
stochastic finite automata need not be minimal, maximally prescient, or deterministic. We do not 
interpret the nodes to be causal states. 

Additionally, €-machines have a unique start state, as do finite automata. Often, the start state is 
transient, that is, in the limit of an infinite string, transient states are causal states that are visited 
with probability zero. Of course, other states can be transient also. We differentiate these from 
recurrent states, which are those causal states that are visited with a probability greater than zero 
in the limit of an infinite string. All states in an €-machine are accepting states. Also, we require 
that the recurrent states be strongly connected, that is, colloquially put, the graph is not allow split 
into two separate pieces. 

The goal of computational mechanics is to reconstruct the €-machine from data. Once done, 
the €-machine is a model of the system that produced the data, with all of the nice aforementioned 
properties. It tells us how information is stored and processed by the system. From the €-machine, 
we can calculate a number of quantities that describe these information storage and use features. 

The Source Entropy Rate: Known variously as the thermodynamic entropy density and the metric 
entropy, hµ specifies the irreducible randomness produced by a source after correlations are ac
counted for. It has units of bits/symbol. For a completely random source hµ = 1 bits/symbol, while 
completely predictable processes have an hµ = 0 bits/symbol. We can define hµ as, 

(2.7) 

There are several alternate ways to find hµ. We can take the limit in equation 2. 7, or, we can say 

+-
h,, = H[S1 I sJ. (2.8) 
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Figure 2.4: Examples of de Bruijn Graphs. The left most graph shows the r = 1 de Bruijn graph. This 
graph explicitly postulates a memory of one, so we can label the nodes by the last symbol seen. Transitions 
between nodes are labeled with two symbols. The r = 2 graph is shown on the left. Note that there are 2r 
nodes and 2r+i arcs. 

Transient Information: We define T as the transient information. Basically, T is a measure of the 
amount of information an observer must extract from measurements to synchronize to a process. 
We can write the transient information as 

00 

T = L L[hµ(L) - hµ]- (2.17) 
L=l 

The units of T are bits x symbol. 

Unless noted otherwise, we use equations 2.10, 2.12, 2.14, 2.16, and 2.17 to find the relevant 
computational quantities. 

2.3 De Bruijn Graphs 

De Bruijn graphs are not a part of computational mechanics, but they will form an important step 
in our method to reconstruct E-machines. So we shall give an introduction here. 

Introduced to provide a useful representation for one-dimensional ground states, de Bruijn graphs 
are directed graphs with 2r nodes and 2r+l arcs connecting nodes. To construct a graph, we write 
down all possible sequences of r spins as nodes and then connect two nodes, N1 and N2 , with a 
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Some Practical Details regarding 
Polytypes and Diffraction Patterns 

Let us now abruptly switch gears and turn our attention to some experimental and notational 
matters concerning polytypes and diffraction patterns. In §3.1 we will discuss the various ways that 
the stacking sequences of close-packed structures are described; we will give a short account of the 
experiments we will analyze in §3.2; we will briefly provide some kinematic details in §3.3; we will 
show how to correct the experimental diffraction patterns for unwanted effects in §3A; and finally 
in §3.5 we will list some assumptions necessary to analyze the data. 

3.1 Notational Matters concerning Polytypes 

There are many ways to express stacking sequences of closed-packed structures. These include 
Ramsdell notation, ABC notation, the Hagg or ~-v' notation, Zhdanov notation, and the h-k 
notation [60]. To avoid confusion, we will minimize the notations we use to just few; but since our 
work is cross-disciplinary, it will be convenient to have several at our disposal. Let us list and discuss 
each. 

ABC notation. An unambiguous way to specify the stacking sequence, the ABC notation is appli
cable for both ordered and disordered sequences. Simply put, this notation specifies the absolute 
position of each layer in the polytype. We will call the orientation of each layer its spin and since 
the ABC notation gives the absolute position for each layer, we will say that A, B or C gives the 
absolute spin of a particular layer. 

Hagg notation. Due to stacking constraints, no two adjacent layers may have the same absolute 
spin, and we can take advantage of this by introducing relative spins. If the (n + l) th -layer is related 
to the (n) th -layer by a clockwise rotation (A ➔ B ➔ C ➔ A), Hagg denoted this interlayer spin 
by '+', and counterclockwise rotations (A ➔ C ➔ B ➔ A) are labeled with a'-'. We will find this 
useful, except that we prefer to use '1' and 'O' in place of'+' and'-'. Up to a trivial overall rotation 
of the crystal, the ABC notation and the Hagg notation are completely interchangeable. 

Ramsdell notation. Applicable only to ordered structures, the Ramsdell notation is a convenient 
short-hand for particular polytypes. The format is xZ, where x is the repeat length along the 
stacking direction and Z specifies the the symmetry present, either hexagonal(H), rhombohedral(R), 
cubic(C), or unknown(L). Since we only discuss in detail three ordered structures, it seems easy 
enough to just list them. The 3C structure is ... ABC ABC ... , the 2H structure is ... ABABAB ... and 
the 6H structure is ... ABC AC B .... For longer period polytypes, this notation can be quite useful. 



Chapter 3: Some Practical Details regarding Polytypes and Diffraction Patterns 19 

elastic scattering, we have lk' I = lkl. The de Broglie relation between the magnitude of the wave 
vector and the wave length is lkl = 21r / A. We write the change in the wave vector as 

Ak = k' -k. (3.1) 

We have the standard relation between the incident wave vector and the change in the wave vector, 
namely, 

I Aki = 2lkl sin 0. (3.2) 

where 0 is the angle of incidence. We take the standard hexagonal net [70] in the plane of the 
modular layers, with the usual primitive translation vectors, a and b and let a = lal = lbl. We 
define e to be perpendicular to the hexagonal net and take the magnitude of lei = c to be the spacing 
between modular layers. Let us then write the 'reciprocal lattice vector' as 

~k = G = ha* + kb* + le* (3.3) 

where a*, b*, and e* are primitive translation vectors of the reciprocal lattice. Clearly we do not 
have a reciprocal lattice any more than we have a lattice structure in real space, but, as in real space, 
there is crystallinity in the 'reciprocal modular layers.' So, in reciprocal space, as in real space, the 
disorder is confined to the stacking direction. Since we are interested in the diffraction pattern along 
the 10.l row we have 

Ak = G =a*+ le*. (3.4) 

We find the magnitude of ~k to be 

(3.5) 

3.4 How to fix Diffraction Patterns 

We want to extract information about the two layer correlation functions from the diffraction pat
tern, but there are other factors which affect the measured intensity and for which we must ac
count [4] [5] [9] [28] [48] [78]. Let us call the uncorrected diffraction pattern I(l, Q) the raw data as 
reported by M.T. Sebastian and P. Krishna [60]. Q represents the correlation functions which we 
are trying to find. We can the write intensity of the uncorrected diffraction pattern as 

I(l, Q) = C(l) x l(l, Q). (3.6) 

where C(l) are diffraction effects not dependent on the correlation functions, and /(l, Q) represents 
those factors which depend on the correlation functions. Let us call C(l) correction factors and 
l(l, Q) the corrected diffraction pattern. We will detail the dependence of the diffraction pattern on 
the correlation functions in the next chapter. For now, let us concentrate on the correction factors. 
We have considered several factors, and we list them now. 
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Correction Factor C(l) for ZnS Spectra with MoK 0 Unpolarized Radiation 
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Figure 3.1: Correction Factor C(l) for ZnS diffraction patterns assuming unpolarized radiation of wavelength 
>. = 0. 7107 A. The corrections included are for atomic form factors, structure factors, anomalous scattering 
factors and the polarization factor. 

3.5 Some Assumptions 

To make the analysis tractable, we employ the following assumptions. 

Perfect Modular Layers. We assume the modular layers themselves are undefected. That is, each 
layer is crystalline in the strict sense, with no point defects, impurities, or distortions in the two 
dimensional lattice structure. 

Scattering Power same for all Layers. We assume that each layer diffracts x-rays with the same 
intensity. There is no reason to believe that this is not so, unless absorption effects are important 
or the geometry of the crystal is such that each layer does not have the same cross-sectional area. 

Constant spacing between Modular Layers. The spacing between layers can change slightly between 
polytypes, but this is known to be quite small [57], perhaps about 0.3% between the 2C and the 3H 
modifications of ZnS. We therefore treat the separation between different modular layers as constant, 
regardless of the local stacking arrangement. 

Entire Layer is Shifted with respect to Neighbors. We assume that the entire modular layer is 
shifted with respect to its neighbors. This is reasonable, since the stacking fault energy is quite 
small. Another way to say this, is that we assume that the stacking faults extend all through the 
crystal. 

Spherical Atoms. To calculate the atomic form factors, we make the assumption of neutral, spherical 
atoms. The bonding in ZnS is at least partially covalent, so we know this is not completely realistic. 
But since only two of the electrons in a ZnS pair are directly involved in the bonding, the other 
forty-four being more or less bound by their respective nuclei, we do not consider this to be a large 
source of error. 

Stationary Process. The requirement of stationarity is necessitated by our use of computational 
mechanics. Simply put, a stationary process is one in which the probability of finding a word or 
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All about Two-Layer Correlation 
Functions and Diffraction Patterns 

Now that we have corrected the diffraction pattern for the form factor, the polarization factor, etc., 
we can now examine that part of the diffraction pattern which depends only on the the number 
of layers and their arrangement. Let us visualize the picture we have. There are N hexagonal, 
close-packed layers, with each layer occupying one of three positions, A, B or C. These layers are 
then stacked, and we wish to find the relationship between the stacking order and the diffraction 
pattern. Let us introduce three quantities, Qc(n), Qr(n), and Q8 (n), which we will call the two-layer 
correlation functions. Let us take c, r, s to stand for cyclic, reverse, and same respectively. Qc(n) is 
defined as the probability that any two layers at a separation of n are cyclically related. By cyclic, 
we mean that if the i th layer is, say A, then the (i + n) th layer is B. Qr(n) and Q 8 (n) are defined in 
a similar fashion. Since these are probabilities, 0 ~ Q 0 (n) ~ 1, where a E {c,r,s}. It is clear that 

'v n. ( 4.1) 

With these definitions, we can write an expression for the diffraction pattern, see Yi and Can
right (79], 

I(l) Io{sin 2 (1rNl) r,;~[ 1r 
N . 2 -2v3~ (N-n)[Qc(n)cos(21rnl+- 6 ) 

sm (1rl) n=l 

+ Qr(n) cos(21rnl - i )]] }· ( 4.2) 

This expression for the diffraction pattern is only valid for a stacked sequence of two dimensional 
hexagonal layers. It is easy to see that I(l) is periodic in l with period one, so we need only examine 
l over the unit interval. 

It is instructive to rewrite equation 4.2 by expanding the cosine terms. Doing so, we get, 

I(l) Io{sin 2 (1rNl) ~{ 
N . 2 ) - 3 ~ (N - n) [(Qc(n) + Qr(n)) cos(21rnl) 

sm (1rl n=l 

+ ~(-Qc(n) +Qr(n))sin(2mil)]} }· ( 4.3) 
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l f sin2 N1rl lim N . 2 cos(21rnl) dl = l 
N➔oo Sill 1rl 

and 

. 1 f sin2 N 1rl . 
hm N . 2 sm(21rnl) dl = 0. 

N-+oo Sill 1rl 

Carrying out the integrations in equations 4. 7 and 4.8, we find 

(4.9) 

and 

(4.10) 

We can solve these for Qc(n) and Qr(n) to get, 

(4.11) 

and 

Qr(n) = ~ - 3~0 [An+ J3Bn]. ( 4.12) 

Finally, we need to find an expression for Io. We can do this by integrating over the diffraction 
pattern. We find 

lo= f I(l) dl. ( 4.13) 

4.2 Figures of Merit 

We can exploit the fact that, due to stacking constraints, Qc(l) + Qr(l) = 1. Adding equations 4.11 
and 4.12 gives 

( 4.14) 

This is always true for error-free data, but we can use this as measure of how corrupted the data is 
over a particular interval. So let us define 

f l(l) cos(21rl) dl 

' = f l(l) dl 
( 4.15) 
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We ignore terms that do not scale with N, as they do not contribute in the many layer limit. We note 
that there must be some term which grows at least linearly in N, so that the integrated intensity 
will likewise grow linearly with N. Additionally, no term grows faster than quadratically. It is then 
helpful to understand under what conditions the summation gives rise to quadratic terms and under 
what conditions the quadratic terms may cancel. It is likely that experiment will only see structure 
proportional to the highest power of N. Let us then treat three cases, two of which are of empirical 
relevance. The first is the case where the Qs decay to some asymptotic value, and the second is the 
case where they approach some limit cycle of period Tq. As a final case, we mention those processes 
in which the Qs neither approach an asymptotic limiting value or become cyclic. 

4.3.1 Qs decay to an asymptotic value of½ 

There seem to be many processes, mostly disordered ones, that can lead to Qs that decay to some 
limiting value. We prove in the appendix that if the correlation functions assume a constant asymp
totic value, that value must be ½- So let us specialize to cases where the Qs reach an asymptotic 
value of ½ at some n = nc. We will provide a more precise definition of nc in a later section. We 
assume that nc « N. Typical values of nc are less than one-hundred. 

Let us treat the special case of l = 0. The first term in equation 4.5 goes as N 2 and the sine 
term in the summation vanishes. The argument of the cosine term vanishes, giving a value of one. 
So we can write the N-layer diffraction intensity as 

N 

I'(O) = N 2 - 3 L)N - n) [(Qc(n) + Qr(n)]. ( 4.17) 
n=l 

Since we are interested in how J'(0) scales with N, it is permissible to replace the Qs by their 
asymptotic values. Carrying out the summation and using the notation Qc and Qr for the asymptotic 
value of Qc(n) and Qr(n) for n large, we get to order N 2 

( 4.18) 

So when the asymptotic values of Qc(n) and Qr(n) are ½, there will be no Bragg peak at l = 0. 
Therefore knowing then the asymptotic behavior of the Qs tells us the whether we see a Bragg peak 
at integer l. 

We can also make some statements about the possibility of Bragg peaks for non-integer l. These 
peaks must come from the summation term in equation 4.5. Let us again restrict our attention 
to the many layer limit and examine the case of l =/-integer. We can now approximately evaluate 
equation 4.5. The first term is of order one, so we neglect it. The sine term in the summation again 
cancels. We are then left with the cosine term. Setting Qc(n) and Qr(n) to their asymptotic values, 
we get, 

I' ( l -::/-integer) 

(4.19) 

So, if the Qs approach an asymptotic value of½, we see that I'(l) ex N for all l, showing that there 
are no Bragg peaks in the spectrum at all. This then implies that it is necessary to have Qs that 
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where B is some constant. We then find >..q from the slope of the line of log2 W q ( n) vs. n. Due to 
the finite size of our sample, we find that we should only use those log2 Wq(n) 2: -5.5. The statistics 
are no longer very reliable for w q ( n) smaller than this. 

Period of Limit Cycle: Applicable only in the case of periodic oscillation, this quantity gives the 
length in terms of n, that we must go for the Qs to complete an oscillation. We call this quantity 
Tq. 

Cutoff Length: While not really an intrinsic measure of the Qs, this quantity, which we give the 
symbol nc, is the highest n for which we use the calculated values of the Q0 (n) in finding the 
diffraction pattern. We discuss and motivate a definition for this quantity in a later section. 

Scattering Type: We classify diffraction patterns according to whether they exhibit Bragg, pure 
continuous, or singular continuous scattering. In the event of mixed scattering, we can determine 
the amount of energy diffracted into each type. 
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Examples of Processes, Correlation 
Functions and their Diffraction 
Patterns 

In this chapter, we attempt to expound on and flesh out the relationships between processes which 
generate binary sequences, the two-layer correlation functions they imply and the resulting diffraction 
patterns. All of the systems we consider can represented as a language, or their probabilistic versions 
as finite t:-machines, except the Thue-Morse process. We undertake this exercise to gain intuition 
into the interplay of these three. Ultimately, our task is to begin with a diffraction pattern and infer 
the underlying process. That is we want to go diffraction pattern ⇒ Qs ⇒ process (t:-machine). 
This procedure, which we can think of as a 'backwards procedure', is composed of two parts. First 
one finds the Qs from diffraction data and second one finds the t:-machine which can generate these 
Qs. The first is easy, while the second is more difficult. In contrast, the 'forward procedure', process 
⇒ Qs ⇒ diffraction pattern, is easy and well defined. It is this forward procedure we address in 
this chapter. We then will consider about a dozen or so elementary processes and find the resulting 
correlation functions and diffraction patterns. These sample processes are chosen to give a natural 
cross-section of possible cases we might encounter in nature, as well as some more exotic cases of 
theoretical interest. They are, the fair coin toss, the 3C, the 2H, the golden mean process, the 4H, 
the 3C/2H/4H process, the 6H, the 3C/2H/6H process, a period 14 D-pair, the noisy period two, 
the even system, the sum zero process, and the Thue-Morse sequence. Many have the convenient 
property of only requiring at most two recurrent causal states. Except for the last four, all are 
expressible as SFT. The Thue-Morse sequence can not be written as a finite state machine, but it 
does give us a chance to examine a pattern that implies an infinite correlation between symbols and 
has a zero entropy density, while being aperiodic. We will calculate a number of properties for these 
systems, so that we may compare them. 

For all of the following examples, unless stated otherwise, we take a sample of the process 10,000 
characters in length to find the diffraction pattern using equation 4.3. All diffraction patterns are 
normalized to one over a unit interval. To find the correlation functions, we calculate them directly 
from a sample of the process 400,000 characters long. We take such a large sample to minimize 
the statistical fluctuations inherent in using a pseudo-random number generator. For completely 
predictable processes, where we can find the correlation functions analytically, we do so. 

It is also perhaps worthwhile to make a comment on terminology. We have repeatedly used 
the term 'process' when referring to a spacial pattern or arrangement of Os and ls. This may 
indicate that there are some dynamics going on. Computational mechanics has roots in dynamical 
systems theory, where indeed this is a reasonable implication. For our work, we have used this term 
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Table 5.1: The first few values of the correlation functions for the fair coin toss. We see that even though 
this is a random process, the correlation functions do not assume their asymptotic value immediately. This 
is due to the stacking constraints for close-packed layers. We can see that they approach an asymptotic 
value of ½-

n Qc(n) Qr(n) Qs(n) 
1 1/2 1/2 0 
2 1/4 1/4 1/2 
3 3/8 3/8 1/4 
4 5/16 5/16 3/8 
5 11/32 11/32 5/16 
6 21/64 21/64 11/32 

are no Bragg peaks in the spectrum, there is a broad diffuse concentration of scattered intensity 
centered at l = 0.5. The intensity at l = 0.5 is nine times that at l = 0. We also note that the 
diffraction pattern is symmetric about l = 0.5, as we expect from the equality Qc(n) = Qr(n). 

We can also consider the artificial case of a completely disordered sequence that is not required to 
obey any stacking constraints. This is, we allow .. AA .. , etc. When we do so, we find that Q0 (n) = ½ 
for all n and a, where a E { c, r, s}. The diffraction pattern is just a flat line, that is I (l) = l. So it 
is the stacking constraints that impose what feature we see in Figure 5.4. 

We now make some computational remarks. It is found that the Qs do not settle down to their 
asymptotic value for large n. They seem to oscillate, and 'fidget' about. We might expect some 
noise superimposed on the asymptotic values of the Qs due to the finite size of the sample used 
to determine them. These fluctuation should be on the order of 1 / .,ff[;, where N 8 is the length of 
the symbol sequence used. For our case, N 8 = 400, 000, giving fluctuations of about 0.002 in the 
correlation functions. These fluctuations can inflict havoc in the calculated diffraction pattern. It 
is not hard to see why. Failure of the correlation functions to reach their asymptotic values exactly 
will cause the summation term in equation 4.3 to become 'unbalanced'. The sum has the potential 
to be proportional to N 2 , if a particular value of l favors Qs slightly higher /lower than ½. Even 
a small bias in the sum can create terms that alter the 'correct' intensity noticeably. We show a 
diffraction pattern for the fair coin toss where the Qs have not been forced to their asymptotic 
value in Figure 5.5. In all subsequent diffraction patterns, where it is clear that the Qs tend to an 
asymptotic value, we impose that asymptotic value of½ on all Q0 (n) such that n ~ nc. We define 
nc as the smallest n for which IQ0 (n) - ½I :S 8. We take 8 to be approximately 0.002. The exact 
value may change slightly with each diffraction pattern, and is somewhat subjective. We also note 
that not only do our Qs show some noise, but they also seem to have a low frequency oscillation 
imposed on them. We believe that this is unphysical and somehow a by-product in our random 
number generator. 

Previous researchers have studied the diffraction pattern for randomly stacked close-packed struc
tures. An expression for I(l) in closed form is given by Guinier [33] and agrees with our Figure 5.4. 

We make a few remarks concerning some properties of the fair coin toss. It is known to have 
a statistical complexity and an excess entropy of Cµ = E = 0 bits and an entropy rate of hµ = 1 
bits/symbol. The total predictability is G = 0 bits/symbol. The transient information is T = 0 
bit symbols, implying the an observer need extract no information to synchronize with the source. 
The Qs display asymptotic decay and have a cutoff length of approximately nc = 10. We can 
calculate the correlation length exactly from equations 5.2, and obtain a value of l. We can also 
determine >.q from our computed Qs. Using the first six values of Wq(n), we find a correlation length 
of >.q = 0.994 ± 0.004. We see that our measure for the correlation length for the Qs is not zero, as 
one might expect for a random process. Indeed, the graph 5.4 implies a memoryless process. It does 
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Diffraction Pattern for a Random Number Generator 
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Figure 5.4: Diffraction pattern for a randomly stacked two dimensional hexagonal lattice using asymptotic 
values for the Qs. We force the correlation functions to their asymptotic value for n 2: nc. Doing so, we get 
a smooth diffraction pattern. 

Diffraction Pattern for a Random Number Generator 

"' ..., 
3 ·a 

:::, 

..ci .... 
C1l 

.s 2 
>, ..., 

"fil 
.:: 
Q) ..., 1 .:: ...... 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 5.5: Diffraction pattern for a randomly stacked two dimensional hexagonal lattice using sequence 
calculated values for the Qs. The diffraction pattern is not smooth, and exhibits what appear to be random 
fluctuations. These fluctuations depend on the length of the sequence used to find the Qs. The longer the 
sequence, the smaller the fluctuations. 
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Table 5.2: The first few values of the correlation functions for the period one process. We see that correlation 
functions are periodic in n with a period of three. 

n Qc(n) Qr(n) Qs(n) 
1 1 0 0 
2 0 1 0 
3 0 0 1 
4 1 0 0 
5 0 1 0 
6 0 0 1 

Diffraction Pattern for a FCC Lattice 
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Figure 5.7: Diffraction pattern for the period one or 3C process. We observe a single Bragg peak at l = ½
Everywhere else, including integer l the diffracted intensity is zero. 



Chapter 5: Examples of Processes, Correlation Functions and their Diffraction Patterns 39 

Diffraction Pattern for a HCP Lattice 
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Figure 5.9: Diffraction pattern for a lattice stacked according to the period two rule. We see two Bragg 
peaks, one at l = ½ and one at l = l. 

5 .4 The Golden Mean Process 

We next consider the diffraction pattern generated by a lattice stacked according to the the golden 
mean process. Stated simply, the golden mean system allows all sequences that do not contain two 
consecutive zeros, ie, '00' is an irreducible forbidden word (IFW). We call this the golden mean 
system because the logarithm of the total number of allowed sequences grows with the word length 
L at a rate given by the logarithm of the golden mean, </> = ½(1 + v'5). See Crutchfield and 
Feldman [16]. We treat the probabilistic version of the the system here. We allow Os and ls with 
equal probability, except when the previous symbol is a 0. We insist that 0 always be followed by a 
1. The recurrent portion of the 1:-machine for the golden mean process is given in Figure 5.10. The 
regular expression for the corresponding language is R = (1 + 01)*. The first few Qs generated by 
this process are shown in Table 5.4. We note immediately that the Qc(n) -:f, Qr(n), suggesting that 
the diffraction pattern will not have reflection symmetry about l = ½-We also see that Qc(2) = 0. 
It can be demonstrated that this is a consequence of '00' being a forbidden word. An illustration of 
the log2 ii, q ( n) versus n is shown in figure 5.12. One is tempted to think of the golden mean language 
as some sort of mixture between the period one and the period two languages. Somehow they are 
competing. We might expect then that the Qs are a compromise of the two. This interpretation 
seems validated when we examine the first few Qs. For n = 1, 2, indeed the Qs for the golden mean 
lie between those of the period one and period two. At n = 3, we see the first departure from this 
trend. For the golden mean, Qc(3) is greater than that of either of the other two. The Qr(4) for 
both the period one and the period two are zero, while the golden mean gives it a value of 0.500. 
So we conclude that the golden mean is not some sort of compromise between the two, at least not 
in such a simple-minded way. 

When we examine the Q.(n) for the golden mean process as shown in Figure 5.11, we see another 
interesting feature. There appear to be two frequencies superimposed on each other. Let us define 
the frequency in a natural way as the number of oscillations in Q.(n) per n. We might expect then 
that there is a competition amongst frequencies, as the period one process has a natural frequency 
of one-third, while the period two has a natural frequency of one-half. We recall that the stacking 
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Q.(n) vs. n for the Golden Mean Language 
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Figure 5.11: The Q,(n) for the golden mean process a function of n. The correlation functions for the 
golden mean process decay to ½ with a correlation length of Aq = 4.48 ± 0.06. 

The Logarithm 2 of Wq(n) vs. n for the Golden Mean Process 
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Figure 5.12: The logarithm of 'Vq(n) for the golden mean process as a function of n. Using the first 
twenty-five values of 'Vq(n), we get Aq = 4.48 ± 0.06. 
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p(llOl) = q 

n p(llll)= 1-q 

0 p(Olll) = q 

0 ___ _ 
p(lllO) = 1 

Figure 5.14: The recurrent portion of the t-machine that generates the 3C/2H process. This process has 
memory of two, so we can represent it with a portion of an r = 2 de Bruijn graph. The causal states are 
labeled by the last two symbols seen. 

Table 5.5: The first few Qs generated by the 3C/2H process, with q = 0.01. As for the golden mean process, 
a vanishing value of Qc(2) implies that '00' is a forbidden word, as can be seen from the t-machine. 

n Qc(n) Qr(n) Qs(n) 
1 0.668 0.332 0 
2 0 0.336 0.664 
3 0.339 0.329 0.332 
4 0.329 0.013 0.658 
5 0.336 0.651 0.013 
6 0.013 0.013 0.973 
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The Logarithm 2 of 'Pq(n) vs. n for the FCC/HCP Process 
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Figure 5.16: The logarithm of 'Pq(n) for the 3C/2H process as a function of n, with q = 0.01. We find a 
correlation length of 123 ± 2. 

Diffraction Pattern for FCC/HCP Process 
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Figure 5.17: The diffraction pattPrn for a lattice stacked according to the 3C/2H process with q = 0.01. 
We see three sharp peaks in the spectrum, one at l = ½ corresponding to the 3C structure and the other 
two at l = ½ and 1 corresponding to the 2H structure. 
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Diffraction Pattern for FCC/HCP Process 
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Figure 5.20: The diffraction pattern for a lattice stacked according to the 3C/2H process with q = 0.20. 
There is no longer clear separation between the two peaks at l = ½ and ½. We also see the peaks beginning 
to shift. 

Diffraction Pattern for FCC/HCP Process 

7 

6 
C/J 

.µ 

·a 5 ;::1 

..ci 
4 .... 

<d 

.s 
>, 3 

.µ 

·en 
.:: 

2 Cl) 
.µ 
.:: ...... 

1 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 5.21: The diffraction pattern for a lattice stacked according to the 3C/2H process with q = 0.30 
The peak corresponding to the 3C has almost completely disappeared, being absorbed into the peak at 
l ::::: ½, which has shifted noticeably to the left. 
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Table 5.6: The first few Qs generated by the 4H process. The correlation functions are periodic in n with 
period two. The correlation length is infinite. 

n Qc(n) Qr(n) Q.(n) 
1 0.500 0.500 0 
2 0.250 0.250 0.500 
3 0.500 0.500 0 
4 0 0 1.000 
5 0.500 0.500 0 
6 0.250 0.250 0.500 

Diffraction Pattern for the 4H Process 
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Figure 5.24: The diffraction pattern for a lattice stacked according to the 4H process. We see a completely 
point spectrum with four equally spaced Bragg peaks at l = !I,/-with m = 1, 2, 3, 4. 

are periodic in n, with a period of Tq = 4. The diffraction pattern for this process is shown in 
figure 5.24. We see four Bragg peaks, at l = ¼, ½,¾,and 1. Since this a crystal, we have hµ = 0 and 
the predictability G = 1 bits/symbol. We find that the excess entropy and the statistical complexity 
are E = Cµ = 2 bits. The transient information is T = 3 bit symbols. The correlation length is 
infinite. 

5.7 The 3C/2H/4H Process 

We now consider a process that represents, at least roughly, three crystal structures interspersed. 
We treat this case to find out what the diffraction pattern for say, a crystal in the midst of a 
transformation from 2H to 3C via an intermediary 4H structure might look like. There is some 
experimental evidence that this might be important in the transition between 3C and 2H structures 
on annealing at sufficiently high temperatures [27]. The conditional probabilities attached to the 
states are not necessarily intended to be realistic, but we hope that they are not so different from 
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Table 5.7: The first few Qs generated by the 3C/2H/4H process. These correlation functions decay asymp
totically to ½ and have a correlation length Aq = 19 ± 1. 

n Qc(n) Qr(n) Qs(n) 
1 0.556 0.444 0 
2 0.148 0.259 0.593 
3 0.370 0.481 0.149 
4 0.200 0.044 0.755 
5 0.389 0.566 0.045 
6 0.203 0.168 0.629 

Q 8 (n) vs. n for 3C/2H/4H Process 
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Figure 5.26: Q,(n) vs. n for 3C/2H/4H process. 
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p(llOl l) = 1.0 p(0ll 11) = 1.0 

p(llOOl) = 1.0 p(0lll0) = 1.0 

p(llOOO) = 1.0 p(0llOO) = 1.0 

Figure 5.28: The recurrent portion of the E-machine for the 6H process. This is a portion of an r = 3 de 
Bruijn graph, hence we label the causal states by the last three symbols seen. 

Table 5.8: The first few Qs generated by the 6H process. The correlation functions are periodic in n with 
period six and have an infinite correlation length. 

n Qc(n) Qr(n) Qs(n) 
1 0.500 0.500 0 
2 0.333 0.333 0.333 
3 0.333 0.333 0.333 
4 0.333 0.333 0.333 
5 0.500 0.500 0.000 
6 0.000 0.000 1.000 
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Figure 5.30: The recurrent portion of the €-machine for the 3C/2H/6H process. In order to have a barrier 
between each simple cycle corresponding to some of the crystal structure present, we require that no two 
such simple cycles share a state. We need an r = 4 de Bruijn graph to accomplish this. The solid lines 
represent transitions between states associated with the simple cycles giving rise to some crystalline order, 
and the dotted lines indicate the relatively weak transitions between simple cycles. 
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Figure 5.33: A pictorial representation of D-pair. Each cycle shares the node N, which since this is a 
finite memory process with r = 8, can be labeled by the last eight symbols seen. So we label the node 
N = 11010100. The two simple cycles which share the node N have their nodes represented by the smaller 
circles. Since each cycle is period fourteen, there should be thirteen smaller nodes in each cycle; but this is 
onerous to draw, so we have only explicitly shown four nodes in each cycle, with the other nine represented 
by the .... 

sequences does not seem to extinguish them. Again, it is difficult to draw general conclusions from 
just one sample, but it is suggestive that enhanced intensity at these l might indicate some 6H 
structure present. 

For this process, we find a correlation length of Aq = 49 ± 1. The entropy density is hµ = 0.332 
bits/symbol and the statistical complexity is Cµ = 3.17 bits. We find the excess entropy to be 
E = 1.84 bits and the transient information to be T = 3. 71 bit symbols. This process implies a 
memory of range four layers. 

5.10 A Period 14 D-pair 

Canright and Watson [11], on the basis of elementary physical symmetries, proposed that certain 
simple cycles of a de Bruijn graph could be degenerate in energy and have a zero energy domain 
wall between them. They assumed a finite interaction between spins on a one-dimensional chain, 
and considered the case where each spin could assume only discrete values. They found it possible 
to find such pairs of symmetry related simple cycles that shared a node on a de Bruijn graph. The 
symmetry of the cycles insured that they had the same energy density (energy per spin) and the 
sharing of a node insured that there would be no energy cost in flipping from one cycle to the other. 
They called this pair a "D-pair" to indicate that a long string made from a series of these would be 
both disordered and degenerate. An illustration on this is shown in figure 5.33. 

The particular D-pair we will examine has a period of fourteen and is found on an r = 8 de 
Bruijn graph. The regular expression for this language is R = (11010100 + (001110 + 100011))*. 
The node that they share is N = 11010100, which is invariant under simultaneous spacial and spin 
inversion. If the system is at the node N it has two options to proceed. Taking, say, the left 
path the series of spins would be 00111011010100 and taking the the right path would give a series 
10001111010100. On either path, the cycle returns to the node N after visiting thirteen nodes in 
between. Each node in each cycle has a partner related by simultaneous spatial and spin inversion 
in the other cycle. Therefore, if the Hamiltonian that describes the system has these symmetries, 
then the two cycles will be degenerate and since they share a node, there is no energy cost to flip 
between them. If these simple cycles correspond to the ground state of the system, then we might 
see such disordered and degenerate states. The question then becomes, "What would the diffraction 
pattern for a lattice stacked according to this language look like?" This was the original motivation 
for treating this process. Yi and Canright [79] examined a number of these D-pairs, and we will 
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Q8 (n) vs. n for a period 14 D-pair 
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Figure 5.34: The Q,(n) for period 14 D-pair. Except for the first few n, we see periodic correlation functions 
with period fourteen. This seems odd considering that this process contains some randomness. See text for 
details. 
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Figure 5.35: The diffraction pattern for a lattice :;tacked according to the µeriod 14 D-pair. We see a total 
of fourteen equally spaced Bragg Peaks in the spectrum. Not clear in this figure is the diffuse background 
scattering. 
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Q.(n) vs. n for the Noisy Period Two Language 
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Figure 5.38: Q • ( n) vs. n for the noisy period two process. We see that the correlation functions rather 
quickly decay to their asymptotic value of½- We find a correlation length of A= 2.04 ± 0.03. 

Another interesting feature of the diffraction pattern is the vanishing intensity at l = ¾. It is not 
clear why this is so. 

The entropy production of this process is hµ = ½ bits/symbol, and it has both a statistical 
complexity and excess entropy of Cµ = E = 1 bit. The transient information is T = 3.3 bit 
symbols. We find an entirely diffuse diffraction pattern and the two-layer correlation functions all 
decay asymptotically to ½, as they must. A graph of log2 '11q(n) vs. n is shown in figure 5.39. We 
find a correlation length of Aq = 2.04 ± 0.03. 

5.12 The Even System 

Like the noisy period two process, the even system is a process that can not be represented as a 
portion of a de Bruijn graph. The regular expression for the corresponding language is R = (0+ 11)*. 
We can think of this language as the set of words such that there are always an even number of ls 
sandwiched between any two Os. We can also give the forbidden words, which are Fe = {012k+ 10} 
where k is a non-negative integer. In this sense, just as for the noisy period two, the language has 
an infinite memory, since for any string of ls, however long, the language must remember whether 
there have been an even or odd number of ls since the last 0. Another way of stating this is to 
say that there is no longest irreducible forbidden word. The recurrent part of the f-machine for this 
process is given in Figure 5.41. 

The first few Qs for this process are tabulated in Table 5.12 and a plot of Q.(n) vs. n for the 
first fifty n is given in figure 5.42. We see that Q.(n) quickly approaches its asymptotic value of 
½- Indeed, Q.(n) shows little structure. A plot of log2 '11q(n) vs. n is given in figure 5.43. We see 
that the approximation of exponential decay is not very good here. It is not at all clear why this 
is so. Using the first nine values of log2 '11q(n) versus n we can calculate the correlation length and 
we find it to be Aq = 1.7 ± 0.2. The diffraction pattern for this process is shown in figure 5.44. We 
see completely diffuse pattern with two maxima, one at l = 0.389 and a second smaller maximum 
at l = 0. 772. We also see that the diffraction pattern has a zero at l = ¾. This is curiously at the 
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p(O) = 1/2 

p(l) = 1/2 

p(l) = 1 

Figure 5.41: The recurrent portion of the E-machine that generates the even process. Like the noisy period 
two process, this process can not be represented by a finite memory machine. We have labeled the two 
causal states by A and B. Superficially the machine resembles that of the golden mean process. We see that 
if state A emits a 1 the machine advances state B where it must always emit another 1. Thus this process 
can never generate a sequence that has an odd number of ls sandwiched between two Os. 

Table 5.12: The first few values of the correlation functions generated by the even system. 

n Qc(n) Qr(n) Qs(n) 
1 0.667 0.333 0 
2 0.167 0.500 0.333 
3 0.416 0.167 0.416 
4 0.333 0.375 0.292 
5 0.271 0.354 0.374 
6 0.364 0.334 0.303 

same l value as we saw a zero in the noisy period two. 
Turning our attention to computational measures, we see that the entropy rate is hµ. = i 

bits/symbol and the predictability G = ½ bits/symbol. The statistical complexity Cµ. = 0.918 
bits and the excess entropy E = 0.913 bits. The transient information is T = 3.09 bit symbols. 

5.13 The Sum Zero Process 

We now consider a process that is similar in spirit to the period 14 D-pair in spirit, but is strictly 
sofic. That is, we wish to design a process that has both long range correlations as reflected in the 
Qs but also has some randomness such that hµ. 'I 0. We need long range correlations to see Bragg 
scattering. So let us imagine, however artificial, a process that does that. Consider the stacking rule 
such that every other layer has the same orientation but the layers sandwiched between can have 
a randomly chosen orientation, subject of course to the stacking constraints. The sequence would 
then look like ... AxAxAxAxA ... , where x E {B, C}. Clearly this will have long range correlations. 
In terms of a language, we can think of the sequence as being divided into doublets, such that 
.. aaaaaaaa .. becomes .. (aa)(aa)(aa)(aa) .. with a E {O, l}. The rule then is that each doublet must 
contain exactly one O and one 1, but the order is arbitrary. If we remind ourselves of the physical 
meaning of each symbol, that is a 1 gives a relative rotation of sixty degrees between adjacent layers 
about the stacking direction while a O gives a rotation in just the opposite sense, then in terms 
of operators they are inverses. Hence one followed by the other produces no net rotation and is 
therefore a 'sum zero' operation. Hence the name sum zero process. We can easily translate this 
into an !'-machine, the recurrent portion of which is shown in figure 5.45. The regular expression for 
this language is R = (10 + 01)*. 
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Diffraction Pattern for Even Language 
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Figure 5.44: The diffraction pattern for a lattice stacked according to the even process. The spectrum is 
rather featureless, as with the noisy period two, and also has an isolated zero at l = ¾. 
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Figure 5.45: The recurrent portion of the f-machine that generates the sum zero process. Since this is a 
strictly sofic process, it can not be described by a finite memory process. We label the causal states by the 
letters A, B, and C. 



Chapter 5: Examples of Processes, Correlation Functions and their Diffraction Patterns 67 

Diffraction Pattern for the Sum Zero Process 

6000 

5000 
"' ..., 
·a 
::, 4000 
..ci ... 
ell 

.s 3000 
>, ..., 
'cil 2000 i:: 

Q) ..., 
i:: ...... 

1000 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 5.46: The diffraction pattern for a lattice stacked according to the sum zero process. Having two 
Bragg peaks in the spectrum, one at l = ½ and the other at l = 1, this diffraction pattern resembles that 
of the period two process. The most easily recognizable difference is the the ratio of the intensities is not 
the same. For the period two we have I(l = ½)/I(l = 1) = 3.00 and for the sum zero process we have 
I(l = ½ )/ I(l = 1) = 9.00. Not seen in this plot is the constant background scattering. 
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Figure 5.47: The background diffraction pattern for a lattice stacked according to the sum zero process. We 
see a constant background intensity. Approximately 37.5% of the diffracted intensity falls into this diffuse 
scattering. 
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Q.(n) vs. n for the Thue-Morse Sequence 
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Figure 5.48: Q.(n) vs. n for the Thue-Morse sequence. For odd n, Q.(n) is zero, but for the even values 
of n, Q.(n) do not approach an asymptotic values, but seem to oscillate in what appears to be a random 
fashion. Of course the Thue-Morse sequence is completely predictable, so the oscillations are not random. 

Diffraction Pattern for the Thue-Morse sequence 
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Figure 5.49: The diffraction pattern for a lattice stacked according to the Thue-Morse sequence. We use 
1024 layers for this pattern and calculate the intensity at 10,000 equally spaced points. We see two Bragg 
peaks, one at l = ½ and the other at l = 1. This is similar to the period two process and the sum zero 
process. We find the ratio of the intensities of the two Bragg peaks to be I(l = ½ )/ I(l = 1) = 8.95. 
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The Logarithm of the Diffraction Pattern for the Thue-Morse sequence 
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Figure 5.51: The logarithm of the diffraction pattern for a lattice stacked according to the Thue-Morse 
sequence. We find points in the spectrum where the scattered intensity is zero, and we have cut off the lower 
portion of the graph at -20. 

an optimal prediction of the next spin. The period one does, however, have an infinite correlation 
length. Knowing one spin and the stacking rule provides information about spins infinitely far away. 
The Thue-Morse sequence is an example of a system with both an infinite correlation length and 
memory. The noisy period two has an infinite memory yet correlation information about the absolute 
positions of the stacking layers decays. 

Another interesting point to consider is that diffuse scattering does not preclude the underlying 
process from being SS. Indeed, we found that two of three SS systems we examined had relatively 
featureless spectra. There is the interesting phenomenon of the isolated, vanishing intensity at l = ¾ 
for these two spectra, but it is not known how general this phenomenon is. 

We also see that Bragg peaks <lo not preclude some randomness in a process. We have two 
examples of this, in the period 14 D-pair and the sum zero process. Also, we see that a completely 
predictable process, such as the Thue-Morse, can have at least part of the spectrum continuous. 
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Table 5.16: Correlative and diffractive results. In the second column, we give the asymptotic behavior of 
the correlations, see §4.3. In the third column, we give the correlation length, Aq, for each process, see §4.4. 
The fourth column shows the period of the limit cycle for periodic processes, see §4.4. The last column shows 
the scattering type for the diffraction pattern. We see that there are three possibilities: absolute continuous 
(AC), singular continuous (SC), and pure point (PP) or for physicists, <5-function or Bragg scattering. 

System Q Behavior >.q Tq Scattering Type 
Fair Coin Toss decays 1 - AC 
Biased RNG, q = 0.01 decays 50.4 - AC 
Biased RNG, q = 0.02 decays 23.7 - AC 
Biased RNG, q = 0.05 decays 9.57 - AC 
Biased RNG, q = 0.10 decays 4.49 - AC 
Biased RNG, q = 0.20 decays 2.14 - AC 
Biased RNG, q = 0.30 decays 1.43 - AC 
3C periodic 00 3 pp 
2H periodic 00 2 pp 
Golden Mean decays 4.48 - AC 
3C/2H, q = 0.01 decays 123 - AC 
3C/2H, q = 0.05 decays 25.7 - AC 
3C/2H, q = 0.10 decays 13.1 - AC 
3C /2H, q = 0.20 decays 5.5 - AC 
3C /2H, q = 0.30 decays 3.5 - AC 
3C/2H, q = 0.40 decays 3.0 - AC 
4H periodic 00 4 pp 
3C/2H/4H decays 19.2 - AC 
6H periodic 00 6 pp 
3C/2H/6H decays 49 - AC 
Period 14 D-pair periodic 00 14 PP/AC 
Noisy Period Two decays 2.04 - AC 
Even decays 1. 70 (?) - AC 
Sum Zero periodic 00 2 PP/AC 
Thue-Morse aperiodic 00 - PP/SC 



Chapter 6 

The Finite r Approximation to 
E-Machine Reconstruction from 
Two-Layer Correlation Functions 

Now that we have extracted the correlation functions or {Q 0 (n)} from the diffraction data, we can 
proceed to reconstruct the !'-machine. We note that there has been work done in the area of relating 
correlations among symbols in a data stream to word probabilities (2], but our case is somewhat 
different. Our correlation information is with respect to the absolute spins of the stacking sequence 
and we want the word probabilities of the relative spin sequence. Our task then, is to relate { Q °' ( n)} 
to word probabilities {p(w)}, where w EAL, and AL is the set of all words of length Lover the 
alphabet A, with A E { 0, 1}. We do this in successive approximations, by considering a machine of 
finite memory r and then writing down equations which relate the { Q °' ( n)} to the {p( w)}. This is 
equivalent to approximating the process by an r th -order Markov process, which we can graphically 
represent by an r th -order de Bruijn graph. It is known that such a graph has 2r nodes and 2r+1 
arcs connecting nodes. Since each node has a memory of r, transitions between nodes are labeled 
by symbol sequences of length r + 1, or words of length L. An r th -order Markov process can be 
completely specified by assigning a probability to each arc. We note, however, only 2r of these 
probabilities are independent. The other 2r probabilities are then constrained by conservation of 
probability. 

We find the r th -order approximation by writing down the de Bruijn graph that corresponds to 
the r th -order process. We require conservation of probability at each node, which gives 2r equations, 
of which 2r - 1 are independent. We can express this conservation principle mathematically as 

p(Ou) + p(lu) = p(uO) + p(ul) V u (6.1) 

where u is a sequence of symbols corresponding to a particular node. We additionally require that 
the total probability to see a word of length L be unity, i.e., 

I: p(w) = 1. (6.2) 
wEAL 

This then give 2r equations for 2r+I variables. We find the other 2r equations by relating {Q0 (n)} 
to {p(w)}. First let us define ~(w) as 
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p(ll) 

n 
0 

p(Ol) ( >(10) 

0 
u 
p(OO) 

Figure 6.2: The most general r = 1 machine. This graph implies a memory of one, so we label the states 
by the last symbol seen. This graph can be described by two independent parameters. Two of the four 
variables, p(ll), p(lO), p(Ol) and p(OO) are constrained by conservation of probability, sc we need to use two 
values from the correlation functions to fix the graph. We use Qc(2) and Qr(2) for this purpose. 

6.2 The r = 1 approximation 

We now work out the r = 1 approximate machine. We need a total of four equations, two of which 
are constraints among {p(w)} and two of which relate {p(w)} and {Q0 (n)}. Let us find the {p(w)} 
in terms of Qc(2) and Qr(2). Using equation 6.1 we get p(lO) + p(OO) = p(Ol) + p(OO), giving 
p(Ol) = p(lO). Requiring the sum of the probabilities to be unity gives p(ll) + 2p(Ol) + p(OO) = l. 
We now use equations 6.5 to get Qc(2) = p(OO) and Qr(2) = p(ll). This is a system of linear 
equations which are easily solved to give 

= Qr(2) p(ll) 

p(Ol) 

p(OO) 

1 
p(lO) = 2[1 - Qc(2) - Qr(2)] 

= Qc(2). 

6.3 The r = 2 approximation 

(6.7) 

We proceed analogously to find the r = 2 approximation to the process. The most general r = 2 
machine is shown in figure 6.3. There are a total of eight word probabilities at r = 2, so we need 
four equations relating constraints among the {p(w)} and four equations relating the {Q0 (n)} to 
the {p(w)}. We can write the first three equations as 

p(Oll) p(llO) 
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1 
p(OOI) = 6[+3Qc(2) + 2Qc(3) + 3Qr(2) + 4Qr(3) - 3] 

1 
p(OIO) = 3[-3Qc(2) - 2Qc(3) - 3Qr(2) - Qr(3) + 3] 

1 
p(Oll) = 6[+3Qc(2) + 4Qc(3) + 3Qr(2) + 2Qr(3) - 3] 

1 
(6.11) p(IOO) = 6[+3Qc(2) + 2Qc(3) + 3Qr(2) + 4Qr(3) - 3] 

1 
p(lOl) = 3[-3Qc(2) - Qc(3) - 3Qr(2) - 2Qr(3) + 3] 

p(llO) 
1 

= 6[+3Qc(2) + 4Qc(3) + 3Qr(2) + 2Qr(3) - 3] 

p(lll) 
1 

= 6[-3Qc(2) - 4Qc(3) + 3Qr(2) - 2Qr(3) + 3]. 

6.4 The r = 3 approximation 

Lastly we treat the case of r = 3. The most general r = 3 machine is shown in figure 6.4. A total 
of 16 word probabilities dress the r = 3 graph, so we need eight constraints among the {p(w)} and 
eight equations relating {p( w)} to { Q O ( n)}. The first seven constraints between the {p( w)} can be 
written as 

p(Olll) = p(lllO) 

p(OOOI) = p(IOOO) 

p(OOll) + p(lOll) = p(Olll) + p(OllO) 

p(OlOl) + p(llOl) = p(1011) + p(1010) (6.12) 

p(OOIO) + p(1010) = p(OlOl) + p(OIOO) 

p(OOOI) + p(lOOl) = p(OOll) + p(OOIO) 

p(OIOO) + p(llOO) = p(lOOl) + p(IOOO). 

We still require the overall probability of seeing a word of length four to be unity, so we have, 

p(OOOO) + p(OOOI) + p(OOIO) + p(OOll) + p(OIOO) 

p(OlOl) + p(OllO) + p(Olll) + p(IOOO) + p(lOOl) 

p(1010) + p(lOll) + p(llOO) + p(llOl) + p(lllO) 

p(llll) = l. 

We now write out the equations which relate the {Q0 (n)} and the {p(w)} and find, 

Qc(2) = p(OOOO) + p(OOOI) + p(OOIO) + p(OOll) 

Qr(2) = p(llOO) + p(llOl) + p(lllO) + p(llll) 

Qc(3) = p(OllO) + p(Olll) + p(1010) + p(lOll) 

+p(llOO) + p(llOl) 

Qr(3) = p(OOIO) + p(OOll) + p(OIOO) + p(OlOl) 

+p(lOOO) + p(lOOl) 

(6.13) 



Chapter 6: The Finite r Approximation to f-Machine Reconstruction ... 81 

Qc(4) = p(llll) + p(lO00) + p(0lO0) + p(00lO) 

+p(000l) 

Qr(4) = p(0000) + p(0lll) + p(1011) + p(ll0l) 

+p(lll0) (6.14) 

Qc(5) 
p2 (0000) p(00ll)p(0lll) 

p(0000) + p(00Ol) + p(0lll) + p(0ll0) 

p(010l)p(1011) p(0ll0)p(llOl) 
+ p(lOll) + p(1010) + p(ll0l) + p(ll00) 

p(0lll)p(lll0) p(lO0l)p(00ll) 
+ p(lll0) + p(llll) + p(00ll) + p(00lO) 

p(1010)p(0101) p(lOll)p(0ll0) 
+ p(0lOl) + p(0lO0) + p(0ll0) + p(0lll) 

p(ll0O)p(l00l) p(ll0l)p(l0l0) 
+ p(lO0l) + p(lO00) + p(1010) + p(1011) 

p(lllO)p(ll00) 
+ p(ll00) + p(ll0l) 

Qr(5) 
p2 (1111) p(ll00)p(lO00) 

p(llll) + p(lllO) + p(lO00) + p(lO0l) 

p(1010)p(0100) p(lO0l )p(00lO) 
+ p(0lO0) + p(0lOl) + p(00lO) + p(00ll) 

p(l00O)p(000l) p(0ll0)p(ll00) 
+ p(000l) + p(0000) + p(ll00) + p(ll0l) 

p(010l)p(1010) p(0lO0)p(lO0l) 
+ p(l010) + p(lOll) + p(l00l) + p(lO00) 

p(00ll)p(0ll0) p(00lO)p(0lOl) 
+ p(0ll0) + p(0lll) + p(0101) + p(0l00) 

p(000l)p(00ll) 
+ p(00ll) + p(00lO). 

The last two relations of equations 6.14 require some explanation. At L = 5, a typical term in 
the sum to find Qc(5) might look like p(00lll). We want to express this probability of seeing a 
length five word as some function of the probability of seeing length four words. So we say that 
p(00lll) = p(00ll)p(ll00ll), where p(ll00ll) is the conditional probability of seeing a 1 having 
already seen a 0011. But looking at the figure 6.4 it is clear that having last seen a 0011 puts us at 
the node 011. The probability of seeing another 1 is just the branching ratio at node 011, which we 

. p(0lll) c fi ( ) p(00ll)p(0lll) 
can wnte as p(0lll)+p(ouo). There1ore, we nd that p 00111 = p(0llO)+p(0lll). 

It is reasonable to ask why we need the de Bruijn graphs to write down these relations. Some 
seem to follow directly from probability theory. Indeed, the de Bruijn graphs are a convenient and 
pictorial way to describe r th -order Markov processes. Up to r = 2, the de Bruijn graphs impose 
no additional constraints on the probabilities and one can derive the same r = 2 equations from 
elementary probability theory. At r = 3, they do alter the equations slightly. By making the 
assumption of a finite range, the conditional probabilities are truncated to look only at a depth r. 
Consider the term p(00lll). We found this term to be equal to ~&~~~~~~f~f fi) which can be rewritten 
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h = p(lO0l) + p(lO00) - p(OIOO) - p(ll00) 

Is = p(OOOO) + p(000l) + p(OOIO) + p(00ll) + p(OIOO) 

+p(0lOl) + p(0ll0) + p(0lll) + p(lO00) + p(lO0l) 

+p(1010) + p(1011) + p(ll00) + p(llOl) + p(lllO) 

+p(llll) - 1 

Jg = p(OOOO) + p(000l) + p(OOIO) + p(00ll) - Qc(2) 

/10 = p(ll00) + p(ll0l) + p(lllO) + p(llll) - Qr(2) 

fu = p(0ll0) + p(0lll) + p(1010) + p(lOll) 

+p(ll00) + p(ll0l) - Qc(3) 

/i2 = p(OOIO) + p(00ll) + p(OIOO) + p(0101) 

+p(lO00) + p(lO0l) - Qr(3) 

fi3 = p(llll) + p(lO00) + p(OIOO) + p(OOIO) 

+p(000l) - Qc(4) 

fi4 = p(OOOO) + p(0lll) + p(lOll) + p(1101) 

+p(lll0) - Qr(4) (6.16) 

fi5 
p2 (0000) p(00ll)p(0lll) 

= p(OOOO) + p(000l) + p(0lll) + p(0ll0) 

p(0101)p(1011) p(0ll0)p(ll0l) 
+ p(1011) + p(1010) + p(ll0l) + p(ll00) 

p(0lll)p(lll0) p(lO0l)p(00ll) 
+ p(lll0) + p(llll) + p(00ll) + p(OOIO) 

p(1010)p(0101) p(lOll)p(0ll0) 
+ p(0lOl) + p(OIOO) + p(0ll0) + p(0lll) 

p(ll00)p(lO0l) p(1101)p(1010) 
+ p(lO0l) + p(lO00) + p(1010) + p(1011) 

p(lll0)p(ll00) 
+ p(ll00) + p(ll0l) - Qc(S) 

/16 
p2 (1111) p(ll00)p(lO00) 

= p(llll) + p(lll0) + p(lO00) + p(lO0l) 

p(1010)p(0100) p(lO0l)p(00lO) 
+ p(0lO0) + p(0lOl) + p(00lO) + p(00ll) 

p(lO00)p(000l) p(0ll0)p(ll00) 
+ p(000l) + p(OOOO) + p(ll00) + p(ll0l) 

p(0101)p(1010) p(0lO0)p(lO0l) 
+ p(1010) + p(lOll) + p(lO0l) + p(lO00) 

p(00ll)p(0ll0) p(00lO)p(0lOl) 
+ p(0ll0) + p(0lll) + p(0lOl) + p(0lO0) 

p(000l)p(00ll) _ Q ( ) 
+ p(00ll) + p(OOlO) r 5 . 
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Table 6.1: Exact and noisy correlation functions for the random number process. These are the correlation 
functions used in solving equations 6.16. The exact {Q0 (n)} are found from an analytical solution for the 
random number generator, and the noisy version is found by considering a finite sample of the process. 

n Qc(n) Qr(n) Qc(n) Qr(n) 
exact exact noisy noisy 

2 0.25000 0.25000 0.2539 0.2489 
3 0.37500 0.37500 0.3744 0.3732 
4 0.31250 0.31250 0.3127 0.3142 
5 0.34375 0.34375 0.3444 0.3407 

Table 6.2: Solution at r = 3 for the random number generator. Using the exact correlation functions, 
we get a fitness of F = 1.26 x 10- 14 . With the noisy correlation functions, the fit is not nearly as 
good, F = 1.72 x 10- 6 . 

Word Exact Answer Numerical Solution Numerical Solution 
with exact Q's with noisy Q's 

p(0000) 0.0625 0.0626 0.0668 
p(O00l) 0.0625 0.0624 0.0619 
p(00lO) 0.0625 0.0625 0.0630 
p(O0ll) 0.0625 0.0625 0.0622 
p(0lO0) 0.0625 0.0626 0.0631 
p(0lOl) 0.0625 0.0624 0.0599 
p(0ll0) 0.0625 0.0626 0.0648 
p(Olll) 0.0625 0.0624 0.0607 
p(lO00) 0.0625 0.0624 0.0618 
p(lO0l) 0.0625 0.0626 0.0634 
p(1010) 0.0625 0.0625 0.0599 
p(1011) 0.0625 0.0625 0.0633 
p(ll00) 0.0625 0.0624 0.0622 
p(ll0l) 0.0625 0.0626 0.0633 
p(lll0) 0.0625 0.0624 0.0608 
p(llll) 0.0625 0.0626 0.0625 

Table 6.3: Exact and noisy correlation functions for the second process. These are the correlation functions 
used in solving equations 6.16. The exact {Qalpha(n)} are found from direct calculation of the process. Only 
four digits of accuracy are reported here for convenience. The noisy version is found by considering a finite 
sample of the process. 

n Qc(n) Qr(n) Qc(n) Qr(n) 
exact exact noisy noisy 

2 0.2300 0.1300 0.2279 0.1289 
3 0.3600 0.4500 0.3611 0.4504 
4 0.2900 0.1200 0.2891 0.1191 
5 0.2969 0.5254 0.2981 0.5252 
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Figure 6.5: The most general r = 4 machine. The number of nodes has grown to sixteen and now there 
are thirty-two arcs. Conservation of probability provides sixteen constraints among the arcs. The remaining 
sixteen constraints come from the correlation functions, and we would use Qa(n) with a E {c,r} and 
n E {2, 3, 4, 5, 6, 7, 8, 9}. To solve for this system we would need to solve thirty-two simultaneous algebraic 
equations, eight of which would be non-linear. At n = 9, the two equations relating correlation functions to 
word probabilities would have 171 terms. 



Chapter 7 

Examples of E-Machine 
Reconstruction from Known 
Processes 

We will now consider four examples of machine reconstruction from processes that can not be 
represented on an r = 3 de Bruijn graph. For any process that is describable in terms of a third-order 
Markov process, our reconstruction procedure will find the underlying process. It is for those cases 
where the structure is not third-order Markovian that we wish to determine how the reconstruction 
algorithm works. So, we will treat the r = 4 process given in §5.9, another r = 4 process not so far 
discussed, the noisy period two in §5.11, and the even system, §5.12. 

7.1 Machine Reconstruction for the 3C/2H/6H Process 

Let us begin with the 3C/2H/6H process described in §5.9. We see that this process has both a 
strong fee component and 6H cycle. We might therefore expect that this will give our algorithm 
some difficulty as the simultaneous existence of these two is possible only on an r = 4 graph. The 
machine reconstruction results are given in table 7.1. We also calculate the the correlation functions 
and the diffraction patterns of the various r approximations. Since the r = 0 approximation at best 
corresponds to a biased random number generator, and such a process clearly does not represent 
the structure seen in the 3C/2H/6H process, we do not calculate it here. 

Figure 7.1 shows Q.(n) versus n for both the 3C/2H/6H process and the r = l approximation 
to it. We see that with exception of n = 1, 2 and 3, the correlations die out far too fast for the r = l 
approximation. Indeed, there appears to be some significant long range structure that the r = l is 
failing to capture. A comparison of the diffraction pattern of the r = l approximation to that of 
the 3C/2H/6H process is shown in figure 7.2. We see that Bragg peak at l = ½, save for a small 
bump, is missing in the r = l approximation. The only structure in the diffraction pattern that 
the approximation models moderately well is that at l = t· The other features in the spectrum, at 
l = ½, ½ and ! , are totally absent in the r = l approximation to the diffraction pattern. 

Figure 7.3 compares the Q.(n) for the r = 2 approximation to that of the 3C/2H/6H process. 
We see that very little, if any, additional structure has been discovered by increasing r. Examining 
the diffraction patterns in figure 7.4 paints an even more dismal picture. We see a smooth diffuse 
background for the r = 2 spectrum, giving scant notice to the diffraction maximum in the 3C/2H/6H 
process. It seems that no progress has been made in increasing r from 1 to 2. We can also compare 
the computation measures for the two approximations, as shown in table 7.2. We observe that the 
entropy density h1, only decreases slightly (from 0.910 ➔ 0.904) as r goes 1 ➔ 2. The excess entropy 
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Comparison of Diffraction Patterns for the 3C/2H/6H Process 
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Figure 7.2: The diffraction pattern for a lattice stacked according to the 3C/2H/6H process (solid line) 
and the r = 1 approximation (dashed line). The diffraction pattern for the r = 1 approximation is clearly 
missing all of the structure present. Of particular note is the fact that the small rises at l = ¼ and ¾ are 
completely absent in the diffraction pattern for the r = 1 approximation. 

Q 8 (n) vs. n for 3C/2H/6H process: Comparison with the r = 2 Approximation 

1 .------,----r----,.---"""T"--..-----,--"""T"--..-----,---, 

0.8 

~ 
0.6 

.. 
0 

0.4 

0.2 

0 
0 5 10 15 20 25 30 35 40 45 50 

n 

Figure 7.3: The Q.(n) vs. n for the 3C/2H/6H Process (solid line) and the r = 2 approximation to the 
process (dashed line). Again, as with the r = 1 approximation, we see that the correlation functions die out 
too quickly for the r = 2 approximation. 
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Figure 7.5: The recurrent portion of the f-machine for the 3C/6H process. Since we wish to have a barrier 
between the two cycles representing the 3C and the 6H, we must use a graph with an r = 4 memory. SO 
this graph is a portion of a r = 4 de Bruijn graph. 

see that actually '0000' does not occur at all in the 3C/2H/6H process, and the reconstructed machine 
significantly overestimates p( 1111). Similarly, other word probabilities are not well-represented. We 
understand these results as stemming from the inability of an r = 3 graph to simultaneously support 
both 3C and 6H structure. 

7. 2 Machine Reconstruction for the 3C / 6H Process 

We now apply machine reconstruction to another process which is only describable by a machine 
with a memory of at least r = 4. We expect that some ZnS crystals will incompletely transform to 
a twinned 3C structure and contain remnants of the 6H structure. We call this the 3C/6H process, 
and the recurrent portion of the €-machine is shown in figure 7.5. 

The results for machine reconstruction up tor = 3 are shown in table 7.3. We find the correlation 
functions for the r = 1 approximation and the first fifty values of Q 5 (n) from the r = 1 approximation 
are compared with those of the 3C/6H process in figure 7.6. Perhaps not surprisingly, there is only 
good agreement for the first few n, after which the Q 5 (n) for the r = 1 approximation decay too 
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Table 7.3: Machine reconstruction results for the 3C/6H process. Comparing the last two columns, we see 
that the agreement is not too bad, but there is still a troublingly large discrepancy between the reconstructed 
word probabilities (WPs) and the those of the exact process. 

r values Words Word r values Words Reconstructed Exact 
Probabilities WPs WPs 

r=O p(O) 0.498 r=3 p(OOOO) 0.296 0.227 
p(l) 0.502 p(OOOl) 0.026 0.091 

p(OOlO) 0.030 0.000 
r = 1 p(OO) 0.407 p(OOll) 0.046 0.091 

p(Ol) 0.091 p(OlOO) 0.026 0.000 
p(lO) 0.091 p(OlOl) 0.000 0.000 
p(ll) 0.410 p(Ol 10) 0.045 0.000 

p(Olll) 0.025 0.091 
r=2 p(OOO) 0.316 p(lOOO) 0.027 0.091 

p(OOl) 0.091 p(lOOl) 0.049 0.000 
p(OlO) 0.000 p(1010) 0.000 0.000 
p(Oll) 0.091 p(lOll) 0.027 0.000 
p(lOO) 0.091 p(llOO) 0.052 0.091 
p(101) 0.000 p(llOl) 0.029 0.000 
p(llO) 0.091 p(lllO) 0.024 0.091 
p(lll) 0.319 p(llll) 0.300 0.227 

Comparison of Diffraction Patterns for the 3C/6H Process 
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Figure 7.7: The diffraction pattern for a lattice stacked according to the 3C/6H process (solid line) and the 
r = 1 approximation ( dashed line). We see that the rise at l = ½ in the diffraction pattern for the 3C /6H 
process is completely absent in the r = 1 approximation. 
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Q.(n) vs. n for 3C/6H process: Comparison with the r = 3 Approximation 
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Figure 7.10: The Q.(n) vs. n for the 3C/6H process (solid line) and the r = 3 approximation to the process 
(dashed line). Here we see quite good agreement between the correlation functions for r = 3 approximation 
to the process and those of the actual process. 

Comparison of Diffraction Patterns for the 3C/6H Process 
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Figure 7.11: The diffraction pattern for a lattice stacked according to the 3C/6H process (solid line) and 
the r = 3 approximation (dashed line}. As with the r = 3 correlation functions, the agreement between 
the r = 3 approximation to the diffraction pattern and the diffraction pattern of the actual process is quite 
good, except for the small rises at l = ¼ and i. We interpret this as resulting from the fact that at r = 3 
there is not a sufficient structure in the graph to simultaneously support both 3C and 6H simple cycles. 
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Table 7.5: Machine reconstruction results for the noisy period two system. Comparing the last two columns 
we see that the same difficulty that arose in the 3C/6H/2H process is present here, namely that the recurrent 
portion of the t-machine is not strongly connected since p(OOOO) #-0 even though p(000l) = p(lO00) = 0. 
The problem is less severe here due to the smallness of the weight attached to p(OOOO). The other word 
probabilities are reasonably well-represented by the r = 3 approximation. 

r values Words Word r values Words Reconstructed Exact 
Probabilities WPs WPs 

r=0 p(0) 0.250 r=3 p(0000) 0.007 0.000 
p(l) 0.750 p(000l) 0.000 0.000 

p(00lO) 0.000 0.000 
r = 1 p(00) 0.000 p(00ll) 0.000 0.000 

p(0l) 0.250 p(0lO0) 0.005 0.000 
p(lO) 0.250 p(0lOl) 0.116 0.125 
p(ll) 0.500 p(0ll0) 0.010 0.000 

p(0lll) 0.115 0.125 
r=2 p(000) 0.000 p(lO00) 0.000 0.000 

p(00l) 0.000 p(lO0l) 0.005 0.000 
p(0lO) 0.125 p(1010) 0.122 0.125 
p(0ll) 0.125 p(1011) 0.124 0.125 
p(lO0) 0.000 p(ll00) 0.002 0.000 
p(lOl) 0.250 p(ll0l) 0.132 0.125 
p(ll0) 0.125 p(lll0) 0.116 0.125 
p(lll) 0.375 p(llll) 0.249 0.250 

Q8 (n) vs. n for the Noisy Period Two Process and The r = 0 Approximation 
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Figure 7.12: The Q.(n) vs. n for the noisy period two process (solid line) and the r = 0 approximation to 
the process (dashed line). We see that both decay quickly to the asymptotic value of ½, but there is some 
small difference for small n. 
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Figure 7.15: The diffraction pattern for a lattice stacked according to the noisy period two process (solid 
line) and the r = 1 approximation ( dashed line). 

Q8 (n) vs. n for the Noisy Period Two Process and The r = 2 Approximation 
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Figure 7.16: The Q.(n) vs. n for the noisy period two process (solid line) and the r = 2 approximation to 
the process ( dashed line). 
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Figure 7.19: The diffraction pattern for a lattice stacked according to the noisy period two process (solid 
line) and the r = 3 approximation ( dashed line). 

column of table 7.5, along with the word probabilities for the noisy period two in the last column. 
There are several curiosities. We found that the lower approximations were detecting the forbidden 
word '00' and words constructed from it. At r = 3, some of these words have become 'unforbidden.' 
For example, '0100', containing '00' as a subword is forbidden by the noisy period two process, but 
r = 3 approximation assigns it a small probability weight of 0.005. We do acquire a new irreducible 
forbidden word at r = 3, '0110', but the r = 3 approximation gives this a small probability weight 
of 0.010. Most troubling is the isolated node '0000'. While assigning only a small weight of 0.007, 
it is nonetheless isolated from the rest of the graph as p(000l) = p(lO00) = 0.000. The same 
difficulty that plagued us in the 3C/2H/6H process arises here. Given the small weight, though, 
we chose to ignore it and proceed as if p(0000) = 0.000. A plot of Q8 (n) versus n for both the 
r = 3 approximation and the noisy period two is given in figure 7.18. We see excellent agreement. 
There is similar excellent agreement between the diffraction patterns as shown in figure 7.19. The 
broad diffuse maximum is well-represented by the r = 3 approximation, but the minimum at l = i 
is slightly off. There is a rise in the spectrum of the noisy period two that is not accounted for 
well in the r = 3 approximation. From the example in §7.2, we see that the details of the diffuse 
background scattering are important, and the point is reinforced here. 

Table 7.6 gives the computational results for the noisy period two and the four r approximations. 
As we might expect, the entropy density decreases with increasing r, except for the r = 2-+ 3 step. 
There is a slight rise in hµ- This is counter-intuitive, and it is not known why hµ increases. 

7.4 Machine Reconstruction for the Even Process 

As a final example, let us consider another process that we will not be able to find using a finite r 
procedure. Instead, we expect to once again generate graphs of increasing size that approximate the 
process. The recurrent portion of the €-machine for this process is given in figure 5.41. The machine 
reconstruction results for the first four r approximations are shown in table 7.7. 

Figure 7.20 shows the comparison between the r = 0 approximation and the even system for 
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Q.(n) vs. n for the Even Language 
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Figure 7.20: The Q.(n) vs. n for the even process (solid line) and the r = 0 approximation to the process 
( dashed line). 
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Figure 7.21: The diffraction pattern for a lattice stacked according to the even process (solid line) and the 
r = 0 approximation ( dashed line). 
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Diffraction Pattern for Even Language 
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Figure 7.23: The diffraction pattern for a lattice stacked according to the even process (solid line) and the 
r = 1 approximation (dashed line). 

Q 8 (n) vs. n for the Even Language 
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Figure 7.24: The Q,(n) vs. n for the even process (solid line) and the r = 2 approximation to the process 
( dashed line). 
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Figure 7.27: The diffraction pattern for a lattice stacked according to the even process (solid line) and the 
r = 3 approximation (dashed line). 

Table 7.8: Computational results for the even process and the r = 0, 1, 2 and 3 approximations. As with 
the noisy period two process, there is a slight rise in the entropy density as r goes from 2 to 3. 

System Language Type r hµ G Cµ E T 
Even ss 00 0.667 0.333 0.918 0.913 3.09 
r = 0 Approximation SFT 0 0.918 0.082 0.0 0.0 0.000 
r = 1 Approximation SFT 1 0.874 0.126 0.918 0.044 0.044 
r = 2 Approximation SFT 2 0.792 0.208 1.79 0.208 0.290 
r = 3 Approximation SFT 3 0.803 0.197 2.63 0.222 0.351 

results are given in table 7.8. We see the same decrease in entropy density as r increases except at 
r = 2 ➔ 3, where there is a slight increase in hµ-



Chapter 8 

Previous Classifications of Disorder 
in Layered Materials 

8 .1 Overview 

A zeroth order attempt to 'classify' disorder in physical systems is to acknowledge that the disorder 
exists, but give no further details. This is the approach taken in a recent paper on determination 
of the polytype distribution in SiC (26]. There the authors perform x-ray diffraction experiments 
on powder samples of SiC. For several samples, they discovered diffuse background scattering which 
they can not associate with any crystalline polytype. They can, however, determine the fraction 
of the scattered intensity diffracted into this background, and simply refer to this fraction as the 
percentage of disorder present. It is certainly an honest approach, akin to the admission of ignorance. 
We believe much more desirable though, is a statistical description of this disorder. Another approach 
with a long history is the assumption that there is a crystal structure present but that there are 
stacking errors, or faults present, which lead to the disorder. Typically, often guide by intuition, and 
ease of implementation, one assumes a certain number and kind of possible ways for the disorder 
to exist and calculates what effect this disorder can have on the diffraction pattern. Often this 
analysis is confined to considering only the effect of the assumed disorder on the Bragg peaks. We 
saw in §7.2 that this can be misleading. Proposed structures may account relatively well for the 
placement, intensity, shape, etc. of Bragg peaks but still not represent the underlying mechanism. 
It is important to take into account the intensity distribution over an entire unit interval. Recent 
work by Gosk (30] (31] does just this, but he is still adheres to a picture of imposing a priori a 
select number and kind of possible faults. We have several difficulties with these approaches. The 
first is not specific enough, and the second requires assumptions that in general are not supportable 
and in fact may be misleading. A more serious objection of the second approach is our contention 
that the fundamental picture of faulting is deeply flawed. We discuss this in detail in §9.2. A 
final quibble is perhaps philosophical. Instead of needing to assume some underlying mechanism, 
we would rather make fewer initial assumptions and let the data more directly tell us about the 
underlying mechanism. 

The zeroth order attempt at describing disorder is simple enough and needs no further exposition. 
We do wish, however, to examine the faulting picture more closely so that we may compare our results 
with previous work. 
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Figure 8.1: Growth faults in the 2H structure of ZnS depicted on an r = 3 de Bruijn graph. The broad 
solid lines represent the 2H structure, the dashed lines are the growth faults, and the thin solid lines are 
the remainder of the graph. For convenience, only the faults in the upper portion of the graph are shown, 
corresponding to an insertion of a 1. In general, there are of course the spin inverse of these present (insertion 
of a 0), and these faults occupy the spin symmetric portion in the lower part of the graph. Growth faults 
can be seen on a r = 1 graph. 
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... AB AB I CA CA CA ... 

The vertical bar indicates the plane across which the slip occurred. In terms of relative spins, a 
deformation fault in the 2H structure is realized by flipping a spin. In this example, the unfaulted 
sequence ... 10101010 ... transforms to ... 10111010 ... , where again the underlined character demarcates 
the flipped spin. The minimum size de Bruijn graph on which this fault can be demonstrated is 
r = 3. This is shown in figure 8.3. 

In the 3C structure, deformation faults appear much the same. An example of a deformation 
fault in a 3C structure is 

... AB CAB C I B CAB CA ... 

The vertical bar again indicates the slip plane. Expressed in relative spins, the unfaulted 3C crystal, 
... 11111111 ... , becomes ... llllQlll..., giving a single spin flip. This can be expressed on a r = 1 de 
Bruijn graph; it is shown on a r = 3 de Bruijn graph in figure 8.4. 

8.2.3 Layer Displacement Faults in the 2H and 3C structure of ZnS 

Layer displacement faults are characterized by a shifting of one or two layers in the crystal, while 
leaving the remainder of the crystal undisturbed. As such, these faults do not interrupt the long 
range order present in a structure. They are thought to be introduced at high temperatures by 
diffusion of the atoms through the crystal. Sebastian and Krishna [60] give a nice discussion of the 
possible mechanisms. In the 2H structure, an example of a layer displacement fault is: 

... AB ABC BAB A ... 

where the underlined layer is the faulted layer. Written as relative spins, ... 10101010 ... becomes 
... 10110010 ... , the underlined characters indicating the the relative spins that have flipped. The 
minimal de Bruijn graph necessary to show this structure is r = 3, and this is displayed in figure 8.5. 

Layer displacement faults in 3C structures are more difficult to realize, since each layer is sand
wiched between two unlike layers and changing its orientation would violate stacking constraints. It 
is therefore necessary for two adjacent layers to shift. Consequently one might expect that these are 
more rare. An example of layer displacement is the following: 

... A BC ABC BACA BC A ... 

where the underlined layers are faulted. The relative spin sequence changes from a series of all ls 
to one where three consecutive spins have been flipped to 0. The minimal graph on which this can 
be demonstrated is r = 3, and this is shown in figure 8.6. 

8.2.4 Additional Faulting Structures 

The previous examples by no means exhaust all the possible faulting structures known or postulated 
to be important in polytypism of close-packed lattices. Additionally, one finds the double deforma
tion fault for 3C structures, shown in figure 8. 7. Another fault, unnamed and requiring a de Bruijn 
graph of r = 4 is postulated in 2H structures. There are also faults that are believed to correspond 
to the removal or insertion of entire layers in the crystal. Called extrinsic faults, one mechanism for 
their creation is irradiation. They have high fault energies, and are thus rare. None of the samples 
considered in this work have been irradiated, so it is not discussed further here. 
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Figure 8.4: Deformation faults in the 3C structure of ZnS depicted on an r = 3 de Bruijn graph. The broad 
solid lines represent the 3C structure (only the positive chirality structure (1)* shown), the dashed lines are 
the deformation faults, and the thin solid lines are the remainder of the graph. 
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Figure 8.6: Layer displacement faults in the 3C structure of ZnS depicted on an r = 3 de Bruijn graph. The 
broad solid lines represent the 3C structure (only the positive chirality structure (1)* shown), the dashed 
lines are the layer displacement faults, and the thin solid lines are the remainder of the graph. 



Chapter 9 

E-Machine Reconstruction from 
Experimental ZnS Diffraction 
Patterns 

Now that the work of previous researchers has been discussed and new theoretical tools and pro
cedures have been introduced, we are equipped to examine experimental spectra and discover the 
underlying process which gives rise to them. We will examine seven diffraction patterns for single 
crystal ZnS found in reference [60]. They will be referred to by the page number on which they 
appear in [60]. Even though the data was taken in the mid 1980s, it unfortunately is only available 
in graphical form [55]. It was therefore necessary to scan the graphs and digitize the data. 

A brief word about significant figures in the following. While most quantities are calculated to a 
precision of three decimal places, this in no way implies that any quantity is this well known. Recall 
that the spirit of this work is exploratory, and we are attempting to expound a new technique for 
the characterization and discovery of patterns in the stacking order of ZnS. As such, we do not want 
the clarity and power of the exposition to be lost in too little precision. No error analysis has been 
attempted, but if one were performed, the error would undoubtedly be large. 

9 .1 Machine Reconstruction from Experimental Diffraction 
Pattern SK229 

The diffraction pattern along the 10.l row for an as grown 2H ZnS crystal is shown in figure 9.1 
and the diffraction pattern corrected for C(l) is displayed in figure 9.2. We immediately notice in 
figure 9.2 that the pattern is not periodic in l, but instead suffers from variations in the intensity. 
We see that the peaks at l = -½ and ½, are of similar intensity, but the peak at l = ! seems 
to be have about roughly one-half their brightness. The peaks at l = 0 and 1 also differ in their 
intensity. So we can be sure that this spectrum contains substantial error, and we will find this to 
plague the other spectra as well. As discussed in §4.2, there are criteria we can use to help select 
a unit interval over which the intensity seems not to vary too much. Looking at the spectrum in 
figure 9. 2, we might expect this interval to be between l = - ½, ½, and we indeed find that choosing 
lo = -0.33 gives reasonable figures of merit, namely Q.(l) = 0.008, 1 = -0.489 and o: = 1.004. The 
first few correlation functions found by integrating over this interval are shown in table 9.1. Values 
near one-half for the Qc(n) and Qr(n) with odd n are what we expect for a disordered 2H crystal. 
Calculating the correlation length for the Qs up ton = 40, we find it to be Aq = 19 ± 2. In figure 9.3 
a plot of Q.(n) vs. n is given that shows the oscillatory behavior in Q.(n) with period two over the 
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Diffraction Pattern for Experimental Data from ref sk229 
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Figure 9.2: Diffraction pattern for Experimental Data SK229 corrected for C(l). 

Q8 (n) vs. n for the Experimental Data SK229 
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Figure 9.3: The Q.(n) vs. n for Experimental Data SK229. We use lo = -0.330 and get a value of 
1 = -0.489 and a = 1.004. We find a correlation length of Aq = 19 ± 2 over the first forty layers. 
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Figure 9.4: The r = 3 machine for diffraction pattern SK229. The bold arcs correspond to the 2H crystal 
structure and the dashed arcs have so little probability that we can take them to be zero for the purpose of 
decomposing the graph into a crystal and faults. The missing 0110 arc indicates that this word is absent. 
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Diffraction Pattern for Experimental Data from SK230 

1200 

1000 
C/J ..., 
·a 
:::, 

800 
..c .... 
ell 

.s 600 
>, ..., 
"cil 400 .:: 
CJ.) ..., 
.:: ..... 

200 

0 
-0.5 0 0.5 1 1.5 

l 

Figure 9. 7: Uncorrected diffractometer pattern of intensity vs. l along the 10.l row for a perfect 2H crystal 
of ZnS after annealing for one hour at 300 C. Experimental Data SK230. 

Table 9.4: The first few Qs for experimental data SK230. 

n Qc(n) Qr(n) Qs(n) 
1 0.467 0.524 0.009 
2 0.164 0.077 0.759 
3 0.398 0.439 0.163 
4 0.214 0.124 0.662 
5 0.396 0.450 0.154 
6 0.242 0.106 0.652 

9.2 Machine Reconstruction from Experimental Diffraction 
Pattern SK230 

Figure 9. 7 shows the diffraction pattern along the 10.l row of a perfect 2H ZnS crystal that has been 
annealed at 300 C for one hour. The same diffraction pattern corrected for C(l) is shown in figure 9.8. 
Again we notice that the intensity is not periodic in l, but appears to fall off slowly as l increases. The 
intensity seems to have been reduced by a factor of two on the interval -0.5 ~ l ~ 1.5. Integrating 
over the interval -0.63 ~ l ~ 0.37 we find the figures of merit to be Q 8 (n) = 0.009, 'Y = -0.486 and 
a = 1.022. The first few correlation functions found from integrating over this interval are shown in 
table 9.4. We can see values of Qc(n), Qr(n) near one-half for n odd, suggesting that the original 
2H structure is not too corrupted. This is reasonable considering strong peaks at integer and half 
integer l. Considering the first forty layers we get a correlation length of Aq = 8.4 ± 0.4. 

The results for machine reconstruction appear in table 9.5 and figure 9.10. We notice immediately 
two missing arcs, 0011 and 1001. Again the probability weights on the arcs corresponding to the 2H 
cycle are large, the sum of p(0lOl) and p(1010) being 60.9%. The remaining 30% arc weight can be 
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Table 9.5: Machine reconstruction results for the experimental diffraction pattern SK230. The fitness for 
the r = 3 solution is :F = 1.01 x 10- 5 . 

r=0 p(0) 0.528 r=3 p(0000) 0.066 
p(l) 0.472 p(000l) 0.049 

p(00lO) 0.049 
r = 1 p(00) 0.164 p(00ll) 0.000 

p(0l) 0.380 p(0lO0) 0.026 
p(lO) 0.380 p(0101) 0.316 
p(ll) 0.077 p(0ll0) 0.031 

p(0lll) 0.005 
r=2 p(000) 0.118 p(lO00) 0.049 

p(00l) 0.046 p(1001) 0.000 
p(0lO) 0.347 p(1010) 0.293 
p(0ll) 0.032 p(1011) 0.036 
p(lO0) 0.046 p(ll00) 0.022 
p(lOl) 0.334 p(ll0l) 0.011 
p(ll0) 0.032 p(lll0) 0.005 
p(lll) 0.045 p(llll) 0.040 

relegated to disorder. Again we can attempt to understand this disorder in terms of stacking faults. 
One possible break down is to say that the simple cycle 1011 ➔ 0111 ➔ 1110 ➔ 1101 is a deformation 
fault and assign to each arc the same weight. This can be done if each is given the weight 0.005. We 
might then want to identify the cycle 1011 ➔ 0110 ➔ 1101 as a growth fault, and assign the weight 
of 0.006 to each arc. If we then follow the cycle 1011 ➔ 0110 ➔ 1100 ➔ 1000 ➔ 0001 ➔ 0010 
this appears to be a deformation fault, with each arc bearing a weight of approximately 0.022. We 
can finally round out the faults by taking the cycle 0100 ➔ 1000 ➔ 0001 ➔ 0010 as a deformation 
fault with each arc taking a weight of about 0.026. This is a consistent breakdown of the graph into 
crystalline and faulted cycles, but it is not the only possible such decomposition. 

We could, for instance, take the position that there is no (single) deformation fault on the upper 
part of the graph by instead treating the cycle 1011 ➔ 0111 ➔ 1110 ➔ 1100 ➔ 1000 ➔ 0001 ➔ 0010 
as a fault in its own right. One can find a logically consistent distribution of stacking faults under 
this assumption that differs from the previous analysis. We then are faced with a situation of a 
single graph giving rise to two different faulting configurations, and should well question the validity 
and usefulness of the fault picture. It seems rather that the graph is the thing, being concise and 
unique at each r. It is perhaps not as intuitive as thinking of a crystal permeated with a certain 
fraction of stacking 'errors', but it is unambiguous. We consider this no mere semantic quibble 
either. Where the faulting picture becomes less tenable as the fraction of stacking faults increases, 
the graphical picture seamlessly handles any amount of disorder, from a near perfect crystal to 
complete randomness and everything in between. Indeed, the graph, or €-machine, provides the 
minimum structure needed to specify the statistics of the stacking. In short, it is the answer. Our 
interpretation of the graph is then a matter of convenience and perhaps psychology, but a description 
of disordered structures based on 'faultology' is not fundamental. 

This point can be made more quantitative by a careful treatment of our procedure for assigning 
stacking faults. It is always possible to break down an infinite sequence generated by de Bruijn 
graph into a sequence of simple cycles. This decomposition however is not unique. Since a simple 
cycle is just the indefinite repetition of a finite length sequence, we see that this just corresponds 
to some crystal structure. A graph, of course, may have more that one simple cycle. If there are 
two such cycles sharing, say, a node, and the conditional probability to branch at this node strongly 
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Q.(n) vs. n for Experimental Data SK230 

1 

0.8 

~ 
0.6 

.. 
0 

0.4 

0.2 

0 
0 5 10 15 20 25 30 35 40 45 50 

n 

Figure 9.11: The Q,(n) vs. n for Experimental Data SK230 (solid line) and the r = 3 approximation 
( dashed line). 
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Figure 9.12: The diffraction pattern for Experimental Data SK230 and the r = 3 approximation. 
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Figure 9.13: Uncorrected single crystal diffractometer reading along the 10.l reciprocal lattice row after 
annealing a 2H ZnS crystal at 600 C for one hour. SK231 experimental data. 

a likely cause is undiscovered computation in the process. Such order might be manifest in higher 
r diagrams. Indeed there is speculation that the transformation to the 6H structure (111000)* is 
important in annealed crystals. In order to detect competition between the 3C and 6H structures 
it is important that there be a 'barrier' between them, that is their cycles must not share a node. 
For r = 3, they share the 111 node; so, by construction, the proposed process lacks the necessary 
richness to model this. There is such a barrier in r = 4 graph, as seen in §7.1, 7.2, and we have hopes 
that the competition between these polytypes can be detected there. That is, however, beyond the 
scope of this current work. In figure 9.12, we observe that the agreement between the experimental 
diffraction pattern and the diffraction pattern from the r = 3 approximation to it is less than 
satisfactory. Again, smeared out peaks is what we expect if the process does not contain sufficient 
structure to model the computation present. 

9.3 Machine Reconstruction from Experimental Diffraction 
Pattern SK231 

In figure 9.13 we see the diffraction pattern along the 10.l row for a ZnS crystal annealed at 600 C for 
one hour and figure 9.14 shows this same pattern after correcting for C(l). This pattern also suffers 
from a lack of periodicity in l although the symmetry present leads us to hope that the gradual falling 
off of intensity is not too great over either the interval - 1.0 :S l :S 0.0 or 0.0 :S l :S 1.0. Indeed, 
the figures of merit over the former interval are rather good, being Q 8 (n) = 0.000, 'Y = -0.500, and 
o: = 1.024. The first few correlation functions found by integration over this interval are given in 
table 9.8. We notice that these first few Qs, save those at n = 1, are confined to a rather narrow 
interval of 0.244 :SQ:S 0.487. Compared with previous patterns, this one doesn't seem to have as 
much variation, the Qs having more in common with a random number generator. We might guess 
that the original 2H structure is largely obliterated, and in fact the total weight assigned to the 
1010 and 0101 arc is 14.8%. This is not much more than one sees in a random number generator 
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Q 5 (n) vs. n for the Experimental Data SK231 
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Figure 9.15: The Q.(n) vs. n for Experimental Data SK231. We use lo = -1.000 and get a value of 
1 = -0.500 and o = 1.024. We find a correlation length of Aq = 6.8 ± 1.7 over the first twenty n. 

Table 9.9: Machine reconstruction results for the experimental diffraction pattern SK231. We find a fitness 
of :F = 2.52 x 10- 4 for the r = 3 solution. 

r=0 p(0) 0.498 r=3 p(0000) 0.214 
p(l) 0.502 p(000l) 0.041 

p(00lO) 0.056 
r = 1 p(00) 0.324 p(0011) 0.011 

p(0l) 0.186 p(0lO0) 0.038 
p(lO) 0.186 p(0lOl) 0.084 
p(11) 0.304 p(0110) 0.040 

p(0111) 0.028 
r=2 p(000) 0.251 p(lOO0) 0.043 

p(00l) 0.072 p(lO0l) 0.024 
p(0lO) 0.116 p(1010) 0.064 
p(011) 0.071 p(1011) 0.057 
p(lO0) 0.072 p(1100) 0.029 
p(lOl) 0.114 p(1101) 0.040 
p(ll0) 0.071 p(lll0) 0.036 
p(lll) 0.233 p(llll) 0.193 
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Q.(n) vs. n for Experimental Data SK231 
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Figure 9.17: The Q,(n) vs. n for Experimental Data SK231 (solid line) and the r = 3 approximation 
( dashed line). 
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Figure 9.18: The diffraction pattern for Experimental Data SK231 and the r = 3 approximation. 
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Figure 9.20: The diffraction pattern for Experimental Data SK232 corrected for C(l). 

Table 9.11: The first few Qs for experimental data SK232 found by integration over the interval -0. 72 :S 
l '.S 0.28. 

n Qc(n) Qr(n) Qs(n) 
1 0.542 0.445 0.014 
2 0.289 0.406 0.305 
3 0.274 0.211 0.515 
4 0.388 0.387 0.225 
5 0.358 0.397 0.245 
6 0.260 0.214 0.526 
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Figure 9.22: The r = 3 machine for diffraction pattern SK232. 
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Figure 9.24: The diffraction pattern for Experimental Data SK232 and the r = 3 approximation. 
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9.5 Machine Reconstruction from Experimental Diffraction 
Pattern SK134 

Figure 9.25 shows the diffraction pattern along the 10.l row of a ZnS crystal obtained from annealing 
a perfect 2H crystal at 300 C for one hour. The same diffraction pattern is shown in figure 9.26 
after correcting for C(l). Like the other diffraction patterns from this series, there is no strict 
periodicity in l but rather a slow degradation in the intensity as one moves from left to right across 
the spectrum. We use the same standard criteria to help select a unit interval to analyze, and we 
find that integration over the interval 0.04::; l 1.04 gives the figures of merit to be Q8 (l) = -0.006, 
1 = -0.509, and a= 0.948. The first few correlation functions are shown in table 9.14 and a plot of 
Q8 (n) vs. n is shown in figure 9.27. The correlation functions show large and roughly equal values 
for the Qc(n), Qr(n) for n odd, suggesting that this crystal retains much of its original 2H character. 
Indeed, examining the machine reconstruction results in table 9.15 we see that arcs 0101 and 1010 
together comprise 65.5.% of the probability weight for the total graph. The fitness for this machine 
reconstruction is F = 5.25 x 10- 5 • We find a correlation length of Aq = 9.5 ± 0.5 over the first forty 
layers. 

In most respects we see that this spectrum is much like SK230. Both began as perfect 2H crystals 
and have been annealed at 300 C for one hour. Both retain much of their much original 2H structure, 
(60.9% and 65.5% respectively) and have similar correlation lengths (8.4 and 9.5 respectively). The 
rate of entropy production per layer is similar (hµ = 0.487 and 0.501 respectively). This speaks well 
of the consistency of our technique. 

Figure 9.29 shows a comparison of the Q 8 (n) obtained from the experimental diffraction pattern 
and that obtained from the r = 3 approximation. Differences become apparent around n :::,:j 16, with 
the approximate machine underestimating the correlations for larger n. This is behavior similar to 
that which we saw in SK230, except there the disagreement began at at n :::,:j 10. Sebastian and 
Krishna [60] attribute the disorder in both cases to deformation faulting, but in this present case 
they give a specific probability for this faulting, namely 5%. They arrive at this value by considering 
in some detail the change in the shape, placement, etc of the peaks. They examine several candidate 
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Table 9.14: The first few Qs for experimental data SK134 found by integration over the interval 0.04 ~ l ~ 
1.04. 

n Qc(n) Qr(n) Qs(n) 
1 0.502 0.504 -0.006 
2 0.077 0.133 0.790 
3 0.475 0.408 0.117 
4 0.093 0.197 0.710 
5 0.478 0.402 0.120 
6 0.116 0.211 0.673 

Q8 (n) vs. n for the Experimental Data SK134 
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Figure 9.27: The Q.(n) vs. n for Experimental Data SK134. We use lo = 0.040 and get a value of 
1 = -0.509 and a = 0.948. We find a correlation length of Aq = 9.5 ± 0.5 over the first forty n. 
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Experimental Diffraction Pattern from SK134 
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Figure 9.31: The diffraction pattern for Experimental Data SK134 (solid line) and the r = 3 approximation 
( dashed line). 
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Figure 9.32: The diffraction pattern for Experimental Data SK134 (solid line) and the fault model (dashed 
line). 
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Diffraction Pattern for Experimental Data from SK135 
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Figure 9.34: Corrected diffraction pattern for Experimental Data SK135. 

Table 9.17: The first few Qs for experimental data SK135. 

n Qc(n) Qr(n) Qs(n) 
1 0.475 0.523 0.002 
2 0.376 0.395 0.229 
3 0.228 0.139 0.633 
4 0.401 0.480 0.120 
5 0.355 0.354 0.291 
6 0.283 0.198 0.519 

as a disordered 3C crystal, due to the presence of asymmetrically broaden peaks and the absence 
of peak shifts. This same diffraction pattern corrected for C(l) is shown in figure 9.34. Again there 
is no strict periodicity in the spectrum which we attribute to experimental error. Employing our 
criteria for selecting a suitable interval to analyze, we find that the interval -0.80 :S l :S 0.20 gives 
figures of merit to be Q 8 (l) = 0.002, "Y = -0.498 and o: = 0.932. Using this interval, we find the 
correlation functions and the first few of them are shown in table 9.17. Since Qc(3) :::::: 0.23 f:. 0.5, 
and Qr(3) :::::: 0.14 f:. 0.5, we expect that the original 2H structure has largely been eliminated. A 
plot of Q8 (n) vs. n for this data is given in figure 9.35. We find a correlation length for this crystal 
to be Aq = 4.4 ± 0.7. 

Examining the r = 3 machine reconstruction results for this process in table 9.18 we see that 
the antiferromagnetic arcs (0101 and 1010) have a relatively small combined weight of only about 
4%. In fact, the probability weight for the 0101 arc is zero. So our original suspicion that the 2H 
structure has largely been eliminated proves correct. In its place we see large ferromagnetic arcs of 
nearly equal weight occupying a total of 54% of the weight on the graph. So we agree with Sebastian 
and Krishna that this is a disordered, twinned crystal. In addition to the 0101 arc, we also find 
the 1001 and 0010 arcs missing. Looking at the r = 3 graph in figure 9.36, this implies that the 
twinning fault mechanism is important, as Sebastian and Krishna found, but also the remnant of the 
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Table 9.19: Computational results for the r = 0, 1, 2 and 3 approximations to experimental data SK135. 

System Language Type r hµ G Cµ E T 
r = 0 Approximation SFT 0 0.998 0.002 0.000 0.000 0.000 
r = 1 Approximation SFT 1 0.775 0.225 0.999 0.224 0.224 
r = 2 Approximation SFT 2 0.727 0.273 1.775 0.320 0.367 
r = 3 Approximation SFT 3 0.590 0.410 2.478 0.705 1.112 
Fault Approximation SFT 1 0.529 0.471 1.000 0.471 0.471 

1010 arc has some role. Instead of faulting ... 111110000 ... where the vertical line indicates the fault 
plane, we see that the path ... 1111101000 ... has nearly twice as much probability weight associated 
with it. In the lower portion of the graph, we see that twinned faulting is largely responsible for the 
(0)* fee cycle converting to the (1)* fee cycle and we also observe that double deformation faulting 
important. Perhaps it is interesting to mention that, while a modular layer of ZnS has spin inversion 
symmetry [71] and thus the one-dimensional Hamiltonian describing the energetics of the stacking is 
also spin invariant, in general these graphs are not spin inverse invariant. That is, the probability of 
seeing a word and its spin inverse is not the same. By spin inverse, of course we mean just flipping 
all the spins in a word, i.e. 1101 ➔ 0010. There is of course no reason why we should expect spin 
inversion; after all, then one could never have a crystal of purely one fee structure or the other. We 
note that the fault picture always assumes spin inversion symmetry. Sebastian and Krishna (1994) 
attribute the faulting to the mechanism of twinned faulting and assign a probability of 12% for this 
to occur. 

Examining the Q 8 (n) derived from experiment with those found from the r = 3 machine in 
figure 9.37, we find reasonable agreement up to n ~ 15, and slight deviations thereafter. Looking 
at the Q 8 (n) found from the faulting picture and comparing it with experimentally derived ones, 
figure 9.38, we find that the fault picture reproduces the general form of the plot, but overestimates 
the magnitude of the oscillations. We can further examine the diffraction patterns. In figure 9.39, 
the diffraction pattern found from the r = 3 approximation is compared with experiment. We see 
a reasonable fit, except perhaps at a shoulder in the experimental spectrum at l = -0.6 and the 
small rise at l = -0.16. We can speculate that there is some minor competition between the 3C and 
6H cycles that is not being well modeled here. Comparison of the fault derived diffraction pattern 
with that from experiment, figure 9.40, reveals good agreement with the peak at l = -½ and fair 
agreement with the one at l = -r However, the diffuse scattering between peaks is not at all well 
represented. Additionally, the small rise in diffuse scattering at l = ± ¼ is likewise absent in the 
fault model diffraction pattern. 

The computational results for the various machine approximations to the process generating the 
diffraction pattern SK135 are shown in table 9.19. While the fault approximation has a similar but 
slightly lower rate of entropy production per layer as compared to the r = 3 approximation, the other 
measures of computation are uniformly lower. This seems to indicate that the fault approximation 
is missing some important computational aspects of the stacking. 

9. 7 Machine Reconstruction from Experimental Diffraction 
Pattern SK137 

The last experimental spectrum we analyze is show in figure 9.41. The intensity versus l in reciprocal 
space for the 10.l row of an as grown crystal is shown. This same diffraction pattern corrected for 
C(l) is shown in figure 9.42. We see that the spectrum again is not strictly periodic in l, so we need to 
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Q.(n) vs. n for Experimental Data SK135 
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Figure 9.37: The Q,(n) vs. n for Experimental Data SK135 (solid line} and the r = 3 approximation 
( dashed line). 
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Figure 9.38: The Q.(n) vs. n for Experimental Data SK135 (solid line} and the fault approximation (dashed 
line). 



Chapter 9: t:-Machine Reconstruction from Experimental ZnS Diffraction Patterns 157 
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Figure 9.41: Uncorrected diffraction pattern for Experimental Data SK137. 

Table 9.20: The first few Qs for experimental data SK137. 

n Qc(n) Qr(n) Qs(n) 
1 0.484 0.506 0.010 
2 0.338 0.324 0.339 
3 0.230 0.245 0.525 
4 0.386 0.386 0.228 
5 0.377 0.367 0.255 
6 0.231 0.246 0.523 

choose an interval which gives the best figures of merit. We find this interval to be -0.80 ~ l ~ 0.20, 
and the figures of merit turn out to be Q 8 (l) = 0.010, , = -0.485 and a = 0.982. The first few 
correlation functions are tabulated in table 9.20 and a graph of Q8 (n) vs. n is shown in table 9.43. 
We find a correlation length of Aq = 12 ± 3. 

Machine reconstruction results can be found in table 9.21 and the the r = 3 machine is displayed 
in figure 9.44. Sebastian and Krishna [60] report this as a disordered 3C crystal, which we can 
confirm, as the ferromagnetic arcs consume about 44% of the weight in the graph. The faulting 
mechanism is not so clear. There is only one forbidden word, 0011, and the remaining words, 
save 1101, all appear at about the 3% to 9% level. We will not attempt a fault analysis since it 
certainly is not unique and most faulting mechanisms seem to play at least some role. Sebastian 
and Krishna [60] report that this crystal is well described by a random distribution of twin faults 
with a 6.8% of occurrence. 

A comparison of the Qs(n) derived from experiment and the Q 8 (n) obtained from the r = 3 
reconstructed machine is shown in figure 9.45. There is reasonable agreement until about n ~ 10, 
after which the reconstructed results fall off to the asymptotic value too soon. For n between 10 and 
40, the Q.(n) from the r = 3 approximate machine only weakly echo the oscillations in Q.(n) from 
experiment. This provides a hint that there is significant computation missing at r = 3. The fault 
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Figure 9.44: The r = 3 machine for diffraction pattern SK137. 
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Q,(n) vs. n for Experimental Data SK137 
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Figure 9.46: The Q,(n) vs. n for Experimental Data SK137 (solid line) and the fault approximation {dashed 
line). 

Table 9.22: Computational results for the r = 0, 1, 2 and 3 approximations to experimental data SK137. 

System Language Type r hµ G Cµ E T 
r = 0 Approximation SFT 0 1.000 0.000 0.000 0.000 0.000 
r = 1 Approximation SFT 1 0.924 0.076 1.000 0.076 0.076 
r = 2 Approximation SFT 2 0.816 0.184 1.922 0.291 0.398 
r = 3 Approximation SFT 3 0.651 0.349 2.744 0.792 1.408 
Fault Approximation SFT 1 0.359 0.641 1.000 0.641 0.641 

model with a 6.8% twinned fault probability fares worse. It over estimates the magnitude of the 
oscillations in the Q,(n) significantly for n::; 50. This simple model (it can after all be expressed as 
an r = 1 machine), seems to insert too much correlation into the Q,(n). A comparison of diffraction 
patterns is also possible. For the r = 3 reconstruction, figure 9.47 compares the diffraction pattern 
with the experimental one. The diffuse scattering is well represented, but the two peaks at l = -} 
and -½ lack sharpness. Comparing the diffraction pattern generated from the fault model with 
experiment as shown in figure 9.48, we see that the peaks are reasonably well reproduced but the 
diffuse scattering is almost completely absent in the fault model. The rise in intensity at l = - ½ is 
also missing in the fault model. 

Table 9.22 shows the computational quantities for the various r approximations and the fault 
model. The fault model misses much of the complexity present, as measured by Cµ and E. It is 
likely that neither the r = 3 approximation or the fault approximation is modeling the computation 
present very well, but clearly the fault picture falls far shorter of representing reality here. 
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9.8 Configurational Energies of Polytypes 

Now that we have a statistical model for the stacking of the layers, we can calculate physical 
parameters that depend on this stacking. One such quantity amenable to calculation is the difference 
in the configurational energies of the particular polytypes. Numerical calculations find that the 
configurational energy depend only the nearest and the next nearest neighbors in the stacking 
arrangement. Engel and Needs [21] have done a first-principles pseudopotential calculation of the 
total energy of five ZnS polytypes, from which they can determine the strength of the interactions 
up to the third nearest layer. The most general expression possible for inter-layer interactions up 
the third nearest neighbors is given by [64] 

Terms with an odd number of spins do not appear because of symmetry considerations. We take 
the Si = ±1 here. Engel and Needs [21] have found that 

J1 = 0.00187 eV per ZnS pair 
Jz = -0.00008 eV per ZnS pair 

J3 negligible 
K negligible 

Let us rewrite equation 9.1 in terms of the energy per ZnS pair, and take the zero of the energy such 
that E0 = 0. We have then, 

(9.2) 

where ( ... ) means the expectation value of' ... '. We can find the expectation values directly from 
word probabilities, 

(siSi+l) 

(siSi+2) 

p(ll) + p(00) - 2p(0l) 

p(lll) + p(IOl) + p(O00) + p(0IO) - 2p(110) - 2p(100). 

(9.3) 

(9.4) 

We show the configurational energy in terms of meV per ZnS pair in table 9.23 for both the 
crystalline structures considered by Engels and Needs as well as the seven disordered polytype 
structures on which we have performed machine reconstruction. We see that the two of the disordered 
samples, SK232 and SK135, have energies not too different from the lowest energy crystal, 3C. As 
we might expect from the relative magnitudes of J 1 and Jz, the contribution from the J 1 term 
completely dominates the energy. 

This is one example of a quantity that can be calculated once the statistical nature of the 
stacking is known. It is obviously desirable to calculate other measurable, physical parameters 
from the reconstructed f-machine. Examples of such quantities would be the specific heat and the 
transmission of electrons through a disordered, layered sample. 



Chapter 10 

Finale 

Understanding disorder in three dimensions is a difficult task [76]. Physicists often resort to descrip
tions that use correlation information, but this usually does not provide insight into the underlying 
mechanisms of the disorder or indeed, even provide a detailed picture of the disorder. Recent 
progress has been made, however, in the analysis and description of disorder in one-dimensional 
systems. These new methods provide a detailed way to describe, classify and quantify systems both 
simple, such as periodic structure, and complex. We can meaningfully discuss the entropy density 
in the one-dimensional system, as well as specify quantities that describe computation and memory. 
There have, however, been relatively few applications of these methods to physical systems. We 
bridge this gap for the case of polytypism. Since polytypes can be treated as a one-dimensional spin 
system and also have interesting physical properties not yet explained, they provide an ideal system 
to explore the usefulness of these theories. From the physical side, the phenomenon of polytypism 
has been known for nearly ninety years, but continues to defy theoretical explanation or, even in 
the case of disordered sequences, adequate description - until now. We have demonstrated that one 
can describe both the ordered and disordered stacking of polytypes using 1:-machines. Further, we 
have introduced a new technique that takes as input spectral information instead of the specific 
sequences for machine reconstruction. Since data from physical systems often comes in this form, 
we are hopeful that this will prove useful for pattern discovery elsewhere. In the process of applying 
these new ideas to the old mystery of polytypism, we have given a critical examination of the concept 
of faulting in polytypes. We have shown that, in the case where the faulting picture is meaningful, 
1:-machines provide an equivalent description, as in SK229. But we have discredited the general fault 
picture as inadequate to describe the disorder in polytypes, and have shown that 1:-machines provide 
a unique description, at each range of memory r, of the underlying architecture. Additionally, we 
demonstrate the usefulness of the 1:-machine description, in that we can calculate physical quantities 
from it, such as the range of interaction between modular layers and the stacking energy. We could 
also consider other quantities, such as the local density of phonon states, the specific heat and the 
transmission coefficient though layered structures [34]. Indeed, any quantity that can be expressed in 
statistical terms is amenable to calculation once a model of the underlying process (the 1:-machine) 
is known. For those that are not, a specific sample of the language can be used to numerically 
calculate quantities. This has important applications in terms of, say, heterostructures. There one 
is interested in how physical quantities change as the stacking rules are changed. Indeed, such het
erostructures can be made artificially in the laboratory and understanding how the band gap changes 
with the stacking rules has important consequences for semiconductor technology. It is known that 
the bad gap in ZnS is sensitive to the period of the polytype [60] and that there is an anomalous 
photovoltaic effect of up to several hundred volts/cm found only in disordered ZnS [20] [56] [65]. 

Let us now discuss our machine reconstruction results for experimental data. From the E-machine 
reconstruction procedure, we see that r = 3 captures most of the structure present. We can not rule 
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Appendix A 

Conjecture 

We state and prove a conjecture in this section. 

Conjecture 1 When a process results in two-layer correlation functions that decay to an asymptotic 
value, that value is 1/3. 

We begin by making some definitions. Suppose we have a sample consisting of N layers, where 
the orientation of the ith layer is denoted by Xi E {A, B, C}. Let us define a triad of quantities !a 
such that 

f (x. x.) _ { 1 if Xi is cyclically related to x 3 
c " 1 - 0 otherwise (A.I) 

with fr(Xi,Xj) and fs(Xi,Xj) defined in an obviously similar way. It is clear that the following 
identity must hold, 

V i,j. 

Using the /s, we can define the Qs. 

where a E { c, r, s}. We now write the identity 

Recognizing the last term in the inner sum as Q 8 (n), and inserting an identity, we have 

1 
Qs(n) + (N - n - I) 

N-n-1 

L Ur(Xk+n, Xk)[fs(Xk+n+l, Xk) + fc(Xk+n+t, Xk)] 

(A.2) 

(A.3) 

(A.4) 
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