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ABSTRACT 

 

 

The current energy market relies heavily on fossil fuel sources; however, we are amidst a 

momentous shift towards wind, solar, and water based renewable energies. Large-scale 

energy storage allows renewable energy to be stored and supply the grid with consistent 

energy despite changing weather conditions. Improvements to large-scale energy storage 

in terms of cost, safety, and sustainability are crucial to wide-scale adoption. A promising 

candidate for large-scale energy storage are sodium-ion batteries using hard carbon anodes. 

Sodium is globally available, cheaper, and more sustainable than lithium, but requires a 

different anode structure. A sustainable hard carbon anode with excellent Li-ion 

performance has been manufactured from lignin, a byproduct of the paper and bio-ethanol 

industries. The carbon composite generated from lignin is composed of nanoscale 

crystallites dispersed in an amorphous graphene matrix whose structure is highly dependent 

on manufacturing process; however, the sodium-ion storage mechanisms for these lignin-

based hard carbons are not well known.  

 

The purpose of the following work is to elucidate the Na-ion storage mechanisms for these 

lignin-based hard carbons and develop process-structure-property-performance (PSPP) 

relationships for them so an optimal Na-ion anode can be manufactured. To this end, 

reactive molecular dynamics simulations of lignin-based carbon composites were 

conducted with both lithium and sodium to compare the binding energies and mechanisms 

as well as their respective diffusive properties. It was found that lithium-ions prefer to 

localize in the hydrogen dense interfacial regions of the carbon composites while sodium 

prefer to adsorb to the surfaces of graphene fragments as well as the outer faces and edge-

intercalation positions of the crystallites. At higher porosity, sodium shows a tendency to 

aggregate in the porous regions along curved planes of graphene, which gives the Na-ions 

the highest diffusion rate of all systems studied.  

 

To aid in determining the PSPP relationships of LBCCs, synchrotron x-ray scattering was 

performed, and models were created and refined using the Hierarchical Decomposition of 

the Radial Distribution Function (HDRDF) technique and software (now highly 

generalized). PSPP relationships with respect to processing temperature were 

quantitatively and qualitatively determined for the lignin-based carbon composites.  
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INTRODUCTION  

 

Rechargeable Li-ion batteries have been one of the most crucial technologies of the past 

30 years, allowing advances in modern portable electronics, electric vehicles, as well as 

storage of energy from intermittent renewable energy sources such as solar and wind. In 

our current world, where efficiency, sustainability, and cleaner energy are priorities, high-

performance batteries manufactured with bio-based and renewable materials are a 

necessity. Modern li-ion batteries consist of three essential parts, a graphitic anode, a 

lithium and metal oxide cathode, and a porous separator immersed in a non-aqueous liquid 

electrolyte [1]. While charging, Li-ions migrate from the cathode, through the separator, to 

the anode and intercalate between planes of graphite to form lithiated graphite. When 

discharging, electrons are released to the external circuit as the Li-ions migrate back to the 

cathode host structure. Graphitic carbon has been the backbone of anode materials for 

nearly 30 years and has had little innovation in this time when compared to cathode 

materials that have been meticulously researched and improved [2-8]. Through this work, 

we aim to improve the modern graphitic anode and explore utilizing sodium rather than 

lithium as the charge carrying ion.  

1.1 Modern Graphitic Anodes 

It is important to note that graphite is not readily available domestically in the United States 

and is mostly imported from countries with large graphite mining operations or large 

petroleum processing plants from which petroleum coke can be refined into graphite. Over 

70% of the worlds graphite supply comes from China due to the natural abundance [9]. 

Modern graphitic anodes for li-ion batteries rely on reversible intercalation of li-ions from 

spherical graphite particles (SPGs). SPGs are manufactured from natural flake (60% loss) 

and synthetic (coke) graphite through milling and have a resulting diameter of 5 to 20 

microns [10]. Most SPGs are then coated in a nanolayer of non-graphitic carbon. The 

resulting morphology has shown to increase resistance to degradation from electrolyte 

interactions and improves high-rate capacity, reversible capacity, coulombic efficiency, 

and irreversible capacity over flake graphite [10-12]. Aspects of improving current 

graphitic anodes include increasing charge capacity, long term cyclability, safety as well 

as reducing mining and petroleum product pollution by finding a renewable, sustainable, 

and domestic source of graphite. 

 

1.2 Lignin Based Carbon Composites as Anode Material 

Previous studies by Tenhaeff, Rios, More, and McGuire suggested a solution for a more 

environmentally friendly and sustainable source of high performance graphitic anodes 
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through lignin [13]. Lignin is the second most abundant natural organic material on earth 

and over 100 million tonnes of lignin is generated each year through the commercial paper 

and bio-ethanol industries [14]. Lignin is an organic polymer found in the cell walls of 

woody plants and affects the stability, stiffness and flexibility of plants [15]. It has an 

aromatic, cross-linked, heterogenous, amorphous structure composed of varying amounts 

of p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) phenolic units depending on the 

plant species. Commercially generated lignin was historically burned for heat and power 

in the aforementioned industries. With modern advances in lignin processing, lignin can 

now be considered a low-cost, renewable bio-feedstock for the manufacturing of graphite, 

thermoplastics, carbon fibers, phenolic resins, and lignin-based polymers among many 

other products currently sourced from petroleum [13,14,16,17].  

 

Work by García-Negrón et al. shows isolation of high-purity lignin along with subsequent 

pyrolysis and reduction at 1050°C yields a composite composed of graphitic nanoscale 

crystallite spheroids dispersed in an amorphous carbon matrix and have shown success in 

use as high-performance anodes in Li-ion batteries [18]. Higher reducing temperatures 

produce larger crystallites with increasing crystalline volume fraction. These lignin-based 

carbon composites have crystallites sizes of 1 to 40 nm, 1000 times smaller than that of 

SPGs used in modern li-ion batteries. The unique morphology and nanoscale structure 

present in anodes fabricated from lignin pyrolyzed and reduced at 1050°C have been shown 

to have specific capacities of up to 444 mAh g-1 with coulombic efficiency of 98% 

sustained for extended galvanostatic cycles in coin cell batteries [18]. This 20% increase 

in specific capacity over the theoretical limit of 372 mAhg-1 for graphite was explained by 

the modelling works of McNutt et al. where it was shown that these lignin-based carbon-

composites have a fundamentally different storage mechanism for li-ions compared to 

standard graphitic anodes [19]. Specifically, when the graphitic crystallites are sufficiently 

small, li-ions prefer to localize in the interfacial regions between the graphitic 

nanocrystallites and amorphous fragments of graphene that constitute the amorphous 

carbon matrix [20]. The resultant idea from the combined works of Tenhaeff, McNutt, and 

García-Negrón et al. is that lignin can be used to create high performance graphitic anodes 

where the features that control localization and energetics of li-ions in the carbon-

composite anode such as crystallite size, crystalline volume fraction, and composite density 

can be optimized through choice of lignin feedstock, processing conditions, and reduction 

temperature [18-21].  

 

1.3 Understanding the Carbon-Composite Structure 

Understanding the relationship between the atomic and meso-scale structure and choice of 

feedstock and processing conditions of the lignin-based carbon-composite anode is critical 
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to optimizing the exceptional properties shown in the previous works. In materials 

characterization, there is often no one-size-fits-all approach and the technique used is 

largely dictated by the physiochemical structure of the material in question. However, as 

explained in the book by Takeshi Egami and Simon Billinge, Underneath the Bragg Peaks: 

Structural Analysis of Complex Materials, the local atomic environment is often 

characterized via the radial distribution function (RDF) or g(r) where r is the separation 

between atoms. Neutron and x-ray scattering experiments yield the total scattering intensity 

function S(Q) which includes both Bragg and diffuse scattering and can be Fourier 

transformed to real space to represent the RDF. The RDF is an effective function for 

evaluating the local structure of powder, single crystal, or liquid materials containing 

amorphous or crystalline domains and isotropic or anisotropic orientations [22,23]. In 

battery specific research it can also help define local order changes from cycling, nano-

phase quantifications, and ion storage mechanisms [19,21,24-29].  

 

When studying complex materials, interpretation of the RDF can present a significant 

challenge due to the nature of scattering from multiple nanoscale phases and/or amorphous 

phases. The extent of this problem can be lessened through the use of high energy neutron 

sources and synchrotron x-ray sources where the small wavelength, high brilliance, low 

beam divergence, and 2-d scattering detectors can be used to characterize nanoscale 

features that would not be distinguishable using standard lab x-ray sources [22]. Since the 

lignin-based carbon composite anode has significant amorphous domains, both high energy 

neutron scattering and synchrotron x-ray diffraction are used to help determine structure.   

The process of ascribing structural features of nanomaterials to specific peaks and features 

of an experimentally obtained RDF can be arduous and confusing. By generating a model 

of the nanomaterial in question and simulating its RDF, researchers can directly attribute 

structural characteristics to features present in the calculated RDF [22,29,30]. 

Traditionally, complex nanostructured materials are modelled with large scale molecular 

dynamics (MD) simulations to form a hypothetical structure and generate a corresponding 

RDF to be compared to experiment [27]. This is not normally an iterative process as the 

initial creation and subsequent alterations to the structure and constituent particle size of 

complex nanomaterials in MD simulations is a laborious and computationally expensive 

process [31].  

 

The task of developing a generalized software tool for the extraction of structural 

information from the RDF of complex nanomaterials is ongoing with significant strides 

being made by the developers of RMCprofile [32-34] and DISCUS [35,36]. A new and 

significantly efficient approach for the interpretation of RDFs of complex materials is the 

Hierarchical Decomposition of the RDF (HDRDF) proposed by Oyedele et al. where 



4 

 

theory and tractable models at both atomic and mesoscales are combined to generate the 

RDF free from curve fitting techniques [31]. Version 2 of HDRDF was developed in 

MATLAB by García-Negrón et al. and tested against MD simulations of the pyrolyzed 

lignin carbon composite [37]. HDRDF version 2 was shown to correctly capture the 

contributions of the crystalline and amorphous phases and their interface in the modelled 

RDF, while achieving a reduction in computational cost by six orders of magnitude 

compared to MD simulation [37]. HDRDF v2 also allowed iterative refinement of the 

model, but only with spherical nanoparticles.  Chapter 3 of this work showcases the third 

version of HDRDF (henceforth called HDRDF) developed in C++ and expanded to be 

user-friendly and to allow arbitrary particle geometry. Figure i.1 below shows the 

decomposition of the RDF with the corresponding features present in the composite.  

 

1.3 Understanding Ion Localization in Carbon-Carbon Composites with ReaxFF 

Knowledge of ion localization in carbon-carbon composite anode material is a key element 

of understanding the large specific capacities shown in testing. Normally, density 

functional theory (DFT) is employed to accurately describe chemical reactions and 

preferential localization between ions and host materials [38-42]; however, to capture the 

mesoscale order of the carbon-carbon composite and its effect on ion localization it is 

necessary to have large simulation sizes with thousands of atoms [19]. Since DFT is 

excessively computationally expensive for large system sizes and for the timescale needed 

to simulate ion movement through the carbon composite, we employ reactive molecular 

dynamics simulations using ReaxFF to simulate the charged carbon composites [43]. 

ReaxFF are empirical force field potentials trained with structure and energy data from 

DFT calculations to allow modelling of electron redistribution through reaction, charge 

transfer, and ion movement on reasonable timescales with substantially less computational 

resources [43].  

As mentioned above in section 1.2, the work of McNutt et al. has shown that lithium are 

preferentially localized in the hydrogen dense interfacial region of the carbon-composite 

anode instead of intercalated between planes of graphitic crystallites as occurs in modern 

SPG anodes [19]. According to previous research by Papanek et al. the H/C ratio plays a 

direct role in determining ion storage capacity [44]. The combination of these two ideas 

with the knowledge that new nanocomposite electrodes are improving electrochemical 

performance in sodium-ion batteries lead us to believe that the lignin-based carbon-

composite anode could be a viable host structure for sodium [45]. The sodium ion battery 

is at the forefront of battery research currently due to the worldwide and vast availability 

of sodium and its radical price difference compared to lithium [29,46-48]. Chapters 1 and 

2 of this work focus on the energetics and preferential localization of sodium in the carbon-

composite anode.  
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Figure i.1: Schematic of the hierarchical decomposition of a composite and corresponding 

contributions to the RDF. Numbers represent pairs as follows: 1) amorphous-crystallite, 2) 

A-A intraplanar, 3) A-A interplanar, 4) C-C intercrystallite, 5) C-C intracrystallite 

intraplanar, 6) C-C intracrystallite interplanar. 

  



6 

 

 

CHAPTER I 

 

Lithium and Sodium Ion Binding in Nanostructured Carbon 

Composites  



7 

 

A version of this chapter was originally published by by Dayton G. Kizzire, Alexander 

M. Richter, David P. Harper, and David J. Keffer 

 

Kizzire, D. G., Richter, A. M., Harper, D. P. & Keffer, D. J. Lithium and sodium ion 

binding in nanostructured carbon composites. Molecular Simulation, 1-10, 

doi:10.1080/08927022.2020.1800689 (2020). 

 

The following article’s content is unchanged from the above publication except for 

format and some spelling changes (British English to American English). The publication 

is two-column format and below the article is in single-column format. The numbers in 

the section headings have also been removed. Figure and Table positions have been 

moved slightly to accommodate the required format.  

 

Credit authorship contribution statement: 

Dayton G. Kizzire: Investigation, computational resource acquisition, simulations, formal 

analysis, writing (original draft), data visualization, data curation. Alexander M. Richter: 

simulations, data visualization, computational resource acquisition. David P. Harper: 

Writing – review & editing. David J. Keffer: Conceptualization, methodology, 

computational resource acquisition, supervision, formal analysis, investigation, Writing – 

review & editing.  

 

Abstract 

High charge capacity in lithium and sodium ion batteries can be achieved using anodes 

composed of nanostructured carbon composites.  The tailoring of the nanostructure to 

achieve both high loading and low irreversible binding depends upon the binding 

mechanisms of the ion.  In this work, reactive molecular dynamics simulations are 

performed on model carbon composite anodes to investigate and to compare the binding 

mechanisms of lithium and sodium ions.  In composites composed of both crystalline and 

amorphous domains, lithium ions bind preferentially at the interface between the 

amorphous and crystalline domains, rather than via the standard intercalation mechanism 

observed in graphitic anodes.  In these same composites, sodium ions bind preferentially 

in the crystalline domain, even though intercalation of sodium in graphitic anodes is not a 

viable mechanism for charge storage.  The difference in mechanisms is explained through 

a comparison of the binding energies in the carbon composite to the energies of the 

respective metals and metal hydrides. 
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Introduction 

 High-energy-density batteries are a necessity to meet the ever-growing energy and 

power demands from electric vehicles, phones, medical equipment, military devices and 

large-scale energy storage. Researchers from around the globe have expended great effort 

through experiments and simulations to increase the charge capacity, cycle life, energy 

density and safety of lithium-ion batteries (LIBs). The simulation of LIB graphitic anodes 

normally includes nanosystems consisting of multiple phases and important interfacial 

regions where reactions and diffusion are coupled. Chemical reactions can be accurately 

described with density functional theory (DFT) calculations, but when combined with large 

system sizes required to characterised a disordered environment and the timescale needed 

to simulate ion movement through anode material, DFT quickly becomes excessively 

computational expensive [49,50]. To remedy this problem, empirical force field potentials 

are trained with structure and energy data from DFT calculations to allow modelling of 

electron redistribution through reaction and charge transfer on reasonable timescales with 

substantially less computational resources [43]. These reactive interaction potentials, such 

as the reactive force field (ReaxFF) potentials, have no discontinuity in energy or forces, 

which allows modelling the formation and dissociation of chemical bonds. ReaxFF also 

includes both van der Waals forces and coulombic interactions that play vital roles in the 

simulation of graphitic anodes [51,52].  

 While lithium-ion batteries have been the standard for high-performance batteries 

for the past thirty years, new demand for energy storage in electric vehicles and largescale 

grid applications has presented a large problem for LIBs as lithium is not a naturally 

abundant element and lithium-containing precursors are unevenly distributed globally [53]. 

These problems make lithium an unfavourable choice for large-scale energy storage 

applications. Alternatively, sodium-ion batteries (SIBs) have come to the forefront as an 

option for large-scale energy storage because, unlike lithium, sodium is abundant, cheap 

and distributed globally. However, sodium is non-functional in traditional graphitic anodes 

with the most likely reason being the lower energetic stability of Na-GICs compared to 

sodium metal [54,55]. Hard carbons, derived from biomass and highly porous, offer a 

solution to this problem through the storage of ions in porous and interfacial regions rather 

than intercalated between planes [56,57].  

 Previous studies have suggested carbonised lignin as a solution for low-cost, high-

performance anode material [13,18,58]. Lignin is a class of aromatic polymers with an 

amorphous nd cross-linked three-dimensional structure with high carbon concentration. 

Lignin is found in woods and grasses and serves as a low-cost, renewable bio-feedstock 

for complex carbon composites. Processing and pyrolysis of lignin produce a graphitic 

composite composed of nanoscale carbon crystallite spheres dispersed in an amorphous 

carbon matrix [13,30,59]. The crystallite radius, crystalline volume fraction, density and 
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nanostructure are dependent upon pyrolysis temperature and lignin feedstock choice 

[13,21]. It has been previously shown that the nanocrystallite particle size is strongly 

correlated to both Li-ion intercalation capacity and chemical activity in carbon composites 

[60,61]. These graphitic nanocomposites have success in use as high-performance anodes 

in Li-ion batteries [18,58,60]. In previous studies where lignin sourced carbons are 

included in the anode of a Li-ion half-cell battery, the battery proved to have a superior 

charge capacity, high reversible capacity, low irreversible capacity loss and high cycle life 

when charged with lithium [18,62]. 

 In previous computational studies, the energetics and nanoscale structure of both 

graphite and singular graphene planes have been extensively studied [63-66], and with the 

current interest in Li-ion alternatives to energy storage spiking and the development of 

carbon composite anode systems with comparable charge capacity, studies of carbon 

composites for use in energy storage have accelerated [67]. To aid in this discovery of new 

energy storage materials in this emerging field, Raju et al. [51] developed ReaxFF 

potentials to describe Li-ion intercalations in both perfect and defective carbon systems. 

 McNutt et al. [19,30] created several large-scale carbon composites that effectively 

modelled the lignin sourced carbon composites. A range of crystallite radii were studied to 

determine the effect of crystallite radius on ion distribution within the nanocrystallites. 

Reactive molecular dynamics (MD) simulations of these lithiated carbon composites and 

subsequent analysis through radial distribution functions (RDF) as well as energy and 

charge distributions led to defining a fundamentally new storage mechanism for Li-ions 

[19]. These simulations demonstrated the most favorable localization of Li-ions occurs in 

the interfacial regions between the nanocrystallites and the amorphous graphene fragments 

and allows Li-ions to be stored at a greater density than when intercalated into graphite 

[19]. Hydrogen is present in the interfacial region because it terminates the graphene sheets 

that compose both the nanocrystallites and the amorphous domain. The terminating 

hydrogen plays an important role in stabilizing lithium as shown by McNutt et al. [19]. 

 Hjertenæs, Nguyen and Koch [68] developed ReaxFF potentials for sodium 

interactions in both graphitic and disordered carbons. It was found that there is a high 

affinity for Na-ions to bind to under-coordinated carbons along edge planes of graphitic 

crystallites and with a large enough chemical potential, Na-ions will easily penetrate pores 

and cavities in a graphic structure until saturated [68]. 

 To better understand ion localization in complex carbon composites, we chose a 

small subsystem of McNutt’s [30] large carbon composite consisting of a single spherical 

graphitic nanocrystallite embedded in an amorphous carbon matrix with hydrogen-

terminated edges. To discover if the same binding mechanism observed in carbon 

nanocomposites containing Li-ions holds for Na-ions, the single carbon composite was 

simulated under a range of conditions. Lithium and sodium ions at high and low 
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concentrations are studied based on initial conditions either intercalated between planes of 

the nanocrystallite or, separately, inserted into the amorphous phase. We compare lithium 

and sodium-ion systems using both energetic and structural descriptors to differentiate 

between the binding locations and mechanisms for lithium and sodium. It is important to 

note that this work examines an idealized carbon composite system as a fraction of the 

anode without electrolyte interaction. It is currently unclear how oxidation from electrolyte 

decomposition would impact ion binding in these systems. 

Methods 

 The carbon composite modelled in this work was designed to emulate the 

experimentally produced carbon composite structure created from lignin by Tenhaeff et al. 

[13]. The construction of the carbon composite followed the procedure of McNutt [30]. 

The initial carbon nanocrystallite model was constructed by cutting a sphere with 

diameter14 Å from bulk AB stacked graphite, removing any singularly bonded carbons 

and terminating all edge carbons with hydrogen [19]. The nanocrystallite was then 

embedded into a matrix of amorphous carbon. The amorphous carbon was added as 

randomly oriented sheets of graphene, cut to avoid overlap with crystallites or other sheets 

in the amorphous domain, then hydrogen terminated. The system was then relaxed, which 

resulted in some shifting of the planes in the nanocrystallites and bending of the sheets in 

the amorphous domain. These plane distortions were quantified by McNutt et al. and are 

representative of the disordered nature of the lignin-based carbon composites being 

modelled [69]. 

 To compare the binding mechanisms of lithium and sodium inserted into carbon 

composites, eight simulations were performed that represent a complete 2 × 2 × 2 design 

matrix variating ion type (lithium or sodium), ion loading (high and low) and initial 

placement of ions (intercalated in the nanocrystallite or inserted in the amorphous domain). 

In the crystalline domain, the initial lithium positions correspond to favorable binding sites 

for lithium intercalated in bulk graphite. In the amorphous domain, the initial lithium 

positions were placed randomly to avoid overlap followed by minimization and 

equilibration. The ‘high’ ion loading corresponds to 22.7 mAh g−1 and the ‘low’ ion loading 

corresponds to 1.62 mAh g−1. Coin cells using lignin-based anodes have shown ion loading 

greater than the theoretical capacity of graphite (372 mAh g−1) [18]. Here, the simulations 

are limited to significantly lower ion loadings in order to clearly distinguish between 

binding in the crystalline and amorphous domains. 

 The reactive MD simulations were carried out in LAMMPS [29]. The ReaxFF 

potentials of Raju et al. [4] and Hjertenæs et al. [27] were used for the lithium and sodium 

systems respectively. The simulation cells contained 1964 atoms (136 crystallite carbon, 

1188 amorphous carbon, 626 hydrogen and 14 ions) for high loading systems and 1951 
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atoms for low loading systems (same composite but only 1 ion). Each data production 

simulation ran in a cubic simulation cell for 67 ps with a timestep of 0.25 fs in the canonical 

NVT ensemble at 298 K. 

 In order to evaluate the energetic favorability of the ions in the composite compared 

to other states, four additional simulations were performed for lithium metal, lithium 

hydride, sodium metal and sodium hydride. This second set of simulations used the same 

ReaxFF potentials and timestep. The pure metal and hydride simulations contained 128 

and 2744 atoms, respectively. The optimal lattice parameter was determined via energy 

minimization. A subsequent simulation in the NVT ensemble at 298 K was performed to 

determine the energy. Finally, the empty carbon composite was simulated with both 

ReaxFF potentials to verify carbon and hydrogen were treated the same way. 

 The average energies and standard errors reported below were based on statistical 

analysis of individual ion energies over the course of the equilibrated simulation, separated 

into 10 blocks for block-averaging. 

Results and Discussion 

Uncharged carbon composite 

 In order to verify the description of carbon and hydrogen was consistent between 

potentials, the uncharged carbon composite was simulated with both the ReaxFF potentials 

of Raju et al. [51] and Hjertenæs et al. [68]. The two potentials yield identical simulation 

results, which is consistent with the description of the procedure for extending the potential 

to sodium, in which the carbon and hydrogen interaction was not modified [68]. In Figure 

1.1, the energy distributions of carbon and hydrogen are reported. Although the system is 

composed of a crystalline domain surrounded by an amorphous matrix, the bimodal 

distribution of energy for carbon in Figure 1.1(a) does not correspond to these two phases. 

Individual distributions of the carbons in the graphitic nanocrystallite and in the graphene 

fragments of the amorphous domain both possess a similar bimodal distribution (not 

shown). Rather, the two modes reflect energy differences between carbons located in the 

interior of a graphene sheet (whether stacked as part of a nanocrystallite or not), in which 

the carbon atom is bonded to three other carbon atoms, and a carbon at the edge of a sheet, 

in which the carbon atom is bonded to two carbon atoms and one terminating hydrogen 

atom. The distribution of hydrogen energies in Figure 1.1(b) is broad and reflects the 

heterogeneity of the carbon composite. 

Charged composites 

 In the following section of work, we compare lithium and sodium in the four 

configurations, corresponding to a low and high loading in which the ions are initially 

placed in the crystalline and amorphous domains. Figure 1.2 shows a snapshot from each 
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of the simulations with the lithium ions. Figure 1.3 shows a snapshot from each of the 

simulations with the sodium ions. 

 In the simulations that contain lithium ions initially placed intercalated in the 

nanocrystallite, the atoms are observed to diffuse out from the crystallite and come to rest 

at the interface between the crystalline and amorphous domain. This behaviour can be 

observed at both high (Figure 1.2(a)) and low (Figure 1.2(c)) loadings. This movement of 

lithium ions to the interface has been previously reported [19,20]. The driving force for 

this redistribution is discussed in greater detail below. The simulations in which lithium 

ions are initially placed in the amorphous domain conclude with lithium remaining in the 

amorphous domain, although, in the high loading case, some ions migrate to the interface 

with the crystallite. 
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Figure 1.1: Distributions of individual atomic energies for (a) carbon and (b) hydrogen in 

the uncharged system. 
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Figure 1.2: Snapshots of the carbon composite charged with lithium ions for (a) high 

loading in the crystalline domain, (b) high loading in the amorphous domain, (c) low 

loading in the crystalline domain and (d) low loading in the amorphous domain. Colour 

code: Carbon in the graphitic nanocrystallites is gray. Carbon in the amorphous domain is 

transparent blue. Hydrogen are small white points. Lithium ions are yellow. 
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Figure 1.3: Snapshots of the carbon composite charged with sodium ions for (a) high 

loading in the crystalline domain, (b) high loading in the amorphous domain, (c) low 

loading in the crystalline domain and (d) low loading in the amorphous domain. Colour 

code:Carbon in the graphitic nanocrystallites is gray. Carbon in the amorphous domain is 

transparent blue. Hydrogen are small white points. Sodium ions are orange.  
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The distribution of ion binding energies for the four lithium-containing composites is 

shown in Figure 1.4(a). It is immediately apparent that there exists a broad distribution of 

binding energies, again reflecting the heterogeneity at the atomic scale of the carbon 

composite. If the binding mechanism were due to physisorption, one would expect that the 

low loading systems would display more favorable binding energies as the first ions in 

would occupy the most favorable binding sites and subsequent ions would be forced to 

occupy less energetically favorable sites. However, lithium ions in these systems do not 

obey this behavior. It is clear in the distributions in Figure 1.4(a) that the high loading 

systems push the distribution into stronger binding. The average values reported in Figure 

1.5(a) confirm this observation. For both crystalline and amorphous initial positions, the 

high loading cases have more favorable binding energies compared to the low loading 

cases. Furthermore, for both the high and low loading case, the simulations that began with 

the ions in the amorphous phase are more strongly bound compared to those at the same 

loading with ions initially in the crystalline phase. McNutt et al. observed this behavior and 

attributed it to two factors: aggregation of lithium correlates with stronger binding energies 

and association of lithium with terminating hydrogen [30]. Because lithium is better able 

to aggregate at high loadings, the first factor explains why the binding energy becomes 

more favorable as the loading increases. Since there is no hydrogen in the interior of the 

nanocrystallite, the second factor explains why lithium migrates from the intercalated 

initial positions and moves into the interface between the amorphous and crystalline 

domains. Therefore, lithium capacity is strongly dependent on this interfacial area. It has 

been shown that composite anodes with small nanocrystallites are capable of lithium 

storage capacity in excess of the theoretical limits of 372 mAh/g of bulk graphite [18]. 

 It is worth mentioning briefly that these relatively short MD simulations cannot 

capture the complete relaxation of the system. If the simulation were allowed to proceed 

for an infinitely long period of time, the same average thermodynamic properties should 

be obtained regardless of whether ions were initially placed in the crystalline or amorphous 

domains. However, two advantages of small systems are (i) that the simulations can be run 

sufficiently long to observe some diffusive processes and (ii) the impact of single atoms 

can be clearly followed. For example, in Figure 1.6, the exit of a single lithium atom from 

the crystallite can be observed. A corresponding change in the potential energy with the 

ion departure captures the relationship between the phase of the ion and its energetic state. 

 The simulations in which the carbon composites are charged with sodium display 

a different behavior than the lithium charged systems. As can be observed in the snapshots 

of Figure 1.3(a,c), sodium ions that are initially placed in the carbon composite remain 

intercalated with no net ion movement. In Figure 1.3(b,d), for sodium ions initially placed 

in the amorphous domain we observe intermediate mobility while remaining in the 

amorphous domain.  
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 The explanation for the difference in the behavior of the lithium and sodium ions 

can be traced to the energetics. In Figure 1.4(b), the distributions of ion binding energies 

for the four sodium-containing composites are shown. The distribution again shifts to more 

favorable binding energies when loading is increased for sodium ions in either the 

crystalline or amorphous domain. This supports favorable ion-ion interactions. However, 

at both loading levels, the crystalline phase is significantly favored over the amorphous 

phase, which is in contrast to the behavior for lithium. The average sodium ion binding 

energies reported in Figure 1.5(b) bear out this observation: sodium ions prefer to reside in 

the crystalline phase. In these simulations, the sheet separation relaxes to energetically 

favorable distances. Sheet separation with fully intercalated sodium ions is 3.67 Å while 

sheet separations for other highly loaded systems are 3.20 ± 0.07 Å. There is no statistical 

difference between the two lithium cases because the initially intercalated lithium migrated 

out of the crystallite. The retention of sodium in the crystallite phase explains the increase 

in sheet separation. Since the crystallites are small and planar shifts occur often in 

disordered carbon composites, we do not believe that the sheet separation traps the sodium 

or otherwise influences sodium ions remaining intercalated. 

 Again, it is worth noting that these simulations cannot capture dynamic phenomena, 

which occur over timescales longer than the duration of the simulation. While the ion 

energies reveal that the crystalline phase is more stable, it remains unclear if the sodium 

ions initially placed in the amorphous domain would be able to intercalate within the 

crystallite. In bulk graphite systems, the intercalation of sodium is not observed unless Na-

ions are solvated [70]. The barrier to intercalating sodium in bulk graphite is relatively high 

as stated by Okamoto et al. [54], due to a higher redox potential of Na/Na+, which would 

result in precipitation of Na metal rather than intercalation of the ion. It has been shown 

that graphitic nanocrystallites possess much greater flexibility and disorder than bulk 

graphite [69]. Thus, the feasibility of intercalation in these systems remains unknown. 
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Figure 1.4: Distributions of ion binding energies in the simulated carbon composites 

charged with (a) lithium and (b) sodium ions. 
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Figure 1.5: Average values and standard errors of the ion binding energies in the simulated 

carbon composites charged with (a) lithium and (b) sodium ions. 

 

 
Figure 1.6: Potential energy as a function of time for the low loading (single ion) lithium-

charged composite in which the lithium ion is initially placed in the crystalline domain. 

During this simulation, the ion can be observed to leave the crystallite resulting in a 

significantly more favourable binding energy. 
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Metal and metal hydrides  

 The same ReaxFF potentials used to simulate lithium and sodium ions in the 

charged carbon composite can also be used to simulate the metal hydrides. Lithium and 

sodium metals were also simulated to provide reference values for these ReaxFF 

interaction potentials. In Table 1.1, the minimized (0 K) lattice parameters from ReaxFF 

simulations experimental literature, and the energy per ion at 300 K are reported. The 

experimental lattice parameters for lithium and sodium metal were measured at 20 K while 

hydride systems were measured at 300 K [71,72]. Lattice parameter values for lithium 

systems are in good agreement with the literature while lattice parameters for sodium 

systems were underestimated by 3–5%. 

 The energy per metal atom or metal ion is relevant because they provide useful 

insight into the thermodynamic driving force for the distribution of lithium and sodium in 

the carbon composite. In the case of lithium, the metal hydride is the low energy state. 

Compared with the average ion energies in Figure 1.5(a), the hydride is more stable than 

the lithium ion in either the crystalline or amorphous domain. Using a pattern recognition 

approach, McNutt et al. showed that the archetypal structure for the most strongly bound 

lithium in the carbon forms a pattern as shown in Figure 1.7(a) [30]. In this figure, there is 

a lithium ion at the center of a cube with lithium nuclear density (green clouds) at the 

corners of the cube and hydrogen nuclear density (white clouds) in the faces of the cube. 

To be clear, nowhere is a structure like this observed because the hydrogen atoms are only 

present to terminate graphene sheets in either the crystalline or amorphous domain. The 

hydrogen atoms are tethered in place to a disordered matrix. However, averaging over all 

tightly bound lithium ions revealed this average structure. In retrospect, this is similar to 

the structure of the lithium hydride, which possesses an fcc structure of the NaCl type, as 

shown in Figure 1.7(b). However, the observed pattern found in the simulations differs by 

a rotation of 45° of the central four hydrogen locations. Thus, the extreme energetic 

favorability of the lithium hydride provides a thermodynamic driving force to place lithium 

at the interface between the crystalline and amorphous domains, where hydrogen is present 

rather than intercalated in the interior of a crystallite. This argument also supports the 

notion of lithium aggregation resulting in more stable binding energies with increased 

loading. McNutt et al. pointed out that the lithium storage mechanism in these carbon 

composites is therefore a different mechanism than storage in graphite. As such, lithium 

binding in carbon is not limited to the theoretical capacity of graphite and can explain the 

observed fact of storage above the limit of 372 mAh g−1 [18]. 

 An analogous comparison of the sodium metal and metal hydride energies in Table 

1.1 with the ion energies in the carbon composite in Figure 1.5(b) for the sodium case 

reveals that sodium is energetically most stable in the carbon composite. Therefore, we do 

not observe the migration of the sodium to the hydrogen-rich interface. 
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 The ReaxFF potential allows for charge redistribution during the simulation. In 

Table 1.2, the average lithium, sodium and hydrogen charges from simulations in the 

carbon composites and hydride phases are reported. These charges shed light on an 

important difference between the hydrides and the aggregates in the carbon composites. In 

the hydride, because hydrogen is more electronegative than either lithium or sodium, the 

hydrogen takes on a negative charge. However, in the composites, carbon is more 

electronegative than any other element in the simulation. Thus, the carbon takes on a 

negative charge and the lithium/sodium and hydrogen take on positive charges. This 

redistribution of charge does not negate the argument that the driving force of the hydride 

stability can explain the distributions of lithium and sodium in the composite. However, it 

does indicate that the carbon to which the hydrogen atoms are tethered plays a non-

negligible role in the charge distribution.  

 In Figure 1.8, radial distribution functions (RDFs) describing the lithium–lithium 

and sodium–sodium distribution in the composites with high ion loading are shown. The 

RDF describes the local atomic structure and is proportional to the conditional probability 

of finding another ion at a given separation given that an ion sits at the origin. The noise in 

the RDFs is a consequence of the small system size. Larger simulations can provide much 

smoother RDFs out to longer separations. In the simulations with initial conditions in the 

crystalline domain, there is more structure in the sodium ions than in the lithium ions since 

they remain intercalated and their spacing is dictated by the graphitic structure. In the 

simulation with ions initially in the amorphous domain, we again observe more structure 

with the sodium ions. This is confirmed by the integration of the RDFs in Figure 1.8. At r 

distance 4.5 Å, the coordination numbers of sodium and lithium are 3.50 and 1.62 for initial 

placement in the crystallite, and 0.42 and 0.13 for sodium and lithium initially in the 

amorphous phase. The elucidation of the nature of this structure requires much larger scale 

simulations. Whether this structure is connected to sodium metal precipitation remains an 

open question. 
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Figure 1.7: (a) Nuclear density distributions of lithium (green) and hydrogen (white) about 

a central lithium ion for tightly bound lithium in lignin-based carbon composite [30] (b) 

Lithium hydride structure shown for comparison. 
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Table 1.1: Lattice parameters and ion or atom energy for lithium and sodium in the metal 

and metal hydride phases. 

System (crystal structure) 
Lattice parameter 

(Å) ReaxFF 

Lattice parameter 

(Å) Experimental 

Ion/atom energy 

(kcal/mole) 

Lithium metal (bcc) 3.429 3.478 [33] -36.62 +/- 0.01 

Lithium hydride  

(fcc-NaCl type) 
4.065 4.084 [32] -38.65 +/- 0.10 

Sodium metal (bcc) 4.099 4.221 [33] -21.19 +/- 0.01 

Sodium hydride  

(fcc-NaCl type) 
4.636 4.890 [32] -33.57 +/- 0.01 

 

 

 

 

Table 1.2: Lithium, sodium and hydrogen charges from simulations in the carbon 

composites and hydride phases. 

Material Ion Loading Phase 
Li/Na charge 

(e) 
H charge (e) 

composite lithium high amorphous 0.29 0.12 

composite lithium high crystalline 0.29 0.12 

composite sodium high amorphous 0.37 0.12 

composite sodium high crystalline 0.4 0.12 

hydride lithium N.A. N.A. 0.19 -0.19 

hydride sodium N.A. N.A. 0.12 -0.12 
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Figure 1.8: Radial distributions functions for (a) lithium–lithium and (b) sodium–sodium 

in the high loading simulations of the carbon composite initialized with ions in either the 

crystalline or amorphous domains. 
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Conclusions  

Reactive molecular dynamics simulations were performed for small systems of lithium and 

sodium ions in a model of lignin-based carbon composites. A classical simulation is an 

appropriate technique for this study because of the number of atoms required to model even 

a single graphitic nanocrystallite distributed in the amorphous carbon domain. In lithiated 

systems, these simulations clearly demonstrate a preference for binding at the interface of 

the crystalline and amorphous domains, where terminating hydrogen is present. 

Simulations of the metal hydride reveal that the most tightly bound lithium ions are moving 

towards a lithium hydride-like structure but are prevented from realizing this structure by 

the fact that the hydrogen is tethered to the relatively immobile carbon matrix. In the case 

of sodium, a very different result is observed. The energetically most stable state is the 

intercalated state although sodium ions in the amorphous phase exhibit binding energy that 

is more favorable than either the metal or the metal hydride. Large-scale simulations of the 

sodiated carbon composites with varying structures dictated by the processing conditions 

used to generate the composite are under way. 
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CHAPTER II 

 

Lithium and Sodium Ion Binding Mechanisms and Diffusion Rates in 

Lignin-Based Hard Carbon Models 
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Abstract 

Hard carbons are the primary candidate for the anode of next generation sodium-ion 

batteries for large-scale energy storage as they are sustainable and can possess high charge 

capacity and long cycle life. These properties along with diffusion rates and ion storage 

mechanisms are highly dependent on nanostructure. This work uses reactive molecular 

dynamics simulations to examine lithium and sodium ion storage mechanisms and 

diffusion in lignin-based hard carbon model systems with varying nanostructure.  It was 

found that sodium will preferentially localize on the surface of curved graphene fragments 

while lithium will preferentially bind to the hydrogen dense interfaces of crystalline and 

amorphous carbon domains. The ion storage mechanisms are explained through ion charge 

and energy distributions in coordination with snapshots of the simulated systems. It was 

also revealed that hard carbons with small crystalline volume fractions and moderately 

sized sheets of curved graphene will yield the highest sodium-ion diffusion rates at ~10-7 

cm2/s. Self-diffusion coefficients were determined by mean square displacement of ions in 

the models with extension through confined random walk theory.  
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Introduction 

Efficient, sustainable, and low-cost energy storage is a global necessity. For the past 30 

years, Li-ion batteries have been the gold standard and workhorse of energy storage needs 

for mobile electronics, electric vehicles, medical devices, etc.; however, lithium is not an 

infinite resource and its storage in earth’s crust is  localized to a few countries. Since this 

is the case, researchers have been exploring options for the replacement of lithium as the 

charge carrying ion in energy storage devices with sodium as one of the most promising 

options as it is low-cost, has similar insertion chemistry, is widely globally available, and 

can be used in cost and weight prohibitive situations like large-scale grid support and 

stationary energy storage for renewable energy sources [73-75]. 

One of the primary challenges of replacing lithium with sodium in current energy storage 

devices deals with the inability for sodium to intercalate within graphite and form binary 

graphite intercalation compounds or b-GICs with any reasonable charge density [67,76]. It 

has been shown previously that sodium will only form NaC64 when inserted into graphite 

[77]. This has led researchers to exploring hard carbons as anode materials. Depending on 

nanostructure, hard carbons have the potential to possess a greater charge density, higher 

resistance to degradation from electrolyte interactions, low working voltage, longer cycle 

life, and a higher degree of sustainability when compared to the current commercial flake-

graphite and spherical graphite (SPG) anodes [67,78,79].  

Recent research has suggested lignin as a sustainable and domestic source for 

nanostructured hard carbons with far reaching applications in energy storage [13,18,58,80]. 

Lignin is a highly abundant and renewable resource that possesses high carbon content and 

an amorphous, cross-linked three-dimensional structure of aromatic polymers [81,82]. 

Defining a complete processing-structure-property-performance (PSPP) relationship 

between lignin and carbonaceous products is difficult since lignin is derived from woody 

plants and grasses and the relative fractions of the constituent organic compounds are 

highly variable by feedstock which in turn influences the nanostructures and properties of 

the final carbon composites [21]. Research into the PSPP relationships of lignin reveals 

that pyrolizing and reducing lignin produces hard carbon composites composed of an 

amorphous matrix with embedded crystalline domains. The crystalline volume fraction 

(CVF), crystallite size, and crystallite form (spheres, fullerenes, onion-fullerenes, 

nanotubes, multiwalled nanotubes, graphite, etc.) of lignin based hard carbons can be tuned 

via the choice of lignin feedstock, processing, and carbonization temperature [21,62,83]. 

The work of García-Negrón et al. demonstrates that pyrolizing, reducing at 1050 °C, and 

ball milling of kraft softwood lignin produces a carbon composite material composed of 

spherical nanocrystallites embedded in an amorphous graphene matrix which, when 

processed into an anode and tested in a Li-ion coin cell battery, possesses a specific 

capacity of 444 mAh/g with 98% coulombic efficiency over extended galvanostatic cycles 
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[18]. This shows that lignin-based carbon composites (LBCCs) can achieve at least a 20% 

increase in specific capacity over traditional graphitic anodes (372 mAh/g) and can be 

considered as a high efficiency, sustainable, and low-cost option for battery electrodes.  

Present challenges facing researchers with hard carbon electrodes lie in understanding the 

ion storage mechanisms, preferential ion localization, volume change (swelling) during 

(de)sodiation and (de)lithiation, as well as the optimal nanostructure-porosity-density-CVF 

combination to achieve the highest performance [67,84]. To investigate solutions to some 

of these challenges for LBCCs, McNutt et al. created large scale models of the LBCCs 

with varying crystallite sizes, crystalline volume fractions, and densities to emulate the 

LBCCs synthesized at different reduction temperatures from hardwood lignin [30]. 

Molecular dynamic simulations of  the LBCC models charged with lithium revealed that 

the carbon-edge-terminating hydrogen play a critical role in the ion storage mechanism for 

LBCCs as Li-ions preferentially localize in the hydrogen dense interfacial region between 

crystallites and amorphous graphene fragments and allows Li-ions to be stored at a greater 

density than when intercalated between planes of graphite as LiC6 [19,20]. McNutt et al. 

also explains that as crystallite size decreases, interfacial volume and hydrogen content 

increases leading to larger Li-ion storage capacity [20]. To further explain the ion storage 

mechanism in LBCCs, Kizzire et al. used a small subsystem of the McNutt et al. 

composites that consisted of a single nanocrystallite embedded in a matrix of amorphous 

graphene fragments and simulated with lithium and sodium loading configurations using 

ReaxFF potentials [85]. Reactive potentials consume more computational resources than 

non-reactive potentials; however, they allow modelling of the formation and dissociation 

of chemical bonds and include both the coulombic interactions and van der Waals forces 

necessary for accurate modelling of charged graphitic anodes [51,52,85,86]. The ReaxFF 

potentials were deemed necessary as accurately capturing the charge transfer between ions 

and host structure is critical to understanding ion migration and preferential ion localization 

[85]. Kizzire et al. revealed that sodium, if not initially placed in an intercalated site, will 

preferentially localize in the amorphous graphene region whereas lithium will migrate from 

both intercalated and amorphous graphene initial positions to the hydrogen dense 

interfacial regions and attempt to form a lithium hydride like structure but are incapable as 

the hydrogen are tethered to the relatively immobile carbon matrix [85]. Results from this 

previous study prompted interest into investigating lithium and sodium in large-scale 

LBCC models with ReaxFF potentials.  

For application purposes, knowledge of diffusion rates and ion migration  are critical to 

understanding the performance of an anode material. The self-diffusion coefficient is 

obtained by using the Einstein relation and calculating a single-particle autocorrelation 

function, the mean square displacement (MSD). The Einstein relation includes the 

condition that the MSD is linearly proportional to observation time, which occurs in the 
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infinite-time limit. Simulating confined systems that operate with short time scales (1 ns) 

often do not meet this condition, and thus, application of the Einstein relation is not valid 

[87]. A robust solution to this issue is shown by Calvo-Muñoz et al. where the MSD of 

MD simulations can be extended to reach the infinite-time limit by fitting the MSD of a 

confined random walk (CRW) simulation to the MSD from the MD simulation [87]. The 

confined random walk theory uses two physical parameters, cage radius and cage-to-cage 

hopping probability. These parameters represent the physical system’s dimensions and the 

activation barrier for diffusion respectively, ensuring an accurate result for the self-

diffusion coefficient. The work below uses the same CRW simulation code as Calvo-

Muñoz et al. to obtain self-diffusion coefficients for lithium and sodium in the LBCC 

anodes.  

This work builds upon the previous work of McNutt et al. and Kizzire et al. and investigates 

lithium and sodium in large-scale LBCC models with reactive potentials to determine 

preferential localization, composite swelling, mesoscale interactions, and lithium/sodium 

diffusion rates.  We accomplish this by analyzing the resulting radial distribution functions 

(RDFs), charge and energy distributions, mean square displacement of lithium and sodium 

ions extended by confined random walk theory, and snapshots of charged composites. This 

work is propelled by interest in using LBCCs as sustainable, domestic, and low-cost 

electrodes for sodium and lithium-ion batteries. In this study, an array of lithium and 

sodium loading configurations in three carbon composites of 90, 50, and 10% crystalline 

volume fraction were designed to emulate the hardwood-lignin based carbon composites 

synthesized by Tenhaeff et al. [13].  

 

Methods 

The hard carbon models in this work were designed by McNutt et al. to emulate the 

nanostructure of hardwood lignin pyrolyzed and reduced at 1000, 1500, and 2000 °C as 

synthesized and characterized by Tenhaeff et al. [13,30]. The hard carbon models possess 

spherical AB stacked graphite crystallites with radii of 5, 7, and 17 Å embedded in an 

amorphous graphene fragment matrix at 90, 50, and 10% crystalline volume fractions, 

respectively. All crystalline and amorphous edge carbons were terminated with hydrogen. 

Relaxation of the model resulted in slight bending of the graphene fragments in the 

amorphous domain and shifts in crystalline planes such that the equilibrium interplanar 

spacing became 3.4 Å, representative of the disorder in the real LBCC system and verified 

as accurate by comparison of the simulated and experimental RDFs [30].  

A total of nine reactive simulations (three without ion loading, six with ion loading) were 

performed using LAMMPS and with ReaxFF potentials developed by Hjertenæs et al. and 

Raju et al. for the sodiated and lithiated systems respectively [51,68,88]. Previous works 
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have verified that the two reactive potentials are the same in their handling of carbon-

carbon and carbon-hydrogen interactions, and thus, the Raju et al. potential was used for 

the systems without ions [85]. The nine systems were relaxed at 1 atm in the NPT ensemble 

at 298 K with 0.25 fs timestep until potential energy was equilibrated. The six systems with 

lithium/sodium loading were then simulated for 1 ns in the NVT ensemble at 298 K with 

0.25 fs timestep. The trajectory files were saved in both wrapped and unwrapped 

configurations for the RDF and MSD analysis, respectively and the volume of each system 

was recorded for swelling calculations. The charge densities for Na-ion systems were set 

between 100-125 mAh/g, consistent with values used in previous work for these composite 

systems [19]. The differing charge density between sodium and lithium systems is due to 

the difference in ion mass, as all 50% CVF systems have the same number of ions.  

Ideally, the results of a simulation are independent of initial ion placement when the 

simulation is run a sufficiently long time to drive the system to thermodynamic 

equilibrium. However, the  finite simulation time and kinetic barriers result in systems with 

distinct initial conditions, such as ions initially placed in the graphitic versus amorphous 

domains, not arriving at the same state. This was investigated by McNutt for lithium [20]. 

Since the energy was lower for the amorphous system, he judged that it was the more 

energetically probable state. Based on this result, in the simulation matrix implemented in 

this present work, some of the composites are investigated with initial placement of ions in 

both the crystalline and amorphous domains, while others are investigated exclusively with 

ions initially placed in the amorphous domain. 

The 90 and 10% CVF systems were simulated uncharged and with sodium initialized in 

the amorphous carbon domain. The 50% CVF system was simulated uncharged, with 

sodium and lithium initialized in intercalated positions within the crystalline carbon 

domain, and with sodium and lithium initialized in the amorphous carbon domain. The 

90% CVF system contained 155,964 atoms (88,447 crystalline carbon, 8,835 amorphous 

carbon, 53,668 hydrogen, and 5,014 sodium). The 50% CVF system contained 113,160 

atoms (49,232 crystalline carbon, 26,563 amorphous carbon, 32,353 hydrogen, and 5,012 

lithium/sodium). The 10% CVF system contained 689,788 atoms (423,744 crystalline 

carbon, 131,915 amorphous carbon, 102,814 hydrogen, and 31,278 sodium). The large 

number of atoms in each system are necessary to capture both the mesoscale structure of 

LBCC anodes and an accurate crystalline volume fraction with appropriately sized 

crystallites. These model structures have been extensively compared to synthesized carbon 

composites [30]. A full table of system details can be found in Table 2.1.  
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Table 2.1: Collection of simulated systems with relevant parameters. 
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Results and Discussion  

Ion Charge and Binding Energy Analysis 

In the following section we compare the energy and charge distributions for the LBCC 

models with lithium and sodium loading configurations. Figure 2.1 shows the binding 

energy and charge distributions for lithium and sodium ions in the intercalated and 

amorphous initial loading configurations for the 50% CVF system. Examining the Li-ion 

binding energy and charge distributions in Figure 2.1, we can see that after simulating for 

1 ns, the respective distributions are nearly identical for both the amorphous and crystalline 

intercalated initial loading configurations. This result informs us that the Li-ions will 

migrate to the hydrogen dense interfacial regions irrelevant of the initial position, and 

denotes that interfacial regions are the most preferable binding site for Li-ions in these 

LBCC hard carbon anodes, which is in good agreement with previous works [20,85].  

Examining the Na-ion binding energy and charge distributions in Figure 2.1 for the 50% 

CVF system simulated for 1 ns, we can see a single mode distribution for Na-ions 

intercalated in the crystallites and a distinct bimodal distribution for Na-ions initialized in 

the amorphous domain. Through searching ions in snapshots of the simulation frames and 

identifying their charges and binding energies, we found that Na-ions sandwiched between 

neighboring planes of amorphous graphene fragments had similar binding energies and 

charges to those Na-ions that were intercalated within the crystalline domain. These 

“doubly bound” Na-ions had deeper binding energies and higher charges compared to the 

Na-ions that adsorbed onto the planar surfaces of amorphous graphene fragments and 

crystallites. These distributions also show that the hydrogen in the system do not exhibit 

the same driving force effect on Na-ions to pull them into interfacial regions as they do 

with the Li-ions.  

Figure 2.2(a-b) shows the binding energy and charge distributions after 1 ns of simulation 

for Na-ions initialized in the amorphous graphene domain for the 10, 50, and 90% CVF 

systems. Inspection of Figure 2.2(a-b) shows a large percentage of Na-ions having deeper 

binding energy and greater charge in the 90% CVF system compared to the 10 and 50% 

CVF systems. Na-ions with binding energies that average -37 kcal/mol in the 90% CVF 

system correlates to Na-ions that are sandwiched between adjacent graphene planes or Na-

ions at intercalation positions at the edge of nanocrystallites with high amounts of disorder 

in interplanar spacing and angles. Na-ions with binding energies near -20 kcal/mol are 

found adsorbed onto a graphene surface or a basal plane of a nanocrystallite. The greater 

percentage of Na-ions with deeper binding energy in the 90% CVF system results from the 

high fraction of graphene planes directly adjacent to crystallites or each other which 

decreases the amount of adsorption sites. The lower crystalline volume fraction systems 

allow a more even distribution between these two Na-ion localizations.  
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Figure 2.1: Binding energy and charge distributions for lithium (a-b) and sodium (c-d) in 

the 50% crystalline volume fraction system for ions initialized in the amorphous and 

crystalline domains.  
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Figure 2.2: (a-b) Binding energy and charge distribution for sodium initialized in the 

amorphous domain for the 10, 50, and 90% CVF systems. (c) Front facing view of the 

sodiated 10% CVF system with crystalline carbon (red), amorphous graphene fragments 

(blue), sodium (white), and hydrogen (removed for clarity). (d) An enlarged section of the 

10% CVF system with sodium color coded to represent charge and binding location. Na-

ions bound to the surface of graphene and crystallites (green), Na-ions intercalated between 

neighboring sheets of graphene (light blue), Na-ions intercalated within edges of 

nanocrystallites (purple), and Na-ions bound to other Na-ions in a semi-metallic like state 

(orange).  
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Interestingly, the charge distribution for Na-ions in the 10% system show a third state of 

Na-ion charge, centered at 0.06 e, not present in other systems. To identify the source of 

this third state of Na-ion charge we look to the Figure 2.2(d) which presents a zoomed 

section of Figure 2.2(c) with Na-ions color coded to correspond to charge value. Light blue 

and purple represent doubly bound Na-ions in the amorphous (blue) and crystalline (red) 

domains respectively with an average charge value of 0.36 e. Light green represents the 

Na-ions adsorbed (or singly bound) to the surface of an amorphous or crystalline carbon 

plane with an average charge value of 0.225 e while orange represents the third localization 

only found in the 10% CVF system with an average charge value of 0.06 e and low average 

binding energy of 14 kcal/mol. These orange Na-ions are bound to each other and the low 

charge represents a quasi-metallic like state. Higher loadings of Na-ions in these 

moderately porous composites would create more Na-ion clustering within the pores, 

similar to the orange-colored ions in Figure 2.2(d). Na-ion clustering inside pores has been 

reported by others in the literature as stable configurations that have been shown to be 

highly reversible and enable charge densities near 300 mAh/g in hard carbon anodes 

[84,89].  

Through examination of Figure 2.2(a, d) we can see that most Na-ions in the 10% CVF 

system are adsorbed onto the face of a graphene fragment.  Further, even though the sodium 

were initialized randomly throughout the composite, there are obvious regions in the 

amorphous graphene domain with higher and lower concentrations of sodium, suggesting 

that in these low CVF composite systems, sodium will preferentially aggregate.  

While the binding energy distributions in Figure 2.1 show that intercalation positions are 

more energetically favorable for sodium, the barrier for Na-ion intercalation is very high, 

as reported in the literature [47,67,76]. This is true except for the case where nanocrystallite 

planes have shifted, and Na-ions intercalate along the crystallite edges where interplanar 

distance is larger than 3.6 Å, as seen with the Na-ions colored purple in Figure 2.2(d). 

Analysis of the energy and charge distributions in conjunction with the snapshots suggest 

that in application, sodium insertion into LBCC anodes would result in Na-ions 

preferentially adsorbing to the surface of amorphous graphene fragments and the surface 

planes of nanocrystallites with a small fraction intercalating along the edges of 

nanocrystallites where local interplanar spacing is above 3.6 Å due to inherent disorder in 

the system. Inspection of Figure 2.2(b,d) implies that after the preferential filling of 

adsorption and intercalation storage sites, sodium will fill porous regions in the composite. 

Qualitatively speaking, from these results it is reasonable that lower crystalline volume 

fraction combined with smaller nanocrystallites and moderate porosity would allow the 

highest energy density for sodiated LBCC anodes. For specific application where power 

density or fast charging is paramount, interconnectivity of pores would allow more rapid 

movement of sodium through the LBCC anode. Recent DFT studies of alkali metals in 
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hard carbon anodes by Olssen et al. substantiate this claim with findings which state that 

large, curved graphene sheets as part of pore structure aids in rapid ion diffusion and the 

weaker binding energies of ion to graphene contribute to higher cycling performance [77]. 

It should be mentioned that Olssen et al. defines a pore structure as a space of at least 6.5 

Å between planes of graphene [77]. For the context of this work, pores should be defined 

as an open space between graphene planes or nanocrystallites with spacing from 6.5 Å to 

multiple nanometers.  

For glucose based hard carbons, Au et al.  found that pores were highly interconnected at 

carbonization temperatures of 1000 °C and while pores were larger for carbonization at 

2000 °C, the increasing size of the graphitic regions closed off the interconnected pore 

structures leading to isolated pores [90]. It is reasonable that porosity in LBCCs would 

progress in a similar manner, suggesting lower reduction temperatures will create 

interconnected pores yielding high sodium mobility throughout the composite while 

slightly higher reduction temperatures will yield larger pores allowing a greater sodium 

storage capacity through the adsorption-intercalation-pore filling sodiation scheme.  

Anode Swelling 

In application, knowledge of the volume change that occurs in an anode during ion 

(de)loading is vitally important as excessive volume change can damage battery structure 

leading to failure with safety concerns. In general, the volume change between empty and 

fully intercalated graphitic anodes in commercial Li-ion batteries is ≤ 10 - 14% [91,92]. 

The swelling for each of the LBCC simulated systems can be found in Table 2.1. We can 

see that lithium initialized in the amorphous domain produces the least amount of swelling, 

which is to be expected since lithium preferentially localize in the interfacial regions, 

bound to hydrogen at a greater density than when intercalated in graphite [19,20,85]. 

LBCCs loaded with sodium exhibit roughly 50% greater swelling than composites loaded 

with lithium. This is also expected as sodium has a greater ionic radius and does not exhibit 

the same high-density binding with hydrogen as lithium. We note that these swelling values 

were obtained from simulating at atmospheric pressure and anode structure could 

isotropically expand, whereas in application, the anode structure is constrained within the 

battery housing. Additionally, the Li-ion charge density in these simulated systems is 

approximately one third that of fully Li-intercalated graphite since the charge density was 

chosen to correspond to charge density in previous works as stated in the methods section. 

Reporting of these swelling values are meant to provide reference for future experimental 

endeavors in the creation and characterization of Li and Na-ion batteries with LBCC 

anodes.  
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Local Structure Analysis 

In Figure 2.3(a-d) the ion-ion and ion-hydrogen radial distribution functions are shown for 

the 50% CVF system with amorphous and crystalline initial loading states. The Li-Li and 

Li-H RDFs found in Figure 3(a-b) are highly similar as both initial loading conditions result 

in Li-ions migrating to the  hydrogen dense interfacial region as can be seen in the 

simulation cell slices in Figure 2.4(a-b). One would expect there to be more long-range 

structure in the Li-H PDF due to the Li-ions affinity for bonding to the hydrogen; however, 

since the hydrogen are essentially tethered to the relatively immobile carbon, no long-range 

Li-H structure can exist. The increased order found in the Na-H PDF for Na-ions shown in 

Figure 2.3(d) is only due to the favorable energy state they find when situated in the middle 

of the carbon rings on the surface of graphene and in intercalation positions. The dip 

occurring in the Na-Na PDF for intercalated Na-ions in Figure 2.3(c) near 9 Å denotes the 

average distance of a Na-ion to the interfacial region where no ions are present, and the 

subsequent rise near 11 Å is the average distance between Na-ions found between separate 

nanocrystallites as seen in Figure 2.4(d).  

 

The Na-ion component RDFs for the various composites can be seen in Figure 2.5(a-d) 

along with visual representations of the ion-atom pairs that constitute each peak. The most 

notable among these RDFs is Figure 2.5(a) where the increased intensity in Na-Na pairs 

for the 10% CVF system denotes a greater local density of Na-ions suggesting an increased 

amount of agglomeration, as can be seen in Figure 2.6(a). Examination of Figure 2.5(a) 

and Figure 2.6(a-c) reveals an inverse relationship between crystalline volume fraction and 

local Na-ion density, with low crystalline volume fraction and moderate porosity 

displaying the highest degree of Na-ion agglomeration.  
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Figure 2.3: Component radial distribution functions for ions initialized in the amorphous 

graphene and crystalline intercalation domains for the 50% CVF system. (a) Li-Li PDF, 

(b) Li-H PDF, (c) Na-Na PDF, and (d) Na-H PDF.  
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Figure 2.4: Snapshot slices of the 50% CVF systems after simulation for 1 ns with lithium 

(yellow), sodium (red), crystalline carbon (grey), amorphous carbon (blue), and hydrogen 

(removed for clarity) (a) lithium initialized within the amorphous domain, (b) lithium 

initialized as intercalated within the crystalline domains, (c) sodium initialized within the 

amorphous domain, (d) sodium initialized as intercalated within the crystalline domains.  
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Figure 2.5: Na-atom component radial distribution functions for each of the amorphous 

sodiated LDCC systems with corresponding snapshots of the general Na-atom pairs 

representing each peak in the RDFs. (a) Na-Na RDFs, (b) Na-H RDFs, (c) Na-amorphous 

graphene RDFs, (d) Na-crystalline carbon RDFs.  

 

 

 

 
Figure 2.6: Snapshot slices of LDCC systems with sodium initialized in the amorphous 

domain for (a) 10% CVF, (b) 50% CVF, (c) 90% CVF.  
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Ion Diffusion 

To calculate the self-diffusion coefficients for lithium and sodium in the LBCC anodes, we 

recorded the unwrapped coordinates of ions during simulations and calculated the mean 

square displacement (MSD) of ions through the composites. The MD generated MSDs 

were then fit with the confined random walk (CRW) simulation at room temperature and 

extended to 100 ns. The cage radius and cage-to-cage hopping probability reported in Table 

2.2 represent a characteristic length scale of confinement and a probability proportional to 

the activation barrier to ion diffusion respectively [87]. Where the cage radius is less than 

the diameter of an atom, this describes the relative volume explored by the point at the 

center of the ion. The exponent value details the linear proportionality of MSD to 

observation time, which is required by the Einstein relation. Table 2.2 reports the MSD 

values of MD simulation alone and with extension to the long-time limit (represented with 

an exponent value near 1.0) with CRW theory. The MSD from MD simulation are plotted 

with their corresponding CRW extensions up to 1 ns in Figure 2.7. We note that the CRW 

were simulated out to 100 ns but plotted to 1 ns for clarity in comparing with the MD 

simulations. The MSD data from MD simulation are plotted to 0.5 ns because auto 

correlation functions become noisy near the end since there is a decreasing amount of data 

in each subsequent point. Likewise, the calculations of diffusion coefficients from MD 

simulation only used data up to 0.5 ns. The self-diffusion coefficients were calculated using 

mean square displacement with extension through confined random walk theory to reach 

the long-time limit required by the Einstein relation. 

 

We find the CRW values for the self-diffusion coefficients for lithium in the 50% CVF 

system and sodium in the 10% CVF system are on par with the experimentally found and 

ab initio calculated diffusion rate of lithium in pristine graphite in the planar direction, 4.4 

x 10-7 cm2/s [93]. The CRW values of diffusion rate for sodium in the 50 and 90% CVF 

systems are slightly smaller with values ~10-8 cm2/s. Sodium in the 10% CVF system was 

found to have the highest diffusion rate of all simulated systems with a value of 2.8 x 10-7 

cm2/s while sodium in the 90% CVF system was found to have the lowest diffusion rate 

among the systems studied. Ab initio simulations conducted by Koh et al. show that there 

is a strong correlation between sodium ion diffusion rate and the degree of curvature of 

graphene planes, where increasing curvature of graphene planes decreases the barrier for 

sodium migration on the concave size of the graphene plane [94]. Since the graphene planes 

in the 10% CVF are larger and possess a higher degree of curvature compared to the 50 

and 90% CVF systems, the high diffusion rate of sodium in the low CVF system is 

substantiated.  
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Table 2.2: Mean square displacement values from MD experiment and CRW extension 

for charged composites.  

 
 

 

 

 
Figure 2.7: Mean square displacement generated from MD simulations (color) with their 

corresponding CRW extensions up to 1 ns.  
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Conclusion 

Reactive molecular dynamics simulations were carried out for lithium and sodium loaded 

in three large lignin-based-carbon-composite systems with 10, 50, and 90% crystalline 

volume fractions. The reactive potentials used for this work were deemed necessary to 

accurately capture the ion binding mechanisms, diffusion properties, and the complex 

mesoscale structure intrinsic to plant-based hard carbons. Analysis of energy and charge 

distributions in conjunction with snapshots of the lithiated systems shows lithium will 

preferentially localize in the hydrogen dense interfacial region between crystallites and 

amorphous graphene fragments regardless of initial localization.  

Snapshots of the sodiated systems in conjunction with charge and energy distributions 

reveal that sodium will preferentially bind to the surface of graphene and basal surfaces of 

nanocrystallites with a small fraction intercalating at the edges of nanocrystallites that have 

local d-spacing above 3.6 Å due to the inherent disorder in the nanocrystallites. Once the 

adsorption and intercalation positions have been filled, sodium will agglomerate in pores. 

This adsorption-intercalation-pore filling sodiation scheme leads to high charge capacity 

in hard carbon anodes. The lower binding energies found for the adsorption and pore filling 

sodium ions also suggest these storage mechanisms to be largely reversible.  

It was found that the LBCC system with the lowest crystalline volume fraction and curved 

graphene fragments along pores produces the largest sodium ion diffusion rate among the 

composites studied in this work. The results of this study indicate that a porous lignin 

derived carbon composite with low crystalline volume fraction and long sheets of curved 

graphene will produce an anode with  high diffusion rate and large charge capacity for a 

sodium-ion battery.  
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CHAPTER III 

 

Lithium and Sodium Ion Binding Mechanisms and Diffusion Rates in 

Lignin-Based Hard Carbon Models 
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Abstract 

Graphitic, amorphous, and nanostructured carbon materials are in high demand for 

commercial and research applications across the world. Carbonized lignin is a sustainable 

and domestic material that can serve as a main source of graphite and its allotropes for a 

myriad of applications; however due to the variability of lignin and its monomeric units, 

Process-Structure-Property-Performance (PSPP) relationships are often hard to define. In 

this work, radial distribution functions from synchrotron X-ray and neutron scattering of 

lignin-based carbon composites (LBCCs) are studied to characterize the local atomic 

environment and develop PSPP relationships. Analysis of the RDFs and development of 

PSPP relationships are aided by novel modelling based on the Hierarchical Decomposition 

of the Radial Distribution Function (HDRDF) where the RDF is modelled through a 

combination of static atomic structures and continuous mesoscale objects. Modelling 

allows iterative optimization of structural parameters and uses roughly one million times 

less computational resources compared to similar work with MD simulation. PSPP 

relationships for LBCCs defined by this work and HDRDF include increasing crystalline 

volume fraction, nanoscale composite density, and crystallite size with increasing 

reduction temperature. Further, carbon crystallite shape is found to transform from 
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spherical at 1050 °C, to ellipsoidal at 1500 °C, to graphitic, onion-like polyhedra and 

nanotube like structures at 2000 °C.  

Introduction 

Innovation is flourishing in energy research where nanostructured materials play a critical 

role as they have enabled the development of safer, longer lasting, and higher charge 

density batteries, super capacitors, and fuel cells for use in electric vehicles, mobile 

electronics, large scale grid applications, etc. [95-98]. One of the primary concerns in the 

field of materials science is the development of process-structure-property-performance 

(PSPP) relationships for nanostructured materials and in general, finding optimal 

performance of nanostructured materials for any energy application requires the local 

atomic structure to be well defined. The local atomic structure is often described with the 

radial distribution function (RDF) or g(r) where r is the separation between atoms. Neutron 

and x-ray scattering experiments yield the total scattering intensity function S(Q) which 

includes both Bragg and diffuse scattering and can be Fourier transformed to real space to 

represent the RDF. The RDF is an effective function for evaluating the local structure of 

powder, single crystal, or liquid materials containing amorphous or crystalline domains 

and isotropic or anisotropic orientation [22]. In battery specific research, it can also help 

define local order changes from cycling, nano-phase quantifications, and ion storage 

mechanisms [19,21,24-29,85]. When studying complex materials, interpretation of the 

RDF can present a significant challenge due to the nature of scattering from multiple 

nanoscale phases and/or amorphous phases. The process of ascribing structural features of 

nanomaterials to specific peaks and features of an experimentally obtained RDF is arduous 

for complex nanomaterials and further, the determination of an optimal structure for use in 

applications is quite difficult. By generating a model with experimental knowledge and 

simulating its RDF, researchers can directly attribute a complex nanomaterial’s structural 

characteristics to features present in the calculated RDF [22,29,30]. To solve this critical 

link of PSPP relationships and obtain an accurate description of the local structure of 

complex materials, we must combine modelling and experimental methodologies.  

 

Traditionally, determining the local structure of complex nanomaterials with large 

amorphous components is accomplished through the hypothesis of a model structure based 

on experimentally observed features and simulation using large-scale molecular dynamics 

(MD) to capture the mesoscale structure of the material. Subsequent analysis usually 

includes comparison of the neutron or x-ray radial distribution function (RDF) and the 

simulated RDF [27]. While this method is effective for testing specific composites, it 

produces a bottleneck when researching materials where small changes in processing have 

wide effects in the resultant structure and the subsequent performance of materials in 
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applications. Such problems would be better solved with a process where the model’s 

structural parameters are refined iteratively; however, this is impractical with MD 

simulations as complex nanomaterials are generally computationally expensive due to the 

large system sizes required to capture the nano and meso-scale order [69]. This problem 

presents the need for a computational tool to quickly model and iteratively refine complex 

nanostructured materials without a severe computational cost.  

 

Although there are many, some of the current endeavors in developing a generalized tool 

for structural analysis of complex materials include the Diffpy-Complex Modelling 

Framework, the TOPAS-Academic software package, DISCUS by Thomas Proffen and 

Reinhard Neder and RMCprofile with head developer Matt Tucker from Oak Ridge 

National Lab [34,36,99,100].  In 2016 Oyedele et al. proposed a novel, physics-based 

model for RDF studies known as the hierarchical decomposition of the radial distribution 

function method where atomistic and mesoscale models and theory are combined to 

construct the total RDF without arbitrary fitting parameters [31]. The first iteration of this 

method used six-dimensional integration and could only be employed for spherical 

crystallites due to the difficulty of complex integration over arbitrary geometries. The first 

application of this method was used to successfully model the total neutron scattering (NS) 

RDF of a carbon-composite as well as on a component-by-component basis against MD 

models carried out by McNutt et al. [30,31]. The MD model emulated the carbon-

composites that were produced from hardwood lignin, a high-carbon byproduct of 

fractionated woody plants from the paper and bio-ethanol industries [13,101]. These 

composites were chosen for the initial tests of the hierarchical decomposition method 

because they have hierarchical structure, spherical crystallite domains, a significant 

amorphous component, and show great promise as a sustainable, domestic, and high-

performance option for graphitic anodes in Li-ion batteries [13,18]. Since today’s energy 

market is focused on providing more efficient, sustainable, and less polluting sources of 

energy storage, batteries constructed with bio-based and renewable materials are a 

necessity [102-104]. 

 

The second generation of the hierarchical decomposition method was developed in 

MATLAB by García-Negrón et al. and was implemented on a series of three hardwood-

lignin-based carbon-composites (LBCCs) with increasing pyrolysis temperature. García-

Negrón’s model allowed iterative by-hand optimization of structural parameters such as 

crystallite domain size, crystalline and amorphous volume fractions, and density [37]. 

Modeled RDFs were compared on a component-by-component basis versus three lignin-

based carbon composite MD models of 10, 50, and 90% crystallinity which emulated the 

carbon-composites for hardwood lignin pyrolyzed and reduced at 1050, 1500, and 2000°C 
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respectively [30,37]. This second implementation of the hierarchical decomposition 

method maintained the reduction in computational cost by six orders of magnitude 

compared to the computational cost in obtaining the modeled RDF via MD simulation. 

Further study of the lignin-based carbon-composites by García-Negrón et al. found that 

when lignin is pyrolyzed, reduced at 1050°C and processed into an anode for li-ion 

batteries, these lignin-based graphitic nanocomposites granted a 20% increase in specific 

charge capacity (444 mAh/g vs 372 mAh/g of standard graphite) as well as a high reversible 

capacity, low irreversible capacity loss, and high cycle life when compared to natural flake 

graphite and modern coated spherical particle graphitic (cSPG) anodes [18]. Additionally, 

García-Negrón et al. and McNutt et al. found that the carbon-composite structure varies 

depending on lignin feedstock and processing conditions where higher reduction 

temperatures deliver larger crystallite domains and a greater crystalline volume fraction 

[30,37].  

 

In this work we present the third generation of the hierarchical decomposition method 

(dubbed HDRDF) updated to address the major needs of previous versions, including 

arbitrary domain geometries, preferential orientation of crystalline domains, mesoscale 

(a)symmetry, and automated parameter optimization. This version is developed in C++ for 

computational efficiency and speed, is formatted to be user-friendly by employing a text 

input file and is available for both single processor use and parallel computing using MPI. 

The aim of HDRDF is to fill a need in the scientific community for a quick and 

computationally efficient method of iteratively determining the local structure of complex 

nanomaterials.  

 

Validation of HDRDF is carried out through comparison of modeled RDFs to a set of three 

experimentally obtained RDFs gathered from SNS that were used for validation for 

previous versions of HDRDF and can be found in the results section. HDRDF is then used 

to determine the crystalline and amorphous particle shapes and sizes, component volume 

fractions, and composite densities for a set of LBCCs synthesized by García-Negrón et al. 

at the Center for Renewable Carbon at the University of Tennessee Institute of Agriculture. 

 

Methods 

Data Collection 

The data for this work was gathered at room temperature from the 11-ID-B beamline at 

APS with 0.2113 Å wavelength.  For the hardwood, pine, and switchgrass materials, lignin 

was extracted from the plant matter via the organosolv process [105,106]. The kraft 

softwood lignin was created through the kraft process [107].  The lignin feedstocks were 
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carbonized according to the procedure of García-Negrón et al., with reduction temperatures 

of 1050, 1500, and 2000 °C for each feedstock [18,21]. Samples were prepared in 

capillaries for the scattering experiments and triplicates of each sample were tested to 

account for possible sample inhomogeneity. The RDF, or g(r), for each sample were 

calculated from the x-ray scattering data with the xPDFsuite software with lower and upper 

limits on the Fourier transform integral of 0.1 and 22.0 Å-1, respectively and a value of 0.8 

for the polynomial smoothing function (rpoly) [108]. Fourier ripples are a result of the 

Fourier transformation from reciprocal space to real space and are considered noise in the 

experimental data. The Fourier ripples arise as artificial peaks in low r and long scale 

oscillations in high r. These ripples have been removed for r < 3.0 Å in our experimental 

data as to not introduce a significant source of error when the experimental and modeled 

RDFs are compared during the structural parameter optimization step of HDRDF.  

Hierarchical Decomposition of the RDF 

The hierarchical decomposition of the RDF occurs in stages with the first stage separating 

phases of a complex material. For a composite composed of two phases, labeled a for 

amorphous and c for crystalline, total RDF, 𝑔𝑡𝑜𝑡, can be expressed at the first level of the 

decomposition as linear combination of the pair-wise components, 𝑔𝑎𝑎, 𝑔𝑐𝑐, and 𝑔𝑎𝑐 =

𝑔𝑐𝑎, weighted by the relative atom fractions, 𝑥𝑎 and 𝑥𝑐, 

 

𝑔𝑡𝑜𝑡(𝑟) = 𝑥𝑎
2𝑔𝑎𝑎(𝑟) + 2𝑥𝑎𝑥𝑐𝑔𝑎𝑐(𝑟) + 𝑥𝑐

2𝑔𝑐𝑐(𝑟)    (1) 

 

Subsequent stages of decomposition occur to a point at which each component of the RDF 

can be represented with a tractable physics-based model. A detailed and rigorous 

explanation of the hierarchal decomposition theory is available in works by Oyedele et al. 

and García-Negrón et al. [31,37]. In this implementation of HDRDF, the following 

procedure is adopted.  For RDF components representing scattering by atoms within the 

same phase, the second level of decomposition is into atomistic and mesoscale 

components, 

 

𝑔𝑎𝑎(𝑟) = 𝑔𝑎𝑎
𝑎𝑡𝑜𝑚(𝑟) + 𝑔𝑎𝑎

𝑚𝑒𝑠𝑜(𝑟)       (2.a) 

 

𝑔𝑐𝑐(𝑟) = 𝑔𝑐𝑐
𝑎𝑡𝑜𝑚(𝑟) + 𝑔𝑐𝑐

𝑚𝑒𝑠𝑜(𝑟)       (2.b) 

 

For RDF components representing scattering by atoms within different phases, the second 

level of decomposition is strictly a mesoscale component, 

 

𝑔𝑎𝑐(𝑟) = 𝑔𝑎𝑐
𝑚𝑒𝑠𝑜(𝑟)        (2.c) 
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The practical motivation for this choice of decomposition has two origins.  First, previously 

published molecular simulation work on lignin-based carbon composites has associated all 

sharp peaks with features arising from pairs of atoms contained within a single graphitic 

crystallite in the crystalline domain or a single graphene fragment in the amorphous domain 

[30]. These contributions fall within 𝑔𝑎𝑎 and 𝑔𝑐𝑐.  Second, static models of the graphitic 

crystallites or graphene fragments are readily generated from existing crystal structure 

databases; therefore the atomic contribution is tractable.  The same degree of catalogued 

knowledge does not extend to the interfaces, making an atomic model for 𝑔𝑎𝑐 a more 

suitable topic for the more computationally intensive molecular simulation approach.  

Fortunately, for the materials, the empirical evidence supports this level of decomposition. 

 

Specifically, the five components of the decomposition are 1) discrete atomic contribution 

from pairs of atoms inside a crystallite, 𝑔𝑐𝑐
𝑎𝑡𝑜𝑚(𝑟), 2) discrete atomic contributions from 

pairs of atoms in the amorphous phase, 𝑔𝑎𝑎
𝑎𝑡𝑜𝑚(𝑟), 3) mesoscale contribution between pairs 

of crystallites, 𝑔𝑐𝑐
𝑚𝑒𝑠𝑜(𝑟), 4) mesoscale contribution between amorphous domains, 

𝑔𝑎𝑎
𝑚𝑒𝑠𝑜(𝑟), and 5) mesoscale contribution between crystalline and amorphous domains, 

𝑔𝑎𝑐
𝑚𝑒𝑠𝑜(𝑟). The total RDF is then calculated from a weighted sum of each component, where 

the weight for each component of the hierarchical decomposition of the RDF is determined 

by the component volume fraction and density of each phase and ensure that the total RDF 

converges to unity as the separation between atoms approaches infinity. Each of these 

contributions are detailed in Figure 3.1. In Figure 3.1, clearly sharp features arise from 

contributions to the RDF with atomic resolution, while broader features are associated with 

mesoscale components. 

Advances from Previous Implementations of HDRDF 

The primary improvement in the current version of HDRDF is the discretization of the 

model at the mesoscale.  As shown in Figure 3.1(b), the area enclosed within the red 

surfaces is designated as the crystalline phase and the contiguous area outside the red 

surfaces the amorphous phase.  In previous works, analytical solutions were derived and 

employed to rapidly evaluate the six-dimensional integral generating the mesoscale RDF 

between spherical crystallites and the four-dimensional integral generating the mesoscale 

RDF between parallel circular fragments of graphene.  The analytical elegance was not 

readily amenable to arbitrary crystallite shapes or even polydispersity of spheres.  In this 

version of HDRDF, the analytical solutions have been replaced with a fully spatially 

discretized model of the composite in which the multi-dimensional integrals are evaluated 

via hybrid Monte Carlo (MC) integration.  While stochastic integration is certainly more 

computationally demanding compared to evaluation of analytical functions, it still requires 

several orders of magnitude less computational resources than the alternative, which is 
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molecular dynamics simulation.  Moreover, numerical integration opens the door to 

modeling composites with arbitrary particle shape, orientation (for non-spherical particles), 

polydispersity and mesoscale structure (e.g. crystallites distributed on an ordered lattice 

versus randomly distributed crystallites).  

 

The spatial discretization also eliminated the need of creating empirical ways to deal with 

experimental data that was not well modeled by spherical crystallites as was necessary in 

previous efforts. The analytical approach worked well for composites when the crystalline 

volume fraction was low and the separation between particles high. However, when the 

crystalline volume fraction was high, the particles began to be packed together, resulting 

in a flat interface between two otherwise spherical crystallites. This geometry required a 

sharp increase in mesoscale crystalline-crystalline component, not possible with the 

analytical solution. In previous versions of HDRDF, this feature in highly crystalline 

composites was modeled with a parameterized erfc function. This ad hoc approach is no 

longer necessary with the MC integration of a spatially discretized model. 

 

As a minor note, the previous use of HDRDF to examine carbon composites contained a 

third level of decomposition, separating the atomic crystalline-crystalline component into 

contributions arising from C atoms within the same plane and C atoms in two different 

planes of graphite [37].  In this work, the graphitic nanocrystallite is represented as a single 

atomic structure.  The ability to vary the d-spacing in graphite is retained by allowing the 

c vector of the unit cell to vary.  

Insights from Mesoscale Contributions 

Radial distribution function features that define particle shape and size are difficult to 

determine when viewing a total RDF but are easily constructed with the HDRDF technique. 

The mesoscale contributions from the hierarchal decomposition play an important role in 

the identification of particle shape and size and in addition can aid in the determination of 

mesoscale symmetry of crystalline domains in composite materials. In Figure 3.2 below, 

various particle shapes, sizes and symmetry are shown with their corresponding 

intercrystallite mesoscale contributions, 𝑔𝑐𝑐
𝑚𝑒𝑠𝑜(𝑟), to the total RDF. The plots in Figure 3.2 

show the mesoscale intercrystallite contribution to the RDF for a set of similarly sized 

particle shapes, a set of differently sized crystallite nanospheres, and a set of simple cubic 

arranged nanospheres vs randomly placed nanospheres (no symmetry). These plots are 

included to highlight the differences in the mesoscale contribution to the total RDF and 

show that the isolation and analysis of 𝑔𝑐𝑐
𝑚𝑒𝑠𝑜(𝑟) can lead to qualitative and quantitative 

information when modelling sets of experimental samples. The mesoscale contributions 

are zero until after 3 Å since distances shorter than 3 Å are included in the discrete atomic 

contributions to the RDF.   
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Figure 3.1: Left – Hierarchical decomposition of the RDF with components 1) atomic 

crystalline intraparticle, 2) atomic amorphous intraparticle, 3) mesoscale crystallite 

interparticle, 4) mesoscale amorphous interparticle, 5) mesoscale crystalline-amorphous 

interparticle. Right – Mesoscale model with 50% crystalline volume fraction and 1.5 

nm diameter spherical crystallites (red) and an encapsulating amorphous matrix (white). 

Figure 3.2:  Intercrystallite mesoscale contributions, 𝑔𝑐𝑐
𝑚𝑒𝑠𝑜(𝑟), to the total RDF aid in 

particle shape determination (left), particle size determination (center), and mesoscale 

particle symmetry in the composite (right).  
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Model Creation and Optimization 

In this section we describe the flow and methods of operation for the HDRDF software. 

Crystalline phases (three dimensional volumes cut from a bulk graphite structure) and 

amorphous base units (represented by graphene fragments) are input into HDRDF with 

their respective particle shape, lattice vectors and angles, and fractional coordinates. To 

handle arbitrary geometries of crystalline and amorphous domains, HDRDF allows custom 

cartesian coordinate inputs. These atomic models are then used to compute the atomic 

contributions to the RDF from the crystalline and amorphous phases by constructing a 

histogram of all interatomic distances and applying gaussian type anisotropic thermal 

noise. Next, the crystallite particles are arranged in a 3-dimensional structure according to 

user input (i.e. simple cubic formation, close packed, random placement, etc.) and the 

component-wise volume fractions. The 3-dimenstional mesoscale model is projected to a 

digitized 3-d mesh with 0.2 Å resolution as shown in Figure 3.1. Sections of the mesh that 

are not defined with crystalline particles can be defined as an encapsulating amorphous 

matrix. The mesoscale model is a box whose size is generated to be greater than twice the 

length of the experimental RDF length used for comparison. This model sizing technique 

avoids artifacts in the modeled RDF that could arise by using a smaller mesoscale model 

with periodic boundary conditions. The mesoscale components of the RDF decomposition 

are then constructed with Monte Carlo Integration (MCI) performed on the digitized mesh 

where the number of sample points for each mesoscale contribution are based on 

component volume fraction and component density. The mesoscale components 

(𝑔𝑚𝑒𝑠𝑜(𝑟)),  are then linearly interpolated to the experimental resolution (usually 0.01 Å) 

and the total RDF is formed from the weighted sum of the atomic and mesoscale 

contributions as seen in Figure 1. The total modeled RDF is then compared to experiment 

and a least-squares error is calculated to measure goodness of fit. Iterative optimization of 

structural parameters is then carried out via BFGS conjugate gradient method until the 

specified convergence criteria are met [109].  

 

HDRDF output 

After convergence of the iterative optimization, HDRDF outputs the optimized structural 

parameters as well as the total modeled RDF and each component of the hierarchical 

decomposition. In addition, there are options to allow HDRDF to output the crystalline, 

amorphous, and mesoscale 3D models for visualization.  
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Results and Discussion 

Model Validation 

In order to validate HDRDF 3.0, as well as showcase the increased accuracy and 

functionality of this iteration of HDRDF, we apply it to carbon composites generated from 

hardwoods that have been analyzed by both molecular dynamics simulation as well as 

earlier versions of HDRDF [30,31,37]. A systematic shape, size, and crystalline volume 

fraction analysis was conducted for the three samples, where crystallite size and crystalline 

volume fraction were varied for right parallelepiped, rod, sphere, and ellipsoid particle 

shapes and compared for best fit to the NS RDF data. Results from this analysis agreed 

well with the structural parameters found in the previous version of HDRDF published by 

García-Negrón et al., which showed the best model for this data uses spherical particles 

with increasing particle radius and decreasing crystalline volume fraction with the 

increasing carbonization temperature of the three carbon composites [37]. The RDFs for 

the three composites with their respective HDRDF models are shown in Figure 3.3 below 

with the optimized structural parameters shown in Table 1. We can see from Figure 3.3 

that the magnitude of the peaks in the HDRDF model are consistent with the peak 

magnitudes from NS experiments. Since all peak positions are represented by HDRDF, it 

confirms that the graphene fragments used to model the atomic contribution for the 

amorphous phase are correct; if the amorphous phase contained sp3 bond hybridization 

then peak positions in the HDRDF model would not match the NS experiments. The 

density for the crystalline and amorphous domains were input as 2.266 and 0.95 g/cm3 

respectively, consistent with literature values for crystalline graphite and both 2D and 3D 

amorphous graphene with sp2 bonding [110]. It is important to note that the HDRDF 

modeled RDFs are calculated directly and thus have no short or long-range oscillations 

(Fourier ripples) that arise from the Fourier transform and contains no artifacts from 

equipment effects or sample inhomogeneity as occurs in experimentally obtained RDFs. 

This implies that every peak in a HDRDF modeled RDF arises due to material structure. It 

should also be noted that the peak widths of RDFs modeled with HDRDF are slightly 

narrower than the experimental comparisons due to peak broadening that occurs from ball 

milling of graphitic structures [111].  
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Figure 3.3: (Top) RDFs of lignin-based carbon composites synthesized by Tenhaeff 

et al. with increasing carbonization temperature. (Bottom) RDFs of HDRDF modeled 

carbon composites.  

Table 3.1: Optimized structural parameters for lignin-based carbon composites 

synthesized by Tenhaeff et al.  
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Modeling Carbon Composites 

It is important to note that the crystallites in the carbon composite samples synthesized by 

García-Negrón et al. [21] and tested at APS are slightly more than an order of magnitude 

larger than the crystallites in the carbon composite synthesized by Tenhaeff et al. used for 

HDRDF model accuracy verification. The size difference in crystallite domains can be 

attributed to differing lignin feedstock, synthesis methods, and post-synthesis ball milling 

procedure. From visual inspection of the 1050, 1500, and 2000 °C RDFs in Figure 3.4, it 

is evident that the local structure of the carbon composites is not only dependent upon 

carbonization temperature but also lignin feedstock. The woody species of lignin 

feedstocks including kraft softwood, pine, and hardwood share similar RDF’s whereas the 

switchgrass samples have a comparably different structure for the 1000 and 1500 °C 

samples. This differing local structure can be attributed to the varying concentrations of p-

hydroxyphenyl (H), guaiacyl (G), and syringyl (S) phenolic units that compose the cross-

linked, amorphous structure of lignin. The carbon composites increase in crystallinity as 

carbonization temperature increases and the 2000 °C samples show the greatest similarity 

implying the structures have become more graphitic in nature. The third (2.87 Å) and fourth 

(3.29 Å) peaks represent the third nearest neighbor and interlayer spacing respectively as 

shown in the diagram in Figure 3.4. The evolution of the third peak from a shoulder to a 

distinct peak shows the transformation of the mostly disordered amorphous carbon 

composite to a more graphitic C6 type structure. The stark increase in distinction of the 

fourth peak for 1500 and 2000 °C conveys that the carbon composite structure becomes 

more graphitic as planes of graphene grow and align into their equilibrium interplanar 

distance. Further, the increasing peak intensity past 7 Å for each increase in carbonization 

temperature denotes longer range order implying increased crystallinity. To reveal more 

about the local structure other than trends in crystallinity, we turn to modeling the carbon 

composites with HDRDF, with comparisons shown in Figure 3.5 and HDRDF optimized 

structural parameters shown in Table 3.2.  

 

It is also important to note that there are peaks in the experimentally obtained data that do 

not correspond to graphite or any of its allotropes and have been confirmed through 

elemental analysis as varying amounts of oxygen from ether linkages that persisted through 

pyrolization and iron contamination from the ball milling process [21]. Since we did not 

include models in HDRDF for the contaminants, the modeled RDFs do not perfectly fit the 

experimental data. However, there is still much qualitative and quantitative information to 

be gleaned from the model that include shape and size for crystalline domains and the 

amorphous graphene fragments, component volume fractions, composite densities, and 

how trends in these structural parameters can aid in the understanding of the processing-
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structure-property relationships. Optimized structural parameters for each model can be 

found in Table 3.2.  

 

Particle Shape and Size 

HDRDF models were made for all samples with a reduction temperature of 1050°C as well 

as the kraft softwood and hardwood samples reduced at 1500°C. The remaining samples 

with reduction temperatures of 1500 and 2000 °C possessed crystalline domains greater 

than 140 Å. Since these crystalline domains are much larger than the experimental RDF 

length of 50 Å, no meaningful crystallite shape analysis could be conducted with HDRDF 

and they are not modeled in this work. Experimentally, it is well established that an increase 

in reduction temperature leads to a corresponding increase in size of the graphitic 

nanocrystallites [21]. Experimental evidence regarding the relationship between 

nanocrystallite shape and reduction temperature is less clear. However, the TEM work of 

García-Negrón et al. suggests that the larger graphitic nanocrystallites that appear at high 

reduction temperatures are more likely to contain distinctly non-spherical geometry, 

presumably due to anisotropic growth of graphite in the directions parallel (100 and 010) 

and normal (001) to the stacked sheets. To our knowledge there is limited understanding 

of how choice of lignin feedstock impacts crystallite size. García-Negrón reports two 

nuanced observations in this regard.  First, principle component analysis of RDFs suggest 

that differences in carbon composite local structure, resulting from variation in the 

distribution of lignin monomers in the source plant, tend to disappear as the reduction 

temperature is increased.  In other words, all lignin materials will eventually form graphite 

if the temperature is sufficiently high.  Second, differences in the size of the resulting 

crystallites are most obvious at the highest reduction temperatures, with kraft softwood and 

switchgrass yielding larger crystallites than hardwood and pine [21]. A third observation 

was made upon review of García-Negrón’s elemental analysis of the “other” column for 

pyrolyzed and reduced lignin, where the “other” is strongly considered to be mostly oxygen 

from ether linkages and lignin monomers as well as iron contamination from ball milling 

[21]. Evidence for ether linkages and lignin monomers persisting post pyrolysis is present 

in samples reduced at 1050 °C in the experimental RDFs as there are peaks centered near 

4.58 and 5.85 Å that are not present in the all-carbon HDRDF models. For the switchgrass 

sample specifically, the previously specified peaks are broader and there exists an 

additional unmodeled peak at 8.1 Å that disappears with increasing reduction temperature. 

The interatomic distances of an array ether linkages and lignin monomers were examined 

and specific atom pair distances were found that match the radial distance of the unmodeled 

peaks in the composites reduced at 1050 °C, including the 4.58 Å carbon-oxygen distance 

in the β-O-4 ether linkage. Further, these peaks decrease in intensity as reduction 

temperature increases which is consistent with what we expect as the ether linkages and 
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lignin monomers break down and oxygen is driven off by the higher reduction 

temperatures.  

 

Since we know the amount of iron in the samples stays constant with increasing reduction 

temperature, we can attribute the change in the “other” column to the removal of oxygen. 

Further, comparison of x-ray diffraction peaks in all feedstocks by García-Negrón et al.  

shows that the pine and hardwood samples contained a greater amount of iron contaminants 

than the kraft softwood and switchgrass samples [21]. Therefore we can conclude that there 

is greater than 25-50% more oxygen in the kraft softwood and switchgrass samples reduced 

at 1050 °C and  more than 15% less oxygen present in kraft softwood and switchgrass 

samples reduced at 2000 °C when compared to the pine and hardwood samples at the same 

reduction temperatures [21]. This suggests that the larger crystallites that can be seen in 

the kraft softwood and switchgrass HR-TEM images could be attributed to the greater 

amount of ether linkages present in kraft softwood and switchgrass samples post pyrolysis 

as they could serve as a scaffold to provide an amount of order along which crystallites 

could grow larger as pyrolysis temperature increases.   

 

A systematic shape and size analysis was conducted for each of the modeled composites 

where sphere, ellipsoid, rod, and right parallelepiped shapes were tested and the dimensions 

for each shape were optimized via conjugate gradient optimization and the resulting RDFs 

were compared for best fit via least squares error between the experimental and modeled 

RDFs. Since modeled peaks at low radial distances (below 10 Å) are narrower and taller 

than experimental peaks due to instrumental peak broadening and inherent sample 

inhomogeneity/disorder not captured by HDRDF, a weighting function was applied to the 

least squares error calculation which emphasized the differences at longer radial distances 

(above 10 Å) in order to help determine particle shape and size more accurately. All 

samples reduced at 1050°C possessed spherical particle shapes consistent with validation 

data of smaller crystallites from previous neutron scattering experiments. The modeled 

spherical crystallites for the 1050°C samples ranged from 4.4 to 5.6 nm in diameter 

depending on the feedstock. As the reduction temperature increased, the HDRDF analysis 

confirms growth of the crystallite size and an increase in crystalline volume fraction.  

Furthermore, the shape of the crystallites deviates from spherical.  The 1500°C samples 

were best fit with prolate ellipsoidal crystallites with the interplane direction acting as the 

major radius of 3.2 – 4.2 nm and the in-plane directions acting as minor radii of 2.4 – 3.3 

nm. nm. As reduction temperature is increased the graphene planes align and equilibrate 

into an interplanar distance of 3.35 for kraft softwood and 3.44 nm for all other samples as 

can be seen by the examination of the fourth peak in the experimental RDFs in Figure 4 as 

well as the HDRDF fits in Figure 3.5. The adoption of surrounding amorphous planes of 
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graphene into crystallites contributes to the change in crystallite shape from spheres to 

ellipsoids. The modeled crystalline domain sizes are in good agreement with the Scherrer 

analysis performed on the scattering data by García-Negrón et al. [21]. Amorphous 

graphene fragments with circular and elliptical shapes were tested with the result of 2D 

ellipses having the better fit. The 2D ellipses possessed smaller major and minor radii than 

the crystallites, consistent with previous models and our physical understanding of the 

composite.  

 

The HR-TEM of kraft softwood and switchgrass samples reduced at 2000 °C show 

primarily crystalline graphitic domains with large polygonal onion-like nanocrystallites, as 

well as large, elongated rod like structures that could be multi-walled carbon nanotubes or 

collapsed carbon nanotubes based on similarities in TEM patterns found in literature 

[21,83,112,113]. 

 

Crystalline Volume Fraction 

From visual inspection of the HR-TEM images reported by García-Negrón et al. [21] there 

is a definite increase in the crystalline volume fraction for each feedstock with increasing 

reduction temperature. Samples reduced at 1050 °C show a primarily amorphous structure 

with small amounts of nanocrystallites while samples reduced at 2000 °C show primarily 

graphitic and ordered structures which are most easily observed in the kraft softwood and 

switchgrass samples. Nanocrystallites in the pine and hardwood samples reduced at 1050 

°C and 2000 °C are somewhat difficult to make out visually; however, the XRD and 

Scherer analysis confirm their presence with new peaks forming in the XRD pattern as 

reduction temperature is increased.  

 

HDRDF models for the 1050°C samples range from 15% crystalline volume fraction for 

hardwood to 25% crystalline volume fraction for switchgrass. Models for the 1500°C 

samples found an increase in crystalline volume fractions up to 45%. These results agree 

well with the HR-TEM and XRD – Scherer analysis conducted by García-Negrón et al 

[21]; however, they are in disagreement with the trends modeled by McNutt et al. [30] who 

states that for the LBCCs synthesized from hardwood lignin by Tenhaeff et al. [13], 

crystalline volume fraction decreases with increasing pyrolysis temperature.  

 

Composite Density  

Results from HR-TEM and x-ray diffraction analysis conducted by García-Negrón et al.  

show an increase in graphitic structure as well as a reduction in amorphous regions with 

increasing reduction temperature for all feedstocks [21]. This would suggest a monotonic 
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increase in the local composite density at the nanoscale with increasing reduction 

temperature; however, since the composite densities were not determined experimentally 

there is a degree of uncertainty. For HDRDF modeled composites the density for the 

crystalline and amorphous domains were input as 2.266 and 1.76 g/cm3 respectively, except 

for the switchgrass sample reduced at 1050 °C which was better fit with an amorphous 

phase density of 1.69 g/cm3. The amorphous carbon density was found to be greater in the 

models for the García-Negrón et al. composites when compared to the amorphous carbon 

density of the composites synthesized by Tenhaeff et al. We believe that the difference in 

the modeled amorphous phase density between the Tenhaeff et al. composites and the 

García-Negrón et al. composites can be attributed to the differences in the used feedstocks, 

as well as the differences in processing and carbonization of the lignin. As reduction 

temperature increased the modeled composite density also increased towards the density 

of crystalline graphite as would be expected with a larger crystalline volume fraction. The 

reported composite densities in Table 3.2 are likely slightly overestimated since porosity 

and sample packing density present in experimental samples is not captured by the model. 

In future updates to the HDRDF software, we plan to improve this area by including 

customizable options for various states of porosity in the mesoscale model.  

 

HDRDF 3.0 Limitations 

As with many other modeling techniques, HDRDF 3.0 has limits on the size of a system 

that it can model effectively. For HDRDF the limit is dependent upon the length of the 

experimental RDF and the size of the crystalline domains. Since the RDF is used for local 

structure determination, if the average particle size is much greater than the length of the 

experimental RDF accurate modeling becomes difficult. When modeling nanomaterials 

with HDRDF 3.0, the peak heights, widths, and mesoscale features of modeled RDFs are 

sensitive to changes in particle size and component volume fractions; however, when 

crystallites have domains greater than nanoscale size, the RDFs no longer contain the 

information which would allow the determination of particle size or shape and the modeled 

RDFs resemble multiphase bulk materials instead of nanoscale composites as it is in our 

case for the composites reduced at 2000 °C as well as the switchgrass and pine samples 

reduced at 1500 °C.  
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Figure 3.4: RDFs of lignin-based carbon composites synthesized by García-

Negrón et al. and grouped by carbonization temperature. (Top) Diagram identifying 

atomic pairs and the peak to which they correspond as measured from atom 0. Atom 

4 represents the interplanar spacing of graphitic planes. 
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Figure 3.5: Synchrotron X-ray RDFs of lignin-based carbon composites 

reduced at 1050 °C synthesized by García-Negrón et al., plotted with their 

respective HDRDF models.  
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Figure 3.5 continued: Synchrotron X-ray RDFs of lignin-based carbon 

composites reduced at  1500 °C synthesized by García-Negrón et al., plotted 

with their respective HDRDF models.  
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Table 3.2: HDRDF optimized structural and physical parameters for lignin-based 

carbon composites synthesized by García-Negrón et al.  
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IV. Conclusions 

The neutron and x-ray scattering data of the lignin-based carbon composites (LBCCs) 

generated by Tenhaeff et al. and García-Negrón et al. respectively were successfully 

modeled using HDRDF and granted both quantitative and qualitative understandings of the 

complex material structure in addition to the identification of nanoparticle shape.  With the 

aid of HDRDF, trends in PSPP relationships were identified as increasing crystallite size, 

crystalline volume fraction, and composite density as well as the transformation from 

spherical crystalline particles to ellipsoids as reduction temperature was increased and the 

composites became more graphitic in nature.  Through modeling with HDRDF it was found 

that the amorphous carbon phase of switchgrass reduced at 1050 °C is less dense compared 

to other feedstocks and for all feedstocks the nanoscale composite density of LBCCs 

increases with increasing reduction temperature. The average interplanar distance in 

crystallites was found to be 3.44 nm for all feedstocks at all reduction temperatures except 

for kraft softwood which had an interplanar distance of 3.35 nm, like that of AB stacked 

graphite. Through a combination of modeling with HDRDF and visual analysis of HR-

TEM images, the crystalline volume fraction was determined to increase with increasing 

reduction temperature for all feedstocks which become partially graphitic at a reduction 

temperature of 2000 °C.  The crystalline volume fraction varied between 15-20% for 

feedstocks reduced at 1050 °C and 40-45% for feedstocks reduced at 1500 °C. The 

transition from spherical to ellipsoidal particle shapes as reduction temperature was 

increased from 1050 to 1500 °C was attributed to the adoption of amorphous graphene 

particles into the crystalline nanoparticles. It is also suggested that the higher oxygen 

content found in the kraft softwood and switchgrass samples is due to higher amounts of 

ether linkages and lignin monomers that persisted through pyrolysis and acted as a scaffold, 

providing structure for crystallites to grow into graphitic structures more rapidly. Further, 

additional inspection of the HR-TEM of kraft softwood and switchgrass reduced at 2000 

°C suggests that the large rod-like crystallites could be multiwalled carbon nanotubes.  

The HDRDF software can now be used on parallel architectures and allows models with 

arbitrary domain geometries. Structural parameters are optimized via conjugate gradient 

optimization and crystalline/amorphous domain shapes can be identified via least-error 

analysis, greatly reducing the human time, effort, and error of hand-eye fitting that was 

present in previous models. HDRDF was able to achieve a reduction in computational cost 

of five orders of magnitude compared to molecular dynamics simulations of these LBCCs. 

HDRDF 3.0 can now be considered a generalized physics-based tractable model for rapid 

modeling and understanding of the local structure of complex composite materials with 

only a small computational cost. Plans for future updates involve modules for including 

crystalline and amorphous polydispersity, customizable states of porosity in the mesoscale 

model as well as multiple crystalline and amorphous phases. 
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CONCLUSION 

Per Chapter Conclusions 

I. Lithium and Sodium Ion Binding in Nanostructured Carbon Composites  

Reactive molecular dynamics simulations were performed for a single carbon 

nanocrystallite embedded in an amorphous graphene fragment matrix with lithium and 

sodium ion loading conditions. Reactive simulations were also performed for lithium and 

sodium metals and hydrides. Results from the simulations of the lithiated single crystallite 

reveal that the most preferential binding location for lithium is at the hydrogen dense 

interface between the nanocrystalline domain and the amorphous domain. The simulations 

of the lithium metal and hydrides revealed that lithium attempt to form a lithium hydride 

like structure but are prevented since the lithium are strongly tethered to the relatively 

immobile carbon structure. Lithium can be reversibly stored at a higher density this way 

compared to intercalation within graphite. The reactive simulations of the sodiated carbon 

system showed that the most energetically favorable position for sodium is in the 

intercalation sites, although this state wouldn’t be available in high charge density 

applications since the barrier to graphic intercalation is high for sodium. The sodium metal 

and hydride simulations revealed that sodium will not preferentially bind to hydrogen, but 

instead prefer to localize in the amorphous carbon domain and thus has a fundamentally 

different storage mechanism than lithium in these carbon composite environments. Larger 

simulations were needed to define the sodium ion storage mechanism.  

 

II. Lithium and Sodium Ion Binding Mechanisms and Diffusion Rates in Lignin-Based 

Hard Carbon Models 

In this work, reactive molecular dynamics simulations were performed on three lignin 

based hard carbon models with 10, 50, and 90% crystalline volume fraction with lithium 

and sodium initialized in either the amorphous graphene domain or intercalated between 

layers of carbon nanocrystallites. The volume change between empty and lithiated/sodiated 

systems was calculated to determine swelling percentage. Lithiated and sodiated systems 

with an average charge density of ~120 mAh/g averaged 9% and 14% swelling, 

respectively. Consistent with previous work, lithium migrated to the hydrogen dense 

interfacial domain regardless of initial domain. Examination of system snapshots in 

coordination with charge and energy distributions shows that sodium will preferentially 

adsorb to the surface of graphene fragments and basal faces of nanocrystallites, while a 

small fraction of the sodium will bind at intercalation sites at the edges of nanocrystallites 
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where the graphitic planes have shifted and formed a wider d-spacing; however, we do not 

observe sodium migrating to deeper intercalation positions within the nanocrystallites. In 

systems with moderate porosity and low crystalline volume fraction we find that sodium 

will aggregate and bind to each other along graphene sheets that define the boundaries of 

porous regions of the hard carbon models. From these reactive simulations, the adsorption, 

edge-intercalation and pore filling sodiation scheme is supported for lignin based hard 

carbon anodes and suggests that lignin based hard carbons can be a viable anode material 

for high charge density Na-ion batteries.  

The mean square displacement was calculated from the unwrapped coordinates of ions in 

the MD simulations and extended using confined random walk theory to the infinite-time 

limit as required by the Einstein relation for calculation of the self-diffusion coefficients. 

It was found that systems with larger, curved sheets of graphene, low crystalline volume 

fraction, and moderate porosity offer the highest diffusion rates for sodium ions at ~10-7 

cm2/s, on par with that of lithium in pristine graphite. Accumulated results from these 

simulations suggest that a lignin based hard carbon anode featuring high charge capacity 

and a high ion diffusion rate for Na-ion batteries would be optimized by obtaining low 

crystalline volume fraction, a large fraction of curved graphene fragments, and moderate 

porosity. For high charge density in Li-ion batteries with lignin based hard carbon anodes, 

it is suggested that the LBCC have small nanocrystallites and graphene fragments to 

maximize the hydrogen dense interfacial regions where lithium can bind at the highest 

density. 

 

III. Local Structure Analysis and Modeling of Lignin-Based Carbon Composite through 

the Hierarchical Decomposition of the Radial Distribution Function 

This work advanced the process-structure relationship for lignin based carbon composites 

(LBCCs) by defining and quantifying the changes in nanoparticle shape and size, 

crystalline volume fraction, and density due to processing temperature and feedstock 

choice. This was accomplished through the development of the Hierarchical 

Decomposition of the Radial Distribution Function (HDRDF 3.0) software which 

iteratively models and optimizes structural parameters through comparison of experimental 

and modeled radial distribution functions (RDFs). It was found that for all studied 

feedstocks reduced at 1050 °C, the LBCCs possessed 4.4 – 5.6 nm spherical 

nanocrystallites and a 15 – 20 % crystalline volume fraction. For kraft softwood and 

organosolv yellow poplar lignin reduced at 1500 °C, the resultant LBCCs possessed 

crystalline volume fractions of 40 – 45 % with prolate ellipsoidal nanocrystallites with 

dimensions of 6.4 – 8.4 nm in the interplane direction and 4.4 – 6.6 nm in the intraplanar 

direction. Pine and switchgrass organosolv lignin reduced at 1500 °C and all feedstocks 

processed at 2000 °C possessed crystallites with diameters in excess of 14 nm which could 
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not be modelled by HDRDF 3.0 due model size limitations and the fact that the average 

crystallite size was vastly longer than the experimental RDF. Analysis of HR-TEM images 

and elemental distribution experiments suggest that the much greater amount of oxygen 

present in kraft softwood and switchgrass samples reduced at 1050 °C is due to a greater 

percentage of ether linkages and lignin monomers that persisted through pyrolysis and 

reduction at 1050 °C. It is also suggested that the extra ether linkages present in these 

samples provided some amount of longer-range order and acted as a scaffold along which 

the crystallites could grow into graphitic structures faster than the other samples. Process-

Structure relationships defined in this work include increasing nanoparticle size and 

increasing crystalline volume fraction with increasing reduction temperature. The 

transition from spherical to ellipsoidal nanocrystallites was attributed to the adoption of 

graphene fragments into the nanocrystallites as reduction temperature increased.  

 

Impact and Significance 

The impacts of this work are significant for the generation of low cost and high-

performance energy storage. As the world moves away from fossil fuel sources and 

towards renewable and sustainable energy, we will need large-scale energy storage 

solutions. Since sodium is low-cost, widely globally available and has similar insertion 

chemistry to lithium, it is a promising candidate. Na-ion batteries will play a central role in 

applications where lithium is cost prohibitive and extremely high energy density is not 

much of a concern, such as electric smart-grid support and large-scale stationary energy 

storage for solar and wind farms. Since the traditional graphitic anode is the bottleneck in 

achieving a high-performance Na-ion battery, research into defining the process-structure-

property-performance (PSPP) relationships for sustainable and domestic hard carbon 

anodes as well as the Na-ion storage mechanisms inside them is crucial. This work states 

that high performance sodium and lithium ion battery anodes can be manufactured from 

lignin with the correct processing conditions. There is tremendous opportunity for 

application of these LBCC anodes in large scale energy storage for electric grid support 

and storage of renewable energy.  

 

As nanoscience progresses and nanomaterials become more complex with additional 

phases and extensive mesoscale structure, determining the structural and physical 

properties with experimental techniques alone becomes a larger challenge. There is an 

urgent need for rapid and iterative model refinement of nanomaterials to aid materials 

scientists in understanding the local structure of their nanomaterials. The development of 

HDRDF 3.0 extends the capabilities of previous versions by allowing arbitrary particle 

geometry, structural parameter refinement via conjugate gradient optimization, and 
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utilization on parallel computing architectures. HDRDF 3.0 was developed with 

generalization in mind as to be applicable to a myriad of nanoscale systems and is a timely 

and pertinent addition to modeling software for material scientist studying local structure 

of nanomaterials.  

 

Future Work  

This work used computational materials modelling to define process-structure 

relationships for lignin-based carbon composites and Na-ion storage mechanisms when the 

LBCCs are used as anodes in Na-ions batteries. With these insights it would be useful to 

synthesize LBCCs with the suggested parameters and implement them as an anode in Na-

ion batteries for experimental testing.  

 

Additionally, visual analysis of HR-TEM images of kraft softwood and switchgrass 

LBCCs reduced at 2000 °C show onion-like crystallites, as well as rod-like structures that 

could be multi-walled carbon nanotubes. The literature reports excellent surface 

functionalization with carbon nano onion which opens up new fields of research into 

biosensors, bioimaging, and environmental remediation. Others in literature report large 

increases in capacitance using functionalized carbon nano onions as electrode materials. 

Mutli-walled carbon nanotubes have myriads of applications including use in 

nanoelectronics, batteries and capacitors, solar cells, and additives to polymers due to their 

excellent thermal and electric conductance. All of the previous applications are highly 

dependent upon the structure of the carbon nano onions/nanotubes which is controlled by 

the choice of lignin feedstock and reduction temperature. Further classification of these 

structures could prove very profitable.  

 

HDRDF 3.0 has been established as a physics based tractable model for rapid modelling 

and iterative refinement of complex nanomaterials. HDRDF 3.0 was built modularly for 

easy updating and customization. Adding modules for polydispersity, multiphase (>3) use, 

as well as voids and porosity in the mesoscale would be beneficial and make HDRDF 3.0 

applicable in even more situations. Finally, adding a module for layered 2D materials 

would be wise as many modern advances in nanomaterial science are happening in this 

area.   
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