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Abstract

Autonomous driving vehicles depend on their perception system to understand the environ-

ment and identify all static and dynamic obstacles surrounding the vehicle. The perception

system in an autonomous vehicle uses the sensory data obtained from different sensor

modalities to understand the environment and perform a variety of tasks such as object

detection and object tracking. Combining the outputs of different sensors to obtain a more

reliable and robust outcome is called sensor fusion. This dissertation studies the problem of

sensor fusion for object detection and object tracking in autonomous driving vehicles and

explores different approaches for utilizing deep neural networks to accurately and efficiently

fuse sensory data from different sensing modalities.

In particular, this dissertation focuses on fusing radar and camera data for 2D and 3D

object detection and object tracking tasks. First, the effectiveness of radar and camera fusion

for 2D object detection is investigated by introducing a radar region proposal algorithm

for generating object proposals in a two-stage object detection network. The evaluation

results show significant improvement in speed and accuracy compared to a vision-based

proposal generation method. Next, radar and camera fusion is used for the task of joint

object detection and depth estimation where the radar data is used in conjunction with

image features to generate object proposals, but also provides accurate depth estimation

for the detected objects in the scene. A fusion algorithm is also proposed for 3D object

detection where where the depth and velocity data obtained from the radar is fused with the

camera images to detect objects in 3D and also accurately estimate their velocities without

requiring any temporal information. Finally, radar and camera sensor fusion is used for 3D

multi-object tracking by introducing an end-to-end trainable and online network capable of

tracking objects in real-time.
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Chapter 1

Introduction

Autonomous driving vehicles are intelligent agents that need to perceive the environment,

predict and decide about other agents’ behavior, plan their course of action and execute

their decisions in an complex and uncontrolled environment [25]. This complex system

is comprised of many interconnected components and processes. The core components

in autonomous driving vehicles can be categorized into four subsystems [44]: perception,

localization and mapping, path planning and vehicle control, as illustrated in Fig. 1.1.

Perception is the first and arguably the most important step in this process, which is

responsible for understanding the environment surrounding the vehicle, including identifying

all static and dynamic obstacles. The perception system itself can be broken down into

different modules designed to accomplish specific tasks such as object detection, object

tracking, road detection and traffic sign recognition.

All these modules need to be accurate and robust and at the same time efficient enough to

run in real-time. To achieve these requirements, autonomous vehicles usually take advantage

of a variety of different sensors, including cameras, radars and LIDARs. The perception

system is responsible for transforming the raw sensory data obtained from these sensors into

semantic information about the environment. Having multiple sensing modalities improves

both accuracy and robustness, as any type of sensor suffers from different limitations that

degrades its performance. Additionally, the environmental conditions such as snow, rain

and bright sunlight greatly affect some sensors’ ability to operate [23]. Using a combination

of different sensors enables the perception system to exploit the complementary features of
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Figure 1.1: Autonomous driving subsystems and the tasks in the perception subsystem.
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different sensing modalities, and compensate for the limitations of individual sensors. The

process of merging the information obtained from multiple sensors to reduce uncertainty is

called sensor fusion.

This dissertation aims to utilize deep learning for developing sensor fusion algorithms

for autonomous driving applications. It focuses on two of the most important tasks in the

perception system: object detection and object tracking.

1.1 Object Detection

Object detection is the task of determining whether or not instances of predefined object

classes are present in an image, and if so, determining the spatial location and extent of

each object instance [50]. Object detection has been a fundamental and challenging problem

in computer vision for many years, and it’s widely accepted that its progress has gone

through two important and historical periods [113]. In the traditional object detection period

(before 2014), the mainstream approach was to extract local features from the image and

apply a machine learning method for recognition [26]. Most algorithms in this period were

built based on methods for extracting hand-crafted features such as Histogram of Oriented

Gradients (HOG) [16] and Scale-Invariant Feature Transform (SIFT) [54] from the image.

Object detection reached a plateau after 2010, with the performance of hand-crafted features

becoming saturated [113]. In 2012, a deep Convolutional Neural Network (CNN) was used

for image classification [41] and in 2014 the first CNN based object detection algorithm was

introduced by R. Girshick [29]. This started the second historic period and object detection

has evolved at an unprecedented speed since.

2D object detection has seen a significant progress over the past few years, resulting

in very accurate and efficient algorithms mostly based on CNNs [27, 15, 73, 51]. These

methods are generally based on anchors and fall under one of the two main categories of

two-stage or one-stage methods. Two-stage algorithms such as [27, 73] are comprised of

two networks in their pipeline. The first network is designed to generates object candidates

called region proposals or Region of Interest (RoI) using the features extracted from the

image. The RoIs are then processed, refined and classified in the second network to obtain

3



the final detection results. In the one-stage detection category on the other hand, the RoI

generation stage is skipped and features obtained from the image are directly processed to

generate the final detection results including the location and category of the objects. These

algorithms rely on a set of pre-defined anchor boxes and treat the object detection task as

a regression problem, learning the class probabilities and bounding box coordinates directly

from the image features [81]. YOLO [71] and SSD [51] are among the most popular one-stage

detection algorithms. The two-stage methods usually achieve a higher accuracy compared to

the one-stage methods, but they require more processing, storage space and inference time.

Although the anchor-based methods have been very popular, they suffer from several

drawbacks. The anchors (generated or pre-defined) could introduce a class imbalance

problem if most of them are only covering the background in the image. Additionally,

using anchors introduces more hyper-parameters and computation to the system, which

could results in longer training and inference times [96]. More recently, anchor-free detectors

[52, 19, 39] have been proposed to improve the efficiency by eliminating the anchors altogether

and regressing the location of the objects directly.

Object detection for autonomous driving applications presents unique challenges such

as real-time requirements and memory limitations. The embedded processors used in

autonomous vehicles also have processing limitations that renders many existing object

detection methods not suitable for autonomous driving scenarios. Addressing these

limitations requires careful design and implementation of object detection algorithms that

are tailored to the specific needs of this particular application.

1.2 Object Tracking

Object tracking is the task of continuously estimating the trajectory of an object based

on measurements obtained from one or multiple sensors. Object tracking algorithms can

be divided into two different categories: Single Object Tracking (SOT) and Multi Object

Tracking (MOT). In SOT the tracker is responsible for tracking a single object whose

appearance is known a-priori. This object is provided in the first frame and needs to be

tracked in all the subsequent frames. In MOT on the other hand, a detection step is necessary

4



to identify all objects with certain categories, and track them individually without any

prior knowledge of the appearance or number of such objects [14]. This is a significantly

more challenging task, as several factors such as object occlusion and objects with similar

appearances might impede the tracking process.

Many algorithms have been developed in recent years to address these issues. The

majority of these algorithms exploit the rich representational power of Deep Neural Network

(DNN) to extract complex semantic features from the input. Tracking-by-detection is a

common approach used in these algorithms, where the tracking problem is solved by breaking

it into two steps: (1) detecting objects in each image, (2) associating the detected objects

over time. Recently, the CNN-based object detection networks have been very successful in

improving the performance in this task. As a result, many of the MOT methods adopt an

existing detection method as is and focus more on improving the association step.

The first deep learning based approaches [88, 87, 86] mostly took advantage of the

powerful feature representation capabilities of DNNs to better model the tracked objects,

and then used traditional methods for classification and association [40]. Other methods

utilized DNNs for solving the correspondence problem as well [82, 84] by directly learning the

similarities between two object match candidates. Some methods go even further and propose

end-to-end DNNs to optimize the entire tracking process [65, 58]. This can potentially boost

the performance of the tracking algorithm, since the entire tracking pipeline which includes

object representation, object detection and location prediction is jointly optimized in the

network [40].

Tracking of dynamic objects surrounding the vehicle is essential for many of the tasks

crucial to autonomous navigation, such as path planning and obstacle avoidance [70].

Tracking objects over time also makes it possible to estimate variables that are not directly

observed by the sensors, such as velocity and acceleration of objects [40]. This information

could be particularly useful in autonomous driving for identifying critical situations, as

illustrated in Fig. 1.2. Tracking methods developed for autonomous vehicles use a variety of

sensory data such as RGB images from vision sensors, point clouds from range sensors such

as LIDARs and radars, or a combination of them as inputs.
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Figure 1.2: Using the objects’ kinematic information to predict their location in future
[40].
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Incorporating the multi-modal sensory data into an object tracking framework for

autonomous driving applications is not a trivial task. It requires an efficient, accurate

and reliable fusion algorithm capable of utilizing the information embedded in different

modalities in real time. Most multi-modal MOT methods use multiple sensing modalities in

the detection stage, but only utilize features from one sensing modality in the association

step. In addition, many existing MOT methods rely only on camera images [108, 111] or

LIDAR point clouds [13, 80] for detection and tracking.

1.3 Sensor Fusion

Sensor fusion is the task of combining the outputs of individual sensors to produce a new

outcome that is more reliable and more robust than the those generated by each individual

sensor [23]. In recent years, sensor fusion has been applied in many different applications

such as 2D and 3D object detection [12, 42, 47, 60], semantic segmentation [105, 56] and

object tracking [2, 22]. Many of these methods take advantage of the hierarchical feature

representation in neural networks to effectively combine multiple sensing modalities.

Most sensor fusion methods in the literature can be categorized into early, middle and late

fusion categories. In an early fusion approach, the raw or pre-processed sensory data from

different sensors are fused together, enabling the network to learn a joint representation

from different sensing modalities. These methods generally have a lower computation

requirements, but could be very sensitive to spatial or temporal misalignment of the input

data [25]. On the other hand, a late fusion approach combines the data from different

modalities at the decision level and provides more flexibility for introducing new sensing

modalities to the network. However, a late fusion approach does not exploit the full

potential of the available sensing modalities, as it does not acquire the intermediate features

obtained by learning a joint representation. A compromise between the early and late

fusion approaches is referred to as middle fusion. In this approach, features from different

modalities are first extracted individually and then combined at an intermediate stage,

enabling the network to learn joint representations and creating a balance between sensitivity

and flexibility. Different sensor fusion categories are illustrated in Fig. 1.3.
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Decision Level Decision 1 Late Fusion Decision 2

Feature Level Feature 1 Middle Fusion Feature 2

Data Level Sensor 1 Early Fusion Sensor 2

Figure 1.3: Different sensor fusion levels [23].
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Although fusion helps with building a more accurate and robust perception system, it

also adds to the complexity and processing requirements of the system, making the design

of real-time sensor fusion algorithms very challenging. This is particularly important in

applications such as autonomous driving, where operation in real-time is a requirement.

1.4 Motivation and Contribution

This dissertation focuses on sensor fusion for object detection and object tracking in

autonomous driving applications, with an emphasis on utilizing radars and cameras in the

process. The selection of the proper group of sensors is one of the major considerations in

designing the perception system in an autonomous vehicle. Although many studies have

been conducted on fusing different sensing modalities for autonomous driving applications,

most recent works focus on exploiting LIDARs and cameras for object detection and object

tracking applications.

LIDARs use the time of flight of laser light pulses to calculate distance to surrounding

objects. They provide accurate 3D measurements at close range, but the resulting point cloud

becomes sparse at long range, reducing the system’s ability to accurately detect far away

objects. Additionally, due to their unstructured nature, processing point clouds obtained

from LIDARs is both challenging and computationally expensive. LIDARs are also very

expensive compared to other sensors such as radars or cameras. Vision cameras are one of

the essential sensors used in autonomous driving applications, generating a high resolution

view of the environment surrounding the vehicle. Cameras are relatively inexpensive and are

very effective for tasks such as object detection and classification, but they do not provide

any depth information about the environment. To address this problem, two or more cameras

could be used in a stereo camera setup to estimate depth [23]. This solution, however, is

usually less accurate than dedicated depth sensors such as LIDARs, and is susceptible to

calibration errors.

The complementary features of LIDARs and cameras have made LIDAR-camera sensor

fusion a topic of interest in recent years. This combination has been proven to achieve

high accuracy in 3D object detection for many applications including autonomous driving,
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but it has some limitations. Cameras and LIDARs are both sensitive to adverse weather

conditions such as snow, fog and rain, which can significantly reduce their field of view

and sensing capabilities. Additionally, LIDARs and cameras are not capable of detecting

objects’ velocity without using temporal information. Estimating objects’ velocity is an

important requirement for collision avoidance in many scenarios, and relying on the temporal

information might not be a feasible solution in time-critical situations.

For many years, radars have been used in vehicles for Advanced Driving Assistance

System (ADAS) applications such as collision avoidance and Adaptive Cruise Control (ACC).

Radars operate by measuring the reflection of radio waves from objects, and use the Doppler

effect to estimate objects’ velocity without requiring any temporal information. While

objects’ velocity information is extremely useful in tasks such as object tracking, as it can be

used for predicting objects’ path and displacement. Radars are capable of detecting objects

at much longer range compared to LIDARs and cameras (up to 200 meters for automotive

radars), while being very robust to adverse weather conditions. Compared to LIDARs and

cameras, the raw data obtained from radars require less processing before they can be used

as object detection results. This is because of the internal processing performed on the

data in automotive radars, which filters out most of the noise and duplicate detections and

also provided useful features such as relative object speed, detection validity probability

and stationary or moving classification for each detected object. In contrast, LIDAR point

clouds require significant processing to extract semantic information about objects in the

scene. Radars, however, are not particularly good at classifying objects. This makes the

fusion of radar and other sensors such as cameras a very interesting topic in autonomous

driving applications.

Despite radars’ popularity in the automotive industry, few studies have focused on fusing

radar data with other sensing modalities. One reason for this is the fact that there are not

many publicly available datasets containing radar data for autonomous driving applications,

which makes conducting research in this area difficult. On the other hand there are many

large-scale datasets containing LIDAR and camera data, which has resulted in significantly

more studies focusing on LIDAR point clouds processing and fusion with camera data.

Due to inherent differences between LIDARand radar point clouds, applying or adapting
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existing LIDAR-based feature extraction and classification algorithms to radar point clouds

is impractical, if not infeasible. Many of the existing point cloud processing methods first

project the points to different views or use voxels to represent it in a compact form. 2D or

3D convolutional networks are then used to extract features. Other methods extract features

from the raw point clouds directly using networks such as PointNet [69]. All of these methods

are usually designed for dense LIDARpoint clouds and do not perform well on sparse point

clouds. Radar point clouds are significantly more sparse compared to LIDARpoint clouds.

For a single object, an ideal radar only reports one point, compared to tens or hundreds of

points obtained from a LIDAR for the same object. This sparsity makes it impractical to

extract geometry information about the objects in the scenes. Aggregating multiple radar

readings obtained in different time-stamps can help provide more points in the point cloud,

but these points are usually not a good representation of the objects’ shape and size. This

aggregation also introduces latency in the system. Additionally, most automotive radars do

not provide any height information for the detected objects, essentially making the radar

point clouds a 2-dimensional signal, as opposed to the 3-dimensional point clouds obtained

from LIDARs. Fig. 1.4 visualizes some of the differences between radar and LIDAR point

clouds.

This dissertation investigates fusing radar and camera data for object detection and

object tracking in autonomous driving applications. In particular, several fusion algorithms

are proposed to perform 2D and 3D object detection, depth estimation and object tracking

based on DNNs. These algorithms provide insight into the effectiveness of radars in

improving both accuracy and run time of object detection and tracking tasks when used

in conjunction with cameras.

1.5 Dataset

The NuScenes [8] dataset is extensively used in this dissertation to train and evaluate the

proposed algorithms. NuScenes is a large-scale and publicly available dataset for autonomous

driving, featuring a full sensor suite including radar, camera, LIDAR, GPS and IMU. With

3D ground truth annotations for 25 object classes and 1.4M radar sweeps, NuScenes is the
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(a)

Figure 1.4: Sample data from the NuScenes dataset showing radar point cloud (red), 3D ground truth boxes (green) and
LIDAR point cloud (grey).
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first large-scale dataset to publicly provide synchronized and annotated camera and radar

data collected in highly challenging driving situations. The dataset includes images from

6 different cameras around the vehicle and radar detections from four corner radars and

one front-facing radar. The NuScenes dataset is organized into 1000 different scenes of 20

seconds length annotated at 2Hz, resulting in a total of 40k annotated key frames. The

dataset also provides a benchmark to evaluate and compare object detection and object

tracking algorithms, with well defined evaluation metrics for both applications.

1.6 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 provides a thorough literature

survey on both traditional and modern sensor fusion algorithms. Although this dissertation

only focuses on utilizing modern DNNs for sensor fusion, a background on traditional fusion

algorithms provides more insight into the topics discussed in this dissertation. Chapter 3

introduces a radar-based region proposal algorithm, demonstrating the effectiveness of radar

detections in generating 2D object proposals for a two-stage object detection algorithm. In

chapter 4, radar-based proposals are used to perform joint 2D object detection and distance

estimation, taking advantage of the accurate depth information provided by the radar

detections. A radar-camera fusion network for 3D object detection is proposed in chapter

5. In addition to the detection bounding boxes, this network also estimates objects’ velocity

without requiring any temporal information. Chapter 6 introduces a 3D object tracking

algorithm, utilizing radar and camera data to track 3D object bounding boxes through using

an end-to-end trained DNN. Finally, in Chapter 7 the contributions of this dissertation are

summarized and several directions for future research in this area are discussed.
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Chapter 2

Literature Survey

Autonomous vehicles are usually equipped with a variety of sensors with different modalities

to understand the environment. The data obtained from these sensors is used to perform

different tasks crucial to autonomous navigation, such as object detection and object

tracking. An enormous amount of research has been conducted over the past decade to adopt

and improve sensor fusion methods for this application [23]. This chapter first provides a

brief review of the existing object detection and object tracking algorithms, then focuses on

the classical and modern methods of sensor fusion. The classical fusion algorithms were most

popular before the deep learning era, but some of them are still very useful in robotics and

autonomous driving applications. The modern methods of sensor fusion are mostly based

on DNNs and have been very successful in establishing the state of the art results in recent

years.

2.1 Object Detection

Most vision-based object detection networks follow one of the two approaches: two-stage

or single-stage detection pipelines [25]. In two-stage detection networks, a set of class-

agnostic object proposals are generated in the first stage, and are refined, classified and

scored in the second stage. R-CNN [29] is the pioneering work in this category, using

proposal generation algorithms such as Selective Search [83] in the first stage and a CNN-

based detector in the second stage. Fast R-CNN [28] also uses an external proposal generator,
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but eliminates redundant feature extraction by utilizing the global features extracted from

the entire image to classify each proposal in the second stage. Faster R-CNN [73] unifies the

proposal generation and classification by introducing the Region Proposal Network (RPN),

which uses the global features extracted from the image to generate object proposals.

One-stage object detection networks on the other hand directly map the extracted

features to bounding boxes by treating the object detection task as a regression problem.

YOLO [71] and SSD [51] detection networks are in this category, regressing bounding

boxes directly from the extracted feature maps. RetinaNet [48] addressed the foreground-

background class imbalance problem in single-stage object detection and achieved better

results than the state-of-the-art two-stage detection networks.

Monocular 3D object detection methods use a single camera to estimate 3D bounding

boxes for objects. 3D RCNN [43] uses Fast R-CNN [28] with an additional head and 3D

projection. It also uses a collection of CAD models to learn class-specific shape priors for

objects. Deep3DBox [59] regresses a set of 3D object properties using a convolutional neural

network first, then uses the geometric constraints of 2D bounding boxes to produce a 3D

bounding box for the object. CenterNet [109] takes a different approach and uses a keypoint

detection network to find objects’ center point on the image. Other object properties such

as 3D dimension and location are obtained by regression using only the image features at

the object’s center point.

LiDARs have been widely used for 3D object detection and tracking in autonomous

driving applications in recent years. The majority of LiDAR-based methods either use 3D

voxels [45, 110] or 2D projections [46, 12, 99, 101] for point cloud representation. Voxel-based

methods are usually slow as a result of the voxel grid’s high dimensionality, and projection-

based methods might suffer from large variances in object shapes and sizes depending on the

projection plane. PointRCNN [78] directly operates on raw point clouds and generates 3D

object proposals in a bottom-up manner using point cloud segmentation. These proposals

are refined in the second stage to generate the final detection boxes.
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2.2 Object Tracking

Object tracking methods have many applications in different computer vision tasks such

as autonomous driving, surveillance and activity recognition. Most existing methods on

MOT use the tracking-by-detection approach [111, 98, 21], relying on the performance of an

underlying object detection algorithm [72, 73, 102] and focusing on improving the association

between detections. One major drawback in this approach is that the association task does

not utilize the valuable features extracted in the detection step. More recently, the joint

detection and tracking approach is trending for MOT where an existing object detection

network is converted into an object tracker to accomplish both tasks in the same framework

[24, 5, 36].

From another perspective, MOT algorithms can be split into batch and online methods.

Batch methods use the entire sequence of frames to find the global optimal association

between the detections. Most methods in this category are based on optical flow algorithms

and create a flow graph from the entire sequence [76, 104]. Online methods, on the other

hand, only use the information up to the current frame for tracking objects. Many of these

algorithms generate a bipartite graph matching problem which is solved using the Hungarian

algorithm [6]. More modern methods in this category use deep neural networks to solve the

association problem [4, 93].

MOT methods can also be divided into 2D and 3D categories. Most 3D MOT methods

are developed as an extension of existing 2D tracking models, with the distinction that

input detections are in the 3D space rather than the 2D image plane. Some of the 3D MOT

methods use LIDAR point clouds [92] or a combination of point clouds and images [106] as

their inputs.

2.2.1 2D Multi-Object Tracking

DeepSORT [94] uses an overlap-based association method with a bipartite matching

algorithm, in addition to appearance features extracted by a deep network. In [24] authors

use the current and previous frames as inputs to a siamese network that predicts the

offset between the bounding boxes in different frames. Tracktor [5] exploits the bounding
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box regression of the object detector network to directly propagate the region proposals’

identities, which eliminates the need for a separate association step. Since it is assumed

that the bounding boxes have a large overlap between consecutive frames, low frame-rate

sequences would require a motion model in this approach. Zhu et al. [112] propose flow-

guided feature aggregation, where an optical flow network estimates the motion between the

current and previous frames. The feature maps from previous frames are then warped to the

current frame using the flow motion and an adaptive weighting network is used to aggregate

and feed them into the detection network. Integrated detection [107] proposes an early

integration of the detection and tracking tasks, where the outputs of the object detector

are conditioned on the tracklets computed over the prior frames. A bipartite-matching

association method is then used to associate the bounding boxes.

2.2.2 3D Multi-Object Tracking

Hu et al. [32] combine 2D image-based feature association and 3D Long Short Term Memory

(LSTM)-based motion estimation for 3D object tracking. Their method leverages 3D box

depth-ordering matching and 3D trajectory prediction to improve instance association and

re-identification of occluded objects. Weng et al. [92] propose a real-time MOT system called

AB3DMOT that uses LIDAR point clouds for object detection and a combination of Kalman

filter and the Hungarian algorithm for state estimation and data association. CenterTrack

[108] takes a pair of images and detections from prior frames as input to a point-based

framework, where each object is represented by the center point of its bounding box. The

network estimates an offset vector from the center point of objects in the current frame to

their corresponding center points in the previous frame, and uses a greedy algorithm for

object association. Besides images and point clouds, some methods use map information to

improve the tracking performance for autonomous driving applications. Argoverse [11] uses

detailed map information such as lane direction, ground height and drivable area to improve

the accuracy of 3D object tracking.
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2.3 Sensor Fusion

2.3.1 Classical Methods

The classical fusion methods can be divided into three categories [9]: data association, state

estimation and decision fusion.

Methods in the data association category are concerned with establishing the set of

observations or measurements that correspond to a set of targets [9]. Nearest Neighbor

(NN) is among the simplest data association methods, grouping the most similar values

based on a predefined distance metric. NN does not perform very well in noisy or cluttered

environments, as it can introduce error propagation by providing many pairs with similar

probabilities [7]. K -Means [53] is an modified and iterative version of the NN algorithm that

finds the best localization of the cluster centers. This algorithm needs to know the number of

clusters a priori and is not always able to find the optimal cluster centers. A common practice

with K -Means is to start with a small number of clusters and increase it until adequate result

is obtained. The Probabilistic Data Association (PDA) [3] is another method in this category

that assigns a probability of association to each hypothesis from every target observation,

and computes the state of the target as a wighted sum of the estimated states under all

hypotheses. The target measurements are validated first by checking if they are within a

certain range of the predicted measurement. When used for tracking objects, PDA performs

well when objects do not change their movement pattern abruptly, but will most likely lose

the target otherwise [9].

State estimation methods aim at finding the value of a state vector (position, size, velocity,

etc.) by finding the best fit to the observed data, where these observations might be noisy or

corrupted. The Maximum Likelihood (ML) method is one of the most famous approaches in

this category and is based on probabilistic theory. The likelihood function λ(x) is defined as

a Probability Density Function (PDF) of the sequence of observations given the true value

of the state, and the ML estimator finds the state according to the following equation [9]:

λ(x) = p(z|x) (2.1)

x̂(k) = argmax
x

λ(x) (2.2)
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where x is the state being estimated, and z is the sequence of k previous observations

of x. In order to calculate the likelihood function, the ML method requires the knowledge

of the empirical or analytical model of the sensor to provide the prior distribution. The

Maximum A Posteriori (MAP) estimation method is another method in this category and is

based on the Bayesian theory. The MAP estimator finds the value of state x that maximizes

the posterior probability distribution:

x̂(k) = argmax
x

p(x|z) (2.3)

The difference between ML and MAP is in the assumptions made about the state x.

While MAP considers x to be the output of a random variable with a known a priori PDF,

ML assumes x is a fixed but unknown point in the parameter space [9].

The Kalman filter [35] is the most popular method in the state estimation category. It

assumes the state x at time k is evolved from the state at time k− 1, and uses the following

space-time model to estimated it:

x(k) = F (k)x(k − 1) +B(k)u(k) + w(k) (2.4)

z(k) = H(k)x(k) + v(k) (2.5)

where z(k) is the observation at time k, H(k) is the measurement matrix, v and w

are the observation and process noise modeled as random Gaussian variables, F (k) is the

state transition matrix, B(k) is the input transition matrix and u(k) is the input vector.

Being an recursive estimator, the Kalman filter only needs the current measurements and

the estimated states from the previous time step to estimate the state for the current time

step. This process is usually broken down into the “predict” phase where the state in the

current time stamp is predicted using the state estimate from the previous time stamp, and

the “update” phase where the current prediction and observations are combined to generate

a refined state estimate, called the a posteriori state estimate. In the predict step the state

is calculates as below:

x̂(k|k − 1) = F (k)x̂(k − 1|k − 1) +B(k)u(k) (2.6)

P (k|k − 1) = F (k)P (k − 1|k − 1)F (k)T +Q(k) (2.7)
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where P (k|k− 1) is the predicted estimate covariance matrix, and Q(k) is the covariance

matrix of the process noise w. In the update phase the state is refined using the formula

below:

x̂(k|k) = (I −K(k))(H(k)x̂(k|k − 1)) + (K(k))(H(k)x(k) + v(k)) (2.8)

K(k) = P (k|k − 1)H(k)TS(k)−1 (2.9)

S(k) = H(k)P (k|k − 1)H(k)T +R(k) (2.10)

where K(k) is called the Kalman gain, S(k) is called the innovation covariance and

R(k) is the covariance matrix of the observation noise v(k). The Kalman filter obtains

optimal estimations if the system can be explained with a linear model and the noise is

Gaussian [55]. For non-linear models, the Extended Kalman Filter (EKF) can be used [90],

which is computationally more expensive and requires the calculations of Jacobians. The

Unscented Kalman Filter (UKF) [34] is another variation of the Kalman filter designed for

nonlinear systems. It uses a deterministic sampling approach to find the minimum set of

points around the mean, capturing the true mean and covariance. These points are then

propagated through nonlinear functions to obtain the covariance of the estimation [9].

The decision fusion methods use the detected targets to make a high level inference about

the events produced by those targets. Bayesian methods are among the most famous in this

category, combining the evidence according to probability theory rules [9]. A probability

distribution represents uncertainty and the inference is obtained based on the Bayes rule:

P (Y |X) =
P (X|Y )P (Y )

P (X)
(2.11)

where P (Y |X) represents the belief in hypothesis Y given the information X. The

Bayesian inference requires the knowledge of P (X) and P (X|Y ), which is the main

disadvantage of this method. The Dempster-Shafer inference [17, 77] generalizes the Bayesian

inference, providing a way to represent incomplete knowledge and updating beliefs, allowing

an explicit representation of the uncertainty [67]. Unlike Bayesian inference, Dempster-Shafer

does not require the knowledge of a priori probabilities.
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2.3.2 Modern Methods

Modern sensor fusion methods developed for autonomous driving applications usually use a

combination of radars, cameras and LIDARs as their sensing modalities as these are the most

commonly used sensors in autonomous driving vehicles. Authors in [66] proposed a LIDAR

and vision-based pedestrian detection system using both a centralized and decentralized

fusion architecture. In the former, authors proposed a feature level fusion system where

features from LIDAR and vision spaces are combined in a single vector which is classified

using a single classifier. In the latter, two classifiers are employed, one per sensor-feature

space. MV3D [12] extracts features from the front view and Bird’s Eye View (BEV)

representations of the LIDAR data, in addition to the RGB image. The features obtained

from the LIDAR’s BEV are then used to generate 3D object proposals, and a deep fusion

network is used to combine features from each view and predict the object class and box

orientations. PointFusion [97] processes the image and LIDAR data using a CNN and a

PointNet model respectively, and then generate 3D object proposals using the extracted

features. Frustum PointNet [68] directly operates on the raw point clouds obtained from an

RGB-D camera and uses the RGB image and a 2D object detector to localize objects in the

point cloud.

In [1] authors use the up-sampled representation of the sparse LIDAR’s range data, the

high-resolution map from LIDAR’s reflectance data and the RGB image from a monocular

color camera as three input modalities to their network. The network uses a late-fusion

strategy to performs bounding box detections in each one of these modalities. [64] also uses

a late fusion approach, fusing the classification outputs from independent pretrained CNNs.

The inputs to the classifiers are 3D point clouds and image data. In [75] authors up-sample

the LIDAR point cloud to generate a dense depth map and then extract three features

representing different aspects of the 3D scene. The extracted features are used as extra

image channels. Authors in [89] use the BEV representation of the LIDAR point clouds, and

construct non-homogeneous pooling layer to transform features between the BEV map and

the front view map. The mapping between these two maps is constructed using the sparse

LIDAR point cloud. The constructed pooling layer allows efficient fusion of the features
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from these two views at any stage of the network, and the methods shows to be particularly

good at detecting pedestrians in BEV.

Few studies have focused on fusing radars with other sensors for autonomous driving

applications. In [37] authors use the radar distance measurements and a motion stereo

technique to detect object boundaries in a sequence of images. [33] projects radar detections

to the image and generate object proposals for a small CNN classification network. In [10],

Chadwick et al. project radar detections to the image plane and use them to boost the

object detection accuracy for distant objects. CRF-Net [63] also projects radar detections to

the image plane, but represents them as vertical lines on the image, where the pixel values

correspond to the depth of each detection point. The image data is then augmented with

the radar information and used in a convolutional network to perform 2D object detection.

Authors in [57] use a BEV projection of radar detections with six height maps and a density

map in addition to the RGB image as inputs to a network similar to [42], generating 3D

detections. Authors in [18] propose a radar and LIDAR fusion method based on Kalman

filter for obstacle detection. Their method uses the operating range of the sensors and real-

time sensor data to compute the observation and measurement noise data for the Kalman

filter. RadarNet [100] fuses radar and LIDAR data for 3D object detection using a deep

learning approach. It uses an early fusion mechanism to learn joint representations from

the two sensors, and a late-fusion mechanism to exploit radar’s radial velocity evidence and

improve the estimated object velocity.
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Chapter 3

Radar Region Proposal Network

Radars are one of the most popular sensors in autonomous vehicles and have been studied for

decades in different automotive applications. Authors in [30] were among the first researchers

discussing such applications for radars, providing a detailed approach for utilizing them on

vehicles. While radars can provide accurate range and range-rate information for the detected

objects, they are not suitable for tasks such as object classification. Cameras on the other

hand, are very effective sensors for object classification, making radar and camera sensor

fusion an interesting topic in autonomous driving applications.

This chapter focuses on the utilization of radar data for generating object proposals in a

two-stage object detection network. Because of the extra processing required for generating

object proposals, Two-stage object detection methods are usually slower than the one-stage

methods. A radar-based Region Proposal Network (RPN) called Radar Region Proposal

Network (RRPN) is proposed in this chapter, which skips the computationally expensive

vision-based region proposal step, and uses only radar point clouds to generate 2D object

proposals. These proposals are used in the second stage of the detection network to localize

and classify object. The resulting detection network can be categorized as a middle-fusion

algorithm, as it processes the radar and image data individually before merging them in the

second stage of the object detection network. RRPN also inherently provides an attention

mechanism that focuses the available computational resources on the more important parts

of the image. While in other object detection applications the entire image may be of equal

importance, in an autonomous vehicles more attention needs to be given to the objects
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on the road. Because of the dependency on radar detections to generate object proposals,

the proposed object detection network focuses only on the physical objects surrounding

the vehicle. The proposed detection network is evaluated on the NuScenes dataset [8],

which provides synchronized and annotated data from radars and cameras integrated on a

vehicle. In the evaluations, RRPN, is used as the RPN in the Fast R-CNN object detection

network, replacing the original RPN, Selective Search. Evaluation results show that RRPN

achieves higher mean Average Precision (AP) and mean Average Recall (AR) compared to

the Selective Search algorithm, while generating proposals up to 100 times faster for each

image.

RRPN consists of three steps: perspective transformation, anchor generation and distance

compensation, each discussed individually in the following sections.

3.1 Perspective Transformation

The first step in the proposed method is mapping the radar detections to the image

plane. Radar detections are usually reported in a BEV perspective as shown in Fig. 3.1

(a), with the object’s range d and azimuth α reported in the radar’s coordinate system.

These detections need to be mapped to the vehicle coordinate system first using the radar

calibration parameters provided in the dataset. The detections are then mapped to the

camera coordinate system and the image plane using the extrinsic and intrinsic calibration

parameters respectively. This enables the association of the objects detected by the Radar

to their corresponding object in the image. The projective relation between a 3D radar

detection point P = [X;Y ;Z; 1] and its image p = [x; y; 1] in the camera-view plane can be

expressed as below:

p = K[R|t] ∗ P (3.1)
x

y

1

 =


fx 0 u0

0 fy v0

0 0 1



r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3



X

Y

Z

1

 (3.2)

24



Where K is the camera intrinsics matrix and [R|t] is the extrinsic matrix using rotation

and translation parameters to transform the point from the radar frame to the camera frame.

The above transformation is applied to all radar detections. All detections mapped outside

the image after applying the transformation are ignored.

3.1.1 Anchor Generation

Mapping radar detections to the image provides an approximate location for the corre-

sponding objects on the image. This information is obtained without any direct processing

on the image itself. Having the mapped radar detections, hereafter referred to as Point

of Interest (PoI), a simple approach for generating object proposals would be introducing a

bounding box centered at every PoI. One problem with this approach is that radar detections

are not always mapped to the center of the detected objects in every image. Another problem

is the fact that Radars do not provide any information about the size of the detected objects

and proposing a fixed-size bounding box for objects of different sizes would not be an effective

approach. To address these problems, the concept of anchor bounding boxes from Faster

R-CNN [73] is used to to generate the proposals. Specifically, several bounding boxes with

different sizes and aspect ratios are generated and centered at each PoI. For every PoI, four

different anchor sizes and three different aspect ratios are used to generate these proposals,

as illustrated in Fig. 3.1 (b).

To account for the fact that the PoI is not always mapped to the center of the object

in the image, shifted versions of these anchors are also generated. These translated anchors

provide more accurate bounding boxes when the PoI is mapped towards the right, left or

the bottom of the object, as shown in Fig. 3.1 c-e.

3.1.2 Distance Compensation

The distance of each object from the vehicle plays an important role in determining its size

in the image. Generally, objects’ sizes in an image have an inverse relationship with their

distance from the camera. Radar detections have the range information for every detected
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(a) Bird’s eye view (b) Centered anchors (c) Right aligned (d) Bottom aligned (e) Left aligned

Figure 3.1: Generating anchors of different shapes and sizes for each radar detection, shown here as the blue circle.
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object, which is used in this step to scale all generated anchors. The following formula is

used to determine the scaling factor for every anchor:

Si = α
1

di
+ β (3.3)

where di is the distance to the ith object, and α and β are two parameters used to adjust

the scale factor. These parameters are learned by maximizing the Intersection over Union

(IoU) (IoU) between the generated bounding boxes and the ground truth bounding boxes in

each image, as shown in Eq. 3.4 below.

argmax
α,β

N∑
i=1

Mi∑
j=1

max
1<k<Ai

IoU i
jk(α, β) (3.4)

In this equation, N is the number of training images, Mi is the number of ground truth

bounding boxes in image i, Ai is the number of anchors generated in image i, and IoU i
jk is

the IoU between the jth ground truth bounding box in image i and the kth proposed anchor

in that image. This equation finds the parameters α and β that maximize the IoU between

the ground truth and proposed bounding boxes. A simple grid search approach is used to

find α and β.

3.2 Experiments and Results

3.2.1 Dataset and Implementation Details

To use the NuScenes dataset for evaluating RRPN, all 3D bounding boxes are first converted

to their equivalent 2D boxes. The classes used for training and evaluation are Car, Truck,

Person, Motorcycle, Bicycle and Bus. Two subsets of the samples available in the dataset are

used in the evaluation. The first subset only contains data from the front camera and front

radar, with 23k samples. This subset is referred to as NS-F . The second subset contains

data from the rear camera and two rear Radars, in addition to all the samples from NS-F .

This subset has 46k images and is called NS-FB . Since front radars usually have a longer

range compared to the corner radars, NS-F gives us more accurate detections for objects far
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away from the vehicle. Each dataset is further split with a 0.85/0.15 ratio for training and

testing, respectively.

The RoIs generated by RRPN are used in the Fast R-CNN object detection network.

Two different backbone networks have been used with Fast R-CNN: the original ResNet-101

network [31] hereafter called R101 and the ResNeXt-101 [95], an improved version of ResNet,

hereafter called X101. In the training stage, a model pretrained on the COCO dataset is

used as the initial model and fine-tuned on NS-F and NS-FB . The detection results using

RRPN proposals are compared with those of the Selective Search algorithm [83], which uses

a variety of complementary image partitionings to find objects in images. In both RRPN

and Selective Search, the number of object proposals are limited to 2000 per image.

The evaluation metrics used in these experiments are the same metrics used in the COCO

dataset [49], namely mean AP and mean AR. The AP calculated with 0.5 and 0.75 IOU is

also reported, in addition to AR for small, medium and large objects areas.

3.2.2 Results

The Fast R-CNN object detection results for the two RPN networks on NS-F and NS-FB

datasets are shown in Table 3.1. According to these results, RRPN is outperforming Selective

Search in almost all metrics. Table 3.2 shows the per-class AP results for the NS-F and NS-

FB datasets, respectively. For the NS-F dataset, RRPN outperforms Selective Search in the

Person, Motorcycle and Bicycle classes with a wide margin, while following Selective Search

closely in other classes. For the NS-FB dataset, RRPN outperforms Selective Search in all

classes except for the Bus class.

Figures 3.2, 3.3, 3.4 and 3.5 show selected examples of the object detection results,

with the first row showing the ground truth and mapped radar detections. The next two

rows are the detected bounding boxes using the region proposals from Selective Search and

RRPN respectively. According to these figures, RRPN has been very successful in proposing

accurate bounding boxes even under hard circumstances such as object occlusion and overlap.

In these experiments, RRPN was able to generate proposals for about 70 to 90 images per

second, depending on the number of radar detections, while Selective Search took between

2-7 seconds per image.
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Table 3.1: Detection results for the NS-F and NS-FB datasets

method AP AP50 AP75 AR ARs ARm ARl

SS + X101 - F 0.368 0.543 0.406 0.407 0.000 0.277 0.574
SS + R101 - F 0.418 0.628 0.450 0.464 0.001 0.372 0.316
RRPN + X101 - F 0.419 0.652 0.463 0.478 0.041 0.406 0.573
RRPN + R101 - F 0.430 0.649 0.485 0.486 0.040 0.412 0.582
SS + X101 - FB 0.332 0.545 0.352 0.382 0.001 0.291 0.585
SS + R101 - FB 0.336 0.548 0.357 0.385 0.001 0.291 0.591
RRPN + X101 - FB 0.354 0.592 0.369 0.420 0.202 0.391 0.510
RRPN + R101 - FB 0.355 0.590 0.370 0.421 0.211 0.391 0.514

Table 3.2: Per-class AP for the NS-F and NS-FB datasets

method Car Truck Person Motorcycle Bicycle Bus

SS + X101 - F 0.424 0.509 0.117 0.288 0.190 0.680
SS + R101 - F 0.472 0.545 0.155 0.354 0.241 0.722
RRPN + X101 - F 0.428 0.501 0.212 0.407 0.304 0.660
RRPN + R101 - F 0.442 0.516 0.220 0.434 0.306 0.664
SS + X101 - FB 0.390 0.415 0.122 0.292 0.179 0.592
SS + R101 - FB 0.392 0.420 0.121 0.291 0.191 0.600
RRPN + X101 - FB 0.414 0.449 0.174 0.294 0.215 0.579
RRPN + R101 - FB 0.418 0.447 0.171 0.305 0.214 0.572
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Figure 3.2: Detection results. Top row: ground truth, middle row: Selective Search,
bottom row: RRPN
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Figure 3.3: Detection results, cont. Top row: ground truth, middle row: Selective Search,
bottom row: RRPN

31



car 1.00

car 1.00

car 1.00 car 0.98truck 0.83

car 1.00
car 1.00

car 0.92 car 1.00
car 1.00 car 0.99 truck 0.97

Figure 3.4: Detection results, cont. Top row: ground truth, middle row: Selective Search,
bottom row: RRPN
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Figure 3.5: Detection results, cont. Top row: ground truth, middle row: Selective Search,
bottom row: RRPN
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3.3 Conclusion

A real-time region proposal network for object detection in autonomous driving applications

was proposed in this chapter. By only relying on radar detections to propose RoIs, this

method is extremely fast while at the same time achieving a higher precision and recall

compared to the Selective Search algorithm. A two-stage object detection network based

on RRPN acts as a middle-fusion algorithm by individually processing radar and camera

data first and then combining them to obtain faster and more accurate detections. The

experiments conducted on RRPN show that it operates more than 100x faster than the

Selective Search algorithm, while resulting in better detection average precision and recall.

In the next chapter, a different approach to using radar detections for generating object

proposals is presented, where the depth information provided by the radar detections are

also utilized to estimate objects’ distance from the ego vehicle.
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Chapter 4

Joint Object Detection and Range

Estimation

In this chapter a radar-camera fusion algorithm for joint object detection and distance

estimation is presented. The proposed method is designed as a two-stage object detection

network that fuses radar point clouds and image features to generate accurate object

proposals. For every object proposal, a depth value is also calculated to estimate the object’s

distance from the vehicle. These proposals are then fed into the second stage of the detection

network for object classification.

A radar-camera sensor fusion system can provide valuable depth information for all

detected objects in an autonomous driving scenario, while at the same time eliminates the

need for computationally expensive 3D object detection using LIDAR point clouds. The

proposed sensor fusion network is shown in Fig. 4.1. This network takes radar point clouds

and RGB images as input and fuses them to generates object proposals for an object classifier

in a two-stage object detection approach. A middle-fusion approach for fusing the radar and

image data is used here, where outputs of each sensor are processed independently first, and

are merged at a later stage for more processing. More specifically, the radar detections are

first used to generate 3D object proposals, which are further improved by using the image

features extracted by a backbone network. These proposals are then merged with image-

based proposals and are fed to the second stage for classification. All generated proposals
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Figure 4.1: The proposed network architecture. Inputs to the network are radar point cloud, camera image and 3D
anchor boxes. radar-based object proposals are generated from the point cloud and fused with image features to improve
box localization.
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are associated with an estimated depth, calculated either directly from the radar detections

or via a distance regression layer using the extracted image features.

4.1 Proposal Generation

4.1.1 Radar Proposal Network

The proposed method directly uses the radar detection to generates 3D object proposals

without any feature extraction. The proposals are generated using predefined 3D anchor

boxes tailored to each object class in the dataset. Each 3D anchor is parameterized as

(x, y, z, w, l, h, r), where (x, y, z) is the center, (w, l, h) is the size, and (r) is the orientation

of the box in vehicle’s coordinate system. The anchor size, (w, l, h), is fixed for each object

category, and is set to the average size of the objects in that category in the training dataset.

For every anchor box, two different orientations at 0◦ and 90◦ are used, referenced from the

vehicle’s centerline. The center location for each anchor is obtained from the 3D position of

the radar detection in vehicle’s coordinate system. This results in 2n boxes for every radar

detection where n is the number of object classes in the dataset, each having two different

orientations.

In the next step, all 3D anchors are mapped to the image plane and converted to

equivalent 2D bounding boxes by finding the smallest 2D enclosing box for each mapped

3D anchor. Since every 3D proposal is generated from a radar detection, it has an

accurate distance associated with it. This distance is used as the proposed distance for

the corresponding 2D bounding box. Because the size of each 3D anchor was chosen based

on the size of the object in the corresponding class, the resulting proposals capture the true

size of the objects as they appear in the image. This eliminates the need for adjusting the size

of radar proposals based on their distance from the vehicle, which was done in the method

discussed in the previous chapter.

Fig. 4.2(b) illustrates 3D anchors and equivalent 2D proposals generated for a sample

image. As shown in this figure, radar-based proposals are always focused on objects that
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are on the road plane. This prevents unnecessary processing of areas of the image where no

physical object exists, such as the sky or buildings in this image.

In the next step, all generated 2D proposals are fed into the Radar Proposal Refinement

(RPR) subnetwork. This is where the information obtained from the radars (radar proposals)

is fused with the information obtained from the camera (image features). RPR uses the

features extracted from the image by the backbone network to adjust the size and location

of the radar proposals on the image. As radar detections are not always centered on

the corresponding objects in the image, the generated 3D anchors and corresponding 2D

proposals might be offset as well. The box regressor layer in the RPR uses the image

features inside each radar proposal to regress offset values for each proposal’s corner points.

The RPR also contains a box classification layer, which estimates an objectness score for

every radar proposal. The objectness score is used to eliminate proposals generated by radar

detections coming from background objects, such as buildings and light poles. The inputs to

the box regressor and classifier layers are image features inside negative and positive radar

proposals. following [73], positive proposals are defined as ones with an IoU overlap higher

than 0.7 with any ground truth bounding box, and negative proposals as ones with an IoU

below 0.3 for all ground truth boxes. Radar proposals with an IoU between 0.3 and 0.7 are

not used for training. Since radar proposals have different sizes depending on their distance,

object category and orientation, a RoI Pooling layer is used before the box regression and

classification layers to obtain feature vectors of the same size for all proposals. Fig. 4.2(d)

shows the radar proposals after the refinement step.

4.1.2 Image Proposal Network

The proposed architecture also uses a RPN network to generate object proposals from the

image. The radar proposal network is not always successful in generating proposals for

certain object categories that are harder for radars to detect but are easily detected in the

image, such as pedestrian or bicycles. On the other hand, the image-based proposal network

might fail to detect far away objects that are easily detected by the radar. Having an image-

based object proposal network in addition to the radar-based network improves the object
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Figure 4.2: Radar-based proposals. (a): 3D anchors for one radar detection (r = 90◦). (b): 2D proposals obtained from 3D
anchors. (c): 2D proposals for all radar detections inside the image. (d): Refined radar proposals after applying box regression.
Radar-based distances in meters are shown on the bounding boxes.
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detection accuracy, as they complement each other by using two different modalities for

proposal generation and distance estimation.

Image-based object proposals are generated by a network similar to the RPN introduced

in Faster R-CNN [73]. The input to this network is the image feature maps extracted by the

backbone CNN. To estimate distance for every object proposal, a fully connected distance

regression layer is added on top of the convolutional layer in the RPN, as shown in Fig.

4.1. This layer is implemented with a 1×1 convolutional layer similar to the box-regression

and box-classification layers in the RPR network. The distance regression layer generates k

outputs, where k is the number of 2D anchor boxes used in the RPN network at each location

on the feature map. A cross entropy loss is used for object classification and a Smooth L1

loss is used for the box distance regressor layers.

4.1.3 Distance Refinement

The outputs of the radar and image proposal networks need to be merged for the second stage

of the object detection network. Before using the proposals in the next stage, redundant

proposals are removed by applying Non-Maximum Suppression (NMS). The NMS layer

would normally remove overlapping proposals without discriminating based on the bounding

box’s origin, but radar-based proposals have a more reliable distance estimation than the

image-based proposals. This is because image-based distances are estimated only from 2D

image feature maps with no depth information. To make sure the radar-based distances

are not unnecessarily discarded in the NMS process, the IoU between radar and image

proposals are first calculated, then an IoU threshold is used to find the matching proposals

and overwrite the image-based distances by their radar-based counterparts. The calculated

IoU values are reused in the next step where NMS is applied to all proposals, regardless of

their origin. The remaining proposals are then fed into the second stage of the detection

network to calculate the object class and score.
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4.2 Detection Network

The inputs to the second stage detection network are the feature map from the image

and object proposals. The structure of this network is similar to Fast R-CNN [28]. The

feature map is cropped for every object proposals and is fed into the RoI pooling layer to

obtain feature vectors of the same size for all proposals. These feature vectors are further

processed by a set of fully connected layers and are passed to the softmax and bounding box

regression layers. The output is the category classification and bounding box regression for

each proposal, in addition to the distance associated to every detected object. Similar to

the RPN network, a cross entropy loss is used for object classification and a Smooth L1 loss

is used for the box regression layer. Similar to Faster R-CNN [73], the following multi-task

loss is used as the objective function:

L(pi, ti) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ).

where i is the anchor index, pi is the i’th anchor’s objectness score, p∗i is the ground truth

score (1 if anchor is positive and 0 if negative), ti is the vector of 4 parameters representing

the predicted bounding box and t∗i is the ground truth bounding box. The log loss over two

classes is used for the classification loss Lcls, and the the smooth L1 loss for the regression

loss, Lreg. Ncls and Nreg are normalization factors and λ is a balancing parameter.

4.3 Experiments and Results

4.3.1 Dataset and Implementation Details

The proposed network uses FPN [48] with ResNet-50 [31] pretrained on ImageNet as the

backbone for image feature extraction. The same RPN architecture as Faster R-CNN [73] is

used, and only the distance regression layer has been added on top of its convolution layer

for distance estimation. For the second stage of the network, the classification stage, the

same architecture as Fast R-CNN is used.

The nuScenes dataset [8] is used to evaluate the network. Out of 23 different object

classes in this dataset, 6 classes are used as shown in Table 4.2. Only samples from the
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front- and rear-view cameras are used, together with detection from all the radars for both

training and evaluation. The ground truth annotations in the nuScenes dataset are provided

in the form of 3D boxes in the global coordinate system. As a preprocessing step, the

annotations and radar point clouds are first transformed to the vehicle coordinate, then all

3D annotations are converted to their equivalent 2D bounding boxes. This is achieved by

mapping the 3D boxes to the image and finding the smallest 2D enclosing bounding box.

For every 3D annotation, the distance from vehicle to the box is calculated and used as

the ground truth distance for its 2D counterpart. The official nuScenes splits are used for

training and evaluation, and images are used at their original resolution (900×1600) for both

steps. No data augmentation is used as the number of labeled instances for each category

is relatively large. PyTorch is used to implement the network and all experiments were

conducted on a computer with two Nvidia Quadro P6000 GPUs.

4.3.2 Results

The performance of the proposed method is shown in Table 4.1. This table shows the overall

AP and AR for the detection task, and Mean Absolute Error for the distance estimation task.

The Faster R-CNN network is used as the image-based detection baseline, and results from

the proposed method is compared with RRPN and CRF-Net[63], which also use radar and

camera fusion for object detection. CRF-Net only uses images from the front-view camera

and also uses a weighted AP score based on the number of object appearances in the dataset.

For fair comparison, the weighted AP scores are used to compare the proposed method with

this network. The CRF-Net also reports some results after filtering the ground truth to

consider only objects that are detected by at least one radar, and filtering radar detections

that are outside 3D ground truth bounding boxes. These filtering operations are not applied

and the comparison is made only with their results on the unfiltered data. Since CRF-Net

does not report AR, per-class AP, or AP for different IoU levels, only the proposed method’s

overall AP is compared with theirs.

According to Table 4.1, the proposed method outperforms RRPN and CRF-Net for the

detection task, improving the AP score by 0.15 and 0.54 points respectively. The proposed

method also accurately estimates the distance for all detected objects, as visualized in Figures
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Table 4.1: Performance on the nuScenes validation set.

Weighted AP AP AP50 AP75 AR MAE

Faster R-CNN No 34.95 58.23 36.89 40.21 -
RRPN No 35.45 59.00 37.00 42.10 -
Ours No 35.60 60.53 37.38 42.10 2.65
Faster R-CNN Yes 43.78 - - - -
CRF-Net Yes 43.95 - - - -
Ours Yes 44.49 - - - -

Table 4.2: Per-class performance

Car Truck Person Bus Bicycle Motorcycle

Faster R-CNN 51.46 33.26 27.06 47.73 24.27 25.93
RRPN 41.80 44.70 17.10 57.20 21.40 30.50
Ours 52.31 34.45 27.59 48.30 25.00 25.97

Table 4.3: Per-class Mean Absolute Error (MAE) for distance estimation

Category Car Truck Person Bus Bicycle Motorcycle
MAE 2.66 3.26 2.99 3.187 1.97 2.81
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4.3, 4.4 and 4.5. The Mean Absolute Error (MAE) is used as the evaluation metric for

distance estimation. The proposed method achieves an MAE of 2.65 on all images. The

per-class MAE values are provided in Table 4.3. According to this table, larger objects such

as trucks and buses have a higher distance error compared to other classes. This behavior is

expected and could be explained by the fact that radars usually report multiple detections

for larger objects, which results in several object proposals with different distances for the

same object. Additionally, most radar detections happen to be at the edge of objects, while

the ground truth distances are measured from the center of objects. This results in higher

distance mismatch error for larger objects, where the distance between the edge and center

of the object is significant.

4.4 Conclusion

In this chapter a radar-camera fusion algorithm for joint object detection and distance

estimation in autonomous driving applications was proposed. The proposed architecture

uses a middle-fusion approach to employ radar point clouds and image feature maps to

generate accurate object proposals. The network also uses both radar detections and image

features to estimate the distance for every generated proposal. These proposals are fed

into the second stage of the detection network for object classification. Experiments on the

nuScenes dataset show that the proposed method outperforms other radar-camera fusion-

based object detection methods, while at the same time accurately estimates the distance

to every detection.

In the next chapter, a different approach to radar and camera fusion is discussed where

the focus is shifted on 3D object detection. It also discusses how the velocity values reported

by the radar can be utilized to estimate the velocity of the objects in each frame without

requiring any temporal information.
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Figure 4.3: Object detection and distance estimation results. Top: detection outputs,
Bottom: ground truth.
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Figure 4.4: Object detection and distance estimation results, cont. Top: detection outputs,
Bottom: ground truth.
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Figure 4.5: Object detection and distance estimation results, cont. Top: detection outputs,
Bottom: ground truth.
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Chapter 5

Radar-Camera Fusion for 3D Object

Detection

In this chapter a new radar-camera sensor fusion algorithm for 3D object detection and

velocity estimation is proposed. The proposed method, hereafter referred to as CenterFusion,

focuses on associating radar detections to preliminary vision-based detections and generates

radar feature maps to fuse with image features and estimate 3D bounding boxes for objects.

Particularly, preliminary 3D detections are generated using a center-based detection network,

and a novel frustum-based radar association method is used to accurately associate radar

detections to their corresponding objects in the 3D space. These radar detections are then

mapped to the image plane and used to create feature maps to complement the image-based

features. Finally, the fused features are used to accurately estimate objects’ 3D properties

such as depth, rotation and velocity.

The center-based object detection network proposed in [109] is used here to detect objects’

center points on the image, and regress to other object properties such as 3D location,

orientation and dimensions. A middle-fusion mechanism is proposed that associates radar

detections to their corresponding object’s center point and exploits both radar and image

features to improve the preliminary detections by re-estimating their depth, velocity, rotation

and attributes.

The key in the proposed fusion mechanism is accurate association of radar detections to

objects. The center point object detection network generates a heat map for every object
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category in the image. The peaks in the heat map represent possible center points for objects,

and the image features at those locations are used to estimate other object properties. To

exploit the radar information in this setting, radar-based features need to be mapped to the

center of their corresponding object on the image, which requires an accurate association

between the radar detections and objects in the scene.

CenterFusion is evaluated on the nuScenes [8] dataset, where it outperforms all camera-

based object detection methods in the NuScenes 3D object detection benchmark. It’s also

shown in the results section that exploiting radar information significantly improves velocity

estimation for objects, withoud requiring any temporal information.

5.1 Preliminary

5.1.1 Radar Point Cloud

Radars are active sensors that transmit radio waves to sense the environment and measure the

reflected waves to determine the location and velocity of objects. Although radar point clouds

are usually represented as points in the 3D coordinate system, automotive radars usually

report the detected objects as 2D points in BEV, providing the azimuth angle and radial

distance to the object. As a result, the height information in a point cloud representation of

radar detections is usually zero or not accurate. For every detection, the radar also reports

the instantaneous velocity of the object in the radial direction. This radial velocity does not

necessarily match the object’s actual velocity vector in it’s direction of movement. Fig. 5.1

illustrates the difference between the radial as reported by the radar, and actual velocity of

the object in the vehicle’s coordinate system.

Each radar detection is represented as a 3D point in the egocentric coordinate system and

parameterized as P = (x, y, z, vx, vy) where (x, y, z) is the position and (vx, vy) is the reported

radial velocity of the object in the x and y directions. The radial velocity is compensated by

the ego vehicle’s motion. For every scene, 3 sweeps of the radar point cloud are aggregated

(detections within the past 0.25 seconds). The nuScenes dataset provides the calibration
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Figure 5.1: Difference between actual and radial velocity. For target A, velocity in the
vehicle coordinate system and the radial velocity are the same (vA). For target B on the
other hand, radial velocity (vr) as reported by the radar is different from the actual velocity
of the object (vB) in the vehicle coordinate system.
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parameters needed for mapping the radar point clouds from the radar coordinates system to

the egocentric and camera coordinate systems.

5.1.2 CenterNet

CenterNet [109] represents the state-of-the-art in 3D object detection using a single camera.

It takes an image I ∈ RW×H×3 as input and generates a keypoint heatmap Ŷ ∈ [0, 1]
W
R
×H

R
×C

as output where W and H are the image width and height, R is the downsampling ratio

and C is the number of object categories. A prediction of Ŷx,y,c = 1 as the output indicates

a detected object of class c centered at position (x, y) on the image. The ground-truth

heatmap Y ∈ [0, 1]
W
R
×H

R
×C is generated from the ground-truth 2D bounding boxes using a

Gaussian kernel. For each bounding box center point pi ∈ R2 of class c in the image, a

Gaussian heatmap is generated on Y:,:,c. The final value of Y for class c at position q ∈ R2

is defined as [109]:

Yqc = max
i

exp(−(pi − q)2

2σ2
i

) (5.1)

where σi is a size-adaptive standard deviation, controlling the size of the heatmap for every

object based on its size. A fully convolutional encode-decoder network is used to predict Ŷ .

To generate 3D bounding boxes, separate network heads are used to regress object’s

depth, dimensions and orientation directly from the detected center points. Depth is

calculated as an additional output channel D̂ ∈ [0, 1]
W
R
×H

R after applying the inverse

sigmoidal transformation used in Eigen et al. [20] to the original depth domain. The object

dimensions are directly regressed to their absolute values in meter as three output channels

Γ̂ ∈ [0, 1]
W
R
×H

R
×3. Orientation is encoded as two bins with 4 scalars in each bin, following

the orientation representation in Mousavian et al. [59]. For each center point, a local offset

is also predicted to compensate for the discretization error caused by the output strides in

the backbone network [109].

Given the annotated objects p0, p1, ... in an image, the training objective is defined as

below based on the focal loss [48]:
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Lk =
1

N

∑
xyc


(1− Ŷxyc)α log(Ŷxyc) Yxyc = 1

(1− Yxyc)β(Ŷxyc)α log(1− Ŷxyc) otherwise

,

where N is the number of objects, Y ∈ [0, 1]
W
R
×H

R
×C is the annotated objects’ ground-truth

heatmap and α and β are focal loss hyperparameters.

5.2 Center Point Detection

The CenterFusion network architecture is shown in Fig. 5.2. It adopts the CenterNet [109]

detection network for generating preliminary detections on the image. The image features

are first extracted using a fully convolutional encoder-decoder backbone network. Similar

to CenterNet [109], a modified version of the Deep Layer Aggregation (DLA) network [103]

is used as the backbone in this architecture. The extracted image features are then used to

predict object center points on the image, as well as the object 2D size (width and height),

center offset, 3D dimensions, depth and rotation. These values are predicted by the primary

regression heads as shown in Fig. 5.2. Each primary regression head consists of a 3 × 3

convolution layer with 256 channels and a 1× 1 convolutional layer to generate the desired

output. This provides an accurate 2D bounding box as well as a preliminary 3D bounding

box for every detected object in the scene.

5.3 Radar Association

The center point detection network only uses the image features at the center of each object

to regress to all other object properties. To fully exploit radar data in this process, the radar

detections first need to be associated to their corresponding object on the image plane. To

accomplish this, a näıve approach would be mapping each radar detection point to the image

plane and associating it to an object if the point is mapped inside the 2D bounding box of

that object. This is not a very robust solution, as there is not a one-to-one mapping between

radar detections and objects in the image; Many objects in the scene generate multiple

radar detections, and there are also radar detections that do not correspond to any object.
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Figure 5.2: CenterFusion network architecture. Preliminary 3D boxes are first obtained using the image features extracted by
the backbone. The frustum association module uses the preliminary boxes to associate radar detections to objects and generate
radar feature maps. The image and radar features maps are then concatenated and used to refine the preliminary detections
by recalculating depth and rotation as well as estimating objects’ velocity and attributes.
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Additionally, because the z dimension of the radar detection is not accurate (or does not

exist at all), the mapped radar detection might end up outside the 2D bounding box of its

corresponding object. Finally, radar detections obtained from occluded objects would map

to the same general area in the image, which makes differentiating them in the 2D image

plane difficult, if possible at all.

5.3.1 Frustum Association Mechanism:

A frustum-based association method is developed to use the object’s 2D bounding boxes as

well as their estimated depth and size to create a 3D Region of Interest (RoI) frustum for

each object. Having an accurate 2D bounding box for an object, a frustum is created for

that object as shown in Fig. 5.3. This significantly narrows down the radar detections that

need to be checked for association, as any point outside this frustum can be ignored. The

estimated object depth, dimension and rotation are then used to create a RoI around the

object to further filter out radar detections that are not associated with this object. If there

are multiple radar detections inside this RoI, the closest point is considered as the radar

detection corresponding to this object.

In the training phase, the object’s 3D ground truth bounding box is used to create a

tight RoI frustum and associate radar detections to the object. In the test phase, the RoI

frustum is calculated using the object’s estimated 3D bounding box as explained before. In

this case, a parameter δ is used to control the size of the RoI frustum as shown in Fig. 5.3.

This is to account for inaccuracy in the estimated depth values, as the depth of the object

at this stage is solely determined using the image-based features. Enlarging the frustum using

this parameter increases the chance of including the corresponding radar detections inside

the frustum even if the estimated depth is slightly off. The value of δ should be carefully

selected, as a large RoI frustum can include radar detections of nearby objects.

The RoI frustum approach makes associating overlapping objects effortless, as objects are

separated in the 3D space and would have separate RoI frustums. It also eliminates the multi-

detection association problem, as only the closest radar detection inside the RoI frustum is

associated to the object. It does not, however, help with the inaccurate z dimension problem,
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Figure 5.3: Frustum association. An object detected using the image features (left), generating the ROI frustum based on
object’s 3D bounding box (middle), and the BEV of the ROI frustum showing radar detections inside the frustum (right). δ
is used to increase the frustum size in the testing phase. d̂ is the ground truth depth in the training phase and the estimated
object depth in the testing phase.
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as radar detections might be outside the ROI frustum of their corresponding object due to

their inaccurate height information.

5.3.2 Pillar Expansion:

To address the inaccurate height information problem, a radar point cloud preprocessing

step called pillar expansion is introduced, where each radar point is expanded to a fixed-size

pillar as illustrated in Fig. 5.4. Pillars create a better representation for the physical objects

detected by the radar, as these detections are now associated with a dimension in the 3D

space. Having this new representation, a radar detection is simply considered to be inside a

frustum if all or part of its corresponding pillar is inside the frustum, as shown in Fig. 5.2.

5.4 Radar Feature Extraction

After associating radar detections to their corresponding objects, the depth and velocity of

the radar detections are used to create complementary features for the image. Particularly,

for every radar detection associated to an object, three heat map channels centered at and

inside the object’s 2D bounding box are generated as shown in Fig. 5.4. The width and

height of the heatmaps are proportional to the object’s 2D bounding box and are controlled

by a parameter α. The heatmap values are the normalized object depth (d) and also the x

and y components of the radial velocity (vx and vy) in the egocentric coordinate system:

F j
x,y,i =

1

Mi


fi |x− cjx| ≤ αwj and

|y − ciy| ≤ αhj

0 otherwise

,

where i ∈ 1, 2, 3 is the feature map channel, Mi is a normalizing factor, fi is the feature

value (d, vx or vy), c
j
x and cjy are the x and y coordinates of the jth object’s center point on

the image and wj and hj are the width and height of the jth object’s 2D bounding box. If

two objects have overlapping heatmap areas, the one with a smaller depth value dominates,

as only the closest object is fully visible in the image.
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Figure 5.4: Expanding radar points to 3D pillars (top image). Directly mapping the pillars
to the image and replacing with radar depth information results in poor association with
objects’ center and many overlapping depth values (middle image). Frustum association
accurately maps the radar detections to the center of objects and minimizes overlapping
(bottom image). Radar detections are only associated to objects with a valid ground truth
or detection box, and only if all or part of the radar detection pillar is inside the box. Frustum
association also prevents associating radar detections caused by background objects such as
buildings to foreground objects, as seen in the case of pedestrians on the right hand side of
the image.
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The generated heat maps are then concatenated to the image features as extra channels.

These features are used as inputs to the secondary regression heads to recalculate the object’s

depth and rotation, as well as velocity and attributes. The velocity regression head estimates

the x and y components of the object’s actual velocity in the vehicle coordinate system. The

attribute regression head estimates different attributes for different object classes, such as

moving or parked for the Car class and standing or sitting for the Pedestrian class. The

secondary regression heads consist of three convolutional layers with 3 × 3 kernels followed

by a 1×1 convolutional layer to generate the desired output. The extra convolutional layers

compared to the primary regression heads help with learning higher level features from the

radar feature maps. The last step is decoding the regression head results into 3D bounding

boxes. The box decoder block uses the estimated depth, velocity, rotation, and attributes

from the secondary regression heads, and takes the other object properties from the primary

heads.

5.5 Implementation Details

The pre-trained CenterNet [109] network with the DLA [103] backbone is used as the object

detection network. DLA uses iterative deep aggregation layers to increase the resolution of

feature maps. CenterNet compares its performance using different backbone architectures,

with the Hourglass network [62] performing better than others. The DLA network was

chosen for this architecture because it takes significantly less time to train while providing

a reasonable performance.

The released CenterNet model trained for 140 epochs on the nuScenes dataset was used

to initialize the network. This model by default does not provide velocity and attribute

predictions.The velocity and attribute heads were trained for 30 epochs, and the resulting

model was then used as the baseline image-based method to compare to. The secondary

regression heads in CenterFusion are added on top of the CenterNet backbone network, and

are trained using the image and radar features for an additional 60 epochs with a batch size

of 26 on two Nvidia P5000 GPUs.
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During both training and testing, the image resolution was reduced from the original

1600×900 pixels to 800×450 pixels. Data augmentation is used during training, with random

right-left flipping (with a probability of 0.5) and random shifting (from 0 to 20 percent of

image size). The same augmentations are also applied to the radar point cloud in reference to

the camera coordinate system. No scaling augmentation is applied here as it changes the 3D

measurements in the scene. At testing time, only the flip test augmentation was used where

an image and its flipped version are fed into the network and the average of the network

outputs is used for decoding the 3D bounding boxes. Multi-scale test augmentation as used

by CenterNet is not used in the proposed architecture. The pillar size is set to [0.2, 0.2, 1.5]

meters in the [x, y, z] directions and δ is set to increase the length of the RoI frustum by

20% in the radial direction at test time.

The L1 loss is used for most of the regression heads, with the exception of the center

point heat map head which uses the focal loss and the attributes regression head that uses

the Binary Cross Entropy (BCE) loss.

5.6 Results

The proposed radar and camera fusion network is compared with the published state-of-

the-art camera-based models on the nuScenes benchmark, and also a LIDARbased method.

Table 5.1 shows the results on both test and validation splits of the nuScenes dataset.

CenterFusion is compared with OFT [74], MonoDIS [79] and CenterNet [109] which are

camera-based 3D object detection networks, as well as InfoFocus [85] which is a LIDAR-

based method. As seen in Table 5.1, CenterFusion outperforms all other methods in the

nuScenes NDS score, which is a weighted sum of the mAP and the error metrics. On the

test dataset, CenterFusion shows a 12.25% and 16.9% relative increase in the NDS score

compared to CenterNet and MonoDIS respectively. The LIDAR-based method InfoFocus

shows a better performance in the mAP score compared to other methods, but is significantly

outperformed by CenterFusion in the orientation, velocity and attribute error metrics. While

CenterNet with the Hourglass [62] backbone network results in a better mAP score compared

to CenterFusion (1.2% difference) on the test split, the results on the validation split show
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Table 5.1: Performance comparison for 3D object detection on nuScenes dataset. mATE, mASE, mAOE, mAVE and mAAE
stand for average translation, scale, orientation, velocity and attribute errors respectively. ↑ indicates that higher is better and
↓ indicates that lower is better. ”C”, ”R” and ”L” specify camera, radar and LIDARmodalities respectively.

Modality Error ↓
Method Dataset C R L NDS ↑ mAP ↑ mATE mASE mAOE mAVE mAAE
InfoFocus [85] test X 0.395 0.395 0.363 0.265 1.132 1.000 0.395
OFT [74] test X 0.212 0.126 0.820 0.360 0.850 1.730 0.480
MonoDIS [79] test X 0.384 0.304 0.738 0.263 0.546 1.533 0.134
CenterNet (HGLS) [109] test X 0.400 0.338 0.658 0.255 0.629 1.629 0.142
CenterFusion (DLA) test X X 0.449 0.326 0.631 0.261 0.516 0.614 0.115

CenterNet (DLA) [109] val X 0.328 0.306 0.716 0.264 0.609 1.426 0.658
CenterFusion (DLA) val X X 0.453 0.332 0.649 0.263 0.535 0.540 0.142
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that CenterFusion outperforms CenterNet by 2.6% when both networks use the same DLA

[103] backbone. The validation set results also show CenterFusion improving CenterNet in

all the other metrics. CenterFusion shows an absolute gain of 38.1% and 62.1% relative

increase in the NDS and velocity error metrics compared to CenterNet, which demonstrates

the effectiveness of using radar features.

Table 5.2 compares the per-class mAP results for both test and validation splits. While

CenterNet with an Hourglass backbone has a higher mAP than CenterFusion for most classes

in the test set, it is outperformed by CenterFusion on the validation set where the DLA

backbone is used for both methods. The most improved classes on the validation set are the

motorcycle and car with 5.6% and 4.0% absolute mAP increase respectively.

Figures 5.5, 5.6, 5.7 and 5.8 demonstrates the 3D object detection results in both camera

and BEV. It shows the detection results from CenterFusion (row 1 & 2) and CenterNet (row

3 & 4) for 4 different scenes. The radar point clouds are also shown in the CenterFusion

BEV results. Compared to CenterNet, the results from CenterFusion show a better fit for

3D boxes in most cases, especially objects at a larger distance, such as the far vehicle in the

second scene. Additionally, the velocity vectors estimated by CenterFusion show a significant

improvement compared to the CenterNet results, as seen in the second and third scenes.

5.6.1 Ablation Study

The effectiveness of the proposed fusion algorithm is validated by conducting an ablation

study on the nuScenes validation set. The CenterNet model is used as the baseline, and the

effectiveness of the pillar expansion, frustum association and flip testing steps are studied

on the detection results. Table 5.3 shows the overall detection results of the ablation study.

In the first experiment, only pillar expansion is applied to the radar point clouds, and

map the 3D pillars to the image plane and obtain their equivalent 2D bounding boxes.

These boxes are then filled with the depth and velocity values of their corresponding radar

detections and used as the radar feature maps, as shown in Fig. 5.4. According to Table 5.3,

this simple association method results in a 15.4% relative improvement on the NDS score

and 1.0% absolute improvement on the mAP compared to the baseline.
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Table 5.2: Per-class performance comparison for 3D object detection on nuScenes dataset.

Modality mAP ↑
Method Dataset C R L Car Truck Bus Trailer Const. Pedest. Motor. Bicycle Traff. Barrier
InfoFocus [85] test X 0.779 0.314 0.448 0.373 0.107 0.634 0.290 0.061 0.465 0.478
MonoDIS [79] test X 0.478 0.220 0.188 0.176 0.074 0.370 0.290 0.245 0.487 0.511
CenterNet (HGLS) [109] test X 0.536 0.270 0.248 0.251 0.086 0.375 0.291 0.207 0.583 0.533
CenterFusion (DLA) test X X 0.509 0.258 0.234 0.235 0.077 0.370 0.314 0.201 0.575 0.484

CenterNet (DLA) [109] val X 0.484 0.231 0.340 0.131 0.035 0.377 0.249 0.234 0.550 0.456
CenterFusion (DLA) val X X 0.524 0.265 0.362 0.154 0.055 0.389 0.305 0.229 0.563 0.470
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Figure 5.5: Qualitative results from CenterFusion (left) and CenterNet (right) in camera
view and BEV. In the BEV plots, detection boxes are shown in cyan and ground truth boxes
in red. The radar point cloud is shown in green. Red and blue arrows on objects show the
ground truth and predicted velocity vectors respectively.
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Figure 5.6: Qualitative results from CenterFusion (left) and CenterNet (right) in camera
view and BEV, cont.
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Figure 5.7: Qualitative results from CenterFusion (left) and CenterNet (right) in camera
view and BEV, cont.
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Figure 5.8: Qualitative results from CenterFusion (left) and CenterNet (right) in camera
view and BEV, cont.
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Table 5.3: Overall ablation study on nuScenes validation set. Improvement percentages in each row are relative to the baseline
method. (PE: Pillar Expansion, FA: Frustum Association, FT: Flip Test)

Method Cam Rad PE FA FT NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Baseline X - - - - 0.328 0.306 0.716 0.264 0.609 1.426 0.658
CenterFusion X X X - - +15.4% +1.0% -2.0% +1.1% -4.4% -13.1% -68.6%
CenterFusion X X - X - +25.9% +2.0% -2.8% +1.0% -7.4% -48.1% -75.9%
CenterFusion X X X X - +34.5% +4.3% -5.3% +1.1% -10.0% -61.9% -78.0%
CenterFusion X X X X X +37.8% +8.4% -9.4% -0.5% -11.6% -62.0% -78.3%

Table 5.4: Class-based ablation study results on nuScenes validation set.

Method Cam Rad PE FA FT Car Truck Bus Trailer Const. Pedest. Motor. Bicycle Traff. Barrier
Baseline X - - - - 48.4 23.1 34.0 13.1 3.5 37.7 24.9 23.4 55.0 45.6
CenterFusion X X X - - +0.6 +0.7 -2.1 +0.9 +0.6 +0.9 +1.9 -2.5 +0.1 +0.8
CenterFusion X X - X - +1.0 +1.0 -2.1 +0.9 +0.9 0.0 +2.1 -1.9 +0.2 +0.8
CenterFusion X X X X - +2.8 +2.1 -1.2 +1.4 +1.1 +0.1 +3.8 -1.1 +0.4 +0.8
CenterFusion X X X X X +4.1 +3.4 +2.7 +1.8 +1.8 +1.2 +5.5 -0.7 +1.3 +1.5
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In the next experiment, only the frustum association method is used by directly applying

it on the radar point clouds without converting them to pillars first. This improves the NDS

score by 25.9% relatively and mAP by 2.0%. Applying both pillar expansion and frustum

association results in a relative 35.5% and absolute 4.3% improvement on the NDS and

mAP scores respectively. Flip testing adds another 3.3% improvement on the NDS score

and 3.9% on the mAP, resulting in a total of 37.8% and 8.4% improvement on NDS and

mAP compared to the baseline method.

Table 5.4 shows the per-class contribution of each step on the mAP. According to

the results, both pillar expansion and frustum association steps have contributed to the

improvement of mAP in most object classes. The only class that has not improved from the

baseline is the bicycle class, in which the CenterNet mAP score is better than CenterFusion

by 0.5%.

5.7 Conclusion

In summary, a new radar and camera fusion algorithm called CenterFusion was proposed to

exploit radar information for robust 3D object detection. CenterFusion accurately associates

radar detections to objects on the image using a frustum-based association method, and

creates radar-based feature maps to complement the image features in a middle-fusion

approach. The proposed frustum association method uses preliminary detection results to

generate a RoI frustum around objects in 3D space, and maps the radar detection to the

center of objects on the image. A pillar expansion method was also used to compensate

for the inaccuracy in radar detections’ height information, by converting radar points to

fixed-size pillars in the 3D space. The proposed method was evaluated on the challenging

nuScenes 3D detection benchmark, where it outperformed the state-of-the-art camera-based

object detection methods.
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Chapter 6

Radar-Camera Fusion for 3D Object

Tracking

3D multi-object tracking is a crucial component in the perception system of autonomous

driving vehicles. Tracking all dynamic objects around the vehicle is essential for tasks such

as obstacle avoidance and path planning. While sensor fusion has been widely used in object

detection networks in recent years, most existing multi-object tracking algorithms either

rely on a single input modality, or do not fully exploit the information provided by multiple

sensing modalities. In this chapter, an end-to-end network for joint object detection and

tracking based on radar and camera sensor fusion is proposed. The proposed method uses

the center-based radar-camera fusion algorithm introduced in the previous chapter for object

detection, and utilizes a greedy algorithm for object association in consecutive frames. The

proposed greedy algorithm uses the depth, velocity and 2D displacement of the detected

objects to associate them through time. This makes the proposed tracking algorithm very

robust to occluded and overlapping objects, as the depth and velocity information are very

effective cues for distinguishing these objects. This algorithms, hereafter referred to as

CFTrack, is evaluated on the challenging nuScenes dataset, where it achieves 20.0 Average

Multi Object Tracking Accuracy (AMOTA) and outperforms all vision-based 3D tracking

methods in the benchmark, as well as the nuScenes’ baseline LIDAR-based method. The

proposed network takes as input the current image frame and radar detections in addition

to the previous frame and detected objects. The outputs are 3D object detection results
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and tracking IDs for all detected objects. Every detected object is also associated with an

estimated absolute velocity in the global coordinate system. CFTrack is online and real-

time with a runtime of 35ms per image, making it very suitable for autonomous driving

applications.

The object association step in CFTrack is based on a simple greedy algorithm similar to

CenterTrack [108]. While CenterTrack only uses the objects’ 2D displacement in consecutive

images to associate them, CFTrack utilizes a greedy algorithm based on a weighted cost

function calculated from the object’s estimated depth and velocity in addition to their 2D

displacement. This significantly improves the ability of the network to correctly associate

occluded and overlapping objects, as the depth and velocity information provide valuable

clues to distinguish these objects. Additionally, CFTrack uses the fused radar and image

features to predict the objects’ displacement in consecutive frames, which makes these

predictions more accurate compared to just using the visual information.

Experiments conducted on the challenging nuScenes dataset [8] show that CFTrack

outperforms all other image-based tracking methods on the nuScenes benchmark, as well

as the baseline LIDAR-based method AB3DMOT [91]. It achieves 20.0% AMOTA,

outperforming CenterTrack [111] by a factor of 4, while running at 28 frames per second.

6.1 Preliminaries

The proposed 3D tracking algorithm is based on CenterFusion [61], a 3D object detection

algorithm introduced in the previous chapter. CenterFusion takes an image I ∈ RW×H×3

and a set of radar detections Pi = (xi, yi, zi, vix, v
i
y) where (xi, yi, zi) are the coordinates of

the point i in the radar point cloud, and (vix, v
i
y) are the radial velocities in the x and y

directions, respectively. These coordinates are according to the vehicle coordinate system,

where x is forward, y is to the left and z is upward from the drivers point of view.

CenterFusion first uses a center point detection method called CenterNet [109] to detect

the centerpoint of objects by estimating a heatmap Ŷ ∈ [0, 1]
W
R
×H

R
×C where R is the down-

sampling factor and C is the number of object categories in the dataset. The local maxima

in the estimated heatmap Ŷ correspond to the centers of detected objects in the image. The
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ground truth heatmap Y is generated by rendering a Gaussian-shaped peak at the center

points of each object, calculated as the center point of their corresponding bounding box.

The network uses regression layers to generate preliminary 3D bounding boxes for all

objects, then associates the radar detections to these preliminary 3D detections using a

frustum-based association method. To do this, the radar detections are first expanded into

pillars with predefined dimensions. A frustum is then formed around each detected object,

and radar pillars inside the frustum are associated with that object. If there are multiple

radar pillars inside the frustum, the closest one is kept and others are discarded.

Based on the association results, the depth and velocity of the radar detection are mapped

to their corresponding objects on the image. These values are represented as separate

heatmap channels and are concatenated to the image-based features. These fused features

are then used to improve the preliminary detection results by re-calculating the depth, size,

orientation and other object attributes. Additionally, a velocity vector is estimated for every

detected object.

CenterFusion uses an objective function based on the focal loss, defined as:

Li =
1

N

∑
xyc


(1− Ŷxyc)α log(Ŷxyc) Yxyc = 1

(1− Yxyc)β(Ŷxyc)α log(1− Ŷxyc) otherwise

, (6.1)

where N is the number of objects, Y ∈ [0, 1]
W
R
×H

R
×C is the annotated objects’ ground-truth

heatmap and α and β are the hyper-parameters of the focal loss. After detecting objects’

center point, different regression heads are used to regress to size, orientation, depth and

velocity of the detected objects.

6.2 CFTrack

Following CenterTrack [108], the tracking problem is approached from a local perspective

where an object’s identity is preserved across consecutive frames without re-establishing

associations if the object leaves the frame. Both camera and radar data from the previous

frame are used to improve the ability to track occluded objects in the current frame. CFTrack

uses the fused radar and image features to estimate objects’ displacement in consecutive
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frames, which is used for object association through time. In the association step, a greedy

algorithm is proposed that leverages objects’ velocity and depth information in addition to

their 2D displacement for accurate association through time.

6.2.1 Problem Formulation

The inputs to CFTrack are the current and previous image frames I(t−1), I(t) ∈ RW×H×3, the

current and previous radar detections P (t−1), P (t) ∈ RN×5 where N is the number of radar

detections, and the tracked objects from the previous frame T (t−1) = {b(t−1)0 , b
(t−1)
1 , ...}. The

tracked objects are represented by b = (p, d, v, w, id) where p ∈ R2 is the object’s center

location, d ∈ R is the object’s depth, v ∈ R2 is object’s velocity, w ∈ [0, 1] is the detection

confidence and id is an integer representing the unique identity of the tracked object. For

every frame, the goal is to detect and track objects T (t) = {b(t)0 , b
(t)
1 , ...} and assign a consistent

id to the objects in consecutive frames. The detection and association of objects are done

in a single deep network trained end-to-end.

6.2.2 Detection Network

The overall network architecture is shown in Fig. 6.1. The CenterFusion network is modified

to take as input the current image frame I(t) and radar detections P (t), in addition to the

previous image frame I(t−1), radar detections P (t−1) and detected objects. The outputs

are 3D bounding boxes for all detected objects and an absolute velocity for each object,

reported in the x and y directions in the vehicle’s coordinate system. The previous detections

are represented as a single channel heatmap using a 2D Gaussian kernel. Including the

previous image, radar detections and detected objects helps the network to better estimate

the location of objects in the current frame. The radar information from previous frame

further improves the ability of network to detect objects even if the visual evidence is not

present due to occlusion.

Besides the object detection results for the current frame, the modified network also

estimates the 2D displacement of the detected objects between the current and previous

frames, using the concatenated radar and image features. Having the radar depth and
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velocity information in addition to the image features from the current and previous frames

helps the network to generate more accurate object displacement predictions.

6.2.3 Object Association

A greedy algorithm is used to associate the detected objects over time. These objects are

represented by a = (p, d, v, c) where p ∈ Z2 is the object’s center in pixels, d ∈ R is the

object’s depth, v ∈ R2 is the object’s velocity, and c ∈ C is the object’s category. Similar to

[108], the displacement is calculated by a regression layer in the form of two output channels

D̂(t) ∈ RW
R
×H

R
×2 representing the displacement of the center of the objects on the image, as

shown in Fig. 6.2. Similar to the other regression heads, the L1 loss is used as the objective

function to train this layer.

To associate objects across time, a cost function is defined based on the objects’ depth,

velocity and displacement on the image:

Costt,t−1 =


α · Lpixel + β · Ldepth + δ · Lvelocity ct = ct−1

∞ ct 6= ct−1

(6.2)

Lpixel = (xt − xt−1)2 + (yt − yt−1)2 (6.3)

Ldepth = (dt − dt−1)2 (6.4)

Lvelocity = (vxt − vxt−1)2 + (vyt − vyt−1)2 (6.5)

where x, y is the object’s center, d is the object’s depth, and vx, vy are the velocity of the

object in x and y directions respectively. α, β, δ ∈ R+, are tunable parameters.

For every detected object at position p, The greedy algorithm looks for prior detections

within a radius r from p−Dp. If there are unmatched prior detections at that position, the

above cost function is calculated to determine the distance between these detections, and

match the object with the previous detections with the lowest cost. For every unmatched

detection, a new track is created.
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Figure 6.2: Top: Object displacement from the previous frame, represented by arrows
pointing from the center of each object to the estimated center of the same object in the
previous frame. Bottom: Previous frame. Displacement arrows re-drawn for comparison.
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6.3 Experiments

6.3.1 Dataset and Evaluation Metrics

CFTrack is evaluated on the nuScenes dataset [8], a large-scale dataset for autonomous

driving with annotations for 3D object detection and tracking containing camera, radar

and LIDAR data. It provides 1000 different sequences from which 700 sequences are used

for training, 150 sequences for validation and 150 sequences for testing. Each sequence

is comprised of 40 annotated frames, each containing camera, radar and LIDAR samples.

Samples are obtained from 6 different cameras and 5 different radars.

The main evaluation metric used in the nuScenes benchmark, AMOTA, is a weighted

average of the recall-normalized Multi Object Tracking Accuracy (MOTA) metric at different

recall thresholds:

MOTAR = max(0, 1− IDSr + FPr + FNr − (1− r) ∗ P
r ∗ P

)

AMOTA =
1

n− 1

∑
r∈{ 1

n−1 ,
2

n−1 ,...,1}

MOTAR

where r is the recall threshold, IDSr is the number of identity switches, FPr is the number of

false positives, FNr is the number of false negatives and P is the total number of annotated

objects in all frames.

6.3.2 Implementation Details

Following CenterFusion [61], an input resolution of 800× 448 is used and horizontal flipping

and random shifts are applied for regularization. The Deep Layer Aggregation (DLA)

network is used as the backbone for extracting image features, optimized with the Adam

[38]. The CFTrack network is trained for 60 epochs with a batch size of 24 and a learning

rate of 1.2e-4, starting from a pre-trained CenterFusion network trained for 170 epochs. The

network is trained on a machine with an Intel Xeon E5-1650 CPU and two Quadro P5000

GPUs. The runtime is tested on a machine with an Intel Xeon E5-1607 CPU and a TITAN

X GPU.

76



6.4 Results

Table 6.1 compares CFTrack with some other published methods in the nuScenes object

tracking benchmark. Specifically, it is compared with the CenterTrack [108] algorithm

using both image-based and LIDAR-based detection results, as well as the AB3DMOT

[91] with three different LIDAR-based object detection algorithms. According to the table,

CFTrack outperforms both methods by achieving an AMOTA score of 20.0%, improving the

vision-based CenterTrack algorithm by about 15% (by a factor of 4) and the LIDAR-based

CenterTrack algorithm by 9.2%. CFTrack also outperforms CenterTrack in the MOTAR,

MOTA, MOTP and Recall metrics.

Given the similarity of the tracking algorithms in CFTrack and CenterTrack, these results

demonstrate the effect of utilizing radar data in both detection and tracking stages. Both

methods use a greedy algorithm for associating objects, but CFTrack also takes advantage

of the depth and velocity of the detected objects to better associate them through time.

Additionally, the velocity data provided by the radar enables the network to predict the

objects’ displacement in the image more accurately, further improving object association.

Table 6.2 shows AMOTA for each class. According to the results, CFTrack significantly

outperforms all the other methods in the Car, Pedestrian, Motorcycle and Bicycle categories,

while AB3DMOT with the Megvii detector performs better in the Truck, Bus and Trailer

categories. Note that all categories where CFTrack is outperformed are large objects, namely

Truck, Bus and Trailer. One explanation could be the fact that it is more difficult for

the underlying fusion algorithm to correctly associate many radar detections obtained from

these large objects to their corresponding 3D bounding boxes, resulting in lower accuracy in

estimated depth and velocity for these objects.

On average, CFTrack achieves a runtime of 35ms per image (28 fps), which makes it

suitable for the real-time autonomous driving applications.
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Table 6.1: Evaluation of CFTrack on the nuScenes test set. Metrics are defined in [8].

Modality
Method Cam Rad LIDAR Time(ms) AMOTA AMOTP MOTAR MOTA MOTP Recall
AB3DMOT [91] + Mapillary X - 0.018 1.790 0.091 0.020 0.903 0.353
AB3DMOT [91] + PointPillars X - 0.029 1.703 0.243 0.045 0.824 0.297
AB3DMOT [91] + Megvii X - 0.151 1.501 0.552 0.154 0.402 0.276
CenterTrack [108] X 45 0.046 1.543 0.231 0.043 0.753 0.233
CenterTrack [108] + Megvii X X 45 0.108 0.989 0.267 0.085 0.349 0.412
CFTrack X X 35 0.200 1.292 0.353 0.151 0.766 0.420

Table 6.2: Per-class evaluation results.

Modality AMOTA
Method Cam Rad LIDAR Car Truck Bus Trailer Pedest. Motor. Bicycle
AB3DMOT [91] + Mapillary X 0.125 0.000 0.000 0.000 0.000 0.000 0.000
AB3DMOT [91] + PointPillars X 0.094 0.000 0.066 0.000 0.039 0.000 0.000
AB3DMOT [91] + Megvii X 0.278 0.013 0.408 0.136 0.141 0.081 0.000
CenterTrack [108] X 0.202 0.004 0.072 0.000 0.030 0.011 0.000
CenterTrack [108] + Megvii X X 0.341 0.012 0.256 0.000 0.142 0.005 0.000
CFTrack X X 0.546 0.000 0.107 0.075 0.346 0.206 0.114
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Chapter 7

Conclusion and Future Work

This dissertation focused on radar and camera sensor fusion for autonomous driving

applications and proposed different algorithms fro 2D and 3D object detection, 3D multi-

object tracking and velocity estimation. It was shown that radar detections could be

successfully utilized to generate 2D object proposals for two-stage object detection networks.

This substantially reduced the amount of processing and time required for generating object

proposals by eliminating the need to process the image using a region proposal network.

Radar data was also used in a two-stage joint object detection and depth estimation

network where several 3D object proposals are generated from each radar detection. These

3D proposals are then used in conjunction with image features obtained from a deep neural

network to generate 2D object proposals as well as accurate depth estimations for each

proposal. The experiments conducted in this dissertation show that the proposed method

outperforms other published radar-camera fusion-based object detection methods in the

nuScenes benchmark while at the same time accurately estimates the distance to every

detection. It is important to mention that an in-depth comparison between the radar-based

proposal generation algorithms used in this work and RRPN was not performed and is

left as a possible future work. This comparison could be very helpful in determining how

much improvement is made by modifying the radar-based proposal generation method, and

compare that to the improvements made by adding image-based proposal generation as well.

This dissertation also studied the effectiveness of radar and camera fusion for 3D object

detection and velocity estimation. The proposed algorithm, CenterFusion, extracts and fuses

79



radar and image features to perform 3D object detection as well as object velocity estimation

without requiring any temporal information. This is done by first obtaining preliminary

detections from the image, and then using a frustum-based association method to accurately

associate the radar detections to their corresponding objects in the image. CenterFusion

outperforms all image-based 3D object detection methods on the nuScenes benchmark,

demonstrating the effectiveness of radar and camera fusion for 3D object detection.

Moreover, this dissertation also focused on object tracking by proposing a online and

real-time 3D MOT and velocity estimation network based on radar and camera fusion.

While visual object tracking methods usually have difficulty tracking occluded or overlapping

objects, the distance values provided by the radar could be very helpful cues for identifying

and distinguishing these objects. Additionally, the velocity values obtained from the radar

could be utilized to predict objects’ direction of movement and consequently improve tracking

results. This dissertation proposed a method called CFTrack, which modifies CenterFusion

and provides an end-to-end trainable network capable of detecting and tracking objects

in 3D and also accurately estimating objects’ velocity. CFTrack is currently the only

tracking algorithm based on radar and camera data on the nuScenes tracking benchmark,

outperforming all published vision-only methods as well as the baseline LIDAR-based method

in this benchmark.

Radar data could also be fused with data from other depth sensors such as LIDARs

and RGBD cameras for both object detection and object tracking applications. Radar

point clouds do not provide much information about the objects’ dimensions and geometry,

rendering them not suitable for object classification. Point clouds obtained from LIDARs or

RGBD cameras on the other hand are more dense and could be used for objects classification.

The depth and velocity information obtained from radars could complement this information

and help with detecting objects and predicting their direction of movement. This could be

investigated further as a future research direction, with the goal of design and implementation

of a point-cloud-based fusion algorithm for 3D object detection and tracking.
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