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ABSTRACT 

Additive manufacturing (AM) is a relatively new manufacturing technology 

compared to the traditional manufacturing methods. Even though AM processes have many 

advantages, they also have a series of challenges that need to be addressed to adapt this 

technology for a wide range of applications and mass production.  

AM faces a number of challenges, including the absence of methods/models for 

determining whether AM is the best manufacturing process for a given part.  The first study 

of this thesis proposes a framework for choosing specific AM processes by considering 

complexity level of a part. It has been proven that the method works effectively through 

numerical experiments. 

Optimization of process parameters through expensive and time-consuming 

experiments is another issue with AM. To address this issue, an empirical model is 

presented in the second study to optimize parameters for minimizing building costs through 

maximizing the trade-off between productivity and quality. The proposed model proves to 

be effective in reducing building costs at any quality level. The results indicate that process 

parameters can be optimized quickly and accurately, as compared to the time-consuming 

and expensive experimental methods. 

Another limitation of AM is the lack of capability to use multiple materials, which 

is a concern when adapting this technology to mass production. To address this issue, a 

new scheduling model with considering multi-material types is introduced in the third 

study. Based on the numerical results, the proposed model can provide optimal sequence 

by maximizing the trade-off between tardiness and material switching cost.  
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CHAPTER 1. INTRODUCTION 
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1.1. Additive Manufacturing  

1.1.1. What is Additive Manufacturing 

A definition of additive manufacturing (AM) refers to what was formerly known as rapid 

prototyping (RP) but is more commonly referred to by its current name, 3D Printing. RP is 

a term used widely in a variety of industries to describe a process for creating a system or 

component model before a commercialized product (Gibson et al., 2015). It is a 

manufacturing technology which is based on a layer-by-layer process that creates a part 

directly from the data provided by Computer-Aided Design (CAD) files (Fox et al., 2016). 

In contrast to subtractive manufacturing (SM) processes which subtract material to achieve 

desired geometry, AM adds material to the main piece to create the final parts. Therefore, 

AM processes are widely used in new product development. Figure 1.1 shows new product 

development involving AM. It shows that using AM enables users to save a lot of time and 

effort in new product development. Aside from that, it will also give users the chance to 

try more models. Recent interest in this technology has led to its constant evolution, 

reimagination, customization, and adaptation to a multitude of industries including 

automotive, aerospace, engineering, medicine, biological systems, and food supply chains 

(Gao et al., 2015). 

Across manufacturing industries, AM technologies have the potential for expanding the 

capabilities of SM processes, manufacturing machinery, and supply chains. With AM, a 

more flexible manufacturing environment can be provided to corporations by reducing the 

number of production lines and dependence on thirty-party suppliers. By providing these, 
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it can positively impact smaller firms and end-users by enabling them to become self-

sufficient “designers and manufacturers” that can develop innovative products and 

production systems (Gao et al., 2015). 

1.1.2. The Types of Additive Manufacturing Processes 

AM processes can be used with three types of materials, namely polymer, ceramic, and 

metal (Additive manufacturing researh group, 2020). The polymer is a widely used 

material in AM applications. The most common types of polymers used in additive 

manufacturing systems are acrylic butadiene styrene (ABS), polylactide (PLA), 

polycarbonate (PC), polyamide (Nylon), epoxy resin, wax, and photopolymer resin (Petrie, 

2019). The widely used ceramic-based powders are silica glass, porcelain, silicon carbide 

(Travitzky et al., 2014). The following metals are suitable for the manufacturing structural 

and integral component parts: Maraging steel, titanium alloy (Ti6AI4V), 15-5ph stainless 

steel, cobalt chrome alloy, aluminum (alsi10mg), gold, and silver (Seifi et al., 2016). 

Different AM processes require different material types. The following paragraph will 

discuss the variations of AM processes by mentioning the material they utilize. 

Different types of AM processes are actively used around the world for various purposes. 

They are classified into three categories: liquid-based, solid-based, and powder-based. 

Liquid-based and powder-based systems dominate the industry today (Wong and 

Hernandez, 2012). The major and widely used AM processes are as follows: 

Stereolithography, fused deposition modeling, binder jetting, selective laser sintering 

(SLS), selective laser melting (SLM), and electron beam melting. 
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Figure 1.1 Product development cycles (Wong and Hernandez, 2012)  
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Stereolithography 

One of the most widely used AM process is stereolithography which is a liquid-based 

process where an ultraviolet laser is used to cure or solidify a photosensitive resin (Wong 

and Hernandez, 2012). Figure 1.2 shows the schematic view of stereolithography.  

The process is started with designing the 3D model of the object based on the utilized SL 

equipment and material. Then ultraviolet laser is applied to solidify a specific location 

based on the 3D model. Upon completion of the associated layer, the platform is lowered 

to allow for the next layer to solidify by the laser. The leveling blade is used to make sure 

that the next layer is coated with resin. Different resin types are available, including 

standard, castable, tough and durable, high temperature, and dental resin. (Varotsis, 2019). 

The material can be chosen according to the required material properties of the product. 

The resin must be refilled into a clean container and the parameters are default set by the 

manufacturer. In every production process, regardless of the material, the process is 

repeated from the beginning and the parameters can easily be altered based on the different 

material types. 

Fused Deposition Modeling 

Another widely used AM process type is solid-based fused deposition modeling in which 

thin filaments of plastic are fed into a printer where they are melted and extruded in a 

thickness of typically 0.25 mm (Wong and Hernandez, 2012). Figure 1.3 shows the 

schematic view of fused deposition modeling. 

The platform is lowered after the associated layer is extruded to open room for the new 

layer.  
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Figure 1.2 A schematic view of the stereolithography (Park et al., 1998)  

 

Figure 1.3 Schematic view of fused deposition modeling (Equbal et al., 2018)  
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Several types of material can be used in this AM process which can be divided into two 

categories: polymers and metals (Cooper, 2001; Mireles et al., 2012). In order to obtain 

better quality regardless of using metal or polymer, the machine must be cleaned, calibrated 

and parameters optimized very well based on the new material type. 

SLS and SLM 

SLS and SLM is a three-dimensional powder-based printing processes in which a powder 

is sintered or fused using a laser beam to create the objects. SLS and SLM are essentially 

the same AM processes except for several small differences. While SLM is specifically 

used for only metal alloy materials, SLS is used for a variety of materials such as plastic, 

glass, ceramic, and even metal alloys (Lawrence, 2014). Figure 1.4 shows the schematic 

view of SLS/SLM. 

SLS uses a carbon dioxide laser beam to sinter powder material so that they can fuse 

together at the molecular level without fully melting. However, SLM uses a laser to fuse 

the powder to fully melt the material. In this way, the material is not fused together but 

rather melts to form a homogeneous part. The powder is stored in a special cartridge in the 

system and spread onto the platform after the current layer is fused. Regardless of material 

type, SLS and SLM machine must be cleaned, calibrated, and parameters must be 

optimized if the material type changes.  

Binder Jetting 

Binder jetting printing process is similar to any other powder-based printing process. The 

only difference is that in binder jetting, a part is built in multistep AM processes since the 
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Figure 1.4 Schematic view of SLS/SLM (Lawrence, 2014).  
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binder material is involved in the production process. The powder material is usually joined 

together with a binder material, which is usually a form of liquid (Gokuldoss et al., 2017). 

Figure 1.5 shows the schematic view of the binder jetting AM process. 

Binder jetting AM processes can use any material which is available in the form of powder. 

The powder material is spread over the build platform and then bound together with a layer 

of the binder. Since powder are joined together with an adhesive material, build quality is 

not usually enough for aerospace and automobile parts (Kim et al., 2019). The process 

requires multistep post-processing such as curing, de-powdering, sintering, infiltration, 

annealing, and finishing (Wong and Hernandez, 2012; Xu et al., 2015). 

1.1.3. Impact of Additive Manufacturing on Manufacturing Industry 

AM was used as a prototyping technique during its early stage of development. Today, 

however, AM technologies are not just used for prototyping purposes. With today's 

technology and materials, it is also used for the finished products. Therefore, the use of 

AM techniques for manufacturing applications is growing rapidly. Figure 1.6 shows the 

growth rate of AM based on the Wohler’s report 2010. 

Growth rate for 2010 was 24.1% based on the same report (Wohlers, 2010). Worldwide, 

additive manufactured goods collected $967 million in revenue, and the United States took 

in $367 million or 38 percent of global production in 2013 (Wohlers, 2014). Table 1.1 

shows the types of products that were manufactured using AM techniques for the various 

industry subsectors. There are three variations of utilizing AM based on the research 

conducted by Thomas and Gilbert (2015). The first variation involves users purchasing 

their own AM machines and producing products themselves. The second scenario 
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Figure 1.5 Schematic view of the binder jetting process (Kim et al., 2019) 

 

Figure 1.6 Growth of AM between 1995 and 2010 (Wohlers, 2010)  
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considers scenario involves copy shops where users submit their designs to a manufacturer 

to produce it. Another scenario is the adoption of additive manufacturing by commercial 

manufacturing, which will result in profound changes in design and production. These 

results can be seen in Table 1.1 for various industrial subsectors. 

1.1.4. Advantages of AM over Subtractive Manufacturing 

AM technology is growing rapidly with its unique features and great potential in cost, 

speed, quality, impact, and transformation/innovation (Attaran, 2017; Dimitrov et al., 

2014). As explained in previous sections, it suffices to have an AM machine and 3D model 

in order to produce an object without requiring any special, sophisticated tools or 

production lines. This unique feature of AM reduces the need for logistics, time from 

production to sale, and environmental impact (Attaran, 2017; Paris et al., 2016). Because 

of this, AM has the potential to reduce the complexity of the supply chain (Cohen et al., 

2014; Huang et al., 2013; Nyman and Sarlin, 2014). Although AM may not be able to 

replace traditional manufacturing in the near future, it is expected to drive major 

innovations in the manufacturing sectors.  

Compared to SM, AM offers many advance and unique features. The number of AM 

applications is growing rapidly in a variety of manufacturing sectors thanks to these unique 

advantages, even though it also has several downsides as we will discuss in the next section. 

Based on the study conducted by Attaran (2017), eight major advantages of AM has shown 

in the Figure 1.7. 
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Industrial Efficiency 

AM would enable consumers to customize and produce their own products to fit their own 

needs. With this flexibility and convenience, AM provides an opportunity that parts are 

continuously available for users with fixed production prices. Consumers can thus turn into 

micro-manufacturers thanks to this technology. 

Mass Customization 

AM processes are not set only one product type since it does not require production and 

assembly lines. AM systems are capable of processing a wide range of materials and can 

produce highly complex parts without requiring complex and costly set-up procedures. 

Therefore, mass customization can be achieved at a low cost with AM technology. 

On-Demand Manufacturing 

The large bulk inventory management and shipping are the significant expenses for the 

firms. These costs are critical restrictions for the manufacturers. AM systems can be 

facilitated easily, allowing parts to be produced near the area where they are needed. This 

can drastically reduce storage and shipping costs. With AM technology, the cost of 

inventory and shipping is not big concern for the manufacturers and consumers. 

Decentralized Manufacturing 

It is already mentioned that AM could reduce the complexity of the supply chain, logistical 

costs and environmental impacts by manufacturing items closer to the end destination. As 

a result, production can be decentralized, leading to a shorter time between production and 

sale. 
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Table 1.1 The goods produced by using AM for various industry subsectors (Thomas and 

Gilbert, 2015). 

Category 

Percent of 

Total AM 

Made 

Products 

Shipments of 

US Made AM 

Products 

($millions 2011) 

Total 

Shipments 

($millions 

2011) 

AM Share 

of Industry 

Shipments 

Motor Vehicles 19.5% 48.0 445 289.4 0.01% 

Aerospace 12.1% 29.8 157 700.7 0.02% 

Industrial/business 

machines 
10.8% 26.6 365 734.8 0.01% 

Medical/dental 15.1% 37.2 89 519.5 0.04% 

Government/military 6.0% 14.8 32 784.4 0.05% 

Architectural 3.0% 7.4 72 186.9 0.01% 

Consumer 

products/electronics, 

academic institutions, 

and other 

33.6% 82.7 895 709.8 0.01% 

Total 100.0% 246.1 2 058 925.5 0.01% 
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Figure 1.7 Advantages of AM  
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Component Manufacturing 

AM processes are highly customizable and capable of producing complex parts. Therefore, 

another area where AM is successfully applicable is component applications. Variety of 

subsectors utilize this technology for component manufacturing such as automotive and 

aerospace. These industrial sectors mostly require producing very complex parts as 

monolithic as possible with minimum inventory because the mechanical properties of the 

parts can be negatively affected as the number of assembly sub-parts increases. With the 

distinctive features, AM is a practical solution for the big and small size companies’ 

problems. The aerospace and automotive industries comprise almost a quarter of the AM 

market. 

Printing Complete Systems 

Creating an item with many parts through the assembly lines makes the manufacturing 

systems more complex and expensive. AM has the capability to produce a complete system 

without requiring an assembly line and complex procedures. AM has this flexibility, 

making it easy for users to utilize this technology efficiently and effectively. By reducing 

complex components of traditional manufacturing systems, it also helps firms save a great 

deal of money. 

Increased Supply Chain Proficiency 

As already mentioned in the previous sections, AM has the capability to produce parts near 

the consumers which could save a lot of time and reduce costs associated with shipping 

and inventory. This unique capability of AM makes this technology preferable especially 

for small businesses and manufacturers. 
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Small-Volume Manufacturing 

Small volume manufacturing is a serious challenging for many subsectors such as 

automobile and aerospace. As part of their effort to increase efficiency and compete with 

other manufacturers, firms seek robust methods to reduce high inventory management 

costs for small volume parts. AM is a suitable technology for these companies to achieve 

their goal. Small volume manufacturing in AM industry is growing rapidly and expected 

to increase to $1.1 billion by 2025 (Attaran, 2017). While the AM applications increase for 

small volume manufacturing, the cost of material decrease 11% for new supplier into the 

market (Vicari and Kozarsky, 2013). This indicates that AM is more economically feasible 

to compare the other manufacturing methods for various applications. 

1.1.5. Challenges in Additive Manufacturing 

AM technology has so many advantages over SM systems. However, it also has some 

drawbacks besides these advantages. Based on the article published by Expert Roundap 

(2019), this section will provide a brief overview of the major challenges in AM systems 

shown in Figure 1.8. 

Slow Production Speed 

Production speed is a key factor in the manufacturing industry for mass or high-volume 

production. Manufacturing products and delivering them to consumers within a reasonable 

timeframe provides efficient and effective planning for sustainable manufacturing. Current 

industrial 3D printing technology has a problem with production speed, and it is still 

lagging behind traditional machine-based manufacturing. This problem is a serious 

obstacle to the adoption of AM to mass or high-volume production. 
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Figure 1.8 Major Challenges in AM  
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Quality Assurance 

Quality, which is defined as the density level of the printed object, is considered as the 

most important factor in AM. AM has three main quality issues, namely porosity, keyholes, 

and dimension precision. If the powder is not sufficiently melted due to the low laser power 

or high scan speed, it causes unmelted powder particles in object’s structure which is called 

as porosity. If the powder evaporates during the AM process due to the high laser power 

or low scan speed, it creates holes in object’s structure which is called as keyholing. AM 

faces certain challenges with quality consistency, especially in producing fully dense metal 

parts because of porosity and keyhole formations. In addition to these, it is very important 

that the manufactured parts do not have any geometrical errors. There are concerns 

regarding the accuracy of dimensions in AM since it is a relatively new manufacturing 

technique (Al-Ahmari et al., 2019). The challenge of maintaining dimensional accuracy in 

AM has been addressed in several studies and new methods are being developed to solve 

this issue.  

Lack of Industry-Wide Standards 

One of the major barriers to the widespread adoption of AM is the absence of standards. 

So far, there is no widely accepted process for choosing AM over SM. Besides, different 

standards are needed for other critical factors such as the quality of printed parts. A more 

uniform, globally accepted set of industry standards would be extremely beneficial to all 

manufacturer and consumers.  
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High Initial Investment 

Investing in AM might be expensive as AM machines can cost up to $1,000,000 

(Brockmann et al., 2015). Consequently, small manufacturers tend to think twice when 

purchasing AM machines for their production processes. More cost-effective AM 

machines could help small manufacturers and overcome this issue. 

Workforce Challenges 

A lack of engineers, managers, and executives who fully understand the technology to be 

able to work in the field and develop strategies to increase the efficiency and effectiveness 

of AM is a significant challenge. 

Software Challenges 

Am industries still have major bottlenecks in design and data preparation. Hardware 

systems with high productivity are emphasized and the value of intelligent software 

solutions is currently ignored in AM processes. 

1.2. Aim 

The goal of this research is to provide users a decision support tools to use the AM machine 

efficiently and effectively. These decision support tools provide a method to measure the 

complexity level of a part to ensure if the part is appropriate for AM, better optimization 

of process parameters of the AM machine, and a production scheduling model to use two 

material types for a single AM machine to increase the efficiency. The goal will be 

achieved through three specific objectives: 1) Identifying the major decision factors for 

related AM processes; 2) Developing mathematical models or methods to provide an 
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effective tool and 3) Providing useful managerial insights that can help users to improve 

the manufacturing process and identifying research gaps for the new studies. 

1.3. Research Overview 

This research consists of three studies that investigate the different issues of AM systems 

as shown in Figure 1.9.  

The first study is discussing a framework to select the appropriate AM processes. An 

empirical model is developed to optimize process parameters in the second study and a 

scheduling model is developed for production planning and scheduling.  

Study 1 focuses on developing an AM process selection framework by considering 

complexity and other important factors such as labor cost, manufacturability, etc. The most 

important part of this section is the method to estimate the complexity level of a part by 

using a pixel density ratio with image analysis. In the literature, there is no method or model 

to estimate the complexity level of a part, particularly for manufacturing process selection. 

The manual estimation of the complexity is challenging and takes a great amount time.  

The problem of the US defense agency could be a good example for this: The agency 

arbitrarily selected a dozen of parts that they believed appropriate for AM because they 

were considered “complicated” enough. When we asked for their definition of part 

“complexity”, they could not give an answer. They also mentioned that there are so many 

manufacturing processes and procedures that any kind of manual or complicated methods 

are not applicable to evaluate their large list of parts. Thus, a new method is introduced in 

this study to estimate the complexity level of a part for manufacturing selection. The 
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Figure 1.9 A diagram illustrating the research flow. 
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method is validated with numerical experiments. The sample parts, whose complexity 

levels have already been evaluated by the manufacturing experts, are used in the numerical 

experiments. The complexity levels of sample parts are estimated with high accuracy. The 

new method can quickly and consistently evaluate the complexity of a great number of 

parts without any involvement of experts with manufacturing experience. 

Study 2 concentrates on two key factors in AM systems which are quality and productivity. 

Quality is considered a difficult factor to manage since there is no reliable way of 

measuring it. Achieving high quality for final parts is challenging in AM systems. Focusing 

only on acquiring a high-quality level for produced parts may cause significantly high 

operational costs in AM processes. Thus, a trade-off between these two concerns is vital 

for maintaining printing operations efficiently and effectively. A nonlinear model is 

developed to optimize process parameters to acquire the lowest operational cost while 

keeping the quality at the desired level. The process parameters that are considered in the 

optimization are laser power, scan speed, layer thickness, hatch distance, and laser spot 

size. The nonlinear model is solved by utilizing the enumeration method and the optimal 

results for each process parameter are obtained. To show the significance level of each 

process parameter, the combined and individual effects of all process parameters were 

analyzed in a numerical experiment. It is also showed that the proposed empirical model 

yielded lower building costs than those from similar studies in the literature and is effective 

in maximizing productivity at the desired quality level. 

The last study proposes a scheduling model for a single AM machine with considering 

multi-material types. In this study, the key factors that can affect both quality and 
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operational costs are identified. It is determined that waiting time and the time for the 

material changeover might have a great impact on both quality and operational cost. As 

mentioned before, taking quality into account is always difficult in AM processes. The 

parameter settings and the calibration of the AM machine must be reset when the AM 

machine is switched to a different material type and this process affects the quality of the 

printed part. Since the calibration and process parameters of the AM machine are very 

difficult to set optimally right after the material changeover, the quality levels of the 

produced parts might be relatively lower. The quality will be increased as more parts are 

made with the same material type due to the better calibration and parameter optimization. 

In this study, all these important factors are considered while developing the mathematical 

model. The study also provides useful and effective insights for industrial practitioners and 

identifying the research gaps for future studies. 
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CHAPTER 2. ADDITIVE MANUFACTURING PROCESS 

SELECTION FRAMEWORK WITH COMPLEXITY LEVEL 

ESTIMATION 
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Abstract 

Decision-making between additive manufacturing (AM) and conventional manufacturing 

(CM) is a difficult process because of the lack of generally accepted guidance. A majority 

of studies in the literature focus on choosing a specific AM process when the AM is already 

presumed for producing a given part. However, the decision between AM and CM is more 

challenging. Many researchers and practitioners believe that AM has advantages for 

producing complex parts. Thus, complexity can be used as a decision-making criterion. 

However, there is no method or model to evaluate how complex a component is, 

particularly from the viewpoint of manufacturing. This study introduces a framework that 

uses a new method to estimate the complexity level of a given part and then make a 

selection between AM and CM. The framework also uses other important factors such as 

manufacturability, material type and cost models to select a specific AM process for the 

part. To validate the proposed method for estimating the complexity level, the sample parts 

whose complexity has already been evaluated by manufacturing experts in literature were 

gathered. The results show that the proposed method can successfully and consistently 

evaluate the complexity of a great number of parts without any involvement of experts with 

manufacturing experience.  

2.1. Introduction 

Additive manufacturing (AM) and conventional manufacturing (CM) are two 

manufacturing types commonly used for producing parts (Herzog et al., 2016). CM 

includes casting, forging, and machining (Shannon, 1948; Heisel and Meitzner, 2006; 

Watson and Taminger, 2018). Compared to CM, AM can produce complex and highly 
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customized parts and may reduce material waste during the manufacturing process. 

However, AM may have a high initial investment cost and could be less efficient and more 

expensive for large quantities of parts (Newman et al., 2015).    

There are several frameworks and models in the literature for selecting a specific AM 

process for a given part. However, the majority of them presume that AM has already been 

selected as a production technique. Manufacturability, material type, and cost can be used 

to select a specific AM process. Only a handful of studies have investigated the choice 

between AM and CM. So far, there is no widely accepted method or model for comparing 

AM and CM quickly for a large number of parts.  Conceptually, AM is widely believed to 

be preferable for complex parts (Knofius et al., 2019; Mançanares et al., 2015; Romano et 

al., 2017). However, there is no effective method or model to estimate the complexity level 

of a part and use the level to facilitate the choice between AM and CM. This study 

introduces a new framework that uses a new method to estimate the level of complexity in 

a consistent way across all parts by using a simple pixel density ratio method that uses 

image analysis. Considering the other significant attributes such as manufacturability, 

material type, and total cost makes the proposed method a comprehensive AM process 

selection framework. 

This study was motivated by our interaction with a large US defense agency. The agency 

was asked to evaluate AM for their millions of parts. The agency arbitrarily selected a 

dozen of parts that they believed appropriate for AM because they were considered 

“complicated” enough. When we asked for their definition of part “complexity”, they could 
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not give an answer. They also mentioned that there are no procedures that can evaluate 

their large list of parts for their suitability for AM.  

2.2. Literature Review 

This section has two parts. The first covers the existing studies on complexity in order to 

explain the distinguishing characteristics of the proposed method from existing methods 

for estimating the complexity level of a part. The second part will discuss the general 

framework/methods for selecting a specific AM process. 

Despite significant academic research work on estimating the complexity of manufacturing 

or production systems, there is a lack of awareness in research on manufacturing process 

selection based on part complexity (Bermejo et al., 1997; Calinescu et al., 1998; Stoop and 

Wiers, 1996). To the best of our knowledge, there are very few previous studies that can 

be associated with this subject. 

Chen and Sundaram (2005) developed an algorithm to estimate the complexity level of 2D 

shapes by using correlates of Kolmogorov complexity (entropy measures of global distance 

and local angle) and a measure of shape randomness. However, the algorithm particularly 

aimed at applications in computer vision rather than manufacturing. Additionally, the 

algorithm only considered the outer properties of a part in evaluating its complexity and 

ignored its inner structures. Similarly, Su et al. (2006) estimated the complexity of 2D 

shapes by using three properties: the complexity of boundary, the global structure, and the 

symmetry of the shape. They also did not consider inside structures. Valentan et al. (2011) 

developed a method to estimate the complexity level of 3D shapes by using basic features 
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of the STL file, which is a type of file generated from CAD files. The process is simply 

based on the manual analysis of the STL file, and therefore, the method needs a great deal 

of time by experts to provide results for many parts. Like the methods mentioned earlier, 

the estimation is based only on the outer properties of 3D parts. Page et al. (2003) 

conducted a research to estimate the complexity of a discrete approximation of planar 

curves in 2D images and manifold surfaces for 3D triangle meshes based on the 

information theory created by Shannon (1948). Similar to other studies, the inner properties 

of parts were not considered in the evaluation process. Besides, the proposed methods were 

slow and inapplicable to evaluate thousands of parts because the methods were complex 

and involved manual effort. The third estimation approach proposed by Rigau et al. (2005) 

considers the inside structures of a part and used integral geometry and information theory 

tools to quantify the shape complexity from two different perspectives; inside structures 

and outer structures of a part. This approach follows complicated and time-consuming 

processes for collecting data for a part’s inner and outer properties. They have developed 

the model based on Monte Carlo computation, and the concept of complex uniformly 

distributed global lines, and mutual information definition. Since they only focus on the 

theory of their model, they have not specified the computational time of their model with 

a numerical experiment. However, Monte Carlo computation is known to be complex and 

takes a considerable amount of time. Liang et al (2007) indicated that running an algorithm 

developed by using Monte Carlo computation costs 115 minutes for each run. It can be 

easily concluded that their method would take much longer than 115 minutes for a single 

part since they consider two conceptually complex tools aside from Monte Carlo 
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computation. Since the proposed method can provide a result in seconds for a single part, 

the difference in computational efficiency would be more than 115 mins. If thousands or 

millions of parts are taken into consideration, then the computation difference would be 

massive. Therefore, similar to the previous methods, this estimation approach is not quite 

applicable for a large number of parts. 

The last existing approach developed to estimate the complexity of a single part CAD 

model uses a mesh-based method (White et al., 2003). Mesh generation is performed first 

to capture details of the parts and sometimes detect representation of the problems of a 

solid model. However, mesh generation is difficult for particular formations of CAD model 

such as a filleted section colliding with the boundary of another face. Therefore, several 

new approaches have been introduced to simplify the CAD models for mesh generation 

(Armstrong et al., 1998; Blacker et al., 1997; Mobley et al., 1998; Sheffer et al., 2000; 

Tautges, 2001). The method with the proposed algorithms was successfully implemented 

and accurately estimated the complexity of a single CAD model. However, the run time to 

implement this method for thousands of parts would take an excessive amount of time 

because of the complexity of the meshing process. Thus, the mesh-based method would 

not be a solution to current industrial needs for manufacturing process selection when 

thousands or millions of parts are considered to evaluate. 

In this study, however, the CAD file with image analysis will be used for collecting the 

required data which is easier and quicker compared to the existing four methods in 

literature. Our approach considers both the inner and outer edges by utilizing the standard 

orthographic orientation views. Since the method is quite straightforward and only aims to 
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estimates complexity levels particularly for manufacturing process selection, it is suitable 

and reliable for large-scale industrial applications.  

There are several recent studies that propose frameworks/methods to select an AM process 

for a given part from a variety of perspectives. Watson and Taminger (2018) developed a 

computational model to determine whether AM is more efficient than CM for a given 

metallic part by only considering the energy consumption. They ignored the part 

complexity, an important aspect for the choice between AM and CM. Besides, it was not 

specifically designed to select specific AM process. Baumers et al. (2015) developed a 

similar cost estimator model by considering the process energy consumption and build 

time. Their model presumes that the AM process is already selected as a manufacturing 

technique. The model only helps to choose a specific AM process based on the energy 

consumption and does not consider other significant attributes such as labor costs, machine 

costs, etc. Similarly, Yim and Rosen (2012) and Hällgren et al. (2016) developed their cost 

models to select the proper AM process for a given part. They also presumed that AM is 

already selected. As shown in Table 2.1, they considered more cost components than 

Baumers et al. (2015). On the other hand, Bikas et al. (2019) developed a framework to 

decide whether AM is an appropriate manufacturing solution for a given part. Three levels 

were included in their framework. Level 1 determines if AM is potentially beneficial by 

replying to a set of predetermined questions. Levels 2 and 3 investigate the technical 

feasibility and manufacturability of AM for that part, respectively. Since the framework 

relies on answers to predetermined questions, it is not a practical solution to automatically 

solve the AM process selection problem. As shown in Table 2.1, the proposed framework 
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Table 2.1 Comparison of AM process selection methods based on the attributes being 

considered. 

Attributes 

being Considered 

Watson 

and 

Taminger 

(2018) 

Valentan 

et al. 

(2011) 

Baumers 

et al. 

(2015) 

Yim 

and 

Rose 

(2012) 

Hällgren 

et al. 

(2016) 

Bikas 

et al. 

(2019) 

 

This 

study 

Easy data 

collection 
✓       ✓  

Complexity  ✓      ✓  

Computational 

Burden 
      ✓  

Energy 

Consumption 
✓   ✓     ✓  

Cost   ✓  ✓  ✓   ✓  

• Machine 

purchase 

cost 

   ✓  ✓   ✓  

• Machine 

operation 

cost 

   ✓  ✓   ✓  

• Material 

cost 
  ✓  ✓  ✓   ✓  

• Labor cost    ✓  ✓   ✓  

• Energy 

cost 
  ✓  ✓  ✓   ✓  

Material Type ✓   ✓   ✓  ✓  ✓  

Manufacturability ✓      ✓  ✓  
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in this study considers more attributes than all other models, methods, or frameworks for 

AM process selection in the literature.  

2.3. Methods 

2.3.1. AM Process Selection Framework 

This study proposes a framework in Figure 2.1 to select an AM process for a given part 

through two levels. At the first level, the part will be selected for AM or CM based on its 

complexity level. If AM is the choice, a specific AM process will be selected based on 

manufacturability, material type, and cost models at the second level.  

The process starts with the calculation of the complexity, 𝐶𝑖, for a part 𝑖, which is detailed 

in subsection 3.2, and then compares the level against a threshold value 𝐶∗. Part 𝑖 will be 

selected for AM if its complexity level 𝐶𝑖 is higher than 𝐶∗.  This constitutes the first and 

most important level of the AM process selection framework. Next, the parts that will be 

additively manufactured are classified according to their material types, including metal 

and non-metal. Non-metal materials include thermoplastic polyurethane, 

polyetherethekeytone, polyamide (Nylon) 11 and 12, ABS, polycarbonate, ABS blend, 

polylactic acid, polyetherimide and others. A metal part can be produced by powder-bed 

fusion, binder jetting, direct energy deposition, or fused deposition modeling; and the 

choice depends on cost models. Powder bed fusion, specifically selective laser sintering 

used for polyamide, thermoplastic, polyurethane, and polyetherethekeytone (Chatham et 

al., 2019). Fused deposition modeling AM processes can print ABS and other types of 

plastic including polycarbonate, polylactic acid, and polyetherimide (Ahn et al., 2002). 
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Similar to the metal printing, the choice depends on the cost models for several non-metal 

material types, as illustrated in Figure 2.1 The costs models used in this study to determine 

which AM process is more economic and efficient for a given part can be found in the 

studies conducted by Yim and Rosen (2012) and Baumers et al. (2015) 

2.3.2. Estimating the Complexity Level of a Given Part 

Computer-based modeling of a part is a similar process to drawing a picture. When an artist 

draws a picture, she usually uses paint or other similar tools to create a shape and often has 

to use more paint if she wants to depict more details when the picture gets more 

complicated. Figure 2.2-a shows an image of a cat without a lot of details and uses only a 

few lines. The more detailed and complicated picture of the same cat is depicted in Figure 

2.2-b. In this case, the picture contains much more lines to depict all the details on the cat 

than the number of lines used in Figure 2.2-a. In other words, Figure 2.2-b uses a greater 

amount of paint than Figure 2.2-a to show all the details and elaborations. 

This concept is similar to most cases of the computer-based modeling of a part. Pixels are 

used instead of paint in the design process of solid modeling. However, the outer and inner 

properties of an object must be considered in this process from the manufacturing 

viewpoint while only outer shapes are considered in the drawing. This major difference is 

a difficult factor to complexity estimation because capturing the inner properties of an 

object might be a complicated and time-consuming process if there is no effective tool to 

collect data. Since pixel density changes depending on the complexity level, it can be used 

to evaluate the object’s complexity level. The only problem here is determining what kind  
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Figure 2.1 AM process selection framework. 

 

 

Figure 2.2 Example of simple and detailed/complex drawing (Sutterstock, 2019) 
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of tool or instrument could be used to acquire data in order to analyze pixel density for both 

the inner and outer properties of a given part. In the modern manufacturing systems, parts 

are designed with CAD software in a two-dimensional or three-dimensional model to 

create precision drawings or technical illustrations. Each CAD system has a different 

method of describing geometry, both mathematically and structurally, and this information 

is held in CAD files, which are a digital file format of a part generated by CAD software. 

The inner and outer properties of a part are represented in CAD files by projecting it in 

different perspective views for production purposes. Typically, each CAD file has four 

major drawing views to depict the structural properties of a part so that users can 

comprehend and reproduce every geometric and design detail with high precision. An 

example of these drawing views is shown in Figure 2.3. These four drawing views are 

called the standard orthographic orientation views, which include isometric, top, front, and 

side views. The advantage of the drawing views is that every single view contains all the 

characteristics of the entire part by representing them with specific lines or shapes.  

The isometric view illustrates a part in three dimensions. As its name implies, the top view 

is a visual representation of an object from above. Although some properties of the object 

might not be visible in this view, they must be represented by lines or shapes. For example, 

a large hole on the part clearly visible in the front view but it cannot be seen from the top 

view directly. However, this hole is represented by lines in the top view as can be seen in 

Figure 2.3 in order to provide detailed information about the structural property of the part. 

Similarly, side and front views also contain all geometric and structural details of the given 

part. Since drawing views have so many advantages and contain all inner and outer  
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Figure 2.3 Drawing views of a part (Jamie, 2014). 
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properties of a part, the proposed method in this study uses these views to estimate the 

complexity level. The standard orthographic orientation views are analyzed to obtain the 

pixel density ratio considering lines and shapes in each view by using the image analysis 

tool in Python. In other words, the pixel amount used for the lines will be obtained and this 

value will be divided by the total pixel amount of the whole part based on each orthographic 

orientation view by using the developed image processing method. Please note that the line 

thickness needs to be normalized across drawings. The obtained final value between 0 and 

1 by using equation (1) is considered an estimated complexity level for the part for each 

view. The complexity of each drawing view is estimated based on the pixel density ratio 𝐶 

values, which can be obtained with the following equation. 

𝐶 =
𝑇𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡
 (1) 

All four views are considered in the analysis and averaged in order to increase accuracy 

and reliability.  

The sample parts shown in Figure 2.4, which were specifically designed for complexity 

analysis, were collected from the literature in order to show that the proposed method 

works effectively. The complexity levels of the selected sample parts have already been 

estimated by the experts in the experimental work conducted by Valentan et al. (2011). The 

sample parts have various inner and outer properties. It starts with a simple cube and 

continues with different geometrical shapes to test the proposed method.  
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Figure 2.5 shows the complexity level of these parts evaluated by the experts’ opinions. 

Based on this, sample part 1, which is a simple cube, has the lowest complexity compared 

to the other parts. The most complex one is sample part 6, which is a free form part. These 

complexity levels make sense because we can see that the cube’s inner and outer properties 

are simple compared to the other parts, based on the analysis. Part 6 is clearly more 

complex than the other sample parts because it has more inner and outer properties arising 

from the free form characteristic of this part. This will be further discussed in detail. 

We redrew all sample parts by using SolidWorks, a CAD software package, to test the 

proposed complexity estimation method. All drawing views were created with the same 

settings. 

2.4. Results and Discussions 

The estimated complexity levels are shown in Figure 2.6 for all sample parts. The results 

show that obtained complexity levels almost identical to the complexity level evaluated by 

manufacturing experts. Part 1 still has the lowest complexity level. The estimated 

complexity levels for other sample parts are also quite similar to those in Figure 2.5, except 

part number 2. This will be discussed further in this section after explaining some important 

distinctive points about the sample parts.  

Figure 2.7 shows two sample parts remodeled in CAD software. As mentioned earlier, the 

lowest complexity level was obtained for part 1 based on both implemented method in this 

study and the experts’ opinions. The reason for this can be seen clearly in the drawing 

views in Figure 2.7-a. The pixel density formed by the lines that represent the inner and 
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Figure 2.4 Selected sample parts for complexity evaluation (Valentan et al., 2011) 

 

Figure 2.5 Complexity level of the sample parts evaluated by manufacturing experts 

(Valentan et al., 2011) 
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outer properties of part 1 is significantly low. Thus, the cube has a low pixel ratio value. 

On the other hand, the pixel density ratio of the drawing views of part 2 in Figure 2.7-b is 

higher as the lines and shapes take up more space than the lines and shapes take up in 

Figure 2.7-a. This increases the pixel density ratio for part 2. Therefore, the complexity 

level of this part was estimated higher than part 1.  

The most complex part among all the sample parts is shown in Figure 2.8. Since part 6 has 

more inner properties and irregular shapes than the other parts, the density level of the 

pixels that form the edges in the total sectional area of the associated view is much greater 

than the other parts. This can be clearly seen in the isometric view and standard 

orthographic orientation views in Figure 2.8. In direct proportion to this increase, the 

obtained complexity level (𝐶 = 0.437) of this part is higher than other parts. 

As mentioned earlier, almost all the complexity levels obtained for sample parts are 

equivalent to the complexity level evaluated by the experts in Valentan et al. (2011), except 

part 2. There could be a few reasons for this error. The first could be correlated with the 

complexity level evaluation analogy used by the experts. Because the experts might have 

different opinions on the same sample part, the complexity level of part 2, which is a 

sphere-shaped part, may vary according to different experts. For example, the experts in 

Valentan et al. (2011)’s study considered that the sphere parts were quite complex for 

manufacturing because of the surface quality concern. Others might consider that the 

sphere-shaped parts are not complex parts (Rigau et al., 2005). To avoid this, more expert’s 

opinions could be collected to increase the reliability of the method. Another potential 

reason could be related to the insufficiency of features and properties considered in the 
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Figure 2.6 The complexity values obtained for the sample parts. 

 

Figure 2.7 Sample parts with drawing views, where (a) 𝑪 =  𝟎. 𝟎𝟖, (b) 𝑪 =  𝟎. 𝟐𝟎𝟕 

 

Figure 2.8 Drawing views of the most complex part (𝑪 = 𝟎. 𝟒𝟑𝟕) 
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complexity estimation process. It is possible that considering only the inner and outer 

properties might not be enough to evaluate the complexity level of some specific parts such 

as spheres where additional concerns might exist. To avoid this, additional properties or 

features could be added to the proposed method to increase the accuracy level for some 

specific parts. However, it must be noted that considering more properties or features will 

lead to a more complicated and time-consuming method or model, which may not be 

applicable for estimating a large number of parts automatically. A manufacturer may have 

thousands or millions of parts to consider when they evaluate AM against CM.  

After being selected for AM, a part is classified into a specific AM process based on the 

material type and manufacturability, as shown in Figure 2.1. The cost models are then used 

to determine a specific AM process. The overall cost, 𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 consists of different cost 

components that can be found with the following equation. 

𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝐶𝑝 + 𝐶𝑜 + 𝐶𝑚 + 𝐶𝑙 + 𝐶𝑒 (2) 

Here, 𝐶𝑝 is machine cost, 𝐶𝑜 is operation costs, 𝐶𝑚 is material costs, and 𝐶𝑙 is labor costs. 

The cost model developed by considering these components can be found in the study 

conducted by Yim and Rosen (2012). The only component that was not considered in the 

mentioned model is energy cost 𝐶𝑒. The cost model that considered energy consumption 

can be found in the study conducted by Baumers et al. (2015). The part will be assigned to 

a specific AM process based on the lowest cost obtained by using cost models. 
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2.5. Conclusions 

In this study, a new framework is proposed for selecting an AM process. A new method is 

introduced to estimate the complexity level, which is one of the most important attributes 

that should be considered in comparison between AM and CM. This method is simpler and 

faster than current models, methods, or frameworks in the literature and can be applied to 

a large number of candidate parts for AM.  

The proposed method for estimating the complexity level of a part was validated by 

conducting numerical experiments with sample parts specifically designed for complexity 

evaluation. The complexity levels of these selected sample parts have already been 

evaluated by experts in the literature. The results show that the complexity level obtained 

with the proposed method in this study, which does not involve manual efforts, is almost 

equivalent to the complexity level evaluated by the experts.  

The cost components are provided to select a specific AM process. In this way, a user can 

determine if AM is suitable for a given part by using complexity and then select a specific 

AM process based on the manufacturability, material type, and cost models. Therefore, the 

proposed framework is the first comprehensive framework in the literature that includes 

complexity, manufacturability, material type, and cost components. With the high 

computational efficiency, it is a promising framework that can help solving the current AM 

selection problems in the manufacturing industry.  
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CHAPTER 3. QULITY AND PRODUCTIVITY TRADE-OFF IN 

POWDER-BED ADDITIVE MANUFACTURING 
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Abstract 

Additive manufacturing (AM) is a technology that creates parts directly from 3D CAD files 

based on a layer-by-layer manufacturing process. Quality and productivity are the two key 

concerns in powder-bed AM processes, which are one of the most-widely used AM in the 

industry. Because of the keyholes and porosity formation occurring in the object’s structure 

during printing process, quality is considered a difficult factor to manage. On the other 

side, focusing only improving quality could result in higher building cost and inefficient 

printing operations. Thus, a trade-off between these two concerns is vital for maintaining 

printing operations. To the best of our knowledge, there is no study in the literature that 

has yet considered this trade-off in a systematic way and can provide optimal results for 

productivity based on a desired quality level. This study combined equations from previous 

studies in a systematic way to create an empirical model to optimize major process 

parameters, laser power, scan speed, layer thickness, hatch distance, and laser spot size for 

a trade-off between quality and productivity in powder-bed AM processes.  The combined 

and individual effects of all process parameters were analyzed in a numerical experiment 

to show their significance for the printing process. The case study also showed that the 

proposed empirical optimization model yielded lower building costs than those from 

similar studies in the literature and is effective on maximizing productivity at the desired 

quality level. 

3.1. Introduction 

AM technology promises many advantages, such as enhancing geometrical freedom, 

reducing material waste, and shortening product development cycles (Tian et al., 2017). 
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AM processes for metal printing are classified into three categories: powder-bed, powder-

feed, and wire-feed (Galati and Iuliano, 2018). Among these, powder-bed AM processes 

are one of the most widely used AM for manufacturing metal parts (Kruth et al., 2007). In 

this process, powder particles are melted in each layer where laser beams or electron beams 

are used in order to build a part. Laser Powder Bed Fusion (LPBF), Direct Metal Laser 

Sintering (DMLS) and Electron Beam Melting (EBM) are the most well-known powder-

bed metal AM processes (King et al., 2015). 

Productivity and quality are the two key concerns in powder-bed AM. Quality is defined 

as the density level of the printed object in this study, which implies that higher density 

means better quality (Galati and Iuliano, 2018). Especially for high-value components, 

high quality and reliable control of mechanical properties require careful process control 

and tracking (Haden et al., 2015). Besides quality of the printed part, productivity, which 

is defined as time used per unit of production, is also an important concern (Gusarov et al., 

2018). A slow building rate is a big concern and limitation for powder-bed AM processes 

(Sun et al., 2016). Gutowski et al. (2017) reported that the process rate of powder-bed AM 

can be up to three times slower than the conventional manufacturing and energy 

consumption can be also up to two times higher than the conventional manufacturing. 

Because of these, a trade-off between quality and productivity is vital for minimizing the 

building cost while keeping the quality at desired level. 

Productivity and quality are affected by many factors such as process parameter settings, 

powder morphology, environmental gases, and the thermal conductivity of a material. 

Among all these factors, the variation of process parameters has a great impact on final 
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quality of printed parts and efficiency of the printing process (Sun et al., 2016). Therefore, 

this study particularly investigated the effect of the major process parameters; laser power, 

scan speed, layer thickness, laser spot size, and hatch distance, and their interactions on the 

quality and productivity (Sun et al., 2013). Among all the major process parameters, laser 

power and scan speed are relatively more significant because they have higher impacts on 

final quality and productivity of the printing process (Read et al., 2015). It was reported 

that using optimal laser power and scan speed could improve the quality and production 

rate by as much as four times (Buchbinder et al., 2011). Research on high layer thickness 

fabricated of 316L by using selective laser melting conducted by Wang et al. (2017) 

demonstrated how mechanical properties and surface roughness change with different 

thickness values. In addition to this research, several studies also indicate that layer 

thickness is a significant process parameter for increasing relative density and efficiency 

(Delgado et al., 2012; Matilainen et al., 2014). Hirvimäki et al. (2013) reported that they 

obtained the highest and lowest energy density by applying hatch distance 0.03 𝑚𝑚 and 

0.07 𝑚𝑚 respectively. In this way, they highlighted the significance of hatch distance in 

AM processes.  Like hatch distance, laser spot size also influences energy density and may 

cause keyholing in the printed object. Reducing spot size could slow the printing process 

down if it is not selected optimally depending upon the other process parameters (Wayne 

et al., 2014). Therefore, the objective of this study is to combine outcomes from the 

previous studies to create an empirical model to optimize all major process parameters in 

powder-bed AM in a systematic way to minimize the total building cost through a trade-

off between productivity and quality.  
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The existing research about the optimization of process parameters in powder-bed AM are 

merged into two approaches. In the first approach, up to three process parameters are 

usually optimized rather than considering all major process parameters because 

experiments for all parameter combinations for different cases are expensive and time-

consuming with current methods. In the second approach, studies mainly focus on 

improving either quality or productivity individually. Only a handful of studies consider 

improving both, but not in a systematic way. Instead, they applied new technologies or 

strategies to improve the printing process. Optimizing all major process parameters and 

improving productivity while maintaining a desired quality level are our major 

contribution. 

The first differentiation of this study from the previous studies is the systematic 

consideration of the effect of all major process parameters and their interactions on 

productivity and quality through the empirical model. As already mentioned earlier, the 

existing studies mostly focus on up to three process parameters because experiments for 

all parameter combinations for different cases are expensive and time-consuming. Wang 

et al. (2017) investigated the possibility of using greater layer thickness to improve the 

efficiency of SLM. They reported that building rate could be increased up to 12 𝑚𝑚3/𝑠 

by optimizing layer thickness, 3-10 time higher than the previous studies. Besides, 

Fotovvati and Asadi (2019) has also verified the important effect of layer thickness, 

orientation, distance from free edges on the material microstructure by reporting results 

and statistical analysis of 300 mechanical tensile testing for the layer thickness ranging 

from 0.5 𝑚𝑚 to 1.6 𝑚𝑚. Gu et al. (2013) reported energy density is a critical factor on 
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porosity and microstructure of SLM 14-4PH stainless steel part by varying the scan speed 

while keeping the laser power at a constant level.  Kamath et al. (2014)investigated laser 

power and scan speed by using a simple model of laser melting and single-track 

experiments to show relative density could remain >99% at high laser power values. Since 

laser power and scan speed are considered critical parameters in the powder-bed AM 

processes, many studies in literature focused on these two parameter settings to improve 

quality and productivity (Laohaprapanon et al., 2012; Spierings and Levy, 2009; Sun et al., 

2016). Read et al. (2015) considered three process parameters, laser power, scan speed, 

and hatch distance, and showed that laser power, scan speed and the interaction between 

scan speed and hatch distance have the major influence on porosity formation. On the other 

side, Aboulkhair et al. (2014) analyzed how morphology and size distribution of the metal 

powders governs the formation of gas powers and controls the followability. All research 

mentioned above add significant values to literature, but the important point here is that 

other major process parameters apart from the focused ones were kept constant in these 

studies and therefore, the effect of many parameters and their interactions were sort of 

ignored due to expensive and time-consuming methods. However, in this study, all major 

process parameters were considered without cost and time limitations tanks to the high 

computational ability of the empirical model. 

Improving both quality and productivity together by optimizing process parameters is the 

second contribution that differentiates this study from the previous studies. These two 

objectives are generally investigated separately in the literature. Since quality is considered 

a more critical concern for AM, most studies concentrated on improving quality rather than 
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productivity. Irrinki et al. (2016) reported that powder attributes have important effects on 

the densification and mechanical properties by conducting experiments on four types of 

powder. Verlee et al. (2012) have also investigated how particle size, particle shape, 

printing temperature, and printing time affect the final properties of printed objects. Ahmed 

et al. (2016) analyzed the effect of laser power, scan speed and hatch distance on relative 

density with one factor at a time by keeping other parameters constant and illustrated the 

effect of each of these parameters on the quality. Hiren et al. (2019) has reported that the 

laser power, scan speed, layer thickness and hatch distance have important effects on 

dimensional accuracy of printed objects in powder-bed fusion by presenting the 

experimental results with various input parameters while processing CL50WS. Since these 

process parameters are very important for relative density, many similar studies can be 

found in the literature (Carter et al., 2014; Kempen et al., 2011; Read et al., 2015; Tian et 

al., 2017). On the other side, Gusarov et al. (2018) have reported that productivity can be 

increased by using alternative laser density distributions. They suggested 1 kW for laser 

power and 300 mm/s for laser scan speed, which are much higher than the recommended 

parameters for production (less than 100 𝑤 for laser power and less than 30 𝑚𝑚/𝑠 for scan 

speed) (Gusarov et al., 2018). Besides, some studies focus on the effect of layer thickness 

and laser spot size. Sun et al. (2013) investigated the effect of layer thickness and reported 

that increasing in layer thickness causes rising nodulizing tendency and uneven melt. As 

mentioned before, layer thickness is also an important factor for productivity (Wang et al., 

2017). Deng et al. (1992) have analyzed the effect of the beam profile on SLS product 

quality and showed that 95% relative density could be obtained with 3 mm of output beam 
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size. The above studies analyzed various process parameters but some focused on the 

quality while others focused on the productivity. Focusing only on quality could result in 

lower productivity and ultimately higher building cost. Similarly, concentrating only on 

productivity may result in lower quality. In this study, productivity can be improved at a 

given quality level by optimizing process parameters in a systematic way via an empirical 

model, whose effectiveness will be demonstrated in the numerical experiments. 

Improving both quality and productivity in a systematic way is the third differentiator of 

this study. In the literature, only handful of studies considered improving quality and 

productivity together, but not in a systematic way. Researchers often studied effect of new 

materials or methods on quality of final products and productivity of printing process. 

However, even if new materials or methods are available to test and evaluate their effect 

on the quality and productivity, the full potential of these materials and methods may not 

be observed if all parameters are not optimized based on the characteristics of the material 

type or methods. Khan and Dickens (2012) conducted research about processing of 

precious metals and alloys using the SLM process. They tested the 24-carat gold (Au) 

powder for apparent density, tap density, particle shape and size distribution by processing 

material with the SLM machine and explained the effects of material on major process 

parameters such as scan speed, laser power and the porosity formation. Although material 

properties are crucial for quality and efficiency of the printing process, the full potential of 

tested material can be observed much better if the process parameters are optimized based 

on tested materials. Fotovvati et al. (2019) reported that the scanning strategy has an 

important effect on surface roughness and thus on dimensional accuracy. Aboulkhair et al. 
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(2014) conducted a research about new scanning strategies to improve relative density of 

printed objects and process efficiency by examining Aluminum alloy AlSi19Mg. However, 

they did not consider the effect of combined parameters along with the scanning strategy 

to obtain maximum output. The optimum scanning strategy might be different if any of 

major parameters are changed for different printing operations. 

3.2. Mathematical Model 

In this section, the mathematical and empirical background of the optimization model will 

be explained. Since the objective of this study is to minimize the building costs of printed 

part by improving productivity of running 3D printing machine through varying laser 

power, scan speed, layer thickness, laser spot size, and hatch distance, they will be used as 

decision variables in the empirical model. 

As mentioned earlier, minimizing keyhole and porosity formation in the object’s structure 

is significant to obtain high quality for a printed part. To do that, specific ranges for laser 

power and scan speed with allowable layer thickness and hatch distance were created for 

the optimization model. For each laser power range, there will be a corresponding range of 

scan speed with allowable layer thickness and hatch distance.  Binary variables are used to 

determine which range will be selected with associated laser power. According to these 

values, a trade-off between process parameters will be performed to optimally maintain the 

printing operations. The formation of ranges is demonstrated in Table 3.1. The most 

important advantage of the empirical model is that the ranges could be formed based on 

any quality level.  
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Table 3.1 Ranges for laser power and scan speed along with allowable hatch distance 

and layer thickness for minimizing the porosity. 

 
Range 𝑱 

 
𝟏 𝟐 𝟑 …            𝒏 

(𝑃𝑗
𝐿 , 𝑃𝑗

𝑈) (𝑃1
𝐿 , 𝑃1

𝑈) , (𝑃2
𝐿 , 𝑃2

𝑈) , (𝑃3
𝐿 , 𝑃3

𝑈) …   (𝑃𝑛
𝐿 , 𝑃𝑛

𝑈) 

(𝑉𝑗
𝐿 , 𝑉𝑗

𝑈) (𝑉1
𝐿 , 𝑉1

𝑈) , (𝑉2
𝐿 , 𝑉2

𝑈) , (𝑉3
𝐿 , 𝑉3

𝑈), …   (𝑉𝑛
𝐿 , 𝑉𝑛

𝑈) 

(ℎ𝑗
𝐿 , ℎ𝑗

𝑈) (ℎ1
𝐿 , ℎ1

𝑈), (ℎ2
𝐿 , ℎ2

𝑈), (ℎ3
𝐿 , ℎ3

𝑈) …   (ℎ𝑛
𝐿 , ℎ𝑛

𝑈) 

(𝛿𝑗
𝐿 , 𝛿𝑗

𝑈) (𝛿1
𝐿 , 𝛿1

𝑈) , (𝛿2
𝐿 , 𝛿2

𝑈) , (𝛿3
𝐿 , 𝛿3

𝑈) , …   (𝛿𝑛
𝐿 , 𝛿𝑛

𝑈) 
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Here, 𝑃𝑗
𝐿 ,  𝑉𝑗

𝐿 , ℎ𝑗
𝐿 ,  𝛿𝑗

𝐿 define lower bounds for the ranges. The values for the corresponding 

process parameters cannot be less than the defined lower bound values for the selected 

range. Similarly, 𝑃𝑗
𝑈 , 𝑉𝑗

𝑈 , ℎ𝑈 , 𝛿𝑗
𝑈  define lower bounds for the selected range. The values 

for the corresponding process parameters cannot exceed the defined upper bound values 

for the selected range. The ranges can be created based on the data that can be aggregated 

from the experimental research. In this way, relative density could be kept at a desired level 

and guaranteed that it cannot be less than the density level set by the ranges. If 

parameter/parameters are selected out of these ranges, the desired quality level is unlikely 

to achieve and porosity or keyholing may occur in the object structure. If the selected laser 

power is lower than the lower bound and scan speed is higher than the upper bound, 

porosity formation is likely to occur in the object’s structure. If laser power is higher than 

upper bound and scan speed is lower than the lower bound, then keyholing is likely to occur 

in the object’s structure. 

The parameters and decision variables in the mathematical model are explained below. 

Decision Variables 

𝑉 Scan speed (𝑚𝑚/𝑠) 

𝑷 Laser power (𝑊) 

𝒉 Hatch distance (𝑚𝑚) 

𝜹 Layer thickness (𝑚𝑚) 
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𝜎 Laser spot size (𝑚𝑚) 

 
𝑥𝑗 Binary variable 

Parameters  

𝑉𝑡 Threshold scan speed (𝑚𝑚/𝑠) 

𝑉𝑝 Volume of the printed part (𝑚𝑚3) 

𝑃𝑗
𝐿 Lower bound of laser power (𝑊) for range 𝑗 

𝑃𝑗
𝑈 Upper bound for laser power (𝑊) for range 𝑗 

𝑉𝑗
𝐿 Lower bound for scan speed (𝑚𝑚/𝑠) for range 𝑗 

𝑉𝑗
𝑈 Upper bound for scan speed (𝑚𝑚/𝑠) for range 𝑗 

𝛿𝑗
𝐿 Lower bound for layer thickness (𝑚𝑚) for range 𝑗 

𝛿𝑗
𝑈 Upper bound for layer thickness (𝑚𝑚) for range 𝑗 

ℎ𝑗
𝐿 Lower bound for hatch distance (𝑚𝑚) for range 𝑗 

ℎ𝑗
𝑈 Upper bound for hatch distance (𝑚𝑚) for range 𝑗 

𝐷 Thermal diffusivity of the molten material 

𝐾 Thermal conductivity of the molten material 
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𝐴 Absorptivity of the molten material 

𝑇𝑏 Boiling temperature of the material  (𝐾) 

𝑇𝑚 Melting temperature of the material  (𝐾) 

𝑇𝑝 Peak temperature for the material  (𝐾) 

𝑡𝑝 Required total time for building a part (𝑠) 

𝐸𝑐 Cost of energy consumption ($/𝑈𝑛𝑖𝑡) 

𝑂𝑖 Total hourly operational cost rate ($/ℎ) 

𝐶𝑒 Unit-cost of electricity  ($/𝑘𝑊ℎ) 

ℎ𝑠 Enthalpy at melting (𝐽/𝑘𝑔) 

There are three significant costs in 3D printing operations: material cost, operational cost 

and the cost of energy consumption (Deng et al., 1992). Material cost is not a subject of 

this study because it is not a cost generated by the running 3D printing machine. Thus, the 

objective of this study is the building costs, including operational cost and cost of energy 

consumption. 

Tang et al. (2017) conducted a research on the prediction of lack of fusion porosity for 

powder bed fusion. In that study, the build rate was defined as ℎ𝛿𝑉. Based on this, the 

required total time for building a part with a volume of 𝑉𝑝 can be found as in equation (1). 
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 𝑡𝑝 =
𝑉𝑝 

ℎ𝛿𝑉
 (1) 

As mentioned earlier, the objective function consists of two components. The first 

component is an operational cost. 𝑂𝑖 is the total hourly operational cost rate of labor, 

machine, facility, software, spare, and maintenance in the printing process. 

The second component of the objective function is the cost of energy consumption 𝐸𝑐 

which can be found with the equation (2). 

 𝐸𝑐 =   
𝐶𝑒𝐸𝑉𝑝 

𝛿
 (2) 

Here, 𝐸 is energy density per millimeter square and equals to 
𝑃

𝑉ℎ
 . The objective function 

could be written as below. 

Minimize 𝑉𝑝 

𝛿𝑉ℎ
(𝑂𝑖 + 𝐶𝑒𝑃) (3) 

Two types of failure formation; keyhole and porosity must be minimized while minimizing 

the building cost. King et al. (2014) calculated the threshold scan speed (𝑉𝑡) associated 

with laser power (𝑃) and laser spot size (𝜎) as below. 

 𝑉𝑡 =
𝐷

𝜎3𝜋3
[

𝐴 𝑃

𝐾 𝑇𝑏
]

2

 (4) 

From this, the threshold for scan speed could be generated as in (5), 
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𝐷

𝜎3𝜋3
[

𝐴 𝑃

𝐾 𝑇𝑏
]

2

≤ 𝑉 (5) 

As stated earlier, exceeding the peak temperature will cause keyhole formation in the 

object`s structure. Thus, the constraint for the peak temperature is also very important for 

the quality of the printed part. According to King et al. (2014), the constraint for the peak 

temperature can be set as below. 

 
√2𝐴𝑃

𝐾𝜎1/2𝜋3/2
𝑡𝑎𝑛−1 √

2𝐷

𝑉𝜎
≤  𝑇𝑝 (6) 

Keyhole formation is also related to the normalized enthalpy. King et al. (2014) also 

defined the normalized enthalpy as in equation (7). 

 
Δ𝐻

ℎ𝑠
=  

𝐴𝑃

𝜋ℎ𝑠√𝐷𝑉𝜎3
 (7) 

Where Δ𝐻 is the specific enthalpy. They also defined threshold normalized enthalpy to 

minimize keyhole presence in molten material. 

 
Δ𝐻

ℎ𝑠
≥  

𝜋𝑇𝑚

𝑇𝑏
 (8) 

From equations (7) and (8), the constraint for minimizing the keyhole presence in the 

printed part could be written as in (9).  

 
𝐴𝑃

𝜋ℎ𝑠√𝐷𝑉σ3
≥

𝜋𝑇𝑚

𝑇𝑏
 (9) 

Here, ℎ𝑠 is the enthalpy at melting and it can be calculated with the following function. 
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 ℎ𝑠 =  
𝐾 𝑇𝑚

𝐷
= 𝜌𝑐 𝑇𝑚 (10) 

Besides, the printed part must be protected from the porosity (Čapek et al., 2016). To do 

that, scan speed and laser power settings must be adjusted properly in allowable layer 

thickness and hatch distance values. Therefore, as mentioned earlier, the ranges for laser 

power and scan speed have been set to manage the quality level for the printed part. In this 

concept, the following constraints are created to minimize porosity formation. 𝐽 is the set 

of ranges and variable 𝑥𝑗 = 1 if range 𝑗 is selected. Here, 𝑀 is a big number.  

 𝑃 ≥ 𝑃𝑗
𝐿 − 𝑀(1 − 𝑥𝑗) 

𝑃 ≤ 𝑃𝑗
𝑈 + 𝑀(1 − 𝑥𝑗) 

𝑗 ∈ 𝐽 (11) 

 𝑉 ≥ 𝑉𝑗
𝐿 − 𝑀(1 − 𝑥𝑗) 

𝑉 ≤ 𝑉𝑗
𝑈 + 𝑀(1 − 𝑥𝑗) 

𝑗 ∈ 𝐽 (12) 

 𝛿 ≥ 𝛿𝑗
𝐿 − 𝑀(1 − 𝑥𝑗) 

𝛿 ≤ 𝛿𝑗
𝑈 + 𝑀(1 − 𝑥𝑗) 

𝑗 ∈ 𝐽 (13) 

 ℎ ≥ ℎ𝑗
𝐿 − 𝑀(1 − 𝑥𝑗) 

ℎ ≤ ℎ𝑗
𝑈 + 𝑀(1 − 𝑥𝑗) 

𝑗 ∈ 𝐽 (14) 

 ∑ 𝑥𝑗

𝑗

= 1 

 
(15) 
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Overall, the complete model is shown below with objective function and all constraints. 

Minimize 
𝑉𝑝 

𝛿𝑉ℎ
(𝑂𝑖 + 𝐶𝑒𝑃)  

Subject to 
𝐷

𝜎3𝜋3
[

𝐴 𝑃

𝐾 𝑇𝑏
]

2

≤ 𝑉  

 
√2𝐴𝑃

𝐾𝜎1/2𝜋3/2
𝑡𝑎𝑛−1 √

2𝐷

𝑉𝜎
≤  𝑇𝑝  

 
𝜋2ℎ𝑠𝑇𝑚√𝐷

𝑇𝑏𝐴
≤

𝑃

√𝑉𝜎3
  

  𝑃 ≥ 𝑃𝑗
𝐿 − 𝑀(1 − 𝑥𝑗) 𝑗 ∈ 𝐽 

 𝑃 ≤ 𝑃𝑗
𝑈 + 𝑀(1 − 𝑥𝑗)  

 𝑉 ≥ 𝑉𝑗
𝐿 − 𝑀(1 − 𝑥𝑗) 𝑗 ∈ 𝐽 

 𝑉 ≤ 𝑉𝑗
𝑈 + 𝑀(1 − 𝑥𝑗)  

 𝛿 ≥ 𝛿𝑗
𝐿 − 𝑀(1 − 𝑥𝑗) 𝑗 ∈ 𝐽 

 𝛿 ≤ 𝛿𝑗
𝑈 + 𝑀(1 − 𝑥𝑗)  

 ℎ ≥ ℎ𝑗
𝐿 − 𝑀(1 − 𝑥𝑗) 𝑗 ∈ 𝐽 

 ℎ ≤ ℎ𝑗
𝑈 + 𝑀(1 − 𝑥𝑗)  
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 ∑ 𝑥𝑗

𝑗

= 1  

 𝑉, 𝑃, 𝛿, ℎ, 𝜎 ≥ 0; 𝑥𝑗 ∈ {0,1}  

3.3. Numerical Experiments and Discussions 

As already mentioned earlier, there are several studies investigated the optimization of 

process parameters for improving quality or productivity in powder-bed additive 

manufacturing. These studies were conducted using the experimental methods in order to 

optimize process parameters for specific cases. A limited number of process parameter 

could be analyzed together with these methods. As explained in the literature review, 

optimizing only a few process parameters while fixing the others might not give 

satisfactory results. In order to illustrate this important point, data about process parameter 

settings are collected from selected studies in the literature. The building costs are 

calculated based on parameter settings from collected data and determined sample size. 

Then the building cost results are compared to the result of this study in this section.  The 

aim of the comparison is to show how the empirical model effective in decreasing building 

cost by taking all major process parameters into account and removing limitations on the 

number of analyzed parameter combinations while keeping the quality at a desired level.  

Different from the previous studies that were aimed at obtaining either the best quality or 

the highest building rate, these numerical experiments targeted at the lowest cost while 

maintaining an acceptable quality level. The relative density is used as an indicator of 

quality based on the literature. The AM process is assumed to use a Concept laser powder-
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bed fusion machine and 316L stainless steel which is one of the most widely used AM 

materials (Kamath et al., 2014). Part dimensions are assumed as 

40 𝑚𝑚 𝑥 40 𝑚𝑚 𝑥 40 𝑚𝑚 to calculate the building cost (Saunders et al., 2017). The 

results for optimal parameter settings are obtained for scan speed up to 1200 𝑚𝑚/𝑠.  

The machine cost is considered as an operational cost in the total building cost. Wohler 

and Caffrey assumed the fixed cost of an AM machine to be $780,000 and the annual 

maintenance cost is $20,000 with a 7-year lifespan (Wohler, 2015). Considering the 

improvement possibilities, they provided that the price of the machine can go down to 

$546,000 with $2,000 annual maintenance costs over 11 years of lifespan. Therefore, we 

estimate the average annual purchasing and maintenance cost as $119,772. If the average 

working hours for a 3D printing machine is assumed 90 hours per week and the 3D printing 

machine is assumed to run with 90% utilization in this working period (Brockmann et al., 

2015), the hourly cost rate of the 3D printing machine can be found as $28.435 /h. The 

average hourly labor cost for AM is taken as $45 /h and the other costs (facility, software, 

spares, and utilities for maintaining the printing operation) are assumed as 20 $/h (Indeed, 

2018). $0.12 per kilowatt-hour is taken for a unit cost of energy consumption (U.S Energy 

Information Administration, 2018).  

The ranges for laser power and scan speed along with allowable layer thickness and hatch 

distance are created for minimizing porosity and keyhole formation as explained before. It 

should be noted that the ranges can be set based on any quality level. They can be narrowed 

down if a specific quality level is desired to be obtained. The ranges created for the 

numerical experiments are just an example to show how the empirical model works. Kruth 
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et al. (2010) investigated the porosity level on 316L parts with using 100 𝑊 laser power 

and scan speed up to 380 𝑚𝑚/𝑠. They investigated the different variations of hatch 

distance up to 0.12 𝑚𝑚 and layer thickness up to 0.06 𝑚𝑚. They have reported that 

97.57% is the lowest density level obtained in that study with a normal curling angle. 

Exceeding these values might end up with a dramatic decrease in density level for the 

corresponding laser power level. Kamath et al. (2014) conducted research that shows the 

density level can go down 96% when the laser power is in between 200 − 250 𝑊 with 

scan speed ranging in 350 − 900 𝑚𝑚/𝑠 and layer thickness up to 0.065 𝑚𝑚. They 

reported that the relative density level is above 99% for all combinations given in range 2 

for laser power values more than 250 𝑊. When the laser power increases, low porosity 

can be obtained even with high scan speed, layer thickness, and hatch distance values. 

Wang et al. (2017) used high laser power (380 𝑊) to investigate the porosity level on a 

part using high layer thickness up to 0.15 𝑚𝑚 and hatch distance up to 0.36. They reported 

that the lowest relative density level is 99%. Similarly, Sun et al. have conducted research 

on investigating stainless steel 316L with low porosity and high building rate by using 

high laser power (380 𝑊) and fixed layer thickness (0.05 𝑚𝑚). They reported that the 

density values ≥ 99% were recorded for all fabricated sample parts for scan speed up to 

1250 𝑚𝑚/𝑠. However, the high laser power range is not a preferable range in AM 

processes due to the instability of the melt pool (Turichin et al., 2016). The ranges for the 

numerical experiment have been created as in Table 3.2 based on these results. 

The results showed in Table 3.3 are the results for building cost of each study with the 

relative density range based on selected parameter settings. 
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Table 3.2 Set values for laser power, scan speed, layer thickness, and hatch distance. 

 Range 𝒋 

 𝟏 𝟐 𝟑 

Power Range (𝑃𝑗
𝐿 , 𝑃𝑗

𝑈) (100, 200) (200, 300) (300, 400) 

Scan speed range (𝑉𝑗
𝐿 , 𝑉𝑗

𝑈) (100, 380) (380, 900) (900, 1200) 

Allowable layer thickness 𝛿𝑗 (0.03, 0.06) (0.06, 0.065) (0.065, 0.1) 

Allowable hatch distance ℎ𝑗 (0.075, 0.12) (0.12, 0.24) (0.24, 0.36) 

Relative Density (97.5%-99.9%) (96%-99.9%) (99%-99.9%) 
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As shown in Table 3.3, the obtained building cost is lower in this study to compare to all 

other studies except study 9. However, the lowest density level for that study is quite low 

to compare to the density level in this study. Above 98% density level is expected to obtain 

in this study since the obtained scan speed level is quite lower than the defined upper bound 

for the corresponding range. Building cost depends on the effect of each individual process 

parameter and their combined interactions in powder-bed AM processes. Therefore, all 

significant process parameters must be optimized together to obtain the low building cost 

with acceptable quality. Increasing or decreasing in value of one or several parameters 

might increase the building cost or decrease the quality due to their negative influence on 

the other process parameters. Table 3.3 illustrates this logic by showing building cost 

results based on optimized process parameter settings. In this table, the values in bold 

indicate the focused parameters considered in optimization for the corresponding study. 

All studies considered only two process parameters for optimization and keep the rest of 

them as a fixed value. Therefore, building costs of the printed part in these studies are quite 

high except for study 9. Although the lowest building cost obtained in study 9, the quality 

level for this study is lowest due to the parameter selection. The parameter values in Table 

3.3 clearly show that non-optimal process parameter combinations could cause a slow 

building rate or low quality.  

 Building costs and process parameter settings are analyzed in this section to show the 

individual and combined effect of these parameter settings on productivity and quality. 

Figure 3.1 shows how building cost changes depending on scan speed. Recall that, the scan 

speed is one of the most important process parameters which have a great impact on  
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Table 3.3 Building costs based on optimized process parameter settings. 

 

𝑷 

(𝑾) 

𝑽 

(𝒎𝒎/𝒔) 

𝝈 

(𝒎𝒎) 

𝒉 

(𝒎𝒎) 

𝜹 

(𝒎𝒎) 

Relative 

Density 

Building 

Cost ($/
𝑼𝒏𝒊𝒕) Study 

1 100 100 0.2 0.08 0.05 
99.4%-

99.7% 
$ 4,688.89 

(B. Zhang et al., 

2013) 

2 100 100 0.055 0.075 0.075 
99% -

99.9% 
$ 3,334.32 

(Scipioni Bertoli et 

al., 2017) 

3 100 200 0.2 0.08 0.05 
99.2%-

99.4% 
$ 2,344.44 

(B. Zhang et al., 

2013) 

4 100 300 0.18 0.126 0.03 
98.4-

98.9% 
$ 1,653.93 

(E. Yasa et al., 

2011; Evren Yasa 

et al., 2010) 

5 104 350 0.2 0.13 0.03 
99%-

99.5% 
$ 1,380.28 

(Spierings and 

Levy, 2009) 

6 104 400 0.2 0.13 0.03 
99%-

99.5% 
$ 1,207.75 

(Spierings and 

Levy, 2009) 

7 100 300 0.2 0.08 0.075 99% $ 1,041.98 
(B. Zhang et al., 

2013) 

8 100 300 0.2 0.125 0.06 
98.8%-

99.2% 
$ 833.58 

(E. Yasa et al., 

2009) 

9 100 380 0.18 0.126 0.06 
95.8-

98.9% 
$ 652.87 

(Kamath et al., 

2014) 

10 100 332 0.2 0.12 0.06 
98%-

99.3% 
$ 784.62 This Study 
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building rate and quality. Parallel to this fact, the significant effect of scan speed on 

building cost could be clearly observed in Figure 3.1. Building cost increases with 

decreasing in scan speed because operational costs increase due to longer building time. 

As shown in Figure 3.1, the scan speed in this study is obtained lower than several studies. 

The reason for this is that the empirical model obtains optimal value for all process 

parameters which also have a significant effect on both productivity and quality. Thus, 

instead of improving one parameter solely, obtaining the optimal results for all process 

parameters is significant for better productivity. This is also very important to obtain an 

acceptable quality level since all parameters are critical for the quality. Therefore, although 

building cost in this study is slightly higher than the study 9, the quality level is much 

better. Study 2 aimed to keep relative density %99 or above in order to achieve the best 

quality and they optimized process parameters based on this purpose (Bertoli et al., 2017). 

They kept scan speed level as low as possible to get the highest relative density in that 

study, but it caused the highest building cost eventually. It is expected to have a high 

building cost if high quality is desired in AM. However, hatch space and layer thickness 

are not well-optimized based on the other process parameters, and they used fixed values 

for these parameters. Therefore, scan speed was decreased to maintain the desired quality 

level. The important point here is that they could have obtained lower building costs at the 

same quality level if they could have optimized all fixed process parameters based on the 

other settings. Similarly, in other studies, they mostly used fixed parameters and optimized 

one process parameter along with scan speed. In this study, however, low building cost was 

obtained by considering all major process parameters in optimization based on the desired 
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Figure 3.1 Changing in building cost depending on laser scan speed settings.  
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quality level. Even if a high quality was desired, relatively low building cost could be 

obtained by systematically optimizing major parameters. 

As stated earlier, the combined effects of major process parameters are also important for 

building cost and quality. To show how laser power, layer thickness, and hatch distance 

are effective on productivity, the combined effect of each process parameter with scan 

speed are shown in Figure 3.2. In Figure 3.2-b, it can be seen that the combined effect of 

layer thickness and scan speed have a significant impact on the building cost. The reason 

for this is that the layer thickness is one of the most important parameters that highly 

influence the building time. Similarly, the significant effect of hatch distance on the 

building cost can be seen in Figure 3.2-c. Like layer thickness, hatch distance also affects 

the building time directly and thus, it is an important parameter for the building cost. In 

Figure 3.2-a shows that laser power is not as effective as the hatch distance and layer 

thickness on building cost. However, laser power is a very important process parameter for 

quality. Wang et al. (2017) show that with high laser power, high density can be obtained 

with high scan speed, layer thickness and hatch distance values. However, high laser power 

ranges are not a preferred range in AM because the melt pool might become unstable and 

very hard to control. 

Figure 3.3 illustrates the importance of layer thickness by showing the change in building 

cost by altering the values of layer thicknesses. Except few studies, fixed layer thickness 

was used in the optimization. In this study, however, layer thickness was also optimized 

through the empirical model considering its interactions with other process parameters and 

thus, the low building cost was obtained.  
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Figure 3.2 Changing in building cost depending on combination of scan speed and laser 

power (a), scan speed and layer thickness (b), scan speed and hatch distance (c)  
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The interesting point in Figure 3.3 is that although studies 2 and 7 used thicker layer values 

to compare to other studies, the building costs are still high (Zhang et al., 2013). The reason 

for this is that quality level was maintained by compromising with other process parameters 

which eventually causes the higher building cost. Similarly, studies 4, 5 and 6 used smaller 

values for layer thickness and obtained the high building cost. They could have optimized 

layer thickness by considering the interactions between other process parameters to 

improve scan speed and hatch distance values which also have a significant effect on 

building rate. In this way, they could have decreased the building cost significantly at the 

same quality level. It can be stated that using thicker or thinner layers without considering 

the interaction of this parameter with other process parameters might result in high building 

cost or low quality. 

Hatch distance is also an important process parameter setting that must be considered in 

the optimization. Figure 3.4 shows how hatch distance affects the building cost. It is 

effective on productivity because it is a major process parameter for building rate and thus, 

it affects the building time. It is also significant for the quality because it is a major factor 

for an overlap of single scan paths of the moving heat source which causes multiple exposes 

on some points. As shown in Figure 3.4, while several studies used lower hatch distance 

values, several of them used higher values for this parameter. For most of the studies, these 

parameters are considered as fixed values. For example, studies 1, 2, 3 and 7 used fixed 

low hatch distance values and thus, the building costs for these studies are quite high. On 

the other hand, study 9 used high hatch distance value with a high scan speed and therefore, 

the density level is quite low to compared to other studies. Therefore, the process parameter 
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Figure 3.3 Changing in building cost depending on layer thickness settings. 

 

Figure 3.4 Changing in building cost depending on hatch distance settings. 
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Figure 3.5 Changing building cost depending on laser spot size settings. 
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such as hatch distance and layer thickness significantly affect both productivity and quality. 

Optimizing these parameters with created allowable ranges is important for controlling the 

quality level while minimizing the building cost. 

Figure 3.5 shows how building cost changes depending on the laser spot size. Since laser 

spot size does not affect the building rate directly, it is not as effective as layer thickness 

and hatch distance. However, it still affects the important parameters that have a significant 

impact on the building cost. Therefore, instead of using a fixed value for the laser spot size, 

optimizing this process parameter with other parameters will provide a better combination 

of parameter settings for both quality and productivity. As demonstrated in this section, the 

empirical model can provide better results for productivity due to its advantages of 

optimally adjusting parameter settings by considering the individual effect of all process 

parameters and the interactions between them.  

3.4. Conclusions 

It can be observed that the values for many process parameters were kept constant or not 

optimized effectively in numerous printing operations. Only several process parameters 

could be investigated together due to the limitation of the experimental methods. As 

explained in the figures shown in previous sections, there is no doubt that each process 

parameter has a significant impact on building cost in powder-bed AM processes. Thus, 

keeping some of them constant or not optimizing them well would make the process slower 

and expensive. The layer thickness in Bertoli et al. (2017) study can be given as an example 

for that. They kept the layer thickness much ticker to compare to other studies even if they 

http://tureng.com/en/turkish-english/judiciously
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desire high quality. Rather than fixing these parameters, adjusting them optimally based on 

the required quality level will help user to obtain optimal parameter settings for better 

productivity.  

On the other hand, optimizing process parameters with experimental methods are 

expensive and time consuming if all major process parameters are desired to optimize. 

However, thanks to the empirical model created in this study, all process parameters could 

be optimized together with considering their individual and combined effects without these 

limitations and restrictions. And the most advantageous part of the empirical model is that 

it gives a great opportunity to decrease the building cost to a certain extend in any quality 

level in a cheaper and faster way. 
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CHAPTER 4. SCHEDULING MODEL FOR A SINGLE AM 

MACHINE WITH CONSIDERING MULTI-MATERIAL TYPES 
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Abstract 

There are numerous studies about scheduling problems in traditional manufacturing. 

However, additive manufacturing processes have different dynamics that must be 

considered in the modeling process. For example, the printing process is considerably slow 

in AM, and therefore, it is expected to have a long waiting time in the production process. 

Besides, the quality factor, which can be affected by the material changeover, has not been 

considered in the planning and scheduling models. The trade-off between quality and costs 

of the material switching process is important. Having the ability to optimize material 

switching time by considering the quality and incorporating it into the scheduling process 

can help users make better decisions. The purpose of this study is to propose a scheduling 

model that takes quality into account to optimize the production process for a single AM 

machine using multi-materials.  

Since the complexity of the optimization model is NP-Hard, it could not provide results for 

a large number of parts. Thus, two sophisticated constructive heuristic algorithms are 

developed to accelerate the solution process. The results show that second algorithm can 

provide better results in terms of CPU time and solution quality. Furthermore, the results 

demonstrate that trade-off between switching, and lateness cost is effective on scheduling 

for single AM machine. 

4.1. Introduction  

AM technology was not fully adapted to the manufacturing industry because of several 

problems including quality and productivity and thus scientists, medical doctors, students, 
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professors, and artists use AM methods to rapidly build and analyze their models in the 

early stages of AM (Chua et al., 1998; Flowers, 2002). AM applications are growing 

rapidly in the manufacturing industries as already explained in the chapter one. The 

Wohlers (2020) presented in the first section indicates that nowadays, AM has been used 

not only for prototyping but for the final part as well. In this context, mentioning some real-

world examples in which additive manufacturing has been used by major companies to 

produce the final products will help us understand the place of AM in the manufacturing 

industry. The following examples listed by Zahnd (2018).  

• Adidas announced in April 2017 that they will produce 3D printed shoes, called 

Futurecraft 4D. 

• Chanel, a giant French fashion company, announced that it will start producing 

entirely 3D printed mascara brushes in June 2018. 

• In 2016, the New Mexico mobile phone company Optomec announced that they 

will start applying additive manufacturing for mass production. 

The number of examples can be increased. Although it is too early to conclude that additive 

manufacturing is ready for mass production globally, it is clear that AM is rapidly growing 

and promising technology for manufacturing final parts and mass production in the near 

future. However, the research conducted in this area mainly focused on the quality and 

productivity for prototyping or low-volume production. Although these issues are 

important to improve AM processes, more research is needed to improve and optimize AM 

processes for high-volume or mass production. One of the major obstacles to the adaption 

of AM to mass or high-volume production is mostly considering only one material type in 
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AM production processes. This is also quite an important problem for low-volume 

production in AM. It is because devoting an expensive AM machine to only one material 

type is not an efficient way to use limited resources. This also has a serious impact on the 

environment. Therefore, there is a need for a scheduling model that consider multi-material 

type for production planning and scheduling. 

This study proposes a scheduling model for a single AM machine with considering the 

multi-material type. It will be the first systematic analysis of a single AM machine 

considering multi-material types with taking the parts’ quality into account. The proposed 

model could help solving the current AM industries’ problems and filling the existing 

research gaps.  

It is important the investigate the key factors that could affect both quality and operational 

costs of AM when multi-materials are considered for production planning. when AM 

machine changes the material type, it requires a certain amount of time to set up and 

calibrate the machine for the new material.  It can be concluded that the waiting time and 

the machine switching time might have a serious impact on both quality of the parts and 

operation costs. These factors will be discussed in numerical experiments and discussions 

section of this chapter to see the effect of these factors. 

Taking quality into account is always difficult for AM processes since there is no reliable 

way of measuring quality. In the AM processes, the quality of the part may depend on the 

specific period of the production. The parameter settings and the calibration of the AM 

machine must be reset when the AM machine is switched to a different material type. Since 

the calibration and process parameters are very difficult to set optimally right after the 
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material changeover, the quality levels of the produced parts might be relatively lower at 

the beginning of the production. The quality will be increased as more parts are made with 

the same material type due to the better calibration and parameter optimization. Thus, 

material changeover plays a critical role for the quality level. Besides, it is also important 

for the operational costs because machine switching process add additional costs into the 

systems. Considering this while developing the scheduling and planning model could be 

an effective trade-off between quality and costs. This factor must be well optimized to have 

an efficient production planning and effective production process that could fulfill 

customers’ needs in AM systems. The schematic view of the scheduling process is shown 

in Figure 4.1. 

Computational Complexity of the Model 

The scheduling problems of earliness and tardiness, which is considered the most common 

scheduling problems, have been extensively studied in the past decade. As in AM, these 

types of problems are also motivated by Just-In-Time production (Kootanaee et al., 2013).  

In Just-In-Time production, parts must be delivered in a specific time window that is called 

the due date for each part. The lateness penalty can be issued if the part is delivered later 

than its due date. Therefore, minimizing the job completion times around their due dates is 

one of the most common measures of performance (Wan and Yuan, 2013). Du and Leung 

(1990) conducted research on optimizing production schedule by considering minimizing 

total tardiness on one machine. In this study, they consider a set {𝐽1, 𝐽2, … , 𝐽𝑁} of 𝑁 jobs on 

one machine. Processing time associated each job and a due date is denoted by 𝑝(𝐽𝑡) and 

𝑑(𝐽𝑡) respectively. The tardiness of a schedule (𝑆) for 𝑁 job denoted by 𝑇(𝐽𝑡 , 𝑆) is defined 
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Figure 4.1 Demonstration of the proposed scheduling model  
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to be 𝑇(𝐽𝑡 , 𝑆) = max {0, 𝐶(𝐽𝑡 , 𝑆) − 𝑑(𝐽𝑡), where 𝐶(𝐽𝑡 , 𝑆) is the completion time of each 

job. The aim is to minimize total tardiness cost which is denoted by 𝑇𝑇(𝑆) and defined to 

be 𝑇𝑇(𝑆) = ∑ 𝑇(𝐽𝑡 , 𝑆)𝑁
𝑡=1 . They proved that minimizing total tardiness cost in scheduling 

problems is 𝑁𝑃-Hard. Lawler (1977) proved that even if all jobs have the same fixed 

production times, the total tardiness problem is still NP-Hard, if precedence constraints are 

introduced. Furthermore, Koulamas (2010) showed that the single machine total tardiness 

scheduling problems are NP-Hard problems. The proposed model is more complex than 

these problems because the switching process and quality reward are also considered in the 

systems in addition to total tardiness cost. Hence, the problem of scheduling problem for a 

single AM machine considering multi-material types is also NP-hard as contextualized 

above.  

4.2. Literature Review 

The current studies will be discussed in two categories: AM-related scheduling research 

papers and SM-related scheduling research papers. The important points about the current 

studies and the key factors that make the proposed study unique will be indicated in the 

following paragraphs. 

The number of researches related to production scheduling in AM is considerably less than 

the number of research about SM because it is a relatively new field. Several papers have 

been published on this topic in the literature (Canellidis et al., 2016; Wang et al., 2016; 

Zhang et al., 2017; Ransikarbum et al., 2017; Chergui et al., 2018; Dvorak et al., 2018; 

Kucukkoc et al., 2018; Fera et al., 2018; Kucukkoc, 2019; Li et al., 2019; Zhang et al., 
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2020; Oh et al., 2020; Aloui and Hadj-Hamou, 2021). They have used different solution 

types based on the characteristic of their models. Kucukkoc (2019) used a CPLEX solver 

to obtain optimal solutions without using a heuristic model. Canellidis et al. (2016),  Fera 

et al. (2018), Zhang et al. (2019), and Zhang et al. (2017) utilized a genetic algorithm to 

find the best feasible solution for their MILP model. On the other hand, Chergui et al. 

(2018), Dvorak et al. (2018), Li et al. (2019), and Oh et al. (2020) applied the heuristic 

model to solve the MILP problem. We only discussed the most related studies to our model 

to give details about their MILP. Next, the factors that make the proposed model unique 

will be explained.  

The most similar study in the AM field is published by Kucukkoc (2019). He developed a 

MILP model to minimize makespan in additive manufacturing machine scheduling 

problems. He first considers a single AM machine and then extends his model to parallel 

machine scheduling with a single material type. Setup time is a key factor for AM 

scheduling problems that differentiate it from SM production scheduling problems. 

Because setup process significantly affects the production process since quality depends 

on the calibration and process parameters of the AM machine. Although the setup process 

of AM machine is considered in Kucukkoc's (2019) study, it only incorporated into the 

model as a parameter. They just wanted to obtain the time spending for setup time to 

minimize it. However, the setup time for AM machine is considered as a variable in our 

model that influences the quality reward of the produced part as explained in the 

methodology of the third chapter. In this way, the setup process can be optimized in order 

to obtain an efficient production schedule. Aloui and Hadj-Hamou (2021) developed a 
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MILP model for scheduling problems in AM under the technological constraint with 

considering a single material type. Similar to Kucukkoc (2019), they focus on setup time 

to minimize makespan; thus, setup time is considered as preparation time of machines and 

heating time of machines, which are also considered as parameters. 

There are several key factors that make our study unique among the papers published in 

the AM literature. First, multi-material types considered in the proposed study. To the best 

of our knowledge, there is no study yet considered multi-material type scheduling model 

for AM processes. Considering multi material-type is very challenging for the scheduling 

model because the concept of the setup process is different. First changing material type in 

AM takes much longer. Second, setup time is relatively simple for a single material type 

production process because the calibration and process parameters will be optimized for 

the same material type. However, calibration and process parameter optimization are 

challenging if multi-material is considered in the system because different material requires 

different calibration and process parameter optimization. Thus, the quality of the produced 

part may dramatically decrease after each material changeover. This key factor must be 

considered in the model development process.   

In recent years, the number of articles discussing the scheduling and planning in SM has 

increased in number as energy consumption, efficiency and effectiveness have become 

more important in sustainable manufacturing (Ji et al., 2013). There are several papers 

subjecting the single machine configuration in their model (Gong et al., 2015; Liu, 2016; 

Wang et al., 2016; Zheng and Wang, 2015). Several other studies examined the multiple 

machines with same property (Artigues et al., 2013; Ding et al., 2016). Besides these, some 
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studies subjected mass production with the flowshop configuration or high variance with 

the jobshop configuration (Cuesta et al., 2014; Liu et al., 2015). 

Among the mentioned studies, we will review most relevant to our proposed study, 

specifically, single machine scheduling models. Gong et al. (2015) created a mix integer 

scheduling problem in order to minimize energy cost for sustainable manufacturing. In this 

study, machine states, namely “off, startup, ready, production, shutdown, others”, defined 

with integer index. Energy cost is intended to minimize based on the determined objective 

function and constraints that are formed according to machine states. Similar to the 

proposed model, only one job can be scheduled at a time, so the whole batch can be 

scheduled. The defined constraint(s) allows only one state at a time for the machine, and it 

allows a constant power value to be assigned with the state in each case. Scheduling models 

and algorithms are widely used in the semiconductor industry because manufacturing 

large-scale integrated circuits is considered a complex process (Uzsoy, 1995). Several 

articles focus on minimizing the makespan on a single batch processing machine with the 

fixed batch processing time, all of which are considered deterministic cases (Ahmadi et al., 

1992; Ikura and Gimple, 1986; Uzsoy, 1995). The makespan intended to minimize 

effectively with processing multiple jobs simultaneously by combining the jobs together in 

a batch form. Batch processing machines can be configured to operate in only two states: 

running and idle. Sung et al. (2002) approached the semiconductor scheduling problem 

with the dynamic programming algorithm since the release times of all jobs are different 

from one another, and the set of all jobs can be divided into a number of subsets. 
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The manufacturing process in AM is quite different from SM. Therefore, different factors 

must be considered while modeling the scheduling problem in AM. For example, an 

individual part in the AM requires a longer production time than it requires in SM and thus, 

queues would be expected in the system. Furthermore, most of the studies mentioned above 

do not consider the material type in scheduling models. The reason is that most SM 

processes do not require special procedures for changing material types or properties. SM 

systems can easily be adapted to different material types and properties at the initial stage. 

However, AM machine requires complex procedures each time the machine is switching 

to a different type of material. Moreover, the most important factor is that the quality of 

the final part is not affected by the process switching or set-up procedure in SM processes. 

However, quality is one of the most challenging factors in AM processes and can be easily 

affected by switching and setup operations. To sum up everything that has been stated so 

far, it can be concluded that the scheduling models for SM systems are not applicable to 

the industrial needs of AM systems without major modification. 

4.3. Methods 

4.3.1. Assumptions 

1. Single AM machine with multi-material types. 

2. At most one part can be produced at a single job.  

3. Quality of parts will be improved as more parts are made with the same material type 

due to the better calibration and parameter optimization of the 3D machine. (𝑣𝑖𝑘 ≥

𝑣𝑖,𝑘−1) 
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3.1. Quality level will be improved based on the number of productions given in 

Figure 4.2.    

4.3.2. Model Formulation 

Parameters: 

𝑁          Number of parts (𝑖 = 1, 2, 3 … 𝑛); 

𝐿          Number of material types indexed by 𝑙; 

𝑎𝑖𝑙 = {
1,  if part 𝑖 requires material 𝑙
0,  otherwise                              

,    𝑖 = 1, … , 𝑛; 

𝐾         The maximum number of parts using the same materials and 𝐾 =

max
𝑙

∑ 𝑎𝑖𝑙
𝑛
𝑖=1 ; 

𝑤𝑖         Unit delay penalty of part 𝑖 ($/ℎ𝑟𝑠); 

𝑑𝑖         Due date of part 𝑖 (ℎ𝑟𝑠); 

𝑝𝑖         Processing time of part 𝑖 (ℎ𝑟𝑠); 

𝑣𝑖𝑘         Value of part 𝑖 if it is produced at the  𝑘𝑡ℎ position with the same material 

(we assume 𝑣𝑖𝑘 ≥ 𝑣𝑖,𝑘−1 due to the quality improvement over time if the 

same material is used); 

𝑠𝑙        Setup time when the AM machine switches to material  𝑙; and 
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Figure 4.2 Example illustration of quantity of parts and quality reward relationship 
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𝑐𝑙        Cost for the machine switching to material 𝑙, including the cost of scrapped 

parts,   𝑙 ∈ 𝐿. 

Decision Variables: 

𝑥𝑖𝑗        
= {

1,  if part 𝑖 is produced as job 𝑗
0, otherwise

, 𝑖, 𝑗 = 1, … , 𝑛; 

𝑧𝑗
𝑘           = {

1, if the 𝑗th job is at the  𝑘th position with the same material
0, otherwise                                                                                             

; 

𝑡𝑗          Time of completion of job 𝑗; and 

𝑆𝑗          Switching cost of the 𝑗th job; 

𝑇𝑖          Tardiness of part 𝑖; 

𝑅𝑖        Reward of part 𝑖, which depends on quality level 

In the proposed model, we considered 𝑁 number of parts and jobs which is indexed by 𝑖 

and 𝑗 respectively. 𝐿 material types are considered which is indexed by 𝑙. K indicates the 

maximum number of parts using the same materials. 

Constraints: 

Based on the second assumption, it is required to ensure that all parts are manufactured and 

only one part is produced in a single job. The following two constraints are formulated to 

satisfy these requirements.  
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 ∑ 𝑥𝑖𝑗 = 1

𝑗

, 
𝑖, 𝑗 = 1, … , 𝑛 1 

 ∑ 𝑥𝑖𝑗 = 1

𝑖

, 𝑖, 𝑗 = 1, … , 𝑛 2 

Here 𝑥𝑖𝑗 is a binary variable denotes if part 𝑖 is produced at the job 𝑗. Based on this, the 

constraint (1) ensures that each part must be produced. The constraint (2) indicates that 

only one part is produced per job. 

Delivering parts to the customers before the due date is important in AM industries. If a 

part is not delivered before the due date (𝑑𝑖), the tardiness cost (𝑤𝑖) will be applied as a 

penalty costs to the total costs. Therefore, the completion of each job (𝑡𝑗) must be 

determined to calculate tardiness costs. 

 𝑡𝑗 ≥ 𝑡𝑗−1 + 𝑝𝑖𝑥𝑖𝑗 + ∑ 𝑠𝑙𝑎𝑖𝑙𝑧𝑗
1

𝑙∈𝐿

− 𝑀(1 − 𝑥𝑖𝑗), 𝑖, 𝑗 = 1, … , 𝑛 3 

Constraint (3) gives the completion time of the job 𝑗.  𝑡𝑗−1 in constraint (3) is the completion 

time of the preceding job. 𝑝𝑖 is the processing time of part 𝑖.  𝑠𝑙 is setup time when the AM 

machine switches to material  𝑙 and 𝑎𝑖𝑙 indicates the material type required for part 𝑖. The 

binary variable 𝑧𝑗
1 is 1 if the machine switches to the material 𝑙, 0 otherwise.  

Now the tardiness cost due to the late delivery of parts must be calculated. Since the 

competition time of job 𝑗 is found in (3), then the tardiness cost can be calculated with the 

following constraint.  
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 𝑇𝑖 ≥ max(0, 𝑡𝑗 − 𝑑𝑖), 𝑖 = 1, … , 𝑛 4 

Constraint (4) can be written as the following set of constraints. 

 𝑇𝑖 ≥ 0, 𝑖 = 1, … , 𝑛 4-a 

 𝑇𝑖 ≥ 𝑡𝑗 − 𝑑𝑖 − 𝑀(1 − 𝑥𝑖𝑗), 𝑖, 𝑗 = 1, … , 𝑛 4-b 

Here, 𝑀 is a sufficiently big number. 𝑡𝑗 is the completion time of the job 𝑗 and 𝑑𝑖 is the due 

date for part 𝑖. 

One of the most important contributions of the proposed model is considering quality 

reward of part 𝑖 based on its quality level. Among all other factors, it is very difficult to 

consider the quality factor in the modeling process. Because quantifying the quality is not 

possible since there is no reliable way to measure it. Each organization might have their 

own quality definition depending on their requirements. However, it is known that the 

quality level of finished parts is improved as more parts are made with the same material 

type because of the better calibration and parameter optimization of the AM machine. Thus, 

rewards for higher quality parts can be defined based on the number of parts consecutively 

produced with the same material type. 

The best way to consider the quality in the modeling process is to define a reward value 

𝑣𝑖𝑘 for part 𝑖 after the AM machine switched the material 𝑙. 𝑣𝑖𝑘 is a reward value for part 𝑖 

that will be increased as more parts are produced with the same material type because of 

the better calibration and process parameter optimization as mentioned earlier. Thus, it is 

assumed that 𝑣𝑖𝑘 ≥ 𝑣𝑖,𝑘−1 in the proposed model. The quality reward can be defined as 
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follows based on 𝑣𝑖𝑘 and 𝑘th position of the production process which is defined by 𝑧𝑗
𝑘 after 

material changeover.  

 

𝑅𝑖 ≤ ∑ 𝑣𝑖𝑘𝑧𝑗
𝑘

𝐾

𝑘=1

+ 𝑀(1 − 𝑥𝑖𝑗), 𝑖, 𝑗 = 1, … , 𝑛 5 

Here, 𝑀 is a sufficiently big number. After each material changeover, there will be certain 

number of parts produced with the same material type. Thus, the position must be 

determined to capture the quality level of the produced part. 𝑧𝑗
𝑘 defines the position after 

each material changeover to define the quality reward. The quality reward is represented 

by 𝑅𝑖 in (5). 

𝑧𝑗
𝑘 must indicate only one position after material changeover. Therefore, the following 

constraint is created to show that there is only one 𝑘𝑡ℎ position. 

 ∑ 𝑧𝑗
𝑘

𝐾

𝑘=1

= 1, 𝑗 = 1, … , 𝑛 6 

Another important contribution of the proposed model is considering multi materials for a 

single AM machine. Material changeover is a costly process in AM systems. Therefore, it 

is very important to optimize it if multi-materials are considered in the production process. 

There are three significant operation costs during the material changeover. The first one is 

the material cost because some materials are wasted when cleaning the AM machine and 

setting it up for the next material type. The second one is the cost of scrapped parts. After 

switching the AM machine to material 𝑙, some parts are scrapped to calibrate systems and 

optimize process parameters. And the last one is the labor costs. Extra labor hours must be 



 

93 

 

spent for cleaning the machine and setting it up again. This process is costly and time-

consuming. Cost for the machine switching to material 𝑙, including the cost of scrapped 

parts is considered in 𝑐𝑙 and minimized in the objective function. 

Optimizing machine switching time is a critical factor in the AM manufacturing planning 

because of the reasons mentioned above.  The tradeoff between operation costs and 

fulfilling demand must be considered very carefully when determining the switching time. 

The following constraint is created to find the switching position if the machine is switched 

to material 𝑙.   

 𝑧𝑗
1 ≥ ∑ 𝑎𝑖𝑙𝑥𝑖𝑗

𝑛

𝑖=1

− ∑ 𝑎𝑖𝑙𝑥𝑖,𝑗−1

𝑛

𝑖=1

, 𝑗 = 1, … , 𝑛; 𝑙 ∈ 𝐿 7 

Constraint (7) captures if the AM machine is switched to material 𝑙. As mentioned earlier, 

𝑎𝑖𝑙 is a binary variable that defines the material type required to produce part 𝑖. 

Then the switching cost can be calculated with the following constraint. 

 𝑆𝑗 ≥ ∑ ∑ 𝑐𝑙𝑎𝑖𝑙𝑥𝑖𝑗

 𝑙∈𝐿

𝑛

𝑖=1

− 𝑀(1 − 𝑧𝑗
1), 𝑗 = 1, … , 𝑛 8 

Here, 𝑀 is a sufficiently big number. 𝑐𝑙 is the cost of switching, if the switching occurs, 

including the cost of scrapped parts. 

As mentioned earlier, 𝑣𝑖𝑘 depends on the 𝑘𝑡ℎ position of the parts produced with the same 

material type after the material changeover. As 𝑧𝑗
1 defined in (7), the position that defines 
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number of parts produced with the same material type must be captured as well. The 

following constraint is created to capture the 𝑘𝑡ℎ position. 

 𝑧𝑗
𝑘 ≥ 𝑧𝑗−1

𝑘−1 − 𝑧𝑗
1, 𝑗 = 1, … , 𝑛 9 

Here, 𝑧𝑗−1
𝑘−1 is the position of the previous job 𝑗 and 𝑧𝑗

1 is the position when the machine is 

switched to material 𝑙. It is assumed that there is no reward for the first part after switching, 

and therefore the initial position 𝑧0
𝑘 = 0, for  𝑖, 𝑘 = 1, … , 𝑛. 

Finally, we have binary and sign restrictions on the variables. 

 𝑥𝑖𝑗 , 𝑧𝑗
𝑘 ∈ {0,1}; 𝑡𝑗 , 𝑆𝑗 , 𝑇𝑖 , 𝑅𝑖 ≥ 0 10 

Objective Function: 

The objective function is to minimize total cost which includes lateness cost and cost of 

switching to material 𝑙 and scrapped parts minus total reward. The first component of the 

objective function is the tardiness costs. The following equation yields the total tardiness 

costs.  

 Tardiness cost =  ∑ 𝑤𝑖𝑇𝑖

𝑛

𝑖=1

 11 

𝑤𝑖 in (10) is the unit delay penalty cost of part 𝑖. The second component of the objective 

function is the total cost of machine switching to material 𝑙, including the cost of scrapped 

parts. 

 Total switching cost =  ∑ 𝑆𝑗

𝑛

𝑗=1

 12 
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The last component of the objective function is the quality reward considered based on the 

quality level. And the following equation will give us the quality reward for higher quality 

parts.  

 Quality reward =  ∑ 𝑅𝑖

𝑛

𝑖=1

 13 

Then the objective function for the proposed model is as follows. 

 Min   ∑ 𝑤𝑖𝑇𝑖

𝑛

𝑖=1

+ ∑ 𝑆𝑗

𝑛

𝑗=1

− ∑ 𝑅𝑖

𝑛

𝑖=1

 14 

As will be discussed in the numerical experiments and results section, the model is not very 

efficient to solve a large number of parts. Therefore, two constructive heuristic models are 

developed to accelerate the solution process. 

The first constructive heuristic model is developed based on Moore's (1968) rule. The 

model was developed by using the processing times and due dates. The rule applied to the 

first part of the model and then the constructive heuristic algorithm is developed by 

combining the second part.  

The First Constructive Heuristic Algorithm Based on Moore’s Rule. 

First Part: Finding the optimal sequence for each material group based on Moore’s (1968) 

rule. 

Let us consider sequencing 𝑛 jobs, 𝐽1 … 𝐽𝑛 based on the given processing times, 𝑝1 … 𝑝𝑛 

and due dates, 𝑑1 … 𝑑𝑛. For parts in two separate groups of material, perform the following 

steps. 
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Step 1: Scheduling parts based on shortest processing time. (𝐽𝑖1
… 𝐽𝑖𝑛

 where 𝑝𝑖1
≤

⋯ ≤ 𝑝𝑖𝑛
) 

Step 2: Find the first late job. If there is no late job then the algorithm terminates, 

and the optimal sequence is found. 

Step 3: If there is a late job 𝐽𝑖𝑞
, reorder jobs based on the due dates until the late job 

(𝐽𝑖1
… 𝐽𝑖𝑞

, 𝐽𝑖𝑞+1
… 𝐽𝑖𝑛

 where 𝑑𝑖1
≤ ⋯ ≤ 𝑑𝑖𝑞

)  

There are two cases: 

1. If all parts are early in 𝐽𝑖1
… 𝐽𝑖𝑞

, then accept it as the current sequence and 

go to step 2. 

2. Otherwise, reject the late job 𝐽𝑖𝑞
 and remove it from the sequence. Go to 

step 2 and accept the resulting sequence as the current sequence (rejected 

jobs will be added at the end of the queue) 

Second Part: Inserting each part from one material group to another material group one by 

one with comparing the objective function to find the best sequence. 

Step 4: Insert each part from one material group to another one in order. Perform 

this step until all parts are inserted. 

Step 5: Terminate the algorithm after all parts are inserted and accept the current 

sequence as the final sequence. 

Second Constructive Heuristic Algorithm Based on Jackson’s Rule. 

Step 1: Schedule parts based on due dates (𝐽𝑖1
… 𝐽𝑖𝑛

 where 𝑑𝑖1
≤ ⋯ ≤ 𝑑𝑖𝑛

) 

(Jackson’s rule (Hall and Shmoys, 1992)) 
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Step 2: Obtain the initial result (𝑗𝑖1
… 𝐽𝑖𝑛

).  

Step 3: Identify the batches for different material groups. 

Step 4: Improve batching by swapping the batches. 

Step 5: Compare the objective values and find the best sequence with the minimum 

cost. 

4.4. Numerical Experiments and Discussions 

As already mentioned earlier, several studies are reported in the literature that investigate 

scheduling models with considering tardiness in the AM and SM. It has already been 

explained why the scheduling models developed for SM cannot be adapted to AM. 

Meanwhile, the scheduling models developed for the AM are based on one material type. 

Consequently, the new scheduling model considering multi-material types was developed 

in the previous section. A series of numerical experiments will be presented to demonstrate 

the efficiency of the proposed scheduling model by considering multi-material types in this 

section. 

The data used in numerical experiments generated based on the ranges collected from the 

literature (Aloui and Hadj-Hamou, 2021; Canellidis et al., 2016; Chergui et al., 2018; 

Dvorak et al., 2018; Fera et al., 2018; Kucukkoc et al., 2018; Kucukkoc, 2019; Li et al., 

2019; Oh et al., 2020). Example data for parameters is shown in Table 4.1. 

As already shown in parameters, 𝑙 represents the material type, 𝑝𝑖 and 𝑑𝑖 denote processing 

time and due date for part 𝑖 respectively. Table 4.2 shows solution time for different number 

of parts. Since the model is NP-Hard, it cannot provide solutions in an acceptable time as 
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the number of parts increases. The mathematical model provides solutions to experiments 

with less than 12 parts quickly, as indicated in Table 4.2. When the number of parts 

increases to 13 and more, then the model could not provide an optimal solution and the gap 

is around 48.1.  

It is clear from Table 4.2 that the complexity of the problem is high since the model could 

not provide a solution for only 13 parts. The lower bound which is caused by fractional 

solution and big 𝑀 needs to be lifted by cut constraints. The cuts in (15) and (16) are added 

to accelerate the solution process. After adding cuts, the solution time accelerated as shown 

in Table 4.3. The optimal solution can be found up to 25 parts in an acceptable solution 

time.  

 𝑡𝑖 ≥ 𝑡𝑗−1 + min
𝑖=1,…,𝑛

𝑝𝑖 , 𝑗 = 1, … , 𝑛 15 

 min
𝑘

𝑣𝑖𝑘 ≤ 𝑅𝑖 ≤ max
𝑘

𝑣𝑖𝑘 𝑖 = 1, … 𝑛 16 

Table 4.3 indicates that the optimal solution could not be achieved if the number of parts 

was more than 30. Therefore, sophisticated heuristic models are developed to solve model 

as explained in the previous section. 

The First Constructive Heuristic Algorithm Based on Moore’s Rule. 

Moore (1968) has developed an algorithm based on the shortest processing time and due 

dates of the parts. The first algorithm is developed based on these rules in this study. The 

steps of the algorithm are explained below with a numerical example. 
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Table 4.1 Demonstration of generated data 

Parts 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎 𝟏𝟏 𝟏𝟐 𝟏𝟑 𝟏𝟒 𝟏𝟓 𝟏𝟔 

𝒑 20 3 4 7 18 10 8 9 5 13 9 14 6 8 19 15 

𝒅 35 25 15 10 36 19 13 16 24 18 32 28 16 8 44 22 

𝒍 2 2 1 1 1 2 2 1 1 2 2 1 1 1 2 2 

Table 4.2 Preliminary results for different number of parts 

Number 

of parts 

Number of 

materials 

Gap

% 

Optimal solution 

is obtained 

CPU 

Time (𝒔) 

5 2 0 Y 0 

6 2 0 Y 0 

7 2 0 Y 0 

8 2 0 Y 1 

9 2 0 Y 5 

10 2 0 Y 10 

11 2 0 Y 174 

12 2 0 Y 574 

13 2 48.1 N 339409 

 

  



 

100 

 

Table 4.3 The results after adding cuts. 

  Initial Model With Cuts 

Number 

of parts 

Number 

of 

materials 

Gap 

% 

Optimal 

solution is 

obtained? 

CPU 

time (𝒔) 

Gap 

% 

Optimal 

solution is 

obtained? 

CPU 

time (𝒔) 

5 2 0 Y 0 0 Y 0 

6 2 0 Y 0 0 Y 0 

7 2 0 Y 0 0 Y 0 

8 2 0 Y 1 0 Y 0 

9 2 0 Y 5 0 Y 0 

10 2 0 Y 10 0 Y 0 

11 2 0 Y 174 0 Y 0 

12 2 0 Y 514 0 Y 0 

13 2 48.1 N 339409 0 Y 0 

20 2 - - - 0 Y 42.25 

25 2 - - - 0 Y 1415.29 

30 2 - - - 0.04 N 275214 
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Step 1: Scheduling parts based on the shortest processing time. (𝐽𝑖1
… 𝐽𝑖𝑛

 where 𝑝𝑖1
≤ ⋯ ≤

𝑝𝑖𝑛
).  

Step 2: Find the first late job. If there is no late job then the algorithm terminates, and the 

optimal sequence is found. The first late parts are highlighted according to the 

completion time of each job as shown in Figure 4.3.  

Step 3: If there is a late job 𝐽𝑖𝑞
, reorder jobs based on the due dates until the late job 

(𝐽𝑖1
… 𝐽𝑖𝑞

, 𝐽𝑖𝑞+1
… 𝐽𝑖𝑛

 where 𝑑𝑖1
≤ ⋯ ≤ 𝑑𝑖𝑞

). Since there is a late job, the parts are 

re-scheduled based on the due date until the late jobs. It is shown in Figure 4.4. 

There are two cases: if there is a late part after the parts are re-sequenced based on the due 

dates, reject the late job 𝐽𝑖𝑞
 and remove it from the sequence. Go to step 2 and accept the 

resulting sequence as the current sequence (rejected jobs will be added at the end of the 

queue). If all parts are early in 𝐽𝑖1
… 𝐽𝑖𝑞

, then accept it as the current sequence and go to step 

2. There is no late job in the first list and thus, part 6 is not rejected and the sequence is 

accepted as the current sequence. However, there is a late job in the second list and 

therefore, part 4 is rejected and added to the end of the queue as shown in Figure 4.5. The 

best sequence with minimum cost can be found after applying this rule to each material 

group separately. Then, the second part of the algorithm can proceed.  

Step 4: Insert parts from one material group to another one in order. Perform this step until 

all parts are inserted. As shown in Figure 4.6, there will be several options of 

sequences, 𝑆𝑒1 … 𝑆𝑒9. The best sequence with the minimum cost will be selected, 

𝑆𝑒9. 
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Figure 4.3 Scheduling parts based on the shortest processing time and identifying the 

first late parts in the list. 

 

Figure 4.4 Rescheduling parts based on the due dates until the late parts.  
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Figure 4.5 Rejecting parts if there is a late part after re-sequencing parts based on the 

due dates. 
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Step 5: Terminate the algorithm after all parts are inserted and accept the current sequence 

as the final sequence as shown in Figure 4.7. 

Second Constructive Heuristic Algorithm Based on Jackson’s Rule. 

Following are the steps to apply the second algorithm to the same data presented in Table 

4.1. 

Step 1: Schedule parts based on due dates (𝐽𝑖1
… 𝐽𝑖𝑛

 where 𝑑𝑖1
≤ ⋯ ≤ 𝑑𝑖𝑛

) (Jackson’s rule 

(Hall and Shmoys, 1992)). Figure 4.8 shows the parts scheduled based on the due 

dates. 

Step 2: Based on the rule in step 1, an initial result will be obtained (𝑗𝑖1
… 𝐽𝑖𝑛

).  

Step 3: Batches for different material groups will be created according to the material type. 

Figure 4.8 also shows the identified batches for two material groups. 

Step 4: The batching process will be improved by swapping them to increase the quality of 

the solution. For example, Figure 4.9 shows the improved batching process after 

first iteration. 

Step 5: The total cost will be calculated at each iteration as new batches are created. In this 

way, the best sequence with the lowest costs will be obtained. Figure 4.10 shows 

the final sequence found by using the second algorithm. 

Table 4.4 and 4.5 shows results obtained by using the heuristic models. Gaps are calculated 

by taking the average of 20 runs since the parameters may affect the results significantly. 

Table 4.4 shows CPU time and solution quality for each method. The CPU time is limited 

with 1 hr for all instances. The gaps indicate the difference between optimal results and the 

results obtained by using the indicated method. Table 4.5 shows relatively large list of parts 
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Figure 4.6 Inserting parts from one material group to another one. 

 

Figure 4.7 Final sequence found by using first algorithm. 
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Figure 4.8 Identifying batches for two material groups after scheduling them based on 

their due dates. 

 

Figure 4.9 Creating better batches by swapping. 
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Figure 4.10 Final sequence obtained by using the second algorithm. 
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to compare to Table 4.4. In this case, initial model cannot provide the best results. The best 

results are obtained by using the second algorithm. The columns “Gap” shows the 

difference between results from second algorithm and results from the indicated method. 

The optimization model cannot provide a solution for 500 and 1000 parts in an hour, and 

thus, the gap cannot be calculated for these instances in Table 4.5. As shown in these tables, 

the second algorithm is performing better than the first algorithm in terms of solution 

quality and CPU time. Moore’s rule is developed to minimize the total number of late parts 

in the system. Since the first algorithm developed based on Moore’s (1968) rule, the quality 

of the results is poor compared to the second algorithm. On the other hand, second 

algorithm is developed based on the Jackson’s rule which minimizes the total lateness cost. 

In this case, the quality of the results is much better as shown in Table 4.4 and 4.5. 

The Factors that Influence the Switching Process 

Materials changeover is a very significant factor in a scheduling problem involving multi-

material types.  

The identification of the factors that affect the switching process in AM production is 

critical. Table 4.6 shows the optimal sequence along with the number of switches for the 

parts with the given parameters. 

Here, column 𝑗 indicates the job that part 𝑖 scheduled at. 𝑠1 and 𝑠2 denote the required 

switching time for material 1 and material 2 respectively. 𝑐1 and 𝑐2 represent switching 

costs for material 1 and material 2 respectively. This experiment has only one switching 

where the AM machine switches from material 2 to material 1. Table 4.7 shows the analysis  
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Table 4.4 Results obtained by using different methods. 

 Initial Model With Cuts First  

Algorithm 

Second  

Algorithm 

Number 

of parts 

Gap  

% 

CPU 

time (𝒔) 

Gap  

% 

CPU 

time (𝒔) 

Gap  

% 

CPU  

time (𝒔) 

Gap  

% 

CPU  

time (𝒔) 

5 0 0 0 0 12.8 0 1.56 0 

6 0 0 0 0 11.62 0 1.54 0 

7 0 0 0 0 10.23 0 1.68 0 

8 0 1 0 0 13.54 0 3.74 0 

9 0 5 0 0 16.42 0 3.82 0 

10 0 10 0 0 18.56 0 5.78 0 

11 0 174 0 0 16.12 0 4.64 0 

12 0 514 0 0 14.23 0 4.48 0 

13 49.5 3600 0 0 14.52 0 4.36 0 

20 54.8 3600 0 42.25 12.64 0 4.24 0 

25 56.5 3600 0 3600 12.48 0 3.98 0 

30 58.4 3600 0.045 3600 11.84 0 3.72 0 

Table 4.5 Obtained results for large number of parts. 

 

Initial  

Model 

First  

Algorithm 

Second 

Algorithm 

Number 

of parts 

Gap  

% 

CPU 

time (s)  

Gap  

% 

CPU  

Time (s) 

CPU  

Time (s) 

50 65.6 3600 9.35 0.0156 0.0156 

100 69.4 3600 9.14 0.1455 0.0156 

500 - 3600 6.82 17.172 0.0625 

1000 - 3600 6.28 135.90 0.1406 
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of the factors affecting material changeover by altering several parameters. An important 

observation from Table 4.7 is that it is expected to have fewer switching in the systems as 

the switching time and costs increase in the system.  Despite increase in these values, the 

number of switches increases as the due dates are shortened for several parts. Increase in 

the number of material changeover indicates a trade-off between tardiness and switching 

costs is critical. It is clear from the trade-off that the proposed model is significant to 

operate AM production process efficiently when multi-material types are considered. 

4.5. Conclusions and Future Works 

A scheduling model considering multi-material types is developed in this study. The model 

is tested with a different number of parts. It is presented that the initial model is not quick 

enough to provide results for more than thirteen parts. Therefore, the cuts are added to lift 

to lower bounds caused by fractional solutions and big 𝑀. 

The model with cuts has provided optimal solution up to 25 parts. However, it is not quick 

enough for more than 30 parts. An optimal sequence for a number of thousands or even 

tens of thousands of parts must be found in the majority of the instances in the AM industry. 

For such cases, the formulated model with cuts may not be sufficient to provide a solution 

within an acceptable timeframe. A sophisticated heuristic algorithm is therefore required 

to find the optimal sequence for a large number of parts.  

Two sophisticated heuristic algorithms are developed to accelerate the solution process. 

Constructive first heuristic algorithm is developed based on Moore’s (1968) rule.  Although  
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Table 4.6 Optimal sequence for a specific instance 

𝑠1 = 2 ℎ𝑟 , 𝑠2 = 4 ℎ𝑟,  𝑐1 = $4,  𝑐2 = $6 

Parts 𝒍 𝒑𝒊 𝒅𝒊 𝒘𝒊 𝒋 Switching 

1 1 2 6 7 𝐽1 0 

2 1 7 13 7 𝐽2 0 

3 1 11 19 7 𝑗3 0 

4 2 16 25 7 𝑗5 1 

5 2 20 38 7 𝑗7 0 

6 1 8 20 7 𝑗4 0 

7 2 13 37 7 𝑗6 0 

Table 4.7 Optimal Sequence after altering several parameters. 

For 𝑠1 = 6 ℎ𝑟 , 𝑠2 = 8 ℎ𝑟,  𝑐1 = $8,  𝑐2 = $10 

Parts 𝒍 𝒑𝒊 𝒅𝒊 𝒘𝒊 𝒋 Switching 

1 1 2 13 7 𝐽3 1 

2 1 7 20 7 𝐽4 0 

3 1 11 33 7 𝑗6 0 

4 2 16 17 7 𝑗2 0 

5 2 20 21 7 𝑗7 1 

6 1 8 20 7 𝑗5 0 

7 2 13 14 7 𝑗1 0 
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the solution time is fast for large number of parts, the quality of the solution is not 

satisfying. Therefore, the second heuristic algorithm is developed based on Jackson’s rule 

(Hall and Shmoys, 1992). This algorithm can provide better results in terms of both 

solution quality and CPU time. 

Finally, the factors that influence the material changeover has identified with a numerical 

experiment. Based on this experiment, it is shown that the model is very critical increasing 

the efficiency of the system by making a trade-off between tardiness and switching costs. 
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CHAPTER 5. CONCLUSION 

Three important issues of additive manufacturing have been addressed in this thesis 

dissertation. A framework to select specific AM process by considering the complexity 

level of a part, quality, and productivity trade-off in powder-bed AM and developing a 

scheduling model for multi-material AM applications. 

In the first study, a method to select a specific AM process is developed to provide a 

guidance for users to select AM over SM techniques based on the complexity level of a 

part. The complexity level-based method has been validated through numerical 

experiments. Following the decision that AM is the most appropriate manufacturing 

technique for a given part, a framework is developed for selecting AM processes based on 

machine, operation, labor, material, and energy costs. 

In the second study, an empirical model has developed to optimize process parameter of 

powder-bed AM processes to make a trade-off between quality and productivity. The 

effectiveness of the model has been verified with a numerical experiment. According to 

the results, low building costs can be achieved with the proposed model based on desired 

quality levels. By using the model, users can optimize process parameters quickly and 

accurately without requiring costly and time-consuming experimental methods. 

The third study introduced a new scheduling model for AM with considering multi-

material types. Numerical experiments demonstrate that the proposed model provides an 

optimal schedule for AM production process by maximizing the trade-off between 

tardiness and switching costs. Since the initial model could not provide a solution for more 
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than thirteen parts, cuts were added to accelerate the solution time. Although the cutting 

process sped up the process significantly, it became clear that they were not enough to 

solve a large number of parts. The heuristic models are developed to speed up the solution 

process. And it is showed that the second algorithm performs better results than the first 

algorithm for the small and large number of parts in terms of solution quality and CPU 

time.  
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