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Abstract

Wide-bandgap devices are enjoying wider adoption across the power electronics industry for

their superior properties and the resulting opportunities for higher efficiency and power density.

However, various issues arise due to the faster switching speed, including switching transient

voltage overshoot, unstable oscillation, gate driving and evaluation difficulty, measurement

and monitoring challenge, and potential load insulation degradation. This dissertation

first sets out to model and understand the switching transient voltage overshoots. Unique

oscillation patterns and features of the turn-on and turn-off overvoltage are discovered and

analyzed, which provides new insights into the switching transient. During the experimental

characterization, a new unstable oscillation pattern is found during the trench MOSFET’s

turn-off transient. The MOSFET channel may be falsely turned back on, resulting in

severe oscillation and possible loss of control. Time-domain and large-signal analytical

models are established, which reveals the negative impact of common-source inductances and

unconventional capacitance curve of trench MOSFET. Besides the devices themselves, another

determining part in their switching transient behavior is the gate driver. A programmable

gate driver platform is proposed to readily adapt to different power semiconductors and

driving schemes, which can greatly facilitate the evaluation and comparison of different

v



devices and driving schemes. The faster switching speed of wide-bandgap devices also requires

more demanding measurement and monitoring solutions. A novel combinational Rogowski

coil concept is proposed, which leverages the self-integrating feature to further increase

the bandwidth. Prototypes achieved more than 300 MHz bandwidth, while keeping the

cross-sectional area less than 2.5 mm2. Finally, the very high voltage slew rate of wide-

bandgap devices may negatively impact the motor load insulation. Attempting to fully utilize

the higher switching frequency capability, sinewave and dv/dt filters are compared. It is

shown that sinewave filters can achieve higher efficiency and power density than dv/dt filters,

especially for high frequency applications.
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Chapter 1

Introduction

1.1 Semiconductor Material and Devices

Wide-bandgap semiconductor materials including silicon carbide (SiC) and gallium nitride

(GaN) demonstrate superior physical properties compared to the traditional silicon (Si)

material, as shown in Fig. 1.1 [1]. The higher breakdown field translates into thinner junction

size for the same blocking voltage. The higher thermal conductivity leads to better thermal

dissipation and opportunities for higher operating temperature. Finally, the dielectric constant

in SiC and GaN is smaller, resulting in smaller parasitic capacitances, further translating

into faster switching speed and lower switching loss. As a result, wide-bandgap power

semiconductors are receiving wider adoption across the power electronics industry for these

unprecedented capabilities and opportunities.

Many different power semiconductor designs have been reported and commercially available.

A few samples are shown in Fig. 1.2. SiC Schottky diodes are among the first devices available

and have demonstrated better static and dynamic characteristics than Si PiN diodes [2].
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Figure 1.1: Wide-bandgap semiconductor material properties comparison with Si.

Figure 1.2: Wide-bandgap power semiconductor device examples.
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Active devices including junction-field-effect-transistors (JFET) or cascode devices have also

been demonstrated with either SiC or GaN [3]–[6]. Because of the difference in material

properties, it is also feasible to fabricate high-voltage high-current bipolar-junction-transistor

(BJT) with SiC [7]–[10]. However, because of the easy voltage-driven nature of metal-oxide-

semiconductor field-effect-transistors (MOSFET), they are still the most popular choice.

High-voltage and high-current power SiC MOSFET modules or discrete device have been

reported [11]–[13]. With GaN material, enhancement-mode high-electron-mobility-transistors

(HEMT) or hetero-junction-field-effect-transistors (HFET) have also been evaluated and

applied in power electronics converters [14]–[17]. To achieve even higher blocking voltage,

SiC insulated-gate-bipolar-transistors (IGBT) have been demonstrated for medium voltage

applications [18], [19].

1.2 Background and Motivation

The superior properties of wide-bandgap semiconductors enable improvements across a

wide range of applications, including solar inverters, uninterrupted power supplies, railway

traction inverters, electric vehicle battery chargers and traction drives, induction heating and

medium- to high-voltage grid applications [20]. The general two-level three-phase voltage

source converter, as shown in Fig. 1.3, can represent the circuit topology in many of the

previous applications. The DC voltage source Vd is connected with three parallel phase-leg

branches, which is then connected to the three-phase load ZABC . The three-phase load ZABC

may come from the utility grid interface or electric machine, with or without additional filters.

The basic principle of power electronics converter mandates that the load impedance must
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be dominantly inductive to avoid excessive current in the switches S1–S6.

As the switching speed increases, a plethora of issues arise and numerous literature

have reported on them. The high switching speed characteristic means the devices may

be susceptible to excessive amount of overvoltage during the switching transient [21]–[23].

Even though the switching transient of MOSFETs has been extensively studied [24]–[30],

it is necessary to reexamine some of the assumptions as they may no longer hold true for

the much faster SiC MOSFETs. In [24], [25], the overvoltage during the turn-off transient

is calculated by considering the MOSFET channel as a linearly decreasing current source.

While very intuitive, the switching time information is required, and the MOSFET channel

current behavior is more complex than the assumption. In other literature [26]–[30], the

switching transient is solved in a stage-by-stage fashion, examining the equivalent circuit of

the MOSFET and diode in each stage and then solving the circuit explicitly using initial

conditions from the previous stage. The stage transitions are assumed to happen in a

fixed sequence. Because the switching transient circuit is a high-order nonlinear system,

assumptions are required to obtain a closed-form solution. References [26], [28] assumes a

plateau region for the gate-source voltage. Reference [27] makes the assumption that the

drain current and its derivative are zero in some of the transition stages. When the MOSFET

is in saturation region, [29] assumes the current flowing though its parasitic capacitances is

negligible. Reference [30] assumes the drain-source voltage and drain current change linearly

during the switching transient. Because the aforementioned assumptions may not always

hold true for SiC MOSFETs, attempts have been made with numerical methods to solve the

switching transient circuit. The semiconductor models are usually created by curve fitting

against behavioral equations [30]–[34].
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Figure 1.3: Simplified schematic of two-level three-phase voltage source converter and fast
switching issues discussed.
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The faster switching speed presents challenges in undesirable ringing and oscillation during

the switching transient. Besides the power loop oscillation, excessive amount of gate loop

inductance may also result in destructive gate-source overvoltage [17]. In addition to the

normal oscillations, abnormal oscillation phenomena have also been reported. An example

is the crosstalk phenomenon which happens when the synchronous device is falsely turned

on during the active device’s turn-on transient [35], [36]. The root cause is found to be the

synchronous device’s gate-drain capacitance Cgd charging its gate-source votlage Vgs above

the threshold due to high voltage slew rate in the power loop. Another type of abnormal

oscillation phenomenon is reported in [37], [38] where sustained oscillations with SiC JFET

and SiC MOSFET are observed in the turn-off transient. The phenomena were partly due to

pronounced amount of parasitic elements. Reference [39] reported a simulation phenomenon

where a SiC MOSFET channel is temporarily turned on during the turn-off transient when

the source inductance is very large. Unstable oscillation is also reported in [40] with parallel

MOSFETs in solid-state circuit breaker applications. Gallium nitride (GaN) HFETs abnormal

oscillation has also been investigated. In [5], continuous ringing is observed in short circuit

condition, and the cause is due to insufficient gate resistance damping. In [41], instability

due to the GaN HFET’s unique reverse conduction behavior and common source inductance

is presented and analyzed.

With the advent of wide-bandgap semiconductors, a wide range of devices have been

reported and commercially available, including SiC junction-field-effect-transistor (JFET)

[42] and GaN heterojunction-field-effect-transistor (HFET) [43]. Current driven devices such

as SiC bipolar-junction-transistor (BJT) have also been actively investigated [8], [9], [44].

These drastically different devices have very diverse gate/base driving requirements, in terms
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of on-state or off-state voltage and continuous or transient gate current magnitude. Numerous

works have also been conducted on advanced gate driving strategies. As an extension to the

simplest two-level voltage source driving, three or four level driving have been demonstrated

and are capable of achieving better transient performance [10], [45]. Instead of simple turn-on

or turn-off gate resistors, more complex impedance network with series or parallel RLC

networks have also been investigated [10], [46], [47]. Current source or resonant gate drivers

are another group of driving schemes which enable the direct control of gate current during

switching transients and the recovery of gating energy for high frequency applications [48]–[51].

Unlike the voltage source drivers, the device gate is directly charged or discharged by an

inductor current, and the driving voltage is clamped with active switches or diodes. The

current source driving concept has also been utilized for SiC BJTs to effectively reduce the

base driving loss [8].

In addition to the device itself and its gate driver, the measurement and monitoring

technique is also being challenged the faster switching speed of wide-bandgap devices. Several

high-bandwidth current measurement techniques are available [52]. Resistive current shunts

can achieve very high bandwidth up to several GHz but are limited to non-continuous pulse

operation due to heat dissipation [53], [54]. Current transformers can achieve up to 250

MHz measurement bandwidth but the cross-sectional area is quite large due to the magnetic

material saturation limitation [55]. The resulting extra power loop area when routing the

power loop conductor around the current transformer is therefore also large. Rogowski coils

are another widely used type of current sensor based on the Faraday’s induction law [56]. The

helix coil directly measures the derivative of the current, which is then reconstructed by a

passive or active integrating circuit [57]. The state-of-the-art commercial Rogowski coil has a
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small circular cross-sectional area with a diameter of 3.5 mm but the measurement bandwidth

is limited to 50 MHz [58]. A Rogowski coil with up to 225 MHz bandwidth is demonstrated

in [59], but numerical integration with oscilloscope is required and the sensitivity is quite low

due to the low number of turns. Reference [60] proposed an integrated Rogowski coil for a

GaN power stage, but the measurement bandwidth is not explicitly given.

Regarding the load, the faster switching speed and resulting higher voltage slew rate

may damage the motor load insulation [61]. Numerous solutions to these issues have been

developed and evaluated over the years. The simplest solution is putting a line termination

network consisting of a simple RC filter at the motor terminal to match the cable impedance

[62]. While the wave reflection problem is alleviated, the voltage slew rate at the motor

terminal is still pretty high and the termination capacitor may result in excessive power

loss. An active terminator using diodes to clamp the motor terminal voltage is proposed

in [63]. Likewise, although the wave reflection issue is gone, the sharp voltage edge is still

present at the motor terminal. A more popular solution, the dv/dt filter has been widely

investigated [64]–[71]. Reference [64] integrates the filter inductor into the converter bus bar

and connection cable. Reference [65] put the branch of filter capacitor and resistor in parallel

with the filter inductor to reduce the power loss. Reference [66] introduces diode clamping

circuit to further limit the voltage overshoot. In addition to diode clamping, [67] put a RC

circuit in the diode clamping circuit to help with the EMI. Reference [68] proposes to connect

the middle point of the filter capacitors back to the middle point of the DC link to improve

EMI. Reference [69] integrates the common mode inductor with the dv/dt filter. Reference

[71] combines both the common mode inductor and connects the neutral point back to the

middle point of DC link. Reference [70] investigates the effectiveness of using two dv/dt
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filters in series. On the other hand, another filter solution, the sinewave filter has long been

considered more expensive, costly and lossy [72]. However, with the high switching frequency

capabilities from wide-bandgap devices, they are now being evaluated again. Reference [73]

compares the system efficiency of GaN HFET and Si MOSFET motor drive. Reference [74]

demonstrates a sinewave filter in GaN HFET motor drive while damping the sinewave filter

with both analog and digital filters.

Given the relatively immaturity of wide-bandgap semiconductors, there are several other

fast switching related issues. The capability to switch faster comes from the smaller semi-

conductor size. However, the smaller die size translates into worse temperature hike during

the short-circuit event and therefore lower tolerance against shoot-through conditions. The

traditional “desaturation” protection method has been investigated and improved to accom-

modate the faster switching speed [83], [84]. Using the parasitic inductance in the power

loop, the switching transient current may be reconstructed and protection action may be

triggered [85]. The gate charge characteristic has also been used for protection purpose [86].

Direct current measurement has also been utilized for protection although it is only limited

to pulse operation [79].

In order to fully utilize the semiconductor devices, the parasitic elements must be minimized

to enable the fastest possible switching speed. A number of packaging techniques have been

proposed and evaluated to the wide-bandgap semiconductors [87]–[90]. Sub-nH packaging has

been demonstrated with flexible printed circuit board approach [91]. Other issues may also

arise or become worse with the wide-bandgap devices, including electromagnetic interference

and thermal management.

In summary, to limited the scope of discussion, the issues that will be focused in this
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dissertation are listed below.

1. The high switching speed characteristic means the devices may be susceptible to

excessive amount of overvoltage during the switching transient [21]–[23]. With the

faster switching transient of SiC MOSFETs, the switching transient voltage overshoot

models need reexamination in order to better utilize the devices.

2. The parasitic elements may also bring about abnormal oscillatory behaviors to the

switching transient [37], [38], [75]. The higher switching speed means semiconductor

devices are even more sensitive to the parasitic elements.

3. With the advent of wide-bandgap devices, numerous conventional and unconventional

power semiconductor devices have been available. The gate driver is a critical component

regulating the devices’ performance. In order to quickly evaluate different semiconductor

devices and tune the switching performance, there is a need for a “universal” and

programmable gate driver [76]–[78].

4. The higher switching speed and oscillation frequency means more stringent current

sensor requirement, in terms of bandwidth and electrical footprint[53], [79], [80]. Existing

sensor technologies can not meet the requirement to continuously measure and monitor

the switching transient current.

5. The converter output voltage slew rate is greatly increased because of the faster

switching speed. However, the high slew rate may present insulation issues for motor

loads, especially those with long cables [61], [81], [82]. The dv/dt filter is typically

preferred over the sinewave filter with Si-based converters. Given SiC MOSFET’s
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higher switching frequency capability, there may be opportunities for sinewave filters to

achieve better efficiency and power density.

1.3 Chapter Layout

Each chapter is devoted to one of the five listed issues. A literature review is carried out first

and the research background is introduced. The theoretical analysis or design methodology

is then laid out before presenting the experimental demonstration and verification. Finally,

a short summary section and some potential future work are appended at the end of each

chapter.

Chapter 2 focuses on the normal switching transient overvoltage, in both the turn-off and

turn-on transients. A hypothetical ideal switching transient is first analyzed, and interesting

observations on the two different overvoltage mechanisms are made. Analysis on the non-ideal

switching transient is then presented and similarities between the ideal and non-ideal cases

are noticed, which are then experimentally verified. The turn-off transient is highly sensitive

to oscillation stage transitions. The turn-off overvoltage may exhibit non-monotonic behavior,

where the overvoltage may be larger with smaller power loop inductance or slower switching

speed. The turn-on transient, on the other hand, is largely independent of the load current.

To predict the overvoltage and guide device selection and converter layout, numeric modeling

with neural-net behavioral models is carried out and it is shown the approach can accurately

model the switching transient overvoltage.

Instead of normal oscillation, Chapter 3 focuses on the abnormal oscillation during

switching transient. A novel abnormal oscillation pattern, “self-turn-on” is found when
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characterizing a trench MOSFET. The MOSFET is falsely turned on during the turn-off

transient. SPICE and large-signal models are established to understand the phenomena. The

root cause is found to be the rapid changing nonlinear capacitance curve and the common

source inductance. Especially with large-signal models, it is found that the MOSFET’s

nonlinear voltage-capacitance curve contributes directly to the instability. Although the

phenomena are observed with Si CoolMOS, the understanding can also be applied towards

SiC devices and help future semiconductor device development.

Gate drivers play an critical role governing the devices’ switching transient behavior. In

practice, however, there are various types of power semiconductors with very different driving

requirements. There are a plethora of gate driving schemes, including voltage source and

current source driving. Chapter 4 proposes a programmable and universal gate driving

platform, which can drive most of the common power semiconductors and adapt to different

driving schemes. The platform significantly lowers the effort to characterize different power

semiconductors and evaluate different driving schemes.

Another technical challenge related to the fast switching speed is the switching transient

current measurement. Existing current sensors suffer from either insufficient measurement

bandwidth, large insertion inductance, or noncontinuous operation. A novel combinational

Rogowski coil current sensor is proposed in Chapter 5. Compared to existing Rogowski

coil sensors, it utilizes both the differentiating and self-integrating feature of a shielded coil.

Experimental prototypes demonstrate up to 300 MHz measurement bandwidth, around 5 times

higher than existing state-of-the-art. The design methodology and practical considerations

are discussed in detail. The concept here greatly enhances the capabilities of Rogowski coils,

and can serve as a great tool for online semiconductor switching transient monitoring.
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Because of the fast switching speed, voltage source inverters suffer from very high output

voltage slew rate, which poses a severe threat to the motor winding insulation, especially those

connected with a long cable. Chapter 6 compares two basic filter topologies, sinewave and

dv/dt filters, to tackle the high voltage slew rate. Traditionally, dv/dt filters are favored against

sinewave filters because of the smaller physical size and lower power loss. However, because

of the much higher switching frequency capability and lower switching loss of SiC MOSFETs,

it is shown in that it is possible to achieve on-par or even better system-level performance

with the sinewave filters in SiC-based drives. The comparison and filter optimization strategy

provide an invaluable guideline for motor drive filter selections.

The last Chapter 7 summarizes the previous chapters and concludes the whole disserta-

tion. Relevant possible future work are also pointed out.
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Chapter 2

Switching Transient Overvoltage

Modeling and Characterization

2.1 Introduction

Wide-bandgap devices offer transforming opportunities for power electronics converters

towards higher power density and efficiency. The switching speed is much faster, but the

overvoltage stress during the switching transient is also likely more severe than the Si

counterparts. The switching transient voltage overshoot is a crucial factor in selecting device

voltage rating. Too much voltage rating margin translates into extra cost, while too little

voltage margin risks converter safety and may mandate slowing down the switching speed.

Thanks to the higher bandgap energy, SiC devices are more robust against single-event-

burnout [92], [93], making it more tempting to fully utilize its voltage rating. Therefore,

the understanding and modeling of the switching transient overvoltage is essential to better

utilize the SiC devices and optimize power converters’ performance.
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Even though the switching transient of MOSFETs has been extensively studied [24]–[30],

it is necessary to reexamine some of the assumptions as they may no longer hold true for

the much faster SiC MOSFETs. In [24], [25], the overvoltage during the turn-off transient

is calculated by considering the MOSFET channel as a linearly decreasing current source.

While very intuitive, the switching time information is required, and the MOSFET channel

current behavior is more complex than the assumption. In other literature [26]–[30], the

switching transient is solved in a stage-by-stage fashion, examining the equivalent circuit of

the MOSFET and diode in each stage and then solving the circuit explicitly using initial

conditions from the previous stage. The stage transitions are assumed to happen in a

fixed sequence. Because the switching transient circuit is a high-order nonlinear system,

assumptions are required to obtain a closed-form solution. References [26], [28] assumes a

plateau region for the gate-source voltage. Reference [27] makes the assumption that the

drain current and its derivative are zero in some of the transition stages. When the MOSFET

is in saturation region, [29] assumes the current flowing though its parasitic capacitances is

negligible. Reference [30] assumes the drain-source voltage and drain current change linearly

during the switching transient. Because the aforementioned assumptions may not always

hold true for SiC MOSFETs, attempts have been made with numerical methods to solve the

switching transient circuit. The semiconductor models are usually created by curve fitting

against behavioral equations [30]–[34].

The simplified equivalent circuit of the switching transient is shown in Fig. 2.1. Note

that in addition to the overvoltage across the MOSFET M in the turn-off transient, there is

another overvoltage mechanism, which is across the inactive switch when the active switch

is turned on. This is named “turn-on overvoltage” in this paper. In Fig. 2.1, the turn-on
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overvoltage occurs across the diode D when the lower active MOSFET M is turned on and

the diode D is passively turned off. Similar to the turn-off overvoltage, it has been studied in

a similar stage-by-stage fashion [94], [95].

The two overvoltage mechanisms are examined here to understand their different charac-

teristics. Ideal analysis is presented first to highlight the possible complex oscillation pattern

transitions during the switching transient. The ideal analysis also provides a baseline for

studying the non-ideal practical switching transient. Turn-off transients are very sensitive

to load current while turn-on transients are not. The turn-off overvoltage also may exhibit

a nonlinear relationship with the switching speed or power loop inductance. Experimental

characterization is then performed to further understand and verify the analytical result.

Finally, numerical modeling with SPICE is demonstrated which is capable of accurately

predicting the switching transient overvoltage. The SPICE model also further confirms the

unconventional stage transitions for fast switching transients.

2.2 Hypothetical Ideal Switching Transient

Before analyzing the practical switching transients with more accurate MOSFET and

diode models, a hypothetical case is discussed where the MOSFET channel is considered as

an ideal switch. This means the gate driver can instantly toggle the MOSFET channel to

completely on or off, as shown in Fig. 2.2. This is of course impossible because in practice

all gate driver buffers have limited driving capabilities and the gate parasitic elements limit

how fast the gate-source voltage vgs can change. The diode is also assumed ideal with zero

on-state voltage drop. Nevertheless, the simplified hypothetical ideal analysis will offer an
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Figure 2.1: MOSFET and diode phase-leg switching transient simplified circuit schematic.
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interesting perspective and a useful foundation for the later non-ideal switching transient

analysis.

2.2.1 Ideal turn-off transient

The junction capacitances Cj for the diode and MOSFET are assumed linear and the

same. In the turn-off transient, the MOSFET channel current is immediately shut off. The

equivalent circuit after the MOSFET channel shuts off is shown in Fig. 2.3. The DC link

voltage is denoted as Vd and the load current is denoted as IL. At the beginning of the

turn-off transient, the diode is still in blocking state and vH(t = 0) = 0 and vL(t = 0) = Vd.

The current flowing through the power loop inductance is still id(t = 0) = IL. The circuit

is essentially an oscillation between the power loop inductance Ld and the two parasitic

capacitances Cj, with two excitation sources IL and Vd. The upper diode voltage vH and

lower MOSFET voltage vL can be solved by superposition,

vL(t) =
IL

2

√
Ld

2Cj

· sin

√
2

LdCj

t +
IL

2Cj

t, (2.1)

vH(t) =
IL

2

√
Ld

2Cj

· sin

√
2

LdCj

t − IL

2Cj

t + Vd. (2.2)

The current flowing through the parasitic inductance Ld is given by

id =
IL

2
+

IL

2
· cos

√
2

LdCj

t. (2.3)

Again assuming the diode is ideal, the diode starts conducting after vH drops to zero.
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Figure 2.2: Hypothetical ideal switching transient circuit model where the MOSFET channel
can be instantaneously turned on or off.

Figure 2.3: Hypothetical ideal turn-off switching transient circuit model where the MOSFET
channel is turned off instantly.
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Denoting the time when the diode starts conducting as t1,

vH(t1) =
IL

2

√
Ld

2Cj

· sin

√
2

LdCj

t1 − IL

2Cj

t1 + Vd = 0. (2.4)

Equation (2.4) is a transcendental equation, so there is no closed-form solution. However,

if further denote the phase angle associated with the oscillation as
√

2
LdCj

t1 = α, then

vL(t1) = Vd + IL

√
Ld

2Cj

sin α, (2.5)

id(t1) =
IL

2
(1 + cos α) ≥ 0. (2.6)

After the diode starts conducting, the diode shorts the load current IL and now the circuit

oscillates between only the lower capacitance Cj and the power loop inductance Ld. The

initial conditions for this simple oscillation are given in (2.5) and (2.6). The oscillation dies

down gradually due to the resistance in the power loop. In the ideal case here where the

resistance is neglected, it is trivial to find the lower voltage vL after t1 to be,

vL(t > t1) = Vd + IL

√
Ld

2Cj

sin α cos
t√

LdCj

+
IL

2

√
Ld

Cj

(1 + cos α) sin
t√

LdCj

. (2.7)

The turn-off overvoltage in the ideal turn-off transient is found by taking the maximum

of the expression above,

vL,max = Vd +
IL

2

√
Ld

Cj

·
√

3 + 2 cos α − cos2 α ∈

Vd, Vd + IL

√
Ld

Cj


 . (2.8)

The upper boundary of the turn-off voltage stress is Vd + IL

√
Ld

Cj
. This means the energy
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stored in the parasitic inductor Ld at the beginning of the turn-off transient is completely

transferred into the lower parasitic capacitance. On the other hand, the lower boundary is

only Vd, meaning the maximum voltage stress on the lower device is just the DC link voltage.

This means the energy stored in the parasitic inductance Ld at the beginning of the turn-off

transient is completely dissipated in the oscillation before the diode starts conduction.

From (2.8), the turn-off overvoltage depends greatly on the phase angle α. In fact, for

α = (2k + 1)π, k ∈ N, the turn-off voltage stress is only the DC link voltage Vd. This

means the overvoltage may be minimal even for heavy load conditions. It is more evident

in a numerical example. Suppose the junction capacitance Cj = 100 pF, and the DC link

voltage Vd = 600 V, the turn-off overvoltage under different load current IL is shown in

Fig. 2.4. The power loop inductance Ld is either 20 nH or 40 nH. The turn-off overvoltage

takes its minimum value of Vd in a somewhat periodical fashion. The overvoltage does not

increase linearly and monotonically with the load current IL. Because of the diode conduction

timing t1 determined by (2.4), higher load current sometimes ends up with lower overvoltage.

Comparing the different power loop inductances, higher Ld does not necessarily translate into

higher overvoltage given the same load current. Due to the complex oscillation transitions,

higher power loop inductance may end up with lower overvoltage.

2.2.2 Ideal turn-on transient

On the other hand, the ideal turn-on transient is a lot simpler. It is assumed that the

MOSFET channel is turned on so fast that its parasitic capacitance is instantly discharged

to zero and vL = 0. The equivalent circuit is shown Fig. 2.5. At the moment the MOSFET
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Figure 2.4: Example relationship between the ideal turn-off transient voltage stress vL,max,
parasitic inductance Ld and load current IL.

Figure 2.5: Hypothetical ideal turn-on switching transient equivalent circuit where the
MOSFET channel is turned on instantly.
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channel is turned on, the initial conditions are id(t = 0) = 0 and vH(t = 0) = Vd. The diode is

still in conduction state. This is essentially a shoot-through state and the parasitic inductor

Ld is linearly charged by the DC source voltage Vd,

id(t) =
Vd

Ld

t. (2.9)

At t = t2, the parasitic inductor current reaches the load current id(t = t2) = IL, and the

diode starts blocking. The circuit oscillates between the high side parasitic capacitance Cj

and the power loop inductance Ld. The high side voltage vH can be easily found,

vH(t > t2) = Vd


1 − cos

t√
LdCj


 . (2.10)

It is trivial to see that the ideal turn-on overvoltage is independent of the load current IL.

The maximum voltage stress is always 2Vd and happens at t = t2 + π
√

LdCj.

In summary, if the gate driver has infinite driving capability and the MOSFET channel

can be instantly turned on or off, the turn-on and turn-off overvoltage exhibit very different

behaviors. When assuming the parasitic capacitances Cj are constant, in the ideal turn-on

transient, the overvoltage is independent of the load current IL and is always 2Vd. In the

turn-off transient, the overvoltage is dependent on the load current IL but not in a simple

linear way. It greatly depends on the phase angle α or the diode conduction time t1. The

voltage stress may be only the DC link voltage Vd. In the worst case, however, the turn-off

overvoltage can reach Vd + IL

√
Ld

Cj
and may be higher than 2Vd.
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2.3 Practical Non-ideal Switching Transient

The previous hypothetical ideal analysis assumes the MOSFET channel can be instantly

turned on or off, which is unlikely in practice. On the other hand, the actual switching

transient circuit is a high-order nonlinear system, and is difficult to obtain a closed-form

solution. To focus on the possible stage transitions, the gate inductance Lg, power loop

damping resistance Rd and common source inductance Ls are omitted. The simplified

equivalent circuit is shown in Fig. 2.6. Also to facilitate the analysis, the MOSFET channel

current in the saturation region is modeled as a simple linear voltage controlled current

source,

iM = gfs

(
vgs − Vth

)
, (2.11)

where gfs is the transconductance and Vth is the threshold voltage of the MOSFET. Further-

more, the diode forward voltage drop and reverse recovery are omitted. Instead of obtaining

a solution to the overvoltage, the objective here is to use more amenable equations to provide

some qualitative understandings of the switching transients. The switching transient circuit

stage transition, i.e. the diode conduction and MOSFET stage transition, will be focused

and compared against the previous hypothetical ideal case.

2.3.1 Turn-off transient

The turn-off transient starts when the gate driver output voltage Vg drops from on-state

driving voltage Vc to the off-state driving voltage Ve. Before the gate-source voltage vgs drops

below the Miller plateau voltage Vm = Vth + IL

gfs
, the MOSFET remains in ohmic region and

there is no change in the power loop current or voltage. The transition can be described as a
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Figure 2.6: Simplified switching transient equivalent circuit model with MOSFET channel as
a voltage controlled current source.
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simple RC discharging process,

vgs = Ve + (Vc − Ve) exp

[
− t

Rg(Cgs + Cgd)

]
. (2.12)

Once the gate-source voltage vgs drops down to the Miller plateau voltage Vm, the

MOSFET goes into saturation region. The diode is still in blocking state. Compared to

the ideal case, the MOSFET channel acts as a varying damping resistance. Nevertheless,

the power loop oscillation still happens between the upper diode capacitance Cka, the lower

MOSFET capacitance Cds and the power loop inductance Ld, as shown in Fig. 2.6. Note

that the circuit is at least still a 4th-order system, whose closed-form solution is intractable.

Following this period, the next switching transient period depends on whether the diode

voltage vka drops down to zero first and the diode starts conduction, or the gate-source

voltage vgs drops below the threshold voltage Vth first and the MOSFET goes into cut-off

region. Assuming the diode starts conduction before the MOSFET goes into cut-off region,

the equivalent circuit is shown in Fig. 2.7. The power loop is essentially a damped LC

resonance between the MOSFET parasitic capacitance Cds and the power loop inductance

Ld, with the MOSFET channel being the damping resistance. Afterwards, the MOSFET

then goes into cut-off region, and the system becomes a simple LC resonance between the

MOSFET parasitic capacitance Cds and the power loop inductance Ld.

However, if the MOSFET is turned off so fast and goes into cut-off region first before the

diode starts conduction, the equivalent circuit is shown in Fig. 2.8. This in the power loop

is essentially the same circuit as in the ideal case in Fig. 2.3. The circuit is an undamped

oscillation between the diode capacitance Cka, MOSFET parasitic capacitance Cds and the
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Figure 2.7: Equivalent switching transient circuit when the diode is conducting.

Figure 2.8: Equivalent switching transient circuit when the MOSFET goes into cut-off region.
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power loop inductance Ld. Afterwards, similarly, the diode starts conducting and the circuit

becomes a simple oscillation between the MOSFET capacitance Cds and the power loop

inductance Ld.

As a summary and comparison to the ideal turn-off transient, the oscillation patterns

during the turn-off switching transient are the same. The oscillation first happens between

both the diode and MOSFET capacitance and the power loop inductance, with the MOSFET

channel being a varying damping resistor. If the diode starts conduction first, the circuit

then becomes the oscillation between the MOSFET capacitance Cds and the power loop

inductance Ld, with the MOSFET channel still being a varying damping resistor. If the

MOSFET goes into cut-off region first, the circuit then becomes almost exactly the same as

the ideal turn-off.

In conclusion, it is evident that the practical turn-off transient is governed again by the

two different oscillation patterns, although with the varying MOSFET channel resistance

bringing more complexity. It is reasonable to infer that if the MOSFET switching speed is

fast, we could observe similar properties as in the ideal case, including non-monotonic load

current dependence and lower overvoltage with higher power loop inductance.

2.3.2 Turn-on transient

The turn-on transient starts when the gate voltage swings from the off-state voltage Ve to

the on-state voltage Vc. Like the turn-off transient, at the beginning, the gate-source voltage
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vgs is charged above the threshold voltage Vth,

vgs = Vc + (Ve − Vc) exp

[
− t

Rg(Cgs + Cgd)

]
. (2.13)

Once the gate-source voltage vgs exceeds the threshold voltage Vth, the MOSFET goes

into saturation region. Since the diode is still conducting, the equivalent circuit is the same

as in Fig. 2.7 and can be described by

Vc = vgs + RgCgs

(
dvgs

dt
+

dvgd

dt

)
, (2.14)

Vd = Ld
did

dt
+ vds, (2.15)

id = gfs

(
vgs − Vth

)
+ Cds

dvds

dt
− Cgd

dvgd

dt
, (2.16)

vgs = vgd + vds. (2.17)

Again, it is difficult to directly solve the equations, but it is possible to make some

speculations. It is trivial to that there is no load current IL term in the equations. Naturally

the solution to this stage is independent of the load current IL. This is obvious in the circuit

level since the load current is shorted by the diode at this stage. After this period, similar to

the turn-off transient, there are two possibilities, depending on whether the MOSFET goes

into ohmic region first or the diode starts blocking first.

Assuming the diode starts blocking first and the MOSFET remains in saturation region,

the condition for the diode starts blocking is the power loop current id rises to the load
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current IL. Therefore, the circuit can be described by

Vc = vgs + RgCgs

(
dvgs

dt
+

dvgd

dt

)
, (2.18)

Vd = Ld
did

dt
+ vka + vds, (2.19)

IL = id − Cka
dvka

dt
, (2.20)

id = gfs

(
vgs − Vth

)
+ Cds

dvds

dt
− Cgd

dvgd

dt
, (2.21)

vgs = vgd + vds. (2.22)

It is possible here to further simplify the equations and make some further speculations.

Because the overvoltage across the diode is of interest here, the diode voltage vka is kept,

LdRgCgsCdsCka

gfs

· d4vka

dt4
+

LdCka

(
Cds

gfs

+ RgCgd

)
· d3vka

dt3
+

RgCgs(Cka + Cds)

gfs

· d2vka

dt2
+

(
RgCgd +

Cka + Cds

gfs

)
· dvka

dt
= Vc − Vth − IL

gfs

.

(2.23)

Note (2.23) is 4th-order and it is mathematically intractable to solve. Also note that the

load current IL is only present on the right-hand side of the equation. If the transconductance

gfs is large, the right-hand side value changes little with different load current IL, meaning

the solution to this period has little dependence on the load current IL. Take the MOSFET

C3M0065090J used in later experiments for example, its on-state driving voltage Vc = 15.0 V,

threshold voltage Vth = 2.1 V and transconductance gfs = 13.6 S. This means when the load

30



current IL changes from no load IL = 0 A to full load IL = 35 A, the right-hand side value

only changes from 12.9 V to 10.7 V. The relatively small change on the right hand side means

the change in the specific solution to this differential equation is also relatively small, while

the general solution remains the same.

On the other hand, if the MOSFET is so fast and goes into ohmic region before the

diode starts blocking, the diode is still in conduction state and equivalently a shoot-through

condition is created. Like the ideal case, the current in the power loop id rises linearly,

id = id,0 +
Vd

Ld

t, (2.24)

where id,0 is the initial power loop current condition determined by the previous stage.

Once the current in the power loop reaches the load current id = IL, the equivalent circuit

is again a simple LC resonance between the power loop inductance Ld and the diode parasitic

capacitance Cka. The initial conditions are id = IL and vka = 0, which are identical to the

ideal turn-on case. Therefore, the solution of this stage is also the same as (2.10). The

turn-on voltage stress in this case will also be 2Vd if the diode parasitic capacitance Cka is

constant. However, typically the diode parasitic capacitance Cka is nonlinear and decrease

with bias voltage. Therefore, the turn-on maximum voltage stress in this case will be higher

than 2Vd.

In conclusion, for the non-ideal turn-on transient, similarities with the ideal case can

also be found. Especially if the gate driver is fast enough to drive the MOSFET into ohmic

region before the diode starts blocking, the overvoltage oscillation pattern is the same as

the ideal case. On the other hand, if the gate driver is not fast enough and diode starts
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blocking first, the overvoltage is the result of a complex fourth-order system. In this case, if

the transconductance gfs is large enough, the turn-on overvoltage is also independent of the

load current IL.

2.4 Experimental Switching Transient Overvoltage

The experimental characterization setup to verify the previous analysis is shown in Fig. 2.9.

The various components and measurement probes are listed in Table 2.1. The MOSFET

and diode are soldered underneath the PCB. For turn-off overvoltage characterization, the

MOSFET is soldered as the lower device; for turn-on overvoltage, the diode is soldered as

the lower device. This is to enable measurement with the passive voltage probes. Note

the gate resistance Rg below here means the external gate resistance, while the MOSFET

C3M0065090J has an internal gate resistance Rg,int = 4.7 Ω. The experimental waveforms

are captured at room temperature. Another thing to note is that the drain current Id sensor

may have an inconsistent measurement bandwidth and is compensated as in [96].

2.4.1 Turn-off overvoltage

The turn-off overvoltage sweep with different gate resistance Rg is shown in Fig. 2.10,

and the sweep with different extra drain inductance Ld is shown in Fig. 2.11. The drain

inductance variation is achieved by soldering a short wire perpendicularly into the PCB.

The value of extra power loop inductance ∆Ld is determined by measuring this short wire

inductance directly. In the gate resistance Rg sweep, the extra drain inductance ∆Ld is kept

at minimal. In the drain inductance ∆Ld sweeps, the gate resistance is kept at Rg = 0 Ω.
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Figure 2.9: Switching transient overvotlage experimental characterization setup.

Table 2.1: Switching transient overvoltage experimental setup components

Item Part Number Note
MOSFET C3M0065090J 900 V/35 A, TO-263-7
Diode C4D20120D 1200 V/33 A, TO-247-3
Driver buffer IXDN609SI 9 A source/sink current
Vgs probe TPP1000 1000 MHz
Vds probe TPP0850 800 MHz
Id sensor SSDN-414-01 2000 MHz∗
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(a)

(b)

Figure 2.10: Experimental turn-off maximum voltage stress with different gate resistances at
different DC source voltage: (a) Vd = 400 V; (b) Vd = 600 V.
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(a)

(b)

Figure 2.11: Experimental turn-off maximum voltage stress with different extra drain induc-
tance: (a) Vd = 400 V; (b) Vd = 600 V.
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The drain-source voltage probe directly measures between the drain tab and the Kelvin-

source connection. Therefore, the turn-off overvoltage measurement here minimizes the

external package inductance influence and should reflect the actual overvoltage across the

MOSFET. In Fig. 2.10a, it is clearly shown that the impact of load current and gate resistance

on turn-off overvoltage is nonlinear. At IL = 15 A, the overvoltage is worst when the switching

speed is the fastest Rg = 0 Ω. However, at IL = 20 A, the overvoltage is worst when the

switching speed is the slowest Rg = 10 Ω. Likewise, when Rg = 0 Ω, the overvoltage at

IL = 15 A is higher than that from IL = 20 A. Similarly, in the drain inductance sweep in

Fig. 2.11a, at 15 A load current, the largest extra power loop inductance of ∆Ld = 16.9 nH

surprisingly results in the lowest overvoltage. Although not as extreme as in the ideal case in

Fig. 2.4, the nonlinear relationship between the turn-off overvoltage and switching speed and

parasitic inductance is obvious.

2.4.2 Turn-on overvoltage

The experimental waveforms of the diode voltage and current during the MOSFET’s

turn-on transient are shown in Fig. 2.12. Note that because the diode C4D20120D is in

TO-247 package, the measurement of its voltage includes inductive voltage drop due to the

lead and packaging inductance. So the “real” voltage across the diode cathode and anode

will be higher than the captured waveforms. Still, from Fig. 2.12 the turn-on overvoltage is

almost independent of the load current. The switching transient waveforms nearly overlap

with each other under different load current conditions. Similarly, given the same DC source

voltage Vd and gate resistance Rg, the turn-on transient overvoltage is also nearly identical.
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(a)

(b)

Figure 2.12: Experimental turn-on transient diode voltage vka and current iak waveforms: (a)
Vd = 400 V, Rg = 0 Ω; (b) Vd = 600 V, Rg = 4.7 Ω.
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Also note in Fig. 2.12a, the waveform during the oscillation looks sinusoidal but is clearly

affected by the nonlinearity of the capacitance Cka.

It is also trivial to see that the turn-on overvoltage decreases with slower switching

speed, in contrast to the turn-off overvoltage. Likewise, the relationship between the turn-on

overvoltage and the extra parasitic loop inductance is shown in Fig. 2.13. The overvoltage

increases monotonically with the extra parasitic inductance.

In summary, the experimental results confirms the previous ideal and non-ideal analysis

results. The turn-off overvoltage is highly nonlinear and may exhibit lower value under faster

switching speed or larger power loop inductance. The turn-on overvoltage, on the other hand,

has little dependence on the load current.

2.5 Numerical Modeling and Analysis Verification

As shown earlier, predicting the turn-on overvoltage requires solving a high-order nonlinear

system, which is more attainable with numerical solvers. This then naturally leads to the

use of SPICE simulators, which allow easy and detailed semiconductor device modeling and

faster calculation speed.

2.5.1 Semiconductor output characteristics

The first step in modeling the switching transient behavior is obtaining an accurate device

model. Wolfspeed provides SPICE models for their devices online [97]. However, there is

a large discrepancy between the provided model for C3M0065090J and its actual output

characteristics captured on a curve tracer, as shown in Fig. 2.14. The difference is most
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Figure 2.13: Relationship between parasitic inductance and turn-on maximum voltage stress.

x

Figure 2.14: Output characteristics comparison between provided model and actual curve
tracer capture.
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severe in the low gate driving range, where Vgs is around 9.0 V. For example, at Vgs = 9.0 V

and Vds = 8.0 V, the manufacturer model predicts the drain current to be around 40 A, but

the curve tracer capture shows the drain current is only around 15 A.

To represent the actual device more truthfully, the output characteristics are modeled

directly with the curve tracer data. A trivial way to do this is using the lookup table

built in SPICE. However, in practice, it is found that convergence issues may arise due to

the “choppiness” in the lookup table. The more common way is to curve fit the output

characteristics to some behavioral functions. However, the functions are usually quite

complicated and it may be tedious and time-consuming to tune the parameters. On the other

hand, artificial neural networks are widely used as a data regression tool. Given just one

hidden layer and ten neurons, the accuracy is extremely good, as shown in the comparison

between the artificial neural network model and the curve tracer data in Fig. 2.14. Note

though, due to nature of the statistical nature of neural network, it can only predict the

range of data it has been trained. Therefore, to guarantee a reasonable model in switching

transients, the experimental output characteristics data must cover the entire operating range

of the device.

2.5.2 Turn-off comparison

The simulation model in LTSpice is shown in Fig. 2.15. The gate-source capacitance Cgs

is assumed constant. The various circuit parasitic element values are shown in Table 2.2.

Also note that in addition to the MOSFET internal gate resistance Rg,int, the gate driver IC

also has internal source or sink resistance during the switching transient. In either turn-on or
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Figure 2.15: Simulation model for turn-on and turn-off transient in LTSpice.

Table 2.2: Switching transient overvoltage simulation parameters

Parameter Value
Gate inductance Lg 10 nH
Common source inductance Ls 0.8 nH
Power loop inductance Ld 43 nH
Stray resistance Rd 200 mΩ
Internal gate resistance Rg,int 4.7 Ω
Gate driver source resistance Rsource 2.0 Ω
Gate driver sink resistance Rsink 1.5 Ω
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Figure 2.16: Turn-off transient waveform comparison between experimental resutls and SPICE
models: Vd = 600 V, Id = 25 A, Rg = 4.7 Ω.
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Figure 2.17: Simulated and experimental turn-off maximum voltage stress comparison with:
(a) Vd = 600 V and Rg = 0 Ω; (b) Vd = 600 V and Rg = 4.7 Ω.
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turn-off transient simulation, the respective source or sink resistance is added to the external

gate resistance Rg,ext. Also note that, although the SiC MOSFET C3M0065090J uses a

Kelvin source for the gate driver, a small common source inductance Ls = 0.8 nH is added in

the simulation.

The turn-off switching transient waveforms comparison between the SPICE model and

the experimental results are shown in Fig. 2.16. The switching transient waveforms are very

well replicated in the SPICE modeling. The rise and fall edge of the drain-source voltage Vds

and drain current Id match very closely with each other, which suggest the numerical model

closely represents the real circuit. The oscillation after the overvoltage peak is more severe in

the simulation, likely due to the lack of AC resistance in the SPICE simulation.

The predicted maximum voltage stress from the SPICE model and the experimental

values are compared in Fig. 2.17. The DC source voltage Vd = 600 V and the gate resistance

is 0 Ω or 4.7 Ω. Generally, the numerical model closely matches the experimental results,

showing maximum percentage error of less than 5.0%. When the load current IL is large, the

error is nearly minimal. The error is relatively larger when the load current is small. This is

probably because of the coarse gate driver model, which play a more important role in light

load conditions. The numerical model is able to recreate the nonlinear behavior between

switching speed and overvoltage. With IL being 25 A or 30 A, the overvoltage when Rg = 0 Ω

is smaller than when Rg = 4.7 Ω. Similarly, the nonlinear relationship with load current IL is

also reproduced when the switching speed is fast and Rg = 0 Ω. Therefore, the numerical

model here further confirms the important role of different oscillation pattern transition for

the turn-off transient.
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2.5.3 Turn-on comparison

The turn-on switching transient waveforms comparison between the SPICE model and the

experimental results are shown in Fig. 2.18. Again, the SPICE model outputs very similar

waveforms compared to the experimental data. Like the turn-off transient, the oscillation

after the actual switching action is more significant in the SPICE model. Note that because

the diode in experiment uses a TO-247 package, its package lead inductance of 9.0 nH is

considered in the comparison here. The simulated Vka includes both the “real” diode voltage

and the inductive voltage across this 9.0 nH inductance. Again, the waveform comparison

confirms the effectiveness of the numerical model.

The overvoltage comparison between the SPICE model and the experimental values is

shown in Fig. 2.19. The numerical model is able to recreate and confirm the analysis result

that the turn-on overvoltage is largely independent of the load current. When Rg = 0 Ω, the

error between experiment and simulation is similar to the turn-off case as shown in Fig. 2.17,

and the error is a lot more significant in the light load condition. However, when Rg = 4.7 Ω,

the error between simulation and experiment is more uniform. This is likely due to the gate

driver buffer plays a less important role in the turn-on transient for slower switching speed.

The maximum error occurs in the light load condition with Rg = 0 Ω and is at around 12.6%.

When Rg = 4.7 Ω, the errors are all at around 7.2%.

2.6 Conclusion and Discussion

The switching transient overvoltage oscillation is discussed in this paper. Circuit analysis

focusing on the stage transition and oscillation pattern is first developed, which provides
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Figure 2.18: Turn-on transient waveform comparison between experimental resutls and SPICE
models: Vd = 600 V, Id = 10 A, Rg = 0 Ω.
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Figure 2.19: Simulated and experimental turn-on maximum voltage stress comparison with:
(a) Vd = 600 V and Rg = 0 Ω; (b) Vd = 600 V and Rg = 4.7 Ω.
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qualitative understanding of the switching transient. The turn-off overvoltage becomes very

nonlinear when the switching speed is fast. Faster switching speed or heavier load current

may result in surprisingly lower turn-off overvoltage. The turn-on overvoltage, on the other

hand, is much less sensitive to the load current. These special features also provide a general

guideline in switching speed and gate driver design. The hypothetical ideal case where

the MOSFET can be instantly turned on or off can serve as an outlook for future power

semiconductor behaviors. Furthermore, the numerical modeling method with artificial neural

network offers a general and easy method to modeling the nonlinear semiconductor behaviors.

For potential future work, the analysis and modeling could be extended to consider the

impact of different junction temperatures. The diode here assumes no reverse recovery, and

the SiC MOSFET body diode reverse recovery effect could be further included for more

general cases.
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Chapter 3

Self-Turn-On Phenomena and

Large-Signal Switching Transient

Stability

3.1 Introduction

The much faster switching speed of wide-bandgap semiconductors helps reduce loss and

enables higher switching frequency, but also presents challenges in undesirable ringing during

the switching transient. The drain-source voltage Vds overshoot and oscillation in normal

switching transients is characterized and analyzed in Chapter 2. Besides the power loop

oscillation, excessive amount of gate loop inductance may also result in destructive gate-source

overvoltage [17]. In addition to the normal oscillations, abnormal oscillation phenomena

have also been reported. An example is the crosstalk phenomenon which happens when

the synchronous device is falsely turned on during the active device’s turn-on transient
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[35], [36]. The root cause is found to be the synchronous device’s gate-drain capacitance

Cgd charging its gate-source votlage Vgs above the threshold due to high voltage slew rate

in the power loop. Another type of abnormal oscillation phenomenon is reported in [37],

[38] where sustained oscillations with SiC JFET and SiC MOSFET are observed in the

turn-off transient. The phenomena were partly due to pronounced amount of parasitic

elements. Reference [39] reported a simulation phenomenon where a SiC MOSFET channel

is temporarily turned on during the turn-off transient when the source inductance is very

large. Unstable oscillation is also reported in [40] with parallel MOSFETs in solid-state

circuit breaker applications. Gallium nitride (GaN) HFETs abnormal oscillation has also

been investigated. In [5], continuous ringing is observed in short circuit condition, and the

cause is due to insufficient gate resistance damping. In [41], instability due to the GaN

HFET’s unique reverse conduction behavior and common source inductance is presented and

analyzed.

Although previous works are based on wide-bandgap devices, silicon MOSFETs have

been optimized to a stage where the switching transient voltage and current slew rate can be

comparable to that of wide-bandgap devices. Thanks to its more complex trench junction

structure, the parasitic capacitances of CoolMOS are greatly reduced, especially under strong

inversion. When evaluating a CoolMOS’s switching behavior, a new abnormal oscillation

phenomenon is observed. During the turn-off transient, the oscillation magnitude does not

keep decreasing but can spuriously increase. In the worst case, the oscillation is sustainable

and keeps going, as shown in Fig. 3.1. This oscillation pattern can be particularly hazardous

for power electronics converters as the switching control is completely lost. To understand

the phenomena, the same switching behavior was first recreated in SPICE simulation. It is
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observed that after the MOSFET channel is pinched off, it is turned on again by its own

common source inductance. Therefore, the phenomenon is named “self-turn-on”.

Power semiconductor switching transient stability has been analyzed with small-signal

models in several previous works. The unstable switching due to gate-drain capacitance Cgd

feedback has been reported in [26]. Similar phenomena have been discussed with oscillator

theory in [38]. Optimizing both the gate-drain capacitance Cgd and common source inductance

Ls to mitigate the unwanted oscillation is presented in [98]. Reference [41] analyzes the

instability by constructing the loop gain function. These methods leverage the small-signal

model for analysis which requires careful selection of operating points. A large-signal analysis

approach based on the Lyapunov function for electrical networks was proposed in [99] by

Brayton and Moser. The large-signal stability can be analyzed by evaluating the properties

of a mixed potential function. To further understand the root cause of the self-turn-on

phenomenon, it is analyzed with this large-signal approach. It is shown that the mixed

potential function can effectively describe the switching transient. The asymptotic stability

criterion is also an effective and conservative prediction of the switching transient stability.

The root cause of the self-turn-on phenomenon is found to be not only the common source

inductance but also the unconventional voltage dependence of its parasitic capacitances.

3.2 Experimental Self-Turn-On Phenomena

The self-turn-on phenomena are observed at room temperature when characterizing a

Si MOSFET, which is 4th generation CoolMOS IXKR47N60C5 from IXYS. The simplified

experimental setup is shown in Fig. 3.2. The MOSFET has a voltage rating of 600 V and a
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Figure 3.1: Experimental waveforms showing continuous self-turn-on oscillation when testing
IXKR47N60C5 in turn-off transient with 200 V DC link, 30 A load current and 4.7 Ω gate
resistance.
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current rating of 47 A. The free-wheeling diode is a SiC Schottky diode, C4D20120D from

Wolfsped. Both devices are in TO-247 package. The gate driver IC is a high-speed gate

driver buffer IXDN609 from IXYS. The on-state driving voltage is 15.0 V while the off-state

is 0.0 V. The experimental hardware setup is shown in Fig. 3.3.

Fig. 3.4 shows the experimental waveforms under 200 V DC link and 25 A load current,

but with different gate resistances. After the plateau region, the gate-source voltage Vgs starts

to exhibit significant spikes. The drain-source voltage Vds also shows abnormal behavior

that the ringing magnitude first increases before decreasing and settling down. The current

flowing through the MOSFET Id also shows significant amount of ringing. Comparing the

phenomena with different gate resistances, the one with 2.0 Ω gate resistance shows the worst

oscillation.

Fig. 3.5 shows the abnormal ringing in all three measurements getting worse with higher

load current. While the ringing frequency remains the same, the magnitude is significantly

larger at 25 A load current. In the worst case when IL = 30 A, the oscillation is continuous

and does attenuate, as shown in Fig. 3.1. However, the DC link voltage has an opposite effect

on the phenomena, as shown in Fig. 3.6. When the DC link voltage is increased from 200 V

to 400 V, the self-turn-on phenomena was much less significant.

In summary, the self-turn-on phenomena appear when the switching is relatively fast but

the worst case is not necessarily when the gate resistance is the smallest. It only appears

when the load current is high enough, and may diminish when the DC link voltage is higher.
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Figure 3.2: Simplified experimental setup circuit schematic for self-turn-on phenomena.

Figure 3.3: Experimental hardware setup for characterizing self-turn-on phenomena.
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Figure 3.4: Turn-off transients with different gate resistances under 200 V DC link and 25 A
load current showing different degrees of self-turn-on phenomena.
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Figure 3.5: Turn-off transients with different load currents under 200 V dc link and 4.7 Ω
gate resistance.
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Figure 3.6: Turn-off transients with different DC link voltages under 25 A load current and
4.7 Ω gate resistance.
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3.3 SPICE Modeling and Analysis

The unusual spikes in the gate-source voltage Vgs measurement and abnormal oscillations in

both drain-source voltage Vds and drain current Id measurements indicate that the MOSFET

is turned on spuriously during the turn-off transient. A simulation model is built in SPICE

to shed light into this undesirable switching behavior. The simulation model is shown in

Fig. 3.7. The transfer characteristics and parasitic capacitances of the MOSFET are modeled

as lookup tables with the data from the device datasheet. The internal gate resistance is not

provided in the datasheet, and it is assumed to be 1.0 Ω. The free-wheeling diode model

is provided by Wolfspeed. Reasonable assumptions are made on the parasitic inductances,

with the power loop inductance Ld = 20.0 nH, the gate inductance Lg = 10.0 nH, and the

common source inductance Ls = 4.0 nH.

The simulation result of the turn-off transient under 200 V DC link, 25 A load current with

2.0 Ω gate resistance is shown in Fig. 3.8. The simulation model successfully recreated the

experimental abnormal oscillations. As the switching transient progresses, the drain-source

voltage Vds slew rate is high, and the MOSFET channel current Ix(Channel:D) is very quickly

pinched off. Once the channel is turned off, the power loop is then a pure LC resonant

network. The voltage across the common source inductance V (s, ss) = Ls
dis

dt
acts as a voltage

bias back into the gate loop and charges the gate-source voltage Vgs up. The gate-source

voltage Vgs may exceed the threshold voltage Vth and the MOSFET channel is turned on

again, represented by the huge spikes in the MOSFET channel current Ix(Channel:D) in

simulation. Likewise, the gate-drain capacitance Cgd under the high voltage slew rate acts as a

current source charging through the gate node. However, in both simulation and experiments,
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Figure 3.7: SPICE simulation and analysis model for the self-turn-on phenomena.
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Figure 3.8: SPICE simulation result under 200 V DC link and 25 A load current with 2.0 Ω
gate resistance.
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it is found that the spurious turn-on events happen after the drain-source voltage Vds exceeds

100 V. The value of gate-drain capacitance Cgd is quite small due to its voltage dependence.

More importantly, in simulation, the self-turn-on phenomena persists after removing the

gate-drain capacitance Cgd but disappears after removing the common source inductance Ls.

Therefore, in the time domain, the root cause of the phenomena is the device channel

current quickly pinched off because of the parasitic capacitance, and the gate-source voltage

Vgs charged above the threshold voltage Vth due to the common source inductance.

The MOSFET channel being turned off during the voltage rise time can be explained by

the MOSFET’s parasitic capacitance curve. Reference [26] provides an expression for the

drain-source voltage Vds during the turn-off transient, assuming the gate-source voltage Vgs

remains constant and the parasitic capacitance of the free-wheeling diode can be neglected,

dvds

dt
=

IL + gfsVth

Cds + (1 + gfsRg)Cgd

, (3.1)

where IL is the load current, gfs is the MOSFET transconductance, and Vth is the MOSFET

threshold voltage. Therefore, the displacement current flowing through the output capacitance

can be written as

Idisp = (IL + gfsVth) ·
1 +

Cgd

Cds

1 + (1 + gfsRg)
Cgd

Cds

. (3.2)

Note the first term in brackets (IL+gfsVth) depends only on the load current and MOSFET

characteristics. And the second fractional term
1+

Cgd

Cds

1+(1+gfsRg)
Cgd

Cds

depends only on the total

gate resistance Rg and MOSFET characteristics. Considering the nonlinearity of parasitic

capacitances, the fractional term is plotted in Fig. 3.9b against the drain-source voltage
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Vds. The fractional term drastically increases at around 50 V due to the unconventional

nonlinearity of the MOSFET’s parasitic capacitances. When Rg = 2.0 Ω, the maximum

displacement current when the load current IL = 25 A can be approximated

Idisp,max = (IL + gfsVth) · 0.48 = 98.4 A ≫ IL. (3.3)

This means the channel is turned off during the voltage rising stage and the power loop

current Id is now only flowing through the parasitic capacitances. In fact, at this point,

the assumptions for (3.2) no longer hold true. Nevertheless, this still shows the parasitic

capacitances have a significant impact on the voltage slew rate and the displacement current.

When the fractional term is large enough, the MOSFET channel may pinch off during the

voltage rising stage.

Equation (3.2) also explains why self-turn-on phenomenon does not happen when the

gate resistance Rg is large. As shown in Fig. 3.9b, the fractional term is much smaller with

larger gate resistances. The switching transient voltage slew rate dvds

dt
is also much slower.

Therefore, the channel does not pinch off in the voltage rising stage when the gate resistance

Rg is large.

After the MOSFET channel is pinched off if the voltage slew rate dvds

dt
is high, the power

loop then becomes a pure LC resonant network. The response from this network is determined

by both the DC bias and its initial conditions. For higher load current IL, the initial condition

for the power loop current id is larger, which means higher slew rate for the common source

inductance current is. This explains why the phenomenon does not happen at lower load

current. Because the gate driver loses control of the channel current, the current slew rate and
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(a)

(b)

Figure 3.9: IXKR47N60C5 parasitic capacitances’ impact on voltage slew rate and displace-
ment current: (a) parasitic capacitances versus drain-source voltage; (b) displacement current
fractional term against drain-source voltage.
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oscillation pattern after the pinch-off will be the same regardless of the gate resistance. This

can be verified by comparing the power loop current id waveforms where the gate resistance

Rg < 10 Ω in Fig. 3.4.

If omitting the gate-drain capacitance Cgd, the gate loop can be simplified as the common

source inductance Ls charging the gate-source capacitance Cgs,

− CgsLg
d2vgs

dt2
− CgsRg

dvgs

dt
+ vgs = Ls

dis

dt
. (3.4)

While solving the equation can provide an analytical solution to the phenomenon, it more

straightforward to consider it from a circuit-level perspective. The moment the MOSFET

channel is pinched off, the gate-source voltage vgs drops below its threshold voltage Vth.

Because the current in the power loop id is decreasing, the common source inductance appears

as a voltage source charging the gate-source capacitance. However, the gate inductor current

ig = Cgs
dvgs

dt
acts as countermeasure against the common source inductance, because its initial

condition at the beginning of this oscillation is still negative. When the gate resistance Rg

is small, the initial condition ig0 is large and the common source inductance Ls may not

be able to charge the gate-source capacitance Cgs above the threshold voltage Vth, and the

self-turn-on phenomenon is less severe. In fact, larger gate loop inductance Lg was found to

help mitigate the self-turn-on phenomena [47].

In summary, the self-turn-on phenomenon happens in the following sequence: parasitic

capacitances take over all the power loop current due to the high voltage slew rate, the power

and gate loop become pure LC resonant circuits. The high current slew rate in the power

loop makes the common source inductance act as a voltage source charging the gate-source
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capacitance Cgs, whose voltage Vgs may exceed the threshold voltage Vth. The MOSFET

channel is then falsely turned on. The process may happen a few times before finally settling

down, or, in the worst case, continues indefinitely.

3.4 Large-Signal Switching Transient Stability

Although the previous section recreates the experimental phenomena in simulation and

the root cause is explained qualitatively, a clear stability criterion is still missing. Because

of the large-signal and nonlinear nature of the switching transients, Lyapynov theorem, or

Brayton-Moser’s mixed potential function method, is utilized here to further understand the

root cause.

3.4.1 Brayton-Moser’s mixed potential function

Lyapunov’s direct method provides a framework for analyzing the stability of nonlinear

systems, and it relies on constructing a Lyapunov function P (x) [100]. Constructing the

potential function P (x) is generally difficult. Brayton-Moser’s mixed potential method is a

systematical method to construct such a function for electrical networks [99]. The mixed

potential function P (x) = P (i,v) has the unit of power and takes the following general form,

where A(i) is the terms related to the independent current vector i, B(v) is the terms related

to the independent voltage vector v, and N(i,v) is the terms related to both the current

and voltage vectors.

P (i,v) = A(i) − B(v) + N(i,v). (3.5)
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(a)

(b)

Figure 3.10: Switching transient circuit model: (a) phase leg circuit model with parasitic
elements; (b) equivalent circuit model with coupling terms.
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The equivalent circuit of the switching transient is shown in Fig. 3.10a. During the

switching transient, the MOSFET stayed in ohmic region before the gate-source voltage vgs is

discharged below the Miller voltage Vth + IL

gfs
. The drain-source voltage vds only starts to rise

after the MOSFET goes into the saturation region. Therefore, the period in the ohmic region

can be neglected. The MOSFET channel current in saturation region and cut-off region can

be modeled as a voltage controlled current source,

iM(vgs) =





0, if vgs < Vth,

gfs(vgs − Vth), otherwise.

(3.6)

The diode model here includes a forward voltage Vf = 0, a forward resistance of Rf 6= 0

and a voltage-dependent parasitic capacitance Cka. The diode current iD going through its

pn junction can be written as,

iD(vka) =





0, if vka > 0,

−R−1
f vka, otherwise.

(3.7)

From the circuit in Fig. 3.10a, we can easily see that ig + id = is and vgs = vgd + vds.

Therefore, the independent variables of the circuit are selected to be x = [i v]T , i = [ig id]T ,

and v = [vgs vds vka]T . Because is and vgd are dependent variables, the remaining gate-drain

capacitance Cgd and common-source inductance Ls in Fig. 3.10a are substituted with coupling

terms to facilitate the mixed potential function formulation. The equivalent circuit with the

coupling elements is shown in Fig. 3.10b.
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The first step to formulate the mixed potential function is to construct the current

potential for the voltage sources and current-controlled resistors, and voltage potential for the

voltage-controlled resistors and current sources [101]. The voltage potential of the MOSFET

channel in the saturation region can be represented as a pseudo-resistor [102],

1

2
GMv2

ds, (3.8)

where GM = gfs(vgs − Vth)/vds when vgs > Vth, and GM = 0 otherwise.

The voltage potential of the diode current iD can also be represented as a pseudo-resistor,

1

2
GDv2

ka, (3.9)

where GD = R−1
f when vka ≤ 0, and GD = 0 otherwise.

The current or voltage potential of the other elements such as the voltage source and

capacitors in the circuit Fig. 3.10b can be easily obtained from [99]. Finally, the mixed

potential function is given by summing them together,

P = − Vgig − Vdid − ILvka

+
1

2
Rgi2

g +
1

2
Rdi2

d

− 1

2
GMv2

ds − 1

2
GDv2

ka

+ vdsid + vgsig + vkaid. (3.10)
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Rewriting it in the standard form in (3.5),

A(i) = −Vgig − Vdid +
1

2
Rgi2

g +
1

2
Rdi2

d, (3.11)

B(v) = ILvka +
1

2
GMv2

ds +
1

2
GDv2

ka, (3.12)

N(i,v) = vdsid + vgsig + vkaid. (3.13)

Thus, the mixed potential function or the Lyapunov function for the switching tran-

sient circuit is derived. Note the functions GM and GD are directly related to the static

characteristics of the MOSFET and diode. Although relatively simple equations are used

here to describe their characteristics, more complex ones can be easily plugged in to model

their behaviors more accurately. If using numerical computations, piece-wise-linear or more

complex regression functions can be used [22].

3.4.2 Mixed potential function and system trajectory

Given x = [i v]T , i = [ig id]T , and v = [vgs vds vka]T , the validity of the mixed potential

function in (3.10) can be easily verified because the mixed potential function P (x) describes

the system trajectory by satisfying the equation below [99],




−L(i) 0

0 C(v)




dx

dt
= Q(x)

dx

dt
=

dP

dx
, (3.14)
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where the inductance and capacitance matrices are given by

L(i) =




Lg + Ls Ls

Ls Ld + Ls




, (3.15)

C(v) =




Cgs + Cgd −Cgd 0

−Cgd Cgd + Cds 0

0 0 Cka




, (3.16)

Q(x) =




−L(i) 0

0 C(v)




. (3.17)

Note the capacitances Cgs, Cgd, Cds and Cka are typically nonlinear and voltage-dependent

for power semiconductor devices. So the capacitance matrix C(v) is voltage dependent. The

inductances Lg, Ld and Ls are due to the magnetic flux of the PCB trace or semiconductor

packaging. They are usually constant and not current-dependent. Therefore, the inductance

matrix L(i) = L is considered a constant matrix.

We can immediately see that (3.14) completely describes the switching transient circuit

system. The steady-state operating point of the circuit can be trivially found by solving

70



dP
dx

= 0, or

dP

dig

= −Vg + Rgig + vgs = 0, (3.18)

dP

did

= −Vd + Rdid + vds + vka = 0, (3.19)

dP

dvgs

= ig = 0, (3.20)

dP

dvds

= −GMvds + id = 0, (3.21)

dP

dvka

= −IL − GDvka + id = 0. (3.22)

It is trivial to see that ig = 0, id = 0, vgs = Vg, vds = Vd + ILRf , vka = −ILRf is the

steady state operating point of the turn-off transient.

If moving Q(x) to the right side of the equation,

dx

dt
= Q−1(x)

dP

dx
. (3.23)

It is obvious that the gradient of every point x on the system trajectory is given by

Q−1 dP
dx

, which means the system trajectory is directly related to the product of the gradient

of the mixed potential function P (x) and the inverse of the passive element matrix Q(x).

So far, it is shown that there is a direct relationship between the mixed potential function

and the system trajectory. To help illustrate the relationship between the time-domain

system trajectory and the mixed potential function Q, time-domain simulation is performed

by solving (3.14), and the mixed potential function is plotted against time. The parasitic

elements and switching devices in the model are the same as before and listed in Table 3.1.
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Table 3.1: Self-turn-on large-signal modeling parameters

Parameter Value
MOSFET IXKR47N60C5
Diode C4D20120D
Lg 10.0 nH
Ld 20.0 nH
Ls 4.0 nH
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Several cases with different load current IL and DC link voltage Vd are simulated and the

switching transient waveforms are plotted along with its mixed potential function P (x) in

Fig. 3.11. In all four cases, the gate resistance is 2.0 Ω and the DC voltage is kept at 200

V. The load current IL is varied from 5 A to 30 A. The self-turn-on phenomenon worsens

with higher load current, with the switching transient waveforms appear more oscillatory and

abnormal. Specifically, the self-turn-on phenomena become much more pronounced when the

load current is 30 A, showing the longest oscillation duration. The mixed potential function

P (x) shows similar trend where it becomes more oscillatory with higher load current. During

the turn-off transient, the mixed potential when IL = 5 A drops down to zero with very little

oscillation. Note that the oscillatory points of the mixed potential function coincide with the

channel current Ich spikes after it first decreases to 0. Therefore, it is shown that the mixed

potential function P (x) is a direct indication of the switching transient oscillation behavior

and stability.

3.4.3 Large-signal asymptotic stability criterion

What is more interesting is whether the large-signal stability criteria can predict the

abnormal oscillation and understand its root cause. As shown in (3.14), the system trajectory

is completely described by P (x) and Q(x). This means it is potentially feasible to evaluate

a system’s stability by only evaluating P (x) and Q(x), which is the general concept of

Lyapunov’s direct method.

While [99] provides several theorems to predict the system stability, the theorems require

some strict linearity properties of the passive component matrix Q(x) or the interconnection
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Figure 3.11: Simulated turn-off switching transient waveforms with self-turn-on phenomena
and the corresponding mixed potential function with 200 V DC voltage and 2.0 Ohm gate
resistance: (a) 5 A; (b) 10 A.
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Figure 3.11: Simulated turn-off switching transient waveforms with self-turn-on phenomena
and the corresponding mixed potential function with 200 V DC voltage and 2.0 Ohm gate
resistance: (c) 15 A; (d) 20 A (cont.)
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Figure 3.11: Simulated turn-off switching transient waveforms with self-turn-on phenomena
and the corresponding mixed potential function with 200 V DC voltage and 2.0 Ohm gate
resistance: (e) 25 A; (d) 30 A (cont.)
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function N(x). A more general stability theorem is proposed in [101], where the asymptotic

stability can be then evaluated by calculating some characteristic value, the sum of infimum

of the eigenvalues of some intermediate matrices µ1 + µ2. First let

K1(i,v) =
1

2
Aii(i) +

1

2

(
[Ai(i) + γv]T L−1(i)

)
i
L(i), (3.24)

K2(i,v) =
1

2
Bvv(v) +

1

2

(
[Bv(v) − γT

i]T C−1(v)
)

v
C(v). (3.25)

Note the subscript here means derivative. For example, Aii(i) means the second-order

derivative of the function A(i) against the independent current vector i. Let

Ks
j (x) =

1

2

(
Kj(x) + KT

j (x)
)

, (3.26)

where j = 1, 2 denote their corresponding symmetric parts. Furthermore, also define

K̃s
1(i,v) = L− 1

2 (i)Ks
1(i,v)L− 1

2 (i), (3.27)

K̃s
2(i,v) = C− 1

2 (v)Ks
2(i,v)C− 1

2 (v). (3.28)

Suppose δS(x) = {δ1(x), δ2(x), · · · , δm(x)} is the set of eigenvalues for a symmetric set

S(x), let µ(S) denote the infimum of the eigenvalues of S(x) over all x,

µ(S) = inf{δ(x)}.
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Finally, denote

µ1 = µ(K̃s
1), (3.29)

µ2 = µ(K̃s
2). (3.30)

The sufficient but not necessary condition for asymptotic stability is

µ1 + µ2 ≥ δ, δ > 0, (3.31)

and P ⋆(x) → ∞, as |x| → ∞.

Note that asymptotic stability is a very “strong” stability requirement where all points

around the equilibrium point are drawn toward it and will reach the equilibrium point as time

goes infinity. In practice, the theorem may not suffice even though the switching transient

appears normal. More discussions will be provided in the case studies below.

3.4.4 Switching transient stability criteria simplification

From previous standard form, the following first order derivatives can be easily obtained.

Ai(i) =




−Vg + Rgig

−Vd + Rdid




, (3.32)

Bv(v) =




0

GMvds

IL + GDvka




. (3.33)
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The second order derivatives can then be derived.

Aii(i) =




Rg 0

0 Rd




, (3.34)

Bvv(v) =




0 0 0

0 GM 0

0 0 GD




. (3.35)

The interconnection matrix is given by

γ =




1 0 0

0 1 1




. (3.36)

Furthermore, because in the switching transient L(i) = L is a constant matrix, K1(x) can

be simplified,

K1(i,v) =
1

2
Aii(i) +

1

2
([Ai(i) + γv]T )i = Aii(i). (3.37)

On the other hand, the capacitance matrix C(v) is indeed voltage dependent. Therefore,

K2(x) is more complex and has to be calculated numerically, which can be readily done in

numerical computation software.

However, some interesting conclusions can be drawn if assuming the capacitance matrix

C(v) is also constant. Under this assumption,

K2(i,v) =
1

2
Bvv(v) +

1

2
([Bv(v) − γT

i]T )v = Bvv(v). (3.38)
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Therefore,

K̃s
1(i,v) = L− 1

2 Aii(i)L
− 1

2 , (3.39)

K̃s
2(i,v) = C− 1

2 Bvv(v)C− 1

2 . (3.40)

Unfortunately, there is no simple expression for the eigenvalues for the matrices K̃s
1 and

K̃s
2 . However, if Cgd = 0 and Ls = 0, we can clearly see that K̃s

1 and K̃s
2 are diagonal matrices

whose elements are all non-negative. Therefore, if there is no feedback terms Cgd and Ls in

the circuit, the switching transient is always asymptotically stable. This is obviously true as

the gate loop and power loop are now decoupled and both loops are unconditionally stable.

3.5 Parametric Large-Signal Stability Study

Because of the complex numerical calculation required in the stability criteria and the

numerous circuit elements involved in the circuit, parametric analysis is employed here to

understand the effectiveness of the criteria and the root cause of the unstable switching

behavior.

3.5.1 Load current and gate resistance

Fixing the common source inductance Ls = 4.0 nH and the DC voltage Vd = 200 V, the

load current IL is varied from 5 A to 30 A and the gate resistance is varied between 1.0 Ω,

2.0 Ω, 4.7 Ω and 10 Ω. The values of µ1 + µ2 across different cases are shown in Fig. 3.12.
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Figure 3.12: Load current IL and gate resistance Rg impact on characteristic value µ1 + µ2.
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Figure 3.13: Common source inductance Ls and DC voltage Vd impact on characteristic value
µ1 + µ2.
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Figure 3.15: Common source inductance Ls and DC voltage Vd impact of characteristic value
µ1 + µ2 with hypothetical capacitance from C3M0065090D.
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The characteristic value µ1 + µ2 decreases with the increase of load current IL, coinciding

with the experimental phenomenon where the oscillation worsens with higher load current.

In terms of gate resistance impact, the difference between 1.0 Ω, 2.0 Ω and 4.7 Ω is seemingly

small, with either one of them showing lowest value at different load current condition. This

is also in agreement with the experimental observation that the worst oscillation does not

necessarily happen with the smallest gate resistance. Note that even with Rg = 10.0 Ω, the

characteristic value µ1 + µ2 is still negative, although much larger than the values at other

gate resistances. This indicates that the asymptotic stability criterion is not satisfied.

3.5.2 Common source inductance and DC voltage

Fixing the load current IL = 20 A and the gate resistance Rg = 2.0 Ω, the common

source inductance Ls is varied from close to 0.1 nH to 4.0 nH, while the DC voltage is varied

between 200 V and 400 V. The values of µ1 + µ2 are again shown in Fig. 3.13.

The characteristic value µ1 + µ2 decreases with the increase of common source inductance

Ls. This is within the expectation because previous SPICE simulation has shown the common

source inductance is the critical feedback element for the oscillatory phenomenon. The value

is also significantly larger at higher DC voltage Vd when the common source inductance Ls is

large. This is also in accordance with the experimental results. Note that even when the

common source inductance is close to 0, the characteristic value µ1 + µ2 is still negative.
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3.5.3 Parasitic gate inductance

So far, the characteristic value is shown to indicate the severity of the self-turn-on

phenomena. Therefore, it is also possible to facilitate the gate driver or circuit layout to

mitigate the adverse effects. The gate resistance is kept at 2.0 Ω, the DC voltage 200 V and

the load current 20 A. The sweep of characteristic value under different gate inductance Lg

is shown in Fig. 3.14. As the gate inductance Lg increases, the characteristic value µ1 + µ2

also increases, alluding to less likelihood of instability. This is in agreement with [47] which

has shown that the self-turn-on phenomena can be alleviated by increasing the gate loop

inductance.

3.5.4 Parasitic capacitance voltage dependence

Note that in all previous cases, the characteristic value µ1 + µ2 remains negative, even

when the common source inductance is close to 0. At this point, the self-turn-on phenomenon

is nearly nonexistent, but the asymptotic stability criterion is still not met. This suggests

that there are other factors involved in the switching transient stability. When calculating

K2(i,v), the term ([Bv(v) − γT
i]T C−1(v))v involves calculating the derivative of C−1(v).

This means the voltage dependence characteristics of the device parasitic capacitances also

impact the large-signal stability.

To verify this observation, the IXKR47N60C5’s parasitic capacitances are substituted

with the capacitances from C3M0065090D, a 900 V 36 A SiC MOSFET from Wolfspeed.

Other parameters including the parasitic inductances and static characteristics remain the

same. The parasitic capacitance comparison is shown in Fig. 3.16. Because of the superior
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properties of the SiC material, although the voltage and current rating of these two devices

are similar, the SiC device shows even lower parasitic capacitance values.

The lower parasitic capacitance should lead to even faster switching transient voltage and

current slew rate. However, as shown in Fig. 3.15, the characteristic value µ1 + µ2 remains

positive for smaller common source inductances and only goes negative when Ls ≥ 3.0 nH.

This means the switching transient is asymptotically stable with the hypothetical capacitance

from C3M0065090D. Therefore, the parasitic capacitance does indeed affect the characteristic

value and the asymptotic stability.

As a summary, the characteristic value µ1 + µ2 can serve as an indication of the severity

of abnormal oscillation during the switching transient. When it is positive, it is certain that

the switching transient will be stable. However, when it is negative, the switching transient

may not be completely oscillatory but the risk of abnormal ringing is high. The root cause of

self-turn-on phenomenon is not only the common source inductance but also includes the

unconventional voltage dependence of the parasitic capacitances. Considering the circuit

model, the capacitance voltage dependence characteristics mean that as the drain-source

voltage Vds traverses through the rapid changing region, the channel current is dumped into

the parasitic capacitances. This acts as an excitation source to the LC resonance. This is

reflected in the characteristic value calculation that it involves the voltage derivative of the

parasitic capacitances.
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3.6 Conclusion and Discussion

The abnormal turn-off transient oscillation phenomenon, self-turn-on, is observed in

experiments. The trench MOSFET channel is spuriously turned on, resulting in severe

oscillation the voltage and current waveforms. In the worst case, the oscillation is sustainable

and the control over the power semiconductor is completely lost. To understand the behavior

and find its root cause, the phenomenon is first recreated in SPICE simulation. The

high voltage and current slew rate during the switching transient results in the common

source inductance charging up the gate-source capacitance. To better quantitatively predict

and understand the phenomenon, large-signal based analysis with Brayton-Moser’s mixed

potential function is applied. The common source inductance and the unconventional voltage

dependence of the device’s parasitic capacitances contribute to the phenomenon. The

asymptotic stability criterion is also found to be conservative and the characteristic value

directly indicates the severity of the self-turn-on phenomenon. The analysis method also

provides insightful suggestions on mitigation of the phenomenon.

The work here can be further improved by refining the asymptotic criterion. It is

shown that the characteristic value may be negative while there may be negligible self-

turn-on phenomena during the switching transient. Although the characteristic value helps

understand the root cause, it is a reasonable concern that the criterion may be too stringent

and unnecessary. A deeper understanding on the scope and sensitivity of the characteristic

value range can provide deeper insight into the unstable switching transient.
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Chapter 4

Programmable Gate Driver Platform

4.1 Introduction

Power semiconductor devices make up the heart of power electronics converters. As

demonstrated in previous chapters, gate driver is the key component controlling the switching

action and regulating the switching transient behavior. However, different devices may have

drastically different gate driving requirements. Devices with metal-oxide-semiconductor

(MOS) gate, such as silicon (Si) IGBT and MOSFET, are the most common devices today

because of their easy voltage-driven characteristics. Since the advent of wide-bandgap

semiconductor materials such as silicon carbide (SiC) and gallium nitride (GaN), several

MOS-like devices have been reported and commercially available, including SiC junction-

field-effect-transistor (JFET) [42] and GaN heterojunction-field-effect-transistor (HFET) [43].

Current driven devices such as SiC bipolar-junction-transistor (BJT) have also been actively

investigated [8], [9], [44]. These drastically different devices have very diverse gate/base

driving requirements, in terms of on-state or off-state voltage and continuous or transient
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gate current magnitude. For example, SiC MOSFETs may require up to +20.0 V for on-state

gate voltage while GaN HFETs may require only +6.0 V. Si IGBTs can often tolerate down

to −20.0 V turn-off voltage but SiC MOSFETs are susceptible to gate breakdown with such

low negative turn-off voltage. In terms of continuous gate current amplitude, MOSFETs and

HFETs require little continuous gate current during on-state, but SiC BJTs may require up

to a few amperes of continuous gate current to keep the device on.

Numerous works have also been conducted on advanced gate driving strategies. As an

extension to the simplest two-level voltage source driving, three or four level driving have been

demonstrated and are capable of achieving better transient performance [10], [45]. Instead of

simple turn-on or turn-off gate resistors, more complex impedance network with series or

parallel RLC networks have also been investigated [10], [46], [47]. Current source or resonant

gate drivers are another group of driving schemes which enable the direct control of gate

current during switching transients and the recovery of gating energy for high frequency

applications [48]–[51]. Unlike the voltage source drivers, the device gate is directly charged or

discharged by an inductor current, and the driving voltage is clamped with active switches or

diodes. The current source driving concept has also been utilized for SiC BJTs to effectively

reduce the base driving loss [8].

Active digital gate drivers have been proposed to fine tune the switching speed online to

tackle the switching transient oscillation and EMI issues for either GaN HFET or Si IGBT

[76], [77]. The driving impedance of the gate driver is adjusted dynamically by turning on or

off the buffer circuits and is precisely controlled over the switching transient. This approach

requires dedicated integrated circuit designs and may be difficult to translate into commercial

off-the-shelf components.

89



A programmable driver platform is proposed here and is capable of driving all previous

common power semiconductor devices, including Si IGBT, SiC MOSFET, SiC BJT and

GaN HFET, with either voltage or current source driving schemes. The platform allows its

user to easily adjust the gate driving performance for characterizing the devices dynamic

performance. The platform can also be repurposed as a design tool for users to easily drive

power semiconductor devices and optimize the gate drive design. The optimized driving

schemes can then be translated into commercial components for the final design and mass

production.

4.2 Programmable Driver Platform

4.2.1 Gate voltage and transient current requirement

The on-state and off-state driving voltage and the transient gate current of MOSFET and

MOSFET-like devices directly determine the buffer voltage and current ratings. Common

semiconductor devices, including Si and SiC MOSFET, GaN HFET, from various manu-

facturers are surveyed and listed in Table 4.1. For a MOSFET or MOSFET-like device,

assuming the gate loop can be represented by a simple RLC circuit, the maximum transient

gate current during the switching transient is given by

ig,max = (Vc − Ve)

√
Ciss

Lg

· 1
√

ζ2 − 1 + 1
(
2ζ

√
ζ2 − 1 + 2ζ2 − 1

) 1

2
+ ζ

2

√
ζ2

−1

, (4.1)

where Vc and Ve are the turn-on and turn-off gate driving voltage, ζ = Rg

2

√
Ciss

Lg
is the damping

factor of the gate loop. Therefore, considering both the internal gate resistance Rg,int and
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the gate loop inductance, the maximum transient gate current for the devices surveyed here

can be found to around 8.5 A.

In terms of the on-and off-state driving voltage, the minimum of the devices surveyed is

−5 V while the maximum is 20 V. Leaving sufficient margin for both the voltage and current

requirements, the switching devices in the programmable gate driver here are selected to

be EPC2110 from EPC, which is a common-source-configuration bidirectional switch [103].

The voltage rating of EPC2110 is 120 V, and the continuous current rating at 25◦C is 3.4

A, which is more than sufficient to drive the devices listed in Table 4.1. In fact, during the

switching transient, the switches can be regarded as ideal as their on-state resistance is small

(80 mΩ typical value).
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Table 4.1: Power semiconductor device survey for gate driving

Part No. Vr (V) Ir (A) Cgs (nF) Vc (V) Ve (V) Lg (nH) Rg (Ω)

E3M0280090D 900 11.5 0.15 15 -4 15.7 26

E3M0120090D 900 23 0.35 15 -4 15.7 16

E3M0065090D 900 35 0.66 15 -4 15.7 4.7

C3M0075120K 1200 30 1.35 15 -4 18 10.5

C3M0120100K 1000 22 0.35 15 -4 23 16

C3M0065100J 1000 35 0.66 15 -4 14 4.7

C3M0120100J 1000 22 0.35 15 -4 14 16

C3M0075120J 1200 30 1.35 15 -4 14 10.5

C3M0030090K 900 63 1.75 15 -4 18 3

C2M0045170P 1700 72 3.67 20 -5 18 1.3

C2M0080170P 1700 40 2.25 20 -5 21 2

C3M0065100K 1000 35 0.66 15 -4 15 4.7

C2M0045170D 1700 72 3.67 20 -5 25 1.3

C2M0025120D 1200 90 2.79 20 -5 25 1.1

C2M0040120D 1200 60 1.89 20 -5 25 1.8

C2M0080120D 1200 36 0.95 20 -5 24 4.6

C2M0160120D 1200 19 0.53 20 -5 24 6.5

C2M0280120D 1200 10 0.26 20 -5 24 11.4

C2M1000170D 1700 5 0.2 20 -5 24 24.8

C3M0065090D 900 36 0.66 15 -4 12 4.7
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Table 4.1: continued

Part No. Vr (V) Ir (A) Cgs (nF) Vc (V) Ve (V) Lg (nH) Rg (Ω)

C2M1000170J 1700 5.3 0.2 20 -5 14.5 24.8

C3M0120090D 900 23 0.36 15 -4 19 16

C3M0280090D 900 11.5 0.15 15 -4 19 26

C3M0120090J 900 22 0.35 15 -4 14.5 16

C3M0280090J 900 11.5 0.15 15 -4 13.5 26

C3M0065090J 900 11.5 0.66 15 -4 13.4 4.7

SCT10N120 1200 12 0.29 20 -5 6 8

SCT20N120 1200 20 0.65 20 -2 6 7

SCT30N120 1200 45 1.7 20 -2 6 5

SCT50N120 1200 65 1.9 20 -5 6 1.9

SCTH90N65G2V-7 650 90 3.3 18 -5 6 1

SCTW90N65G2V 650 90 3.3 18 -5 6 1

SCTWA50N120 1200 65 1.9 20 -5 6 1.9

SCTW100N65G2AG 650 100 3.6 20 0 6 1.5

SCT3105KL 1200 24 0.574 18 0 10 13

SCT2080KE 1200 40 2.08 18 0 10 6.3

SCT2160KE 1200 22 1.2 18 0 10 13.7

SCT2120AF 650 29 1.2 18 0 10 13.8

SCT2160KE 1200 22 1.2 18 0 10 13.7

SCT2280KE 1200 14 0.67 18 0 10 17
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Table 4.1: continued

Part No. Vr (V) Ir (A) Cgs (nF) Vc (V) Ve (V) Lg (nH) Rg (Ω)

SCT2450KE 1200 10 0.46 18 0 10 25

SCT2750NY 1700 6 0.28 18 0 10 49

SCT2H12NY 1700 4 0.18 18 0 10 64

SCT2H12NZ 1700 3.7 0.18 18 0 10 64

SCT3017AL 1700 118 2.88 18 0 10 4

SCT3022AL 1700 93 2.21 18 0 10 5

SCT3022KL 1200 95 2.88 18 0 10 4

SCT3030AL 650 70 1.53 18 0 10 7

SCT3030KL 1200 72 2.22 18 0 10 5

SCT3040KL 1200 55 1.34 18 0 10 7

SCT3060AL 650 39 0.85 18 0 10 12

SCT3080AL 650 30 0.57 18 0 10 13

SCT3080KL 1200 31 0.79 18 0 10 12

SCT3120AL 650 21 0.46 18 0 10 18

SCT3160KL 1200 17 0.4 18 0 10 18

LSIC1MO120E0080 1200 25 1.82 20 -5 10 1

LSIC1MO120E0120 1200 18 1.12 20 -5 10 0.85

LSIC1MO120E0160 1200 14 0.87 20 -5 10 0.95

LSIC1MO170E1000 1700 3.5 0.2 20 -5 10 5.8

UJ3C065080K3S 650 31 1.5 12 0 6 4.5
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Table 4.1: continued

Part No. Vr (V) Ir (A) Cgs (nF) Vc (V) Ve (V) Lg (nH) Rg (Ω)

UJ3C065030K3S 650 85 1.5 12 0 6 4.5

UJ3C065080B3 650 25 1.5 12 0 6 4.5

UJ3C065030B3 650 66 1.5 12 0 6 4.5

UJ3C065080T3S 650 31 1.5 12 0 6 4.5

UJ3C065030T3S 650 85 1.5 12 0 6 4.5

UJC06505K 650 36.5 1.5 12 0 6 4.5

UF3C065030K4S 650 85 1.5 12 0 6 4.5

UF3C065080K4S 650 31 1.5 12 0 6 4.5

UJ3C120080K3S 1200 33 1.5 12 0 6 4.5

UJ3C120040K3S 1200 65 1.5 12 0 6 4.5

UJC1206K 1200 38 2.2 12 0 6 1.1

UJC1210K 1200 21.5 2.2 12 0 6 1.1

UF3C120040K4S 1200 65 1.5 12 0 6 4.5

UF3C120080K4S 1200 33 1.5 12 0 6 4.5

UJ3C120150K3S 1200 18.4 0.74 15 -5 6 4.6

GS66502B 650 7.5 0.065 6 0 0 2.3

GS99504B 650 15 0.13 6 0 0 1.36

GS66506T 650 22.5 0.195 6 0 0 1.1

GS66508B 650 30 0.26 6 0 0 1.13

GS66508P 650 30 0.26 6 0 0 1.13
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Table 4.1: continued

Part No. Vr (V) Ir (A) Cgs (nF) Vc (V) Ve (V) Lg (nH) Rg (Ω)

GS66508T 650 30 0.26 6 0 0 1.13

GS66516B 650 60 0.52 6 0 0 0.34

GS66516T 650 60 0.52 6 0 0 0.34

GS61004B 100 45 0.295 6 0 0 0.92

GS61008P 100 90 0.59 6 0 0 0.77

GS61008T 100 90 0.59 6 0 0 0.77

EPC2040 15 3.4 0.086 5 0 0 0.5

EPC2023 30 90 2.15 5 0 0 0.3

EPC8004 40 4 0.045 5 0 0 0.34

EPC2014C 40 10 0.22 5 0 0 0.4

EPC2049 40 16 0.67 5 0 0 0.6

EPC2015C 40 53 0.98 5 0 0 0.3

EPC2030 40 48 1.96 5 0 0 0.4

EPC2024 40 90 1.92 5 0 0 0.3

EPC2035 60 1.7 0.095 5 0 0 0.5

EPC2031 60 48 1.64 5 0 0 0.4

EPC2020 60 90 1.78 5 0 0 0.3

EPC8002 65 2 0.02 5 0 0 0.3

EPC8009 65 4 0.045 5 0 0 0.3

EPC2039 80 6.8 0.21 5 0 0 0.5
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Table 4.1: continued

Part No. Vr (V) Ir (A) Cgs (nF) Vc (V) Ve (V) Lg (nH) Rg (Ω)

EPC2029 80 48 1.41 5 0 0 0.4

EPC2021 80 90 1.65 5 0 0 0.3

EPC2037 100 1.7 0.014 5 0 0 0.5

EPC8010 100 4 0.043 5 0 0 0.3

EPC2036 100 1.7 0.075 5 0 0 0.6

EPC2007C 100 6 0.17 5 0 0 0.4

EPC2016C 100 18 0.36 5 0 0 0.4

EPC2045 100 16 0.57 5 0 0 0.6

EPC2001C 100 36 0.77 5 0 0 0.3

EPC2032C 100 48 1.27 5 0 0 0.4

EPC2022 100 90 1.4 5 0 0 0.3

EPC2033 150 48 1.16 5 0 0 0.5

EPC2012C 200 5 0.1 5 0 0 0.6

EPC2019 200 8.5 0.2 5 0 0 0.4

EPC2046 200 6 0.285 5 0 0 0.4

EPC2010C 200 22 0.38 5 0 0 0.4

EPC2034 200 48 0.95 5 0 0 0.5

EPC2047 200 32 0.875 5 0 0 0.5

EPC2050 350 6.3 0.42 5 0 0 0.4

IPx65R280C6 650 13.8 0.95 13 0 10 12.5
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Table 4.1: continued

Part No. Vr (V) Ir (A) Cgs (nF) Vc (V) Ve (V) Lg (nH) Rg (Ω)

IPAW60R380CE 600 15 0.7 13 0 10 7.5

IPB60R040C7 600 73 4.37 13 0 10 0.77

IPB65R045C7 650 46 4.34 13 0 10 0.85

IPW60R017C7 600 109 9.89 13 0 10 0.45

IPW60R018CFD7 600 101 9.9 10 0 10 2.7
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4.2.2 Voltage source driving configuration

The simplified schematic of the programmable driver platform is shown in Fig. 4.1. There

are six branches in total, and each branch is made of a voltage source, a bi-directional switch

and an impedance network. In particular, the #3 and #6 branches’ voltage sources are

ground or 0 V. In the voltage source driving configuration shown in Fig. 4.1a, there are

three branches connected to the gate and source node, respectively. As an example, if S2

and S5 are turned on, the steady-state voltage across the gate-source capacitance Cgs will

be (V +
2 − V −

2 ). By selecting different switches from S1, S2, S3 or from S4, S5, S6, a total of

distinctive 3 × 3 = 9 voltages can be achieved. Similarly, if four branches are connected to the

gate node, and two remaining branches are connected to the source node, a total of 4 × 2 = 8

voltage levels can be achieved.

The possibility of many voltage levels and the potential shoot-through of voltage source

driving structure means the switching timing of S1 to S6 must be well controlled. The voltage

sources must be variable in a relatively large range to allow driving different devices. They

also should have sufficient continuous current capability for current driven devices such as SiC

BJT. More implementation details on the timing and voltage source control will be provided

in a later section.

4.2.3 Current source driving configuration

The programmable driver configured as current source driver is shown in Fig. 4.1b. Four

branches #1–#4 are used to control the gate inductor Lg and to direct the inductor current

to charge and discharge the gate-source capacitance Cgs. The resistors R1 and R3 help limit
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(a)

(b)

Figure 4.1: Simplified schematic of the programmable driver platform: (a) multi-level voltage
source driving; (b) current source driving.
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the inductor current. By only switching S1 or S3, the configuration here also provides simple

voltage driving capability if the current driving scheme is not needed for either turn-on or

turn-off transient. Finally, the other two branches #5 and #6 are connected directly to the

source node without any impedance networks. The turn-off clamping voltage can be zero or

negative by turning on S5 or S6.

Take the turn-on transient as an example, the typical current driving waveforms are

shown in Fig. 4.2. S3 and S6 are in on-state prior to the switching action, and the gate-source

voltage vgs is clamped at 0 V. The inductor Lg is first charged by turning on S2, and the

voltage source V +
2 starts charging the inductor current ig. As ig reaches desired current level

Ion, S3 is turned off and the inductor current is directed to charge the gate-source capacitance

Cgs. Neglecting R3, the time duration t1 of Lg being charged by V +
2 is,

t1 =
Lg · Ion

V +
2

. (4.2)

The voltage across Lg during t2 when it is charging the gate-source capacitance is given by

V +
2 − vgs. Because the total gate charge Qg supplied during t2 may be different for different

device operating points, the time duration t2 is usually difficult to determine without detailed

semiconductor device model. As the gate-source voltage vgs reaches desired on-state voltage

level, S1 is turned on and vgs is clamped at V +
1 . In the meantime, S2 is turned off and S4 is

turned on simultaneously to discharge the inductor current ig back to 0. The voltage across

the inductor is −(V +
1 − V −

1 ). Neglecting R1, the time duration of t3 of Lg being discharged

is given by,

t3 =
Lg · I ′

on

V +
1 − V −

1

. (4.3)
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Finally, as the current in Lg discharges back to 0, S4 is turned off and the turn-on transient

finishes. As for the current source turn-off transient, it is effectively the reverse of the turn-on

transient and similar analysis can be applied. Therefore, the programmable driver platform

is flexible to emulate current source driving.

4.2.4 Implementation and control interface

The programmable driver platform can emulate both voltage source and current source

driving schemes. Replacing the resistors in the voltage source driving configuration, the

platform can also emulate various kinds of more complex impedance driving configurations.

A high clock speed controller can help enable precise tuning of the switching action of S1

to S6 to achieve finer control of the switching transient and avoid potential shoot-through

state. In the case of voltage driving in Fig. 4.1a, the variation in the duration of different

voltage levels can help investigate the best driving voltage waveform. In the case of current

driving in Fig. 4.1b, finer timing scale can optimize the gate current level while avoiding

over-charging the inductor current ig and the gate-source voltage vgs. To enable maximum

amount of flexibility in driving voltage, the voltage sources should be also variable.

The overall system implementation architecture is shown in Fig. 4.3. A graphical interface

on a PC sends the various commands through UART to the FPGA, including setting the

voltage sources and the switching timing for each switch S1 to S6. A custom high level data

link control (HDLC) protocol is implemented on top of UART to decipher commands from

the PC to the FPGA. The switching control implementation with FPGA is shown in Fig. 4.4.

For switch Si where i ∈ {1, 2, 3, 4, 5, 6}, the initial condition in the idle state can be set
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Figure 4.2: Example current source driving waveforms with programmable driver platform.

Figure 4.3: Programmable driver platform control architecture.
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Figure 4.4: Switching timing counter implementation with FPGA.
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independently. After the trigger signal from the PC is received, the 100 MHz counter clock

starts first. During this “low speed init” stage, the switches can take a predefined position

different from the idle condition. This allows setting a very long first pulse for double pulse

test. After the 100 MHz clock reaches a designated counter value, the 300 MHz counter

and the “high speed switching” starts. During this stage, whenever the high speed counter

value equals to a pre-programmed counter value Cj
i , Si is toggled. As a simple example,

if after the low speed init stage, S3 and S6 are in on-state and the others are in off-state,

the output voltage is 0 V. If S1 and S3 have the same predefined counter value C1
1 = C1

3 ,

they are toggled at the same time, and the output voltage is changed to V +
1 . Typically,

at least two cycle is inserted between the switching actions to avoid shoot-through. The

implementation here allows up to eight 14 bits counter values which means the maximum

number of switching actions is eight and the maximum duration of definable switching actions

is (214 − 1)/300 MHz = 54.6 µs. This provides sufficient timing length and resolution for

typical double pulse test.

The voltage source control is achieved with digital potentiometers in the feedback loop

of either switch-mode power supplies (Buck-Boost converter) or linear voltage regulators.

The FPGA talks to the digital potentiometer through serial peripheral interface (SPI). The

digital potentiometers are 10-bit, which enables up to 1024 different voltage levels for the

power supplies. Finally, the hardware setup when two programmable drivers are connected

to a GaN HFET phase-leg is shown in Fig. 4.5. The connection between the branches and

the switching power stage is achieved with catellated vias at the printed circuit board edge,

as shown in Fig. 4.6. The direct board-to-board connection helps reduce the overall gate loop

inductance.
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Figure 4.5: Programmable driver platform hardware setup with GaN HFETs.

Figure 4.6: Castellated vias connection between programmable driver and switching power
stage.
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Also note that the implementation here can be reproduced with cheaper off-the-shelf

components once the driving scheme design is finished and the optimal driving strategy is

found. The switches can be replaced with common gate driving buffer ICs while the timing

can be achieved with FPGA, DSP, or even simple RC delay circuits.

4.3 Experimental Demonstration

As a demonstration of the flexibility offered by the programmable driver platform, several

semiconductor devices are showcased here, including Si IGBT, SiC MOSFET, SiC BJT and

GaN HFET.

4.3.1 Multi-level voltage driving with Si IGBT

A Si IGBT is driven with the programmable driver platform to demonstrate the basic

two levels as well as the multi-level voltage driving capability. The basic timing control is

also shown. The device used is the 1700 V 42 A IXBH42N170 from IXYS. The device is

connected as in Fig. 4.1a. The voltage source driving waveforms are shown in Fig. 4.7.

In the multi-level voltage driving case, V +
1 = 20 V, V −

1 = 10 V, V −
1 = 8 V, V −

2 = 3 V. The

initial conditions for the switches are ~S = {0, 0, 1, 0, 0, 1}. When S3 and S6 are turned on, the

voltage across the gate-emitter terminal is 0 V. At t = 0, the PC sent the switching trigger

signal to the FPGA, and the high resolution counter starts. During the turn-on transient

of the IGBT, S2 and S3 are first toggled together to apply V +
2 = 10 V at the gate-emitter

terminal. After 150 clock cycles or 0.495 µs, S1 and S2 are then toggled together to output

V +
1 = 20 V. After another 150 clock cycles, S5 and S6 are then toggled together and the
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Figure 4.7: IGBT voltage source driving experimental waveforms: two level voltage driving
(blue); six level voltage driving (red).
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output voltage is V +
1 − V +

2 = 17 V. Finally, S5 and S6 are toggled again, and the output

voltage is back to 20 V.

In terms of transient characteristics, by adding an intermediate voltage level of 10 V

during the turn-on transient, the switching speed is effectively slowed down and the turn-on

current spike is greatly reduced. Similarly in the turn-off transient, as the gate-source voltage

traverses through the plateau, the gate voltage bias is reduced to -3.0 V and then to -8.0 V

instead a constant 0 V. This results in a faster turn-off transient and faster voltage rise edge.

4.3.2 Variable driving voltage With SiC MOSFET

Typically, the turn-off transient in SiC MOSFETs can be quick enough that the channel is

pinched off before the drain-source voltage vds drops to zero [23]. It is sometimes desirable to

speed up the turn-off transient to reduce the turn-off loss. SiC MOSFET’s threshold voltage is

typically lower than that of Si IGBT which increases the risk of crosstalk [45]. Because of these

reasons, negative driving voltage is usually applied for SiC MOSFET. As a demonstration of

the programmable driver’s capability to clamp the device at different voltages in off-state, the

900 V 35 A SiC MOSFET C3M0065090J from Wolfspeed is characterized here. The devices

are connected as in Fig. 4.1a. The experimental comparison between 0 V and -3.5 V off-state

bias using the programmable driver platform is shown in Fig. 4.8.

Compared to 0 V off-state bias, the most significant difference by using -3.5 V off-state

bias is the much shorter turn-off delay time. The dv/dt and di/dt are also slightly higher in

the -3.5 V case.
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Figure 4.8: SiC MOSFET voltage source driving experimental waveforms: 0 V off-state
voltage (blue); -3.5 V off-state voltage (red).
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4.3.3 Impedance driving with SiC MOSFET

The SiC MOSFET is also driven with an impedance to demonstrate the impedance source

driving capability. The experimental configuration is shown in Fig. 4.9. In the two-level

driving case, only the first branch is used and V +
1 = 15.0 V and R1 = 4.7 Ω. In the impedance

driving case, the second branch is also utilized to create an intermediate voltage level, and

V +
2 = 19 V, R2 = 2.2 Ω and C2 = 4.7 µF.

The experimental waveforms are shown in Fig. 4.10 Compared to the simple two-level

voltage source driving, the impedance source driving slows the switching transient down and

results in a lower dv/dt. However, because of the lower initial current spike, the resulting

turn-on energy loss is lower than the faster two-level driving. The turn-on energy loss is

reduced from 27.67 µJ to 26.42 µJ.

4.3.4 Current source turn-off with SiC BJT

Unlike the SiC MOSFET, SiC BJT is a minority carrier device which experiences charge

sweep-out in the turn-off transient. This results in relatively large turn-off loss compared to

a SiC MOSFET whose turn-off loss can be negligible. In this case, it is desirable to speed up

the turn-off transient to achieve lower turn-off loss. The device under test here is the 1200 V

45 A SiC BJT GA20SICP12-263 from GeneSiC. The devices are connected as in Fig. 4.1b.

The experimental comparison between simple two level voltage source driving and current

source driving using the programmable driver platform is shown in Fig. 4.11.

The experimental result verifies the current source driving capability of the programmable

driver platform. The current source driving effectively speeds up the turn-off transient by first
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Figure 4.9: SiC MOSFET impedance driving experimental waveforms.

Figure 4.10: SiC MOSFET impedance driving experimental waveforms.
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Figure 4.11: SiC BJT turn-off transient comparison: voltage source driving (blue); current
source driving (red).
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charging the inductor to around −0.5 A. The precharged inductor current greatly shortens

the plateau region in the vgs from around 100 ns in the voltage source driving case to around

60 ns in the current source driving case. The overall switching transient is reduced from

around 200 ns to around 85 ns. The dv/dt and di/dt is also significantly increased which

results in lower switching loss.

4.3.5 Crosstalk mitigation with GaN HFET

For high speed wide-bandgap semiconductors, crosstalk can introduce significant extra

power loss during the switching transient [45]. A simple and effective method to mitigate the

crosstalk is applying voltage bias when the device is in off state. Unlike MOSFET where

there is a parasitic anti-parallel diode, GaN HFETs reverse conduction exhibits much higher

voltage drop and on-state resistance. For GaN HFETs, negative voltage bias means very high

reverse conduction loss due to its unique reverse conduction behavior.

The reverse conduction loss can be particularly detrimental for high frequency applications

such as wireless power transfer. In the case of 6.78 MHz wireless power transfer application,

the very high switching frequency means each switching cycle is only 147 ns. In this case, it is

desirable to minimize the time duration of the negative gate voltage while avoiding crosstalk.

As a demonstration of the fine timing tuning capability of the programmable driver platform,

GaN HFETs GS66508T from GaN Systems are tested here. The devices are connected as

shown in Fig. 4.1a.

The experimental setup is shown in Fig. 4.5. Only S1, S3, S4 and S6 are used here. The

combination of S1 and S6 provides the on-state voltage, while the combination of S3 and S6
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Figure 4.12: Timing diagram with programmable driver platform for GaN HFETs crosstalk
mitigation.

(a)

(b)

Figure 4.13: Programmable driver platform GaN HFET crosstalk mitigation: (a) 0 V; (b)
-1.0 V, t1 = 100 ns, t2 = 100 ns.
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(c)

(d)

Figure 4.13: Programmable driver platform GaN HFET crosstalk mitigation: (c) -3.0 V,
t1 = 50 ns, t2 = 50 ns; (d) -3.0 V, t1 = 16.5 ns, t2 = 50 ns (cont.).
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(e)

(f)

Figure 4.13: Programmable driver platform GaN HFET crosstalk mitigation: (a) 0 V; (b) -1.0
V, t1 = 100 ns, t2 = 100 ns; (c) -3.0 V, t1 = 50 ns, t2 = 50 ns; (d) -3.0 V, t1 = 16.5 ns, t2 =
50 ns; (e) -3.0 V, t1 = 16.5 ns, t2 = 10.0 ns; (f) -3.0 V, t1 = 16.5 ns, t2 = 6.6 ns (cont.).

117



provides the zero voltage off-state bias. By turning on S3 and S4, the voltage source V −
1 is

applied across the gate-source terminal which results in a negative voltage bias if V −
1 > 0.

The voltage source V +
1 = 6 V is the turn-on voltage. The voltage source V −

1 is adjusted to

fine tune the off-state bias voltage.

The simplified timing diagram for the high side driving voltage vgH and low side driving

voltage vgL is shown in Fig. 4.12. There are three variables that we would like to optimize

here: (1) negative gate driving voltage −V −
1 , (2) negative pulse leading time t1, and (3)

lagging time t2. Specifically, the lagging time t2 is of particular interest because this is when

the reverse conduction loss happens.

If the lower device simply uses 0 V gate voltage for turn-off, the crosstalk is quite significant

as shown in Fig. 4.13a. The lower device gate-source voltage vgs reaches nearly 2.0 V as the

upper device turns on. The current spike is also particularly significant. When applying a

-1.0 V negative voltage bias as shown in Fig. 4.13b, the crosstalk phenomena get slightly

better but the gate source voltage vgs still crosses over the threshold voltage of 1.1 V. When

further applying a -3.0 V negative voltage bias as shown in Fig. 4.13c, the gate source

voltage vgs is suppressed below 0 V during upper device turn-on and the current spike is

also effectively reduced. The leading and lagging time are then reduced gradually from this

point. In Fig. 4.13d, the leading time t1 is reduced to 16.5 ns without any difference in the

switching waveforms. In Fig. 4.13e, the lagging time t2 is reduced to 10.0 ns, also without

inducing any crosstalk, although the gate-source voltage vgs marginally crosses over 0 V.

When the lagging time is further reduced to 6.6 ns as shown in Fig. 4.13f, the crosstalk

phenomena came back and the gate-source voltage vgs crosses over the threshold voltage and

the current waveform ids exhibits distortion. In conclusion, in this case, the best combination
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is V −
1 = 3.0 V, t1 = 16.5 ns, and t2 = 10.0 ns.

4.4 Conclusion and Discussion

The programmable driver platform capable of emulating both voltage source and current

source driving scheme is described. Multi-level and adjustable voltage driving is demonstrated

with Si IGBT and SiC MOSFET. Current source driving is showcased with SiC BJT to

reduce the turn-off loss. Fine voltage level and switching timing tuning is demonstrated

with GaN HFET crosstalk mitigation. The platform proves to be a useful tool for power

electronics designer to quickly drive different switching devices. Given the flexibility of the

programmable driver platform offers, many more driving schemes and optimization could be

performed and evaluated.
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Chapter 5

Switching Transient Current

Measurement with Combinational

Rogowski Coil

5.1 Introduction

Current measurement and monitoring technique is critical for understanding and modeling

switching devices. SiC devices exhibit much faster switching capability and smaller parasitic

capacitances than Si counterparts. Furthermore, recent packaging technique improvements

have enabled smaller and smaller power loop inductance for SiC MOSFET modules [89],

[104]. The switching transient oscillation frequency determined by the parasitic capacitance

and inductance is therefore greatly increased. In order to capture the current waveform

faithfully, the current sensor or probe must possess sufficiently high measurement bandwidth.

Furthermore, the switching transient behavior of SiC MOSFETs is sensitive to the power loop
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parasitic inductance [21]. However, threading the power loop current through a current sensor

invariably results in a larger power loop area. The resulting extra power loop inductance

must be kept as small as possible.

There are several high-bandwidth current measurement techniques [52]. Resistive current

shunts can achieve very high bandwidth up to several GHz but are limited to non-continuous

pulse operation due to heat dissipation [53], [54]. Current transformers can achieve up to 250

MHz measurement bandwidth but the cross-sectional area is quite large due to the magnetic

material saturation limitation [55]. The resulting extra power loop area when routing the

power loop conductor around the current transformer is therefore also large. Rogowski coils

are another widely used type of current sensor based on the Faraday’s induction law [56]. The

helix coil directly measures the derivative of the current, which is then reconstructed by a

passive or active integrating circuit [57]. The state-of-the-art commercial Rogowski coil has a

small circular cross-sectional area with a diameter of 3.5 mm but the measurement bandwidth

is limited to 50 MHz [58]. A Rogowski coil with up to 225 MHz bandwidth is demonstrated

in [59], but numerical integration with oscilloscope is required and the sensitivity is quite low

due to the low number of turns. Reference [60] proposed an integrated Rogowski coil for a

GaN power stage, but the measurement bandwidth is not explicitly given.

On the other hand, the lesser-used self-integrating Rogowski coils can exhibit linear

instead of differentiating output with respect to the measured current [105]. Instead of a

single return turn going through the center of the coil, a layer of copper shielding covers the

entire coil from outside, as shown in Fig. 5.1. In this simplified schematic, the circular helix

winding is wrapped around with insulating and shielding material. The coil is terminated

between one end of the winding and the shielding. The other end of the winding is connected
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Figure 5.1: Simplified schematic of a shielded Rogowski coil.
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to the shielding. The parasitic capacitance between the coil winding and the shielding can

achieve passive integration in the high frequency range [57], [106], with higher bandwidth

up to hundreds of MHz. However, in the aforementioned literature, the coils are quite large

whose diameters are at least in tens of millimeters. Therefore, they are also not suitable for

SiC MOSFET measurement.

In this paper, a combinational Rogowski coil concept is proposed, which utilizes both

the self-integrating and differentiating characteristics of a shielded Rogowski coil. The

measurement bandwidth is greatly increased, while the cross-sectional area is kept small to

minimize the extra power loop inductance. The coil is implemented on printed circuit boards

(PCB) and can be easily integrated into the switching power stage. The design methodology

and practical considerations are also provided, including the parasitic element model and error

analysis. Network analyzer measurements verify the measurement bandwidth of experimental

prototypes can be up to 300 MHz. SiC MOSFET module double pulse tests with either

standalone or integrated combinational Rogowski coil power stage further shows the coil can

faithfully capture the switching transient current.

5.2 Combinational Rogowski Coil Concept

5.2.1 Shielded coil characteristics

Assuming the parasitic inductance and capacitance are evenly distributed along the coil,

the equivalent distributed element circuit model for a shielded Rogowski coil is shown in

Fig. 5.2. The turn-to-turn capacitance and AC winding resistance are neglected to simplify
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*

Figure 5.2: Simplified distributed element circuit model of a shielded Rogowski coil assuming
all elements are evenly distributed.
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the analysis. The inductance Lp represents the primary side conductor carrying the measured

current. The coil is terminated with a load resistance of Rl. The coil self inductance is

denoted as Ls. The winding to shielding capacitance is denoted as Cg. And the mutual

inductance between the primary side conductor and the coil is denoted as M . The superscript

prime represents the per-unit-length value in Fig. 5.2. The transfer impedance from the input

current I and the output voltage V is given by [105]

Zt =
V

I
=

M

Ls

· 1

R−1
l − jZ−1

0 cot (ω
√

LsCg)
, (5.1)

where Z0 =
√

Ls

Cg
is the wave impedance of the coil.

A transfer impedance example over the frequency spectrum is shown in Fig. 5.3. The

transfer impedance clearly shows distinctive behaviors in different frequency regions. In the

lower frequency spectrum, the coil appears differentiating. The gain increases at a rate of 20

dB/decade and the phase angle is at 90◦. Inspecting (5.1), when Z−1
0 cot

(
ω
√

LsCg

)
≫ R−1

l ,

the coil output behaves as a typical Rogowski coil,

Zt ≈ jωM. (5.2)

From 3 MHz to 400 MHz, Fig. 5.3 shows that the coil output becomes linear. From (5.1),

when Z−1
0 cot

(
ω
√

LsCg

)
≪ R−1

l , the output of the coil will be proportional to the primary

side current and appears linear or self-integrating,

Zt ≈ RlM

Ls

. (5.3)
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Figure 5.3: Transfer impedance of combinational Rogowski coil #1.
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Because of the periodic nature of the cot function, the linear response region appears in

many high frequency bands. The first frequency band immediately after the differentiating

region can be used for the current sensing purpose. The primary side current signal starts

being distorted at the first oscillation point, and the rest of high frequency spectrum response

cannot be used to reconstruct the current signal. The lower and higher frequencies of the

first self-integrating band can be found by equating the previous frequency band conditions,

BWL =
arctan Rl

Z0

2π
√

LsCg

, (5.4)

BWH =
π − arctan Rl

Z0

2π
√

LsCg

. (5.5)

In the example shown in Fig. 5.3, BWL ≈ 3 MHz and BWH ≈ 400 MHz. In fact, typically

the coils are designed so that BWH ≫ BWL and we can leverage the self-integrating region

to extend the bandwidth. Therefore, we have arctan Rl

Z0

≪ π and the bandwidth expressions

can be further simplified,

BWL ≈ Rl

2πLs

, (5.6)

BWH ≈ 1

2
√

LsCg

. (5.7)

5.2.2 Combinational Rogowski coil

The combinational Rogowski coil concept here measures the current signal by utilizing

both the differentiating and self-integrating region. The differentiating region below BWL is

integrated by an integrator circuit. And the self-integrating region above BWL is directly
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Figure 5.4: Signal processing circuit candidate for the combinational Rogowski coil.
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fed to the output. Corresponding to the coil behavior, the analog signal processing circuit

must exactly match the transition frequency BWL, below which it appears integrating and

above which it appears linear. A possible analog signal processing circuit candidate is shown

in Fig. 5.4. It is trivial to see the transfer function for this simple non-inverting integrator

circuit is

vo

vi

= 1 +
1

sRC
. (5.8)

Therefore, to have a flat measured current to output voltage response, we have

BWL =
1

2πRC
. (5.9)

Because the integrator circuit has unity gain beyond BWL, the overall sensor gain is

clearly determined by the linear gain in the self-integrating region, as given in (5.3). From

(5.3), (5.6) and (5.7), it is trivial to see that the load resistance Rl determines the overall

gain and the lower self-integrating frequency. A smaller load resistance Rl means a lower

gain and a lower transition frequency BWL. The higher bandwidth BWH , however, is only

dependent on the natural oscillation frequency of the Rogowski coil. Therefore, it is beneficial

to minimize the parasitic elements to achieve the highest possible BWH . Note though, the

performance of the analog signal processing circuit in (5.8) is ultimately limited by the

op-amp’s bandwidth. This means the overall higher bandwidth is also limited by the choice

of op-amp.
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(a)

(b)

Figure 5.5: Shielded Rogowski coil design example with 0.4 mm PCB: (a) PCB geometry
and winding layout; (b) PCB layer stackup.
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5.2.3 Coil hardware implementation

As alluded previously, it is beneficial to create a small coil for higher BWH . The

experimental prototypes are therefore built on printed circuit boards (PCB) with down to

3 mil spacing. The coil implementation approach is shown in Fig. 5.5. The coil is built on

a 4-layer PCB. The helix winding is woven in the middle two layers. Blind vias between

these two layers are used to connect the traces. The major and minor radius of the winding

is denoted as R and r, respectively. The winding height hc is determined by the distance

between the middle layers. The top and bottom layer acts as the shielding layers. Full-stack

vias are used to connect the shielding together. The insulation height hs between the winding

and shielding is again determined by the PCB stack up. The load resistance is connected

directly to the winding terminal and the shielding. A SMA connector is then connected in

parallel to feed the signal to the analog signal processing circuit.

5.3 Coil Models and Practical Considerations

5.3.1 Parasitic element model

Because the shielded Rogowski coil’s performance is solely determined by its parasitic

elements, analytical models for these elements can greatly facilitate the coil design optimization.

Given the Rogowski coil shape in Fig. 5.5, the mutual inductance M0 between the primary

side conductor and the coil is given by

M0 =
µ0

2π
Nhc log

R + r

R − r
, (5.10)
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where N is the number of turns, hc is the winding height and the same as the distance

between the PCB inner layers.

The per-unit-length winding-to-shielding capacitance C ′
g can be approximated by the

asymmetrical stripline capacitance [107],

C ′
g =

1.10 × 10−10ǫr

ln 2(2hs+hc)
0.268w+0.335t

(pF/m), (5.11)

where w and t are the width and thickness of the PCB winding copper trace, and ǫr is the

relative permittivity of the PCB substrate material.

The parasitic inductance L′
s is more convoluted. Reference [105] argues there are two

independent contributions of inductance which are the wire-over-ground-plane inductance L′
1

and the helix winding inductance L′
2 for circular shielded Rogowski coils. Similarly, the first

part can be calculated by [107],

Zs =
80

ǫr

(
1 − hs

4(hs + hc)

)
· ln

1.9(2hs + t)

0.8w + t
, (5.12)

L′
1 = C ′

gZ2
s . (5.13)

The second part can be written as

L2 =
µ0

2π
N2hc ln

R + r

R − r
. (5.14)

Then the self-inductance L′
s can be calculated by L′

s = L′
1 + L′

2. However, the assumption

that these two inductances are independent and orthogonal may not be true. As the frequency
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increases, the magnetic field distribution inside the coil will crowd between the winding and

shielding due to the AC proximity effect. Therefore, the calculated self-inductance L′
s may

be overestimating, especially in the high frequencies. This means the linear gain, transition

frequency BWL and higher frequency BWH will all be underestimated.

5.3.2 Mutual inductance error analysis

Given the implementation approach and parasitic element model in the previous section,

it is already possible to formulate an optimization problem on the coil design. However, just

like conventional differentiating Rogowski coils, the mutual inductance suffer from eccentric

and tilting errors because of nonuniform or sparse winding [108].

M =
µ0hc

2π
ln

(
R + r

R − r

)
N∑

i=1

cos θ√
1 − sin2 θ sin2 iα ·

√
sin2 θ cos2 iα + cos2 θ

. (5.15)

M =
µ0hc

2π

N∑

i=1

ln

(
R2 + ∆R2 − 2R∆R cos iα + Rr − ∆Rr cos iα

R2 + ∆R2 − 2R∆R cos iα − Rr + ∆Rr cos iα

)
. (5.16)

Ideally, the primary side conductor is placed at the center of the Rogowski coil and goes

through it perpendicularly to the coil plane. However, in reality, the primary side conductor

can be tilted and at an angle θ against the normal of the coil plane, as shown in Fig. 5.6.

The actual mutual inductance M can be found by summing the mutual inductance of each

turn, and the expression is given in (5.15), where α = 2π
N

represents the spanning angle of

each turn.

Assuming the major radius R = 7.0 mm, the minor radius r = 0.5 mm, and the coil

height hc = 0.2 mm, numerical calculation gives us the variation of mutual inductance M
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Figure 5.6: Tilted primary side conductor in Rogowski coil.

Figure 5.7: Eccentric primary side conductor in Rogowski coil.
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Figure 5.8: Variation of mutual inductance M when primary side conductor is tilted with
different number of turns N .
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Figure 5.9: Variation of mutual inductance M when primary side conductor is eccentric with
different number of turns N .
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when the primary side conductor is tilted and sweeping the total number of turns N . The

numerical sweeping result is shown in Fig. 5.8. When the tilting angle θ is small, there is

little difference between the actual mutual inductance M and the ideal mutual inductance

M0. However, when the primary side conductor is tilted towards 90◦, the change in mutual

inductance is particularly significant when the number of turns N is small. This means to

achieve a consistent measurement for different tilting angle, the winding density should be as

dense as possible.

Another non-ideal condition is when the primary side conductor is eccentric and placed at

a distance of ∆R to the center of the coil, as shown in Fig. 5.7. Likewise, the actual mutual

inductance M is found by summing the mutual inductance of each turn, and the expression

is given in (5.16). Similarly, having the winding as dense as possible clearly results in a more

consistent measurement.

In summary, like a traditional Rogowski coil, the winding density must be sufficiently dense

to ensure the mutual inductance is consistent no matter where the primary side conductor is

placed. The above analysis provides a design boundary for the number of turns N . In the

given example, N > 45 to ensure the maximum mutual inductance error is less than 5.0%.

5.3.3 High frequency behavior distortion

Note that in Fig. 5.2, it is assumed that each segment of the distributed circuit shares

the same per-unit-length parameters. While this is true for the self-inductance L′
s and

winding-to-shielding capacitance C ′
g, the mutual inductance M ′ distribution becomes uneven

when the primary side conductor is not at its ideal location. To illustrate the impact of
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Table 5.1: Combinational Rogowski coil #1 parameters

Parameter Value
No. of Turns N 54
Major Radius R 7.50 mm
Minor Radius r 0.50 mm
Coil Height hc 0.20 mm
Shielding Height hs 0.08 mm
Copper thickness 1.0 oz
Trace width 3.0 mil
Load Resistance Rl 0.50 Ω
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(a)

(b)

Figure 5.10: Rogowski coil eccentricity high frequency distortion: (a) θ = 0◦, ∆R = 0; (b)
θ = 180◦, ∆R = 0.3R.
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(c)

(d)

Figure 5.10: Rogowski coil eccentricity high frequency distortion: (c) θ = 180◦, ∆R = 0.8R;
(d) θ = 90◦, ∆R = 0.8R.
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uneven mutual inductance distribution, the primary side conductor is assumed eccentric here.

The mutual inductance of each turn is first calculated. The distributed circuit model SPICE

netlist is then automatically generated with a script, where each turn is modeled as a single

segment. The parameters of the coil design used for analysis is shown in Table 5.1.

The variation in transfer impedance with different eccentric angle θ and eccentric distance

∆R is shown in Fig. 5.10. In Fig. 5.10a, the primary side conductor is placed perpendicularly

at the center of the coil, the high frequency behavior is exactly the ideal case, as shown in

Fig. 5.3, with higher measurement bandwidth at around 400 MHz. However, as the primary

side conductor moves away from the center, as shown in Fig. 5.10b and Fig. 5.10c, where

∆R = 0.3R and ∆R = 0.8R respectively, the high frequency behavior becomes distorted.

The distortion appears most significant when the primary side conductor is placed at θ = 90◦

with respect to the terminal of the coil. As shown in Fig. 5.10d, when ∆R = 0.8R, the

distortion at the first resonance is a lot more severe and the usable measurement bandwidth

(±3 dB) is reduced to around 300 MHz.

The analysis here clearly shows the high frequency behavior is also subject to variation

when the primary side conductor is not at its ideal location. This means the actual usable

bandwidth is lower than the designed value, and enough bandwidth margin must be kept to

ensure the final bandwidth is sufficient. On the other hand, it also suggests that if applicable,

the primary side conductor should be located ideally at the dead center of the coil. It is

later shown that it is trivial to do so when embedding the coil in the switching power stage.

Finally, this also means the coil winding must be evenly distributed, otherwise the unevenly

distributed mutual inductance would distort the high frequency behavior.
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5.4 Coil Designs and Performance Verification

5.4.1 Coil high frequency performance measurement

Two experimental prototypes are built and tested. The first prototype coil #1 is shown

in Fig. 5.3 and Table 5.1. The sensitivity or gain is around −53.0 dBΩ or 2.2 mΩ, which is

more suitable for higher current measurement. The second prototype coil #2 is shown in

Fig. 5.11 and Table 5.2. The sensitivity is around −36.3 dBΩ or 15.3 mΩ. Compared to

coil #1, #2 is much smaller with a major radius of only 2.0 mm. The upper measurement

bandwidth according to the model is also a lot higher, beyond 500 MHz. Therefore, #2 is

more suitable to measuring lower current devices.

Both prototypes are show in Fig. 5.12. The coil #2 is very small, with the whole coil

smaller than the SMA connector. The measurement setup is also illustrated with the coil #2.

An SMA cable is striped near its end and the center conductor is bent to create a small loop

and shorted to the external ground shielding. The small loop is wrapped around the coil to

act as the primary side conductor. The shorted cable is connected to the port 1 of a network

analyzer and the coil output is connected to the port 2. The network analyzer used here is

the Keysight E5061B, sweeping from 500 kHz to 500 MHz. The transfer impedance Zt can

be obtained by converting from the S -parameter measurement result,

Zt =
2S12

(1 − S11)(1 − S22) − S12S21

Zo, (5.17)

where Zo = 50 Ω.

The measurement results of both coils are shown in Fig. 5.13. Note that the measurement

142



Table 5.2: Combinational Rogowski coil #2 parameters

Parameter Value
No. of Turns N 20
Major Radius R 2.00 mm
Minor Radius r 0.50 mm
Coil Height hc 0.80 mm
Shielding Height hs 0.11 mm
Copper thickness 1.0 oz
Trace width 3.0 mil
Load Resistance Rl 0.50 Ω

Figure 5.11: Transfer impedance of combinational Rogowski coil #2.
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(a)

(b)

Figure 5.12: Combinational Rogowski coil prototypes: (a) coil #1 built on 0.40 mm PCB;
(b) coil #2 built on 1.20 mm PCB.
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(a)

(b)

Figure 5.13: Combinational Rogowski coil prototypes high frequency network analyzer
measurement result: (a) coil #1; (b) coil #2.
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setup is essentially the worst case for the mutual inductance uneven distribution. The primary

side conductor loop has the strongest possible coupling with the turn it immediately encircled.

As expected, the high frequency distortion is quite significant in both coils. Nevertheless,

the usable measurement bandwidth (±3 dB) for coil #1 is around 300 MHz and for coil

#2 is around 382 MHz. The measurement result of coil #1 also appears more noisy. This

is because the gain of the coil is much lower than coil #2. The high frequency response

is not completely flat for both coils, which is probably because of the high frequency AC

resistance impact. Comparing the measurement result to the model prediction in Fig. 5.3

and Fig. 5.11, both the transition frequency BWL and the gain Zt are higher than the model.

Like previously discussed, this is expected since the self-inductance L′
s calculation tends to

overestimate its value.

5.4.2 Overall behavior with analog signal processing circuit

The analog signal processing circuit is implemented with LTC6228, which has a rail-to-rail

output. The power supply for the op-amp is ±5.0 V. As an example, the overall performance

of coil #2 is shown with the integrator circuit. The high frequency response is measured in

the same way as with the coil high frequency response. The primary side conductor made

from the SMA cable short loop is connected to port 1. The Rogowski coil is connected

with the integrator input terminal, and the integrator output is directly fed to the port 2 of

network analyzer. The measurement result is shown in Fig. 5.14. The op-amp circuit further

created some high frequency distortion, and its high frequency response is not particularly

flat and the overall measurement bandwidth is reduced to around 300 MHz. Also note that at
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Figure 5.14: Low and high frequency transfer impedance measurement with coil #2 and
signal processing circuit.
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around the transition frequency of around 4 MHz, the gain is not very flat. This is likely due

to the integrator circuit component mismatch. Nevertheless, the concept here is verified and

the integrator circuit directly outputs the high frequency components of the Rogowski coil.

The lower frequency response between 100 Hz to 500 kHz is measured with the gain/phase

measurement on the Keysight E5061B. The measurement result is also shown in Fig. 5.14. The

sensor exhibits a very flat response from around 400 Hz all the way to 500 kHz. Therefore,

the analog signal processing circuit works as intended, integrating all the low frequency

components. The measurement below 1 kHz is particularly noisy, though, likely because of

the op-amp circuit intrinsic noise.

5.4.3 Double pulse test with standalone coil

The coil #1 is tested in a standalone fashion, and the test setup is with SiC MOSFET

module CAS325M12HM2 which is rated at 1200 V and 400 A. As a comparison between

the commercial current probe TCP0030A (50 A, 120 MHz) and the Rogowski coil, the

measurement setup deliberately created a large loop in the switching power loop, as shown

in Fig. 5.15. The Rogowski coil is hidden under the current probe.

Because of the large power loop and the limited 50 A maximum current capability of

TCP0030A, the double pulse test was performed at relatively low voltage and current. The

waveform comparison is shown in Fig. 5.16. Because of the relatively low current and the low

sensitivity of coil #1, the measurement noise is relatively significant in the Rogowski coil.

The turn-on transient comparison between them shows nearly the same measurement result

in the rising edge and the oscillation afterwards. Therefore, it is proved the combinational
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Figure 5.15: Standalone Rogowski coil double pulse test comparison with commercial current
probe.
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Rogowski coil concept works as intended.

5.4.4 Double pulse test with integrated coil

To further demonstrate the capability of integrating the coil into the PCB design, the

coil #2 design is embedded into the switching power stage for SiC MOSFET module

CCB021M12FM3, which is rated at 1200 V and around 50 A. The PCB layout is shown

in Fig. 5.17a. The PCB design uses 6 layers with a total thickness of 2.0 mm. The 3rd

to 6th layers share the same stackup as the coil #2 in Table 5.2. The hardware setup is

shown in Fig. 5.17b. MMCX connectors are used to feed the integrated coil voltage to the

off-board integrator circuit. The turn-on transient voltage and current waveform is shown in

Fig. 5.18. The current probe is measuring the load current instead. The switching transient

oscillation frequency is around 79 MHz. With the integrated Rogowski coil, the turn-on

transient waveforms are captured faithfully with negligible interference into the power loop.

5.5 Conclusion and Discussion

The combinational Rogowski coil concept is proposed here. The self-integrating char-

acteristics of shielded Rogowski coils can be utilized to extend the overall measurement

bandwidth. The design methodology and practical considerations are provided. The parasitic

element models can facilitate the design, while the error and distortion analysis define the

design boundary considerations. Experimental prototypes built with PCB demonstrate a

measurement bandwidth of more than 300 MHz. The integrated power stage also shows the

concept shows an noninvasive approach for measuring and monitoring the switching transient
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(a)

(b)

Figure 5.16: Double pulse test waveform comparison between standalone Rogowski coil and
commercial current probe: (a) overall; (b) turn-on transient.
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(a)

(b)

Figure 5.17: Integrated Rogowski coil double pulse test setup with SiC MOSFET module
CCB021M12FM3: (a) PCB layout; (b) hardware setup.
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Figure 5.18: Integrated Rogowski coil turn-on transient voltage and current waveform.
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current of SiC devices. The combinational Rogowski coil here is also a promising technique

to build a standalone current probe for more general-purpose use, given its high bandwidth

and small profile. Future work could involve on further improving both the lower and higher

bandwidth performance. The gain flatness may also be improved. Given the PCB design

here is a closed-loop rigid circle, it may also be interesting to further develop open-ended

flexible coils to improve the ease-of-use.
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Chapter 6

Output Filters Design and Comparison

for SiC-Based Motor Drive

6.1 Introduction

SiC MOSFETs are capable of much higher output voltage slew rate, thanks to its faster

switching speed. However, the high voltage slew rate may damage the motor insulation due

to the wave reflection [61]. In the worst case, the reflected waves are compounded and the

resulting voltage stress may exceed twice the DC link voltage [81]. The sharp voltage edge

may also make the voltage distribution inside motor windings uneven, resulting in insulation

failure [82]. Furthermore, it has been reported that the fast pulsing capacitive charging and

discharging may degrade the insulation in the long term [109], [110]. Therefore, the high

output voltage slew rate poses a serious threat to the motor’s long term reliability. On the

other hand, in deep sea mining or other industrial applications where long cables are needed,

the requirement for reliability and efficiency is dominant [111].
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(a)

(b)

Figure 6.1: Simplified circuit schematic for sinewave and dv/dt filter: (a) sinewave filter; (b)
dv/dt filter.
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Numerous solutions to these issues have been developed and evaluated over the years.

The simplest solution is putting a line termination network consisting of a simple RC filter at

the motor terminal to match the cable impedance [62]. While the wave reflection problem is

alleviated, the voltage slew rate at the motor terminal is still pretty high and the termination

capacitor may result in excessive power loss. An active terminator using diodes to clamp the

motor terminal voltage is proposed in [63]. Likewise, although the wave reflection issue is

gone, the sharp voltage edge is still present at the motor terminal. A more popular solution,

the dv/dt filter, is shown in Fig. 6.1b and has been widely investigated [64]–[71]. Instead

of the configuration in Fig. 6.1b, [64] integrates the filter inductor into the converter bus

bar and connection cable. Reference [65] put the branch of filter capacitor and resistor in

parallel with the filter inductor to reduce the power loss. Reference [66] introduces diode

clamping circuit to further limit the voltage overshoot. In addition to diode clamping, [67]

put a RC circuit in the diode clamping circuit to help with the EMI. Reference [68] proposes

to connect the middle point of the filter capacitors back to the middle point of the DC link

to improve EMI. Reference [69] integrates the common mode inductor with the dv/dt filter.

Reference [71] combines both the common mode inductor and connects the neutral point

back to the middle point of DC link. Reference [70] investigates the effectiveness of using

two dv/dt filters in series.

On the other hand, another filter solution, the sinewave filter shown in Fig. 6.1a, has long

been considered more expensive, costly and lossy [72]. However, with the high switching

frequency capabilities from wide-bandgap devices, they are now being evaluated again.

Reference [73] compares the system efficiency of GaN HFET and Si MOSFET motor drive.

Reference [74] demonstrates a sinewave filter in GaN HFET motor drive while damping the
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sinewave filter with both analog and digital filters.

In addition to the passive filters, active filters involving the switching control of the

inverter have also been proposed. In [112], [113], an active dv/dt filter is demonstrated

which controls the charging and discharging time of a LC filter to shape the output voltage.

However, much more complex gate driving control is required, and the switching frequency is

effectively tripled.

Given SiC MOSFETs’ faster switching speed capability, the design comparison between

sinewave and dv/dt filter is carried out on the system level. The higher switching frequency

capability should allow a higher corner frequency for sinewave filter and leads to a better

physical size or loss. With the faster switching speed capabilities of SiC MOSFETs, various

system level parameters’ impact on the comparison are also discussed.

6.2 Filter Design Methodology

6.2.1 System-level requirements

No matter what filter topology is used, to limit the reduction of maximum amount of

voltage across the motor, the filter inductance insertion voltage drop should be small. The

percentage voltage drop is,
∣∣∣∣∣

jω0Lf,max

Zlc + jω0Lf,max

∣∣∣∣∣ ≤ εv, (6.1)

where ω0 is the system fundamental angular frequency, Zlc is the motor impedance in parallel

with the filter capacitor branch at nominal condition, and εL is the allowed insertion voltage

loss and here the requirement is assumed to be εv = 0.02. Note that for sinewave filter, Zlc is
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essentially the load impedance in parallel with the filter capacitor. For dv/dt filter, typically

the filter capacitance is very small and Zlc is dominated by the load impedance and Zlc ≈ Zl.

Because the corner frequency of sinewave filters is much lower than the switching frequency,

the sinewave filter capacitor may result in significant fundamental frequency capacitive current.

Like the filter inductor, another requirement may be brought up for the filter capacitance.

However, the capacitive current results in capacitor conduction loss and potentially higher

switching device conduction loss. Therefore, by optimizing for a lower overall system loss,

the capacitive current or capacitance value will be automatically limited.

For any motor load, the motor current total harmonics distortion (THD) translates into

output torque ripple. Sufficiently high PWM switching frequency fsw is usually required to

limit the output torque ripple. In other words, there is a lower boundary fsw,min so that

THDi ≤ εT HD, (6.2)

where εT HD is the motor current THD requirement and it is assumed here that εT HD = 0.02.

Finally, the output voltage dv/dt requirement is limited by both the cable length and the

motor specification. To avoid the wave reflection along the cable connection, the cable length

l must meet the quarter-wavelength requirement

l ≪ λ

4
, (6.3)

where the wavelength is determined by the frequency components in the voltage rising and

falling edges. Given the relationship between rise time and its dominant frequency component
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[107], we have
(

dv

dt

)
≪ c′Vd

1.4l
, (6.4)

where c′ is the wave propagation speed in the cable. On the other hand, the motor also

typically has a maximum dv/dt specification like in NEMA standard, which can be around

3.0 V/ns to 5.0 V/ns. The overall dv/dt requirement is determined by the more stringent

one of the two.

6.2.2 Sinewave filter design

As shown in Fig. 6.1a, the sinewave filter involves two design parameters, the filter

inductance Lf and capacitance Cf . Because it is desired to minimize the filter size, the

corner frequency for the sinewave filter has to be as high as possible. On the other hand, the

converter output voltage is in PWM so there is a risk of LC oscillation for the undamped

sinewave filter. Therefore, the corner frequency is placed much lower than the switching

frequency,

1

2πLfCf

=
1

10
fsw. (6.5)

In addition to the load current THD requirement, the lower boundary of the switching

frequency fsw is also bounded by

1

2πLfCf

≫ f0, (6.6)

so the impact on fundamental frequency components is minimal. The upper boundary is

implicitly included in the overall power loss optimization because higher switching frequency

results in higher semiconductor switching loss.
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The corner frequency is not enough to define both the filter inductance and capacitance.

Therefore, the filter inductance Lf is swept from a small value to Lf,max. Each combination

of fsw, Lf and Cf is simulated in MATLAB/Simulink. The simulation result, namely the

converter, filter and load voltage and current, are then used to perform the filter physical design

and calculate the system level loss. The filter physical design mainly involves optimizing the

filter inductor design, which will be discussed in a later section. The system level power loss

includes the device MOSFET switching loss Pswc, conduction loss Pcnd, capacitor conduction

loss Pcap, inductor copper loss Pcop and magnetic core loss Pcore. The loss calculation methods

will also be discussed later.

6.2.3 Dv/dt filter design

Compared to the sinewave filter, the dv/dt filter’s corner frequency is much higher than

the switching frequency. Given the dv/dt filter in Fig. 6.1b, assuming the cable and motor

load appear as an open circuit during the switching transient, and the source voltage is an

ideal step voltage from 0 to Vd, the output voltage Vo of the dv/dt filter is given by

Vo

Vd

= 1 − e
−t

Rf

Lf

(
cosh

t∆

2Lf

− Rf

∆
sinh

t∆

2Lf

)
, (6.7)

where ∆ =
√

R2
f − 4Lf

Cf
.

The rise time from zero to Vd is given by

tr =
2Lf

∆
· atanh

∆

Rf

. (6.8)
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When the filter is critically damped Rf = 2
√

Lf

Cf
and ∆ = 0, the rise time can be found

with L’Hopital’s rule,

tr,c =
√

LfCf . (6.9)

To simplify the analysis, it is assumed that the dv/dt filter is always in the critically

damped condition. Therefore, given a critically damped filter and a motor drive with a

output voltage slew rate requirement of dv/dt,

√
LfCf =

Vd

dv/dt
. (6.10)

Similar to the sinewave filter, the dv/dt filter inductance is swept from a small value

to the maximum value Lf,max, and physical design for inductor and loss calculation are

performed. Note that, in the dv/dt filter, the filter capacitance Cf is charged and discharged

every switching cycle. Instead of capacitor equivalent series resistance loss, the capacitor loss

Pcap for a dv/dt filter is the loss on the damping resistance Rf . The loss behavior is similar

to charging and discharging the gate capacitance, the capacitor loss Pcap for dv/dt filters is

given by

Pcap = fswCfV 2
d . (6.11)

Finally, the overall filter design comparison flowchart is shown in Fig. 6.2. Simulation,

loss calculation and inductor physical design are performed for every combination of sinewave

and dv/dt filter design. The best case for each filter topology is selected for comparison.
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Figure 6.2: High-level simplified sinewave and dv/dt filter design procedure.
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6.2.4 Loss calculation method

The switching device switching loss is approximated by linear interpolation,

Eon(Vd, IL) = Eon,0 · Vd

Vd,0

· IL

IL,0

, (6.12)

Eoff (Vd, IL) = Eoff,0 · Vd

Vd,0

· IL

IL,0

, (6.13)

where Eon,0 and Eoff,0 are the device datasheet provided turn-on and turn-off energy loss,

and Vd,0 and IL,0 is the datasheet DC link voltage and load current testing condition. Note

that typically SiC MOSFETs switching loss has little dependence on junction temperature,

so it is assumed Eon and Eoff are consistent across different temperatures. The switching

loss is then given by

Pswc = f0



∑

Ion

Eon(Vd, Ion) +
∑

Ioff

Eoff (Vd, Ioff )


 , (6.14)

where Ion and Ioff are the list of turn-on and turn-off instant load current in a fundamental

cycle. In practice, Ion and Ioff are obtained through MATLAB/Simulink simulation.

On the other hand, the conduction loss calculation takes the junction temperature Tj into

consideration. Given the Rds,on = Rds(Tj) relationship from datasheets, the conduction loss

Pcnd = I2
rmsR

2
ds(Tj) is calculated by iteratively and numerically solving

(Rjc + Rca)
(
Pcnd(Tj) + Pswc

)
= Tj − Ta, (6.15)

where Rjc and Rja are the junction-to-case and junction-to-ambient thermal resistances, Ta
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is the ambient temperature is assumed to be 50◦C.

The inductor copper loss is simply assumed to the DC resistance condution loss,

Pcop = RwindingI2
ind. (6.16)

As for the inductor core loss, it is calculated by separating and major and minor loops as

in the IGSE method [114],

Pmag = Vcf0

∫ 1/f0

0
ki

∣∣∣∣∣
dB

dt

∣∣∣∣∣

α

(∆B)β−αdt, (6.17)

where Vc is the volume of the magnetic core.

6.2.5 Toroidal powder core inductor design

The filter inductor typically takes up a major part in the system weight. The inductor

copper and core loss also greatly depends on the magnetic core material and geometry. In

order to have an apple-to-apple comparison, instead of restricting the cores to commercially

available ones, it is assumed here that the core geometrical dimensions are free variables.

In other words, we have the freedom to select the optimal core shape and achieve an ideal

inductor design. Given a toroidal shape with a rectangular cross section, there are three

geometrical variables, namely the inner diameter Di, outer diameter Do and height H, as

shown in Fig. 6.3. As for the inductor winding, the design choices include the winding wire

gauge or cross-sectional area Aw and the number of turns Nt. In some cases, it is preferable to

connect multiple inductors in series to achieve higher inductance. So another design variable
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is the number cores Nc.

The optimization goal may be to minimize the weight of the inductor, which can be

written as

m = Nc

(
π

4
H
(
D2

o − D2
i

)
ρc + (2H + Do − Di)NtAwρw

)
, (6.18)

where ρc and ρw are the density of the core and wire, respectively. If the goal is to minimize

the enclosure volume of the inductor, the objective function is

V = NcH
(
π (0.5Do + Dw)2

)
, (6.19)

where Dw is the diameter of the winding wire.

As for the design constraints, the winding must fit into the center window of the toroid,

π

4
D2

i ≥ kfNtAw, (6.20)

where kf is the filling factor. Another constraint is the inductance L must be within design

tolerance,

Lr =
2µrµ0NcN

2
t Ac

π(Do + Di)
∈ [

(1 − εl)L0, (1 + εl)L0

]
, (6.21)

where µr is the relative permeability at DC, ε is the design tolerance and here εl = 0.02.

Another consideration in inductor design is the core saturation. Given a tolerance of

inductance change at maximum current to be ǫs, another constraint is

µs

µr

=
1

a + b(NtImax)c
≥ 1 − εs, (6.22)
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Figure 6.3: Toroidal powder core geometrical shape and relevant design parameters.
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where a, b, c are the permeability coefficient when under load and usually provided by

manufacturers, Imax is the inductor maximum current and is obtained through simulation.

The saturation tolerance here εs = 0.05.

Finally, the winding wire gauge is limited by the maximum current density [115],

Irms

Aw

≤ Jm, (6.23)

where Jm is the maximum current density and Irms is the root-mean-square (rms) value of

the inductor current. For open windings, the maximum current density is assumed to be 6.0

A/mm2.

The optimization problem here is a mixed-integer nonlinear programming problem and can

be attempted with commercial software like MATLAB. As an interesting example, assuming

Irms = 20 A, Imax = 30 A, the optimization problem is solved for desired inductance between

10 µH to 600 µH. The core material is assumed to be FluxScan 60µ from Micrometals. The

design objective is to minimize the inductor weight. The toroidal powder core inductor design

results are shown in Fig. 6.4. Interestingly, the optimal weight increases almost linearly with

the desired inductance. It is also shown that it is better to go for two inductors in series for

larger inductances L > 420 µH.

6.3 Filter Comparison and Switching Frequency Impact

The nominal condition load parameters are listed in Table 6.1. Simple LR loads are

used to represent the motor load impedance in rated condition. The load power factor is
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Figure 6.4: Toroidal inductor design optimization example.
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assumed to be 0.83, which is typical for induction machines. The DC link voltage is at 650

V and the load RMS current is around 15 A. The ambient temperature Ta is assumed to

be 50◦C. The SiC MOSFET C2M0080120D from Wolfspeed is used here. Three cases with

different fundamental frequency are compared here. Because higher fundamental frequency

mandates higher switching frequency given the same current THD requirement, we can study

the impact of switching frequency. The motor load dv/dt requirement is assumed to be 2.5

V/ns to leave sufficient margin.

6.3.1 Dv/dt filter design sweep

The dv/dt filter design results for the three different cases are shown in Fig. 6.5. Because the

overall system loss is of interest, the per phase loss breakdown for each filter inductance sweep is

shown. Looking at each case itself, the MOSFET conduction loss Pcnd and switching loss Pswc

remain nearly constant for all cases. Because the dv/dt filter only target switching transient

frequency components, the current flowing through each MOSFET remains unchanged. It is

also evident that the inductor copper loss Pcop increases with larger inductance value. This is

expected because larger inductance means more number of turns and larger magnetic core.

The inductor core loss Pcore stays negligible for all scenarios, as the load current THD or ripple

is small and the powder core material is relatively efficient. However, comparing Fig. 6.5a

and Fig. 6.5c, the capacitor charging and discharging loss Pcap is clearly more pronounced

when the fundamental or switching frequency is higher, which is not a surprise because

Pcap is proportional to the switching frequency fsw. The capacitor loss Pcap starts becoming

dominant in higher frequency applications, which may require extra heat dissipation. This
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Table 6.1: Nominal condition load parameters and system-level requirements

Parameter Value
Power factor 0.83
Nominal voltage (V) 395
Nominal current (A) 15.2
Load resistance (Ω) 12.5
Fundamental frequency (Hz) 100 300 600
Load inductance (mH) 13.2 4.4 2.2
Minimum switching frequency (kHz) 4.6 13.8 27.5
Voltage loss εv 0.02
Load current THD εi 0.02
Motor maximum dv/dt (V/ns) 2.5
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suggests dv/dt filters are suitable for high frequency applications.

It should also be noted that for Fig. 6.5b and Fig. 6.5c, the overall loss exhibits a somewhat

“saturated” behavior. In Fig. 6.5c, for example, when the filter inductance increases from

60.6 µH to 79.4 µH, the per-phase power loss only decreases from 40.3 W to 37.6 W. On the

other hand, each filter inductor’s weight increases from 109 g to 136 g. Therefore, in these

cases, it might be beneficial to sacrifice the power loss a little bit and to gain some advantage

in filter weight.

6.3.2 Sinewave filter design sweep

The sinewave filter design results are shown in Fig. 6.6. The larger filter capacitors are

usually film capacitors, and it is assumed that the equivalent series resistance (ESR) is 3 mΩ.

In some of the results, especially when the filter inductance is small, the loss axis may appear

very short and shows up a flat square. This is because the capacitive current draw from

the filter capacitor is too large, and the junction temperature of the SiC MOSFET exceed

its maximum rating. These results should be neglected. Comparing across the different

fundamental and switching frequencies, we can also observe a similar “saturation” behavior.

Sometimes further increasing the filter inductance does not change the overall per-phase loss

anymore. As the switching frequency increases, smaller filter inductance and capacitance can

be utilized, but comes with the sacrifice of higher switching loss. Comparing with the dv/dt

filter design result in Fig. 6.5, the filter inductor shows higher core loss, as the filter capacitor

current results in much higher current ripple in the filter inductor.

In Fig. 6.6a, we can already see the benefits of the sinewave filter. With fsw = 31.5 kHz,
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(a)

(b)

Figure 6.5: Filter design per phase loss breakdown for dv/dt filter: (a) f0 = 100 Hz; (b)
f0 = 300 Hz; (c) f0 = 600 Hz.
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(c)

Figure 6.5: Filter design per phase loss breakdown for dv/dt filter: (a) f0 = 100 Hz; (b)
f0 = 300 Hz; (c) f0 = 600 Hz.
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Lf = 337.3 µH and Cf = 9.34 µF, the per-phase power loss is only 23.6 W. In Fig. 6.5a,

the best case with dv/dt filter at f0 = 100 Hz, where Lf = 92.7 µH and Cf = 0.73 nF,

results in a per-phase power loss of 26.9 W, around 14% higher than the sinewave filter.

However, the optimal dv/dt filter design results in a much smaller filter inductance value and

lighter inductor. The sinewave inductor weighs 363 g while the dv/dt inductor weighs 167 g.

As the fundamental frequency f0 increases, the sinewave filter starts to become even more

advantageous. With f0 = 600 Hz, the optimal sinewave filter is achieved at fsw = 84 kHz,

Lf = 42.5 µH, and Cf = 10 µF. The per-phase loss is 27 W. However, with dv/dt filter at

f0 = 600 Hz, the optimal case has a filter inductance of 79.4 µH and a filter capacitance of

0.98 nF. The resulting per-phase loss is 37.6 W. The dv/dt filter inductor weighs 136 g while

the sinewave filter only weighs 105 g.

In conclusion, the sinewave filter may be more attractive for SiC MOSFET inverters,

especially if the switching frequency is high. Thanks to the lower switching loss of SiC

MOSFETs, the switching frequency could be deliberately increased to allow smaller filter

inductance and capacitance, while the switching loss takes a minimal impact.

6.4 Experimental Verification

To illustrate and verify the potential benefits of sinewave filters over dv/dt filters, the

experimental converter and load setup is established and shown in Fig. 6.7. The experimental

load is the same as the 600 Hz case in Table 6.1, where Rl = 12.5 Ω and Ll = 2.2 mH.

The interconnecting cable between the load and the inverter is around 15 ft. The higher

fundamental frequency is shown to favor sinewave filter in the previous section. The pulse
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(a)

(b)

Figure 6.6: Filter design per-phase loss breakdown for sinewave filter: (a) f0 = 100Hz; (b)
f0 = 300Hz; (c) f0 = 600Hz.
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(c)

Figure 6.6: Filter design per-phase loss breakdown for sinewave filter: (a) f0 = 100Hz; (b)
f0 = 300Hz; (c) f0 = 600Hz.
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wave modulation (PWM) strategy here is the simple sinusoidal PWM. The load current is in

open-loop and is guaranteed the same through carefully adjusting the modulation index so

the load current is the same on the oscilloscope.

The filter choices are listed in Table 6.2, which corresponds to the cases close to the

optimal ones in Fig. 6.5c and Fig. 6.6c. The filter inductors are wound on the same powder

core FS-300060 from Micrometals, which is the closest available core geometry suitable for

the desired inductance. The inductors are shown in Fig. 6.8. The winding is made from

two AWG#16 wires in parallel. The dv/dt filter inductor requires more windings. Also note

that because it is not practically possible to achieve the optimal inductor design due to the

available core geometries, the resulting inductor weight and overall system-level power loss

would be different. But still, we can see that the sinewave filter inductor takes less number of

turns.

The comparison between the inverter output voltage and the load phase-to-neutral voltage

is shown in Fig. 6.9. The inverter output voltage is measured between the phase A output to

the inverter ground. The load voltage with or without dv/dt filter is measured between at

the A phase input and the load neutral point. The SiC MOSFET’s very sharp rise edge is

greatly slowed down after the dv/dt filter, around 2.0 V/ns and below 2.5 V/ns. Without

the dv/dt filter, the load sees very high voltage overshoot, nearly twice the DC link voltage.

Note that the load voltage measurements show significant oscillation, which is likely due to

the measurement setup where the load neutral point is very far away from the differential

probe. In the filter inductor current waveforms also shown in Fig. 6.9, the current is nearly

pure sinusoidal with little harmonics as expected.

As a comparison, the line-to-line voltage waveforms of the inverter output and the load
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(a)

(b)

Figure 6.7: Filter loss comparison experimental (a) converter and (b) load setup.
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Table 6.2: Filter comparison experimental setup

Sinewave Dv/dt
Core FS-300060
No. of turns 25 34
Filter inductance (µH) 42.5 78.6
Filter capacitance (nF) 10,000 1.0
Filter resistance (Ω) - 600
Switching frequency (kHz) 84.0 27.5

Figure 6.8: Sinewave (left) and dv/dt (right) filter inductors comparison.
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side are shown in Fig. 6.10. The line-to-line voltage of the inverter has very sharp rise and fall

edge, just like the phase voltage. However, after the sinewave filter, the load voltage is nearly

completely sinusoidal, which means the load current will also be nearly sinusoidal. In the

inverter output current waveforms, on the other hand, there is a lot more harmonics content

due to the filter capacitor. Although the RMS value of the phase current is almost the same

as in dv/dt filter, the higher harmonics and resulting higher peak current means the SiC

MOSFET sees a higher load current during the switching transient, which may negatively

impact the switching transient voltage overshoot across the MOSFETs.

The inverter input and output power figures are listed in Table 6.3. Compared to the

optimal design results in Fig. 6.5c and Fig. 6.6c, the power loss is a bit higher, which is likely

due to the non-optimal inductor design. Still, the dv/dt filter shows nearly 25.8% higher

loss than the sinewave filter, proving that sinewave filters are more advantageous for higher

frequency applications. The actual per-phase loss is also compared against the previous

model. The prediction for the dv/dt filter is very close to the actual loss, with a difference of

only 2.2%. The small difference could be due to the difference in the thermal model between

experimental setup and the model. For the sinewave filter, the difference is slightly larger at

7.5%. The reason could be the higher harmonics current in the sinewave filter results in AC

copper loss, which is not included in the previous loss model.

6.5 Conclusion and Discussion

The high output voltage slew rate of PWM voltage source inverters can be detrimental to

the load. The popular choices of dv/dt filter and sinewave filter are compared on the overall
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Figure 6.9: Dv/dt filter experimental waveforms.

Figure 6.10: Sinewave filter experimental waveforms.
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Table 6.3: Filter system level loss comparison

Sinewave Dv/dt
Input (kW) 9.94 9.97
Output (kW) 9.82 9.82
Total loss (W) 120.0 150.9
Actual per-phase loss (W) 40.0 50.3
Predicted per-phase loss (W) 37.0 49.2
Efficiency (%) 98.79 98.50
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system level loss basis. It is shown that given the higher switching frequency capabilities of SiC

MOSFETs, the sinewave filters are especially beneficial for scenarios where the fundamental

frequency is high. Not only the overall system level loss is lower, the filter inductor can also

be significantly smaller.

This work can be further extended by looking at other system parameters like the load

power factor, DC link voltage and load current. Non-nominal conditions like light load or

startup process can also be interesting to look into. The higher current ripple in the sinewave

filter inductor can also mean higher peak switching transient current. The impact on the

noise spectrum and overvoltage stress can also be part of the future work.
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Chapter 7

Conclusion and Potential Future Work

7.1 Summary

Various issues related to the fast switching speed of power semiconductors are treated

in this dissertation. Key results and contributions in the previous chapters are summarized

below.

1. The unique properties of switching transient overvoltages are discussed in Chapter 2.

The turn-off overvoltage exhibits strong nonlinearity with the faster switching SiC

MOSFET, while the turn-on overvoltage shows little dependence of load current condi-

tion. Numerical modeling approach with neural net is also presented, and it is shown

that the switching transient overvoltage can be accurately predicted to guide the device

selection.

2. As the switching speed increases, the parasitic elements’ impact become more pro-

nounced. A new abnormal oscillation pattern, “self-turn-on” is reported with a trench
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MOSFET. The common source inductance and the unconventional nonlinear parasitic

capacitance force the MOSFET channel to turn on again during the turn-off tran-

sient, resulting in significant voltage and current spikes and potentially loss of control.

The findings could help with the semiconductor device and packaging design. The

large-signal models also contribute the understanding of switching transient stability.

3. Gate drivers are the key component regulating the switching transient behavior. With

the advent of wide-bandgap semiconductors, a wide range of switching devices have

been available. A programmable gate driver platform is proposed to meet the need for

fast and easy semiconductor device driving with different schemes. The platform can

greatly facilitate the evaluation of devices and optimization of gate driving schemes.

4. The faster switching speed also presents challenges for device switching transient

measurement and monitoring. The combinational Rogowski coil concept is proposed

to achieve both high-bandwidth and small electrical footprint. Design methodologies

and practical considerations are presented. Experimental prototypes proved that the

concept can achieve up to 300 MHz bandwidth while introducing little interference to

the power loop. The concept here is an enabling technology for switching transient

measurement, and can be instrumental for semiconductor protection and monitoring

purpose.

5. The high output voltage slew rate may negatively impact the motor load insulation,

especially when connected with a long cable. Leveraging the faster switching frequency

and lower switching loss capability of SiC MOSFETs, it is shown that sinewave filters

can be both more efficient and more compact than dv/dt filters, especially in high
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frequency applications. The optimization methodology and filter comparison result

here can help guide future output filter design and selection for motor drive application.

7.2 Potential Future Work

While the contributions answer the corresponding issues, several interesting topics and

potential future work are pointed out here.

1. The required information and parameters for switching transient modeling purpose can

not be obtained solely from the datasheets. The numerical modeling approach can be

greatly enhanced with a more streamlined and standardized procedure.

2. The gain flatness of the combinational Rogowski coil is immediately determined by

the hand-off region between the integrator and the self-integrating Rogowski coil. A

better tuning approach can help achieve better gain flatness. The lower measurement

bandwidth is also relatively high. DC current sensors could be potentially integrated

into the combinational Rogowski coil to achieve even better functionality and adapt to

wider application scenarios.

3. The comparison between the sinewave and dv/dt filters is performed with a LR load

due to the motor load availability. The design comparison could further consider non-

nominal conditions, such as startup or light load. Besides the fundamental frequency,

other system parameters, including power factor, DC link voltage and converter voltage

levels, may also impact the comparison result.
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