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ABSTRACT 

Assistive devices serve as a potential for restoring sensorimotor function to impaired individuals. 

My research focuses on two assistive devices: a passive shoulder exoskeleton and a muscle-

driven endoprosthesis (MDE). Previous passive shoulder exoskeletons have focused on testing 

during static loading conditions in the shoulder. However, activities of daily living are based on 

dynamic tasks. My research for passive shoulder exoskeletons analyzes the effect that a 

continuous passive assistance has on shoulder biomechanics. In my research I showed that 

passive assistance decreases the muscular activation in muscles responsible for positive 

shoulder exoskeleton. An MDE has the potential to have accurate and precise control of 

movement as well as restore a sense of proprioception to the user. Such a transformative and 

invasive device has never previously been tested. Therefore, my research focused on analyzing 

fundamental principles of the MDE in an in-vivo rabbit model. The two concepts I tested in my 

research were the feasibility of implanting an orthopedic device underneath the skin at the distal 

end of a limb following amputation and the locomotor restorative capabilities of an artificial tendon 

used for muscle-device connection. In my work I proved the feasibility of implanting fully-footed 

rigid endoprostheses underneath the skin and isolated the primary factors for a successful surgery 

and recovery. In addition, my research showed that although artificial tendons have the potential 

to restore locomotor function, proper in-situ tendon lengths must be achieved for optimal 

movement. This research informed the design and testing of a fully jointed muscle-driven 

endoprosthesis prototype.  
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CHAPTER 1. INTRODUCTION 

 Have you ever experienced an injury or impairment that prevented you from performing 

basic everyday tasks? If so, you might have recovered your normal functional ability. But what 

would you do if it were impossible for you to ever return to normal function? Unfortunately, this is 

the case for millions of people across the world. Their primary hope in ever living a normal life 

again rests in the use of “assistive devices”. Whether they provide rehabilitation or physical 

enhancement, assistive devices are artificial devices intended to restore natural movement and 

sensation to people struggling to perform basic activities of daily living (ADLs). Assistive devices 

have the potential to help  someone with moderate to severe disability live a normal, independent 

life. Research in the field of assistive devices focuses on improving upon previously existing 

devices or innovating a new device that can help people like never before. This dissertation 

addresses both improving upon a previous concept for shoulder assistive devices and developing 

a state-of-the-art assistive device for limb reconstruction. The work presented in this dissertation 

marks critical steps towards clinical translation of both assistive devices to eventually restore daily 

independence to severely disabled populations. 

MOTIVATION 

The CDC estimates that, in 2020, approximately 26% of Americans suffer from some form 

of disability or motor impairment [1]. Motor impairments, which disable functional movement, are 

linked to a variety of conditions, including: injury [2-4], comorbidities from old age [5], stroke [6], 

and various medical conditions [7, 8], among others. People with motor impairment struggle to 

perform basic ADLs [9-11]. ADLs are basic activities required to function independently in daily 

life. There is an ever growing need to develop interventions that can restore functional ability and, 

in turn, the ability to independently perform ADLs back to affected individuals. 

The pursuit of restoring this quality of life to disabled individuals has influenced a focus in 

biomechanics and engineering towards the development of assistive devices designed to 
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enhance or restore motor function. Assistive devices are typically designed for specific motor 

impairments, such as exoskeletons and orthoses for muscle weakness and joint instability [12-

15] or prostheses for amputation [16, 17]. My research is focused on two assistive devices for 

prevalent conditions that lead to a lack of motor function: (1) a passive shoulder exoskeleton to 

enhance function and aid in rehabilitation following shoulder impairment and (2) an implantable, 

muscle-driven endoprosthesis (MDE) to reconstruct a limb following amputation. 

RESEARCH OBJECTIVES AND APPROACH 

 The overall research objective of this dissertation is to analyze the feasibility and 

functionality of key characteristics of the two assistive devices, the passive shoulder exoskeleton 

and the MDE, and their effect on user biomechanics.  This research will help inform and optimize 

the device design and ensure safety and effectiveness to support clinical translation. The research 

activities are divided into two research focuses, based on the assistive device, with five total 

research objectives: 

FOCUS 1: Research Objective 1: Determine the effect of continuous passive anti-gravity 

assistance on able-bodied muscle activations and shoulder kinematics during dynamic and static 

phases of shoulder elevation movements. The results will indicate the potential of wearable 

passive shoulder exoskeletons to lower muscle functional requirements and restore movement. 

FOCUS 2: Research Objective 2.1: Determine the feasibility of fully enclosing an 

unjointed stem endoprosthesis in vivo in the hindlimb of a rabbit model of transtibial amputation. 

We will use an iterative study approach, determining factors in the surgery, device design, and 

post-surgical care that influence outcomes. Research Objective 2.2: Analyze reactionary 

changes in the skin structure of the rabbit hindlimb ex vivo caused by interaction with an unjointed 

stem endoprosthesis. We will analyze the changes in the skin through histology and microCT 

imaging of the residual limbs that successfully recover from implanting an unjointed 

endoprosthesis.  
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Research Objective 3.1: Measure healthy joint kinematics and vertical ground reaction 

forces in the rabbit hindlimb during the stance phase of hopping. Our approach will include a novel 

method for noninvasive rabbit locomotor function testing. Research Objective 3.2: Analyze the 

effect of an artificial, suture-based tendon on joint kinematics and vertical ground reaction forces. 

The artificial tendons will replace select biological tendons that cross the ankle in the rabbit 

hindlimb. The results from Research Objectives 2 and 3 will provide new information about 

fundamental aspects of an MDE prior to in vivo testing of MDE prototypes. 

CHAPTER SUMMARY 

In chapter 2, I overview fundamental concepts critical to understanding the scope of my 

dissertation. I first give an overview of biomechanics, looking at the experimental methodology, 

natural human movement, and the subfields within biomechanics. Next, I discuss shoulder 

anatomy and injury mechanisms, followed by a review of common assistive devices used as 

interventions for shoulder impairment in the context of informing the research performed in 

chapter 3. I then discuss different types of amputation alongside various methods for prosthetic 

intervention. I present the idea that integrating biological tissue into prosthetic design could 

increase the sensorimotor function of limb replacement. This idea motivates the research 

performed in chapters 4-7 towards the development of a muscle driven endoprosthesis. Finally, I 

overview the rabbit model which we use for testing of our prosthesis design concepts and give a 

summary of the work presented in this dissertation.  

In chapter 3, I study the effect of continuous passive overhead assistance on shoulder 

biomechanics, specifically looking at how continuous assistance affects the muscular activity of 

muscles crossing the shoulder joint. This study has implications towards the efficacy of using 

assistive devices for continuous passive assistance to help with activities of daily living. The 

results indicate the potential of wearable passive shoulder exoskeletons to lower muscle 

functional requirements and restore movement. 
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In chapter 4, I analyze the feasibility of implanting a prosthesis completely underneath the 

skin at the distal end of a residual limb following amputation in a rabbit hindlimb. I show the results 

from iterative attempts to implant an unjointed stem endoprosthesis in the rabbit hindlimb and 

discuss the critical factors in the surgery, device design, and post-surgical care that influence 

outcomes for successful implantation. 

In chapter 5, I further analyze the ex vivo skin tissue of rabbits with “successful” outcomes 

from chapter 4. I compare both computed tomography (CT) scans and histology slides of the 

residual skin covering the endoprosthesis with healthy contralateral control samples to identify 

potential anatomical changes in the skin in reaction to the endoprosthesis. 

In chapter 6, I present a method for noninvasive motion capture for capturing the hindlimb 

biomechanics of a rabbit. Additionally, I also report data of healthy rabbit hindlimb biomechanics 

to use as reference or control data in future studies. 

In chapter 7, I apply the motion capture technique presented in chapter 6 to rabbits that 

have undergone surgical artificial tendon replacement on major tendons crossing the hindlimb 

ankle joint. I present the results suggesting that rabbits with artificial tendon replacement can 

maintain locomotor function. 

Finally, I discuss concluding remarks, limitations, and potential future work for these 

projects in chapter 8. 
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CHAPTER 2. BACKGROUND INFORMATION 

BIOMECHANICS 

Biomechanics of Movement 

Biomechanics is the study of the structure, function, and movement of the mechanical 

aspects of biological tissue. Movement biomechanics encompasses both kinesiology and 

engineering and focuses on the interaction between bone, muscle, tendon, and ligament that 

produces movement in a living being. By treating the body as a mechanical system, biomechanics 

allows for quantification of human movement to better understand musculoskeletal function. Using 

principle of dynamics, where the bone is treated as a rigid body, muscle is treated as a force 

applicator, and ligaments and tendons are treated as spring-damper linkages, biomechanists can 

measure, model, and predict human movement.  

Measuring human movement biomechanics can be broken down into measuring the 

position of bones, the angle of joints (kinematics), and the forces within joints and on bones, 

through either internal muscle force, joint reaction, or reaction with the outside world (kinetics). In 

humans, kinematics are traditionally measured through motion capture using reflective markers. 

Infrared cameras track reflective markers placed on the skin on top of bony landmarks. These 

markers are digitized into rigid segment representations of bone based on scaling from the 50th 

percentile person [18]. The relation between bones is tracked and used to calculate joint angles 

through various functional and experimental activities. Forces acting on or the effect of muscles 

acting within the body are measured using force sensors and electromyography (EMG), 

respectively. Force sensors, such as force plates [19, 20] for the lower limb or grip sensors [21] 

for the upper limb, measure the force that the body puts on an external object such as the ground 

or a handheld object. EMG electrodes placed across the muscle can measure the neuromuscular 

activity during tasks. This measured activity can be normalized against a muscle’s maximum 

voluntary contraction (MVC) to estimate what percentage of maximum muscle activation is 
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occurring during specific movements. The forces of the muscles on the bone can then be 

calculated using anatomical measures of muscle architecture [22]. Through these various 

dynamic measuring techniques, biomechanical function can be measured to quantify a person’s 

ability to perform functional tasks. Additionally, these same techniques could also reveal 

impairments in a person when compared to healthy biomechanical function. 

Gait Patterns 

Gait is the set or pattern of limb movements that generate a specific form of locomotion 

[23]. Three common gait patterns in humans are walking, running, and skipping gait that all require 

different kinematics patterns of movement caused by different muscle coordination patterns [24, 

25]. Common measurements used to define human gait include joint and limb kinematics, ground 

reaction force, stride length, stride width, cadence, and velocity [23, 26-29]. These metrics can all 

be used to compare gait patterns between different experimental groups to determine the effect 

of an impairment or intervention. 

Humans have a unilateral gait cycle where the right and left leg move in symmetric 

patterns with offset timing from each other. A full gait cycle refers to the time period between when 

one foot makes initial contact with the ground twice. Human gait can be subdivided into different 

phases (Fig. 2.1) [30]. The two primary phases of gait are stance phase and swing phase. Stance 

phase is the time period between initial contact of the foot (“foot strike” or “heel strike”) and when 

the foot terminates contact with the ground (“toe off”). Each of these phases can be further divided 

into subphases. Stance phase can primarily be broken down into loading response and forward 

propulsion, or terminal stance [31]. The division between these two phases happens when the 

knee movement transitions from flexion to extension. The period where the knee joint is static is 

sometimes referred to as mid-stance. Similarly, swing phase can be broken down between initial 

swing and terminal swing, based on either flexion or extension of the knee joint, respectively.  
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Figure 2.1. Overview of Gait Terminology and Phase Breakdown. 
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FOCUS 1: SHOULDER ASSISTANCE THROUGH A PASSIVE SHOULDER 

EXOSKELETON 

Shoulder Anatomy and Movement 

Anatomically, the shoulder is a joint consisting of a closed kinematic chain comprising the 

thorax, clavicle, scapula, and humerus as well as the muscles and ligaments that connect these 

bone [32]. The scapula, or shoulder blade, is a triangular shaped bone on the posterosuperior 

portion of the thorax. The clavicle, or collarbone, is a long, curved bone on the anterosuperior 

portion of the thorax. The humerus is a long bone in the arm that branches the shoulder with the 

elbow and has an ellipsoidal head at the proximal end. The shoulder kinematics mechanism 

includes three synovial joints, the sternoclavicular joint, the acromioclavicular joint, and the 

glenohumeral (GH) joint, as well as one non-synovial joint, the scapulothoracic joint. Primary 

movement in the shoulder joint occurs at the glenohumeral and scapulothoracic joints. The 

glenohumeral joint, the connection between the glenoid (the concave lateral end of the scapula) 

and the proximal humeral head, is commonly considered the main shoulder joint. However, 

movement in the scapulothoracic joint contributes greatly to the high mobility of the shoulder. The 

scapula rests on the posterior aspect of the thorax and is held to the thorax by muscles that either 

originate or insert into the scapula. Due to this, during shoulder movement, the scapula slides 

along the thorax, and its position is determined solely by the muscles attached to it. 

 There are 11 muscles that cross the shoulder joint (Fig. 2.2) [33]. The four muscles that 

immediately surround the glenohumeral joint are the supraspinatus, infraspinatus, subscapularis, 

and teres major, which together comprise the rotator cuff. The rotator cuff muscles originate from 

the scapula and insert into the proximal humeral head. Because the glenoid fossa does not 

encapsulate the humeral head, the rotator cuff serves as the primary stability that holds the 

glenohumeral joint together [34]. Additionally, the rotator cuff muscles are major contributors to 

shoulder movement. The remaining muscles that cross the glenohumeral joint are the deltoid, 

teres major, pectoralis major, latissimus dorsi, coracobrachialis, the long head of triceps, and the  
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Figure 2.2. Shoulder Anatomy Overview. (Left) Anterior View of the Shoulder. The right arm of the person 

shows superficial muscles and the left arm shows deep muscles. (Right) Posterior View of the Shoulder. The right 

arm of the person shows superficial muscles and the left arm shows deep muscles. 
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long and short heads of biceps. Some of these muscles, such as the deltoid [35] and pectoralis 

major [36] can be further subdivided into compartments that can be individually activated. 

 Due to both the minimal contact area between the glenoid and the proximal humeral head 

and the scapulothoracic articulation, the shoulder boast the greatest range of motion of any joint 

in the body. The movement of the scapula relative to the thorax (i.e. scapular kinematics) has 

become a focal point of research in understand shoulder mobility and injury mechanisms [37-43]. 

In 2000, Karduna, et al. [39] introduced the concept of how the movement of the scapula altered 

the Euler angle decomposition of the shoulder. Prior to this, the motion of the scapula was 

considered planar, only measuring upward rotation, because that was the only rotation that could 

be assessed clinically. Karduna, et al. found that all Euler sequences showed significantly 

different rotations for at least two different humeral elevation angles when compared to his 

proposed standard of EUP, proving that it mattered greatly in which order the rotations were 

performed for the scapula and proposed that for standardization of scapular kinematics, EUP 

should be used since it is consistent with research and clinical based two-dimensional 

representations of scapular movements. In 2005, the Standardization and Terminology 

Committee for the International Society of Biomechanics proposed a 2-1-2 Euler decomposition 

to describe shoulder joint kinematics, with the positive x-axis being aligned with the direction of 

the humerus, which is now considered the standard definition for defining movement of the 

shoulder joint [44]. 

Shoulder Injury and Prevalence Rates 

Upper limb movement disability involving the shoulder is associated with both acute and 

chronic health conditions. Common acute shoulder injuries include glenohumeral dislocation, 

rotator cuff tear, and labrum tear. Acute shoulder injuries typically occur through high-impact 

trauma. Glenohumeral dislocation is the most common joint dislocation, occurring in 24 out of 

every 100,000 adults [45]. 90% of the time, glenohumeral dislocation occurs through anterior 
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dislocation caused by abduction, extension, and external rotation on the shoulder [46]. Rotator 

cuff tear refers to a tear in any of the four muscles of the rotator cuff and is common among elderly 

populations [47]. Rotator cuff tears are commonly treated through both surgical and nonsurgical 

intervention, based primarily of the severity of the injury [48]. 5%-40% of all rotator cuff injuries 

are considered full-thickness in at least one of the four rotator cuff muscles [49]. Common chronic 

conditions that cause shoulder impairment include peripheral nerve injury [50] and stroke [51]. 

Both of these conditions commonly lead to neuromuscular impairment in the affected limb, 

sometimes even leading to total limb paralysis [6, 52]. 

 For all of these various types of impairments, although patients may retain some shoulder 

strength and function, they are substantially diminished from that of the healthy shoulder [50]. 

Shoulder impairment may make it more difficult for patients to perform ADLs. For some conditions 

involving soft tissue injury, such as rotator cuff tear, biomechanical loads during ADLs may lead 

to high reinjury rates [53]. Assistive devices that can provide continuous mechanical assistance 

to the shoulder are needed to help augment movement ability and decrease biomechanical loads 

in soft tissues in patients with shoulder impairment.  

Assistive Devices for the Shoulder 

There has been an increasing interest in the research, development, and 

commercialization of exoskeletons that are designed to replace or rehabilitate shoulder joint 

function [54-57]. Several exoskeletons and orthoses have been designed to support the shoulder. 

Such devices have promising potential to enhance motor function and prevent injury [58-61]. 

Exoskeletons are devices that attach externally on the human body and apply forces to assist 

movement. Exoskeletons typically fall under two different categories based on how the forces are 

generated: powered and passive. 

Powered exoskeletons use motors as actuators, applying forces near the joints to 

augment movement [12, 62-66]. Many powered exoskeletons are typically intended for cases of 
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severe impairment that require complete replacement of movement or total neurorehabilitation. 

However, due to their size, weight, or operation requirements, such powered exoskeletons are 

usually constrained to clinics and labs, preventing continuous at-home assistance. A powered 

soft wearable device was recently introduced that is lightweight and portable [52]. However, 

powered exoskeletons may be relatively expensive to purchase and maintain since they rely on 

motors, power supply, and computational hardware, which are susceptible to electromechanical 

malfunction. Powered exoskeletons are also traditionally bulky, which may compromise their 

comfort and visual appeal. 

Compared to powered exoskeletons, mechanically passive exoskeletons may be more 

practical for home-based movement assistance. Passive exoskeletons incorporate elastic springs 

to store energy that can be returned to the user to supplement muscle forces for some movements 

[14, 60, 61, 67-70]. These devices are potentially more reliable, affordable, lightweight, and 

compact since they do not have electromechanical hardware. Many passive exoskeletons have 

already been previously developed, including the SpringWear 5-DOF spring actuated exoskeleton 

[71] and the WREX for children with neuromuscular disabilities [70]. 

Focus 1 of Dissertation 

It is essential to consider how exoskeletons interact with the human limb to ensure that 

they provide appropriate assistance without impeding motion. This is especially important for 

passive exoskeletons since their assistance is constrained by mechanical design. Passive 

shoulder exoskeletons generally apply a continuous (i.e. always present) force to the upper 

extremity to compensate for gravity. Previous biomechanical studies of continuous anti-gravity 

shoulder assistance primarily focused on overhead tasks. This is because most commercially 

available passive shoulder exoskeletons are intended to assist overhead tasks, which are 

associated with a high prevalence of occupational shoulder injury [72, 73]. During overhead tasks, 

the shoulder assumes a mostly static posture. Promisingly, anti-gravity assistance reduced 
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activations of the middle deltoid, anterior deltoid, and biceps brachii muscles by as much as 62%, 

80%, and 49%, respectively, while able-bodied subjects performed overhead tasks [59, 61, 74-

76]. Continuous anti-gravity assistance may be useful for supporting dynamic shoulder elevation 

movements, which are more characteristic of activities of daily living [77] and many rehabilitation 

exercises [11]. A relatively few studies showed that, during dynamic movements, passive 

shoulder exoskeletons decreased activations of some muscles but increased activations of others 

[75, 78]. However, these studies averaged results across long time periods, masking the nature 

and potential mechanisms of activation changes. 

We have developed a passive portable exoskeleton that, similar to one reported in a 

previous study [79], uses a spring-pulley system and a cam wheel to provide gradually increasing 

mechanical assistance as the shoulder is elevated against gravity. Our previous computer 

simulations of dynamic shoulder elevation [80], based on a shoulder exoskeleton prototype being 

developed in our lab (Fig. 2.3), showed that activations of muscles that primarily contribute to 

positive shoulder elevation (+SE), based on reported muscle moment arms [81], were lower with 

anti-gravity exoskeleton assistance than without. Conversely, antagonist muscles that primarily 

contribute to negative shoulder elevation (-SE) had higher activations with assistance to 

simultaneously decelerate the arm at the endpoint and overcome the assistive force. Our 

computational study was limited because the simulated kinematics were constrained to be the 

same with and without an exoskeleton. It is unclear whether human subjects would adapt their 

kinematics and muscle coordination patterns to avoid increasing activations of -SE muscles with 

anti-gravity assistance.  

The Research Objective 1 of this dissertation was to determine the effect of continuous 

passive anti-gravity assistance on able-bodied muscle activations and shoulder kinematics during 

dynamic and static phases of shoulder elevation movements.  
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Figure 2.3. Design of an exoskeleton prototype 

currently under development in our lab. This design 

uses a cam wheel to gear a passive force to increase 

the applied force on the shoulder as a function of the 

elevation angle. 
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FOCUS 2: LIMB RECONSTRUCTION THROUGH A MUSCLE DRIVEN 

ENDOPROSTHESIS 

Amputation Prevalence and Risk Factors 

The number of amputees in the United States is growing. A study by Ziegler-Graham et 

al. [82] predicted that, if left unchecked, by the year 2050 the number of people living with limb 

loss will raise to 3.6 million. The two primary causes of amputation are medical-related and 

trauma-related amputations. According to a breakdown by the Center for Orthotic & Prosthetic 

Care, approximately 84% of amputations are caused by medical conditions such as dysvascular 

diseases, diabetes, cancer, and other congenital conditions, while 16% are caused by severe 

trauma [83]. For the location of amputation, lower body amputations are much more common, 

comprising 86% of all amputations, as opposed to 14% in the upper body [83].  

Approximately 69% of all trauma related amputations occur in upper extremities [83]. 

Trauma related amputations occur when all the extremity tissue is severed from the rest of the 

body or damaged beyond repair. The severity of trauma is determined using a scale called the 

Mangled Extremity Severity (MES) which measures severity by looking at four major tissue 

systems of the affected extremity: skin, nerve, artery, and bone [84, 85]. Johansen et al. [86] 

showed that a MES score of 7 out of 10 predicted that trauma repair surgery would end in 

amputation with 100% accuracy. 

 In amputation surgery, the two primary goals are to salvage as much of the residual limb 

as possible and to best prepare the limb for use with a prosthesis. This process looks different for 

every amputation, with some surgeons choosing to anchor the muscle to the bone, some allowing 

the muscle to retract into the residual limb, and some choosing to use a bone bridge to allow the 

muscle to anchor through the bone for a better weight bearing prosthetic interface [85, 87-90]. 

Every surgery is dependent on several factors ranging from location and severity of injury to 

patients’ desired function after amputation. For example, a trans-osseous bone-bridging 
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technique is more likely in a transtibial lower limb amputation where the primary concern is weight 

bearing on a passive prosthetic, while a disarticulation amputation is more likely on an upper limb 

amputation where the primary concern is maintaining neuromuscular function to interact with a 

myoelectric prosthetic hand. 

Intervention for Amputation 

Prostheses are the primary intervention for patients post-amputation and serve to restore 

movement and mobility. Prostheses generally refer to any device used to replace a missing or 

damaged body part. The goal of a prothesis is to replicate the form and/or function of the body 

part it is replacing. There are many types of prostheses, such as orthopedic implants [91, 92], 

cosmetic enhancements [93], and sensory prostheses like ocular [94, 95] and cochlear [96, 97] 

implants). Limb prostheses generally attempt to replicate some combination of the peripheral 

muscular, skeletal, and nervous tissue of the extremity lost during amputation. Prostheses can be 

divided into several different groups based on location (upper-limb vs lower-limb) and level 

(transtibial vs transfemoral) of amputation. However, there are three main types of functional 

prostheses: passive, powered, and body-powered. Traditionally, all three types are attached to 

the body using a custom-fit socket that secures to the residual limb. However, they all vary in the 

methods in which they function. 

Passive Limb Prostheses 

 Passive prostheses can be further subdivided into cosmetic and functional prostheses. 

Rather than provide a musculoskeletal function, cosmetic prostheses are generally used to 

disguise injury or impairment [98, 99]. Similar to passive exoskeletons previously mentioned in 

this chapter, passive prostheses work by storing energy and releasing it to perform movement. 

Due to the cyclic loading and unloading patterns that occur during a normal gait cycle, passive 

prostheses are traditionally used for lower limb amputees [100-102]. Common examples of 

passive lower-limb prostheses include the blade prostheses commonly seen in Paralympic 
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athletes [103] and more complex feet such as the Ossur Pro-Flex Pivot (Ossur, Reykjavik, 

Iceland)  that provides greater levels of power upon elastic force return and greater ankle range 

of motion during walking gait compared to other passive devices. 

Powered Limb Prostheses 

 Powered limb prostheses are external devices for musculoskeletal reconstruction that rely 

on electromechanical systems to recreate functional movement. Traditionally, powered limb 

prostheses include a robotic manipulating limb, EMG electrodes to measure muscle activation, a 

socket to affix the device to the residual limb, a battery pack to supply power, and a control unit 

to move the prosthesis based on measured EMG signals (Fig. 2.4) [104]. These powered 

prostheses incorporate electromechanical hardware (e.g. motors, microprocessors, sensors, 

electrodes) [17, 105-118] and control algorithms that decode users’ movement intent from 

electromyograms [119-131] The algorithms use the decoded EMG signals to predict intended 

movement and to output movement patterns to the motors in the robotic limb. Control algorithms 

help determine the complexity of the performed movement and can range from simple 1 degree 

of freedom control through flexion and extension [132, 133] to complex continuous movement 

control through modeling user intention through more complex simulations [119]. As opposed to 

lower limb prostheses that can generate movement through cyclic loading and unloading for 

locomotion, biomechanical function of upper limb prostheses must rely on unique, idiosyncratic  

movement. Therefore, powered limb prostheses which allow for volitional control of movement 

are a common intervention for upper limb amputation. 

Body-Powered Limb Prostheses 

 Body-powered limb prostheses function by using the remaining movement of the residual 

or  contralateral limbs to control and move the distal prosthetic device. This is done by using force 

across a remaining joint to actuate mechanical components of the prosthesis. A common example 

of a body-powered prosthesis is the hook hand that is mechanically connected to the residual 

shoulder or elbow joint [134, 135]. Extension of either of these joints pulls on the bifurcated, jointed  
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Figure 2.4. Parts of a below-elbow myoelectric prosthesis. A generalized 
powered prosthesis is comprised of the following parts: 1) A custom-fit 
socket to attach to the residual limb, 2) An on-board microprocessor that 
deciphers EMG signals and determines movement, 3) a battery pack 
that provides power, 4) EMG electrodes that measure neuromuscular 
activity, and 5) an electromechanical limb that outputs movement. 
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hook, controlling the opening and closing of the hook [136]. Despite the users having good control 

of these devices, they have been reported as difficult to use due to the inefficient mechanical 

leverage of the design of the devices [137, 138]. 

Muscle and Tissue Prosthesis Integration 

Despite the many benefits current prosthetics offer amputees, there is still a high 

percentage of the amputee population that rejects using a prosthetic for a variety of reasons. In a 

survey by Biddiss et al. [138], rejection was higher in upper-limb amputees with a more severe 

level of limb loss. The primary reasons given for rejection were related to prosthetic technology 

and design, with often-cited reasons being appearance, comfort, function, ease of control, 

reliability, and cost. Recent prosthetic research has been devoted to addressing these rejection 

factors. 

Considering the anatomical and physiological changes to the residual limb during 

amputation could help explain the sensorimotor limitations of external prostheses. In a healthy 

intact limb, muscles produce force across a joint when stimulated by neural signals, creating 

movement. There are two main types of mechanoreceptors in muscle: (1) muscle spindles, which 

sense changes in length [139] and (2) Golgi tendon organs, which senses force in the muscle 

[140]. When these mechanoreceptors sense changes in either the length or force of the muscle, 

they send afferent signals to the brain. The brain’s interpretation of the afferent signals engenders 

proprioception. The physical link between the muscle and bone causes sensorimotor alignment, 

which is the experience that the perception of movement matches both the intended and actual 

motor output. This sensorimotor alignment is critical for accurate motor function in the limb [141]. 

During amputation, the physical link between the bone and muscle is disconnected, causing 

sensorimotor misalignment in the residual limb. Therefore, despite external prostheses’ attempt 

to accurately interpret efferent motor commands (i.e. EMG) and simulate afferent proprioception 

through stimulation, sensorimotor issues of external prostheses persist, likely due to functional 
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loss caused by sensorimotor misalignment and the prosthetic’s physical detachment from 

biological tissue. (Fig. 2.2)  

To solve these sensorimotor issues, recent research has shown that performance of 

prosthetics can be improved by directly interfacing with and leveraging the functional capabilities 

of biological tissues. For example, by harnessing the structure integrity of bone [142, 143], 

transcutaneous osseointegrated sockets provide a more secure and reliable prosthetic 

attachment than traditional sockets that fit over the residual limb. Osseointegration induces an 

afferent sensation called osseoperception through mechanoreceptors in the bone and joints that 

sense vibrations from the ground reaction forces, increasing proprioception [144]. Also, electrodes 

directly implanted in muscles or nerves provide more precise sensory feedback signals than 

surface mounted sensors [145].  

One potential solution to overcome sensorimotor limitations of external prostheses is to 

physically attach prostheses to muscles. This is because muscles contribute to both movement 

generation and sensation, via mechanoreceptors, in the biological limb and, thus, are essential to 

physiologic sensorimotor function [146]. There is strong evidence that muscles in the residual 

limb retain their sensorimotor functions after amputation. Reengaging residual muscles in 

movement has been shown to restore natural proprioceptive pathways through native muscle 

mechanoreceptors [131], which could enable amputees to experience more realistic sensation of 

their movements and perform tasks more effectively. One group surgically connected an agonist-

antagonist muscle pair in the residual limb, allowing the mechanoreceptors in the residual 

muscles to experience changes in force and length, which restored a sense of proprioception to 

the user [147]. Additionally, residual muscles can still produce coordinated contractions to perform 

functional task, as has been shown in EMG-based control algorithms that allow for continuous 

control of multiple joints simultaneously [119, 129, 148, 149]. 
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Previously, a surgical technique called cineplasty was used to achieve physical muscle-

prosthesis attachment [150-153] . During the cineplasty surgery, the tendon of the residual muscle 

was passed through a loop created in the skin. The contraction of the skin-tendon loop would pull, 

via a cable, on an external prosthesis to generate movement. Reports note anecdotally that 

cineplasty enabled exquisite control and sensation of prosthesis movements [16, 154]. However, 

cineplasty has several limitations preventing widespread clinical adoption. Primarily, the skin-

tendon loop likely did not provide an efficient method for force transmission. The force produced 

by the muscle would have contracted the skin loop rather than directly move the prosthetic, which 

would reduce the force actually applied on the external prosthetic. Therefore, the force directed 

towards movement of the prosthesis would have resulted in only a fraction of what would be 

required for functional movement. Also, this inefficient force leverage possibly led to fatigue and 

discomfort over prolonged use. Additionally, the skin loops paired with the external prostheses 

proved aesthetically displeasing. 

Motivation behind Muscle-Driven Endoprostheses 

To address the limitations of cineplasty for direct prosthesis control through muscle-

prosthesis attachment, we propose a limb replacement approach called a muscle-driven 

endoprosthesis (MDE) (Fig. 2.5). An MDE is a prosthesis that is implanted completely underneath 

the skin at the distal end of a residual limb and physically attached to the residual muscles. By 

being implanted underneath the skin, an MDE allows for direct linear connection between the 

muscle and prosthesis that could accurately mirror the geometric muscle-tendon orientation of 

the anatomical limb. Linear connection between the muscle and prosthesis would allow for greater 

mechanical leverage which would provide more efficient direct force transmission to the 

prosthesis, which would address the primary limitation of cineplasty. Additionally, by restoring the 

physical connection between the skeletal and muscular systems, we expect that an MDE would  
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Figure 2.5. Design of a functioning hindlimb rabbit MDE prototype. (1) Tibial bone pin that 

is implanted into the tibial medullary canal. (2) Joint that allows for 1-DOF rotation to simulate 

the ankle joint. (3) Rigid foot segment that resembles the structure of the rabbit foot. (4) 

Silicone coating to help with pressure dispersion and prevent tissue adhesion. (5) Synthetic 

tendon that is integrated in the muscle and used to apply muscle force across the joint. 
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substantially increase the quality, control, and dexterity of movements that amputees can achieve 

over a modern external electromechanical prosthetic limb.  

An MDE is a highly invasive device intended to imitate the anatomical musculoskeletal 

structure of an intact limb. Before testing such an invasive device on humans, we need to develop 

an animal model and compatible MDE prototype to test the feaibilty and functionality of MDEs. 

Our long-term plan is to test MDE protoypes that replace the hindlimb ankle in the rabbit model 

due to their (1) prevalence in previous orthopedic and muscle rehabilitation research, (2) high 

range of motion in the hindlimb, which would allow us to easily detect changes in biomechanical 

function, and (3) musculoskeletal structure being large enough to test an MDE prototype.  

 A functioning MDE prototype to replace the rabbit hindlimb ankle would consist of several 

main components (Fig. 3): (1) Modified bone pins that will be used for osseoinegration inside the 

medullary canal of the long bone. Bone-device integration is a highly studied field in both 

prosthesis and orthopedics with several techniques being developed for better osseointegration 

to increase stability of the implant. (2) A moveable joint in the MDE with muscles attached across 

the joint would allow for controlled movement of the limb segment with muscle activation. In the 

ankle, a 1-DOF hinge joint would allow for plantar and dorsiflexion. (3) A large rigid segment of a 

material strong enough to support both muscle forces and ground reaction forces would be used 

a a moveable foot segment. Eyelets on the foot would allow for connection of the synthetic tendon. 

(4) The foot segment is over-molded with a biocompatible silicone sleeve intended to increase 

pressure dispersion along the bottom, weight-bearing surface of the endoprosthesis and prevent 

tissue adhesion. (5) Finally, an arifical, suture-based tendon would be surgically integrated into 

the muscle and attached to eyelets on the foot segment to directly translate muscle force to the 

MDE 
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Rabbit Hindlimb Anatomy and Biomechanics 

The rabbit hindlimb is comprised of 22 bones [155]. The four bones that comprise the leg 

are the femur, tibia, fibula, and patella. The leg connects to the foot at the tibiotalar joint. The foot 

can be subdivided into 6 tarsal bones, 4 metatarsal bones, and 8 phalangeal bones. The tarsal 

bones consist of the calcaneus, talus, distal central tarsal bone, and Os tarsals II-IV. A rabbit has 

12 muscles that cross the ankle joint. Though most muscles contribute to more than one 

movement, they can generally be divided into 2 groups: 7 plantar flexor and 5 dorsiflexor muscles 

[156]. The plantar flexor muscles are the medial and lateral gastrocnemius, soleus, plantaris, 

tibialis caudalis, flexor digitorum longus, and the flexor hallucis longus. The primary muscle group 

that contributes to plantar flexion consists of the medial and lateral gastrocnemius and the soleus. 

This muscle group is attached to the superiocaudal aspect of the calcaneus through the Achilles 

tendon. The dorsiflexor muscles are the tibialis, extensor digitorum longus, peroneus longus, 

peroneus brevis, and the peroneus tertius. The primary muscle responsible for dorsiflexion is the 

tibialis cranialis and is inserts into the medial most tarsal and metatarsal bones through the tibialis 

cranialis insertion tenson. 

The rabbit model is a common model for comparative biomechanics in orthopedic 

research, and is used to test dental implant osseointegration [157-160], soft tissue analysis [161, 

162], and bone degradation and repair [163-166]. Although there are limited studies looking at 

the biomechanical function of the rabbit hindlimb, the rabbit hindlimb has many similarities to the 

human foot, making it a good model to study biomechanical changes caused by an intervention. 

Primarily, as opposed to animals like dogs and cats that are digitigrade [167] or goats and pigs 

that are unguligrade [168], rabbits and humans are both plantigrade (Fig. 2.6) [169]. This means 

that rabbits and humans should have more similar kinematic patterns and ground-reaction 

pressure patterns than a different animal model, such as a cat or dog. Additionally, rabbits 

qualitatively have a very high range of motion in the ankle joint, allowing high sensitivity in  
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Figure 2.6. Mammalian Foot Postures. Plantigrade mammals, such as humans and rabbits 

support their weight across the entire foot. Digitigrade mammals, such as cats and dogs support 

weight on their toes. Unguligrade mammals such as goats and pigs support their weight on a hoof. 
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detecting kinematic differences between groups. However, the range of motion of the ankle joint 

has never been reported. This is critical knowledge for designing the function range of motion of 

an MDE. 

Rabbits, like most non-human mammals, are quadrupeds, meaning they walk on four legs. 

This introduces slight differences between rabbit and human gait. Unlike humans, rabbits have a 

gait where both hindlimbs perform symmetric movements simultaneously, rather than alternating 

gait patterns between legs. During quadruped gait, the forelimbs experience approximately 60-

65% of body weight and the hindlimbs experience 40-45% of body weight [170, 171]. This means 

that the rabbit forelimbs are primarily responsible for balance and weight bearing and the 

hindlimbs are primarily responsible for forward locomotion, while humans perform all three 

functions on their 2 legs. 

Focus 2 of Dissertation 

Before testing a full MDE prototype in vivo, there was a need to address two key questions 

to inform MDE prototyping and testing: 

Is it feasible to fully enclose a prosthesis in healthy skin at distal end of a residual 

limb? The proposed endoprosthesis differs from previous percutaneous osseointegrated 

prostheses, which protrude through skin to provide an anchor point for externally worn limb 

prostheses. Like other common orthopedic implants such as joint replacements [91, 92], 

endoprostheses would replace part of the musculoskeletal structure of the missing limb. However, 

there has never been device implanted at the distal end of a residual limb for such as purpose. 

The feasibility of this is unknown and needs to be tested with a basic unjointed endoprosthesis 

before attempting to implant a more complex MDE design. 

How does an artificial tendon implant across the ankle in the hindlimb affect a 

rabbit’s locomotor function? In order to directly attach residual muscle to a device, there must 
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be an interface between the two that mirrors the function of the tendon in the anatomical limb (Fig. 

2.7). A durable muscle-tendon interface has been developed and was noted as having secure 

muscular integration between the fibers of the suture used to make the artificial tendon [172] (Fig. 

7, A). This artificial tendinous structure was tested successfully in the quadriceps of the goat 

model [173] (Fig. 7, B). However, biomechanical analysis was never performed on the animals 

showing how effectively this artificial tendon restored locomotion. In order to determine the 

efficacy of this synthetic tendon’s ability to restore motor function, we must first test the effect of 

the artificial tendon on locomotion in our rabbit model. 

The objectives of research focus 2 are: 

Research Objective 2.1: Determine the feasibility of fully enclosing an unjointed stem 

endoprosthesis in vivo in the hindlimb of a rabbit model of transtibial amputation. We will use an 

iterative study approach, determining factors in the surgery, device design, and post-surgical care 

that influence outcomes.  

Research Objective 2.2: Analyze reactionary changes in the skin structure of the rabbit hindlimb 

caused by interaction with an unjointed stem endoprosthesis. We will analyze the changes in the 

skin through ex vivo histology and microCT imaging of the residual limbs that successfully recover 

from implanting an unjointed endoprosthesis.  

Research Objective 3.1: Measure healthy joint kinematics and vertical ground reaction forces in 

the rabbit hindlimb during the stance phase of hopping. Our approach will include a novel method 

for noninvasive rabbit locomotor function testing.  

Research Objective 3.2: Analyze the effect of an artificial, suture-based tendon on voluntary 

locomotion. The artificial tendons will replace select biological tendons, either the Achilles or 

tibialis cranialis insertion tendon, that cross the ankle in the rabbit hindlimb.  
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Figure 2.7. Synthetic tendon that could serve as a 
possible solution to muscle-prosthesis connection. (A) 
The artificial tendon consists of sutures looped and braided 
together, then coated in silicone. (B) Synthetic tendon 
implanted in the goat model to reattach the quadriceps to 
bone. 
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The results from Research Objectives 2 and 3 will provide new information about 

fundamental aspects of an MDE prior to in vivo testing of MDE prototypes. 

SUMMARY AND SIGNIFICANCE OF THIS RESEARCH 

My research explores the effect of multiple assistive devices on biomechanics and 

analyzes functional changes caused by interaction with the assistive devices. I analyzed 

functional changes throughout shoulder movement in humans with continuous passive assistance 

and throughout stance phase in rabbits with artificial hindlimb tendons. Additionally, I analyzed 

the feasibility of implanting an endoprostheses in the rabbit hindlimb and the device’s effect on 

the surrounding tissue. 

Effect of Continuous, Mechanically Passive, Anti-Gravity Assistance on Kinematics 

and Muscle Activity During Dynamic Shoulder Elevation. In this research I tested the effect 

an overhead continuous force applicator has on the healthy human shoulder. I evaluated the 

changes (both decreases and increases) in muscle activation associated with the continuous 

assistive force about the shoulder and monitored the changes in kinematics in the shoulder joint 

under the presence of continuous passive assistance. The results indicate the potential of 

wearable passive shoulder exoskeletons to lower muscle functional requirements and restore 

movement. 

Fully Implanted Prostheses for Musculoskeletal Limb Reconstruction after 

Amputation: An In Vivo Feasibility Study. In this study I analyzed the feasibility of implanting 

device intended for musculoskeletal reconstruction completely underneath the skin at the distal 

end of a rabbit hindlimb. Not only did I show feasibility in three consecutive rabbits, but I also 

determined key factors of success during surgery and recovery for implanted endoprostheses. 

This study informs which design, surgery, and recovery practices and techniques should be 

implemented with future devices as we progress towards a functional “footed” endoprosthesis 

prototype. 
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Ex-vivo analysis of Skin Tissue Surrounding a Stem Endoprosthesis Implanted in 

an Amputated Rabbit Hindlimb. This study analyzed the skin of rabbits who successfully 

recovered from implantation of a stem endoprosthesis. Virtual reconstruction of the residual rabbit 

limb through a microCT scan allowed for isolation of thick or thin areas of skin where tissue 

regrowth could have occurred or not. Additionally, histology of the skin samples allows us to 

analyze the cellular composition of skin at points of interest, such as along the incision line, to 

better understand the physiologic response of the cells to the surgery and recovery. The results 

of this study add quantitative findings to our feasibility analysis and help understand how residual 

skin reacts when around an endoprosthesis. 

Biomechanical Analysis of the Rabbit Hindlimb during the Stance Phase of Hopping 

Gait. Prior to this study, there was limited research on the hindlimb biomechanics of hopping gait 

in the rabbit hindlimb. This study not only reports hindlimb kinematics, vertical ground reaction 

forces, contact area, and pressure in a healthy rabbit hindlimb, but also outlines a method for non-

invasive motion capture never reportedly tested on rabbits. The results of this study add valuable 

information to the limited preexisting reference data for rabbit hindlimb biomechanics. As seen in 

chapter 7 of this dissertation, the healthy control rabbit reference data can be used to analyze the 

effect of various orthopedic interventions on locomotor function. 

Analysis of the Effect of Artificial Tendon on Locomotor Function when Implanted 

in the Rabbit Hindlimb. This study showed the effect of artificial tendons implanted in place of 

either the Achilles or Tibialis Cranialis insertion tendons on rabbit hindlimb biomechanics. Rabbits 

with Tibialis Cranialis tendon replacement showed near normal levels of locomotor function after 

6 weeks post-surgery. Rabbits with Achilles replacement showed lower levels of locomotor 

function, compared to a healthy control. However, over the course of the 6-week post-surgical 

period the Achilles rabbits showed significant recovery over initial post-surgical levels of 
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impairment. This study suggests that artificial tendons could be a viable solution to force transfer 

between residual muscle and a jointed endoprosthesis prototype. 
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CHAPTER 3.  EFFECT OF CONTINUOUS, MECHANICALLY PASSIVE, 

ANTI-GRAVITY ASSISTANCE ON KINEMATICS AND MUSCLE 

ACTIVITY DURING DYNAMIC SHOULDER ELEVATION 

This work was published in the Journal of Biomechanics.  

Hall P. T. and D. L. Crouch. Effect of continuous, mechanically passive, anti-gravity assistance 

on kinematics and muscle activity during dynamic shoulder elevation. Journal of Biomechanics 

103: 109685, 2020. 

ABSTRACT 

Passive shoulder exoskeletons, which provide continuous anti-gravitational force at the 

shoulder, could assist with dynamic shoulder elevation movements involved in activities of daily 

living and rehabilitation exercises. However, prior biomechanical studies of these exoskeletons 

primarily focused on static overhead tasks. In this study, we evaluated how continuous passive 

anti-gravity assistance affects able-bodied neuromuscular activity and shoulder kinematics during 

dynamic and static phases of shoulder elevation movements. Subjects, seated upright, elevated 

the shoulder from a rest posture (arm relaxed at the side) to a target shoulder elevation angle of 

90°. Subjects performed the movement in the frontal (abduction) and scapular (scaption) planes 

with and without passive anti-gravity assistance. Muscles that contribute to positive shoulder 

elevation, based on their reported moment arms, had significantly lower muscle activations with 

assistance during both dynamic and static elevation. Muscles that contribute to negative shoulder 

elevation, which can decelerate the shoulder during dynamic shoulder elevation, were not 

significantly different between assistance conditions. This may be partly explained by the trend of 

subjects to reduce their maximum angular decelerations near the target to offset the positive 

shoulder elevation moment due to the anti-gravity assistance. Our results suggest that passive 

anti-gravity assistance could reduce the muscle activations needed to perform dynamic 

movements. Consequently, the anti-gravity assistance of passive shoulder exoskeletons may 
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enhance motor function and reduce muscle and joint loads for both able-bodied and disabled 

users. 

INTRODUCTION: 

Several exoskeletons and orthoses have been designed to support the shoulder. Such 

devices have promising potential to enhance motor function [58-61] and prevent injury. Many 

shoulder exoskeletons generate assistive forces using mechanically passive components such 

as elastic springs [14, 60, 61, 67-70]. Compared to powered exoskeletons that require 

electromechanical hardware [12, 62-66], passive exoskeletons may potentially be more cost 

effective, lighter, more low-profile, and easier to maintain. Passive shoulder exoskeletons 

generally apply a continuous (i.e. always present) force to the upper extremity to compensate for 

gravity. To ensure that passive shoulder exoskeletons are safe and effective, there is a need to 

investigate how continuous anti-gravity shoulder assistance affects biomechanical parameters 

such as muscle activity and kinematics. 

Previous biomechanical studies of continuous anti-gravity shoulder assistance primarily 

focused on overhead tasks. This is because most commercially available passive shoulder 

exoskeletons are intended to assist overhead tasks, which are associated with a high prevalence 

of occupational shoulder injury [72, 73]. During overhead tasks, the shoulder assumes a mostly 

static posture. Promisingly, anti-gravity assistance reduced activations of the middle deltoid, 

anterior deltoid, and biceps brachii muscles by as much as 62%, 80%, and 49%, respectively, 

while able-bodied subjects performed overhead tasks [59, 61, 74-76]. 

Continuous anti-gravity assistance may be useful for supporting dynamic shoulder 

elevation movements, which are more characteristic of activities of daily living [77] and many 

rehabilitation exercises [11]. A relatively few studies showed that, during dynamic movements, 

passive shoulder exoskeletons decreased activations of some muscles but increased activations 

of others [75, 78]. However, these studies averaged results across long time periods, masking 
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the nature and potential mechanisms of activation changes. In our previous computer simulations 

of dynamic shoulder elevation [80], activations of muscles that primarily contribute to positive 

shoulder elevation (+SE), based on reported muscle moment arms [81], were lower with anti-

gravity exoskeleton assistance than without. Conversely, antagonist muscles that primarily 

contribute to negative shoulder elevation (-SE) had higher activations with assistance to 

simultaneously decelerate the arm at the endpoint and overcome the assistive force. Our 

computational study was limited because the simulated kinematics were constrained to be the 

same with and without an exoskeleton. It is unclear whether human subjects would adapt their 

kinematics and muscle coordination patterns to avoid increasing activations of -SE muscles with 

anti-gravity assistance.  

The objective of our study was to determine the effect of continuous passive anti-gravity 

assistance on able-bodied muscle activations and shoulder kinematics during dynamic and static 

phases of shoulder elevation movements. We used a torsion spring and cable to mimic the 

continuous passive anti-gravity assistance provided by passive shoulder exoskeletons. We 

hypothesized that activations of +SE muscles would be lower with assistance than without. 

Additionally, we hypothesized that, unlike our simulations, subjects would adapt their shoulder 

joint kinematics, specifically by reducing the magnitude of decelerations near the end of dynamic 

shoulder elevation movements, to prevent increasing activations of -SE muscles. 

METHODS: 

Subjects:  

All subjects gave written informed consent before participating in the study. The University of 

Tennessee, Knoxville Institutional Review Board approved the testing protocol. Fifteen subjects 

(10 male, 5 female; age = 21.5 ± 3.5 years, height = 173.4 ± 14.2 cm, mass = 75.4 ± 11.9 kg) 

volunteered to participate in this study. All subjects were right-handed, and all testing was done 

on the dominant side. Subjects were excluded from the study if they had any current upper limb 
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injury, known history of shoulder impairment, or other chronic health conditions, cognitive 

impairments or other severe movement disability. 

Instrumentation and Setup: 

The subjects were seated in an upright posture below an elastic torsion spring (Speedaire 

5YAP0) mounted overhead. A cable extending from the torsion spring attached to a rigid humeral 

cuff (Breg Lo Pro) that subjects wore on their dominant arm. The cable attachment occurred at 

the midpoint between the shoulder and elbow on the lateral aspect of the arm. This setup allowed 

the spring to apply a continuous passive force against gravity to the subjects’ arm (Fig. 3.1). The 

magnitude of the force applied by the torsion spring through the cable was adjusted for each 

subject to be approximately 2/3 of the subject’s estimated upper extremity weight. This force level 

was determined during preliminary testing in which four subjects who were not included in this 

study provided verbal feedback while we adjusted the torsion spring force; the force was adjusted 

until subjects felt noticeable assistance but were still able to lower their arm by gravity. We 

estimated each subject’s upper extremity weight assuming that its proportion to total body weight 

was consistent with that of a 50th-percentile male [18]. The applied force, verified before each 

testing session using a force sensor, ranged from 1.75 - 2.75 kg and averaged 2.08 ± 0.33 kg 

across subjects. 

We placed an acrylic target board behind the subjects’ arm to constrain the shoulder 

elevation movements (described in “Procedure” section below) to the desired elevation plane 

angles (Fig. 1). Clear acrylic was used to avoid obscuring the motion capture marker clusters. To 

denote the target shoulder elevation angle of 90°, we placed a foam marker on the board that 

extended perpendicular to the board towards the subject. We aligned the board approximately 

with the glenohumeral joint so that the target shoulder elevation angle was consistent across 

subjects. 
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Figure 3.1. Subject set up to perform testing in the abduction plane. (1) Acryllic 
target board use to constrain elevation plane angle and denote elevation target. (2) 
Force from torsion spring applied through a cable attached to a rigid humeral cuff. (3) 
Elevation target marker used to show subjects the maximum trial elevation angle. (4) 
Marker used to align the board to the approximate glenohumeral joint center. 
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Muscle activity was determined by measuring raw electromyogram (EMG) signals from 

surface EMG electrodes (Noraxon TeleMyo 2400T, Scottsdale, AZ) placed over nine muscles 

and muscle compartments that cross the shoulder joint: anterior deltoid (AD), middle deltoid (MD), 

posterior deltoid (PD), supraspinatus (SS), infraspinatus (IS), pectoralis major (PM), latissimus 

dorsi (LD), triceps brachii long head (TLH), and biceps brachii long head (BLH). The EMG signals 

were recorded at 1500 Hz.  

Kinematics for each trial were measured with a seven-camera 6-DOF infrared motion 

capture system (OptiTrack Prime 13, Corvallis, OR) with rigid body marker clusters placed on the 

torso and dominant arm, forearm, and hand. Marker cluster motion capture data were collected 

at 120 Hz and processed in The Motion Monitor software (Innovative Sports Training, Inc., 

Chicago, IL). We computed the standard Euler decomposition angles of the humerus relative to 

the thorax (i.e. elevation plane angle, shoulder elevation angle, and shoulder axial rotation) as 

defined by the International Society of Biomechanics [44]. For processing, we rectified the 

shoulder elevation angle. The Motion Monitor software also synchronized the kinematic and EMG 

data.  

Procedure: 

Before testing, the subjects performed one trial of eight different isometric maximum 

voluntary contractions (MVC) against resistance (Table 3.1) and one resting trial. We used the 

EMG collected during the MVC and resting trials to normalize the EMG from testing trials, as 

described in the “Data Processing and Statistical Analysis” section below. During testing, the 

subjects were instructed to elevate the shoulder on their dominant side under two assistance 

conditions, assisted and unassisted. For the assisted and unassisted (control) conditions, the 

cable connected to the torsion spring was attached or unattached, respectively, to the cuff on the 

dominant arm. For each assistance condition, subjects performed twenty trials each of two 

different movements, abduction and scaption (2 assistance conditions x 2 movements x 20 trials  
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Table 3.1. Static upper extremity postures in which subjects performed maximum voluntary contractions (MVCs). 
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= 80 trials total). Abduction was defined as shoulder elevation in the frontal plane. Scaption was 

defined as shoulder elevation in an elevation plane angle of 30° anterior to the frontal plane. We 

included scaption as a more clinically relevant movement given the prominence of shoulder 

elevation in anterior plane angles during activities of daily living [77, 174]. Subjects performed all 

twenty trials of each movement-assistance condition pair consecutively before switching to the 

next pair. We randomized the order of assistance conditions for each subject and the order of 

movements within each assistance condition.  

In each trial, the subjects performed the movements in two phases. In the dynamic first 

phase, the subjects elevated their shoulder from rest to a target shoulder elevation angle of 90° 

with the elbow extended over a duration of 2 seconds. In the static second phase, after reaching 

the target shoulder elevation angle, the subjects held their arm in the elevated posture for 2 

seconds. Subjects knew when they reached the target elevation angle when their forearm touched 

the foam target marker on the acrylic board. The speed of movement was constrained by a 

metronome. Subjects were given a 10-second rest between trials as well as a two-minute rest 

between movement-condition pairs to minimize fatigue.  

Data Processing and Statistical Analysis: 

We performed all data processing in MATLAB (MathWorks, Inc., Natick, MA). We defined 

the beginning timepoint for each trial as the point where average elevation angular velocity of 5 

consecutive timepoints increased over 2 degrees per second. The following 4 seconds of data 

defined each individual trial. For each trial, we divided the dynamic and static phases by manually 

identifying the first peak in shoulder elevation angle once the subject reached the target angle 

(Fig. 3.2). Both trial phases were normalized by the duration of each respective phase. 

The raw EMG data was filtered using a high-pass 4th-order Butterworth filter at a cut-off 

frequency of 40 Hz, rectified, and finally filtered using a low-pass 4th-order Butterworth filter at a 

cut-off frequency of 10 Hz. We processed the EMG from both resting and MVC trials by computing  
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Figure 3.2. Sample trial elevation angle used to segment trial into 
dynamic and static phases. The red “x” symbol denotes where we 
manually divided the trial at the first peak of shoulder elevation angle. 
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the root mean square (RMS) with a window size of 225. We normalized the filtered EMG data 

collected during trials by the peak values of the processed EMG collected during MVCs to 

calculate muscle activations. The average activation calculated from the resting trial was used to 

set a minimum value for muscle activations. Muscle activations ranged from 0 (inactive) to 1 

(maximally active).  

Before performing a statistical analysis of muscle activations, we first divided muscles into 

two groups, +SE and -SE. We then calculated the maximum muscle activations during the 

dynamic phase and the average muscle activations during the static phase for every trial.  

We analyzed the shoulder elevation angle over time as a function of the percent of the 

dynamic phase duration. For the static phase kinematics, we quantified postural stability, which 

we defined as the ability to hold the arm at the target shoulder elevation angle. To quantify postural 

stability, we computed (1) the average shoulder elevation angle across the static phase, (2) the 

shoulder elevation range of movement, which was the difference between the maximum and 

minimum shoulder elevation angles during the static phase, and (3) the average angular velocity 

of shoulder elevation across the static phase. 

We performed a two-way repeated measures ANOVA (α = 0.05) in SPSS (IBM, Armonk, 

NY) to compare muscle activations (both phases) and postural stability (static phase) between 

assistance conditions. The ANOVA considered factors “assistance condition” (assisted, 

unassisted) and “movement” (abduction, scaption). We ran a separate ANOVA for each muscle 

and postural stability measure. We performed Statistical Parametric Mapping (SPM) in MATLAB 

to compare shoulder elevation angles between assistance conditions throughout the dynamic 

phase of the movements [175]. 
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RESULTS 

Dynamic Phase 

The maximum muscle activations occurred between 70-90% of movement (Fig. 3.3). 

Table 2 outlines the ANOVA results. Maximum activations of all five +SE muscles were 

significantly lower with assistance than without (Fig. 3.4). The two +SE muscles with the largest 

activation difference between assistance conditions were the anterior deltoid (31%, p < 0.001) 

and supraspinatus (28%, p < 0.001). Activations of -SE muscles were not significantly higher with 

assistance. In fact, the activation of one -SE muscle, latissimus dorsi, was 22% (p = 0.041) lower 

with assistance.  

Shoulder elevation angles were significantly different between assistance conditions only 

during the first 59% of abduction (Fig. 3.4) and the first 39% of scaption (Fig. 3.5). Specifically, 

elevation angles were higher with assistance than without because the anti-gravity assistance 

pulled the shoulder into a higher resting shoulder elevation angle at the beginning of the assisted 

trials. Shoulder elevation angular decelerations were lower with assistance than without by up to 

22% (p = 0.006) and 17% (p = 0.01) during abduction and scaption, respectively. The differences 

in maximum angular deceleration occurred near the point of maximum deceleration at 

approximately 60% of the dynamic phase.  

Static Phase 

Average muscle activations were significantly lower with assistance than without in all 

muscles except the triceps long head and biceps long head, for which there was no significant 

difference between assistance conditions (Fig. 3.5). The activations of all +SE muscles were 

significantly lower with assistance. Differences in activations were largest for three +SE muscles: 

anterior deltoid (35%, p < 0.001), supraspinatus (30%, p < 0.001), and infraspinatus (29%, p = 

0.001). Activations of -SE muscles were not significantly higher with assistance. In fact,  
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Figure 3.3. Maximum muscle activations measured during both 
dynamic and static elevation from rest to the target elevation angle 
with (orange) and without (gray) the applied assistive force. The 
darker and lighter bars correspond to abduction and scaption movements, 
respectively. Muscles in the shaded area are –SE muscles. Statistical 
significance (p < .05) is marked with an asterisk (*) for assistance and a 
carrot (^) for movement plane.   
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Table 3.2. Results from Two-Way Repeated Measures ANOVA 
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Figure 3.4. SPM analysis of shoulder joint kinematics during dynamic straight arm abduction from rest 
to the target elevation angle both with (orange) and without (gray) the applied assistive force. (Top) 
Analysis of the joint elevation angle throughout shoulder elevation. (Bottom) Analysis of the joint elevation 
angular acceleration throughout shoulder elevation. Statistical significance (p < .05) is marked through shaded 
area on the right graphs. 
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Figure 3.5. SPM analysis of shoulder joint kinematics during dynamic straight arm scaption 
from rest to the target elevation angle both with (orange) and without (gray) the applied 
assistive force. (Top) Analysis of the joint elevation angle throughout shoulder elevation. (Bottom) 
Analysis of the joint elevation angular acceleration throughout shoulder elevation. Statistical 
significance (p < .05) is marked through shaded area on the right graphs. 
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activations of pectoralis major and latissimus dorsi, both -SE muscles, were significantly lower 

with assistance than without.  

For both assistance conditions, subjects had similar postural stability based on average 

shoulder elevation angles (p = 0.411), average shoulder elevation angular velocities (p = 0.845), 

and ranges of movement (p = 0.549) (Fig. 3.6). 

DISCUSSION: 

Activations of +SE muscles were lower with passive anti-gravity assistance than without, 

corroborating data reported for other passive shoulder exoskeletons [75, 78]. This is not surprising 

since the anti-gravity assistance and +SE muscles both acted about the shoulder to generate +SE 

joint moments. Thus, anti-gravity assistance reduces the joint moments that muscles need to 

generate to elevate the shoulder. 

Contrary to our previous simulation results [80], the activations of -SE muscles were not 

different between assistance conditions. Near the end of simulated abduction, the activations of -

SE muscles were higher with assistance than without to (1) decelerate the shoulder when 

approaching the target shoulder elevation angle of 90° and (2) overcome the +SE moment 

generated by the exoskeleton. However, the simulated abduction movement was from 

experimental data of an unassisted able-bodied subject and was the same for simulations with 

and without assistance. Conversely, during our experiments, human subjects adapted their 

kinematics by having lower decelerations with assistance as they approached the target 90° 

shoulder elevation angle. Lower decelerations may explain why -SE muscle activations were not 

higher with assistance. 

Subjects’ adaptation to the anti-gravity assistance mirrors that observed in previous motor 

control studies. For example, Novakovic and Sanguineti showed that when reaching toward a 

target, subjects who were given a relatively high level of assistance initially moved slowly and 

actively resisted the assistance to avoid overshooting the target[176]. Over time, subjects  
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Figure 3.6. Joint angle kinematics during static elevation at the target elevation angle with (orange) an 
without (gray) the applied assistive force. The darker and lighter bars correspond to abduction and scaption 
movements, respectively. (Left) Average shoulder elevation angle during a static hold. (Middle) The range of 
shoulder elevation joint angle for each trial during a static hold. (Right) The average elevation angular velocity 
during a static hold. No significant changes are present. 
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eventually moved faster and resisted less until their kinematics with assistance to match those of 

unassisted movements. Though subjects in our study adapted to the assistance in a positive way, 

this may not necessarily be true for all devices and subjects, especially those with impairment. 

Maladaptation could have many negative practical consequences, including more inefficient 

movement, poor task performance, and injury. Therefore, it is critical to characterize adaptation 

to movement assistance for the intended user population. 

A limitation of our experiment set-up was that the assistive force increased the resting 

shoulder elevation angle, reducing the angular “distance” subjects had to cover during the 

dynamic phase. This limitation potentially confounded the results during the dynamic phase. 

However, after about 60% of the dynamic phase, the kinematic differences between assistance 

conditions were not statistically significant. Coincidentally, peak muscle activations primarily 

occurred after 70% of the dynamic phase. Therefore, differences in peak activations between 

assistance conditions were likely caused by the assistance rather than differences in kinematics.  

That the anti-gravity assistance increased the resting shoulder elevation angle highlights 

the importance of tuning the magnitude of anti-gravity assistance. If anti-gravity assistance 

exceeds the shoulder elevation moment due to gravity at any point, then the assistance alone will 

produce unintentional movements or posture changes unless the user actively resists. Various 

mechanisms can be applied to prevent over-assistance at lower shoulder elevation angles. For 

example, the exoskeleton in our musculoskeletal model [80] and another reported by Perry et al. 

[79] used a cam wheel gearing mechanism to tune the anti-gravity assistance. We are currently 

developing a physical prototype of a tunable cam-based wearable passive shoulder exoskeleton 

and plan to test it on human subjects in future studies.   

Postural stability, which is the ability to maintain a target posture, is an important criterion 

for performing functional tasks effectively. We expect that anti-gravity assistance makes shoulder 

posture more sensitive to small changes in muscle force or to external perturbations, potentially 
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reducing postural stability. On the other hand, anti-gravity assistance may improve postural 

stability by delaying the onset of fatigue [61, 74, 75]. We observed no difference in the postural 

stability of shoulder elevation angle between assisted and unassisted conditions. However, future 

studies are needed to explore the effect of anti-gravity assistance on the resiliency of postural 

stability against other factors, such as fatigue and perturbations, that may occur during daily 

activities. 

Anti-gravity assistance could also affect glenohumeral joint stability and alignment. Our 

results indicated that the force balance due to muscle forces shifted in the -SE direction, since 

muscle activations of +SE muscles were lower. This could change how the humeral head aligns 

with the scapular glenoid. Disrupting glenohumeral alignment could lead to or exacerbate existing 

shoulder pathology (e.g., subacromial impingement) or glenohumeral instability. Therefore, future 

studies should investigate the effect of anti-gravity assistance on glenohumeral stability and 

alignment.   

Anti-gravity assistance could enhance function and prevent injury for both healthy and 

disabled individuals. For example, the reduced muscle activations we observed may allow users 

to perform repetitive tasks with less effort, prolong time to fatigue and task failure [177], and 

reduce muscle loads and the associated risk of strain-based injury [4]. For patients with 

musculoskeletal disorders such as rotator cuff tear, continuous anti-gravity assistance could (1) 

promote muscle recovery by reducing loads in damaged or repaired tissues or (2) prevent 

secondary injuries caused by overactivation of compensatory muscles  [11, 41, 178]. Additionally, 

anti-gravity assistance could effectively enhance the user’s strength or range of motion, which 

would be especially useful for patients with acute or chronic disability, potentially allowing them 

to perform more functional tasks.   

Our study had some additional limitations. First, the cable of the tool retractor was not 

completely vertical, introducing a small horizontal force component. We expect that this had a 
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minor effect on muscle contributions and the pattern of differences between assistance 

conditions. Additionally, we tested only two movements that are simplified compared to 

movements during activities of daily living; future research should include more functional tasks. 

We also only tested one level of assistance. A variety of assistance levels should be studied, 

since others have shown that assistance level affects how users adapt their muscle activations 

and kinematics [75, 176, 179]. Finally, the surface electrodes used to measure EMG from the 

triceps and biceps long head muscles were located underneath the humeral cuff; the cable force 

was applied to the cuff only during the assisted trials, which could have confounded EMG 

differences between assistance conditions.  

In conclusion, our results suggest that passive anti-gravity assistance can lower muscle 

activations during dynamic shoulder elevation movements, which has several potential benefits 

as described above. Subjects were able to adapt their kinematics slightly in a way that potentially 

avoided increasing activations of -SE muscles. Our study contributes critical knowledge about the 

effect of passive anti-gravity assistance on motor function during dynamic tasks. However, more 

research is needed before devices that provide continuous anti-gravity assistance, such as 

passive shoulder exoskeletons, can be broadly applied to different user populations, especially 

those with impairment and disability. 
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ABSTRACT 

Previous prostheses for replacing a missing limb following amputation must be worn 

externally on the body. This limits the extent to which prostheses could physically interface with 

biological tissues, such as muscles, to enhance functional recovery. The objectives of our study 

were to (1) test the feasibility of implanting a limb prosthesis, or endoprosthesis, entirely within 

living skin at the distal end of a residual limb, and (2) identify effective surgical and post-surgical 

care approaches for implanting endoprostheses in a rabbit model of hindlimb amputation. We 

iteratively designed, fabricated, and implanted unjointed endoprosthesis prototypes in six New 

Zealand White rabbits following amputation. In the first three rabbits, the skin failed to heal due to 

dehiscence along the sutured incision. The skin of the final three subsequent rabbits successfully 

healed over the endoprotheses. Factors that contributed to successful outcomes included 

modifying the surgical incision to preserve vasculature; increasing the radii size on the 

endoprostheses to reduce skin stress; collecting radiographs pre-surgery to match the bone pin 

size to the medullary canal size; and ensuring post-operative bandage integrity. These results will 

support future work to test jointed endoprostheses that can be attached to muscles. 
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INTRODUCTION 

A major goal of limb prostheses is to return intuitive control and realistic sensation of 

movements associated with the lost limb following amputation. Such sensorimotor function is 

especially important for upper[154, 180, 181] limb amputees since it enables the closed-loop 

motor control needed to perform manual, dexterous tasks. This goal has hitherto been pursued 

using external (i.e. worn outside of the body) prostheses. Most external prostheses incorporate 

electromechanical hardware (e.g. motors, microprocessors, sensors, electrodes)[117, 118] and 

algorithms that decode users’ movement intent from electromyograms[119, 120] and stimulate 

nerves to provide sensory feedback. Electromechanical systems do not yet accurately replicate 

sensorimotor physiology and, thus, likely introduce errors in decoding intended movement 

patterns, generating prosthesis movements, and delivering proper sensory feedback that directly 

correlates with the movements. The sensorimotor limitations of external myoelectric prostheses 

are a major reason why many are eventually abandoned[138]. 

One potential solution to overcome sensorimotor limitations of external prostheses is to 

physically attach prostheses to muscles. This is because muscles contribute to both movement 

generation and sensation, via mechanoreceptors, in the biological limb. There is strong evidence 

that muscles in the residual limb retain their sensorimotor functions after amputation[119, 147, 

148, 182]. Since all current prostheses are worn externally, the previous attachment approach 

required transferring muscle forces through skin using a procedure called cineplasty[150, 154]. 

Reports note anecdotally that cineplasty enabled exquisite control and sensation of prosthesis 

movements[16, 154]. However, cineplasty has several limitations in function, comfort, and 

appearance that are directly related to the need to transfer muscle forces through skin. Given 

these limitations, cineplasty has not been widely adopted.  

Our proposed novel approach to better facilitate physical muscle-prosthesis attachment is 

to implant prostheses completely within skin. With an implanted prosthesis, or endoprosthesis, 
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the residual muscles could be attached in a more cosmetic and anatomically realistic way that 

would overcome the limitations of cineplasty. Like other common orthopedic implants such as 

joint replacements[91, 92], endoprostheses would replace part of the musculoskeletal structure 

of the missing limb. The proposed endoprosthesis differs from previous percutaneous 

osseointegrated prostheses, which protrude through skin to provide an anchor point for externally 

worn limb prostheses.  

The objectives of our proof-of-concept study were to (1) test the feasibility of implanting a 

limb prosthesis, or endoprosthesis, entirely within living skin at the distal end of a residual limb, 

and (2) identify effective surgical and post-surgical care approaches for implanting endoprosthesis 

prototypes in a rabbit model of hindlimb amputation. We iteratively implanted an unjointed 

endoprosthesis prototype in vivo in six New Zealand White rabbits with transtibial (i.e. below-

knee) amputation. We refined the surgery, post-operative care, and endoprosthesis design 

between surgery iterations. Our criteria for a successful proof of concept was that at least two 

rabbits with the endoprosthesis could recover enough post-surgery to forego bandages and 

medications.  

MATERIALS AND METHODS: 

Summary:  

This study was approved by the University of Tennessee, Knoxville Institutional Animal 

Care and Use Committee. We used six male New Zealand White rabbits (R1-R6; average pre-

surgery weight = 2.92 kg, average age = 18 weeks), since the rabbit is a common orthopedic 

model and large enough for testing physical endoprosthesis prototypes compared to other smaller 

mammals. We used an iterative study design; in the same survival surgery and in one rabbit at a 

time (from R1 to R6), we amputated the hind limb below the knee and implanted the stem 

endoprosthesis. We monitored the rabbits during post-surgical recovery, qualitatively noting any 

adverse events that negatively affected the surgical outcome. We reviewed the observations as 
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a team and adapted our surgery or device as necessary to address the problems in the 

subsequent iterations. Rabbits were euthanized either at a humane endpoint or after post-surgical 

recovery (at around 60 days post-surgery), whichever was sooner. The rabbits were housed with 

at least one companion rabbit in adjacent cages. Enrichment and positive human interaction were 

given to the rabbits daily. 

Stem Endoprosthesis:  

The stem endoprosthesis was comprised of three parts: a metal segment, a modified 

intramedullary bone pin, and an over-molded silicone sleeve (Fig. 4.1). The metal segment was 

designed in Solidworks (Dassault Systemes, France) and 3D-printed in 316 stainless steel. We 

drilled and tapped a hole on the flat proximal surface of the stem with a reverse thread for later 

integration with the bone pin. Four of the stems (R3-R6) had sites for muscle attachment to 

stabilize the stem in the bone and mimic future muscle attachment to a muscle-driven 

endoprosthesis; the muscle attachment sites were added at will and not in response to an adverse 

surgical outcome. Commercially available intramedullary bone pins (IMEX Veterinary, Inc.), which 

we used to anchor the stems to the tibia bone, were cut to a shorter length and tapped with 

additional threads to screw into the metal segment. A range of pin sizes were available (Table 1). 

The metal segment was over-molded with an approximately 2-mm-thick coating of biocompatible 

silicone of hardness 40 shore A (BIO LSR M140, Elkem Silicones) using a custom, 3D-printed 

316 stainless steel mold. Once the three parts were assembled, the stems were sterilized using 

ethylene oxide gas.  

Pre-Surgery Bone Geometry Estimation:  

We amputated the hindlimb approximately 4 cm from the distal end of the tibia. This 

allowed us to screw the bone pin into the approximate mid-diaphyseal area of the tibia where the 

medullary canal is narrowest. We approximated the canal diameter from either micro-computed  
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Figure 4.1. Stem endoprostheses used during surgery. Corresponding 
animal number noted below each device. (1) 3-D printed 316L stainless-
steel stem. (2) modified threaded intramedullary bone pin. (3) 
biocompatible, over-molded silicone sleeve. (4) 3-D printed stainless-steel 
mold used to over-mold silicone onto stem. 
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tomography images from another rabbit of similar size (R1) or pre-surgery radiography images of 

the operated rabbits (R2-R6).  

Surgical Technique:  

The general surgical procedure for each rabbit was as follows, although we modified some 

steps in each surgery iteration (see Results) based on the surgical outcomes of preceding 

iterations. The rabbits were given a pre-emptive analgesic, either buprenorphine (0.03-0.05 

mg/kg) or hydromorphone (0.2 mg/kg), and induced into general anesthesia with either a solution 

of ketamine (30-40 mg/kg) and xylazine (3-7 mg/kg) or midazolam (0.75-1 mg/kg). Anesthesia 

was maintained with 3-5% isoflurane gas. We removed the hair from the operated limb with 

electric clippers and depilatory cream (Nair Hair Remover Cream, Church & Dwight Co., Ewing 

Township, NJ). We positioned the rabbit in right lateral recumbency with the left leg suspended, 

and aseptically prepared the limb with chlorohexidine, betadine, and 70% isopropyl alcohol. The 

surgeons (Anderson, Rifkin, and Grzeskowiak) made an incision on the hindlimb preserving 

enough skin and soft tissue to create a skin flap to cover the implanted stem. The surgeons then 

used an osteotomy saw blade to cut the bone in the distal tibial diaphysis. The bone pin of the 

stem was then screwed into the exposed tibial medullary canal. For the stems for R3-R6, which 

had sites for muscle attachments, the surgeons used a 5-0 synthetic absorbable monofilament 

suture (PDS) to anchor the gastrocnemius tendon and the tibialis cranialis insertion tendon to the 

stem with a locking loop. The skin flap created during the incision was wrapped across the distal 

end of the stem and sutured closed in a continuous subcuticular pattern using a 4-0 synthetic 

absorbable monofilament suture. In R2-R6, the closure was reinforced with a 2-0 synthetic 

absorbable monofilament applied in an interrupted cruciate pattern. Liquid topical tissue adhesive 

(3M Vetbond Tissue Adhesive) was placed over the external surface of the incision line.  
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Post-Surgical Care:  

Silver sulfadiazine topical cream was applied over the incision to prevent infection, but 

immediately post-operatively and at every bandage change. The limb was bandaged using, from 

inner to outer layers, non-adherent dressing, undercast padding, elastic bandage wrap, and 

elastic tape (ELASTIKON, Johnson & Johnson) to protect the incision site. We changed the 

bandage at least once every three days and monitored skin integrity and incision healing. We 

administered an analgesic (buprenorphine 0.03 mg/kg) subcutaneously every 6 hours for at least 

72 hours post-surgery, as well as antibiotics every 12 hours for at least 7 days (enrofloxacin 5 

mg/kg diluted) and an anti-inflammatory drug every 24 hours for at least 7 days (meloxicam; 0.6 

mg/kg) subcutaneously for at least 7 days post-surgery. 

Imaging:  

We acquired radiographs of the operated limb postoperatively and approximately every 

two weeks post-surgery to monitor the bone pin alignment, stem position, and bone.  

Weight Bearing Analysis:  

After the skin healed and fully enclosed the endoprosthesis in R4 and R6, we removed 

the bandage. To determine the extent to which the rabbit was willing to apply pressure to the 

endoprosthesis limb, we conducted a testing session to measure ground-limb pressures. The 

rabbit was guided onto a pressure mat (Tekscan Very HR Walkway 4) and we measured the 

pressure of both the operated and intact contralateral limbs simultaneously over an 8-second 

period while the rabbit was standing still. We compared, between limbs, the magnitude of both 

vertical pressure and total vertical force applied by each limb. 

RESULTS:  

Bone-Device Interface:  

When inserting the bone pin in the tibia of R1, the dorsal tibial cortex fractured, requiring 

a more proximal amputation to remove the fractured bone. Since the amputation was performed 
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more proximally than intended, the threads of the bone pin were aligned with the wider area of 

the tibia medullary canal, creating a loose fit between the bone and bone pin (Fig. 4.2). Therefore, 

bone cement (polymethyl methacrylate) was placed into the medullary canal to secure the bone 

pin. The tibia fractured in R1 because the bone pin diameter, estimated from micro-computed 

tomography images from another rabbit of comparable size, was too large. We also had only one 

bone pin size available for R1, which prevented the surgeons from switching pins during surgery 

in case of a size mismatch. Therefore, for the next five surgeries (R2-R6), the tibial medullary 

canal measurements were determined from in vivo radiographs of each rabbit taken 1-2 weeks 

prior to surgery. We selected the diameter of the bone pin to be the same as or slightly less than 

the medullary canal diameter so that the pin would fit snugly in the canal without fracturing the 

tibia. Additionally, three different bone pin size options were available if determined to be needed 

intraoperatively: the pin with a thread diameter nearest the smallest medullary canal diameter 

measured from radiographs, the next larger pin, and the next smaller pin. Table 1 outlines the 

available pin sizes from which we selected. Using this approach, for R2-R6, we experienced no 

complications with the bone pin fit and achieved a snug fit without need for bone cement. The 

endoprosthesis or bone pin did not appear to move based on the post-surgical radiographs (Fig. 

2).  Post-surgical radiographs indicated proliferative bone ongrowth over the cranial aspect of the 

device as early as 12 days after surgery in all rabbits (Fig. 4.2). However, this bone growth was 

visibly smaller in R4-R6, which had the muscle attachments.  

Skin Closure:  

For R1, we used a cranial circumferential incision to create a caudal skin flap and cranial 

suture line. This preserved the calcaneal fat pad to absorb the pressure applied to the skin when 

the rabbit bore weight on the residual limb. At 3 days post-surgery, the skin surrounding part of 

the implant was dark, indicative of ischemia (Fig. 4.3). A portion of the incision line dehisced by  
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Figure 4.2. Radiographs of stems in situ. Top Left: R1 postmortem 3-weeks post-surgery showing bone cement 
(red outline and arrow) and proliferative bone ongrowth indicated by yellow arrow. Top Middle: Progression of R2 
over 5 weeks showing development of bone ongrowth (yellow arrow). Bottom Left: Progression of stem in R4 
showing development of bone ongrowth (yellow arrow). Top Right: X-ray of R5 two weeks post-surgery showing 
where the silicone slipped off the end. 
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Figure 4.3. A timeline displaying how the skin of the operated limb for each rabbit changed over time. 
Pictures were taken at every bandage change, and progress noted at various timepoints. The number of days after 
surgery the picture was taken is in the top left corner of each cell. Yellow arrows indicate dehiscence in the skin. 
Red arrows indicate ischemic skin locations. The animal numbers indicate the order of surgeries (i.e. R1 was 
performed first, then R2, etc.). 
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10 days. At 3 weeks, the skin at the distal end of the residual limb broke off at the edge of the 

ischemic area, exposing the stem and requiring euthanasia of the rabbit. The skin complications 

in R1 were potentially due to the stem geometry and incision technique. The stem for R1 was 

relatively long and had corners with relatively small radii, which could have created areas of high 

mechanical stress in the skin. In subsequent surgeries, we made the stem shorter and increased 

the radius of the distal end of the stem, Additionally, for R2 and R3, we reversed the incision to 

create a caudal skin closure to prevent weight bearing and loading on the incision line. 

R2 showed no sign of ischemia (Fig. 16). However, at 3 weeks post-surgery, the skin had 

failed to completely heal and a small dehiscence (~2 mm diameter) had formed along the incision 

line. The dehiscence enlarged by about 7 weeks, exposing the stem and requiring euthanasia of 

the rabbit. At 4 days post-surgery, R3 had removed the bandage and appeared to have chewed 

on the sutures and stem, causing the incision line to dehisce. Attempts to close the incision failed, 

so the rabbit was euthanized. 

Although we had only observed ischemia in R1, we were concerned that the 

circumferential incision traditionally used during amputation could disrupt the microvasculature 

arising from the femoral artery that runs caudally along the hindlimb[183]. Therefore, starting with 

R4, we altered the surgical approach to a cranial linear incision to preserve the vasculature (Fig. 

4.4). This technique is similar to one used in human knee arthroplasty [184]. By as late as 22 days 

post-surgery in R4-R6, the skin was healthy and the incision line healed (Fig. 4.3). After 

determining successful healing of the residual limb, we permanently removed the bandage. In R4 

there were some areas of skin over the distal end of the stem that appeared bruised, presumably 

from impacts against the ground or cage bottom, but the skin remained closed over the stem. 

Pressure analysis of R4 and R6 showed that the residual limb experiences pressures of up to 

0.92 kg/cm2, which was 3.28 times that of the maximum intact contralateral limb under general 

weight bearing (Table 2). On average, the residual limb experienced about 2.6 times greater  
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Figure 4.4. Representation of the change in the 
incision approach that occurred between R3 and R4. 
We switched to a linear incision to preserve the 
vasculature of the skin flap provided through the femoral 
artery. The tibia was amputated at approximately the 
same location for both incision approaches. 
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pressure than the intact contralateral limb over an 8 second timeframe. This is due to the smaller 

surface contact area in the residual limb. Despite high pressure, the rabbits were willing to place 

the equivalent of about 25% body weight on the endoprosthesis.  

Bandaging and Recovery:  

Rabbits R1-R3 were able to remove the bandages on their own, potentially exposing the 

operated limb to trauma and infection. The bandage removal may have contributed to dehiscence 

in R1 and R2. There were clear indications that R3 chewed on the stem, suggesting that the rabbit 

may have also caused the dehiscence after removing the bandage. We took several steps to try 

to prevent the rabbits from removing the bandages.  We monitored the bandages more closely, 

at least twice per day, for two weeks post-surgery. If we noticed that the bandage was damaged 

or beginning to slip off, we applied additional elastic tape to reinforce the bandage. For R4-R6, 

we preemptively applied an extra bandage layer, which drastically reduced the number of times 

that the rabbits were able to remove the bandage. 

Device Design:  

As noted above, we modified the implant design after R1 by making the endoprosthesis 

shorter (20mm vs 40mm) and with larger radii to improve the chance of successful skin closure 

and reduce stress concentrations on the skin. To further decrease pressure on the skin in R5, we 

increased the radius of the silicone sleeve tip from 4.5mm to 10mm by increasing the thickness 

of the silicone cover without changing the design of the metal segment. We performed the same 

surgical technique as R4 to implant the stem in R5. However, radiographs of R5 at 14 days post-

surgery revealed that the larger silicone sleeve had slipped off the tip of the metal segment (Fig. 

2). We were able to realign the silicone temporarily, but it would not stay in place. Therefore, given 

the potential high risk of skin trauma against the exposed metal segment, we euthanized R5 once 

the bandaged skin incision had healed and fully closed (18 days post-surgery). 
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DISCUSSION: 

In this first-of-its-kind study, we demonstrated convincingly in an in vivo model that it is 

feasible to fully enclose an endoprosthesis in living skin at the distal end of a residual limb.  That 

all three final surgeries resulted in a successful shows the repeatability of our approach. Closing 

living skin over an endoprosthesis is a major challenge. This is partly because the skin at the 

distal end of the rabbit hindlimb is very thin, making it difficult to achieve suitable apposition of the 

wound edges along the suture line to promote wound healing. Additionally the suture line closing 

the wound lies directly over the synthetic endoprosthesis, which could interfere with wound 

healing [185]. As with all wounds, the suture itself can damage tissue and, if tied too tight, crush 

cells or occlude blood flow to the wound [186]. Despite these challenges, our approach was 

sufficient to achieve wound closure by about 3 weeks post-surgery. 

Preserving the blood supply to the skin is critical for wound healing and for maintaining 

long-term skin health. Along the length of an intact limb, branches from deep, central vessels 

extend superficially into the skin’s vascular network. In rabbits, the terminal arterial supply is 

extremely fragile and susceptible to disruption. Additionally, the skin covering the endoprosthesis 

cannot receive blood flow from such deep branches and, thus, must rely only its own vascular 

network. The central vessels in the rabbit hindlimb, the femoral and saphenous arteries, run along 

the caudal aspect of the hindlimb. During the first three surgeries, we used a circumferential 

incision with proximal reflection because it is the more traditional approach for limb amputation 

and closure of the skin around the residual limb. However, the circumferential incision, especially 

in R1, may have severed branches derived from the femoral or saphenous arteries and decreased 

the blood flow to the incision site. Thus, for rabbits R4-R6, we changed to a linear incision, an 

approach used in other orthopedic procedures [184]. Though the wound closed in all three rabbits 

after changing the incision, additional studies would be needed to confirm whether the change in 

surgical approach was the reason for improved outcomes. 
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Endoprostheses may place relatively high stress on the suture line and overlying skin 

since, unlike traditional orthopedic implants, they directly contact the skin. It has been shown in 

both pig [187] and rabbit [188] models that some mechanical loading along the skin surface and 

directly across a wound encourages healing. However, the skin over an endoprosthesis would 

also experience pressure on the suture line due to ground contact forces, which could damage 

the suture line and cause dehiscence. We took two steps to reduce the risk of skin trauma with 

the endoprosthesis. First, we applied the padded bandage over the limb for about 3 weeks after 

surgery, which reduce the pressure applied to the suture line as it healed. Second, we covered 

the endoprostheses with a compliant material (silicone), which would reduce skin pressure when 

external loads are applied. Additional studies are needed to determine the resilience of the skin 

covering the endoprosthesis to trauma under typical and severe biomechanical loading 

conditions.  

Silicone, the material selected as the compliant coating for our endoprosthesis prototypes, 

has been used in some orthopedic devices to, for example, prevent soft tissue adhesions that 

would interfere with the implant’s function[173]. Silicone is also common in other subdermal 

implants used in cosmetic surgery[189]. A potential drawback of coating the metal segment in 

silicone is that it could increase the risk of infection. Advanced multi-step sterilization procedures 

or incorporation of anti-bacterial coatings may be needed to prevent infection with long-term use 

of silicone-coated devices. Alternatively, biomaterials could be used to provide mechanical 

compliance and other benefits. For example, integration of a collagen layer over a tracheal 

prostheses improved the rate of epithelization over the prosthesis [190]. Biomaterial coatings over 

an endoprosthesis could promote wound healing and make the skin over the endoprosthesis more 

resilient to trauma. 

Like many other orthopedic implants, such as joint replacements, our endoprosthesis was 

osseointegrated in the medullary canal of a long bone. Osseointegration is also becoming more 



67 
 

widely used to attach external limb prostheses to a residual limb [191, 192] since it overcomes 

problems of external prosthesis sockets such as skin breakdown and discomfort. In our proof-of-

concept study, for convenience, we attached the endoprostheses to bone using off-the-shelf 

stainless-steel bone pins with machined threads. This osseointegration approach is not as 

sophisticated and effective as the clinical and state-of-the-art devices that incorporate, for 

example, porous metal frameworks [193] and osseoinductive coatings [194]. Such features 

encourage bone cells to adhere to or grow within the device so that it is more structurally stable 

relative to the bone [195, 196]. Of course, in future studies, our endoprosthesis could leverage 

state-of-the-art design features to achieve more effective long-term osseointegration.  

We are unaware of previous reports that show similar bone ongrowth over the exterior of 

an osseointegrated implant as we observed in the post-surgery radiographs (Fig. 14). The bone 

ongrowth is likely a biological response by the bone to achieve better mechanical fixation and 

may have been further stimulated by external loading from ground-limb contact. Since the bone 

growth occurs cranially and caudally, it could potentially interfere with muscles attached to the 

endoprosthesis by protruding into the muscle’s path. However, when we attached muscles to the 

endoprosthesis in R3-R6, we qualitatively observed less proliferative bone ongrowth, supporting 

the notion that the muscle attachment improved mechanical stability and fixation of the 

endoprosthesis in the bone. We plan to conduct histology to better understand the structure of 

the bone ongrowth tissue. Quantifying the extent of bone ongrowth and evaluating its effect on 

the performance of muscle-driven endoprostheses will also be part of our future research. 

The unjointed endoprosthesis presented in this study is a first step toward our larger goal 

to develop jointed endoprostheses that are physically attached to muscles. Muscle-driven 

endoprostheses could potentially restore realistic movement control and proprioception in people 

with amputation far beyond the level enabled by current external prostheses that remain 

physically detached from muscles. Additional benefits of endoprostheses include a more natural 



68 
 

cosmetic appearance; fewer skin problems associated with external prostheses; lower prosthesis 

weight compared to electromechanical prostheses that require motors and batteries; and more 

convenience without the need to recharge or replace batteries. The potential benefits of 

endoprostheses would radically improve function and quality of life of people with limb amputation 

and other major musculoskeletal defects. 

Our study had several limitations. First, we used the native skin of a healthy rabbit to 

enclose the endoprosthesis. When implanting an endoprosthesis in a person who has already 

undergone amputation, enough native skin to cover the implant would not be present. Thus, future 

research should investigate approaches, such as tissue expansion or skin grafting, to increase 

the amount of skin available to cover an endoprosthesis. Second, we had a small sample size 

(n=6), which was sufficient for our proof-of-concept study, though larger sample sizes will be 

needed to evaluate endoprostheses while accounting for inter-specimen variation. Third, the 

duration of study was relatively short. The rabbits with successful outcomes were kept alive for 

up to 60 days, which was enough to achieve our study objective but too short to determine long-

term effects on tissues. Fourth, the endoprosthesis did not incorporate many state-of-the-art 

features for osseointegration, as described above, or materials that are common in orthopedic 

implants. For example, we used 316L stainless steel rather than titanium, which is traditionally 

used in orthopedic implants, because of our ability to 3-D print stainless steel in-house to quickly 

and affordably iterate on our endoprosthesis design. However, state-of-the-art materials and 

features could easily be incorporated, which we expect would only enhance the biocompatibility 

and performance of endoprostheses.  

In conclusion, we showed that it is feasible to fully enclose an endoprosthesis in living skin 

at the distal end of a residual limb. We identified several critical factors that need to be considered 

when implanting an end-of-limb endoprosthesis, such as preserving vascularization, protecting 

the limb, and limiting the pressure applied to the skin. Our next steps include (1) comprehensively 
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evaluating the interfacing bone and skin tissues using imaging and histology, and (2) testing 

progressively larger implants, with the ultimate goal of implanting a jointed, muscle-driven 

endoprosthesis prototype to replace the foot and ankle of the rabbit hindlimb. Our repeatable 

success in implanting unjointed endoprostheses is a promising early step toward realizing our 

revolutionary and transformational muscle-driven endoprosthesis concept. 
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CHAPTER 5.  EX-VIVO ANALYSIS OF SKIN TISSUE SURROUNDING A 

STEM ENDOPROSTHESIS IMPLANTED IN AN AMPUTATED RABBIT 

HINDLIMB 

ABSTRACT 

In a previous study we showed that it is feasible to implant a stem endoprosthesis 

underneath living skin at the distal end of a residual limb following transtibial amputation in the 

rabbit model. However, we did not analyze the effect of the endoprosthesis on the overlying skin, 

an important consideration since skin serves many key biological roles (e.g., germ barrier, 

temperature and moisture regulator). In this study we analyzed the thickness and cellular structure 

of the skin in the distal hind limb of three rabbits following successful implantation of stem 

endoprostheses. Reconstruction of the CT scan using thickness mapping revealed that the 

residual limbs developed the thickest area at the distal tip of the limb. The skin around the stem 

endoprostheses seemed to adapt to the additional mechanical loading experienced from the 

implant. Despite full healing along the incision line in the residual limbs, histology for all rabbits 

showed deep dermal fibrosis from the procedure. The results from this study show that healthy 

skin in a residual limb successfully heals an adapts when enclosed around a foreign 

endoprosthesis device. Results from this study will help inform the design and surgery of future 

larger endoprosthesis devices. 

INTRODUCTION 

  In the previous chapter [197] we showed that it is feasible to implant a novel 

endoprostheses used for musculoskeletal reconstruction completely underneath the skin at the 

distal end of a residual hindlimb in rabbits following amputation. We suspect that the difference 

between successful and unsuccessful outcomes was due to factors such as maintaining adequate 

blood flow to the skin covering the endoprosthesis in order to promote healing and prevent 

ischemia. Switching from a circumferential incision to a linear incision likely helped maintain blood 

flow from the femoral artery and resulted in successful outcomes in three consecutive rabbits. 
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Despite the success of these surgeries, little is known about the effect of the subdermal implant 

on the surrounding tissue. Analyzing the effect of our endoprostheses on the surrounding tissue 

would elucidate, for example, how the skin successfully adapted to the device, which would help 

us predict long-term outcomes. 

  Studying the effect of a medical device with interfacing tissue is critical for predicting long-

term biological acceptance or rejection of the device. For example, osseointegration, commonly 

used in total knee and hip arthroplasty [193, 198, 199] and lower limb replacement [142, 143], 

involves intimate device-bone interaction. Osseointegrated implants may change the mechanical 

loads experienced by the interfacing bone. It is well known that bone structure and mechanical 

properties are responsive to mechanical loading conditions [200, 201]. Therefore, it is critical to 

analyze how the bone structure adapts to the new loading conditions to ensure that bone health 

and the mechanical strength of the bone-implant linkage are preserved. For artificial tendon 

replacement, discussed later in Chapter 8, previous studies focused on the adaptation of muscle 

on a cellular level to the intertwining suture [173]. This gave a better understanding as to why the 

tendons maintained structural integrity during stress testing. Similarly for the skin covering an 

endoprosthesis, it is critical to analyze mechanical structure, thickness, and cellular composition 

to understand if the device is causing an adverse reaction that might lead to future rejection of 

the device. 

  Most previous literature on the effect of implanted devices on skin focused on analyzing 

compatibility with transcutaneous or percutaneous osseointegrated prostheses [202, 203]. 

However, traditional osseointegrated prostheses differ from an endoprosthesis because it is 

implanted completely underneath the skin and, therefore, the skin is subjected to external forces 

(e.g., ground reaction force). Previous studies suggest that, under increased levels of stress and 

pressure, skin adapts by increasing its mechanical strength [188, 204] and thickness [205]. The 

stem endoprosthesis is fully covered in skin, which exhibits increased pressure across the skin 
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during weight bearing. Additionally, the skin is completely surrounding a foreign body which has 

the potential to interfere with the skin’s basic physiological functions and cause infection[206] or 

irreparable cellular damage [203, 207]. To ensure that the endoprosthesis does not degrade the 

structural integrity of the skin, there is a need to evaluate the structural changes of the skin in the 

residual limb caused by interaction with the device. 

  In this study, I analyzed the thickness of the skin in the distal hind limb of three rabbits 

with successful outcomes after implanting stem endoprostheses. The goal of this study was to 

analyze how the skin thickness changes in reaction to the endoprostheses by creating a three-

dimensional map of hindlimb skin thickness and comparing it between the operated limb and 

intact contralateral limb. I hypothesized (1) that the rabbits who survive 60 days after surgery and 

used their residual limbs for weight-bearing would have the thickest skin at the distal end of the 

residual limb, and (2) that the skin thickness of the distal tip of the residual limb, which experiences 

higher ground reaction pressures, would be thicker than skin at the same approximate location 

on the contralateral limb. 

METHODS 

Surgery Outcomes 

  This study was approved by the University of Tennessee, Knoxville (UTK) Institutional 

Animal Care and Use Committee. We used New Zealand White rabbits since they are a common 

orthopedic model and large enough for testing physical endoprosthesis prototypes compared to 

other smaller mammals. The six (rabbits in our previous study (R1-R6) were approximately 18 

weeks old and had an average pre-surgery weight of 2.92 kg. [197]. For each rabbit, we surgically 

implanted an unjointed stem endoprosthesis underneath the skin of the distal rabbit hindlimb 

immediately following transtibial amputation. We monitored each rabbit post-surgery with gross 

skin analysis, biweekly radiography, and pressure mat analysis. 
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Of the six rabbits who received an endoprosthesis, the final three consecutive rabbits (R4-6) 

healed from surgery enough to forego bandaging. The skin surrounding the endoprostheses had 

healed as early as 18 days post-surgery and the hair surrounding the limb had regrown around 

the entire limb as early as one-month post-surgery (Fig. 4.3). R4 and R6 showed no signs of 

adverse reaction to the device during a 60-day post-surgical period, so we performed euthanasia 

at the two-month timepoint. For R5, we had added a silicone “bulb” to the end of the 

endoprosthesis to increase pressure dispersion (see next paragraph for details). However, the 

bulb slipped off of the metal implant and we were unable to correct the issue (Fig. 4.2). Due to 

this, we euthanized the rabbit 18 days post-surgery, when the skin was qualitatively deemed by 

a veterinarian (Burton) to have healed. 

Stem Device 

The endoprosthesis stems discussed in this study can be further outlined in chapter 4 

[197]. The stems used in this study consisted of three parts: 1) a 316L stainless steel tibial 

segment, 2) an intramedullary bone pin with custom reverse threading to screw into the steel 

segment, and 3) a biocompatible silicone over-molded sleeve made of a hardness 40 shore A 

silicone (BIO LSR M340, Elkem Silicones). These endoprostheses were designed to replace the 

part of the tibia bone that was removed during transtibial amputation. We found in chapter 4 that 

R4 and R6 had maximum pressures in the endoprosthetic limb of up to 3.28 times the healthy 

contralateral limb. We suspect that higher pressures caused the rabbits to develop slight pressure 

necrosis and a callus. Because of this, I designed the endoprosthesis prototype for R5 with a 

silicone bulb at the distal tip to increase pressure dispersion (Figure 4.1).  

Euthanasia, dissection, and fixation 

Prior to euthanasia, the rabbits were induced into general anesthesia with midazolam 

(0.75-1 mg/kg). Anesthesia was maintained with 3-5% isoflurane gas. While under anesthesia, 

we euthanized the rabbits through barbiturate overdose (1 cc/10 lb) via an intravenous ear 
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catheter. After euthanasia, I shaved both hindlimbs and prepared the limbs for dissection. I 

removed both hindlimbs of each rabbit through disarticulation at the hip joint. After disarticulation, 

the entire hindlimb was left intact and submerged in 10% neutral buffered Formalin for at least 7 

days. The rabbit hindlimb was then transferred into 70% ethanol until time for further dissection. 

To image the skin via CT, I first dissected the skin from both hindlimbs after at least one 

week in ethanol. I started by making a circumferential incision just above the knee and severing 

the fascia from proximal to distal, leaving the skin intact in a “sleeve” that resembled the skin’s 

orientation on the residual limb (Fig. 5.1). I performed this dissection on the residual limbs for R4-

6 and the healthy contralateral limb for R6. The skin around the contralateral ankle was tightly 

adhered to the underlying tissue, so, in order to dissect off the entire “sleeve”, I made a linear 

incision down the caudal aspect of the limb. This allowed me to get leverage when dissecting 

around the ankle but resulted in a skin segment that was not fully intact.  

We used a micro-computed tomography (microCT) method described in a previous study 

to obtain high-resolution, 3-D images of individual layers of the skin [208]. Before microCT 

imaging, I submerged the skin in Lugol’s Solution (15% I2KI / 85% diluted water) for 48 hours. 

After 48 hours, I flushed the skin with diluted water and submerged the skin in distilled water for 

at least 24 hours. This staining technique helped differentiate the dermal and epidermal tissue 

from the subcutaneous tissue. Next, I collected microCT images with the assistance of a 

radiographer (Alan Stuckey). Voxel dimensions were 0.052 x 0.052 x 0.052mm and slices were 

taken transverse to the tibial axis of the shank. 

CT Processing 

I wrote a custom MATLAB script to process the CT images and measure the thickness of 

the skin (Appendix A). This code processed the DICOM file frame-by-frame, analyzing the 

transverse cross-sections of the skin. First, I manually applied a threshold to the DICOM to 

exclude all tissue that was not part of the stained dermal or epidermal layers (Figure 5.1). Next, I  
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Figure 5.1. CT imaging of the skin from a 
residual limb of a successful rabbit. (Top) 3D 
reconstruction of the dissected skin. The skin was 
left intact to image skin thickness at different area 
of the leg. (Bottom) Cross-sectional analysis at a 
CT image of the skin. Staining shows distinction 
between the epidermis and dermis. 
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binarized each pixel into false or true based or whether or not it contained dermal and epidermal 

tissue. I then binarized each transverse frame and found the outside border of the skin, and the 

area centroid bounded by that outside border. For every pixel on the outside border, I calculated 

a line from the pixel to the centroid and counted the number of “true” cells in the image matrix. 

When scaled by the length of one pixel, the number of “true” cells between the centroid and the 

edge of the skin was determined as the skin thickness at that point. 

Once the MATLAB code calculated the thickness of every external voxel on the outside of 

the skin, I created a 3D mapping of skin thickness across the entire residual limb for all three 

rabbits and for the shank of the healthy contralateral limb of R6. First, to determine the color 

scaling for the map of each limb, I normalized the skin thickness of each voxel by the maximum 

skin thickness measured across the entire limb. I reconstructed a 3D map of the limb to visualize 

skin thickness across the entire residual limb and locate areas of thicker and thinner skin. During 

surgery, the skin at the craniodistal part of the shank of the healthy intact limb was used as the 

new weight bearing tissue over the distal end of the endoprosthesis. Therefore, for the 

comparison mapping I normalized the thickness of each voxel in the residual limbs by the 

maximum thickness of the distalmost centimeter (48 frames) of the residual shank. This allowed 

for analysis in the change of skin thickness in the distal skin. 

Histology Analysis 

Following CT imaging, the dissected skin segments were submerged in distilled water for 

at least 2 weeks to remove the Lugol’s stain. Next, from each skin segment from the residual 

limbs, obtained samples from the following locations for histology: the shank proximal to the 

endoprosthesis, across the incision line, at the distal end of the endoprosthesis, and the caudal 

aspect of the limb over the endoprosthesis (Fig. 5.2). Additionally, on the contralateral intact limb, 

I obtained samples from the cranial aspect of the shank (for comparison to the incision site on the  
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Figure 5.2. Location of histology samples. Boxes indicate the approximate 
location of where the sample was taken from. The line dividing each box represents 
the direction of the cross-sectional slice used for histology analysis 
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residual limb) and the bottom of the foot (for comparison to the weight-bearing distal tip of the 

residual limb).  

The histology samples were obtained by slicing the skin into thin segments perpendicular 

to the area of interest. The histology samples were encased in histology cassettes and given to 

the UTCVM histopathology lab for slide generation. Each sample was stained with Hematoxylin 

and eosin (H&E) stain and sliced into thin segments to place on the slides. The histology slides 

were examined by a histopathologist (Lisa D. Duncan, M.D.). 

RESULTS 

CT Reconstruction 

Rabbits with who lasted 60 days post-surgery had a maximum skin thickness of 5.7 mm 

(R4) and 7.9 mm (R6). In both of these rabbits the maximum thickness was at the distal end of 

the hindlimb (Fig. 5.3). There were no noticeable signs of skin thinning along the cranial incision 

line. The maximum skin thickness of the rabbit who was euthanized 18 days post-surgery (R5) 

was 7.5 mm, but it occurred at the caudoproximal aspect of the residual limb. The thickest portion 

of skin in the distalmost centimeter of R5’s limb was 4.6 mm.  

The rabbits with the endoprosthesis had thicker skin in the distalmost centimeter of skin 

compared to the intact contralateral shank of R6 (Fig. 5.4). The maximum skin thickness within 

the distalmost centimeter of skin in the contralateral hindlimb was only 3.9 mm. The average skin 

thickness at the distalmost centimeter of the shank in the contralateral intact hindlimb of R6 was 

1.9 mm, compared to 4.3 mm in the residual limb of R6. This is an increase of 126.3% average 

thickness between the residual and contralateral limb.  

Histology Analysis 

Histology revealed mild to deep fibrosis along the incision location in all three residual 

limbs (Table 5.1). Additionally, there were foreign body giant cells (FBGC) located in the distal tip  
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Figure 5.3. 3D skin thickness reconstruction for 3 rabbits. The thickest skin 
was at the distal weight-bearing aspect of the residual limb (blue = thick, red = 
thin). In the contralateral limb, there is relatively uniform skin thickness across 
the approximate incision location (yellow line represents approximate location of 
incision used in surgery on residual limb) compared to other area within the 
limb. The blue arrow indicated the thickest area of skin on each rabbit. 
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Figure 5.4. Residual limbs of each limb normalized against the maximum skin 
thickness of the contralateral limb. The virtual map of R4 and R6 showed that the 
thickest area of the skin of the contralateral limb was thinner than the thickest skin in 
the residual limb 
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Table 5.1. Histology analysis of critical skin locations. 
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of all three residual limbs. FBGCs were not located in the comparable weight bearing surface at 

the bottom of the contralateral foot. They are likely a response to either the implant or the surgical 

procedure. 

DISCUSSION 

The results from the study confirmed my hypothesis that skin on the weight-bearing distal 

end of a residual limb with a stem endoprostheses implant would be thicker than a similar skin 

location on the contralateral limb. As reported in the previous study, rabbits with the 

endoprosthesis experienced up to 3.28 times more pressure on the residual limb than on the 

healthy contralateral limb. This increased pressure likely led to the formation of a callous in 

response. Skin has been shown to develop hard, dense calluses under higher pressures, 

specifically under weight-bearing circumstances [209]. This is a common problem in amputees 

with improperly fit prosthetic sockets [210, 211]; increased pressure from either weight bearing 

on the residual tibia or femur can cause calluses as well as pain and discomfort in the residual 

limb of an amputee. Despite the formation of the callus at the residual limb of the rabbits used in 

this study, the rabbits showed no signs of pain or discomfort.  

We first normalized skin thickness in each residual limb to find areas of thick or thin skin. 

However, comparison to the contralateral limb is important to estimate how the skin may have 

adapted from its normal thickness after surgery. Therefore, we normalized the skin thickness in 

the residual limb against the maximum skin thickness measured in the contralateral limb to 

quantify relative adaptation. The skin in the distal residual limb was thicker than comparable skin 

locations in the contralateral limb. Therefore, the thicker skin in the residual limb was likely due to 

an increase in skin thickness rather than thinning of the more proximal skin in reaction to the 

endoprosthesis.  

In all three rabbits, the skin incision successfully healed over our endoprosthesis 

prototypes that were made with bioinert materials. However, we might need more advanced 
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techniques to promote skin healing as we progress into surgeries with larger endoprostheses with 

mobile feet. For example, tracheal implants use a collagen-infused exterior to promote skin 

healing and reepithelization over the incision line [212]. We are investigating ways to implement 

this technology into future endoprosthesis designs. Additionally, in our histological analysis, we 

noticed fibrosis occurring along the incision line. Integration of stem cell therapies has been shown 

to decrease fibrosis across an incision line and promote skin healing [213].  

Though gross skin analysis can provide valuable, qualitative assessment of the outside of 

the skin, various imaging modalities have been adapted to better analyze issues within the skin. 

In our study, we used microCT to assess the 3D distribution of thickness of the skin samples. 

However, microCT is not as well suited as other imaging modalities for imaging soft tissues. 

Magnetic resonance imaging (MRI) can image the skin to allow physicians to analyze the different 

layers for concern or irregularity [214]. Tran et al. used MRI to image skin under orthogonal 

loading in order to determine the mechanical properties of the skin in the human arm [215]. 

However, MRI is more expensive and cannot achieve has high resolution as the microCT used in 

this study. 

This study had several limitations. First, we made several assumptions in our method to 

calculate the skin thickness from the CT images. We computed the thickness on a straight line 

from the edge of the skin to the centroid of the area bounded by the outer perimeter of the skin. 

Another approach would be to measure skin thickness along the line perpendicular to the outside 

or inside edge of the skin However, the outside border of the skin was not smooth, so the 

calculation based on the area centroid was deemed more reliable. A second limitation was that 

we had a small sample size, so our results may not generalize to a larger population. However, 

the results were similar in both rabbits who survived the entire 60-day period. We are also building 

a larger database of samples as we test larger endoprosthesis prototypes in our ongoing projects.  
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In conclusion, we used a virtual skin reconstruction technique to quantitatively analyze the 

thickness of the skin surrounding we confirmed our hypothesis that there would be greater skin 

thickness at the residual tip than comparable skin locations in the contralateral limb. The higher 

skin thickness at the tip was likely caused by the high weight-bearing pressure compared to the 

intact contralateral limb [197]. We plan to apply the same skin analysis technique to rabbits with 

larger endoprostheses as we progress toward a mobile, jointed device. 
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CHAPTER 6.  BIOMECHANICAL ANALYSIS OF THE RABBIT 

HINDLIMB DURING THE STANCE PHASE OF HOPPING GAIT 

This work is currently in review with the Journal of Biomechanics. 

Hall P. T., C. Stubbs, D. E. Anderson, C. B. Greenacre and D. L. Crouch. Biomechanical 

Analysis of the Rabbit Hindlimb during the Stance Phase of Hopping Gait. Journal of 

Biomechanics In Review: 2021. 

ABSTRACT 

Despite the wide use of the rabbit model for orthopedic research, there is a very limited 

existing data set throughout literature that describes healthy rabbit biomechanics. The objective 

of this study was to quantify the normative hindlimb ankle and foot biomechanics of New Zealand 

White rabbits during the stance phase of hopping gait. Specifically, we measured bilateral 

hindlimb kinematics, vertical ground reaction force, and ground-foot contact area and pressure 

during the stance phase of both hindlimbs of six healthy New Zealand White rabbits. In addition 

to reporting normal values for the rabbit hindlimb, data were compared between hindlimbs to 

determine any bilateral differences in our sample population. We measured biomechanics by 

synchronously recording sagittal plane motion and ground-paw pressure using a video camera 

and pressure mat, respectively. The range of motion of the foot-ground angle and ankle angle 

during stance phase was 108.9 degrees and 78.1 degrees, respectively;  there was no bilateral 

difference for either joint angle throughout stance. The maximum vertical ground reaction force 

and contact area, both averaged across rabbits, were 46.6%BW and 8.1cm2, respectively. There 

were statistically significant bilateral differences in (1) vertical ground reaction force from 48-50% 

of stance and (2) the temporal positions of the ankle and knee joint center in the sagittal plane for 

most of stance. Future studies can reference our data to quantify the extent to which orthopedic 

interventions affect rabbit biomechanics. 
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INTRODUCTION 

Animal models are essential tools for conducting biomedical research. The rabbit is a 

common animal model in orthopedic research to study, for example, mechanical instability [163, 

165, 216-226], knee joint load distribution [227-229], muscle atrophy and control [22, 230-232], 

osteoarthritis [162, 163, 165, 218, 228, 233, 234], and postural control [235]. Additionally, the 

rabbit model is used to test implantable medical devices and  tissue-device interactions, such as 

for osseointegrated implants [157-159, 236] and fracture healing [166, 237]. Recently, we have 

adopted a rabbit model to test the feasibility of a new functional limb replacement approach for 

people with amputation [197]. Our in vivo orthopedic studies will involve replacing the rabbit 

hindlimb ankle and foot with functional, implanted endoprosthesis prototypes that intimately 

integrate with bone, skin, and muscle.  

For many orthopedic interventions, their effect on motor function with respect to that of the 

intact biological limb must be determined to support clinical translation. Since our endoprosthesis 

prototypes will replace the hindlimb ankle and foot, we need to quantify the motor function these 

biological joints to benchmark the motor function enabled by the prototypes. Motor function may 

be assessed by measuring biomechanical variables, such as kinematics and ground reaction 

forces, using motion capture techniques. One previous motion capture study in rabbits reported 

knee joint kinetics and, for one rabbit, vertical ground reaction forces [170]. To our knowledge, 

multi-sample ground reaction forces and kinematics of the ankle and foot have not been reported 

for the rabbit hindlimb.  

Several techniques have been developed to measure limb kinematics and ground reaction 

forces. The previous rabbit biomechanics study [170] attached reflective motion capture markers 

to transdermal bone pins. This invasive method can track bone motion accurately but is relatively 

difficult to implement and may interfere with movement either mechanically or by causing 

discomfort. Alternatively, non-invasive motion capture methods are more straightforward to 
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implement and could elicit more natural movement by avoiding mechanical interference and 

discomfort. Non-invasive motion capture methods that have been used for small animals include 

reflective marker-based infrared motion capture [170], marker-less motion capture from videos 

[238], and bi-plane fluoroscopy [239, 240]. The two primary tools for measuring ground reaction 

forces are force plates and pressure mats. Force plates measure the resultant forces along 6 

degrees of freedom, which requires that only one limb contacts the plate at a time to distinguish 

forces among limbs [170, 241]. Pressure mats, which measure vertical pressure and contact area, 

are more convenient to use with quadrupedal animals since individual limbs can be distinguished 

even if multiple limbs contact the mat simultaneously [242-244]. The pressure mat data can be 

used to calculate vertical ground reaction force (vGRF).  

The goal of our study was to quantify intact biological hindlimb ankle and foot kinematics 

and ground reaction forces during the stance phase of hopping gait in rabbits. A secondary goal 

was to analyze the extent of bilateral symmetry of the measured biomechanics variables during 

the stance phase. We measured hindlimb kinematics and ground-foot kinetics from sagittal-plane 

video recordings and a pressure mat, respectively. We hypothesized that there would be no 

difference between hind limbs for measured kinematics and forces.  

METHODS 

Subjects 

All procedures were approved by the University of Tennessee, Knoxville Institutional 

Animal Care and Use Committee. For this study we used six 14-week-old New Zealand White 

(NZW) Rabbits (weight = 2.7 ± 0.33kgs). During the two-week acclimation period prior to testing, 

rabbits were trained to hop through an acrylic tunnel when given negative reinforcement (i.e. 

prodding). Rabbits were housed in pairs and given daily enrichment and positive human 

interaction. 

 



88 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Testing setup used to collect motion capture 
data.  (1) Tekscan Very HR Walkway 4 to collect pressure data. 
(2) Acrylic tunnel used to guide and constrain rabbit movement. 
(3) 60 Hz Camera recorded sagittal plane kinematics. (4) Black 
ink markers on the sagittal plane joints based on bony 
landmarks. 
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Instrumentation and Setup  

The setup for our locomotor measurement system included several components (Fig. 1, 

1-3). A pressure mat (Tekscan, Very HR Walkway 4; South Boston, MA) was used to record 

pressure data at 60 Hz. We taped 320-grit sandpaper to the top of the smooth pressure-sensing 

area to prevent the rabbits from slipping. We placed a 3-kg weight on the sandpaper-covered mat 

and calibrated the mat through the Tekscan software calibration program. The mat was placed 

inside a clear acrylic tunnel to guide the rabbits across the pressure mat. The mat width (11.2 cm) 

permitted only unilateral pressure measurements; therefore, to record data for both hindlimbs, we 

laterally offset the mat in the tunnel and had the rabbit hop across the mat in both directions (see  

Testing Procedure below). A camera (1080P HD Webcam, SVPRO), placed three feet away from 

the clear acrylic panel, captured video at 60 Hz. Video and pressure mat data were synchronized 

using the Tekscan Walkway software (Tekscan, South Boston, MA). 

Testing Procedure 

Before testing, we shaved both hindlimbs and marked the metatarsophalangeal (MTP), 

ankle, and knee joint centers on the lateral side of each hindlimb with black ink (Fig. 6.1, 4). The 

marks were made so that we could identify the joint locations during the kinematics analysis 

described below. After marking, we placed the rabbit into a pen with the acrylic tunnel and 

pressure mat. Each trial began when the rabbit entered the tunnel. A trial was deemed successful 

if the rabbit continued the hopping motion through the entire length of the tunnel without stopping. 

The rabbits completed 10 trials of hopping through the tunnel in each direction while we 

synchronously recorded pressure and video data for each trial. 

Data Processing and Statistical Analysis 

For each trial, we extracted the pressure, contact area, and vertical ground reaction force 

(vGRF) of the hind foot from the pressure recordings in the Tekscan Walkway software. The hind 

foot was isolated by drawing a strike box around the foot contact location, as indicated by pressure 
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data (Fig. 6.2). The contact area was calculated as the total geometric area within the strike box 

for which the pressure was greater than zero. The vGRF was calculated as the product of foot 

contact area and the average pressure across the contact area. We also computed the total 

contact area over the entire stance phase and the average pressure of the foot inside the strike 

box as a function of time. The stance phase of a given limb was designated as the portion of the 

gait cycle for which pressure was detected for that limb. 

We calculated joint angles from the video frames corresponding to stance phase. We 

processed the video frames with a custom motion analysis program written in MATLAB 

(Mathworks, Natick, MA). The program used a bottom-hat morphology filter to distinguish the 

black ink marks from the white fur and calculate the centroid of each marker position (Fig. 6.3). 

Then, frame-by-frame, we visually verified the marker centroids and, if the centroid location 

appeared inaccurate, corrected the location by manually approximating the centroid from the still 

frame. This method assumed that the sagittal plane orientation of the foot and shank was aligned 

with the line segments connecting the centroids; this was a reasonable approximation given the 

arrangement of the camera with respect to the acrylic tunnel. Finally, we calculated the angle 

between the foot segment and ground (i.e. foot angle) and between the foot and shank segments 

(i.e. ankle angle) throughout stance (Fig. 6.3). Since the camera was approximately level with the 

ground, we defined the ground as the horizontal line that intersected the MTP joint. 

In each trial, the timepoints were normalized by the duration of stance phase, permitting 

comparison among trials of different stance durations. We averaged time-series joint angles, 

vGRFs, contact areas, and contact pressures across all rabbits for each hindlimb (right and left) 

and normalized the vGRF by body weight (%BW). We compared the averaged time-series data 

between the right and left limbs using statistical parametric mapping (SPM), with α=0.05 [175]. 

We used a paired Student’s t-test to compare stance duration between the right and left hindlimb. 
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Figure 6.2. Example of strike box isolation of the contact 
foot using the Tekscan Walkway. Through the Tekscan 
software we isolated the force and contact area of a specific 
hindlimb foot strike. 
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Figure 6.3. Motion capture analysis of the sagittal plane videos 
allowed for measurement of the rabbit hindlimb kinematics. 
Frame-by-frame top hat morphology allowed for detection of joint 
markers. Joint segments (orange) were drawn between the centroids of 
the joint segments. From these joint angles we calculated the ankle 
angle (yellow) and the angle between the foot and ground (blue) 
through the dot product of unit vectors of the joint and ground 
segments. The ground (dashed blue) was determined as the horizontal 
line segment that intersects the MTP joint. 
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Evaluating joint angles separately for each joint provides an incomplete picture of rabbit 

hindlimb kinematics. This is because the hindlimb is a kinematic chain, so the positions and 

orientations of proximal limb segments depend on those of distal limb segments. Therefore, we 

implemented a technique to calculate the knee and ankle joint center positions in the sagittal 

plane. To permit comparison among rabbits of different sizes, we applied the joint angles to a 

geometrically normalized model of the rabbit hindlimb. The foot and shank segments of the model 

were 2 and 3 normalized length units (NLUs), respectively, to approximate the length proportions 

between the two segments. For each rabbit, we computed the time-series “trajectory” of the joint 

positions throughout stance for each trial; averaged trajectories across trials separately for the 

right and left hindlimb; and calculated the Euclidean distance between the averaged right and left  

hindlimb trajectories at every one percent of stance. We used SPM (α=0.05) to identify portions 

of stance for which the Euclidean difference was significantly different from zero, which would 

indicate a significant difference in joint position between hindlimbs. 

RESULTS 

Pressure Analysis 

 The vertical ground reaction force (vGRF) was 4.9-5.9 %BW larger (p = 0.048) for the right 

leg (36.4%±7.9 %BW) than the left leg (31.4±8.5 %BW) for a small portion (48-50%) of stance 

(Fig. 6.4). This portion of gait corresponded approximately to the beginning of the propulsion 

phase. There was no significant bilateral difference in contact area during stance (Fig. 6.5). The 

vGRF and contact area showed similar bimodal trends during stance with the first peak occurring 

at approximately 25% of stance and the second occurring at approximately 75% of stance. The 

vGRF and contact area curves were strongly correlated, with a Pearson’s correlation coefficient 

of 0.986 and 0.984 for the left and right hindlimbs, respectively. There was no significant bilateral 

difference in contact pressure during stance phase. Both hindlimbs maintain a nearly constant 

average pressure of approximately 0.15 kg/cm2 through the middle 80% of stance (Fig. 6.6), 
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Figure 6.4. Vertical Ground Reaction Forces of rabbit hindlimbs throughout Stance Phase. The left graph 
shows the comparison of the total vGRF between the right and left hindlimb throughout stance phase. The right graph 
shows the SPM comparison between hindlimbs of the vGRF. There was a slight significant difference between the 
right and left hindlimbs between 48-50% of stance.  
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Figure 6.5. Contact Area of the rabbit hindlimb throughout stance phase. The left graph shows the comparison of 
the contact area between the right and left hindlimb throughout stance phase. The numbered timepoints correspond to 
contact area screenshots from a representative trial of a left rabbit stance. The right graph shows the SPM comparison 
between hindlimbs of the contact area. There was no statistical difference between hindlimbs throughout stance.  
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Figure 6.6. Pressure of the rabbit hindlimb throughout stance phase. The left graph shows the comparison of 
the pressure between the right and left hindlimb throughout stance phase. The right graph shows the SPM 
comparison between hindlimbs of the pressure. There was no statistical difference between hindlimbs throughout 
stance.  
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unlike vGRF and contact area, whose time-series curves were bimodal. Stance duration was not 

significantly different (p=0.38) between the right (0.46 ± 0.16 s) and the left (0.54 ± 0.16 s) 

hindlimbs.  

Hindlimb Kinematics 

There were no significant kinematic differences in joint angles between the right and left hindlimb 

(Fig. 6.7). Averaged across rabbits and sides, the foot angle ranged from 15-123.9 degrees and 

the ankle angle ranged from 67.6-135.7 degrees. The ankle angle started with a negative slope 

and switched to a positive slope at approximately 40% of stance; this point of peak  dorsiflexion 

(i.e. lowest) ankle angle divided the stance phase into loading response and forward propulsion 

sub-phases, as with human stance [245]. The average standard deviations of the foot angle are 

7.05 and 7.53 degrees for the right and left hindlimb, respectively. The average standard 

deviations of the ankle angle are 11.25 and 14.27 degrees for the right and left hindlimbs, 

respectively.  

 During stance, the knee joint center traveled approximately 1.5 NLUs downward and 5.5 

NLUs forward (Fig. 6.8). Because the normalized foot segment was of a fixed length and rotated 

about a fixed point, the normalized ankle joint centers from all trials were restricted to an arc. The 

average standard deviation in normalized knee position across rabbits was approximate 1 NLU. 

Additionally, average difference in joint positions between hindlimbs, calculated as the Euclidean 

difference between hindlimbs, ranged from 0.16 - 0.33 NLUs for the ankle and 0.39 - 0.78NLUs 

for the knee throughout stance (Fig. 6.9). The  knee position difference was significantly different 

from zero throughout stance, with the largest differences occurring during the first 25% of stance 

phase. The ankle position difference was statistically significant from zero throughout most of 

stance. 
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Figure 6.7. Joint Kinematics of the rabbit hindlimb throughout stance phase. (Left) Foot and ankle angles 
throughout stance phase. Rabbit stance can be broken down into two phases, loading response and propulsion, 
based on the timepoint of the minimum ankle angle. (Right) SPM analysis of the joint angles. There was no 
statistically significant differences for either joint angle. 
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Figure 6.8. Normalized joint tracking and kinematic comparison between knee trajectories. (Left) Recreation 
of rabbit stance using normalized limb segments. Each hindlimb location represents hindlimb kinematics at each 
10% of stance. (Middle) Using the normalized hindlimb kinematics, we recreated the kinematics and trajectories of 
both the ankle and knee joint throughout stance. (Right) Comparing the knee joint trajectories throughout stance 
allows for visual comparison between hindlimbs. There was minimal noticeable difference between the right and left 
knee trajectories measured in this study. 
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Figure 6.9. Euclidian distance between right and left normalized joint positions 
throughout stance. (Left) Euclidean distance between the right and left normalized 
ankle position (top) and knee position (bottom) throughout stance. (Right) One-sample 
SPM analysis of the Euclidean distance between hindlimb joint positions. The knee 
position showed statistically significant difference throughout the entirety of stance and 
the ankle showed statistically significant distance between hindlimbs for the majority of 
stance.  
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DISCUSSION 

In this study we achieved our main goal of measuring select biomechanics variables from 

the intact biological hindlimb of rabbits. The data serve as reference data to benchmark how future 

orthopedic interventions, such as our endoprosthesis, affect hindlimb biomechanics. The two sub-

phases of stance, loading response and forward propulsion, mirror stance patterns seen in 

humans. However, during foot strike, the rabbits landed with a positive foot angle with respect to 

the ground, whereas humans generally land with a negative foot angle during walking gait [31]. 

Despite this difference in foot angle, rabbits and humans are both considered plantigrade [246]; 

as opposed to other common research animal models that are digitigrade (e.g. cats, dogs) [167], 

or unguligrade (e.g. pigs and goats) [168]. Therefore, the similar stance patterns and plantigrade 

nature of both rabbits and humans support using the rabbit as a comparative biomechanical 

model of human gait.  

We computed the sagittal-plane position of the ankle and knee joint centers, which reflect 

whole-limb kinematics better than joint angles since they are a function of one or more joint angles 

and limb segment lengths; in our study, the knee joint center was a function of the foot and ankle 

angles and the foot and shank segment lengths. Thus, joint center position data provide an 

essential complement to individual joint angle data, which mask differences in whole-limb 

kinematics. For example, a previous study found that rats with peripheral nerve injury recover 

whole-limb kinematics even as individual joint kinematics remained altered [247].  

The time-series vGRF data exhibited a bimodal pattern that is consistent with the trial 

reported in the previous rabbit biomechanics study [170] and the vGRFs during human walking 

[248]. We expect that, as with humans, the maximum vGRF that occurs at approximately 25% of 

stance corresponds to the loading response triggered by the need to support the rabbit’s body 

weight during landing [29]. As with the second mode of stance vGRF in humans [31], the leveling 

off of the curve of the vGRF at approximately 75% of stance presumably corresponds to forward 
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propulsion, though we could not confirm this since the pressure mat cannot record the horizontal 

ground reaction forces needed to assess forward propulsion. Despite this limitation, pressure mat 

data are useful for comparing among experimental groups because they reveal how kinetics are 

changing over both space and time [26]. 

Contact area was strongly correlated with vGRF magnitude, with correlation coefficients 

of 0.984 and 0.986 for the right and left hindlimbs, respectively. The correlation partly explains 

why the average pressure was nearly constant throughout stance phase. Maintaining a constant 

ground-paw pressure may be a locomotor strategy employed by the rabbit’s sensorimotor system. 

As seen in our prior study [249], orthopedic interventions can alter the pressure between the 

hindlimb and ground. When testing our endoprosthesis in the future, it will be interesting to see if 

rabbits adapt their hindlimb movement to preserve ground-foot pressure throughout stance 

phase. 

Per our secondary goal, we observed some bilateral biomechanical differences. For one, 

there was a statistically significant bilateral difference in vGRF over a very small (2%) portion of 

stance. More notably, the bilateral difference in the position of the ankle and knee joint centers 

was statistically significant over most of the stance phase. The difference could have been due to 

the way we calculated joint center positions by applying measured joint angles to a generic 

hindlimb model; though this approach allowed us to control for the effect of limb length, it also 

magnified any potential bias in our joint angle measurements by projecting joint angles over a 

long distance (i.e. to the end of the limb segments). The formula used to calculate knee joint 

center position also compounded errors or bias across two joints (ankle and foot joint). A potential 

explanation for all bilateral differences is that the data for each hindlimb side were recorded in 

separate trials, a limitation noted below. Finally, the observed bilateral differences may have been 

due to limb preference, though this is difficult to determine given our setup limitations and small 

sample size. 
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Our study was limited in several ways. Pressure mats measure pressure/force only in the 

vertical direction. A force plate could be used in place of our pressure mat to measure 6-DOF 

force vectors. Our video-camera-based motion capture setup and custom MATLAB software 

allowed analysis of 2-D motion in the sagittal plane only. We could more comprehensively 

characterize hindlimb kinematics with 3-D data obtained either with a multi-camera motion capture 

system or more advanced software. One such software, DeepLabCut, uses machine learning to 

track anatomical features without joint markers and can calculate 3-D kinematics from a 2-D video 

[250, 251]. We tracked marked joint locations on the skin, which are more convenient than bone 

pins used in the previous rabbit biomechanics study [170] but can move relative to underlying 

bony landmarks. Because our pressure mat was relatively narrow (11.2 cm), we could only 

measure pressure under one hindlimb at a time. As previously mentioned, this possibly attributed 

to the small bilateral differences in the vGRF we observed in our study. The length of our motion 

capture setup only allowed us to capture stance phase. In future studies we plan to use a wider 

pressure mat and longer tunnel with two cameras (one on each side) to capture bilateral gait data 

over an entire gait cycle.  

In conclusion, we have reported select ground-paw pressure and kinematic data from the 

intact biological hindlimbs of healthy New Zealand white rabbits. Our results showed that, 

although rabbits have a plantigrade gait pattern, they make initial contact with the ground either 

flat-footed or on their toes. The rabbit vGRF and contact area have similar curves throughout 

stance, resulting in a relatively flat pressure curve. The most prominent bilateral difference was 

observed for joint center positions; more investigation is needed to determine if the difference was 

real or due to a weakness in our calculation method. Our results add significantly to the limited 

existing data on rabbit hindlimb biomechanics. In future research we intend to use the data 

reported in this study as an experimental control or reference to quantify the extent to which 

orthopedic interventions affect rabbit biomechanics. Additionally, knowledge of rabbit hindlimb 
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biomechanics can inform the design and development of orthopedic interventions, such as our 

endoprosthesis, to improve functional outcomes of patients. 
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CHAPTER 7.  ANALYSIS OF THE EFFECT OF ARTIFICIAL TENDON 

ON LOCOMOTOR FUNCTION WHEN IMPLANTED IN THE RABBIT 

HINDLIMB. 

ABSTRACT 

Surgical reconstruction of the muscle-tendon unit might not be possible after several 

clinical conditions such as acute tendon rupture, tendinosis, and limb amputation. Artificial tendon 

has been developed as a replacement for irreparable damaged tendon. Although previous studies 

have shown the mechanical capabilities of this artificial tendon, they did not analyze the effect of 

the tendon on locomotor function. The objective of this study was to analyze how replacing ankle 

tendons affects locomotor function in the rabbit hindlimb. We individually replaced either the 

Achilles or Tibialis Cranialis tendon in 2 New Zealand White rabbits each. Over the next 6 weeks 

we measured biomechanics by synchronously recording sagittal plane motion and ground-paw 

pressure using a video camera and pressure mat, respectively. We analyzed 1) how end point 

biomechanics of the hindlimb compared to a healthy control group and 2) how the biomechanics 

changed throughout the post-surgical testing. Rabbits with Tibialis Cranialis replacement 

recovered to within both pre-surgical and healthy control levels of function. Rabbits with Achilles 

replacement started to recover towards pre-surgical levels of function. However, the ankle angle, 

and vertical ground reaction force never fully recovered. That locomotor function improved over 

time in rabbits having artificial tendon replacement in the biological hind limb supports the idea 

that such tendons could enable function when attached to an endoprosthesis. Artificial tendons 

could be used to restore function for other orthopedic conditions, such as tendon rupture, 

degeneration, and necrosis. 

INTRODUCTION 

Biological tendon, the anatomical link between muscle and bone, contributes to 

sensorimotor function in many ways. Mechanically, tendons transmit forces and store and release 

energy through its elastic strain, while using inherent mechanoreceptors to sense force and length 
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changes across the musculotendon unit. There are several clinical conditions that result in 

irreparable damage to the tendon or the junctions between the tendon and other tissues. Acute 

tendon rupture is one of the most common tendon injuries [252], occurring frequently in the 

Achilles tendon [252-254], Patellar tendon [255], and quadriceps tendon [256]. Tendon rupture 

incidence is commonly associated with age and underlying medical conditions [252], and repair 

can only typically be achieved through prompt diagnosis and surgical intervention. The breakdown 

of collagen tissue within a tendon stemming from chronic overuse of the tendon is called 

Tendinosis [257]. Tendinosis is common in the elbow [258, 259], shoulder [260, 261], and ankle 

[262] joint, and can cause severe impairment and disability. Secondary injuries such as UCL tear  

and rotator cuff tear [263] can be caused by Tendinosis. 

Artificial tendons have been developed to repair or replace damaged or missing biological 

tendons. Compounds that mirror tendon mechanical properties allow for tendon healing and 

regrowth for severe tendon injury [264-267], similar to a bone or nerve scaffold. Studies have 

shown that, by maintaining a gliding external surface that prevents tissue adhesion could allow 

for a permanent artificial tendon replacement [268, 269]. Melvin, et. al developed a permanent 

artificial tendon replacement with a durable muscle interface that serves as a promising 

technology for direct muscle-prosthesis connection [172]. Suture based tendon gives the 

advantage of an inert material for the growing muscle to grow through and develop strong 

mechanical linkages [270]. This muscle-suture junction has been shown to withstand stronger 

mechanical loads than a natural myotendinous unit [271]. 

The effect of tendon replacement devices on motor function is poorly understood. The 

previous studies performed by Melvin et al. in a goat model have shown stiffness and failure loads 

similar to biological tendons [173]. However, the effect of permanent artificial tendon on motor 

function, which has strong implications for the effectiveness of both tendon repair after injury and 

replacement following amputation, remains unclear. Motor function, specifically in cyclic loading 
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and unloading patterns such as gait, relies heavily on the functional elasticity of tendon [272]. 

Tendon injuries and affect this functional range, limiting movement and inhibiting gait pattern [273, 

274]. Motor function relies not only on strength and stability, but also on other key factors such as 

muscle coordination and viscoelasticity to produce coordinated movement. Despite, the strong 

mechanical properties of suture-based tendon, it is important to measure how the device affects 

locomotor function in order to determine its efficacy towards eventual clinical tendon replacement. 

The goal of this study was to determine the effect of replacing biological tendon with 

suture-based artificial tendon on locomotor function in a rabbit model.  We hypothesized that 

locomotor function would decrease immediately following surgery but subsequently recover 

toward pre-surgical levels. 

METHODS 

Summary 

This study was approved by the University of Tennessee, Knoxville Institutional Animal 

Care and Use Committee. Four rabbits had either the Achilles tendon (A1&2) or Tibialis Cranialis 

tendon (T1&2) replaced, while all other tendons remained intact. The rabbits were 16 weeks old 

and 3.40 ± 0.26 kg at the time of surgery. We used the rabbit model because they are a small 

mammal large enough to test physical device prototypes and the large range of motion about the 

angle allows increased sensitivity to detect changes in kinematics. For each surgery we resected 

the tendon of interest; integrated one end of the artificial tendon with the distal end of the muscle; 

and attached the other end of the artificial tendon across the ankle to the foot using a suture 

anchor. We performed biomechanical testing on the rabbits once pre-surgery and at five weekly 

timepoints starting at 2 weeks post-surgery.  

Artificial Tendon 

The artificial tendons used in this study were based on the prostheses developed by 

Melvin, et al. [172, 173]. To manufacture the artificial tendons, we used customized USP size 0 
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polyester braid suture cut to 12” length and double-armed with swaged 3/8-circle taper point 

needles (0.028” wire diameter) (RK Manufacturing Corp, Danbury, CT, USA). These sutures were 

grouped into bundles of 2 strands for the TC tendon and 3 strands for the Achilles tendon. The 

suture bundles were folded in half and braided, creating a loop at the distal end and either 4 or 6 

suture needles at the proximal end (Fig. 7.1). The artificial tendons were coated in biocompatible 

silicone (BIO LSR M140, Elkem Silicones, Lyon, FR) over the braided section to prevent adhesion 

to surrounding biological tissues. After fabricating the artificial tendons, we cleaned them in an 

ultrasonic bath to remove any foreign debris and particulates. Finally, the artificial tendons were 

sterilized using ethylene oxide gas. 

Surgical Procedure 

The rabbits were given a pre-emptive analgesic of hydromorphone (0.2 mg/kg) and 

induced into general anesthesia with midazolam (0.75-1mg/kg). The rabbit was intubated, and 

anesthesia was maintained with 3-5% isoflurane gas vaporized into 100% O2. We removed the 

hair from the operated limb with electric clippers and depilatory cream (Nair Hair Remover Cream, 

Church & Dwight Co., Ewing Township, NJ). We positioned the rabbit into dorsal recumbency 

with the operated leg suspended, and aseptically prepared the limb with chlorohexidine, betadine, 

and 70% isopropyl alcohol. The rabbit was placed on a fluid drip with a constant rate infusion 

(CRI) of Lidocaine (2 mg/kg) diluted in 25 ml Ringer’s Solution. During surgery, anesthesia was 

reinforced with intraoperative doses of a 10:1 saline-xylazine (3 mg/kg) dilution if the rabbits heart 

rate increased above 240 bpm. 

To begin the procedure, the attending surgeon (Anderson) made a lateral longitudinal skin 

incision over the either the Achilles or Tibialis Cranialis insertion tendon, extending approximately 

from the point of the calcaneus or talus bone to the mid-belly of the gastrocnemius or tibialis 

cranialis muscle, respectively. The surgeons retracted the skin to expose the biological insertion 

tendon. The biological tendon was excised by cutting it at its insertion on the bone and at the  
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Figure 7.1. Artificial tendon used to recreate the connection between muscle and bone. (Left) The tendon 
is comprised of 4 Fiberwire suture looped together and braided into a 16 - 18 mm length unit with curved needles 
on each end for muscle attachment. The tendon is coated in silicon to prevent tissue adhesion. (Right) Illustration 
outlining the synthetic tendon implantation surgery in the gastrocnemius. (1) Synthetic tendon comprised of 
modified Fiberwire suture. (2) Arthrex tendon anchor. (3) Fiberwire suture connecting the synthetic tendon to the 
tendon anchor. (4) Suture needles attached to the end and woven through muscles. (5) Once woven through the 
muscle, the suture is tied off and cut at the suture extrusion site.  
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myotendinous junction. The suture needle ends of the artificial tendon prosthesis were inserted 

individually through the distal end of the muscle (Fig 7.1). The sutures were sewn through the 

muscle, exiting from the side of the muscle about 1 cm proximal to the suture insertion. The 

adjacent suture strings were tied together using square knots, and the surgeons cut and removed 

excess suture material.  

To attach the artificial tendon to the bone, a hole was first pre-drilled into either the superior 

aspect of the calcaneus (A1&2) or the lateral aspect of the talus (T1&2). The surgeons screwed 

a tendon anchor into the drilled hole. The surgeons tied down the looped distal end of the artificial 

tendon to the implanted tendon anchor using FiberWire suture (Arthrex, Naples, FL, USA). The 

skin was closed with 4-0 synthetic absorbable monofilament suture in an interrupted cruciate 

pattern and reinforced with 3-0 synthetic absorbable monofilament skin suture in a simple 

interrupted pattern. 

Post-Surgical Care 

We applied silver sulfadiazine topical cream over the incision site, both immediately post-

surgery and at every bandage change, to help prevent infection and promote healing. We 

bandaged the limb using, from deepest to most superficial, non-adherent dressing, undercast 

padding, elastic self-adherent bandage wrap, and elastic tape (ELASTIKON, Johnson & Johnson, 

New Brunswick, NJ, USA) to protect the incision site during recovery. Additionally, the bandage 

helped fix the hindlimb at a desired natural ankle flexion posture to prevent overloading the 

muscles and artificial tendons during the early integration period. We changed the bandage every 

three days to monitor the incision site and the overall hindlimb skin integrity. We administered an 

analgesic of hydromorphone (0.2 mg/kg) intramuscularly every six hours for at least 72 hours 

post-surgery. Additionally, we administered antibiotics (enrofloxacin; 0.05 mg/kg) orally every 12 

hours and anti-inflammatory medication (meloxicam; 0.6 mg/kg) orally every 24 hours for 7 days 

post-surgery. To monitor in-vivo integrity of the artificial tendon prosthesis, we performed bi-
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weekly radiography of the operated limb, starting on the day of surgery. When analyzing the 

radiographs, we looked at three locations to inspect for potential mechanical failure: 1) the suture 

connecting the artificial tendon and suture anchor, 2) the suture anchor relative to the bone, and 

3) the muscle-tendon interface. The rabbits were given pen time as part of an informal 

rehabilitation program. The rabbits were housed with at least one companion rabbit in adjacent 

cages. Enrichment and positive human interaction were given to the rabbits daily. 

Biomechanics Testing 

For noninvasive rabbit gait testing, we used a method that we reported previously for 

healthy rabbits [275]. The motion capture setup used a pressure mat (Tekscan, Very HR Walkway 

4; South Boston, MA) located inside an acrylic tunnel. The pressure mat was synchronized with 

60 Hz webcam (1080P HD Webcam, SVPRO) through Tekscan Walkway software (Tekscan, 

South Boston, MA). The webcam was placed approximately 3 feet from the acrylic tunnel to record 

sagittal plane kinematics.  Before testing, we shaved both hindlimbs of each rabbit and marked 

the approximate joint centers of the knee, ankle, and metatarsophalangeal (MTP) joint with black 

ink, based on bony landmarks.  

For each trial, the rabbits were prodded to hop over the pressure mat through the acrylic 

tunnel. The width of our pressure mat (11.2cm) permitted only unilateral pressure recording. 

Therefore, each rabbit completed about 10 trials of hopping in each direction through the tunnel 

while we recorded biomechanics data for the leg facing the camera. Each trial began when the 

rabbit entered the tunnel, and a trial was deemed successful if the rabbit continued the hopping 

motion through the entire length of the tunnel without stopping. Each rabbit underwent 6 

biomechanics testing sessions (S0-S5) over the course of the study. We conducted the first 

testing session during the week before surgery (S0). After surgery, we waited 2 weeks for the 

rabbits to recover before starting weekly post-surgical testing for five weeks (S1-S5).  



112 
 

Data Processing and Statistical Analysis 

Additional details about the data processing were reported in [275]. All data analyses were 

performed only with data from the stance phase of hopping gait, when the hindlimb experiences 

the most biomechanical loading. 

To extract pressure data from the Tekscan Walkway software, we first isolated the contact 

foot of the hindlimb of interest by drawing a strike box around the area of contact. We then 

extracted pressure, contact area, and vertical ground reaction force (vGRF) data for each contact 

foot. vGRF was expressed as a percentage of body weight (%BW). The hindlimb stance phase 

was defined as the time window over which the total pressure under the foot was greater than 

zero.  We calculated the hindlimb kinematics from the frames of the synchronized video 

corresponding to stance phase. Frame-by-frame, a custom MATLAB (Mathworks, Natick, MA) 

program (1) identified the centroids of joint centers marked with black ink, (2) defined foot and 

shank limb segments as lines connecting adjacent joint centers, and (3) calculated the foot and 

ankle joint angles (Fig. 6.3).  

We evaluated the extent of post-surgery recovery in the context of healthy rabbit gait. 

Specifically, we compared time-series biomechanical data (foot and ankle angle, vGRF, contact 

area, and pressure) throughout stance between the study rabbits (n=2 per experiment group) at 

the week-6 post-surgery timepoint (S5) and healthy “control” rabbits (n=12) reported in a previous 

study [275]. To permit comparison among trials of different stance durations, we normalized the 

timepoints of the stance phase data by the duration of stance phase. The normalized time-series 

data were averaged across rabbits in each group and compared between experiment and control 

groups using statistical parametric mapping (SPM), with α=0.05 [175].  

Analyzing joint angles individually masks changes that occur in the whole kinematic chain 

of the hindlimb. Therefore, we computed the positions of the ankle and knee joint centers 

throughout stance using the joint angles and a generic kinematic model of the rabbit hindlimb 
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[275]. The foot and shank segments of the kinematic model were 2 and 3 normalized length units 

(NLUs), respectively, based on the approximate anatomical length proportions measured 

between the two segments. We qualitatively analyzed this normalized model between 

experimental (S5) and control groups to compare changes in holistic hindlimb kinematics. 

We compared summary outcome measures across the 6 testing timepoints to characterize 

functional changes (1) between pre- and post-surgery and (2) across post-surgery timepoints.  

The summary outcome measures, computed from the time-series data for each trial, were: (1) 

range of motion (difference between maximum and minimum joint angle) for each joint, (2) the 

minimum and maximum joint angles, (3) the joint angles at foot strike and toe off, and (4) the 

average vGRF, contact area, and pressure across stance phase. For each testing timepoint, the 

outcome measures were averaged across trials for each rabbit, then averaged across rabbits 

within each experiment group. Due to our small sample size, we analyzed summary outcome 

measures and data trends to compare within experimental groups over different timepoints, rather 

than performing an ANOVA for comparison.  

RESULTS 

Time-Series Biomechanical Comparison to Healthy Control Group 

Tibialis Cranialis (TC) Group 

At S5, rabbits that underwent TC replacement had significantly similar foot angles to the 

healthy controls after the first 35% of stance and similar ankle angles throughout the entirety of 

stance. Fig. 7.2). The minimum ankle angle, which corresponds to the end of loading response 

and beginning of propulsion, occurred at 40% of stance phase for both TC and control groups. 

Additionally, the pressure was significantly different between TC and control groups during 18-

89% of stance phase. Both vGRF and contact area were not significantly different between TC 

and control groups throughout most of stance (Fig. 7.3).  
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Figure 7.2. SPM comparison of pressure mat data throughout stance phase between surgical groups and 
healthy control at S5. (Left) TC rabbits showed statistically similar foot angles to a healthy control group during the 
last 70% of stance. Achilles rabbits showed significantly lower foot angles than controls during the final 80% of stance 
phase. (Right) TC rabbits showed statistically similar ankle angles to controls throughout the entirety of stance. 

Achilles rabbits showed significantly lower ankle angles than controls during the final 75% of stance phase. 
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Figure 7.3. SPM comparison of pressure mat data throughout stance phase between surgical groups and 
healthy control at S5. (Left) TC rabbits showed statistically similar vGRF to a healthy control group throughout the 
entirety of stance. Achilles rabbits showed significantly lower vGRF than controls during 10-20% and 70-85% of 
stance. (Middle) TC rabbits showed statistically similar contact area to controls throughout the entirety of stance. 
Achilles rabbits showed statistically lower contact area throughout most of stance phase. (Right) Both TC and Achilles 
rabbits showed statistically higher foot-ground pressure than controls between 20-90% of stance. 
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During stance phase, rabbits with TC replacement and the control group had similar 

normalized kinematics at S5 (Fig. 7.4). At foot strike, the foot angle was higher in the TC group 

than in the control group, resulting in a knee joint center position difference of 0.4 NLUs between 

TC and control groups. As the rabbits progressed through stance phase, the hindlimb kinematics 

became more similar to the control group, resulting in a distance of 0.05 NLUs between TC and 

control knee position at toe off. Both groups displayed similar knee trajectories of forward and 

downward movement, with the TC rabbits knee position moving 5.13 NLUs forward and 1.55 

NLUs downward, while the control group moved 5.46 NLUs forward and 1.25 NLUs downward 

during stance phase. 

Achilles Group 

At S5, rabbits with Achilles replacement had significantly different foot and ankle angles 

starting at 15% and 31% of stance phase, respectively, compared to the control group (Fig 7.2). 

The minimum ankle angle was 34.4° lower and occurred later in stance (57%), in the Achilles 

group than in the control group. The Achilles group showed significantly different (qualitatively 

lower) vGRF during 7-20% and 72-89% of stance (Fig. 7.3) and significantly different (qualitatively 

lower) contact area during 6-22% and 39-94% of stance. However, the lower contact area resulted 

in significantly higher pressure during 19-92% of stance phase, specifically during forward 

propulsion when the pressure was 3 times higher than in the control group. 

Rabbits with Achilles replacement showed qualitatively different kinematics compared to 

healthy controls (Fig. 7.4). Though kinematics at foot strike were similar between Achilles and 

control groups, the Achilles group was more flat-footed during loading response, resulting in 

different knee trajectories throughout stance. Specifically, the vertical knee position of the Achilles 

group decreased by 2.23 NLUs before increasing by 0.56 NLUs (1.67 NLUs downward from start 

to end), and only moved 4.11 NLUs forward, compared to the control group that continuously 

moved in the same direction with a distance of 5.46 NLUs forward and 1.25 NLUs downward. 
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Figure 7.4. Comparison of normalized hindlimb kinematics between surgical and control groups at S5. (Left) 
Comparison of TC rabbits to a group of healthy control rabbits. The only qualitative difference between the kinematics 
of TC and control rabbits is a higher starting foot angle in the surgical group. (Right) Comparison of Achilles rabbits to a 
group of healthy control rabbits. Achilles rabbits start stance phase with similar kinematics to control rabbits. However, 
both the foot and ankle angles of the Achilles rabbits are significantly smaller than the control rabbits by toe off. 
Additionally, when mapping the knee trajectory, Achilles rabbits have a “dip” in movement not seen in the other two 
groups. 
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Post-surgical Functional Recovery based on Summary Outcome Measures 

TC Group 

Rabbits with TC replacement had similar foot and ankle range of motion (ROM) across all 

timepoints (Fig. 7.5). The foot angle at foot strike increased from 11.5 at S0 to 28.8 degrees at 

S1 and maintained at least this level of extension at foot strike throughout the remainder of testing 

(Fig. 7.6). However, the ankle angle at foot strike and the foot and ankle angles at toe off were 

similar across all post-surgery timepoints (S1-S5) to pre-surgery measurements (S0). The vGRF 

and contact area, averaged across stance, decreased at S1 by 6 %BW and 1.22 cm2, 

respectively, but returned to pre-surgical levels by S3 (Fig. 7.7). Additionally, the average 

pressure showed similar values at every timepoint. 

Achilles Group 

At S1, rabbits with Achilles replacement had lower foot and ankle angle ROM by 51.3 and 

39.2 degrees, respectively, compared to S0 (Fig. 7.5). The foot ROM never noticeably increased 

throughout post-surgical testing. However, ankle ROM increase back to pre-surgical levels by S5. 

The increase in ankle ROM between S1 and S5 was primarily due to an increase in the maximum 

ankle angle (S1: 73.5 degrees; S5: 102.9 degrees), rather than a decrease in the minimum ankle 

angle (S1: 36.4 degrees; S5: 31.3degrees). At foot strike, both the foot and ankle angles were 

similar across timepoints (Fig. 7.6). However, the foot and ankle angles at toe off decreased by 

58.3 and 69.6 degrees, respectively, after surgery and never returned to pre-surgical levels. The 

average vGRF and contact area throughout stance decreased by 14.5 %BW and 3.13 cm2, 

respectfully, initially post-surgery (Fig. 7.7). Despite never returning to pre-surgical levels, both 

average vGRF and contact area increased by 6.6 %BW and 0.96 cm2, respectively, toward pre-

surgical values by S5. The average pressure throughout stance increased from S0 to S1, but at 

S3 began decreasing back towards pre-surgical levels. 
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Figure 7.5. ROM measured across all testing timepoints. Orange line represents the 
average between T1 and T2. Blue line represents the average between A1 and A2. (Left) TC 
rabbits showed similar ROM to pre-surgical testing across all testing timepoints. Achilles 
rabbits showed  decrease in the ROM of the foot angle following surgery that never recovered. 
However, despite an initial decrease in ankle ROM following surgery, Achilles rabbits returned 
to pre-surgical ROM by S5. (Bottom Right) Increases in ankle ROM in achilles rabbits is 
attributed to an increase in the maximum ankle angle rather than a decrease in the minimum 
ankle angle. 
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Figure 7.6. Start and end angles measured across all testing timepoints. Orange line 
represents the average between T1 and T2. Blue line represents the average between A1 and 
A2. (Left) TC rabbits showed similar ankle starting angles throughout all testing timepoints but 
showed a significantly higher foot starting angle following surgery that never recovered. 
Achilles rabbits showed a slight decrease in starting angles for both the foot and ankle 
throughout all testing timepoints but returned to pre-surgical levels by S3. (Right) TC rabbits 
showed similar endpoint joint angles to pre-surgical testing across all testing timepoints. 
Achilles rabbits showed a decrease in the end starting angle after surgery that never 
significantly increased throughout post-surgical testing. 
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Figure 7.7. Pressure mat data measured across all testing timepoints. Orange line represents the average between 
T1 and T2. Blue line represents the average between A1 and A2. (Left) TC rabbits showed a decrease in average vGRF 
immediately after surgery but recover to presurgical levels by S3. Achilles rabbits had lower average vGRF after surgery 
but showed recovery despite never returning to pre surgical levels. (Middle) TC rabbits showed a decrease in average 
contact area immediately after surgery but recover to presurgical levels by S3. Achilles rabbits had lower average contact 
area after surgery but showed recovery despite never returning to pre surgical levels.  (Right) TC rabbits showed similar 
average pressure across all testing timepoints. Achilles rabbits showed an increase in pressure in the first two week 
followed by a decrease back towards pre surgical levels starting in S3. 
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DISCUSSION 

In this study we showed that, in support of our hypothesis, rabbits were able to recover to 

pre-surgical levels of function with TC replacement and partial levels of function with Achilles 

replacement. There was a smaller functional decline within the TC group from S0 to S1, so there 

was a smaller “distance” to full recovery compared to the Achilles group. The Achilles group 

experienced a greater functional decline likely due to higher biomechanical demand on the triceps 

surae (Achilles) muscles than the TC muscle during locomotion.  

For most summary outcome measures, rabbits with TC replacement returned to pre-

surgical values by S5. The only difference in hindlimb kinematics following TC replacement was 

for higher foot angle during the first 35% of stance phase. The difference was similar to the “drop 

foot” condition in humans caused by strain or tear of the Tibialis Anterior tendon  [28, 276].  The 

similarity suggests that there is laxity in the tendon unit, potentially caused by the in-situ length of 

the implanted artificial tendon. This laxity causes an inability for the artificial tendon to maintain 

proper tension, resulting in a slight failure to maintain dorsiflexion at the end of swing phase. 

Having a wider array of tendon sizes available during surgery might allow for a tighter implantation 

and minimize this drop foot affect. 

Similar to TC rabbits, the functional deficit in kinematics is possibly from improper in situ 

length and stiffness of the tendon unit. Proper tensile force in the tendon is essential for proper 

locomotion [277, 278]. Therefore, if the artificial tendon is too long in situ compared to the 

biological tendon there could be laxity resulting in inefficient force transmission. With this laxity, 

the rabbit could have difficultly efficiently performing plantar flexion movements. The Achilles 

rabbits showed statistically similar kinematics to the control group at foot strike, but as stance 

phase progress, the increasing deviated from control kinematics. The pressure mat data for 

Achilles rabbits showed significantly lower force and area throughout stance. The SPM of both 

vGRF and contact area showed a bimodal pattern, consistent with the two phases of stance, with 
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the greatest SPM T-value magnitude occurring at peak levels of both loading response and 

forward propulsion. This is to be expected that the differences in the pressure data would be 

greatest when the hindlimb is at the most extreme periods of stance when the tendon is put under 

the most extreme period of loading during stance. 

The decrease in contact area for Achilles rabbits is mostly attributed to flexion in the MTP 

joint throughout stance. The Achilles rabbits had a qualitatively unnatural level of flexion in the 

toes that maintained throughout stance. This led to the rabbits midfoot never contacting the 

ground (Fig. 9). Upon ex vivo dissection of A2 we noticed collagenous tissue fusing the artificial 

tendon to the flexor digitorum insertion tendon before it crossed over the ankle   (Fig. 10). Pulling 

either the triceps surae (Achilles) muscle group or flexor digitorum muscle group individually 

caused plantar flexion. This showed that this tissue connection likely influenced the deficits in 

locomotor function. However, for a muscle driven endoprosthesis with a single joint, both the 

flexor digitorum and Achilles muscle could be joined to both contribute to plantar flexion. 

Severe traumatic injury, such as amputation, may result in partial or complete loss of the 

tendon. It has been shown that not only can muscle in the residual limb still activate in coordinated 

patterns to replicate movement [119] without the tendon connecting it to bone, but also that 

surgically reengaging a residual muscles ability change length, in coordination with other muscles, 

can restore a sense of proprioception in the residual limb of an amputee [131, 147, 182]. 

Therefore, reconnecting the muscle and bone through artificial tendon linkages has the potential 

to restore sensorimotor function through biomimetic joint reconstruction. An endoprosthesis 

underneath the skin allows for direct artificial tendon connection between the residual muscle and 

the implanted device. The results from this study show that the artificial tendon has the potential 

to produce functional movement when attached to an endoprosthesis. 

This study had several limitations. First, during surgery, we did not have a way to ensure 

that the muscle-tendon unit was in proper levels of tension. This could have caused the laxity that 
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we suspect contributed to the functional limitations of the intervention. In surgery, we have 

multiple tendon sizes for the surgeon to pick from to attempt to replicate biomimetic levels of 

tension in the tenson. Having additional tendon sizes available for the surgeon during surgery 

could allow the surgeon to more accurately implant the device under more appropriate tensile 

loads. Second, our sample size was small, with only 2 rabbits per experimental group. This limited 

our statistical power. However, both rabbits in each group showed similar trends that supported 

our hypothesis. Repeat testing on more rabbits would increase the statistical power and could 

help verify the results seen in this study. Third, during post-surgical recovery, the rabbits did not 

complete a formal physical therapy program. We gave enrichment and pen time as a form of 

informal, unstructured physical therapy. However, implementing a targeted physical therapy 

program to focus on lessening joint stiffness and encouraging mobility could allow for a greater 

or quicker recovery. Fourth, we had a relatively short post-surgical testing period. This proved 

sufficient for TC rabbit recovery. However, Achilles rabbits could have recovered more with more 

time. Fifth, our testing setup limited our ability to measure hindlimb biomechanics. Our testing 

setup only allowed for measurement of stance phase. During healthy gait, rabbits dorsiflex the 

ankle during swing phase, which should put the TC tendon under a greater loading demand than 

during stance phase. Therefore, it is possible that the TC group would show functional changes 

during swing phase that we were unable to measure with our testing set up. Additionally, the width 

of our pressure mat only allows for unilateral measurement of locomotion, limiting our ability to 

compare changes within each rabbit to their healthy contralateral hindlimb.  

We based our artificial tendon design on one reported by Melvin, et al. [172]; In their in 

vivo goat study,  they performed histology analysis and tensile testing of the muscle-artificial 

tendon unit. In a future study we plan to perform histology analysis on the muscle-tissue interface 

and compare our findings with those previously reported by Melvin, et al. This will allow us to 

measure how well the artificial tendons used in this study integrated into the muscle.  
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Many potential clinical applications for tendon replacement, specifically amputation, would 

require implantation of multiple tendons for musculoskeletal reconstruction of the damaged joint 

due to the large loss of tissue under traumatic circumstances. In future studies we plan to replace 

both the Achilles and TC insertion tendons simultaneously in a rabbit’s hindlimb to analyze the 

locomotor function of the ankle joint primarily actuated through artificial tendons in two different 

directions. Additionally, future clinical applications of artificial tendons for joint reconstruction 

would likely be performed in muscle that is previously damaged or negatively affected. In order to 

analyze the efficacy of the locomotor restorative capabilities artificial tendons in impaired muscle, 

we plan to implant artificial tendons in rabbits who have undergone tenotomy of the biological 

tendon 1 month prior to implantation. This will allow the muscle to atrophy prior to implantation, 

so that we can analyze the effect of function restoration on a limb with impaired muscle.   

In conclusion, we showed that artificial tendon replacement can at least partly maintain 

locomotor function in the rabbit hindlimb. Rabbits recovered towards pre-surgical levels of 

function, with the TC rabbits having similar biomechanics to a control group throughout most of 

the stance phase after 6-weeks post-surgery. These results show the promise of restoring 

musculoskeletal function with artificial tendons. 
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CHAPTER 8. CONCLUSION 

CONTRIBUTIONS 

The main contributions of this dissertation are: 

• A biomechanical analysis of the shoulder neuromuscular response to a continuous 

overhead passive force that assists in shoulder elevation, which simulates the conditions 

of a passive exoskeleton. 

• A feasibility study of a novel endoprosthesis concept in a rabbit model of hindlimb 

amputation. We tested the feasibility of implanting a limb prosthesis completely 

underneath the skin at the distal end of a limb. 

• A quantitative analysis of the skin overlaying a stem endoprosthesis in rabbits to better 

understand the skin-device interaction. 

• A report of hindlimb biomechanics in healthy rabbits based on noninvasive motion 

capture techniques. The biomechanics data, which included sagittal plane kinematics, 

vertical ground reaction forces, contact area, and pressure, can be used as control or 

reference data to compare with rabbits undergoing some study intervention. 

• A biomechanical analysis of the effect of artificial tendon replacement across the rabbit 

ankle on hindlimb biomechanics. We reported differences in kinematics, vertical ground 

reaction forces, contact area, and pressure between rabbits with artificial tendon 

replacement and healthy rabbits. 

APPLICATIONS 

The following are a few possible applications of the work proposed in this dissertation: 

The work presented in chapter 3 looking at the effect of passive overhead force 

sheds light on the application of passive exoskeletons. Passive shoulder exoskeletons have 

the potential to be used in both clinical and industrial applications. In a clinical setting, passive 

exoskeletons can assist patients recovering from shoulder impairment with rehabilitation. When 
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used according to physician guidelines they have the potential to offset the activation 

requirements of the damaged muscle while maintaining the user’s ability to perform ADLs. In an 

industrial setting, passive shoulder exoskeletons can act as preventative devices to minimize the 

risk of shoulder injury. Overhead cyclic shoulder movement that is common in the factory settings 

often leads to shoulder impairment. The use of passive exoskeletons can offset the muscle 

requirements for this type of overhead loading and help prevent injury. 

Our analysis of a fully implanted endoprosthesis underneath the skin opens the 

door for future MDE technologies. As discussed throughout this dissertation, MDE technologies 

have the potential to provide greater levels of sensorimotor function over external prostheses. 

Showing that it is feasible to implant an orthopedic device at the distal end of a residual limb 

allows future research into expanding the limb for full limb reconstruction applications. In addition 

to total limb reconstruction, MDE allows for reconstruction of major musculoskeletal defects. For 

example, a treatment for osteosarcoma called rotationplasty requires removal of the femur. 

Currently, there is no way to replace the bone and muscle connections for as large of a defect. 

However, an MDE would be able to not only replace the malignant bone but reattach the muscles 

back to the implant. 

The rabbit biomechanics analysis presented in this dissertation can be applied to 

the rabbit model across a wide variety of orthopedic research. The rabbit model is a 

commonly used model for orthopedic research. However, it is rarely used to test interventions 

that may affect locomotion, such as stints, nerve technologies, and orthopedic devices. Part of 

this may be due to the limited information of rabbit kinematics. The rabbit data presented in 

chapter 6 provide a set of reference data for rabbit hindlimb biomechanics that can be used in 

future studies as a healthy control. This will further the use of the rabbit model in applications that 

affect locomotor function. 
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The artificial tendon analyzed in chapter 7 has potential applications in both limb 

reconstruction and major tendon repair. The artificial tendon test in chapter 7 showed potential 

to restore locomotor function. If the efficacy of this tendon device can be further tested and proved, 

then it has the potential to be used in a wide variety of surgical applications. As outlined in chapter 

7, there are several conditions that cause irreparable impairment to biological tendon. Similar to 

how artificial heart valves circumvent the need to find a replacement valve or use a pig valve, an 

artificial tendon could prevent the need to graft tendon from a different part of the body. This could 

allow for repair of the damaged tendon without the need to compromise a healthy tendon. 

FUTURE WORK 

There are many possible future directions for the work presented in this dissertation, some of 

which are presented below. These and other research endeavors would begin the translation of 

our conceptual assistive devices towards clinical application and utility. 

Exoskeleton Testing 

The work presented in chapter 3 has helped inform the design of a passive exoskeleton that uses 

a cam wheel to gear passive force to overcome the shoulder gravitational moment. However, this 

shoulder exoskeleton has not be tested to see if it assists in shoulder elevation. Future studies 

should use the testing paradigm outlined in chapter 3 to assess the potential for the exoskeleton 

to decrease muscular activation in muscles that cross the shoulder. Additionally, more moves can 

be tested that more appropriately mirror ADLs. 

Expanded Endoprosthesis Devices 

In chapters 4 and 5 I analyzed a simple stem endoprostheses. The positive results 

presented in this dissertation inform future testing of larger, more complex endoprosthetic 

devices. Future surgeries should analyze the extent to which healthy distal skin can be preserved 

and be healthy enough for the incision closure to fully heal around an implanted device. Analyzing 

the vasculature and temperature of the skin during surgery would allow prediction of the risk of 
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skin ischemia during the recovery process. Once it is determined how much skin can safely be 

used to enclose an endoprosthesis, future studies should perform the same feasibility approach 

outlined in chapter 4 to test larger endoprotheses with a rigid ankle and foot segment. 

Additionally, for the stem endoprosthesis tested in chapter 4, the tendon was tied down to 

a rigid loop. However, in a functional endoprosthesis, the muscle tendon unit would be attached 

across a mobile ankle joint to allow for plantar and dorsiflexion. Before an MDE is tested with 

artificial tendon attached across a mobile ankle joint, studies should analyze the locomotor 

function of an MDE device that has healthy tendon attached across the ankle. This would allow 

for a negative control comparison for the final MDE prototype that uses artificial tendon. Using a 

mobile MDE with healthy tendon would allow for troubleshooting in the design of the mobile 

device. Implanted the MDE device with the artificial tendon would mask whether impairments in 

locomotion were caused the design of the MDE device or an interaction between the muscle, 

artificial tendon, and MDE connections. 

The studies performed in this dissertation toward the advancement of the MDE application 

focused on implanting devices in and within healthy tissue. However, amputees, who would be 

the eventual recipients of clinical MDEs, have damaged or disused tissue. Therefore, future 

studies need to analyze the practical application of how these devices would work in previously 

amputated limbs. Below are two examples of future work toward this direction of research. 

Strengthening Residual Muscles after Atrophy 

During amputation surgery, muscles are spared in the residual limb, but are either left to 

retract or are grounded through anchors or a bone bridge [87-90]. These muscles, despite their 

ability to still be activated, produce less mechanical output due to their inability to change length 

or tensile force. This can lead to noticeable muscle atrophy in the residual limb. These muscular 

conditions in the residual limb can be considered a variation of disuse because the amputated 

muscle is no longer experiencing the same tension and excursion (i.e., length changes) as an 



130 
 

intact muscle. When disused, not only does the maximum force generation produced through 

muscular contraction decrease, but the muscle also shortens and can no longer extend to the 

same length.  

A conceptual prototype for an MDE assumes that the residual muscle will have the ability 

to produce healthy levels of force and excursion. However, residual muscle has never previously 

been tested to see its ability to hypertrophy and return to healthy levels of function. Future work 

with MDEs should focus on the ability of residual muscles to rehabilitate following atrophy and 

shortening. Further research could inform interventions needed to stretch and strengthen the 

residual muscle prior to implantation of an MDE, similar to show skin expanders stretch and 

strengthen healthy skin before implantation of various devices. 

Skin Expansion and Grafting Techniques 

In the research presented in chapters 4 and 5 we showed the feasibility of implanting a 

device underneath skin. However, amputation and implantation occurred during the same surgery 

and the surgeon closed the incision with the rabbits’ native healthy skin. This allowed the surgeon 

to create a pocket within the skin in which the endoprosthesis would fit. In a clinical setting, the 

amputation procedure would occur before the implantation of an MDE. The remaining skin in a 

residual limb would not allow the surgeon to create a large enough pocket within the skin to fully 

cover an implanted device. Prior to clinical application, future work needs to investigate strategies 

in skin expansion and skin grafting to create a larger area underneath the skin to allow for 

implantation of a larger MDE device. Skin expanders have previously shown the ability to not just 

expand the skin, but also strengthen the vascular network in the expanded area. This technique 

could not only allow for a larger residual skin pocket, but also strengthen the skin and promote a 

healthier recovery following implantation. 
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