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ABSTRACT 

This study aims to provide a comprehensive tool for the selection, design, and operation of 

automated warehouse systems considering multiple automated storage and retrieval system 

(AS/RS) options as well as different constraints and requirements from various business 

scenarios.  

We first model the retrieval task scheduling problem in crane-based 3D AS/RS with shuttle-based 

depth movement mechanisms. We prove the problem is NP-hard and find an optimality condition 

to facilitate the development of an efficient heuristic. The heuristic demonstrates an advantage in 

terms of solving time and solution quality over the genetic algorithms and the other two 

algorithms taken from literature. Numerical experiments illustrate that when a company tends to 

have multiple short planning horizons with small task batches (i.e., aims to increase the 

responsiveness level), adding more shuttles is helpful. However, if a company has a long 

planning horizon with a large task batch size, having faster cranes is more efficient to reduce the 

makespan.    

We then focus on the impacts of the number of shuttles, operational mode, storage policies, and 

shuttle dispatching rules on the expected cycle time of a tier-to-tier shuttle-based storage and 

retrieval system. The system is modeled as a discrete-time Markov Chain to derive the shuttle 

distribution under each scenario create the expected travel time models. Numerical experiments 

indicate that class-based storage is always better than the random storage policy. The best shuttle 

dispatching rule under each combination of the number of shuttles, operational mode, and storage 

policy can be quickly identified through the expected cycle time models which are simple and 

computation friendly.  

At last, we study the warehouse design problem considering the choice, design, and operation of 

2D AS/RS and 3D AS/RS in a systematic way. The warehouse design problem under 

consideration aims to reduce the investment while satisfying different business needs measured 

by the desired throughput capacity. We propose a branch-and-bound algorithm to conquer the 

computational challenges. With the developed algorithm, an optimal warehouse design can be 

obtained under different application environments, characterized by the desired throughput 

capacity, inventory level and demand rate of each SKU.  
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1.1 Challenges to Warehouse Design 

The prosperity of online sales provides manufacturers and retailers opportunities to directly 

interact with a large number of end consumers but leads to much more frequent and smaller 

orders with a higher variety (Boysen et al., 2019). The things that people order online have 

evolved from textbooks and electronics into much more categories, such as clothing, shoes, 

jewelry, tools, home, and appliances. Amazon alone sold 12 million products in 2018, excluding 

books, media, wine and services, and products sold by Amazon marketplace sellers. Traditional 

manufactures, such as P&G, are also exploring possible direct interaction with end customers by 

supplying them goods from their plants or warehouses. After more than a twenty-year 

development, the competition of online sales has been well beyond low prices alone and now 

focuses on a combination of low prices and high responsiveness, including short lead times and 

largely available choices (Battini et al., 2013). For instance, consumers now expect free two-day, 

one-day, and even same-day shipments. Warehouses or fulfillment centers, holding goods and 

initiating order-picking tasks, need to be more cost-efficient, flexible, and responsive to handle a 

large number of Stock Keeping Units (SKUs) with highly volatile demands. 

Traditional warehouses with picker-to-part operations are not equipped to handle these modern 

challenges because they are highly labor-intensive and space consuming to satisfy a high volume 

of variable demands in time (Azadeh et al., 2019a; Boysen et al., 2019); and the whole world is 

witnessing a dramatic increase in labor and land costs (Coombs, 2018; Statista, 2021). For 

instance, a traditional picker-to-parts warehouse of Amazon in Chattanooga, TN has about 3,000 

pickers to handle orders and occupies about 1.2 million square feet. Traditional warehouses also 

have the following disadvantages: 1) poor delivery performance caused by the inability to make 

or keep appointments for pick-up or drop off due to long unload and load waiting times, 2) high 

manual loading fees incurred during shipping or receiving, 3) high damage costs from parts 

handling, 4) ‘ship shorts’ or back charges caused by failures to reconcile product quantities with 

the bill of lading causes, 5) congestion in yards during peak periods preventing trailers from being 

rapidly serviced, and 6) high labor turnover and safety issues due to poor working conditions in 

some industries (e.g., cold distribution centers) (MHI, 2018).  

Innovations in warehouses and material handling (MH), propelled by automation and advanced 

information technologies, have appeared in recent years to address all these challenges. 
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Automated storage and retrieval systems (AS/RS), introduced in the 1950s as an alternative to 

traditional warehouses and a part of advanced manufacturing systems, provide a relevant solution 

(MHI, 2018; Roodbergen and Vis, 2009). The AS/RS consists of racks with storage cells that can 

accommodate Stock Keeping Units (SKUs), one or multiple aisles between two racks, 

storage/retrieval (S/R) machines (e.g., cranes) which can move along the aisles to perform the 

storage and retrieval tasks, input/output (I/O) positions where the retrieved SKUs are dropped off 

and incoming SKUs are picked up by an S/R machine (Figure 1-1). The adoption rate of AS/RS 

has been rapidly increased in recent years due to their benefits of full-automation and high 

density, which lead to high space utilization (saving up to 85% space), high time efficiency 

(eliminating the walking that accounted for 70% of the total manual handling time), low labor 

request, low mispick rate, high flexibility, and high throughput capacity (Azadeh et al., 2019b; 

Boysen et al., 2019; Roodbergen and Vis, 2009). The high density of AS/RS also helps to 

significantly reduce the energy needed to heat, cool, and light warehouses (MHI, 2021a, 2021b), 

which satisfies the increased social awareness of corporations and governmental regulations for 

sustainability.  

To enhance the overall responsiveness, AS/RS should be able to access order information from 

different customers in real-time or nearly real-time. Advanced software systems at the enterprise 

or supply chain level have been well developed to provide the required information. Point of Sale 

(POS) or Point of Purchase (POP) data can now be shared with AS/RS through Enterprise 

Resource Planning (ERP) systems across functional units of an enterprise or even multiple 

enterprises along a supply chain through reliable network technologies. The radio frequency 

identification (RFID) technology is one of the common commercially used real-time information 

collection and sharing techniques that enables warehouse managers to closely monitor material 

flows (Poon et al., 2011). Besides software, the development of technologies also enables the 

innovation of hardware systems, such as cranes, lifts, and shuttles, so that AS/RS became more 

applicable to more industries and under more operational settings regarding both technical and 

economic feasibility. 

Traditionally, storage in racks may be single-deep or double-deep (2D) so that only one or two 

SKUs can be stored. Even though 2D AS/RS has significantly improved land utilization, the 

aisles between racks can consume about 35% of land space (Stadtler, 1996). Moreover, 2D 

AS/RS have relatively long travel times to store and retrieve unit loads. Therefore, since their  
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Figure 1-1. An Overview of Traditional AS/RS (Bastian Solutions, 2010)   
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introduction in the 1950s, AS/RSs have gone through many alterations to fit different business 

settings and to adopt new hardware and software advances. Therefore, numerous AS/RSs are 

currently available for companies to consider (Figure 1-2). In terms of the depth of racks used to 

accommodate SKUs, the AS/RS can be defined as 2D AS/RS (traditional AS/RS) and 3D AS/RS 

(also known as compact/high-density storage systems). The storage in racks of a 2D AS/RS might 

occur single deep or double deep, while compact storage systems (3D) have racks with deep lanes 

that can be used to store multiple SKUs. In terms of S/R machines, AS/RS can be classified into 

carousel-based, lift/shuttle-based, and crane-based systems. If we consider some specific 

operational mechanisms, there are even more variations, such as Aisle-captive AS/RS and Aisle-

changing AS/RS (Roodbergen and Vis, 2009). Emerging technologies, such as robot-based 

compact storage and retrieval (RCSR) Systems (Zou et al., 2017), which can provide very high 

storage density without allocating space for aisles and high flexibility due to the expandability of 

a robot fleet, can further expand the advantages of AS/RS. 

Different industries and companies have their own needs, requirements, and constraints, which 

means no single AS/RS is appropriate for all purposes. For instance, compared to a 2D system, a 

3D AS/RS can further improve land space utilization and energy efficiency. However, for 

industries/companies that need to handle a large number of orders with different sizes and a high 

turnover rate, a 2D system may be a better choice (Boysen et al., 2019). In addition, the 

investment cost for hardware and software is high and usually not reversible. A single AS/RS 

rack with a crane may cost over $700,000 (Roodbergen and Vis, 2009). Therefore, the rapid 

development of a large variety of AS/RS brings huge opportunities for their applications in many 

situations but also poses a challenge for companies to choose the right system and decide the right 

configuration for their specific needs. Those needs are highly diversified across companies. Until 

now, there is no guidance, models, and tools for this critical decision-making in both the 

academic community and industry, which has become a barrier for businesses adopting AS/RS 

systems.  

1.2 Literature Review  

Even though the selection and design of the appropriate AS/RS affects the overall warehouse 

performance, existing studies are preliminary and only considered AS/RS selection by assuming  

  



  

6 

         

 
Figure 1-2. Categories of AS/RS (Azadeh et al., 2019) 
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the physical design, operation policies, and performance of the candidate AS/RS systems are 

known in advance (Azadeh et al., 2019a; Jaghbeer et al., 2020). Shen et al. (2010) focused on a 

warehouse design problem considering manual and semi-automated warehouse systems as 

potential options to minimize pickers’ travel time. However, they assumed all the SKUs are the 

same and did not have to consider the SKUs-to-system assignment. In addition, Pazour & Meller 

(2014) is the first that modeled the warehouse design problem considering multiple order 

fulfillment technologies (e.g., AS/RS and manual warehouse system). However, they assumed the 

physical design, operation policies, and the performance (i.e., throughput capacity) of each 

technology are known in advance, and only considered the technology selection and SKU-to-

system assignment. Roodbergen et al. (2015) considered a warehouse design problem by allowing 

the mixed-use of aisle-captive and aisle-to-aisle 2D AS/RS via simulation but assumed all SKUs 

are identical. 

Except for the limited attention paid to the selection of AS/RS, a few studies have been done to 

compare the automated vehicle storage and retrieval system (AVS/RS) and the conventional 2D 

AS/RS. For instance, Heragu et al. (2011) modeled AVS/RS and the conventional 2D AS/RS as 

open queuing networks and compared the performance of these two systems with a set of pre-

determined physical designs and operation policies. Later, Ekren & Heragu (2012) compared the 

performance of AVS/RS with the aisle-to-aisle 2D AS/RS, which allows a crane to serve different 

racks, in terms of different performance metrics by simulating these two systems with different 

configurations. However, similar to Heragu et al. (2011), this study assumed the configurations of 

the two systems are known in advance. The tier-to-tier AVS/RS and tier-captive AVS/RS are also 

compared by Küçükyaşar et al. (2021) and the similar assumptions with the previous system 

comparison studies are adopted, and therefore, limited its impacts on AS/RS selection and design.  

Current researches on AS/RS mainly focuses on micro-level design and operations for an AS/RS 

system, investigating how to improve its operational efficiency measured using different metrics 

such as throughput capacity and cycle time for a given set of tasks via physical design and system 

operation (Azadeh et al., 2019a; Boysen et al., 2019; Davarzani and Norrman, 2015; De Koster et 

al., 2017). Roughly, current studies related to AS/RS can be classified into three categories: 

system performance analysis; long-term decision problems (physical design), and short-term 

decision problems (operation policies); studies within both of these categories mainly consider a 

single-rack system.  
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System analysis articles focus on estimating systems’ performance in terms of one or more 

performance metrics (e.g., average cycle time, energy consumption, and transaction waiting 

time). The average cycle time for finishing one transaction, which indicates the systems 

throughput capacity, is one of the commonly used system performance metrics. Cycle time 

models, which are usually simple and computationally friendly, are commonly used to give the 

closed-form formulation for estimating the average cycle time (D’Antonio et al., 2018; 

D’Antonio and Chiabert, 2019; Sari et al., 2005). Queueing models and simulation models are 

used to measure the other performance metrics (e.g., transactions’ waiting time) in an AS/RS (Cai 

et al., 2014; Roodbergen et al., 2015; Schenone et al., 2020). Long-term decision problems 

mainly consider one of the following problems: the dimension of racks (Azadeh et al., 2019b; Xu 

et al., 2019b; Yang et al., 2015a; Yu and De Koster, 2009a), number and locations of I/O 

positions (Xu et al., 2019a), number and characteristics (e.g., speed profile) of equipment (Ha and 

Chae, 2018, 2019). Studies about short-term decision problems usually consider task sequencing 

(Dong et al., 2021; Fang and Tang, 2014; Yu and De Koster, 2012), task batching (Li et al., 

2017), and storage assignment (Schenone et al., 2020; Yu et al., 2015). Among those problems, 

the most frequently studied ones are rack dimension problem, storage assignment problem, and 

task sequencing problems under some specific assumptions, such as a constant equipment speed, 

a single-command (SC) cycle or double-command (DC) cycle for crane operations, etc. These 

studies can provide some insights, such as the advantages of turnover-based storage assignment 

policy over random storage assignment (Yu and De Koster, 2009a) and the DC operations has 

better performance than the SC operations if both storage and retrieval tasks are considered in a 

planning horizon (De Koster et al., 2008). However, all of the aforementioned studies focused on 

the design and operation of AS/RS with a single-rack assumption, which limited the insights for 

facilitating warehouse design in practice. Furthermore, some of the AS/RS systems that were 

introduced recently have not received any attention. Moreover, advanced AS/RSs such as crane-

based 3D AS/RS and puzzle-based AS/RS are very complex and models used to study them are 

often computationally expensive (Dong et al., 2021). For practitioners, it is difficult and time-

consuming to create and solve those complex mathematical models for every possible 

configuration of every AS/RS under consideration and choose the best one.  

A few studies have been done considering the design of 2D AS/RS which has multi-racks. Bozer 

& White (1990) considered the warehouse design problem with 2D AS/RS to determine the 
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number and dimensions of racks in a warehouse to minimize the hardware cost while meeting a 

given throughput capacity. However, they assumed identical SKUs and did not consider the 

impact of demand rate and inventory level of different SKU types in the warehouse. Manzini et 

al. (2006) and Rao & Adil (2013) also considered the warehouse design problem with 2D AS/RS 

by determining the number of aisles to minimize the average transaction time. However, again, 

they assumed identical SKUs. Mital et al. (2015) studied the warehouse design problem with 2D 

AS/RS by selecting the design from a set of predefined configurations to minimize the cost and 

system risk.  

In summary, AS/RS-related researches mainly considered the design and operations of AS/RS 

systems with the assumption of a single-rack system. Even though a few studies have been done 

considering the AS/RS design by allowing multi-racks, or the comparison and selection of a few 

AS/RS systems (i.e., AVS/RS and 2D AS/RS), these studies either ignore the differences between 

different SKUs (e.g., inventory level and demand rate) or assume predefined physical design and 

operations policies, which is far away from practice. This dissertation aims to fill this gap by 

considering the warehouse design problem with multiple AS/RS options under different business 

needs. 

1.3 Document Organization 

To facilitate the warehouse design by comparing, selecting, and designing multiple AS/RS 

options, the design, operation, and performance of each AS/RS should be completely studied. 

Therefore, this dissertation started with decisions at the operational level and then moved to 

design and choice decisions. 

Chapter 2 considered how to sequence a group of retrieval requests in a crane-based 3D AS/RS 

with shuttle-based DMMs to minimize the makespan (i.e., total cycle time). A good sequence can 

significantly reduce the makespan for finishing a given group of retrieval tasks. However, the task 

scheduling problem has never been studied for crane-based 3D AS/RS with shuttle-based DMMs, 

which has become increasingly popular in practice. A mixed-integer programing model was 

developed to represent the problem, and the problem was proven to be NP-hard. An optimality 

condition of the scheduling problem was proved and based on what, a heuristic was developed.  A 

novel chromosome structure was also proposed to apply the Genetic Algorithm to solve the 

problem quickly. The numerical experiments indicate the advantages of the proposed heuristic 
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over the genetic algorithm and the other two algorithms found from literature in terms of solving 

time and solution quality. Numerical results also revealed insights for improving 3D AS/RS 

productivity.  

The performance of a tier-to-tier shuttle-based storage and retrieval system (SBS/RS) or 3D 

AS/RS with shuttle-based DMMs is affected by both operation mode (single-command (SC) 

cycles and dual-command (DC) cycles), storage policy, and shuttle dispatching rule. Chapter 3 

explored the impact of both SC and DC operations, random and class-based storage policies, and 

three shuttle dispatching rules (e.g., random, distance-based, and demand-rate based) on the 

performance of tier-to-tier SBS/RS. Modeling the system as a discrete-time Markov Chain, this 

chapter derived the shuttle distribution under each policy and operations mode combination, and 

further developed the expected cycle time models, which were validated by simulation. 

Numerical experiments showed significant impacts of the policy combination on the expected 

cycle time. The best storage and shuttle dispatching policy under different scenarios were also 

identified.  

Chapter 4 studied the warehouse design problem (characterized by different distributions of 

inventory levels and demand rates of different SKU types) by considering 2D AS/RS and 3D 

AS/RS as options to reduce the warehouse investment while maintaining a certain level of 

throughput capacity. The warehouse design problem was first modeled as mixed-integer 

nonlinear programming and then was converted to mixed-integer programming based on 

optimality conditions. A branch-and-bound algorithm was developed for the computational 

challenges and was modified to further reduce the solving time. Numerical experiments showed 

the impacts of the cost parameters, and the distribution of the inventory levels and demand rates 

of different SKU types on warehouse design.  

At last, Chapter 5 summarized this work and discussed the further research directions.  

 

 

 

 

 



  

11 

         

 

 

 

 

 

 

 

 

 

 

CHAPTER TWO  RETRIEVAL SCHEDULING IN CRANE-

BASED 3D AS/RS WITH SHUTTLES-BASED DMMS  

 

 

 

 

 

 

 

 

 

 

 



  

12 

         

2.1 Abstract 

Retrieval task scheduling has been extensively studied for 2D automated retrieval and storage 

systems (AS/RS). A good schedule can significantly reduce the makespan for finishing a given 

group of retrieval tasks. However, the task scheduling problem has never been studied for crane-

based 3D AS/RS with shuttle-based depth movement mechanisms (DMMs), which has become 

increasingly popular in practice. This chapter considered how to schedule a group of retrieval 

requests in a crane-based 3D AS/RS with shuttle-based DMMs to minimize the makespan. A 

mixed-integer programing model was developed to represent the problem, and the problem was 

proven to be NP-hard. Four heuristics were investigated for their computational performance. 

First-Come-First-Serve is the current practice while the Percentage Priority to Shuttle 

Reallocation with the Shortest Leg (PPS-SL) rule was developed based on the existing rule for 

scheduling storage and retrieval tasks in 3D AS/RS with conveyor-based DMMs. The Genetic 

Algorithm, which is popular for 2D systems, was adapted to deal with the 3D system. The 

Lowest-Waiting-Time-First heuristic was proposed based on the optimality condition of the 

scheduling problem and was demonstrated to outperform the other three algorithms in terms of 

solution quality and computational time. Further numerical results revealed insights for 

improving 3D AS/RS productivity. When the number of retrieval tasks is small (e.g., when a 

short planning horizon is adopted for high responsiveness), having more shuttles can improve the 

system performance. When there are many tasks to schedule, for example, in a situation with a 

long planning horizon, using a higher crane speed rather than adding more shuttles can improve 

system efficiency more. 

2.2 Introduction 

Because of growing online sales and the popularity of continuous inventory replenishment, 

companies are fulfilling highly varied demands, are in small batches, and require quick responses 

from a great number of customers (Boysen et al., 2015; Gaku and Takakuwa, 2018; Tutam and 

White, 2019). The automated storage and retrieval system (AS/RS), which was introduced in the 

1950s, is an important technology for improving productivity in warehouses (Chang and Egbelu, 

1997; Man et al., 2019). AS/RS is a computer-controlled automated material handling system that 

can be used to store incoming products and materials and retrieve stock-keeping units (SKUs) 

without direct handling by labor (Roodbergen and Vis, 2009). The main AS/RS components are 
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racks, storage/retrieval (S/R) machines (crane), and input/output (I/O) stations (Figure 1-1). 

Racks are structures with storage cells that accommodate SKUs. Cranes can move along aisles 

between two racks to drop off or pick up SKUs. An I/O point is where retrieved SKUs are 

dropped off and where incoming SKUs are picked up by a crane. AS/RS has been widely used 

because of the advantages of full automation and space savings (Boysen and Stephan, 2016; MHI, 

2018). Traditionally, a storage spot in a rack may be single deep or double deep (2D) and hold 

only one or two SKUs. Even though the 2D AS/RS has significantly improved land use, the aisles 

between racks can consume 35% of land space (Stadtler, 1996), which also increases travel times 

to store and retrieve SKUs.  

Improved use of space has been achieved by the 3D AS/RS (also called multi-deep, compact, or 

super high-density storage systems) that consists of racks with deep lanes that can store more than 

two SKUs. A 3D AS/RS with cranes as S/R machines is called the crane-based 3D AS/RS 

(Figure 2-1). In that system, each SKU can be accessed by the coordination of a crane and depth 

movement mechanisms (DMMs). The crane takes care of the movement in horizontal and vertical 

directions (x, y directions in Figure 2-1) and DMMs move SKUs along each lane (z-direction). 

Compared with a 2D system, a 3D system can produce shorter lead times, lower energy 

consumption, and less space consumption (Azadeh et al., 2019a). The crane-based 3D AS/RS has 

become increasingly popular, and its applications can be found in many studies (Yu and De 

Koster, 2009b, 2009a) and under various commercial settings, such as food manufacturing and E-

commerce fulfillment centers. This study examines the crane-based 3D AS/RS with shuttle-based 

DMMs. In such a system, shuttles can travel along lanes to transfer SKUs. Cranes move not only 

SKUs to I/O points but also empty shuttles across lanes for two reasons: 1) The number of 

shuttles is usually smaller than the number of lanes because automated shuttles are usually 

expensive; 2) Reallocating shuttles increases the system flexibility and reliability because the 

system operation will not be halted due to shuttle failure or maintenance.  

The performance of AS/RS relies on task scheduling (Li et al., 2017). In practice, First-Come-

First-Serve (FCFS) is commonly used for scheduling tasks. However, rescheduling tasks can 

significantly improve system performance (Dooly and Lee, 2008; Lee, 1997). In a 3D AS/RS, 

each task is finished by the cooperation of a crane and a DMM, which requires more 

sophisticated scheduling.   
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Figure 2-1. An Overview of Crane-based 3D AS/RS (Yu and De Koster, 2012) 
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In practice, tasks in an AS/RS can be conducted in two modes: 

• Single Cycle (SC): A crane executes one retrieval or storage task in one operational 

cycle. For a retrieval task, the crane departs from the I/O point, travels to the target 

lane/storage position, loads the SKU, and travels back to the I/O point. The storage 

operation is similar.   

• Combined Cycle: A crane executes one retrieval and one storage task in one operational 

cycle. The crane picks up an SKU from the I/O point, moves to an open location on the 

rack and unloads the SKU, travels to another target lane, picks up an SKU, and then 

travels back to the I/O point.  In literature, the combined cycle is also called dual-

command Cycle (DC). In this study, these two terms are used interchangeably.    

The task scheduling problem in a 2D system with the DC mode was shown to be NP-hard (Han et 

al., 1987). The operations do not become easier even though we only focus on retrieval tasks with 

the SC mode in a 3D AS/RS for the following three reasons: 1) The number of moving elements 

in a 3D AS/RS is greater than in a 2D AS/RS. For instance, the 3D system considered in this 

study has 240 lanes, which means the crane may need to cooperate with up to 240 DMMs. 2) For 

the system with shuttle-based DMMs, we need to reassign shuttles across lanes. 3) The problem 

can be much more difficult if there are different types of SKUs in one lane. One SKU might 

block the way of the requested SKU. In that situation, DMMs and cranes need to work together to 

move the SKU that blocks the way of the requested SKU to another lane (also called reshuffle).  

This study was motivated by a collaboration with a major system designer and manufacturer of 

AS/RS systems. They have delivered and operated crane-based 3D AS/RS with shuttle-based 

DMMs for various clients, including cigarette distributors, pharmaceutical distributors, E-

commerce companies selling fashion products, online retailers of cosmetic products, etc. All 

those products have a large demand volume and small sizes. Responsive fulfillment of customer 

demands is their key competitive strategy. Inventory replenishment is not as urgent as retrieval 

tasks so they adopt the SC mode and execute retrieval tasks and storage tasks in different time 

windows to avoid the complexity of scheduling both retrieval and replenishment tasks 

simultaneously. Therefore, this study only considers the retrieval task scheduling problem with 

the SC mode in a crane-based 3D AS/RS with shuttled-based DMMs, especially for growing 

online sales businesses. This study proposes a mixed-integer programming (MIP) model 
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intending to minimize the makespan of completing a given set of retrieval tasks. It is worth to 

note that the problem can be modeled more straightforwardly by having many more binary 

variables. We carefully created an MIP model that has fewer binary variables and therefore less 

computational burden. Section 2.4 compares the two modeling methods. As requests arrive 

continuously in practice, the system has to update the task schedule frequently, which demands a 

short computational time for the scheduling problem. Therefore, the study proposed the Lowest-

Waiting-Time-First solution method that incorporates the optimality condition of the scheduling 

problem. The proposed heuristic is compared with the Genetic Algorithm, First-Come-First-

Serve, and Shortest Leg, which was adapted from literature for 3D systems with conveyor-based 

DMMs, to demonstrate its advantage.  Furthermore, as the number of shuttles ranges from one to 

the number of lanes, this study provides insights on the desired number of shuttles to balance 

system efficiency and cost through extensive numerical experiments that will use data from the 

abovementioned AS/RS OEM. At last, this study will also contribute to the study on retrieval 

scheduling problems in tier-to-tier SBS/RS, which has a similar operational mechanism to crane-

based 3D AS/RS with shuttle-based DMMs. 

The remainder of this chapter is organized as follows. Section 2.3 reviews previous studies 

related to the task scheduling problem in AS/RS. Section 2.4 gives an overview of the operational 

mechanism of the system and an MIP model to describe the problem. In Section 2.5, four solution 

methods are presented to solve the problem in a reasonable amount of time. Section 2.6 presents 

the numerical results to compare the efficiency of the proposed solution methods and obtain 

managerial insights to improve the system. Finally, section 2.7 concludes the paper and discusses 

the future work.       

2.3 Literature Review  

The task scheduling problem in 2D AS/RS has been thoroughly studied (Azadeh et al., 2019a; 

Boysen and Stephan, 2016; Gagliardi et al., 2012; Roodbergen and Vis, 2009). As the crane is the 

only moving element in a 2D system, the modeling method used for the scheduling problem in a 

2D system does not fit this study. To model the task scheduling problem in a 3D AS/RS system, 

we must formulate the collaboration between a crane and DMMs. 

The scheduling problem in a 2D AS/RS that operates in the DC mode with multi-open locations 

was proven to be NP-hard (Han et al., 1987; van den BERG and (NOUD) Gademann, 1999). 
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Various dispatch rules, such as FCFS, Nearest Neighbor, Shortest-Leg, Shortest DC cycle have 

been developed (Man et al., 2019; Yu and De Koster, 2012). These methods are easy to 

implement but often converge to local optimums. To search a larger feasible region for possible 

global optimums, metaheuristics such as the Ant Colony Algorithm (Li et al., 2017), GA (Noorul 

Haq et al., 2003; Wu et al., 2013), Tabu Search (Bessenouci et al., 2012; Yang et al., 2015b) and 

Simulated Annealing (Bessenouci et al., 2012) have been used to solve scheduling problems in 

2D AS/RS. GA is commonly used and can usually provide a good solution in a reasonable 

amount of time (Chetty and Reddy, 2003; Noorul Haq et al., 2003; Popović et al., 2014). Some 

studies on 3D AS/RS have been done, but they focus on storage assignments (Yu and De Koster, 

2009b, 2009a) and physical design problems (De Koster et al., 2008; Yang et al., 2015a, 2017).  

Yu and De Koster (2012) were the first who considered the task scheduling problem in a 3D 

system. They focused on a 3D system with conveyor-based DMMs in the DC mode. The 

scheduling problem for a block of retrieval and storage tasks was expressed mathematically and 

proven to be NP-hard. However, they stated that their mode was conceptual with strong nonlinear 

constraints and was impossible to solve, even for small case problems. They modified the 

shortest-leg heuristic by giving priority to preposition retrieval tasks (PPR-SL) and illustrated the 

advantage of the modified algorithm.  Moreover, with conveyor-based DMMs, they did not have 

to consider the reallocation of DMMs. However, the reallocation of DMMs (i.e., shuttles) makes 

our study completely different from the task scheduling problem in a 3D system with conveyor-

based DMMs. Even though we only consider retrieval cycles, the scheduling problem is more 

complicated than Yu and De Koster (2012). A detailed explanation can be found in Appendix A. 

Moreover, in contrast to our study, they ignored the acceleration and deceleration of the S/R 

machine. Ignoring this could result in a deviation from real-world cases, and the deviation 

increased when there was higher skewness of the inventory distribution and more storage classes 

(Wen et al., 2001). To the best of our knowledge, Zaerpour et al. (2015) were the first to study 

crane-based 3D AS/RS with shuttle-based DMMs. Different from our study, they focused on the 

storage assignment problem. In addition, in their study, instead of multiple shuttles, there is only 

one shuttle for the crane. The crane has to wait while the shuttle travels along a lane.   

Autonomous vehicle storage and retrieval system (AVS/RS), another AS/RS type, has a similar 

operational mechanism to crane-based 3D AS/RS with shuttle-based DMMs. An AVS/RS 

(including 2D and 3D) adopts lifts and shuttles for vertical movement and horizontal movement, 
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respectively. AVS/RS can be categorized into tier-captive and tier-to-tier AVS/RS. In a tier-

captive system, each tier has its own shuttle. In a tier-to-tier AVS/RS, the system typically has 

fewer shuttles than tiers, and lifts reallocate shuttles across tiers. AVS/RS has received lots of 

academic attention, which mainly focus on system performance analysis and configuration design 

through travel time models (Fukunari and Malmborg, 2008; Ha and Chae, 2019; Lerher et al., 

2015b; Lerher, 2016), queueing network (Cai et al., 2014; Ekren et al., 2013; Tappia et al., 2017), 

and simulation (Ekren and Heragu, 2010, 2012).  However, studies on task scheduling in AVS/RS 

are very limited. Carlo and Vis (2012) studied the scheduling problem of a tier-captive AVS/RS 

with multiple lifts. However, they assumed the tasks schedule was given in advance and only 

considered pairing shuttles/tasks with lifts. Wang et al. (2015) considered the retrieval tasks 

scheduling problem in a tier-captive AVS/RS with one lift. Later, they extended the study by 

considering a tier-to-tier system (Xu et al., 2019b). However, they assumed that empty shuttles 

were always pooled at the ground level, and when conducting a task, a shuttle had to ride on a lift 

to travel to the target tier and go back to the ground level with the requested SKU. Therefore, 

shuttles do not travel directly across tiers. Recently, tier-to-tier AVS/RS allowing shuttles to 

move across tiers, which is also called as tier-to-tier SBS/RS, starts to get more attention (Ha and 

Chae, 2018, 2019; Wu et al., 2020). Cao and Zhang (2017) were the first considering scheduling 

problem in a 3D tier-to-tier SBS/RS. They considered at most two shuttles, and the nearest 

neighbor rule was applied whenever a shuttle reallocation was needed. However, when more 

shuttles are added into the system, the nearest neighbor rule may not be the optimal. Therefore, 

our study, which allows more than two shuttles in a system, can also contribute to retrieval 

scheduling problems in tire-to-tier SBS/RS. 

As discussed above, even though many studies have examined the task scheduling problem in 

AS/RS, there is no research solving the scheduling problem in a 3D system with shuttle-based 

DMMs even though that system is used widely due to its capability of handling a large variety of 

orders with high frequency—a trend driven by increasing online sales. Our study is the first to 

look at the scheduling problem in the 3D system with shuttle-based DMMs. We propose an MIP 

model to express the problem in the next section, which is proven NP-hard. The Lowest-Waiting-

Time-First (LW) heuristic based on the optimality condition was developed to provide quality 

solutions in a short computational time. The heuristic was compared with the Genetic Algorithm 
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(GA), First-Come-First-Serve (FCFS), and Shortest Leg to demonstrate its efficiency in terms of 

solution quality and solving time.  

2.4 Problem Description and Formulation 

This study considers the retrieval tasks of a rack in a crane-based 3D AS/RS with shuttle-based 

DMMs that allows fewer shuttles than lanes. The crane operates in single cycles (SC) and handles 

two types of tasks, retrieval and shuttle reallocation. To accomplish a retrieval task, the shuttle in 

the lane of the requested SKU, if there is one, will move the SKU to the end of the lane, where 

the crane picks up the SKU and transfers it to the I/O point. When conducting a shuttle 

reallocation task, the crane travels to a lane, picks up the shuttle located there, and moves it to 

another lane. As there are multiple shuttles on one rack and they can work independently, the 

crane may execute other tasks during one shuttle’s operational cycle. The crane is assumed to 

remain at the position where it finished its last job before performing a new job. SKUs on one 

lane are assumed to be the same so there is no need to consider a reshuffle.  

Let 𝑁0 and 𝑁1 represent the set of lanes with a shuttle and the set of lanes without a shuttle but 

having retrieval tasks at the beginning, respectively. Please note that we do not need to consider 

the lanes without any shuttles and retrieval tasks in our scheduling problem. However, it is worth 

to note that, in practice, a system may have more lanes than the SKU types and 𝑁0 should be 

decided based on a lane-to-task assignment problem.  The lane-to-task assignment problem can 

be modeled based on the MIP model proposed for the scheduling problem (2.1-2.21) and can be 

found in Appendix B.  The cardinalities of these two sets (i.e., |𝑁0| and |𝑁1|) can represent the 

number of shuttles and number of shuttle reallocation tasks, respectively. Let 𝑁 denote the set of 

lanes considered in a planning horizon (i.e., 𝑁 = 𝑁0 ∪ 𝑁1), with 𝑖 and 𝑗 denoting indices. 𝑄𝑖, 

𝑄′ = max
𝑖∈𝑁

𝑄𝑖 + 1, and 𝑀 = |𝑁1 | + ∑ 𝑄𝑖𝑖∈𝑁  are the number of retrieval tasks from lane 𝑖, the 

largest number of possible tasks at a lane over all lanes, and the number of total tasks (retrieval 

tasks plus shuttles reallocation tasks). Here, Max
𝑖∈𝑁

𝑄𝑖 is the largest number of retrieval tasks at a 

lane over all lanes and one is added to get 𝑄′ due to the possibility of moving a shuttle from this 

lane.  

Time parameters are introduced as the performance metrics of the system. We define 𝑝𝑖𝑞
1  as the 

time for a shuttle finishing the 𝑞th task in lane 𝑖 where 𝑞 ∈ {1,… , 𝑄𝑖 + 1}. When 𝑞 < 𝑄𝑖 + 1, 𝑝𝑖𝑞
1  
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represent the time for the shuttle to travel to the 𝑞th task in lane 𝑖 from the lane end, load the SKU, 

and travel back to the lane end. The (𝑄𝑖 + 1)
th task for lane 𝑖 happens if the shuttle on lane 𝑖 

needs to be transferred to another lane. When retrieval tasks from this lane are all finished, the 

shuttle just needs to wait at the lane end for being picked up by the crane so that 𝑝𝑖,𝑄𝑖+1
1 = 0. The 

time for the crane traveling from lane 𝑖 to lane 𝑗 is defined as 𝑝𝑖𝑗
2 . We also have 𝑝𝑖𝑗

3  represent the 

time for the crane traveling from lane 𝑖 to the I/O point, unloading an SKU, and then traveling to 

lane 𝑗 for the next task. Parameters 𝑝𝑖
4 and 𝑃𝑖0,𝑖 denote the time for the crane traveling from lane 𝑖 

to the I/O point and unloading a unit, and the time for the crane traveling from the original 

position to lane 𝑖, respectively. The planning horizon 𝑇 serves as a big number to facilitate the 

formulation in (2.15-2.20).  

Various binary variables are defined for scheduling decisions. If the 𝑚th single-command cycle 

(SC) task is for retrieving an SKU or a shuttle from lane 𝑖, 𝑦𝑚𝑖 = 1; otherwise, 𝑦𝑚𝑖 = 0. We also 

define 𝑧𝑚𝑞 = 1 if the 𝑚th SC task is for conducting the 𝑞th task at its associated lane. If the 𝑚th 

SC task is to move a shuttle, 𝜃𝑚 = 1; otherwise, 𝜃𝑚 = 0. To express the reallocation of shuttles, 

we define 𝑥𝑖𝑗 to denote whether a shuttle is moved from lane 𝑖 to lane 𝑗 (𝑥𝑖𝑗 = 1) or not (𝑥𝑖𝑗 =

0). In addition, 𝑡𝑚 and 𝑟𝑖𝑞 represent the moment when the crane picks up the SKU/shuttle 

scheduled as the 𝑚th SC task and the moment when the 𝑞th task in lane 𝑖 is ready for the crane to 

pick up.  𝑙𝑖 and 𝑢𝑖, representing the task indices of the first and last tasks associated with lane 𝑖, 

are introduced for avoiding sub-tours of shuttles and making sure that the crane only visits a lane 

that has a shuttle. The mixed-integer program (MIP) for the scheduling problem is provided as 

follows,    

Min 𝑡𝑀 +∑𝑝𝑖
4𝑦𝑀𝑖

𝑖∈𝑁

   (2.1) 

s.t. ∑ 𝑥𝑖𝑗
𝑖∈𝑁/{𝑗}

= 1, 𝑗 ∈ 𝑁1, (2.2) 

 ∑ 𝑥𝑖𝑗
𝑗∈𝑁1

≤ 1, 𝑖 ∈ 𝑁, (2.3) 
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 ∑ 𝑦𝑚𝑖

𝑀

𝑚=1

= 𝑄𝑖 + ∑ 𝑥𝑖𝑗
𝑗∈𝑁1

, 𝑖 ∈ 𝑁, (2.4) 

 ∑𝑦𝑚𝑖
𝑖∈𝑁

= 1, 𝑚 ∈ {1,… ,𝑀}, (2.5) 

 𝑢𝑖 ≥ 𝑚𝑦𝑚𝑖, 𝑖 ∈ 𝑁, 𝑚 ∈ {1,… ,𝑀}, (2.6) 

 𝑙𝑖 ≤ 𝑚𝑦𝑚𝑖 +𝑀(1 − 𝑦𝑚𝑖), 𝑖 ∈ 𝑁,𝑚 ∈ {1,… ,𝑀}, (2.7) 

 𝑢𝑖 ≤ 𝑙𝑗 +𝑀(1 − 𝑥𝑖𝑗) 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁1, (2.8) 

 ∑ 𝑞𝑧𝑚𝑞

𝑄𝑖+1

𝑞=1

≤∑𝑦𝑘𝑖

𝑚

𝑘=1

+ (𝑄𝑖 + 1)(1 − 𝑦𝑚𝑖), 𝑖 ∈ 𝑁, 𝑚 ∈ {1,… ,𝑀}, (2.9) 

 ∑ 𝑞𝑧𝑚𝑞

𝑄𝑖+1

𝑞=1

≥∑𝑦𝑘𝑖

𝑚

𝑘=1

− (𝑄𝑖 + 1)(1 − 𝑦𝑚𝑖), 𝑖 ∈ 𝑁, 𝑚 ∈ {1,… ,𝑀}, (2.10) 

 ∑𝑧𝑚𝑞

𝑄′

𝑞=1

= 1, 𝑚 ∈ {1,… ,𝑀}, (2.11) 

 𝑄′(1 − 𝜃𝑚) ≥∑(𝑄𝑖 + 1)𝑦𝑚𝑖
𝑖∈𝑁

−∑𝑞𝑧𝑚𝑞

𝑄′

𝑞=1

, 𝑚 ∈ {1,… ,𝑀}, (2.12) 

 𝜃𝑚 ≥∑𝑞𝑧𝑚𝑞

𝑄′

𝑞=1

−∑𝑄𝑖𝑦𝑚𝑖
𝑖∈𝑁

, 𝑚 ∈ {1,… ,𝑀}, (2.13) 
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 𝑡1 ≥ ∑ 𝑃𝑖0𝑖𝑦1𝑖
𝑖∈𝑁0

,  (2.14) 

 𝑡𝑚 ≥ 𝑡𝑚−1 + 𝑝𝑖𝑗
3 − 𝑇(2 − 𝑦𝑚−1,𝑖 − 𝑦𝑚𝑗 + 𝜃𝑚−1), 𝑖, 𝑗 ∈ 𝑁, 𝑚 ∈ {2,… ,𝑀}, (2.15) 

 
𝑡𝑚 ≥ 𝑡𝑚−1 +∑(𝑝𝑖𝑘

2 + 𝑝𝑘𝑗
2 )𝑥𝑖𝑘

𝑘∈𝑁

− 𝑇(3 − 𝑦𝑚−1,𝑖 − 𝑦𝑚𝑗 − 𝜃𝑚−1), 

𝑖, 𝑗 ∈ 𝑁, 𝑚 ∈ {2,… ,𝑀},  (2.16) 

 𝑟𝑖1 ≥ 𝑝𝑖1
1 − 𝑇(2 − 𝑧𝑚1 − 𝑦𝑚𝑖 + 𝜃𝑚), 𝑖 ∈ 𝑁0, 𝑚 ∈ {1,… ,𝑀}, (2.17) 

 𝑟𝑖1 ≥ 𝑡𝑚 + 𝑝𝑖𝑗
2 + 𝑝𝑖1

1 − 𝑇 (3 − 𝑧𝑚,𝑄𝑗+1 − 𝑦𝑚𝑗 − 𝜃𝑚),   𝑖 ∈ 𝑁1,  𝑗 ∈ 𝑁,𝑚 ∈ {1,… ,𝑀}, (2.18) 

 𝑟𝑖𝑞 ≥ 𝑡𝑚 + 𝑝𝑖𝑞
1 − 𝑇(2 − 𝑧𝑚,𝑞−1 − 𝑦𝑚𝑖), 

𝑖 ∈ 𝑁, 𝑞 ∈ {2,… , 𝑄𝑖 + 1}, 𝑚 ∈

{1,… ,𝑀}, 
(2.19) 

 𝑡𝑚 ≥ 𝑟𝑖𝑞 − 𝑇(2 − 𝑦𝑚𝑖 − 𝑧𝑚𝑞), 
𝑖 ∈ 𝑁, 𝑞 ∈ {1,… , 𝑄𝑖 + 1},𝑚 ∈

{1,… ,𝑀}, 
(2.20) 

 𝑡𝑚, 𝑟𝑖𝑞 , 𝑢𝑖, 𝑙𝑖 ≥ 0; 𝑦𝑚𝑖 , 𝑥𝑖𝑗, 𝜃𝑚, 𝑧𝑚𝑞 ∈ {0,1}.   (2.21) 

The objective function (2.1) minimizes the total cycle time for the crane to complete a given 

batch of retrieval tasks. Constraint set (2.2) makes sure that a lane in 𝑁1 receives a shuttle exactly 

once. Constraint set (2.3) guarantees that the crane moves a shuttle out of a lane in 𝑁0 up to once. 

Constraint set (2.4) assures that the number of SC tasks related to lane 𝑖 is the number of retrieval 

tasks at lane 𝑖 plus one shuttle reallocation task if there is any. Constraint set (2.5) ensures that the 

crane only performs one retrieval or shuttle reallocation task during one SC. Constraint sets (2.6) 

through (2.8) make sure that the crane can only serve a lane that has a shuttle and avoid the sub-

tour problem. In other words, when a shuttle is moved from lane 𝑖 to lane 𝑗, all tasks in lane 𝑖 

should be finished before the first task in lane 𝑗 starts. Constraint sets (2.9) through (2.11) force 

𝑧𝑚𝑞 to be one if the 𝑞th task on a lane is scheduled as the 𝑚th SC task. Constraint sets (2.12) and 
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(2.13) work together to guarantee 𝜃𝑚 to be one if the 𝑚th SC task is for moving a shuttle (i.e., it is 

the (𝑄𝑖 + 1)
th for lane i, which is the lane for the 𝑚th SC task). Constraint sets (2.14) through 

(2.16) make sure that the 𝑚th SC task cannot start until the (𝑚 − 1)th SC task is completed. 

Specifically, constraint set (2.14) is for the case of the first SC task; (2.15) is for the case when 

the (𝑚 − 1)th SC task is to retrieve an SKU; and (2.16) is for the case when the (𝑚 − 1)th SC task 

is to move a shuttle to lane 𝑗. Constraint sets (2.17) through (2.20) are used to obtain the time 

when the shuttle with the SKU for the 𝑞th task at lane 𝑖 is ready for pick up by the crane. 

Constraint set (2.17) is used for the first retrieval task on lanes in 𝑁0; (2.18) is used for the first 

retrieval task on lanes from 𝑁1; and (2.19) makes sure that the shuttle cannot move for the 𝑞th 

SKU before the crane picks up the (𝑞 − 1)th SKU from that lane. Constraint set (2.20) calculates 

the moment when the crane picks up the SKU or shuttle in its 𝑚th cycle.  

The proposed MIP carefully uses 𝑦𝑚𝑖 and 𝑧𝑚𝑞 together to represent the crane’s route and task 

sequence. Multiple constraint sets are created to connect  𝑦𝑚𝑖 and 𝑧𝑚𝑞. Even though the problem 

can be formulated more straightforwardly by combining 𝑦𝑚𝑖 and 𝑧𝑚𝑞  to a set of three-

dimensional variables, the model with three-dimensional variables will have much more binary 

variables, and therefore, has a much higher computational burden. The detailed modeling 

methods comparison can be found Appendix C. 

The following two theorems show the complexity of the scheduling problem and its optimality 

condition, which will be used to develop the LW heuristic in section 2.5.  

Theorem 2.1. The 3D AS/RS retrieval task scheduling problem is NP-hard. 

See Appendix D for its proof.                                                                                            

Theorem 2.2: Optimality Condition. Consider the 𝑚𝑡ℎ and (𝑚 + 1)𝑡ℎ tasks in an optimal task 

schedule. If the  𝑚𝑡ℎ task is for retrieving the (𝑞1)
𝑡ℎ SKU from lane 𝑗, the (𝑚 + 1)𝑡ℎ task is for 

retrieving the (𝑞2)
𝑡ℎ SKU from lane 𝑘,  and the (𝑚 − 1)𝑡ℎ task is associated with lane 𝑖, we should 

always have 𝑝𝑚 ≥ 𝑠𝑚  where 𝑝𝑚 = 𝑚𝑎𝑥 {𝑟𝑘,𝑞2 − 𝑡𝑚−1 − 𝑝𝑖𝑘
3 , 0}  and 𝑠𝑚 = 𝑚𝑎𝑥{𝑟𝑗,𝑞1 − 𝑡𝑚−1 −

𝑝𝑖𝑗
3 , 0}  if the (𝑚 − 1)𝑡ℎ  task is a retrieval task, otherwise; 𝑝𝑚 = 𝑚𝑎𝑥{ 𝑟𝑘,𝑞2 − 𝑡𝑚−1 − 𝑝𝑖,𝑙

2 −

𝑝𝑙,𝑘
2 , 0} and 𝑠𝑚 = 𝑚𝑎𝑥{𝑟𝑗,𝑞1 − 𝑡𝑚−1 − 𝑝𝑖,𝑙

2 − 𝑝𝑙,𝑗
2 , 0} if the (𝑚 − 1)𝑡ℎ task is to reallocate a shuttle 

from lane 𝑖 to 𝑙. 
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See Appendix D for its proof.                                                                                            

2.5 Solution Methods for 3D AS/RS Retrieval Task Scheduling 

The proposed MIP was solved with the Gurobi solver on a Dell desktop with an Intel Core i5 

3.40 GHz processor and 8 GB RAM using Windows 10. The computational time of Gurobi 

increased exponentially as the problem size became larger. Therefore, the Lowest-Waiting-Time-

First (LW) heuristic was developed based on Theorem 2.2. Genetic Algorithm (GA) and other 

two heuristics found from the literature were also adapted to that problem. It is worth to note that 

we also tried adding additional constraints sets to the MIP model (2.1-2.21) based on Theorem 

2.2, but it did not improve the computational efficiency a lot.  

2.5.1 First-Come-First-Serve 

First-come-first-serve (FCFS) is the rule most frequently used in practice. When a shuttle is ready 

to hand over an SKU to the crane or be transferred to another lane, it will send a request to the 

crane. After receiving the request, the crane will travel to that shuttle if it is idle. Otherwise, the 

request will be added into a waiting list, and the crane will take care of the requests in the waiting 

list following the FCFS rule. To improve the performance of FCFS, in addition to receiving 

requests, we allow the crane, after finishing one task, to be able to calculate ready times for all 

tasks and serve the earliest if the waiting list is empty. When the crane arrives, if the shuttle is 

ready, the crane will pick up the SKU or shuttle. Otherwise, the crane will wait until the shuttle or 

SKU is available. If different shuttles/tasks are predicted to be ready at the same time, the crane 

will choose the target lane randomly. Moreover, for a shuttle reallocation task, the lane that will 

receive the shuttle is randomly selected among all lanes currently without a shuttle.  

The makespan for the crane to finish a given batch of retrieval tasks includes three components: 

time for transferring SKUs to I/O point (𝑇𝑟), time for moving shuttles (𝑇𝑚), and time to wait for 

an available SKU/shuttle (𝑇𝑤). Among those three components, 𝑇𝑟 is constant, so the scheduling 

problem aims to minimize 𝑇𝑚 and 𝑇𝑤. However, instead of focusing on the crane, the FCFS aims 

to minimize the waiting time of transactions (i.e., SKUs and shuttles) and can hardly achieve 

shorter  𝑇𝑚 and 𝑇𝑤. 

2.5.2 Lowest-Waiting-Time-First  

The Lowest-Waiting-Time-First (LW) rule was developed based on Theorem 2.2 aiming to 

reduce the crane’s waiting time 𝑇𝑤. At the beginning of the 𝑚𝑡ℎ SC, LW calculates the potential 
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crane’s waiting time 𝑃𝑊𝑚,𝑖 ≥ 0 for each lane 𝑖 if the crane is going to serve a task from that lane, 

and selects the lane with the lowest 𝑃𝑊𝑚,𝑖 among all lanes.  Moreover, whenever a shuttle 

reallocation task is conducted, the lane with the shortest travel time is selected to receive the 

shuttle. However, if the target lane is selected only based on the value of 𝑃𝑊𝑚,𝑖, the crane will 

tend to finish tasks from lanes far from the I/O point first and take care of the tasks from lanes 

closer to the I/O point later, which may eventually increase 𝑇𝑤. Therefore, if multiple lanes have 

the lowest 𝑃𝑊𝑚,𝑖, the crane will always go to the lane closest to the I/O point.  In addition, 

shuttles needed to be reallocated as early as possible so that tasks from lane 𝑗 ∈ 𝑁1 can be started 

earlier. Therefore, a percentage priority 𝜌 is given to shuttle reallocation tasks.  

𝐹𝑇𝑚,𝑖 is defined as the number of tasks finished on lane 𝑖 at the beginning of 𝑚𝑡ℎ SC, where 0 ≤

𝐹𝑇𝑚,𝑖 ≤ 𝑄𝑖 + 1. 𝑁𝑚
0  and 𝑁𝑚

1  are the set of lanes with a shuttle and the set of lanes need a shuttle 

at the beginning of the 𝑚𝑡ℎ SC, respectively. Moreover, 𝐶𝑚
𝑠 = {𝑖|𝑖 ∈ 𝑁𝑚

0 , 𝐹𝑇𝑚,𝑖 = 𝑄𝑖} is defined 

as the set of lanes that have a shuttle ready for reallocation at the beginning of the  𝑚𝑡ℎ SC. 

Please note that we only have to track 𝐶𝑚
𝑠  when |𝑁𝑚

1 | > 0. At last, 𝐶𝑚
𝑝

 is defined as the set of 

lanes with a shuttle and retrieval tasks and the lowest 𝑃𝑊𝑚,𝑖. 

The LW can be implemented with the following steps. 

Step 1 (Initialization): set 𝑚 = 1 and give the initial set of lanes with a shuttle: 𝑁1
0 and the set of 

lanes requiring a shuttle: 𝑁1
1. For all 𝑖 ∈ 𝑁1

1, 𝑃𝑊1,𝑖 = ∞, and calculate 𝑃𝑊1,𝑖 for 𝑖 ∈ 𝑁1
0. 

Step 2 (Checking 𝑚): if 𝑚 = 𝑀 + 1, stop and output 𝑇𝑀, otherwise; go to Step 3. 

Step 3 (Target lane selection): select the lane with the lowest 𝑃𝑊𝑚,𝑖 for 𝑖 ∈ 𝑁𝑚
0 . If |𝐶𝑚

𝑠 | > 0, 

with probability 𝜌, select 𝑖 ∈ 𝐶𝑚
𝑠  with the lowest 𝑃𝑖0,𝑖, go to Step 4, and with probability 

1 − 𝜌, select 𝑖 ∈ 𝐶𝑚
𝑝
 with the lowest 𝑃𝑖0,𝑖, go to Step 5. If  |𝐶𝑚

𝑠 | = 0, select 𝑖 ∈ 𝐶𝑚
𝑝

 with the 

lowest 𝑃𝑖0,𝑖, go to Step 5. 

Step 4 (Shuttle reallocation): select lane 𝑗 ∈ 𝑁𝑚
1  with the lowest 𝑃𝑖,𝑗

2  . Conduct the reallocation 

task. 𝐹𝑇𝑚+1,𝑖 = 𝑄𝑖 + 1, 𝑁𝑚+1
1 = 𝑁𝑚

1 − {𝑗}. 𝑁𝑚+1
0 = 𝑁𝑚

0 − {𝑖} + {𝑗}. Calculate 

𝑇𝑚 𝑎𝑛𝑑 𝑃𝑊𝑚+1,𝑖 for 𝑖 ∈  𝑁𝑚+1
0 ∪ 𝑁𝑚+1

1 , and go to Step 2. 

Step 5 (SKU retrieval): conduct the retrieval task, 𝐹𝑇𝑚+1,𝑖 = 𝐹𝑇𝑚,𝑖 + 1,  calculate 

𝑇𝑚 and 𝑃𝑊𝑚+1,𝑖 for 𝑖 ∈  𝑁𝑚+1
0 ∪ 𝑁𝑚+1

1 ,  go to Step 2.  
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The value of probability 𝜌 depends on the following scenarios, 1) If |𝐶𝑚
𝑠 | > 0 and min

𝑖∈𝐶𝑚
𝑝
𝑃𝑊𝑚,𝑖 = 0, 

𝜌 = |𝑁𝑚
1 |/|𝑁|; otherwise, 2) if |𝐶𝑚

𝑠 | > 0 and min
𝑖∈𝐶𝑚

𝑝
𝑃𝑊𝑚,𝑖 > 0, 𝜌 = 1. For easier tracking 𝑃𝑊𝑚,𝑖, 

𝐿𝑚,𝑖 can be defined to show the location of SKUs/shuttles on 𝑧 coordinates (in terms of time) at the 

beginning of the 𝑚𝑡ℎ cycle. At Step 1, 𝐿1,𝑖 = {
𝑟𝑖,1 𝑖 ∈ 𝑁1

0 

∞ 𝑖 ∈ 𝑁1
1

, and 𝑃𝑊1,𝑖 = max{𝐿1,𝑖 − 𝑃0,𝑖, 0} , 𝑖 ∈

𝑁1
0.  If the 𝑚𝑡ℎ  task is for retrieving the 𝑞𝑡ℎ  SKU from lane 𝑗 , then 𝐿𝑚+1,𝑖 =

{

𝑚𝑎𝑥{𝑟𝑖,𝑞+1−𝑝𝑗
4, 0} 𝑖 = 𝑗,

max {𝐿𝑚,𝑖 − 𝑃0,𝑗 − 𝑝𝑗
4, 0} 𝑖 ∈ 𝑁𝑚+1

0 , 𝑖 ≠ 𝑗,

∞ 𝑖 ∈ 𝑁𝑚+1
1

 and 𝑃𝑊𝑚+1,𝑖 = max {𝐿𝑚+1,𝑖 − 𝑃0,𝑖, 0}. If the 𝑚𝑡ℎ 

task is for transferring a shuttle from lane 𝑗  to lane 𝑙 , 𝐿𝑚+1,𝑖 =

{

𝑟𝑖,1 𝑖 = 𝑙,

max {𝐿𝑚,𝑖 − 𝑃0,𝑗 − 𝑝𝑗,𝑙
2 , 0} 𝑖 ∈ 𝑁𝑚+1

0 , 𝑖 ≠ 𝑙,

∞ 𝑖 ∈ 𝑁𝑚+1
1

 and 𝑃𝑊𝑚+1,𝑖 = max {𝐿𝑚+1,𝑖 − 𝑃𝑙,𝑖
2 , 0}. 

2.5.3 Percentage Priority to Shuttle Reallocation with the Shortest Leg (PPS-SL) 

Except for the aforementioned two heuristic algorithm, the Percentage Priority to Retrievals with 

the Shortest Leg (PPR-SL) rule proposed by Yu and De Koster (2012) for scheduling storage and 

retrieval tasks in 3D AS/RS with conveyor-based DMMs was adapted as Percentage Priority to 

Shuttle Reallocation with the Shortest Leg (PPS-SL) for this study. PPS-SL, at the beginning of 

each cycle, selects the lane with the lowest 𝑙𝑒𝑔𝑚,𝑖, where 

𝑙𝑒𝑔𝑚,𝑖 = {

𝑃𝑖0,𝑖 + 𝑃𝑊𝑚,𝑖 𝑖 ∈ |𝑁𝑚
0 |, 𝑖 ∉ |𝐶𝑚

𝑠 |,

𝑃𝑖0,𝑖 + min
𝑗∈𝑁𝑚

1
(𝑃𝑖,𝑗

2 + 𝑃𝑗,1
1 ) 𝑖 ∈ |𝐶𝑚

𝑠 |,

∞ 𝑖 ∈ 𝑁𝑚+1.
1

  

We tried to reallocate shuttles as early as possible. Whenever the 𝑙𝑒𝑔𝑚,𝑖 𝑓𝑜𝑟 𝑖 ∈ |𝐶𝑚
𝑠 | is updated, 

with a probability 𝜌 = |𝑁𝑚
1 |/|𝑁|, a lower value is assigned (i.e., 𝑙𝑒𝑔𝑚,𝑖 = min(𝑃𝑖,𝑗

2 | 𝑗 ∈ 𝑁𝑚
1 )) so 

that shuttle reallocation tasks from 𝑖 ∈ |𝐶𝑚
𝑠 | has a higher probability to be conducted earlier. 

In PPS-SL, the crane finishes one retrieval task in each cycle, which implies that the crane will 

wait at lane 𝑗 for the retrieved SKU in lane 𝑗 instead take care of a task from another lane after 

reallocating a shuttle to lane 𝑗. The procedure of PPS-SL is very similar to LW and is listed 

below.  
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Step 1 (Initialization): set 𝑚 = 1 and give the initial set of lanes with a shuttle: 𝑁1
0 and the set of 

lanes needs a shuttle: 𝑁1
1. For all 𝑖 ∈ 𝑁1

1, 𝑙𝑒𝑔1,𝑖 = ∞, and calculate 𝑙𝑒𝑔1,𝑖 for 𝑖 ∈ 𝑁1
0. 

Step 2 (Checking 𝑚): if 𝑚 = 𝑀 − |𝑁1| + 1, stop and output 𝑇𝑀, otherwise; go to Step 3. 

Step 3 (Target lane Selection): select the lane with the lowest 𝑙𝑒𝑔𝑚,𝑖. If 𝑖 ∈ 𝐶𝑚
𝑠 , go to Step 4; 

Otherwise, go to Step 5. 

Step 4 (Shuttle reallocation): Select lane 𝑗 ∈ 𝑁𝑚
1  with the lowest 𝑃𝑖,𝑗

2 + 𝑃𝑗,1
1 . Reallocating shuttle 

from land 𝑖 to lane 𝑗 and retrieve the first SKU from lane 𝑗. 𝐹𝑇𝑚+1,𝑖 = 𝑄𝑖 + 1, 𝐹𝑇𝑚+1,𝑗 =

1, 𝑁𝑚+1
1 = 𝑁𝑚

1 − {𝑗}, 𝑁𝑚+1
0 = 𝑁𝑚

0 − {𝑖} + {𝑗}. Calculate 𝑇𝑚, 𝑙𝑒𝑔𝑚+1,𝑖 for 𝑖 ∈  𝑁𝑚+1
0 ∪

𝑁𝑚+1
1 , and go to Step 2. 

Step 5 (SKU retrieval): Conduct the retrieval task, 𝐹𝑇𝑚+1,𝑖 = 𝐹𝑇𝑚,𝑖 + 1,  calculate 𝑇𝑚,  and 

𝑙𝑒𝑔𝑚,𝑖 for 𝑖 ∈  𝑁𝑚+1
0 ∪ 𝑁𝑚+1

1 , and go to Step 2.  

2.5.4 Genetic Algorithm  

The three aforementioned algorithms are simple heuristics based on specific crane and shuttle 

dispatching rule and may end at a local optimum with a very high probability. Therefore, the 

Genetic Algorithm (GA) that begins with a set of initial feasible solutions and searches the 

feasible region following natural selection and evolution strategies was adopted to explore bigger 

solution space to escape local optimum.  

GA has been commonly used to solve the task scheduling problem of 2D AS/RS (Asokan, P., 

Jerald, J., Arunachalam, S., & Page, 2008; Noorul Haq et al., 2003; Popović et al., 2014). 

However, the application of the GA to a 3D system is more difficult for the following reasons. In 

a 2D AS/RS, chromosomes only represent the sequence of tasks and each chromosome is 

feasible. In the 3D AS/RS retrieval task scheduling problem, only a “reasonable” shuttle 

assignment and crane route combination forms a chromosome. Here, a reasonable assignment 

means that a shuttle should not be assigned to a lane that has already been assigned with another 

shuttle and should not be moved out of a lane until all retrieval tasks in that lane are finished. A 

reasonable route means that the crane will not visit a lane if there is no shuttle in that lane unless 

the crane is moving a shuttle to that lane. Therefore, it is impossible to create a chromosome with 

an arbitrary schedule of retrieval and shuttle reallocation tasks. In our study, a new chromosome 

structure is proposed to make the GA applicable to our scheduling problem and a repair strategy 

is applied to guarantee the feasibility of chromosomes after each operation.  
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To generate the initial feasible solutions, short-form chromosomes are created first to represent the 

shuttle assignment. All shuttles are indexed with  𝑖 ∈ {1,… , |𝑁0|}  based on their initial 

location/lane. In a short-form chromosome, each gene corresponds to a lane. The gene of each lane 

in 𝑁0 (i.e., each lane with a shuttle at the beginning) is the index of the shuttle at that lane. The 

gene of each lane in |𝑁1| is comprised by two parts, the integer and fractional parts. The integer 

part, ranging from 1 to |𝑁0|, represents which shuttle is assigned to that lane. The fractional part is 

originally randomly generated in range (0, 1) without any repeats and represents the schedule of 

shuttle movements. Lanes with the same integer part 𝑖 will get served by shuttle 𝑖 based on an 

ascending order of their fractional parts. 

In a chromosome (long-form), each gene represents a lane and will be assigned with a list of 

numbers. For each number assigned to a lane, the integer part ranging from 1 to |𝑁0| indicates 

the shuttle assigned to this lane. A fractional part of each number is generated randomly in the 

range of 1 × 10−𝐷 to 𝑀 × 10−𝐷, where 𝑀 is the number of total SC tasks and 𝐷 is ⌈log10𝑀⌉. A 

lower fractional part means that the corresponding task will be executed by the crane earlier. An 

example of the short-form and long-form chromosomes is showed in Appendix E.  It is also 

worth to note that we do not have to record the short-from chromosome because we can always 

extract the short-from chromosome from a long-form chromosome for the following operations. 

The tournament selection is applied to select parents for the following GA procedures, and multi-

point-based crossover is applied for selected chromosomes (Vose, 1999). The mutation procedure 

is applied on the corresponding short-form chromosome to change the shuttle-to-lane assignment.  

A repair strategy is applied to guarantee the feasibility of all offspring. The details and examples 

of these operations can be found in Appendix E.   

2.6 Numerical Experiments and Discussion 

2.6.1 Comparison of Solution Methods 

Numerical experiments were conducted to validate the MIP model and test the efficiency of the 

four proposed solution methods. Gurobi was used to solve the MIP model for small cases with a 

running time limit of 600 seconds. When it reaches the time limitation, Gurobi will stop and 

return a feasible solution if it can find one. Moreover, the population size, crossover rate, and 

mutation rate for GA are set as 10, 0.8, and 0.08 respectively. The GA will stop if there is no 

improvement in 100 generations, or the running time exceeds one hour. The 3D AS/RS 
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considered for this analysis is a real-world rack. The rack has three layers, 80 columns, and each 

lane has 15 storage cells. The total number of storage lanes is 240, and the rack can store 3,600 

SKUs. The length (x-direction) and width (z-direction) of a storage cell are all 1.4 meters, and the 

height (𝑦 direction) of a storage cell is 2 meters. The maximum velocity of shuttles (𝑉𝑠) 

is 1.5𝑚/𝑠,and the acceleration/deceleration (𝑎𝑠) is 1𝑚/𝑠. The maximum velocity for the crane in 

x-direction and z-direction are 𝑉𝑐
𝑥 = 2.5𝑚/𝑠 𝑎𝑛𝑑 𝑉𝑐

𝑧 = 0.5𝑚/𝑠, respectively. The 

acceleration/deceleration in the x-direction and z-direction are 𝑎𝑐
𝑥 = 0.5𝑚/𝑠2 and 𝑎𝑐

𝑧 =

0.5𝑚/𝑠2 , respectively. Time consumed for the crane or shuttles to load/unload an SKU is 1𝑠.   

Table 2-1 shows 10 small cases with different values of |𝑁0| and |𝑁|, and 𝑄𝑖 for the comparison 

among solving MIP by Gurobi and the four proposed solution methods. Four deviations, namely 

∆𝐹𝐶𝐹𝑆=
𝑇𝐹𝐶𝐹𝑆−𝑇𝑀𝐼𝑃

𝑇𝑀𝐼𝑃
,  ∆𝐿𝑊=

𝑇𝐿𝑊−𝑇𝑀𝐼𝑃

𝑇𝑀𝐼𝑃
 , ∆𝑃𝑃𝑆−𝑆𝐿=

𝑇𝑃𝑃𝑆−𝑆𝐿−𝑇𝑀𝐼𝑃

𝑇𝑀𝐼𝑃
 and ∆𝐺𝐴=

𝑇𝐺𝐴−𝑇𝑀𝐼𝑃

𝑇𝑀𝐼𝑃
, are used to 

show the difference, where 𝑇𝑀𝐼𝑃,  𝑇𝐹𝐶𝐹𝑆, 𝑇𝐿𝑊, 𝑇𝑃𝑃𝑆−𝑆𝐿, and 𝑇𝐺𝐴 are the makespan of solutions 

generated by solving MIP with Gurobi, FCFS, LW, PPS-SL, and GA, respectively. 𝑇𝑖𝑚𝑒𝑀𝐼𝑃 and 

𝑇𝑖𝑚𝑒𝐺𝐴 denote the running time of Gurobi and GA in seconds. Because the FCFS, LW, and PPS-

SL are simple heuristics, the running time is much shorter than one second and considered 

ignorable. Moreover, N/A represents that Gurobi could not find a feasible solution within the time 

limitation.  

As Table 2-1 shows, Gurobi can solve MIP (2.1-2.21) to optimum when the problem size is 

small. However, the solving time increase dramatically in ∑ 𝑄𝑖𝑖∈𝑁 , |𝑁0|, and |𝑁|, and a feasible 

solution cannot even be discovered as the problem size getting big (e.g., (103,17,4)). GA can 

usually yield a solution with a shorter makespan than other heuristics (i.e., FCFS, LW, and PPS-

SL). Even though GA cannot guarantee the optimality, it has a higher probability to reach the 

global optimum. LW is better than FCFS and PPS-SL for solution quality. PPS-SL is the worst 

among the four proposed algorithms since it makes the crane wait for the SKU in a lane after 

reallocating a shuttle to that lane. The numerical experiments were also conducted for large cases 

to further demonstrate the efficiency of the proposed algorithms.  

Six large cases were considered with the number of retrieval tasks (∑ 𝑄𝑖𝑖∈𝑁 ) ranging from 600 to 

3,600 with the step size of 600. Each case consists of 70 sub-cases in terms of 10 different 

number of shuttles (𝑅 = |𝑁0|/|𝑁|  = 0.1, 0.2,⋯ ,1) and seven shuttle speed profiles. Table 2-2  
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Table 2-1. Comparison among MIP, FCFS, LW, PPS-SL, and GA for Smaller Cases 

(∑ 𝑄𝑖𝑖∈𝑁 , |𝑁 |, |𝑁0|) 𝑇𝑖𝑚𝑒𝐺𝐴 𝑇𝑖𝑚𝑒𝑀𝐼𝑃 ∆𝐹𝐶𝐹𝑆 ∆𝐿𝑊 ∆𝑃𝑃𝑆−𝑆𝐿 ∆𝐺𝐴 

(7, 6, 5) 10 3 3.9% 0.6% 39.4% 0% 

(83, 11, 9) 40 600 -2.4% -2.5% -1.4% -2.9% 

(103,17,4) 179 600 N/A(0%)* N/A(-2.7%)  N/A(-0.3%) N/A(-2.3%) 

(53, 19, 14) 92 600 9.6% 0.1% 9.3% -1.4% 

(32, 19, 3) 228 600 -10.6% -19.9% 0.2% -2.9% 

(38, 13 ,8) 66 600 10.3% -2.4% 18.0% -1.4% 

(36, 8, 7) 16 600 11.2% 6.6% 8.6% -2.9% 

(15, 10, 3) 21 600 -3.1% -5.2% 46.1% -1.4% 

(14,11, 8) 26 600 20.4% 7.1% 43.2% -2.9% 

(12, 8, 6) 15 600 12.0% 9.9% 36.7% 1.1% 

* N/A means that Gurobi failed to find a feasible solution and the listed percentages are the differences 

from FCFS. 
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Table 2-2. Four Heuristics (LW, PPS-SL, GA, and GALW) against FCFS for Large Cases 

𝑉𝑠 (𝑚/𝑠) 0.07 0.44 3.04 

𝑎𝑠(𝑚/𝑠
2) 0.06 0.24 1.06 

∑𝑄𝑖
𝑖∈𝑁

 𝑅 ∆′𝐿𝑊 ∆′𝑃𝑃𝑆−𝑆𝐿  ∆′𝐺𝐴 ∆′𝐺𝐴𝐿𝑊  ∆′𝐿𝑊 ∆′𝑃𝑃𝑆−𝑆𝐿  ∆′𝐺𝐴 ∆′𝐺𝐴𝐿𝑊  ∆′𝐿𝑊 ∆′𝑃𝑃𝑆−𝑆𝐿  ∆′𝐺𝐴 ∆′𝐺𝐴𝐿𝑊  

600 

0.1 -17.4% 90.9% 0.0% -17.4% -17.4% 11.6% -1.6% -17.5% -19.0% -13.6% -3.5% -19.0% 

0.2 -15.7% 85.8% -0.1% -15.7% -15.4% 9.0% -2.2% -15.4% -15.1% -10.4% -2.9% -16.1% 

0.3 -16.5% 69.6% 0.0% -16.5% -14.0% 7.8% -3.3% -14.0% -14.0% -11.2% -3.4% -14.6% 

0.4 -11.8% 70.5% -0.1% -11.9% -12.3% 5.1% -4.2% -12.3% -10.9% -8.7% -4.0% -11.2% 

0.5 -10.3% 58.8% -0.1% -10.4% -10.0% 5.0% -4.1% -10.4% -10.4% -8.7% -4.8% -10.6% 

0.6 -8.0% 41.4% -3.5% -8.1% -8.7% 5.3% -3.6% -8.8% -8.5% -6.7% -4.3% -8.8% 

0.7 -7.8% 31.7% -3.3% -8.0% -6.2% 3.1% -4.6% -6.4% -7.0% -5.9% -4.8% -7.0% 

0.8 -4.5% 20.4% -3.3% -4.7% -4.0% 3.7% -2.5% -4.2% -5.0% -4.0% -4.2% -5.2% 

0.9 -2.9% 13.6% -3.1% -2.9% -2.8% 0.8% -2.9% -2.9% -2.5% -1.9% -2.3% -2.5% 

1 -0.9% -0.8% 0.0% -0.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

1,800 

0.1 -7.4% 23.6% 0.0% -7.4% -7.0% 2.7% 0.0% -7.0% -7.1% -5.4% -1.4% -7.1% 

0.2 -5.7% 20.5% 0.0% -6.1% -6.0% 0.7% 0.0% -6.1% -6.3% -5.3% -1.2% -6.3% 

0.3 -5.4% 17.5% 0.0% -5.4% -5.2% 0.2% -0.6% -5.3% -5.5% -4.8% -1.7% -5.5% 

0.4 -3.4% 13.9% 0.0% -3.5% -4.3% 0.7% 0.0% -4.3% -4.5% -4.0% -1.9% -4.5% 

0.5 -3.4% 12.2% 0.0% -3.6% -3.7% 0.6% -1.3% -3.7% -4.1% -3.6% -1.8% -4.1% 

0.6 -3.0% 9.3% 0.0% -3.1% -2.7% 0.5% -1.3% -2.7% -2.7% -2.5% -2.0% -2.7% 

0.7 -2.3% 5.8% 0.0% -2.3% -2.3% 0.3% -1.1% -2.3% -2.3% -2.1% -1.5% -2.3% 

0.8 -1.3% 4.2% -0.4% -1.5% -1.9% -0.5% -1.4% -1.9% -1.4% -1.3% -1.5% -1.4% 

0.9 -0.9% 2.1% -0.9% -1.3% -0.7% 0.2% -0.7% -0.7% -0.9% -0.8% -0.9% -0.9% 

1 -0.1% 0.0% 0.0% -0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

3,000 

0.1 -3.5% 8.6% 0.0% -3.5% -4.1% -0.5% 0.0% -4.2% -4.6% -4.3% -1.0% -4.6% 

0.2 -2.7% 7.4% 0.0% -2.9% -3.3% -0.7% 0.0% -3.3% -3.9% -3.9% -0.5% -3.9% 

0.3 -2.9% 4.5% 0.0% -3.0% -3.1% -1.0% -0.1% -3.1% -3.4% -3.4% -1.1% -3.4% 

0.4 -1.8% 4.2% 0.0% -2.0% -2.9% -1.3% -0.2% -2.9% -3.1% -3.1% -1.0% -3.1% 

0.5 -1.6% 3.2% 0.0% -1.8% -2.2% -0.9% -0.2% -2.2% -2.2% -2.2% -1.2% -2.2% 

0.6 -1.3% 2.5% 0.0% -1.4% -1.6% -0.6% -0.8% -1.6% -2.1% -2.1% -0.9% -2.1% 

0.7 -0.8% 2.5% -0.2% -0.9% -1.3% -0.6% -0.6% -1.3% -1.6% -1.5% -1.1% -1.5% 

0.8 -0.3% 1.2% 0.0% -0.5% -0.9% -0.4% -0.7% -0.9% -0.9% -0.9% -0.7% -0.9% 

0.9 -0.2% 1.2% -0.4% -0.2% -0.4% -0.2% -0.4% -0.4% -0.5% -0.5% -0.5% -0.5% 

1 0.0% 1.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
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shows the results of cases with 600, 1,800 and 3,000 retrieval tasks under three speed profiles. 

The impact of starting GA with an LW solution is also tested.  Four deviations from FCFS, 

namely ∆′𝐿𝑊 =
𝑇𝐿𝑊−𝑇𝐹𝐶𝐹𝑆

𝑇𝐹𝐶𝐹𝑆
,  ∆′𝑃𝑃𝑆−𝑆𝐿 =

𝑇𝑃𝑃𝑆−𝑆𝐿−𝑇𝐹𝐶𝐹𝑆

𝑇𝐹𝐶𝐹𝑆
 , ∆′𝐺𝐴 =

𝑇𝐺𝐴−𝑇𝐹𝐶𝐹𝑆

𝑇𝐹𝐶𝐹𝑆
 and ∆′𝐺𝐴𝐿𝑊 =

𝑇𝐺𝐴𝐿𝑊−𝑇𝐹𝐶𝐹𝑆

𝑇𝐹𝐶𝐹𝑆
, are used to show the difference, where 𝑇𝐺𝐴𝐿𝑊 is the shortest makespan found by GA 

staring with the LW solution in the first generation. Table 2-2 shows that LW outperforms the 

other algorithms except GALW and yields solutions better than FCFS by up to 19%. Under a given 

speed profile and  ∑ 𝑄𝑖𝑖∈𝑁 , the advantage of LW against FCFS reduces as more shuttles are added 

into the system. As discussed in subsection 4.1, the crane’s waiting time 𝑇𝑤 and distance for 

reallocating shuttles 𝑇𝑚 are expected to be reduced through a better scheduling. However, when 

the system has more shuttles, which can work simultaneously in the system, LW, compared 

against FCFS, cannot reduce 𝑇𝑤 by much as there is a higher probability to make the crane busy 

all the time. Meanwhile, having more shuttles means fewer shuttle reallocations so that LW also 

cannot reduce 𝑇𝑚, compared against FCFS by much. Table 2-2 also shows that, for given 𝑅, 𝑉𝑠 

and 𝑎𝑠, |∆′𝐿𝑊| reduces as  ∑ 𝑄𝑖𝑖∈𝑁  gets larger. The reason is that having more tasks makes 𝑇𝑟 

more dominant among the three time components for the crane. Even though having a larger 

∑ 𝑄𝑖𝑖∈𝑁  will not hurt the advantage of LW in terms of 𝑇𝑤 and 𝑇𝑚, |∆𝐿𝑊| in percentage decreases 

because of the much higher total makespan.  

Moreover, when shuttles are slow, PPS-SL is the worst among all proposed algorithms. Even 

though PPS-SL is designed to reduce the crane’s waiting time when it takes care of the retrieval 

tasks, it sacrifices the opportunity for the crane to take care of tasks from other lanes after 

reallocating a shuttle. When shuttles are slow, PPS-SL results in much higher 𝑇𝑤 than FCFS. 

However, as shuttles become faster, the drawback of PPS-SL decreases and can eventually 

outperforms FCFS when shuttles are fast enough (e.g., 𝑉𝑠 = 0.44 𝑚/𝑠 and 𝑎𝑠 = 0.24 𝑚/𝑠
2). 

Furthermore, having more shuttles means fewer shuttle reallocations and can reduce the 

disadvantage of PPS-SL. Different from small cases, GA can only outperform FCFS by at most 

4.8% and is much worse than LW for large cases. Even when we started GA with the LW 

solution, it can only provide a solution slightly better than LW. It means either that LW has 

already yielded a solution with high quality or that GA is likely to be trapped at a local optimal 

solution (e.g., the LW solution).  
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It seems to contradict the statement we made in section 2.3 that ‘GA is commonly used and can 

usually provide a good solution in a reasonable amount of time’. As demonstrated by Table 2-1. 

Comparison among MIP, FCFS, LW, PPS-SL, and GA for Smaller Cases, GA can yield better 

solutions than other heuristics for most of the small cases. When large cases are tested, however, 

GA has to explore a significantly large solution space and check the feasibility of offsprings and 

correct them twice (i.e., after crossover and mutation) in each iteration, which takes much time. 

However, we limit the total running time to one hour, so GA cannot explore a large enough 

solution space to well beat LW, which is developed based on the optimality condition. If we relax 

the limitation on the total running time and population size, which is not applicable in practice, 

we expect that GA can yield better solutions. Moreover, the statement that ‘GA is commonly 

used and can usually provide a good solution in a reasonable amount of time’ was made based on 

the literature review of tasks scheduling problems for 2D AS/RS. When GA is applied to a 2D 

system, there is no need to check the feasibility of offsprings so that GA can search a large 

feasible region very fast and potentially beat other heuristics. However, when we apply GA to a 

3D system, the computational burden is significantly increased. 

2.6.2 Improvement of 3D AS/RS Performance 

Based on the comparison among the proposed solution methods, we consider LW the best based 

on its solving time and solution quality. Therefore, more numerical experiments based on LW 

were conducted to explore the desired number of shuttles in a system. Considering the real-world 

rack in our study, we examined the system performance under different numbers of shuttles (𝑅) 

and three equipment speed profiles 𝑆𝑖, where 𝑖 = 1, 2, and 3. Three speed profiles are 𝑆1 =

(𝑉𝑐
𝑥 = 2.5𝑚/𝑠 , 𝑉𝑐

𝑧 = 0.5𝑚/𝑠, 𝑎𝑐
𝑥 = 0.5𝑚/𝑠2, 𝑎𝑐

𝑧 = 0.5𝑚/𝑠2 , 𝑉𝑠 = 1.5𝑚/𝑠, 𝑎𝑠=1𝑚/𝑠
2 ),  𝑆2 =

(𝑉𝑐
𝑥 = 2.5𝑚/𝑠 , 𝑉𝑐

𝑧 = 0.5𝑚/𝑠, 𝑎𝑐
𝑥 = 0.5𝑚/𝑠2, 𝑎𝑐

𝑧 = 0.5𝑚/𝑠2 , 𝑉𝑠 = 3𝑚/𝑠, 𝑎𝑠=2𝑚/𝑠
2 ) and 

𝑆3 = (𝑉𝑐
𝑥 = 5𝑚/𝑠 , 𝑉𝑐

𝑧 = 1𝑚/𝑠, 𝑎𝑐
𝑥 = 1𝑚/𝑠2, 𝑎𝑐

𝑧 = 1𝑚/𝑠2 , 𝑉𝑠 = 1.5𝑚/𝑠, 𝑎𝑠=1𝑚/𝑠
2 ). Here, 

the speed profile 𝑆1 is the base case while  𝑆2 and 𝑆3 are for faster shuttles and faster crane, 

respectively. Because not all lanes have retrieval tasks in a planning horizon, we considered only 

100 lanes in Table 2-3, which shows the system performance (𝑇𝐿𝑊) in hours under different 

combinations of 𝑅, 𝑆𝑖 and ∑ 𝑄𝑖𝑖∈𝑁 . For each combination, three replications in terms of different 

locations of tasks and shuttles were considered, and Table 2-3 shows the average of the three 

results.  
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Table 2-3. Makespan 𝑇𝐿𝑊(∑ 𝑄𝑖𝑖∈𝑁 , 𝑅) in Hours for Instances with 100 Lanes and up to 

1,000 Tasks 

𝑅 ∑𝑄𝑖
𝑖∈𝑁

 100 200 300 400 500 600 700 800 900 1,000 

0.1  

𝑆1 1.47 2.77 4.09 5.40 6.75 8.04 9.31 10.62 11.93 13.25 

𝑆2 1.45 2.76 4.09 5.40 6.75 8.04 9.30 10.63 11.94 13.24 

𝑆3 0.84 1.56 2.31 3.03 3.77 4.49 5.20 5.94 6.67 7.40 

0.2 

𝑆1 1.43 2.75 4.09 5.40 6.74 8.04 9.30 10.62 11.93 13.23 

𝑆2 1.42 2.75 4.09 5.40 6.74 8.04 9.29 10.62 11.93 13.23 

𝑆3 0.80 1.55 2.29 3.01 3.76 4.49 5.20 5.93 6.66 7.39 

0.3 

𝑆1 1.40 2.75 4.08 5.40 6.73 8.02 9.29 10.61 11.92 13.22 

𝑆2 1.39 2.75 4.08 5.40 6.73 8.02 9.29 10.61 11.91 13.22 

𝑆3 0.79 1.54 2.28 3.02 3.76 4.49 5.20 5.92 6.66 7.38 

0.4 

𝑆1 1.38 2.73 4.08 5.39 6.72 8.01 9.28 10.59 11.90 13.21 

𝑆2 1.38 2.74 4.08 5.39 6.72 8.01 9.28 10.59 11.90 13.21 

𝑆3 0.78 1.52 2.28 3.02 3.76 4.48 5.19 5.92 6.65 7.38 

0.5 

𝑆1 1.37 2.72 4.06 5.37 6.71 8.00 9.27 10.58 11.89 13.20 

𝑆2 1.37 2.72 4.06 5.37 6.70 7.99 9.27 10.58 11.89 13.20 

𝑆3 0.77 1.52 2.26 3.00 3.74 4.47 5.18 5.91 6.64 7.38 

0.6 

𝑆1 1.36 2.70 4.04 5.36 6.69 7.98 9.25 10.57 11.87 13.18 

𝑆2 1.35 2.70 4.04 5.36 6.69 7.98 9.26 10.57 11.87 13.18 

𝑆3 0.76 1.51 2.25 2.99 3.73 4.46 5.16 5.90 6.63 7.36 

0.7 

𝑆1 1.34 2.68 4.02 5.34 6.67 7.96 9.23 10.55 11.86 13.17 

𝑆2 1.34 2.68 4.02 5.34 6.67 7.96 9.23 10.55 11.86 13.17 

𝑆3 0.75 1.50 2.25 2.98 3.72 4.44 5.15 5.88 6.62 7.35 

0.8 

𝑆1 1.34 2.67 4.00 5.31 6.65 7.94 9.22 10.53 11.84 13.15 

𝑆2 1.34 2.67 4.00 5.31 6.64 7.94 9.22 10.53 11.84 13.15 

𝑆3 0.75 1.50 2.24 2.97 3.71 4.44 5.15 5.88 6.61 7.35 

0.9 

𝑆1 1.33 2.66 3.99 5.30 6.63 7.93 9.20 10.51 11.82 13.13 

𝑆2 1.33 2.66 3.99 5.30 6.63 7.93 9.20 10.51 11.82 13.13 

𝑆3 0.74 1.49 2.23 2.96 3.70 4.43 5.14 5.87 6.61 7.34 

1.0 

𝑆1 1.32 2.66 3.98 5.30 6.63 7.92 9.19 10.51 11.82 13.13 

𝑆2 1.32 2.66 3.98 5.30 6.63 7.92 9.19 10.51 11.82 13.13 

𝑆3 0.74 1.49 2.23 2.96 3.70 4.43 5.13 5.87 6.60 7.33 
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Table 2-3 shows that 𝑇𝐿𝑊, for any 𝑆𝑖, increases almost linearly as the value of ∑ 𝑄𝑖𝑖∈𝑁  increases. 

Let us define 𝑇𝐿𝑊(∑ 𝑄𝑖𝑖∈𝑁 , 𝑅) as the makepan for finishing ∑ 𝑄𝑖𝑖∈𝑁  retrieval tasks. 

𝑇𝐿𝑊(∑ 𝑄𝑖 , 1𝑖∈𝑁 ) is approximately equals to 
∑ 𝑄𝑖𝑖∈𝑁

100
× 𝑇𝐿𝑊(100, 1). For 𝑅 < 1, 𝑇𝐿𝑊(∑ 𝑄𝑖𝑖∈𝑁 , 𝑅) is 

approximately equals to  𝑇𝐿𝑊(100, 𝑅) +
∑ 𝑄𝑖𝑖∈𝑁 −100

100
× 𝑏, where 𝑏 ≈ 𝑇𝐿𝑊(100, 1). This 

approximate relationship implies that when the number of shuttles in the system is fixed, time for 

moving shuttles, 𝑇𝑚, is almost constant and roughly equal to 𝑇𝐿𝑊(100, 1) − 𝑇𝐿𝑊(100, 𝑅). In 

addition, for given speed profile 𝑆𝑖, the marginal benefit in terms of makespan of adding shuttles 

decreases as the value of 𝑅 gets larger. The marginal benefits of having more shuttles are also 

independent from ∑ 𝑄𝑖𝑖∈𝑁 . For instance, under speed profile 𝑆1, adding 90 more shuttles into the 

system with 10 shuttles (i.e., increasing 𝑅 from 0.1 to 1) can at most reduce makespan by 

0.14 ℎ𝑜𝑢𝑟 no matter how many retrieval tasks are scheduled in a planning horizon. However, as 

∑ 𝑄𝑖𝑖∈𝑁  increased, 𝑇𝐿𝑊 increases significantly. In other words, having more tasks means a greater 

makespan but does not necessarily imply the need for more shuttles. Table 2-3 also shows the 

impact on system performance by changing the equipment’s speed. 𝑆2 doubles shuttle maximum 

velocity and acceleration/deceleration in the base speed profile 𝑆1. The makespan under these two 

speed profiles are quite similar, especially when there are many shuttles. However, the speed 

profile 𝑆3, which doubles the maximum velocity and acceleration/deceleration of cranes, 

significantly reduces the makespan compared to the speed profile 𝑆1. As discussed above, for 

cases with a large number of tasks, time for moving SKUs, 𝑇𝑟, dominates the other two 

components that form the makespan. Therefore, increasing the crane’s speed and acceleration can 

reduce both 𝑇𝑟, and time for moving shuttles, 𝑇𝑚, while higher shuttle speed can only affect 𝑇𝑤. 

Especially when shuttles are already fast enough (𝑆1) or 𝑅 is great enough to keep the crane busy, 

having faster shuttles may not help makespan reduction much.  

In 3D AS/RS practice, lead time (i.e., responsiveness) and makespan (i.e., efficiency) are two 

important metrics for evaluating operational performance. A company can reduce its planning 

horizon to be more responsive (i.e., shorter lead times for orders). A company that promises 

second day deliveries may have a planning horizon of 12 or 24 hours. If the company wants to 

have same-day delivery, it may reduce the planning horizon to several hours and solve the 

scheduling problem discussed in this study more frequently, with smaller batches. However, 

being responsive (i.e., more frequent scheduling) may sacrifice the opportunity to reduce the 
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makespan. Therefore, different strategies should be adopted under different business scenarios. 

As mentioned before, adding more shuttles makes a big improvement of system performance only 

when there are fewer retrieval tasks in one planning horizon. For a warehouse system with a 

higher responsiveness requirement, such as a local fulfillment center for last-mile delivery, a 

short planning horizon implies fewer orders in one scheduling problem (e.g., 200 retrieval tasks 

in 2~3 hours). More shuttles can be added into the system to reduce makespans. On the other 

hand, a warehouse with a lower responsiveness requirement may reduce planning frequency and 

schedule more tasks in a longer planning horizon. To reduce the makespan or incorporate more 

retrieval tasks for this case, the warehouse may increase the crane speed and acceleration rather 

than add more shuttles. Another possibility of reducing the number of lanes served by a crane will 

have a similar effect to higher crane speed. A cost comparison can be made to facilitate the choice 

between adding more cranes and adjusting the crane speed.  

2.7 Conclusion and Future Research  

This study examines the task scheduling problem in a crane-based 3D AS/RS with shuttle-based 

DMMs. The system allows fewer shuttles than lanes to decrease the cost and improve the system 

flexibility. For this study, we considered only retrieval tasks executed in the SC mode. 

Reallocating shuttles and the coordination between different and independent movement elements 

(i.e., one crane and multiple shuttles) significantly increases modeling and computational efforts 

compared to other AS.RS (e.g., 2D AS/RS and 3D AS/RS with conveyor-based DMMs). An MIP 

model was proposed to minimize the makespan for the crane to finish a given set of retrieval 

tasks. The problem was proven to be NP-hard. Considering the features of the problem, FCFS, 

PPS-SL, and GA from the literature were adapted to address the computational burden. 

Moreover, LW was developed according to the optimality condition of the scheduling problem. 

Small cases were randomly generated to compare the performance of MIP and the four heuristics. 

The numerical results indicate that the time for Gurobi to solve the MIP increases exponentially 

in the number of lanes, tasks, and shuttles. PPS-SL, which is adapted from the best heuristic in 

literature for 3D system with conveyor-based DMMs (Yu and De Koster, 2012), might be the 

worst when the number of shuttles in the system is small.  GA is always better than the other 

algorithms and has a higher probability of reaching a quality solution for small case problems. 

However, when the problem size is large enough, like in the practical situation, LW becomes the 

best considering solution quality and solving time.  
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Through numerical experiments, we also obtained the following two insights. 1) When facing a 

higher level of responsiveness, a warehouse system should operate in a short planning horizon 

with small batch size and improve the system performance by adding more shuttles into the 

system. 2) When the priority is to reduce the makespan (i.e., improve efficiency), a warehouse 

system should operate in a longer planning horizon with large batch size and increase the crane 

speed.  

In our study, we considered only retrieval task scheduling with the SC mode. In some industries, 

storage tasks are also vital. Therefore, in future studies, we will also consider storage tasks and 

the scheduling problem in the DC mode. In addition, according to our numerical experiments, 

changing the shuttle speed will not affect system performance very much. However, we predict 

that the number of shuttles may also have a significant effect on system performance if shuttle 

speed is low. When there are many SKUs or energy is a big concern, a warehouse may have slow 

shuttles. The relationship between crane and shuttle speeds should be further studied to provide 

more insights for 3D AS/RS designs. Furthermore, how the physical design and rack dimensions 

affect system performance is also an interesting future research question. All of these future 

research directions will involve great computational challenges. Therefore, innovative heuristics 

or algorithms may be necessary to address the computational burden.  

Besides studying these problems independently, a study of how all design and operational factors 

work together to affect system performance would be interesting. Since even one specific 

optimization problem is computationally challenging, a study that considers all factors will be 

extremely complex. Therefore, based on various optimization models and algorithms that are 

developed for each decision problem, statistical analyses and sensitivity analyses could be 

adopted to numerically build functions representing the relationship between design factors and 

performance metrics (i.e., mechanisms by which different design parameters affect system 

performance under given environments). Those functions can be used by practitioners to quickly 

determine if a crane-based 3D AS/RS with shuttle-based DMMs is applicable and, if so, how to  
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CHAPTER THREE   

TRAVEL TIME MODELS FOR TIER-TO-TIER SBS/RS WITH 
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3.1  Abstract 

The performance of a tier-to-tier shuttle-based storage and retrieval system is affected by both 

storage policy and shuttle dispatching rule. This paper was the first to explore both random and 

class-based storage policies and three shuttle dispatching rules: 1) random, 2) distance-based, and 

3) demand-rate based. Modeling the system as a discrete-time Markov Chain, this study derived 

the shuttle distribution under each policy combination, and further developed the expected travel 

time models for both the single-command (SC) and dual-command (DC) operations. The models 

were validated by simulation. Numerical experiments showed significant impacts of the policy 

combination on the expected travel time. Class-based storage, if implementable, is always better 

than random storage no matter which dispatching rule is adopted. However, there are possibly 

other storage policies that could be better than both random and class-based storage. Under 

random storage and an SC cycle, the distance-based shuttle dispatching rule is always better than 

the random rule, and the benefit increases and then decreases in the number of shuttles. In a DC 

cycle, depending on equipment speeds, the distance-based shuttle dispatching rule can be worse 

than the random rule. When classed-based storage is adopted and the number of shuttles is small, 

the demand-rate-based rule is the best under an SC cycle, but might be worse than the other rules 

under a DC cycle. Its benefit becomes more obvious when the demand rates become more 

heterogeneous until some point but decreases as the system has more shuttles. The demand-rate-

based rule can be even dominated by the other shuttle dispatching rules when the demand rates 

are rather homogeneous.  

3.2  Introduction 

Traditional picker-to-part warehousing systems have been widely replaced by automated material 

handling systems, such as automated storage and retrieval system (AS/RS), to save labor and 

space (Azadeh et al., 2019a; Boysen et al., 2019; Liu et al., 2020; Roodbergen and Vis, 2009; 

Yang et al., 2015b). The main components of AS/RS are storage racks, aisles, storage/retrieval 

(S/R) machines, and input/output (I/O) stations. Racks are often metal structures with storage 

cells to accommodate stock-keeping units (SKUs). An S/R machine can travel along an aisle 

between two racks to pick up or drop off SKUs. An I/O station is where retrieved SKUs are 

dropped off and incoming SKUs are picked up by an S/R machine. In a traditional AS/RS, aisle-

captive cranes, functioning as S/R machines, travel along vertical and horizontal directions 
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simultaneously. However, the application of aisle-captive cranes requires a high investment and 

may reduce system flexibility (Azadeh et al., 2019a, 2019b; Ha and Chae, 2019; Lerher et al., 

2021; Tappia et al., 2017).  

Instead of cranes, a shuttle-based storage and retrieval system (SBS/RS) uses lifts and shuttles as 

S/R machines to improve flexibility and productivity. In an SBS/RS, illustrated by Figure 3-1, 

each aisle is equipped with a lift for vertical movements (Ekren, 2017, 2020; Küçükyaşar et al., 

2021). The rack system is divided into tiers, and aisle-captive shuttles (Lerher et al., 2021) are 

used to move SKUs on each tier. Except for the I/O stations on the ground level, an SBS/RS also 

consists of buffer positions and roller conveyors on each tier, which enable shuttles and lifts to 

work independently. For instance, when conducting a retrieval task, a shuttle picks up an SKU, 

moves it to the buffer position, and then is released for another task. A lift picks up the SKU from 

the buffer position and travels back to the ground level. Based on the type of shuttles, SBS/RS 

can be categorized into tier-to-tier SBS/RS and tier-captive SBS/RS. In a tier-to-tier SBS/RS, 

there are fewer shuttles than tiers so lifts move not only SKUs but also empty shuttles across tiers. 

In a tier-captive SBS/RS, shuttles are dedicated to tiers so that lifts only take care of SKUs. It is 

widely recognized that a tier-to-tier SBS/RS lowers hardware cost and provides a higher level of 

flexibility and reliability as system operations will not be halted because of shuttle failure or 

maintenance (Azadeh et al., 2019a).   

Estimating the expected travel/cycle time is a fundamental step for designing and operating a 

warehouse system as the expected travel time determines the responsiveness and system 

throughput capacity (Azadeh et al., 2019b; Roodbergen and Vis, 2009; Yang et al., 2017; 

Zaerpour et al., 2013, 2017; Zammori et al., 2021). The expected travel time denotes the average 

amount of time for a transaction to take. Usually, lifts and shuttles in an SBS/RS can operate in 

two modes: 1) a single-command (SC) Cycle: A lift/shuttle executes one retrieval or storage task 

in one operational cycle, and 2) a dual-command (DC) Cycle: A lift/shuttle executes one retrieval 

and one storage task in one operational cycle. Given the fact that retrieval tasks are sometimes 

more critical in operations, especially under the circumstance of online retailing, which requires 

high responsiveness (Boysen et al., 2019; Yu and De Koster, 2009b; Zou et al., 2016), and the 

retrieval and storage tasks can be performed in different time windows (Dong et al., 2021; Liu et 

al., 2020; Wang et al., 2015), this study first considers the expected travel time for retrieval tasks 

executed in SC operations. However, in many other industries, retrieval tasks and storage tasks  
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Figure 3-1. An Overview and Top View of SBS/RS 
  

a. Overview of SBS/RS (Marchet et al. 2012)  b. Top view of SBS/RS (Zou et al. 2016) 
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(e.g., re-storage) are equally important and are conducted simultaneously (Azadeh et al., 2019a; 

Eder, 2019; Ekren et al., 2018; Schenone et al., 2020). Therefore, this study then considers both 

retrieval and re-storage tasks in DC operations.  

The expected travel time is highly influenced by storage policies (Azadeh et al., 2019a, 2019b; 

Eder, 2020; Silva et al., 2020). There are two major policies assigning SKUs to storage cells in 

practice and literature, random storage policy and demand-rate-based storage policy. Under 

random storage, incoming SKUs are randomly assigned to storage cells. Assigning the SKUs 

with higher demand rates to storage cells closer to I/O stations may reduce the response time. 

However, it is unrealistic to assume the demand rate of every SKU in a system to be constant 

over time (Hausman et al., 1976), so this study considers class-based storage, under which all 

storage locations and SKUs are partitioned into multiple classes according to travel distances to 

I/O station and demand rates, respectively. The SKUs belonging to a higher demand rate class are 

then assigned to the storage locations closer to I/O points. SKUs in the same class are assigned 

randomly to storage cells within the corresponding class. Moreover, in a tier-to-tier SBS/RS, lifts 

move shuttles across tiers so the system needs to decide which shuttle should be dispatched when 

a retrieval task is located at a tier without a shuttle. This study considers three shuttle dispatching 

rules ⎯ random shuttle dispatching rule (ℛ1), distance-based shuttle dispatching rule (ℛ2), and 

demand-rate-based shuttle dispatching rule (ℛ3). The details of these three dispatching rules are 

listed in sections 3.4 and 3.5. Both storage policies and three shuttle dispatching rules have been 

technically realized by a major SBS/RS designer and manufacturer, our industrial partner. They 

were interested in which combination of storage policy and shuttle rule is the most efficient, 

which motivated this research.  

Even though tier-to-tier SBS/RS has been studied under both random and class-based storage 

policies in the literature, most existing studies assumed random shuttle dispatching. We expected 

that storage policies and shuttle dispatching rules would both affect the distribution of shuttles 

and therefore influence the expected travel time. The interactions between these two policies have 

never been studied for a tier-to-tier SBS/RS, and therefore, there is a lack of methodologies for 

calculating travel times of a tier-to-tier SBS/RS characterized under different storage policy, 

shuttle dispatching rules, and operational cycle (i.e., SC and DC). To bridge this research gap, 

this study developed the expected travel time models for a tier-to-tier SBS/RS implementing 

different combination of storage and shuttle dispatching policies in either an SC or DC cycle. 
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Three questions were answered by this study: 1) What the system performance is under different 

combinations of storage and shuttle dispatching policies; 2) What is the best storage and shuttle 

dispatching policy for different business needs characterized by demand pattern and operational 

cycles; 3) How the number of shuttles impacts the system performance.      

A tier-to-tier SBS/RS can be modeled as a continuous-time Markov Chain (CTMC). However, 

since we only focus on the shuttle distribution instead of transition time, this study only modeled 

the embedded discrete-time Markov Chain (DTMC) and derived steady-state probabilities for 

distribution of shuttles under different combinations of storage policies and shuttle dispatching 

rules. Expected travel time models were created and compared for selecting the best combination 

of storage policy and shuttle dispatching rule under different scenarios in both SC and DC 

operations. With the proposed expected travel time models, a warehouse designer or manager can 

easily compare the performance of different storage policies and shuttle dispatching rules and 

determine the appropriate number of shuttles and speed of equipment in their system.  

The remainder of this chapter is organized as follows. Section 3.3 reviews previous studies 

related to expected travel time estimation for various SBS/RS and discusses the differences of this 

study from them. Section 3.4 describes the tier-to-tier SBS/RS and presents travel time models for 

each combination of storage and shuttle dispatching policies in an SC cycle. Section 3.5 extends 

models for DC operations.  In Section 3.6, the proposed travel time models are validated through 

simulation and then used to compare different storage policies and shuttle dispatching rules with 

extensive numerical experiments. Finally, Section 3.7 concludes the study and discusses the 

future work.    

3.3  Literature Review 

An SBS/RS is considered a special edition of autonomous vehicle storage and retrieval system 

(AVS/RS) due to their similar physical configurations (Carlo and Vis, 2012; Ekren, 2017; Ha and 

Chae, 2019). Numerous studies considering the travel time measurement of both tier-captive and 

tier-to-tier AVS/RSs have been done through simulation (Ha and Chae, 2018; Marchet et al., 

2013) and analytical models (Azadeh et al., 2019b; Cai et al., 2014; D’Antonio and Chiabert, 

2019; Fukunari and Malmborg, 2008, 2009; Roy et al., 2017). Different system configurations 

and operational policies have been considered to provide design and management insights, such 

as the dimension of rack systems (Kuo et al., 2007; Marchet et al., 2013, 2015; Roy et al., 2012; 
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Tappia et al., 2017), type and number of S/R machines (Roy et al., 2017) and dwell point policies 

(Roy et al., 2015). However, these studies are different from our work because of the different 

operational mechanisms between AVS/RS and SBS/RS. 

As mentions in section 3.2, lifts and shuttles can work independently in an SBS/RS because of 

buffer stations and conveyors. However, most AVS/RS studies assume that shuttles and lifts work 

in a sequential processing policy, which means a shuttle will not request for a lift until the shuttle 

gets the ordered SKU, and the shuttle cannot be released until the SKU is picked up (Cai et al., 

2014; Kuo et al., 2007). Although Zou et al. (2016) considered the parallel processing policy 

allowing lifts and shuttles to work simultaneously, but they focused on a tier-captive system and 

only considered random storage. Moreover, in a tier-to-tier AVS/RS, empty shuttles are always 

pooled at the ground level, and when conducting a retrieval task, a shuttle has to ride on a lift to 

travel to the target tier and go back to ground level with the requested SKU. Therefore, shuttles 

are not moved from one tier to another in an AVS/RS. Roy et al. (2012) considered the rules for 

moving shuttles between aisles on the same tier. For a given task, they classified shuttles into 

different classes based on the dwell point of available shuttles. However, instead of showing how 

shuttles are distributed over tiers, they only calculated the number of shuttles in each class and 

did not consider the interaction between the lift and shuttles, which can affect the performance of 

a tier-to-tier SBS/RS.     

Compared with AVS/RS, SBS/RS received limited attention. Several studies have been done on 

different system configurations (Tappia et al., 2017; Wu et al., 2020; Xu et al., 2015) and the task 

sequencing problem (Carlo and Vis, 2012; Wang et al., 2015; Zhan et al., 2020) in tier-captive 

systems. The performance of a tier-captive SBS/RS with random storage policy was first 

measured by Lerher et al. (2015b) through simulation. They extended their study by developing 

expected travel time models for single-deep and double-deep tier-captive systems, respectively 

(Lerher et al., 2015a; Lerher, 2016). However, they modeled lifts and shuttles separately and 

ignored the possible waiting time for lifts to serve a requested SKU. Eder and Kartnig (2016) 

examined the throughput capacity of a tier-captive SBS/RS under random storage by simulation 

and provided insights on the ideal geometry of racks. Ekren et al. (2018) developed a tool to 

measure the expected travel time and energy consumption of a tier-captive SBS/RS with random 

storage. However, they followed the same method adopted by Lerher (2016) and therefore shared 

the same limitations.  Recently, Eder (2019) modeled a tier-captive system as an open queuing 
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network and captured the interaction between lifts and shuttles. He later extended the study to a 

multi-deep tier-captive SBS/RS (Eder, 2020). Ekren and Akpunar (2021) developed a tool based 

on an open queuing network to estimate different performance metrics (e.g., average transaction 

time, energy consumption) for a single-deep tier-captive SBS/RS with random storage. Lerher et 

al. (2021) analyzed the performance for an SBS/RS where a tier-captive vehicle/crane can take 

care of the tasks from multi-tiers. However, even though a vehicle can reach multi-tiers, it does 

not need to travel across tiers. Therefore, the studied system is a tier-captive SBS/RS and does not 

need to consider shuttle relocation. As abovementioned, most of the researches on tier-captive 

systems assume random storage, and the studies on the impacts of alternative storage policies on 

the tier-captive systems’ performance are limited. Ekren et al. (2015) considered the design of a 

tier-captive SBS/RS under class-based storage policy through simulation. Eder (2020) also 

estimated the performance of a tier-captive SBS/RS with class-based storage through an open 

queueing network. Kriehn et al. (2019) provided analytical model and algorithm for optimal tier-

captive SBS/RS rack design under class-based storage. However, all of these studies focused on 

tier-captive SBS/RS and therefore did not consider the reallocation of shuttles. 

Ha and Chae (2018) proposed strategies to avoid shuttle collision and policies to store incoming 

identical SKUs to reduce transaction time for a tier-to-tier SBS/RS. The efficiency of the 

proposed strategies was tested through simulation. However, they did not study the effects of 

storage policies and shuttle dispatching rules on system performance. They later developed a 

travel time model for a tier-to-tier SBS/RS with two lifts for each aisle, one for retrieval tasks and 

the other for storage tasks (Ha and Chae, 2019). By solving the travel time model sequentially 

regarding the number of shuttles, they determined the minimum number of shuttles in a given 

SBS/RS to meet a given throughput capacity requirement. However, they only considered random 

storage and random shuttle dispatching. Moreover, their travel time model was developed through 

the same method used by Lerher et al. (2015a) and therefore ignored the possible waiting time of 

a lift for an SKU. Our study will show that waiting time is an important component of travel time.  

Zhao et al. (2020) analyzed the expected travel time of a tier-to-tier SBS/RS with random storage. 

However, they only considered retrieval tasks and assumed that all spare shuttles are pooled at the 

ground level and therefore are no transferred across tiers. Küçükyaşar et al. (2021) compared the 

performance of tier-captive and tier-to-tier SBS/RS under random storage by simulation. 

However, they did not investigate the impact of the shuttle dispatching rules. Moreover, their 
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simulation model requires more running time than expected travel time models to compare 

multiple design choices and cannot facilitate efficient decision-making. Kriehn et al. (2018) 

investigated the impacts of class-based storage policy, tasks sequencing, and storage 

reorganization on the performance of a tier-to-tier SBS/RS but did not consider the impact of 

shuttle dispatching rules.  

In summary, even though there are some studies to evaluate the performance of tier-to-tier 

SBS/RS under different storage policies, none of the exiting studies have paid attention to shuttle 

dispatching rules. However, the storage policy and shuttle dispatching rule combination are 

important in travel time modeling to evaluate system performance. Therefore, this study 

developed the expected travel time models for a tier-to-tier SBS/RS considering different storage 

policies, shuttle dispatching rules, and operational modes (i.e., SC and DC cycles) to bridge the 

research gap and facilitate the design and operations of tier-to-tier SBS/RS under different 

application environments.  

3.4  Time Models Considering Retrieval Tasks and an SC cycle  

Given the fact that many industries (e.g., online sales) require high responsiveness on retrieval 

tasks and may conduct retrieval tasks and storage tasks in different time windows, this study first 

considers the expected SC travel time for finishing a retrieval task in a tier-to-tier SBS/RS that 

allows fewer shuttles than tiers and then extends the results to DC operations. With the common 

assumptions that each aisle in the system is equipped with a lift and shuttles are aisle-captive 

(Eder, 2019; Ekren and Akpunar, 2021; Küçükyaşar et al., 2021; Lerher et al., 2021; Wang et al., 

2015; Zhan et al., 2020; Zhao et al., 2019), we consider a one-aisle (two storage racks) tier-to-tier 

SBS/RS as an independent system. The assumption of aisle-captive shuttles is common because 

“specialized”/aisle-captive shuttles, which can only move along one direction, are usually used in 

practice. For traveling across aisles, “specialized” shuttles need to ride a transfer car or be 

replaced by “generic” shuttles, which can travel along different directions and are much more 

expensive than “specialized”/aisle-captive shuttles. Even when shuttles can travel across aisles, 

our developed expected travel time models will still be applicable if there is only one lift 

equipped for the rack system. When there are multiple lifts, the pairing between lifts and shuttles 

will significantly increase modeling difficulty.    
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In SC operations for retrieval tasks only, the lift has to handle SKU retrieval and possibly shuttle 

reallocation tasks. The lift or a shuttle remains at the position where it finishes its last job before 

performing a new task. Since only retrieval tasks are considered, the lift will remain at the ground 

level when there is no retrieval task; and each shuttle will stop at the buffer location at its tier 

when they are idle. Moreover, each tier can have at most one shuttle to avoid collision (Ha and 

Chae, 2019; Wu et al., 2020). The time for shuttles/lift to load/unload a task is ignored, which is 

also a common assumption in the literature (Dong et al., 2021; Fukunari and Malmborg, 2009; 

Kuo et al., 2007; Liu et al., 2020; Tappia et al., 2017). Similar to Eder (2020), we divide the rack 

into classes along vertical direction. To simplify the study, each tier is considered a class when 

the class-based storage policy is implemented. Therefore, all SKUs stored on one tier belong to 

one class and are randomly assigned to storage cells on the tier. Please note that the proposed 

models are also applicable to the situation in which the number of product classes are smaller 

than the number of tiers by giving multiple tiers the same demand rate. It is worth to note that 

many other studies considering class-based storage in SBS/RS, being consistent with studies of 

crane-based AS/RS, divide the rack into classes along horizontal direction (i.e., distance to the lift 

or buffer locations) to reduce the shuttles’ travel time or lift’s potential waiting time for SKU. 

However, the storage locations classification strategy proposed by this study (i.e., along vertical 

direction) aims to reduce the lift’s travel time (i.e., SKU’s potential waiting time for the lift). We 

assume the efficiency of each storage locations classification is affected by equipment’s speed 

profile, number of equipment, and demand pattern. A comprehensive study is worthwhile in the 

future to compare these two classification strategies under different situations.  

Consider a tier-to-tier SBS/RS with 𝑁 tiers. All tiers are ranked in the order of their distances to 

ground level, i.e. tier 1 is on the ground level and tier 𝑁 is at the top. 𝐶 is the number of columns 

in an aisle, which represents the number of storage cells on a tier. The storage capacity of the 

system is 𝑁 × 𝐶. There are 𝑀 shuttles, where 1 ≤ 𝑀 ≤ 𝑁. Let 𝑡𝑜𝑖 and 𝑡𝑖𝑗 denote the time for the 

lift traveling from the ground level to tier 𝑖 and time from tier 𝑖 to 𝑗, respectively. Since the SKUs 

on one tier are randomly stored, the expected travel time for a shuttle to finish a retrieval/storage 

task and the average demand rate of SKUs at tier/class 𝑖 are expressed by 𝑡𝑟 and 𝑑𝑖, respectively. 

Please note that 𝑡𝑟 follows the same distribution across tiers. Without loss of generality, the 

demand rate from each tier are normalized, i.e. ∑ 𝑑𝑖
𝑁
𝑖=1 = 1. Random storage means 𝑑1 = ⋯ =

𝑑𝑁 while class-based storage implies 𝑑1 ≥ ⋯ ≥ 𝑑𝑁.  
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Let 𝑥𝑖 be the probability for tier 𝑖 having a shuttle when a retrieval task arrives. Two scenarios 

must be considered for developing the SC travel time model. 

• If a task is for an SKU at tier 𝑖 and there is a shuttle at the tier, the lift will start to travel 

to the target tier, and the shuttle will simultaneously travel to pick up the requested SKU 

and transport it to the buffer location at the tier. If the SKU is already at the buffer 

location when the lift arrives (𝑡𝑜𝑖 > 𝑡
𝑟), the lift will pick up the SKU and travel back to 

the I/O station. Otherwise (i.e., 𝑡𝑜𝑖 < 𝑡
𝑟), the lift will have to wait until the shuttle moves 

the SKU to the buffer location. In this scenario, the expected travel time can be expressed 

as max(𝑡𝑜𝑖, 𝑡
𝑟) + 𝑡𝑜𝑖.  

• If a task is for an SKU at tier 𝑖 without a shuttle, the lift has to travel to another tier 𝑗 that 

has a shuttle, move the shuttle from tier 𝑗 to tier 𝑖, wait at tier 𝑖 until that shuttle hands 

over the SKU, and bring the required SKU to ground level. The travel time under this 

scenario is 𝑡𝑜𝑗 + 𝑡𝑖𝑗 + 𝑡
𝑟 + 𝑡𝑜𝑖. The shuttle dispatching rules decide which shuttle should 

be moved to tier 𝑖. 

For convenience, we define 𝑎𝑖 = max(𝑡𝑜𝑖 , 𝑡
𝑟) + 𝑡𝑜𝑖, 𝑏𝑖 = 𝑡𝑜𝑖 + 𝑡

𝑟 and 𝑐𝑖𝑗 = 𝑡𝑖𝑗 + 𝑡𝑜𝑗. Therefore, 

the expected SC travel time only considering retrieval tasks can be expressed as 

𝐸𝑆𝐶 =  ∑ 𝑑𝑖𝑥𝑖𝑎𝑖
𝑁
𝑖=1 + ∑ 𝑑𝑖(1 − 𝑥𝑖)[𝑏𝑖 + ∑ 𝑥𝑗|𝑖𝑝𝑖(𝑗)𝑐𝑖𝑗𝑗≠𝑖 ]𝑁

𝑖=1 , (3.1) 

where 𝑥𝑗|𝑖 and 𝑝𝑖(𝑗) denote the conditional probability of tier 𝑗 having a shuttle given that tier 𝑖 

does not have one and the probability that the shuttle at tier 𝑗, if there is one, is selected for tier 𝑖, 

respectively. The values of 𝑥𝑖, 𝑥𝑗|𝑖 and 𝑝𝑖(𝑗) are affected by both the shuttle dispatching rule and 

storage policy. Please note that, in practice, a requested SKU might be blocked by the previous 

tasks from the same tier if they have not been picked up by the lift and are waiting in the buffer 

area. In that case, a transaction might be delayed. However, similar to many other travel time 

assessment studies (Lerher, 2016; Yang et al., 2017; Zaerpour et al., 2013), such delay is 

considered small and not captured by the expected travel time model expressed by Equation (3.1). 

To obtain the shuttle distribution in the tier-to-tier SBS/RS under different shuttle dispatching 

rules and storage policies, we model the system as a DTMC by defining system states based on 

the location of shuttles when a task arrives. Please note that the system is a CTMC if we also 



  

49 

         

want to track transition time. However, since this study focuses on the distribution of shuttles, we 

only model the embedded DTMC. A system state 𝑠 is defined by the set of tiers with shuttles, 

where |𝑠| = 𝑀 and 𝑠 ⊆ {1,… ,𝑁}. For example, 𝑠 = {1,2,… ,𝑀} means a state that all shuttles are 

located on the first 𝑀 tiers when an order arrives. The state space is 𝑆 and |𝑆| = (
𝑁
𝑀
). Let 𝜋𝑠 be 

the steady-state probability of any state 𝑠 ∈ 𝑆, which can be obtained by solving equations (3.2) 

and (3.3),  

𝜋𝑃 = 𝜋, and (3.2) 

𝜋𝑒 = 1. (3.3) 

where 𝜋 = (𝜋𝑠|𝑠 ∈ 𝑆) is the stationary probability vector, 𝑒 is the unit vector, and 𝑃 is the 

transition matrix determined by shuttle dispatching rules and storage policies. The probability that 

tier 𝑖 has a shuttle can be represented as  

 𝑥𝑖 = ∑ 𝜋𝑠
𝑠∈𝑆|𝑖∈𝑠

, ∀ 𝑖 = 1,… ,𝑁. (3.4) 

3.4.1 Expected SC Travel Time Model under Random Shuttle Dispatching Rule  

Under the random shuttle dispatching rule (ℛ1), all shuttles have the same probability to be 

selected whenever a shuttle is required. For state 𝑠 and tier 𝑗 ∉ 𝑠, a state set 𝒮𝑠,𝑗 =

{∀𝑠′ ∈ 𝑆|𝑠 ∪ 𝑠′ = 𝑠 ∪ {𝑗}} is defined. In other words,  𝒮𝑠,𝑗 is the set of states in which all other 

shuttles are at the same tiers as 𝑠 except one shuttle is at tier 𝑗, which does not belong to 𝑠. Please 

note that |𝒮𝑠,𝑗| = 𝑀, which will be used in the proof to Theorem 3.1. We also define another state 

set 𝒮�̅� = {𝑠
′ ∈ 𝑆; |𝑠 ∩ 𝑠′| < 𝑀 − 1}, which includes all states in which two or more shuttles are at 

different tiers from state 𝑠. It is obvious that {𝑠}⋃�̅�𝑠⋃ 𝒮𝑠,𝑗𝑗∉𝑠 = 𝑆, ∀𝑠 ∈ 𝑆. Assuming the current 

state is 𝑠, we have the following one-step transition probabilities. 

1. The transition probability that the system will remain at state 𝑠 is 𝑃𝑠,𝑠 = ∑ 𝑑𝑖𝑖∈𝑠 , 

corresponding to the scenario in which the requested SKU is at a tier currently having a 

shuttle.  

2. When a new retrieval task is at a tier 𝑗 ∉ 𝑠 (i.e., there is no shuttle at tier 𝑗 right now), the 

tier receives a randomly selected shuttle. The system will switch into a state 𝑠′ ∈ 𝒮𝑠,𝑗 

with the transition probability of 𝑃𝑠,𝑠′ =
𝑑𝑗

𝑀
. 



  

50 

         

3. For any state 𝑠′ ∈ 𝒮�̅�,  we have 𝑃𝑠,𝑠′ = 0 because of |𝑠 ∩ 𝑠′| ≥ 2, implying that it is not 

possible to have two shuttle locations changed over one transition.  

Theorem 3.1. Under ℛ1with an SC cycle, 
𝜋𝑠

𝜋𝑠′
=

∏ 𝑑𝑖𝑖∈𝑠

∏ 𝑑𝑖𝑖∈𝑠′
  holds for any two states 𝑠, 𝑠′ ∈ 𝑆.  

Proof. As discussed above, for any 𝑠 ∈ 𝑆, we can write equation (3.2) into  

 
𝜋𝑠 = 𝜋𝑠∑𝑑𝑖

𝑖∈𝑠

+∑ ∑ 𝜋𝑠′

𝑠′∈𝒮𝑠,𝑗

1

𝑀
𝑑𝑖|𝑖∈𝑠−𝑠′∩𝑠

𝑗∉𝑠

 ∀ 𝑠 ∈ 𝑆. (3.5) 

Please note 𝑑𝑖|𝑖∈𝑠−𝑠′∩𝑠 is the probability that a new task requests an SKU at a tier that belongs to 

𝑠 but does not belong to 𝑠′. When it happens, if a shuttle at tier 𝑗 that does not belong to 𝑠 is 

selected to handle the task, with the probability of 
1

𝑀
, the system will transit from 𝑠′ to 𝑠.  Please 

note that states 𝑠 and 𝑠′ have only a tier different (i.e., |𝑠 − 𝑠′ ∩ 𝑠| = 1). Plugging 𝜋𝑠′ =

∏ 𝑑𝑖𝑖∈𝑠′

∏ 𝑑𝑖𝑖∈𝑠
𝜋𝑠 into equation (3.5), we have 

𝜋𝑠 = 𝜋𝑠∑𝑑𝑖
𝑖∈𝑠

+∑ ∑
∏ 𝑑𝑖𝑖∈𝑠′

∏ 𝑑𝑖𝑖∈𝑠
𝜋𝑠

𝑠′∈𝒮𝑠,𝑗

1

𝑀
𝑑𝑖|𝑖∈𝑠−𝑠′∩𝑠

𝑗∉𝑠

= 𝜋𝑠∑𝑑𝑖
𝑖∈𝑠

+
𝜋𝑠
𝑀
∑ ∑

(∏ 𝑑𝑖𝑖∈𝑠′ )(𝑑𝑖|𝑖∈𝑠−𝑠′∩𝑠)

∏ 𝑑𝑖𝑖∈𝑠
𝑠′∈𝒮𝑠,𝑗𝑗∉𝑠

= 𝜋𝑠∑𝑑𝑖
𝑖∈𝑠

+
𝜋𝑠
𝑀
∑ ∑

𝑑𝑗∏ 𝑑𝑖𝑖∈𝑠

∏ 𝑑𝑖𝑖∈𝑠
𝑠′∈𝒮𝑠,𝑗𝑗∉𝑠

= 𝜋𝑠∑𝑑𝑖
𝑖∈𝑠

+
𝜋𝑠
𝑀
∑ ∑ 𝑑𝑗

𝑠′∈𝒮𝑠,𝑗𝑗∉𝑠

= 𝜋𝑠∑𝑑𝑖
𝑖∈𝑠

+ 𝜋𝑠∑𝑑𝑗
𝑗∉𝑠

= 𝜋𝑠. 

Therefore, we prove that 𝜋𝑠′ =
∏ 𝑑𝑖𝑖∈𝑠′

∏ 𝑑𝑖𝑖∈𝑠
𝜋𝑠 satisfies equation (3.2) and Theorem 3.1.     ∎ 

By applying Theorem 3.1 to the normalization equation (3.3), we can obtain the values of 𝜋𝑠 and 

then the values of 𝑥𝑖. The expected SC travel time under the random shuttle dispatching rule 

(𝐸𝑆𝐶ℛ1) can be calculated by equation (3.6).  
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𝐸𝑆𝐶ℛ1 =∑(𝑑𝑖𝑥𝑖𝑎𝑖 + 𝑑𝑖(1 − 𝑥𝑖)(𝑏𝑖 +∑
𝑥𝑗|𝑖𝑐𝑖𝑗

𝑀

𝑁

𝑗=1

))

𝑁

𝑖=1

. (3.6) 

Here, the values of 𝑥𝑗|𝑖 can be obtained by solving a system with tiers 1,… , 𝑖 − 1, 𝑖 + 1,… ,𝑁 

from the original system and 𝑀 shuttles. The demand rate on each tier is the same as it is in the 

original system. Here, we know that 𝑝𝑖(𝑗) =
1

𝑀
 because each of the 𝑀 shuttles has the same 

probability of being selected for tier 𝑖 due to the random shuttle dispatching rule.  

3.4.2 Expected SC Travel Time Model under Distance-based Shuttle Dispatching Rule   

When the current state is 𝑠 and a new retrieval task requires an SKU at tier 𝑖 ∉ 𝑠, the distance-

based shuttle dispatching (ℛ2) rule will move the shuttle from tier 𝑗∗  to tier 𝑖 to perform this new 

task, where 

𝑗∗ = {

max
𝑗∈𝑠,𝑗<𝑖

𝑗 𝑠 ∩ {1,2,… , 𝑖 − 1} ≠ ∅

min
𝑗∈𝑠

𝑗 Otherwise.
 (3.7) 

In other words, the ℛ2 rule moves the closest shuttle from a tier lower than tier 𝑖, if there is any. 

Otherwise, the rule moves the closest shuttle from a higher tier. Please note that the lift always 

starts from the ground level in an SC cycle, so there is an incentive to move a shuttle from a 

lower tier rather than from a higher tier to reduce the travel distance of the lift moving a shuttle to 

tier i. This incentive motivates the ℛ2 rule. The transition probabilities 𝑃 from state 𝑠 through a 

new task at tier 𝑖 are as follows.  

1. 𝑃𝑠,𝑠 = ∑ 𝑑𝑖𝑖∈𝑠 , which is for the case that 𝑖 ∈ 𝑠. 

2. If 𝑖 ∉ 𝑠, 𝑃𝑠,𝑠′ = 𝑑𝑖, where  𝑠′ = 𝑠 {𝑗∗}⁄ ∪ {𝑖} and 𝑗∗ is defined in (3.7). 

3. For any other states 𝑠′, 𝑃𝑠,𝑠′ = 0.  

Theorem 3.2. Under ℛ2 with an SC cycle, the steady-state probability distribution and the 

probability for tier 𝑖 to have a shuttle are as follows. 

𝜋𝑠 = {

𝑑𝑖
∑ 𝑑𝑘
𝑁−𝑀+1
1

𝑠 = {𝑖, 𝑁 −𝑀 + 2,𝑁 −𝑀 + 3,… ,𝑁}, ∀𝑖 ∈ {1,2,… ,𝑁 −𝑀 + 1},

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (3.8) 

and 
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𝑥𝑖 = {

1 𝑖 ∈ { 𝑁 −𝑀 + 2,𝑁 −𝑀 + 3,… ,𝑁},

𝑑𝑖
∑ 𝑑𝑘
𝑁−𝑀+1
1

𝑖 ∈ { 1,2,… ,𝑁 −𝑀 + 1}.
 (3.9) 

Proof.  Define state sets 𝕊1 = {𝑠 = {𝑖, 𝑁 −𝑀 + 2,𝑁 −𝑀 + 3,… ,𝑁}, ∀𝑖 ∈ {1,2,… ,𝑁 −𝑀 + 1}} 

and 𝕊2 = 𝑆 𝕊1⁄ . In other words, for any state belonging to 𝕊1, all shuttles except one stay at top 

𝑀 − 1 tiers and the remaining one is at one of the 𝑁 −𝑀 + 1 tiers. It is obvious that there is no 

path from 𝕊1 to 𝕊2 but there is a path from any state 𝑠′ in 𝕊2 to a state 𝑠 in 𝕊1. Therefore,  𝜋𝑠 =

0, ∀𝑠 ∈ 𝕊2. All states in 𝕊1 communicate with each other and there are no cycles. The transition 

probability to a state 𝑠 = {𝑖, 𝑁 −𝑀 + 2,𝑁 −𝑀 + 3,… ,𝑁}, ∀𝑖 ∈ {1,2, … ,𝑁 −𝑀 + 1} in 𝕊1 from 

each of other states in 𝕊1 is 𝑑𝑖, which leads to (3.8) and then (3.9) for  𝑥𝑖 under ℛ2. ∎ 

Theorem 3.2 means that all shuttles except one stay at top tiers and one shuttle travels back and 

forth among all 𝑁 −𝑀 + 1 tiers from the bottom in the long-run. Therefore, 𝑝𝑖(𝑗) =

{
1 𝑗 < 𝑁 −𝑀 + 1, 𝑗 ≠ 𝑖
0 𝑗 ≥ 𝑁 −𝑀 + 1

 for 𝑖 ∈ {1,… ,𝑁 −𝑀 + 1). The expected SC travel time under ℛ2, 

𝐸𝑆𝐶ℛ2, is 

𝐸𝑆𝐶ℛ2 = ∑ 𝑑𝑖𝑎𝑖

𝑁

𝑖=𝑁−𝑀+2

+ ∑
𝑑𝑖
2𝑎𝑖 + 𝑏𝑖𝑑𝑖(𝐷 − 𝑑𝑖) + ∑ 𝑑𝑖𝑑𝑗𝑐𝑖𝑗𝑗=1,…,𝑁−𝑀+1;𝑗≠𝑖

𝐷

𝑁−𝑀+1

𝑖=1

, where 

(3.10) 

𝐷 = ∑ 𝑑𝑘

𝑁−𝑀+1

𝑘=1

. 
         

(3.11) 

Theorem 3.3. Under random storage and an SC cycle, 𝐸𝑆𝐶ℛ1 − 𝐸𝑆𝐶ℛ2 ≥ 0   and the difference 

is concave in terms of 𝑀.  

The proof to Theorem 3.3 is provided in Appendix F. For better understanding the expected SC 

travel time,  𝐸𝑆𝐶ℛ is partitioned into three time components: expected time for the lift to travel 

between tiers for retrieving an SKU (𝑇𝑆𝐶𝑟
ℛ), expected time for moving a shuttle (𝑇𝑆𝐶𝑚

ℛ), and 

expected time waiting for the shuttle to move the SKU (𝑇𝑆𝐶𝑤
ℛ), where ℛ ∈ {ℛ1, ℛ2, ℛ3} 

represents the shuttle dispatching rule. These three terms can be represented by equation (3.12-
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3.14), where 𝑥𝑖, 𝑥𝑗|𝑖  and 𝑝𝑖(𝑗) are related to ℛ. Here, 𝑇𝑆𝐶𝑟
ℛ is constant once the storage policy is 

fixed. Those components are used in Appendix F to prove Theorem 3.3 and in numerical result 

discussion.  

 𝑇𝑆𝐶𝑟
ℛ =∑2𝑑𝑖𝑡𝑜𝑖

𝑁

𝑖=1

, (3.12) 

 𝑇𝑆𝐶𝑚
ℛ =∑𝑑𝑖(1 − 𝑥𝑖) [∑𝑥𝑗|𝑖𝑝𝑖(𝑗)𝑐𝑖𝑗

𝑁

𝑗=1

− 𝑡𝑜𝑖]

𝑁

𝑖=1

, and (3.13) 

 𝑇𝑆𝐶𝑤
ℛ =∑𝑑𝑖𝑥𝑖[𝑡

𝑟 − 𝑡𝑜𝑖]
+

𝑁

𝑖=1

+ 𝑑𝑖(1 − 𝑥𝑖)𝑡
𝑟, (3.14) 

3.4.3 Expected SC Travel Time Model under Demand-rate-based Shuttle Dispatching Rule  

To reduce the frequency of shuttle movements, the demand-rate-based shuttle dispatching rule 

(ℛ3) selects the shuttle from the tier with the lowest demand rate whenever a shuttle is needed. 

Under ℛ3, we number tiers based on their demand rates rather than locations with a descending 

order. In other words, 𝑑[1] ≥ 𝑑[2], … , 𝑑[𝑁]. The transition probabilities 𝑃 from state 𝑠 to another 

state due to a new task at tier 𝑖 are as follows. Please note that the index system {[1], … , [𝑁]} is 

the same as {1, … ,𝑁} under class-based storage. Moreover, since 𝑑1 = 𝑑2 = ⋯ = 𝑑𝑁 under 

random storage, ℛ3 is the same as ℛ1 when SKUs are randomly accommodated. The state 

transition probabilities are listed as follows.  

1. 𝑃𝑠,𝑠 = ∑ 𝑑[𝑖][𝑖]∈𝑠 , which is for the case that [𝑖] ∈ 𝑠. 

2.  If [𝑖] ∉ 𝑠, 𝑃𝑠,𝑠′ = 𝑑[𝑖], where  𝑠′ = 𝑠 {argmin
[𝑗]∈𝑠

𝑑[𝑗]}⁄ ∪ {[𝑖]}. 

3. For any other states 𝑠′, 𝑃𝑠,𝑠′ = 0.  

Theorem 3.4. Under ℛ3 and an SC cycle, the steady-state probability distribution and the 

probability for tier 𝑖 to have a shuttle are as follows. 

𝜋𝑠 = {

𝑑[𝑖]

∑ 𝑑[𝑘]
𝑀−1
𝑘=1

𝑠 = {[1], [2], … , [𝑀 − 1], [𝑖]}, ∀[𝑖] ∈ {𝑀,𝑀 + 1,… ,𝑁},

0 Otherwise.

 (3.15) 

and 
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𝑥[𝑖] = {

1 [𝑖] ∈ { 1,2,… ,𝑀 − 1},

𝑑[𝑖]

∑ 𝑑[𝑘]
𝑁
[𝑘]=𝑀

[𝑖] ∈ { 𝑀,𝑀 + 1,… ,𝑁}.
 (3.16) 

The proof to Theorem 3.4 is very similar to the proof to Theorem 3.2. Under ℛ3, all shuttles, 

except one, stay at the tiers with the 𝑀 − 1 highest demand, and the other shuttle travels among 

other tiers. Therefore, 

𝑝[𝑖]([𝑗]) = {
1 [𝑗] ≥ 𝑀, [𝑗] ≠ [𝑖]

0 [𝑗] < 𝑀
  for [𝑖] ≥ 𝑀 under ℛ3.   

Under class-based storage, 𝑀− 1 shuttles stay at the bottom tiers because they have the highest 

demand rates, and the other shuttle travels among tiers 𝑀 to 𝑁. The expected travel time under 

the demand-based shuttle dispatching rule, 𝐸𝑆𝐶ℛ3, is 

𝐸𝑆𝐶ℛ3

= ∑ 𝑑[𝑖]𝑎[𝑖]

𝑀−1

[𝑖]=1

+ ∑
𝑑[𝑖]
2 𝑎[𝑖] + 𝑑[𝑖](∑ 𝑑[𝑘]

𝑁
𝑘=𝑀 − 𝑑[𝑖])𝑏[𝑖] + ∑ 𝑑[𝑖]𝑑[𝑗]𝑐[𝑖][𝑗][𝑗]=𝑀,…,𝑁;[𝑗]≠𝑖

∑ 𝑑[𝑘]
𝑁
[𝑘]=𝑀

𝑁

[𝑖]=𝑀

. 

(3.17) 

3.5 Travel Time Models Considering Both Retrieval Tasks and 

Storage Tasks in DC Cycles 

In section 3.4, the SC travel time models under different combinations of storage policies and 

shuttle dispatching rules are developed. Storage tasks could also be important and are conducted 

simultaneously with retrievals in many industries. This section will develop the DC travel time 

models that consider both retrieval and storage tasks. More specifically, we will consider the 

retrieval tasks and the re-storage of the retrieved SKUs. At each DC cycle, the lift first stores the 

SKU retrieved during the last retrieval operation to its storage location and then executes a 

retrieval task if there is one. Without loss of generality, we assume that the number of retrieval 

tasks equals the number of the re-storage tasks. In addition, the re-storage tier always has a 

shuttle.  

The assumptions, notations, and methods adopted in section 3.4 are also applied for developing 

the DC travel time models. Let 𝑥𝑗|𝑖
′  be the probability for tier 𝑗 having a shuttle at the beginning 
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of each DC cycle given the re-storage location is tier 𝑖 (i.e., there is a shuttle at tier 𝑖). Two 

scenarios must be considered for developing the DC travel time models. 

• If the re-storage location is tier 𝑖 and the retrieval task is from tier 𝑗 with a shuttle, the lift 

will start to travel to tier 𝑖 from the I/O station to drop the SKU that needs to be stored 

and then travel to tier 𝑗. The shuttle on tier 𝑗 will simultaneously travel to pick up the 

requested SKU and transport it to the buffer location at the tier. If the SKU is already at 

the buffer location when the lift arrives (𝑡𝑜𝑖 + 𝑡𝑖𝑗 > 𝑡
𝑟), the lift will pick up the SKU and 

travel back to the I/O station. Otherwise (i.e., 𝑡𝑜𝑖 + 𝑡𝑖𝑗 < 𝑡
𝑟), the lift will have to wait 

until the shuttle moves the SKU to the buffer location. In this scenario, the expected DC 

travel time can be expressed as max(𝑡𝑜𝑖 + 𝑡𝑖𝑗, 𝑡
𝑟) + 𝑡𝑜𝑗. Please note that when 𝑖 = 𝑗 (i.e., 

re-storage and retrieval are from the same tier), the shuttle will conduct the retrieval task 

while the lift is traveling from the I/O station to that tier. After the retrieved SKU is 

picked up by the lift, the shuttle can execute the re-storage tasks. In that case, the 

expected DC travel time can be expressed as max(𝑡𝑜𝑖, 𝑡
𝑟) + 𝑡𝑜𝑖. 

• If the retrieval task is for an SKU at tier j without a shuttle, the lift, after dropping the re-

stored SKU at tier 𝑖, has to travel to another tier 𝑘 that has a shuttle, move the shuttle 

from tier 𝑘 to tier 𝑗, wait at tier 𝑗 until when that shuttle hands over the SKU, and bring 

the required SKU to the ground level. If 𝑘 = 𝑖, then the DC travel time is 𝑡𝑜𝑖 + 𝑡
𝑟 + 𝑡𝑖𝑗 +

𝑡𝑟 + 𝑡𝑜𝑗, since the shuttle on tier 𝑖 has to conduct the re-storage task before being 

relocated. Otherwise (i.e., 𝑘 ≠ 𝑖), the DC travel time is 𝑡𝑜𝑖 + 𝑡𝑖𝑘 + 𝑡𝑘𝑗 + 𝑡
𝑟 + 𝑡𝑜𝑗 . The 

shuttle dispatching rules decide which shuttle should be moved to tier 𝑗. 

For convenience, we define 𝑎𝑖𝑗
′ = max(𝑡𝑜𝑖 + 𝑡𝑖𝑗 , 𝑡

𝑟) + 𝑡𝑜𝑗 and 

 𝑒𝑖𝑘𝑗 = {

𝑡𝑜𝑖 + 𝑡
𝑟 + 𝑡𝑖𝑗 + 𝑡

𝑟 + 𝑡𝑜𝑗 𝑖𝑓 𝑘 = 𝑖

𝑡𝑜𝑖 + 𝑡𝑖𝑘 + 𝑡𝑘𝑗 + 𝑡
𝑟 + 𝑡𝑜𝑗 Otherwise.

 The expected DC travel time is 

𝐸𝐷𝐶 =∑∑𝑑𝑖𝑑𝑗

𝑁

𝑗=1

𝑥𝑗|𝑖
′ 𝑎𝑖𝑗

′

𝑁

𝑖=1

+∑∑𝑑𝑖𝑑𝑗

𝑁

𝑗=1

(1 − 𝑥𝑗|𝑖
′ )∑ 𝑥𝑘|(𝑖,𝑗)𝑝(𝑖,𝑗)(𝑘)𝑒𝑖𝑘𝑗

𝑁

𝑘=1

,

𝑁

𝑖=1

 (3.18) 
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where 𝑥𝑘|(𝑖,𝑗) and 𝑝(𝑖,𝑗)(𝑘) denote the conditional probability of tier 𝑘 having a shuttle given that 

tier 𝑖 has one and tier 𝑗 does not have one, and the probability that the shuttle at tier 𝑘, if there is 

one, is selected for tier 𝑗, respectively. The values of 𝑥𝑗|𝑖
′ , 𝑥𝑘|(𝑖,𝑗) and 𝑝(𝑖,𝑗)(𝑘) are affected by 

both the shuttle dispatching rule and storage policy.  

3.5.1 Expected DC Travel Time Model under Random Shuttle Dispatching Rule  

The random shuttle dispatching rule (ℛ1) for a DC cycle remains the same as that under an SC 

cycle. All shuttles, including the shuttle at the tier for the re-storage task, have the same 

probability to be selected whenever a shuttle is requested. Therefore, under a DC cycle, Theorem 

3.1 still holds when ℛ1 is implemented. The expected DC travel time model under ℛ1, 𝐸𝐷𝐶ℛ1 , 

can be expressed as  

𝐸𝐷𝐶ℛ1 =∑∑𝑑𝑖𝑑𝑗

𝑁

𝑗=1

𝑥𝑗|𝑖
′ 𝑎𝑖𝑗

′

𝑁

𝑖=1

+∑∑𝑑𝑖𝑑𝑗

𝑁

𝑗=1

(1 − 𝑥𝑗|𝑖
′ )∑

𝑥𝑘|(𝑖,𝑗)𝑒𝑖𝑘𝑗

𝑀

𝑁

𝑘=1

𝑁

𝑖=1

. (3.19) 

Here, 𝑥𝑗|𝑖
′ = 1 when 𝑖 = 𝑗, and when 𝑖 ≠ 𝑗, 𝑥𝑗|𝑖

′  can be obtained by solving a system with tiers 

1,… , 𝑖 − 1, 𝑖 + 1,… ,𝑁 from the original system and 𝑀− 1 shuttles. Solving a system with tiers 

1,… , 𝑖 − 1, 𝑖 + 1, , … , 𝑗 − 1, 𝑗 + 1,… ,𝑁 from the original system and 𝑀 − 1 shuttles can give the 

values of 𝑥𝑘|(𝑖,𝑗) when 𝑘 ∉ {𝑖, 𝑗}, and 𝑥𝑖|(𝑖,𝑗) = 1 and  𝑥𝑗|(𝑖,𝑗) = 0. Here, we know that 𝑝(𝑖,𝑗)(𝑘) =

1

𝑀
. because each of the 𝑀 shuttles has the same probability of being selected for tier 𝑗 due to the 

random shuttle dispatching rule.  

3.5.2 Expected DC Travel Time Model under Distance-based Shuttle Dispatching Rule   

For the tier-to-tier SBS/RS under DC operations, when the re-storage task is from tier 𝑖, the 

retrieval task is from tier 𝑗 without a shuttle, and 𝑖 ≠ 𝑗, the distance-based shuttle dispatching 

(ℛ2) rule, instead of selecting the shuttle closest to tier 𝑗, will always move the shuttle from tier 

𝑖  to tier 𝑗 to minimize the lift’s travel distance for shuttle reallocation.  

Recall the state 𝑠, and state set 𝒮𝑠,𝑗 and  𝒮�̅� defined in subsection 3.4.1, we have the following 

one-step transition probabilities by assuming the current state is 𝑠. The transition probability that 

the system will remain at state 𝑠 is 𝑃𝑠,𝑠 = ∑ 𝑑𝑖𝑖∈𝑠 , corresponding to the scenario that the retrieval 

task is at a tier currently having a shuttle.  
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1. When a new retrieval task is at a tier 𝑗 ∉ 𝑠 (i.e., there is no shuttle at tier 𝑗 right now), the 

tier receives the shuttle from tier 𝑖 ∈ 𝑠, where the re-storage task is located. The system 

will switch into a state 𝑠′ ∈ 𝒮𝑠,𝑗 with the transition probability of 𝑃𝑠,𝑠′ =
𝑑𝑖𝑑𝑗

∑ 𝑑𝑖𝑖∈𝑠
, where 

𝑖 = 𝑠 ∪ 𝑠′ − 𝑠 ∪ {𝑗}, and 
𝑑𝑖

∑ 𝑑𝑖𝑖∈𝑠
 is the conditional probability that the re-storage task is at 

tier 𝑖 ∈ 𝑠 given the fact that shuttles are located on tiers in 𝑠 at the beginning of this 

cycle.  

2. For any state 𝑠′ ∈ 𝒮�̅�,  we have 𝑃𝑠,𝑠′ = 0 because |𝑠 ∩ 𝑠′| ≥ 2, implying that it is not 

possible to have two shuttle locations changed over one transition.  

 The transition probabilities 𝑃 from state 𝑠 through a new retrieval task at tier 𝑗 are as follows.  

1. 𝑃𝑠,𝑠 = ∑ 𝑑𝑗𝑗∈𝑠 , which is for the case that 𝑗 ∈ 𝑠. 

2. If 𝑗 ∉ 𝑠, 𝑃𝑠,𝑠′ =
𝑑𝑖𝑑𝑗

∑ 𝑑𝑖𝑖∈𝑠
, where  𝑠′ = 𝑠 {𝑖}⁄ ∪ {𝑗}. 

3. For any other states 𝑠′, 𝑃𝑠,𝑠′ = 0.  

Theorem 3.5. Under 𝑅2 and a DC cycle, for any two states 𝑠, 𝑠′ ∈ 𝑆, 
𝜋𝑠

𝜋𝑠′
=

∑ 𝑑𝑖𝑖∈𝑠

∑ 𝑑𝑖𝑖∈𝑠′
  holds.  

Proof. As discussed above, for any 𝑠 ∈ 𝑆, we can write equation (3.2) into  

 𝜋𝑠 = 𝜋𝑠∑𝑑𝑖
𝑖∈𝑠

+∑ ∑ 𝜋𝑠′

𝑠′∈𝒮𝑠,𝑗

𝑑𝑖𝑗|𝑖∈𝑠−𝑠′∩𝑠,𝑗∈𝑠′−𝑠′∩𝑠
𝑗∉𝑠

 ∀ 𝑠 ∈ 𝑆. (3.20) 

Please note that 𝑑𝑖𝑗|𝑖∈𝑠−𝑠′∩𝑠,𝑗∈𝑠′−𝑠′∩𝑠 is the joint probability that a new retrieval task requests an 

SKU at tier 𝑖 that belongs to 𝑠 but does not belong to 𝑠′ and the re-storage location is at tier 𝑗 that 

belongs to 𝑠′ but does not belong to 𝑠. Please also note that 𝑑𝑖𝑗|𝑖∈𝑠−𝑠′∩𝑠,𝑗∈𝑠′−𝑠′∩𝑠 =
𝑑𝑗𝑑𝑖|𝑖∈𝑠−𝑠′∩𝑠

∑ 𝑑𝑖𝑖∈𝑠′
, 

where 𝑑𝑖|𝑖∈𝑠−𝑠′∩𝑠, as defined in subsection 3.4.1, is the probability that a new task requests an 

SKU at a tier that belongs to 𝑠 but does not belong to 𝑠′. When it happens, with the probability of 

1, the system will transit from 𝑠′ to 𝑠, where 𝑠 = 𝑠′ {𝑗}⁄ ∪ {𝑖}.  Plugging 𝜋𝑠′ =
∑ 𝑑𝑖𝑖∈𝑠′

∑ 𝑑𝑖𝑖∈𝑠
𝜋𝑠 into 

equation (3.5), we have 



  

58 

         

𝜋𝑠 = 𝜋𝑠∑𝑑𝑖
𝑖∈𝑠

+∑ ∑
∑ 𝑑𝑖𝑖∈𝑠′

∑ 𝑑𝑖𝑖∈𝑠
𝜋𝑠

𝑠′∈𝒮𝑠,𝑗

𝑑𝑖𝑗|𝑖∈𝑠−𝑠′∩𝑠,𝑗∈𝑠′−𝑠′∩𝑠
𝑗∉𝑠

= 𝜋𝑠∑𝑑𝑖
𝑖∈𝑠

+ 𝜋𝑠∑ ∑
∑ 𝑑𝑖𝑖∈𝑠′

∑ 𝑑𝑖𝑖∈𝑠
𝑠′∈𝒮𝑠,𝑗

𝑑𝑗𝑑𝑖|𝑖∈𝑠−𝑠′∩𝑠
∑ 𝑑𝑖𝑖∈𝑠′

𝑗∉𝑠

= 𝜋𝑠∑𝑑𝑖
𝑖∈𝑠

+ 𝜋𝑠∑ ∑
𝑑𝑗𝑑𝑖|𝑖∈𝑠−𝑠′∩𝑠
∑ 𝑑𝑖𝑖∈𝑠

𝑠′∈𝒮𝑠,𝑗𝑗∉𝑠

= 𝜋𝑠∑𝑑𝑖
𝑖∈𝑠

+ 𝜋𝑠∑𝑑𝑗
𝑗∉𝑠

= 𝜋𝑠. 

Therefore, we prove that 𝜋𝑠′ =
∑ 𝑑𝑖𝑖∈𝑠′

∑ 𝑑𝑖𝑖∈𝑠
𝜋𝑠 satisfies equation (3.2) and Theorem 3.5.     ∎ 

By applying Theorem 3.5 to the normalization equation (3.3), we can obtain the values of 𝜋𝑠 and 

then the values of 𝑥𝑖 and 𝑥𝑗|𝑖
′ . The expected travel time under the distance-based shuttle 

dispatching rule (𝐸𝐷𝐶ℛ2) in a DC cycle can be calculated by equation (3.21).  

𝐸𝐷𝐶ℛ2 =∑∑𝑑𝑖𝑑𝑗

𝑁

𝑗=1

𝑥𝑗|𝑖
′ 𝑎𝑖𝑗

′

𝑁

𝑖=1

+∑∑𝑑𝑖𝑑𝑗

𝑁

𝑗=1

(1 − 𝑥𝑗|𝑖
′ )𝑒𝑖𝑖𝑗

𝑁

𝑖=1

.  (3.21) 

It is worth to note that Theorem 3.3 indicates that ℛ2 is always better than ℛ1 under SC operations 

and random storage. However, it is not true for DC operations. When random storage is adopted 

(i.e., 𝑑1 = 𝑑2 = ⋯ = 𝑑𝑁),  

𝐸𝐷𝐶ℛ2 − 𝐸𝐷𝐶ℛ1

=
(𝑁 −𝑀)

𝑁2(𝑁 − 1)
∑∑𝑒𝑖𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

−
(𝑁 −𝑀)

𝑁2(𝑁 − 1)𝑀
∑∑(∑

𝑀− 1

𝑁 − 2
𝑒𝑖𝑘𝑗

𝑁

𝑘=1
𝑘≠𝑖
𝑘≠𝑗

𝑁

𝑗=1

𝑁

𝑖=1

+ 𝑒𝑖𝑖𝑗).   

Because 𝑒𝑖𝑘𝑗 = {

𝑡𝑜𝑖 + 𝑡
𝑟 + 𝑡𝑖𝑗 + 𝑡

𝑟 + 𝑡𝑜𝑗 𝑖𝑓 𝑘 = 𝑖

𝑡𝑜𝑖 + 𝑡𝑖𝑘 + 𝑡𝑘𝑗 + 𝑡
𝑟 + 𝑡𝑜𝑗 Otherwise,
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𝐸𝐷𝐶ℛ2 − 𝐸𝐷𝐶ℛ1

=
(𝑁 −𝑀)

𝑁2(𝑁 − 1)
∑∑(𝑡𝑖𝑗 + 𝑡

𝑟)

𝑁

𝑗=1

𝑁

𝑖=1

−
(𝑁 −𝑀)

𝑁2(𝑁 − 1)𝑀
∑∑(∑

𝑀− 1

𝑁 − 2
(𝑡𝑖𝑘 + 𝑡𝑗𝑘)

𝑁

𝑘=1
𝑘≠𝑖
𝑘≠𝑗

+ 𝑡𝑖𝑗 + 𝑡
𝑟

𝑁

𝑗=1

𝑁

𝑖=1

). 

Therefore, 𝐸𝐷𝐶ℛ2 − 𝐸𝐷𝐶ℛ1 is essentially affected by equipment speeds. When shuttles are fast 

enough, or the lift is very slow, 𝐸𝐷𝐶ℛ2 − 𝐸𝐷𝐶ℛ1 < 0; otherwise, 𝐸𝐷𝐶ℛ2 − 𝐸𝐷𝐶ℛ1 > 0. 

3.5.3 Expected DC Travel Time Model under Demand-rate-based Shuttle Dispatching Rule 

The demand-rate-based shuttle dispatching rule (ℛ3) for DC operations also remains the same as 

it is under SC operations. ℛ3 always selects the shuttle from the tier with the lowest demand rate 

whenever a shuttle is needed. Therefore, when ℛ3 is implemented, Theorem 3.4 still holds under 

DC operations. The expected DC travel time model under ℛ3, 𝐸𝐷𝐶ℛ3 , can be expressed as  

𝐸𝐷𝐶ℛ3 =∑ (∑ 𝑑[𝑖]𝑑[𝑗]𝑎[𝑖][𝑗]
′

𝑀−1

[𝑖]=1

𝑁

[𝑗]=1
+ ∑

𝑑[𝑖]𝑑[𝑗]𝑎[𝑖][𝑗]
′ 𝑑[𝑖]

∑ 𝑑[𝑘]
𝑁
[𝑘]=𝑀

)

𝑁

[𝑖]=M

+∑ ∑ 𝑑[𝑖]𝑑[𝑗] (1

𝑁

[𝑖]=M

𝑀−1

[𝑗]=1

−
𝑑[𝑖]

∑ 𝑑[𝑘]
𝑁
[𝑘]=𝑀

) ∑
𝑑[𝑘]

∑ 𝑑[𝑘]
𝑁
[𝑘]=𝑀 − 𝑑[𝑖]

𝑁

[𝑘]=M
[𝑘]≠[𝑖]

𝑒[𝑗][𝑘][𝑖]

+∑ ∑ 𝑑[𝑖]𝑑[𝑗] (1 −
𝑑[𝑖]

∑ 𝑑[𝑘]
𝑁
[𝑘]=𝑀

) 𝑒[𝑗][𝑗][𝑖]

𝑁

[𝑖]=M

𝑁

[𝑗]=𝑀
. 

(3.22) 

3.6 Numerical Results and Discussion 

The parameters of the tier-to-tier SBS/RS in numerical experiments were from Ha & Chae 

(2019). As discussed before, we only need to consider a one-aisle system with two racks. The 

system has 𝑁 = 12 tiers and 15 columns on each rack, which can hold 360 SKUs. The height and 
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width (along the aisle) of one storage cell are 0.5 𝑚 and 0.6 𝑚, respectively. The length of one 

storage cell is not important since it does not affect the equipment’s travel times. The maximum 

velocity of shuttles is 𝑉𝑠 = 1.5 𝑚/𝑠, and their acceleration/deceleration is 𝑎𝑠 = 1.5 𝑚/𝑠
2. The 

maximum velocity of the lift is 𝑣𝑙 = 1.5 𝑚/𝑠, and its acceleration/deceleration is 𝑎𝑙 =  1.5 𝑚/𝑠
2. 

For class-based storage, we used the method proposed by Hausman et al. (1976) to calculate the 

average demand rate for SKUs on each tier. They modeled the well-known ‘ABC’ phenomenon 

for inventory as 

 𝐺(𝑙) = 𝑙𝑢, 0 < 𝑙 ≤ 1 (3.23) 

where 0 < 𝑢 ≤ 1. Formulation (3.23) represents the ranked cumulative (𝑙𝑢 × 100)% demand 

versus (𝑙 × 100)% of stored SKUs. The value of 𝑢 determines the distribution of demand. A 

greater 𝑢 means more homogenous demand rates across SKUs. For a given 𝑢, 𝑑𝑖 is obtained 

through equations (3.24) and (3.25) (Hausman et al. 1976). 

 
𝑑𝑖 = 𝐺 (

𝑖

𝑁
) − 𝐺 (

𝑖 − 1

𝑁
) 𝑖 = 1,… ,𝑁 (3.24) 

 𝐺(0) = 0  (3.25) 

We consider nine demand distribution scenarios, which is featured by  𝐺(0.1) ∈

{0.1, 0.2, 0.3, … , 0.9}, for numerical experiments. Here, 𝐺(0.1) means the percentage of demand 

of the top 10% SKUs, which is at least 10%. For example, 𝑢 = 0.69897 for the scenario of 

𝐺(0.1) = 0.2 can be obtained by solving equation (3.23) of  (0.1)𝑢 = 0.2 and means that the top 

10% SKUs have 20% of the total demand. 𝐺(0.1) = 0.1 (i.e., 𝑢 = 1) implies that all SKUs have 

the same demand rates and class-based storage is the same as random storage. Since the ℛ3 

shuttle dispatching rule is not designed for random storage, we only apply ℛ1 and ℛ2 for random 

storage. 

3.6.1 Travel Time Models Validation through Simulation 

For each of the nine demand distribution scenarios, we randomly created 10 task sequences, 

where the number of retrieval tasks is uniformly distributed between 20 and 360. For numerical 

experiments of DC operations, the re-storage tasks in the 𝑚𝑡ℎ cycle corresponds to the retrieval 

task in the (𝑚 − 1)𝑡ℎ cycle. We perturbed the number of shuttles in the system with 𝑀 =

1, 2,… , 12. We define |Δ| as the average absolute difference between simulation results and 

travel times calculated by developed models over 10 random task sequences under a given 
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storage policy, shuttle dispatching rule, demand distribution, number of shuttles, and operational 

mode (i.e., SC or DC). Furthermore, 𝜎 represents the standard deviation of the differences across 

the 10 instances. Table 3-1 lists both |Δ| and 𝜎 (in seconds) for the demand distribution scenario 

of 𝐺(0.1) = 0.5 under SC operations, and shows all |Δ| are much smaller than 𝜎. Actually, 

simulations for all scenarios under both SC and DC cycle yielded  |Δ| ≪ 𝜎, validating the 

accuracy of the developed travel time models.  

3.6.2 Shuttle Dispatching Rule Comparison 

3.6.2.1 Shuttle Dispatching Rule Comparison under SC Operations  

Numerical experiments were first conducted to compare the two storage policies and three shuttle 

dispatching rules by only considering retrieval tasks under SC operations. Figure 3-2 shows the 

expected SC travel time of the proposed shuttle dispatching rules under different demand 

distributions and the number of shuttles, 𝑀. The best dispatching rule under each scenario is 

selected, and the advantage against the second-best dispatching rule is calculated through 

𝐸𝑆𝐶𝐵−𝐸𝑆𝐶𝑆𝐵

𝐸𝑆𝐶𝑆𝐵
× 100% and listed in each cell, where 𝐸𝑆𝐶𝐵 and 𝐸𝑆𝐶𝑆𝐵 denote the expected SC 

travel time under the best shuttle dispatching rule and the second-best one, respectively. Here, 

green means that ℛ2 is the best while red means that ℛ3 is the best.  

The whole Figure 3-2 shows the following observations when class-based storage is used and 

only retrieval tasks are considered in SC operations.  

• The random shuttle dispatching rule ℛ1 is dominated. The best dispatching rule is either 

ℛ2 or ℛ3, depending on the demand distribution and the number of shuttles 𝑀. The 

difference of travel times between the best and second-best dispatching rules could be as 

high as 10.8%, which justifies the need of this study on shuttle dispatching rules.  

• When the demand rate is rather homogenous (e.g., 𝐺(0.1) = 0.1), the distance-based 

shuttle dispatching rule ℛ2 is in general better than the demand-rate-based shuttle 

dispatching rule ℛ3.  

• When the demand rate is a little more heterogeneous (e.g., 𝐺(0.1) = 0.2 or 0.3 ), ℛ3 is 

the best when the number of shuttles is low, while more shuttles make ℛ2 more 

competitive.  

• When the demand rate is even more heterogeneous (e.g., 𝐺(0.1) ≥ 0.4),  ℛ3 is dominant, 

but the advantage of ℛ3 over the second-best rule increases and then decreases in the 
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Table 3-1. Comparison between Simulation and Expected SC Travel Time Models with 

𝐺(0.1) = 0.5  

 

 

Figure 3-2. Best Dispatching Rules under Various 𝐺(0.1) and 𝑀 Values under Class-

based Storage and SC Operations 

  

 𝑀 1 2 3 4 5 6 7 8 9 10 11 12 

ℛ1 
|Δ|  0.00 0.11 0.18 0.01 0.17 0.02 0.02 0.11 0.02 0.07 0.02 0.09 

𝜎 0.77 0.33 0.50 0.51 0.59 0.35 0.48 0.95 0.41 0.31 0.47 0.24 

ℛ2 
|Δ|  0.00 0.01 0.02 0.12 0.04 0.03 0.08 0.03 0.03 0.00 0.02 0.09 

𝜎 0.77 0.34 0.47 0.63 0.39 0.30 0.29 0.55 0.24 0.22 0.46 0.24 

ℛ3 
|Δ|  0.00 0.09 0.16 0.05 0.08 0.01 0.00 0.22 0.02 0.06 0.06 0.09 

𝜎 0.77 0.38 0.53 0.58 0.52 0.39 0.35 0.97 0.35 0.27 0.53 0.24 

ℛ3 ℛ2 

𝐺
(0
.1
) 

Number of Shuttles (𝑀) 
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number of shuttles. When the demand rate is highly heterogeneous (e.g., 𝐺(0.1) = 0.9), 

the advantage of  ℛ3 becomes smaller because shuttles are not moved often, especially 

when there are many shuttles.  

• The green 𝐺(0.1) = 0.1 row validates Theorem 3.3 that 𝐸𝐶ℛ1 − 𝐸𝐶ℛ2 ≥ 0  under 

random storage and shows the difference is concave in terms of 𝑀. 

The observations from Figure 3-2 are consistent with those from Figure 3-3, which compares ℛ2 

and ℛ3 when 𝐺(0.1) = 0.2 or 𝐺(0.1) = 0.4. Since 𝑇𝑆𝐶𝑟
ℛ defined by (3.12) is constant once 

storage policy and demand pattern are given, only 𝐸𝑆𝐶ℛ2 − 𝐸𝑆𝐶ℛ3, 𝑇𝑆𝐶𝑚
ℛ2 − 𝑇𝑆𝐶𝑚

ℛ3 and 

𝑇𝑆𝐶𝑤
ℛ2 − 𝑇𝑆𝐶𝑤

ℛ3 are plotted in Figure 3-3. As discussed in subsection 3.4.2, a tier-to-tier SBS/RS 

under  ℛ2 can be separated into two subsystems: (1) a tier-captive SBS/RS formed by the top 

𝑀 − 1 tiers with 𝑀− 1 shuttles, and (2) a tier-to-tier SBS/RS consisting of the first 𝑁 −𝑀 + 1 

tiers from the ground level with one shuttle. Similarly, ℛ3 also separates the SBS/RS into two 

subsystems: (1) a tier-captive SBS/RS formed by the bottom 𝑀 − 1 tiers and (2) a tier-to-tier 

SBS/RS composed by the top 𝑁 −𝑀 + 1 tiers with one shuttle. To further explain why a 

dispatching rule is the best under different situations, we define 𝑝𝑚
ℛ  as the probability of needing 

shuttle reallocation for a task and 𝑡𝑚,𝑖
ℛ  as the expected movement distance for reallocating a 

shuttle to tier 𝑖 under shuttle dispatching rule ℛ. It is clear that 𝑇𝑆𝐶𝑚
ℛ, the expected shuttle 

movement distance (or time) per task, is influenced by both 𝑝𝑚
ℛ  and 𝑡𝑚,𝑖

ℛ . Under class-based 

storage (i.e., lower tiers having higher demand rates), 𝑝𝑚
ℛ3 ≤  𝑝𝑚

ℛ2, and 𝑝𝑚
ℛ2 − 𝑝𝑚

ℛ3  increases and 

then decreases in 𝑀. Moreover,  ∑ 𝑡𝑚,𝑖
ℛ3𝑁

𝑖=1 ≈ ∑ 𝑡𝑚,𝑖
ℛ2𝑁

𝑖=1 , and therefore 𝑇𝑆𝐶𝑚
ℛ2 − 𝑇𝑆𝐶𝑚

ℛ3 ≥ 0 and 

the difference increases and then decreases in 𝑀. Additionally, even though ℛ2 yields lower lift 

waiting time 𝑇𝑆𝐶𝑤
ℛ2, the difference from 𝑇𝑆𝐶𝑤

ℛ3 becomes smaller while more demands aggregate 

on lower tiers (i.e., higher value of 𝐺(0.1)). Furthermore, 𝑇𝑆𝐶𝑤
ℛ3 − 𝑇𝑆𝐶𝑤

ℛ2 > 0 when 𝐺(0.1) is 

small, but 𝑇𝑆𝐶𝑤
ℛ2 is not always less than 𝑇𝑆𝐶𝑤

ℛ3. 𝑇𝑆𝐶𝑤
ℛ2 − 𝑇𝑆𝐶𝑤

ℛ3 > 0 can be observed when 

𝐺(0.1) and 𝑀 are extremely high. However, 𝑇𝑆𝐶𝑤
ℛ2 − 𝑇𝑆𝐶𝑤

ℛ3 is dominated by 𝑇𝑆𝐶𝑚
ℛ2 − 𝑇𝑆𝐶𝑚

ℛ3 

when 𝐺(0.1) is not too small. Due to the relationship of 𝑡𝑜3 < 𝑡
𝑟 < 𝑡𝑜4 in the numerical 

experiments, the potential impact of shuttle dispatching rule on 𝑇𝑆𝐶𝑤
ℛ is limited. A bigger  
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Figure 3-3. Comparison between ℛ2 and ℛ3 under Different 𝐺(0.1) Values and SC Operations 

  

𝑇𝑆𝐶𝑚
ℛ2 − 𝑇𝑆𝐶𝑚

ℛ3 

𝐸𝑆𝐶ℛ2 − 𝐸𝑆𝐶ℛ3 

𝑇𝑆𝐶𝑤
ℛ2 − 𝑇𝑆𝐶𝑤

ℛ3 

a. 𝐺(0.1) = 0.2 b. 𝐺(0.1) = 0.4 



  

65 

         

difference between 𝑇𝑆𝐶𝑤
ℛ2 and 𝑇𝑆𝐶𝑤

ℛ3 is expected when shuttles are slower or lift is faster. 

Similarly, a smaller difference in lift waiting time between the two dispatching rules is expected 

if shuttles are much faster or the lift is much slower.  

Even though Figure 3-2 shows that the random shuttle dispatching rule ℛ1 is not the best option 

under classed-based storage, it is not the worst under all the scenarios. The comparisons of ℛ1 

against ℛ2 or ℛ3 under 𝐺(0.1) = 0.2 and 0.7 are shown in Figure 3-4. As illustrated, when 

𝐺(0.1) is low,  ℛ1 has more shuttle movement time and waiting time than ℛ2. When the 𝐺(0.1) 

value increases (i.e., the demand rates are more heterogeneous), 𝑇𝑆𝐶𝑤
ℛ1 − 𝑇𝑆𝐶𝑤

ℛ2 becomes 

smaller, and 𝑇𝑆𝐶𝑚
ℛ1 − 𝑇𝑆𝐶𝑚

ℛ2 reduced and becomes negative eventually. As Figure 3-4 shows, 

when 𝐺(0.1) = 0.7, 𝑇𝑆𝐶𝑤
ℛ1 − 𝑇𝑆𝐶𝑤

ℛ2 is dominated by 𝑇𝑆𝐶𝑚
ℛ1 − 𝑇𝑆𝐶𝑚

ℛ2 so that ℛ1 is better than 

ℛ2. As demonstrated by Figure 3-4, ℛ3 is always superior to ℛ1, and the difference between 

these two rules follows a very similar pattern as the difference between ℛ2 and ℛ3. 

It is worth to note that even though the value of the differences of the expected SC travel time 

between the shuttle dispatching rules demonstrated by the figures are relatively low (e.g., 0.6 

seconds), and it is hard to believe such a small difference can demonstrate a significant impact of 

the shuttle dispatching rules. However, the expected SC time only ranges from 17 seconds to 5 

seconds, 0.6 seconds is a significant difference percentage-wise. As illustrated by Figure 3-2, the 

best shuttle dispatching rule can be at most 10.8% better than the second-best one. Moreover, a 

large number of tasks can be conducted in one planning horizon, and the difference will be 

accumulated during operations, and a significant difference (in terms of makespan reduction) can 

be observed. The statement is also applicable for the difference of the expected DC travel time 

under different combinations of policies. 

3.6.2.2 Shuttle Dispatching Rule Comparison under a DC Cycle  

This study also compared the two storage policies and three shuttle dispatching rules considering 

both retrieval and re-storage tasks executed in a DC cycle. Figure 3-5 compares the performance 

of the shuttle dispatching rules under different demand distributions and the number of shuttles, 

𝑀, when class-based storage is used in DC operations. The best dispatching rule under each 

scenario is selected, and the advantage against the second-best dispatching rule is calculated 

through 
𝐸𝐷𝐶𝐵 −𝐸𝐷𝐶𝑆𝐵

𝐸𝐷𝐶𝑆𝐵
× 100% and listed in each cell, where 𝐸𝐷𝐶𝐵 and 𝐸𝐷𝐶𝑆𝐵 denote the  
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Figure 3-4. Comparison of shuttle dispatching rules under Different 𝐺(0.1) Values and SC 

Operations 
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Figure 3-5. Best Dispatching Rules under Various 𝐺(0.1) and 𝑀 Values under Class-

based Storage and DC Operations 

  

ℛ3 ℛ1 

𝐺
(0
.1
) 

Number of Shuttles (𝑀) 
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expected DC travel time under the best shuttle dispatching rule and the second-best one, 

respectively. Here, purple means ℛ1 is the best while red means ℛ3 is the best.  

• The distance-based shuttle dispatching rule ℛ2 is dominated. The best dispatching rule is 

either ℛ1 or ℛ3, depending on the demand distribution and the number of shuttles 𝑀. The 

difference of travel times between the best and second-best dispatching rules could be as 

high as 8.7%. However, as discussed in subsection 3.5.2, the difference between ℛ1 and 

ℛ2  is affected by equipment’s speed profile, and as discussed in Appendix G, ℛ1 can be 

dominated by ℛ2 under a different equipment speed profile.  

• When the demand rate is rather homogenous (e.g., 𝐺(0.1) = 0.1), the random shuttle 

dispatching rule ℛ1 is in general better than the demand-rate-based shuttle dispatching 

rule ℛ3.  

• When the demand rate is a little more heterogeneous (e.g., 𝐺(0.1) = 0.2 ), ℛ1 is the best 

when the number of shuttles is low, while more shuttles make ℛ3 more competitive. 

• When the demand rate is even more heterogeneous (e.g., 𝐺(0.1) ≥ 0.3),  ℛ3 is dominant, 

but the advantage of ℛ3 over the second-best rule first increases and then decreases in 𝑀. 

When the demand rate is highly heterogeneous (e.g., 𝐺(0.1) = 0.9), the advantage of  ℛ3 

becomes smaller because shuttles are not moved often.  

For better understanding the impacts of the shuttle dispatching rules on the expected DC travel 

time, the three dispatching rules under 𝐺(0.1) = 0.2 and 0.4 are compared in pairs in Figure 3-6, 

Figure 3-7, and Figure 3-8, where the expected DC travel time 𝐸𝐷𝐶ℛ is partitioned into three 

time components: expected time for the lift to travel between tiers for conduct re-storage and 

retrieval tasks (𝑇𝐷𝐶𝑟
ℛ), expected time for moving a shuttle (𝑇𝐷𝐶𝑚

ℛ), and expected waiting time of 

the lift for the shuttle to move the requested SKU (𝑇𝐷𝐶𝑤
ℛ), where ℛ ∈ {ℛ1, ℛ2, ℛ3} represents 

the shuttle dispatching rule.  These three terms can be represented by equation (3.26-3.28), 

𝑇𝐷𝐶𝑟
ℛ =∑2𝑑𝑖𝑡𝑜𝑖

𝑁

𝑖=1

+∑∑𝑑𝑖𝑑𝑗𝑥𝑗|𝑖
′

𝑁

𝑗=1

𝑁

𝑖=1

𝑡𝑖𝑗, (3.26) 
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Figure 3-6. Comparison between ℛ1 and ℛ2 under Different 𝐺(0.1) Values and DC 

Operations 

 

 

Figure 3-7. Comparison between ℛ1 and ℛ3 under Different 𝐺(0.1) Values and DC 

Operations 

 

 

a. 𝐺(0.1) = 0.2 b. 𝐺(0.1) = 0.4 

𝑇𝐷𝐶𝑚
ℛ1 − 𝑇𝐷𝐶𝑚

ℛ2 

𝑇𝐷𝐶𝑤
ℛ1 − 𝑇𝐷𝐶𝑤

ℛ2 

𝑇𝐷𝐶𝑟
ℛ1 − 𝑇𝐷𝐶𝑟

ℛ2 

𝐸𝐷𝐶ℛ1 − 𝐸𝐷𝐶ℛ2 

𝑇𝐷𝐶𝑚
ℛ1 − 𝑇𝐷𝐶𝑚

ℛ3 

𝑇𝐷𝐶𝑤
ℛ1 − 𝑇𝐷𝐶𝑤

ℛ3 

𝑇𝐷𝐶𝑟
ℛ1 − 𝑇𝐷𝐶𝑟

ℛ3 

𝐸𝐷𝐶ℛ1 − 𝐸𝐷𝐶ℛ3 

a. 𝐺(0.1) = 0.2 b. 𝐺(0.1) = 0.4 



  

70 

         

 

 

Figure 3-8. Comparison between ℛ2 and ℛ3 under Different 𝐺(0.1) Values and DC 

Operations 

  

a. 𝐺(0.1) = 0.2 b. 𝐺(0.1) = 0.4 

𝑇𝐷𝐶𝑚
ℛ2 − 𝑇𝐷𝐶𝑚

ℛ3 

𝑇𝐷𝐶𝑤
ℛ2 − 𝑇𝐷𝐶𝑤

ℛ3 

𝑇𝐷𝐶𝑟
ℛ2 − 𝑇𝐷𝐶𝑟

ℛ3 

𝐸𝐷𝐶ℛ2 − 𝐸𝐷𝐶ℛ3 
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𝑇𝐷𝐶𝑚
ℛ =∑∑𝑑𝑖𝑑𝑗

𝑁

𝑗=1

(1 − 𝑥𝑗|𝑖
′ ){∑𝑥𝑘|(𝑖,𝑗)𝑝(𝑖,𝑗)(𝑘)(𝑡𝑖𝑘 + 𝑡𝑘𝑗)

𝑘≠𝑗
𝑘≠𝑖

𝑁

𝑖=1

+ 𝑥𝑖|(𝑖,𝑗)𝑝(𝑖,𝑗)(𝑖)(𝑡
𝑟 + 𝑡𝑖𝑗)} , and 

(3.27) 

𝑇𝐷𝐶𝑤
ℛ =∑∑𝑑𝑖𝑑𝑗𝑥𝑗|𝑖

′

𝑁

𝑗=1

𝑁

𝑖=1

[𝑡𝑟 − 𝑡𝑜𝑖 − 𝑡𝑖𝑗]
+
+∑∑𝑑𝑖𝑑𝑗

𝑁

𝑗=1

(1 − 𝑥𝑗|𝑖
′ )𝑡𝑟

𝑁

𝑖=1

, (3.28) 

As illustrated in Figure 3-6, 𝐸𝐷𝐶ℛ1 − 𝐸𝐷𝐶ℛ2 is dominated by 𝑇𝐷𝐶𝑚
ℛ1 − 𝑇𝐷𝐶𝑚

ℛ2, and the 

difference first increases and then decreases in 𝑀. Compared with the random dispatching rule 

ℛ1, ℛ2 results in a lower expected time for moving SKUs (i.e., 𝑇𝐷𝐶𝑟
ℛ1 − 𝑇𝐷𝐶𝑟

ℛ2 > 0) and the 

difference first increases and then decreases in 𝑀. In addition, ℛ2 leads to a higher expected time 

for the lift to wait for the shuttle to retrieve the required SKU, and 𝑇𝐷𝐶𝑤
ℛ1 − 𝑇𝐷𝐶𝑤

ℛ2 first 

decreases and then increases in 𝑀. However, as discussed in section 3.5,  𝐸𝐷𝐶ℛ1 − 𝐸𝐷𝐶ℛ2 is not 

always negative. As demonstrated in Appendix G, 𝐸𝐷𝐶ℛ1 − 𝐸𝐷𝐶ℛ2 > 0 when the lift becomes 

slower (i.e., 𝑣𝑙 = 0.5 𝑚/𝑠, and 𝑎𝑙 =  0.5 𝑚/𝑠
2).  

Figure 3-7 compares ℛ1 and ℛ3. ℛ1 results in a lower shuttle movement time, 𝑇𝐷𝐶𝑚
ℛ, than ℛ3 

when demand rate is more homogenous (i.e., 𝐺(0.1) = 0.2) and the number of shuttles is low 

(i.e., 𝑀 = 2). ℛ3 makes shuttles more likely to stay on the lower tiers, and therefore, shuttle 

reallocation is frequently required for tasks from higher tiers, which results in a higher 𝑇𝐷𝐶𝑚
ℛ for 

ℛ3 when demand rate is more homogenous (i.e, the demand for higher tiers is large). However, 

when the demand rate is more heterogeneous (i.e., (0.1) = 0.4), the disadvantage of ℛ3 becomes 

an advantage over ℛ1 (i.e., 𝑇𝐷𝐶𝑚
ℛ1 − 𝑇𝐷𝐶𝑚

ℛ3 > 0), since the demand are mainly from the lower 

tiers and the bottom 𝑀− 1 tiers always have a shuttle under ℛ3. Moreover, ℛ3 results in a lower 

expected waiting time for the lift to get the required SKU (i.e., 𝑇𝐷𝐶𝑤
ℛ) and a higher expected time 

for the lift to move SKUs (i.e., 𝑇𝐷𝐶𝑟
ℛ) due to less shuttle movement. Moreover, both 

|𝑇𝐷𝐶𝑚
ℛ1 − 𝑇𝐷𝐶𝑚

ℛ3|, |𝑇𝐷𝐶𝑤
ℛ1 − 𝑇𝐷𝐶𝑤

ℛ3|, and |𝑇𝐷𝐶𝑟
ℛ1 − 𝑇𝐷𝐶𝑟

ℛ3| increase and the decrease in 𝑀. 

Figure 3-8 compares ℛ2 and ℛ3. As demonstrated, ℛ2 is always worse than ℛ3 (i.e., 𝐸𝐷𝐶ℛ2 −
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𝐸𝐷𝐶ℛ3 > 0) and the difference between these two rules follows a very similar pattern as the 

difference between ℛ1 and ℛ3.  

3.6.3 Storage Policy Comparison 

The comparison between random (i.e., 𝐺(0.1) = 0.1) and class-based storage policies under each 

shuttle dispatching rule under SC and DC operations are illustrated in Figure 3-9 and Figure 3-10 

with 𝐺(0.1) = 0.2. The differences between random and class-based storage policies under other 

𝐺(0.1) values follow the same pattern. Even though random storage results in less waiting time 

under all shuttle movement dispatch rules (except under ℛ3 and DC operations) and less shuttle 

reallocation time under ℛ2 and SC operations, random storage usually yields much higher 

expected SKU retrieval and re-storage time, 𝑇𝑆𝐶𝑟
ℛ or 𝑇𝐷𝐶𝑟

ℛ, which dominates the expected 

travel time. Therefore, random storage is always worse than class-based storage policy, which is 

consistent with previous studies on storage policies (Yu et al., 2015). However, it does not mean 

that class-based storage is always the best storage policy. A third storage policy that is better than 

both even under the demand-rate-based shuttle dispatching rule ℛ3 might exist.  

A counter example against the statement that class-based storage is always the best is given in 

Table 3-2.  This simple system consists of three tiers and two shuttles and adopts ℛ3 and SC 

operation with only retrieval tasks. The three demand rates are 0.34, 0.33, and 0.33. The time 

parameters (in seconds) are 𝑡𝑜1 = 0.577, 𝑡𝑜2= 0.816, 𝑡𝑜1 = 1,  𝑡𝑟 = 1 and 

𝑡𝑖𝑗 = {

0, 𝑖 = 𝑗

0.577, |𝑖 − 𝑗| = 1

0.816 |𝑖 − 𝑗| = 2.
 

The first row shows the performance of class-based storage, where 𝑑1 = 0.34 and  𝑑2 = 𝑑3 =

0.33. The second row shows another storage situation in which the highest demand row is moved 

to the top, i.e., 𝑑1 = 𝑑2 = 0.33 and  𝑑3 = 0.34. This movement reduces waiting time, 𝑇𝑆𝐶𝑤
ℛ3, 

without hurting the time to move SKUs, 𝑇𝑆𝐶𝑟
ℛ3 , too much. Therefore, the travel time, 𝐸𝑆𝐶ℛ3, is 

reduced. Please note that the shuttle movement time, 𝑇𝑆𝐶𝑚
ℛ3, keeps the same under the two 

storage policies. Therefore, class-based storage is not always the best storage policy even under 

the demand-rate-based shuttle dispatching rule ℛ3, which is against our intuition and justifies a  
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Figure 3-9. Comparison of Storage Policies under 𝐺(0.1) = 0.2 and SC Operations 

 

  

a. Under ℛ1 b. Under ℛ2  

c. Under ℛ3 

𝑇𝑆𝐶𝑚
ℛ(0.2) − 𝑇𝑆𝐶𝑚

ℛ(0.1) 

𝑇𝑆𝐶𝑤
ℛ(0.2) − 𝑇𝑆𝐶𝑤

ℛ(0.1) 

𝑇𝑆𝐶𝑟
ℛ(0.2) − 𝑇𝑆𝐶𝑟

ℛ(0.1) 

𝐸𝑆𝐶ℛ(0.2) − 𝐸𝑆𝐶ℛ(0.1) 
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Figure 3-10. Comparison of Storage Policies under 𝐺(0.1) = 0.2 and DC Operations 

Table 3-2. A Counter Example Against Class-based Storage under SC Operations  

  𝐸𝑆𝐶ℛ3  𝑇𝑆𝐶𝑟
ℛ3  𝑇𝑆𝐶𝑚

ℛ3  𝑇𝑆𝐶𝑤
ℛ3  

Class-based Storage 2.28 1.59 0.19 0.50 

After Storage Reallocation 2.22 1.60 0.19 0.43 

  

a. Under ℛ1 b. Under ℛ2  

c. Under ℛ3 

𝑇𝐷𝐶𝑚
ℛ(0.2) − 𝑇𝐷𝐶𝑚

ℛ(0.1) 

𝐸𝐷𝐶ℛ(0.2) − 𝐸𝐷𝐶ℛ(0.1) 

𝑇𝐷𝐶𝑤
ℛ(0.2) − 𝑇𝐷𝐶𝑤

ℛ(0.1) 

𝑇𝐷𝐶𝑟
ℛ(0.2) − 𝑇𝐷𝐶𝑟

ℛ(0.1) 
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need to carefully study storage policy. Please note that class-based storage definitely minimized 

the expected SKU retrieval time, 𝑇𝑆𝐶𝑟
ℛ, under any shuttle dispatching rules.  

3.7 Conclusion  

This study examines different storage assignment policies and shuttle dispatching rules in a tier-

to-tier SBS/RS operating in SC or DC operations. The system allows fewer shuttles than tiers to 

decrease the cost and improve flexibility. This study developed travel time models under each 

combination of storage and dispatching rules to calculate the expected travel time under SC and 

DC cycle, respectively. The system is modeled as a DTMC to calculate shuttle distribution under 

different operational policies. Based on the shuttle distribution, expected travel time models are 

developed and validated through simulation. The expected travel times models developed by this 

study can help a warehouse designer or manager to decide the most appropriate storage 

assignment and shuttle dispatching rule as well as the number of shuttles in their system.  

Numerical experiments are conducted and provide the following observations.  

• The demand distribution information is important for selecting the appropriate storage 

policy and shuttle dispatching rule. 

• Class-based storage is always better than random storage while the best dispatching rule 

is affected by demand distribution patterns, represented by the 𝐺(0.1) value, the number 

of shuttles, and operational cycle (i.e., SC and DC). 

• When class-based storage is applied but the demand rate does not vary a lot across 

classes, the demand rate-based shuttle dispatching rule ℛ3 is the best if there are not 

many shuttles when the system operates in an SC cycle with only retrieval tasks 

considered. However, when the system operates in a DC cycle, the random shuttle 

dispatching rule ℛ1 or distance-based shuttle dispatching ℛ2, depending on the 

equipment speed profile, might be better than ℛ3 if there are not many shuttles. 

• If demands are more heterogeneous, ℛ3 becomes more competitive in every scenario. 

However, having more shuttles beyond a small number (e.g., 𝑀 ≥ 4) will reduce the 

advantage of ℛ3, and under SC operations, it may be defeated by the distance-based 

shuttle dispatching rule ℛ2 when 𝐺(0.1) is low (e.g., 𝐺(0.1) < 0.4).  

• For warehouse designers or managers with limited or no demand information, which 

implies only random storage policy is applicable, the distance-based shuttle dispatching 
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rule ℛ2 is always better than random dispatching rule ℛ1 under SC operations. However, 

under DC operations, depending on the equipment’s speed, ℛ1 can be better than ℛ2. 

Several future studies can further provide insights for tier-to-tier SBS/RS and facilitate their 

designs and operations. Even though this study considered both SC and DC operations, we only 

included retrieval tasks and re-storage tasks, so that shuttle reallocation is not needed for storage 

tasks. However, in practice, other types of storage tasks may happen (e.g., replenishment), and it 

is very likely that the storage tier also needs a shuttle. Therefore, future studies may consider 

replenishment tasks. As discussed in section 3.4, instead of dividing rack into classes along the 

vertical direction, many previous studies classify storage locations into classes based on their 

distances to the lift/buffer stations. Even though these two classification strategies have never 

been compared, we assume the efficiency of these two classification strategies will be affected by 

both equipment speed profile, equipment numbers, and demand pattern. Therefore, a 

comprehensive comparison between these two classification strategies and an investigation into 

the optimal number and boundaries of classes under different scenarios are worth future research. 

Besides, similar to many other studies, this study ignored the situation when an SKU is 

potentially blocked by earlier SKUs from the same tier to simplify the analysis. A future study 

considering the blocking effect will be interesting. Furthermore, although the developed travel 

time models can facilitate system designs and implicitly incorporates some physical design 

parameters, such as rack dimension and equipment speed, in travel times, this study did not 

optimize those design parameters for the best performance.  However, having those physical 

design parameters as variables is expected to bring strong non-linearity and result in great 

computational challenges.  
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CHAPTER FOUR   

AUTOMATED WAREHOUSE DESIGN CONSIDERING 2D AND 3D 
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4.1 Abstract 

Numerous AS/RS variants have been introduced for different business needs. However, there is a 

lack of tools for decision-makers to select and design the best AS/RS for their business needs. 

This paper is the first to consider the warehouse design problem with different application 

scenarios (characterized by different distributions of inventory levels and demand rates of 

different SKU types) by considering 2D AS/RS and 3D AS/RS as options to reduce the 

warehouse investment while maintaining a certain level of throughput capacity. The warehouse 

design problem is first modeled as mixed-integer nonlinear programming and then is converted to 

mixed-integer programming based on optimality conditions. A branch-and-bound algorithm is 

developed for the computational challenges and is further modified to reduce the solving time. 

Numerical experiments showed the impacts of the cost parameters, and the distribution of the 

inventory levels and demand rates of different SKU types on warehouse design. A high 

cost/penalty of not meeting the desired throughput capacity will lead to a warehouse design with 

a large number but shallower racks. Having a high land/space and rack cost will have the same 

effect while having a high equipment cost will have contradictory impacts on warehouse design. 

When the distribution of demand rates across SKU types is homogeneous, a heterogeneous 

distribution of inventory levels will lead to a warehouse design where the racks’ depth is more 

unevenly distributed. The impact of the distribution of the inventory levels will be eliminated if 

the distribution of demand rates across SKU types is heterogeneous or the cost of not meeting the 

expected throughput capacity is high. Heterogeneous distribution of demand rates or a high cost 

of not meeting the required throughput capacity will also lead to a warehouse design with a large 

number but shallower racks, and racks’ depth will be more unevenly distributed. Surprisingly, the 

warehouse design problem can be divided into two steps: 1) solve the warehouse design problem 

to minimize the total depth of racks iteratively on the different numbers of racks; 2) solve the 

product allocation problem with all feasible solutions from step one and select the one with the 

minimum objective value.  At last, 2D AS/RS racks are only used in the case with an extremely 

high cost of throughput capacity, which indicates the advantages of 3D AS/RS.      

4.2 Introduction  

Warehouse systems/distribution centers/ fulfillment centers have been an essential component in 

any supply chain, and for decades, technologies have been developed to modernize warehouse 
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systems (Hamzaoui et al., 2021). Introduced in the 1950s, automated storage and retrieval system 

(AS/RS) have been widely accepted to substitute the traditional manual (picker-to-parts) 

warehouse system to improve system performance and reduce labor and space cost (Azadeh et al., 

2019a; Boysen et al., 2019; Dong et al., 2021; Liu et al., 2020; Roodbergen and Vis, 2009). As 

shown in Figure 1-1, a traditional AS/RS is composed of storage racks with storage cells to 

accommodate stock-keeping units (SKUs), storage/retrieval (S/R) machines that can move along 

the aisles between two racks to execute storage and retrieval tasks, and input/output (I/O) 

positions where the retrieved SKUs are dropped off and incoming SKUs are picked up by an S/R 

machine. Traditionally, the storage rack can be single-deep or double-deep (2D), and each SKU 

can be accessed by an aisle-captive crane that can move along vertical and horizontal directions 

simultaneously. Even though 2D AS/RS has significantly improved land utilization in 

warehouses, the aisles between racks can still consume about 35% of land space (Hamzaoui et al., 

2021; Stadtler, 1996), which also results in a long transaction time. Furthermore, the application 

of aisle-captive cranes requires a high investment and may reduce system flexibility (Ha and 

Chae, 2019; Tappia et al., 2017). 

To improve the performance of AS/RS and extend the applicability of AS/RS to numerous 

business scenarios, AS/RS have gone through many alternatives in terms of different rack 

dimensions and S/R machines (Figure 1-2), such as 3D AS/RS, shuttle-based system (SBS/RS), 

mobile rack system, and multi-aisle system (Azadeh et al., 2019a). Even though various AS/RS 

are available in practice, most of the AS/RS related literature mainly focused on the physical 

design and operation of a few AS/RS systems with the assumption of a single-rack system 

(Azadeh et al., 2019a; Boysen et al., 2019; De Koster et al., 2017; Hamzaoui et al., 2021; 

Roodbergen and Vis, 2009). Very limited attention has been paid to AS/RS comparison, 

selection, and design. The system comparison studies mainly focused on the comparison of 2D 

AS/RS and SBS/RS by assuming pre-defined systems’ design and operation policies (Ekren and 

Heragu, 2012), and therefore cannot provide enough insights for AS/RS selection and design. 

Moreover, the system selection studies also assume the predefined physical design, operation 

policies, or performance of the potential AS/RS options, which is far away from the practice 

(Azadeh et al., 2019a; Roodbergen et al., 2015).    



  

80 

         

According to our best understanding, no study particularly focused on the warehouse design 

problem by selecting and designing different AS/RS choices. However, such a study is necessary 

since the investment of a warehouse is expensive and the physical design is usually irreversible 

(Azadeh et al., 2019b; Roodbergen and Vis, 2009). To bridge this research gap and facilitate the 

design of automated warehouse systems under different application environments, this study 

considers warehouse design with multiple AS/RS choices to minimize the investment (e.g., space 

cost, equipment cost, and operation cost) while maintaining the desired throughput capacity 

(measured by expected cycle time; the average time for finishing one transaction) of a warehouse 

characterized by the distribution of inventory levels and demand rates of different SKU types. 

Moreover, unlike most of the previous studies that only select one AS/RS type, multiple AS/RS 

types can be selected, and the SKU-to-rack/system assignment will be considered. However, this 

study cannot include all of the AS/RS shown in Figure 1-2, and we decided to focus on the 

warehouse design problem by only considering the traditional 2D AS/RS and 3D AS/RS, which 

are popular in practice. In the future, more candidate systems can be incorporated into the model 

proposed by this study.   

3D AS/RS, also known as multi-deep or compact storage systems, consists of racks with deep 

lanes that can accommodate multiple SKUs to improve space utilization and reduce the 

requirement on cranes. In a 3D AS/RS, an SKU can be accessed by the cooperation of S/R 

machines and depth move mechanisms (DMMs). Based on the types of S/R machines and 

DMMs, 3D AS/RS can be classified into three categories:1): crane-based 3D AS/RS with 

conveyor-based DMMs, 2): crane-based 3D AS/RS with shuttle-based DMMs, and 3): lift-based 

3D AS/RS with shuttle-based DMMs (also called as compact SBS/RS).  

In a crane-based 3D AS/RS (Figure 2-1) with conveyor-based DMMs, aisle-captive cranes are 

used for vertical and horizontal movement (𝑥- and 𝑦-direction). Each lane in the 3D rack is 

equipped with a pair of gravity or powered conveyors as DMMs. In the system with gravity-

conveyor-based DMMs, a lifting mechanism is needed for each lane to move SKUs and the 

storage capacity is limited. Even though powered conveyors can eliminate the limitation on 

storage capacity and the requirement of lifting systems, equipping each lane with powered 

conveyors is usually expensive (Azadeh, et al., 2019; Tappia et al., 2017). In a crane-based 3D 

AS/RS with shuttle-based DMMs, shuttles are used as DMMs. Such a 3D system allows fewer 

shuttles than the number of lanes, and the shuttles can be reallocated across lanes with the help of 
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cranes. The possibility of adding/decreasing shuttles can significantly improve the flexibility and 

reliability of 3D systems than the system with conveyor-based DMMs. Moreover, the crane-based 

3D AS/RS with conveyor-based DMMs can be considered as the 3D system with shuttle-based 

DMMs where each lane is equipped with a shuttle.  

Instead of cranes, lifts are used as S/R machines in a lift-based 3D AS/RS (Figure 4-1). The 

system consists of multiple tiers of multi-deep storage lanes where SKUs are stored. Lifts are 

responsible for vertical movements between tiers. The cooperation of “specialized” shuttles and a 

transfer car may realize the horizontal movements of SKUs, where shuttles move along 𝑧-

direction and the transfer car moves along 𝑥-direction. Another possible horizontal movement 

mechanism is the utilization of ‘generic’ shuttles moving in both 𝑥- and 𝑧-directions. Similar to 

crane-based 3D AS/RS with shuttle-based DMMs, lift-based 3D AS/RS can improve system 

flexibility by adding or decreasing shuttles in the system. However, if shuttles and transfer cars 

are adopted for horizontal movement in each tier, more movement elements (lifts, shuttles, and 

transfer cars) need to cooperate for storage and retrieval tasks, which increases the operational 

complexity. In addition, “generic” shuttles are much more expensive and require proper 

coordination to avoid collisions, adding complexity into operations versus crane-based 3D 

AS/RS. 

Due to the advantages of crane-based 3D AS/RS with shuttle-based DMMs over the other 3D 

AS/RS in terms of system flexibility, operation complexity, and hardware cost, we narrow down 

the 3D AS/RS to the crane-based 3D AS/RS with shuttle-based DMMs and use 3D AS/RS and 

crane-based 3D AS/RS with shuttle-based DMMs interchangeably in this paper. Considering 

different business needs, this study aims to model the warehouse design problem with 2D AS/RS 

and 3D AS/RS as candidates to determine the physical layout (i.e., number of racks and layout of 

these two systems) and product allocation (SKU-rack/system assignment). The warehouse system 

design problem is first modeled as a mixed-integer nonlinear programming (MINP). Optimality 

conditions have been proved and based on which, the MINP is converted to mixed-integer 

programming (MIP). Branch-and-bound algorithms are developed for computational challenges.  

The remainder of this chapter is organized into six sections. Section 4.3 reviews previous studies 

related to the AS/RS selection and design problems. Section 4.4 gives an overview of the 

operational mechanism of the candidate systems and creates a MINP to describe the warehouse  



  

82 

         

 

Figure 4-1. An Overview of Lift-based 3D AS/RS 
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design problem. In section 4.5, optimality conditions are proposed and the MINP is converted 

into MIP, and two Branch-and-Bound (B&B) algorithms are designed to reduce the 

computational complexity while guarantying the optimality. In section 4.6, the warehouse design 

model is validated through numerical experiments, and more numerical experiments are 

conducted for sensitivity analysis to provide management insights. Finally, section 4.6 concludes 

the study and discusses the future work.       

4.3 Literature Review  

4.3.1 Warehouse Design Considering Multiple AS/RS Choices 

Warehouse design means the identification of physical design and operation policies to optimize 

one or many performance metrics for a warehouse (Hamzaoui et al., 2021). The system 

performance is usually evaluated by hardware cost, throughput capacity (measured the expected 

cycle time), space utilization, orders waiting time, energy consumption, etc. In general, a 

warehouse design problem includes identifying and sizing multiple function areas, selecting 

equipment, determining the layout and operation policies for each functioning area. However, this 

study only focuses on the design of the storage department, and only reviews the studies 

considering the comparison, selection, and design of AS/RS. We recommend Gu et al. (2010), 

Davarzani and Norrman (2015), Bottani et al. (2019), and Kumar et al. (2021) for comprehensive 

reviews of warehousing researches.   

Even though the selection and design of the appropriate AS/RS affect the overall warehouse 

performance, existing studies are preliminary and only considered AS/RS selection by assuming 

the physical design, operation policies, and performance of the candidate AS/RS systems are 

known in advance (Azadeh et al., 2019a; Baker and Canessa, 2009; Gu et al., 2010; Roodbergen 

et al., 2015; Rouwenhorst et al., 2000; Sprock et al., 2017). Most studies for AS/RS selection, 

design, and operation follow a step-by-step procedure and are empirical- or knowledge-based 

(Baker and Canessa, 2009; Sprock et al., 2017). Mathematical models and algorithms for 

warehouse design problems considering multiple AS/RS options are very rare. Changpeng Shen 

et al. (2010) focused on a warehouse design problem considering manual and semi-automated 

warehouse systems as potential options to minimize pickers’ travel time. However, they assumed 

all the SKUs are identical and did not have to consider the SKUs-to-system assignment. In 

addition, as stated by Azadeh et al. (2019), Pazour and Meller (2014) is the first one to model the 
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warehouse design problem considering multiple order fulfillment technologies (e.g., AS/RS and 

manual warehouse system). However, they assumed the physical design, operation policies, and 

performance (i.e., throughput capacity) of each technology are known in advance, and only 

considered the technology selection and SKU-to-system assignment. Roodbergen et al. (2015) 

considered a warehouse design problem by allowing the mixed use of aisle-captive and aisle-to-

aisle 2D AS/RS via simulation, but did not consider the SKU-to-system assignment. 

Except for the limited attention paid to the selection of AS/RS, a few studies have been done to 

compare a few AS/RS systems. For instance, Heragu et al. (2011) modeled the automated vehicle 

storage and retrieval system (AVS/RS) and the conventional 2D AS/RS as open queuing 

networks and compared the performance of these two systems under serval pre-determined 

physical design plans and operation policies. Later, Ekren & Heragu (2012) compared the 

performance of AVS/RS with the aisle-to-aisle 2D AS/RS, which allows a crane to serve different 

racks, in terms of different performance metrics, by simulating these two systems under different 

configurations. However, similar to Heragu et al. (2011), this study assumed the configurations of 

the two systems are known in advance. The tier-to-tier AVS/RS and tier-captive AVS/RS are also 

compared by Küçükyaşar et al. (2021) and the similar assumptions with the previous system 

comparison studies are adopted, and therefore, limited its impacts on AS/RS selection and design. 

Moreover, all of the system comparison studies did not consider the SKU-to-system assignment 

problem. 

4.3.2 Design and Operation of Single AS/RS systems 

Different from the warehouse design problem with the selection and design of multiple AS/RS 

choices, numerous studies considering the system performance analysis, design, or operation of 

some specific AS/RS have been done. We recommend Azadeh et al. (2019a), Boysen et al. 

(2019), Boysen and Stephan (2016), and Roodbergen and Vis (2009) for comprehensive reviews.  

Current researches on AS/RS can be categorized into three categories: system performance 

analysis, system configuration (i.e., rack dimensions and equipment selection), and operation 

strategies; studies within both of these categories usually consider a single-rack AS/RS through 

analytical modeling and simulation (Azadeh et al., 2019a; Boysen et al., 2015, 2019; Boysen and 

Stephan, 2016; Roodbergen and Vis, 2009). System analysis articles focus on estimating systems’ 

performance in terms of one or more performance metrics (e.g., average cycle time, energy 

consumption, and transaction waiting time). Cycle time models, which are usually simple and 
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computationally friendly, are commonly used to give the closed-form formulation for estimating 

the average time for finishing one transaction (i.e., a retrieval task and/or a storage task), 

throughput capacity, and equipment utilization rate (Hamzaoui et al., 2021; Manzini et al., 2016; 

Xu et al., 2015, 2018, 2019b, 2019a). Queueing models and simulation models are also used to 

measure the other performance metrics (e.g., transactions’ waiting time) in an AS/RS (Cai et al., 

2014; Lerher et al., 2015b; Roy et al., 2017; Zou et al., 2016). Design optimization problems 

mainly consider physical configuration-related problems such as the dimension of a storage rack 

(Bortolini et al., 2015; De Koster et al., 2008; Hamzaoui et al., 2021; Wu et al., 2019; Xu et al., 

2019b; Yang et al., 2015a, 2017; Yu and De Koster, 2009a; Zaerpour et al., 2013) and the number 

and locations of I/O positions (Manzini et al., 2016; Roy et al., 2015). Operation strategies related 

problems can be further divided into two groups: 1) long-/mid-term operation strategies such as 

storage policy (i.e., in rack SKU assignment) (Guo et al., 2016; Hausman et al., 1976; Ramtin and 

Pazour, 2015; Roshan et al., 2019; Yu et al., 2015; Yu and De Koster, 2009b; Zaerpour et al., 

2013), product allocation (SKU-to-Rack assignment, which has rarely been studied), and 

equipment operation mechanism (e.g., shuttle assignment rules, single- or dual-command 

operations) which are usually studied together with system performance analysis; and 2) short-

term operation policies such as task batching and sequencing (Dong et al., 2021; Han et al., 1987; 

Yu and De Koster, 2012), and dwell point policy (Bozer and White, 1984; Roy et al., 2015; Sari 

et al., 2005). In this study, we consider the number and dimension of 2D and 3D AS/RS racks, 

and the product allocation across systems as decision variables (i.e., 2D and 3D racks). The other 

operation policies do have significant impacts on warehouse design and can be determined later 

after the warehouse design is obtained (Gu et al., 2010).  

As abovementioned, researchers usually focus on some specific AS/RS with a single-rack 

assumption, and cannot be directly used for practitioners for the overall design of a warehouse 

which consists of multiple racks and AS/RS options. A few studies have considered the design of 

an AS/RS consisting of multi-racks. Bozer and White (1990) considered the warehouse design 

problem with 2D AS/RS to determine the dimensions and number of racks in a warehouse to 

minimize the hardware cost while meeting a given throughput capacity. However, they assumed 

random product allocation and did not consider the demand rate and inventory level of different 

SKU types in the warehouse. Manzini et al. (2006) considered the warehouse design problem 

with 2D AS/RS by determining the number of aisles to minimize the transaction time without 
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considering the product allocation problem (i.e., SKU-to-rack assignment). Rao and Adil (2013) 

also considered the warehouse design problem of multi-2D AS/RS racks. However, again, they 

assumed identical SKUs and did not consider the production allocation (i.e., SKU-to-racks 

assignment). Mital et al. (2015) studied the warehouse design problem with 2D AS/RS by 

selecting the design from a predefined set of configurations to minimize the cost and system risk. 

Similar to the previous studies, they assumed the design is known in advance and did not consider 

the product allocation problem.  

As discussed, the AS/RS design problem allowing multi-racks has only been done considering 2D 

AS/RS and is usually limited to determining the number and dimensions of racks without 

considering the warehouse characteristics (e.g., demand rate and inventory level of different SKU 

types) and SKU-to-rack allocation. Moreover, even though 3D AS/RS have also received some 

attention, researchers mainly focused on a single-rack system with conveyor-based DMMs or lift-

based 3D AS/RS. Based on our best understanding, only two studies (Dong et al., 2021; Zaerpour 

et al., 2015) of crane-based 3D AS/RS with shuttle-based DMMs are published but only focused 

on the operation strategies. In summary, literature related to warehouse design considering 

different AS/RS options is very limited, and the warehouse design problem considering the 

traditional 2D AS/RS and the increasingly popular 3D AS/RS has never been considered and will 

be handled in this study.  

4.4 Problem Description and Formulation  

4.4.1 System Operation Mechanism and Assumptions  

In this study, the warehouse design problem with 2D AS/RS and 3D AS/RS as candidates under 

different business needs is considered. The objective is to minimize the warehouse investment 

(e.g., land, hardware, operations, and maintenance cost) while satisfying the requirement of the 

system’s throughput capacity. The throughput capacity is measured by the expected cycle time. 

Usually, cranes in 2D AS/RS and 3D AS/RS can operate in two modes: 1) A Single-command 

(SC) Cycle: A crane executes one retrieval or one storage task in one operational cycle, and 2) A 

Dual-command (DC) Cycle: A crane executes one retrieval and one storage task in one 

operational cycle. In many business scenarios, especially online retailing that requires a high 

responsiveness level, retrieval tasks are more critical, and the retrieval and storage tasks can be 

performed in different time windows (Dong et al., 2021; Liu et al., 2020; Wang et al., 2015). 
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Therefore, this study only considers the expected cycle time for executing a retrieval task in an 

SC cycle. The expected cycle time models for 2D and 3D AS/RS will be developed in subsection 

4.4.2. The different business needs are represented by the distribution of inventory levels and 

demand rates of different SKU types as well as the desired throughput capacity (i.e., desired 

average cycle time), and the product allocation (i.e., SKU-to-rack assignment) is also included as 

a decision variable. Moreover, all SKUs require the identical size of storage cells. We assume the 

random SKU-in-rack storage, which is a common assumption in warehouse design problems, to 

reduce the problem complexity (Bozer and White, 1990; Ha and Chae, 2019; Tappia et al., 2017, 

2019). Moreover, according to Zaerpour et al. (2013), the in-rack storage policy does not affect 

the optimal rack configuration. In addition, we assume that the SKUs assigned to a 3D rack 

cannot share a storage lane with other types of SKUs. In another word, each lane in a 3D rack can 

only accommodate one type of SKUs. It seems like that the exclusive SKU-to-lane assignment 

will significantly increase the required storage space. However, if a storage lane is allowed to 

accommodate various types of SKU, the blocking effect will happen and will require additional 

storage lanes for reshuffles, and the expected cycle time for executing a retrieval task will be 

significantly increased (Xu et al., 2019b).   

Moreover, instead of simply comparing the 2D and 3D AS/RS and selecting one system for the 

warehouse, this study allows the mixed-use of 2D AS/RS and 3D AS/RS racks. In addition, as 

presented in most of the warehouse design studies (Bozer and White, 1990; Lerher et al., 2015b; 

Liu et al., 2020), this study assumes that all racks are identical in 𝑥 and 𝑦 direction and are 

parallel placed to each other. This study also assumes that each rack, if designed, is equipped with 

an aisle-captive crane and an I/O point is equipped at the left lower corner of each rack. 

Moreover, this study allows fewer shuttles than the number of lanes in a 3D AS/RS, so that a 

crane also has to reallocate shuttles across lanes if necessary.  

For a retrieval task in a 2D AS/RS rack, the crane departs from the I/O station, travels to the 

target lane/storage position, loads the SKU, and travels back to the I/O station. To accomplish a 

retrieval task in 3D AS/RS rack, the shuttle in the lane of the requested SKU, if there is one, will 

move the SKU to the end of the lane, the crane will simultaneously travel to the target lane from 

the I/O station, and if the shuttle is ready to hand over the SKU to the crane, the crane will pick 

the SKU up and transfer it to the I/O station, otherwise, the crane has to wait. If a retrieval task is 

located in a lane without a shuttle, the crane, starts from the I/O station, has to select a shuttle 
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from another lane, travels to that shuttle, picks it up, moves it to the lane where the requested 

SKU is located and waits until the shuttle gets the SKU ready for picking up. In addition, cranes 

and shuttles are assumed to remain at the position where they finished their last job before 

performing a new task. Since we only consider retrieval tasks, cranes will remain at I/O points, 

and a shuttle’s dwell point is the front end of its lane. All equipment is assumed to have a 

constant speed and the time for equipment to unload/load an SKU is constant and is ignored.  

4.4.2 Development of Cycle Time Models 

In this section, we described the expected cycle time models for a 2D AS/RS and a 3D AS/RS 

rack 𝑗 under SC operations. The expected cycle time models will be validated in section 4.6. Let 

𝑛𝑥, 𝑛𝑦, and 𝑘𝑗 (i.e., depth of the rack) represent the number of storage cells along 𝑥, 𝑦, and 𝑧 

directions on rack 𝑗. If 𝑘𝑗 = 1, it is a 2D AS/RS rack, otherwise (i.e., 𝑘𝑗 ≥ 2); rack 𝑗 is a 3D rack 

and needs shuttles. Moreover, 𝑤, ℎ, and 𝑙 are defined as the width (𝑥-direction), height (𝑦-

direction), and length (𝑧-direction) of a storage cell. All equipment (i.e., shuttles and cranes) is 

assumed to have a constant speed, and 𝑉𝑆, 𝑉𝑐
𝑥, and 𝑉𝑐

𝑦
 are defined to represent shuttles’ speed and 

cranes’ speed along 𝑥-and 𝑦-direction, respectively. In addition, the width, height, and length (in 

terms of time) of rack 𝑗 are expressed by 𝑇𝑥 , 𝑇𝑦 and 𝑇𝑧𝑗, where 𝑇𝑥 =
𝑤𝑛𝑥

𝑉𝑐
𝑥 , 𝑇𝑦 =

ℎ𝑛𝑦

𝑉𝑐
𝑦 , and 𝑇𝑍𝑗 =

2𝑙𝑘𝑗

𝑉𝑠
. By assuming a continuous rack and the Tchebyshev metric of cranes’ travel time to reach a 

storage lane (Xu et al., 2019a), the expected cycle time for a 2D AS/RS rack 𝑗 (𝐸𝐶𝑗
2𝐷) is 

developed by Bozer and White (1984), and can be expressed by Equation (4.1),  

𝐸𝐶𝑗
2𝐷 = 𝑇1 (

𝛽2

3
+ 1)  

(4.1) 

where  𝑇1 = max{𝑇𝑥 , 𝑇𝑦} and 𝛽 = min {
𝑇𝑥

𝑇1
,
𝑇𝑦

𝑇1
}. 

However, as discussed in section 4.3, the expected cycle time model has never been developed 

for 3D AS/RS with shuttle-based DMMs that allows a smaller number of shuttles than lanes, and 

the gap is filled by this study. In a 3D AS/RS, the distribution of shuttles across lanes is affected 

by both in-rack storage policies and shuttle dispatching rules, where the shuttle distribution 

denotes the probability that lane 𝑖 has a shuttle when an order comes and the conditional 

probability that lane 𝑗 has a shuttle given lane 𝑖 does not have one. In addition, when lane 𝑗 has a 
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shuttle and lane 𝑖 needs one, the probability the shuttle located in lane 𝑗 is selected for 

reallocation is determined by shuttle dispatching rules. Suppose there are 𝑚𝑗 shuttles in a 3D 

AS/RS rack 𝑗 and random in-rack storage assignment and shuttle dispatching is applied, based on 

Theorem 3.1,  the probability that a lane 𝑖 on rack 𝑗 has a shuttle when an order comes is 
𝑚𝑗

𝑛𝑥𝑛𝑦
, the 

conditional probability that a lane 𝑙 has a shuttle given lane 𝑖 does not have one is 
𝑚𝑗

𝑛𝑥𝑛𝑦−1
, and the 

probability that the shuttle on lane 𝑙 is chosen for lane 𝑖 is 
1

𝑚𝑗
.  

When a required SKU is from a lane with a shuttle (with a probability 
𝑚𝑗

𝑛𝑥𝑛𝑦
), the SC cycle is the 

same as the SC cycle in 3D AS/RS with conveyor-based DMMs and the expected cycle time 

model has been developed by De Koster et al. (2008) as  

𝑇1 (
𝛽2

6
+
1

2
) + 𝑇𝑗 (

𝑏𝑗
3

12𝑎𝑗
+
𝑎𝑗
2

6
+
1

2
),  

(4.2) 

where 𝑇𝑗 = max {𝑇1, 𝑇𝑧𝑗  } , 𝑏𝑗 = min {
𝑇𝑥

𝑇𝑗
2 ,
𝑇𝑦

𝑇𝑗
2 ,
𝑇𝑧𝑗

𝑇𝑗
2   }, and 𝑎𝑗 = {

𝑇𝑥

𝑇𝑗
2 ,
𝑇𝑦

𝑇𝑗
2 ,
𝑇𝑧𝑗

𝑇𝑗
2   } /{𝑏𝑗, 1}. 

When the required SKU is located in lane 𝑖 without a shuttle (with the probability 1 −
𝑚𝑗

𝑛𝑥𝑛𝑦
), the 

crane has to travel from the I/O station to lane 𝑙 that has a shuttle, reallocate the shuttle lane 𝑖, 

wait at lane 𝑖 until the shuttle gets the requested SKU ready for picking up. Since we assumed 

constant equipment speed, the crane’s expected waiting time can be calculated as 
𝑇𝑧𝑗

2
. With the 

assumption of random in-rack storage assignment and shuttle dispatching, lane 𝑖 and lane 𝑙 can be 

considered as two randomly selected storage lanes in the rack, and the crane’s travel time can be 

expressed as Equation (4.3) (Bozer and White, 1984), 

𝑇1 (
4

3
+
𝛽2

2
−
𝛽3

30
),  

(4.3) 

Therefore, the expected cycle time for a 3D rack 𝑗 is 

𝐸𝐶𝑗
3𝐷 =

𝑚𝑗

𝑛𝑥𝑛𝑦
[𝑇1 (

𝛽2

6
+
1

2
) + 𝑇𝑗 (

𝑏𝑗
3

12𝑎𝑗
+
𝑎𝑗
2

6
+
1

2
)] + (1 −

𝑚𝑗

𝑛𝑥𝑛𝑦
) [𝑇1 (

4

3
+
𝛽2

2
−
𝛽3

30
) +

𝑇𝑧𝑗

2
].  (4.4) 
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4.4.3 Development of Warehouse Design Model 

The objective of the study is to minimize the system’s cost while maintaining a certain level of 

throughput capacity measured by the expected SC cycle time via determining the number and 

dimensions of racks (i.e., length, width, and depth of each rack), the number of cranes (equals to 

the number of racks) and shuttles, and the product allocation (i.e., SKU-to-rack assignment). 

The daily cost (i.e., fixed cost, operation and maintenance cost, and the land cost for aisle) of 

having one shuttle and crane are denoted by 𝐶𝑠 and 𝐶𝑣, respectively. We also define 𝐶𝑟𝑤 as the 

daily warehouse cost (land cost, rack cost, and warehouse operation cost such as lighting) per 

cubic meters. Moreover, 𝑁𝑎 is defined as the maximum number of racks allowed in the system. 

Binary variables 𝑟𝑗, where 1 ≤ 𝑗 ≤ 𝑁𝑎, are defined to demonstrate if rack 𝑗 is designed to 

accommodate SKUs (i.e., 𝑟𝑗 = 1) or not (i.e., 𝑟𝑗 = 0), and without loss of generality, we assume 

𝑟𝑗 ≥ 𝑟𝑗+1. Then the daily warehouse investment can be expressed as  

∑ (𝐶𝑠𝑚𝑗 + 𝐶𝑣𝑟𝑗
𝑁𝑎 
𝑗=1 + 𝐶𝑟𝑤𝑤ℎ𝑙𝑛𝑥𝑛𝑦𝑘𝑗), 

where 𝑚𝑗, 𝑛𝑥, 𝑛𝑦, and 𝑘𝑗 are defined in subsection 4.4.2 and are integer variables in the 

warehouse design problem. Without loss of generality, we assume 𝑘𝑗 ≥ 𝑘𝑗+1. 𝑤, ℎ, and 𝑙 have 

also been defined in subsection 4.4.2, and are considered as parameters in the warehouse design 

problem.  

Let 𝐼 represent the set of SKU types that need to be accommodated with 𝑖 denoting indices. The 

inventory level and the normalized demand rate of SKU type 𝑖 are known in advance and are 

represented by 𝑄𝑖 and 𝑑𝑖, where ∑ 𝑑𝑖 = 1𝑖∈𝐼 . We estimated a benchmark expected cycle time to 

meet a required daily throughput capacity and defined 𝐶𝑡 as the daily benefit loss if the expected 

cycle time given by the warehouse design exceeds the benchmark expected cycle time (i.e., 

𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘) by one second. The method for estimating 𝐶𝑡 based on the desired throughput 

capacity can be found in Appendix H. Integer variables 𝑦𝑖𝑗 are used to represent the number of 

SKU type 𝑖 assigned to rack 𝑗. Moreover, binary variables 𝑠𝑗 are defined to show if rack 𝑗 is a 2D 

AS/RS rack (i.e., 𝑠𝑗 = 1) or not (i.e., 𝑠𝑗 = 0). Then the cost for having a higher expected cycle 

time than 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 is expressed by  
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∑∑𝑑𝑖
𝑦𝑖𝑗

𝑄𝑖
𝐶𝑡(𝐸𝐶𝑗 − 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘)

𝑁𝑎 

𝑗=1𝑖∈𝐼

, 

where  

𝐸𝐶𝑗 = 𝑠𝑗𝑇1 (
𝛽2

3
+ 1)

+ (1 − 𝑠𝑗) (
𝑚𝑗

𝑛𝑥𝑛𝑦
[𝑇1 (

𝛽2

6
+
1

2
) + 𝑇𝑗 (

𝑏𝑗
3

12𝑎𝑗
+
𝑎𝑗
2

6
+
1

2
)]

+ (1 −
𝑚𝑗

𝑛𝑥𝑛𝑦
) [𝑇1 (

4

3
+
𝛽2

2
−
𝛽3

30
) +

𝑇𝑧𝑗

2
]), 

and ∑ ∑ 𝑑𝑖
𝑦𝑖𝑗

𝑄𝑖
𝐸𝐶𝑗

𝑁𝑎 
𝑗=1𝑖∈𝐼  is the expected cycle time for retrieving an SKU from the warehouse. 

Since 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 is constant, it is dropped in the warehouse design model.   

Integer variables 𝑛𝑖𝑗 are defined to demonstrate the number of lanes on rack 𝑗 used to 

accommodate SKU type 𝑖. At last, 𝑀1, 𝑀2, and 𝜀 are two big constant numbers and a small 

constant number to facilitate the constraints development. The warehouse design problem is then 

expressed as a mixed-integer nonlinear programming (MINP) as follows,  

 

𝑚𝑖𝑛∑(𝐶𝑠𝑚𝑗 + 𝐶𝑣𝑟𝑗

𝑁𝑎 

𝑗=1

+ 𝐶𝑟𝑤𝑤ℎ𝑙𝑛𝑥𝑛𝑦𝑘𝑗) +∑∑𝑑𝑖
𝑦𝑖𝑗

𝑄𝑖
𝐶𝑡𝐸𝐶𝑗

𝑁𝑎 

𝑗=1𝑖∈𝐼

  (4.5) 

s.t. ∑𝑦𝑖𝑗

𝑁𝑎 

𝑗=1

= 𝑄𝑖 , 𝑖 ∈ 𝐼, (4.6) 

 𝑛𝑥𝑛𝑦 ≥∑𝑛𝑖𝑗
𝑖∈𝐼

, 1 ≤ 𝑗 ≤ 𝑁𝑎 , (4.7) 

 𝑛𝑖𝑗𝑘𝑗 ≥ 𝑦𝑖𝑗 , 
𝑖 ∈ 𝐼, 1 ≤ 𝑗 ≤

𝑁𝑎 , 
(4.8) 

 𝜀(𝑘𝑗 − 1) ≤ 𝑚𝑗 ≤ 𝑛𝑥𝑛𝑦, 1 ≤ 𝑗 ≤ 𝑁𝑎 , (4.9) 

 ∑𝑦𝑖𝑗
𝑖∈𝐼

≤ 𝑀1𝑟𝑗, 1 ≤ 𝑗 ≤ 𝑁𝑎 , (4.10) 
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 𝑀2(1 − 𝑠𝑗) ≥ 𝑘𝑗 − 1, 1 ≤ 𝑗 ≤ 𝑁𝑎 , (4.11) 

 

𝐸𝐶𝑗 = 𝑠𝑗𝑇1 (
𝛽2

3
+ 1) + (1 − 𝑠𝑗)(

𝑚𝑗

𝑛𝑥𝑛𝑦
[𝑇1 (

𝛽2

6
+
1

2
) + 𝑇𝑗 (

𝑏𝑗
3

12𝑎𝑗
+
𝑎𝑗
2

6
+
1

2
)]

+ (1 −
𝑚𝑗

𝑛𝑥𝑛𝑦
) [𝑇1 (

4

3
+
𝛽2

2
−
𝛽3

30
) +

𝑇𝑧𝑗

2
]), 

1 ≤ 𝑗 ≤ 𝑁𝑎 , (4.12) 

 
𝑛𝑥 , 𝑛𝑦, 𝑦𝑖𝑗 , 𝑚𝑗 , 𝑛𝑖𝑗 ∈ 𝑍

+; 𝑇1, 𝑇𝑗, 𝑇𝑥 , 𝑇𝑦, 𝐸𝐶𝑗 ∈ 𝑅
+; 0 < 𝛽, 𝑎𝑗, 𝑏𝑗 ≤ 1; 𝑟𝑗, 𝑠𝑗 ∈ {0,1}; 0 ≤ 𝑘𝑗

≤ 𝑚𝑎𝑥
𝑖∈𝐼

𝑄𝑖 
(4.13) 

The objective function (4.5) minimizes the warehouse investment and the penalty for not meeting 

the benchmark expected cycle time (i.e., throughput capacity). Constraint set (4.6) represents the 

product allocation (SKU-to-rack assignment) and makes sure all SKUs are accommodated. 

Constraint sets (4.7) and (4.8) guarantee enough storage spaces on each rack and only the same 

type of SKUs can be stored in a lane. Constraint set (4.9) assures that the number of shuttles on 

each rack cannot exceed the number of lanes if the rack is 3D, and if the rack is 2D, this rack 

should not have any shuttles. In another word, 𝑚𝑗 = 0 if 𝑘𝑗 ≤ 1, and if 𝑘𝑗 ≥ 2, 1 ≤ 𝑚𝑗 ≤ 𝑛𝑥𝑛𝑦. 

Constraint set (4.10) checks if a rack is designed for accommodating SKUs. Constraint set (4.11) 

ensures 𝑠𝑗 = 1 if rack 𝑗 is a 2D AS/RS rack (i.e., single-deep). Constraint set (4.12) calculates the 

expected cycle time of each rack. Constraint set (4.13) defines the range of each variable.  

The existence of the integer variables and nonlinearity in the MINP lead to considerable 

computational challenges. In the following section 4.5, the MINP is converted to mixed-integer 

programming (MIP) based on optimality conditions, and branch and bound (B&B) algorithms are 

developed for the computational burdens.   

4.5 Optimality Conditions, MIP Formulation, and B&B 

Algorithm  

4.5.1 Optimality Conditions and MIP Formulation 

Given the fact that, in practice, the solution space of 𝑛𝑥 and 𝑛𝑦 is restricted by the application 

environment (e.g., space limitation), the warehouse design problem can be simplified by solving 

the problem iteratively on a given set of potential values of 𝑛𝑥 and 𝑛𝑦. Moreover, Theorem 4.1 
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and Theorem 4.2 are proved as optimality conditions to eliminate the nonlinearity and reduce the 

number of variables in the proposed MINP. 

Theorem 4.1: Optimality Condition 1. For a rack in crane-based AS/RS system, no matter what’s 

the depth of storage lanes and the number of shuttles, under random in-rack storage assignment, 

the picking face should always be square in time (SIT; i.e., 𝑇𝑥 = 𝑇𝑦 and 𝛽 = 1) to minimize the 

expected cycle time of this rack.  

Proof. The optimality condition has already been proved for 2D AS/RS (Roodbergen and Vis, 

2009),  and this study only has to prove the case for 3D AS/RS.  

Let 𝑛 = 𝑛𝑥𝑛𝑦, 𝑉 =
𝑤ℎ𝑛

𝑉𝑐
𝑥𝑉𝑐

𝑦 = 𝛽𝑇1
2, and 𝑇1 = √

𝑉

𝛽
, three scenarios can be considered.  

Scenario 1: 𝑇𝑧𝑗 ≥ 𝑇1, 𝑇𝑗 = 𝑇𝑧𝑗 , 𝑏𝑗 =
𝛽𝑇1

𝑇𝑧𝑗
 and 𝑎𝑗 =

𝑇1

𝑇𝑧𝑗
.  

Then 𝐸𝐶𝑗
3𝐷 represented by Equation (4.2) can be written as Equation (4.14),  

𝐸𝐶𝑗
3𝐷 =

𝑚𝑗

𝑛
(√

𝑉

𝛽
(
1

2
+
𝛽2

6
) + 𝑇𝑗 (

1

2
+
𝑉𝛽2

12𝑇𝑧𝑗
2 +

𝑉

6𝑇𝑧𝑗
2 𝛽
))+ (1 −

𝑚𝑗

𝑛
)(√

𝑉

𝛽
(
4

3
+
𝛽2

2
−
𝛽3

30
) +

𝑇𝑧𝑗

2
) , (4.14) 

By taking the derivation of 𝐸𝐶𝑗
3𝐷 on 𝛽, it is clear that under scenario 1, 𝐸𝐶𝑗

3𝐷 linearly decreases 

in 𝛽, and therefore, to minimize 𝐸𝐶𝑗
3𝐷, we should have 𝛽 = 1. 

Scenario 2. 𝑇𝑧𝑗 ≤ 𝑇1, 𝑇𝑗 = 𝑇1, 𝑏𝑗 =
𝑇𝑧𝑗

𝑇1
 and 𝑎𝑗 = 𝛽. 

Under this scenario, 𝐸𝐶𝑗
3𝐷 can be formulated as (4.15),  and by taking the derivation on 𝛽, it can 

be proved that, under scenario 2, 𝛽 should also be 1 to minimize  𝐸𝐶𝑗
3𝐷. 

𝐸𝐶𝑗
3𝐷 =

𝑚𝑗

𝑛
(√

𝑉

𝛽
(
1

2
+
𝛽2

6
) + √

𝑉

𝛽
(
1

2
+
𝑇𝑧𝑗
3 𝛽

3
2

12𝛽𝑣
3
2

+
𝛽2

6
))+ (1 −

𝑚𝑗

𝑛
)(√

𝑉

𝛽
(
4

3
+
𝛽2

2
−
𝛽3

30
) +

𝑇𝑧𝑗

2
) , (4.15) 

Scenario 3. 𝑇𝑧𝑗 is the second-largest among {𝑇𝑥 , 𝑇𝑦, 𝑇𝑧𝑗}. 

Let’s assume  𝑇𝑥 ≥ 𝑇𝑧𝑗 ≥ 𝑇𝑦, then 𝛽 = 𝑏𝑗 =
𝑇𝑦

𝑇𝑥
, 𝑎 =

𝑇𝑧𝑗

𝑇𝑥
, and Equation (4.2) can be rewritten to 

Equation (4.16).  
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𝐸𝐶𝑗
3𝐷 =

𝑚𝑗

𝑛
(𝑇𝑥 (

1

2
+
𝑇𝑦
2

6𝑇𝑥
2) + 𝑇𝑥 (

1

2
+

𝑇𝑥𝑇𝑦
3

12𝑇𝑧𝑗𝑇𝑥
3 +

𝑇𝑧𝑗
2

6𝑇𝑥
2))+ (1 −

𝑚𝑗

𝑛
) (𝑇𝑥 (

4

3
+
𝑇𝑦
2

2𝑇𝑥
2 −

𝑇𝑦
3

30𝑇𝑥
3) +

𝑇𝑧𝑗

2
) , (4.16) 

By taking the derivation of 𝐸𝐶𝑗
3𝐷 over 𝑇𝑥 , it can be proved that if 𝑇𝑥 ≥ 𝑇𝑧𝑗 ≥ 𝑇𝑦, to minimize the 

expected cycle time, 𝑇𝑥 should equal to 𝑇𝑧𝑗. Therefore, scenario 3 is converted to scenario 1 and 

we should have 𝛽 = 1. The same logic can be applied for the case in which 𝑇𝑦 ≥ 𝑇𝑧𝑗 ≥ 𝑇𝑥.  ∎ 

Theorem 4.1 indicates that, in an optimal rack design, 𝑇𝑥 should always equal to 𝑇𝑦 (i.e., 
𝑤𝑛𝑥

𝑉𝑐
𝑥 =

ℎ𝑛𝑦

𝑉𝑐
𝑦 ). Therefore, variable 𝛽 fixed as one, 𝑛𝑥 and 𝑛𝑦 can be replaced by a new integer variable 𝑛, 

which denotes the number of storage lanes on a rack, and the nonlinearity brought by 𝑛𝑥𝑛𝑦 can 

be eliminated. Please note that Theorem 4.1 is not only applicable under random in-rack storage 

assignment but also under the other in-rack storage policies since the optimal rack dimension is 

not affected by storage policies (Zaerpour et al., 2013). Moreover, in this paper, we only solved 

the problem with 𝑛 = 𝑛𝑥𝑛𝑦 and assuming 𝑇𝑥 = 𝑇𝑦. However, it not necessary to have 𝑇𝑥 = 𝑇𝑦. 

As long as the potential values of 𝑛𝑥 and 𝑛𝑦 can be decided, which is common in practice, 

variable 𝛽 and 𝑛 = 𝑛𝑥𝑛𝑦 can be fixed.  

Theorem 4.2: Optimality Condition 2. Let 𝑛 denote the number of lanes on a 3D rack 𝑗, then to 

minimize the shuttles cost and the cost of not meeting the desired throughput capacity of this 

rack, the number of shuttles on rack 𝑗 can only be one or 𝑛. 

Proof. Let 𝐶𝑗
𝑠𝑡 represent the combination of the shuttles cost and the penalty of not meeting the 

benchmark expected cycle time of rack 𝑗, we have  

𝐶𝑗
𝑠𝑡 = 𝐶𝑠𝑚𝑗 +∑

𝑑𝑖𝑦𝑖𝑗

𝑄𝑖
(
𝑚𝑗

𝑛
𝐸𝐶𝑗,𝑘𝑗

3𝐷1 + (1 −
𝑚𝑗

𝑛
)𝐸𝐶𝑗,𝑘𝑗

3𝐷2) ,

𝑖∈𝐼

(4.17) 

Where,𝐸𝐶𝑗,𝑘𝑗
3𝐷1 = 𝑇1 (

1

2
+
𝛽2

6
) + 𝑇𝑗 (

1

2
+

𝑏𝑗
3

12𝑎𝑗
+
𝑎𝑗
2

6
) and 𝐸𝐶𝑗,𝑘𝑗

3𝐷2 = 𝑇1 (
4

3
+
𝛽2

2
−
𝛽3

30
) +

𝑇𝑧𝑗

2
 denote the 

expected SC cycle time for the cases that a required SKU is in a lane with a shuttle and the 

required SKU is from a lane without a shuttle, and 𝑘𝑗 represents the depth of rack 𝑗. By taking the 

derivation of 𝐶𝑗
𝑠𝑡 over 𝑚𝑗, we can have equation (4.18). 
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𝑑𝐶𝑗
𝑠𝑡

𝑑𝑚𝑗
= 𝐶𝑠 +

1

𝑛
∑

𝑑𝑖𝑦𝑖𝑗

𝑄𝑖
(𝐸𝐶𝑗,𝑘𝑗

3𝐷1 − 𝐸𝐶𝑗,𝑘𝑗
3𝐷2) ,

𝑖∈𝐼

 (4.18) 

It is straightforward  that 𝐸𝐶𝑗,𝑘𝑗
3𝐷1 − 𝐸𝐶𝑗,𝑘𝑗

3𝐷2 ≤ 0. Therefore, once the depth of a 3D rack 𝑗, 𝑘𝑗, is 

determined, we can either have  
𝑑𝐶𝑗

𝑠𝑡

𝑑𝑚𝑗
≥ 0 or 

𝑑𝐶𝑗
𝑠𝑡

𝑑𝑚𝑗
≤ 0, which means a 3D rack can only have one 

or 𝑛 shuttles. ∎ 

For any given 𝑛, 𝐸𝐶𝑗 in Equation (4.12) can be written as 𝐸𝐶𝑘𝑗
1 + 𝐸𝐶𝑘𝑗

2 , and 𝐸𝐶𝑘𝑗
1  and 𝐸𝐶𝑘𝑗

2  based 

on different 𝑘𝑗 can be calculated in advance as follows,  

𝐸𝐶𝑘
1 =

{
 
 
 

 
 
 

0 𝑘 = 0,

𝑇1 (
𝛽2

3
+ 1) =

4

3
√
𝑤ℎ𝑛

𝑉𝑐
𝑥𝑉𝑐

𝑦 𝑘 = 1,

4

3
√
𝑤ℎ𝑛

𝑉𝑐
𝑥𝑉𝑐

𝑦 +
(2𝑘𝑙)3

𝑉𝑠
3 𝑤ℎ𝑛

𝑉𝑐
𝑥𝑉𝑐

𝑦

 𝑘 ≥ 2,√
𝑤ℎ𝑛

𝑉𝑐
𝑥𝑉𝑐

𝑦 ≥
2𝑘𝑙

𝑉𝑠
,

2

3
√
𝑤ℎ𝑛

𝑉𝑐
𝑥𝑉𝑐

𝑦 +
2𝑘𝑙

𝑉𝑠
(
1

2
+

𝑤ℎ𝑛𝑉𝑠
2

4(2𝑘𝑙)2𝑉𝑐
𝑥𝑉𝑐

𝑦) 𝑘 ≥ 2,√
𝑤ℎ𝑛

𝑉𝑐
𝑥𝑉𝑐

𝑦 <
2𝑘𝑙

𝑉𝑠
,

, and 

𝐸𝐶𝑘
2 =

{
 
 

 
 
0 𝑘 = 0,

𝑇1 (
𝛽2

3
+ 1) =

4

3
√
𝑤ℎ𝑛

𝑉𝑐
𝑥𝑉𝑐

𝑦 𝑘 = 1,

9

5
√
𝑤ℎ𝑛

𝑉𝑐
𝑥𝑉𝑐

𝑦 +
𝑘𝑙

𝑉𝑠
𝑘 ≥ 2,

. 

Let’s introduce binary variables 𝑛𝑗𝑘
𝑧 , where 1 ≤ 𝑗 ≤ 𝑁𝑎 , 0 ≤ 𝑘 ≤ max

𝑖∈𝐼
𝑄𝑖, and if the depth of rack 

𝑗 is 𝑘 storage cells, 𝑛𝑗𝑘
𝑧 = 1; otherwise, 𝑛𝑗𝑘

𝑧 = 0. Integer variables 𝑟𝑗, 𝑠𝑗 , and 𝑘𝑗 shown in the 

MINP can be eliminated. In addition, the decision variable indicating the combination of the 

shuttles cost and the cost of not meeting the benchmark expected cycle time (or desired 

throughput capacity) of rack 𝑗, 𝐶𝑗
𝑠𝑡, is defined. Continuous variables 𝑑𝑗, 𝑒𝑗, and binary variables 

𝑓𝑗 are also introduced for incorporating Theorem 4.2. Considering 𝑛 as a parameter, the MINP 

represented by Equation (4.5-4.13) can be converted to the MIP defined by Equation (4.6) and 

(4.19-4.30). 

 min∑𝐶𝑣∑𝑛𝑖𝑘
𝑧

𝐾

𝑘=1

𝑁𝑎 

𝑗=1

+ 𝐶𝑟𝑤𝑤ℎ𝑙𝑛∑𝑘𝑛𝑖𝑘
𝑧

𝐾

𝑘=1

+ 𝐶𝑗
𝑠𝑡  (4.19) 
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s.t.   (4.6)   

 ∑ 𝑛𝑗𝑘
𝑧

𝑚𝑎𝑥
𝑖∈𝐼

𝑄𝑖

𝑘=0

= 1, 1 ≤ 𝑗 ≤ 𝑁𝑎 , (4.20) 

 𝑑𝑗 ≥ 𝐶𝑠 + 𝐶𝑡∑
𝑑𝑖𝑦𝑖𝑗

𝑄𝑖
(
1

𝑛
𝐸𝐶𝑘

1 + (1 −
1

𝑛
)𝐸𝐶𝑘

2) −𝑀1(1 − 𝑛𝑗𝑘
𝑧 )

 𝑖∈𝐼

, 2 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑁𝑎 , (4.21) 

 𝑒𝑗 ≥ 𝐶𝑠𝑛 + 𝐶𝑡∑
𝑑𝑖𝑦𝑖𝑗

𝑄𝑖
𝐸𝐶𝑘

1 −𝑀1(1 − 𝑛𝑗𝑘
𝑧 )

 𝑖∈𝐼

, 2 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑁𝑎 , (4.22) 

 𝑑𝑗 − 𝑒𝑗 ≤ 𝑀2𝑓𝑗, 1 ≤ 𝑗 ≤ 𝑁𝑎 , (4.23) 

 𝑒𝑗 − 𝑑𝑗 ≤ 𝑀2(1 − 𝑓𝑗), 1 ≤ 𝑗 ≤ 𝑁𝑎 , (4.24) 

 𝐶𝑗
𝑠𝑡 ≥ 𝑒𝑗 −𝑀2(1 − 𝑓𝑗 + 𝑛𝑗1

𝑧 ), 1 ≤ 𝑗 ≤ 𝑁𝑎 , (4.25) 

 𝐶𝑗
𝑠𝑡 ≥ 𝑑𝑗 −𝑀2(𝑓𝑗 + 𝑛𝑗1

𝑧 ), 1 ≤ 𝑗 ≤ 𝑁𝑎 , (4.26) 

 𝐶𝑗
𝑠𝑡 ≥∑

𝑑𝑖𝑦𝑖𝑗

𝑄𝑖
𝐸𝐶1

1,
 𝑖∈𝐼

 1 ≤ 𝑗 ≤ 𝑁𝑎 , (4.27) 

 𝑛 ≥∑𝑛𝑖𝑗
𝑖∈𝐼

, 1 ≤ 𝑗 ≤ 𝑁𝑎 , (4.28) 

 

𝑘𝑛𝑖𝑗 − 𝑦𝑖𝑗 ≥ 𝑀2(1 − 𝑛𝑗𝑘
𝑧 ), 𝑖 ∈ 𝐼, 1 ≤ 𝑗 ≤ 𝑁𝑎 ,  

0 ≤ 𝑘 ≤ 𝑚𝑎𝑥
𝑖∈𝐼

𝑄𝑖, 

(4.29) 

 𝑦𝑖𝑗 , 𝑛𝑖𝑗 ∈ 𝑍
+, 𝑑𝑗 , 𝑒𝑗 , 𝑓𝑗 ∈ 𝑅

+, 𝑛𝑗𝑘
𝑧 ∈ {0,1}. (4.30) 

The objective function (4.19) is the same as the objective function (4.5) but grouped the shuttles 

cost and the cost for not meeting the benchmark expected cycle time. Constraint set (4.20) 

ensures the depth of a rack 𝑗 can only take one value from {0,1, … ,max
𝑖∈𝐼

𝑄𝑖}. Constraint sets (4.21-

4.27) calculate 𝐶𝑗
𝑠𝑡 for each rack 𝑗, where constraint sets (4.21-4.26) indicate that if a rack is 3D, 

it can only have one or 𝑛 shuttles, and constraint set (4.27) provides a lower bound of 𝐶𝑗
𝑠𝑡. 

Constraint set (4.28) and (4.29) together ensure that only one type of SKU can be assigned to a 

storage lane and the assignment does not exceed the lane’s storage capacity.  
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Even though the nonlinearity and multi-variables in the MINP have been eliminated by the MIP 

defined by Equation (4.6) and (4.19-4.30), the warehouse design problem, as shown in Theorem 

4.3, is NP-hard. The computational challenge, as will be shown in section 4.6, are still relatively 

large.  

Theorem 4.3. The warehouse design problem defined by the MIP is NP-hard.  

Proof. Assuming the number and dimensions of racks and the number of shuttles on each rack 

are known in advance, then the problem becomes a product allocation problem. However, since 

the expected cycle time and the storage capacity of each rack changes in terms of product 

allocation, the problem can be considered as a bin-packing problem with varied cost and bin size. 

Since the traditional bin-packing problem is known as NP-hard (Korte and Vygen, 2012),  the 

warehouse design problem, which is much harder than the traditional bin-packing problem, is 

also NP-hard. ∎ 

4.5.2 Branch and Bound Algorithm  

In this section, the concept of the branch-and-bound (B&B) algorithm is adopted for overcoming 

the computational challenges of the warehouse design problem. The optimal solution of the 

warehouse design problem can be solved by applying the proposed B&B algorithm iteratively on 

the potential values of 𝑛 (i.e., number of lanes on each rack).  

For a warehouse design problem with given 𝑛, a branch-and-bound tree can be created where 

each node in the tree is a list of integer numbers, and each element in the list corresponds to a 

rack and the value of an element represents the depth of a rack. For instance, a node 

[𝑘1, 𝑘2, . . , 𝑘𝑛𝑟], where 1 ≤ 𝑘1 ≤ ⋯ ≤ 𝑘𝑛𝑟 ≤ max𝑖∈𝐼
𝑄𝑖 , and 1 ≤ 𝑛𝑟 = |[𝑘1, 𝑘2, . . , 𝑘𝑛𝑟  ]| ≤ 𝑁𝑎, 

represents a warehouse system design with 𝑛𝑟 racks, and 𝑘1, 𝑘2, . . , 𝑘𝑛𝑟 are the depth of each rack. 

Moreover, the value of 𝑛𝑟 is the same as the layer that node is located in the branch-and-bound 

tree. For instance, at the first layer, 𝑛𝑟 = 1, which means only one rack is designed to 

accommodate SKUs. Branching on this node is done by adding one more rack with depth ranges 

from 𝑘𝑛𝑟 to max
𝑖∈𝐼

𝑄𝑖. Therefore, the branches on the node [𝑘1, 𝑘2, . . , 𝑘𝑛𝑟] will be [𝑘1, 𝑘2, . . , 𝑘𝑛𝑟] +

[𝑘𝑛𝑟+1] where 𝑘𝑛𝑟+1 ∈ {𝑘𝑛𝑟 , 𝑘𝑛𝑟 + 1,… ,max𝑖∈𝐼
𝑄𝑖}. An example to demonstrate the branch-and-

bound tree is shown in Appendix I. The B&B algorithm with depth-first-search (DFS) procedure 

can be described step-by-step as below.  
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Step 1 (initialization). Solve the MIP by Gurobi, if the model is infeasible, stop. Else, set the best 

known upper bound (i.e., 𝑈𝐵) and best known lower bound (i.e., 𝐿𝐵) of the warehouse design 

problem as the objective value of the first feasible solution obtained by Gurobi and zero, 

respectively. Initialize a queue by creating a list 𝑞 = [[1], [2], … , [max
𝑖∈𝐼

𝑄𝑖]] (i.e., nodes in the first 

layer of the branch-and-bound tree). 

Step 2. Loop until 𝑞 is empty or 𝐿𝐵 = 𝑈𝐵:  

1. Take a node 𝑁 off the queue following last-in-first-out. 

2. If the lower bound obtained by node 𝑁 (i.e., 𝑙𝑏) is larger than 𝐿𝐵, set 𝐿𝐵 = 𝑙𝑏. 

3. If 𝑙𝑏 < 𝑈𝐵 and the node 𝑁 cannot provide an upper bound (i.e., 𝑢𝑏), branch on node 

𝑁 and add the newly generated nodes into 𝑞.  

4. Else if 𝑙𝑏 < 𝑈𝐵, and node 𝑁 can provide an upper bound and 𝑢𝑏 < 𝑈𝐵, set 𝑈𝐵 =

𝑢𝑏 and discard node 𝑁. 

5. Else if 𝑙𝑏 > 𝑈𝐵, discard node 𝑁. 

In the B&B algorithm, each node in 𝑞 is explored to update the best known upper bound (𝑈𝐵) 

and the best known lower bound (𝐿𝐵) of the warehouse design problem and cut nodes and 

branches to reduce the computational burden.  For each node 𝑁, the lower bound is obtained by 

solving the product allocation problem with the given configuration of racks while allowing the 

storage lanes to accommodate different types of SKUs and ignoring the blocking effect. For any 

node, [𝑘1, 𝑘2, . . , 𝑘𝑛𝑟], the lower bound can be calculated following the algorithm shown below.  

Step 1. Sequence all SKU types in descending order of 
𝑑𝑖

𝑄𝑖
. Set 𝑦𝑖𝑗 = 0 for 𝑖 ∈ 𝐼, 1 ≤ 𝑗 ≤ 𝑛𝑟 which 

represents the SKU-to-rack assignment (i.e., product allocation). Set the available storage space 

on rack 𝑗, as 𝑆𝑗 = 𝑛𝑘𝑗, where  1 ≤ 𝑗 ≤ 𝑛𝑟.  

Step 2. If ∑ 𝑄𝑖𝑖∈𝐼 = 0, stop and output ∑ 𝐶𝑣
𝑛𝑟 
𝑗=1 + 𝐶𝑟𝑤𝑤ℎ𝑙𝑛𝑘𝑗 + 𝐶𝑗

𝑠𝑡, where 𝐶𝑗
𝑠𝑡 = min (𝐶𝑠𝑛 +

𝐶𝑡 ∑ 𝑑𝑖
𝑦𝑖𝑗

𝑄𝑖
𝐸𝐶𝑘𝑗

1
𝑖∈𝐼 , 𝐶𝑠 + 𝐶𝑡 ∑ 𝑑𝑖

𝑦𝑖𝑗

𝑄𝑖
(
1

𝑛
𝐸𝐶𝑘𝑗

1
𝑖∈𝐼 + (1 −

1

𝑛
)𝐸𝐶𝑘𝑗

2 ) if 𝑘𝑗 ≥ 2, otherwise; 𝐶𝑗
𝑠𝑡 =

𝐶𝑡 ∑ 𝑑𝑖
𝑦𝑖𝑗

𝑄𝑖
𝐸𝐶𝑘𝑗

1
𝑖∈𝐼 . If ∑ 𝑄𝑖𝑖∈𝐼 > 0 and max

1≤𝑗≤𝑛𝑟
𝑆𝑗 > 0, go to step 3. If ∑ 𝑄𝑖𝑖∈𝐼 > 0 and max

1≤𝑗≤𝑛𝑟
𝑆𝑗 = 0, 

go to step 4. 
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Step 3. Set 𝑖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖∈𝐼,𝑄𝑖>0

𝑑𝑖

𝑄𝑖
, 𝑗∗ = 𝑎𝑟𝑔𝑚𝑖𝑛

1≤𝑗≤𝑛𝑟,𝑆𝑗>0
𝑆𝑗. Set 𝑦𝑖∗𝑗∗ = min(𝑄𝑖∗ , 𝑆𝑗∗), 𝑄𝑖∗ = 𝑄𝑖∗ − 𝑦𝑖∗𝑗∗ , and 

𝑆𝑗∗ = 𝑆𝑗∗ − 𝑦𝑖∗𝑗∗; go to step 2. 

Step 4. Add an artificial rack, 𝑛𝑟 + 1, with depth 𝑘𝑛𝑟. Set 𝑦𝑖𝑛𝑟+1 = 𝑄𝑖 for all 𝑄𝑖 > 0. Stop and 

output ∑ 𝐶𝑣
𝑛𝑟+1 
𝑗=1 + 𝐶𝑟𝑤𝑤ℎ𝑙𝑛𝑘𝑗 + 𝐶𝑗

𝑠𝑡. 

The upper bound of the node 𝑁 is obtained by solving the product allocation problem with the 

given configuration of racks and the restriction that a storage lane can only accommodate the 

same type of SKUs. The product allocation problem can be represented by the MIP shown in 

Appendix J. In this study, we solve the MIP with Gurobi, and if the problem is feasible, the 

optimal value is obtained as 𝑢𝑏, otherwise; node 𝑁 cannot give a 𝑢𝑏.  

In this paper, we named the B&B algorithm shown above as the standard B&B algorithm, and 

only the information of lower bound and upper bound are used for pruning rules, which has a 

limited capacity for cutting nodes/branches. Fortunately, as will be demonstrated by the 

numerical experiments, two properties of the warehouse design problems are observed and can be 

adopted as pruning rules.  

Property 1. If [𝑘1, 𝑘2, . . , 𝑘𝑛𝑟] provides a feasible racks configuration of the warehouse design 

problem, then for any [𝑘1
′ , 𝑘2

′ , . . , 𝑘𝑛𝑟
′ , 𝑘𝑛𝑟+1

′ ] which also provide a feasible racks configuration, 

only the solution with ∑ 𝑘𝑗
′

1≤𝑗≤𝑛𝑟+1 ≤ ∑ 𝑘𝑗1≤𝑗≤𝑛𝑟  have the opportunity to provide a lower 

objective value than [𝑘1, 𝑘2, . . , 𝑘𝑛𝑟].  

Property 2. If the warehouse design problem has feasible solutions with 𝑛𝑟 racks, and the 

minimum total depth of the feasible solutions with 𝑛𝑟 racks is 𝐷(𝑛𝑟). Then the feasible solutions 

with 𝑛𝑟 + 1 racks should have a total depth of racks as ∑ 𝑘𝑗1≤𝑗≤𝑛𝑟+1 ≤ 𝐷(𝑛𝑟) to obtain a lower 

objective value. 

Therefore, the standard Branch & Bound algorithm can be modified as follows, and the 

performance of this modified B&B algorithm will be illustrated in section 4.6. 

Step 1. Solve the MIP problem defined by Equation (4.6) and (4.19-4.30) with a fixed number of 

opening racks (i.e., 𝑛𝑟) where 𝑛𝑟 ∈ {1,2, . . , 𝑁𝑎} while replacing the objective function (4.19) with 

(4.19,) and 𝑁𝑎 with 𝑛𝑟 for all constraint sets. Record the summation of racks depth, 𝐷(𝑛𝑟), for 
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each 𝑛𝑟, and if the model is infeasible for a given number of racks, 𝐷(𝑛𝑟) = +∞. Moreover, we 

force 𝐷(𝑛𝑟) ≤ 𝐷(𝑛𝑟 − 1),  for 𝑛𝑟 ∈ {2, . . , 𝑁𝑎}. If 𝐷(𝑛𝑟) = +∞ for all 𝑛𝑟 ∈ {1,2, . . , 𝑁𝑎}, the 

warehouse design problem is infeasible and stops, otherwise; go to step 2. 

min∑∑𝑘𝑛𝑖𝑘
𝑧

𝐾

𝑘=1

𝑛𝑟 

𝑗=1

  (4. 19′) 

Step 2. Solve the product allocation problem with the feasible racks configurations obtained from 

step 1, choose the lowest objective value as the initial best known upper bound (i.e., 𝑈𝐵), and set 

the initial best known lower bound (i.e., 𝐿𝐵) of the warehouse design problem as zero. Create a 

list 𝑞 = [[1], [2], … , [𝐷]] where 𝐷 = min (𝐷(1),max
𝑖∈𝐼

𝑄𝑖). 

Step 3. Loop until 𝑞 is empty or 𝐿𝐵 = 𝑈𝐵:  

1. Take a node 𝑁 off the queue following last-in-first-out. 

2. If the rack configuration represented by node 𝑁 = [𝑘1, 𝑘2, . . , 𝑘𝑛𝑟] has a total depth larger 

than 𝐷(𝑛𝑟 − 1), discard node 𝑁. 

3. Else If the lower bound obtained by node 𝑁 (i.e., 𝑙𝑏) is larger than 𝐿𝐵, set 𝐿𝐵 = 𝑙𝑏. 

4. If 𝑙𝑏 ≤ 𝑈𝐵 and the node 𝑁 cannot provide an upper bound (i.e., 𝑢𝑏), branch on node 

𝑁 and add the newly generated nodes into 𝑞.  

5. Else if 𝑙𝑏 < 𝑈𝐵, and node 𝑁 can provide an upper bound that 𝑢𝑏 < 𝑈𝐵, set 𝑈𝐵 = 𝑢𝑏 

and discard node 𝑁 

6. Else if 𝑙𝑏 > 𝑈𝐵, discard node 𝑁. 

4.6 Numerical Experiments  

The parameters of the SKUs’ size (i.e., size of storage cells) and equipment speed in numerical 

experiments were taken from Dong et al. (2021). The width (𝑥-direction; 𝑤), height (𝑦-direction; 

ℎ), and length (𝑧-direction; 𝑙) of a storage cell are considered as 𝑤 = 𝑙 = 1.4𝑚 and ℎ = 2𝑚. The 

velocity of shuttles (𝑉𝑠) is 1.5𝑚/𝑠. The velocity of cranes in x-direction and y-direction are 𝑉𝑐
𝑥 =

2.5𝑚/𝑠 𝑎𝑛𝑑 𝑉𝑐
𝑦
= 0.5𝑚/𝑠, respectively. With the given size of storage cells and equipment 

speed, simulations were first conducted to verify the expected cycle time models (i.e., Equation 

(4.1) and (4.2)).  
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4.6.1 Validation of Expected Cycle Time Models 

Since the expected cycle time model for 2D AS/RS is taken directly from literature and has 

already been validated, here, we only have to verify the expected cycle time model for the 3D 

AS/RS rack. The 3D AS/RS rack considered for simulation is a real-world rack that has been 

analyzed by Dong et al. (2021). The rack has three layers, 80 columns, and each lane has 15 

storage cells. The total number of storage lanes is 240, and the rack can store 3,600 SKUs. 10 

scenarios are created in terms of the number of shuttles in the rack (i.e., 𝑚𝑗) which ranges from 

24 to 240 with a step size of 24. For each scenario, we created 10 subcases, where the number of 

retrieval tasks is fixed as 2000 and the storage locations of the required SKUs are randomly 

selected. We define |Δ| as the average absolute difference between simulation results and cycle 

times calculated by the expected cycle time model (i.e., Equation (4.2)) over 10 subcases. 

Furthermore, 𝜎 represents the standard deviation of the simulation results across the 10 subcases.  

Table 4-1 lists both |Δ| and 𝜎 (in seconds) for different numbers of shuttles, and shows all |Δ| are 

much smaller than 𝜎, which validates the accuracy of the expected cycle time model. 

4.6.2 Compare B&B, The Modified B&B, and The MIP Solved by Gurobi 

Numerical experiments were conducted to compare the performance of the standard B&B 

algorithm, the modified B&B algorithm, and solving the MIP defined by Equation (4.6) and 

(4.19-4.30) with Gurobi. The running time of Gurobi is limited as the maximum value of the 

running time of the standard B&B algorithm and 60 seconds. When it reaches the time limitation, 

Gurobi will stop and return a feasible solution if it can find one. 10 cases are created in terms of 

different numbers of SKU types (i.e., |𝐼|), different numbers of storage lanes in one rack (i.e., 𝑛), 

and different inventory levels (i.e., 𝑄𝑖) and demand rates (i.e., 𝑑𝑖) of each SKU type 𝑖 for 

comparing these three solving methods.  

The maximum number of racks allowed in a warehouse is assumed to be 𝑁𝑎 = 8. The daily cost 

(e.g., hardware cost, equipment operation and maintenance cost, and the land cost for an aisle) of 

having one shuttle (𝐶𝑠) and one crane (𝐶𝑣) are considered as $0.2/𝑑𝑎𝑦 and $130/𝑑𝑎𝑦. The rack 

and warehouse space cost (e.g., land cost, rack cost, energy consumption) is $0.1/𝑚3/𝑑𝑎𝑦. The 

benefit loss for having an expected cycle time higher than the benchmark expected cycle time by  
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Table 4-1. Comparison between Simulation and Expected Cycle Time Model for 3D 

AS/RS 

  𝑚𝑗 24 48 72 96 120 144 168 192 216 240 

|Δ| 0.53 0.53 0.50 0.44 0.34 0.44 0.40 0.33 0.33 0.22 

𝜎 0.70 0.60 0.60 0.67 0.71 0.78 0.61 0.54 0.53 0.54 
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one second (i.e., 𝐶𝑡) is randomly picked from $10/𝑠𝑒𝑐𝑜𝑛𝑑/𝑑𝑎𝑦 to $130/𝑠𝑒𝑐𝑜𝑛𝑑/𝑑𝑎𝑦. The 

details for estimating the cost parameters can be found in Appendix H.  

The performance of each solving method under these 10 cases are illustrated in Table 4-2. The 

objective value ($/day) obtained by the standard B&B algorithm, the modified 𝐵&𝐵 algorithm, 

and solving the MIP defined by Equation (4.6) and (4.19-4.30) are denoted by 𝐶𝐵&𝐵, 𝐶𝐵&𝐵′ , and  

𝐶𝑀𝐼𝑃. The running time (in seconds) of each solving method is shown by 𝑇𝐵&𝐵, 𝑇𝐵&𝐵′ , and 𝑇𝑀𝐼𝑃, 

respectively. Moreover, 𝑁𝑂𝑁𝐵&𝐵 and 𝑁𝑂𝑁𝐵&𝐵′ demonstrate the number of nodes in the branch-

and-bound tree generated by the standard B&B algorithm and the modified B&B algorithm, 

respectively. In addition, we report the gap (i.e., 𝐺𝑀𝐼𝑃) of Gurobi when it reaches the time 

limitation to indicate if the optimal solution is found.  

As demonstrated by Table 4-2, the standard B&B procedure can always reach the optimal 

solution since it is an exact algorithm. Moreover, the standard B&B algorithm can usually spend 

much less time to reach the optimal solution than the MIP. The modified B&B algorithm can 

always get the same solution as the standard B&B algorithm and can usually generate a much 

smaller branch-and-bound tree, and therefore, requires a much shorter time to reach the optimal 

solution (e.g., (𝑛, |𝐼|, ∑ 𝑄𝑖𝑖∈𝑁 , 𝐶𝑡) = (28,27,675,120)). Another 50 cases were also created for 

further comparing the standard and the modified B&B algorithm and the results are shown in 

Appendix K. Surprisingly, the modified B&B algorithm can always reach the optimal solution 

within a shorter running time than the standard B&B algorithm. Furthermore, the solving time of 

the warehouse design problem is much shorter when 𝐶𝑡 is low or 𝑛 > |𝐼|. That’s because when 𝐶𝑡 

is low or 𝑛 > |𝐼|, the warehouse can have a smaller number of racks which helps to reduce the 

solution space (i.e., branch-and-bound tree). In addition, even not shown in this paper, the solving 

time is also affected by the distribution of the demand rates and inventory levels across different 

SKU types.  

4.6.3 Sensitivity Analysis of the Warehouse Design Problem  

More numerical experiments were conducted for large case problems solved by the modified 

B&B algorithm to analyze the impacts of cost parameters and the distribution of inventory levels 

and demand rates across different SKU types on the warehouse design. To generate the demand 

rate (i.e., 𝑑𝑖) for each SKU type, we used the method proposed by Hausman et al. (1976) to 

calculate the normalized demand rate for each SKU type 𝑖.  
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Table 4-2. Comparison of Solving Methods 

 (𝑛, |𝐼|, ∑ 𝑄𝑖𝑖∈𝑁 , 𝐶𝑡) 𝐶𝐵&𝐵 𝐶𝐵&𝐵′ 𝐶𝑀𝐼𝑃 𝑇𝐵&𝐵  𝑇𝐵&𝐵′ 𝑇𝑀𝐼𝑃 𝑁𝑂𝑁𝐵&𝐵  𝑁𝑂𝑁𝐵&𝐵′  𝐶𝑀𝐼𝑃 

(10, 9, 90,51) 868.9 868.9 868.9 5.7 3.2 42 452 413 0% 

(10,7,80,27) 599.5 599.5 599.5 3.8 0.7 2.8 114 69 0% 

(10,9,116,40) 705.7 705.7 705.7 3.6 0.24 2.2 53 38 0% 

(20,14,131,59) 736.3 736.3 736.3 3.8 1.03 8.4 90 63 0% 

(20,16,172,69) 1133 1133 1159 32 5 60 878 176 25% 

(14,17,196,118) 1528.7  1528.7 1528.7 17.7 4.5 20.8 444 92 0% 

(24, 27, 540,120) 2229.9 2229.9 2243.7 314 315 314 2321 2110 34% 

(33,27,540,27) 849.4 849.4 858.4 79 53 80 709 532 2% 

(28,27,675,120) 2384.8 2384.8 2398.1 15332 1527 15333 23671 7130 35% 

(25,27,675,37) 904.7 904.7 914.5 407 128 407 1860 1118 1.4% 
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 𝐺(𝑙) = 𝑙𝑣 , 0 < 𝑙 ≤ 1 (4.31) 

where 0 < 𝑣 ≤ 1. Formulation (4.31) represents the ranked cumulative (𝑙𝑣 × 100)% demand 

versus (𝑙 × 100)% of SKU types. The value of 𝑣 determines the distribution of demand rates 

across different SKU types. A greater 𝑣 means a more homogenous demand rate across SKU 

types. For a given 𝑣, 𝑑𝑖 is obtained through equations (4.32) and (4.33) (Hausman et al. 1976). 

 
𝑑𝑖 = 𝐺 (

𝑖

𝑁
) − 𝐺 (

𝑖 − 1

𝑁
) 𝑖 = 1,… ,𝑁 (4.32) 

 𝐺(0) = 0  (4.33) 

Here, we consider four demand rate distribution scenarios, featured by  𝐺(0.2) ∈

{ 0.2, 0.4, 0.6, 0.8}. Higher 𝐺(0.2) presents the demand rates across SKU types are more 

heterogeneous. 𝐺(0.2) = 0.2 (i.e., 𝑣 = 1) implies that all SKU types have the same demand rate. 

The inventory levels are generated following a Gaussian distribution (i.e., 𝒩(𝜇, 𝜎2)), where 

∑ 𝑄𝑖𝑖∈𝑁 = 675 units, 𝜇 =25 units, and the standard derivation (𝜎) ranges from 1 to 21 with a step 

size of 5 units. Moreover, we assume the SKU type 𝑖 with a higher 𝑑𝑖 corresponds to a higher 

inventory level, 𝑄𝑖 . The number of SKU types (i.e., |𝐼|) under consideration is 27. The maximum 

number of racks allowed is 10, and each rack, if designed to be open, has 29 storage lanes. For 

each combination of demand rate and inventory level distributions, the daily cost of having an 

expected cycle time higher than the benchmark expected cycle time by one second is taken from 

the set [$1/𝑠𝑒𝑐𝑜𝑛𝑑/𝑑𝑎𝑦, $25/𝑠𝑒𝑐𝑜𝑛𝑑/𝑑𝑎𝑦, $50/𝑠𝑒𝑐𝑜𝑛𝑑/𝑑𝑎𝑦, $75/𝑠𝑒𝑐𝑜𝑛𝑑/𝑑𝑎𝑦, $100/

𝑠𝑒𝑐𝑜𝑛𝑑/𝑑𝑎𝑦, $125/𝑠𝑒𝑐𝑜𝑛𝑑/𝑑𝑎𝑦] while the values of the other cost parameters are fixed.  

Table 4-3 demonstrates the warehouse design problem under different values of 𝐶𝑡 with 𝑣 = 0.4 

and 𝜎 = 16, where 𝐸𝐶 demonstrates the expected cycle time for retrieving an SKU under the 

optimal warehouse design, [𝑘1, 𝑘2, . . , 𝑘𝑛𝑟] represents the optimal configuration (i.e., number and 

depth of racks), [𝑚1,𝑚2, . . , 𝑚𝑛𝑟] shows the number of shuttles on each rack, 𝑆 shows the storage 

capacity (i.e., number of storage cells) of the system, and 𝐴𝑣𝑔 and 𝑠𝑡𝑑 denote the mean and 

standard derivation of racks depth.  

As illustrated by Table 4-3, when the cost for not meeting the desired throughput capacity is low 

(i.e., 𝐶𝑡 = 1), the warehouse design tends to have a fewer number but deep racks and one shuttle 

for each rack. Even though such design can lead to a high expected cycle time (i.e., 25.1 seconds)  



  

106 

         

Table 4-3. Sensitivity Analysis of 𝐶𝑡 when 𝒗 = 0.4 and 𝜎 = 16 

𝐶𝑡 𝐶𝐵&𝐵 𝐸𝐶 [𝑘1, 𝑘2, . . , 𝑘𝑛𝑟] [𝑚1,𝑚2, . . , 𝑚𝑛𝑟] 𝑆 𝐴𝑣𝑔 𝑠𝑡𝑑 

1 612 25.1 [9, 16] [1, 1] 725 12.5 3.5 

25 1104 13.9 [7, 8, 9] [29, 29, 29] 696 8.0 0.8 

50 1454 13.9 [7, 8, 9] [29, 29, 29] 696 8.0 0.8 

75 1750 11.3 [5, 6, 6, 7] [29, 29, 29, 29] 696 6.0 0.7 

100 1921 11.3 [5, 6, 6, 7] [29, 29, 29, 29] 696 6.0 0.7 

125 2177 9.8 [3, 5, 5, 5, 6] [29, 29, 29, 29, 29] 696 4.8 0.9 
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and wasted storage space (i.e., 𝑆 = 725, while ∑ 𝑄𝑖𝑖∈𝑁 = 675), having fewer racks can reduce 

the number of cranes, which is much expensive than 𝐶𝑡 and 𝐶𝑟𝑤. By increasing 𝐶𝑡 from one to 25, 

the warehouse design tends to have a larger number but shallower racks ([𝑘1, 𝑘2, . . , 𝑘𝑛𝑟] and 

𝐴𝑣𝑔) and the depth of each rack is more evenly distributed (𝑠𝑡𝑑) than the design under 𝐶𝑡 = 1, 

and we do expect a few 2D AS/RS racks if 𝐶𝑡 gets extremely high.  Moreover, when 𝐶𝑡 = 25, 

even though the depth of each rack is reduced, each rack has shuttles for each lane to reduce the 

expected cycle time, which is consistent with Theorem 4.2 that a 3D AS/RS rack should either 

have one or 𝑛 shuttles. That’s because when 𝐶𝑡 is high, shallow racks and more shuttles are 

needed to reduce the expected cycle time. However, by increasing 𝐶𝑡 from 25 to 50 or from 50 to 

25, the warehouse design does not change, which indicates that the marginal impact of increasing 

𝐶𝑡 on warehouse design decrease in 𝐶𝑡. In addition, even though we did not run sensitivity 

analysis on 𝐶𝑣, 𝐶𝑟𝑤, and 𝐶𝑠, it is straightforward that decreasing crane’s cost, 𝐶𝑣, will have the 

same impact as increasing 𝐶𝑡. Increasing 𝐶𝑟𝑤 will make the warehouse have more racks, since, as 

demonstrated in Table 4-3, by increasing the number of racks, the total storage space can be 

reduced, and will also reduce the expected cycle time. However, for any given values of ∑ 𝑄𝑖𝑖∈𝑁  

and 𝑛, there is a lower bound for the storage capacity, which is ⌈
∑ 𝑄𝑖𝑖∈𝑁

𝑛
⌉ 𝑛 and increasing 𝐶𝑟𝑤 will 

not have any impact on warehouse design once the storage capacity reaches the lower bound. If 

the shuttles become more expensive (i.e., high 𝐶𝑠), the system needs to reduce the number of 

shuttles on each rack. In that case, if 𝐶𝑡 is small, the system may just simply reduced the number 

of shuttles without changing the configuration of racks. Otherwise, if 𝐶𝑡 is large, the system will 

need a larger number but shallower racks to reduce the requirement on shuttles without hurting 

the expected cycle time.  

Table 4-4 demonstrates the impacts of the variations of inventory levels and demand rates across 

SKU types on warehouse design. Table 4-4 only shows the warehouse design under different 

distributions of inventory levels and demand rates when 𝐶𝑡 = 75. The results under the other 

values of 𝐶𝑡 follow the same pattern and can be found in Appendix L. As shown in Table 4-4, 

when 𝐺(0.2) is low (e.g., 𝐺(0.2) = 0.2), which means a more homogeneous demand rate 

distribution across SKU types, heterogeneous distribution of inventory levels across SKU types 

(high 𝜎) will lead to a warehouse design where the racks are unevenly distributed in terms of 

depth (i.e., high 𝑠𝑡𝑑). That’s because when 𝜎 is high, the storage capacity requirement will be  
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Table 4-4. Sensitivity Analysis on Inventory Levels and Demand Rates Distribution  

when 𝐶𝑡 = 75 

𝐺(0.2) 𝜎 𝐶𝐵&𝐵 𝐸𝐶 [𝑘1, 𝑘2, . . , 𝑘𝑛𝑟] [𝑚1, 𝑚2, . . , 𝑚𝑛𝑟] 𝑆 𝐴𝑣𝑔 𝑠𝑡𝑑 

0.2 

1 1765 11.5 [5, 6, 6, 7] [29, 29, 29, 29] 696 6.0 0.71 

6 1757 11.4 [5, 6, 6, 7] [29, 29, 29, 29] 696 6.0 0.71 

11 1739 11.2 [4, 5, 7, 8] [29, 29, 29, 29] 696 6.0 1.58 

16 1720 10.9 [4, 5, 7, 8] [29, 29, 29, 29] 696 6.0 1.58 

21 1691 10.5 [3, 5, 7, 9] [29, 29, 29, 29] 696 6.0 2.2 

0.4 

1 1739 11.2 [4, 6, 6, 8] [29, 29, 29, 29] 696 6.0 1.41 

6 1751 11.3 [5, 6, 6, 7] [29, 29, 29, 29] 696 6.0 0.71 

11 1750 11.3 [5, 6, 6, 7] [29, 29, 29, 29] 696 6.0 0.71 

16 1751 11.3 [5, 6, 6, 7] [29, 29, 29, 29] 696 6.0 0.71 

21 1746 11.2 [4, 6, 7, 7] [29, 29, 29, 29] 696 6.0 1.2 

0.6 

1 1662 10.1 [3, 6, 7, 8] [29, 29, 29, 29] 696 6.0 1.87 

6 1683 10.4 [3, 6, 7, 8] [29, 29, 29, 29] 696 6.0 1.87 

11 1694 10.6 [3, 6, 7, 8] [29, 29, 29, 29] 696 6.0 1.87 

16 1706 10.7 [3, 6, 7, 8] [29, 29, 29, 29] 696 6.0 1.87 

21 1718 10.9 [4, 6, 6, 8] [29, 29, 29, 29] 696 6.0 1.41 

0.8 

1 1528 10.3 [3, 8, 13] [29, 29, 29, 29] 696 8.0 4.0 

6 1554 10.7 [3, 9, 12] [29, 29, 29, 29] 696 8.0 3.7 

11 1563 10.8 [2, 9, 13] [29, 29, 29, 29] 696 8.0 4.5 

16 1593 11.2 [3, 9, 12] [29, 29, 29, 29] 696 8.0 3.7 

21 1623 9.6 [3, 6, 7, 8] [29, 29, 29, 29] 696 6.0 1.87 
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mainly from a few SKU types and the inventory levels for the other SKUs types are low, which 

motivates the warehouse to have shallower racks for SKU types with low inventory level, and 

open deep racks for accommodating SKU types with the majority of inventories to reduce wasted 

storage spaces. However, with the increase of 𝐺(0.2), the SKU types with most of the inventories 

have higher demand rates than the other SKU types, and recall the expression of the cost of not 

meeting the benchmark expected cycle time (i.e., ∑ ∑ 𝑑𝑖
𝑦𝑖𝑗

𝑄𝑖
𝐶𝑡𝐸𝐶𝑗

𝑁𝑎 
𝑗=1𝑖∈𝐼 ), the SKU types with 

high demand rates need to be accommodated into shallower racks which against the impact of 

increasing 𝜎. Similarly, we expect that increasing 𝐶𝑡 will also reduce the impact of increasing 𝜎. 

Therefore, when 𝐺(0.2) or 𝐶𝑡 is high, the distribution of inventory levels of SKU types will not 

have a significant impact on warehouse design. Moreover, when 𝜎 is fixed, having a more 

heterogeneous distribution of demand rate will lead to a warehouse design with a high variation 

of depth of each rack. This can also be explained by looking at ∑ ∑ 𝑑𝑖
𝑦𝑖𝑗

𝑄𝑖
𝐶𝑡𝐸𝐶𝑗

𝑁𝑎 
𝑗=1𝑖∈𝐼 . However, 

when 𝜎 is high, the impact of increasing 𝐺(0.2) will not be as significant as its impact under 

lower 𝜎, due to the contradictory impact of the distributions of inventory levels and demand rates 

on warehouse design.  

Moreover, even though 2D AS/RS racks lead to a much smaller expected cycle time than 3D 

racks, we observed that 2D AS/RS racks have rarely been used. This is because of the high cost 

of having a crane in the system, but if 𝐶𝑡 is extremely high, we do expect the design of 2D racks. 

However, it demonstrates that 3D AS/RS is usually better than 2D AS/RS, which is consistent 

with the fact 2D AS/RS is getting replaced by other AS/RS options practice (e.g., 3D AS/RS). 

4.7 Conclusion and Future Research  

This study considers the warehouse design problem by allowing the mixed-use of 2D AS/RS and 

3D AS/RS. The objective is to minimize warehouse cost while maintaining a certain level of 

throughput capacity measured by expected cycle time under different business needs 

characterized by the variations of inventory levels and demand rates across different SKU types. 

The warehouse design decisions include the number and dimension of racks, the number of 

equipment, and the SKU-to-system assignment. The expected cycle model for 3D AS/RS with 

shuttle-based DMMS has never been done and the gap is filled by this study. The warehouse 

design problem is first modeled as an MINP and then converted to MIP based on two optimality 
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conditions. A branch-and-bound algorithm is developed and then modified based on our 

observation of numerical experiments to further reduce the algorithm’s running time. Numerical 

experiments showed that the modified B&B algorithm can usually reach the optimal solution 

within a much shorter time than the original B&B algorithm.  

Numerical experiments are conducted to analyze the impacts of cost parameters and the 

distribution of inventory levels and demand rates across different SKU types on warehouse 

design.  

• When 𝐶𝑡 is low (i.e., 𝐶𝑡 = 1), warehouse design tends to have a fewer number but deep 

racks and fewer shuttles in the system to reduce the equipment cost. When 𝐶𝑡 increases, a 

warehouse needs a larger number but shallower racks with more evenly distributed racks 

depth to reduce the expected cycle time for retrieving an SKU. The marginal impact of 

increasing 𝐶𝑡 on warehouse design decreases in 𝐶𝑡. Increasing 𝐶𝑟𝑤 and 𝐶𝑠 or reducing 𝐶𝑣 

have a similar impact to increasing 𝐶𝑡. 

• When the demand rates across SKU types are homogeneous, a heterogeneous distribution 

of inventory levels will lead to a warehouse design where the depth of each rack is more 

unevenly distributed (i.e., high 𝑠𝑡𝑑).  

• Having a heterogeneous distribution of demand rates will also make the warehouse 

design with a more unevenly distributed depth of racks.  

• If a warehouse has a design as [k1, k2, . . , knr] where 𝑛𝑟 is the number of racks and 𝑘𝑗 is 

the depth of rack 𝑗, only when ∑ 𝑘𝑗
′

1≤𝑗≤𝑛𝑟+1 ≤ ∑ 𝑘𝑗1≤𝑗≤𝑛𝑟 , the system can consider a new 

design as [𝑘1
′ , 𝑘2

′ , . . , 𝑘𝑛𝑟
′ , 𝑘𝑛𝑟+1

′ ]. 

• If 𝑛𝑟 racks can provide enough storage capacity and the minimum total depth of 𝑛𝑟 racks 

is 𝐷(𝑛𝑟). The warehouse can consider a new design [𝑘1, 𝑘2, . . , 𝑘𝑛𝑟+1] only when 

∑ 𝑘𝑗1≤𝑗≤𝑛𝑟+1 ≤ 𝐷(𝑛𝑟). 

• 3D AS/RS is better than 2D AS/RS which is consistent with the industrial trends.   

Moreover, based on the optimality conditions,  

• Each rack should try to have a square-in-time picking face.  

• A 3D AS/RS rack should either have one or 𝑛 shuttles, where 𝑛 is the number of storage 

lanes on a rack.  
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In the B&B algorithms, solving the product allocation problem with given racks configurations 

by Gurobi is used to obtain the upper bounds. However, when the problem size is too large (in 

terms of SKU types and inventory) or the distribution of inventory levels and demand rates across 

SKU types is extremely heterogeneous, the solver still needs a large amount of running time. An 

efficient algorithm for the product allocation problem will be very helpful to reduce the running 

time of the branch-and-bound algorithms. Moreover, this study only considered the crane-based 

2D AS/RS and crane-based 3D AS/RS as candidates. However, more than 20 variants of AS/RS 

exist and future studies incorporating all of these variants will be necessary to facilitate 

warehouse design. Furthermore, this study only included the number and dimensions of racks, the 

number of equipment, and product allocation as decision variables, and only used the cost and 

expected cycle time as performance metrics. However, a system’s performance can also be 

measured from many different perspectives (e.g., energy consumption, transaction waiting time), 

and the system’s performance can be affected by many other decision factors (e.g., number and 

locations of I/O points). A comprehensive tool considering all AS/RS options, performance 

metrics, and decision factors is necessary. However, given the fact that the warehouse design 

problem considered in this study is already difficult enough, a study that considers all decision 

factors and systems will be extremely complex. Therefore, based on various optimization models 

and algorithms that are developed for each type of AS/RS, statistical analyses and sensitivity 

analyses could be adopted to numerically build functions representing the relationship between 

design factors and performance metrics (i.e., mechanisms by which different design parameters 

affect system performance under given environments). Those functions should be used by 

practitioners to quickly determine if AS/RS is applicable and, if so, how to design and operate 

that system. 
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This study aims to create a tool for facilitating the warehouse design problem considering 

multiple AS/RS systems. Chapter 2 and chapter 3 focused on the operation and performance of 

crane-based 3D AS/RS and SBS/RS, respectively. More particularly, in chapter 2, we considered 

how to sequence a group of retrieval requests in a crane-based 3D AS/RS with shuttle-based 

DMMs to minimize the makespan. A mixed-integer programming model was developed to 

represent the problem, and the problem was proven to be NP-hard. Based on Theorem 2.1, a 

heuristic was developed to solve the problem quickly. Numerical experiments have demonstrated 

that the developed heuristic is better than FCFS, which is widely used in practice; the PPS-SL, 

which is the best heuristic for task scheduling in 3D AS/RS from literature; and the genetic 

algorithm which is widely adopted for task scheduling problems, in terms of solving time and 

solution quality. Management insights have been summarized through numerical experiments: 1) 

When the number of retrieval tasks is small (e.g., when a short planning horizon is adopted for 

high responsiveness), having more shuttles can improve the system performance, but 2) When 

there are many tasks to schedule, for example, in a situation with a long planning horizon, using a 

higher crane speed rather than adding more shuttle can improve system efficiency (reduce 

makespan) more. 

The impacts of different operation modes (i.e., SC operations and DC operations), storage 

policies (i.e., random storage and class-based storage), and shuttle dispatching rules (i.e., random, 

distance-based, and demand-rate based shuttle dispatching) on the performance of a tier-to-tier 

SBS/RS have been analyzed in Chapter 3. The system was modeled as a DTMC to calculate 

shuttles distribution under different operational policies. Based on the shuttle distribution, 

expected travel time models were developed and validated through simulation. Through 

numerical experiments, we observed: 1) for each operation mode, the demand distribution 

information is important for selecting the appropriate storage policy and shuttle dispatching rule;  

2) class-based storage is always better than random storage while the best dispatching rule is 

affected by demand distribution patterns, the number of shuttles, and operational cycle (i.e., SC 

and DC); 3) when the demand rate across classes is more homogeneous, the number of shuttles in 

a system is low, and the system operates in SC cycles, the demand rate-based shuttle dispatching 

rule is the best; 4) when the demand rate across classes is more homogeneous, the number of

shuttles in a system is low, and the system operates in DC cycles, the other two shuttle 

dispatching rules might be better choices; 5) If demands are more heterogeneous, the demand 
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rate-based shuttle dispatching rule is competitive in every scenario, while the advantage of this 

rule will increases first and then decrease in the number of shuttles; 6) when random storage 

policy is applied, the distance-based shuttle dispatching rule is always better than random 

dispatching rule under SC operations, but under DC operations, depending on the equipment’s 

speed, random dispatching rule can be better. 

Based on the observations from chapter 2 and chapter 3, in chapter 4, the warehouse design 

problem considering 2D AS and 3D AS/RS as technology candidates was modeled and solved. 

The warehouse design problem considered the trade-off between warehouse investment and the 

system’s throughput capacity with the number and dimensions of AS/RS racks, the number of 

equipment, and the product allocation as decision factors. The warehouse design problem was 

first modeled as an MINP and then converted to MIP based on two optimality conditions. A 

branch-and-bound algorithm was developed and then modified based on our observation of 

numerical experiments to further reduce the algorithm’s running time. Numerical experiments 

showed that the modified B&B algorithm can usually reach the optimal solution within a much 

shorter time than the original B&B algorithm. When focusing on reducing the investment, a 

warehouse should have a fewer number but deep racks and fewer shuttles in the system to reduce 

the equipment cost. If the objective is to improve the throughput capacity, a warehouse needs a 

larger number but shallower racks with more evenly distributed racks depth to reduce the 

expected cycle time for retrieving an SKU. When the demand rates across SKU types are 

homogeneous, a heterogeneous distribution of inventory levels will lead to a warehouse design 

where the depth of each rack is more unevenly distributed. Having a heterogeneous distribution 

of demand rates will also make the warehouse design with a more unevenly distributed depth of 

racks. Surprisingly, the warehouse design problem can be divided into two steps: 1) solve the 

warehouse design problem to minimize the total depth of racks iteratively on the different 

numbers of racks; 2) solve the product allocation with all feasible solutions from step one and 

select the one with the minimum objective value.   

However, this work only covers the crane-based 2D AS/RS and crane-based 3D AS/RS as 

candidates and more than 20 variants of AS/RS exist and future studies incorporating all of these 

variants will be necessary to facilitate warehouse design. Furthermore, this study only included 

the number and dimensions of racks, the number of equipment, and product allocation as decision 

variables, and only used the cost and expected cycle time as performance metrics. However, a 
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system’s performance can also be measured from many different perspectives (e.g., energy 

consumption, transaction waiting time), and the system’s performance can be affected by many 

other decision factors (e.g., number and locations of I/O points). A comprehensive tool 

considering all AS/RS options, performance metrics, and decision factors is necessary. However, 

given the fact that the warehouse design problem considered in this study is already difficult 

enough, a study that considers all decision factors and systems will be extremely complex. 

Therefore, based on various optimization models and algorithms that are developed for each type 

of AS/RS, statistical analyses and sensitivity analyses could be adopted to numerically build 

functions representing the relationship between design factors and performance metrics (i.e., 

mechanisms by which different design parameters affect system performance under given 

environments). Therefore, future studies should focus on the establishment of relationship 

functions 𝑓𝑖
𝑗
 so that 𝑌𝑗 = 𝑓𝑖

𝑗
(𝑋), where 𝑋 is the vector representing design parameters and 𝑌𝑗 is 

the vector of the performance metrics for AS/RS variant 𝑗. Furthermore, optimization models 

should be established to 𝑈𝑘
𝑗
= max

𝑋∈Ω𝑘
𝑔𝑘(𝑌

𝑗) = 𝑓𝑖
𝑗
(𝑋), where 𝑔𝑘 and Ω𝑘 represent the utility 

preference and constraints (e.g., responsiveness requirement, order variety, order sizes) of a given 

user 𝑘, respectively; and 𝑈𝑘
𝑗
 is the utility of user 𝑘 for variant 𝑗. Knowing 𝑈𝑘

𝑗
, the practitioners 

can quickly determine if an AS/RS is applicable and, if so, how to design and operate that system.  
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Appendix A. Comparison Between This Study and Yu and De 

Koster (2012) 

Yu and De Koster (2012) studied the sequencing problem for a given batch of storage and 

retrieval tasks in a crane-based 3D AS/RS with conveyor-based DMM, in which each lane is 

equipped with a pair of conveyors for depth movement and an aisle-captive crane is used for 

moving SKUs between storage lanes and the I/O station, as shown in Figure S-1. The conveyors 

can pre-position the required storage location/retrieval tasks to the front end of the rack while the 

crane is moving/conducting other tasks. They considered both storage and retrieval tasks with the 

crane working in a DC mode (i.e., conducting one storage task and one retrieval task in one 

cycle). Since dummy storage/retrieval tasks can be added at the I/O station when the number of 

storage tasks and retrieval tasks are not equal, they only considered the scenario where the 

number of storage tasks equals to the number of retrieval tasks. A set of the open locations (S) 

and a set of locations of required SKUs (R) are given at the beginning.  As tasks being processed, 

R gets smaller, and S changes as the location of the retrieved SKUs becomes open and the open 

location becomes unavailable after getting an SKU. Moreover, based on the proceeding DCs, the 

coordination of the open and retrieval locations also changes due to prepositioning. The optimal 

tasks schedule is to pair storage location and retrieval location for each DC. The problem is 

complex since the open and retrieval locations keep changing based on the preceding tasks. To 

track the impact of pre-positioning, infinite number of binary variables and strong nonlinear 

constraints were adopted by their model. To obtain a good solution in short time, multiple 

heuristics used for 2D systems were modified. However, all these heuristics preposition the open 

locations and retrieval locations with the same priority, and when there are more open locations 

than retrieval locations, preposition of retrieval tasks might be delayed. Therefore, the heuristic 

with the best performance was adapted by giving a higher priority for prepositioning retrieval 

location and the adapted heuristic outperformed the other heuristics significantly. 

In our study, we use shuttles as DMMs and move shuttles across lanes if the number of shuttles is 

smaller than the number of lanes. We only consider retrieval tasks with a crane working in the SC 

mode. When a shuttle movement is required from lane 𝑖 to lane 𝑗, the crane has to move from its 

dwell point to lane 𝑖, pick up the shuttle, move the shuttle to lane 𝑗, and wait at lane 𝑗 for the SKU 

from there or move to another lane 𝑘 for another retrieval/shuttle reallocation task. This process is  
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Figure S-1. An Overview of 3D AS/RS with Conveyor-based DMMs (Yu and De Koster, 

2012) 
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equivalent to a DC in Yu and De Koster (2012) where the set of virtual open locations are 𝑆 =

{(𝑖, 𝑗)|𝑖 ∈ 𝑁0
′
  𝑗 ∈ 𝑁1

′
}. Here, 𝑁0

′
 is the set of lanes with an available shuttle and 𝑁1

′
 is the set  

of lanes needs a shuttle at the beginning of each DC cycle (i.e., shuttle reallocation). The time for 

conducting the virtual storage task (i.e., shuttle reallocation) will be 𝑃𝑜,𝑖 + 𝑝𝑖𝑗
2 . It is 

straightforward that the set of open locations, even though getting smaller, updates after each DC 

(i.e., shuttle reallocation). The position of retrieval locations will also change based on preceding 

tasks. By now, it looks like that our problem is mathematically equivalent to the one of Yu and 

De Koster (2012) after adding dummy storage (i.e., shuttle reallocation) tasks at the I/O station. 

However, there are additional restrictions in our study to add complexity. A shuttle can only be 

reallocated after all the retrieval tasks on that lane are finished. Therefore, where to insert the 

‘dummy storage’ (i.e., shuttle reallocation) tasks matters in our study, and the open location 

cannot be selected arbitrarily. In other words, we must know when and where a shuttle will be 

available, which depends on the schedule of retrieval tasks. Therefore, our study is more complex 

than Yu and De Koster (2012). Furthermore, their model has infinite numbers of binary variables 

and strong nonlinear constraints that make the model almost impossible to be solved. In our 

study, an MIP with carefully defined variables and constraints was proposed to control the 

formulation size. Even still complicated, the proposed MIP is much simpler than their model and 

can be solved by commercial solvers for smaller cases.  
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Appendix B. MIP for Lane-to-Task Assignment Problem in 3D 

AS/RS 

Only lanes with retrieval tasks are considered for the scheduling problem. However, in practice, a 

system may have more lanes than the SKU types and one type of goods is possibly stored in more 

than one lane. The lane-to-task assignment, which selects lanes to fulfill demand, can be modeled 

based on the MIP (2.1-2.21) proposed for the scheduling problem in this paper. In addition to the 

notations defined before, set 𝐴 is defined as the set of SKU types, and 𝑁𝑎, 𝑎 ∈ 𝐴, is the set of 

lanes used for storing SKU 𝑎. The demand on SKU type 𝑎 is 𝐷𝑎. The lane-to-task assignment 

problem is formulated as follows based on the scheduling problem (2.1-2.21) by having 

parameter 𝑄𝑖 be a decision variable and adding an additional constraint set (B.22) to meet the 

demand.   

Min (2.1)    

s.t. ∑ 𝑄𝑖
𝑖∈𝑁𝑎

= 𝐷𝑎, 𝑎 ∈ 𝐴, (B.22) 

 (2.2-2.21)   

 𝑄𝑖 ≥ 0.   
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Appendix C. Compare with Model with Three-dimension Variables 

Instead of 𝑦𝑚𝑖 and 𝑧𝑚𝑞, a new type of binary variables 𝑎𝑚𝑖𝑞 can be created, which equals to one 

if the 𝑚th SC task is for the 𝑞𝑡ℎ task from lane 𝑖; otherwise, 𝑎𝑚𝑖𝑞  = 0. The model with 𝑎𝑚𝑖𝑞 can 

be described as formulation (C.23-C.40), which has fewer constraints.  

Min 𝑡𝑀 +∑𝑝𝑖
4𝑎𝑀𝑖𝑄𝑖

𝑖∈𝑁

   (C.23) 

s.t. ∑ 𝑥𝑖𝑗
𝑖∈𝑁/{𝑗}

= 1, 𝑗 ∈ 𝑁1, (C.24) 

 ∑ 𝑥𝑖𝑗
𝑗∈𝑁1

≤ 1, 𝑖 ∈ 𝑁, (C.25) 

 ∑ ∑𝑎𝑚𝑖𝑞

𝑄′

𝑞=1

𝑀

𝑚=1

= 𝑄𝑖 + ∑ 𝑥𝑖𝑗
𝑗∈𝑁1

, 𝑖 ∈ 𝑁, (C.26) 

 ∑∑𝑎𝑚𝑖𝑞

𝑄′

𝑞=1𝑖∈𝑁

= 1, 𝑚 ∈ {1,… ,𝑀}, (C.27) 

 𝑢𝑖 ≥ 𝑚𝑎𝑚𝑖𝑞 , 𝑖 ∈ 𝑁, 𝑚 ∈ {1,… ,𝑀}, 𝑞 ∈ {1,… , 𝑄′},  (C.28) 

 𝑙𝑖 ≤ 𝑚𝑎𝑚𝑖𝑞 +𝑀(1 − 𝑎𝑚𝑖𝑞), 𝑖 ∈ 𝑁, 𝑚 ∈ {1,… ,𝑀}, 𝑞 ∈ {1,… , 𝑄′}, (C.29) 

 𝑢𝑖 ≤ 𝑙𝑗 +𝑀(1 − 𝑥𝑖𝑗) 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁1, (C.30) 

 ∑ ∑𝑞𝑎𝑚𝑖𝑞

𝑄′

𝑞=1

𝑀

𝑚=1

= ∑ 𝑞

𝑄𝑖+1

𝑞=1

+ (𝑄𝑖 + 1) ∑ 𝑥𝑖𝑗
𝑗∈𝑁1

, 𝑖 ∈ 𝑁,  (C.31) 

 ∑𝑎𝑘𝑖𝑞

𝑀

𝑘=1

≤ ∑ 𝑎𝑚𝑖,𝑞+1

𝑀

𝑚=1

, 𝑖 ∈ 𝑁, 𝑞 ∈ {1,… , 𝑄𝑖 − 1}, (C.32) 
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 ∑𝑎𝑘𝑖𝑄𝑖

𝑀

𝑘=1

≤ ∑ 𝑎𝑚𝑖,𝑄𝑖+1

𝑀

𝑚=1

+𝑀(1 − ∑ 𝑥𝑖𝑗
𝑗∈𝑁1

) 𝑖 ∈ 𝑁, (C.33) 

 𝑡1 ≥ ∑ 𝑃𝑖0𝑖𝑎1𝑖1
𝑖∈𝑁0

,  (C.34) 

 𝑡𝑚 ≥ 𝑡𝑚−1 + 𝑝𝑖𝑗
3 (∑ 𝑎𝑚𝑗𝑞

𝑄𝑗+1

𝑞=1

+ 𝑎𝑚−1,𝑖,𝑄𝑖), 𝑖, 𝑗 ∈ 𝑁, 𝑚 ∈ {2,… ,𝑀}, (C.35) 

 

𝑡𝑚 ≥ 𝑡𝑚−1 +∑(𝑝𝑖𝑘
2 + 𝑝𝑘𝑗

2 )(

𝑘∈𝑁

𝑥𝑖𝑘 + 𝑎𝑚,𝑖,𝑄𝑖+1

+ ∑ 𝑎𝑚𝑗𝑞

𝑄𝑗+1

𝑞=1

− 2), 

𝑖, 𝑗 ∈ 𝑁, 𝑚 ∈ {2,… ,𝑀}, (C.36) 

 𝑟𝑖1 ≥ 𝑝𝑖1
1 , 𝑖 ∈ 𝑁0, 𝑚 ∈ {1,… ,𝑀}, (C.37) 

 𝑟𝑖1 ≥ 𝑡𝑚 + 𝑝𝑖𝑗
2 + 𝑝𝑖1

1 + 𝑇 (𝑎𝑚𝑗,𝑄𝑗+1 − 𝑥𝑗𝑖 − 2),   𝑖 ∈ 𝑁1,  𝑗 ∈ 𝑁,𝑚 ∈ {1,… ,𝑀}, (C.38) 

 𝑟𝑖𝑞 ≥ 𝑡𝑚 + 𝑝𝑖𝑞
1 − 𝑇(1 − 𝑎𝑚𝑖,𝑞−1), 

𝑖 ∈ 𝑁, 𝑞 ∈ {2,… , 𝑄𝑖 + 1}, 𝑚 ∈

{1,… ,𝑀}, 
(C.39) 

 𝑡𝑚 ≥ 𝑟𝑖𝑞 − 𝑇(1 − 𝑎𝑚𝑖𝑞), 
𝑖 ∈ 𝑁, 𝑞 ∈ {1,… , 𝑄𝑖 + 1},𝑚 ∈

{1,… ,𝑀}, 
(C.40) 

 𝑡𝑚, 𝑟𝑖𝑞 , 𝑢𝑖, 𝑙𝑖 ≥ 0; 𝑎𝑚𝑖𝑞 , 𝑥𝑖𝑗 ∈ {0,1}.   (C.41) 

The objective function (C.23) minimizes the total cycle time for the crane to complete a given 

batch of retrieval tasks. Constraint set (C.24) makes sure that a lane in 𝑁1 receives a shuttle 

exactly once. Constraint set (C.25) guarantees that the crane moves a shuttle out of a lane in 𝑁0 

up to once. Constraint set (C.26) assures that the number of SC tasks related to lane 𝑖 is the 

number of retrieval tasks at lane 𝑖 plus one shuttle reallocation task if there is any. Constraint set 

(C.27) ensures that the crane only performs one retrieval or shuttle reallocation task during one 

SC. Constraint sets (C.28) through (C.30) make sure that the crane can only serve a lane that has 

a shuttle and avoid the sub-tour problem. In other words, when a shuttle is moved from lane 𝑖 to 
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lane 𝑗, all tasks in lane 𝑖 should be finished before the first task in lane 𝑗 starts. Constraint sets 

(C.31) through (C.33) make sure that the SKUs are retrieved following first-in-last-out rule. 

Constraint sets (C.34) through (C.36) make sure that the 𝑚th SC task cannot start until the 

(𝑚 − 1)th SC task is completed. Specifically, constraint set (2.34) is for the case of the first SC 

task; (C.35) is for the case when the (𝑚 − 1)th SC task is to retrieve an SKU; and (C.36) is for the 

case when the (𝑚 − 1)th SC task is to move a shuttle to lane 𝑗. Constraint sets (C.37) through 

(C.39) are used to obtain the time when the shuttle with the SKU for the 𝑞th task at lane 𝑖 is ready 

for pick up by the crane. Constraint set (C.37) is used for the first retrieval task on lanes in 𝑁0; 

(C.38) is used for the first retrieval task on lanes from 𝑁1; and (C.39) makes sure that the shuttle 

cannot move for the 𝑞th SKU before the crane picks up the (𝑞 − 1)th SKU from that lane. 

Constraint set (C.40) calculates the moment when the crane picks up the SKU or shuttle in its 𝑚th 

cycle.  

Let’s define the MIP model represented by formulation (2.1-2.21) as 𝑀𝐼𝑃1 and the MIP (C.23-

C.40) with three dimensional variables as 𝑀𝐼𝑃2. Numerical experiments were conducted to 

compare the computational performance of these two models. Due to the computational burden 

for solving large case problems, only small cases were tested. Gurobi was used to solve both 

formulations with a running time limit of 600 seconds. When it reaches the time limitation, 

Gurobi stopped and returned a feasible solution if it could find one. The comparison is 

demonstrated by Table S-1, where 𝑇𝑀𝐼𝑃𝑖 , 𝑉𝑁𝑀𝐼𝑃𝑖 , 𝑆𝑀𝐼𝑃𝑖, and 𝐺𝑀𝐼𝑃𝑖 represent the objective value, 

number of binary variables, solving time and gap to lower bound found by Gurobi of 𝑀𝐼𝑃𝑖 ∈

{𝑀𝐼𝑃1,𝑀𝐼𝑃2}, respectively. 

As demonstrated by Table S-1, 𝑀𝐼𝑃2 has much more binary variables than 𝑀𝐼𝑃1. The difference 

increase dramatically as the problem size gets larger, which significantly increased the 

computational burden. When the problem size is small enough, both 𝑀𝐼𝑃1 and 𝑀𝐼𝑃2 can be 

solved to optimum in a short time. However, as the problem size getting larger, 𝑀𝐼𝑃1 may be 

solved to a better feasible solution (e.g., (∑ 𝑄𝑖𝑖∈𝑁 , |𝑁 |, |𝑁0|) = (38, 13, 8)). Even though 

sometimes Gurobi found similar feasible solution for these two models (e.g., 

(∑ 𝑄𝑖𝑖∈𝑁 , |𝑁 |, |𝑁0|) = (15, 10, 3)), 𝑀𝐼𝑃1 has a much smaller gap to its lower bound. For five 

cases, Gurobi cannot obtain any feasible solution for 𝑀𝐼𝑃2 within 600 seconds.  

 



  

138 

         

 

Table S-1. Comparison between 𝑀𝐼𝑃1 and 𝑀𝐼𝑃2   

(∑ 𝑄𝑖𝑖∈𝑁 , |𝑁 |, |𝑁0|) 𝑇𝑀𝐼𝑃1  𝑇𝑀𝐼𝑃2  𝑉𝑁𝑀𝐼𝑃1 𝑉𝑁𝑀𝐼𝑃2 𝑆𝑀𝐼𝑃1 𝑆𝑀𝐼𝑃2 𝐺𝑀𝐼𝑃1  𝐺𝑀𝐼𝑃2  

(3,3,1) 29 29 25 30 0.1 0.1 0% 0% 

(10,8,1) 219 221 187 408 600 600 53% 98% 

(74, 11, 6) 894 N/A 1738 9559 600 600 70% N/A 

(83,11,9) 1059 N/A 2125 13090 600 600 72% N/A 

(103, 17, 4) N/A N/A 3480 25636 600 600 N/A N/A 

(38, 13, 8) 457 468 817 3354 600 600 69% 99% 

(36, 8 ,7) 268 268 703 3256 600 600 52% 88% 

(100, 18, 3) 2396 N/A 3680 28980 600 600 84% N/A 

(15, 10, 3) 184 184 308 880 600 600 60% 99% 

(32, 19, 3) 801 N/A 1104 3648 600 600 80% N/A 
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Appendix D. Proof of Theorem 2.1 and Theorem 2.2 

Theorem 2.1. The 3D AS/RS retrieval task scheduling problem is NP-hard. 

Proof: According to Han et al. (1987), the task scheduling problem in 2D AS/RS operating in the 

DC mode with multiple open locations is equivalent to the traveling salesman problem (TSP) in 

its simplified version in which there is only one open location. Since the TSP is NP-hard (Cormen 

et al. 2009), the task scheduling problem in 2D AS/RS is NP-hard. For the 3D AS/RS scheduling 

problem considered in our study, if the shuttle speed is assumed to be infinite, the crane can pick 

up an SKU/shuttle instantly when arrives at a target lane. In that case, after moving a shuttle to a 

lane, the crane will pick up an SKU from the lane immediately instead of going to serve another 

lane. If we consider all locations of shuttles as open locations, the crane operates in the DC mode 

when transferring shuttles: starts from the I/O point to an open location, picks up the shuttle there 

and transfers it to lane 𝑗, hands over the shuttle and picks up an SKU form lane 𝑗, and travels back 

to I/O point. It is obvious that the problem considered by Han et al. (1987) is a special case of our 

problem with infinite shuttle speed. As this special case is NP-hard, our scheduling problem for 

the 3D AS/RS is also NP-hard.                                                                       

Theorem 2.2: Optimality Condition. Consider the 𝑚𝑡ℎ and (𝑚 + 1)𝑡ℎ tasks in an optimal task 

schedule. If the  𝑚𝑡ℎ task is for retrieving the (𝑞𝑗)
𝑡ℎ

 SKU from lane 𝑗, the (𝑚 + 1)𝑡ℎ task is for 

retrieving the (𝑞𝑘)
𝑡ℎ SKU from lane 𝑘,  and the (𝑚 − 1)𝑡ℎ task is associated with lane 𝑖, we should 

always have 𝑝𝑚 ≥ 𝑠𝑚  where 𝑝𝑚 = 𝑚𝑎𝑥 {𝑟𝑘,𝑞𝑘 − 𝑡𝑚−1 − 𝑝𝑖𝑘
3 , 0}  and 𝑠𝑚 = 𝑚𝑎𝑥 {𝑟𝑗,𝑞𝑗 − 𝑡𝑚−1 −

𝑝𝑖𝑗
3 , 0}  if the (𝑚 − 1)𝑡ℎ  task is a retrieval task, otherwise; 𝑝𝑚 = 𝑚𝑎𝑥{ 𝑟𝑘,𝑞𝑘 − 𝑡𝑚−1 − 𝑝𝑖,𝑙

2 −

𝑝𝑙,𝑘
2 , 0}  and 𝑠𝑚 = 𝑚𝑎𝑥 {𝑟𝑗,𝑞𝑗 − 𝑡𝑚−1 − 𝑝𝑖,𝑙

2 − 𝑝𝑙,𝑗
2 , 0}  if the (𝑚 − 1)𝑡ℎ  task is to reallocate a 

shuttle from lane 𝑖 to 𝑙. 

Proof: Suppose the (𝑚 − 1)𝑡ℎ  task is for retrieving an SKU, 𝑝𝑚 = max {𝑟𝑘,𝑞𝑘 − 𝑡𝑚−1 − 𝑝𝑖𝑘
3 , 0} 

and 𝑠𝑚 = max {𝑟𝑗,𝑞𝑗 − 𝑡𝑚−1 − 𝑝𝑖𝑗
3 , 0} . In addition, Let’s define 𝑤𝑚  and 𝑤𝑚+1  as the crane’s 

waiting time of the 𝑚𝑡ℎ  and 𝑚 + 1𝑡ℎ  task. Clearly, 𝑤𝑚 = 𝑠𝑚  and 𝑤𝑚+1 = max {𝑟𝑘,𝑞𝑘 − 𝑡𝑚 −

𝑝𝑗𝑘
3 , 0}. To prove the optimality, we have to show that the total waiting time of these two tasks will 

increase if we switch the sequence. Let’s define 𝑤𝑚
′  and 𝑤𝑚+1

′  as the crane’s waiting time of the 

new 𝑚𝑡ℎ and 𝑚+ 1𝑡ℎ task after switching the sequence. It is clear that when 𝑠𝑚 = 𝑤𝑚 = 0, the 

https://www.tandfonline.com/doi/full/10.1080/0740817X.2011.575441
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solution is optimal, since we can always have 𝑤𝑚 = 𝑤𝑚+1
′ = 0 and 𝑤𝑚

′ ≥ 𝑤𝑚+1. When 𝑠𝑚 > 0, 

two cases can be considered. 

Case 1: 𝑝𝑚 = 0, 𝑟𝑘,𝑞𝑘 ≤ 𝑡𝑚−1 + 𝑝𝑖𝑘
3   

In that case, we can have  

𝑤𝑚
′ = max{𝑝𝑚, 0} = 0, 

and 

𝑤𝑚
′ +𝑤𝑚+1

′ = 𝑤𝑚+1
′ = max {𝑟𝑗,𝑞𝑗 − 𝑡𝑚−1 − 𝑝𝑖𝑘

3 − 𝑝𝑗𝑘
3 , 0} < 𝑟𝑗,𝑞𝑗 − 𝑡𝑚−1 − 𝑝𝑖𝑗

3 . 

Clearly, when 𝑠𝑚 > 0, we must have 𝑝𝑚 > 0 to guarantee the optimality.  

Case 2: 𝑝𝑚 > 0 

When 𝑝𝑚 > 0 , 𝑤𝑚
′ = 𝑟𝑘,𝑞𝑘 − 𝑡𝑚−1 − 𝑝𝑖𝑘

3 > 0 , and 𝑤𝑚+1
′ = max {𝑟𝑗,𝑞𝑗 − 𝑟𝑘,𝑞𝑘 − 𝑝𝑗𝑘

3 , 0} . If 

𝑤𝑚+1
′ > 0, which is equivalent to 𝑟𝑘,𝑞𝑘 − 𝑟𝑗,𝑞𝑗 < −𝑝𝑗𝑘

3 , 𝑤𝑚+1 = max {𝑟𝑘,𝑞𝑘 − 𝑟𝑗,𝑞𝑗 − 𝑝𝑗𝑘
3 , 0} = 0. 

Therefore, after switching, the total waiting time of these two tasks will be 

𝑤𝑚
′ +𝑤𝑚+1

′ = 𝑟𝑗,𝑞𝑗 − 𝑡𝑚−1 − 𝑝𝑖𝑘
3 − 𝑝𝑗𝑘

3 < 𝑟𝑗,𝑞𝑗 − 𝑡𝑚−1 − 𝑝𝑖𝑗
3 = 𝑤𝑚 +𝑤𝑚+1 = 𝑤𝑚. 

To guarantee the optimality of the given solution, 𝑟𝑘,𝑞𝑘 − 𝑟𝑗,𝑞𝑗 ≥ −𝑝𝑗𝑘
3  and 𝑤𝑚+1

′ = 0. In that 

case, if 𝑤𝑚+1 = 0 and 𝑟𝑘,𝑞𝑘 − 𝑟𝑗,𝑞𝑗 ≤ 𝑝𝑗𝑘
3 ,  

𝑤𝑚
′ +𝑤𝑚+1

′ = 𝑤𝑚
′ = 𝑟𝑘,𝑞𝑘 − 𝑡𝑚−1 − 𝑝𝑖𝑘

3 , and  

𝑤𝑚 +𝑤𝑚+1 = 𝑤𝑚 = 𝑟𝑗,𝑞𝑗 − 𝑡𝑚−1 − 𝑝𝑖𝑗
3 . 

To guarantee the optimally,  

𝑟𝑘,𝑞𝑘 − 𝑡𝑚−1 − 𝑝𝑖𝑘
3 ≥ 𝑟𝑗,𝑞𝑗 − 𝑡𝑚−1 − 𝑝𝑖𝑗

3 ,  

which is equivalent to  

𝑝𝑗𝑘
3 ≥ 𝑟𝑘,𝑞𝑘 − 𝑟𝑗,𝑞𝑗 ≥ 𝑝𝑖𝑘

3 − 𝑝𝑖𝑗
3 . 

And if 𝑤𝑚+1 > 0,  

𝑤𝑚
′ +𝑤𝑚+1

′ = 𝑤𝑚
′ = 𝑟𝑘,𝑞𝑘 − 𝑡𝑚−1 − 𝑝𝑖𝑘

3 > 𝑟𝑘,𝑞𝑘 − 𝑡𝑚−1 − 𝑝𝑖𝑗
3 − 𝑝𝑗𝑘

3 = 𝑤𝑚 +𝑤𝑚+1. 
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According to the discussion, if 𝑠𝑚 = 0, 𝑝𝑚 can take any value. However, when 𝑠𝑚 > 0, we need 

𝑟𝑘,𝑞𝑘 − 𝑟𝑗,𝑞𝑗 ≥ 𝑝𝑖𝑘
3 − 𝑝𝑖𝑗

3 , which is equivalent to 𝑝𝑚 ≥ 𝑠𝑚.  The same logic can be applied for the 

scenario when 𝑚 − 1𝑡ℎ task is for reallocating a shuttle.         
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Appendix E. Example of the Genetic Algorithm                                                                        

Consider a system with 6 lanes, where lane 1, 3 and 4 belong to 𝑁0 and the others do not have a 

shuttle at the beginning. The retrieval task number from each lane can be found in Table S-2. 

Therefore, there are totally 13 retrieval tasks and three shuttle reallocation tasks.  

To generate the initial feasible solutions (chromosomes), short-form chromosomes are created 

first to represent the shuttle assignment. In a short-form chromosome, each gene corresponds to a 

lane with the order. All shuttles are numbered with a unique integer number 𝑖 ∈ {1,… , |𝑁0|}. The 

gene of each lane in 𝑁0 (i.e., each lane with a shuttle at the beginning) is the index of the shuttle 

at that lane. In the example shown in Figure S-2, lane 1 has shuttle 1 at the beginning and 

therefore has the value of 1 in the short-form chromosome, while shuttle 2 and shuttle 3 are in 

lane 3 and lane 4 at the beginning, respectively. The gene of each lane in |𝑁1| is comprised by 

two parts, the integer and fractional parts. The integer part, ranging from 1 to |𝑁0|, represents 

which shuttle is assigned to that lane. The fractional part is originally randomly generated in 

range (0, 1) without any repeats and represents the sequence of shuttle movements. Shuttles are 

moved across lanes following an ascending order of the fractional part. In the example short-form 

chromosome of  Figure S-2, shuttle 1 is moved by the crane from lane 1 to lane 2 and then to lane 

6. Shuttle 2 serves lane 3 and then lane 5. Shuttle 3 stays at lane 4.  

In the long-form chromosome, each gene still represents a lane but will be assigned a list of 

numbers. For each number assigned to a lane, the integer part equals to the integer part of the 

number assigned to this lane/gene in short-from chromosome. Fractional part of each number is 

originally generated randomly in the range of 1 × 10−𝐷 to 𝑀 × 10−𝐷, where 𝑀 is the number of 

total SC tasks and 𝐷 is ⌈log10𝑀⌉. Please see Figure S-2 for an example of a long-form 

chromosome. The shuttle assignment is as the information in the short-from chromosome, while 

the size of the fractional part expresses the sequence the task served by the crane. For instance, 

the sequence (1.02, 1.04, 1.05) for lane 1 means that shuttle 1 is used for lane 1, and these three 

tasks are scheduled as the second, fourth and fifth crane’s task, respectively. Given the fact that 

lane 1 only has two required SKUs, the fifth crane’s cycle is for reallocating the shuttle at 

lane 1.   

Table S-3 shows the corresponding order of SC tasks across lanes (i.e., crane’s route). The coding 

of a long-form chromosome represents both the shuttle assignment and SC task sequencing. For 
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Table S-2. Details of Examples 

Lane 𝑖 Retrieval Tasks 

1 2 

2 3 

3 1 

4 2 

5 3 

6 2 

 

 

Table S-3. SC Task Schedule of the Example in Figure S-2 

SC Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Lane 4 1 3 1 1 3 5 5 5 4 2 2 2 2 6 6 

  

Short-form Chromosome: 

[1, 1.28, 2, 3, 2.45, 1.94] 

Long-form Chromosome:  

[[1.02, 1.04, 1.05], [1.11, 1.12, 1.13, 1.14], [2.03, 2.06], [3.01, 3.1], [2.07, 2.08, 2.09], [1.15, 1.16]] 

Figure S-2. Example of Generating an Initial Chromosome 
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the following steps, we can always find the short-from chromosome from a long-form 

chromosome by extracting the first element of each list in the offspring and setting the number 

assigned to lane 𝑖 in  𝑁0 to be the number assigned to the shuttle on lane 𝑖. 

Figure S-3 illustrates a crossover operation in which the genes for lanes 2 and 4 are both swapped 

between two parent chromosomes. An offspring (temporary) generated by a crossover may be 

infeasible so that modifications are needed. For instance, Temporary Offspring 2 has the crane 

start to serve lane 5 before the lane receives its assigned shuttle from lane 4. Even the total 

number of tasks may not equal 𝑀. This is the case for both Temporary Offspring 1 and 2 in 

Figure S-3. Therefore, a modification might be conducted after a crossover. Each temporary 

offspring is first checked to see if the corresponding short-form chromosome is illegal.  

An extracted short-form chromosome might be illegal if a shuttle has to serve two lanes 

simultaneously, which corresponds to the situation that the same number is assigned to multiple 

lanes in 𝑁1. Considering the short-form chromosome in Figure S-4, lane 2 and 6 have the same 

value assigned but shuttle 1 cannot serve these two lanes simultaneously. An infeasible short-

form chromosome can be corrected by assigning a new number while keeping the same integer 

part but a different fractional part. The new assigned number should not change the relative 

sequence of lanes served by the same shuttle. For the illegal short-from chromosome of 

[1, 1.11, 2, 3, 1.07, 1.11], as an example, new fractional parts should be assigned to lane 2 and 6 

after serving lane 5. However, after correcting it, lane 2 and 6 should not get a shuttle earlier than 

lane 5. In another word, the new value assigned to lane 2 and 6 must be larger than 1.07 and less 

than 2.0. 

After checking and correcting the short-form chromosome, we check the temporary offspring to 

see whether any of the following situations occur: 1) Multiple elements in an offspring have the 

same fractional part; 2) The lane that is served earlier than other lanes by the same shuttle has 

elements that are equal to or greater than some elements from the genes corresponding to these 

lanes; and 3) The number of elements assigned to one lane does not equal to the number of task 

on that lane. The elements causing any of these situations will get new fractional parts, offspring  
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Parent 1: 

[[1.02, 1.04, 1.05], [1.11, 1.12, 1.13, 1.14], [2.03, 2.06], [3.01, 3.1], [2.07, 2.08, 2.09], [1.15, 1.16]]  

Parent 2: 

[[1.01, 1.02, 1.1], [1.11, 1.12, 1.13, 1.14], [2.03], [3.03, 3.04, 3.06], [3.07, 3.08, 3.09], [1.15, 1.16]] 

 
Crossover 

Temporary Offspring 1: 

[[1.02, 1.04, 1.05], [1.11, 1.12, 1.13, 1.14], [2.03, 2.06], [3.03, 3.04, 3.06], [2.07, 2.08, 2.09], [1.15, 1.16]]  

Temporary Short-form Chromosome 1:  

[1, 1.11, 2, 3, 2.07, 1.15] 

Temporary Offspring 2: 

[[1.01, 1.02, 1.1], [1.11, 1.12, 1.13, 1.14], [2.03], [3.01, 3.1], [3.07, 3.08, 3.09], [1.15, 1.16]] 

Temporary Short-form Chromosome 2:  

[1, 1.11, 2, 3, 2.07, 1.15] 

 
Figure S-3. Example of Crossover 



  

147 

         

  

Temporary Offspring: 

 [[1.01, 1.02, 1.1], [1.11, 1.12, 1.13, 1.14], [2.03], [3.04, 3.1], [1.07, 1.08, 1.15], [1.11, 1.16]] 

Short-form Chromosome: 

[1, 1.11, 2, 3, 1.07, 1.11] 

 

Corrected Short-form Chromosome: 

[1, 1.11, 2, 3, 1.07, 1.18]  

Temporary Offspring: 

[[1.01, 1.02, 1.1], [1.11, 1.12, 1.13, 1.14], [2.03], [3.04, 3.1], [1.07, 1.08, 1.15], [1.11, 1.16]] 

Step 1 

Step 2 

Corrected Short-form Chromosome: 

[1, 1.11, 2, 3, 1.07, 1.18]  

Temporary Offspring: 

[[1.01, 1.02], [ 1.12, 1.13, 1.14], [2.03], [3.04], [1.07, 1.08], [ 1.16]] 

List A: 

[0.05, 0.06, 0.09, 0.1, 0.11, 0.15] 

 

Corrected Short-form Chromosome: 

[1, 1.11, 2, 3, 1.07, 1.18]  

Corrected Offspring: 

[[1.01, 1.02, 1.05], [1.11, 1.12, 1.13, 1.14], [2.03], [3.04, 3.1], [1.06,1.07, 1.08, 1.09], [1.15, 1.16]] 

Step 3 

Figure S-4. Example of Checking and Modifying an Offspring 
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should be consistent with the information carried by the corrected short-form chromosome. The 

algorithm of correcting an illegal chromosome is shown below 

Step 1: Extract the temporary short-short chromosome from the temporary offspring; 

While the same number is assigned to multiple lanes in 𝑁1 in the temporary short-from 

chromosome: 

Randomly generate fractional part in range (0, 1); 

While assigning the new generated factional number change relative sequence of lanes 

served by the same shuttle: 

 Randomly generate fractional part in range (0, 1); 

Replace the fractional parts of illegal genes with the new generated fractional part; 

 Return the corrected short-from chromosome and go to step 2;  

Step 2: Create an empty list A, 

While the same fractional parts are assigned to different elements from the temporary offspring: 

Remove these elements; 

 While a gene/lane is assigned more elements/numbers than the number of tasks on it: 

Randomly remove elements from that gene until the assigned numbers equal to 

the number of tasks on it; 

While a lane that is severed earlier than other lanes by the same shuttle has elements that 

are larger than some elements from lists corresponded to those lanes: 

Remove the elements that cause the problem from genes; 

 If any fraction part in range of 1 × 10−𝐷 to 𝑀 × 10−𝐷 is missed in the temporary offspring: 

  Add the missed fractional parts to list A; 

 Go to step 3  

Step 3: While list A is not empty: 

Try Assign the fractional parts from list A to genes which need one; 

If the corrected offspring becomes feasible: 

 Empty list A; 

Return the corrected offspring and terminate. 

Figure S-4 shows how the algorithms work according to the corrected short-form chromosome: 

shuttle 1 will be moved from lane 1 to lane 5, lane 2 and then lane 6. Shuttle 2 and 3 stays at lane 

3 and lane 4 respectively. There are 4 errors in the temporary offspring: 1) Tasks from lane 2 and 

lane 6 are all marked as the 11th task of the crane; and tasks from lane 1 and lane 4 are all 

marked as the 10th task of the crane; 2) There should be 3 retrieval tasks plus one shuttle 

movement task on lane 5, however, only 3 elements are assigned to this lane; and 3) The crane 

starts to take care of tasks from lane 5 and lane 2 before these lanes getting the assigned shuttle. 

The elements cause those problems will be removed from the temporary offspring. Based on the 
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way we create a chromosome, we know that all the fractional part in the range 1 × 10−𝐷 to 

𝑀 × 10−𝐷 should appear exactly once in the offspring. The missed fractional parts will be added 

in to list A. Considering the example, list A should be [0.05, 0.06, 0.1, 0.11,0.15]. Then we will 

try to assign the fractional parts to the genes which need one until we get a feasible offspring that 

is also consistent with the shuttles assignment decided by the corrected short-form chromosome.   

The GA mutation operator is applied on short-form chromosomes extracted from the long-form 

chromosomes. One lane 𝑖 ∈ 𝑁1 (e.g., lane 2) will be randomly selected and its corresponded gene 

from the short-form chromosome will get a new number (shuttle assignment), as shown in Figure 

S-5. The new assignment number is generated as the way we did in chromosome representation. 

The new generated number should not be equal to numbers already assigned to other genes. As in 

the crossover, a modification is needed as the associated long-form chromosome may be 

infeasible after a mutation. Therefore, with the same method used for checking offspring, the 

long-form chromosome is checked and revised according to the information carried by the 

mutated short-form chromosome.  
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Short-form chromosome: 

[1, 1.28, 2, 3, 2.45, 1.94] 

Long-form chromosome:  

[[1.02, 1.04, 1.05], [1.11, 1.12, 1.13, 1.14], [2.03, 2.06], [3.01, 3.1], [2.07, 2.08, 2.09], [1.15, 1.16]] 

 

Muted Short-from chromosome: 

[1, 2.28, 2, 3, 2.45, 1.94] 

Temporary Offspring:  

[[1.02, 1.04, 1.05], [1.11, 1.12, 1.13, 1.14], [2.03, 2.06], [3.01, 3.1], [2.07, 2.08, 2.09], [1.15, 1.16]] 

 

 

Mutate 

Figure S-5. Example of Mutation 
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Appendix F. Proof to Theorem 3.3 

Proof.  The theorem can be proven by looking at the difference 𝐸𝑆𝐶ℛ1 − 𝐸𝑆𝐶ℛ2, especially the 

detailed time components defined by equations (3.12-3.14):  expected time for the lift to travel 

between tiers for retrieving an SKU (𝑇𝑆𝐶𝑟
ℛ), expected time for moving a shuttle (𝑇𝑆𝐶𝑚

ℛ), and 

expected time waiting for the shuttle to move the SKU (𝑇𝑆𝐶𝑤
ℛ), where ℛ ∈ {ℛ1, ℛ2, ℛ3} 

represents the shuttle dispatching rule. Among three, 𝑇𝑆𝐶𝑟
ℛ is constant once the storage policy is 

fixed. We can write the difference in shuttle movement time, 𝑇𝑆𝐶𝑚
ℛ1 − 𝑇𝑆𝐶𝑚

ℛ2, as  

 

∆(𝑀) =
𝑁 −𝑀

𝑁2(𝑁 − 1)
∑∑𝑐𝑖𝑗 − 𝑡𝑜𝑖

𝑁

𝑗=1
𝑗≠𝑖

𝑁

𝑖=1

−
1

𝑁(𝑁 −𝑀 + 1)
∑ ∑ 𝑐𝑖𝑗

𝑁−𝑀+1

𝑗=1
𝑗≠𝑖

− 𝑡𝑜𝑖

𝑁−𝑀+1

𝑖=1

, 
 (F. 29) 

which is a function of 𝑀. It is clear that ∆(1) = ∆(𝑁) = 0. For 1 < 𝑀 < 𝑁, we can write 

𝑑(𝑀) = ∆(𝑀 + 1) − ∆(𝑀) as  

𝑑(𝑀) =
1

𝑁(𝑁−𝑀+1)
∑ (∑ 𝑐𝑖𝑗

𝑁−𝑀+1
𝑗=1
𝑗≠𝑖

− 𝑡𝑜𝑖)
𝑁−𝑀+1
𝑖=1 −

1

𝑁(𝑁−𝑀)
∑ (∑ 𝑐𝑖𝑗

𝑁−𝑀
𝑗=1
𝑗≠𝑖

− 𝑡𝑜𝑖)
𝑁−𝑀
𝑖=1 −

1

𝑁2(𝑁−1)
(∑ ∑ 𝑐𝑖𝑗 − 𝑡𝑜𝑖

𝑁
𝑗=1
𝑗≠𝑖

𝑁
𝑖=1 ).  

Then, we can have  

                           𝑑(𝑀 + 1) − 𝑑(𝑀) 

=
2

𝑁(𝑁−𝑀)
∑ ∑ 𝑡𝑖𝑗

𝑁−𝑀
𝑗=1
𝑗≠𝑖

𝑁−𝑀
𝑖=1 −

1

𝑁(𝑁−𝑀−1)
∑ ∑ 𝑡𝑖𝑗

𝑁−𝑀−1
𝑗=1
𝑗≠𝑖

𝑁−𝑀−1
𝑖=1 −

1

𝑁(𝑁−𝑀+1)
∑ ∑ 𝑡𝑖𝑗

𝑁−𝑀+1
𝑗=1
𝑗≠𝑖

𝑁−𝑀+1
𝑖=1 .  

Let 𝑘 = 𝑁 −𝑀, we can have  

𝑁(𝑑(𝑀 + 1) − 𝑑(𝑀)) =
4(𝑘2−1)(∑ ∑ 𝑡𝑖𝑗

𝑘
𝑗=𝑖+1

𝑘−1
𝑖=1 )−2(𝑘2+𝑘)(∑ ∑ 𝑡𝑖𝑗

𝑘−1
𝑗=𝑖+1

𝑘−2
𝑖=1 )−2(𝑘2−𝑘)(∑ ∑ 𝑡𝑖𝑗

𝑘+1
𝑗=𝑖+1

𝑘
𝑖=1 )

𝑘(𝑘+1)(𝑘−1)
=

2(𝑘2−𝑘−2)(∑ 𝑡𝑖𝑘
𝑘−1
𝑖=1 )−2(𝑘2−𝑘)(∑ 𝑡𝑖𝑘

𝑘
𝑖=1 )

𝑘(𝑘+1)(𝑘−1)
< 0,                                                                                                                                                                                                                                                                                                                                                                                    

which means ∆(𝑀) is concave, and because ∆(1) = ∆(𝑁) = 0, ∆(𝑀) = 𝑇𝑆𝐶𝑚
ℛ1 − 𝑇𝑆𝐶𝑚

ℛ2 ≥ 0. 

The same logic can be applied to show the lift waiting time difference,  𝑇𝑆𝐶𝑤
ℛ1 − 𝑇𝑆𝐶𝑤

ℛ2, is 
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concave in terms of 𝑀. Here, we only show 𝑇𝑆𝐶𝑤
ℛ1 − 𝑇𝑆𝐶𝑤

ℛ2 ≥ 0. We can write 𝑇𝑆𝐶𝑤
ℛ1 − 𝑇𝑆𝐶𝑤

ℛ2 

as 

 

𝑇𝑆𝐶𝑤
ℛ1 − 𝑇𝑆𝐶𝑤

ℛ2 = ∑
(𝑀 − 1)(𝑁 −𝑀)[𝑡𝑟 − 𝑡𝑜𝑖]

+

𝑁2(𝑁 −𝑀 + 1)

𝑁−𝑀+1

𝑖=1

− ∑
𝑁−𝑀

𝑁2
[𝑡𝑟 − 𝑡𝑜𝑖]

+

𝑁

𝑖=𝑁−𝑀+2

  (F. 30) 

Please note that [𝑡𝑟 − 𝑡𝑜1]
+ ≥ [𝑡𝑟 − 𝑡𝑜2]

+ ≥ ⋯ ≥ [𝑡𝑟 − 𝑡𝑜𝑁]
+. By defining 𝐸 =

∑ [𝑡𝑟−𝑡𝑜𝑖]
+𝑁

𝑖=𝑁−𝑀+2

𝑀−1
, we have  

𝑇𝑆𝐶𝑤
ℛ1 − 𝑇𝑆𝐶𝑤

ℛ2 ≥
(𝑀 − 1)(𝑁 −𝑀)

𝑁2
𝐸 −

(𝑀 − 1)(𝑁 −𝑀)

𝑁2
𝐸 = 0 

and the equality only holds when 𝑀 = 1 or 𝑁 or 𝑡𝑟 ≤ 𝑡𝑜1. Therefore,  𝐸𝑆𝐶ℛ1 − 𝐸𝑆𝐶ℛ2 ≥ 0 

under random storage and the difference is concave in terms of 𝑀.                         ∎ 
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Appendix G. Comparison of Shuttle Dispatching Rules under DC 

Operations with Slower Lift  

As discussed in the main text, ℛ1 can be dominated by ℛ2 if the system has slower lift. The 

statement id demonstrated by Figure S-6, where the speed profile of the lift becomes 𝑣𝑙 =

0.5 𝑚/𝑠, and 𝑎𝑙 =  0.5 𝑚/𝑠
2. However, when the demand rate is heterogeneous (i.e., 𝐺(0.1) is 

high), ℛ3 is still the best.  
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ℛ3 ℛ2 

𝐺
(0
.1
) 

Number of Shuttles (𝑀) 

Figure S-6. Best Dispatching Rules under Various 𝐺(0.1) and 𝑀 Values under Class-based 

Storage, DC Operations, and Slower Lift 
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Appendix H. Estimating Cost Parameters 

The prices of cranes and shuttles are considered as $200,000/𝑢𝑛𝑖𝑡 and $800/𝑢𝑛𝑖𝑡 

(Alibaba.com, 2021a, 2021b). By assuming five years lifetime for shuttles and cranes, the daily 

equipment cost is $109/𝑢𝑛𝑖𝑡/𝑑𝑎𝑦 and $0.4/𝑢𝑛𝑖𝑡/𝑑𝑎𝑦. Considering the daily operation and 

maintenance cost, and the land cost for aisles, the cost of having one crane (𝐶𝑣) and one shuttle 

(𝐶𝑠) are estimated to $130/𝑢𝑛𝑖𝑡/𝑑𝑎𝑦 and $0.6/𝑢𝑛𝑖𝑡/𝑑𝑎𝑦. The daily warehouse cost (e.g., land 

cost, rack cost, energy cost) is assumed as $0.1/𝑚3/𝑑𝑎𝑦. Even though we did not give an exact 

value of 𝐶𝑡 since it varies for different business scenarios, we describe the method of estimating 

𝐶𝑡.  

Assume the warehouse is expected to finish 2,000 retrieving tasks per day and the warehouse 

operates eight hours a day, the excepted cycle time (benchmark) to meet the desired throughput 

capacity should be  8 ×
3600

2000
= 14.4 seconds. Assume the cost/penalty for not meeting the desired 

throughput capacity by one SKU is $0.01, and the warehouse has an average cycle time of 15.4 

seconds, then the warehouse’s real throughput capacity is 1,870 retrieval tasks per day. Therefore, 

the cost of having one more second than the benchmark expected cycle time is 0.01 × (2,000 −

1,870) = 1.3$/𝑑𝑎𝑦.  
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Appendix I. Example of Branch-and-Bound Tree   

Consider a warehouse design problem with two types of SKUs (i.e., 𝐼 = {1,2}), and 𝑄1 = 4 and 

𝑄2 = 3. The number of storage lanes on each rack is considered as two (i.e., 𝑛 = 2), and the 

system allows a maximum of three racks. The branch-and-bound tree following the standard 

branch-and-bound procedure is shown in Figure S-7. However, the branch-and-bound tree under 

the standard B&B algorithm is too large (i.e., 34 nodes), and we only show the branches start 

from the node [2]. Please note that even though some nodes are representing extremely 

unreasonable warehouse design, these branches can be pruned quickly by comparing 𝑙𝑏 and 𝑈𝐵.  

Compared with the standard B&B algorithm, the modified B&B algorithm can result in a much 

smaller tree. By solving 𝐷(𝑛𝑟) we have 𝐷(1) = 4, 𝐷(2) = 4, and 𝐷(3) = 4. Following the 

modified B&B algorithm, the branch-and-bound tree is shown in Figure S-8. Also, the difference 

in the sizes of the trees under these two B&B algorithms will be much significant as the increase 

of the number of allowed racks and inventory levels.  
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Figure S-7. Part of the B&B Tree under the Standard B&B Algorithm 

 

 
Figure S-8. B&B Tree under the Modified B&B Algorithm 
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Appendix J. MIP for SKU-to-Racks Assignment Problem with 

Given Racks Configuration  

Assume a given racks configuration [𝑘1, 𝑘2, . . , 𝑘𝑛𝑟] with 𝑛𝑟 racks, the SKU-to-rack assignment 

problem can be formulated as an MIP defined by Equation (J.34-J.43), which is the same as the 

MIP defined by Equation (4.6) and (4.19-4.30) except the number of racks and the depth of each 

rack are known in advance.  

 min∑(𝐶𝑣

𝑛𝑟 

𝑗=1

+ 𝐶𝑟𝑤𝑤ℎ𝑙𝑛𝑘𝑗 + 𝐶𝑗
𝑠𝑡)  (J.34) 

s.t. ∑𝑦𝑖𝑗

𝑛𝑟 

𝑗=1

= 𝑄𝑖 , 𝑖 ∈ 𝐼, (J.35) 

 ∑ 𝑛𝑖𝑗
𝑖∈𝐼 

≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛𝑟, (J.36) 

 𝑑𝑗 ≥ 𝐶𝑠 + 𝐶𝑡∑
𝑑𝑖𝑦𝑖𝑗

𝑄𝑖
(
1

𝑛
𝐸𝐶𝑘𝑗

1 + (1 −
1

𝑛
)𝐸𝐶𝑘𝑗

2 )
 𝑖∈𝐼

, 2 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑛𝑟, (J.37) 

 𝑒𝑗 ≥ 𝐶𝑠𝑛 + 𝐶𝑡∑
𝑑𝑖𝑦𝑖𝑗

𝑄𝑖
𝐸𝐶𝑘𝑗

1

 𝑖∈𝐼

, 2 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑛𝑟, (J.38) 

 𝑑𝑗 − 𝑒𝑗 ≤ 𝑀2𝑓𝑗, 1 ≤ 𝑗 ≤ 𝑛𝑟 , (J.39) 

 𝑒𝑗 − 𝑑𝑗 ≤ 𝑀2(1 − 𝑓𝑗), 1 ≤ 𝑗 ≤ 𝑛𝑟 , (J.40) 

 𝐶𝑗
𝑠𝑡 ≥ 𝑒𝑗 −𝑀2(1 − 𝑓𝑗), 1 ≤ 𝑗 ≤ 𝑛𝑟 , (J.41) 

 𝐶𝑗
𝑠𝑡 ≥ 𝑑𝑗 −𝑀2𝑓𝑗, 1 ≤ 𝑗 ≤ 𝑛𝑟 , (J.42) 

 𝑘𝑗𝑛𝑖𝑗 − 𝑦𝑖𝑗 ≥ 0, 𝑖 ∈ 𝐼, 1 ≤ 𝑗 ≤ 𝑛𝑟,  (J.43) 

 𝑦𝑖𝑗 , 𝑛𝑖𝑗 ∈ 𝑍
+, 𝑑𝑗 , 𝑒𝑗 , 𝑓𝑗 ∈ 𝑅

+. 
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Appendix K. Comparison between The Standard and The Modified 

B&B Algorithm 

Except for the 10 cases shown in Table 4-2. Comparison of Solving Methods, we created another 

50 cases to makes sure that the modified B&B algorithm can at least, with a high probability to 

reach the optimal solution, and generate a much smaller branch-and-bound tree. Surprisingly, as 

shown in Table S-4. Comparison of the Standard and the Modified B&B Algorithm, the modified 

B&B algorithm can always reach the optimal solutions, which indicates the accuracy of the two 

properties.  
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Table S-4. Comparison of the Standard and the Modified B&B Algorithm 

[𝑛, |𝐼|,∑𝑄𝑖
𝑖∈𝑁

, 𝐶𝑡] 𝐶𝐵&𝐵 𝐶𝐵&𝐵′ 𝑇𝐵&𝐵  𝑇𝐵&𝐵′  𝑁𝑂𝑁𝐵&𝐵  𝑁𝑂𝑁𝐵&𝐵′  

[16, 14, 161, 61] 927 927 6 5 177 135 

[16, 16, 192, 66] 1005 1005 23 14 204 192 

[22, 20, 246, 21] 634 634 14 3 108 52 

[12, 9, 84, 83] 895 895 2 0 70 50 

[16, 16, 210, 59] 1007 1007 90 45 350 323 

[18, 16, 195, 119] 1394 1394 62 55 449 245 

[23, 18, 240, 9] 497 497 3 2 112 90 

[17, 19, 214, 116] 1438 1438 1300 708 677 269 

[11, 13, 176, 122] 1474 1474 301 166 1197 749 

[16, 14, 144, 67] 926 926 3 2 102 88 

[9, 12, 166, 28] 771 771 54 30 565 513 

[7, 5, 39, 54] 588 588 0 0 25 15 

[25, 20, 249, 93] 1269 1269 8 7 143 118 

[13, 14, 173, 107] 1315 1315 74 44 621 335 

[8, 8, 127, 47] 850 850 8 4 563 366 

[8, 8, 101, 12] 451 451 4 2 107 56 

[14, 13, 170, 39] 778 771 5 3 185 130 

[18, 18, 231, 43] 876 876 15 14 232 186 

[14, 12, 139, 36] 682 682 3 2 230 84 

[4, 7, 90, 75] 1167 1167 129 117 4213 3130 

[23, 24, 480, 83] 1565 1565 2100 1739 16502 1786 

[26, 31, 372, 59] 1175 1175 35 21 482 376 

[36, 31, 372, 119] 1660 1660 93 88 192 149 

[38, 33, 627, 9] 752 752 83 59 416 289 

[36, 34, 612, 116] 1967 1967 1288 1071 1429 1157 

[26, 28, 504, 122] 1935 1935 2849 1746 4296 2132 

[30, 29, 580, 67] 1432 1432 530 528 1283 1281 

[28, 27, 378, 28] 836 836 25 14 276 225 

[17, 20, 200, 54] 880 880 10 7 170 142 

[20, 24, 579, 83] 1814 1814 117380 11617 31058 12204 

[27, 31, 482, 59] 1308 1308 1174 582 1072 915 

[31, 31, 396, 119] 1695 1695 393 329 547 264 

[33, 33, 712, 9] 830 830 991 625 1437 699 

[27, 29, 477, 61] 1325 1325 1751 750 2384 930 

[35, 31, 545, 66] 1386 1386 863 260 1340 694 

[35, 35, 711, 21] 1035 1035 654 28 2432 624 
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Table S-5. Comparison of the Standard and the Modified B&B Algorithm 

(Cont’d) 

[28, 24, 326, 83] 1303 1303 176 83 242 240 

[33, 31, 505, 59] 1295 1295 1085 263 3042 561 

[28, 31, 496, 119] 1857 1857 11053 1153 4075 1062 

[31, 33, 557, 9] 725 725 355 151 961 129 

[34, 34, 640, 116] 1998 1998 13031 3017 7503 1718 

[25, 28, 492, 122] 1948 1948 5465 2537 4339 1982 

[30, 29, 506, 67] 1418 1418 792 577 2495 762 

[28, 27, 503, 28] 991 991 237 199 857 643 

[24, 20, 323, 54] 1053 1053 66 14 373 284 

[35, 35, 597, 93] 1760 1760 1282 604 956 528 

[34, 29, 534, 107] 1795 1795 1599 739 1247 804 

[27, 23, 414, 47] 1104 1104 636 167 622 236 

[22, 23, 365, 12] 652 652 113 11 825 134 

[27, 28, 456, 39] 1072 1072 254 237 1379 528 

[34, 33, 626, 43] 1231 1231 643 585 2776 844 

[26, 27, 470, 36] 1063 1063 140 127 752 700 

[21, 22, 339, 75] 1342 1342 284 278 3077 890 
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Appendix L. Sensitivity Analysis of Inventory Levels and Demand 

Rates Distribution  

Table S-6. Sensitivity Analysis on Inventory Levels and Demand Rates Distribution 

when 𝐶𝑡 = 1 

𝐺(0.2) 𝜎 𝐶𝐵&𝐵 𝐸𝐶 [𝑘1, 𝑘2, . . , 𝑘𝑛𝑟] [𝑚1,𝑚2, . . , 𝑚𝑛𝑟] 𝑆 𝐴𝑣𝑔 𝑠𝑡𝑑 

0.2 

1 512 42.8 [26] [1] 754 26.0 0.0 

6 584 49.5 [31] [1] 899 31.0 0.0 

11 612 24.7 [10, 15] [1, 1] 725 12.5 2.5 

16 625 25.0 [9, 17] [1, 1] 754 13.0 4.0 

21 625 25.3 [6, 20] [1, 1] 754 13.0 7.0 

0.4 

1 512. 42.8 [26] [1] 754 26.0 0.0 

6 584 49.5 [31] [1] 899 31.0 0.0 

11 612 25.1 [9, 16] [1, 1] 725 12.5 3.5 

16 626 25.7 [10, 16] [1, 1] 754 13.0 3.0 

21 628 28.2 [6, 20] [1, 1] 754 13.0 7.0 

0.6 

1 512 42.8 [26] [1] 754 26.0 0.0 

6 584 49.5 [31] [1] 899 31.0 0.0 

11 611 23.9 [9, 16] [1, 1] 725 12.5 3.5 

16 625 24.9 [9, 17] [1, 1] 754 13.0 4.0 

21 628 27.9 [6, 20] [1, 1] 754 13.0 7.0 

0.8 

1 512 42.8 [26] [1] 754 26.0 0.0 

6 584 49.5 [31] [1] 899 31.0 0.0 

11 611 23.9 [9, 16] [1, 1] 725 12.5 3.5 

16 625 24.9 [9, 17] [1, 1] 754 13.0 4.0 

21 628 27.9 [6, 20] [1, 1] 754 13.0 7.0 
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Table S-7. Sensitivity Analysis on Inventory Levels and Demand Rate Distribution when 𝐶𝑡 = 25 

𝐺(0.2) 𝜎 𝐶𝐵&𝐵 𝐸𝐶 [𝑘1, 𝑘2, . . , 𝑘𝑛𝑟] [𝑚1,𝑚2, . . , 𝑚𝑛𝑟
] 𝑆 𝐴𝑣𝑔 𝑠𝑡𝑑 

0.2 

1 1108 14.1 [7, 8, 9] [29, 29, 29] 696 8.0 0.81 

6 1105 14.0 [7, 8, 9] [29, 29, 29] 696 8.0 0.81 

11 1103 13.9 [7, 8, 9] [29, 29, 29] 696 8.0 0.81 

16 1093 13.5 [4, 9, 11] [29, 29, 29] 696 8.0 2.94 

21 1080 12.9 [4, 9, 11] [29, 29, 29] 696 8.0 2.94 

0.4 

1 1100 13.8 [7, 8, 9] [29, 29, 29] 696 8.0 0.8 

6 1102 13.9 [7, 8, 9] [29, 29, 29] 696 8.0 0.81 

11 1104 13.9 [7, 8, 9] [29, 29, 29] 696 8.0 0.81 

16 1103 13.9 [6, 8, 10] [29, 29, 29] 696 8.0 1.6 

21 1104 13.9 [5, 9, 10] [29, 29, 29] 696 8.0 2.2 

0.6 

1 1071 12.6 [5, 7, 12] [29, 29, 29] 696 8.0 2.94 

6 1081 13.0 [5, 7, 12] [29, 29, 29] 696 8.0 2.94 

11 1082 13.1 [5, 8, 11] [29, 29, 29] 696 8.0 2.44 

16 1088 13.3 [6, 8, 10] [29, 29, 29] 696 8.0 1.63 

21 1088 13 [5, 9, 10] [29, 29, 29] 696 8.0 2.16 

0.8 

1 1010 10.8 [3, 8, 13] [29, 29, 29] 696 8.0 4.08 

6 1021 11.3 [3, 9, 12] [29, 29, 29] 696 8.0 3.74 

11 1024 10.7 [2, 9, 13] [29, 29, 29] 696 8.0 4.54 

16 1034 11.1 [3, 9, 12] [29, 29, 29] 696 8.0 3.74 

21 1055 12.6 [5, 9, 10] [29, 29, 29] 696 8.0 2.16 
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Table S-8. Sensitivity Analysis on Inventory Levels and Demand Rate Distribution when 

𝐶𝑡 = 50 

𝐺(0.2) 𝜎 𝐶𝐵&𝐵 𝐸𝐶 [𝑘1, 𝑘2, . . , 𝑘𝑛𝑟] [𝑚1, 𝑚2, . . , 𝑚𝑛𝑟] 𝑆 𝐴𝑣𝑔 𝑠𝑡𝑑 

0.2 

1 1460 14.1 [7, 8, 9] [29, 29, 29] 696 8.0 0.81 

6 1455 14.0 [7, 8, 9] [29, 29, 29] 696 8.0 0.81 

11 1451 13.9 [7, 8, 9] [29, 29, 29] 696 8.0 0.81 

16 1431 13.5 [4, 9, 11] [29, 29, 29] 696 8.0 2.94 

21 1404 12.9 [4, 9, 11] [29, 29, 29] 696 8.0 2.94 

0.4 

1 1445 13.8 [7, 8, 9] [29, 29, 29] 696 8.0 0.8 

6 1449 13.9 [7, 8, 9] [29, 29, 29] 696 8.0 0.81 

11 1454 13.9 [7, 8, 9] [29, 29, 29] 696 8.0 0.81 

16 1451 13.9 [6, 8, 10] [29, 29, 29] 696 8.0 1.6 

21 1453 13.9 [5, 9, 10] [29, 29, 29] 696 8.0 2.2 

0.6 

1 1271 12.6 [3, 8, 13] [29, 29, 29] 696 8.0 2.94 

6 1287 13.0 [3, 9, 12] [29, 29, 29] 696 8.0 2.94 

11 1294 13.1 [2, 9, 13] [29, 29, 29] 696 8.0 2.44 

16 1314 13.3 [3, 9, 12] [29, 29, 29] 696 8.0 1.63 

21 1356 13 [5, 9, 10] [29, 29, 29] 696 8.0 2.16 

0.8 

1 1271 10.8 [3, 8, 13] [29, 29, 29] 696 8.0 4.08 

6 1287 11.3 [3, 9, 12] [29, 29, 29] 696 8.0 3.74 

11 1294 10.7 [2, 9, 13] [29, 29, 29] 696 8.0 4.54 

16 1314 11.1 [3, 9, 12] [29, 29, 29] 696 8.0 3.74 

21 1055 12.6 [5, 9, 10] [29, 29, 29] 696 8.0 2.16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S-9. Sensitivity Analysis on Inventory Levels and Demand Rate Distribution  

when 𝐶𝑡 = 100 

𝐺(0.2) 𝜎 𝐶𝐵&𝐵 𝐸𝐶 [𝑘1, 𝑘2, . . , 𝑘𝑛𝑟] [𝑚1, 𝑚2, . . , 𝑚𝑛𝑟
] 𝑆 𝐴𝑣𝑔 𝑠𝑡𝑑 

0.2 

1 2201 10.0 [4, 4, 5, 5, 6] [29, 29, 29, 29, 29] 696 4.8 0.7 

6 2188 9.8 [4, 4, 5, 5, 6] [29, 29, 29, 29, 29] 696 4.8 0.7 

11 2163 9.6 [3, 4, 5, 6, 6] [29, 29, 29, 29, 29] 696 4.8 1.1 

16 2139 9.4 [3, 4, 5, 5, 7] [29, 29, 29, 29, 29] 696 4.8 1.3 

21 2101 9.1 [2, 4, 5, 6, 7] [29, 29, 29, 29, 29] 696 4.8 1.7 
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0.4 

1 2160 9.6 [3, 4, 5, 6, 6] [29, 29, 29, 29, 29] 696 4.8 1.1 

6 2180 9.8 [4, 4, 5, 5, 6] [29, 29, 29, 29, 29] 696 4.8 0.7 

11 2177 9.8 [3, 5, 5, 5, 6] [29, 29, 29, 29, 29] 696 4.8 0.9 

16 2177 9.8 [3, 4, 5, 6, 6] [29, 29, 29, 29, 29] 696 4.8 1.1 

21 2170 9.7 [3, 4, 5, 6, 6] [29, 29, 29, 29, 29] 696 4.8 1.1 

0.6 

1 2067 10.1 [3, 6, 7, 8] [29, 29, 29, 29, 29] 696 6.0 1.8 

6 2099 10.4 [3, 6, 7, 8] [29, 29, 29, 29, 29] 696 6.0 1.8 

11 2110 9.2 [2, 4, 5, 6, 7] [29, 29, 29, 29, 29] 696 4.8 1.7 

16 2124 9.3 [3, 4, 5, 6, 6] [29, 29, 29, 29, 29] 696 4.8 1.1 

21 2136 9.4 [3, 4, 5, 6, 6] [29, 29, 29, 29, 29] 696 4.8 1.1 

0.8 

1 1878 8.6 [1, 4, 7, 12] [0, 29, 29, 29] 696 6.0 4.0 

6 1916 8.8 [2, 5, 8, 9] [29, 29, 29, 29, 29] 696 6.0 2.7 

11 1930 8.9 [2, 6, 7, 9] [29, 29, 29, 29, 29] 696 6.0 2.5 

16 1980 9.3 [2, 4, 8, 10] [29, 29, 29, 29, 29] 696 6.0 3.1 

21 2007 9.6 [3, 6, 7, 8] [29, 29, 29, 29, 29] 696 6.0 1.8 
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