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Abstract

Reinforcement learning (RL) is a powerful tool for developing personalized treatment

regimens from healthcare data. In RL, an agent samples experiences from an environment

(such as a model of patient health) to learn a policy that maximizes long-term reward. This

dissertation proposes methodological and practical developments in the application of RL to

treatment planning problems.

First, we develop a novel time series model for simulating patient health states from

observed clinical data. We use a generative neural network architecture that learns a direct

mapping between distributions over clinical measurements at adjacent time points. We show

that this model produces realistic patient trajectories and can be paired with on-policy RL

to learn effective treatment policies.

Second, we develop a novel extension of hidden Markov models, which are commonly

used to model and predict patient health states. Specifically, we develop a special

case of recurrent neural networks with the same likelihood function as a corresponding

discrete-observation hidden Markov model. We demonstrate how combining our model

with other predictive neural networks improves disease forecasting and offers novel clinical

interpretations compared with a standard hidden Markov model.

Third, we develop a method for selecting high-performing reinforcement learning-based

treatment policies for underrepresented patient subpopulations using limited observations.

Our method learns a probability distribution over treatment policies from a reference patient

group, then adapts its recommendations using limited data from an underrepresented

patient group. We show that our method outperforms state-of-the-art benchmarks in

selecting effective treatment policies for patients with non-typical clinical characteristics,

and predicting these patients’ outcomes under its policies.
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Finally, we use RL to optimize medication regimens for Parkinson’s disease patients

using high-frequency wearable sensor data. We build an environment model of how

patients’ symptoms respond to medication, then use RL to recommend optimal medication

types, timing, and dosages for each patient. We show that these patient-specific RL-

prescribed medication regimens outperform physician-prescribed regimens and provide

clinically defensible treatment strategies. Our framework also enables physicians to identify

patients who could could switch to lower-frequency regimens for improved adherence, and

to identify patients who may be candidates for advanced therapies.
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Chapter 1

Improving Deep Reinforcement

Learning with Transitional Variational

Autoencoders: A Healthcare

Application

1.1 Introduction

The reinforcement learning (RL) paradigm offers a promising way to optimize treatment

regimens for acute and chronic conditions. RL generally seeks to learn a policy that maps

an environmental state (e.g., a patient’s health status) to an optimal action, with the goal

of maximizing long-term expected reward. In recent years, researchers have applied RL and

deep RL (DRL) techniques to optimize treatment strategies in a large array of diseases,

e.g., for HIV medication regimens [100], sepsis treatment [111], drug therapy for myeloma

patients [163], and anticoagulant medication administration [93].

Healthcare RL is complicated by the fact that treatment policies often cannot be learned

from actual patients in real time, for obvious ethical reasons. There are two primary

approaches for addressing this limitation. The first is to learn policies directly from existing

datasets (e.g., [111]). This approach, known as off-policy reinforcement learning, allows
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an agent to map patient states to optimal treatment actions using data generated from a

separate policy (e.g., from the patient’s original physician).

The second approach is to learn an ‘environment model’ from historical patient data

that provide an RL agent with feedback on any state/action pair. This allows for on-policy

learning (where an agent can receive feedback on its own policy), and is considered state-

of-the-art and has been shown to outperform off-policy learning [83]. Below, we review

existing approaches that may be used for learning environment models from patient data.

We then introduce our proposed model, the transitional variational autoencoder (tVAE),

which addresses several shortcomings of existing methods.

1.1.1 Existing approaches for RL environment modeling

One of the most common modeling approaches using historical patient data is hidden Markov

models (HMMs) [12], which have been used for modeling disease progression and treatment

response for HIV [100], cancer [163], and glaucoma [74]. HMMs model patient measurements

as manifestations of a discrete set of latent disease states, and estimate the transitions

between such states as well as the measurement distributions associated with each state.

For continuous measurements, HMMs typically assume Gaussian emission distributions for

tractability [100, 163]. HMMs’ intuitive structure and relatively interpretable parameters

make them appealing for fitting generative models to patient data.

Long short-term memory (LSTM) networks are another common patient modeling

approach, and are specifically designed to capture long-term dependencies in their input

sequences. Unlike HMMs, LSTMs do not require the Markov assumption, i.e., observations

are allowed to depend on multiple previous disease states, not just the previous state.

Because of this flexibility, LSTMs have been used to model Alzheimer’s patient progression

[43], blood anticoagulent therapy [93], and sepsis [73]. While LSTMs are predictive (rather

than generative) models, they can easily be used as generative models by treating their

output layers as probability distributions over discrete patients states, or by treating their

outputs as the mean of a continuous emission distribution [152].

Another attractive approach for learning fully-responsive environment models from

patient data is generative neural networks. Unlike standard neural networks, which optimize
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predictive accuracy, generative neural networks attempt to learn underlying representations

for their training data that can be used to generate novel, synthetic data points from a lower-

dimensional ‘latent’ distribution. Generative neural networks have already shown promise

in generating synthetic patient profiles based on real data [35, 24].

The two subclasses of generative neural networks are variational autoencoders (VAEs;

[65]) and generative adversarial networks (GANs; [44]). Both models train a decoder network

to transform a latent state vector into a realistic feature vector that resembles training

examples. VAEs do this by learning to reproduce training examples from latent state

distributions that are conditioned on those training examples. GANs learn to generate

synthetic data from random latent states that a second ‘discriminator’ network cannot

distinguish from real training data. Conditional VAEs (CVAEs; [64]) and conditional GANs

(CGANs; [81]) condition their decoder networks on training labels, and learn to generate

realistic data given a particular label. CVAEs have been used to generate handwritten digits

[130] and realistic object trajectories [143]. CGANS have been used for face aging [7] and

medical image analysis [115].

1.1.2 Limitations of existing approaches

Existing approaches for learning environment models from patient data suffer from several

shortcomings, which this work aims to address. HMMs and LSTMs both require that

the functional form of the emission distribution be specified a priori, and HMMs are

often limited in practice to Gaussian emission distributions for tractability. In addition,

HMMs are typically implemented with discrete state spaces, which may introduce unwanted

discontinuities in model-generated patient measurements. LSTMs, being predictive rather

than generative networks, are also limited by their inability to estimate emission distribution

variances during model fitting.

In general, CVAEs and CGANs encourage a strong dependence between consecutive

patient measurements (i.e., between the desired output and conditioning label). Therefore,

these models may simply learn to approximate patient measurements by reproducing

their previous measurements, without adding sufficient variability to their simulations.

Furthermore, in particular to the CVAE architecture, latent distributions learned during
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training must be replaced with standard Gaussian distributions during testing, possibly

yielding inaccurate patient trajectories.

1.1.3 Objective and contributions

The purpose of this work is to introduce transitional variational autoencoders (tVAEs),

and to examine their ability to learn realistic disease progression environment models in the

context of DRL. We benchmark tVAEs against a set of best-known and most-used generative

models for patient data, specifically HMMs, LSTMs, CVAEs, and CGANs.

The tVAE adapts the VAE structure to the type of longitudinal patient data frequently

encountered in the healthcare domain by learning to map patient states to distributions

over states at the following time point. In doing so, tVAEs address several shortcomings

of existing methods for patient modeling. Unlike HMMs, tVAEs use continuous latent

state spaces, and because they map their latent state spaces to model outputs using neural

networks, they avoid placing distributional assumptions on the observed data. Furthermore,

unlike LSTMs, tVAEs incorporate randomness at the latent state level rather than requiring

the post-hoc application of emission distributions to model outputs. Unlike CGANs,

tVAEs use a stochastic latent layer to separate inputs and outputs, which ensures that

random variability is incorporated into the model. In contrast to CVAEs, tVAEs do not

replace learned latent distributions with standard Gaussian distributions during testing,

and therefore have identical training and testing architectures. Therefore, our proposed

generative neural network approach, tVAE, contributes to the healthcare RL literature by

1) placing no distributional assumptions on the observed clinical data, 2) allowing for a

continuous disease state space, and 3) building randomness directly into the model in a way

that is specifically designed for medical time series.

We showcase the contributions of our proposed method in the context of optimal

medication administration planing (dosage and timing) in the intensive care unit (ICU).

Specifically, we use an existing dataset of anticoagulant medication administration records

(timing/dosage) and the corresponding outcomes in a cohort of ICU patients to learn and

prescribe optimal medication administration policies. We use a tVAE and four benchmark

methods (HMM, LSTM, CGAN, CVAE) as environment models capable of generating
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synthetic patient trajectories and training medication dosage policies through on-policy RL.

To assess each model’s validity, we compare their simulated patient trajectories with actual

patient data. We also assume that a valid patient model should be able to facilitate learning

effective treatment policies. Thus, we also use each environment model for training an

optimal heparin dosage policy through DRL, and assess each policy’s ability to maintain

desirable blood coagulation levels for patients. In doing so, we use an ‘ensemble’ environment

based on all five generative models (tVAE, HMM, LSTM, CGAN, CVAE) as a proxy for

patients’ responses to heparin.

The remainder of the chapter is organized as follows. Section 2.3 discusses the methods.

Specifically, Section 1.2.1 discusses the dataset, Sections 1.2.2 and 3.2.5 formally introduce

the tVAE and the benchmark models, respectively, and Section 1.2.4 describes the RL

problem formulation and solution algorithm. Results are provided in Section 2.4. Section

1.3.1 provides patient descriptive statistics, and Sections 1.3.2 and 1.3.3 assess each environ-

ment model’s ability to generate realistic patient data and train personalized RL policies,

respectively. Section 2.5 discusses the results. Lastly, Section 1.5 concludes the chapter.

1.2 Methods

In this section, we first discuss our dataset, and introduce our proposed tVAE and benchmark

models. We then present our method for using DRL to learn optimal dosage policies from

each environment model.

1.2.1 Dataset

Data consists of intensive care unit data from 2,067 patients in the publicly available MIMIC

dataset [57].

The dataset consists of hourly measurements of each patient’s heparin dosage, aPTT

values, and 13 other clinical variables - arterial carbon dioxide, heart rate, creatinine,

the Glasgow Coma Score, hematocrit, hemoglobin, international normalized ratio of

prothrombin, platelet count, prothrombin time, arterial oxygen saturation, temperature,

urea, and white blood cell count. These measurements are included in our study because of
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their general relevance to patient health or their specific relevance to blood anticoagulation

[93]. Note that this dataset was also used for analysis in [93].

Because heparin dosages are weight-based (expressed as mL/kg of patient body weight

[79]), each patient’s hourly heparin dosage is divided by their weight and discretized into six

categories [93]. Heparin dosages of zero (no administration) constituted one dosage category,

with the remaining dosages split along the 20th, 40th, 60th, and 80th percentiles into five

additional categories, resulting in six heparin dosage groups at ∈ {0, 1, 2, 3, 4, 5} for all time t.

As in [93], missing heparin dosages are imputed according to sample-and-hold interpo-

lation. Missing aPTT measurements are imputed according to a neural network, which

predicted aPTT values from the remaining 13 clinical values, heparin dosage, as well as

the patients’ gender, age, and weight. It is worth noting that removing gender and age

from the aPTT imputation model did not degrade predictive accuracy, suggesting that any

confounding influences of these demographic factors on patient aPTT are accounted for by

the other clinical variables. The final dataset consists of 54,906 measurements (all variables

standardized), with an average of 26.6 sequential hourly measurements for each of the 2,067

patients.

1.2.2 Transitional variational autoencoders (tVAE)

1.2.2.1 tVAE overview

The proposed transitional variational autoencoder (tVAE) adapts the structure of standard

VAEs to model transitions between consecutive patient measurements. A standard VAE

seeks to maximize the probability of a dataset, P (X), by assuming that entries in X are

distributed according to some function of a latent normal variable Z, which is assigned a

prior distribution P (Z) ∼ N (0, I) [65]. That is, X ∼ g(Z) such that maximizing P (X)

is equivalent to maximizing EZ∼P (Z) P (X|Z). Since large regions of P (Z) may yield near-

zero values of P (X|Z), VAEs assume an approximator distribution Q(Z|X) that conditions

Z on X and thus identifies values of Z that are likely to have produced X. The model

learns a function h that maps X to Q(Z|X), i.e., h : Xt 7→ Q(Zt|Xt) at time t, typically

assuming Q(Z|X) ∼ N (µ,Σ), where µ = hµ(X) and Σ is a diagonal matrix with entries
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σ2 = hσ(X). The model also learns a function g that maps Q(Z|X) to P (X|Z), i.e.,

g : Q(Zt|Xt) 7→ P (Xt|Zt) for time t. In other words, g learns to ‘re-map’ a distribution of

latent values to a distribution over observations.

If a suitable approximator distribution is found, then EZ∼Q(Z|X) P (X|Z) can be

substituted for EZ∼P (Z) P (X|Z). This substitution yields the following relation between

P (X) (the quantity to be maximized) and EZ∼Q(Z|X) P (X|Z):

logP (X) = DKL[Q(Z|X)||P (Z|X)]

+ EZ∼Q(Z|X)[logP (X|Z)]−DKL[Q(Z|X)||P (Z)]
(1.1)

where DKL is the Kullback-Leibler divergence. This equation forms the basis for the

VAE objective function, and follows directly from the expression for the Kullback-Leibler

divergence between Q(Z|X) and P (Z|X) (the true, unknown distribution for Z given X):

DKL[Q(Z|X)||P (Z|X)]

= EZ∼Q(Z|X)[logQ(Z|X)− logP (Z|X)]

= EZ∼Q(Z|X)[logQ(Z|X)− log(P (Z) · P (X|Z)/P (X))]

= EZ∼Q(Z|X)[logQ(Z|X)− logP (Z)− logP (X|Z)]

+ logP (X)

= DKL[Q(Z|X)||P (Z)]− EZ∼Q(Z|X)[logP (X|Z)]

+ logP (X) (1.2)

Note that the last line in equation (1.2) can easily be rewritten as the expression in equation

(1.1).

In equation (1.1), DKL[Q(Z|X)||P (Z|X)] cannot be computed (as P (Z|X) is unknown),

but since it is always nonnegative, EZ∼Q(Z|X)[logP (X|Z)] − DKL[Q(Z|X)||P (Z)] is a

lower bound for logP (X). VAEs are thus designed to maximize this “evidence lower

bound” (ELBO) as a proxy for maximizing P (X). The term EZ∼Q(Z|X)[logP (X|Z)]

represents the likelihood of the data given Z, according to the conditional distribution

Q(Z|X) = N (hµ(X), diag(hσ(X))). The VAE thus learns functions hµ and hσ that produce

7



conditional distributions over Z, which, in turn, yield high values of P (X|Z). Minimizing

DKL[Q(Z|X)||P (Z)] ensures that the learned distribution for Q(Z|X) does not stray too far

from the prior distribution P (Z) ∼ N (0, I).

More intuitively, the VAE learns a neural network h that maps individual data points

to mean and variance vectors for the distribution Q(Z|X), in such a way that samples

from Q(Z|X) ∼ N (hµ(X), diag(hσ(X))) can be passed to a decoder network g capable of

reconstructing the original input. Maximizing the term EZ∼Q(Z|X)[logP (X|Z)] is equivalent

to minimizing the reconstruction loss between the data X and the output of the decoder

network. Minimizing the term DKL[Q(Z|X)||P (Z)] regularizes the encoder network h to

produce latent distributions that are relatively close to N (0, I); this ensures that Q(Z|X) is

relatively compact and can be directly sampled from without producing erroneous decodings

from g.

We modify the standard VAE with the assumption that, for sequential data of length

T , data at each time point arise from identically distributed latent variables {Z0, ..., ZT},

and that changes between consecutive time points arise from changes in Z, i.e., for two

consecutive time points t and t + 1, Xt ∼ g(Zt) and Xt+1 ∼ g(Zt+1). While the actual

function governing Zt 7→ Zt+1 is unknown, we assume that it is Markovian (dependent on

the current state only), and hypothesize that for any t, Zt can be used to predict Zt+1.

For any t, a standard VAE would identify regions of Z likely to have produced Xt using

Q(Zt|Xt); under the assumption outlined above, we instead use Q(Zt|Xt−1). Intuitively, we

assume that we can learn some function h′ which will map an observation at t− 1 to regions

of the latent space that were likely to have generated the next observation at t, i.e., h′ :

Xt−1 7→ Q(Zt|Xt−1). The decoder function g′ then maps the latent distribution Q(Zt|Xt−1)

to a distribution over observations at time t, i.e., g′ : Q(Zt|Xt−1) 7→ P (Xt|Zt). Note that we

can easily condition the latent distribution on an action at−1 taken at time t− 1, by simply

including at−1 in the input to h′, resulting in the latent distribution Q(Zt|Xt−1, at−1). Thus,

whereas a standard VAE encodes an input Xt into the latent distribution Q(Zt|Xt) before

reconstructing Xt, our tVAE encodes a data point Xt−1 into a latent distribution Q(Zt|Xt−1)

(or Q(Zt|Xt−1, at−1)), then attempts to construct the observation Xt. As in equation (1.2),
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the expression for DKL[Q(Zt|Xt−1, at−1)||P (Zt|Xt)] can be rewritten to show that

logP (Xt) = DKL[Q(Zt|Xt−1, at−1)||P (Zt|Xt)]

+ EZ∼Q(Zt|Xt−1,at−1)[logP (Xt|Zt)]

−DKL[Q(Zt|Xt−1, at−1)||P (Zt)]

Fig. 1.1 outlines the structure of standard VAEs versus tVAEs.

1.2.2.2 tVAE-based environment

The model takes as input the 14-length state vector for time t appended to a one-hot encoding

of the action take at that time point (e.g., [1, 0, 0, 0, 0, 0] for at = 0). Inputs pass through

a u-unit hidden layer with sigmoid activations, then passed to a layer defining l means

(µ) and l variances (σ2) for the latent distribution Z. An l-length vector is drawn from

N (µ, diag(σ2)) and passed through a u-unit decoder layer with sigmoid activations, before

reaching the output layer predicting the patient state at t + 1. The final model has u = 10

hidden units (roughly 2/3 of the output feature space) and l = 7 latent dimensions (roughly

1/2 of output feature space), based on guidelines in [60].

The model is trained using gradient descent to minimize a weighted sum of the prediction

loss (measured in mean squared error) and the KL divergence between N (µ, diag(σ2)) and

N (0, I). In practice, equally weighting these two terms this can cause the model to under-

train toward prediction loss [16]; weighting prediction loss at 80% and regularization at 20%

improves training stability and model performance. We also monitor the model’s loss on a

15% hold-out set to confirm that the model does not overfit.

1.2.3 Benchmark models

1.2.3.1 HMM-based environment

Our HMM assumes that for a given time t ∈ {0, ..., T}, each patient occupies one of m latent

disease states. The vector π defines the probability distribution over state membership at

t = 0, while the m×m transition matrix Pat defines the state transition probabilities when

9



Figure 1.1: Structure of the variational autoencoder (VAE, top) and our transitional
variational autoencoder (tVAE, bottom).
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dosage at ∈ {0, 1, 2, 3, 4, 5} is administered at time t. We assume a time-homogeneous HMM

where the transition matrix Pat does not vary based on time t. The emission model Ψ consists

of m k-dimensional Gaussian distributions N (µi,Σi), where k is the dimensionality of the

observation vectors and i is the index of the latent state. We assume all Σi are diagonal

matrices (i.e., all feature covariances are accounted for by the latent state).

We first use the Baum-Welch algorithm [12] to estimate µi and Σi from patient data for

i ∈ {1, ..., k} with k = 14. We choose m = 9 to optimize model fit according to the Bayesian

Information Criteria [126] (after removing two states with less than 0.1% visitation). We

then estimate Pat for at ∈ {0, 1, 2, 3, 4, 5} by stratifying patients’ data sequences by heparin

dosage groups.

1.2.3.2 LSTM-based environment

The LSTM model is a recurrent neural network that can model long-term dependencies by

using ‘forget gates’ to store relevant sequence information. Our LSTM takes as input a full

history of each patient’s clinical states and heparin dosages, and for each time t outputs the

patient’s predicted clinical state at time t+ 1. The LSTM’s recurrent layer included u = 10

hidden units (roughly 2/3 times the output dimensionality [60]) with a tanh activation.

When simulating patient sequences, a patient’s state at time t is sampled according to

N (µt,Σ), where µt is the LSTM output at time t and Σ is a diagonal covariance matrix

with entries σ2
i for i ∈ {1, ..., k}. For a clinical indicator i, σ2

i is defined as its conditional

variance at time t given its values at time t− 1. As with the tVAE, we monitor the model’s

loss on a 15% hold-out set to confirm that the model does not overfit.

1.2.3.3 CGAN-based environment

During training, the CGAN takes as input a patient’s clinical state and heparin dosage at

time t, concatenated to an l-dimensional random Gaussian noise vector. A generator network

with one u-unit hidden layer converts this input to a ‘synthetic’ clinical vector for time t+1.

This structure incorporates random variability into the network (as with standard GANs,

which take random noise vectors as input) while ensuring that generated patient states for

time t+ 1 are dependent on the state and action at time t.
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The synthetic and ground-truth patient states for time t+ 1 are fed to a ‘discriminator’

network (with a u-unit hidden layer), which predicts the probability that the input comes

from the ground truth dataset. The generator network is trained to maximize the ground

truth probabilities assigned to its synthetic outputs, while the discriminator network is

trained to minimize them. Both models are jointly trained until equilibrium, i.e., until

the differences between their losses converges with tolerance ε = 0.001. To make the CGAN

comparable with the tVAE, we set l = 7 and u = 10, and we monitor training loss on

a 15% hold-out set to confirm that the model does not overfit. When simulating patient

sequences, clinical states at time t are concatenated with an l-dimensional random Gaussian

noise vector and fed into the generator network to predict the patient state at time t+ 1.

1.2.3.4 CVAE-based environment

During training, the CVAE takes as input a concatenation of a patient’s clinical states at

times t and t + 1, along with their heparin dosage at time t. A u-unit hidden layer then

transforms the input to an l-dimensional latent distribution N (µ, diag(σ2)). A random

sample from N (µ, diag(σ2)) is then concatenated with the patient state at time t, fed into

a u-unit decoder layer, and used to predict the patient state at time t + 1. The latent

distributions N (µ, diag(σ2)) are regularized based on their KL-divergence from a standard

normal prior. As with the tVAE, we set l = 7 and u = 10, and weight prediction loss at

80% and KL-divergence loss at 20%. We monitor the model’s loss on a 15% hold-out set

to confirm that the model does not overfit. CVAEs simulate patient sequences in a manner

identical to the CGAN: clinical states at time t are concatenated with an l-dimensional

random Gaussian noise vector and fed into the decoder network to predict the patient state

at time t+ 1.

1.2.4 A3C RL algorithm and model evaluation

Using the aforementioned model environments, we train RL agents to maximize rewards

through a heparin dosage policy πθ(at|st). The resulting stochastic optimal policy maps any

patient state st ∈ S = R14 at time t ∈ {0, .., T}, representing the patient’s 14-length clinical

12



feature vector, to a probability distribution over actions at ∈ {0, 1, 2, 3, 4, 5}, i.e., the six

possible heparin dosages. The reward function r(st, at) is taken from [93], and depends only

on the aPTT value in the current state. This function is given by r(st, at) = 2
1+e−(aPTT−60) −

2
1+e(aPTT−100) − 1, and assigns reward of almost 1 for aPTT values within the 60–100 sec

therapeutic range, and -1 for aPTT values outside this range. The RL algorithm thus seeks

policy parameter vector θ that maximizes the expected discounted cumulative reward, i.e.,

arg maxθ E
[∑T

t=0 γ
tr(st, πθ(st))

]
, with γ = 0.99.

We trained the RL agents with the Asynchronous Advantage Actor-critic algorithm (A3C;

[83]). A3C is on-policy and considered state-of-the-art, and therefore an appropriate example

of a powerful reinforcement learning algorithm that can only be used when provided a fully-

defined model of the patient environment. The algorithm uses neural networks to map each

encountered state into an estimated reward-to-go (the “value network”) and a stochastic

policy over the possible actions (the “policy network”, denoted πθ(at|st) and parameterized

by θ). In this implementation, the value and policy networks shared all layers except for the

output layers. From any given state st, the agent evaluates a possible action at based on

its advantage A(st, at) – the difference between the action’s expected reward-to-go and the

state’s expected reward to-go, averaged across all actions, i.e.,

A(st, at) =
k−1∑
i=0

γirt+i + γkV (st+k)− V (st) (1.3)

where k ≤ T and V (st) is the expected reward-to-go from state st, approximated with a

neural network. The agent then updates the policy network weights (denoted with θ) based

on the gradient ∇θlog(πθ(at|st)A(st, at)) + η∇θH(πθ(st)), where H(πθ(st)) is the entropy of

the policy distribution over all at from st. Intuitively, the policy update encourages actions

that yield large advantage values, regularized with an entropy term that encourages action

exploration. The algorithm is “asynchronous” because it performs these updates based on

the interactions of multiple agents moving through the environment in parallel. Agents are

trained for 2000 epochs, each of which simulated 500 hours of treatment (a relatively long

time horizon was required to stabilize training), using environment models that are trained

on the entire dataset.
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We use A3C to learn one heparin dosage policy from each model (that is, using each

model as the ‘environment’ in which the policies are trained). To assess each model’s ability

to train effective dosage policies, we evaluate each policy’s cumulative discounted return over

5000 test runs that simulate one week of treatment (typical of ICU heparin patients [41]).

Test runs are evenly split across the tVAE, HMM, LSTM, CGAN, and CVAE environments,

allowing us to assess policies’ robustness to different environments. For each test run, a

policy’s score is the difference between its cumulative return and the cumulative return in

that environment under a ‘no treatment’ policy (at = 0,∀t). Lastly, note that all model

environments (tVAE, HMM, LSTM, CGAN, CVAE) and the A3C policy/value network are

trained using tensorflow [1].

1.3 Results

In this section, we provide an overview of the patient characteristics, and compare our tVAE-

based environment’s simulated patient trajectories with actual patient trajectories and those

of the benchmark environments. Finally, we evaluate the performance of RL policies learned

from our tVAE model against those obtained under the benchmarks.

1.3.1 Patient characteristics

The sample is 42.4% female, with a median age of 70.4 years (IQR 58.3–79.8) and a median

weight of 173 lbs (IQR 145–205). The median sequence length for each patient is 27 hours

(IQR 19-35), and on average, patients received non-zero heparin dosages 96.0% of the time

(IQR 85.7%–100%).

1.3.2 Simulated trajectory characteristics

We train each model on 85% of the patient data (n = 1757 patients) and use the trained

models to generate 100 “alternative” trajectories for each of the remaining 15% of patients

(n = 310). These trajectories start from the patient’s first measurement vector (aPTT and

additional clinical predictors), last for the same number of hours, and use the same heparin
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dosage groups that the patient received. We compared the characteristics of the 310 held-out

sequences with each model’s simulated sequences. Figure 1.2 provides example trajectories

from the tVAE and each benchmark model. Results are summarized in Table 1.1. In the

following, we discuss the results in detail.

1.3.2.1 Predicted aPTT values

We examine the average aPTT value produced by each model, and compare it to patients’

average aPTT of 61.12 sec. The tVAE, HMM, LSTM, CGAN, and CVAE yield average

aPTT values of 61.46, 62.15, 63.99, 58.23, and 59.25 sec, respectively, with only the tVAE

not significantly differing from the patient average of 61.12 sec (p-value > 0.05). We also

calculate the mean absolute error (MAE) between each patient’s aPTT sequence and their

corresponding synthetic aPTT sequences from each model. The tVAE and CGAN and tVAE

sequences most closely match the ground truth aPTT sequences, with respective MAEs of

12.15 and 11.15 (difference not significant, p-value > 0.05). The HMM, LSTM, and CVAE

yield MAEs of 16.05, 16.32, and 13.40, respectively, significantly higher than the CGAN and

tVAE (p-value < 0.05).

1.3.2.2 aPTT variability

For each actual and simulated sequence, we examine the absolute percentage changes in

aPTT between consecutive time points as a measure of trajectory variability. Fig. 1.3

presents the distributions of absolute percentage changes in the test set and in each model’s

synthetic sequences. The average absolute percentage aPTT change in the test set is 11.0%.

The averages for the tVAE, HMM, LSTM, CGAN, and CVAE trajectories are 10.7%, 30.9%,

30.7%, 5.0%, and 14.6%, respectively. Thus, the CGAN underestimates aPTT variability,

while the HMM, LSTM, and CVAE overestimate it.

We also examine the proportion of aPTT changes that exceed 10%, since aPTT changes

above 10% are considered clinically significant [114]. In the test set, 25.1% of aPTT

changes exceed 10%, compared with 37.5%, 76.2%, 76.7%, 6.5%, and 53.4% for the tVAE,

HMM, LSTM, CGAN, and CVAE trajectories, respectively. Thus, all models’ sequences
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Figure 1.2: Comparison of actual and simulated aPTT trajectories for a randomly sampled
patient (patient 2503). Plots show the patient’s actual aPTT sequence, and ten randomly
selected alternate trajectories from each environment (out of 100 total).

Table 1.1: Descriptive Statistics for real and simulated aPTT trajectories. MAE=Mean
absolute error.

Patients tVAE HMM LSTM CGAN CVAE
Mean (sec) 61.12 61.46 62.15 63.99 58.23 59.25
MAE (sec) - 12.15 16.05 16.32 11.15 13.40

Abs. %
Change
(Mean)

11.0% 10.7% 30.9% 30.7% 5.0% 14.6%

Abs. %
Change
(> 10%)

25.1% 37.5% 76.2% 76.7% 6.5% 53.4%

Abs. %
Change

(by aPTT
window)

11.7%
8.3%
48.7%

13.9%
8.0%
45.4%

38.0%
22.7%
36.3%

42.1%
21.7%
27.7%

4.4%
6.2%
53.8%

17.4%
11.1%
41.6%

Data tVAE HMM LSTM CGAN CVAE
Model
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Figure 1.3: Distributions of absolute percentage changes in aPTT. Outliers not shown.
Distribution means are, from left to right, 11.0%, 10.7%, 30.9%, 30.7%, 5.0%, and 14.6%.
The tVAE trajectories most closely resemble patient trajectories in terms of consecutive
time-step variability.
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overestimate the proportion of clinically significant aPTT changes, with the tVAE doing so

the least.

Lastly, we examine how aPTT variability differs based on the patient’s clinical status. For

the patient test data and for each model’s synthetic sequences, we compute the mean absolute

percentage change separately for time points in which the patient was below, within, or above

the therapeutic aPTT window (60-100 sec). Results are shown in Fig. 1.4. In the test set,

patients’ aPTT varies more when it is above the therapeutic window. The mean absolute

percentage changes for aPTT values below, within, and above the therapeutic range are

11.7%, 8.3%, and 48.7%, respectively. Trajectories from the tVAE exhibit a similar pattern,

with mean percentage changes of 13.9%, 8.0%, and 45.4%, respectively. Mean percentage

changes for the HMM, LSTM, CGAN, and CVAE are, respectively, 38.0%/22.7%/36.3%,

42.1%/21.7%/27.7%, 4.4%/6.2%/53.8%, and 17.4%/11.1%/41.6%.

1.3.3 Reinforcement learning performance

Using A3C, we train RL agents to learn an optimal heparin dosage policy, using each of the

generative models as the ‘environment’ with which the RL agent interacts.

1.3.3.1 Dosage recommendations

The tVAE-, HMM-, LSTM-, CGAN-, and CVAE-trained policies each recommend a modal

heparin dosage for a majority of patient states, similar to the policies learned from this

dataset in [93]. The second dosage category, at = 2, is the modal action for the tVAE policy

(average selection probability 94.1%), HMM policy (average selection probability 80.2%),

and CVAE policy (average selection probability 97.6%). The LSTM policy’s modal action is

at = 4 (average selection probability 98.0%), while the CGAN’s modal action is to administer

no heparin (at = 0, average selection probability 96.9%).

1.3.3.2 Policy explainability

We calculate the average dosage recommendation, i.e., the expected value of actions, for

each patient state in the dataset under each model’s policy. For each patient state, we
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Figure 1.4: Trajectory variability by patient clinical status. Actual patient trajectories
vary less when below or within the therapeutic aPTT range, and vary more when above the
therapeutic range. The pattern is most accurately captured by tVAEs.
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also calculate its aPTT measurement’s distance from the therapeutic window of 60-100 sec;

distances are negative for aPTT values below 60 sec, 0 for values between 60 and 100 sec, and

positive for values above 100 sec. The correlations between average recommended heparin

dosages and aPTT distances are -0.23, -0.34, -0.07, 0.35, and 0.29 for the tVAE, HMM,

LSTM, CGAN, and CVAE policies, respectively. Thus, consistent with current practice [79],

agents trained in a tVAE, HMM, or LSTM environments learn to prescribe higher heparin

dosages for patients farther below the desired aPTT window. In contrast, agents trained in

a CGAN or CVAE environment learn to prescribe higher dosages for patients closer to (or

exceeding) the therapeutic window.

1.3.3.3 Policy performance

All policies were evaluated on 5000 test runs simulating one week of ICU treatment, split

evenly across all five model environments. The tVAE- and CVAE-trained policies yield

average scores of 11.83 and 12.79, respectively (difference not significant, p-value > 0.05).

These policies significantly outperform the HMM-, LSTM-, and CGAN-trained policies,

with average scores of 9.92, 7.07, and -0.59, respectively (p-value < 0.05). Thus, across all

environments, the policies that tend to administer dosage category at = 2 outperform those

that administer other dosages.

1.4 Discussion

Patient trajectories generated from a tVAE better reflect patients’ average aPTT values

and aPTT variability, compared with multiple benchmarks. The tVAE and CVAE doage

policies both perform well across multiple environments, though the tVAE policy is more

clinically defensible.

The HMM and LSTM overestimate patients’ aPTT variability (Fig. 1.4). The HMM’s

number of hidden states is constrained by the need to ensure sufficient visitation to each state,

requiring high emission variances to cover the observation space. In fact, the HMM’s average

aPTT standard deviation is 15.1 seconds, only slightly smaller than the standard deviation

of the entire aPTT distribution (16.6 sec). Sampling from these high-variance distributions
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yields large absolute aPTT changes between successive time points. The LSTM, being a

predictive rather than a generative model, requires its emission standard deviations to be

specified post-hoc. While the standard deviation of patients’ aPTT changes is 0.93 (standard

deviation units), 72.2% of these aPTT changes are between -0.25 and 0.25. Thus, the LSTM’s

emission standard deviation of 0.93 is too large for most patient trajectories - something that

the LSTM is not able to correct for during training.

Our CGAN produces low-variance trajectories with no appreciable changes in patient

aPTT (Fig. 1.2). The CGAN reaches training equilibrium by simply generating patient

states for time t+ 1 that are similar to the patient’s previous state at time t. Because of the

strong dependence between consecutive clinical measurements, the discriminator network

is likely unable to distinguish between these generated patient states and the true patient

state at time t + 1, thereby incentivizing the CGAN to down-weight the role of its random

noise input.

Unsurprisingly, the CVAE’s patients trajectories and dosage policy are somewhat similar

to that of the tVAE’s. Yet the tVAE’s policy is more interpretable, and unlike the CVAE

policy, it prescribes higher aPTT dosages for patients below the therapeutic aPTT window

(60-100 sec), in line with clinical practice. The CVAE also overestimates aPTT variability.

The CVAE’s latent standard deviations average 0.61 during training, but, since they are

conditioned on patients’ previous and current states, must be replaced with unit variances

during testing, yielding high-variance trajectories. This also explains why CVAE trajectories

overestimate aPTT variability below/within the therapeutic range, and under-estimate it

above this range (Fig. 1.4). While the tVAE can condition its latent variances on its inputs

(and can reproduce these variances during testing), any such relationships learned during

CVAE training are lost during testing when unit variances must be used.

The tVAE used here is trained on limited history, i.e., only a single time point.

Preliminary tests found that tVAE performance was not improved by using longer input

sequences; thus, we use the LSTM benchmark to account for the impact of long-term

sequence dependence on generated trajectories. Still, further research is needed to confirm

how longer input sequences might alter tVAE-generated trajectories. Further research is

also needed to assess the impact of sample size on tVAE performance and the risk of
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overfitting, and to more closely examine the role of patient demographics in the tVAE’s

synthetic trajectories. We also chose to limit our RL experiments to the A3C algorithm,

which combines the strengths of multiple classes of algorithms. Still, future work will explore

how results might vary based on the RL training algorithm. Lastly, we recognize that ICU

patients represent a unique problem class, and additional work is needed to establish the

advantages of the tVAE in other domains.

1.5 Conclusion

The novel variant of VAE, tVAE, produces realistic patient trajectories and can learn effective

and clinically defensible medication dosage policies. It outperforms other state-of-the-art

methods due to its relaxed distributional assumptions, continuous state space, use of a

mediating latent state layer, and consistency between training and testing architectures.
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Chapter 2

Hidden Markov Models as Recurrent

Neural Networks: An Application to

Alzheimer’s Disease

2.1 Introduction

Hidden Markov models (HMMs; [12]) are commonly used for modeling disease progression,

because they capture complex and noisy clinical measurements as originating from a smaller

set of latent health states. Because of their intuitive parameter interpretations and flexibility,

HMMs have been used to model sepsis [131], Alzheimer’s disease progression [74], and patient

response to blood anticoagulants [93].

Researchers may wish to use patient-level covariates to improve the fit of HMM parameter

solutions [163], or to integrate HMMs directly with treatment planning algorithms [93].

Either modification requires incorporating additional parameters into the HMM, which is

typically intractable with expectation-maximization algorithms. Incorporating covariates

or additional treatment planning models therefore requires multiple estimation steps (e.g.,

[163]) changes to HMM parameter interpretation (e.g., [93]), or Bayesian estimation, which

involves joint prior distributions over all parameters and can suffer from poor convergence

in complex models [119].
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We present neural networks as a valuable alternative for implementing and solving

HMMs for disease progression modeling. Neural networks’ substantial modularity allows

them to easily incorporate additional input variables (e.g., patient-level covariates) or

predictive models and simultaneously estimate all parameters [20]. We therefore introduce

Hidden Markov Recurrent Neural Networks (HMRNNs) - neural networks that mimic the

computation of hidden Markov models while allowing for substantial modularity with other

predictive networks. In doing so, our primary contributions are as follows: (1) We prove

how recurrent neural networks (RNNs) can be formulated to optimize the same likelihood

function as HMMs, with parameters that can be interpreted as HMM parameters (section

2.3), and (2) we demonstrate the HMRNN’s utility for disease progression modeling, in which

combining it with other predictive neural networks improves predictive accuracy and offers

unique parameter interpretations not afforded by simple HMMs (section 2.4).

2.2 Related work

A few studies in the speech recognition literature model HMMs with neural networks

[151, 17]; these implementations require HMM pre-training [151] or minimize the mutual

information criterion [17], and they are not commonly used outside the speech recognition

domain. These works also present only theoretical justification, with no empirical

comparisons with expectation-maximization algorithms.

A limited number of healthcare studies have also explored connections between neural

networks and Markov models. [93] employs a recurrent neural network to approximate

latent health states underlying patients’ ICU measurements. [32] compares HMM and

neural network effectiveness in training a robotic surgery assistant, while [11] proposes a

generative neural network for modeling ICU patient health based on HMMs. These studies

differ from our approach of directly formulating HMMs as neural networks, which maintains

the interpretability of HMMs while allowing for joint estimation of the HMM with other

predictive models.
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2.3 Methods

In this section, we briefly review HMM preliminaries, formally define the HMRNN, and prove

that it optimizes the same likelihood function as a corresponding HMM.

2.3.1 HMM preliminaries

Formally, an HMM models a system over a given time horizon T , where the system occupies

a hidden state xt ∈ S = {1, . . . , k} at any given time point t ∈ {0, 1, . . . , T}; that is, xt = i

indicates that the system is in the i-th state at time t. For any state xt ∈ S and any time point

t ∈ {0, 1, . . . , T}, the system emits an observation according to an emission distribution that

is uniquely defined for each state. We consider the case of categorical emission distributions,

which are commonly used in healthcare (e.g., [9, 131]). These systems emit a discrete-valued

observation yt ∈ O at each time t, where O = {1, . . . , c}.

Thus, an HMM is uniquely defined by a k-length initial probability vector π, k × k

transition matrix P , and k× c emission matrix Ψ. Entry i in the vector π is the probability

of starting in state i, row i in the matrix P is the state transition probability distribution

from state i, and row i of the matrix Ψ is the emission distribution from state i. We also

define diag(Ψi) as a k × k diagonal matrix with the i-th column of Ψ as its entries (i.e.,

the probabilities of observation i from each of the k states). We define the likelihood of an

observation sequence y in terms of αt(i), the probability of being in state i at time t and

having observed {y0, ..., yt}. We denote αt as the (row) vector of all αt(i) for i ∈ S, with

αt = π> · diag(Ψy0) · (
t∏
i=1

P · diag(Ψyi)) (2.1)

for t ∈ {1, ..., T}, with α0 = π> · diag(Ψy0). The likelihood of a sequence y is thus given by

Pr(y) = αT · 1k×1.
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2.3.2 HMRNN definition

An HMRNN is a recurrent neural network whose parameters directly correspond to the initial

state, transition, and emission probabilities of an HMM. As such, training an HMRNN opti-

mizes the joint log-likelihood of theN T -length observation sequences given these parameters.

Definition 2.1. An HMRNN is a recurrent neural network with parameters π (a k-length

vector whose entries sum to 1), P (a k× k matrix whose rows sum to one), and Ψ (a k× c

matrix whose rows sum to one). It receives T + 1 input matrices of size N × c, denoted

by Yt for t ∈ {0, 1, . . . , T}, where the n-th row of matrix Yt is a one-hot encoded vector of

observation y
(n)
t for sequence n ∈ {1, . . . , N}. The HMRNN consists of an inner block of

hidden layers that is looped T + 1 times (for t ∈ {0, 1, . . . , T}), with each loop containing

hidden layers h
(t)
1 , h

(t)
2 , and h

(t)
3 , and a c-length input layer h

(t)
y through which the input

matrix Yt enters the model. The HMRNN has a single output unit o(T ) whose value is the

joint negative log-likelihood of the N observation sequences under an HMM with parameters

π, P , and Ψ; the summed value of o(T ) across all N observation sequences is the loss function

(minimized via neural network optimization, such as gradient descent).

Layers h
(t)
1 , h

(t)
2 , h

(t)
3 , and o(T ) are defined in the following equations. Note that the block

matrix in equation (2.3) is a c × (kc) block matrix of c 11×k vectors, arranged diagonally,

while the block matrix in equation (2.4) is a (kc) × k row-wise concatenation of c k × k

identity matrices.

h
(t)
1 =

π
>, t = 0,

h
(t−1)
3 P , t > 0.

(2.2)

h
(t)
2 = ReLu

(
h

(t)
1

[
diag(Ψ1) . . . diag(Ψc)

]
+

Yt


11×k . . . 01×k

. . . . . . . . .

01×k . . . 11×k

− 1n×(kc)

)
(2.3)

h
(t)
3 = h

(t)
2

[
Ik . . . Ik

]>
(2.4)
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o(t) = − log(h
(T )
3 1k×1). (2.5)

Fig. 2.1 outlines the structure of the HMRNN. Note that layer h
(t)
3 is equivalent to αt,

the probability of being in each hidden state given {y0, ..., yt}. Also note that, for long

sequences, underflow can be addressed by normalizing layer h
(t)
3 to sum to 1 at each time

point, then simply subtracting the logarithm of the normalization term (i.e., the log-sum of

the activations) from the output o(T ).

2.3.3 Proof of HMM/HMRNN equivalence

We now formally establish that the HMRNN’s output unit, o(T ), is the negative log-likelihood

of an observation sequence under an HMM with parameters π, P , and Ψ. We prove this

for the case of N = 1 and drop notational dependence on n (i.e., we write y
(1)
t as yt), though

extension to N > 1 is trivial since the log-likelihood of multiple independent sequences is

the sum of their individual log-likelihoods. We first rely on the following lemma.

Lemma 2.2. If all units in h
(t)
1 (j) are between 0 and 1 (inclusive), then h

(t)
3 = h

(t)
1 diag(Ψyt).

Proof. Let h
(t)
1 (j) and h

(t)
3 (j) represent the jth units of layer h

(t)
1 and h

(t)
3 , respectively, and

recall that h
(t)
2 contains k × c units, which we index with a tuple (l,m) for l ∈ {1, . . . , c}

and m ∈ {1, . . . , k}. According to equation (2.3), the connection between units h
(t)
1 (j)

and h
(t)
2 (l,m) is Ψj,l when j = m, and 0 otherwise. Also recall that matrix Yt enters the

model through a c-length input layer that we denote h
(t)
y . According to equation (2.4), the

connection between unit h
(t)
y (j) and unit h

(t)
2 (l,m) is 1 when j = l, and 0 otherwise. Thus,

unit h
(t)
2 (l,m) depends only on Ψm,l, h

(t)
1 (m), and h

(t)
y (l). Lastly, a bias of −1 is added to all

units in h
(t)
2 , which is then subject to a ReLu activation, resulting in the following expression

for each unit in h
(t)
2 :

h
(t)
2 (l,m) = ReLu(Ψm,l · h(t)

1 (m) + h(t)
y (l)− 1). (2.6)

Because h
(t)
y (l) is 1 when yt = l, and equals 0 otherwise, then if all units in h

(t)
1 are between

0 and 1, this implies h
(t)
2 (l,m) = Ψm,l · h(t)

1 (m) when j = yt and h
(t)
2 (l,m) = 0 otherwise.
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Figure 2.1: Structure of the hidden Markov recurrent neural network (HMRNN). Solid
lines indicate learned weights that correspond to HMM parameters; dotted lines indicate
weights fixed to 1. The inner block initializes with the initial state probabilities then mimics
multiplication by diag(Ψyt); connections between blocks mimic multiplication by P .
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According to equation (2.5), the connection between h
(t)
2 (l,m) and h

(t)
3 (j) is 1 if j = m, and

0 otherwise. Hence,

h
(t)
3 (j) =

c∑
j=0

h
(t)
2 (l, j) = Ψj,yt · h

(t)
1 (j). (2.7)

Thus, h
(t)
3 = h

(t)
1 diag(Ψyt).

Theorem 2.3. An HMRNN with parameters π (1 × k stochastic vector), P (k × k

stochastic matrix), and Ψ (k × c stochastic matrix), and with layers defined as in equations

(2.2-2.5), produces output neuron o(T ) whose value is the negative log-likelihood of a

corresponding HMM.

Proof. Note that, based on Lemma 2.2 and equation (2.2), h
(t)
3 = h

(t−1)
3 · P · diag(Ψyt) for

t ∈ {1, ..., T}, assuming that h
(t)
1 (j) ∈ [0, 1] for j ∈ {1, .., k}. Since αt = αt−1 ·P ·diag(Ψyt),

then if h
(t−1)
3 = αt−1, then h

(t)
1 (j) ∈ [0, 1] for j ∈ {1, .., k} and therefore h

(t)
3 = αt. We show

the initial condition that h
(0)
3 = α0, since h

(0)
1 = π> implies that h

(0)
3 = π> ·diag(Ψy0) = α0.

Therefore, by induction, h
(T )
3 = αT , and o(T ) = − log(αT · 1k×1), which is the logarithm of

the HMM likelihood based on equation (2.1).

2.4 Experiment and results

We demonstrate how combining an HMRNN with other predictive neural networks improves

predictive accuracy and offers novel clinical interpretations over a standard HMM, using

an Alzheimer’s disease case study. We test our HMRNN on clinical data from n = 426

patients with mild cognitive impairment (MCI), collected over the course of three (n = 91),

four (n = 106), or five (n = 229) consecutive annual clinical visits [6]. Given MCI patients’

heightened risk of Alzheimer’s, modeling their symptom progression is of considerable clinical

interest. We analyze patients’ overall cognitive functioning based on the Mini Mental Status

Exam (MMSE; [37]).

MMSE scores range from 0 to 30, with score categories for ‘no cognitive impairment’

(scores of 27-30), ‘borderline cognitive impairment’ (24-26), and ’mild cognitive impairment’

(17-23) [84]. Scores below 17 were infrequent (1.2%) and were treated as scores of 17 for
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analysis. We use a 3-state latent space S = {0, 1, 2}, with xt = 0 representing ‘no cognitive

impairment,’ xt = 1 representing ‘borderline cognitive impairment,’ and xt = 2 representing

‘mild cognitive impairment.’ The observation space is O = {0, 1, 2}, using yt = 0 for scores

of 27− 30, yt = 1 for scores of 24− 26, and yt = 2 for scores of 17− 23. This HMM therefore

allows for the possibility of measurement error, i.e., that patients’ observed score category

yt may not correspond to their true diagnostic classification xt.

To showcase the benefits of the HMRNN’s modularity, we augment it with two predictive

neural networks. First, we predict patient-specific initial state probabilities based on

gender, age, degree of temporal lobe atrophy, and amyloid-beta 42 levels (Aβ42, a relevant

Alzheimer’s biomarker [15]), using a single-layer neural network with a softmax activation.

Second, at each time point, the probability of being in the most impaired state, h
(1)
t (2),

is used to predict concurrent scores on the Clinical Dementia Rating (CDR, [86]), a global

assessment of dementia severity, allowing another relevant clinical metric to inform paramter

estimation. We use a single connection and sigmoid activation to predict patients’ probability

of receiving a CDR score above 0.5 (corresponding to ‘mild dementia’). The HMRNN

is trained via gradient descent to minimize o(T ) from equation (2.5), plus the predicted

negative log-likelihoods of patients’ CDR scores. Figure 2.2 visualizes the structure of this

augmented HMRNN.

We compare the HMRNN to a standard HMM without these neural network augmen-

tations, trained using Baum-Welch, an expectation-maximization algorithm [12]. We assess

parameter solutions’ ability to predict patients’ final MMSE score categories from their initial

score categories, using 10-fold cross-validation. We evaluate performance using weighted

log-loss L, i.e., the average log-probability placed on each final MMSE score category. This

metric accounts for class imbalance and rewards models’ confidence in their predictions,

an important component of medical decision support [19]. We also report p̄, the average

probability placed on patients’ final MMSE scores (computed directly from L). We train all

models using a relative log-likelihood tolerance of 0.001%. Runtimes for Baum-Welch and

the HMRNN are 2.89 seconds and 15.24 seconds, respectively.

Model results appear in Table 2.1. Note that the HMRNN’s weighted log-loss L is

significantly lower than Baum-Welch’s (paired t-test p-value = 2.396 × 10−6), implying
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Figure 2.2: Augmented HMRNN for Alzheimer’s case study. CDR(t) refers to predicted
CDR classification (above or below 0.5) at time t ∈ {0, 1, 2, 3, 4}. ‘Lobe’ refers to measure of

temporal lobe atrophy. Units h
(t)
y are a one-hot encoded representation of the MMSE score

category at time t.

Table 2.1: Results from Alzheimer’s disease case study. π is initial state distribution, P
is state transition matrix, Ψ is emission distribution matrix, L is weighted log-loss, and p̄ is
average probability placed on ground truth score categories.

Baum-Welch HMRNN
π 0.727 0.271 0.002 0.667 0.333 0.000

P
0.898 0.080 0.022
0.059 0.630 0.311
0.000 0.016 0.984

0.970 0.028 0.002
0.006 0.667 0.327
0.000 0.003 0.997

Ψ
0.939 0.060 0.001
0.175 0.819 0.006
0.004 0.160 0.836

0.930 0.067 0.003
0.449 0.548 0.003
0.005 0.308 0.687

L -0.992 -0.884
p̄ 0.371 0.413
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greater predictive performance. The HMRNN also yields lower transition probabilities and

lower estimated diagnostic accuracy for the MMSE (i.e., lower diagonal values of Ψ) than

Baum-Welch, suggesting that score changes are more likely attributable to testing error as

opposed to true state changes.

2.5 Discussion

The HMRNN can be combined with other neural networks to improve predictive accuracy in

disease progression applications when additional patient data is available. In our experiment,

augmenting an HMRNN with two predictive networks improves forecasting performance

compared with a standard HMM trained with Baum-Welch. The HMRNN also yields

a clinically distinct parameter interpretation, predicting poor diagnostic accuracy for the

MMSE’s ‘borderline’ and ‘mild’ impairment categories. This suggests that fewer diagnostic

categories might improve MMSE utility, which aligns with existing research [84] and suggests

the HMRNN might be used to improve the clinical utility of HMM parameter solutions. We

also make a novel theoretical contribution by formulating discrete-observation HMMs as a

special case of RNNs and proving coincidence of their likelihood functions.

Future work might formally assess HMRNN time complexity. Yet since data sequences in

healthcare are often shorter than in other domains that employ HMMs (e.g., speech analysis),

runtimes will likely be reasonable for many healthcare datasets. Future work might explore

the HMRNN in other healthcare applications besides disease progression.
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Chapter 3

Adapting Reinforcement Learning

Treatment Policies Using Limited

Data to Personalize Critical Care

3.1 Introduction

Due to the severity of conditions treated in critical care settings (e.g., intensive care

units), patients often require constant monitoring and frequent intervention to prevent rapid

deterioration. This makes critical care a particularly data-intensive component of the modern

healthcare system. Critical care settings must also treat patients as efficiently as possible

to avoid resource strain, which can lead to increased patient mortality [153, 38]. Given

these problem characteristics, data-driven methods show considerable promise for optimizing

patient care in data-rich critical care settings.

One such approach is reinforcement learning (RL), which has been extensively applied

to learn personalized treatment policies for critical care settings [109, 111, 145, 93, 11]. RL

outputs a treatment policy, which is a function mapping a patient’s current state to an

optimal treatment action (e.g., “increase medication dosage”). Historical patient data can

be used to directly learn the treatment policy [109, 111, 145], or can be used to learn a

realistic model of how patient symptoms change over time (which we refer to as a transition
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model). Transition models, in turn, can be used to learn the treatment policy [93, 11, 163].

Transition models allows for the use of ‘on-policy’ RL algorithms, which optimize treatment

policies through repeated interactions with the transition model and have been shown to

outperform other RL approaches [83].

It is crucial that RL-based treatment policies take into account the full range of patients’

clinical characteristics. Applying a single treatment policy to all patients can yield poor

outcomes for those whose clinical characteristics differ from the ‘average’ patient [67]. Indeed,

recent research has begun to focus on identifying how treatment efficacy varies between

different patient clusters and phenotypes [100, 3, 36].

Yet past studies generally assume that sufficient data are available from all patient

groups of interest. This assumption may not be tenable for certain patient subpopulations,

especially those from underrepresented demographic groups or those with rare comorbidities.

Therefore, to make recent advances in RL more equitable, there is a timely need for RL

techniques capable of identifying how treatment policies should be adapted for specific

patient subpopulations, even if only limited data are available from those subpopulations.

In this study, we develop an approach for identifying effective treatment policies for a

target patient subpopulation, even if that group is severely underrepresented in the training

data. The proposed approach allows for accurate prediction of the generalizability of the

identified treatment policies to this underrepresented patient population. We showcase the

utility of this approach in an ICU treatment application, specifically in the administration

of heparin, a blood anticoagulant. Since the potency of heparin depends on patient body

weight, we define weight-based groups that differentially respond to heparin administration.

We then test whether a single patient’s historical data from the underrepresented patient

subpopulation can be used to (1) identify successful treatment policies and (2) predict these

policies’ performance for other unseen members of this group. Specifically, we propose

noisy Bayesian policy updates (NBPU), which leverages variational inference in learning

and updating policies. That is, NBPU first learns a distribution over candidate dosage

policies from a ‘reference’ patient group (i.e., the subpopulation for which sufficient data

are available). It then updates each policy’s probability to generate noisy estimates of each

policy’s efficacy in an ‘underrepresented’ patient group (i.e., the subpopulation for which
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little data are available), using a single patient’s historical data from this ‘underrepresented’

patient group. Our Bayesian updating formulation also provides an opportunity to leverage

this noisy estimate of a policy’s efficacy to accurately predict the policy’s performance when

applied to other members of the underrepresented patient population.

We benchmark our approach against a wide array of state-of-the-art methods and

current practice. Specifically, we use an RL policy learned from the reference patient

group, transfer learning (a common technique for adapting machine learning models to

new environments), a clustering approach, and a hidden parameter Markov decision process

(HiP-MDP) model. In addition, because our approach involves variational policy learning

and Bayesian updating of each policy, we also compare it to variational policy learning

without updates to demonstrate the value of such Bayesian updating (per limited information

from a single underrepresented patient’s historical data). Finally, we use a standard clinical

treatment protocol to benchmark our model against current practice.

3.1.1 Reinforcement Learning Applications in Treatment Plan-

ning

There is a considerable body of research on using RL to optimize treatment selection. These

studies generally use patients’ historical data to identify the optimal patient-specific or group-

specific treatment policies. The goal is generally to maximize patient ‘reward’ over a given

time horizon, where the reward might constitute the probability of survival, expected quality

adjusted life years (QALYs), or the utility associated with certain health states.

One class of RL problems is multi-armed bandits (MABs). MABs involve an agent

selecting from a set of available actions, each with an unknown distribution over rewards, so

as to maximize the expected cumulative reward over some time horizon. MABs thus seek

to balance exploitation of high-reward actions with exploration of actions whose reward

distributions are not well-understood. In healthcare, ‘actions’ might refer to available

therapies or medications, and the agent seeks to learn optimal mappings between patient

characteristics and treatment or medication recommendations. For instance, [92] use multi-

armed bandits to identify optimal treatments for multiple sclerosis patients, [163] use them
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to optimize drug selection for myeloma patients, and [77] use them to recommend emotion

regulation strategies for patients with social anxiety.

Another class of RL problems are Markov decision processes (MDPs). In MDPs, patients

typically transition between health states according to their current health state and the

treatment action taken. Consequently, treatment actions affect a patient’s future health

state, which may in turn impact available actions in the future. RL algorithms for solving

MDPs maximize some measure of reward over a given time horizon, taking into account

all of the patient’s possible symptom trajectories. Some studies develop MDP models to

optimize outpatient care. For instance, [148] use clinical literature to build MDPs that

simulate Parkinson’s symptoms and employ RL to prescribe optimal medication dosages

and timing. [106] use RL to regulate neurostimulation implants for epilepsy patients, and

[28] use RL to regulate insulin pumps for diabetes patients. Other studies focus on inpatient

critical care settings. [109] and [158] use RL to learn optimal strategies for weaning patients

off mechanical ventilators, while most other studies focus on medication and intravenous

fluid administration. For instance, [111, 66] and [150] use RL to optimize intravenous fluid

regimens for sepsis patients, while [93] and [11] use RL to optimize blood anticoagulant

administration for ICU patients. Note that some studies utilize ‘off-policy’ RL algorithms,

which learn treatment policies directly from historical patient data (e.g., [106, 109, 111, 93]).

Others utilize ‘on-policy’ RL algorithms, which learn treatment policies by simulating patient

symptoms under an MDP model (e.g., [148, 28, 158, 11]).

In summary, RL is an increasingly relied-upon method for deriving optimal treatment

policies from historical patient data. Most studies to date leverage high-frequency patient

data, obtained either through bedside monitoring [109, 158, 111, 66, 150, 93, 11] or

wearable/implanted sensors [28, 106], to model patients’ symptoms as MDPs. This

framework yields treatment policies that take future patient health states into account,

maximizing long-term outcomes over the course of the patient’s treatment.

35



3.1.2 Adapting Treatment Policies to Specific Subpopulations

Not all patients are guaranteed to respond to treatment in the same way. Hence, treatment

policies need to be learned in a way that accounts for variability across patients and maxi-

mizes patient-specific rewards. There exists a limited number of techniques that attempt to

adapt treatment policies to specific patient groups with unique disease progression dynamics.

Transfer learning, which is commonly used in medical imaging and diagnosis [23, 121, 58],

uses model parameters from one domain to initialize model training in another domain.

While often used for classification tasks, it can be extended to RL problems as well [55, 133,

112]. RL algorithms can use policy parameters learned from well-understood environments

(e.g., for ‘reference’ patient groups) to initialize policy training in new environments (e.g.,

for ‘underrepresented’ patient groups).

Algorithms can also organize patients into clinically homogeneous clusters, each with their

own unique treatment policy. For instance, [100] use kernel regression to identify promising

drug therapies for HIV patients that conform to well-defined patient clusters. Similarly, [142]

and [31] use cluster-based approaches to identify optimal interventions for separate patient

groups, first by identifying patient clusters and then by learning separate policies for each

cluster-specific transition model.

Hidden parameter Markov decision processes (HiP-MDPs; [8, 156, 157, 159]) assume the

existence of multiple transition models that are characterized by a latent parameter. This

latent parameter determines the unique characteristics of each transition model. A ‘master

policy’ conditioned on this latent parameter can then be used to transfer the policy to new

environments, provided that the new environment’s latent parameter is correctly estimated.

Lastly, variational policy learning is a promising technique for learning multiple near-

optimal RL policies for the same environment. The most common variational policy learning

algorithm is Stein variational policy gradient (SVPG; [75]), which learns a probability

distribution over RL policy parameters rather than a single policy solution. Some of the

policies learned through variational policy learning might transfer to new environments

more effectively than other policies; therefore, variational policy learning might be used

to learn effective policies for novel or underrepresented patient populations. However, to
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date variational policy learning has primarily been used to improve RL performance within

a single environment, and has not been extended to the medical domain. For instance, [49]

use SVPG to learn optimal stochastic policies for continuous state spaces, while [26] use an

adaptation of SVPG to improve state space exploration in video game tasks.

3.1.3 Limitations of Existing Methods and Proposed Method’s

Contributions

The existing techniques for adapting treatment policies to specific patient subpopulations

are generally ill-suited to problems where the subpopulation of interest is underrepresented

in the training data. For instance, transfer learning agents must still be fully trained in

the environment of interest (e.g., with underrepresented patient groups), which may be

unstable without sufficient data. Similarly, cluster-based approaches [142, 100] and HiP-

MDPs [8, 156, 157, 159] both assume that the testing environment (e.g., specific patient

subpopulation of interest) is already well-represented in training data. This assumption is

not necessarily tenable in cases where only limited data are available for an underrepresented

patient group. While variational policy learning can yield multiple ‘candidate’ policies, some

of which might perform well for underrepresented patient groups, it provides no mechanism

for identifying such policies.

As such, new methods need to be developed for adapting treatment policies to

underrepresented patients using only a limited amount of training data. To address this,

we propose noisy Bayesian policy updates (NBPU), which selects treatment policies for

underrepresented patient groups for whom only little data (specifically, only a single patient’s

historical data) are available. Our approach leverages variational policy learning [75] to

first learn a probability distribution over multiple candidate RL policies. We augment

variational policy learning with a Bayesian updating step, in which patient-specific treatment

response models [142, 94] are used to update the probabilities associated with each RL

policy. This updating step identifies the RL policies that are most likely to perform well

for underrepresented patient groups. In our case, the patient-specific transition models are

fitted using a single underrepresented patient’s historical data, to demonstrate our approach’s
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ability to successfully select treatment policies for underrepresented groups based on very

small sample sizes. NBPU can be used with any treatment policy structure, can leverage

observational patient data (in contrast with [156]), and is specifically designed to work with

limited data from underrepresented patient subpopulations (in contrast with [8, 142]). We

demonstrate our method’s effectiveness in the critical care setting, using a dataset of ICU

patients receiving blood anticoagulation therapy.

In addition to policy learning, there is also a need for methods that can accurately predict

how a policy will perform when applied to a new patient group [14, 45, 116]. We show that

NBPU’s Bayesian updating formulation is equivalent to estimating each policy’s performance

for underrepresented patients as a linear combination of (1) its performance in reference

patients’ transition model, and (2) its performance in a ‘noisy’ transition model learned

from a single underrepresented patient. We then show that this approach outperforms other

benchmarks in predicting its policies’ performances with underrepresented patients.

Our primary contribution is thus developing the first approach for selecting critical care

treatment policies for underrepresented patient subpopulations, when only a single patient’s

historical data from the group are available. In doing so, we offer a novel application of

variational RL policy learning to the treatment planning domain, and demonstrate how

extending variational RL policy learning with patient-specific treatment response models can

improve performance and prediction for underrepresented patient groups. While we develop

and demonstrate our approach for the medical treatment domain, this approach may also

apply to other RL domains in which only limited data from a novel testing environment is

available.

3.2 Methods

In this section, we provide our data, approach, and evaluation scheme. In Section 4.2.1, we

introduce our dataset. Next, in Section 3.2.2, we discuss the distinct patient subpopulations

in the data (which we refer to as the ‘reference’ and ‘underrepresented’ patient groups), and

outline our distinct transition models for the two patient groups. Next, in Section 3.2.3, we

formalize our treatment planning problem, which involves learning k near-optimal candidate
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treatment policies for the reference patient group. These policies are sampled according to

a ‘policy probability distribution,’ where the higher the probability, the better the expected

performance of the corresponding policy in the reference patient group. In Section 3.2.4,

we introduce our proposed approach for using a single underrepresented patient’s historical

data to update the policies’ probability values to include information about their predicted

performance in the underrepresented patient group. These updated policy probabilities are

then used to select policies for the underrepresented patient group and to predict these

policies’ performance in practice. Next, in Section 3.2.5, we introduce our benchmarks.

Finally, in Section 3.2.6, we describe our testing and evaluation procedure. Figure 3.1

provides an overview of our method.

3.2.1 Data

We base our analysis on patient data from the MIMIC dataset [57], a publicly available

database of clinical records. Specifically, we use hourly clinical measurements from 2,020

ICU patients who receive intravenous heparin administration (a blood anticoagulant) and

have at least six consecutive hourly measurements. Patient sequences include hourly heparin

dosages (in units/mL) and activated partial thromboplastin time (aPTT) measurements;

aPTT is a measure of blood coagulation that increases in response to heparin, and it is

typically used to assess the efficacy of heparin treatment. The desirable therapeutic window

for aPTT is defined as 60-80 seconds [136]. Data also includes 13 additional clinical variables

for each patient: arterial carbon dioxide (CO2), heart rate (HR), creatinine, Glasgow Coma

Score (GCS), hematocrit, hemoglobin, international normalized ratio of prothrombin (INR),

platelet count, prothrombintime, arterial oxygen saturation (SAO2), temperature, urea, and

white blood cell count (WBC).

As in [93], we use sample-and-hold interpolation to impute missing heparin doses for

each patient. We also use a neural network to impute missing aPTT values, which was

trained on each patient’s demographic information, heparin dosage, and their 13 additional

clinical variables.
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Figure 3.1: Overview of proposed noisy Bayesian policy updates (NBPU). In the first step,
k candidate policies are learned from reference patient data. In the second step, a single
underrepresented patient’s data is used to learn a ‘noisy’ transition model, which is then
used to estimate the candidate policies’ performances for underrepresented patients. This
information is used to update the probability associated with each policy, to select high-
probability policies for the underrepresented patients, and to predict these policies’ efficacy
when evaluated on underrepresented patients.
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3.2.2 Characterizing Subpopulation-Specific Transition Models

In training and evaluating heparin dosage policies, we use an on-policy RL approach [30, 46]

which requires a transition model of how patients’ aPTT responds to heparin. An RL agent

interacts directly with this model to learn an optimal heparin dosage policy through trial

and error [11], using state-of-the-art RL algorithms [83, 55].

We do not assume that all patients are well-described by the same underlying transition

model. Instead, we assume there exists a reference transition model T that adequately

describes the heparin response of most ICU patients. We also assume that there exists

an underrepresented transition model T ′, which describes the heparin response of a small

group of individuals for whom sufficient data are not available. In other contexts, T ′ might

represent the treatment response of an underrepresented demographic group, patients with

a rare comorbidity, or patients with a nontypical response to a particular treatment.

We model T and T ′ as autoregressive models, predicting patients’ aPTT changes in

response to heparin based on available data. Autoregressive models are frequently used

in disease progression modeling [80, 62, 56], and their simple structure reduces the risk of

overfitting to small datasets [160]. We first discuss the autoregressive models fit to the data,

and then describe how we use this modeling technique to identify the patient subpopulations

that correspond to T and T ′.

3.2.2.1 Autoregressive Transition Models.

We normalize aPTT and heparin between −1 and 1, and then perform first-order

differencing on patients’ aPTT and heparin sequences (a common time series technique

for reducing nonstationarity). Thus, for a patient with N hourly measurements, the

aPTT sequence {y(1), . . . , y(N)} and heparin dosage sequence {h(1), . . . , h(N)} are converted

to {∆y(2), . . . ,∆y(N)} and {∆h(2), . . . ,∆h(N)}, where ∆y(t) = y(t) − y(t−1) and ∆h(t) =

h(t) − h(t−1) for t ∈ {2, . . . , N}. We then use an autoregressive model to predict ∆y(t)

from up to five hours of heparin dosage history (including the most recent dosage), i.e.,

∆h(t−j) for j ∈ {0, . . . , lh}, 0 ≤ lh ≤ 4, and up to five hours of prior aPTT measurements,

i.e., ∆y((t−1)−j) for j ∈ {0, . . . , ly}, 0 ≤ ly ≤ 4 . The final autoregressive model predicting
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aPTT change ∆ŷ(t) at time t is given by

∆ŷ(t) =

lh∑
j=0

bhj∆h
(t−j) +

ly∑
j=0

byj∆y
((t−1)−j) + ε, (3.1)

where ε is a normally-distributed error term, bhj is the coefficient for heparin dosage change

at time t− j, and byj is the coefficient for aPTT change at time (t−1)− j. Note that per our

preliminary results, after accounting for heparin and aPTT history, patients’ demographic

covariates (age, gender) and additional clinical variables did not meaningfully improve

model fit (inclusion increases R2 by only 0.001 and decreased model’s Bayesian Information

Criteria). Thus, we model patient aPTT as a function of patients’ aPTT and heparin

administration histories only.

3.2.2.2 Identifying the Reference and Underrepresented Patient Groups.

Since heparin is a weight-based drug, we identify weight-based groups with clinically distinct

responses to heparin administration. Specifically, consistent with the literature, we assume

that patients above a body weight quantile cutoff q respond to heparin differently than

patients below that quantile cutoff [10, 52]. We denote the autoregressive treatment response

model of the larger patient group as T , and the transition model of the smaller patient group

as T ′. That is, we treat the larger patient group as the ‘reference group’ for whom sufficient

data are available, and the smaller patient group as the ‘underrepresented group’ for whom

clinical data may be lacking. The models T and T ′ are then directly learned from clinical

data of patients who fall on either side of a select body weight quantile.

To identify the optimal quantile cutoff q that best characterizes reference and underrep-

resented groups, we divide patients into 20 subsamples based on their body weight quantile,

where subsample m ∈ {1, . . . , 20} contains patients whose body weight falls between the

0.05(m−1) and 0.05(m) quantiles. For each subsample m, we learn a separate autoregressive

model (per Equation (3.1)) with regression coefficients byj
(m) and bhj

(m)
, and define the heparin

potency for each subsample as
∑4

j=0 b
h
j
(m)

. We then calculate the difference in average

heparin potency below and above each possible cutoff c ∈ {1, . . . , 20}, and choose the cutoff

c∗ that maximizes this difference, as follows:
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c∗ = arg max
c

(
1

c

c∑
m=1

[
4∑
j=0

bhj
(m)

]
− 1

20− c

20∑
m=c+1

[
4∑
j=0

bhj
(m)

])
(3.2)

We then calculate the optimal body weight quantile q ∈ {0.05, 0.10, . . . , 0.95} that

corresponds to the resulting cutoff, i.e., q = 0.05c∗.

3.2.3 Reinforcement Learning Problem

Our treatment planning problem seeks an optimal heparin dosage policy that maximizes the

amount of time patients spend with aPTT in the therapeutic range of 60-80 seconds. We

define this problem for the reference and underrepresented patient groups, respectively, by

the tuples < S,A, T, r > and < S,A, T ′, r >, where

- S is the set of patients’ health states. The health state at time t is given by st ∈ S;

- A is the set of possible treatment actions. The treatment action at time t is given by

at ∈ A;

- T and T ′ are the respective autoregressive transition models, which describe the patient

groups’ clinical progressions under treatment actions taken;

- r : S 7→ R1 is the reward function, which specifies the utility associated with a given

health state.

We define the health state as st =
(
y(t−1), . . . , y((t−1)−(l

∗+1)), h(t), . . . , h(t−(l
∗+1))

)
, where

l∗ = max{ly, lh}, which is sufficient to predict patients’ next aPTT measurement under

transition models T and T ′. We define the action at time t as at = ∆h(t), i.e., the heparin

dosage change to be administered at time t. The reward function r(st) at each time point is

given by

r(st) =
2

1 + e−(y(t)−60/150)
− 2

1 + e−(y(t)−80/150)
− 1. (3.3)

This reward function, which is also used in [93], assigns a reward of (approximately) 1 when

a patient’s unstandardized aPTT value is between 60 and 80 seconds (a desirable therapeutic

range; [136]), and a reward of (approximately) -1 otherwise.
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A heparin dosage policy πθ : S 7→ A is a function (with parameter vector θ) that maps a

patient’s state to an optimal hourly heparin dosage, with the goal of maximizing the patient’s

expected cumulative reward J(θ) = E(πθ)

[∑tmax

t=0 r(st)
]

over tmax time points (where the

expectation is taken over the states st that result from following policy πθ). More intuitively,

the policy personalizes a patient’s hourly heparin dosage based on their recent aPTT and

heparin history, with the goal of maximizing the amount of time the patient spends in the

therapeutic aPTT range of 60-80 seconds. Note that, following [93], we do not apply a

discount factor to rt, given that many patients receive heparin therapy over a relatively brief

time horizon (less than one week; [76]).

We model the policy πθ as a single-layer neural network, with parameter vector θ, that

takes as input the patient state vector st and outputs an optimal heparin dosage change

∆h(t) ∈ [−1, 1] (via an output node with a tanh() activation). During training, ∆h(t) is

treated as the mean of a Gaussian distribution to encourage exploration, with the network

also outputting a standard deviation which is discarded during testing.

Lastly, note that a heparin dosage policy’s expected cumulative reward (i.e., the policy’s

‘performance’) will vary depending on whether it is used in the reference patient group

(i.e., under model T ) or the underrepresented patient group (i.e., under model T ′). Thus,

we use JT (θ) and JT ′(θ) to refer to a policy’s performance under transition models T

and T ′, respectively.

3.2.4 Noisy Bayesian Policy Updates: Learning Optimal Policies

from Limited Data

We address the problem of learning an optimal heparin dosage policy for an underrepresented

patient group, using just one underrepresented patient’s historical data, along with data from

a reference patient group. That is, we assume that a clinical decision maker has sufficient data

to estimate T (the treatment response model for a reference patient group), but only a single

patient’s data generated from T ′ (the treatment response model for the underrepresented

patient group). Noisy Bayesian Policy Updates (NBPU) accomplishes this through a two-

step process, i.e., it first learns a distribution of candidate heparin dosage policies from
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transition model T , and then uses a single patient record from T ′ to ‘noisily’ estimate the

policies’ effectiveness in T ′.

For the first step, we use Stein Variational Policy Gradient (SVPG; [75]) to learn a

probability distribution over k candidate policies {πθ1 , . . . , πθk} from reference patient data

(i.e., under model T ). SVPG is a variational policy learning technique that, rather than

learning a single optimal policy, seeks a probability distribution over policy parameter vectors,

which we denote by PT for the reference patient model T . This probability distribution is

the solution to the maximization

max
PT

Eθ∼PT [JT (θ)]− αT D(PT ||P0), (3.4)

where D(·) is Kullback-Leibler divergence, P0 is a prior distribution for PT , and αT is a hyper-

parameter. More intuitively, PT maximizes the expected performance JT (θ) (i.e., expected

performance for reference patients) of the policies defined by its policy parameter vectors,

subject to regularization to a prior distribution. The parameter αT governs the strength

of the prior regularization, with PT collapsing to a Dirac delta distribution at the best-

performing policy parameter vector as αT 7→ 0, and approaching the prior P0 as αT 7→ ∞.

The SVPG algorithm learns k policy parameter vectors {θ1, . . . , θk}, corresponding to

policies {πθ1 , . . . , πθk}, such that {θ1, . . . , θk} are sampled according to PT . After training,

the probability density value for a given policy parameter vector θi, i.e., PT (θi), is given by

PT (θi) ∝ exp

(
1

αT
JT (θi)

)
P0(θi), (3.5)

where P0(θi) is the prior probability placed on θi. The prior P0 is typically set to be uniform to

encourage exploration of the entire policy space [75], in which case SVPG reduces to entropy

regularization of each policy’s performance. As in [75], the kernel bandwidth used for SVPG

updates is µ̃2

log(k+1)
, where µ̃ is the median pairwise distance between policy parameter vectors;

this allows the bandwidth to adapt to changing distances between policies.
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The second step of NBPU is a novel extension of SVPG that seeks to estimate PT ′(θi)

for i ∈ {1, . . . , k}, which, if JT ′(θi) were known, would be given by

PT ′(θi) ∝ exp

(
1

αT ′
JT ′(θi)

)
P0(θi). (3.6)

However, because JT ′(θi), i.e., the performance of policy i in the underrepresented patient

model T ′, is not known, NBPU calculates an estimated probability distribution P̂T ′ . This

distribution uses PT as a prior and updates it with limited information (i.e., a single patient’s

historical data) from an underrepresented patient group. That is, given a single underrepre-

sented patient’s historical data, we learn T̂ ′, a noisy estimate of the underrepresented group’s

treatment response model (in our case, an autoregressive model learned from a single training

example). We then calculate P̂T ′(θi), an estimate of PT ′(θi), for i ∈ {1, . . . , k}, such that

P̂T ′(θi) ∝ exp

(
1

αT ′
JT̂ ′(θi)

)
PT (θi), (3.7)

where JT̂ ′(θi) is the performance of policy πθi in T̂ ′, which is a noisy estimate (learned from

a single patient’s historical data) of the underrepresented patient model T ′. The policy that

produces the highest probability (i.e., {πθi∗ : i∗ = arg maxi P̂T ′(θi)}) is then selected for the

underrepresented patient group.

Lastly, NBPU can be used to predict a given policy’s expected cumulative reward when

applied to the underrepresented patient group. This can be seen by substituting Equation

(3.5) into Equation (3.7) and rearranging the terms as follows:

P̂T ′(θi) ∝ exp

(
1

αT ′
JT̂ ′(θi)

)
exp

(
1

αT
JT (θi)

)
P0(θi)

∝ exp

(
1

αT ′
JT̂ ′(θi) +

1

αT
JT (θi)

)
P0(θi)

∝ exp

(
1

α′
((β)JT̂ ′(θi) + (1− β)JT (θi))

)
P0(θi),

(3.8)

where α′ = (α−1T ′ + α−1T )−1 and β = α′/αT ′ = αT/(αT + αT ′). Note that the last line of

Equation (3.8) resembles Equation (3.6), with αT ′ replaced with α′ and JT ′(θi) replaced
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with (β)JT̂ ′(θi) + (1− β)JT (θi). Thus, NBPU estimates JT ′(θi) (policy πθi ’s performance for

underrepresented patients, which is unknown) with the weighted average (β)JT̂ ′(θi) + (1 −

β)JT (θi). We refer to this as NBPU’s performance prediction, which can be used to predict

a given policy’s performance for underrepresented patients before it is used for treatment.

Intuitively, NBPU is designed to leverage limited information from T ′, while incorporating

the information from T for regularization. Note that the transition model learned from the

single patient, T̂ ′, is expected to overfit to this patient’s data. Thus, it is only a noisy estimate

of T ′. As such, the performance of given policy πθi for i ∈ {1, . . . , k} in T̂ ′ (i.e., JT̂ ′(θi)) is

only a noisy estimate of its true performance JT ′(θi). We thus regularize information from T̂ ′

with information from the more well-known patient model T (through the policy distribution

PT ). Pseudocode for NBPU is presented in Algorithm 1.

3.2.5 Benchmarks

In this section, we summarize each of the benchmark methods against which we compare

NBPU results. We describe how each benchmark learns a treatment policy for the

underrepresented patient group and how it predicts that policy’s performance when

implemented for that group (i.e., its performance prediction). Table 3.1 summarizes all

benchmark methods along with NBPU.

Stein variational policy gradient (SVPG) serves as the first step of NBPU and is therefore

included as a benchmark. SVPG selects policy πθĩ , where ĩ = arg maxi PT (θi). That is, SVPG

selects the policy that performs best in the reference patient group, without incorporating

limited data from underrepresented patients. SVPG’s performance prediction is simply

JT (θĩ), i.e., the best policy performance in the reference transition model. That is, SVPG

assumes that policies will perform similarly for underrepresented patients as for reference

patients.

We use standard reinforcement learning (standard RL) to train a single policy πθRL

in the reference patient transition model T . Standard RL’s performance prediction for

underrepresented patients is simply JT (θRL), i.e., the policy’s performance in the reference

patient transition model.
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Algorithm 1: Noisy Bayesian Policy Updates

Input: Reference patient transition model T , noisy transition model T̂ ′ (learned
from a single underrepresented patient’s historical data), reward function r, size of
policy set k, number of RL training epochs e, number of iterations v, number of
timesteps tmax, regularization parameters αT , αT ′

for i in {1, . . . , e} do
Iterate Stein Variational Policy Gradient (SVPG) in T ;

end
Return policy parameter vectors {θ1, . . . , θk}
for i in {1, . . . , k} do

Select policy parameter vector θi;
for j in {1, . . . , v} do

Execute πθi in T for tmax time steps; Rj
T ←

∑tmax

t=0 r(st)

Execute πθi in T̂ ′ for tmax time steps; Rj

T̂ ′
←
∑tmax

t=0 r(st)

end

Return JT (θi)← 1
v

∑v
j=1R

j
T

Return JT̂ ′(θi)←
1
v

∑v
j=1R

j

T̂ ′

end
for i in {1, . . . , k} do

Calculate PT (θi)← exp
(

1
αT
JT (θi)

)
P0(θi)

end
Normalize PT (θi) for i ∈ {1, . . . , k} to sum to 1;
for i in {1, . . . , k} do

Calculate P̂T ′(θi)← exp
(

1
αT ′
JT̂ ′(θi)

)
PT (θi)

end

Normalize P̂T ′(θi) for i ∈ {1, . . . , k} to sum to 1;
Output: Policy parameter vectors θi and policy probabilities P̂T ′(θi) for
i ∈ {1, . . . , k}

48



Table 3.1: Summary of policy selection and performance predictions for NBPU and all
benchmarks.

Method Description Policy
Performance
Prediction

NBPU Learns policies {πθ1 , . . . , πθk}
with probabilities P̂T ′(θi),
using reference patients (T )
and one underrepresented
patient (T̂ ′). Selects πθi∗ where

i∗ = arg maxi P̂T ′(θi).

πθi∗
(β)JT̂ ′(θi∗)+

(1− β)JT (θi∗)

SVPG Learns policies {πθ1 , . . . , πθk}
with probabilities PT (θi), using
reference patients (T ). Selects
πθĩ where ĩ = arg maxi PT (θi).

πθĩ JT (θĩ)

Standard RL Learns one policy πθRL using
reference patients (T ).

πθRL JT (θRL)

Transfer Learning Learns policy πθTL using one

underrepresented patient (T̂ ′).
Initializes θTL with standard RL
policy parameters θRL.

πθTL JT̂ ′(θTL)

Clustering Clusters reference patients.
Learns transition model Tg from
reference patients in each cluster
and learns policy πθg in each Tg.
Samples one underrepresented
patient and picks πθg∗ for cluster
g∗ that best fits patient.

πθg∗ JTg∗ (θg∗)

HiP-MDP Learns body weight-dependent
transition model Tw from ref-
erence patients, and uses Tw
to learn body weight-dependent
policy πθw . Samples one under-
represented patient’s body weight
w to impute into πθw .

πθw JTw(θw)

Clinical Standard weight-based dosage
policy πθCL , taken from clinical
literature.

πθCL JT (θCL)
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Transfer learning is often used in the medical literature [23, 121, 58] and is therefore

included as a benchmark. Similar to standard RL, transfer learning first trains a single

treatment policy πθRL in the reference patient transition model T . It then samples a single

underrepresented patient and learns a noisy transition model T̂ ′ from their historical data.

Finally, it trains a policy πθTL in T̂ ′, with the parameter vector θTL initialized with θRL (the

policy learned in the reference patient transition model T ). This allows transfer learning to

leverage the treatment policy from the reference patient group and adjust it using a single

underrepresented patient’s historical data. Transfer learning’s performance prediction is

JT̂ ′(θTL), i.e., the performance of policy πθTL in the noisy underrepresented patient transition

model T̂ ′ in which it is trained.

Clustering has been used in recent research on personalized treatment planning [100, 142,

31] and is therefore included as a benchmark. This approach separates reference patients

into clusters, trains separate treatment policies for each, then uses single underrepresented

patients’ data to select which cluster-specific policy to use for underrepresented patients.

Specifically, we calculate the percentage of time each reference patient’s prescribed heparin

dosage fell into one of five quantile bins (0%, 1-25%, 26-50%, 51-75%, 76-100%) and use

k-means to cluster the reference patients based on these dosage distributions, gender age,

body weight, and percentage of time spent in the aPTT therapeutic window (60-80 seconds).

We then choose the final number of clusters based on a scree plot of within-cluster sums of

squares. We learn a separate transition model Tg (Equation (3.1)) for each cluster g, and

learn a cluster-specific policy πθg . We then sample a single underrepresented patient and

identify the cluster g∗ that best fits the patient’s historical data, and select the cluster

policy πθg∗ for the underrepresented patient group. The clustering performance prediction is

JTg∗ (θg∗), i.e., the performance of the best-fitting cluster’s policy in its own cluster-specific

transition model.

Hidden parameter Markov decision processes (HiP-MDP; [8, 156, 157, 159]) learn

a transition model that depends on a patient-level parameter that captures individual

differences between patients. We define this patient-level parameter as patient body weight

w, since this is the clinical characteristic separating the reference and underrepresented

patient groups. We use reference patient data to learn a weight-dependent transition model
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Tw, which is identical to Equation (3.1) but with patient body weight added as a main effect

and interaction effect for all predictors. We use Tw to learn a treatment policy πθw whose state

space includes patient body weight w. We then sample an underrepresented patient’s body

weight and impute it into πθw , which is then evaluated in the underrepresented patient model

T ′. HiP-MDP’s performance prediction is JTw(θw), i.e., the HiP-MDP policy’s performance

in the weight-dependent transition model Tw in which it is trained.

Lastly, we benchmark against a clinical baseline, i.e., a weight-based heparin dosage policy

[79] that prescribes dosages in units/kg of body weight, starting with an initial bolus and

adjusting based on the patient’s distance from the therapeutic aPTT window (in this case,

60-80 seconds). Note that initial bolus data are not available in the MIMIC dataset [42];

thus, we simulate weight-based heparin dosages prescribed after the patient’s initial bolus.

We denote this standard clinical policy by πθCL , and its performance prediction, JT (θCL), is

the policy’s performance in the reference patient transition model T .

3.2.6 Testing Procedure

All treatment policies are trained over 1000 epochs using policy gradient (with the exception

of the clinical baseline policy, which is defined based on medical literature). Note that,

consistent with past work on variational policy learning [75], we set αT = αT ′ = 10 for SVPG

and NBPU. This corresponds to setting β = 0.5 for NBPU’s performance prediction. We

evaluate treatment policies by their expected cumulative reward under the underrepresented

patient transition model T ′, averaged over 5000 iterations. Each iteration simulates one week

of ICU stay (tmax = 168 hours), which is typical of heparin ICU patients [76].

Since NBPU and most benchmarks (transfer learning, clustering, HiP-MDP, clinical

baseline) depend on underrepresented patients’ historical data, they may be sensitive to

the particular patient being sampled. Thus, for these methods, we repeat our testing

procedure across 100 trials to ensure our findings remain consistent, regardless of the

specific underrepresented patient selected (i.e., we test our methods across 100 different

T̂ ′ models). We use a different underrepresented patient’s historical data in each trial, where

each data sequence is generated from T ′ (Equation (3.1)) using actual underrepresented

patients’ heparin regimens. Note that we only use data from underrepresented patients with
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at least tmax = 26 hours of data (the median sequence length in the dataset). We select 100

sequences whose log-likelihoods according to T fall below the 5% quantile. This ensures that

the underrepresented patient trajectories used to compute T̂ ′ in each trial possess features

that distinguish them from reference patient trajectories.

3.3 Results

3.3.1 Patient Characteristics

Table 3.2 presents descriptive statistics for our patient cohort. Patients skew male with a

median age of 70.5 and a median body weight of 79.5 kg. Median sequence length is 26

hours of heparin administration. Patients’ median aPTT is 58.6 seconds, slightly below the

desirable therapeutic range of 60-80 seconds.

3.3.2 Transition Models

In this section, we describe the transition models used for all analyses. Specifically, in Section

3.3.2.1, we describe our procedure for splitting the data into weight-based subpopulations

(i.e., the reference and underrepresented patient groups) and report the final transition

models T and T ′. In Section 4.3.2, we present model validation results, justifying our use

of separate transition models for the reference and underrepresented groups. Finally, in

Section 3.3.2.3, we describe the transition models Tg and Tw used for the clustering and

HiP-MDP benchmarks.

3.3.2.1 Reference and Underrepresented Transition Models T and T ′.

As described in Section 3.2.2.2, we split the patient data into 20 equally-sized subsamples

by body weight quantiles and learn a separate autoregressive transition model for each one

per Equation (3.1). Based on Equation (3.2), the optimal body weight quantile cutoff, q, is

obtained as q = 0.85. Figure 3.2 summarizes the effect of heparin by body weight percentile

and presents this quantile cutoff. As seen in the figure, heparin is least potent for patients

above the 85th body weight percentile. Thus, patients below the 85th body weight percentile
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Table 3.2: Descriptive statistics for 2,020 patients used for analysis.

Variable Value
% Female 42.3%

Median Age 70.5 (IQR 58.4-79.9)
Median Body Weight (kg) 79.5 (IQR 66.0-93.5)

Median Treatment Length (hrs) 26 (IQR 19-35)
Median aPTT (sec) 58.6 (IQR 55.9-66.5)

Median CO2 (mmHG) 24 (IQR 22-27)
Median HR (bpm) 82 (IQR 71-94)

Median Creatinine (mg/dL) 1.1 (IQR 0.8-1.6)
Median GCS (range 0-15) 15 (IQR 11-15)
Median Hematocrit (%) 31.4% (IQR 28.7%-34.9%)

Median Hemoglobin (g/dL) 10.6 (IQR 9.5-11.8)
Median INR 1.3 (IQR 1.2-1.5)

Median Platelet Count (billions/L) 212 (IQR 160-279)
Median Prothrombin Time (sec) 14.2 (IQR 13.4-15.6)

Median SAO2 97.0 (IQR 96.0-99.0)
Median Temperature (◦F) 98.4 (IQR 97.7-99.0)

Median Urea (mg/dL) 23.0 (IQR 15.0-40.0)
Median WBC (billions/L) 11.1 (IQR 8.4-14.6)
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Figure 3.2: Effect of heparin by body weight percentile. Vertical line indicates the optimal
quantile cutoff of q = 0.85. This cutoff maximizes the average heparin effect between the
reference patient model T (patients below the 85% quantile) and underrepresented model T ′

(patients above the 85% quantile).

53



are used for the reference transition model T , and those above this cutoff are used for the

underrepresented transition model T ′.

We perform a grid search over aPTT and heparin lags ly ∈ {0, 1, 2, 3, 4} and lh ∈

{0, 1, 2, 3, 4}. For each ly and lh, we learn separate transition models for reference and

underrepresented patients and compute the models’ mean absolute error (MAE) on a 20%

holdout set. We select heparin and aPTT lags ly = 0 and lh = 1, which yield the lowest

average MAE across the reference and underrepresented patient transition models. Thus,

the final transition models predict the current change in aPTT (∆ŷ(t)) from the most recent

aPTT change (∆y(t−1)) and the two most recent heparin dosage changes (∆h(t) and ∆h(t−1)).

The transition models T and T ′ are given respectively by:

∆ŷ(t) = 0.230∆h(t) + 0.137∆h(t−1) − 0.498∆y(t−1) + ε. (3.9)

∆ŷ(t) = 0.166∆h(t) + 0.109∆h(t−1) − 0.498∆y(t−1) + ε. (3.10)

Thus, according to the parameters in T ′, underrepresented (high-weight) patients are less

sensitive to heparin than reference patients under T . Note that we use the same aPTT coeffi-

cient by0 in both models, since this coefficient does not significantly vary between the reference

and underrepresented patient groups (p-value> 0.05). In addition, because the residual stan-

dard deviations do not significantly differ between groups (p-value> 0.05), both models are

assigned a disturbance of ε ∼ N (0, λσ), where σ is the group-level residual standard deviation

(0.087) and λ adjusts σ so that the standard deviation of simulated sequences matches the

standard deviation of patient sequences (0.0746). We test λ ∈ {0.1, 0.25, 0.5, 1, 2} and select

λ = 0.5, which yields simulated sequences with standard deviation 0.0754.

3.3.2.2 Model Validation.

Across all patients, transition models T and T ′ predict aPTT changes within 5.4 seconds,

that is, within 8.9% of the average aPTT value. Moreover, prediction error is less than

10% of the average aPTT value for 76.5% of patients. Given that aPTT differences of less

than 10% are not considered clinically significant [114], this suggests that the models explain

patients’ aPTT changes within a clinically acceptable degree of accuracy.
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The use of a separate transition model T ′ for underrepresented (high-weight) patients is

justified by the fact that the reference transition model, T , overestimates underrepresented

(high-weight) patients’ observed cumulative reward. High-weight patients spend 6.0 hours

in the therapeutic aPTT range on average. Simulations from T using high-weight patients’

actual heparin dosages predict an average of 8.5 hours, while simulations from T ′ using the

same data predict an average of 7.9 hours. Thus, the prediction from T ′ is closer to the

true patient outcome. While T ′ also overestimates the amount of time high-weight patients

spend in the therapeutic range, this is mainly due to overestimation at the high end of the

distribution. For instance, the bottom 70% of high-weight patients (by cumulative reward)

spend an average of 0.79 hours in the therapeutic range. Compare this with 0.81 hours as

predicted by T ′ (2.5% error) and 1.37 hours as predicted by T (73.4% error).

Figure 3.3 presents examples of simulated aPTT trajectories for a high-weight patient

under T and T ′. Simulated trajectories use the patients’ starting aPTT value and

physician-administered heparin dosage policy. As seen in the figure, compared with T ′,

the trajectories simulated based on T generally overestimate aPTT changes in response to

a given heparin dosage.

3.3.2.3 Transition Models Tg and Tw for Clustering and HiP-MDP Benchmarks.

For the clustering benchmark, a scree plot analysis suggests an eight-cluster solution offers

the best balance between parsimony and solution quality; the eight-cluster solution yields

a 23.5% reduction in within-cluster sum of squares compared with a seven-cluster solution

and only an 8.3% increase compared with a nine-cluster solution. We thus learn eight

cluster-specific autoregressive transition models Tg for g ∈ {1, . . . , 8} from reference patient

data, and learn a separate RL treatment policy πθg for each. Note that we use the same

lags ly = 0 and lh = 1 as in Equations (3.9) and (3.10) when calculating cluster-specific

transition models.

For the HiP-MDP benchmark, our autoregressive transition model Tw uses the same lags

ly = 0 and lh = 1 as in Equations (3.9) and (3.10), along with patient body weight w

(normalized between 0 and 1) as a main effect and interaction. This yields the following
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Figure 3.3: Example of aPTT trajectories for an underrepresented (high-weight) patient,
under T (reference transition model) and T ′ (underrepresented/high-weight transition
model). Note that T overestimates aPTT values compared with T ′.
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autoregressive transition model Tw:

∆ŷ(t) = (0.202 + 0.101w)∆h(t) + (0.136 + 0.0075)∆h(t−1)+

(−0.512 + 0.0813w)∆y(t−1) + 0.0037w + ε.

We consequently learn a body weight-dependent policy πθw using Tw.

3.3.3 NBPU Performance and Comparison with Benchmarks

In this section, we assess the performance of NBPU-selected policies when tested on the

underrepresented (high-weight) transition model T ′ over one week of ICU stay. We also

assess NBPU’s performance predictions for its policies, i.e., we assess its predictions for each

policy’s expected cumulative reward when tested on underrepresented patients.

Table 3.3 presents the main experimental results, and Figures 3.4 and 3.5 separately

visualize each method’s policy performances and the mean absolute error (MAE) of their

performance predictions. As seen in Table 3.3 and Figure 3.4, NBPU-selected policies

significantly outperform the standard RL policy, transfer learning, clustering, HiP-MDP,

and the clinical baseline (all p-values< 0.01). Also, as seen in Table 3.3, NBPU results

in relatively small interquartile range, compared with other benchmarks, across the 100

trials (i.e., 100 different T̂ ′ models). This suggests that NBPU-selected policies perform

rather consistently, regardless of which underrepresented patient is selected and used to

develop T̂ ′. Similarly, as seen in Table 3.3 and Figure 3.5, NBPU’s performance predictions

(i.e., predictions of its policies’ performance with underrepresented patients) significantly

outperform SVPG, the standard RL policy, transfer learning, clustering, and HiP-MDP (all

p-values< 0.01).

3.3.3.1 Comparison with SVPG.

Policies selected by NBPU and SVPG yield similar expected cumulative returns (57.21 and

56.84, respectively, difference not significant) when tested in the underrepresented (high-

weight) patient model T ′. Yet NBPU more accurately predicts its policies’ performances
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Table 3.3: Results for NBPU and all benchmarks. ‘Policy Performance in T ′’ refers to
expected cumulative reward in underrepresented patient transition model, and ‘Performance
Prediction Error’ refers to absolute error between predicted and actual policy performances in
T ′. ‘IQR’ refers to interquartile range from sampling 100 different underrepresented patient
sequences (not defined for SVPG and standard RL, which do not utilize underrepresented
patient sequences). ‘NBPU Diff’ refers to mean difference from NBPU, with bolded values
significant at the 0.05 level based on bootstrapping.

Method
Policy Performance in T ′ (JT ′(θ)) Performance Prediction Error
Mean IQR NBPU Diff Mean IQR NBPU Diff

NBPU 57.21 56.84, 57.66 - 8.79 4.13, 11.78 -
SVPG 56.84 - -0.38 13.77 - 4.97

Standard RL 52.62 - -4.59 11.64 - 2.84
Transfer Learning 46.57 35.48, 57.60 -10.65 15.07 5.37, 19.49 6.27

Clustering 53.10 51.23, 56.04 -4.11 10.59 5.04, 22.21 1.80
HiP-MDP 54.57 53.15, 57.28 -2.65 10.52 9.18, 11.87 1.72
Clinical 39.5 38.95, 39.91 -17.76 1.74 0.68, 2.21 -7.73
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Figure 3.4: Mean policy performance in transition model T ′ (i.e., expected cumulative
reward, JT ′(θ)) for NBPU and all benchmark methods. Error bars represent 95% confidence
intervals based on bootstrapping.
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Figure 3.5: Mean absolute error (MAE) of performance prediction (i.e., difference between
predicted and actual expected cumulative reward) for NBPU and all benchmark methods.
Error bars represent 95% confidence intervals based on boostrapping.
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than SVPG; that is, (β)JT̂ ′(θi∗) + (1 − β)JT (θi∗) more accurately predicts JT ′(θi∗) than

JT (θĩ) predicts JT ′(θĩ) (MAE of 8.79 and 13.77, respectively, p-value< 0.01).

Figure 3.6 provides more detail on these comparisons between NBPU and SVPG. As seen

in Figure 3.6(a), both methods’ policy probability distributions (P̂T ′ and PT , respectively)

resemble PT ′ , the ground truth policy probability distribution for T ′. Thus, when choosing

the highest-probability policy for underrepresented patients, both methods yield policies

with similar performances. Yet NBPU’s probability distribution, P̂T ′ more closely resembles

PT ′ than SVPG’s distribution PT , with respective Kullback-Leibler divergences of 0.005 and

0.028. This is because, as seen in Figure 3.6(b), NBPU’s performance prediction (β)JT̂ ′(θi∗)+

(1−β)JT (θi∗) more accurately predicts policies’ performance with underrepresented patients

than SVPG’s performance prediction JT (θĩ), which does not incorporate limited patient

data from T ′.

3.3.3.2 Comparison with Other Benchmarks.

NBPU significantly outperform all other benchmarks in terms of expected cumulative reward.

NBPU also more accurately predicts its policies’ performance with underrepresented patients

compared with standard RL, transfer learning, clustering, and HiP-MDP. Note that the

clinical baseline policy performs similarly across reference and underrepresented patients

(expected rewards of 38.61 and 39.45, respectively), which explains this method’s high

accuracy in predicting its performance with underrepresented patients.

3.3.4 Robustness Check

To verify the robustness of our findings, we vary the parameters of T ′, the ground-

truth transition model used to assess policy performances, to account for potential model

misspecification. Specifically, we vary bh0 and bh1 (the autoregressive parameters that

determine patients’ heparin sensitivity) in T ′ by two standard errors in either direction,

yielding alternate transition models T ′−2SE and T ′+2SE. Thus, T ′−2SE assumes that high-

weight patients are less sensitive to heparin than assumed in T ′, and T ′+2SE assumes that

high-weight patients are more sensitive to heparin than assumed in T ′ (i.e., more similar to
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Figure 3.6: Comparison of NBPU and SVPG policies with ground truth. Sub-figure (a)
shows the policy probabilities PT ′(θi) (ground truth), P̂T ′(θi) (NBPU), and PT (θi) (SVPG),
for all i ∈ {1, . . . , 100}. Sub-figure (b) shows the ground truth policy performances JT ′(θi)
and performance predictions (β)JT̂ ′(θi) + (1− β)JT (θi) (NBPU) and JT (θi) (SVPG), for all
i ∈ {1, . . . , 100}. Policies are sorted by their performance with underrepresented patients
(JT ′(θi)) in both plots. Note that NBPU results are averaged across 100 trials.
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reference patients). We assess all treatment policies in both T ′−2SE and T ′+2SE to evaluate

our findings’ sensitivity to misspecifications in high-weight patients’ heparin sensitivity.

Figure 3.7 presents each method’s policy performances under T ′−2SE, T ′, and T ′+2SE. In

T ′−2SE, in which high-weight patients are less sensitive to heparin than assumed in T ′, NBPU

still outperforms standard RL, transfer learning, clustering, HiP-MDP, and the clinical

baseline. The same results hold for T ′+2SE, in which high-weight patients are more similar

to reference patients than in T ′. Thus, NBPU’s high performance is robust to possible

misspecifications in T ′, regardless of the direction of the misspecification.

Figure 3.8 presents the MAE of each method’s performance predictions. In T ′−2SE, in

which underrepresented patients are less sensitive to heparin than assumed in T ′, NBPU’s

performance predictions outperforms SVPG, standard RL, transfer learning, cluster, and

HiP-MDP. Understandably, this advantage dissipates in T ′+2SE, in which underrepresented

patients are more sensitive to heparin than in T ′ and thus more closely resemble reference

patients. In this case, methods that only leverage reference patient information can

accurately predict their policies’ performance in T ′+2SE given its similarity to T .

3.4 Discussion

Here, we address the problem of learning treatment policies for underrepresented patients

using limited data. We propose a new approach, namely NBPU, and demonstrate that noisy

Bayesian policy updates can extract useful information from a single patient’s historical data

even when the patient’s clinical characteristics are underrepresented in training data. Such

data can be used to (1) select high-performing policies for the underrepresented patient

population, and (2) accurately predict these policies’ performance, despite the inherent

noise in such small (n = 1) sample sizes. We also demonstrate that NBPU is robust to

misspecifications in the underrepresented patient model, and that it outperforms other

benchmarks when the dissimilarity between the reference and underrepresented patient

groups is magnified.

We conduct thorough benchmarking to compare NBPU with other state-of-the-art

methods and clinical practice, and draw insights. One of the main benchmarks used is SVPG,
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Figure 3.7: Mean policy performance in transition models T ′−2SE, T ′, and T ′+2SE

(i.e., expected cumulative rewards, JT ′−2SE
(θ), JT ′(θ), and JT ′+2SE

(θ)) for NBPU and all

benchmark methods. Error bars represent 95% confidence intervals based on bootstrapping.
Comparative performances of all algorithms are consistent across T ′−2SE, T ′, and T ′+2SE.
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T ′+2SE, for NBPU and all benchmark method. Error bars represent 95% confidence intervals
based on bootstrapping.
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on which NBPU is built. Our results show that NBPU provides value above and beyond

standard SVPG. Although high-probability policies under both NBPU and SVPG perform

well on underrepresented patients, SVPG overestimates these policies’ performance. That

is, unlike NBPU, SVPG does not leverage underrepresented patient information to adjust its

predictions for underrepresented patients’ outcomes under its treatment policies. NBPU’s

use of underrepresented patient information (and its ability to regularize this information

with reference patient data) allows it to more accurately predict patient outcomes.

Because NBPU uses reference patient data to regularize its performance predictions, it

also outperforms transfer learning, which learns new treatment policies directly from noisy

patient-specific transition models. Transfer learning has shown promise in domains where

sufficient data are available from the transition model of interest. However, in the case of

limited data, simply initializing the transfer learning policy parameters with those learned

from reference patients does not sufficiently regularize the final policies. This explains the

large error between the transfer learning policies’ performance in their own (noisy) transition

models and their actual performance in the underrepresented patient model T ′.

NBPU also outperforms two other state-of-the-art methods, clustering and HiP-MDP,

because it does not assume that underrepresented patients are well-represented in the

training data. Clustering and HiP-MDP attempt to account for inter-patient variation,

but they are not as effective as NBPU in extending their policies to patient populations that

are not represented in their training data.

3.5 Conclusion and Future Work

In this study, we develop a new approach, namely, Noisy Bayesian policy updates

(NBPU), for selecting high-performing reinforcement learning-based treatment policies for

underrepresented patient subpopulations using limited observations. We demonstrate that

NBPU can be used to effectively select treatment policies for underrepresented patients and

to predict these policies’ performance. It outperforms several state-of-the-art benchmarks

and adds value beyond variational policy learning with reference patients only. Our results
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show that even a single patient’s historical data can aid decision-makers in selecting policies

that perform well for patient groups, despite the inherent noisiness in such small sample sizes.

While our analysis relies on a dataset of ICU patients, our findings are expected to

generalize well to other healthcare applications. Such efforts are left for future work. We

also focus specifically on policy selection when only a single underrepresented patient is

available, to demonstrate our method’s effectiveness with such limited data. Future work

also includes investigating the impact of larger underrepresented patient group sample sizes,

and how to update the candidate policies as more reference patient data are collected.
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Chapter 4

Optimizing Patient-Specific

Medication Regimen Policies Using

Wearable Sensors in Parkinson’s

Disease

4.1 Introduction

Effectively managing Parkinson’s disease (PD) symptoms is a formidable challenge for

healthcare providers. There are approximately one million Americans with PD, and this

is expected to grow to 1.2 million by 2030 [102]. PD patients exhibit considerable clinical

heterogeneity in their symptoms, yet many patients struggle with receiving specialized care

to personalize their treatment strategies. Shortages in neurologists [125], racial and gender

disparities [154], and long travel times for PD patients in rural areas [129] complicate

sufficient and equitable access to care. For instance, in one multi-year study of PD patients,

only 42% received neurologist care during the four-year study period [154].

It is crucial for healthcare providers to leverage emerging technologies to supplement

face-to-face neurologist care in treating PD. One such technology is wearable sensors, which

represent a quickly-growing consumer market in the U.S. and globally. One in five U.S. adults
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currently uses a wearable health tracker or ‘smart watch’ [105]. Given such widespread

use, wearable sensors are increasingly being utilized to monitor patient health states and

behaviors [108, 21, 22, 59], and also to recommend optimal health interventions [31, 72, 164,

134, 28].

Such personalized interventions (often referred to as ‘just-in-time adaptive interventions’,

or JITAIs) recommend optimal health behaviors (e.g., medication administration) based on

continuous monitoring of patient health states [89, 90]. Learning wearable-based JITAIs is a

sequential decision-making problem, with the goal of learning an optimal medication policy

which maps a patient’s health state to an optimal recommendation (e.g., “take medicine,”

“exercise for 15 minutes,” etc.). Patients are assumed to stochastically transition between

health states in response to recommended health behaviors, and the optimal recommendation

policy maximizes some measure of expected cumulative reward over a given time horizon.

Wearable-based JITAIs are especially promising for PD patients, who demonstrate

considerable heterogeneity in their symptoms and treatment responses. One promising

application area is optimizing medication administration. Levodopa (L-dopa), which

facilitates dopamine replacement, is generally deemed the most effective therapy for PD.

Yet the interaction between patient symptoms and L-dopa is complex. Because L-dopa

has a short half-life, clinicians must carefully prescribe dosages to maximize the amount of

time patients’ symptoms are well-managed [95, 70]. Furthermore, while L-dopa is effective

in reducing bradykinesia (slowing of movement), it increases the likelihood of dyskinesia

(involuntary hyperkinetic movements). Thus, effective L-dopa therapy must effectively

balance these two symptoms.

The complexities of L-dopa therapy highlight the need for data-driven approaches to

optimize its prescription and administration. Yet there has been no research on the

application of wearable-based JITAIs to chronic medication management, which poses several

challenges such as:

- Limiting the frequency of medication administration to clinically-approved intervals

- Limited the total daily dosage of each medication.

- Accounting for the complementary or competing effects of multiple medications
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- Incorporating delays between medication recommendations and administration

It is also challenging and time-consuming to identify which patients may benefit from ad-

vanced therapies, such as continuous-administration L-dopa pumps or deep brain stimulation

(DBS) [99, 51, 128]. Data-driven approaches to L-dopa administration can facilitate this task

by assessing the marginal benefit to specific changes in patients’ L-dopa regimens (such as

medication frequency).

We therefore present the first implementation of a data-driven reinforcement learning

(RL) framework for optimizing PD patients’ medication regimens, which is also the first

application of wearable-based JITAIs to chronic medication management. Our data-driven

model of patients’ medication responses allows us to personalize medication policies to indi-

vidual patients’ demographic and clinical characteristics. We also develop a novel approach

for allowing the medication policy to simultaneously prescribe multiple medications.

4.1.1 Related Work

Our work is the first to combine reinforcement learning (RL) with wearable sensor data

to optimize medication regimens for patients with chronic diseases (specifically PD). Thus,

here we first review recent advances in the use of data analytics and machine learning to

optimize PD treatment. Next, we review research on the application of RL to treatment

planning problems. Lastly, we review existing work on the use of wearable sensors for

patient monitoring and treatment recommendations.

4.1.1.1 Data-driven approaches to PD management.

Many studies apply machine learning to improve the accuracy of PD diagnoses based on

patients’ clinical characteristics [87, 155, 101, 13, 61, 113, 147, 149]. Other studies apply

machine learning to predict PD patients’ clinical characteristics. For instance, [120] use

machine learning to predict PD patients’ disease progression state, [104] predict PD patients’

tremor severity, and [39] predict PD patients’ risk of falls.

Despite these applications of machine learning to PD diagnosis and symptom prediction,

few studies have applied machine learning to PD treatment. Such studies often focus on
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DBS therapy (see [146]), in which surgically-implanted electrodes are used to stimulate

parts of the patient’s brain responsible for motor function. For instance, [40] use machine

learning to process PD patients’ suitability for DBS treatment from electroencephalography

(EEG) readings. Other studies use machine learning to tune and regulate DBS patients’

neurostimulation implants [144, 71]. [127] use machine learning in the context of both

DBS and L-dopa administration, by predicting optimal changes to patients’ L-dopa dosages

following DBS surgery.

Two recent studies focus on applying machine learning and RL exclusively to PD

medication management. [149] use RL to train optimal dosage policies for PD patients.

This work is a proof of concept framework that relies on hypothetical patient profiles; in

contrast, we seek to extend this framework to real-world patient data collected from wearable

sensors. [63] use machine learning to identify discrete disease progression states in a cohort

of PD patients, based on patients’ scores on the Unified Parkinson’s Disease Rating Scale

(UPDRS). The authors then use RL to identify the optimal combination of drug classes to

be prescribed for each disease state. In contrast, we seek to leverage objective and highly

granular sensor data (rather than subjective clinical assessments such as UPDRS scores)

to identify optimal medication regimens (i.e., specific medications, their dosages, and their

timing) for individual patients.

Machine learning has thus been extensively applied to PD, though existing research

primarily focuses on diagnosis and symptom prediction, rather than treatment. Studies

that address treatment planning almost exclusively focus on advanced therapies (particularly

DBS), rather than medication administration (despite the fact that less than 10% of patients

undergo DBS therapy; [85]). Those that do focus on PD more broadly either concern detailed

decisions about medication regimens but only rely on synthetic sensor data, or use subjective

UPDRS data and concern high-level decisions about medication classes for different stages

of PD [63]. We thus seek to build on the limited past work that uses ML for L-dopa therapy

optimization [149, 63], leveraging actual patient data collected from wearable sensors to

optimize patient-level medication regimens.
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4.1.1.2 Reinforcement learning for treatment planning.

RL is often employed for treatment planning in data-rich inpatient critical care settings

(e.g., intensive care units), which allow for continuous bedside symptom monitoring.

These represent ‘physician-in-the-loop’ applications, since attending physicians can review

algorithmic recommendations before deployment. For instance, [111] and [122] develop an

RL algorithm for optimizing sepsis treatment in the intensive care unit, while [93] and [11]

use RL to optimize blood anticoagulant dosing. In another example, [158] and [110] develop

RL algorithms to optimally wean patients off of mechanical ventilation.

RL has also been studied for its ability to regulate implanted devices. For instance, [107]

use RL to regulate electrode implants that provide neurostimulation therapy for epilepsy

patients. Other studies [28, 103] use RL to regulate insulin pumps for patients with diabetes.

These represent ‘closed-loop’ applications, because algorithmic recommendation does not rely

on physician or patient involvement.

‘Patient-in-the-loop’ applications, in which RL-based systems recommend treatment

behaviors directly to patients, are currently limited to mobile health interventions. For

instance, [164] and [72] both develop RL models for learning optimally-timed exercise

recommendation for users of wearable or mobile fitness trackers. [137] use RL to learn

optimal app-based recommendation strategies for users of a mobile health application, and

test their algorithm in a clinical trial. While such applications are potentially valuable for

preventative health, RL has not been deployed for ‘patient-in-the-loop’ applications designed

for disease treatment or symptom management.

4.1.1.3 Wearables for smart health monitoring.

Wearable sensors have been used for a wide variety of health monitoring applications.

Most applications are solely ‘descriptive’ in that they monitor and report on a patient’s

health state or behavior over time. For instance, [59] use commercial fitness trackers to

monitor sleep duration for insomnia patients, while [34] use commercial fitness trackers to

monitor behavioral symptoms of dementia. Other approaches are ‘predictive’ in that they

use wearable sensor data to predict clinical events of interest. [108] develop a model for
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predicting the risk of post-partum depression in adolescent mothers based on wearable sensor

data. Models built from wearable sensor data have also been used to predict PD patients’

symptom severity [69] and medication responses [4] and to predict adverse health events in

elderly patients [5].

Studies have also investigated the applications of wearable sensors to PD. Multiple studies

have shown that accelerometer data from wearable sensors can produce accurate estimates

of PD symptoms that correlate with patient self-report and clinical assessments, such as the

UPDRS [97, 48, 53]. [88] conducted a clinical study in which one such wearable sensor, the

Personal Kinetigraph (PKG; Global Kinetics Corporation), was used to monitor patients’

PD symptoms for the purposes of medication management. Patients wore wrist-mounted

movement sensors for two separate six-day periods; after the first six-day period, patients

participated in a clinic visit in which the ‘descriptive’ report of symptoms produced by the

PKG was used by the physicians to potentially update the patients’ medication regimens.

The study found improvements in physician- and patient-reported symptom severity, though

PKG scores remained mostly unchanged. Note that in this study, only the clinical intuition

of the physicians was used to adjust patients’ medication regimens. Building on this work,

[147] use the wearable sensors data from [88] to cluster patients based on their medication

regimens and symptoms, with the aim of using new patients’ PKG data to immediately

‘guess’ their optimal cluster allocation. As such, [147] use clustering and predictive modeling

to roughly estimate optimal medication regimens (at the cluster level) using PKG data. In

this study, we seek to further build on this line of research by developing a data-driven,

prescriptive framework that uses PD patients’ wearable sensor data to optimize patient-

specific L-dopa regimens.

4.1.2 Objectives and Proposed Contributions

New RL frameworks must be developed to leverage wearable sensors for optimizing PD

medication regimens. We develop the first data-driven framework for leveraging wearable

sensor data to optimize medication management for chronic disease treatment. Our work

specifically focuses on optimizing L-dopa therapy for PD patients, since research shows that
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PD symptoms can be accurately monitored in high frequency through wearable sensors

[69, 4].

Our data-driven framework extends the use of RL to ‘patient-in-the-loop’ treatment

planning. Previous RL treatment applications are either ‘closed-loop’ (i.e., requiring no

human interaction; [107, 28, 103]), ‘physician-in-the-loop’ (i.e., designed for inpatient settings

with physician oversight; [111, 93, 158, 110]), or are designed for preventative health

rather than treatment [164, 72, 137]. Therefore, this study extends the literature by

accounting for challenges involved with ‘patient-in-the-loop’ systems, including minimum

dosing intervals, capped daily dosages, competing effects of multiple medications, and delays

between recommendations and subsequent medication administrations.

Our data-driven framework also extends research on wearable health sensors by leveraging

wearable sensor data for prescriptive purposes. Research on wearable health sensors largely

focuses on ‘descriptive’ analytics (i.e., patient monitoring) or ‘predictive’ analytics (i.e.,

forecasting patient outcomes or health events). By applying RL to high-frequency wearable

sensor data, we develop a ‘prescriptive’ framework that leverages such data to improve

patients’ medication regimens.

Lastly, our data-driven framework produces rich clinical insights by personalizing RL-

based medication policies to patient-level demographic and clinical characteristics. We

particularly apply this to PD where neurologist care is necessary to improve patient quality of

care and avoid preventable PD-related hospitalization, but access is limited and fraught with

logistical challenges. Our patient-specific approach allows for augmenting medical decision

making well beyond the descriptive values of wearable data, demonstrated by the improve-

ments in quality of decisions despite physicians having access to the same data. In addition,

our approach provides flexibility in medication regimen planning, enabling physicians to

account for various factors such as propensity to adherence. Perhaps more importantly, it

provides a quantitative and objective framework for facilitating the challenging and time-

consuming task of identifying patients who may be candidates for advanced therapies.
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4.2 Methods

In this section, we discuss the data and provide the methods and evaluations schemes.

Specifically, in Section 4.2.1, we describe our data. In Section 4.2.2, we introduce the

data-driven ‘symptom model’ that is learned from historical patient data. This model is

used as part of the RL framework to simulate patients’ bradykinesia and dyskinesia in

response to medication and to train RL-based medication policies. In Section 4.2.3, we

formalize our RL problem. Finally, in Section 4.2.4, we describe our protocol for training

and evaluating patient-specific medication policies with RL. Figure 4.1 provides an overview

of our methodology.

4.2.1 Data

We use data from [88], which consists of 26 PD patients who wore wrist-mounted movement

trackers for two separate six-day periods. All patients were taking L-dopa at the time of

the study. At the beginning of the study, patients were provided a Personal Kinetigraph

(PKG; Global Kinetics Corporation), shown in Figure 4.2, and were asked to wear it daily

for six days on the side of the body most affected by PD symptoms. The PKG monitored

patients’ movement symptoms between 5:00am and 10:00pm each day (17 hours per day) and

produced scores estimating patients’ bradykinesia and dyskinesia levels every two minutes.

The PKG also used vibration-based medication alerts to remind patients when to administer

L-dopa (based on the patients’ existing L-dopa medication regimens).

After the first six-day period of wearing the PKG, patients participated in a clinical

visit in which they completed routine clinical evaluations, including the Unified Parkinson’s

Disease Rating Scale (UPDRS) assessment. During this visit, study physicians reviewed

the ‘descriptive’ reports of patients’ PKG data from the preceding six days and re-adjusted

patients’ medication regimens per the PKG data, in-person evaluations, and their clinical

intuition. Note that some patients received no change to their L-dopa regimens, while others

did. After the first clinical visit, patients completed another six days of symptom monitoring

with the PKG, followed by a second clinical visit. During the second clinical visit, patients
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Figure 4.1: Overview of the methodology.

Figure 4.2: PKG worn by participants in [88].
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participated in routine clinical evaluations (including UPDRS assessment) and completed a

survey regarding their experience with the PKG.

We refer to patients’ PKG data from the first six-day wear period as patients’ ‘Visit 1’

data, and data from the second as ‘Visit 2’ data. We refer to patients’ L-dopa regimens for

their Visit 2 wear periods (i.e., those prescribed by the study physician during the first clinical

visit) as ‘physician-updated regimens’ (since the study physicians ‘updated’ patients’ original

regimens based on their PKG reports). Patients’ Visit 1 and Visit 2 data are summarized

into a single PKG plot per patient, which shows the median, 25th, and 75th percentile

for bradykinesia and dyskinesia scores at each two-minute time interval from 5:00am until

10:00pm, yielding two PKG plots per participant. Figure 4.3 presents an example PKG

plot. Note that higher bradykinesia and dyskinesia scores indicate greater symptom severity,

though bradykinesia scores appear reversed in PKG plots. Thus, distance from plot midline

indicates symptom severity. Lastly, note that all patients were taking one of three L-dopa

formulations at the time of the first clinical visit, namely, L-dopa IR (‘immediate release’),

L-dopa CR (‘controlled release’), and Rytary, each of which differs in how quickly it releases

L-dopa into patients’ bloodstreams.

4.2.2 Bradykinesia and Dyskinesia Symptom Model

In this section, we develop a statistical model of patients’ bradykinesia and dyskinesia

responses to L-dopa. This enables us to simulate and evaluate patients’ responses to

medication dosages even if such dosages differ from those that patients actually received. It

also allows us to simulate patients’ bradykinesia and dyskinesia scores under the medication

regimens they received during the study, and compare their simulated versus actual symptom

trajectories for model validation.

We learn two symptom models (with identical structures) from patients’ Visit 1 and

Visit 2 data. In doing so, we use Visit 1 data as our training set and Visit 2 data as our

test set, and therefore refer to the Visit 1 and Visit 2 models as the ‘training’ and ‘testing’

models, respectively. After fitting the training model from Visit 1 data, we validate it by

confirming that it can accurately reproduce symptom trajectories from the test set (i.e., Visit
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Figure 4.3: Example PKG plot [88], summarizing bradykinesia (bottom) and dyskinesia
(top) scores over a six-day period. Higher bradykinesia and dyskinesia scores reflect greater
symptom severity, and bradykinesia scores are reversed in all plots. Thus, distance from plot
midline indicates symptom severity. Bold lines represent median bradykinesia and dyskinesia
scores; lower and upper faded lines represent 25th and 75th percentiles, respectively. Vertical
lines indicate prescribed medication administration and red markers at bottom of plot
indicate self-reported medication administration. Score categories BK/DK I, II, III, and
IV respectively indicate bradykinesia and dyskinesia scores experienced by control patients
50%, 25%, 15%, and 10% of the time, respectively, with DK/BK IV being the most severe
symptom classification.
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2 data). We then use it to train all RL medication policies, and use the testing model (fitted

from Visit 2 data) to evaluate the RL medication policies. Thus, we assume that Visit 1 data

are available from all patients of interest when training RL policies, and we seek to train RL

policies that generalize well to each patient’s future symptom trajectories (i.e., their Visit

2 data). This mirrors the design of [88], in which study physicians use clinical intuition to

revise patients’ L-dopa regimens after viewing data from each patient’s Visit 1 wear period.

4.2.2.1 Data preprocessing.

Bradykinesia and dyskinesia scores are normalized between −1 and 1, with higher scores

indicating greater symptom severity. We also apply an arctanh transformation to normalized

bradykinesia scores, which allows all model predictions to be reconverted to the data’s

original range using a tanh transformation and prevent out-of-range model predictions.

Since patients in this sample experience dyskinesia less frequently than bradykinesia [88],

normalized dyskinesia scores were highly clustered around −1 and yield better modeling

results without a tanh transformation (which distorts data values near 1 and -1). We then

perform first-order differencing on all bradykinesia and dyskinesia scores, a common time

series technique for reducing nonstationarity [29].

Although each patient was prescribed to take L-dopa at the same time each day during

the six day wear period, self-report data suggests that medication was often taken up to

30 minutes early or late. We therefore adjust each patient’s prescribed medication times

up to 30 minutes in either direction. The adjusted times were chosen to maximize each

patient’s median bradykinesia score increase in the following 30 minutes (based on L-dopa

absorption time; [78]). Adjusted medication administration times were, on average, 3.3

minutes earlier than the original prescribed times, with a mean absolute change of 21.7

minutes in either direction.

4.2.2.2 L-dopa pharmacokinetic models.

Recall that each patient in this study takes a subset of three different L-dopa formulations

(L-dopa IR, L-dopa CR, Rytary), which differ in their pharmacokinetic properties. That

is, these medications differ in how they deliver L-dopa to the patients’ bloodstreams once
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they are administered. We therefore build an L-dopa pharmacokinetic model, which converts

patients’ prescribed L-dopa IR, L-dopa CR, and Rytary dosages to L-dopa-equivalent dosages

(LED) at each point. LED is a common clinical metric for summarizing the therapeutic effect

of multiple PD medications [138, 124]. This allows us to estimate how patients’ symptoms

respond to L-dopa at each time point, regardless of the L-dopa formulation (L-dopa IR,

L-dopa CR, Rytary) that was administered.

We build a model of bloodstream L-dopa concentration that depends on each L-dopa med-

ication’s peak concentration, time to peak concentration, and elimination half-life (i.e., rate

of decrease after peak concentration), with parameters taken from existing clinical literature

[82, 54]. For L-dopa IR, we assume a peak concentration of 10.90 ng/(mL·mg), time to peak

concentration of 1 hour, and elimination half-life of 1.6 hours. For L-dopa CR, we assume a

peak concentration of 8.55 ng/(mL·mg), time to peak concentration of 1.5 hours, and elimi-

nation half-life of 1.6 hours. For Rytary, we assume a peak concentration of 3.4 ng/(mL·mg),

time to peak concentration of 4.5 hours, and elimination half-life of 1.9 hours. Additionally,

we assume that Rytary’s time to peak concentration of 4.5 hours is a result of it reaching its

peak concentration in 1 hour and then holding that concentration for 3.5 hours [54, 82, 47].

Figure 4.4 plots simulated concentrations of 100mg of L-dopa IR, L-dopa CR, and Rytary

under our pharmacokinetic model. Note that we assume the bloodstream concentration for

each medication increases linearly from zero to its peak concentration, then declines expo-

nentially according to its elimination half-life (consistent with pharmacological literature,

[96, 123]). At each time point, we calculate each patient’s total LED as the sum of the

concentrations of each medication, weighted by their L-dopa equivalence factors (1.0 for

L-dopa IR, 0.75 for L-dopa CR, 0.5 for Rytary; [138, 124]).

4.2.2.3 Bradykinesia and dyskinesia symptom model structure.

Figure 4.5 provides an overview of our bradykinesia and dyskinesia symptom model. We

develop a model that jointly predicts patients’ bradykinesia and dyskinesia scores at time

t+ 1 from their most recent tpast bradykinesia and dyskinesia scores, time since last L-dopa

dosage, and current bloodstream L-dopa concentration. We also include four patient-level
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covariates: gender, age, number of years since PD diagnosis, and total daily dosage of non-

L-dopa PD medications (e.g., monoamine oxidase B, or MAO-B, inhibitors), expressed in

LED. This allows the model to be patient-specific, i.e., the model’s predictions (and policy

learning) can be tuned to each patient’s specific demographic characteristics and medication

regimens. Note that, since patients’ maximum dyskinesia scores vary considerably more than

patients’ maximum bradykinesia scores, we cap each patient’s simulated dyskinesia values

at their 75th percentile band, plus the difference between the 75th percentile and median

bands. This allows model simulations to exceed patients’ observed dyskinesia scores while

avoiding unreasonably high predictions for patients with overall low dyskinesia levels.

Since the number of candidate models grows quickly with the number of variables, we

perform model selection in two steps. First, using a grid search, we test different lengths of

tpast and three candidate model structures, namely, a linear autoregressive model, a neural

network with one hidden layer, and a neural network with two hidden layers (where the

number of hidden units is equal to tpast). We evaluate model structures using five-fold cross-

validation on Visit 1 data, based on their root mean square error (RMSE) in predicting

patients’ next bradykinesia and dyskinesia scores (at time t + 1). Note that, as discussed

in Section 4.2.2, we only use Visit 1 data for model selection as Visit 2 data are reserved

for validating the symptom model and evaluating the RL policies. RMSE results can be

interpreted in the models’ original units (i.e., normalized bradykinesia and dyskinesia scores),

and is particularly selected because it penalizes large error in the models’ predictions, which

can yield unstable or unrealistic symptom trajectories.

After finalizing the length of tpast and the model structure, we add Gaussian noise with

standard deviation σb to the model’s bradykinesia predictions and Gaussian noise with

standard deviation σd to its dyskinesia predictions. This incorporates stochasticity into

the model’s generated symptom trajectories. Specifically, it allows our bradykinesia and

dyskinesia models to produce distributions over future patient states, rather than single

predictions, and is common practice in healthcare RL to prevent overfitting [163, 100].

We again use five-fold cross-validation to assess different values of σb and σd. In each

fold of the cross-validation, we use Visit 1 data from 80% of patients to fit bradykinesia and

dyskinesia models. We then use these models to simulate 100 bradykinesia and dyskinesia
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trajectories for the remaining 20% of patients under these patients’ corresponding Visit

1 medication regimens. We then calculate the proportion of simulated bradykinesia and

dyskinesia values that fall within each patient’s 25th and 75th percentile bands. We select

σb and σd such that the corresponding proportion of simulated bradykinesia and dyskinesia

scores that fall within each patient’s 25th and 75th percentile bands is closest to 0.5 (i.e.,

yields a similar degree of score variability as seen in actual patient data).

4.2.3 Reinforcement Learning Problem

Recall that optimal PD medication administration seeks to balance the competing effects of

bradykinesia (primary symptom of interest) and dyskinesia (side effect of L-dopa). Thus, for

each patient, we seek an optimal L-dopa dosage policy that jointly minimizes the patient’s

bradykinesia and dyskinesia. We define this medication planning problem as the tuple <

S,A, T, r, tmax >, where

- S is the set of possible symptom states the patient can occupy, with st ∈ S denoting

the symptom state at time t;

- A is the set of available treatment actions, with at ∈ A denoting the action taken at

time t, i.e., a medication recommendation made to the patient at time t. Since patients

cannot act on medication recommendations instantaneously, we assume a 10 minute

delay between medication recommendation and administration. Thus, the medication

recommendation at is implemented at time t+ 5;

- T is the patient’s state transition model; specifically, T is the symptom model defined

in Section 4.2.2. Since medication recommendations are implemented with a 10 minute

delay, T maps (st, at−5) to st+1;

- r : S 7→ R1 defines the immediate reward obtained in each state st ∈ S;

- tmax is the finite time horizon. Consistent with the PKG data collection interval, we

discretize time in units of two minutes where time epochs are t ∈ {0, 1, . . . , tmax}.

We define a medication policy as π : S 7→ A, which maps a patient’s state st to an

action at. For a given patient, we seek an optimal medication policy π∗ which maximizes the
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expected cumulative reward Eπ
[∑tmax

t=0 r(st)
]
, where the expectation is taken over the states

that result from executing the policy. We set tmax = 60
2
× 17 + 1 = 511 (equal to 17 hours

of two-minute intervals), i.e., we seek to maximize the patient’s reward over the course of

one day of symptom measurement (5:00am to 10:00pm inclusive). In doing so, we focus our

analysis on patients’ waking hours since PD symptoms generally subside during sleep ([91]).

We use a simulation-based approach, in which an RL agent interacts with T (i.e.,

the symptom model described in Section 4.2.2) to train dosage policies through on-policy

algorithms, which are considered state-of-the-art [83]. Figure 4.6 outlines our RL framework

for training medication policies.

4.2.3.1 State and action definitions and spaces.

We define the state at time t as st =
(
b(t−tpast+1):t, d(t−tpast+1):t,∆t, l

(IR)
t , l

(CR)
t , l

(Ryt)
t , Lt, c

)
,

where

- b(t−tpast+1):t is a vector of the most recent tpast normalized bradykinesia scores (i.e., past

2 · tpast minutes),

- d(t−tpast+1):t is a vector of the most recent tpast normalized dyskinesia scores (i.e., past

2 · tpast minutes),

- ∆t is the time since the most recent medication administration.

- l
(IR)
t is the patient’s current bloodstream concentration of L-dopa IR

- l
(CR)
t is the patient’s current bloodstream concentration of L-dopa CR

- l
(Ryt)
t is the patient’s current bloodstream concentration of Rytary

- Lt is the total LED administered since t = 0.

- c is a vector of the patient-level covariates used in T (specifically, gender, age, years

since PD diagnosis, and total daily dosage of non-L-dopa PD medications. Note

that these covariates do not change within-patient, and therefore their values remain

constant for any given patient.

82



Past
bradykinesia

Time since last
dosage

Levodopa
concentrations
(IR/CR/Rytary)

Optimal
medication

Medication Policy

Action 

Total LED given

Dosage
allowed? Yes

No

Reward 

State 

Predict next
dyskinesia

score

Update LED
concentration

Bradykinesia/Dyskinesia
Symptom Model

Predict next
bradykinesia

score

No dosage

Past 
dyskinesia

10 min.
delay

Restricted to
comercially
available
dosages

Figure 4.6: Overview of RL framework. An RL agent interacts with the bradykinesia and
dyskinesia symptom model to train dosage policies through on-policy RL algorithms.
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The action space A includes any commercially available dosage of L-dopa IR, L-dopa

CR, and Rytary. Since some of the patients in our dataset (4 out of 26) took two L-dopa

medications concurrently, and since clinical research suggests some patients may benefit from

such two-drug combinations [132, 135], A also includes a set of ‘allowed’ two-drug L-dopa

combinations. Individual L-dopa medication dosages are typically reduced when multiple

medications are taken together to limit the total LED of the drug combiantion [132]; thus, A

only includes two-drug L-dopa combinations whose total LED does not exceed the highest-

LED medication (which is 250mg of L-dopa IR). More specifically, there are 22 available

actions, a ∈ A, as follows:

- No medication

- L-dopa IR: 100mg or 250mg (dosages taken from [139])

- L-dopa CR: 100mg or 200mg (dosages taken from [140])

- Rytary: 95mg, 145mg, 195mg, or 245 mg (dosages taken from [141])

- L-dopa IR (100mg) + L-dopa CR (100mg or 200mg)

- L-dopa IR (100mg) + Rytary (95mg, 145mg, 195mg, or 245mg)

- L-dopa CR (100mg) + Rytary (95mg, 145mg, 195mg, or 245mg)

- L-dopa CR (200mg) + Rytary (95mg, 145mg, 195mg)

Dosages are only allowed every three hours (i.e., every 90 time epochs), which is a common

dosing interval for PD treatment [118, 117]. Setting a minimum dosing interval ensures that

patients’ RL medication policies do not over-prescribe L-dopa with clinically impermissible

frequencies. Each patient’s daily LED is capped at the LED of their physician-updated

regimen (i.e., their daily LED for the Visit 2 wear period). Thus, the subset of available

actions in state st, which we denote Ast , is given by

Ast =

a : `(a) ≤ Lmax − Lt, for ∆t ≥ 90

∅, otherwise,

(4.1)
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where `(a) denotes the LED of a medication action a, Lmax is a patient’s maximum allowed

daily LED, and ∅ is the empty set.

4.2.3.2 Reward function.

Our model assumes the following reward function:

r(st) = 1bt≤0.279 − α · 1dt>−0.775, (4.2)

where bt is the normalized bradykinesia score at time t, dt is the normalized dyskinesia

score at time t, α is a predetermined importance weight, and 1(·) denotes an indicator

function. Intuitively, the reward at time t is highest when both bt and dt are low (i.e.,

symptoms are not severe) and is lowest when bt and dt are high (i.e., symptoms are severe).

More specifically, the indicator function 1bt≤0.279 equals 1 if a patient’s bradykinesia is

considered ‘controlled’ (defined as a normalized score less than or equal to 0.279) and 0

if it is ‘uncontrolled’ (normalized score greater than 0.279). The threshold 0.279 corresponds

to an un-normalized bradykinesia score of 25, which serves as the cutoff for ‘uncontrolled’

bradykinesia in the clinical literature [88, 98]. Similarly, the indicator function 1dt>−0.775

equals 1 if a patient’s dyskinesia is considered ‘uncontrolled’ (normalized score greater than

−0.775) and 0 if it is ‘controlled’ (normalized score less than or equal to −0.775). The

threshold −0.775 corresponds to an un-normalized dyskinesia score of 9, which serves as the

cutoff for ‘uncontrolled’ dyskinesia in the clinical literature [88, 98].

Thus, the optimal policy prescribes sufficient L-dopa to maintain controlled bradykinesia,

but avoids prescribing too much to cause uncontrolled dyskinesia, with these competing

objectives balanced by the importance weight α. We proceed with α = 0.5 for our

experiments, which leads to stable policy learning in preliminary tests and reflects the clinical

observation that patients generally prefer well-managed bradykinesia at the expense of some

dyskinesia, over uncontrolled bradykinesia without any dyskinesia [27].
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4.2.3.3 Policy network: Allowing multiple medications.

RL policy neural networks typically produce a softmax probability distribution over

available actions, with one action being selected per time period. Our policy network

structure is complicated by our policies’ ability to recommend medication combinations,

i.e., simultaneous actions.

RL policy networks typically allow for simultaneous actions either by (1) expanding

the size of the action space to include all joint action combinations, or (2) treating each

action node as a separate Bernoulli distribution, allowing multiple actions to be sampled

independently (e.g., [50]). The former can quickly lead to combinatorial explosion of the

model’s parameter space, and preliminary tests suggests it yields poor medication policies.

The latter assumes independence among the available actions (an untenable assumption for

multiple medications with similar effects) and has no mechanism for prohibiting specific

action combinations [50].

We therefore develop a customized policy network structure in which allowing for k

possible action combinations requires only k additional model parameters, without requiring

action independence. Figure 4.7 presents a schematic example of our policy network

architecture. The state vector st first enters the network through an input layer and passes

to a second layer with m+1 neurons, where each neuron represents one of m possible single-

medication actions, plus a ‘no medication’ action. As described in Section 4.2.3.1, there are

two possible L-dopa IR dosages, two L-dopa CR dosages, and four Rytary dosages, yielding

m = 8. This layer is subject to a softmax activation (which produces values between 0 and

1) and then a subsequent logarithmic activation (which produces negative values, given the

previous softmax activation).

The model’s third and final layer contains k + m + 1 neurons, where each neuron

corresponds to one of m available single-medication actions, k two-medication combinations,

or the ‘no medication’ action. Note that only allowed medication combinations are

represented with neurons in this layer. For the m + 1 neurons that correspond to single-

medication actions or the ‘no medication’ action, their activation values are carried over from

their corresponding neuron in the previous layer (via connection weights fixed to 1). For the

86



IR
100mg

IR
250mg

CR
100mg

CR
200mg

log(softmax( ))

IR
100mg

IR
250mg

CR
100mg

CR
200mg

IR 100mg,
CR 100mg

1

softmax( )

Input
Layer

Figure 4.7: Example multi-action policy network, shown only for L-dopa IR and CR
and one allowed medication combination (L-dopa IR 100 mg + L-dopa CR 100mg). Gray
connections are set to unity and are not trainable, while black connections are trainable.
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k neurons that correspond to two-medication combinations, their activation values are the

sum of their constituent medications’ activations from the previous layer - which, given that

all activations from the previous layer are negative, is necessarily less than either constituent

medication’s activation. Intuitively, this is consistent with the rules of joint probability under

independence, in that the activation of a two-medication combination is the logarithm of the

product (i.e., the sum of the logarithms) of its two constituent medications’ activations.

To correct for this independence assumption, each two-medication combination neuron

has a trainable bias that can increase or decrease its activation relative to its default

activation value. Positive biases ‘up-regulate’ the selection probability of a two-medication

combination, relative to its selection probability under an independence assumption, and

negative biases ‘down-regulate’ its selection probability. Finally, the entire output layer

is subject to a softmax activation, producing a probability distribution over all single-

medication actions and all allowed dual-medication actions.

4.2.4 Policy Training and Evaluation

We train one RL policy for each patient using the training model (i.e., the bradykinesia and

dyskinesia symptom model learned from Visit 1 data only). For each patient’s policy, we

impute that patient’s covariates (gender, age, years since PD diagnosis, and daily dosage

of non-L-dopa PD medications) into the state space, as described in Section 4.2.3.1. Note

that we only learn policies for patients in our dataset and do not extrapolate our method to

combinations of covariates not observed in our dataset; this approach allows us to compare

each patient-specific RL policy with the actual policy that a patient received in the clinical

study. For each patient-specific RL policy, we also cap the policy’s daily LED at that

patient’s physician-updated daily LED. This allows us to assess whether RL can improve

patient outcomes without simply recommending more medication. We train each RL policy

using the policy gradient algorithm over 2000 epochs, which proves sufficient for policy

convergence in preliminary tests. We also entropy-regularize the policy network loss function

to encourage action exploration. Since reinforcement learning algorithms can arrive at locally

optimal solutions [162, 33, 2], we repeat all RL training runs from five randomly selected

initializations and choose the best-performing policy (based on training loss) for evaluation.
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To evaluate policies’ performance, we calculate their expected cumulative rewards in the

testing model (i.e., the symptom model learned from Visit 2 data only). This is a common

evaluation approach in the wearable-based JITAI literature [134], and it allows us to assess

whether medication policies learned from patients’ initial data generalize well to their future

symptom trajectories. Thus, no training data is used to evaluate policies. Note that, while

policies randomly sample actions from the policy network’s softmax output at training, only

the highest-probability action is selected during testing.

As a benchmark, we also execute patients’ physician-updated medication regimens in

the testing model. We compare the performance of the physician-prescsribed regimens to

those of the patient-specific RL policies. As described in section 4.2.1, physicians prescribed

medication regimens for patients’ Visit 2 wear period after viewing their Visit 1 PKG data.

Thus, the physician-updated regimens were based on the same PKG data that are used to

train the RL policies (i.e., Visit 1 PKG data), providing a rigorous assessment of our RL

approach’s ability to improve and augment symptom management above and beyond the

added value of the descriptive PKG data itself.

4.3 Results

Here, we present the results of our numerical analysis. Specifically, in Section 4.3.1,

we summarize patients’ demographic and clinical characteristics. In Section 4.3.2, we

present model selection and validation results for our bradykinesia and dyskinesia symptom

model, demonstrating their ability to simulate realistic patient symptom trajectories. In

Section 4.3.3, we present results for our patient-specific RL medication policies and compare

them with physician-updated policies. In Section 4.3.4, we assess the impact of changing

patients’ dosing frequencies on symptom outcomes, thereby identifying patients who may

be candidates for advanced therapies (such as continuous-administration L-dopa pumps or

DBS) or who may be able to switch to lower-frequency administrations without sacrificing

symptom control. Finally, in Section 4.3.5.1, we assess our results’ robustness to model

parameters used in the L-dopa pharmacokinetic model.
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4.3.1 Patient Characteristics

Table 4.1 summarizes patients’ demographic and clinical characteristics. Patients skew male

(i.e., 9 females vs 17 males) with a median age of 73 and a median of 3.5 years since PD

diagnosis. At the time of the first clinical visit (i.e., Visit 1), 22 patients were taking L-dopa

IR (mean daily dosage 439mg), five were taking L-dopa CR (mean daily dosage 460mg),

and two were taking Rytary (mean daily dosage 1360mg). Eighteen patients were taking L-

dopa IR only, five patients were taking L-dopa IR and CR, two patients were taking Rytary

only, and one patient was taking all three medications. Six patients were also taking non-

L-dopa PD medications. The median daily LED during the Visit 1 wear period was 490mg,

compared with 640mg during the Visit 2 wear period. Thus, study physicians tended to

revise the regimen to prescribe higher daily LED from Visit 1 to Visit 2 wear periods.

4.3.2 Symptom Model Selection and Validation

Here, we first describe the structure of our final symptom models, based on the model

selection process described in Section 4.2.2.3. Next, we present model validation results for

our final symptom model.

4.3.2.1 Symptom model selection.

As discussed in Section 4.2.2.3, we perform model selection in two steps. We first use five-fold

cross validation to select tpast and the symptom model’s structure (i.e., linear model, one-

layer neural network, two-layer neural network). We then fix tpast and the model structure

and use another five-fold cross validation to select the standard deviations σb and σd for the

Gaussian noise that is added to the model’s bradykinesia and dyskinesia predictions.

Table 4.2 presents the RMSE for the combinations of tpast and model structure evaluated.

We test tpast ∈ {15, 30} (i.e., 30 or 60 minutes of previous bradykinesia and dyskinesia)

across a linear model, a neural network with one hidden layer, and a neural network with

two hidden layers (with tpast hidden units). A linear model with tpast = 30 significantly

outperforms all neural network models (all p-values< 0.05 with paired t-tests). Although

it does not significantly outperform the linear model with tpast = 15 (p-value = 0.19), we
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Table 4.1: Summary of patient characteristics and medication regimens prior to Visit
1. ‘IQR’ refers to interquartile range. ’UPDRS III’ refers to summary score of United
Parkinson’s Disease Rating Scale Motor Examination (possible scores range from 0-108).
‘LED’ refers to L-dopa equivalent dosage. UPDRS, bradykinesia, dyskinesia, and medication
are reported as of Visit 1 (i.e., prior to intervention by study physicians). Mean dosages are
calculated only from patients taking that medication.

Demographic Characteristics
Total No. Patients 26

Females/Males 9/17
Age (median) 73 (IQR 64-80)

Clinical Characteristics
Years with PD (median) 3.5 (IQR 2-9)

UPDRS III score (median) 25.5 (IQR 17.5-33)
Mean bradykinesia (normalized) 0.01
Mean dyskinesia (normalized) -0.94

No. taking L-dopa IR 22
No. taking L-dopa CR 5

No. taking Rytary 2
No. taking non-L-dopa medication 6

L-dopa IR daily dose (mean) 439 mg
L-dopa CR daily dose (mean) 460 mg

Rytary daily dose (mean) 1360 mg
Daily LED (mean) 490 mg

Table 4.2: Model selection results. ‘Linear’ refers to linear autoregressive model, ‘NN’
refers to neural network with tpast hidden units. RMSE is root mean square error across,
using five-fold cross validation on patients’ Visit 1 data. Recall that data are collected every
two minutes so tpast represents 2 · tpast minutes of scores.

Model
Structure

tpast RMSE

Linear 15 0.0296
Linear 30 0.0290

1-layer NN 15 0.0330
1-layer NN 30 0.0319
2-layer NN 15 0.0319
2-layer NN 30 0.0307
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proceed with tpast = 30 since it yields the lowest RMSE. Thus, we proceed with a linear

model with tpast = 30 for all analyses.

Next, we identify the optimal standard deviations σb and σd to incorporate into the

symptom model. For bradykinesia predictions, we test σb ∈ {0.00975, 0.0195, 0.039, 0.078},

which respectively equal 25%, 50%, 100%, and 200% of the standard deviation of the model’s

bradykinesia predictions. For dyskinesia predictions, we test σd ∈ {0.00325, 0.0065, 0.013,

0.026}, which respectively equal 25%, 50%, 100%, and 200% of the standard deviation of

the model’s dyskinesia predictions. The respective percentages of simulated trajectories that

fall within patients’ 25th and 75th percentile bands for σb ∈ {0.00975, 0.0195, 0.039, 0.078}

are 51.7%, 48.6%, 44.5%, and 40.7%, while the respective percentages for σd ∈ {0.00325,

0.0065, 0.013, 0.026} are 54.5%, 51.6%, 46.2%, 38.9%. We thus proceed with standard

deviations of σb = 0.0195 and σd = 0.0065, since these values yield proportions closest

to 50% (48.6% and 51.6%, respectively).

4.3.2.2 Symptom model validation.

As described in Section 4.2.2.3, we assess whether the symptom model fitted to patients’

Visit 1 data (the training model) can reproduce realistic symptom trajectories from the

test set (i.e., patients’ Visit 2 data). Specifically, we use the training model to generate

100 bradykinesia and dyskinesia symptom trajectories for each patient using their Visit 2

medication regimens. We then compare these simulated symptom trajectories with patients’

actual Visit 2 data. For comparison purposes, we do the same for a ‘benchmark’ symptom

model, which only take past bradykinesia and dyskinesia scores as input features. This

allows us to validate our patient-specific modeling approach which leverages patient-level

covariates and pharmacokinetic estimates of L-dopa concentration.

Table 4.3 compares simulated bradykinesia and dyskinesia symptom trajectories under

our proposed symptom model and the benchmark model with patients’ actual Visit 2 data.

We compare the trajectories in terms of mean bradykinesia and dyskinesia scores, including

mean scores before and after patients take their first L-dopa dosage. This allows us to

assess our model’s ability to successfully replicate patients’ ‘untreated’ (i.e., before L-dopa)

and ‘treated’ (i.e., after L-dopa) symptom levels. We also compare trajectories in terms
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Table 4.3: Characteristics of actual and simulated Visit 2 bradykinesia and dyskinesia
trajectories. ‘Mean score’ refers to mean bradykinesia and dyskinesia scores. ‘Mean score
(pre-L-dopa)’ and ‘Mean score (post-L-dopa)’ respectively refer to mean bradykinesia and
dyskinesia scores before and after patients’ first L-dopa dosage. ‘% between 25th/75th’
refers to proportion of simulated trajectories that fall between patients’ 25th and 75th
percentile bands.

Mean score
Mean score Mean score % between

(pre-L-dopa) (post-L-dopa) 25th/75th
Bradykinesia

Patient data 0.023 0.200 -0.059 50.0%
Proposed model 0.011 0.189 -0.018 51.8%

Benchmark model 0.194 0.259 0.189 55.8%
Dyskinesia

Patient data -0.956 -0.986 -0.952 50.0%
Proposed model -0.952 -0.986 -0.947 53.0%

Benchmark model -0.950 -0.988 -0.944 53.2%
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of their variability, i.e., the proportion of scores that fall within patients’ 25th and 75th

percentile bands.

As seen in Table 4.3, our model’s simulations accurately reproduce patients’ average

symptom scores, including their average scores before and after taking their first medication

dosage. Our model also produces trajectories with a similar degree of variability as patients’

actual symptom scores. The benchmark model produces comparable dyskinesia trajectories

but overestimates the severity and variability in patients’ bradykinesia scores. Thus, our

proposed symptom model produces realistic symptom trajectories and adds value beyond a

simple benchmark model. Figure 4.8 presents simulated and actual Visit 2 bradykinesia and

dyskinesia trajectories for three example patients.

4.3.3 RL Medication Policies

In this section, we first contrast our patient-specific RL policies with those of patients’

physician-updated medication regimens (i.e., the medication regimens for patients’ Visit 2

PKG wear period). We then present a case study that examines the RL policy’s medication

recommendations and symptom trajectories for a single patient in our dataset to provide

further insights into the RL policy’s recommendations.

4.3.3.1 RL policies versus physician-updated regimens.

Table 4.4 compares patient-specific RL policies with physician-updated regimens in terms

of dosage recommendations, frequency of recommended medication administration, and

expected return, averaged across all 26 patients. Compared with physician-updated

regimens, the RL policies yield a higher expected cumulative reward. This is due to the

RL policies yielding nearly double the rate of controlled bradykinesia compared with the

physician-updated regimens.

Unlike the physician-updated medication regimens, the RL policies recommend L-dopa

CR or Rytary for all patients. The RL policies also recommend lower daily dosages than

the physician-updated regimens, which yields overall lower daily LED. The RL policies also

break patients’ daily dosages down into smaller, more frequent administrations. In fact, the
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Figure 4.8: Actual (dark-colored) and simulated (light-colored) bradykinesia and
dyskinesia trajectories for three example patients per their Visit 2 data. Symptom model
used for simulation are learned from patients’ Visit 1 data. Trajectories generally follow
patients’ increases and decreases in symptom scores, while still incorporating random
variation into each simulation. Recall that, consistent with PKG literature, bradykinesia
scores are reversed in all plots for visualization purposes.

Table 4.4: Characteristics of physician-updated (i.e., Visit 2) medication regimens and RL
medication policies. ‘LED’ represents L-dopa-equivalent dosage across L-dopa IR, L-dopa
CR, and Rytary. Mean dosages are calculated only from patients taking that medication.
All metrics are based on median results across 100 simulations per patient.

Physician RL
Medications

No. taking L-dopa IR 23 0
No. taking L-dopa CR 3 1

No. taking Rytary 3 25
L-dopa IR daily dose 554 mg –
L-dopa CR daily dose 433 mg 400 mg

Rytary daily dose 1950 mg 534 mg
Daily LED (mg) 640 mg 269 mg
Doses per day 4.0 5.1

Dosing frequency (hrs) 3.8 3.1
Outcomes

Avg. % controlled bradykinesia 20.5% 38.9%
Avg. % controlled dyskinesia 100.0% 99.9%

Avg. cumulative reward 97.7 183.7
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average median dosage frequency across patients is every 3.1 hours, which is close to the

minimum dosage frequency of 3 hours.

Altogether, patients’ RL policies seek to induce stable L-dopa concentrations by

frequently administering smaller L-dopa dosages and by relying on controlled-release L-

dopa formulations (primarily Rytary). Indeed, the average standard deviations of patients’

simulated L-dopa concentrations under the RL policies is 0.03, compared with 0.11 under

physician-updated regimens. This suggests the RL policies induce more stable L-dopa

concentrations than physician-updated medication regimens.

Lastly, it is worth noting that while two-medication actions (i.e., simultaneous admin-

istration of two L-dopa medications) were selected in the beginning of policy training, no

patient’s final RL policies recommended such actions. That is, the policies ‘down-regulated’

the activations of all two-medication actions such that patients were only recommended

to administer one medication at a time during testing, which is in line with the policies’

tendency to frequently administer small L-dopa dosages.

4.3.3.2 Case study.

To gather further insights on the RL-based policies, we investigate the RL policy recommen-

dations for an 87-year old male patient (patient 16 in Figure 4.8), diagnosed with PD at

age 77. The patient was originally prescribed 300mg of L-dopa CR before their Visit 1 wear

period, which was modified to 500mg of L-dopa IR following physician evaluations in Visit

1 and ahead of their Visit 2 wear period.

Figure 4.9 shows one day of simulated bradykinesia and dyskinesia scores for this

patient under their physician-updated regimen (500mg L-dopa IR, divided across three

administrations) and RL policy. The patient’s RL policy recommends 95mg of Rytary

five times daily (475mg total), administered approximately every three hours. Under the

physician-updated regimen, the patient’s bradykinesia deteriorates around mid-day, with

their few L-dopa IR dosages unable to reverse this decline. Under the RL policy, the patient’s

bloodstream L-dopa concentration increases slowly with each Rytary administration (95 mg

each). This gradual increase in their bloodstream L-dopa concentration yields ‘controlled’
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Figure 4.9: Simulated bradykinesia (top row), dyskinesia (second row), L-dopa
concentrations (third row), and medication recommendations (bottom row) under the
physician (left) and RL (right) policies for a single case study patient. Dashed lines in
the top and second rows distinguish ‘controlled’/‘uncontrolled’ bradykinesia and dyskinesia,
respectively. Consistent with clinical literature, bradykinesia scores are reversed for
visualization purposes.
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bradykinesia around midday, and the patient’s bradykinesia continues to improve throughout

the remainder of the day.

4.3.4 Investigating the Impact of Dosing Interval Changes

Because we learn separate RL policies for each patient, our framework can predict which

patients would benefit from different medication regimens or advanced therapies. While our

original analysis uses a minimum three-hour dosing interval, in this section we investigate

the patient-specific effects of both increasing and decreasing this parameter. We re-run

all patients’ RL policies with alternative restrictions on dosing intervals, and compare the

expected reward under the new policies with those under the original policies.

4.3.4.1 Decreasing dosing frequency to promote adherence.

We investigate the patient-specific impact of increasing the minimum dosing interval to four

hours (i.e., decreasing patients’ dosing frequency), which is a commonly used dosing interval

[68] and is the modal dosing interval in our dataset. Medication adherence has been shown to

improve as dosing intervals increase [25]; thus, although three hours is a clinically permissible

dosing interval, some patients may adhere better to less frequent dosing. We thus re-train

new RL policies for each patient with a minimum four-hour dosing interval (which we refer

to as ‘four-hour RL policies’) and compare patients’ symptom control under these policies

with the baseline three-hour RL policies to identify the patients who could be offered a lower

dosing frequency without sacrificing outcomes.

Note that patients should fare no better under a four-hour minimum dosing interval than

under a three-hour minimum dosing interval (since the latter is less restrictive). Due to

local optimality (a well-documented issue with RL; [161, 2, 33]), in our results, one patient’s

four-hour policy outperforms their three-hour policy. After additional examination, this is

resolved when different random initializations are used when training the policy. However,

since the purpose of this analysis is to identify patients who respond poorly to a four-

hour minimum dosing interval and to keep all analyses consistent, we simply report our
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original results and classify this patient as experiencing ‘no deterioration’ in symptoms when

switching from the three-hour to four-hour RL policy.

Table 4.5 compares the baseline three-hour RL policies to the four-hour RL policies. For

nearly half of patients (12 out of 26), the number of hours spent with ‘controlled’ symptoms

is predicted to decrease by one hour or less under a four-hour dosing interval. Such patients

may be viable candidates to reduce their L-dopa dosage frequency (which could improve

adherence) without considerably sacrificing symptom control. Yet 9 patients are predicted

to experience more than two fewer hours of controlled symptoms under a four-hour dosing

interval. Physicians might encourage these patients to adopt a three-hour dosing interval

over a four-hour dosing interval to maximize their symptom control.

4.3.4.2 Increasing dosing frequency to identify candidates for advanced thera-

pies.

We also investigate the patient-specific impact of decreasing the minimum dosing interval to

two hours (i.e., increasing patients’ dosing frequency). This allows us to investigate which

patients might be candidates for advanced therapies, e.g., L-dopa pumps or DBS. We thus

re-train new RL policies for each patient with a minimum two-hour dosing interval (which

we refer to as ‘two-hour RL policies’) and compare patients’ symptom control under these

policies with the baseline three-hour RL policies to identify the patients who could be viable

candidates for advanced therapies.

Note that patients should fare no worse under a two-hour minimum dosing interval than

under a three-hour minimum dosing interval; however, in our results, two patients’ two-

hour policies underperform their three-hour RL policies due to local optimality. This is

resolved when different random initializations are used. Since the purpose of this analysis

is to identify patients who respond well to a two-hour minimum dosing interval, we simply

report our original results and classify these patients as experiencing ‘no improvement’ in

symptoms when switching from the three-hour to two-hour RL policy.

Table 4.6 compares the baseline three-hour RL policies to the two-hour RL policies.

Most patients would benefit from higher-frequency L-dopa administration to varying degrees.

Two patients are predicted to fare considerably better under a two-hour minimum dosing
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Table 4.5: Change in patients’ daily number of hours with controlled symptoms when
switching from three-hour to four-hour minimum dosing intervals. Hours of controlled symp-
toms are calculated as the number of two-minute time epochs in which patients’ bradykinesia
and dyskinesia are both ‘controlled,’ divided by 30. All hour intervals are right-inclusive.

Change in # of Hours
# of patients

with controlled symptoms
No deterioration 6

0-1 fewer hrs 6
1-2 fewer hrs 5
2-3 fewer hrs 5
>3 fewer hrs 4

Table 4.6: Change in patients’ daily number of hours with controlled symptoms when
switching from three-hour to two-hour minimum dosing interval. Hours of controlled
symptoms are calculated as the number of two-minute time epochs in which patients’
bradykinesia and dyskinesia are both ‘controlled,’ divided by 30. All hour intervals are
right-inclusive.

Change in # of Hours
# of patients

with controlled symptoms
No improvement 5

0-1 more hrs 6
1-2 more hrs 7
2-3 more hrs 6
>3 more hrs 2
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interval, with more than three additional hours of controlled symptoms predicted each day.

These patients may be viable candidates for advanced therapies, such as L-dopa pumps or

DBS, which provide higher-frequency symptom management compared with traditional oral

medication regimens.

4.3.5 Robustness Analysis

Finally, we assess our results’ robustness to alternative model parameters. Specifically,

we test whether our RL policies continue to outperform physician-updated regimens under

alternative values for the L-dopa pharmacokinetic parameters and under alternative delays

between medication recommendation and administration. This allows us to assess whether

our approach yields viable medication policies under possible misspecifications in our

model parameters.

4.3.5.1 Robustness analysis for L-dopa pharmacokinetic parameters.

The L-dopa pharmacokinetic model described in Section 4.2.2.2 uses published averages for

L-dopa peak concentration, time to peak concentration, and half-life as ‘baseline’ values. Yet

the values of these parameters can vary between patients, possibly impacting the utility of

RL medication policies. To address this, we perform a robustness analysis in which we use

the symptom models fitted under the baseline L-dopa pharmacokinetic model parameters

to learn the RL policies, but allow these parameters to differ from their baseline values

during testing. We then compare the performance of the RL policies with physician-updated

regimens and provide insights.

Specifically, we identify ‘low’ and ‘high’ cases for each pharmacokinetic parameter (peak

concentration, time to peak concentration, and half-life). In each case, the values of the

parameter for all three medications (L-dopa IR, L-dopa CR, Rytary) are either lower or

higher (respectively) than the base case assumed in Section 4.2.2.2. We then re-estimate

participants’ L-dopa concentrations under each combination of low and high cases for each

of the three parameters (of which there are 2× 2× 2 = 8 total). This allows us to account

for uncertainty in patients’ actual L-dopa absorption profiles.
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For each of the eight sets of pharmacokinetic parameters, we fit a new testing model (i.e.,

symptom model learned from Visit 2 data) in which the patients’ L-dopa concentrations

are re-calculated according to these parameters. We then re-evaluate the RL policies from

Section 4.3.3.1 and the physician-updated regimens in this testing model, which allows us

to assess whether the results from Section 4.3.3.1 are robust to possible misspecifications

in L-dopa’s pharmacokinetic properties. We repeat this process for all eight sets of

pharmacokinetic parameters and compute the RL policies’ and physician-updated regimens’

expected cumulative rewards for each case.

We base our ‘low’ and ‘high’ values for each pharmacokinetic parameter on clinical

literature [54, 82]. For peak bloodstream concentration, we vary the base case values

from Section 4.2.2.2 (i.e., 10.90 ng/(mL·mg) for L-dopa IR, 8.55 ng/(mL·mg) for L-dopa

CR, 3.4 ng/(mL·mg) for Rytary) two standard deviations in either direction to yield the

‘low’ and ‘high’ case values. We use standard deviations of 4.0 ng/(mL·mg) for L-dopa IR,

3.0 ng/(mL·mg) for L-dopa CR, and 0.7 ng/(mL·mg) for Rytary, taken from [54]. Time

to peak concentration (which is typically reported in terms of median/range, rather than

mean/standard deviation) can vary from 0.5 to 2 hours for L-dopa IR, 1 to 2 hours for L-

dopa CR, and 0.5 to 8 hours for Rytary [54, 82]. We thus use these values as the ‘low’ and

‘high’ case values. Recall that for Rytary, we initially assume its concentration increases for

one hour and holds its peak concentration for 3.5 hours. Hence, we maintain this same ratio

between its ‘increase’ and ‘hold’ times for the ‘low’ and ‘high’ time to peak concentrations of

0.5 hours and 8 hours. Lastly, we vary each medication’s half-life by two standard deviations

in each direction, using standard deviations of 0.2 hours for L-dopa IR, 0.2 hours for L-dopa

CR, and 0.7 hours for Rytary [54, 82]. Table 4.7 summarizes the ‘low’ and ‘high’ values for

each parameter across L-dopa IR, L-dopa CR, and Rytary.

Table 4.8 presents the results of the sensitivity analysis. The RL policies outperform

physician-updated regimens across all tested combinations of pharmacokinetic parameters.

These results suggest that the RL policies outperform physician-updated medication

regimens even if the pharmacokinetic parameters describing patients’ L-dopa responses differ

from those used when training the models and learning the RL policies.
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Table 4.7: L-dopa pharmacokinetic parameters for sensitivity analysis, based on clinical
literature. ‘Peak’ refers to peak L-dopa concentration.

Medication Parameter Low High

L-dopa IR
Peak 2.9 ng/(mL·mg) 18.9 ng/(mL·mg)

Time to peak 0.5 hrs 2 hrs
Half-life 1.2 hrs 2.0 hrs

L-dopa CR
Peak 2.55 ng/(mL·mg) 14.55 ng/(mL·mg)

Time to peak 1 hr 2 hrs
Half-life 1.2 hrs 2.0 hrs

Rytary
Peak 2.0 ng/(mL·mg) 4.8 ng/(mL·mg)

Time to peak 0.5 hrs 8 hrs
Half-life 0.5 hrs 3.3 hrs

Table 4.8: Robustness analysis results for L-dopa pharmacokinetic parameters. Table
shows physician-updated regimens’ and RL medication policies’ expected cumulative reward
under all combinations of pharmacokinetic parameters. RL policies are trained with the
original symptom model from Section 4.3.2 and evaluated in testing models that are based
on alternative L-dopa parameters. ‘Peak’ refers to peak L-dopa concentration.

Peak Time to peak Half-life
Avg. Cumulative Avg. Cumulative

Reward (Physician) Reward (RL)
Low Low Low 34.3 106.4
Low Low High 40.5 126.5
Low High Low 41.6 127.0
Low High High 51.4 137.4
High Low Low 89.1 144.9
High Low High 105.0 161.5
High High Low 116.0 179.0
High High High 122.1 177.4
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4.3.5.2 Robustness analysis for medication intake delay.

Our original model assumes that patients take L-dopa 10 minutes after medication is

recommended. We assess our RL policies’ performance when this delay is stochastic,

rather than deterministic. We re-evaluate the RL policies from Section 4.3.3 assuming

the intake delay is uniformly distributed between 2 and 20 minutes. Note that we only

assume a stochastic medication intake delay for the RL policies; as in Section 4.3.3, we

assume medications in the physician-updated regimens are taken without delay since they

are prescribed at fixed times throughout the day.

Table 4.9 presents the average cumulative reward for RL medication policies under a

stochastic intake delay, alongside the rewards under the physician-updated regimens (copied

from Table 4.4). While the RL policies’ performance is lower than reported in Section 4.3.3

(under a fixed 10-minute delay), they still considerably outperform the physician-updated-

regimens under a stochastic delay.

Note that the ‘patient-in-the-loop’ consideration of a 10-minute intake delay when

learning the RL policies is indeed important and necessary. To further assess the benefits

of this consideration, we re-train all RL policies assuming that patients take medication

‘immediately,’ i.e., in the next available time epoch (two minutes) upon receiving a

medication recommendation. When evaluated in the stochastic delay testing model, these

re-trained RL policies yield an expected cumulative reward of 138.8, compared with 163.6 for

the RL policies trained with a 10-minute delay (as reported in Table 4.9). Thus, accounting

for the ‘patient-in-the-loop’ medication intake delay consideration in policy training allows

for improved performance when testing the policies in a realistic setting.

4.4 Discussion

We develop a data-driven, ‘patient-in-the-loop’ RL-based framework for leveraging high-

frequency wearable sensor data to develop personalized medication strategies for PD patients.

We incorporate realistic constraints on medication administration, including minimum dosing

intervals, maximum daily dosages, and delays between medication recommendation and

administration. We also develop a novel approach for incorporating multiple medications
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Table 4.9: Robustness analysis results for medication administration delay. Table shows
physician-updated regimens’ expected cumulative reward from Table 4.4 alongside RL
policies’ expected cumulative reward under a stochastic medication delay.

Avg. Cumulative Avg. Cumulative
Reward (Physician) Reward (RL)

97.7 163.6
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into the RL policy without leading to combinatorial explosion of the action space, allowing

our method to generalize to larger medication sets in future studies. Lastly, we use our

approach to identify candidates for switching to lower dosage frequencies that might improve

adherence without sacrificing symptom control and candidates for advanced therapies (such

as continuous-administration L-dopa pumps or DBS).

In our patient cohort, the RL policies learn to prescribe extended-release L-dopa

(primarily Rytary) instead of L-dopa IR, while using lower overall daily LED than the

physician-updated regimens. This suggests that the RL policies administer patients’ allowed

LED more efficiently throughout the day rather than simply recommending increases in

each patient’s dosages. The RL policies’ reliance on L-dopa CR and Rytary yields more

stable bloodstream L-dopa concentrations than physician-updated policies. Our case study

visualizes how this leads to a gradual increase in patients’ bloodstream L-dopa concentration

(which leads to improved bradykinesia), rather than the swings in L-dopa concentrations

induced from L-dopa IR. This reflects the clinical finding that PD symptoms can be

exacerbated by large swings in bloodstream L-dopa concentrations [18], suggesting that

the RL policies learn clinically valid treatment strategies. Note that, although patients’

RL policies do not recommend simultaneous administration of multiple medications, our

inclusion of multi-medication actions increases confidence in the learned policies and in the

clinical sufficiency of administering one medication at a time.

Since physicians had access to patients’ Visit 1 PKG data when prescribing patients’

Visit 2 medication regimens, our RL policies’ superior performance is not merely due to

their access to PKG data. Rather, our approach synthesizes patients’ wearable data in an

objective and data-driven manner. The RL policies’ superior performance is also robust to

misspecifications in our L-dopa pharmacokinetic model. In addition, the RL policies also

continue to outperform physician-updated regimens under a stochastic medication intake

delay, in which patients take medication up to 20 minutes after it is recommended. We

overall demonstrate that accounting for the ‘patient-in-the-loop’ consideration of medication

intake delay when learning the RL policies provides improved performance in a realistic

setting where patients’ intake delays may be stochastic.
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Our patient-specific approach to policy learning also allows us to predict patients’ viability

for extended dosing intervals or advanced therapies. By increasing the RL policies’ minimum

dosing interval, we identify patients who could switch to lower-frequency L-dopa dosing

without sacrificing symptom control. Since patients are more likely to adhere to lower-

frequency medication regimens, this approach offers considerable promise for promoting

adherence among PD patients. By decreasing the RL policies’ minimum dosing interval, our

approach also identifies patients who may require high-frequency symptom management,

which can be achieved through advanced therapies such as L-dopa pumps or DBS. Since

identifying candidates for advanced therapies is time-consuming and requires heavy physician

oversight, our approach can considerably improve the efficiency of PD care by helping

physicians predict which patients will benefit the most from such therapies.

4.5 Conclusion and Future Works

In this study, we develop the first data-driven, ‘patient-in-the-loop’ framework for optimizing

medication regimens using wearable sensor data. We incorporate realistic medication

restrictions into our model and demonstrate that pairing wearable sensor data with RL

yields high-performing medication policies that can improve patient outcomes.

Our study is limited in its relatively small sample size. Future work should continue to

evaluate the utility of wearable-based RL medication policies in larger cohorts, which would

allow for additional analyses such as patient clustering and phenotyping. We also evaluate

our RL medication policies by simulating their performance in a statistical model learned

from patient data; such policies will need to be validated in prospective pilot studies. While

we address the issue of medication adherence by lowering the RL policies’ administration

frequency, future work will also need to evaluate real-world adherence rates and incorporate

these rates into the modeling framework.

Although our RL-based policies did not recommend simultaneous administration of

multiple medications, future research might examine the conditions under which such multi-

medication actions would be optimal. Lastly, while wearables are capable of monitoring a

wide array of patient symptoms and vital signs (e.g., sleep duration, blood oxygen level,
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heart rate, etc.), some chronic conditions may require users to directly input information

about their symptom severity. Future work might extend our approach to such contexts

in which the RL-based medication policy must account for uncertainty or missingness in

user-reported symptoms.
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(2009). Comparison of pharmacokinetic profile of levodopa throughout the day between

levodopa/carbidopa/entacapone and levodopa/carbidopa when administered four or five

times daily. European journal of clinical pharmacology, 65(5):443–455. 98

[69] Lee, S., Daneault, J., Golabchi, F., Patel, S., Paganoni, S., Shih, L., and Bonato, P.

(2015). A novel method for assessing the severity of levodopa-induced dyskinesia using

wearable sensors. In 2015 37th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC), pages 8087–8090. IEEE. 71, 72

[70] Leeman, A., O’Neill, C., Nicholson, P., Deshmukh, A., Denham, M., Royston, J., Dobbs,

R., and Dobbs, S. (1987). Parkinson’s disease in the elderly: Response to and optimal

117



spacing of night time dosing with levodopa. British Journal of Clinical Pharmacology,

24(5):637–643. 67

[71] LeMoyne, R., Mastroianni, T., Whiting, D., and Tomycz, N. (2020). Application of

deep learning to distinguish multiple deep brain stimulation parameter configurations for

the treatment of Parkinson’s disease. In 2020 19th IEEE International Conference on

Machine Learning and Applications (ICMLA), pages 1106–1111. IEEE. 69

[72] Liao, P., Greenewald, K., Klasnja, P., and Murphy, S. (2020). Personalized heartsteps:

A reinforcement learning algorithm for optimizing physical activity. Proceedings of the

ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(1):1–22. 67, 70, 72

[73] Lin, C., Zhangy, Y., Ivy, J., Capan, M., Arnold, R., Huddleston, J., and Chi, M.

(2018). Early diagnosis and prediction of sepsis shock by combining static and dynamic

inforamtion using convolutional-LSTM, pages 219–228. IEEE. 2

[74] Liu, Y., Li, S., Li, F., Song, L., and Rehg, J. (2015). Efficient learning of continuous-time

hidden Markov models for disease progression. Advances in Neural Information Processing

Systems, pages 3600–3608. 2, 22

[75] Liu, Y., Ramachandran, P., Liu, Q., and Peng, J. (2017). Stein variational policy

gradient. Proceedings of Conference on Uncertainty in Artificial Intelligence. 36, 37, 45,

51

[76] Mark, D., Cowper, P., Berkowitz, S., Davidson-Ray, L., DeLong, E., Turpie, A., and

Cohen, M. (1998). Economic assessment of low-molecular-weight heparin (enoxaparin)

versus unfractionated heparin in acute coronary syndrome patients. Circulation,

97(17):1702–1707. 44, 51

[77] Mawulolo, M., Beltzer, M., Cai, L., Boukhechba, M., Teachman, B., and Barnes, L.

(2020). Offline contextual multi-armed bandits for mobile health interventions: A case

study on emotion regulation. In Fourteenth ACM Conference on Recommender Systems,

pages 249–258. 35

118



[78] Mayo Clinic (n.d.). Carbidopa and levodopa (oral route). https://www.mayoclinic.

org/drugs-supplements/carbidopa-and-levodopa-oral-route/proper-use/

drg-20095211. 77

[79] McLaughlin, K., Rimsans, J., Sylvester, K., Fanikos, J., Dorfman, D., Senns, P.,

Goldhaber, S., and Connors, J. (2019). Evaluation of antifactor-xa heparin assay and

activated partial thromboplastin time values in patients on therapeutic continuous infusion

unfractionated heparin therapy. Clinical and Applied Thrombosis/Hemostasis, 25. 6, 19,

51

[80] Minhas, S., Khanum, A., Riaz, F., Khan, S., and Alvi, A. (2017). Predicting progression

from mild cognitive impairment to alzheimer’s disease using autoregressive modeling

of longitudinal and multimodal biomarkers. IEEE Journal of Biomedical and Health

Informatics, 22(3):818–825. 41

[81] Mirza, M. and Osindero, S. (2014). Conditional generative adversarial nets. arXiv

preprint 1411.1784. 3

[82] Mittur, A., Gupta, S., and Modi, N. (2017). Pharmacokinetics of Rytary®, an

extended-release capsule formulation of carbidopa–levodopa. Clinical Pharmacokinetics,

56(9):999–1014. 78, 102

[83] Mnih, V., Badia, A., Mirza, M., Graves, A., Lillicrap, T., Harley, T., and Kavukcuoglu,

K. (2016). Asynchronous methods for deep reinforcement learning. International

Conference on Machine Learning, pages 1928–1937. 2, 13, 33, 41, 82

[84] Monroe, T. and Carter, M. (2012). Using the Folstein mini mental state exam (MMSE)

to explore methodological issues in cognitive aging research. European Journal of Ageing,

9(3):265–274. 28, 31

[85] Morgante, L., Morgante, F., Moro, E., Epifanio, A., Girlanda, P., Ragonese, P.,

Antonini, A., Barone, P., Bonuccelli, U., and Contarino, M. (2007). How many

Parkinsonian patients are suitable candidates for deep brain stimulation of subthalamic

nucleus? Results of a questionnaire. Parkinsonism & Related disorders, 13(8):528–531. 69

119

https://www.mayoclinic.org/drugs-supplements/carbidopa-and-levodopa-oral-route/proper-use/drg-20095211
https://www.mayoclinic.org/drugs-supplements/carbidopa-and-levodopa-oral-route/proper-use/drg-20095211
https://www.mayoclinic.org/drugs-supplements/carbidopa-and-levodopa-oral-route/proper-use/drg-20095211


[86] Morris, J. (1993). Clinical dementia rating: Current version and scoring rules.

Neurology, 43:2412–2414. 29

[87] Mostafa, S., Mustapha, A., Mohammed, M., Hamed, R., Arunkumar, N., Ghani,

M. A., Jaber, M., and Khaleefah, S. (2019). Examining multiple feature evaluation

and classification methods for improving the diagnosis of Parkinson’s disease. Cognitive

Systems Research, 54:90–99. 68

[88] Nahab, F., Abu-Hussain, H., and Moreno, L. (2019). Evaluation of clinical utility

of the Personal Kinetigraph® in the management of Parkinson’s disease. Advances in

Parkinson’s Disease, 8(3):42–61. xv, 71, 73, 74, 76, 77, 85

[89] Nahum-Shani, I., Hekler, E., and Spruijt-Metz, D. (2015). Building health behavior

models to guide the development of just-in-time adaptive interventions: A pragmatic

framework. Health Psychology, 34(S):1209. 67

[90] Nahum-Shani, I., Smith, S., Spring, B., Bonnie, J., Collins, L., Witkiewitz, K., Tewari,

A., and Murphy, S. (2018). Just-in-time adaptive interventions (JITAIs) in mobile health:

Key components and design principles for ongoing health behavior support. Annals of

Behavioral Medicine, 52(6):446–462. 67

[91] National Institute of Neurological Disorders and Stroke (n.d.).

Parkinson’s disease: Hope through research. https://www.ninds.nih.

gov/Disorders/Patient-Caregiver-Education/Hope-Through-Research/

{P}arkinsons-Disease-Hope-Through-Research. Last accessed 4/7/2021. 82

[92] Negoescu, D., Bimpikis, K., Brandeau, M., and Iancu, D. (2018). Dynamic learning of

patient response types: An application to treating chronic diseases. Management science,

64(8):3469–3488. 34

[93] Nemati, S., Ghassemi, M., and Clifford, G. (2016). Optimal medication dosing from

suboptimal clinical examples: A deep reinforcement learning approach. 38th Annual

International Conference of IEEE Engineering in Medicine and Biology Society, pages

2978–2981. 1, 2, 6, 13, 17, 22, 23, 32, 33, 35, 39, 43, 44, 70, 72

120

https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Hope-Through-Research/{P}arkinsons-Disease-Hope-Through-Research
https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Hope-Through-Research/{P}arkinsons-Disease-Hope-Through-Research
https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Hope-Through-Research/{P}arkinsons-Disease-Hope-Through-Research


[94] Ng, K., Sun, J., Hu, J., and Wang, F. (2015). Personalized predictive modeling and risk

factor identification using patient similarity, pages 132–136. 37

[95] Nutt, J., Woodward, W., Hammerstad, J., Carter, J., and Anderson, J. (1984). The “on–

off” phenomenon in Parkinson’s disease: Relation to levodopa absorption and transport.

New England Journal of Medicine, 310(8):483–488. 67

[96] Nyholm, D., Odin, P., Johansson, A., Chatamra, K., Locke, C., Dutta, S., and Othman,

A. (2013). Pharmacokinetics of levodopa, carbidopa, and 3-o-methyldopa following 16-

hour jejunal infusion of levodopa-carbidopa intestinal gel in advanced Parkinson’s disease

patients. The AAPS Journal, 15(2):316–323. 78

[97] Ossig, C., Gandor, F., Bosredon, C., Fauser, M., Reichmann, H., and Horne, M. (2015).

Correlation of objective measurement of motor states using a kinetograph and patient

diaries in advanced Parkinson’s disease. PLos One. 71

[98] Pahwa, R., Isaacson, S., Torres-Russotto, D., Nahab, F., Lynch, P., and Kotschet, K.

(2018). Role of the Personal Kinetigraph in the routine clinical assessment of Parkinson’s

disease: Recommendations from an expert panel. Expert Review of Neurotherapeutics,

18(8):669–680. 85

[99] Pahwa, R. and Lyons, K. (2017). Outpatient titration of carbidopa/levodopa enteral

suspension (duopa). International Journal of Neuroscience, 127(5):459–465. 68

[100] Parbhoo, S., Bogojeska, J., Zazzi, M., Roth, V., and Doshi-Velez, F. (2017). Combining

kernel and model based learning for hiv therapy selection. AMIA Summits on Translational

Science Proceedings, pages 239–248. 1, 2, 33, 36, 37, 50, 80

[101] Parisi, L., RaviChandran, N., and Manaog, M. (2018). Feature-driven machine learning

to improve early diagnosis of Parkinson’s disease. Expert Systems with Applications,

110:182–190. 68

[102] Parkinson’s Disease Foundation (2019). Statistics on Parkinson’s. https://www.

{P}arkinson.org/Understanding-{P}arkinsons/Statistics. Last accessed 7/10/19.

66

121

https://www.{P}arkinson.org/Understanding-{P}arkinsons/Statistics
https://www.{P}arkinson.org/Understanding-{P}arkinsons/Statistics


[103] Paula, M. D., Acosta, G., and Mart́ınez, E. (2015). On-line policy learning and

adaptation for real-time personalization of an artificial pancreas. Expert Systems with

Applications, 42(4):2234–2255. 70, 72

[104] Pedrosa, T., Vasconcelos, F., Medeiros, L., and Silva, L. (2018). Machine learning

application to quantify the tremor level for Parkinson’s disease patients. Procedia

Computer Science, 138:215–220. 68

[105] Pew Research (2020). About one-in-five Americans use a smart watch

or fitness tracker. https://www.pewresearch.org/fact-tank/2020/01/09/

about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/. Last

accessed 2/27/21. 67

[106] Pineau, J., Guez, A., Vincent, R., Panuccio, G., and Avoli, M. (2009a). Treating

epilepsy via adaptive neurostimulation: A reinforcement learning approach. International

Journal of Neural System, 19(4):227–240. 35

[107] Pineau, J., Guez, A., Vincent, R., Panuccio, G., and Avoli, M. (2009b). Treating

epilepsy via adaptive neurostimulation: A reinforcement learning approach. International

Journal of Neural Systems, 19(4):227–240. 70, 72

[108] Poudyal, A., van Heerden, A., Hagaman, A., Maharjan, S., Byanjankar, P., Subba, P.,

and Kohrt, B. (2019). Wearable digital sensors to identify risks of postpartum depression

and personalize psychological treatment for adolescent mothers: Protocol for a mixed

methods exploratory study in rural Nepal. JMIR Research Protocols, 8(9):e14734. 67, 70

[109] Prasad, N., Cheng, L., Chivers, C., Draugelis, M., and Engelhardt, B. (2017a). A

reinforcement learning approach to weaning of mechanical ventilation in intensive care

units. arXiv preprint 1704.06300. 32, 35

[110] Prasad, N., Cheng, L., CHIVers, C., Draugelis, M., and Engelhardt, B. (2017b). A

reinforcement learning approach to weaning of mechanical ventilation in intensive care

units. arXiv preprint 1704.06300. 70, 72

122

https://www.pewresearch.org/fact-tank/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/
https://www.pewresearch.org/fact-tank/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/


[111] Raghu, A., Komorowski, M., Celi, L., Szolovits, P., and Ghassemi, M. (2017).

Continuous state-space models for optimal sepsis treatment- A deep reinforcement learning

approach. arXiv preprint 1705.08422. 1, 32, 35, 70, 72

[112] Rajapakshe, T., Rana, R., and Khalifa, S. (2021). A novel policy for pre-trained deep

reinforcement learning for speech emotion recognition. arXiv preprint arXiv:2101.00738.

36

[113] Ramdhani, R., Khojandi, A., Shylo, O., and Kopell, B. (2018). Optimizing clinical

assessments in Parkinson’s disease through the use of wearable sensors and data driven

modeling. Frontiers in Computational Neuroscience, 12:72. 68

[114] Reich, D., Yanakakis, M., Vela-Cantos, F., DePerio, M., and Jacobs, E. (1993).

Comparison of bedside coagulation monitoring tests with standard laboratory tests in

patients after cardiac surgery. Anesthesia and Analgesia, 77(4):673–679. 15, 54

[115] Rezaei, M., Harmuth, K., Gierke, W., Kellermeier, T., Fischer, M., Yang, H., and

Meinel, C. (2017). A conditional adversarial network for semantic segmentation of brain

tumor, pages 241–252. Springer. 3

[116] Riachi, E., Mamdani, M., Fralick, M., and Rudzicz, F. (2021). Challenges for

reinforcement learning in healthcare. arXiv preprint arXiv:2103.05612. 38

[117] Rodriguez, M., Lera, G., Vaamonde, J., Luquin, M., and Obeso, J. (1994). Motor

response to apomorphine and levodopa in asymmetric Parkinson’s disease. Journal of

Neurology, Neurosurgery & Psychiatry, 57(5):562–566. 84

[118] Rosin, A., Devereux, D., Eng, N., and Calne, D. (1979). Parkinsonism with ’on-

off’ phenomena: Intravenous treatment with levodopa after major abdominal surgery.

ArcHIVes of Neurology, 36(1):32–34. 84

[119] Rydén, T. (2008). Em versus Markov chain monte carlo for estimation of hidden

Markov models: A computational perspective. Bayesian Analysis, 3(4):659–688. 22

123



[120] Salmanpour, M., Shamsaei, M., Saberi, A., Klyuzhin, I., Tang, J., Sossi, V., and

Rahmim, A. (2020). Machine learning methods for optimal prediction of motor outcome

in Parkinson’s disease. Physica Medica, 69:233–240. 68

[121] Samala, R., Chan, H., Hadjiiski, L., Helvie, M., Cha, K., and Ritcher, C. (2017).

Multi-task transfer learning deep convolutional neural network: Application to computer-

aided diagnosis of breast cancer on mammograms. Physics in Medicine and Biology,

62(23):8894–8908. 36, 50

[122] Saria, S. (2018). Individualized sepsis treatment using reinforcement learning. Nature

Medicine, 24(11):1641–1642. 70

[123] Sathe, A., Tuite, P., Chen, C., Ma, Y., Chen, W., Cloyd, J., Low, W., Steer, C., Lee,

B., and Zhu, X. (2020). Pharmacokinetics, safety, and tolerability of orally administered

ursodeoxycholic acid in patients with Parkinson’s disease— A pilot study. The Journal of

Clinical Pharmacology, 60(6):744–750. 78

[124] Schade, S., Mollenhauer, B., and Trenkwalder, C. (2020). Levodopa equivalent dose

conversion factors: An updated proposal including opicapone and safinamide. Movement

Disorders Clinical Practice, 7(3):343. 78

[125] Schneider, R. and Biglan, K. (2017). The promise of telemedicine for chronic

neurological disorders: The example of Parkinson’s disease. The Lancet Neurology,

16(7):541–551. 66

[126] Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics,

6(2):461–464. 11

[127] Shamir, R., Dolber, T., Noecker, A., Walter, B., and McIntyre, C. (2015). Machine

learning approach to optimizing combined stimulation and medication therapies for

Parkinson’s disease. Brain Stimulation, 8(6):1025–1032. 69

[128] Silver, D. and Trosch, R. (2016). Physicians’ experience with Rytary (carbidopa and

levodopa) extended-release capsules in patients who have Parkinson disease. Neurology,

86(14 Supplement 1):S25–S35. 68

124



[129] Singh, R., Bush, E., Hidecker, M., Carrico, C., and Sundin, S. (2020). Considering

health care needs in a rural Parkinson disease community. Progress in Community Health

Partnerships: Research, Education, and Action, 14(1):15–28. 66

[130] Sohn, K., Lee, H., and Yan, X. (2015). Learning structured output representation using

deep conditional generative models. Advances in Neural Information Processing Systems,

pages 3483–3491. 3

[131] Stanculescu, I., Williams, C., and Freer, Y. (2013). Autoregressive hidden Markov

models for the early detection of neonatal sepsis. IEEE Journal of Biomedical and Health

Informatics, 18(5):1560–1570. 22, 24

[132] Stocchi, F., Quinn, N., Barbato, L., Patsalos, P., O’Connel, M., Ruggieri, S., and

Marsden, C. (1994). Comparison between a fast and a slow release preparation of

levodopa and a combination of the two: A clinical and pharmacokinetic study. Clinical

Neuropharmacology, 17(1):38–44. 84

[133] Taylor, M. and Stone, P. (2009). Transfer learning for reinforcement learning domains:

A survey. Journal of Machine Learning Research, 10(7). 36

[134] Tejedor, M., Woldaregay, A., and Godtliebsen, F. (2020). Reinforcement learning

application in diabetes blood glucose control: A systematic review. Artificial Intelligence

in Medicine, page 101836. 67, 89

[135] Tetrud, J., Nausieda, P., Kreitzman, D., Liang, G., Nieves, A., Duker, A., Hauser,

R., Farbman, E., Ellenbogen, A., and Hsu, A. (2017). Conversion to carbidopa and

levodopa extended-release (ipx066) followed by its extended use in patients previously

taking controlled-release carbidopa-levodopa for advanced Parkinson’s disease. Journal of

the Neurological Sciences, 373:116–123. 84

[136] Ting, C., Sylvester, K., and Schurr, J. (2018). Time in the therapeutic range for

assessing anticoagulation quality in patients receiving continuous unfractionated heparin.

Clinical and Applied Thrombosis/Hemostasis, 24(9):178–181. 39, 43

125



[137] Tomkins, S., Liao, P., Klasnja, P., Yeung, S., and Murphy, S. (2020). Rapidly

personalizing mobile health treatment policies with limited data. arXiv preprint

2002.09971. 70, 72

[138] Tomlinson, C., Stowe, R., Patel, S., Rick, C., Gray, R., and Clarke, C. (2010).

Systematic review of levodopa dose equivalency reporting in Parkinson’s disease.

Movement disorders, 25(15):2649–2653. 78

[139] U.S. Food and Drug Administration (2008a). Sinemet. https://www.accessdata.

fda.gov/drugsatfda_docs/label/2008/017555s069lbl.pdf. 84

[140] U.S. Food and Drug Administration (2008b). Sinemet CR. https://www.accessdata.

fda.gov/drugsatfda_docs/label/2008/019856s025lbl.pdf. 84

[141] U.S. Food and Drug Administration (2015). Rytary. https://www.accessdata.fda.

gov/drugsatfda_docs/label/2015/203312s000lbl.pdf. 84

[142] Utomo, C., Kurniawati, H., Li, X., and Pokharel, S. (2019). Personalized medicine in

critical care using Bayesian reinforcement learning, pages 648–657. Springer. 36, 37, 38,

50

[143] Walker, J., Doersch, C., Gupta, A., and Herbert, M. (2016). An uncertain future:

Forecasting from static images using variational autoencoders. European Conference on

Computer Vision, pages 835–851. 3

[144] Wan, K., Maszczyk, T., See, A., Dauwels, J., and King, N. (2019). A review

on microelectrode recording selection of features for machine learning in deep brain

stimulation surgery for Parkinson’s disease. Clinical Neurophysiology, 130(1):145–154.

69

[145] Wang, L., Zhang, W., He, X., and Zha, H. (2018). Supervised reinforcement learning

with recurrent neural network for dynamic treatment recommendation, pages 2447–2456.

32

126

https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/017555s069lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/017555s069lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/019856s025lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/019856s025lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/203312s000lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/203312s000lbl.pdf


[146] Watts, J., Khojandi, A., Shylo, O., and Ramdhani, R. (2020a). Machine learning’s

application in deep brain stimulation for Parkinson’s disease: A review. Brain Sciences,

10(11):809. 69

[147] Watts, J., Khojandi, A., Vasudevan, R., Nahab, F., and Ramdhani, R. (2021).

Predicting Parkinson’s disease medication regimen using sensor technology. Preprint.

68, 71

[148] Watts, J., Khojandi, A., Vasudevan, R., and Ramdhani, R. (2020b). Optimizing

individualized treatment planning for Parkinson’s Disease using deep reinforcement

learning. In 2020 42nd Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC). IEEE. 35

[149] Watts, J., Khojandi, A., Vasudevan, R., and Ramdhani, R. (2020c). Optimizing

individualized treatment planning for Parkinson’s disease using deep reinforcement

learning. In 2020 42nd Annual International Conference of the IEEE Engineering in

Medicine & Biology Society (EMBC), pages 5406–5409. IEEE. 68, 69

[150] Weng, W., Gao, M., He, Z., Yan, S., and Szolovits, P. (2017). Representation and

reinforcement learning for personalized glycemic control in septic patients. arXiv preprint

1712.00564. 35

[151] Wessels, T. and Omlin, C. (2000). Refining hidden Markov models with recurrent

neural networks. In Proceedings of the IEEE-INNS-ENNS International Joint Conference

on Neural Networks, volume 2, pages 271–276. 23

[152] Wierstra, D., Foerster, A., Peters, J., and Schmidhuber, J. (2007). Solving deep

memory POMDPs with recurrent policy gradients, pages 697–706. Springer. 2

[153] Wilcox, M., Harrison, D., Patel, A., and Rowan, K. (2020). Higher ICU capacity

strain is associated with increased acute mortality in closed ICUs. Critical Care Medicine,

48(5):709–716. 32

127



[154] Willis, A., Schootman, M., Evanoff, B., Perlmutter, J., and Racette, B. (2011).

Neurologist care in Parkinson disease: A utilization, outcomes, and survival study.

Neurology, 77(9):851–857. 66
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