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Abstract

The problem of superconductivity has been central in many areas of condensed matter physics

for over 100 years. Despite this long history, there is still no theory capable of describing both

conventional and unconventional superconductors. Recent experimental observations such

as the dilute superconductivity in SrTiO3 and near room-temperature superconductivity

in hydride compounds under extreme pressure have renewed interest in electron-phonon

systems. Adding to this is evidence that electron-phonon coupling may play a supporting

role in unconventional systems like the cuprates and monolayer FeSe on SrTiO3.

One way to make sense of these observations is to construct simple models that capture

the essential physics. Among the models with electron-phonon interactions, the simplest and

most studied is the two-dimensional Holstein model. It describes a single band of electrons

that hop between sites on a square lattice and interact with atomic oscillators by coupling

linearly to their displacements. This model gives rise to superconductivity and charge-

density-wave order spanning different regions of doping. Surprisingly, even this model is not

entirely understood.

First, we present a comprehensive study of the Holstein model phase diagram using

self-consistent many-body perturbation theory. We then discuss one potential avenue for

accelerating non-perturbative quantum Monte Carlo simulations of electron-phonon models

using artificial neural networks. Following these topics, we wrap up the electron-phonon-

related part by discussing the importance of nonlinear interaction terms and moving beyond

the Holstein model.

The last problem of this dissertation revisits a proposal by Steve Kivelson. He

hypothesized and later showed that coupling a superconductor with a large pairing scale but

low phase stiffness to a metal raises the transition temperature (Tc). Expanding on previous

vii



work, we studied a more general case with a 2D negative-U Hubbard model coupled with a

metallic layer via single-particle tunneling. Here, we use the dynamical cluster approximation

to estimate Tc, finding it is maximal for finite tunneling values, thereby confirming Kivelson’s

hypothesis in the general case. Collectively, the results in this dissertation shed new light

on superconductivity in conventional systems and demonstrate a need to incorporate more

aspects of real materials into models.
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Chapter 1

Introduction

This dissertation covers four published projects completed during my Ph.D. research. Three

of these papers are concerned with simple models and methods for studying electron-phonon

(e-ph) coupled systems [1, 2, 3], and the other revisits a model for interface enhanced

superconductivity [4]. A common thread through all of these works aims to find updated

perspectives on older problems in superconductivity. With modern theoretical and experimental

tools, we now have access to more of the problem space of e-ph mediated superconductivity

and associated phenomena. This chapter aims to explain the motivation by providing a broad

historical and contemporary context. A large part of this motivation comes from a renewed

interest in the e-ph problem in conventional and unconventional superconductivity, especially in

the dilute limit [5]. As will be explained, there are good reasons not to ignore the role of e-ph

interactions in strongly correlated systems. While this is an essential direction of study, I will

argue the utility of revisiting basic models without strong correlations. Lastly, the discussion will

turn to layered superconducting systems.

1.1 Superconductivity

Building a comprehensive theoretical framework of superconductivity is a central issue in

condensed matter physics. At the time of writing, 110 years have passed since the first

experiments showing vanishing resistivity at low temperature in simple elemental metals.

Since then, the field has advanced considerably through several breakthroughs both in

1



theory and experiment, but much remains unsolved. This last fact is especially remarkable

when one considers the multiple generations of researchers devoted to this effort. However,

the continued interest surrounding superconductivity is unique in that its high application

potential is well known to the world. In particular, any deep understanding that leads to

sustained room-temperature superconductivity under ambient pressure is among the highest

goals in condensed matter physics. Such a development would revolutionize power delivery

around the world and increase innovation potential for emerging quantum technologies.

Recently, room-temperature superconductivity prevailed in a carbonaceous sulfur-hydride

compound under extremely high pressure (267 GPa) [6]. This milestone caps a string

of increasingly ambitious high-pressure experiments in hydrogen-rich compounds with

transition temperatures above 100-200 K. The light elements within these materials suggest

that conventional e-ph interactions play a significant role in the resulting superconductivity,

but the mechanism is still unconfirmed. That elements like hydrogen could find themselves at

the core of a high-temperature superconductor was originally suggested by Neil Ashcroft [7].

Given the high-pressures required to boost the critical temperature Tc in these systems,

they are unlikely to see any widespread usage in modern technology. This caveat raises

several questions about the role these hydride systems play in the quest for high-Tc under

ambient conditions. On the one hand, they show that room temperature superconductivity

is accessible but in very contrived and impractical environments. On the other hand, a

detailed understanding of these systems under high-pressure may lead to new insights for

systems under one atmosphere of pressure.

It is not just the unusually high pressures that allow these hydride systems to stand

out. These materials may be extreme examples of conventional superconductivity, the

latter of which is typically regarded as understood. Over the past few decades, research

has focused more on unconventional superconductors and other exotic phenomena. It

was not long after the introduction of Bardeen, Cooper, and Schrieffer’s (BCS) theory of

superconductivity [8] that alternative pairing symmetries became a topic of study. Work

done on superfluid 3He [9, 10, 11, 12] introduced Cooper pairs with anisotropic pairing and

spin-triplet states, in contrast to the conventional picture of singlet s-wave pairs. Several

groups [13, 14, 15, 16, 9, 10] postulated this anisotropic pairing simultaneously and used bare
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nuclear interactions in the BCS theory framework. Many thought that the leading pairing

channel was the l = 2, d-wave channel. However, in 1972, nuclear magnetic resonance

(NMR) experiments revealed superfluidity in 3He with a Tc of 2.65 mK. Anomalies in the

NMR response revealed a high-temperature “A phase” and low-temperature “B phase”

characterized by a vanishing magnetic response. Careful interpretation of these NMR

measurements led Anthony Leggett [17, 18, 19] to show that the A phase possessed a p-

wave pair symmetry, partially vindicating earlier theories about anisotropic symmetry but

correcting the original d-wave hypothesis.

Superfluid 3He inspired much of the research around higher angular momentum pairing

channels, but it was not the only unconventional system responsible for a paradigm shift. A

sizable fraction of today’s research in unconventional superconductors is concerned with

copper-oxide materials (cuprates), spearheaded by the Nobel prize-winning discovery of

superconductivity in La2−xBaxCuO4 at Tc = 30 K by Bednorz and Müller in 1986 [20].

Their experiments ushered in a new era of “high-Tc” superconductivity, where additional

cuprate compounds with critical temperatures higher than that of liquid nitrogen (T = 77

K) and liquid Argon (T = 87 K) were eventually discovered (e.g., YBCO Tc = 93 K [21],

BSCCO Tc = 91− 105 K [22, 23], triple-layer HgBa2Ca2Cu3O8+δ Tc = 93 K [24] at ambient

pressure & Tc = 164 K [25] at 31 GPa).

While the cuprates currently boast some of the highest transition temperatures of

any superconductor under ambient conditions, they are far from the only unconventional

superconducting materials. Iron-based superconductors [26, 27, 28, 29, 30], heavy fermion

superconductors [31, 32], organic superconductors [33, 34], nickelates [35, 36], twisted-bilayer

graphene [37, 38], and several other systems are considered unconventional [39]. These

superconductors elude the conventional description of BCS theory and its extensions. In

many of these systems, a sole e-ph pairing mechanism fails to describe what is observed in

experiments, leading many to suspect other mechanisms like electron-electron repulsion and

spin-fluctuations. However, it is still possible that e-ph interactions play a supporting role,

even if not the main one.
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1.1.1 Is electron-phonon coupling important in unconventional

superconductors?

One such scenario is the ongoing effort to understand the high-Tc of monolayer FeSe on

an SrTiO3 (STO) substrate. These systems can host superconductivity as high as 55-75

K [40, 41, 42], which is far greater than the critical temperature of bulk FeSe Tc ∼ 8 K [43].

Recently, some have focused on the roles of interfacial e-ph coupling and spin-fluctuations on

the superconducting transition [44, 45, 46, 47]. The interlayer e-ph coupling occurs between

FeSe electrons and optical oxygen phonon modes in the STO substrate. It is important

to note that this e-ph interaction is not isotropic and is biased toward forward (small-q)

scattering [44]. This forward-peaked interaction is known to mediate pairing in anisotropic

pairing channels such as those with d-wave symmetry [48].

The role of e-ph coupling in cuprates is also an open question. Like the iron-based

superconductors, strong electronic correlations make theoretical studies of the cuprates

difficult. The phononic and electronic degrees of freedom in these systems are highly

entangled, giving rise to a strongly correlated electron liquid. While electron-electron

interactions appear to be primarily responsible for superconductivity in cuprates, other

pair-driving excitations may act to enhance Tc further [49, 50, 51, 52, 53, 54]. There is

good reason to consider the role of lattice vibrations in particular. For one, it is possible to

induce transient superconductivity by optical pumping of apical oxygen phonons [55, 56, 57].

These mid-infrared pulses can drive vibrations into the anharmonic regime and increase Tc.

This subfield of “nonlinear phononics” has been expanded to the idea that such dynamics

could lead to enhanced e-ph coupling [58, 59]. Second, there are intense modulations in the

low-energy acoustic and high-energy Cu-O bond stretching phonon branch spectrum around

the CDW wave vector [60, 61].

Electron-phonon coupling in the cuprates is not weak and cannot be dismissed easily by

such arguments. The relevant phonons are higher energy optical breathing and breathing

modes, and the oscillations live in the copper-oxygen planes. These vibrations are associated

with copper-oxygen bond-stretching, apical oxygen phonons, and oxygen B1g buckling

phonons [62]. These phonons may contribute to the d-wave superconductivity.
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Despite these indications of phononic contributions, the cuprates and other strongly

correlated materials draw little resemblance to traditional metals [63]. They are poorly

conductive at room temperature and become robust insulating antiferromagnets through

chemical composition shifts. This magnetism arises from significant repulsive magnetic

interactions at the microscopic level, contrasting with the BCS theory’s attractive interaction.

At temperatures well above Tc, the measured conductivity in cuprates has an unusual

frequency and temperature dependence. This behavior has granted them the classification of

a “strange metal”. Lastly, there is some semblance of gap formation at temperatures above

Tc, characterized by suppression in the electronic density of states (DOS) near the Fermi

level. Oddly, this pseudogap regime appears without any (apparent) occurrence of broken

symmetry. One possible explanation for the pseudogap regime is that it hosts pre-formed

electron pairs without long-range phase coherence, an idea we revisit in the motivation for

Chapter 5.

All this is to say that very few, if anyone, believes that conventional models of

superconductivity should describe such materials. After all, the theoretical workhorse for

capturing some qualitative physics featured in the cuprates is the single-band Hubbard

model [64, 65, 66], which includes electron hopping and a highly-local repulsive electron-

electron interaction, omitting lattice dynamics entirely. Many qualitative features of the

cuprate phase diagram also appear in various parts of the 2D Hubbard model phase diagram.

For this and other reasons, simple models like the Hubbard model are of high interest to

theorists. They provide a tunable platform to study how the microscopic picture manifests

ordered phases and other emergent phenomena on a macroscopic scale. However, our

principal interest here is not the repulsive Hubbard model or any related models with

magnetic correlations.

1.1.2 Layered superconductors

Both the cuprates and pnictides offer another avenue of inquiry regarding the role of material

layers and high-temperature superconductivity. In the previous section, we mentioned the

monolayer FeSe on an STO substrate with an impressively high-Tc compared with bulk

FeSe. Adding more layers of FeSe lowers Tc toward its bulk value [67, 68, 69], suggesting the
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essential physics occurs at the interface. One can find a maximal Tc in the cuprates with

some optimal number of copper-oxide layers (usually 3) [70]. This observation raises several

questions about the interface’s underlying phenomenology between two compounds and the

longer-range correlations formed over several layers.

One of these questions, inspired by the cuprates, asks if it is possible to raise Tc

in a strongly phase fluctuating superconductor by coupling it to a metal [71]. In the

underdoped cuprates, superconducting pairs form at much higher temperatures than the

actual Tc, where long-range phase coherence finally succeeds. Contrast this with simple

metallic superconductors where pairing and phase coherence happen nearly simultaneously.

Of course, unlike metals, the cuprates host strong correlations and large thermal phase

fluctuations [72]. In the underdoped regime where the pseudogap exists for temperatures

above the critical temperature, fluctuations of the pair-field are manifest in calculations of

the superconducting susceptibility [73]. This system has a large pairing scale characterized

by the superconducting gap but a low phase stiffness. The metal has precisely the opposite

problem. It has a high phase stiffness but a small pairing scale. By growing a metallic film

atop the correlated superconductor, could we significantly raise Tc? This question was posed

by Steven Kivelson [71] and is the primary concern of Chapter 5, where we use state-of-the-

art numerics to access a parameter regime seldom studied for this problem.

1.2 Models

The study of model Hamiltonians offers a valuable means for the understanding of

superconductivity and strongly correlated phenomena. They can be material-specific models

that use experimental or first principles-based estimates of the bare parameters, or they can

be more general and simplistic. The former procedure can result in realistic models, which

may be too challenging to study unless the calculation makes significant compromises, such as

downfolding the Hilbert space to a subspace with fewer bands and highly local interactions.

Those downfolded models look more like the toy models people study generally, but the

parameters are specially tuned. The toy models are valuable because they provide much-

needed intuition for the interplay between microscopic degrees of freedom and how that
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gives rise to the emergent macroscopic state. However, even the most popular models are

not always fully mapped out and understood.

This fact brings us to a key motivation of this dissertation. While the future of condensed

matter theory indeed entails the study of more realistic and complex many-body systems, we

cannot yet claim to have understood the simpler models that will comprise them. The recent

large-scale efforts [74, 75, 76, 77] to make sense of the repulsive 2D Hubbard model [64, 65, 66]

exemplifies this sentiment best. The parameter regimes considered in these works present

analytical and numerical challenges. There, the interaction is neither weak nor strong,

eliminating methods based on perturbation theory. Worse is the debilitating Fermion sign

problem that arises in Monte Carlo simulations for such parameters. This highly entangled

region of the phase space is fraught with competing intertwined orders and non-Fermi-liquid

physics [78].

1.2.1 The Holstein model

The Hubbard model is often referred to as the “standard model of condensed matter”, for it

includes (arguably) the minimum ingredients to describe interacting mobile electrons on a

lattice.1 As stated previously, this model completely ignores the lattice degrees of freedom

and their interactions with electrons. If there were an equivalent title to be issued for a model

of electron-lattice interactions, it would undoubtedly go to the Holstein model [79, 80]. It

describes a single band of electrons that hop from site to site and interact with the lattice by

coupling linearly to the ion displacement. The ions2 are treated in the simplest conceivable

way barring their omission entirely. Each lattice site has an ion, all identical, and all of

which vibrate harmonically and independently of each other (i.e., ion-ion interactions are

neglected). There is just one orbital per ion for the valence electrons to occupy, hosting two

electrons at most. For a static and perfect lattice, Bloch electrons move without interference
1Perhaps a better title would be the “standard model of electronic correlations”.
2As pointed out by Mahan [81],

“The word ion is not meant to imply a particular charge state. In metals, the atoms are ions,
while in covalently bonded semiconductors they are something else. We use ion to encompass
all these possibilities.”
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from the ions. However, the displaced ions couple linearly to the density of the electrons on

a site.

Mathematically, the Holstein model can be written as

Ĥ = −t
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
− µ

∑
i,σ

n̂i,σ +
∑
i

[
P̂ 2
i

2M + 1
2MΩ2X̂2

i

]
− α

∑
i,σ

n̂i,σX̂i, (1.1)

where ĉ†i,σ (ĉi,σ) creates (annihilates) an electron on site i with spin σ, and the number

operator n̂i,σ = ĉ†i,σ ĉi,σ. The transfer integral (“hopping-t” ) −t is shorthand for the

one-particle hopping matrix element 〈i| Ĥ0 |j〉 for different states i and j. Conceptually,

one arrives at this simplification by assuming that each on-site electronic orbital is highly

localized. The amplitude to tunnel between sites decays exponentially with the distance

between the two locations, thereby permitting us to omit all but the nearest-neighbor

hopping 3. This hopping has a negative sign because it stems from the overlap integral

between the wavefunctions and the negative crystalline potential. The notation 〈i, j〉 in the

first sum indicates that the site indices are restricted to nearest neighbors only. We always

work in the grand canonical ensemble, so the chemical potential µ serves to tune the average

density of electrons in the system. The ion momentum and position operators at site i

are given by P̂i and X̂i, respectively. They act as identical independent harmonic oscillators

located at each site with a dispersionless frequency Ω and massM . Lastly, these ions interact

with electrons occupying the same site with an interaction strength α. Throughout much of

this work, the units are such that ~ = kB = M = a = 1, where a is the lattice spacing. We

will restore some quantities with appropriate units when it proves useful.

The Hamiltonian form given by Eqn. (1.1) is particularly well suited for quantum Monte

Carlo (QMC) simulations since the coordinatesX can be simulated directly as configurations.

Alternatively, one may quantize the lattice vibrations using the creation and annihilation

operators well known to all who have studied the quantum harmonic oscillator. Here, P̂ and

X̂ are given by

X̂i =
√

~
2MΩ

(
âi + â†i

)
and P̂i = i

√
M~Ω

2
(
−âi + â†i

)
, (1.2)

3Later, we will include next-nearest-neighbor hopping and discuss it’s consequences on the Holstein model.
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where â†i and âi are bosonic operators (i.e.,
[
â†i , â

†
j

]
=
[
âi , âj

]
= 0 and

[
âi , â

†
j

]
= δi,j). With

these substitutions, the ionic energy terms can be simplified as

Ĥion =
∑
i

P̂ 2
i

2M + 1
2MΩ2X̂2

i =
∑
i

~Ω
(
â†i âi + Î

2

)
, (1.3)

which includes the zero-point energy and all additional phonon quanta. In general

applications, the dispersionless phonon energy is too simple to describe real materials

accurately. However, it captures the qualitative physics of higher energy optical phonon

modes, which are relatively flat compared with acoustic modes, particularly in materials with

complex unit cells like the cuprates. Precision calculations aimed at matching experimental

values would be much improved using a dispersion ~Ωq,ν where q is the momentum of a

particular mode and ν is a phonon branch index. In d dimensions, with Nions-uc per unit cell

and N unit cells, there are d × Nions-uc × N independent oscillators. In this work, we will

only require the Einstein phonons in d = 2 for calculations. Here, we take one oscillator per

unit cell, and so the number of oscillators is just N .

Using the first equation in Eqns. (1.2), the electron-ion interaction can be written as an

e-ph interaction

Ĥe-ph = −g
∑
i,σ

n̂i,σ
(
âi + â†i

)
(1.4)

where g := α
√

~
2MΩ is called the (Holstein) e-ph coupling.

It is advantageous to obtain the Fourier transform of the Holstein model when using

methods other than the DQMC. The details of this transform are in Appendix A, and the

result (setting ~ = 1) is given by

Ĥ =
∑
k,σ

εkĉ
†
k,σ ĉk,σ + Ω

∑
k

(
â†kâk + Î

2

)
− g

∑
k,q,σ

ĉ†k+q,σ ĉk,σ

(
âq + â†−q

)
. (1.5)

This form will be useful for the self-consistent Migdal approximation (SCMA), which is

treated using many-body perturbation theory (MBPT).

There is something curious about the way the Holstein model appears in modern

literature. It is widespread to use dispersionless Einstein modes and refer to optical modes

with no additional details surrounding the atoms in the unit cell. Most physics students
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encounter Einstein phonons while studying the oscillating diatomic chain. The relatively

flat optical branch dispersion is one of two solutions for longitudinal oscillations, with

the other being dispersive acoustic modes. Really, the Holstein model was derived with

a molecular-crystal in mind, where each site is a polar molecule. In that context, the

oscillations correspond to the molecule’s internal displacements and not overall displacements

with respect to the lattice sites. The physics in this model extends beyond these specifics.

As we will show later, the phase diagram reveals a simplified picture of competing for charge-

density and superconducting instabilities. Such competition is relevant for many material

systems, even ones where the Holstein model is hardly the appropriate minimal Hamiltonian.

1.2.2 Some details on electron-phonon coupling

Like Einstein phonons’ simplicity, the Holstein model’s e-ph interaction is the least

complicated possible choice. The coupling is taken to be constant, and results in isotropic

scattering. A more flexible choice for the e-ph interaction would be that of the single-band

Fröhlich Hamiltonian [82, 83] given by

Ĥe-ph =
∑

k,q,σ,ν
gq,ν ĉ

†
k+q,σ ĉk,σ

(
âq,ν + â†−q,ν

)
(Fröhlich interaction). (1.6)

For the most general form [84], one can restore the complete momentum, band, and branch

dependence to the e-ph coupling matrix element gn′n,ν(k,q) given by

gn′n,ν(k,q) ≡ gq,ν
k+q,n′;k,n ∝ 〈k + q, n′, σ|∆q,νV̂e-i |k, n, σ〉 , (1.7)

where an electron in band n with crystal momentum k is scattered by a phonon (in this case,

absorbing it) of momentum q in branch ν into a final band n′ with momentum k + q. Such

matrix elements can be calculated within the Kohn-Sham formalism of density-functional

theory (DFT).

There is a considerable amount of detail hidden away in Eqn. (1.7). For one, the electronic

states that bookend this matrix element are generally taken to be Bloch-periodic components
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of the Kohn-Sham electron wave functions.4 The scattering potential operator ∆q,νV̂e-i is the

slight phonon-induced variation of the self-consistent potential experienced by the electrons.

This potential is a complicated object, accounting for electronic screening effects in the

presence of the oscillating ions/nuclei in a very general and self-consistent manner. The

most up-to-date formalism for evaluating these matrix elements instead relies on a real-space

picture made possible in part by Wannier functions. Since our models are much simpler than

what is generally prescribed by DFT, we instead refer the reader to Ref. [84] for the latest

treatments.

The derivation of the e-ph coupling contribution to the Hamiltonian is covered in most

condensed matter textbooks [86, 81, 87, 88, 89, 85], and we will recall just a few essential

points from those discussions. Our starting point is the electron-ion Hamiltonian is given by

Ĥe-i =
N∑
i=1

ĥe-i(ri), (1.8)

where

ĥe-i(ri) =
∑
κ,p

V̂e-i(ri −Rκ,p), (1.9)

is the sum over all individual interactions V̂e-i(ri − Rκ,p) between the i-th electron located

at position ri and an ion at position Rκ,p. For now, we use the indices p = 1, . . . , N and

κ = 1, . . . , Nions-uc to denote a particular unit cell and the ion’s designation within that cell,

respectively. If we take the ionic oscillator equilibrium position to be R0
κ,p and the associated

displacement to be Xκ,p, then Rκ,p = R0
κ,p + Xκ,p. Rewriting the electron-ion interaction

4In fact, when the coupling depends only on the momentum transfer [i.e., gν(q)], the electrons are
effectively plane waves. The more general form gn′n,ν(k,q) arises when the Bloch wave functions of the
electron band replace the plane-wave functions [85].
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terms as V̂e-i(ri −R0
κ,p −Xκ,p), we then expand in terms of Xκ,p, giving us

ĥe-i(ri) =
∑
κ,p

V̂e-i(ri −R0
κ,p −Xκ,p)

=
∑
κ,p

V̂e-i(ri −R0
κ,p)−

d∑
α=1

X̂α,κ,p

∂V̂e-i(ri −R0
κ,p)

∂rα

+1
2

d∑
α=1

d∑
β=1

X̂α,κ,pX̂β,κ,p

∂2V̂e-i(ri −R0
κ,p)

∂rα∂rβ
+O(X̂3)

 , (1.10)

where α and β are indices for Cartesian coordinates in d-dimensions.

For the expansion to be meaningful, the displacements X̂α,κ,p should be small enough

to render the higher-order terms as negligible. How small is small enough? In practice,

sufficient grounds for omitting higher-order terms are that they do not appreciably change

results after their inclusion. To the degree that higher-order terms can be dealt with at

all, we may only have the means to check the next leading order contribution. For now,

we will limit the series to the linear term only and will revisit the nonlinear terms shortly.

Incidentally, the first term (i.e., ĥ(0)
e-i (ri) ≡

∑
κ,p V̂e-i(ri−R0

κ,p)) is just the interaction between

the electrons and the frozen lattice configuration. This term contributes to the periodic

crystal potential whose Hamiltonian contribution Ĥ(0)
e-i = ∑

i ĥ
(0)
e-i (ri) is typically solved first,

yielding Bloch states as its eigenfunctions. In the Holstein Hamiltonian and many others,

the effects of Ĥ(0)
e-i are accounted for à la tight binding.

By far, the most common way to deal with Eqn. (1.10) is to employ the linear

approximation: ĥe-i(ri) ≈ ĥ
(0)
e-i (ri) + ĥ

(1)
e-i (ri), where

ĥ
(1)
e-i (ri) = −

∑
κ,p

d∑
α=1

X̂α,κ,p

∂V̂e-i(ri −R0
κ,p)

∂rα
. (1.11)

Alternatively, this can be written in vector notation as

ĥ
(1)
e-i (ri) = −

∑
κ,p

X̂κ,p · ∇rV̂e-i(ri −R0
κ,p). (1.12)

Without further qualification, the potential V̂e-i(ri − R0
κ,p) corresponds to the unscreened

electron-ion potential. Electron-electron interactions act to reduce this potential via
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screening in real materials [81]. As indicated previously, ab initio methods include the

effects of electronic screening and additional contributions such as exchange and correlation

at this stage [84]. The lowest order approximation would be to replace V̂e-i with a screened

interaction V̂e-i/ε where ε is the dielectric constant.

Let us perform the Fourier transform of of the interaction potential using V̂e-i(r) =
1
V
∑

q′ V̂e-i,q′eiq′·r so the gradient becomes

∇V̂e-i(ri −R0
κ,p) = 1

V
∑
q′

(iq′)V̂e-i,q′eiq′·(ri−R0
κ,p), (1.13)

where V is the volume of the crystal. Writing q′ as the sum of a reciprocal lattice (RL)

vector G ∈ RL and a wave vector q in the first Brillioun zone (FBZ), as in q′ = q + G, we

have

∇V̂e-i(ri −R0
κ,p) = i

V
∑

q∈FBZ

∑
G∈RL

(q + G)Ve-i,q+Gei(q+G)·(ri−R0
κ,p). (1.14)

The e-ph interaction operator becomes

ĥ
(1)
e-i (ri) = − i

V
∑

q∈FBZ

∑
G∈RL

∑
j

X̂j · (q + G)Ve-i,q+Gei(q+G)·(ri−R0
j ), (1.15)

where we have opted for a single index for the all the ions j = 1, . . . , Nions with Nions =

Nions-ucN .

We can now replace the displacement operator by is occupation number representa-

tion [87]

X̂j = 1√
N

∑
p∈FBZ

∑
ν

√√√√ ~
2MΩp,ν

(
âp,ν + â†−p,ν

)
εp,νeip·R0

j , (1.16)

which is a linear combination of solutions from the harmonic phonon eigenvalue problem.

These solutions cover the d × Nion-uc phonon modes, of which there are d acoustical modes

and d × (Nion-uc − 1) optical modes. Each mode is described by a branch dispersion Ωp,ν

appearing in the phonon Hamiltonian given by Ĥph = ∑
p,ν ~Ωp,ν

(
â†p,ν âp,ν + 1

2

)
. For each

branch index ν, Ωp,ν is defined in N discrete points in p-space. The polarization vector εp,ν

determines the direction of of the displacement relative to the wave vector p. Note also that
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since the displacements X̂j are real, we must have ε∗p,ν = ε−p,ν . Most often, we deal with

longitudinal modes for which εp,ν ‖ p. The transverse modes (εp,ν ⊥ p) do not to produce

significant e-ph coupling in most applications.

After substituting Eqn. (1.16) into Eqn. (1.15), we can simplify the sum over j using∑
j ei(p−(q+G))·R0

j = Nδp,q+G. Since phonon wave vectors are only defined within the FBZ,

we can drop the reciprocal lattice vector from the appropriate terms and write

ĥ
(1)
e-i (ri) = −

∑
q,ν

∑
G
gq,G,ν

(
âq,ν + â†−q,ν

)
ei(q+G)·ri , (1.17)

where we have introduced the e-ph coupling strength gq,G,ν given by

gq,G,ν = i
V

√√√√ N~
2MΩp,ν

εq,ν · (q + G)Ve-i,q+G. (1.18)

If we define the e-ph Hamiltonian under the linear approximation as

Ĥe-ph =
∑
i

ĥ
(1)
e-i (ri), (1.19)

then we can expand the sum in second quantized notation for the fermion operators5:

Ĥe-ph =
∑

k,k′,n,n′,σ
〈k′, n′, σ| ĥ(1)

e-i |k, n, σ〉 ĉ
†
k′,n′,σ ĉk,n,σ. (1.20)

Here, we have used a generic Bloch basis and assumed that the spin remains unchanged after

e-ph scattering events (i.e., σ′ = σ). Inserting a completeness relation 1̂ =
∫

dr |r〉〈r|, we
5Any fermionic one-body Hamiltonian of the form Ĥ1 =

∑N
i=1 ĥ(i), can expressed in a basis {|φν〉} with

operators ĉ†ν and ĉν via
Ĥ1 =

∑
ν,µ

〈φµ| ĥ |φν〉 ĉ†µĉν .
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have

Ĥe-ph =
∑

k,k′,n,n′,σ

(∫
dr〈k′, n′, σ|r〉〈r| ĥ(1)

e-i |k, n, σ〉
)
ĉ†k′,n′,σ ĉk,n,σ

= −
∑
q,ν

∑
G

∑
k,k′,n,n′,σ

(∫
drφ∗k′,n′,σ(r)gq,G,νei(q+G)·rφk,n,σ(r)

) (
âq,ν + â†−q,ν

)
ĉ†k′,n′,σ ĉk,n,σ,

where φk,n,σ(r) = eik·run,k(r) |σ〉 is a Bloch function and un,k(r) has the same periodicity as

the lattice.

Let us make some simplifying approximations. We can start by dropping the band index,

n, and work within a single partially filled band (like the Holstein model). In such a case,

we can approximate un,k(r) ≈ 1/
√
V , and take the so-called “effective mass approximation”

where εk = ~2k2/2m∗, where m∗ is the usual effective electron mass [89]. This is a reasonable

approximation for metals since m∗ ≈ m, but it may be dubious for other materials such as

semiconductors. Using these approximations, we have

Ĥe-ph = −
∑
q,ν

∑
G

∑
k,k′,σ

gq,G,ν

( 1
V

∫
dr ei(k+q+G−k′)·r

)
︸ ︷︷ ︸

=δk′,k+q+G

(
âq,ν + â†−q,ν

)
ĉ†k′,σ ĉk,σ

= −
∑
q,ν

∑
G

∑
k,k′,σ

gq,G,ν

(
âq,ν + â†−q,ν

)
ĉ†k+q+G,σ ĉk,σ. (1.21)

Some comments about the wave vectors are necessary here. Each of the wave vectors q, k,

and k + q + G must fall within the first Brillouin zone. There is only one reciprocal lattice

vector for any fixed k and q, which, when added to k + q, maps the vector sum back to

the FBZ. If k + q already resides in the FBZ, then G = 0; otherwise, G is nonzero. It

is customary to keep only the “normal processes” where G = 0, and neglect all Umklapp

processes where G is nonzero. The primary reasons for this are two-fold: (1) the potential

Vq+G is small with inverse squared dependence (i.e., ∝ (q + G)−2), and (2) the phase space

for Umklapp type processes is negligible at low temperatures [87].

Finally, dropping the G dependence based on the arguments above, we have

Ĥe-ph = −
∑
q,ν

∑
k,k′,σ

gq,ν ĉ
†
k+q,σ ĉk,σ

(
âq,ν + â†−q,ν

)
. (1.22)
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All of the material specific information lives within the e-ph coupling gq,ν . With this

derivation, we can better understand how the intricate details of e-ph interactions get

smeared out or lost entirely in the Holstein model. Many approximations were made along

the way:

• Linear approximation: We expanded the electron-ion interaction potential V̂e-i(ri−

Rj) in the displacement X̂j, keeping only the lowest order terms up to order O(X̂).

• Fourier Transform of V̂e-i(r): We assume a perfect crystal lattice without anomalies

such that the Fourier transform of V̂e-i(r)→ V̂e-i,q′ exists.

• Harmonic lattice: We use the normal coordinate representation of X̂j in Eqn. (1.16),

which relies on solving the harmonic lattice problem. If anharmonicities between

pairwise interactions of atoms are significant, the treatment should account for them

properly.

• Bloch electrons: In order to make further sense of Eqn. (1.20), we introduced Bloch

state electrons and then proceeded to fix the function un,k(r) ≈ 1/
√
V .

• Singleband only: We do not consider e-ph scattering events that take an electron

from one band to another and omit all but one band in total.

• No Umklapp processes: Any processes for which k + q falls outside the FBZ are

not included in the sums. However, in applications, we need not be so restrictive by

allowing k + q outside the FBZ, but restricting the sum to G = 0 only.

The Holstein model introduces two more approximations:

• Single branch: Since we only consider one dispersionless optical phonon branch, we

drop the index ν from all quantities and Ωq,ν → Ω.

• Momentum independent coupling: The coupling gq is replaced by constant g. In

model calculations, one is more concerned about the relative size of g to other model

parameters, such as the hopping t.
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1.2.3 The effective electron-electron interaction

The e-ph coupling plays the role of the bare interaction vertex. Using Feynman diagrams,

this vertex is given by 6

q

k, σ

k + q, σ

= igq . (1.23)

Here, the right hand side (rhs) came from the product (i)3 × −gq where each factor of i

comes from one of the three propagators. As depicted, an electron in state |k, σ〉 is scattered

into a state |k + q, σ〉 by absorbing (emitting) a phonon of wave vector q (−q). We use the

compact notation k ≡ (k, iωn) and q ≡ (q, iνn), where the fermionic and bosonic Matsubara

frequencies are given by ωn = (2n+1)πT and νn = 2nπT , respectively (note that n ∈ Z). We

will discuss the treatment of the electron-interaction vertex more generally in short order.

This vertex permits us to discuss the exchange of a phonon between two electrons.

−iV 0
eff(q) =

q

k, σ

k + q, σ

k′, σ′

k′ − q, σ′

= (igq)
2(iD0(q)) = −ig2

qD0(q) , (1.24)

where we have used the free phonon propagator

D0(q) = 2Ωq

(iνn)2 − Ω2
q
. (1.25)

The induced bare effective interaction between two electrons as mediated by a phonon can

written as

V 0
eff(q, z) = g2

q
2Ωq

z2 − Ω2
q
, (1.26)

where z ∈ C is a frequency.
6For the purposes of generality, we have temporarily restored some momentum dependence to the coupling

gq and—in a moment—the phonon frequency Ωq.
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At this level, we can highlight a few characteristics about the interaction above. For one,

it depends much more strongly on frequency than momentum, reflecting the retarded nature

of the e-ph interaction and its spatial locality (though there are cases where gq is strongly

peaked, such as the forward scattering problem [90]). The time scale for restitution with

respect to the e-ph related to Debye frequency ωD, as in τe-ph ∼ 1/ωD. In comparison, the

corresponding relaxation time associated with the repulsive Coulomb interaction is τe-e ∼

1/εF, where εF is the Fermi energy. The ratio of these two relaxation times is a rough measure

of the adiabaticity, given by

τe-e

τe-ph
∼ ωD

εF
∼
√
m

M
∼ 1

100 , (1.27)

where m andM are the bare electron and ion masses, respectively. We will occasionally refer

to ωD/εF (or, generically Ω/EF) as the “adiabatic ratio.” The bare dispersion Ωq is of order

ωD for acoustic phonons, and of order Ω ≡ ωE for optical phonons (ωE is the characteristic

Einstein frequency). Consequently, this means that the interaction V 0
eff is attractive when the

|z| < ωD. This attractive e-e interaction is the basis for superconductivity in conventional

superconductors and relevant for the Holstein model. However, the phonon dispersion will

begin to soften near particular wave vectors in the presence of a charge instability. As a

result, the bare interaction V 0
eff will be renormalized, thereby affecting the superconducting

instability.

Ignoring the possibility of competing order for the moment, let us say more about the

superconducting instability. It is well known from BCS theory that low-energy electrons

close to the Fermi surface are responsible for driving the superconductivity. The energy

transferred in these scatterings is close to zero; hence the frequency conservation in our

diagrams above implies ∆ω = z ≈ 0 in Eqn. (1.26). The effective interaction close to the

Fermi surface is then equal to

V 0
eff(q, 0) = −

2g2
q

Ωq
. (1.28)

The momentum dependence of V 0
eff(q) depends strongly on the phonon branch and the origin

of gq. For longitudinal acoustic phonons, this ratio is essentially momentum independent.
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For longitudinal optical phonons, a flat Einstein phonon dispersion is often used, meaning

that momentum dependence in V 0
eff(q) primarily follows g2

q.

1.2.4 A dimensionless e-ph coupling constant λ

Of particular importance to this thesis is the introduction of the dimensionless e-ph coupling

constant lambda. Replacing the momentum indices with their equivalence in k and k′, we

estimate this value using

λ = NF

〈〈
2g2

k−k′

Ωk−k′

〉〉
FS

= NF

∑
k,k′

w(k,k′)2g2
k−k′

Ωk−k′
δ(εk)δ(εk′)∑

k,k′
w(k,k′)δ(εk)δ(εk′)

(1.29)

where the notation 〈〈· · · 〉〉FS implies a double Fermi-surface average of the quantity inside

the brackets over momentum7 k,k′ ∈ FS, NF ≡ N(0) is the electron density of states

(DOS) evaluated at the Fermi level, and w(k,k′) is a weight function to be specified. For

superconductivity, w = 1 for the weight function, while other functions may be used for

transport applications. In typical metals, λ ∼ 0.1 - 2. Historically, these values are obtained

through a mixture of first principles methods (e.g., local density approximation, energy

bands, rigid ion approximation) and experiment [91].

In the Holstein model, 2g2
k−k′

Ωk−k′
→ 2g2

Ω , and the remaining sums in Eqn. (1.29) cancel each

other, giving us

λ = 2g2

Ω NF = α2

MΩ2NF. (1.30)

This equation is often simplified further by using NF ≈ 1/W , where W is the electronic

bandwidth:

λ = 2g2

WΩ = α2

WMΩ2 . (1.31)

This dimensionless coupling is useful in several ways:

• It puts all of the model parameters on equal footing and allows easier comparison

across different results stemming from different approaches.
7Actually, the most general form replaces k and k′ with generic quantum numbers k̃ and k̃′, where (for

example) k̃ ≡ (k, n, σ).
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• It appears as a prefactor within diagrammatic perturbation theory given by λ Ω
εF
. If

this product of the dimensionless coupling constant and the adiabatic ratio Ω/εF is

sufficiently small, we can use Migdal’s approximation to neglect higher order corrections

to the e-ph vertex [92].

• It has a direct connection with estimates of the e-ph coupling from tunneling

measurements.

1.2.5 The nonlinear Holstein model

Of the many approximations used in our discussion of the e-ph interaction in Section 1.2.2,

the linear approximation was the first one made. Even if one keeps the linear approximation

but relaxes one or more of the others, it can be challenging to deal with the interaction.

How then could it be sensible to add nonlinear terms? For the Holstein model, it is possible

to add the next leading order term on the same footing as the linear term. We start by

assuming that the part of our expansion in Eqn. (1.10) corresponding to the e-ph interaction

(i.e., Ĥe-ph = ∑
i

∑
k=1 ĥ

(k)
e-i (ri)) can be expressed as

Ĥe-ph =
∑
i,k

αkn̂iX̂
k
i =

∑
i,k

gkn̂i
(
â†i + âi

)k
. (1.32)

This Hamiltonian describes the e-ph interaction to kth order in the atomic displacement at

site i. Here, αk and gk are the e-ph interaction strengths in the two representations, which

are related by gk = αk
(

~
2MΩ

) k
2 . In Chapter 4, we consider this interaction up to second

order only. Comparing with the e-ph interactions of Eqns. (1.1) and (1.4), the nonlinear

interaction to second order is

Ĥe-ph =
∑
i

n̂i
[
α1X̂i + α2X̂

2
i

]
=
∑
i

n̂i

[
g1

(
â†i + âi

)
+ g2

(
â†i + âi

)2
]
. (1.33)

Let us rewrite the terms after the second equals sign as

Ĥe-ph =
∑
i

g1n̂i
(
â†i + âi

) [
1 + ξ

(
â†i + âi

)]
, (1.34)
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where ξ := g2/g1. The influence of this nonlinearity will depend greatly on the magnitude

and sign of ξ. As we will discuss in Chapter 4, even small values of ξ can yield a significant

departure from the results of the linear model.

1.2.6 The attractive Hubbard-metallic bilayer model

The models described up to now are concerned with the electron-phonon problem. In the

Chapter 5, we shift gears and focus on a superconducting bilayer system where one layer has

a sizable local attractive electron-electron interaction, and the other layer is metallic. This

composite system consists of a correlated negative-U Hubbard layer and a non-interacting

(metallic) layer connected through interlayer single-particle tunneling. Both layers have a

square lattice geometry with identical lattice spacing. The connection to models in the

previous sections is that the negative-U Hubbard model can be viewed as the Ω→∞ limit

of the Holstein model [93].

The composite bilayer Hamiltonian is defined as

Ĥ = −
∑
〈ij〉,α,σ

tα(ĉ†iασ ĉjασ +H.c)−|U |
∑
i

n̂i1↑n̂i1↓+
∑
i,α,σ

(ε2δα2−µ)n̂iασ + t⊥
∑
i,σ

(ĉ†i1σ ĉi2σ +H.c.),

(1.35)

where ĉ†iασ (ĉiασ) creates (destroys) an electron on the ith site of the α = 1 or 2 layer with

spin σ (=↑, ↓) and n̂iασ = ĉ†iασ ĉiασ; −|U | is an attractive on-site interaction; tα is the hopping

within layer α; ε2 is an on-site energy term in the metal; µ is the chemical potential; t⊥ is

the single-particle hopping/tunneling between layers.

Kivelson proposed the conceptual model [71] and later studied it with Berg et al [94]. In

Ref. [94], this model was studied perturbatively for no hopping in the correlated (Hubbard)

layer (i.e., t1 = 0) and hopping in one direction (e.g., t1,x 6= 0 and t1,y = 0; a.k.a.,

“nanowires”). Later, Wachtel et al. [95] considered the former using quantum Monte Carlo

and included the effects of disorder. A more general study using determinant quantum Monte

Carlo addressed the model hopping in the correlated layer restored [96].

When the correlated sites are disconnected (t1 = 0), and the tunneling is zero, the

correlated layer has a vanishing Tc and zero superfluid stiffness. As tunneling increases,

superconducting pairs can migrate to the metallic layer, which possesses a high phase
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stiffness. The transition temperature increases until reaching a peak at some optimal

tunneling value and then decreases monotonically. The earlier studies primarily explored

the regime where the interaction was small compared to the electronic bandwidth, and here,

the metal always helps boost the transition temperature. The only study to focus on the

general problem with hopping in the correlated layer did not attempt to extract critical

temperatures or their dependence on the tunneling.

We study this model for a more general case in Chapter 5. The goal is to determine if

the metal offers a significant boost to the superconducting transition temperature when the

correlated layer starts with a non-zero phase stiffness.

1.3 Methods

1.3.1 Migdal’s Approximation

One of the critical breakthroughs on the e-ph problem was introducing an approximation

to the e-ph interaction vertex made by Arkadii Migdal [92]. Much in the spirit of the

Born-Oppenheimer approximation, which capitalizes on the velocity disparity between large

slow-moving ions and fast-moving lightweight electrons, Migdal’s approximation (a.k.a.,

Migdal’s “theorem”) shows that renormalization of the e-ph vertex is suppressed by a factor

of
√
m/M ∼ 10−2 or more. To see how this result comes about, we will proceed with similar

arguments made in Refs [97, 85].

The self-energy of the electron in the e-ph problem has a Feynman diagrammatic

expansion given by

Σ(k) = + = + + . . .

. . . + + + + . . .

(1.36)
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where the diagrams appearing just after the first equals sign are the fully dressed

(abbreviated) self-energy. The shaded circle on the dressed self-energy diagram8 is the full

e-ph interaction vertex. In diagrams, the vertex part looks like

Γ(q) = = + + . . . = igq(1 + Γ(2)(q) + . . .), (1.37)

where the second diagram after the second equals sign corresponds to the vertex correction

Γ(2)(q) = T
∑
k′

(igk−k′)2D0(k − k′)G0(k′ + q)G0(k′). (1.38)

The quantities G0(k) and D0(k − k′) are the noninteracting fermion and boson Green’s

functions given by

G0(k) = 1
iωn − εk

, (1.39)

and

D0(k − k′) = − 2Ωk−k′

(ωn − ωn′)2 + Ω2
k−k′

, (1.40)

respectively. Note that we used frequency conservation to set (iνn)2 = −(ωn − ωn′)2. The

sum over k′ ≡ (k′, iωn′) in Eqn. (1.38) is shorthand for ∑iωn′
∫ dk′

(2π)3 . In the limit T → 0, the

sum over Matsubara frequencies becomes an integral: T ∑iωn′ →
∫ dωn′

2π . If temperatures are

low enough, the integral is still good approximation. Now we need to choose a frequency

cutoff for this integral. At its largest, Ωk−k′ becomes comparable to the Debye frequency ωD.

Notice that when |ωn − ωn′| > ωD, we can expand the bare phonon propagator in a series

D0(k − k′) ≈ −2
[

Ωk−k′

(ωn − ωn′)2 −
Ω3

k−k′

(ωn − ωn′)4 +O

(
1

(ωn − ωn′)5

)]
, (1.41)

8The shaded vertex appears only on one side of the self-energy diagram because an additional circle on
the other side would introduce topologically identical diagrams to those included within the other dressed
vertex, leading to double counting.
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which vanishes quickly as (ωn′)−2. We can restrict the frequency integral to a window from

−ωD to ωD:

Γ(2)(q) ≈
∫ ωD

−ωD

dωn′
2π

∫ dk′

(2π)3 (igk−k′)2D0(k − k′)G0(k′ + q)G0(k′). (1.42)

Recall from Eqn. (1.29) that g2
k−k′ ∼

λΩk−k′

2NF
. Since D0 ∼ −2/Ωk−k′ for |ωn − ωn′ | � ωD, we

should have that

g2
k−k′D0(k− k′) ∼ λΩk−k′

2NF
×
(
− 2

Ωk−k′

)
= − λ

NF
. (1.43)

Updating the vertex, we have

Γ(2)(q) ≈ λ

NF

∫ dk′

(2π)3

∫ ωD

−ωD

dωn′
2π G0(k′ + q)G0(k′). (1.44)

The remaining frequency integral is just a product of two free-fermion Green functions, which

can be expanded around zero frequency:

G0(k′ + q)G0(k′) ≈ 1
εk′+qεk′

+ i(εk′+q + εk′)
(εk′+qεk′)2 ωn′ −O((iωn′)2). (1.45)

At lowest order, the frequency integral is

∫ ωD

−ωD

dωn′
2π G0(k′ + q)G0(k′) ≈ 1

π

ωD

εk′+qεk′
∝ ωD. (1.46)

For free fermions, the dispersion is trivial εk′ → ~2(k′)2

2m and the remaining momentum space

integral is approximately

Γ(2)(q) ∼ λωD

NFπ

dk′

(2π)3 4π
∫ kF

0
dk′ (k′)2 1

( ~2

2m)2(k′ + q)2(k′)2︸ ︷︷ ︸
∼ 1

( ~2
2m )2kF

=
k3
F
ε2F

= λωDk
3
F

2π3NFε2F
, (1.47)

where we used spherical coordinates to evaluate the momentum integral. The density of

states at the Fermi level can be approximated by NF ∼ 1
εFa3 (a is the lattice spacing) and
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the approximate vertex becomes

Γ(2)(q) ∼ k3
Fa

3︸ ︷︷ ︸
∼1

λωD

εF
∼ λ

ωD

εF
∼ λ

√
m

M
. (1.48)

In other words, the vertex series has corrections that scale as O
(√

m
M

)
or, equivalently,

O
(
ωD
εF

)
. When we neglect these higher order corrections, we are omitting so-called “crossing”

diagrams from the self-energy expansion. A couple examples of such diagrams are depicted

below:

Σ(Neglected Diagrams) = + + . . . . (1.49)

By no means have we proven anything rigorous with this hand-waving approximation of

the vertex. A more careful treatment of this term is quite involved and outside the scope of

this introduction. However, the prefactor proportional to λωD
εF

still prevails. Issues arise in

scattering events where the energies of scattered electrons are degenerate. Singularities that

we have swept under the rug in our analysis can arise in the presence of charge and Cooper

instabilities, two phenomena encountered frequently in our applications.

So when can we apply this approach? Some recent works demonstrate that abiding by

the prefactor alone is misleading [98, 99, 100]. While the precise boundary of validity may

never be known, it is clear that comparison with nonpertubative methods is sufficient in

specific applications [98, 99, 3, 100].

In the next chapter, we will introduce a modern approach to performing calculations

under Migdal’s approximation. There, the goal is to calculate the electron and phonon

propagators and two-particle susceptibilities self-consistently. Using a clever application of

fast-Fourier transforms, we can numerically solve the many-body problem under Migdal’s

approximation for impressively large lattices and obtain estimates of quantities in the

thermodynamic limit.
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1.3.2 Determinant Quantum Monte Carlo

In Chapters 3 and 4, we employ determinant quantum Monte Carlo (DQMC) [101, 102, 103]

as a nonperturbative means of studying the Holstein model and the nonlinear Holstein

model, respectively. Much like the SCMA, the DQMC offers a means of estimating

one- and two-particle propagators in finite-temperature many-body theory. However, the

DQMC formalism stochastically sums all Feynman diagrams implicitly by sampling the

exact partition function. The trade-off is that DQMC is resource-intensive and limited to

smaller finite-size lattices and higher temperatures than many-body perturbation theory.

As a consequence, some DQMC results are merely qualitative representations of the

thermodynamic limit. In scenarios where the universality class of specific correlations is

known, one can use finite-size scaling techniques over a range of lattice sizes to extract the

thermodynamic limit result.

In this section, we discuss basic formalism and introduce formulas without proof. We

focus on a generic nonlinear Holstein model that applies to the linear model when the

nonlinear coupling is zero. For a more detailed discussion, including many derivations,

we refer readers to the Appendix B. Other valuable references include but are not limited

to Refs. [102, 104, 105]. Much of the following discussion is taken verbatim from the

Supplemental Information of our Ref. [3].

The Hamiltonian assumed in this context has the form Ĥ = K̂ + Ĥint where

K̂ = −t
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
− µ

∑
i,σ

n̂i,σ +
∑
i

[
P̂ 2
i

2M + 1
2MΩ2X̂2

i

]
(1.50)

Ĥint = −
∑
i

n̂i
[
α1X̂i + α2X̂

2
i

]
(1.51)

We can define the partition function as

Z = Tr(e−βĤ) = Tr(e−βK̂e−βĤint)L +O[(∆τ)2]. (1.52)

Here, the Trotter-Suzuki decomposition was used to discretize the imaginary time interval

τ ∈ [0, β) into L segments of size ∆τ = β
L
, indexed by l. The Hamiltonian, and thus also
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the action, is bilinear in electron operators. The fermion degrees of freedom and lattice

momenta can then be traced out of the partition function [106, 101], leaving an integral over

the displacement fields

Z =
∫
DX det M↑ det M↓e−∆τSph , (1.53)

where
∫
DX is shorthand for integration over the continuous fields Xi,l, Mσ = I +

Bσ(L)Bσ(L − 1) · · ·Bσ(1) and Bσ(l) = e−∆τ [α1X(l)+α2X2(l)]e−∆τK, X(l) is a diagonal matrix

whose ith diagonal element is Xi,l, K is the matrix form of noninteracting fermionic terms,

and I is an N × N identity matrix. The bosonic action Sph describes the bare kinetic and

potential energy of the phonons and is given by

Sph = M

2

(
Xi,l+1 −Xi,l

∆τ

)2
+ MΩ2

2 X2
i,l. (1.54)

There is symmetry between the spin up and spin down electrons in our e-ph problem, which

guarantees the product of determinants in Eqn. (1.53) is larger than zero. Consequently,

the integrand of Z is genuinely a probability distribution eligible for sampling space-time

configurations of phonon fields, and there is no fermion sign-problem.

Single-particle Green’s function and single-site updates

The equal-time Green’s function at time τ = l∆τ is given by

Gσ
i,j(l) = 〈T̂τ ĉi,σ(τ)ĉ†j,σ(τ)〉

= [I + Bσ(l) · · ·Bσ(1)Bσ(L) · · ·Bσ(l + 1)]−1
i,j . (1.55)

Computing the full Green’s function (matrix) Gσ(l) from scratch for a single time slice l

has an operational cost of O(N3). However, once known, Gσ(l) can be used to compute the

Green’s function on the next time slice (l + 1),

Gσ(l + 1) = Bσ(l + 1)Gσ(l)[Bσ(l + 1)]−1, (1.56)

at a reduced operational cost of O(N2).
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To perform a single-site update of the phonon field at a point (i, l), we first propose a field

displacement update Xi,l → X ′i,l = Xi,l+∆Xi,l, where ∆Xi,l is drawn from a box probability

distribution function. Then, the proposed update is accepted with probability R given by

R = det M↑′ det M↓′
det M↑ det M↓ e−∆τ∆Sph , (1.57)

where the prime in Mσ′ corresponds to the updated configuration. Fast Sherman-Morrison

updates [102] are performed on the equal-time Green’s function by first updating the B-

matrices

Bσ(l)→ Bσ′(l) = [I + ∆σ(i, l)]Bσ(l). (1.58)

Here, ∆σ(i, l) is a matrix with elements generically given by ∆σ
j,k(i, l) = δj,iδk,i[exp(−∆τ∆Xi,l)−

1], which is zero for all but one element, ∆σ
i,i(i, l). It follows that the ratio of determinants

can be computed using

Rσ = 1 + [1−Gσ
i,i(l)]∆σ

i,i(i, l). (1.59)

If the phonon field displacement update is accepted, the updated Green’s function is given

by

[Gσ(l)]′ = Gσ(l)− Gσ(l)∆σ(i, l)[I −Gσ(l)]
1 + [1−Gσ

i,i(l)]∆σ
i,i(i, l)

. (1.60)

After updating all the fields for a particular time slice l, Gσ(l) is used to find Gσ(l + 1) by

using Eqn. (1.56).

Two-particle correlation functions

Our primary interest in DQMC calculations is the evaluation of finite temperature correlation

functions. As we discussed, the electron Green’s function is a central quantity responsible

for much of the bottleneck in simulations. However, once we have Green’s functions, we can

use them to form correlation functions via Wick’s theorem at little to no cost. As a simple

example, we will show how the charge-density-wave (CDW) structure factor can be built

directly from equal time Green’s functions.

The CDW structure factor is an equal-time correlation function that measures periodic

modulations of the electron density on the lattice. In DQMC, it is useful to formulate
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measurements on the real space lattice and then Fourier transform them to momentum

space when needed. The structure factor is one such quantity, and its definition is given by

the connected correlation function

SCDW(q) = 1
N

∑
i,j

eiq·(ri−rj) [〈n̂in̂j〉 − 〈n̂i〉〈n̂j〉] , (1.61)

where q is a momentum vector, ri is a position vector to site i, n̂i ≡ n̂i,↑ + n̂i,↓, and 〈· · · 〉

denotes an expectation value in the grand canonical ensemble. In some references, the

definition of SCDW(q) does not explicitly include the subtraction of 〈n̂i〉〈n̂j〉, which could

reflect other details of its application in DQMC. We will omit the 〈n̂i〉〈n̂j〉 term for the

purposes of our demonstration.

We begin by evaluating the main density-density term:

〈n̂in̂j〉 = 〈
∑
σ,σ′

n̂i,σn̂j,σ′〉

=
∑
σ,σ′
〈ĉ†i,σ ĉi,σ ĉ

†
j,σ′ ĉj,σ′〉

=
∑
σ,σ′

[
〈ĉ†i,σ ĉi,σ〉〈ĉ

†
j,σ′ ĉj,σ′〉+ 〈ĉ†i,σ ĉj,σ′〉〈ĉi,σ ĉ

†
j,σ′〉

]
Wick’s theorem

=
∑
σ,σ′

[(1−Gii,σ)(1−Gjj,σ′) + δσ,σ′(δi,j −Gji,σ)Gij,σ] .

Expanding out the spin sums, regrouping terms, and a few lines of algebra allow us to write

〈n̂in̂j〉 = (2−
∑
σ

Gii,σ)(2−
∑
σ′
Gjj,σ)−

∑
σ

Gji,σGij,σ + δi,j
∑
σ

Gij,σ, (1.62)

which is precisely how it appears in the code. The Fourier transform can be carried out

easily on the lattice, and thousands of measurements of SCDW(q) can be performed over the

course of simulation. It is the Monte Carlo averaging that yields the final estimate.

Block updates for the phonon fields

Sampling the phonon fields also requires a block update scheme, which helps to move phonon

configurations out of local minima at lower temperatures and reduces the autocorrelation
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time. A lattice position for a given site is updated such that Xi,l → Xi,l + ∆X for all

l ∈ [0, L]. Here, ∆X is drawn from a separate box probability distribution than for single-

site updates. Operationally speaking, the cost of this scheme is O(N3) as compared with the

O(N2) using Eqn. (1.60) because Gσ(l) must be recomputed from scratch. After each full

sweep of single-site updates is performed, block updates are typically performed on several

randomly selected sites. In this work, we applied block updates on all the lattice sites

following each full spacetime sweep of single site updates.

1.3.3 The Dynamical Cluster Approximation

Many nonperturbative methods such as QMC, exact diagonalization, and density-matrix

renormalization group work on a finite-size lattice of linear dimension L. Mean-field theories,

on the other hand, are formulated in the thermodynamic limit: L → ∞. The best known

of these mean-field approaches is the dynamical mean-field theory (DMFT). In DMFT, the

infinite lattice problem is mapped onto an effective impurity model, which is solved self-

consistently. Since there is only one site interacting with a mean-field bath, the underlying

self-energy is local in real space. In the limit of infinite dimensions, this approximation holds,

and the solution is exact.

For many phenomena like superconductivity, nonlocal spatial fluctuations can are crucial

for describing phase transitions. These fluctuations are reintroduced by promoting the single

impurity site to a finite-size cluster embedded (self-consistently) in a mean-field bath. This

procedure is the aim of cluster extensions of DMFT, for which there are several [107]. Of

these methods, the dynamical cluster approximation (DCA) maps the bulk lattice problem

to a finite-size periodic cluster embedded in a dynamical mean-field [107, 108, 109]. The

finite-size cluster problem is amenable to solution via any aforementioned nonperturbative

methods, but we use continuous-time quantum Monte Carlo (CTQMC) [110, 111, 112].

In this section, we provide a brief overview of the DCA method used in chapter 5. The

specifics of the implementation used for our calculations are outlined in great detail within

Ref. [113]. Most of this background material will very closely follow chapter 14 of Ref. [114].

The DCA approaches the lattice problem by partitioning the FBZ into Nc smaller k-

space clusters of equal size located by the vector K at the center of each cell. Each patch
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Figure 1.1: In the DCA, one partitions the first Brillouin zone into Nc patches over which
the Green’s function is ‘coarse-grained’ (averaged) to represent the system by a reduced
number of Nc cluster DOF. The bulk DOF are absent in the cluster and introduced instead
as a mean-field. The two limiting cases of Nc → 0 and Nc → ∞ correspond to the DMFT
result and exact result respectively. In the original DCA, the location and shape of the
coarse-graining patches, as illustrated for theNc = 16A andNc = 16B cases, can be different.
Figure originally featured in Ref. [114].
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has an associated function φK(k), which is defined as

φK(k) =


1 if k is in patchK

0 otherwise .
(1.63)

The main purpose of the patch function is to restrict the sums over momenta k inside the

Kth-patch. These functions obey an orthogonality condition

Nc

VBZ

∫
BZ

dk φK(k)φK′(k) = δK,K′ , (1.64)

they must have equal size and shape,

φK(k) = φ(k−K), (1.65)

and exhibit inversion symmetry,

φ(k−K) = φ(K− k). (1.66)

In Fig.(1.1) we can see that the number of patches/clusters Nc can vary between the two

limiting cases: 0 (DMFT), and ∞ (exact), where the size and shape of each cluster is also

variable. The shape of the patch is not unique, and the results may depend slightly on a

given shape—especially for smaller clusters. One difference between the DCA over DMFT

is that the DCA includes momentum dependence in the self-energy. However, the DCA

assumes that the self-energy is only weakly dependent on the momentum in such a way that

it can be approximated by a coarse grid of K-points of a finite cluster

Σ(k, iωn) ' Σc(K, iωn) , ∀k ∈ K . (1.67)

It is often possible to capture enough of the exact result using a sufficiently dense and

manageable grid size.
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In the many-body theory of electron Green’s functions, the interactions between electrons

modify the single-particle propagator by a feedback mechanism which shifts the effective mass

and energy of propagating electron away from their respective bare values by introducing

the self-energy. The single-particle propagator G(k, iωn) with interactions turned on is

functionally dependent on the non-interacting Green’s functionG0(k, iωn) and the self-energy

through Dyson’s equation

G(k, iωn) = [G−1
0 (k, iωn)−Σ(k, iωn)]−1 , (1.68)

which can be rearranged to find Σ(k, iωn) = Σ [G(k, iωn)]. To keep all the DOF from the

bulk lattice, we must calculate the cluster self-energy Σc(K, iωn) = Σ[Ḡ(K, iωn)] from a

coarse-grained Green’s function9

Ḡ(K, iωn) = Nc

N

∑
k
φK(k)G(k, iωn) , (1.69)

where N is the total number of sites and the lattice propagator is

G(k, iωn) = 1
iωn − εk + µ−ΣDCA(k, iωn) . (1.70)

The DCA self-energy ΣDCA(k, iωn) is approximated by a constant self-energy Σc(K, iωn)

within the Kth patch, but can vary between the different patches:

ΣDCA(k, iωn) =
∑
K
φK(k)Σc(K, iωn) . (1.71)

The Green’s function Ḡ(K, iωn) corresponds to a propagator in which the DOF outside

the cluster are coarse-grained or averaged out. As such we can build a corresponding non-

interacting Green’s function G0:

G0(K, iωn) =
[
Ḡ−1(K, iωn) +Σc(K, iωn)

]−1
, (1.72)

9We will use an overbar on all coarse-grained quantities, e.g. Ḡ.
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which is readily obtained by setting the cluster self-energy to zero. Calculating the cluster

self-energy Σc(K, iωn) requires that we set up an effective cluster model using a Hamiltonian

Ĥ = Ĥ0 + Ĥint where Ĥ0 is the ‘non-interacting’ part and Ĥint is the interacting part.

Equipped with the form of Ĥ and a value for G0, we now need to employ the cluster solver

to get an estimate for the interacting propagator and use it to find the corresponding cluster

self-energy Σc(K, iωn):

Σc(K, iωn) = G−1
0 (K, iωn)−G−1

c (K, iωn), (1.73)

where G−1
c (K, iωn) came from the output of the cluster solver. Using this new result for

Σc(K, iωn) as the new value for ΣDCA(k, iωn) in Eqn.(1.70), iterating through the same

order of operations self-consistently until Σc(K, iωn) converges within the QMC error |Σ(n)
c −

Σ(n−1)
c | < εQMC. The basic DCA calculation loop is shown in Fig.(1.2).

1.4 Summary

In this introduction, we have made contact with several topics relevant to this thesis. First,

we discussed the state of superconductivity in broad terms, highlighting its history and

introducing some of the nuance related to e-ph coupling in conventional and unconventional

superconductors. Then we discussed the general interest in using layered materials as a route

to better superconductors. Next, we introduced the Holstein model and the many details

surrounding e-ph interactions. We emphasized many of the approximations used to arrive at

the Holstein Hamiltonian to make its bearing on reality clearer. To move beyond the linear

coupling of the Holstein model, we defined the simplest form of nonlinear e-ph coupling

possible. The last model presented was a composite bilayer system aimed at boosting Tc by

coupling a strong pairing scale superconductor—hindered by phase fluctuations—to a metal.

The methods section introduced the three primary tools used in this dissertation.

Migdal’s approximation underpins our “self-consistent Migdal approximation" approach

introduced in the next chapter, and so we gave a non-rigorous tour of the steps that lead

to his argument. DQMC was introduced in the context of the e-ph problem, and it will be
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Figure 1.2: The basic algorithm for the DCA begins with a calculation of the self-energy
ΣDCA(k, iωn) which can be approximated with an initial guess on the very first iteration
(e.g. ΣDCA(k, iωn) = 0). For step (2) we begin the coarse-graining process whereby an
estimate for the propagator on each cluster is found using the non-interacting propagator of
the system. (3) With the estimate for Ḡ(K, iωn) we use Dyson’s equation to find the non-
interacting propagator on each patch. (4) With the new value for G−1

0 (K, iωn) and knowledge
of the interaction Ĥint we can find the cluster self-energies by using the cluster solver. The
new value of Σc(K, iωn) can be inserted back into the calculation loop and iterated until
the difference between the self-energies of subsequent iterations is less than the QMC error,
|Σ(n)

c −Σ(n−1)
c | < εQMC .
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important for Chapters 3 and 4. Lastly, an overview of the main ideas behind the DCA were

presented. The DCA is the main technique used in Chapter 5, where we study a composite

bilayer system.

Some of the primary research questions addressed in this dissertation are as follows:

• What is the nature of the Holstein model phase diagram as predicted by self-consistent

Migdal theory?

• In that phase diagram, what can we understand about the superconducting dome?

• Perturbative methods like the SCMA are not applicable across a vast parameter space

of the Holstein model. What improvements can be made to existing nonperturbative

approaches like quantum Monte Carlo using modern machine learning tools?

• Is nonlinear e-ph coupling critical in the most relevant parameter space regions, and

does this extend into the regime appropriate for Migdal’s approximation?

• Are these nonlinear terms good or bad for superconductivity?

• Can we raise Tc in a composite Hubbard-metallic bilayer system in the regime where

U is comparable to the electronic bandwidth?
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Chapter 2

Temperature-filling phase diagram of

the Holstein Model

This chapter aims to address the question, "what is the phase diagram of the 2D Holstein model

under Migdal’s approximation?" When this work began, we could not find any comprehensive

study including a temperature phase diagram using the renormalized (self-consistent) Migdal’s

approximation in the literature. While we anticipated the Holstein model’s dominant correlations,

the phase boundaries were unconfirmed. We introduced a rapid algorithm based on fast-Fourier

transforms capable of studying charge-density-wave and superconducting correlations in the

thermodynamic limit to accomplish this goal. What follows is a discussion of the phase diagram

and some essential quantities that help explain the phase diagram. This chapter features the

work of Ref. [1], essentially verbatim.

2.1 Introduction

The electron-phonon (e-ph) interaction drives many physical phenomena and plays a central

role in a wide range of solids. For example, it leads to the formation of lattice polarons at

large e-ph coupling [115]; it is a significant factor in determining the electronic and thermal

transport properties of many functional materials; it can drive broken symmetry states such

as charge-density-wave (CDW) order [116] or conventional superconductivity [8, 117, 118,
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119] with low [120] and high Tc[121, 122, 123, 124, 125, 126]; and, as recently demonstrated,

it can even stabilize and control the location of Dirac cones in certain materials [127].

There has been remarkable progress in the accurate modeling of e-ph interactions in

realistic materials using ab-initio methods [128, 84] based on density-functional theory and

density-functional perturbation theory. Notwithstanding predictions for several supercon-

ducting transition temperatures Tc [129, 130, 131, 132, 133], ab initio methods usually lack

the capability of describing ordered phases or resolving competing orders and are often

hindered by large computational costs. Due to these limitations, many researchers turn to

model Hamiltonian approaches, which capture the essential physics of the problem while

remaining tractable and often easier to interpret. For e-ph coupled systems, the simplest

model Hamiltonian is the Holstein model [79] (Eqn. 1.1), which treats the motion of the ions

using independent harmonic oscillators and the electron-lattice interaction as a purely local

coupling between the electron density and lattice displacement.

Except for a couple of extreme cases, e.g., the use of a two-site system [134, 135,

136] or the atomic limit (with hopping t = 0) [81], there are no exact analytical

solutions for Holstein model. Nevertheless, it has been widely studied using approximate

analytical methods including the modified variational Lang-Firsov transformation [137],

diagrammatic expansions [92, 138, 139, 117, 140, 141] based on many-body perturbation

theory (MBPT) [97], and variational methods. [142, 135, 143] The Holstein model has also

been studied using several exact or approximate numerical techniques including quantum

Monte Carlo (QMC) [144, 145, 140, 146, 147, 148, 141, 149, 150, 105, 151, 98, 152], variational

Monte Carlo (VMC) [153, 154, 155], and dynamical mean-field theory (DMFT) [156, 157,

158, 159, 160, 161, 162, 163]. (Many of these numerical studies were conducted in the

context of the Hubbard-Holstein model, or some other extension, where results for the pure

Holstein model were obtained as a limiting case.) At half-filling, these studies find that

the Holstein model is dominated by a q = (π/a, π/a) CDW phase, while doping away

from half-filling leads to a competition between CDW and superconducting instabilities.

Moreover, the transition temperatures for both phases vary as a function of the filling n,

the phonon frequency Ω, the dimensionless e-ph coupling strength λ, and the Fermi surface

(FS) topology. Detailed phase diagrams for Holstein(-Hubbard) model for these parameters
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have been obtained by nonperturbative numerical methods in the spatial dimension d = 1

by density matrix renormalization group (DMRG) [164], d = 2 by VMC [155], and a Bethe

lattice with infinite coordination number by DMFT [163].

Owing to its simplicity and lower computational cost, the Migdal approximation [92, 165]

outlined in Sec. 1.3.1 is routinely used to capture the e-ph interaction effects in many

materials. For instance, it is often used to estimate the superconducting transition

temperatures in metals with the e-ph coupling matrix elements from ab initio calculations [84,

129, 133, 166, 167]. It is also widely employed to estimate electronic structure renormalization

in several materials. [139, 168, 169, 170, 171, 172, 173] As discussed in Sec. 1.3.1, the

Migdal approximation entails the omission of vertex corrections to the e-ph interaction.

This approximation is typically justified by arguing that such corrections scale as O
(
λ ~Ω
EF

)
,

where EF is the Fermi energy, and λ is a dimensionless factor quantifying the e-ph coupling

strength. While this condition is satisfied by most metallic systems (because ~Ω/EF � 1,

i.e., adiabatic limit), there is a growing number of materials where it is not, such as the

fullerides [174, 175], solid picene [176, 177], n-type SrTiO3 [178, 179], and monolayer FeSe

on SrTiO3 [180, 44]. Interest in these systems, as well as the wide-ranging applications of the

Migdal approximation, has invited intense scrutiny on its range of validity, resulting in many

studies comparing its predictions with those of nonperturbative numerical methods such as

QMC and DMFT [140, 159, 160, 161, 162, 98]. It is found that the Migdal approximation

can still break down at large λ [181, 182, 160, 161, 162, 98], even within the adiabatic

limit, near half filling. The effort to map out the validity of the Migdal approximation

as a function of the e-ph coupling strength, phonon frequency, and the electron filling is

ongoing [140, 162, 98].

The studies comparing exact numerical methods and MBPT are usually limited to

relatively small lattice sizes for QMC or dimension d = ∞ for DMFT and are commonly

focused at or close to half filling. It is, therefore, essential that we assess the finite-size effects

for both the nonperturbative numerical methods and MBPT, and then extrapolate to the

thermodynamic limit. But despite the large body of work surrounding the Holstein model,

there is (to the best of our knowledge) no comprehensive study of the general temperature-

filling phase diagrams by the full-fledged MBPT in the thermodynamic limit. Motivated by
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this, we carried out a detailed study of the single-band two-dimensional Holstein model on a

square lattice calculated with the self-consistent Migdal approximation, where the electron

and phonon self-energies are both determined self-consistently [140].

Our implementation is based on the fast Fourier transform (FFT) between the momentum-

frequency coordinates and the position-time coordinates, which is often used in fluctuation-

exchange (FLEX) [183, 184] and DMFT calculations [185]. We show that the predicted

CDW transition temperature TCDW
c exhibits significant finite-size effects. To mitigate this

problem, we determined the transition temperatures using large lattice sizes well beyond

those used in previous studies to obtain a reliable extrapolation to the thermodynamic limit.

We also found that the superconducting transition temperature T SC
c exhibits non-monotonic

behavior as a function of filling. Specifically, we found that it increases gradually as a

function of filling n until it approaches a qmax = (π, π)/a CDW phase boundary, where it is

suppressed by competition with the CDW, leading to dome-like behavior.

The chapter is organized as follows. Section 2.2 provides a some details of the Holstein

model in this context and its extension for momentum dependent coupling, inclusive of

the expressions for the self-energies in the Migdal approximation. Section 2.3 documents

the computational details and the implementation of our numerical algorithm. Section 2.4

presents the results for the temperature-filling phase diagrams for the Holstein model and

other related cases. Section 2.5 summarizes our conclusions. Finally, our code was made

publicly available as a set of Matlab functions and scripts 1.

2.2 Models and Methods

2.2.1 Holstein Model

The Holstein Hamiltonian describes the electronic degrees of freedom using a single band

tight-binding model. The lattice degrees of freedom are modeled using independent harmonic

oscillators at each site with a spring constant K = MΩ2, where M is the ion mass, and

Ω is the bare frequency of the oscillator. The e-ph interaction is introduced as a purely
1The Matlab code is released at https://github.com/johnstonResearchGroup/Migdal
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local coupling between the electrons and the atomic displacement. The specific form of the

Holstein model studied in this Chapter is given by

Ĥ = −
∑
i 6=j,σ

tij ĉ
†
i,σ ĉj,σ − µ

∑
i,σ

n̂i,σ (2.1)

+
∑
i

[
P̂ 2
i

2M + KX̂2
i

2

]
+ α

∑
i,σ

X̂i

(
n̂i,σ −

1
2

)
, (2.2)

where ĉ†i,σ (ĉi,σ) creates (annihilates) an electron with spin σ = ↑ or ↓ on site i, tij is the

hopping integral between sites i and j, µ is the chemical potential, n̂i,σ = ĉ†i,σ ĉi,σ is the

electron number operator, X̂i and P̂i are the lattice displacement and momentum operators,

respectively, and α is the e-ph coupling strength. Throughout this chapter, we restrict the

range of the hopping to nearest-neighbor (NN) (t) and next-nearest-neighbor (NNN) hopping

(t′), only. For t′ = 0, the Hamiltonian is particle-hole symmetric about half-filling, so we

only consider 0 ≤ n ≤ 1; for t′ 6= 0, we consider 0 ≤ n ≤ 2. Here, n = ∑
σ〈n̂i,σ〉 is the

electron filling. There are three differences between Eqn. 2.2 above and Eqn. 1.1 of the

introduction: (1) we now include the option of NNN hopping; (2) the interaction term is

written for particle-hole symmetry; (3) the minus sign in front of the interaction term is now

absorbed into the e-ph coupling strength (i.e., α < 0).

Fourier transforming the operators and introducing second quantized forms for the lattice

operators X̂i and P̂i yields

Ĥ =
∑
k,σ

ξkĉ
†
k,σ ĉk,σ + ~Ω

∑
q

(
â†qâq + 1

2

)

+ 1√
N

∑
k,q,σ

gĉ†k+q,σ ĉk,σ

(
â†−q + âq

)
, (2.3)

where N is the number of lattice sites, g = α
√

~
2MΩ , and ξk = εk − (µ − µ̃) is the band

dispersion measured relative to the chemical potential. The additional constant µ̃ = α2

K
= 2g2

~Ω

arises from the fact that the displacement is coupled to n̂i,σ − 1
2 instead of n̂i,σ in Eq. (2.2).

This shift restores the condition that µ = 0 corresponds to half-filling when t′ = 0, even in

the e-ph coupled case. Physically, it amounts to shifting the zero of the lattice displacement

operator X̂i − α
K
→ X̂i when going from Eq. (2.2) to Eq. (2.3).
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In what follows, we work on a two-dimensional (2D) square lattice with NN hopping t and

NNN hopping t′. The resulting electron band dispersion is εk = −2t [cos(kxa) + cos(kya)]−

4t′ cos(kxa) cos(kya), where the bandwidth W = 8t when |t′| ≤ 0.5t. We use Eqn. 1.31 as

our definition for the dimensionless e-ph coupling (i.e., λ = 2g2/(WΩ)) to facilitate easy

comparisons with QMC calculations. Finally, we set our choice of units so that ~ = kB =

a = M = 1, where ~ is the reduced Planck constant, and kB is the Boltzmann constant.

2.2.2 Momentum-Dependent Interactions

Our algorithm can treat momentum dependent interactions, wherein the e-ph coupling g

in Eq. (2.3) depends on the phonon wavevector q with |g(q)|2 = g2f(q), where f(q) is a

shape function. Physically, such coupling constants arise when the e-ph interaction couples

the electron density to neighboring atomic displacements. Motivated by the e-ph coupling

to the oxygen phonon modes in the high-Tc cuprates [186, 187, 54], we will consider three

different cases

f(q) =



1 (Isotropic),

cos2
(
qx
2

)
+ cos2

(
qy
2

)
(Buckling),

sin2
(
qx
2

)
+ sin2

(
qy
2

)
(Breathing).

(2.4)

The “isotropic” case corresponds to the conventional Holstein model. The “buckling” case

approximates the e-ph vertex expected for c-axis polarized Cu-O bond-buckling modes for in

the cuprates while the “breathing” case approximates the momentum dependence expected

for the Cu-O bond-stretching modes.

For a general momentum dependent e-ph coupling, we define the dimensionless e-ph

coupling constant as λ = [2g2/(WΩ)]〈f(q)〉, where f(q) for the buckling and breathing

modes both satisfy: 〈f(q)〉 = N−1∑
q∈FBZ f(q) ≈ 1

(2π)2
∫ π
−π d2q f(q) = 1.

42



2.2.3 Self-consistent Migdal Approximation

In this section we describe how the electron and phonon self-energies are computed self-

consistently [140]. For convenience, we adopt the 4-vector notation k ≡ (k, iωn) and

q ≡ (q, iνm) for the momentum-(Matsubara) frequency coordinates and x ≡ (r, τ) for the

position-(imaginary) time coordinates. The fermionic and bosonic Matsubara frequencies

are given by ωn = (2n+ 1)πT and νm = 2mπT , respectively, with n,m ∈ Z. The imaginary

time is constrained to the range τ ∈ [0, β], where β = 1/T is the inverse temperature.

The dressed single-particle electron Green’s function G(k) can be expressed using Dyson’s

equation as

G(k) =
[
G−1

0 (k)− Σ(k)
]−1

= [iωn − ξk − Σ(k)]−1 , (2.5)

where G0(k) = (iωn − ξk)−1 is the bare electron Green’s function and Σ(k) is the electron

self-energy. The dressed phonon Green’s function D(q) is similarly given by

D(q) =
[
D−1

0 (q)− Π(q)
]−1

= −
[
ν2
m + Ω2

2Ω + Π(q)
]−1

, (2.6)

where D0(q) = −2Ω/(ν2
m + Ω2) is the bare phonon Green’s function and Π(q) is the phonon

self-energy.

The skeleton diagram for the electron self-energy within Migdal approximation is shown

in Fig. 2.1(a). Since the vertex corrections are neglected, the full electron self-energy includes

only two terms Σ(k) = ΣF(k)+ΣH. The Fock term ΣF(k) includes all non-crossing “rainbow”

Feynman diagrams if the dressed G-skeleton is fleshed out with the self-energy diagrams, and

the Hartree term ΣH includes the dressed G-skeleton but with the bare phonon propagator

D0 instead of D to avoid double counting. According to rules for the Feynman diagrams, we

have

ΣF(k) = − 1
Nβ

∑
q

|g(q)|2D(q)G(k − q), (2.7)
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(a) Σ(k) = +

(b) Π(q) =

(c) χCDW(q) = = +

(d) χSC(q) = = +

Figure 2.1: The Feynman diagrams for (a) the electron self-energy Σ(k), (b) phonon self-
energy Π(q), (c) CDW susceptibility χCDW(q), (d) and pairing susceptibility χSC , evaluated
within the self-consistent Migdal approximation. The lines (double lines) represent bare
(dressed) electron propagators G0 (G); the wiggly lines (double-wiggly lines) represent bare
(dressed) phonon propagators D0 (D). The black dot represents the bare e-ph coupling
vertex. The equation in (c) defines a series of particle-hole ring diagrams and the recurrence
equation in (d) defines a series of particle-particle ladder diagrams. Figure taken from our
Ref. [1].
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and

ΣH = 2|g(0)|2
Nβ

D0(0)
∑
k′
G(k′)eiωn′0+

= |g(0)|2D0(0)n, (2.8)

where

n = 2
Nβ

∑
k′
G(k′)eiωn′0+ = 2G(r = 0, τ = 0−). (2.9)

The Hartree term is independent of k and thus a constant that is typically absorbed into

the definition of the chemical potential µ−µ̃→ µ−µ̃−ΣH. Here, we refrain from this practice

to facilitate easier comparisons to the chemical potentials used in QMC methods, which

include all Feynman diagrams. Note that at half-filling (n = 1), ΣH = −µ̃ = −2|g(0)|2/Ω.

The skeleton diagram for the phonon self-energy within Migdal approximation is shown

in Fig. 2.1(b) and has the analytical form

Π(q) = 2|g(q)|2
Nβ

∑
k

G(k)G(k + q). (2.10)

It is useful to use Π(q) to define the irreducible charge susceptibility

χ0(q) = − Π(q)
|g(q)|2 = − 2

Nβ

∑
k

G(k)G(k + q), (2.11)

which diagrammatically corresponds to Fig. 2.1(b) with two e-ph coupling vertices removed

[i.e., the first term on the right-hand side of the equation in Fig. 2.1(c)].

2.2.4 Charge-density-wave and Pairing Susceptibilities

The charge-density correlation at a wavevector q is measured by the CDW susceptibility

χCDW(q) = 1
N

∫ β

0
dτ
〈
ρ̂q(τ)ρ̂†q(0)

〉
c
, (2.12)
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where

ρ̂q(τ) ≡
∑
i,σ

e−iq·Ri ĉ†i,σ(τ)ĉi,σ(τ). (2.13)

In Eq.(2.12), we have used the notation for the connected correlation function defined as

〈x̂ŷ〉c = 〈x̂ŷ〉−〈x̂〉〈ŷ〉. When significant charge-density correlations are present on the lattice,

the CDW susceptibility becomes strongly peaked at an ordering vector q = qmax. For this

reason, we will primarily use and discuss the momentum-space representation χCDW(q).

For spin-singlet s-wave pairing due to e-ph coupling, the superconducting correlations are

measured by the pairing susceptibility

χSC = 1
N

∫ β

0
dτ
〈
∆̂(τ)∆̂†(0)

〉
, (2.14)

where

∆̂(τ) ≡
∑
i

ĉi,↑(τ)ĉi,↓(τ). (2.15)

In the thermodynamic limit, the temperatures at which the pair field and CDW suscep-

tibilities diverge correspond to the transition temperatures T SC
c and TCDW

c , respectively. In

the case of a q = (π, π) CDW order, the temperature dependence of χCDW should follow the

2D Ising universality class, which can be used to find TCDW
c [see Sec. (2.3.2)]. By comparison,

χSC diverges much more sharply as a function temperature. In the latter case, we can obtain

an accurate measure of T SC
c by extrapolating 1/χSC(T ) to zero.

The CDW susceptibility within the Migdal approximation is obtained by summing the

particle-hole ring diagrams shown in Fig. 2.1(c), which is formally identical to the random-

phase approximation (RPA) or the GW approximation for the Coulomb interaction in the

electron gas. The CDW susceptibility is largest at zero-frequency, so to determine TCDW
c we

calculate

χCDW(q) = χ0(q, 0)
1 + |g(q)|2D0(q, 0)χ0(q, 0)

= χ0(q, 0)
1− λWf(q)χ0(q, 0) . (2.16)
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Here, we have used D0(q, 0) = −2/Ω, |g(q)|2 = g2f(q), and λ = 2g2/(WΩ). In principle,

the momentum dependence of a dispersive phonon mode Ωq can be included in the function

f(q). This is not the case, however, for any nonzero Matsubara frequencies [152].

The pairing susceptibility within the Migdal approximation is obtained by summing the

particle-particle ladder diagrams shown in Fig. 2.1(d) and is given by

χSC = 1
Nβ

∑
k

G(k)G(−k)Γ(k), (2.17)

where the vertex function Γ(k) is obtained by solving the vertex equation

Γ(k) = 1− 1
Nβ

∑
k′
|g(q)|2G(k′)G(−k′)D(q)Γ(k′), (2.18)

where q = k − k′.

2.3 Computational Details

2.3.1 Self-consistent Iterations with FFT

To obtain the dressed electron and phonon Green’s functions, G and D, we self-consistently

solve Eqs. (2.5)–(2.10), while the chemical potential µ is adjusted to fix the filling n after

every iteration. Once the self-consistent solutions for G andD are obtained, we then evaluate

the CDW and pairing susceptibilities using Eq. (2.16) and Eq. (2.17), respectively. An

independent self-consistency loop is performed to solve for the pairing vertex function in

Eq. (2.18) after the converged Green’s functions are obtained. Both the momentum and

Matsubara frequency summations in these equations can be viewed as convolutions and thus

are evaluated efficiently using FFTs.

Our algorithm for self-consistent calculations of the Green’s functions is summarized in

the flowchart shown in Fig. 2.2. The input parameters include the temperature T , the

filling n, the energy dispersion εk, the phonon frequency Ω, and the e-ph coupling function

|g(q)|2 [or equivalently the dimensionless coupling strength λ and the momentum dependent

part of the coupling function f(q)]. We discretized the first Brillouin zone using a uniform
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N = nk×nk momentum grid, which corresponds to a square lattice with N sites and periodic

boundary condition in real space. For computational purposes, the fermionic and bosonic

Matsubara frequencies ωn = 2π(2n+ 1)/β and νm = 2πm/β are defined over a range defined

by −Nc ≤ n,m ≤ Nc − 1. This cutoff corresponds to evenly dividing the imaginary time

interval 0 ≤ τ ≤ β into 2Nc parts, with τl = (l− 1)β/(2Nc), where 1 ≤ l ≤ 2Nc + 1. For the

electron Green’s function G(τ), the end points should be understood as 0+ and β− due to

the discontinuities of G(τ) at these points. Here, Nc is determined by Nc = ωcβ/(2π), where

ωc is an energy cut-off that is much larger than the band width W . Most of the results

obtained here used a cutoff ωc ≥ 100Ω which implies that the cutoff was close to W for

Ω = 0.1t. We have checked that larger cutoffs produce no changes in the results. When in

doubt, we recommend a more conservative cutoff ωc ≥ 10W .

The iteration loop begins with an initial value for electron self-energy Σ(k) = 0 (or the

converged Σ at the previous temperature T data point). The iteration loop then continues

through the following steps in sequence:

1. The dressed electron Green’s function G(k) is computed by Dyson’s equation with the

chemical potential µ adjusted to fix the filling n at the input value.

2. The irreducible susceptibility is computed by χ0(x) = −G(x)G(−x) = G(r, τ)G(r, β−

τ) with G(x) obtained from G(k) by FFT and the spatial inversion symmetry assumed.

3. The dressed phonon Green’s function D(q) is computed by the Dyson’s equation with

χ0(q) obtained from χ0(x) by the inverse FFT (iFFT) and then an effective interaction

V (q) = −|g(q)|2D(q) is computed and transformed to V (x) by FFT.

4. A new electron self-energy Σ(x) = V (x)G(x) is computed and transformed back to

Σ(k) by iFFT.

Note that the addition of the constant Hartree term ΣH to the self-energy is optional since µ

is adjusted in every iteration. The final step of the iteration loop checks for convergence using

max |Σnew(k)−Σold(k)| < ε, where the absolute error is typically ε = 10−8t. If the self-energy

Σ(k) is converged, final values for the Green’s functions G and D are recomputed and used

to find the CDW and pairing susceptibilities. If not, a new dressed electron Green’s function
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Begin

Input:
T , ǫk, filling n,
e-ph coupling g(q)

Σ(k) = 0

µ, G(k) G(x)

χ0(q) χ0(x)

Π(q) = −2g2(q)χ0(q)

D−1(q) = D−1
0 (q) − Π(q)

V (q) V (x)

Σ(k) Σ(x)

Σ(k) + ΣH(k) → Σ(k)

Convergence?

Output:
Σ(k), µ, G(k), χ0(q),
χCDW(q), χSC(q)

End

FFT

iFFT

V (q) = −g2(q)D(q)
FFT

iFFT

ΣH(k) = ng2D0|q=0

Yes

No

G−1(k) = G−1
0 (k) − Σ(k)

Figure 2.2: Algorithm for self-consistent iterations of Green’s functions and self-energies
with FFT. The Hartree self-energy ΣH = n|g(q = 0)|2D0(q = 0) = −2n|g(0)|2/Ω is a
constant during iterations, and thus in practice the computation of ΣH and the shift of
electron self-energy Σ(k) → Σ(k) + ΣH can be moved outside the iteration loop and done
after the convergence. Figure taken from our Ref. [1].
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is computed by Dyson’s equation, and the iteration loop continues. The self-consistency

condition can usually be achieved within 20–100 iterations.

For the algorithm described above, three issues regarding our implementation deserve

further remarks. The first remark concerns the Fourier transform of variables k =

(k, iωn) FFT−−−⇀↽−−−
iFFT

x = (r, τ), where we need to consider the fact that the FFT only applies

to discrete variables. In our case, the transform between k and r is straightforward for

the lattice model, but the transform between ωn and τ requires special care, especially for

the electron Green’s function. When transforming from G(ωn) to G(τ), an infinite number

of Matsubara frequencies must be summed to reproduce the discontinuity of G(τ) between

τ = 0+ and τ = 0−. We accomplish such a feat by approximating G(ωn) with the bare

electron Green’s function G0(ωn) for |ωn| > ωc, and thus the sum of Matsubara frequencies

ωn with n → ±∞ can be carried out analytically. Transforming G(τ) to G(ωn) requires a

Fourier integral transform over the continuous variable 0 < τ < β. This Fourier integral

is evaluated exactly following the interpolation of G(τ) using a continuous function such

as spline or piecewise polynomial on the discrete τ grid. Further technical details on this

procedure are provided in the supplemental section 2.6.

On a related note, Ref. [188] showed that if the effective interaction V (ωn) has a simple

analytical form, then the analytical form of the high frequency tail of Σ(ωn) can be obtained

and added to the sum with a finite frequency cut-off. As a result, the effect of the frequency

cut-off is reduced, and a relatively low value can be chosen to speed up the computation

together with an FFT similar to the one given here. However, comparing to Ref. [188], the

major advantage of our algorithm is that it applies to any form of effective interaction V (ωn),

including ones where the bosonic self-energy modifies the interaction, without any additional

cost. 2

The second remark concerns the use of the Anderson acceleration (also called Anderson

mixing) algorithm [190, 191, 192], which can be used to improve and accelerate the

convergence of the simple fixed-point iteration scheme presented above. Conceptually,
2In our algorithm, the accuracy of the high frequency tail depends on the accuracy of the interpolant

G(τ), which in turn depends on the τ -grid form and size, the type of interpolant, and the actual function
G(τ) for a specific physical system. It is also possible to enforce the exact high frequency tail, for example,
by imposing physical sum rules to the boundary conditions of a cubic spline interpolant. See Ref. [189]
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Anderson mixing is a generalization of and an improvement to the simple mixing iteration

method. In terms of our problem, the simple mixing dictates that G̃new = αGnew+(1−α)Gold

is used in the next iteration instead of Gnew, where 0 < α < 1 is a constant. Using Anderson

mixing, values of Gold from the previous M iteration steps are mixed according to the

coefficients {αi}Mi=1, which are optimized for each iteration. In practice, we find that Anderson

mixing is usually more efficient than simple mixing, even if an optimal α is chosen for simple

mixing. Although both methods require a similar number of iterations to converge the

self-energy, the Anderson mixing provides as much as a ten-fold reduction of the iterations

required to converge the pairing vertex. For a detailed description of the algorithm, see

Ref. [192].

The final remark concerns the behavior of our algorithm close to a phase transition

Tc or sometimes simply at low T , where the initial input self-energy at the first iteration

sometimes yields a diverged charge susceptibility. This premature divergence occurs when

λWf(q)χ0(q, 0) > 1 for a few q points around the CDW ordering vector in the denominator

of Eq. (2.16). To circumvent this problem we impose the condition λWf(q)χ0(q, 0) ≤ χ̃,

where χ̃ is a constant that is close to but less than unity. More specifically, we selectively

change the value of χ0(q, 0) such that λWf(q)χ0(q, 0) = χ̃ at the offending q points. Once

the calculation is stabilized after a few iterations, this condition is removed. In practice, we

allow χ̃ to take values increasingly closer to unity, and usually in the range 0.995–0.99999.

This cutoff is particularly important as the calculation approaches TCDW
c , where we expect

the charge density instabilities to be present. Establishing a proper cutoff sequence of χ̃ can

improve the quality of TCDW
c extrapolation.

2.3.2 Determination of Phase Transition Temperatures

To determine the phase transition temperatures TCDW
c and T SC

c , we compute the CDW and

pairing susceptibilities χCDW(q, T ) and χSC(T ) with decreasing temperatures from above the

phase transitions. In the thermodynamic limit (N →∞), the susceptibilities should diverge

as T → Tc. For a finite-size lattice, this divergence is limited once the correlation length ξ

becomes comparable to the lattice size. Our goal is to determine Tc in the thermodynamic
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Figure 2.3: An example of extrapolating the inverse CDW and pairing susceptibilities
to zero to obtain Tc on a lattice with N = 64 × 64 and a coupling constant λ = 0.3.
The dashed and dashed-dotted lines are linear fits to the three lowest temperature points
and their intercepts on T -axis are the respective estimated Tc’s in this procedure. This
extrapolation is accurate for the superconducting T SC

c ; however, the more gradual approach
of 1/χCDW(qmax) to the Tc region makes TCDW

c more susceptible to over(under)-estimation.
Therefore, we use a different procedure to estimate TCDW

c by fitting the low temperature
χCDW(T ) to the T -dependence of the 2D Ising universality class (See Sec. 2.3.2). Figure
taken from our Ref. [1].
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Figure 2.4: The dependence of 1/χCDW on the size of the lattice near TCDW
c . For smaller

lattice sizes, the temperature dependence deviates strongly from what is expected in the
thermodynamic limit (N → ∞). Consequently, the critical temperatures TCDW

c found by
fitting χCDW(qmax) with a model function χ2D-Ising(T ), depends strongly on the value of N
(see Fig. 2.5). Figure taken from our Ref. [1].
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limit by using sufficiently large lattice sizes such that a reliable extrapolation to N → ∞

limit can be performed.

These values can be extracted in one of two ways: (i) by extrapolating the low T behavior

of the inverse susceptibilities 1/χCDW(qmax) and 1/χSC to zero as a function of temperature

(e.g. Fig. 2.3); or (ii) by fitting the susceptibilities near the transition temperature with the

appropriate asymptotic forms expected for their universality class in 2D.

It is well known [145] that the pairing susceptibility in a 2D system has a similar behavior

to the Kosterlitz-Thouless [193] phase transition. However, we do not use this universality

class in practice to find T SC
c because we have found that the extrapolation of 1/χSC to the

temperature axis provides a reliable estimate for T SC
c (e.g., see Fig. 2.3) because of the

relatively sharp divergence of the pairing susceptibility within the Migdal approximation.

On the other hand, this same extrapolation procedure offers a TCDW
c with a rather tenuous

justification. As seen in Fig. 2.3, extrapolating the last few points in 1/χCDW(qmax) tends

to estimate the TCDW
c significantly lower than the last obtainable point in the numerical

calculation. Close to the transition, χCDW(qmax = (π, π)) is expected to follow the Ising

universality class [146], which follows χ2D-Ising(T ) = A
∣∣∣T−Tc
Tc

∣∣∣−γ, where γ = 7/4. The critical

temperatures can thus be obtained by fitting the CDW susceptibility results to this model.

Notice that the slope 1/χ2D-Ising(T ) approaches zero as T → T+
c . This partially explains the

potential inaccuracy of linear extrapolation for TCDW
c since it is expected that 1/χCDW(qmax)

will not sharply cross the temperature axis.

The accuracy of the Ising fit to χCDW significantly depends on the lattice-size. In fact,

at smaller sizes such as 4 × 4 and 8 × 8, the model above is a remarkably poor descriptor

of the χCDW results. As we increase the lattice to 128 × 128 and above, we see that the

susceptibility more closely follows the expected Ising form (See Fig. 2.4). The resulting

finite size dependence of TCDW
c is shown in Fig. 2.5 for the isotropic coupling case, with

Ω/t = 1, at half-filling. Here, the changes in TCDW
c are pronounced until N ∼ 1282 while

T SC
c is approximately flat for N ≥ 162. Furthermore, as shown in Fig. 2.3, for fillings very

close to the CDW and superconductivity phase boundary, the comparable values for TCDW
c

and T SC
c make the careful extrapolation more important. We adhere to a convention that
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Figure 2.5: The finite size dependence of Tc on the logarithm of the total number of sites
log2(N) for the Holstein model (isotropic e-ph coupling). The fillings n = 1.0 and n = 0.75
correspond to parts of the phase diagram that yield CDW and SC phases, respectively, for
Ω/t = 1.0, λ = 0.3, and t′ = 0. The value of T SC

c has converged for N = 16 × 16, whereas
TCDW

c has significant dependence on lattice size N . The value of TCDW
c was obtained from

the model fit χ2D-Ising(T ). For log2(N) ≥ 8, the values of N are identical to those shown in
the legend of Fig. 2.4. Five additional smaller lattice sizes (

√
N = 4, 6, 8, 10, 12) are plotted

for T SC
c to show the variations due to finite size effects Figure taken from our Ref. [1].
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when the CDW and superconducting phases have comparable transition temperatures, the

winning phase is determined by the larger of the extrapolated TCDW
c and T SC

c .

2.4 Results

2.4.1 Temperature-filling Phase Diagram

First, we report the full temperature-filling phase diagram within the Migdal approximation

for the 2D Holstein model with isotropic e-ph coupling g(q) = g and only the NN hopping

t. Fig. 2.6 shows results for hole-doped case with filling 0 ≤ n ≤ 1 and three different

phonon frequencies. The electron-doped side is identical due to particle-hole symmetry. The

phase boundaries in all three panels in Fig. 2.6 are plotted together in Fig. 2.7 for an easy

comparison.

As expected, we observe the competition between CDW and superconducting (SC)

ground states, where the CDW phase dominates close to half-filling. For large phonon

frequencies, the CDW phase always appears at qmax = (π, π) but is rapidly suppressed for a

small degree of doping away from half-filling. For the smallest phonon frequency (Ω = 0.1t),

we find larger values of TCDW
c indicating a slight decrease in χ0. Moreover, we observe

an incommensurate CDW phase for filling levels below n ≈ 0.8. This incommensurate

ordering can be distinguished from the commensurate case by noting that when T → TCDW
c ,

the function χCDW(q) develops peaks at qmax = (π, κπ) with 0 < κ ≤ 1 (and its symmetry

equivalent positions). These four peaks split off from a single broader peak originally centered

at (π, π) at high temperatures as T → TCDW
c . At intermediate temperatures, these four peaks

largely overlap resulting in a plateau centered at (π, π). In the commensurate case, χCDW(q)

has a single global maximum at (π, π) for nearly all the temperatures examined. We also

observe strong incommensurate charge correlations when Ω is large but in this case the

superconducting phase forms before the long-range incommensurate charge order forms.

Once the CDW correlations are sufficiently suppressed at lower values of n, the s-wave

superconducting correlations dominate. Our results show that superconducting transition

temperature T SC
c depends strongly on the phonon frequency Ω. The fact that T SC

c strongly
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Figure 2.6: The temperature-filling phase diagram for the Holstein model for (a) Ω = 0.1t,
(b) Ω = 0.5t, and (c) Ω = t. Results were obtained on a N = 1282-site lattice and for a
dimensionless coupling λ = 0.3. Figure taken from our Ref. [1].
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Figure 2.7: A comparison of the three phase diagrams shown in Fig. 2.6. Figure taken
from our Ref. [1].

58



depends on Ω while TCDW
c depends more on electronic properties is in qualitative agreement

with solutions to the Holstein model in the infinite dimensional limit [156]. Interestingly, we

observe non-monotonic behavior in the superconducting Tc, where the maximum value of Tc

occurs for fillings away from the CDW phase boundary. This “dome” in the superconducting

region of the phase diagram becomes more pronounced as the phonon frequency increases.

We will discuss the origin of this behavior in Sec. 2.4.5.

2.4.2 The effects of longer-range hopping on the phase diagram

Previous studies of the Holstein model [147] and the attractive Hubbard model [194] found

that enhanced pairing occurs when the Fermi level EF lies near the Van Hove singularity once

NNN hopping is included. With this motivation, we now turn our attention to the effects

of t′ on the phase diagram. In this case, the lack of particle-hole symmetry requires us to

consider the temperature-filling phase diagram across the full range of electronic fillings, as

shown in Fig. 2.8. We consider two representative values Ω = 0.1t [Figs. 2.8(a) and 2.8(c)]

and Ω = t [Figs. 2.8(b) and 2.8(d)] and fix t′ = −0.25t, chosen to reflect a phase factor of

opposite sign commonly encountered in diagonal hopping scenarios. We note that a choice

of opposite sign merely creates a mirror image (with respect to n = 1) of depicted the phase

diagrams, i.e., changing n→ 2− n in the x-axis.

Many of the effects of t′ can be understood from its influence on the bare electronic

structure. The Van Hove singularity in the bare 2D electronic density of states (DOS)

shifts below (above) the middle of the band when t′ < 0 (t′ > 0) and, moreover, the Fermi

surface inherits curvature that weakens nesting near half-filling. These changes, which are

not mutually exclusive, are collectively associated with the suppression of charge-density

correlations near half-filling. Upon hole doping, the Fermi surface for t′ < 0 moves towards

the Van Hove singularity, thus increasing the electron energy degeneracy where strong pairing

correlations are already present and enhancing the superconducting correlations on the hole-

doped side of the phase diagram. Conversely, the superconducting state on the electron-

doped side of the phase diagram is suppressed. These changes are most prominent for large

Ω and clearly seen in the contrast between the top (for t′ = 0) and the bottom row (for

t′ 6= 0) in Fig. 2.8.
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Figure 2.8: Comparison of the temperature-filling phase diagrams for Holstein model with
or without NNN hopping t′. (a) Ω = 0.1t, t′ = 0; (b) Ω = t, t′ = 0; (c) Ω = 0.1t, t′ = −0.25t;
and (d) Ω = 0.1t, t′ = −0.25t. Results were obtained on a N = 1282 site lattice and for a
dimensionless coupling λ = 0.3. Figure taken from our Ref. [1].
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The effects of a longer-range hopping are more subtle for the smaller phonon frequency

Ω = 0.1t. Here, t′ lowers the transition temperatures of the commensurate and

incommensurate CDW phases both for all dopings. At the same time, the boundary of

the incommensurate CDW region is modified such that it extends towards smaller values of

n with hole doping. Likewise, the SC phase on the hole-doped side is confined to a smaller

region of fillings but with an enhanced superconducting Tc. On the electron-doped side, the

superconducting region also extends over a broader range of fillings but the overall Tc is

suppressed.

Similar asymmetric features in the phase diagram can result from other modification-

s/extensions of the Holstein model. For instance, adding a small anharmonic term to the

Holstein Hamiltonian also results in an asymmetric phase diagram with a larger SC phase

and suppressed CDW phase on one side of half-filling [195]. In that case, the changes in the

phase diagram are the result of the modified phonon potential, which constrains the phonon

displacements and enhances superconductivity. A more recent study focused on the electron

effective mass m∗ [196]; however, in the 2D weak coupling case, the changes to m∗ resulting

from t′ 6= 0 are quite small and effectively negligible. We also note that NNN hopping can

influence the competition between charge density and pairing correlations. In some real

materials (e.g., transition metal dichalcogenides) it can be difficult to determine whether

CDW and SC correlations are working together or competing for order [197]. In this simple

model calculation, we find evidence for the latter through the absence of both large pairing

and charge density correlations together near a critical temperature, as well as a decreasing

T SC
c near the SC-CDW phase boundary.

2.4.3 Momentum Dependent Electron-Phonon Coupling

The traditional Holstein model can be easily extended by introducing fermionic (k) and

bosonic (q) momentum dependence to the e-ph coupling constant g → g(k,q). As mentioned

in section (2.2.2), our FFT-based algorithm can easily incorporate models where the vertex

depends on the boson wavevector g(q). In general, we have found that convergence of the

self-consistent equations is more challenging for such models near phase transitions, and it

can become difficult to develop a full temperature dependence for the susceptibilities across
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all fillings relative to the isotropic coupling case. Nevertheless, we have obtained results for

several popular models for the high-Tc cuprates with a momentum dependent g(q), which

we present in this section.

The behavior of the susceptibilities χCDW and χSC for a given g(q) is examined across a

small range of λ values in Fig. 2.9 and Fig. 2.10, respectively. All of the results were obtained

using a 32×32 lattice with Ω/t = 0.5, and NN-hopping only (t′ = 0). The first, second, and

third rows of the figures correspond to isotropic, buckling, and breathing models, respectively

(see Sec. 2.2.2). The individual columns show results for temperatures T/t = 0.4, 0.2, and

0.1 from left to right. The white regions indicate parameter ranges where no data is plotted.

The vertical axis in Fig. 2.9 and Fig. 2.10 contain data points for ten values of λ separated

by increments of ∆λ = 0.022̄. Although the spacing in filling points along the horizontal axis

is comparable (∆n = 0.025), the plot range is larger, making it appear as though ∆λ was

disproportionately coarse. As a result, we see that the boundary separating the susceptibility

contours from the white region is jagged in appearance. Although the boundary is expected,

it should be smooth in the limit where ∆λ → 0. Therefore, no physical meaning should be

attributed to the uneven nature of the boundary. Despite this unwanted cosmetic detail, the

white region beyond the (colored) contours is, to a good approximation, where the system

would have settled into a charge ordered phase peaked at some vector qmax.

For the isotropic and breathing cases, we find that the CDW correlations are strongest

at qmax = (π, π). These results are expected since q = (π, π) corresponds to a strong nesting

condition near half-filling and g(q) for the breathing mode is largest at this wavevector.

For the buckling case, we find the CDW correlations are strongest at qmax = (0, 0). This

is also not surprising since g(q) for this model places most of the scattering weight on

qmax = (0, 0) and none on the nesting vector (at half-filling) (π, π). We interpret large

charge correlations at qmax = (0, 0) as a reflection of a tendency towards phase separation

since we are considering a single-orbital model without the possibility for any intracell charge

order.

By comparing the results at different temperatures it becomes clear that the momentum

dependent models yield higher TCDW
c ’s than the isotropic case. For the Hosltein coupling

[Figs 2.9(a)–(c)] the CDW correlations build somewhat tightly around half-filling whereas
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Figure 2.9: The charge susceptibility for three decreasing temperatures plotted using
contours over a window of λ vs n. Panels (a)–(c) show the Holstein (isotropic) coupling case,
where a strong CDW susceptibility peaked at qmax = (π, π) emerges near and at half-filling.
Panels (d)–(f) show results for the buckling case, which reveal the onset of susceptibility
peaked at qmax = (0, 0). This is not representative of a CDW with long range order and
could be an indication of phase separation. The last row of panels (g)–(i) show results for
the breathing mode coupling, which strongly favors a CDW phase peaked at qmax = (π, π)
for larger regions of the parameter space. Introducing the breathing and buckling mode
q-dependence into the e-ph coupling has significant influence over the competition between
pairing correlations and charge-density correlations. Figure taken from our Ref. [1].
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Figure 2.10: The pairing susceptibility for three decreasing temperatures plotted using
contours over a window of λ vs n. Similar to Fig. 2.9, panels (a)–(c) correspond to the
Holstein (isotropic) coupling case, panels (d)–(f) for the buckling mode coupling, and panels
(g)–(i) for the breathing mode coupling. Each temperature progression shares qualitatively
similar features with pairing correlations largely suppressed at these temperatures. However,
it should be noted that the Holstein case is unique. With the CDW region so closely
confined to the half-filling region, pairing correlations can develop at higher temperatures. A
superconducting phase does emerge for each of the g(q) cases, but the strong charge density
correlations in the buckling and breathing mode cases push the SC boundary to lower values
of n. Figure taken from our Ref. [1].
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they extend much further as a function of both n and λ once a momentum dependent

coupling is introduced. A momentum dependent coupling also influences the s-wave pairing

tendencies. As shown in Fig. 2.10, the contour lines for large values of χSC
c extend over

larger n and λ in the Holstein case. We have performed other calculations confirming that

the s-wave superconducting correlations generally shift to more dilute fillings and lower T

once the e-ph vertex depends on q. It should be emphasized that the contours in Fig. 2.10

can be somewhat deceptive since the temperatures at which χSC are plotted are well above

T SC
c . For instance, χSC seems to be peaked at occupancies of n ∼ 0.8 − 1 and couplings

λ ∼ 0.1 in Fig. 2.10, but this peak actually shifts to lower fillings and larger λ values as the

temperature is lowered further. When we decrease the temperature so that T ≈ T SC
c , we see

a rapid growth of χSC near the phase boundary as shown in Fig. 2.11(b). This figure reveals

that the highest T SC
c occurs for larger λ (for the range shown) and the features leading to the

SC dome in Fig. 2.6(b) can be seen. If we were to superimpose Fig. 2.11(b) onto Fig. 2.11(a),

the correlations for pairing and a CDW would form a valley in-between the domes for each

phase, reminiscent of the phase diagrams presented earlier.

2.4.4 Renormalized Phonon Dispersions at Half-filling

Until now we have largely focused on the electronic properties of the model. It is also

instructive, however, to consider the renormalization of the phononic properties in proximity

to the CDW phase. In this section, we present the spectral properties of the phonons,

which are obtained by analytically continuing the phonon Green’s function to the real axis

using Padé approximants [198]. Fig. 2.12 shows the phonon spectral function B(q, ω) =

−=D(q, iνm → ω+i0+)/π as a function of temperature along the high-symmetry path of the

first Brillouin zone. Here, we are considering the case of a momentum-independent Holstein

coupling, half-filling n = 1.0, λ = 0.19, and Ω/t = 1.0. These spectra compare well with the

results obtained from determinant QMC simulations [199] carried out for comparable values

of λ but on a smaller lattice (λ = 0.25, 8× 8).

Our first observation is that the overall energy of the phonon branch has softened

significantly due to the electron-phonon coupling. Due to the proximity of the CDW phase,

the phonon spectral function also has a pronounced Kohn-like anomaly, where spectral weight
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Figure 2.11: For the isotropic coupling case with Ω = 0.5t, T = 0.04t, and t′ = 0, we plot
the (a) charge-density wave susceptibility χCDW(qmax) and (b) singlet-pairing susceptibility
χSC using a 32×32 lattice. At this lower temperature we see the pairing correlations becoming
more significant around λ = 0.3 and n ≈ 0.66, which corresponds to a point near the top of
the T SC

c -dome in Fig. 2.6. Figure taken from our Ref. [1].
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becomes concentrated at q = (π, π) and ω ≈ 0. As the temperature is lowered, and the charge

correlations grow, spectral weight is redistributed to lower energies and the Kohn anomaly

becomes sharper. Although it is not shown here, we have also found that in the case of the

buckling mode coupling, the spectral weight indeed concentrates at q = 0.

We expect that the renormalization of the phononic properties will influence the

superconducting phase in nontrivial ways. For example, within weak coupling BCS theory,

the superconducting transition temperature is given by Tc ∝ Ω exp(−1/λ). The phonon

dispersion enters this expression twice, once in the prefactor and once in the dimensionless

coupling constant λ ∝ 1/Ω. The softening of the phonon branch observed in Fig. 2.12 will,

therefore, simultaneously reduce the energy scale of the Cooper pairs and enhance the pairing

strength. Which of these effects dominates is a nontrivial question, which is addressed in

the following section.

2.4.5 Origin of the Superconducting Dome

As we noted in Sec. 2.4.1, we observe a non-monotonic behavior in the superconducting Tc,

where the maximum value of Tc occurs for fillings away from the boundary of the CDW phase.

This “dome” in the superconducting region of the phase diagram becomes more pronounced

as the phonon frequency increases and arises from an interplay of the renormalized phononic

and electronic properties.

To better understand how the dome appears, we examined several quantities commonly

linked to pairing. These include the electronic density of states (DOS) N(ω) (per spin), the

Eliashberg function α2F (ω), the renormalized e-ph coupling λα2F , the logarithmic average

frequency ωlog, and the superconducting critical temperature Tc (estimated by various

approaches from the quantities examined here). All of these quantities are calculated and

shown in Fig. 2.13 over a range of electron occupancy n ∈ [0.6, 0.8] using a fixed momentum

k-grid N = 64× 64, 3 t′ = 0, a bare phonon frequency Ω = t, and a bare dimensionless e-ph

coupling λ = 0.3. Note that for panels 2.13(a) and 2.13(b), the calculations are performed on
3As indicated by the blue line in Fig. 2.5, this size is sufficiently large to discuss the superconductivity

at the fillings considered. Except for the lattice size, all input parameters used in Fig. 2.13 are the same
as Fig. 2.6(c). Therefore, the Tc dome within the same filling range in Fig. 2.6(c) and Fig. 2.13(c) (square
symbols in the plot) are comparable, if not identical.
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Figure 2.12: The temperature dependence of the phonon spectral function B(q, ω) =
−=D(q, iνm → ω + i0+)/π for the half-filled Holstein model with λ = 0.1875. Results were
obtained on an N = 1282 cluster and the analytic continuation was performed using Padé
approximants. The actual CDW transition temperature is TCDW

c = 0.144t. Figure taken
from our Ref. [1].
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the imaginary frequency axis at a temperature T = 0.07t, 4 and then analytically continued

onto the real frequency axis using Padé approximants [198] with a small imaginary part

η = 0.005t. Moreover, the frequency ω in these two plots is measured with respect to the

chemical potential µ. The calculation of µ occurs on the imaginary axis, and any shifts in µ

stemming from the Padé procedure, if they exist, are negligibly small since the filling from

integrating the DOS over ω is essentially unchanged.

The DOS is calculated by summing the electron spectral functionA(k, ω) = −Im[G(k, ω)]/π

over momentum and is given by

N(ω) = 1
N

∑
k
A(k, ω), (2.19)

where G(k, ω) ≡ G(k, iωn → ω + i0+). In Fig. 2.13(a), the solid curves represent N(ω) at

various fillings, with the bright (dark) colors corresponding to smaller (larger) values of n.

The two dash-dotted curves are the noninteracting DOS for the lowest filling n = 0.6 (light

blue) and the highest filling n = 0.8 (dark blue) and are obtained from the exact result at

T = 0 (elliptic integral function for a cosine band structure). Although not shown here, a

plot of the non-interacting DOS for T 6= 0 using a finite k-grid would also exhibit a broadened

profile similar to N(ω); however, unlike the interacting case, the peak position would remain

at half-filling (i.e. the Van Hove singularity). The effect of filling in the non-interacting

case is just a rigid band shift of µ, while the shape of the interacting DOS, has a strong

dependence on the filling. In fact, the interacting DOS at the ω corresponding to half-filling

is strongly suppressed to a small hump for n = 0.6, and even disappears for n = 0.8. Lastly,

and perhaps most importantly, the DOS near and at the Fermi level NF = N(0) has a

non-monotonic dependence on the filling n. More specifically, the peak actually shifts from

ω > 0 for n ∼ 0.6 to ω < 0 for n ∼ 0.8. In other words, this shift of the peak in N(ω)

approximately follows the Tc dome over n as it moves from ω > 0 to ω < 0.

The isotropic Eliashberg function α2F (ω), also known as the electron-phonon spectral

function, can be obtained by taking a double Fermi-surface average of the product between

the squared e-ph coupling |g(q)|2, the phonon spectral function B(q, ω), and the DOS at
4This temperature is slightly greater the Tc dome. We have checked by solving the eigenvalue problem

that the pairing vertex at this T is enhanced proportional to the Tc at each respective filling considered.
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Figure 2.13: (a) the electron density of states N(ω), (b) the Eliashberg function α2F (ω)
multiplied by a factor of NF/N

fd
F , and (c) Tc, ωlog, and λ as a function of n. A factor of

NF/N
fd
F is included in α2F (ω) and λα

2F (ω). The factor of NF/N
fd
F is used to account for

differences between the exact DOS and the DOS estimated by a sum of delta functions.
Figure taken from our Ref. [1].
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the Fermi-level NF = N−1∑
k δ(ξk′), given by

α2F (ω) = 〈〈NF|g(k− k′)|2B(k− k′, ω)〉〉FS, (2.20)

where the double Fermi surface average is defined by

〈〈f(k− k′)〉〉FS =

∑
k

∑
k′
f(k− k′)δ(ξk)δ(ξk′)∑

k

∑
k′
δ(ξk)δ(ξk′)

. (2.21)

Here, the phonon spectral function B(q, ω) is calculated from the renormalized phonon

Green’s function as defined in Section 2.4.4. The delta functions appearing in Eq. (2.21)

and in other calculations are not true Dirac delta functions but are instead “smeared” delta

functions, denoted as δ̃(x). These approximate delta functions are used when the system is

constrained to a finite k-grid. We use a Fermi-Dirac smearing given by

δ̃fd(x) = − d
dx

( 1
ex/σ + 1

)
= 1

4σ cosh2
(
x
2σ

) ,
which we use to obtain a DOS at the Fermi-level N fd

F = N−1∑
k δ̃fd(ξk) with the broadening

parameter σ = T . The family of curves in Fig. 2.13(b) shows the change in α2F (ω) over

a range in n. We have included factor of NF/N
fd
F in α2F (ω) to account for the differences

between the exact DOS

Notice that α2F (ω) in Fig. 2.13(b) (for all fillings shown) is peaked at a frequency lower

than the bare frequency Ω = 1.0t, indicating that the phonon branch has renormalized.

Recall from Fig. 2.12 that phonon spectral weight shifts to lower frequency as the temperature

is lowered, indicating corrections to the dispersion stemming from the formation of a CDW.

For fillings relevant to the Tc-dome, the dispersion also shows signatures of competing CDW

order developing, but now it is incommensurate. This implies that the system can approach a

superconducting phase and simultaneously show signatures of CDW driven renormalization

of the phonon dispersion. Referring back to Fig. 2.7, the TCDW
c for the incommensurate

CDW (Ω = 0.1t) is smaller than the T SC
c -dome at Ω = 1.0t. Thus, at larger values of Ω,
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the incommensurate CDW correlations and their effects are present but never fully develop

before the system becomes superconducting.

The dimensionless e-ph coupling constant λα2F can be derived from the Eliashberg

function via

λα
2F = 2

∫ ∞
0

dωα
2F (ω)
ω

. (2.22)

This quantity measures the effective electron-phonon coupling after the phonon dispersion

and the electron spectrum are renormalized by the interaction. It is plotted in Fig. 2.13(c)

and includes the same factor of NF/N
fd
F introduced for α2F (ω). The approximately

monotonic increase in this coupling across the range of filling n is generally favorable for

pairing and thus also Tc. In the same figure, we also show the filling dependence on the

logarithmic average frequency ωlog, given by

ωlog = exp
(

2
λ

∫ ∞
0

dω
ω
α2F (ω) ln(ω)

)
. (2.23)

The value of ωlog monotonically decreases across the filling range, reflecting the softening of

the phonon branch as the CDW correlations develop. Since Tc ∝ ωlog, we might expect a

reduction in Tc, however, there will be additional interplay with the change in λα2F .

To supplement our results for the superconducting Tc obtained within the Migdal

approximation we have also estimated the superconducting critical temperatures using three

appr oaches commonly found in the literature. First, we obtained Tα
2F

c by solving the

linearized gap equation [Eq. (2.34)] using the computed α2F (ω) as input. In Fig. 2.13(c),

the data for Tα2F
c most closely follows the Tc found within the Migdal approximation,

exhibiting dome-like behavior. If we exclude the corrective factor of NF/N
fd
F in α2F (ω),

which accounts for the renormalization of the electron spectral function at the Fermi-level,

the calculated Tα2F
c exhibits a monotonic increasing dependence on the filling n within the

range considered here. For the second and third estimates, we used the Allen-Dynes-modified

McMillan (ADM) formula [Eq. (2.36)] [200], which we denote TADM
c , and the ADM+f

formula [Eq. (2.37)] to find TADM+f
c . Both of these formulas underestimate the critical

temperature significantly, and only the TADM+f
c results exhibit non-monotonicity. The wide

discrepancy between the various methods for calculating Tc should be taken in to account
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when estimating the superconducting transition temperature from simplified, Fermi-surface

averaged, isotropic Migdal-Eliashberg equations.

From this analysis, we conclude that the T SC
c dome is tied to the competition of three

renormalized quantities: the monotonic rise in λα2F which enhances pairing, the decrease in

ωlog which weakens the energy scale of pairing, and the non-monotonic filling dependence of

the DOS around the Fermi-level. In particular, it is interesting to note how the quasiparticle

properties are renormalized at different fillings and how this affects the value of Tc. While

it is sometimes claimed in the literature that a superconducting dome is indicative of an

unconventional pairing mechanism [201], our results indicate that this is not necessarily the

case. A superconducting dome can be obtained in proximity to competing phases and this

behavior will be more common in materials with narrow bandwidths (i.e., large values of

Ω/t).

Effective Interaction

The bare effective electron-electron interaction for the Holstein model is purely local in real

space and consequently uniform in momentum space. However, in the fully self-consistent

approach, the effective interaction is related to the renormalized phonon propagator as shown

by the double-wiggly line in the Migdal self-energy in Fig. 2.1(a). Thus the formation of

a momentum dependent renormalized phonon branch indicates that the effective electron-

electron interaction must develop some real space structure and become nonlocal, and a

deeper understanding of this interaction will shed light on the factors for enhancing or

suppressing transition temperatures. In this section we therefore examine the static effective

interaction V (q) ≡ V (q, iνn = 0) in momentum space, and its (discrete) Fourier transform

V (r = Ri) on the lattice.

Defining the bare interaction parameter v(q) = 2g2/Ω ≡ v0, we rewrite the bare e-ph

coupling constant λ = v0/W , where W is the band width. The renormalized interaction can

thus be related to the CDW susceptibility in Eq. (2.16) as

V (q) = V (q, iνm = 0) = v0

1− v0χ0(q) (2.24)
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where χ0(q) ≡ χ0(q, iνm = 0). In momentum space V (q) has either a single peak

or quadruple peaks depending on whether the dominant CDW correlations occur at the

commensurate vector qmax = (π, π) or the incommensurate vectors given by qmax = (π, κπ),

and its symmetry-related points. In this case, we are again interested in the range of fillings

n ∈ [0.6, 0.8] relevant to the SC-dome where we always observe an incommensurate structure.

To better understand the analytical properties of the interaction, we have fit V (q) with a

sum of four 2D Lorentzians

V (q) ≈
4∑
s=1

vmax

ξ2|q − qmax,s|2 + 1 , (2.25)

where qmax,s denotes all points related to qmax = (π, κπ) by rotational symmetries, and ξ, κ,

’ and vmax are fitting parameters obtained by a least-squares fit to the data. The symmetry

of V (q) and its associated fit permit us to look along one cut of the 2D-momentum space

q = (qx, 1)π as shown in Fig. 2.14(a). As the filling is increased for fixed Ω = t, and T = 0.07t,

we see that the ordering vectors approach qmax = (π, π) and the effective interaction peak

value vmax becomes increasingly larger.

The real-space structure of the effective interaction can be obtained form the Fourier

transform V (r) = N−1∑
q∈BZ V (q)eiq·r. Applying this procedure to the Lorentzian fits gives

a functional form

V (r) ≈ vmax

πξ2 R(rx, ry)K0

(
|r|
ξ

)
(2.26)

where r = (rx, ry), R(rx, ry) = cos(πrx +πry)[cos(|κ− 1|πrx) + cos(|κ− 1|πry)], and Kν(z) is

the modified Bessel function of the second kind with ν = 0. The effective interaction V (r)

obtained from our self-consistent Migdal calculations and its corresponding fits are plotted

in Fig. 2.14(b) along the rx-axis, extending from the origin to a point where the effective

interaction amplitudes taper off. At low filling the interaction V (r) is noticeably weaker and

has a shorter estimated range ξ ≈ 0.5 (lattice spacing a = 1) making it essentially local

in extent. As the filling increases, we see the emergence of oscillatory behavior and a more

extended effective interaction. Between 0.7 ≤ n ≤ 0.8, on the decreasing side of the Tc dome,

the correlation length approximately ranges from 2.3 ≤ ξ ≤ 5.7.
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Figure 2.14: The effective interaction V normalized by the bare interaction parameter
v0 = 2g2/Ω for various fillings n in (a) momentum space V (q, iνm = 0), and (b) along the
rx-direction in real space V (rx, ry = 0, iνm = 0). In (a), the data points are obtained from
self-consistent calculations and the solid lines are from the corresponding fit to Lorentzian
functions with the method of least squares. In (b), the open circles are from the discrete
Fourier transform of V (q) (dots) in panel (a); the lines are a cosine Fourier integral transform
of the fitted Lorentzian function in panel (a). The sign convention for the effective interaction
in this figure is V > 0 (V < 0) for attractive (repulsive) interaction. The colors of the lines
or symbols indicate the value of the filling with bright (dark) color for small (large) filling n.
The bare phonon frequency Ω = t, the bare e-ph coupling constant λ = v0/W = 0.3, and the
temperature is fixed at T = 0.07t which is close to the superconducting critical temperatures
for the chosen range of electron filling n. Figure taken from our Ref. [1].
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A recent paper [202] by Langmann et al. proposed that a superconducting dome is not

necessarily associated with competing orders or exotic superconductivity, but instead can

be the result of a finite-range potential. Notably, they used a few phenomenological forms

in real space for these finite-range potentials without self-consistently renormalizing them

at different fillings across the dome. Although we observe a finite-range potential and a

Tc-dome, we cannot deduce such a causation between them within our approach. As was

discussed in the previous section, the filling dependence of the interacting DOS N(ω), the

coupling λα2F , and ωlog support the role of competing orders for our problem. Moreover,

the real-space structure of the effective interaction is directly linked to the formation of a

q-dependent phonon dispersion due to the formation of long-range CDW correlations.

Comparison to Previous Findings

Although we do not aim to present a comprehensive review of the literature surrounding

the Holstein model and Holstein-like models, there are some other studies whose results can

further contextualize the relevant physics in these models. For instance, some features of the

temperature filling phase diagram have been explored by using different approaches such as

the modified variational Lang-Firsov transformation [137], strong-coupling expansions [203],

and QMC [195]. These studies are not explicitly focused on the weak-coupling regime where

the Migdal approximation is most applicable, but there are some similarities worth noting.

In Ref. [137], a large CDW dome near half-filling and a small SC phase at lower fillings are

found; however, in the phase diagram there are additional inhomogeneous phases including

a CDW+NO phase (consisting of phase separated CDW and Non-Ordered regions) and a

CDW+SC phase (consisting of phase separated CDW and SC regions). On the other hand,

Ref. [163] found in the phase diagram a homogeneous supersolid (SS) phase where the CDW

and SC orders coexist. It is beyond the scope of the present work to study the SS phase

since it requires considering coexisting CDW and SC orders in the symmetry broken states.

However, such an investigation is possible using our theory and numerical implementation

after considering the anomalous Green’s function. In the range of parameters used, we did

not observe any indication of phase separation for the Holstein model. A phase separation

transition is an analog to the condensation transition between gas and liquid. In lattice
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models, it was first studied and observed in the extended Hubbard model [204, 205, 206]

with a nearest-neighbor Hubbard interaction, later in the Hubbard model [207, 208], and in

a e-ph coupled case, the Hubbard-Holstein model [209, 210]. Unlike CDW order, for a phase

separation transition χCDW(q) diverges at q = 0. Therefore, for an anisotropic e-ph coupling

with strong forward scattering, it is possible to find a phase separation transition [211]. We

note that we do see indications for this physics for our buckling mode case.

Two previously mentioned references [203, 195] focus on the addition of anharmonic

phonon oscillations and find that anharmonicity enhances the overall size and spread of the

SC region of the phase diagram. However, the maximum Tc is not enhanced significantly

beyond that of the maximal values attained in the truly harmonic (Holstein) model. This

result parallels the changes we discussed in section 2.4.2 when diagonal hopping is permitted.

Although setting t′ 6= 0 enhances the pairing (and thus T SC
c ) relative to t′ = 0, the

improvement in the greatest value of T SC
c is modestly small.

2.5 Summary and Conclusions

In this chapter, we have presented a detailed analysis of the Holstein model within a fully self-

consistent Migdal approximation, where both the renormalization of the electron and phonon

properties are treated on an equal (approximate) footing. Using an efficient implementation

based on fast Fourier transforms, we were able to simulate the model on lattice sizes much

larger than those considered in the past. Our results revealed significant finite size effects

when determining the CDW transition temperatures. This result should be kept in mind

when simulating the Holstein model using numerically exact methods such as QMC that are

limited to smaller lattice sizes.

Comprehensive phase diagrams were mapped as a function of filling, revealing a mix

of expected and unexpected features. For large phonon frequencies, the dominant CDW

ordering vector occurs at qmax = (π, π); however, at smaller frequencies, superconducting

Tc’s are lowered sufficiently far to allow an incommensurate CDW phase to occupy a small

range of fillings adjacent to the commensurate CDW phases near half-filling. The s-wave

superconducting phase was present at lower values of the filling and was enhanced with
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increasing Ω. Moreover, the filling dependence of T SC
c was non-monotonic with a peak near

n ≈ 0.7. We addressed the possible factors responsible for this dome by studying the filling

dependence of the interacting DOS, the renormalized e-ph coupling, and ωlog, and found

that all three have competing effects on the pairing. The DOS around the Fermi-surface

exhibits non-monotonicity akin to T SC
c across the same range of n, while the renormalized

e-ph coupling and the ωlog increased and decreased over this range respectively. The latter

two changes generally enhance and suppress pairing correlations, respectively, hence, they

provide a measure of the competition. Characterization of the effective electron-electron

interaction V over both momentum and position space show that a very local (short range)

interaction becomes further extended by several lattice constants as n approaches half-filling.

We cannot, however, attribute the origin of our superconducting Tc dome to this finite-range

interaction in contrast to other approaches [202].

The addition of a nonzero NNN hopping t′ < 0 (t′ > 0) to the electronic band promotes

larger pairing correlations in the SC phase for n < 1 (n > 1) and suppresses the charge density

correlations. Asymmetry in the phase diagram across the full range of filling is consistent

with the asymmetry in the DOS due to t′ 6= 0 which makes more states available for pairing at

fillings away from half-filling. Moreover, the NNN hopping also weakens nesting at the Fermi

surface, which in turn suppresses the CDW and thus reduces competition between the SC and

CDW phases. In addition, anisotropic e-ph couplings and the corresponding correlations are

compared. Lastly, we showed that g(q) modeling the breathing and buckling oxygen modes

in the high-Tc cuprates induce a much larger range of charge density correlations and a

suppression of superconductivity relative to the isotropic coupling.

Implementation of the fully self-consistent Migdal-Eliashberg equations has been made

freely available to the public5.
5The Matlab code is released at https://github.com/johnstonResearchGroup/Migdal.
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2.6 Supplemental: Fast Fourier Transform of Physical

Quantities

We consider the Fourier transform

f(r, τ) = 1
Nβ

∑
k

∞∑
n=−∞

ei(k·r−ωnτ)f(k, iωn), (2.27)

where we choose the plane wave eik·x = ei(k·r−ωt) = ei(k·r−ωnτ), and the inverse Fourier

transform

f(k, iωn) =
∑

r

∫ β

0
dτ e−i(k·r−ωnτ)f(r, τ). (2.28)

Note that ωnτ = ωt because the mappings between imaginary and real time-frequency

variables are τ → it and iωn → ω, respectively. Since the summations of k and r range over

the discretized first Brillouin zone and the lattice sites Ri, respectively, the discrete Fourier

transform using FFT is straightforward. Therefore, we need only discuss FFT between time

and frequency domains. As such, r and k arguments will be suppressed in the function

f which stands for the Green’s function G, self-energy Σ, the effective interaction V , or

the irreducible susceptibility χ0. As stated in the main text, ωn = (2n+ 1)π/β is fermionic

Matsubara frequency in G(iωn) and Σ(iωn), and ωn = 2nπ/β is bosonic Matsubara frequency

in V (iωn) and χ0(iωn). In the self-consistent iterations, we perform a FFT on G(iωn) and

V (iωn), and an iFFT on Σ(τ) and χ0(τ).

For a practical calculation using the FFT we must use a finite number of Matsubara

frequencies in the sum. The uniform fermionic and bosonic Matsubara frequency grids

ωn = (2n+1)π/β and ωn = 2nπ/β, where −Nc ≤ n ≤ Nc−1, are used in the sum for G(iωn)

and V (iωn), respectively. Since G(iωn) ∼ O( 1
ωn

) for large frequency, the Fourier transform

featured in Eq. (2.27) has convergence issues for G(iωn) (see the discussion in the last part

of Chapter 3 in Ref. [97]). Therefore, we subtract a function Gξ
0(iωn) = 1/(iωn− ξ) with the

same large frequency dependence as G(iωn), use the fact that β−1∑∞
n=−∞ e−iωnτGξ

0(iωn) =
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−e(β−τ)ξ/(eβξ + 1) for τ > 0, and obtain the final formula for the Fourier transform

G(τ > 0) = 1
β

Nc−1∑
n=−Nc

e−iωnτ G̃(iωn)− e(β−τ)ξ

eβξ + 1 , (2.29)

where G̃(iωn) = G(iωn) − Gξ
0(iωn). Any constant value ξ can be used, provided that |ξ| �

ωn=Nc . In our calculations, we use ξ = ξk, i.e., the band dispersion. This choice is usually

more accurate and requires smaller cut-off number Nc than other choices. Setting ξ = 0, one

recovers the familiar formula

lim
τ→0

G(τ) = 1
β

Nc−1∑
n=Nc

G(iωn)− 1
2 sgn τ. (2.30)

which is Eq. (17.36) on page 153 of Ref. [97].

For iFFT, we must reformulate the Fourier integral transform f(iωn) =
∫ β

0 dτ eiωnτf(τ)

into a discrete Fourier transform. The pitfall and the method for doing this are discussed

in Chapter 13.9 of Ref. [212] and in Chapter 2.10.2 of Ref. [213]. As mentioned in the main

text, the correct way to accomplish this task is to compute the Fourier integral exactly

after interpolating f(τ) on the discrete τ grid using a continuous function such as spline or

piecewise polynomial. Here, we choose the piecewise polynomial (Lagrange polynomial) and

provide the explicit formula for the second (quadratic) order, which appears to be absent

from literature.

Denote δ = β/Nτ , the τ grid τl = (l − 1)δ, where 1 ≤ l ≤ Nτ + 1, fl = f(τl), and

f̃l = eiωnτlf(τl). If the discontinuity exists at τ = 0 and β, the end points should be

understood as 0+ and β−. The quadratic Lagrange polynomial used for interpolation is

f(τ) ≈ fl
(τ − τl+1)(τ − τl+2)
(τl − τl+1)(τl − τl+2)

+ fl+1
(τ − τl)(τ − τl+2)

(τl+1 − τl)(τl+1 − τl+2)

+ fl+2
(τ − τl)(τ − τl+1)

(τl+2 − τl)(τl+2 − τl+1) , (2.31)
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where τl ≤ τ ≤ τl+2. Using the above interpolating function, the final result for the Fourier

integral transform is

f(iωn) = (c1 + c2 + c3)
Nτ∑
l=1

f̃l − (p3 + c3)f∆

+ (s1 − c2 + p3)f̃1 + (s2 − c3)f̃2 + s3f̃3

+ p1f̃Nτ−1 + (p2 − c1)f̃Nτ , (2.32)

where

f∆ = f(τ = 0+)− f(τ = 0−) = f̃1 − f̃Nτ+1,

c1 = δ

4(I22 − 3I12 + 2I02), c2 = −δe
−iωnδ

2 (I22 − 2I12),

c3 = δe−2iωnδ

4 (I22 − I12), s1 = δ

4(I21 − 3I11 + 2I01),

s2 = −δe
−iωnδ

2 (I21 − 2I11), s3 = δe−2iωnδ

4 (I21 − I11),

p1 = δeiωnδ

4 (I21 − I11), p2 = −δ2(I21 − I01),

p3 = δe−iωnδ

4 (I21 + I11),

and Ivu =
∫ uδ

0 dx eiωnxxv/δv+1, (v ∈ {0, 1, 2}), for which the closed analytical form can be

found using integration by parts. At this point, the sum in Eq. (2.32) is suitable for evaluation

by a FFT.

Note that for ωn = 0 (only for bosonic frequencies), we should use Ivu = uv+1/(v + 1)

and thus (c1, c2, c3) = (1, 4, 1)δ/6, (s1, s2, s3) = (p3, p2, p1) = (5, 8,−1)δ/24. Then Eq. (2.32)

becomes the usual composite Simpson’s rule that applies to both even and odd number of

intervals:

f(iωn = 0) = δ

[
3
8f1 + 7

6f2 + 23
24f3 +

Nτ−2∑
l=4

fl + 23
24fNτ−1

+ 7
6fNτ + 3

8fNτ+1

]
, (2.33)
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which is a formula also found in Ref. [212].

2.7 Supplemental: Linearized Isotropic Gap Equation

and Modified McMillan Tc Formulas

The linearized isotropic gap equation is given by [214, 200]

Φn =
∑
n′
Kn,n′Φn′ , (2.34)

where Kn,n′ = πT (λn,n′ − µ∗)/(|ωn′|Zn′), Zn = 1 + (πT/ωn)∑n′ λn,n′ωn′/|ωn′ |, and λn,n′ is

given by the Eliashberg spectral function α2F (ω)

λn,n′ =
∫ ∞

0
dω 2ωα2F (ω)

(ωn − ωn′)2 + ω2 . (2.35)

Here, ωn and ωn′ are the fermionic Matsubara frequencies. The frequency dependent gap

function is defined as ∆n = Φn/Zn. In this work, we set Coulomb pseudopotential µ∗ = 0

when solving the linearized gap equation for Tc, which is defined as the temperature when

the largest eigenvalue of the matrix Kn,n′ reaches unity from below.

The Allen-Dynes-modified McMillan (ADM) Tc formula [200] for weak coupling strength

reads

Tc = ωlog

1.2 exp
(
− 1.04(1 + λ)
λ− µ∗(1 + 0.62λ)

)
. (2.36)

For intermediate coupling strength, Allen and Dynes further modified the above formula

with two additional coefficients f1 and f2. The corresponding Tc formula [200] (ADM+f) is
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given by

Tc = f1f2ωlog

1.2 exp
(
− 1.04(1 + λ)
λ− µ∗(1 + 0.62λ)

)
, (2.37a)

f1 =
1 +

(
λ

2.46(1 + 3.8µ∗)

)3/2
1/3

, (2.37b)

f2 = 1 + (ω2/ωlog − 1)λ2

λ2 + [1.82(1 + 6.3µ∗)(ω2/ωlog)]2 . (2.37c)

Here, ω2 = [(2/λ)
∫∞

0 ωα2F (ω)dω]1/2 and λ = λn,n = λα
2F . Again, it should be noted that

we set µ∗ = 0 when calculating Tc.
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Chapter 3

Neural Network Monte Carlo

Monte Carlo (MC) simulations are essential computational approaches with widespread use

throughout all areas of science. We present a method for accelerating lattice MC simulations

using fully-connected and convolutional artificial neural networks that are trained to perform

local and global moves in configuration space, respectively. Both networks take local spacetime

MC configurations as input features and can, therefore, be trained using samples generated

by conventional MC runs on smaller lattices before being utilized for simulations on larger

systems. This new approach is benchmarked for the case of determinant quantum Monte Carlo

(DQMC) studies of the two-dimensional Holstein model. We find that both artificial neural

networks are capable of learning an unspecified effective model that accurately reproduces the

MC configuration weights of the original Hamiltonian and achieve an order of magnitude speedup

over the conventional DQMC algorithm. Our approach is broadly applicable to many classical and

quantum lattice MC algorithms. The content of this chapter stems from our Ref. [2], essentially

verbatim.

3.1 Introduction

As their full potential becomes apparent, machine learning algorithms are assuming more

prominent roles in the process of scientific discovery. Meanwhile, the boundary lines

between industry applications of machine learning, data and computer science, and other

disciplines have blurred. Applications ranging from the high-quality feature extraction from
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astrophysical images of galaxies [215] to helping with the real-time data analysis of particle

accelerators [216, 217, 218] at the Fermilab [216] and the Large Hadron Collider [217] to

discovering phases of matter [219, 220, 221] have emerged.

A series of early studies have underscored the potential for machine learning in the context

of condensed matter physics by using artificial neural networks and dimension-reduction

techniques to locate phase transitions [219, 220], or represent ground states of quantum

many-body systems [222]. Machine learning algorithms have also been employed to help gain

more insight into classical and quantum systems [223, 224, 225, 226, 227, 228, 229, 230, 231]

as well as accelerate specific numerical algorithms [232, 233, 234, 235, 236, 237]. These

applications are not only helping to automate and streamline scientific processes that could

take many years to accomplish with more conventional computational approaches, but they

are also uncovering previously inaccessible phenomena.

One machine learning application that has attracted significant attention is in acceler-

ating MC simulations [232, 238, 233, 239, 240, 241, 242, 243, 244, 245]. For example, in

the so-called self-learning Monte Carlo (SLMC) method [238], an effective bosonic model

is trained to mimic the statistics of the original Hamiltonian. Once trained, the effective

model is then used to perform the same simulations much more efficiently. The primary

advantage of this approach is that the action of the effective model is often much easier to

compute than the action for the full fermion model, thus granting access to larger system

sizes. This approach has also been extended to include correlations in both the real space and

imaginary time domains [239, 240]. Despite their power, however, the SLMC methods require

that the form of the effective model be known a priori. This limitation can be significant

as different effective models may be required for the same fermionic model as the model

parameters, system size, or simulation temperature changes, and the overall effectiveness of

these approaches is severely limited if the wrong effective model is chosen. To overcome this

problem, several groups have used artificial neural networks to learn the form of the model in

some instances [241, 243, 244, 245] (e.g. QMC simulations of the Anderson impurity model);

however, generalizing this approach to lattice QMC problems has not yet been achieved.

One reason for this is the fact that such problems typically involve thousands of auxiliary
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spacetime fields and any neural network using that many input features will often generalize

poorly.

Here, we show how to design artificial neural networks that can be trained to represent

an effective bosonic model for lattice QMC simulations. Inspired by applications of the

traveling cluster approximation to spin-fermion models [246, 247], we design fully-connected

and convolutional neural networks that only require information from surrounding auxiliary

fields (see. Fig. 3.1) to perform both local and global moves of the MC configurations.

This method does not suffer from the scaling issues restricting other self-learning methods

and can be easily generalized across models and parameter regimes without changes in

the underlying algorithm, provided the neural networks are versatile enough to learn the

effective models. As such, this approach can be integrated directly into existing MC codes.

To demonstrate the efficiency of this approach, here we apply it to determinant quantum

Monte Carlo (DQMC) simulations of the two-dimensional Holstein model. This problem is

particularly challenging owing to long autocorrelation times [248], the need for both local and

global MC moves to ensure ergodicity [249, 105], and competition between charge-density-

wave (CDW) and superconducting ground states [1] that may require different effective boson

models. Reproducing known results, we obtain an order of magnitude of speedup with our

algorithm.

3.2 Model and Methods

Model — The single-band Holstein Hamiltonian [79] is H = H0 +Hlat +He-ph, where H0 =

−t∑〈i,j〉,σ ĉ†i,σ ĉj,σ−µ∑i,σ n̂i,σ, Hlat = ∑
i

(
1

2M P̂
2
i + MΩ2

2 X̂2
i

)
, and He-ph = g

∑
i,σ X̂in̂i,σ. Here,

〈· · · 〉 denotes a summation over nearest neighbors; ĉ†i,σ (ci,σ) creates (annihilates) an electron

with spin σ on site i; n̂i,σ = ĉ†i,σ ĉi,σ is the particle number operator; t is the nearest-neighbor

hoping integral; M is the ion mass and Ω is the phonon frequency; X̂i and P̂i are the

lattice position and momentum operators, respectively; and g is the strength of the e-ph

coupling. Throughout, we set M = t = 1 as the unit of mass and energy, and we study

this Hamiltonian on an N = N2
x square lattice, where Nx is the linear size of the cluster.
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Figure 3.1: A sketch of the architecture of the (a) fully-connected and (b) convolutional
neural networks (CNN) used to perform local and global updates of the auxiliary fields,
respectively. The first and second hidden layers of the fully-connected neural network use
softplus activation functions f(x) = ln(1+ex), while the output layer uses a linear activation
function. The first and second hidden layers of the CNN use sigmoid functions f(x) =
(1+e−x)−1, while the output layer uses a linear function. The number of neurons in the first
hidden layer of the CNN is set by the stride and kernel. A measure of the performance of
the two networks is presented in the insets, which compare the predicted β∆ENN against the
exact β∆E for the fully-connected and the CNN, respectively. These results were obtained
using networks trained on an N = 6 × 6 cluster, an inverse temperature β = 4.1/t, filling
〈n̂〉 = 1, λ = t/2, and Ω = t/2. Figure taken from our Ref. [2].
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To facilitate a direct comparison with a recent state-of-the-art simulation [242], we focus on

Ω = t/2 and dimensionless e-ph coupling strength λ = g2

8tΩ2 = 0.5.

Determinant quantum Monte Carlo — DQMC is an auxiliary field, imaginary time

technique that computes expectation values of an observable within the grand canonical

ensemble. In a DQMC simulation, the imaginary time interval τ ∈ [0, β] is evenly divided into

L discrete slices of length ∆τ = β/L (= 0.1 in this work). Using the Trotter approximation,

the partition function is then given by Z = Tr
(
e−∆τLH

)
≈ Tr

(
e−∆τHe-phe−∆τ(H0+Hlat)

)L
.

After integrating out the electronic degrees of freedom, the partition function can be reduced

to Z =
∫
W ({X}) dX, where the configuration weight is W ({X}) = e−Sph∆τdetM↑detM↓.

Here,
∫

dX is shorthand for integrating over all of continuous displacements Xi,l defined at

each spacetime point (i, l), the matricesMσ are defined asMσ = I+Bσ
LB

σ
L−1 · · ·Bσ

1 , where I

is an N×N identity matrix, and Bσ
l = e−∆τHe-phe−∆τH0 , and Sph = M

2∆τ2
∑
i,l (Xi,l+1 −Xi,l)2+

MΩ2

2
∑
i,lX

2
i,l is lattice’s contribution to the total action. Note that Bσ

l matrices for the

Holstein model do not depend on spin but are implicitly dependent on the fields Xi,l through

He-ph. For more details, we refer the reader to Refs. [102, 145, 105].

As mentioned, two types of MC updates are needed in the simulation. The first are local

updates of the type Xi,l → X ′i,l = Xi,l+∆Xi,l, which are made at each spacetime point. The

second are global or block updates, where the field for a given site are updated simultaneously

at all timeslices Xi,l → Xi,l + ∆Xi, ∀l ∈ [0, L]. Such block updates are needed to help move

phonon configurations out of local minima at low temperatures and large couplings [249, 105].

DQMC accepts both kinds of moves with a probability p = W ({X ′}) /W ({X}) ≡ e−β∆E,

which requires the costly evaluation of matrix determinants. Moreover, since the matrices

Mσ depend on the fields, these must also be updated after every accepted change in the

phonon fields. While an efficient update algorithm exists for performing local updates [102],

no such algorithm is known for block updates. The computational cost for performing a full

sweep of (fast) local updates and block updates is O(N3L) and O(N4L) [250], respectively.

To reduce this cost, we train our networks to predict β∆E appearing in the definition

of the configuration weight given only changes in, and local information of, the phonon

fields and their expected behavior at large displacements as input. This reduces the total

computational complexity of determining whether both kinds of updates will be accepted to
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the time needed to evaluate the networks, which is O(1) for the case of the simply connected

network and O(L) for the convolutional neural network. As with other SLMC methods, we

then use the neural networks to propose many MC updates that are ultimately accepted or

rejected based on the configuration weights of the original model. While determining this

final acceptance probability requires the evaluation of the matrix determinants, this task can

be done infrequently enough that a considerable speedup is achieved. Another advantage of

our approach is that the networks can be trained using data generated by the conventional

DQMC algorithm on inexpensive small clusters before being generalized to larger systems.

In this way, our method combines the flexibility of neural networks with the inexpensive

training costs seen in SLMC approaches making use of largely local effective models.

3.2.1 Local Updates

Local updates are performed using a fully-connected network with two hidden layers

[Fig. 3.1(a)]. Assuming that the update is proposed at spacetime site (i, l), the learning

objective is to predict β∆E given only ∆Xi,l and the field values at the surrounding

spacetime points as input features. Here, we include nearest- and next-nearest neighbor

phonon fields in both space and imaginary time, and neglect long-range correlations. While

there is justification for a short-range effective interaction in proximity to the CDW phase

at half-filling [1], this approximation can also be systematically improved by taking more

input features. We have found, however, that next-nearest-neighbor inputs are sufficient.

We also supply an additional neuron in the input layer that enforces known behavior at

large displacements [242] (CITESUPP).

3.2.2 Global Updates

Global updates are performed using a convolutional neural network (CNN) with four layers

[Fig. 3.1(b)], where the objective again is to predict β∆E given only local information about

the phonon fields. Assuming the update occurs at site i, the input layer has three columns of

input features: the first contains fields Xi,l across all imaginary time slices; the second and

third columns contain averages X̄(1)
i,l = 1

4
∑
〈j〉Xj,l and X̄

(2)
i,l = 1

4
∑
〈〈j〉〉Xj,l, respectively, at
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all time slices, where 〈j〉 and 〈〈j〉〉 denote nearest- and next-nearest-neighbor sums around

site i. The use of X̄(1)
i,l and X̄

(2)
i,l enforces C4 rotational symmetry and reduces the cost of

training the CNN. The convolution operation from the input layer to the first hidden layer

is standard (CITESUPP).

For each set of (fixed) input parameters {β, µ,Ω, g} we train both networks using training

examples generated with the conventional DQMC algorithm on a 6×6 cluster. Throughout,

we generated 8 × 104 samples, which were randomly partitioned into 6 × 104 training and

2×104 test samples. We first show results for their performance; the insets of Figs. 3.1(a) and

3.1(b) compare the predicted β∆ENN against the exact β∆E values obtained from our test

data sets for the local and global updates, respectively. This simulation was performed close

to the CDW transition for the model [Fig. 3.3]. Both networks accurately predict the MC

configure weights but the fully-connected neural network is slightly more accurate. While

the accuracy can be systematically improved by taking more input features, we find that the

knowledge learned by both networks can be transferred to larger clusters remarkably well

based on Fig. 3.2 (a).

Once our networks have been trained and tested, we then define a full MC sweep as

consisting of Nu complete sweeps of local updates performed at each spacetime point (i, l)

using the fully-connected neural network, followed by Nu sweeps of global updates performed

at every lattice site i using the CNN. (This sampling procedure differs from the conventional

one [105], where global updates are performed on a subset of sites to minimize the total

computational cost.) After performing these sweeps, the original field configuration {X}

is replaced with a newly proposed one {X ′} in a cumulative update [233, 238, 239] with a

probability min [1, pc], where

pc = W ({X ′})
W ({X})

exp(−βENN[{X}])
exp(−βENN[{X ′}]) .

3.3 Benchmarks

To benchmark the neural network Monte Carlo (NNMC), we performed direct comparisons

with the conventional DQMC algorithm for the half-filled model 〈n̂〉 = 1 at β = 4.1/t, which
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Figure 3.2: (a) The CDW structure factor SCDW
(
π
a
, π
a

)
and (b) its autocorrelation time

as a function of the linear cluster size Nx obtained with conventional DQMC and NNMC
algorithms. The inset shows the reduction of the autocorrelation time and increase of the
simulation runtime as the number of update sweeps per Monte Carlo sweep Nu is increased.
(c) A comparison of CPU time to complete 8×104 warm-up and 8×104 measurement sweeps
as a function of Nx using the conventional and neural network sampling schemes. In both
cases, we performed global updates randomly at all sites in the cluster after every one full
spacetime sweep of local updates. To make a robust comparison between the two methods,
we took identical parameters for both sets of simulations. The solid lines are fits to the data
of the form tCPU = αN z. (d) The cumulative update ratio of the NNMC algorithm compared
against the values achieved using the SLMC method as described in Ref. [242]. Figure taken
from our Ref. [2].
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is close to the CDW transition temperature for this parameter set. We emphasize that

both the DQMC and NNMC simulations used the same sampling protocol with Nu = 1.

Figure 3.2(a) plots the CDW structure factor S(q) at q = (π, π)/a (CITESUPP) as a

function of the linear cluster size Nx, and demonstrates that the NNMC algorithm accurately

reproduces the results of the conventional DQMC algorithm for the accessible lattice sizes.

Figure 3.2(b) compares the autocorrelation time τL of SCDW(q) for both techniques, which

again yields similar results. We note, however, that the autocorrelation time can be reduced

significantly by increasing the number of update sweeps Nu that are performed before

computing the cumulative update acceptance probability, as shown in the inset of Fig. 3.2(b).

To address how NNMC reduces the computational cost, we compare the time to solution

for both algorithms in Fig. 3.2(c). Fitting a power law tCPU = αN z to the data yields

z = 3.41 and 2.35 for DQMC and NNMC, respectively, a significant reduction in the scaling.

We note that a similar speedup was obtained using SLMC [242]; however, the NNMC does

not require the functional form of the effective model to be specified a priori. Moreover,

the NNMC method is more efficient at generating accepted MC moves, particularly as it

is generalized to larger system sizes. We highlight this aspect in Fig 3.2(d), which shows

the cumulative acceptance ratio pc obtained using NNMC and compares it with SLMC.

As the methods are generalized to larger cluster sizes, pc decreases for the SLMC method

while the NNMC method proposes cumulative moves that are almost always accepted, and

becomes more accurate on larger cluster sizes. The decrease of pc in SLMC is due to the

poor performance of the regression model for predicting global updates, which requires a

more sophisticated effective model.

We now demonstrate that the NNMC approach can also be used to study the finite-

size scaling of the CDW structure factor and obtain the transition temperature in the

thermodynamic limit. Fig. 3.3 presents a similar analysis carried out in the same temperature

region β = 3.8/t ∼ 4.5/t using the NNMC approach. At the critical point, the finite-

size scaling behavior has the form SCDW(π, π)/N2
x = N−2γ/ν

x f
(
N1/ν
x

T−Tc
Tc

)
, where γ = 1

8

and ν = 1 are the 2D Ising critical exponents. The critical temperature Tc/t ≈ 0.244

(βc = 4.1/t) is determined by the common intersection point of the curves. The inset of
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Figure 3.3: A finite size scaling analysis of the q = (π, π) /a CDW structure factor
SCDW (q)N2γ/ν−2

x vs. T/t. The CDW transition is in the 2D Ising universality class with
critical exponents γ = 1/8 and ν = 1. The inset shows the collapse of the data when
SCDW(q)N2γ/ν−2

x is plotted vs. N−νx
T−Tc
Tc

with a critical temperature Tc = 0.244. Figure
taken from our Ref. [2].
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Fig. 3.3 replots SCDWN
−7/4
x against N1/ν

x
T−Tc
Tc

, showing the expected data collapsing to a

single curve, consistent with Ref. [242].

3.4 Summary and Conclusions

We have extended the use of artificial neural networks in self-learning Monte Carlo methods

to lattice Monte Carlo simulations. Our approach overcomes many of the scaling issues

associated with other SLMC implementations and can be widely applied to classical and

quantum Monte Carlo simulations on extended lattices. We then applied this methodology

to DQMC studies of the Holstein model. In doing so, we designed fully-connected and

convolutional neural networks capable of performing accurate local and, for the first time,

global moves in configuration space. Using this method we are able to reproduce results of

the charge-density-wave transition in this model but using an approach that does not require

the form of the effective model to be specified in advance.

The success of our network architectures indicates that the effective interactions in the

Holstein model are sufficiently short-ranged that the lattice dynamics can be captured using

relatively small clusters. This observation is supported by our results in in Chapter 2 for

the effective e-e interaction within the Migdal approximation [1]. In the future, one could

envision examing the structure of the trained networks to infer information abou the effective

interactions in other model Hamiltonians.

Our approach constitutes a generalizable method for performing machine-learning

accelerated lattice Monte Carlo simulations (even the Fermi-Hubbard model), provided that

the neural networks are sophisticated enough to learn the underlying effective model for

the relevant parameter ranges. At last, We would like to stress that our approach allows

to compute physical quantities that can be compared with experiments. Previous quantum

Monte Carlo + machine learning approaches used to study the Hubbard model on extended

lattices [224] have generally focused on classifying phases in the parameter space, while

physical measurable quantities (such as one- and two-particle functions) are inaccessible.
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Chapter 4

Nonlinear electron-phonon coupling

in the Holstein model

Determining the range of validity of Migdal’s approximation for electron-phonon (e-ph) coupled

systems is a long-standing problem. Many attempts to answer this question employ the Holstein

Hamiltonian, where the electron density couples linearly to local lattice displacements. When

these displacements are large, however, nonlinear corrections to the interaction must also be

included, which can significantly alter the physical picture obtained from this model. Using

determinant quantum Monte Carlo and the self-consistent Migdal approximation, we compared

superconducting and charge-density-wave correlations in the Holstein model with and without

second-order nonlinear interactions. We find a disagreement between the two cases, even for

relatively small values of the e-ph coupling strength, and, importantly, that this can occur in

the same parameter regions where Migdal’s approximation holds. Our results demonstrate that

questions regarding the validity of Migdal’s approximation go hand in hand with questions of the

validity of a linear e-ph interaction. The content of this chapter is sourced from our Ref. [3],

essentially verbatim.

4.1 Introduction

Our modern understanding of phonon-mediated superconductors is largely based on results

from ab initio approaches [84] coupled with Migdal’s approximation [92, 138, 165]. Migdal’s
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approximation [92] neglects corrections to the electron-phonon (e-ph) interaction vertex,

which scale as O(λ ~Ω
EF

), where λ is a dimensionless measure of the e-ph coupling strength,

~Ω is the typical phonon energy, and EF is the Fermi energy. Physically, this approximation

neglects processes leading to polaron formation, and determining precisely when these

processes become important and their impact on transport properties is a long-standing

problem [251, 182, 252, 162, 98, 253, 254, 255].

Many attempts to address this question have utilized nonpertubative simulations of

simplified effective models like the Holstein [79] or Fröhlich [256] Hamiltonians, where the

electron density couples linearly with phonon fields. For example, owing to it’s relative

simplicity, the Holstein model and its extensions have been studied extensively using

quantum Monte Carlo (QMC) [145, 140, 257, 258, 146, 147, 259, 148, 260, 251, 261, 262, 263,

242, 2, 264], and serves as a prototype for studying different polaronic regimes. Recently, it

was shown that even if ~Ω
EF

< 1, one can find instances where vertex corrections (i.e. polaron

formation) become important for λ ≈ 0.4 – 0.5 [98, 162].

It is generally understood that small (large) polarons form when the polaron binding

energy is larger (smaller) than the hopping energy of the carriers [265]. However, small

polarons are often accompanied by sizable lattice distortions and a tendency toward

localization and charge order. This observation has motivated some work to include higher-

order nonlinear e-ph coupling terms to study changes in polaron formation [266] and on

charge-density-wave (CDW) and superconducting (SC) pairing correlations [199, 151]. These

studies found that small positive (negative) nonlinear terms decrease (increase) the effective

mass of the carriers and contracts (enlarges) the local lattice distortions surrounding the

carriers [266]. Furthermore, mean-field treatments aiming to recover a linear model via

effective model parameters fail to capture the quantitative nature of the true nonlinear

model [266, 199, 151], indicating that nonlinearities cannot be renormalized out of the

problem. For example, one can tune the parameters of an effective linear model to

capture either the electronic or phononic properties of the nonlinear model but not both

simultaneously [151]. This failure is important to note in the context of polaron formation,

where the electrons and phonons become highly intertwined. To capture this physics
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accurately, an effective model must describe both degrees of freedom on an equal footing,

and an effective linear description of a nonlinear e-ph model will not do this.

These results raise an important question about the priority of investigations into the

validity of the aforementioned approximations. Are there scenarios where the breakdown

of the linear approximation supersedes the breakdown of Migdal’s approximation? In this

work, we show that this is indeed the case. Specifically, by comparing QMC simulations of

the (non)linear Holstein model with results obtained with the Migdal approximation’s, we

show that nonlinear corrections can be more important than vertex corrections, and that

this can occur even when Migdal’s approximation appears to be valid. Our results have

consequences for any conclusions drawn about the validity of Migdal’s approximation from

model Hamiltonians and highlight a critical need to move beyond such models for a complete

understanding of strong e-ph interactions.

4.2 Model and Methods

We study an extension of the Holstein model introduced in Section 1.2.5 that includes

nonlinear e-ph interaction terms and defined on a two-dimensional (2D) square lattice. The

Hamiltonian is Ĥ = Ĥel + Ĥion + Ĥint, where

Ĥel = −t
∑
〈i,j〉,σ

ĉ†i,σ ĉj,σ − µ
∑
i

n̂i (4.1)

and

Ĥion =
∑
i

(
P̂ 2
i

2M + MΩ2X̂2
i

2

)
=
∑
i

~Ω
(
â†i âi + 1

2

)
(4.2)

describe the noninteracting electronic and phononic parts, respectively, and

Ĥint =
∑
i,k

αkn̂iX̂
k
i =

∑
i,k

gkn̂i
(
â†i + âi

)k
(4.3)

describes the e-ph interaction to kth order in the atomic displacement. As a reminder, αk
and gk are the e-ph interaction strengths related by gk = αk

(
~

2MΩ

) k
2 .
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Following previous works on the nonlinear Holstein model [199, 151], we truncate the

series in Ĥint to second order and introduce the ratio ξ = g2/g1 to quantify the relative size

of the two e-ph couplings. (The standard Holstein model is recovered by setting g2 = 0.)

This simplification is sufficient to assess the relative importance of nonlinear interactions

relative to Migdal’s approximation. Additional orders up to k = 4 have been studied in the

single carrier limit [266], where they produce the same qualitative picture.

To facilitate comparison with previous work, we set kB = ~ = t = M = 1. The scale

of atomic displacements is set by the oscillation amplitude of the free harmonic oscillator

A =
√

1/2Ω (
√
~/2MΩ with the physical units restored). When reporting expectation values

ofX and its fluctuations, we explicitly divide by A in model units, thereby making the results

dimensionless. To get an idea for what these values mean in reality, one can simply multiply

the results by A in physical units. Later, we will consider FeSe to estimate the strength of

the nonlinear interactions. In that case, the prefactor (in physical units) is A ∼ 0.036 Å,

which is obtained after adopting a selenium mass M = 1.31×10−25 kg and the experimental

phonon energy ~Ω = 20.8 meV of the A1g mode. Alternatively, we obtain a comparable scale

of A ∼ 0.051 Å for the transition metal oxides, where ~Ω = 50 meV and M = 2.66× 10−26

kg are typical for the optical oxygen phonons. Finally, we adopt the standard definition

for the dimensionless linear e-ph interaction strength λ = 2g2
1/WΩ, where W = 8t is the

bandwidth.

In what follows, we compare results obtained using determinant quantum Monte Carlo

(DQMC) [102] and the self-consistent Migdal approximation (SCMA) [140, 1]. The details

for our DQMC formulation are found in Section 1.3.2 and Appendix B, while Migdal’s

approximation and the SCMA are covered in Sections 1.3.1, 2.2, and 2.6. To determine the

relative importance of nonlinear e-ph interactions against vertex corrections to Migdal’s

approximation, we juxtapose results obtained using these methods for the linear and

nonlinear models. For example, comparing results obtained from DQMC and the SCMA

for the linear model reveals the importance of vertex corrections. Analogously, comparing

DQMC results for the linear and nonlinear models provides a measure for the importance

of nonlinear interactions while treating the two models exactly. This methodology will

allow us to isolate the source of any observed discrepancies. Deviations between SCMA and
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DQMC for the linear model must be due to vertex corrections, while disagreement between

DQMC results for the linear and nonlinear models must arise from the additional quadratic

interaction.

The effects of nonlinear e-ph coupling or the omission of vertex corrections will manifest

uniquely in different observables. Here, we focus on two-particle correlation functions.

Specifically, we calculate the CDW susceptibility χCDW(π, π) evaluated at the CDW wave

vector qmax = (π, π) and the singlet-pairing susceptibility χSC. Both of these functions were

defined in Eqns. 2.12 and (2.14), respectively.

4.2.1 DQMC Simulation Details

In practice, we choose ∆τ = 0.1 in all our calculations. To reach equilibrium we use 80,000-

100,000 warmup sweeps before collecting 80,000-120,000 measurement sweeps per Markov

chain. With at least 8 Markov chains in each simulation, we collect between 105 and 106 total

samples per data point averaged over 100-200 bins with jackknife error estimation. While

QMC simulations of the (non)linear Holstein model face long autocorrelation times [248],

they are free of a sign problem. As seen in our data, error bars (s.d.) are typically smaller

than the symbol size and indicate our simulation parameters were sufficient to capture most

of the important sample space.

4.3 Results

4.3.1 Comparison of susceptibilities at half-filling

We begin by comparing the susceptibilities for charge-density-wave (CDW) χCDW(π, π) and

pairing χSC correlations for a few illustrative cases. The first comparison takes place at half-

filling n ≡ 〈n̂i〉 = 1, where both CDW correlations and lattice displacements are significant.

For example, at λ = 0.2, Ω = 0.5t, and T = 0.1t, we obtain |〈Xi,l〉|/A ∼ 1.97 and 2.53 for

ξ = 0.05 and ξ = 0, respectively. Taking A ≈ 0.036 Å for FeSe, these values correspond

to approximately 2.4% and 3.1% of the 2.95 Å Fe-Fe bond length. Similarly, taking A ≈

0.051 Å translates to 5.1% and 6.6% of the typical 1.96 Å Cu-O bond-distance in a high-Tc
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superconducting cuprate. These displacements are not negligible (as we will show) when the

nonlinearities are included, particularly given the weak values of the coupling we consider

here. Later, we also discuss the size of the corresponding vibrational fluctuations.

Fig. 4.1 presents results for the temperature dependence of χCDW(π, π) and χSC using

Ω = 0.5t, N = 8× 8, and λ = 0.1 and 0.2. This parameter set corresponds to weak coupling

and satisfies the adiabatic criterion Ω
EF

< 1, where we expect the SCMA to hold. Indeed,

when λ = 0.1 (Fig. 4.1a-b), there is fair agreement between the DQMC results obtained from

both the linear (ξ = 0) and nonlinear (ξ = 0.05) e-ph models (symbols with solid curve), as

well as the SCMA results for the linear model (dash-dot curve). When λ = 0.2 (Fig. 4.1c-d),

however, we find significant disagreement between the results for ξ = 0 and ξ = 0.05 in

both susceptibilities, especially at lower temperatures. In Fig. 4.1d the DQMC and SCMA

results mostly agree for the linear Holstein model (ξ = 0), but a small nonlinear correction

of ξ = 0.05 yields a marked suppression the CDW correlations. The rapid onset of CDW

order in the ξ = 0 case (Fig. 4.1d) coincides with a sharp downturn in χSC (Fig. 4.1c), a

feature which isn’t captured by the SCMA result.

The suppression of CDW correlations (Fig. 4.1d) in the presence of nonlinear e-ph

coupling demonstrates the importance of higher-order interactions over vertex corrections

in this case. As we show later, the need for nonlinear e-ph coupling is greatest near half-

filling, where the CDW correlations are strongest. Of course, the downturn of the pairing

susceptibility obtained from DQMC (ξ = 0) at lower temperatures (Fig. 4.1c) appears

to indicate that vertex corrections are also important for capturing the low temperature

behavior of χSC at λ ∼ 0.2. This value of λ is smaller than the breakdown values

reported in Esterlis et al. [98], however, our models differ slightly. For one, they suppress

the effects of Fermi-surface nesting by situating the electron density away from half-filling

and also include hopping between next nearest-neighbors. Second, they use an alternate

definition for λ = α2NF/MΩ2, where NF is the density of states evaluated at the Fermi

energy. Nevertheless, the results in Fig. 4.1c-d reveal that the nonlinear corrections to the

linear model are non-negligible at high temperature, even before the breakdown of Migdal’s

approximation becomes apparent.
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Figure 4.1: Comparison of the superconducting (SC) and charge susceptibilities at half-
filling. The singlet-pairing (χSC) and charge-density-wave (χCDW(π, π)) susceptibilities vs.
temperature for dimensionless e-ph couplings of λ = 0.1 (panels a-b) and 0.2 (panels c-d) at
half-filling and Ω = 0.5t. Results for the model with and without nonlinear corrections are
shown using closed and open symbols, respectively. Error bars on the DQMC data points
are one standard deviation statistical errors estimated using jackknife resampling. Figure
taken from our Ref. [3].
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4.3.2 Pairing susceptibilities for large phonon frequency

Now we consider a counter comparison in the antiadiabatic regime with intermediate coupling

by setting λ = 0.4, Ω = 4t, N = 10 × 10, and n = 0.55 (Fig. 4.2). Away from half-filling,

the pairing correlations grow more rapidly in part due to the larger Ω, but also because of

less competition with (incommensurate) CDW correlations. Each of the curves in Fig. 4.2

show that the system has strong pairing correlations, but they would yield very different

estimates for Tc. The SCMA significantly overestimates χSC, which is not surprising because

Migdal’s approximation is ill justified in this case (i.e., λ Ω
EF
∼ 1). Interestingly, the nonlinear

corrections become important at low temperature despite the presence of smaller lattice

displacements (e.g. |〈Xi,l〉|/A ≈ 0.22).

4.3.3 Comparison over doping

Finally, Fig. 4.3 shows results for three combinations of λ and Ω/t over a wide range of

electronic filling and at a fixed temperature T = 0.25t. The DQMC results for ξ = 0

(ξ = 0.05) are represented by open (closed) symbols in all three panels, while the SCMA

results are shown as dashed or dotted lines in Fig. 4.3a-b. For reference, Fig. 4.3c shows

the corresponding the average lattice displacement, obtained by averaging over all spacetime

points 〈Xi,l〉 = 1
N2L

∑
i,lXi,l. We caution that 〈Xi,l〉 provides a rough measure of the typical

lattice displacements, and not a complete picture of the ionic subsystem. We will return to

this subtle issue later, when we discuss the displacement fluctuations.

Case (1), λ = 0.15, Ω = 0.5t: These parameters are nearly identical to those used in

Fig. 4.1. The deviations in χCDW(π, π) for ξ = 0 and ξ = 0.05 (Fig. 4.3a) become apparent

near n ≥ 0.6 whereas the SCMA result starts to deviate from DQMC for n ≥ 0.8. At this

temperature, the results for χSC essentially agree (Fig. 4.3b), but the nonlinear model yields

a smaller average displacement 〈Xi,l〉/A (Fig. 4.3c). These results further reinforce our prior

observation that Migdal’s approximation and the linear model can break down in different

parameter regimes (in this case doping).

Case (2), λ = 0.3, Ω = 0.5t: Now we double λ while keeping the Ω fixed. The increase

in λ produces larger average displacements (Fig. 4.3c) and more pronounced nonlinear
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Figure 4.2: Temperature dependence of the superconducting susceptibility for a large
phonon frequency Ω = 4.0t. Results are shown for a filling of n = 0.55 and a lattice
size N = 10 × 10. Both the linear (ξ = 0, blue squares) and nonlinear (ξ = 0.05, green
triangles) Holstein model results from determinant quantum Monte Carlo (DQMC) show
a rapid growth of pairing correlations with decreasing temperature, but approach different
asymptotes. The self-consistent Migdal approximation (SCMA) results (red dashed line),
shown here for reference, yield a large and inaccurate estimate for the superconducting
critical temperature due to the invalidity of Migdal’s approximation. The lines connecting
DQMC data are spline-interpolated and used only to guide the eye. Error bars on the
DQMC data points are one standard deviation statistical errors estimated using jackknife
resampling. Figure taken from our Ref. [3].
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Figure 4.3: Doping dependence of the correlations at fixed temperature T = 0.25t. (a) The
charge-density wave (CDW) susceptibility χCDW(π, π), (b) superconducting (SC) pair-field
susceptibility χSC, and (c) the average value of the phonon field 〈Xi,l〉/A are shown for a
lattice size of N = 8 × 8. Symbols connected by solid lines depict determinant quantum
Monte Carlo (DQMC) data where open (closed) symbols correspond to ξ = 0 (ξ = 0.05).
Like symbol shapes between curves indicate the same pair of λ and Ω. Dashed and dotted
lines correspond to self consistent Migdal approximation calculations for ξ = 0. Error bars
on the DQMC data were estimated using jackknife resampling; however, all one-sigma error
bars are smaller than the symbol size and have been suppressed for clarity. Lines connecting
DQMC data are used only to guide the eye. Figure taken from our Ref. [3].
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corrections. It also induces a stronger CDW (Fig. 4.3a) for the linear (ξ = 0) model. The

SCMA qualitatively captures the CDW correlations of the linear model in panel (a), but

underestimates their strength, which can be attributed to solely to the vertex corrections,

consistent with the conclusions of Esterlis et al. [[98]]. Due to the large CDW correlations,

there is a suppression [267, 268] in χSC for ξ = 0, which is mostly captured by the SCMA

(Fig. 4.3b). The introduction of the nonlinear interaction significantly reduces the CDW

correlations and their competition with SC, which enhances χSC at larger values of n.

Case (3), λ = 0.15, Ω = 4.0t: Now we look at the large phonon frequency results for

DQMC (green and crimson triangles) and SCMA (green dotted line). The larger Ω boosts

pairing correlations (Fig. 4.3b) across the entire doping range and all of the χSC’s are in fair

agreement. However, we know from Fig. 4.2 that larger differences between each curve will

emerge at lower temperatures. In fact, the SCMA already overestimates χCDW(π, π) near

half-filling at this temperature, a feature we may attribute to antiadiabaticity. The increased

value of Ω means that the lattice vibrations are characterized by stiffer spring constants. We

obtain smaller average lattice displacements at all n as a result (Fig. 4.3c), which reduces

the importance of the nonlinear interaction and produces better agreement between ξ = 0

and ξ = 0.05 DQMC results.

We should be careful in interpreting the results at lower filling in each of the cases above.

On the one hand, our examples suggest that corrections to the e-ph interaction are most

important for describing the CDW phase transition near half-filling, which appears at higher

temperatures. On the other hand, corrections could become important in the dilute carrier

region at much lower temperatures. Nonetheless, our results suggest that the linear Holstein

model is sensitive to nonlinear corrections over a large parameter space and that regions of

this space overlap with regions where Migdal’s approximation is not valid. But perhaps more

importantly, there are regions where the linear approximation breaks down before Migdal’s

approximation does.

4.3.4 Average lattice displacement and its fluctuations

In Fig. 4.3c we showed that the magnitude of the mean displacement 〈Xi,l〉/A had an

approximately linear dependence on the filling n. These displacements become larger when
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the dimensionless e-ph coupling λ is increased or when the phonon energy Ω is decreased

(or, equivalently, when the spring constants are softer). The behavior of 〈Xi,l〉 as a function

of doping can be loosely understood by considering the atomic limit. In this case, the

effect of the linear e-ph-interaction is to shift the equilibrium position of the lattice to

X0 ≈ −n α1
MΩ2 [105]. Indeed, the results shown in Fig. 4.3c for the linear model are well

described by this function. Based on this observation, one might then be tempted to try to

eliminate the nonlinear interactions by defining new lattice operators X̂ ′ = X̂ −X0 = X̂ in

hopes that the displacements of X̂ ′ remain small. Unfortunately, this procedure is not viable

for several reasons.

The first reason is that global shift of the equilibrium position will only be effective in

the case of a uniform charge distribution. This certainly will not be the case when the

CDW correlations are significant. For example, in the (π, π) CDW phase, half of the sites

are doubly occupied with an average displacement of ≈ 2X0 while the remaining sites are

unoccupied with an average displacement of zero. In this instance, 〈Xi,l〉 = X0, consistent

with our results in Fig. 4.3c, but shifting the origin to X = X0 will not eliminate the large

lattice displacements at each site.

The second reason why redefining the origin will not work is that such transformations

do not affect the displacement fluctuations, which are also significant for the linear Holstein

model. To show this, we examine the root-mean-square (rms) displacement of Xi,l in our

system with a linear e-ph coupling strength λ, which is defined as

σX(λ) =
√
〈X2

i,l〉 − 〈Xi,l〉2 (4.4)

and is formally identical to a standard deviation. The value of σX in the limit n → 0

approaches the (thermal) rms displacement for the free harmonic oscillator, which we denote

as σX(0) and is given by

σX(0) =
√

1
2Ω [2nB(Ω) + 1], (4.5)

where nB(Ω) = [eβΩ − 1]−1 is the Bose occupation function.

Fig. 4.4 shows results for [σX(λ) − σX(0)]/A, as a function of filling for the same

parameters used in Fig. 4.3. (For reference, for Ω/t = 0.5 and 4.0, we obtain σX(0)/A = 1.146
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Figure 4.4: Doping dependence of the root-mean-square (rms) lattice fluctuations.
Comparison of rms fluctuations beyond the (noninteracting) thermal oscillator value, denoted
[σX(λ) − σX(0)]/A as a function of filling for T = t/4 and N = 8 × 8. Here, σX(0) is the
baseline contribution to the rms fluctuations from the noninteracting thermal oscillator and
σX(λ) is the fluctuation in the full interacting problem. Again, we find similar behavior to
Fig. 4.3c only now we are looking at the growth of oscillations beyond zero-point fluctuations
(which can also be large). Figure taken from our Ref. [3].
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and 0.354, respectively.) Here, we see that the fluctuations of the linear Holstein model

are quite sensitive to the size of the dimensionless linear e-ph interaction λ. Moreover,

the magnitude of the fluctuations generally grow monotonically with filling until reaching

a maximum at half-filling. There, the largest fluctuations shown correspond to σX(λ =

0.3)/A ≈ 2.43, which is more than double the size of captured by σX(0)/A. Again, taking

FeSe or a typical cuprate as references, these fluctuations correspond to ∼ 3.0% and ∼ 6.3%

of the respective lattice constants. It is important to note that σX(0)/A rises sharply for

even smaller (and more realistic) model values of Ω/t ≈ 0.02 − 0.1. Such values, however,

are typically inaccessible to DQMC due to prohibitively long autocorrelation times.

The overall effect of the nonlinear coupling is to suppress the rms displacements relative

to the linear case, especially near half-filling. Only when (ξ, λ, Ω/t) = (0, 0.15, 4.0) and

(0.05, 0.15, 4.0) do we find close agreement between the linear and nonlinear models, and

typical lattice displacements that are a small fraction of the lattice spacing.

4.3.5 How big are nonlinear interactions in materials?

Throughout this work we used ξ = 0.05, but how representative is this value for a realistic

system? To address this question, we considered the case of bulk FeSe, a quasi-2D material

where the position of the Se atoms influence the on-site energies of the Fe 3d orbitals [269],

somewhat akin to the 2D Holstein model. To determine the strength of the linear and

nonlinear e-ph coupling, we constructed a Wannier function basis from density functional

theory (DFT) calculations to determine the on-site energy of the Fe 3d orbitals εdiag(zSe)

as a function of the Se atom’s static displacement zSe along the c-axis. We then applied a

polynomial fit of the form f(zSe) = a0 +a1(zSe−z0)+a2(zSe−z0)2 to the site energy εdiag(zSe)

for each orbital and computed ξ = Aa2
a1
. Here, the oscillation amplitude A =

√
~/2MΩ ≈

0.036 Å, adopting a selenium massM = 1.31×10−25 kg, and the calculated phonon frequency

Ω = 2π · 5.02 THz of the A1g mode.

The results are summarized in Table 4.1, where ξ ranges from −0.1640 to 0.0148, with

the strongest nonlinearity appearing for the dxy orbital. We do not investigate ξ < 0 in

our model calculations because others have shown that it leads to increased softening of
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Table 4.1: Estimation of nonlinear e-ph coupling ratio ξ in FeSe. Results from fits of the
on-site energy εdiag(zSe) for each d-orbital of Fe as a function of the height of the Se atom
zSe measured with respect to the Fe-plane. Fitting εdiag(zSe) with a simple polynomial of the
form f(zSe) = a0 + a1(zSe − z0) + a2(zSe − z0)2, we estimate the nonlinear coupling ratio ξ
from the fitting parameters a2/a1. Table from our Ref. [3].

Orbital a2/a1 [Å−1] ξ
dxy -4.5936 -0.1641

dxz/dyz -0.4804 -0.0172
dz2 0.0159 0.0006

dx2−y2 0.4155 0.0148
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the phonon dispersion and larger CDW correlations [151]. Nevertheless, our results show

|ξ| ≈ 0.05 is certainly not out of the question for a real material.

4.4 Discussion

We have demonstrated that the linear approximation to the e-ph interaction in the Holstein

model breaks down in commonly studied parameter regimes. Importantly, this breakdown

regime overlaps with ones where Migdal’s approximation captures the DQMC result, even

if only qualitatively. This observation indicates that nonlinear corrections to the underlying

linear lattice model may be important even when vertex corrections are not. We also studied

the example of bulk FeSe from first principles and found that nonlinear e-ph interactions

in a real materials can be quite significant and on par with, or even larger than our model

choice of |ξ| = 0.05.

It is natural to wonder which parameter regimes might be best for ensuring lattice

displacements remain small enough justify the use of a linear interaction. We have found

that tuning λ to smaller values suppresses the lattice displacements and their fluctuations,

but also pushes the growth of correlations to lower temperatures, making computations

more expensive. (Some groups [264] have recently managed to access such temperatures

in QMC, however.) Alternatively, one could also shrink the displacements by choosing

antiadiabatic parameters (i.e., Ω > EF). But even for a strongly antiadiabatic choice

of (λ, Ω/t, n) = (0.4, 4.0, 0.55), nonlinear corrections to the e-ph interaction produced

considerable differences in the resulting temperature dependence of the superconducting

susceptibility. Unfortunately, focusing on smaller phonon energies, which are relevant for real

materials, will also produce larger lattice displacements and fluctuations that are inconsistent

with a linear interaction. While our results are not comprehensive across the entire parameter

space of the Holstein model, we are forced to conclude that they do call large portions of

this space into question. For instance, our results imply that combinations of λ & 10−1 and

Ω . 4t yield sizable displacements and displacement fluctuations, which would necessitate

additional nonlinear interactions and/or anharmonic lattice potentials [261]. Our results
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indicate a clear and present need for more work extending beyond the simplest effective

models, especially when one is trying to describe the physics of a real system.

The Holstein model and Migdal’s approximation have long served as cornerstones in

the study of electron-phonon interactions. Their relative simplicity has helped shape our

intuition about superconductivity, its competition with charge order, and polaron formation,

and studying the Holstein model can address the essential physics of these processes. While it

is clear that these models are built on the assumption of small lattice displacements, it is not

always clear how large these displacements will be in practice or whether additional nonlinear

interactions will modify the physics of the model. One must, therefore, be careful when

extrapolating results from effective models to real materials when they are driven outside

their range of validity. For example, we have shown that the Holstein model can produce

displacements that begin to approach the Lindemann criteria for melting (particularly as

Ω is reduced), but the model cannot describe such a transition. Instead, it over predicts

various tendencies towards ordered phases in these cases. Similarly, it is unclear how one

should map critical λ values derived for the breakdown of Migdal’s approximation onto real

materials.
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Chapter 5

Two-component Hubbard Bilayer

model

A hypothesis by Steve Kivelson [71] suggests that one can raise the superconducting transition

temperature (Tc) in a large pairing scale superconductor, inhibited by phase fluctuations, by

coupling the system to a metal. Subsequent model calculations added support to this idea using

a composite bilayer model with disconnected negative-U sites coupled to a metal layer via single-

particle tunneling. We study a more general version of this model using the dynamical cluster

approximation in a less studied regime where the interaction |U | is comparable with the electronic

bandwidth. We find that the transition temperature follows a nonmonotonic dependence on the

interlayer tunneling, peaking at some finite value comparable to the hopping in the metallic layer.

However, unlike previous works, this boost in the critical temperature appears to be modest

compared with the negative-U model in isolation. We show that while the tunneling enhances pair

mobility, it also decreases the effective pairing interaction, creating the competition responsible

for the nonmonotonic behavior of Tc. Much of the work in this chapter stems from a work in

preparation [4] and describes the status of our work thus far.

5.1 Introduction

One of the curious observations of early cuprate superconductors was that they hosted a

remarkably low carrier density and correspondingly low superfluid stiffness; yet, they have
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a large pairing scale characterized by the superconducting gap and correspondingly short

coherence length [270, 72]. The low superfluid stiffness and short coherence length, as

seen in underdoped cuprates, means that phases fluctuations can prevent the system from

achieving long-range phase coherence [72, 271, 272, 273, 274, 73]. As a result, long-range

phase coherence occurs at a superconducting transition temperature Tc that is significantly

lower than the corresponding mean-field temperature scale TMF
c . Metallic superconductors,

on the other hand, do realize the mean-field transition temperature because pairing and

long-range phase coherence happen simultaneously [271].

A proposal by Kivelson [71] has suggested that it might be possible to raise Tc closer

to its mean-field pairing scale in a superconductor with low superfluid stiffness and a large

pairing scale by coupling it to a metallic layer. Using a disconnected (i.e., no in-plane

hopping) negative-U Hubbard layer coupled to a metallic layer by single-particle tunneling

t⊥, this system was originally studied perturbatively [94] for |U | and t⊥ much smaller than

the metallic bandwidth W = 8t, and later using quantum Monte Carlo (QMC) up to values

of |U | larger than the bandwidth [95]. In this model, the pairing layer has zero superfluid

stiffness and the corresponding critical temperature vanishes when the interlayer tunneling is

switched off (i.e. t⊥ = 0). For small and increasing t⊥, phase coupling between pairing sites is

enabled by Josephson tunneling through the metallic layer [94, 95] and Tc increases; however,

Tc is eventually suppressed by the same delocalization effects beyond intermediate values

of t⊥. The numerical results [95] suggest that phase fluctuations produce an exponential

suppression in Tc for small t⊥. Moreover, this work found that the highest Tc that can be

achieved by varying t⊥ is three to four times smaller than TMF
c for small and intermediate

U/t, while for large U/t it is bounded by the highest Tc in the 2D attractive Hubbard model.

The intermediate regime U ∼ W was later addressed using QMC, but with intraplane

hopping in the negative-U layer restored [96]. Here, the correlated layer has a small but

nonzero superfluid stiffness, even when t⊥ = 0, and the superconducting transition follows

the Berezinskii-Kosterlitz-Thouless (BKT) universality class of the XY model. For increasing

t⊥, the authors of Ref. [96] also found a proximity effect induced suppression of the

pairing correlations in the correlated layer, while the metallic layer exhibited nonmonotonic

behavior with a maximum at intermediate t⊥. In other words, pairing is orbital (or layer)
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dependent for small t⊥, an observation that is reminiscent of the orbital selective Mott

insulating phase observed in more sophisticated two-orbital models with repulsive-U and

Hund’s interactions [275, 276]. Finally, pairing is suppressed simultaneously in both layers

beyond a critical value of t⊥. These trends were also found to persist through a modest finite

size scaling analysis of the QMC results.

Despite the finite size analysis in Ref. [96], an estimate of Tc as a function of t⊥ is lacking

in the literature in the parameter regime U ∼ W . We address this issue here by studying an

negative-U Hubbard model coupled to noninteracting layer with a representative parameter

set and obtaining Tc as a function of t⊥ using the dynamical cluster approximation (DCA).

Since the DCA incorporates long range correlations in the thermodynamic limit through a

coarse-graining of momentum space, it provides a different numerical perspective than finite

cluster QMC methods. Our results show that for large clusters, Tc is enhanced for finite

t⊥ beyond the system Tc when t⊥ = 0, reaching a maximum in the vicinity of t⊥ ∼ 1.5 -

2.0. That is, an increased single-particle tunneling between the layers reduces the effects of

phase fluctuations present in negative-U layer. We also discuss the competition between an

increasing pair mobility and reduced effective pairing interaction. These quantities suggest

signs of crossover behavior as seen in the attractive Hubbard model.

5.2 Model and Methods

5.2.1 Two-component Model

Our composite system introduced in Section 1.2.6 consists of a correlated negative-U

Hubbard layer and a non-interacting (metallic) layer connected through interlayer single-

particle tunneling t⊥ (See Fig. 5.1). Both layers have a square lattice geometry with identical

lattice spacing. The associated bilayer Hamiltonian is defined as

Ĥ = −
∑
〈ij〉,α,σ

tα(ĉ†iασ ĉjασ + H.c)− |U |
∑
i

n̂i1↑n̂i1↓ +
∑
i,α,σ

(ε2δα2 − µ)n̂iασ + t⊥
∑
i,σ

(ĉ†i1σ ĉi2σ + H.c.),

(5.1)
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Figure 5.1: A schematic of the model described by Eqn. 5.1. Note that tm ≡ t2 and εm ≡ ε2.
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where ĉ†iασ (ĉjασ) creates (destroys) an electron on the ith site of the α = 1 or 2 layer with

spin σ (=↑, ↓) and n̂iασ = ĉ†iασ ĉiασ. The in-plane nearest neighbor hoppings tα are fixed such

that t1 ≡ t = 1 and t2 = 2t, whereas the interlayer tunneling t⊥ is a variable parameter.

An attractive on-site Coulomb interaction U in the correlated layer (α = 1) is responsible

for the formation of local (s-wave) Cooper pairs. Lastly, the noninteracting metallic layer

(α = 2) has an additional on-site energy term that is used to shift the van Hove singularity

slightly above the chemical potential µ (we set ε2 − µ = 0.2t).

5.2.2 Methods

The Hamiltonian in Eqn. (5.1) is studied using DCA++ [113], a state-of-the-art implemen-

tation of the DCA method. In this formalism, the lattice problem is reduced to a finite-size

cluster embedded in a mean-field that is self-consistently determined to represent the system

beyond the cluster [107]. Our model is an effective two band model, with Nc unit cells

arranged in an N ×N square lattice. This arrangement results in a 2Nc-site cluster problem

that is solved using a continuous-time auxiliary-field QMC algorithm [110, 111, 112]. In this

work, we examine three different clusters, namely 4×4 (Nc = 16), 6×6 (Nc = 36), and 8×8

(Nc = 64).

The QMC simulations utilized 6000 independent Markov chains to collect 2×106 to 5×106

total measurements per DCA iteration. The negative-U interaction tends to produce long

autocorrelation times, so each of the contributing measurements was made after skipping

50-100 Monte Carlo updates to further ensure statistically independent sampling. A typical

DCA calculation for our model (i.e., for a single set of model parameters) reaches numerical

accuracy in 6-8 iterations. Convergence is attained when the difference in the DCA self-

energy on subsequent iterations is either less than a small fixed numerical cutoff, or when

the difference becomes smaller than the QMC statistical error.

The chemical potential µ is allowed to vary such that the filling in the correlated layer

remains fixed at n1 ≡ 〈n̂i1〉 = 0.75, where n̂i1 = n̂i1↑ + n̂i1↓. As a result, the filling of

the metallic layer is allowed to take whatever value is necessary to satisfy thermodynamic

equilibrium. This choice of filling avoids any complications that might stem from a perfectly
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nested Fermi surface as seen at half-filling and it still gives us access to the superconducting

transition in the negative-U model at higher temperatures.

For the isolated (t⊥ = 0) 2D attractive Hubbard model away from half-filling, the system

has an s-wave SC ground state. When |U |/t � 1, the system adopts a weak coupling

BCS state and eventually crosses over to a Bose-Einstein condensate (BEC) of hard-core

on-site bosons for |U |/t � 1 [277, 278, 279, 280, 281]. Consequently, the behavior of Tc as

a function of |U |/t is a non-monotonic function that peaks at intermediate |U |/t ≈ 4 − 6,

and gradually tapers off in the presence of increasingly stronger phase fluctuations at larger

values of |U |/t [278, 282, 280]. We are interested in the question of whether the reduction in

Tc due to phase fluctuations can be reversed in the composite system, hence, we set U = −10t

in the correlated layer. As the interlayer hopping t⊥ is gradually increased, we will study its

effects on the Tc of the correlated layer.

We obtain estimates for the superconducting Tc by solving the Bethe-Salpeter equation

− T

Nc

∑
k′

Γpp(k, k′)G(k′)G(−k′)φα(k′) = λαφα(k) . (5.2)

Here, φα and λα represent a possible eigenvector and eigenvalue, repectively; G(k) is the

dressed single-particle propagator and Γpp(k, k′) the irreducible particle-particle vertex, both

obtained from the DCA and written compactly using the notation k = (k, iωn), where

k is the momentum and iωn is a fermionic Matsubara frequency ωn = (2n + 1)πT . A

superconducting transition occurs when the leading eigenvalue λα̃(Tc) = 1. For our case of

an attractive Hubbard layer, we find that the leading eigenvector (φα̃) has s-wave symmetry

(i.e., φα̃, λα̃ → φs, λs) for all the values of t⊥ we consider.

5.3 Results

We begin by fixing the temperature T = t/4 and varying the interlayer hopping. In Fig. 5.2,

we plot λs as a function of t⊥/t for Nc = 16, revealing a monotonically decreasing function

in t⊥/t. For t⊥/t = 0, the leading eigenvalue is greater than unity, indicating that when

the layers are isolated, the correlated layer is in the superconducting phase for the given
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Figure 5.2: Interlayer hopping dependence of the s-wave eigenvalue λs for fixed temperature
T = 0.25t, in-plane cluster size of Nc = 16, and filling of the correlated layer n1 = 0.75.
Figure taken from our Ref. [4].

118



parameters. For t⊥/t > 0, λs < 1 indicating that the system is now in the normal state

at T = 0.25t. As t⊥ increases, the leading eigenvalue decreases, implying that the pairing

correlations become weaker overall. However, there is a noticeable downturn in the leading

eigenvalue for t⊥/t > 0.3. This shift in the functional dependence of λs(t⊥) coincides with

a growth of proximity-induced pairs in the metallic layer at t⊥/t > 0.5 observed in Ref. [96]

for similar parameters. For this Nc = 16 result, it is apparent that the superconducting

transition is moved to lower temperatures as the interlayer tunneling is increased.

Next, we focus on the temperature dependence of 1−λs(T ) for several values of t⊥ plotted

in Fig. 5.3. Starting from high-temperature (T/t = 2), we cool the composite system down

to Tc, the latter of which is identified by the temperature at which 1 − λs(T = Tc) = 0.

The family of curves depicted in Fig. 5.3 represent different values of the interlayer hopping

between 0 and 2.5 but with all other model parameters identical (except for µ, which is

adjusted to maintain n1 = 0.75). All curves for t⊥/t ≤ 1 are denoted by filled circles and

solid lines (to guide the eye) and the remaining curves with t⊥/t > 1 are depicted with filled

squares and dashed lines. This distinction is made because it roughly marks a change in

convexity of the curves of 1 − λs(T ) and consequently, the nature of the superconducting

phase transition itself.

As noted, the supeconducting transition in this model is expected to follow the BKT

universality class. Since the DCA embeds the finite-size cluster in a mean-field, the

temperature dependence found in the DCA will cross over to mean-field behavior when

the correlation length exceeds the cluster size. At higher temperatures, however, when the

correlations are still contained within the cluster, the DCA results will exhibit the true

temperature dependence of the system in the thermodynamic limit.

For small t⊥/t < 1, the curves display convex behavior, indicating the presence of phase

fluctuations and BKT behavior [73]. For larger t⊥/t > 1, the temperature dependence of 1−

λs(T ) changes qualitatively to a more BCS-like behavior, exhibiting logarithmic ln(T/TMF
c )

dependence. This change in the curvature of 1 − λs(T ) with increasing t⊥ is similar to the

change found in the repulsive Hubbard model with increasing hole doping [73] and reflects

the decreasing strength of phase fluctuations. Importantly, the gradual evolution of the
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Figure 5.3: Temperature dependence of 1 − λs(T ) for the composite bilayer system on
a Nc = 16 site cluster for several different values of the interlayer hopping in the interval
t⊥/t ∈ [0, 2.5]. Filled circles (squares) with solid (dashed) lines depict results for t⊥/t ≤ 1
(t⊥/t > 1). Figure taken from our Ref. [4].
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temperature dependence of 1 − λs(T ) with increasing t⊥/t does not appear to enhance the

Tc.

As a rough measure of the finite-size effects for this system, we repeat part of the analysis

just described for five illustrative values of t⊥/t using a 6×6 (Nc = 36) cluster (see Fig. 5.4).

Again, one sees that 1 − λs(T ) begins to follow the same pattern as before, changing to

a more rapid dependence with increasing t⊥/t. However, the larger cluster treats spatial

fluctuations on longer length scales, and the resulting transition temperatures are, therefore,

reduced.

The estimated Tc values obtained from 1 − λs(T ) are depicted in Fig. 5.5 for all three

cluster sizes Nc = 16, 36, and 64. The smaller cluster results (Nc = 16, 36) predictions are

quantitatively different, but they describe the same qualitative result: the coupling t⊥ to the

metallic layer suppresses Tc in this parameter regime. The significant cluster size dependence

at small tunneling values suggests that the larger cluster is needed to account for long-range

spatial fluctuations that suppress Tc. Based on previous studies of the negative-U Hubbard

model [278, 282], Tc is expected to fall in the range of 0.1 to 0.14 for our model parameters,

which is smaller than the lowest temperature shown for t⊥ = 0. Therefore, we expect Tc

to continue dropping for the smallest values of interlayer tunneling. However, we do not

observe such a cluster size dependence for larger tunneling values, meaning that Tc will

remain enhanced over some finite range of t⊥. Since these curves are trending downward for

the largest tunneling values, we expect the final peak to be in the range of 1.5 - 2.5.

The authors of Ref. [96] studied a wider set of parameters, some of which get close

enough to ours for qualitative comparison. Unfortunately, these authors did not estimate Tc,

meaning that an apples-to-apples comparison is not possible. They studied the relative size

of real space pair correlations in each layer, finding a monotonic decrease in the correlations

with increasing t⊥/t. Even for increasingly larger finite-size lattices, their qualitative result

remains the same. The metallic layer exhibited a nonmonotonic dependence of pairing

correlations with respect to t⊥/t, signaling an onset of induced pairing. In other words, the

composite system at intermediate coupling W ∼ |U | gives rise to a significant proximity

effect where local singlet-pairs are created in the metallic layer at the expense of Tc.
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Figure 5.4: Temperature dependence of 1 − λs(T ) for the composite bilayer system on a
Nc = 36 site cluster for several different values of the interlayer hopping t⊥. Error bars
(s.d.) are shown for the smallest three values of t⊥/t = 0.0, 0.1, 0.3 obtained by repeating
the last DCA iteration using different random number seeds in the CTQMC cluster solver.
The resulting Tc estimates for t⊥/t = 0.0, 0.1, and 0.3 fall within each other’s range of
uncertainty. Figure taken from our Ref. [4].
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Figure 5.5: Superconducting critical temperature Tc/t as function of interlayer tunneling
t⊥/t for Nc = 16, 36, and 64. For Nc = 16 and 36, Tc is monotonically decreasing function
of t⊥, but with strong indications of a cluster size dependence for small t⊥. However, when
Nc = 64, Tc is nonmonotonic as a function of t⊥. This discrepancy suggests that large
cluster sizes are required to capture the effects of phase fluctuations on Tc. The solid lines
are intended to guide the eye. Figure taken from our Ref. [4].
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5.3.1 Effective pairing interaction

We can view our results through the behavior of two renormalized quantities as a function

of tunneling. Equipped with the leading eigenvalue λs and eigenvector φs from the BSE

[Eqn. (5.2)], we use a separable approximation to decompose the leading eigenvalue as λs '

VsP0s, where the pairing interaction Vs and the “pair mobility” P0s are given by [283]

Vs = −
∑
k,k′ φs(k)Γpp(k, k′)φs(k′)

[∑k φ2
s(k)]2

(5.3)

and

Ps0 = T

Nc

∑
k′
φs(k′)G(k′)G(−k′)φs(k′), (5.4)

respectively.

We find that this separable form, VsPs0, provides a very good approximation for the exact

eigenvalue λs obtained from Eqn. (5.2) and only slightly overestimates λs by ∼ 5-10%. These

results hold even if we restrict the sum over layer indices implicit in Eqs. (5.3) and (5.4) to the

correlated layer only. At the temperatures studied here, the metallic layer is nearly devoid

of pairing correlations. However, based on the results of Ref. [96], proximity-induced pairing

in the metallic layer can occur at lower temperatures (T/t ∼ 0.1). Others have explored the

zero temperature picture for the case of a correlated t-J layer coupled to a metal, finding

instances where the proximity induced superconducting gap in the metallic layer can exceed

that in the correlated layer [284].

In Fig 5.6, we plot the effective pairing interaction Ṽs(t⊥) ≡ Vs(t⊥)/Vs(0) and the pair

mobility P̃s0(t⊥) = Ps0(t⊥)/Ps0(0) relative to their values at t⊥/t = 0. As interlayer tunneling

increases, Ṽs(t⊥) and P̃s0(t⊥) exhibit the opposite monotonic behavior for 0 ≤ t⊥/t ≤ 1.5.

While the increase in P̃s0(t⊥) is good for Tc, it competes with a corresponding decrease in

Ṽs(t⊥) for each value of t⊥/t. Consequently, this weakening of the effective pairing interaction

lowers the effective pairing scale ∆, and thus also the mean-field temperature scale TMF
c ∼ ∆.

A shortcoming of our analysis is that it considers a narrow range of model parameters.

Previous work shows that the qualitative trends are insensitive to small variations in model

parameters. For instance, Ref. [96] examined other filling factors (n1 = 0.6, 0.8, 1.0) and

attractive interaction strengths (U = −4t,−6t,−10t) and found that smaller values of n1
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Figure 5.6: Effective interaction Ṽs(t⊥) = Vs(t⊥)/Vs(0) and pair-mobility P̃s0(t⊥) =
Ps0(t⊥)/Ps0(0) normalized by their values at t⊥/t = 0. Results obtained on a cluster size of
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Ref. [4].
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are only marginally better for inducing pairing correlations in the metallic layer and that

less negative values of U decrease pairing significantly in both layers. Thus, we expect our

results to be representative of the regime where the size of the interaction and the bandwidth

are comparable and pairing is more significant. Similar to earlier works showing that Tc

increases in a composite superconductor-metal system, [94, 95] we also find an enhancement

in Tc with increasing t⊥. However, the enhancement is modest for the largest cluster size

studied. Although a direct comparison with Ref. [96] is not possible, their calculations

(for similar parameters) show that the pair structure factor decreases monotonically with

increasing t⊥ in the correlated layer and peaks in the metallic layer. However, the magnitude

of the induced correlations in the metallic layer are small compared with the correlated layer

and not representative of a transition. This suggests a need to compare our results directly

to those from a method like determinant quantum Monte Carlo. There, we could better

gauge the role of the mean-field in the DCA method in situations where phase fluctuations

are strong.

The evolution of the superconducting transition from KT-like to BCS-like is reminiscent

of the BCS-BEC crossover [285, 286] discussed in the context of the 2D attractive Hubbard

model [277, 279]. In the latter scenario, one goes from BEC to BCS superconductivity

by systematically lowering |U | from the intermediate-strong coupling regime to the weak

coupling regime. Importantly, Tc(|U |) is found to have a maximum for |U | ∼ W , where

W is the bandwidth. In the bilayer model, although |U | is kept constant, we find that

the pairing interaction is effectively reduced through an increase in the interlayer tunneling

amplitude t⊥. Interestingly, like the purely 2D case, we find that Tc in the composite system

has a maximum value with decreasing pairing interaction. We intend to expand the analysis

of Fig 5.6 to larger values of t⊥ in order to see if Ṽs(t⊥) and P̃s0(t⊥) plateau, or reverse

directions.

126



5.4 Conclusion

In this chapter, we used DCA calculations of a composite bilayer system to study the

relationship between the superconducting transition temperature and the interlayer single-

particle tunneling between an negative-U Hubbard layer and a non-interacting metallic layer.

Specifically, we expanded on previous works [94, 95, 96] in the regime where the magnitude

of the attractive interaction is comparable to the bandwidth (W ∼ |U |). We showed that Tc

has a nonmonotonic dependence on interlayer tunneling when the DCA cluster size becomes

sufficiently large Nc ≥ 64. For smaller clusters, phase fluctuations are suppressed by the

mean-field and the Tc is overestimated, especially for small tunneling values. We showed that

effective pairing interaction in the correlated layer decreases monotonically with increasing

t⊥, thereby lowering the pairing scale. However, we see a concomitant increase in the pair-

mobility over the same range of tunneling values, which helps to increase Tc. The peak Tc

may correspond to a crossover between tightly formed BEC pairs and longer range BCS

pairs, much like in the attractive Hubbard model.

For small interlayer tunneling, the superconducting transition resembles a Kosterlitz-

Thouless temperature dependence, as expected for a 2D negative-U Hubbard model. On

finite-size clusters, the DCA will ultimately give a mean-field result close to the transition,

but KT behavior is still noticeable across a range of higher temperatures. As the single-

particle tunneling increases, we observed a shift toward a BCS-like logarithmic temperature

dependence. Interestingly, this confirms that the superconducting transition in the composite

system does inherit a more mean-field-like character through the interlayer hybridization.

However, due to the concomitant reduction in pairing scale, Tc is reduced with respect to

the isolated system.
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Chapter 6

Conclusions

This dissertation presented four primary research questions. The first question (Chapter 2)

was in the pursuit of finding out the temperature phase diagram of the Holstein model

using many-body perturbation theory. It was known that the Holstein model hosted s-

wave superconductivity and charge-density-wave correlations, but there was no consensus

on where the phase boundaries fell as a function of filling or how they changed with phonon

frequency or next-nearest neighbor hopping. Aided by a computationally efficient solution

of the coupled many-body propagators under Migdal’s approximation, we were able to study

correlations on lattice sizes large enough to capture the thermodynamic limit. The phase

diagrams revealed a high-temperature CDW phase at and around half-filling, giving way to

a superconducting dome at finite doping. The superconducting Tc-dome was concomitant

with an increase in the renormalized e-ph coupling and electronic density of states near

the Fermi level, as well as a reduction in the renormalized phonon frequency. While these

factors point to competition effects with the CDW as the primary reason for the reduction

in Tc in the SCMA, there are factors beyond Migdal’s approximation which also contribute,

such as polaron and bipolaron formation. When polaronic effects are included (say, through

DQMC simulations), one finds that increasing the e-ph coupling strength is not necessarily

an effective route to high-temperature superconductivity in e-ph systems, especially near

commensurate filling where bipolaron formation tends the system toward an insulating

charge-ordered state [100].
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The second question, considered in Chapter 3, asks if artificial neural networks are an

effective means for accelerating DQMC simulations of the Holstein model. While DQMC

effectively samples all possible Feynman diagrams, it is computationally expensive, limiting

simulations to smaller lattices and higher temperatures. The neural networks learned an

effective energy manifold used in Monte Carlo updates, bypassing the usual bottleneck

in DQMC. We found that the networks could learn using the lattice configurations alone

and that this was highly effective for studying the CDW phase at half-filling. The neural

network model was trained on a small lattice and reused for several larger lattice sizes,

an advantage made possible by the Hamiltonian’s local nature. However, our network

architecture was insufficient for capturing results at smaller fillings where superconductivity

is present. Nevertheless, the NNMC approach lowers the computational complexity of

simulations by a factor of the lattice size.

Applications of machine learning to many-body problems are in the early stages of

development, and the field is moving fast [287, 288, 289]. In self-learning-type applications,

it is still unclear if the neural networks can accurately extrapolate to lattices considerably

larger than the training size. The effective energy learned by the networks is an extensive

quantity that scales according to the system size. It would be interesting to formulate the

NNMC to learn a size-independent manifold, like an energy density. Naively, one could add

system size as an input parameter and train the models on different lattice sizes as well,

but the training cost starts eating away at the runtime savings afforded by this approach.

Even more ambitiously, one could formulate a new approach catered to machine learning

utilization ab initio. Alternatively, our current NNMC approach is highly effective for the

CDW phase of Holstein-like models. A large lattice NNMC simulation could be used to

resolve the electronic spectral function as a function of temperature as the system undergoes

a metal-to-insulator transition. One could attempt to resolve the e-ph induced kink in the

electronic spectral function and study the apparent pseudogap at large coupling values [290].

The third question (Chapter 4) considered whether relatively small nonlinear e-ph cou-

pling could become important in the parameter regime covered by Migdal’s approximation.

While this question may seem auxiliary to other concerns surrounding the e-ph problem,

it is motivated by two recent and seemingly disparate efforts to map out the validity of
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Migdal’s approximation and gauge the importance of nonlinear e-ph coupling. Most efforts

focused on the breakdown of Migdal’s approximation take linear e-ph coupling for granted

and push the model into scenarios that would otherwise face restraint from higher-order

coupling effects present in actual materials. We found that a combination of increasing e-ph

coupling and decreasing phonon frequency enhances sensitivity to small nonlinear coupling.

More importantly, nonlinear corrections change the results significantly in the regime where

Migdal’s approximation is considered accurate (at least qualitatively). One of the glaring

issues is the increasing sensitivity to nonlinear corrections as smaller and more realistic

phonon frequencies are used in the model.

We have learned a great deal about the e-ph problem by studying the Holstein model, and

there may be more to learn from it yet. However, our work highlights a need to reconsider

some of our established ideas in the face of more realistic model systems. The Holstein

model transitions from a Fermi liquid to a classical bipolaron gas at stronger couplings and

becomes a commensurate CDW as the temperature decreases. Bipolaron formation and the

CDW are favored when the interaction is strong and solely linear but suppressed in the face

of nonlinearity and anharmonicity. A comprehensive intuition of how these factors alter the

superconducting and charge order is underdeveloped in the literature. It will be a challenge

to develop a systematic way of reintroducing interactions that are nonlinear and long-ranged.

The fourth and final question (Chapter 5) asks if coupling a metal to a phase fluctuating

superconductor could raise Tc when the interaction |U | is comparable with the electronic

bandwidth W . This route to higher Tc has proven successful in similar models where

the attractive interaction is small compared with the bandwidth and when hopping in

the superconductor is neglected, but the general case is less explored. We used the

DCA to access the superconducting phase transition via the Bethe-Salpeter equation and

showed an enhancement in Tc for finite values of single-particle tunneling between the

layers. The tunneling increases the pair mobility and thus also the overall phase stiffness,

promoting superconductivity. However, the effective pairing interaction decreases with

increasing interlayer tunneling, thereby lowering the pairing scale. The increasing mobility

but decreasing interaction has similarities to the BCS-BEC crossover, moving from strong

(BEC) to weak (BCS) interactions in the 2D attractive Hubbard model. When the
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tunneling is small, and the interaction is comparable or larger than the bandwidth, then the

superconductivity is well described by tightly bound pairs with a short coherence length. As

the tunneling increases and the interaction weakens, the superconductivity becomes more

BCS-like, as evidenced by the leading eigenvalue’s temperature dependence. Our results

suggest that growing a thin metallic film atop a phase fluctuating superconductor may be a

viable way to boost Tc over a broader range of parameters than previously thought. However,

the increase observed in our results appears to be modest at best and more work is needed

to study the influence of other model parameters like in-plane hopping, electron density, and

longer-range interactions.

In the ongoing quest for sustainable room-temperature superconductivity (under ambient

pressure), there is still a sizable temperature chasm between the best candidates and 273

K. While high-pressure experiments are poised to teach us more about the phenomenology

of conventional high-Tc, strategic heterostructure design is essential as well. For example,

understanding how different dielectric environments screen the Coulomb interaction in

correlated layered superconductors is vital for developing such strategies [291]. We need a

more comprehensive set of design principles to optimize superconductivity developed through

a combination of experiments, first principles, and model research.

We do not have a complete understanding of how or where unconventional supercon-

ductors save their energy in the transition or the various possible pairing mechanisms

that could bind pairs of electrons. The BCS-BEC crossover in the attractive Hubbard

model is a conventional example that suggests there is something special about kinetic and

potential energy savings being nearly equal. It also suggests that there may be an optimal

coherence length for which the superconducting phase is more robust against fluctuations

and competing orders. Suppressing competing order, tuning the effective interaction, quelling

large phase fluctuations, and many other adjustments may one day fill the table of contents

of a compendium on how to get the highest possible Tc from any set of compatible materials.

131



Bibliography

132



[1] P. M. Dee, K. Nakatsukasa, Y. Wang, and S. Johnston. Temperature-filling phase

diagram of the two-dimensional Holstein model in the thermodynamic limit by self-

consistent Migdal approximation. Phys. Rev. B, 99:024514, Jan 2019. 1, 37, 44, 49,

52, 53, 55, 57, 58, 60, 63, 64, 66, 68, 70, 75, 86, 89, 94, 98

[2] Shaozhi Li, Philip M. Dee, Ehsan Khatami, and Steven Johnston. Accelerating lattice

quantum Monte Carlo simulations using artificial neural networks: Application to the

Holstein model. Phys. Rev. B, 100:020302, Jul 2019. 1, 84, 87, 91, 93, 96

[3] Philip M. Dee, Jennifer Coulter, Kevin G. Kleiner, and Steven Johnston. Relative

importance of nonlinear electron-phonon coupling and vertex corrections in the

Holstein model. Communications Physics, 3(1):145, Aug 2020. 1, 25, 26, 95, 101,

103, 104, 107, 109

[4] Philip M. Dee, Steven Johnston, and Thomas Maier. Pairing in a bilayer attractive

Hubbard composite system: A dynamical cluster approximation study. Unpublished

Manuscript, 2021. 1, 112, 118, 120, 122, 123, 125

[5] Maria N. Gastiasoro, Jonathan Ruhman, and Rafael M. Fernandes. Superconductivity

in dilute SrTiO3: A review. Annals of Physics, 417:168107, 2020. Eliashberg theory

at 60: Strong-coupling superconductivity and beyond. 1

[6] Elliot Snider, Nathan Dasenbrock-Gammon, Raymond McBride, Mathew Debessai,

Hiranya Vindana, Kevin Vencatasamy, Keith V. Lawler, Ashkan Salamat, and

Ranga P. Dias. Room-temperature superconductivity in a carbonaceous sulfur hydride.

Nature, 586(7829):373–377, Oct 2020. 2

[7] N. W. Ashcroft. Metallic Hydrogen: A High-Temperature Superconductor? Phys.

Rev. Lett., 21:1748–1749, Dec 1968. 2

[8] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of Superconductivity. Phys.

Rev., 108:1175–1204, Dec 1957. 2, 37

133



[9] P. W. Anderson and P. Morel. Generalized Bardeen-Cooper-Schrieffer States and

Aligned Orbital Angular Momentum in the Proposed Low-Temperature Phase of

Liquid He3. Phys. Rev. Lett., 5:136–138, Aug 1960. 2

[10] P. W. Anderson and P. Morel. Generalized Bardeen-Cooper-Schrieffer States and the

Proposed Low-Temperature Phase of Liquid He3. Phys. Rev., 123:1911–1934, Sep 1961.

2

[11] R. Balian and N. R. Werthamer. Superconductivity with Pairs in a Relative p Wave.

Phys. Rev., 131:1553–1564, Aug 1963. 2

[12] Anthony J. Leggett. A theoretical description of the new phases of liquid 3He. Rev.

Mod. Phys., 47:331–414, Apr 1975. 2

[13] L P Pitaevskii. ON SUPERFLUIDITY OF LIQUID Hesup3. Zhur. Eksptl’. i Teoret.

Fiz., Vol: 37, 12 1959. 2

[14] David J Thouless. Perturbation theory in statistical mechanics and the theory of

superconductivity. Annals of Physics, 10(4):553–588, 1960. 2

[15] V. J. Emery and A. M. Sessler. Possible Phase Transition in Liquid He3. Phys. Rev.,

119:43–49, Jul 1960. 2

[16] K. A. Brueckner, Toshio Soda, Philip W. Anderson, and Pierre Morel. Level Structure

of Nuclear Matter and Liquid He3. Phys. Rev., 118:1442–1446, Jun 1960. 2

[17] A. J. Leggett. Interpretation of Recent Results on He3 below 3 mK: A New Liquid

Phase? Phys. Rev. Lett., 29:1227–1230, Oct 1972. 3

[18] A. J. Leggett. Microscopic Theory of NMR in an Anisotropic Superfluid (3HeA). Phys.

Rev. Lett., 31:352–355, Aug 1973. 3

[19] A J Leggett. NMR lineshifts and spontaneously broken spin-orbit symmetry. I. General

concepts. Journal of Physics C: Solid State Physics, 6(21):3187–3204, Oct 1973. 3

[20] J. G. Bednorz and K. A. Müller. Possible high-Tc superconductivity in the Ba-La-Cu-O

system. Zeitschrift für Physik B Condensed Matter, 64(2):189–193, Jun 1986. 3

134



[21] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang,

Y. Q. Wang, and C. W. Chu. Superconductivity at 93 K in a new mixed-phase Y-Ba-

Cu-O compound system at ambient pressure. Phys. Rev. Lett., 58:908–910, Mar 1987.

3

[22] M. A. Subramanian, C. C. Torardi, J. C. Calabrese, J. Gopalakrishnan, K. J. Morrissey,

T. R. Askew, R. B. Flippen, U. Chowdhry, and A. W. Sleight. A New High-

Temperature Superconductor: Bi2Sr3-x Cax Cu2O8+y. Science, 239(4843):1015–1017,

1988. 3

[23] J. L. Tallon, R. G. Buckley, P. W. Gilberd, M. R. Presland, I. W. M. Brown, M. E.

Bowden, L. A. Christian, and R. Goguel. High-Tc superconducting phases in the series

Bi2.1(Ca, Sr)n+lCunO2n+4+δ. Nature, 333(6169):153–156, May 1988. 3

[24] A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott. Superconductivity above 130 K

in the Hg–Ba–Ca–Cu–O system. Nature, 363(6424):56–58, May 1993. 3

[25] L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H.

Eggert, and H. K. Mao. Superconductivity up to 164 K in HgBa2Cam−1 CumO2m+2+δ

(m=1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B, 50:4260–4263, Aug

1994. 3

[26] Yoichi Kamihara, Takumi Watanabe, Masahiro Hirano, and Hideo Hosono. Iron-Based

Layered Superconductor La[O1−xFx]FeAs (x = 0.05-0.12) with Tc = 26 K. Journal of

the American Chemical Society, 130(11):3296–3297, 2008. PMID: 18293989. 3

[27] I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du. Unconventional

Superconductivity with a Sign Reversal in the Order Parameter of LaFeAsO1−xFx.

Phys. Rev. Lett., 101:057003, Jul 2008. 3

[28] G. R. Stewart. Superconductivity in iron compounds. Rev. Mod. Phys., 83:1589–1652,

Dec 2011. 3

135



[29] Peter J. Hirschfeld. Using gap symmetry and structure to reveal the pairing mechanism

in Fe-based superconductors. Comptes Rendus Physique, 17(1):197–231, 2016. Iron-

based superconductors / Supraconducteurs à base de fer. 3

[30] Qimiao Si, Rong Yu, and Elihu Abrahams. High-temperature superconductivity in

iron pnictides and chalcogenides. Nature Reviews Materials, 1(4):16017, Mar 2016. 3

[31] G. R. Stewart. Heavy-fermion systems. Rev. Mod. Phys., 56:755–787, Oct 1984. 3

[32] Christian Pfleiderer. Superconducting phases of f -electron compounds. Rev. Mod.

Phys., 81:1551–1624, Nov 2009. 3

[33] Jérome, D., Mazaud, A., Ribault, M., and Bechgaard, K. Superconductivity in a

synthetic organic conductor (TMTSF)2PF 6. J. Physique Lett., 41(4):95–98, 1980. 3

[34] S. Lefebvre, P. Wzietek, S. Brown, C. Bourbonnais, D. Jérome, C. Mézière,

M. Fourmigué, and P. Batail. Mott Transition, Antiferromagnetism, and

Unconventional Superconductivity in Layered Organic Superconductors. Phys. Rev.

Lett., 85:5420–5423, Dec 2000. 3

[35] Danfeng Li, Kyuho Lee, Bai Yang Wang, Motoki Osada, Samuel Crossley, Hye Ryoung

Lee, Yi Cui, Yasuyuki Hikita, and Harold Y. Hwang. Superconductivity in an infinite-

layer nickelate. Nature, 572(7771):624–627, Aug 2019. 3

[36] Hirofumi Sakakibara, Hidetomo Usui, Katsuhiro Suzuki, Takao Kotani, Hideo Aoki,

and Kazuhiko Kuroki. Model Construction and a Possibility of Cupratelike Pairing in

a New d9 Nickelate Superconductor (Nd, Sr)NiO2. Phys. Rev. Lett., 125:077003, Aug

2020. 3

[37] Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios

Kaxiras, and Pablo Jarillo-Herrero. Unconventional superconductivity in magic-angle

graphene superlattices. Nature, 556(7699):43–50, Apr 2018. 3

[38] Yuan Cao, Valla Fatemi, Ahmet Demir, Shiang Fang, Spencer L. Tomarken, Jason Y.

Luo, Javier D. Sanchez-Yamagishi, Kenji Watanabe, Takashi Taniguchi, Efthimios

136



Kaxiras, Ray C. Ashoori, and Pablo Jarillo-Herrero. Correlated insulator behaviour at

half-filling in magic-angle graphene superlattices. Nature, 556(7699):80–84, Apr 2018.

3

[39] G. R. Stewart. Unconventional superconductivity. Advances in Physics, 66(2):75–196,

2017. 3

[40] Defa Liu, Wenhao Zhang, Daixiang Mou, Junfeng He, Yun-Bo Ou, Qing-Yan Wang,

Zhi Li, Lili Wang, Lin Zhao, Shaolong He, Yingying Peng, Xu Liu, Chaoyu Chen, Li Yu,

Guodong Liu, Xiaoli Dong, Jun Zhang, Chuangtian Chen, Zuyan Xu, Jiangping Hu,

Xi Chen, Xucun Ma, Qikun Xue, and X. J. Zhou. Electronic origin of high-temperature

superconductivity in single-layer FeSe superconductor. Nature Communications,

3(1):931, Jul 2012. 4

[41] Shaolong He, Junfeng He, Wenhao Zhang, Lin Zhao, Defa Liu, Xu Liu, Daixiang Mou,

Yun-Bo Ou, Qing-Yan Wang, Zhi Li, Lili Wang, Yingying Peng, Yan Liu, Chaoyu

Chen, Li Yu, Guodong Liu, Xiaoli Dong, Jun Zhang, Chuangtian Chen, Zuyan Xu,

Xi Chen, Xucun Ma, Qikun Xue, and X. J. Zhou. Phase diagram and electronic

indication of high-temperature superconductivity at 65K in single-layer FeSe films.

Nature Materials, 12(7):605–610, Jul 2013. 4

[42] Qing-Yan Wang, Zhi Li, Wen-Hao Zhang, Zuo-Cheng Zhang, Jin-Song Zhang, Wei Li,

Hao Ding, Yun-Bo Ou, Peng Deng, Kai Chang, Jing Wen, Can-Li Song, Ke He, Jin-

Feng Jia, Shuai-Hua Ji, Ya-Yu Wang, Li-Li Wang, Xi Chen, Xu-Cun Ma, and Qi-Kun

Xue. Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe

Films on SrTiO3. Chinese Physics Letters, 29(3):037402, mar 2012. 4

[43] Fong-Chi Hsu, Jiu-Yong Luo, Kuo-Wei Yeh, Ta-Kun Chen, Tzu-Wen Huang, Phillip M.

Wu, Yong-Chi Lee, Yi-Lin Huang, Yan-Yi Chu, Der-Chung Yan, and Maw-Kuen Wu.

Superconductivity in the PbO-type structure α-FeSe. Proceedings of the National

Academy of Sciences, 105(38):14262–14264, 2008. 4

[44] J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y.-T. Cui, W. Li, M. Yi, Z. K.

Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P. Devereaux, D.-H. Lee, and Z.-X. Shen.

137



Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on

SrTiO3. Nature, 515:245, Nov 2014. 4, 39

[45] Zi-Xiang Li, T. P. Devereaux, and Dung-Hai Lee. Electronic and phononic properties

of a two-dimensional electron gas coupled to dipolar phonons via small-momentum-

transfer scattering. Phys. Rev. B, 100:241101, Dec 2019. 4

[46] Fabian Schrodi, Alex Aperis, and Peter M. Oppeneer. Multichannel superconductivity

of monolayer FeSe on SrTiO3: Interplay of spin fluctuations and electron-phonon

interaction. Phys. Rev. B, 102:180501, Nov 2020. 4

[47] Louk Rademaker, Gustavo Alvarez-Suchini, Ken Nakatsukasa, Yan Wang, and Steven

Johnston. Enhanced superconductivity in FeSe/SrTiO3 from the combination of

forward scattering phonons and spin fluctuations, 2021. 4

[48] Georgios Varelogiannis. Small-q electron–phonon interaction and the phase diagram of

the cuprates. Physica C: Superconductivity, 460-462:1125–1126, 2007. Proceedings of

the 8th International Conference on Materials and Mechanisms of Superconductivity

and High Temperature Superconductors. 4

[49] S. Y. Savrasov and O. K. Andersen. Linear-Response Calculation of the Electron-

Phonon Coupling in Doped CaCuO2. Phys. Rev. Lett., 77:4430–4433, Nov 1996. 4

[50] O. K. Andersen, S. Y. Savrasov, O. Jepsen, and A. I. Liechtenstein. Out-of-

plane instability and electron-phonon contribution to s- and d-wave pairing in high-

temperature superconductors; LDA linear-response calculation for doped CaCuO2 and

a generic tight-binding model. Journal of Low Temperature Physics, 105(3):285–304,

Nov 1996. 4

[51] T. Sakai, D. Poilblanc, and D. J. Scalapino. Hole pairing and phonon dynamics in

generalized two-dimensional t− J Holstein models. Phys. Rev. B, 55:8445–8451, Apr

1997. 4

138



[52] O. Jepsen, O.K. Andersen, I. Dasgupta, and S. Savrasov. BUCKLING AND d-WAVE

PAIRING IN HiTc SUPERCONDUCTORS. Journal of Physics and Chemistry of

Solids, 59(10):1718–1722, 1998. 4

[53] Sumio Ishihara and Naoto Nagaosa. Interplay of electron-phonon interaction and

electron correlation in high-temperature superconductivity. Phys. Rev. B, 69:144520,

Apr 2004. 4

[54] S. Johnston, F. Vernay, B. Moritz, Z.-X. Shen, N. Nagaosa, J. Zaanen, and T. P.

Devereaux. Systematic study of electron-phonon coupling to oxygen modes across the

cuprates. Phys. Rev. B, 82:064513, Aug 2010. 4, 42

[55] D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C. Hoffmann, S. Pyon,

T. Takayama, H. Takagi, and A. Cavalleri. Light-Induced Superconductivity in a

Stripe-Ordered Cuprate. Science, 331(6014):189–191, 2011. 4

[56] S. Kaiser, C. R. Hunt, D. Nicoletti, W. Hu, I. Gierz, H. Y. Liu, M. Le Tacon, T. Loew,

D. Haug, B. Keimer, and A. Cavalleri. Optically induced coherent transport far above

Tc in underdoped YBa2Cu3O6+δ. Phys. Rev. B, 89:184516, May 2014. 4

[57] W. Hu, S. Kaiser, D. Nicoletti, C. R. Hunt, I. Gierz, M. C. Hoffmann, M. Le Tacon,

T. Loew, B. Keimer, and A. Cavalleri. Optically enhanced coherent transport in

YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nature Materials,

13(7):705–711, Jul 2014. 4

[58] Dante M. Kennes, Eli Y. Wilner, David R. Reichman, and Andrew J. Millis. Transient

superconductivity from electronic squeezing of optically pumped phonons. Nature

Physics, 13(5):479–483, May 2017. 4

[59] M. A. Sentef. Light-enhanced electron-phonon coupling from nonlinear electron-

phonon coupling. Phys. Rev. B, 95:205111, May 2017. 4

[60] M. Raichle, D. Reznik, D. Lamago, R. Heid, Y. Li, M. Bakr, C. Ulrich, V. Hinkov,

K. Hradil, C. T. Lin, and B. Keimer. Highly Anisotropic Anomaly in the Dispersion

139



of the Copper-Oxygen Bond-Bending Phonon in Superconducting YBa2Cu3O7 from

Inelastic Neutron Scattering. Phys. Rev. Lett., 107:177004, Oct 2011. 4

[61] Lucio Braicovich, Matteo Rossi, Roberto Fumagalli, Yingying Peng, Yan Wang,

Riccardo Arpaia, Davide Betto, Gabriella M. De Luca, Daniele Di Castro, Kurt

Kummer, Marco Moretti Sala, Mattia Pagetti, Giuseppe Balestrino, Nicholas B.

Brookes, Marco Salluzzo, Steven Johnston, Jeroen van den Brink, and Giacomo

Ghiringhelli. Determining the electron-phonon coupling in superconducting cuprates

by resonant inelastic x-ray scattering: Methods and results on Nd1+xBa2−xCu3O7−δ.

Phys. Rev. Research, 2:023231, May 2020. 4

[62] O Gunnarsson and O Rösch. Interplay between electron–phonon and Coulomb

interactions in cuprates. Journal of Physics: Condensed Matter, 20(4):043201, Jan

2008. 4

[63] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen. From

quantum matter to high-temperature superconductivity in copper oxides. Nature,

518(7538):179–186, Feb 2015. 5

[64] J. Hubbard. Electron Correlations in Narrow Energy Bands. Proc. R. Soc. Lond. A,

276(1365):238–257, 1963. 5, 7

[65] Martin C. Gutzwiller. Effect of Correlation on the Ferromagnetism of Transition

Metals. Phys. Rev. Lett., 10:159–162, Mar 1963. Gutzwiller wrote down the Hubbard

model in Eqn. (11) of this work, independently of others. 5, 7

[66] Junjiro Kanamori. Electron Correlation and Ferromagnetism of Transition Metals.

Progress of Theoretical Physics, 30(3):275–289, 09 1963. See Eqn. (1) for the first

appearance of the famous Hubbard U . Again, this was done independently of others

at the same time. 5, 7

[67] Can-Li Song, Yi-Lin Wang, Ye-Ping Jiang, Zhi Li, Lili Wang, Ke He, Xi Chen, Xu-

Cun Ma, and Qi-Kun Xue. Molecular-beam epitaxy and robust superconductivity of

140



stoichiometric FeSe crystalline films on bilayer graphene. Phys. Rev. B, 84:020503, Jul

2011. 5

[68] Shiyong Tan, Yan Zhang, Miao Xia, Zirong Ye, Fei Chen, Xin Xie, Rui Peng, Difei Xu,

Qin Fan, Haichao Xu, Juan Jiang, Tong Zhang, Xinchun Lai, Tao Xiang, Jiangping

Hu, Binping Xie, and Donglai Feng. Interface-induced superconductivity and strain-

dependent spin density waves in FeSe/SrTiO3 thin films. Nature Materials, 12(7):634–

640, Jul 2013. 5

[69] Zhongpei Feng, Jie Yuan, Ge He, Wei Hu, Zefeng Lin, Dong Li, Xingyu Jiang,

Yulong Huang, Shunli Ni, Jun Li, Beiyi Zhu, Xiaoli Dong, Fang Zhou, Huabing Wang,

Zhongxian Zhao, and Kui Jin. Tunable critical temperature for superconductivity in

FeSe thin films by pulsed laser deposition. Scientific Reports, 8(1):4039, Mar 2018. 5

[70] Rainer Wesche. High-Temperature Superconductors, pages 1–1. Springer International

Publishing, Cham, 2017. 6

[71] S.A. Kivelson. Making high Tc higher: a theoretical proposal. Physica B: Condensed

Matter, 318(1):61 – 67, 2002. The Future of Materials Physics: A Festschrift for

Zachary Fisk. 6, 21, 112, 113

[72] V. J. Emery and S. A. Kivelson. Importance of phase fluctuations in superconductors

with small superfluid density. Nature, 374(6521):434–437, Mar 1995. 6, 113

[73] Thomas A. Maier and Douglas J. Scalapino. Pairfield fluctuations of a 2D Hubbard

model. npj Quantum Materials, 4(1):30, Jun 2019. 6, 113, 119

[74] J. P. F. LeBlanc, Andrey E. Antipov, Federico Becca, Ireneusz W. Bulik, Garnet

Kin-Lic Chan, Chia-Min Chung, Youjin Deng, Michel Ferrero, Thomas M. Henderson,

Carlos A. Jiménez-Hoyos, E. Kozik, Xuan-Wen Liu, Andrew J. Millis, N. V. Prokof’ev,

Mingpu Qin, Gustavo E. Scuseria, Hao Shi, B. V. Svistunov, Luca F. Tocchio, I. S.

Tupitsyn, Steven R. White, Shiwei Zhang, Bo-Xiao Zheng, Zhenyue Zhu, and Emanuel

Gull. Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from

a Wide Range of Numerical Algorithms. Phys. Rev. X, 5:041041, Dec 2015. 7

141



[75] Bo-Xiao Zheng, Chia-Min Chung, Philippe Corboz, Georg Ehlers, Ming-Pu Qin,

Reinhard M. Noack, Hao Shi, Steven R. White, Shiwei Zhang, and Garnet Kin-Lic

Chan. Stripe order in the underdoped region of the two-dimensional Hubbard model.

Science, 358(6367):1155–1160, 2017. 7

[76] Mingpu Qin, Chia-Min Chung, Hao Shi, Ettore Vitali, Claudius Hubig, Ulrich

Schollwöck, Steven R. White, and Shiwei Zhang. Absence of Superconductivity in

the Pure Two-Dimensional Hubbard Model. Phys. Rev. X, 10:031016, Jul 2020. 7

[77] Thomas Schäfer, Nils Wentzell, Fedor Šimkovic, Yuan-Yao He, Cornelia Hille, Marcel

Klett, Christian J. Eckhardt, Behnam Arzhang, Viktor Harkov, François-Marie

Le Régent, Alfred Kirsch, Yan Wang, Aaram J. Kim, Evgeny Kozik, Evgeny A.

Stepanov, Anna Kauch, Sabine Andergassen, Philipp Hansmann, Daniel Rohe, Yuri M.

Vilk, James P. F. LeBlanc, Shiwei Zhang, A.-M. S. Tremblay, Michel Ferrero, Olivier

Parcollet, and Antoine Georges. Tracking the Footprints of Spin Fluctuations: A

MultiMethod, MultiMessenger Study of the Two-Dimensional Hubbard Model. Phys.

Rev. X, 11:011058, Mar 2021. 7

[78] Eduardo Fradkin, Steven A. Kivelson, and John M. Tranquada. Colloquium: Theory of

intertwined orders in high temperature superconductors. Rev. Mod. Phys., 87:457–482,

May 2015. 7

[79] T Holstein. Studies of polaron motion: Part I. The molecular-crystal model. Ann.

Phys., 8(3):325–342, 1959. 7, 38, 86, 96

[80] T. Holstein. Studies of polaron motion: Part II. The “small” polaron. Ann. Phys.,

8(3):343–389, 1959. 7

[81] Gerald D. Mahan. Many-Particle Physics. Plenum Press, New York, NY, 2 edition,

1990. 7, 11, 13, 38

[82] H. Fröhlich. Theory of the Superconducting State. I. The Ground State at the Absolute

Zero of Temperature. Phys. Rev., 79:845–856, Sep 1950. 10

142



[83] Herbert Fröhlich. Interaction of electrons with lattice vibrations. Proceedings

of the Royal Society of London. Series A. Mathematical and Physical Sciences,

215(1122):291–298, 1952. 10

[84] Feliciano Giustino. Electron-phonon interactions from first principles. Rev. Mod. Phys.,

89:015003, Feb 2017. 10, 11, 13, 38, 39, 95

[85] Piers Coleman. Introduction to Many-Body Physics. Cambridge University Press, 2015.

11, 22

[86] Otfried Madelung. Electron-Phonon Interaction: Transport Phenomena, pages 175–

227. Springer Berlin Heidelberg, Berlin, Heidelberg, 1978. 11

[87] H. Bruus, K. Flensberg, and Oxford University Press. Many-Body Quantum Theory

in Condensed Matter Physics: An Introduction. Oxford Graduate Texts. OUP Oxford,

2004. 11, 13, 15

[88] Philip Phillips. Advanced Solid State Physics. Cambridge University Press, 2 edition,

2012. 11

[89] Radi A. Jishi. Feynman Diagram Techniques in Condensed Matter Physics. Cambridge

University Press, 2013. 11, 15

[90] Louk Rademaker, Yan Wang, Tom Berlijn, and Steve Johnston. Enhanced

superconductivity due to forward scattering in FeSe thin films on SrTiO3substrates.

New Journal of Physics, 18(2):022001, feb 2016. 18

[91] Charles P. Poole, John F. Zasadzinski, Roberta K. Zasadzinski, and Philip B. Allen.

Chapter 9 - Characteristic parameters. In Charles P. Poole, editor, Handbook of

Superconductivity, pages 433–489. Academic Press, San Diego, 2000. 19

[92] A. B. Migdal. Interaction between electrons and lattice vibrations in a normal metal.

Sov. Phys. JETP, 7(6):996–1001, 1958. [Zh. Eksp. Teor. Fiz. 34, 1438 (1958)]. 20, 22,

38, 39, 95, 96

143



[93] J. K. Freericks. Strong-coupling expansions for the attractive Holstein and Hubbard

models. Phys. Rev. B, 48:3881–3891, Aug 1993. 21

[94] Erez Berg, Dror Orgad, and Steven A. Kivelson. Route to high-temperature

superconductivity in composite systems. Phys. Rev. B, 78:094509, Sep 2008. 21,

113, 126, 127

[95] Gideon Wachtel, Assaf Bar-Yaacov, and Dror Orgad. Superfluid stiffness

renormalization and critical temperature enhancement in a composite superconductor.

Phys. Rev. B, 86:134531, Oct 2012. 21, 113, 126, 127

[96] Aleksander Zujev, Richard T Scalettar, George G Batrouni, and Pinaki Sengupta.

Pairing correlations in the two-layer attractive Hubbard model. New Journal of

Physics, 16(1):013004, jan 2014. 21, 113, 114, 119, 121, 124, 126, 127

[97] A.A. Abrikosov, L.P. Gor’kov, and I.E. Dzyaloshinski. Methods of Quantum Field

Theory in Statistical Physics. Prentice-Hall, Englewood Cliffs, NJ, 1963. 22, 38, 79,

80

[98] I. Esterlis, B. Nosarzewski, E. W. Huang, B. Moritz, T. P. Devereaux, D. J. Scalapino,

and S. A. Kivelson. Breakdown of the Migdal-Eliashberg theory: A determinant

quantum Monte Carlo study. Phys. Rev. B, 97:140501(R), Apr 2018. 25, 38, 39,

96, 100, 105

[99] Andrey V. Chubukov, Artem Abanov, Ilya Esterlis, and Steven A. Kivelson. Eliashberg

theory of phonon-mediated superconductivity — When it is valid and how it breaks

down. Annals of Physics, 417:168190, 2020. Eliashberg theory at 60: Strong-coupling

superconductivity and beyond. 25

[100] B. Nosarzewski, E. W. Huang, Philip M. Dee, I. Esterlis, B. Moritz, S. A. Kivelson,

S. Johnston, and T. P. Devereaux. Superconductivity, Charge-Density-Waves, and

Bipolarons in the Holstein model, 2021. 25, 128

[101] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar. Monte Carlo calculations of

coupled boson-fermion systems. I. Phys. Rev. D, 24:2278–2286, Oct 1981. 26, 27

144



[102] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gubernatis, and R. T.

Scalettar. Numerical study of the two-dimensional Hubbard model. Phys. Rev. B,

40:506–516, Jul 1989. 26, 28, 88, 98, 173, 178, 191, 192

[103] Zhaojun Bai, Cherung Lee, Ren-Cang Li, and Shufang Xu. Stable solutions of

linear systems involving long chain of matrix multiplications. Linear Algebra and its

Applications, 435(3):659–673, 2011. Special Issue: Dedication to Pete Stewart on the

occasion of his 70th birthday. 26

[104] F.F. Assaad and H.G. Evertz. World-line and Determinantal Quantum Monte Carlo

Methods for Spins, Phonons and Electrons, pages 277–356. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2008. 26, 173, 201

[105] S. Johnston, E. A. Nowadnick, Y. F. Kung, B. Moritz, R. T. Scalettar, and T. P.

Devereaux. Determinant quantum Monte Carlo study of the two-dimensional single-

band Hubbard-Holstein model. Phys. Rev. B, 87:235133, Jun 2013. 26, 38, 86, 88, 90,

106

[106] F. Fucito, E. Marinari, G. Parisi, and C. Rebbi. A Proposal for Monte Carlo

Simulations of Fermionic Systems. Nucl. Phys. B, 180:369, 1981. 27

[107] Thomas Maier, Mark Jarrell, Thomas Pruschke, and Matthias H. Hettler. Quantum

cluster theories. Rev. Mod. Phys., 77:1027–1080, Oct 2005. 30, 116

[108] M. H. Hettler, M. Mukherjee, M. Jarrell, and H. R. Krishnamurthy. Dynamical cluster

approximation: Nonlocal dynamics of correlated electron systems. Phys. Rev. B,

61:12739–12756, May 2000. 30

[109] M. Jarrell, Th. Maier, C. Huscroft, and S. Moukouri. Quantum Monte Carlo algorithm

for nonlocal corrections to the dynamical mean-field approximation. Phys. Rev. B,

64:195130, Oct 2001. 30

[110] E. Gull, P. Werner, O. Parcollet, and M. Troyer. Continuous-time auxiliary-field Monte

Carlo for quantum impurity models. EPL (Europhysics Letters), 82(5):57003, may

2008. 30, 116

145



[111] Emanuel Gull, Peter Staar, Sebastian Fuchs, Phani Nukala, Michael S. Summers,

Thomas Pruschke, Thomas C. Schulthess, and Thomas Maier. Submatrix updates for

the continuous-time auxiliary-field algorithm. Phys. Rev. B, 83:075122, Feb 2011. 30,

116

[112] Emanuel Gull, Andrew J. Millis, Alexander I. Lichtenstein, Alexey N. Rubtsov,

Matthias Troyer, and Philipp Werner. Continuous-time Monte Carlo methods for

quantum impurity models. Rev. Mod. Phys., 83:349–404, May 2011. 30, 116

[113] Urs R. Hähner, Gonzalo Alvarez, Thomas A. Maier, Raffaele Solcà, Peter Staar,

Michael S. Summers, and Thomas C. Schulthess. DCA++: A software framework to

solve correlated electron problems with modern quantum cluster methods. Computer

Physics Communications, 246:106709, 2020. 30, 116

[114] Autumn School on Correlated Electrons, Jülich (Germany), 21 Sep 2015 - 25 Sep 2015.

Many-Body Physics: From Kondo to Hubbard, volume 5 of Modeling and Simulation,

Jülich, Sep 2015. Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag. 30, 31

[115] J. T. Devreese. Polarons. Encyclopedia of Applied Physics, 14:383, 1996. 37

[116] G. Grüner. The dynamics of charge-density waves. Rev. Mod. Phys., 60:1129–1181,

Oct 1988. 37

[117] D. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins. Strong-Coupling

Superconductivity. I. Phys. Rev., 148:263–279, Aug 1966. 37, 38

[118] John Bardeen. Electron-Phonon Interactions and Superconductivity. Science,

181(4106):1209–1214, 1973. 37

[119] F. Marsiglio and J. P. Carbotte. Electron-Phonon Superconductivity, pages 73–162.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. 38

[120] J.J. Hamlin. Superconductivity in the metallic elements at high pressures. Physica C,

514:59–76, 2015. 38

146



[121] Cristina Buzea and Tsutomu Yamashita. Review of the superconducting properties of

MgB 2. Superconductor Science and Technology, 14(11):R115, 2001. 38

[122] Jun Nagamatsu, Norimasa Nakagawa, Takahiro Muranaka, Yuji Zenitani, and Jun

Akimitsu. Superconductivity at 39 K in magnesium diboride. Nature, 410(6824):63–

64, 2001. 38

[123] A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin.

Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride

system. Nature, 525:73–, aug 2015. 38

[124] Igor I. Mazin. Extraordinarily conventional. Nature, 525:40–, Aug 2015. 38

[125] A. P. Drozdov, V. S. Minkov, S. P. Besedin, P. P. Kong, M. A. Kuzovnikov, D. A.

Knyazev, and M. I. Eremets. Superconductivity at 215 K in lanthanum hydride at

high pressures. ArXiv e-prints, aug 2018. 38

[126] I. A. Kruglov, D. V. Semenok, R. Szczȩśniak, M. Mahdi Davari Esfahani, A. G.
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A Momentum-Space representation of the 2D Holstein

model

In this appendix, we will evaluate the Fourier transform of the 2D singleband Holstein

model. A k-space form of the Holstein model is especially useful for the diagrammatic

approach of Chapter 2. The real space version that we will start with is given by

Ĥ = −
∑
i,j,σ

tij
(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
− µ

∑
i,σ

n̂i,σ +
∑
i

[
P̂ 2
i

2M + 1
2KX̂

2
i

]
− α

∑
i,σ

X̂i

(
n̂i,σ −

1
2

)
.

(A.1)

Here, ĉ†i,σ (ĉi,σ) creates (annihilates) an electron with spin σ at site i, and the number operator

n̂i,σ = ĉ†i,σ ĉi,σ. The electrons may tunnel to neighboring sites according to the hopping-matrix

element tij, which is usually limited to nearest or next-nearest neighbors only. Thanks to

the −1/2 in the last term of Eqn. (A.1), this Hamiltonian exhibits particle-hole symmetry

when the chemical potential µ = 0, but only if ti,j is limited to nearest neighbors only. Next,

X̂i and P̂i are the position and momentum operators for the ion with mass M at site i.

These ionic oscillators are considered to be independent harmonic with the spring constant

K = MΩ2, each with an “Einstein” phonon frequency Ω. Finally, α is the e-ph interaction

strength corresponding to a linear coupling between the local electron density at site i and

the lattice displacement at the same location. A discussion of this Hamiltonian and other

details regarding the approximations leading to such simple models of e-ph coupling can be

found in Section 1.2.

If we move the factor of −1/2 out of the interaction term and group it with the phonon

energy terms, we can show that acts to shift the displacement datum. To proceed, we simply
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complete the square as follows:

Ĥph + Ĥe-ph =
∑
i

[
P̂ 2
i

2M + 1
2KX̂

2
i

]
− α

∑
i,σ

X̂i

(
n̂i,σ −

1
2

)

=
∑
i

[
P̂ 2
i

2M + 1
2KX̂

2
i − α

∑
σ

X̂i

(
n̂i,σ −

1
2

)]
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i
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i
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2K
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K
X̂i

)
− αX̂i
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n̂i,σ

]

=
∑
i
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2K
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X̂i + α

K
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− α2
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− αX̂i
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n̂i,σ
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=
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i
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P̂ 2
i

2M + 1
2K

(
X̂i + α

K

)2
− α2

2K − αX̂i

∑
σ

n̂i,σ.

]
(A.2)

In the last line of Eqn. (A.2) above, we will henceforth drop the − α2

2K term, as it does not

contain any operators and thus has no influence on the dynamics of the system. The shift

in X̂ is now given by X̂ ′i ≡ X̂i + α
K
. With these changes, Eqn. (A.2) can be written as:

Ĥph + Ĥe-ph =
∑
i

[
P̂ 2
i

2M + 1
2KX̂

′2
i − αX̂ ′i

∑
σ

n̂i,σ + α2

K

∑
σ

n̂i,σ

]
. (A.3)

The ‘prime’ on the position operator can be treated analogously to a dummy index and be

removed from this point forward (i.e., all position operators in this section will now be the

newly transformed ones). Let us write the new form of Eqn. (A.1)

Ĥ = −
∑
i,j,σ

tij
(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
−
(
µ− α2

K

)∑
i,σ

n̂i,σ +
∑
i

[
P̂ 2
i

2M + 1
2KX̂

2
i − αX̂i

∑
σ

n̂i,σ

]
,

(A.4)

where it is now clear that the particle-hole symmetric transformation mentioned earlier is

just a shift in the chemical potential by a factor α2

K
. It is customary to pose the problem

in reciprocal space, where at least for Eqn. (A.1), the mathematics will simplify. First we

introduce the Fourier transform of the relevant operators from crystal space to momentum

space:

ĉi,σ = 1√
Ns

∑
k

eik·ri ĉk,σ ĉ†i,σ = 1√
Ns

∑
k

e−ik·ri ĉ†k,σ (A.5)
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and

X̂i =
√

~
2MΩ

(
âi + â†i

)
P̂i = i

√
M~Ω

2
(
−âi + â†i

)
, (A.6)

where Ns is the number of sites, k is an electron (momentum) wave vector1, and ri is the

position of the ith site. We can now proceed to find X̂2
i :

X̂2
i = ~

2MΩ
(
âi + â†i

)2

= ~
2MΩ

(
(âi )2 + âi â

†
i + â†i âi + (â†i )2

)
= ~

2MΩ
(
(âi )2 + 2â†i âi + (â†i )2 + Î

)
, (A.7)

and similarly for P̂ 2
i ,

P̂ 2
i = −M~Ω

2
(
−âi + â†i

)2

= −M~Ω
2

(
(âi )2 − âi â

†
i − â

†
i âi + (â†i )2

)
= −M~Ω

2
(
(âi )2 − 2â†i âi + (â†i )2 − Î

)
. (A.8)

With these expressions we can work on obtaining the phonon energy in terms of the bosonic

operators â†i and âi :

P̂ 2
i

2M + 1
2KX̂

2
i = −~Ω

4
(
(âi )2 − 2â†i âi + (â†i )2 − Î

)
+ ~Ω

4
(
(âi )2 + 2â†i âi + (â†i )2 + Î

)
= ~Ω

(
â†i âi + Î

2

)
, (A.9)

which gives us the canonical energy levels for the harmonic oscillator in second quantization.

From this point forward we will set ~ ≡ 1 to simplify notation. We can now transform these

phonon operators into reciprocal space:

âi = 1√
Ns

∑
k

eik·ri âk and â†i = 1√
Ns

∑
k

e−ik·ri â†k (A.10)

1The sum in A.5 is to consist of all the k’s in the first Brillouin Zone (FBZ), which could be denoted
explicitly as

∑
k∈FBZ. However, we will omit the ∈ FBZ in all cases where it need not be specified otherwise.
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All of the terms in A.1 will need to be evaluated with the transforms outlined above, and

we will do this term by term.

1. Restricting the hopping to nearest-neighbors (NN) only, the hopping energy matrix

element −tij is replaced by −t. The sum over i and j is can be replaced by a sum over

i and rη, where the index η runs over the four NN sites surrounding the ith site. As

a consequence, the entire expression for electron hopping can be rewritten and then

transformed using Eqns. (A.5):

Ĥe = −
∑
i,j,σ

tij
(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
= −t

∑
i,η,σ

(
ĉ†i,σ ĉi+η,σ + ĉ†i+η,σ ĉi,σ

)

= −t
∑
i,η,σ

 1
Ns

∑
k,k′

e−i(k′−k)·rieik·rη ĉ†k′,σ ĉk,σ + 1
Ns

∑
k,k′

e−i(k−k′)·rie−ik′·rη ĉ†k,σ ĉk′,σ


= −t

∑
η,σ

∑
k,k′

(
eik·rη ĉ†k′,σ ĉk,σδk′,k + e−ik′·rη ĉ†k,σ ĉk′,σδk′,k

)
= −t

∑
η,σ

∑
k
ĉ†k,σ ĉk,σ

(
eik·rη + e−ik·rη

)
= −2t

∑
η,σ

∑
k
ĉ†k,σ ĉk,σ cos(k · rη).

= −2t
∑
k,σ

ĉ†k,σ ĉk,σ (cos(kxa) + cos(kya)) . (A.11)

where we have used that N−1
s

∑
i e−i(k′−k)·ri = δk′,k. The vector rη can take the values

(a, 0), (0, a), (−a, 0), and (0,−a), where a is the spacing between sites in the square

lattice.
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2. The second term is the chemical potential term, which effectively tells us how much

energy would be required to add another electron to the system.

−
(
µ− α2

K

)∑
i,σ

n̂i,σ = −
(
µ− α2

K

)∑
i,σ

ĉ†i,σ ĉi,σ

= −
(
µ− α2

K

)
1
Ns

∑
i,σ

∑
k,k′

e−i(k′−k)·ri ĉ†k′,σ ĉk,σ

= −
(
µ− α2

K

)∑
k,σ

ĉ†k,σ ĉk,σ (A.12)

3. The third term is carried out similarly to the previous term except that now we use

the transforms depicted in A.10. Thus, we simply state the result without revealing

the extra steps

Ω
∑
i

(
â†i âi + Î

2

)
= Ω

∑
k

(
â†kâk + Î

2

)
. (A.13)

4. Lastly, we need to find the k-space representation of the e-ph coupling term:

−α
∑
i,σ

X̂in̂i,σ = − α√
2MΩ

∑
i,σ

(
âi + â†i

)
ĉ†i,σ ĉi,σ

= − α√
2NsMΩ

∑
i,σ

∑
q

(
eiq·ri âq + e−iq·ri â†q

) 1
Ns

∑
k,k′

e−i(k′−k)·ri ĉ†k′,σ ĉk,σ


= − α√

2NsMΩ
∑
i,σ

 1
Ns

∑
q,k,k′

(
ei(q−(k′−k))·ri âq + e−i(q−(k−k′))·ri â†q

)
ĉ†k′,σ ĉk,σ


= − α√

2NsMΩ
∑
σ

 ∑
q,k,k′

(
δq,k′−kâq + δq,−(k′−k)â

†
q

)
ĉ†k′,σ ĉk,σ


= − α√

2NsMΩ
∑
σ

∑
k,k′

(
âk′−k + â†−(k′−k)

)
ĉ†k′,σ ĉk,σ)


= − α√

2NsMΩ

 ∑
k,k′,σ

(
âk′−k + â†−(k′−k)

)
ĉ†k′,σ ĉk,σ.

 (A.14)

This completes our derivation of the e-ph coupling term in k-space. Now we can

proceed with the new representation of the Hamiltonian

5. The results in Eqns. (A.11) and (A.12) have the same operators ĉ†k,σ ĉk,σ and can be

grouped into a term that contains a dispersion like term εk and the operators ĉ†k,σ ĉk,σ.
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The quantity εk can be defined as follows:

εk = −2t (cos(kxa) + cos(kya))−
(
µ− α2

K

)
. (A.15)

Note that in most computational applications, such as the Migdal-Eliashberg theory,

we take the lattice spacing a = 1.

With the expressions above we can represent the original Hamiltonian A.1 in momentum

space

Ĥ =
∑
k,σ

εkĉ
†
k,σ ĉk,σ + Ω

∑
k

(
â†kâk + Î

2

)
− α√

2NsMΩ
∑

k,k′,σ

(
âk′−k + â†−(k′−k)

)
ĉ†k′,σ ĉk,σ (A.16)
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B Details and background for DQMC

In this section, we present a fairly comprehensive and detailed account of the algorithmic details

and derivations of DQMC. The notation and discussion is based heavily on the paper by S.R. White

et al listed under Ref. [102], while further details were taken from many of the invaluable resources

(papers, dissertations, etc.) available on Fakher Assaad’s webpage (Universität Würzburg). Of

the latter references, I can attribute most of this citation to Ref.[104]. The details about the

algorithm and its scaling that appear in later subsections were based on Prof. Johnston’s (my

Ph.D. advisor) dissertation document[292]. I have made a considerable effort to compose many

of the derivations to my own standards and would greatly appreciate notification of any typos or

mistakes noticed by the reader.

B.1 The Hubbard Model

Working in the grand-canonical ensemble, the expectation value of a physical observable, Ô,

is given by

〈 Ô 〉 =
Tr
[
e−β(Ĥ−µN̂)Ô

]
Tr
[
e−β(Ĥ−µN̂)

] , (B.1)

where β ≡ 1/kBT → 1/T where kB = 1 in natural units. The expression in the denominator

represents the partition function Z ≡ Tr
[
e−β(Ĥ−µN̂)

]
in the grand canonical ensemble, and

we should note that for the rest of this section we will assume that the −µN̂ is absorbed

into Ĥ.

To better facilitate the discussion on the DQMC formalism, we will work with the

singleband Hubbard-Hamiltonian as it appears in Ref.[102]:

Ĥ = −t
∑
〈i,j〉,σ

(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
+ U

∑
i

(
n̂i↑ −

1
2

)(
n̂i↓ −

1
2

)
− µ

∑
i

(n̂i↑ + n̂i↓) . (B.2)

Here, we have that ĉ†iσ and ĉiσ are the creation and annihilation operators for electrons on

site i, with a z component of spin σ equal to ↑ or ↓. The sum notation 〈i, j〉 restricts i

and j to nearest neighbor lattice sites, −t is the hopping matrix element, µ is the chemical
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potential, and U is the same-site Coulomb interaction energy (with U > 0 for repulsion).

The occupation number operator n̂iσ = ĉ†iσ ĉiσ has the following useful relations:

n̂iσ |0〉 = 0 (B.3)

where |0〉 is the vacuum state with no particles,

n̂iσ |n1↑, n1↓, ..., ni↑, ni↓, ..., nN↑, nN↓〉 =


ni↑ |n1↑, n1↓, ..., ni↑, ni↓, ..., nN↑, nN↓〉 for σ =↑

ni↓ |n1↑, n1↓, ..., ni↑, ni↓, ..., nN↑, nN↓〉 for σ =↓
(B.4)

where niσ is the number of electrons on site i with spin σ, and

[n̂iσ, n̂jσ′ ] = 0 . (B.5)

B.2 Suzuki-Trotter Decomposition

Referring again to our Hamiltonian Eqn. (B.2), we can break the expression into two distinct

pieces,

Ĥ = K̂ + V̂ , (B.6)

where K̂ corresponds to kinetic energy terms and the V̂ corresponds to interaction terms.

Explicitly, K̂ and V̂ are given by

K̂ = −t
∑
〈i,j〉,σ

(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
− µ

∑
i

(n̂i↑ + n̂i↓) , (B.7)

and

V̂ = U
∑
i

(
n̂i↑ −

1
2

)(
n̂i↓ −

1
2

)
, (B.8)

respectively. Using the Wick rotation, one can treat β in the same way one would treat it/~

in the path integral approach by partitioning the time interval into discrete “time slices”.

The difference here is that we are not dealing with real-time slices, but rather, “imaginary

time slices” arising in the finite-temperature formalism. Various substitutions will be made
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to reflect the algorithmic structure of DQMC. First, we define τ = it and set ~ = 1 such

that β = τ . The imaginary time τ is generally defined on the continuous interval τ ∈ [0, β],

but we will discretize this interval into L steps of size ∆τ = β/L. Therefore, β = ∆τL and

our partition function can be written as

Z = Tr
[
e−∆τLĤ

]
, (B.9)

which can be rewritten again using Eqn. (B.6) as

Z = Tr
[(

e−∆τ(K̂+V̂ )
)L]

. (B.10)

We can use the Suzuki-Trotter decomposition (see Refs. [293, 294]) of the exponential product

to simplify the expression in the trace:

e−∆τ(K̂+V̂ ) = e−∆τK̂e−∆τV̂ e−
1
2 (∆τ)2[K̂,V̂ ]

= e−∆τK̂e−∆τV̂
[
1̂− 1

2(∆τ)2
[
K̂, V̂

]
+O

(
(∆τ)4

)]
≈ e−∆τK̂e−∆τV̂ . (B.11)

Here, we neglect terms that account for the commutation of K̂ and V̂ as they tend to be of

∼ O (1), and their pre-factor 1
2(∆τ)2 is relatively small 2. Thus, we find that DQMC uses an

approximation that introduces systematic errors of O ((∆τ)2), and since we specify the value

of ∆τ at the beginning of simulations, we can tune the corrections to be small. Updating

the trace to its new form, we have

Z = Tr
[(

e−∆τK̂e−∆τV̂
)L]

, (B.12)

where we have split the exponential into two distinct pieces.
2It is small because ∆τ is a tunable parameter in the algorithm which we can choose to be small. For

this approximation to be effective, it usually suffices to use ∆τ ∼ O
(
10−1) since going much smaller will

increase computation time.
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B.3 Discrete Hubbard-Stratonovich Transformation

Many problems that use DQMC have Hamiltonians with interaction terms that are not

bilinear in creation and annihilation operators ĉ† and ĉ, and the interactions are commonly

on the order of the nearest neighbor hopping integral t (i.e. V ∼ O(t)), ruling out the

efficacy of perturbative expansions. For two-particle interactions such as the same-site

Coulomb repulsion U term Ĥe-e = ∑
j ĉ
†
j,↑ĉj,↑ĉ

†
j,↓ĉj,↓ in our Hubbard model example, the

fermion operators appear in a quartic rather than quadratic form. This quartic form makes

manipulations with the interaction terms rather challenging to work with since we cannot

group them with the bilinear terms. One way to proceed is to parameterize interaction terms

with bosonic auxiliary fields that possess the same eigenvalues as seen by the trace. This

procedure is known as Hirsch’s discrete Hubbard-Stratonovich transformation (DHST) and

is outlined in Ref. [295].

The term we wish to simplify is e−∆τV̂ . The potential V̂ defined in Eqn. (B.8) will

yield products of two n̂ operators, thereby yielding terms quartic in fermion creation and

annihilation operators. Let us consider the term explicitly

e−∆τU
∑

i(n̂i↑− 1
2)(n̂i↓− 1

2), (B.13)

where the product the sum can be expanded as

(
n̂i↑ −

1
2

)(
n̂i↓ −

1
2

)
= n̂i↑n̂i↓ −

1
2 (n̂i↑ + n̂i↑)−

1
4 . (B.14)

We can put this into Eq.(B.13) and obtain

e−∆τU
∑

i(n̂i↑n̂i↓− 1
2(n̂i↑+n̂i↑)− 1

4) , (B.15)

which shows the problematic term n̂i↑n̂i↓ that is quartic in the fermion operators. One could

ask: what are all the possible values that the product
(
n̂i↑ − 1

2

) (
n̂i↓ − 1

2

)
can take when

projected out of an eigenstate? That question is readily answered for fermions since the

eigenvalues of the number operators can only take the values of 0 or 1.
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Table B.1: Possible eigenvalues for fermion number operators in the occupation
representation.

n̂i↑ n̂i↓
(
n̂i↑ − 1

2

) (
n̂i↓ − 1

2

)
0 0 +1/4

0 1 - 1/4

1 0 - 1/4

1 1 +1/4
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Given that the values are limited to ±1/4, we can now consider replacing the troublesome

term,
(
n̂i↑ − 1

2

) (
n̂i↓ − 1

2

)
, with a term quadratic in fermion operators that arrives at the same

results. We are clearly limited to expressions that are, at most, linear in the operators n̂i↑
and n̂i↓. Crafting a new expression that no longer contains the pesky quartic dependence on

fermion operators and the constants must be done in a way that the preserves the possible

eigenvalues in the previous interaction term. To better reflect the approach taken in Ref.[102],

we use the DHST to find the following expression

e−∆τU
∑

i(n̂i↑− 1
2)(n̂i↓− 1

2) = α
∑

{si,l}=±1
e−∆τλ

∑
i
si,l(n̂i,↑−n̂i,↓) , (B.16)

where {si,l} = s1,l, s2,l, . . . , sN,l, and each field on site i and time-slice l, denoted si,l, can take

only the values ±1 . We can show what values α and λ take upon substituting the possible

eigenvalues of the number operators in a site-by-site term comparison:

For the cases where n̂i↑ → 0, n̂i↓ → 0 and n̂i↑ → 1, n̂i↓ → 1 one has

e− 1
4U∆τ = 2α ⇒ α = 1

2e− 1
4U∆τ , (B.17)

and similarly for the cases where n̂i↑ → 0, n̂i↓ → 1 and n̂i↑ → 1, n̂i↓ → 0 one has

e 1
4U∆τ = α

[
e∆τλ + e−∆τλ

]
⇒ e 1

4U∆τ (2α)−1 = cosh(∆τλ). (B.18)

Upon substituting the value attained for α we find the relation between λ, U , and ∆τ

cosh(∆τλ) = e 1
2U∆τ . (B.19)

Now that all the components of Eqn. (B.16) are defined, we can write the trace as
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Z = Tr
[(

e−∆τK̂e−∆τV̂
)L]

Z = Tr


1

2e− 1
4U∆τe∆τ

(
t
∑
〈i,j〉,σ(ĉ†iσ ĉjσ+ĉ†jσ ĉiσ)+µ

∑
i(n̂i↑+n̂i↓)

) ∑
{si,l}

e−∆τλ
∑

i
si,l(n̂i,↑−n̂i,↓)

L
 ,

(B.20)

which contains the expanded form of the kinetic energy operator.

B.4 Compacting the Partition Function

Notice that we can condense the chemical potential term as

µ
∑
i

(n̂i↑ + n̂i↓) = µ
∑
i,σ

ĉ†iσ ĉiσ (B.21)

so that the kinetic energy can be expressed in a simple bilinear form

K̂ =t
∑
〈i,j〉,σ

(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
+ µ

∑
i,σ

ĉ†iσ ĉiσ

=
∑
i,j,σ

ĉ†iσKiσ,jσ ĉjσ , (B.22)

where the matrix element3 Kiσ,jσ ≡ (K)iσ,jσ where K is an N ×N matrix with N being the

number of lattice sites:

K =



µ t 0 0 . . . t

t µ t 0 . . . 0

0 t µ t . . . 0

0 0 t µ . . .
...

... ... ... ... . . . t

t 0 0 . . . t µ


. (B.23)

3We need not specify the NN summation constraint on i and j since the matrix elements Kiσ,jσ vanish
for iσ, jσ pairs that fall outside the relevancy of the original Hamiltonian.
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The upper right and lower left appearances of the hopping t signify that we are using periodic

boundary conditions.

We can put Eqn. (B.22) into the partition function to give us

Z = Tr


1

2e− 1
4U∆τe∆τ

∑
i,j,σ

ĉ†iσKiσ,jσ ĉjσ
∑
{si,l}

e−∆τλ
∑

i
si,l(n̂i,↑−n̂i,↓)

L
 , (B.24)

which can be expressed equivalently 4 as

Z = 1
2L e− 1

4βUTr
e∆τ

∑
i,j,σ

ĉ†iσKiσ,jσ ĉjσ
∑
{si,L}

e−∆τλ
∑

i
si,L(n̂i,↑−n̂i,↓)


. . .

e∆τ
∑

i,j,σ
ĉ†iσKiσ,jσ ĉjσ

∑
{si,1}

e−∆τλ
∑

i
si,1(n̂i,↑−n̂i,↓)

 . (B.25)

Integrating out the Fermion DOF

In Eqn. (B.25) it is implied that there are L (equivalent) parenthesized terms in the trace

which are multiplied in succession. Handling the evaluation of the trace over the L terms is

rather complicated procedure if one wants to be rigorous. We will proceed with the intention

of showing the main ideas and not a rigorous proof5. Let us begin by introducing slightly

more compact notation:

e∆τ
∑

σ
ĉ†σKσ ĉσ ≡ e∆τ

∑
i,j,σ

ĉ†iσKiσ,jσ ĉjσ , (B.26)
4This is trick related to the path integral discretization of a time interval into L time-slices. The notation

Tr
[
(f(l))L

]
implies Tr

[
T̂τ
∏L
l=1 f(l)

]
= Tr [f(L)f(L− 1) . . . f(1)] where T̂τ time orders the product from

right to left. Normally f depends on τ explicitly, but in our problem the imaginary time τ is given by
τl = l∆τ , and thus we show l dependence instead.

5See Appendix FIX
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where ĉ†σ = [ĉ†1,σ, ĉ†2,σ, . . . , ĉ†n,σ]. For the potential energy term 6 we write

∑
{si,l}

e∆τ
∑

σ
ĉ†σṼσ(si,l)ĉσ ≡

∑
{si,l}

e−∆τλ
∑

i
si,l(n̂i,↑−n̂i,↓) . (B.27)

Hence, the partition function can be expressed as

Z = 1
2L e− 1

4βUTr
e∆τ

∑
σ

ĉ†σKσ ĉσ
∑
{si,L}

e∆τ
∑

σ
ĉ†σṼσ(si,L)ĉσ

 . . .
e∆τ

∑
σ

ĉ†σKσ ĉσ
∑
{si,1}

e∆τ
∑

σ
ĉ†σṼσ(si,1)ĉσ

 .
(B.28)

The exponential operators in the terms of the trace have a bilinear form, and as such, the

trace over operators can be replaced with determinants over the corresponding matrices.

Although we could proceed using the trace-to-determinant identity, it is common to

separate the spin components of the exponential terms. This procedure can be done without

a commutation penalty since we would be commuting terms like ĉ†iσ ĉjσ with ĉ†mσ′ ĉmσ′ , which

would yield 0 due to σ 6= σ′ terms we are commuting obey Bose-commutation relations and

never correspond to the same set of quantum numbers (hence their commutators=0). We

proceed as follows:

Tr
e∆τ

∑
σ

ĉ†σKσ ĉσ
∑
{si,L}

e∆τ
∑

σ
ĉ†σṼσ(si,L)ĉσ

 . . .
e∆τ

∑
σ

ĉ†σKσ ĉσ
∑
{si,1}

e∆τ
∑

σ
ĉ†σṼσ(si,1)ĉσ



= Tr

 ∑
{si,l}

∏
σ

(
e∆τ ĉ†σKσ ĉσe∆τ ĉ†σṼσ(si,L)ĉσ

)
. . .
(

e∆τ ĉ†σKσ ĉσe∆τ ĉ†σṼσ(si,1)ĉσ
)

=
∑
{si,l}

Tr
[
B̂↑s (β, 0)B̂↓s (β, 0)

]
(B.29)

6The intermediate steps look like

e−∆τλ
∑

i
si,l(n̂i,↑−n̂i,↓) = e∆τ

∑
i,j,σ

ĉ†
iσ
Ṽiσ,jσ(si,l)ĉjσ

where the minus sign has be absorbed into the matrix elements Ṽiσ,jσ(si,l).
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where we have made a substitution

B̂σ
s (β, 0) =

(
e∆τ ĉ†σKσ ĉσe∆τ ĉ†σṼσ(si,L)ĉσ

)
. . .
(

e∆τ ĉ†σKσ ĉσe∆τ ĉ†σṼσ(si,1)ĉσ
)

=
1∏
l=L

e∆τ ĉ†σKσ ĉσe∆τ ĉ†σṼσ(si,l)ĉσ .

We can think of B̂σ
s (β, 0) as a time-evolution operator that incrementally evolves the system

from τ = 0 to τ = β in discrete steps of ∆τ .

The trace could be expanded in the occupation number basis states | {ni,↑} , {ni,↓} 〉 :

Tr
[
B̂↑s (β, 0)B̂↓s (β, 0)

]
=

∑
{ni,↑},{ni,↓}

〈{ni,↑} , {ni,↓} |B̂↑s (β, 0)B̂↓s (β, 0)| {ni,↑} , {ni,↓}〉

=
∑
{ni,↑}

〈{ni,↑} |B̂↑s (β, 0)| {ni,↑}〉
∑
{ni,↓}

〈{ni,↓} |B̂↓s (β, 0)| {ni,↓}〉

= Tr
[
B̂↑s (β, 0)

]
Tr
[
B̂↓s (β, 0)

]
(B.30)

which is a result related to the identity Tr
[
Â⊗ B̂

]
= Tr

[
Â
]

Tr
[
B̂
]
where ⊗ is a Kronecker

product (a special case of the tensor product). With the last equation we are ready to employ

an important identity mentioned previously:

Tr
[
B̂σ
s,L . . . B̂

σ
s,1

]
= det

[
1+ Bσ

s,L . . .Bσ
s,1

]
, (B.31)

wherein our problem suggests that the following definitions must be true

B̂σ
s,l ≡ e∆τ ĉ†σKσ ĉσe∆τ ĉ†σṼσ(si,l)ĉσ (B.32)

and

Bσ
s,l ≡ e∆τ(−1)σλv(l)e∆τKσ . (B.33)

where vi,j(l) = δi,jsi,l is the matrix element of the diagonal matrix v(l), and (−1)σ is equal

to −1 for σ =↑ =⇒ 1 or −1 for σ =↓ =⇒ −1. We are now in a position to put the results
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seen in Eqns. (B.28)-(B.33) together to find the partition function Z

Z = Λ
∑
{si,l}

det
(
M↑s
)

det
(
M↓s
)
, (B.34)

whereby we have again compacted the equation with substitutions given below as

Λ = 1
2L e− 1

4βU , (B.35)

and

Mσ
s = 1+ Bσ

s,L . . .Bσ
s,1. (B.36)

We should emphasize that the DHST for this Hamiltonian gave us Hubbard-Stratonovich

fields si,l that can only take the values +1 or −1, but it is possible to use this transformation

on other interactions that yield continuous fields. Note also that we can write B̂σ
s (β, 0) and

its matrix counterpart Bσ
s (β, 0), in terms of the B̂σ

s,l and Bσ
s,l quantities

B̂σ
s (β, 0) ≡

1∏
l=L

B̂σ
s,l , (B.37)

and

Bσ
s (β, 0) ≡

1∏
l=L

Bσ
s,l . (B.38)

B.5 Expectation Values

The form of the partition function we have obtained required some rather important

steps that can be recycled when evaluating the expectation value of observables, which was

the motivation of all of the discussion thus far. For some “well behaved” observable Ô

the expectation value can be evaluated to an accuracy tuned by errors from the Trotter

decomposition

〈 Ô 〉 =
Tr
[
e−β(Ĥ−µN̂)Ô

]
Tr
[
e−β(Ĥ−µN̂)

] =
∑
{si,l}

ps 〈 Ô 〉 s +O(∆τ 2) , (B.39)
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where ps is

ps = det(1+ Bσ
s (β, 0))∑

{si,l} det(1+ Bσ
s (β, 0)) , (B.40)

and

〈 Ô 〉 s =
Tr
[
B̂σ
s (β, τ)ÔB̂σ

s (τ, 0)
]

Tr
[
B̂σ
s (β, 0)

] . (B.41)

If we assume the operator Ô can be written as Ô = ĉ†Oĉ, then the calculation of Eqn. (B.41)

can be evaluated as follows:

〈 Ô 〉 s =
Tr
[
B̂σ
s (β, τ)ÔB̂σ

s (τ, 0)
]

Tr
[
B̂σ
s (β, 0)

]
= ∂

∂η
ln
(
Tr
[
B̂σ
s (β, τ)eηÔB̂σ

s (τ, 0)
])∣∣∣∣∣

η=0

= ∂

∂η
ln
(
det

[
1+ Bσ

s (β, τ)eηOBσ
s (τ, 0)

])∣∣∣∣∣
η=0

Use the identity : ln (det[A]) = Tr[ln (A)]

= ∂

∂η
Tr
[
ln
(
1+ Bσ

s (β, τ)eηOBσ
s (τ, 0)

)]∣∣∣∣∣
η=0

= Tr
[
∂

∂η
ln
(
1+ Bσ

s (β, τ)eηOBσ
s (τ, 0)

)]∣∣∣∣∣
η=0

= Tr
[

Bσ
s (β, τ)eηOOBσ

s (τ, 0)
1+ Bσ

s (β, τ)eηOBσ
s (τ, 0)

]∣∣∣∣∣
η=0

= Tr
[

Bσ
s (β, τ)OBσ

s (τ, 0)
1+ Bσ

s (β, 0)

]

= Tr
[
Bσ
s (β, τ)OBσ

s (τ, 0)(1+ Bσ
s (β, 0))−1

]
= Tr

[
Bσ
s (τ, 0)(1+ Bσ

s (β, 0))−1Bσ
s (β, τ)O

]
(Used cyclic property of trace)

= Tr
[
1+ Bσ

s (τ, 0)Bσ
s (β, τ)

1+ Bσ
s (τ, 0)Bσ

s (β, τ)Bσ
s (τ, 0)(1+ Bσ

s (β, 0))−1Bσ
s (β, τ)O

]

= Tr
[

Bσ
s (τ, 0) + Bσ

s (τ, 0)Bσ
s (β, 0)

1+ Bσ
s (τ, 0)Bσ

s (β, τ) (1+ Bσ
s (β, 0))−1Bσ

s (β, τ)O
]

= Tr
[

Bσ
s (τ, 0)Bσ

s (β, τ)
1+ Bσ

s (τ, 0)Bσ
s (β, τ)O

]

= Tr
[(
1− (1+ Bσ

s (τ, 0)Bσ
s (β, τ))−1

)
O
]
. (B.42)
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If we adhere to a notation that commonly appears in the literature we can define new

quantity Aσ
s (l) which simplifies the split product of matrices

Aσ
s (l) ≡ Bσ

s (τ, 0)Bσ
s (β, τ) = Bσ

s,l . . .Bσ
s,1Bσ

s,L . . .Bσ
s,l+1 , (B.43)

so that the Eqn. (B.42) becomes

〈 Ô 〉 s = Tr
[(
1− (1+ Aσ

s (l))−1
)

O
]
. (B.44)

This expression along with the expression for ps gives a way to evaluate the thermal

expectation value for any observable 〈 Ô 〉 in the DQMC formalism. In the next section

we find practical expressions for the equal time Green’s function as a demonstration of the

expressions derived in this section.

B.6 Equal Time Single-Particle Green’s Functions

Now we turn our attention to the equal time Matsubara Green’s function Gσs,i,j(l) for a

given HS field s ≡ si,l. This propagator describes a response of the single-particle electron

system for the given field configuration at a time-slice l, which corresponds to an imaginary

time 7 τ = τl = l∆τ .

Gσs,i,j(l) = −〈 T̂τ{ĉi,σ(τ)ĉ†j,σ(τ)} 〉s (B.45)

Before evaluating this quantity explicitly, lets look at the full single-electron Green’s function

Gσi,j(l) for equal times τ = l∆τ momentarily by expanding the operators in the Heisenberg

representation and use the definition of the expectation value 〈· · · 〉 defined earlier. The

conventional way to proceed is to attribute an infinitesimal imaginary time increment η to

the argument one of the operators as to allow time-ordering of the ĉ and ĉ† operators and

then taking the limit as η → 0+. Convention usually prescribes that for equal-times, the

destruction operator appear to the right and therefore we attribute the infinitesimal to the
7The decision to promote the imaginary time slice index l to the argument for G is one of convention.

Green’s functions are usually written as functions of time t or imaginary time τ , but in this case the τ
is replaced with its respective integer index l to better emphasize the algorithmic structure of DQMC.
Discussing quantities in terms of time slice indices lends more to the actual algorithmic implementation.
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creation operator that appears rightmost in the standard definition of the single-particle

Green’s function

Gσi,j(l) = −〈 T̂τ{ĉi,σ(τ)ĉ†j,σ(τ)} 〉

= − lim
η→0+

〈 T̂τ{ĉi,σ(τ)ĉ†j,σ(τ+)} 〉 , where τ+ = τ + η

= − lim
η→0+

Tr
[
ρ̂ T̂τ{ĉi,σ(τ)ĉ†j,σ(τ+)}

]
= lim

η→0+
Tr
[
ρ̂ ĉ†j,σ(τ+)ĉi,σ(τ)

]
= Tr

[
eβ(Ω̂−Ĥ)eĤτ ĉ†j,σe−ĤτeĤτ ĉi,σe−Ĥτ

]
= Tr

[
eβ(Ω̂−Ĥ)eĤτ ĉ†j,σ ĉi,σe−Ĥτ

]
= Tr

[
eβ(Ω̂−Ĥ)ĉ†j,σ ĉi,σ

]
, (Used cyclic property of trace)

= 〈 ĉ†j,σ ĉi,σ 〉 . (B.46)

Here we used the invariance of the trace under cyclic permutation of operators and the fact

that all the exponentials commute with each other to obtain Eqn. (B.46); the operators ρ̂,

Ĥ, and Ω̂ have been defined in the discussion around Eqns. (??) and (??). Note that the

use of Ĥ = Ĥ − µN̂ corresponds to a general situation where the chemical potential terms

are excluded from Ĥ, however, in our Hamiltonian (Eqn. (B.2)) the chemical potential was

included in Ĥ by definition, such that Ĥ ≡ Ĥ.

Consider now that we choose the destruction operator to have the τ+ argument instead,

the expectation value is:

Gσi,j(l) = −〈 T̂τ{ĉi,σ(τ)ĉ†j,σ(τ)} 〉

= − lim
η→0+

〈 T̂τ{ĉi,σ(τ+)ĉ†j,σ(τ)} 〉

= −〈 ĉi,σ(τ)ĉ†j,σ(τ) 〉

= −〈 δi,j1̂− ĉ†j,σ(τ)ĉi,σ(τ) 〉

= −〈 δi,j1̂ 〉+ 〈 ĉ†j,σ(τ)ĉi,σ(τ) 〉

= 〈 ĉ†j,σ ĉi,σ 〉 − δi,j , (B.47)
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which is expected from the commutation relation 〈 [ĉi,σ, ĉ
†
j,σ] 〉 = δi,j. To calculate the equal-

time Green’s function used in our DQMC algorithm, we will change our approach slightly.

First, we will drop the minus sign from the definition of the Green’s function, a decision

which we must be consistent with moving forward. Second, we will start our problem with

the unconventional time ordering from the last calculation. Lastly we will assume that our

operator can be expressed as Ô = ĉi,σ ĉ
†
j,σ = δi,j1̂−ĉ†Oj,i ĉ where Oj,i is a matrix with elements

given by Oj,i
j′,i′ = δj′,jδi′,i. Using these changes, we can jump straight into the evaluation of

Eqn. (B.45)

Gσs,i,j(l) = 〈 ĉi,σ ĉ
†
j,σ 〉s

= 〈 δi,j1̂− ĉ†j,σ ĉi,σ 〉s

= 〈 δi,j1̂ 〉s − 〈 ĉ†Oj,i ĉ 〉s

=
Tr
[
B̂σ
s (β, τ)δi,j1̂B̂σ

s (τ, 0)
]

Tr
[
B̂σ
s (β, 0)

] −
Tr
[
B̂σ
s (β, τ)ĉ†Oj,i ĉB̂σ

s (τ, 0)
]

Tr
[
B̂σ
s (β, 0)

]
= δi,j1− Tr

[(
1− (1+ Bσ

s (τ, 0)Bσ
s (β, τ))−1

)
Oj,i

]
= (1+ Bσ

s (τ, 0)Bσ
s (β, τ))−1

i,j , (B.48)

where one should notice that the trace operation (by definition) limits the matrix elements

included to those along the diagonal of matrix inside the trace. This result is what we set

out to obtain and it is important enough to express again in a slightly more compact form

Gσs,i,j(l) = (1+ Aσ
s (l))−1

i,j . (B.49)

The importance of this expression cannot be understated since it is essential to evaluate all

the correlation functions we might be interested in, and as we will see, the unequal-time

Green’s functions can be written in terms of the equal-time functions.

B.7 Updating the Local HS Fields

The procedure for updating a local HS field variable si,l is usually accomplished with standard

approaches such as the heat bath or Metropolis algorithms, and within these approaches we
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must examine the change in the fermion determinants when we have a spin flip si,l → −si,l.

This results in a change in Aσ
s (l) denoted by

Aσ
s (l)→ Aσ

−s(l) = [1+ ∆σ
s (i, l)]Aσ

s (l) (B.50)

where ∆σ
s (i, l) is a matrix with only one nonzero element

∆±s,j,k(i, l) = δj,iδk,i(e±∆τλsi,l − 1) . (B.51)

The probability for any particular field configuration si,l denoted by ps was given before by

ps = det (Mσ
s )

Z
. (B.52)

In the Metropolis routine we calculate the probability of acceptance of the system going from

one configuration C to another C ′ expressed simply by

acc(C → C ′) = min
{

1 , p(C
′)

p(C )

}
. (B.53)

Therefore we must calculate a similar ratio, denoted Rσ of probabilities for this local spin-flip

update

Rσ = det(Mσ′
−s)

det (Mσ
s )

= det(Mσ′

−s) det((Mσ
s )−1) = det((Mσ

s )−1) det(Mσ′

−s)

= det((Mσ
s )−1Mσ′

−s)

= det
(
[1+ Aσ

s (l)]−1[1+ Aσ′

−s(l)]
)

= det
(
[1+ Aσ

s (l)]−1[1+ [1+ ∆σ
s (i, l)]Aσ

s (l)]
)

= det

[1+ Aσ
s (l)]−1[1+ Aσ

s (l)]︸ ︷︷ ︸
=1

+ [1+ Aσ
s (l)]−1︸ ︷︷ ︸

=Gσs (l)

∆σ
s (i, l)Aσ

s (l)


= det (1+ Gσs (l)∆σ

s (i, l)Aσ
s (l)) (B.54)
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We can express this in another way by noticing that we can rewrite the argument inside the

determinant as

1+ Gσs (l)∆σ
s (i, l)Aσ

s (l) = 1+ Aσ
s (l)−1Aσ

s (l)Gσs (l)∆σ
s (i, l)Aσ

s (l)

= 1+ Aσ
s (l)−1Aσ

s (l)[1+ Aσ
s (l)]−1∆σ

s (i, l)Aσ
s (l)

= 1+ Aσ
s (l)−1[1− Gσs (l)]∆σ

s (i, l)Aσ
s (l) . (B.55)

Now we can use the following determinant identity for similarity transformations:

det
(
λ1+ S−1MS

)
= det (λ1+ M) , (B.56)

where it is clear that our determinant has such a form with the A matrices serving as the

S’s in this case. Using this result and the definition we gave to the δ matrix in Eqn. (B.51),

we can find a new form for R

Rσ = det (1+ [1− Gσs (l)]∆σ
s (i, l))

= 1 + [1− Gσs,i,i(l)]∆σ
s,i,i(i, l) . (B.57)

The full ratio for accepting a proposed change is R = R↑R↓, and it can be calculated from

the Green’s function for the current configuration and imaginary time-slice.

If the change is rejected, the update scheme restarts with a new proposed change for the

same system configuration. Otherwise the change is accepted and the Green’s function

updates accordingly Gσs (l) → Gσ′s′ (l). Computation of Gσs (l) by Eqn. (B.48) involves a

multiplication sequence of L, N × N matrices, which has a costly computational scaling

of LN3. Employing a so-called “Sherman-Morrison” update scheme reduces the scaling cost

to N2 by exploiting the fact that only a single row and column of Gσ(l) are affected by

a single flip of si,l. The new Green’s function after an update can be obtained from the

previous one by noticing first that since

[Gσs (l)]−1 = (1+ Aσ
s (l)) , (B.58)
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then we must have that

[Gσ′s′ (l)]−1 = (1+ [1+ ∆σ
s (l)]Aσ

s (l)) , (B.59)

where all of the quantities above are assumed to be matrices over site indices. Rewriting

A = G−1 − 1 and temporarily dropping spin/field indices and time-slice arguments, we can

substitute this into the expression for the updated Green’s function

[G ′]−1 = 1+ [1+ ∆][G−1 − 1]

= 1+ G−1 − 1+ ∆G−1 −∆

= [1+ ∆]G−1 −∆ .

Solving for G ′ from this matrix equation yields

G ′ = (1+ ∆[1− G])−1G = 1

1+ ∆[1− G]G (B.60)

which is essentially a rearranged version of Dyson’s equation and contains a piece that can

be rewritten according to the Woodbury-Sherman-Morrison formula

1

A− BC = 1

A + 1

AB 1

1− CA−1BC1A . (B.61)

This formula can be obtained by an infinite geometric series

1

A− BC = 1

A
(
1+ BCA−1 + BCA−1BCA−1 + . . .

)
(B.62)

= 1

A + 1

AB
(
1+ CA−1B + . . .

)
C1A (B.63)

= 1

A + 1

AB 1

1− CA−1BC1A . (B.64)

In order to apply this formula above to the one we have obtained with the Green’s functions,

we need to specify a formality related to the matrix ∆. As we have stated before, ∆ is matrix

with only one nonzero element and it can be constructed using two rectangular matrices we

denote Υ1 and Υ2 such that ∆ = Υ1∆sΥ2, and where ∆s is the small but nonzero HS field
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dependent part of ∆. If we define

A = 1 , B = −Υ1 , and C = ∆sΥ2(1− G) , (B.65)

then we can apply the formula to obtain

G ′ = G − GΥ1
1

1−∆sΥ2(1− G)Υ1
∆sΥ2(1− G) . (B.66)

Bringing back the full regalia of indices, we now summarize this result in the form that

matches Ref.[102]

Gσ′s′ (l) = Gσs (l)− G
σ
s (l)∆σ

s (l)(1− Gσs (l))
1−∆σ

s (l)(1− Gσs (l)) . (B.67)

Thus we have shown that an update of the equal-time Green’s function is a straight forward

calculation that was simplified from a more complicated matrix-matrix multiplication scheme

of cost LN3 to one without matrix multiplication of computational cost N2.

How do we proceed to the next time slice? Once the algorithm sweeps through all of

the sites at time slice l and all proposed changes and updates have been made, we advance

the propagator to the next time-slice by using the B-matrices. As mentioned before, these

behave analogously to the standard time-evolution operator and thus we simply have to

apply them to Gσs (l) in the usual way (i.e. ÔH(t) = Û †(t, 0)ÔSÛ(t, 0) = Û−1(t, 0)ÔSÛ(t, 0) )

Gσs (l + 1) = Bσ
s,l+1Gσs (l)(Bσ

s,l+1)−1 . (B.68)

B.8 UDR Decomposition

Updating configurations on the same time slice across the lattice, as it turns out, is not

significantly prone to numerical errors. On the other hand, advancing the equal-time Green’s

function to a subsequent time-slice according to Eqn. (B.68) does introduce numerical error.

Therefore, one must calculate the matrices Aσ
s (l) to sufficient accuracy in order to preserve

information about its small eigenvalues. The discrepancy between the largest and smallest

eigenvalues in the non-interacting limit of the 2D Hubbard model (U = 0) is governed by the

fact that the largest eigenvalues are as proportionally large as exp(+βẼ) while the smallest
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are proportional to exp(−βẼ) where Ẽ ∼ 4t. We are usually interested in performing

simulations for large values of β and thus we must also segregate the contributions between

large and small eigenvalues. Failing to do so would mean that the small eigenvalues are

completely overshadowed by round-off errors.

The solutions to this problem are commonly framed as matrix factorization methods and

a few different approaches exist amongst the variations of QMC. We will utilize the UDR

decomposition procedure outlined in Ref.[102], keeping much of the discussion and notation.

Let us define m as the number of matrices Bσ
s,l we can multiply without loss of numerical

accuracy. Using the Gram-Schmidt orthogonalization procedure to write this product in the

form

aσ1,s(l) = Bσ
s,l+mBσ

s,l+m−1 · · ·Bσ
s,l+1

= Uσ
1Dσ

1Rσ
1 (B.69)

where Uσ
1 is an orthogonal matrix, Dσ

1 is a diagonal matrix, and Rσ
1 is a right triangular matrix

with diagonal elements equal to unity. By construction, Uσ
1 is necessarily well conditioned

8; theoretically, Rσ
1 need not be well conditioned , but it tends to be in practice. The large

variations in the size of matrix elements appears in the diagonal matrix Dσ
1 . We now form a

second UDR form

aσ2,s(l) = Bσ
s,l+2mBσ

s,l+m−1 · · ·Bσ
s,l+1

= Bσ
s,l+2mBσ

s,l+2m−1 · · ·Bσ
s,l+m+1Uσ

1Dσ
1Rσ

1

= Uσ
2Dσ

2Rσ
2 . (B.70)

The order of operations in Eqn. (B.70) is important and implies that one first multiplies

Uσ
1 by Bσ

s,l+2mBσ
s,l+2m−1 · · ·Bσ

s,l+m+1. It follows that we multiply it on the right by Dσ
1 . This

rescales the columns of the matrix and avoids incurring numerical instability in the next

step, a UDR decomposition of the partial product we have so far. We then multiply teh
8A well conditioned matrix is generally characterized by a condition number C that obeys

log(C) <(precision of matrix entries). This number C is the ratio of the largest to smallest singular value
in the singular value decomposition of the matrix. On the contrary, an ill conditioned matrix is one where
log(C) &(precision of matrix entries).
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resulting triangular matrix on the right by Rσ
1 to obtain the last line, Uσ

2Dσ
2Rσ

2 . Repeating

this process L/m times gives us

Aσ
s (l) = aσL/m,s(l) = Uσ

L/mDσ
L/mRσ

L/m . (B.71)

Recall that the equal time Green’s function is related to Aσ
s (l) via (Gσs )−1(l) = 1+ Aσ

s (l).

Since we must add the unit matrix 1 to Aσ
s (l), we must be careful to isolate the diagonal

matrix Dσ
L/m, whose elements vary greatly in size. We will replace the unit matrix by

1 = Uσ
L/m(Uσ

L/m)−1(Rσ
L/m)−1Rσ

L/m and find

(Gσs )−1(l) = 1+ Aσ
s (l)

= Uσ
L/m

(
(Uσ

L/m)−1(Rσ
L/m)−1 + Dσ

L/m

)
Rσ
L/m

= Uσ
L/m

(
ŨσD̃σR̃σ

)
Rσ
L/m

= UσDσRσ . (B.72)

The second to last step contains a numerically stable UDR decomposition because we have

separated the large and small matrix elements.

B.9 Unequal Time Green’s Functions

In order to measure dynamic quantities in DQMC we need to obtain the full time-dependent

Green’s function G(τ, τ ′) = G(τ − τ ′). As we have seen, time evolution is governed by the

matrices Bσ
s,l, however we have only discussed how to evolve the equal time Green’s functions.

These equal time propagators can be thought of as diagonal elements of some matrix G

with the off diagonal elements representing the unequal time propagators throughout the

discretized space-time (under Wick rotation).

G =



G(τ1, τ1) G(τ1, τ2) · · · G(τ1, τL)

G(τ2, τ1) G(τ2, τ2) · · · G(τ2, τL)
... ... · · · ...

G(τL, τ1) G(τL, τ2) · · · G(τL, τL)


(B.73)
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In the expression above, it should be understood that the matrix elements Gi,j are also

matrices of size N × N . This can be seen more clearly by noting the inverse of the above

matrix is

G−1 =



1 0 0 · · · 0 Bs(τ1, 0)

−Bs(τ2, τ1) 1 0 · · · 0 0

0 −Bs(τ3, τ2) 1 · · · 0 0

0 0 −Bs(τ4, τ3) . . . 0 0
... ... ... . . . . . . ...

0 0 0 · · · Bs(τL, τL−1) 1


(B.74)

which is has dimensions NL×NL. Despite the order in which we introduced them here, one

typically is faced with the task of inverting G−1 → G. Matrix inversion scales as tinv ∼ D3

where D is the linear dimension of the matrix, and thus it can be rather expensive for

(G−1)−1 =⇒ tinv ∼ (NL)3 . Fortunately for us, G−1 is a sparse block matrix 9 and when

we require that G−1G = 1 we find that the matrix elements

Gi,i = [1+ Bσ
s,i−1 . . .Bσ

s,1Bσ
s,L . . .Bσ

s,i]−1

Gi>j
i,j = Gj,j[Bσ

s,i−1 . . .Bσ
s,j]

Gi<j
i,j = −Gj,j[1+ Bσ

s,i−1 . . .Bσ
s,1Bσ

s,L . . .Bσ
s,j] .

The topmost expression is the equal time Green’s function while the remaining two are

essentially the retarded and advanced Green’s functions valid only for τi > τj and τi < τj

respectively. The computational cost for Gi,i and Gi,j is N2 and 2N2 respectively.
9A sparse matrix is a matrix for which most of the elements are zero. By contrast, a dense matrix is one

where most of the elements are nonzero. A measure of the sparsity is found by taking the ratio between the
number of zero-valued elements and the total number of element. The closer to one this ratio is, the more
sparse the matrix.
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B.10 The Fermion Sign Problem in DQMC

In this section we review some basics of the fermion sign problem as it pertains to QMC. My

primary reference for this section is the PRL (2005) by Matthias Troyer and Uwe-Jens Wiese

(Ref.[296]).

One of the primary reasons one uses some flavor of the QMC approach to the many-

body problem is that it gives us access to interacting models in higher dimensional systems

with strong correlations. Analytical methods that solve such problems have yet to be

developed (or at least become widely known), and analytical exact solutions are still only

available through some sort of perturbative or mean-field type arguments. These QMC

methods unintentionally suffer from the adage of “ain’t no such thing as a free lunch”, and

they are plagued by the infamous fermion sign problem which makes it practically infeasible

to study large finite-size lattices and very low temperatures.

Suppose we would like to find the expectation value of some observable Ô at finite

temperature in the grand canonical ensemble :

〈 Ô 〉 =
Tr
[
e−βĤÔ

]
Tr
[
e−βĤ

] (B.75)

where Ĥ = Ĥ − µN̂ . If we map this to a classical problem, this expectation value effectively

becomes

〈O 〉 =
∑
iOipi∑
i pi

(B.76)

where pi, the probability for each configuration of the system is defined in the partition

function Z = Tr
[
e−βH

]
= ∑

i pi. The “sign problem” appears if any of the pi < 0. Positivity

is a fundamental axiom in the interpretation of probabilities and it without it we lose

information about the statistics of the system. In fermionic systems, the Pauli principle

introduces a minus sign upon the exchange in quantum numbers of two particles, and it is

here where the sign problem begins its propagation that ends in the partition function. If

one samples the probability distrubution with respect to the absolute sign of the weights |pi|
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then the expectation value becomes

〈O 〉 =
∑
iOipi∑
i pi

= (∑iOi sgn(pi)|pi|/
∑
i pi)

(∑i sgn(pi)|pi|/
∑
i pi)

=
〈O · sgn(p)〉|p|
〈sgn(p)〉|p|

. (B.77)

In the DQMC problem, the factor det(M↑) det(M↓) is not generally positive definite leading

to sampling over an unrenormalized probability distribution which is, in turn, not generally

positive definite. As outlined above, we circumvent this issue by using the absolute value

| det(M↑) det(M↓)| instead.

The cancellation in the sign grows exponentially

〈 sign 〉 =
∑
i pi∑
i |pi|

= e−βN∆f (B.78)

where N is the particle number and ∆f = f − f|p| is the differences in the free energy

densities. Consequently, the relative error ∆sign/ 〈 sign 〉 increases exponentially with

increasing particle number and inverse temperature

∆sign
〈 sign 〉 ∼

eβN∆f
√
NC

(B.79)

where NC is the number of configurations in the set {Ci} chosen by a classical Monte Carlo

method according to the probability distribution p(Ci). The takeaway here is the worsening

of the sign-problem with increasing β and N . This dependence is the origin of the statement

above that the sign problem makes it practically infeasible to study large finite-size lattices

and low temperatures. Limitations aside, DQMC can still simulate systems large enough

and at low enough temperatures to yield beneficial results.

Lastly, we should note that efforts surrounding the fermion sign problem are pretty

significant since a definitive solution to the sign problem in polynomial time will solve the

P=NP problem relevant to many computational science subfields. One interesting side-effect

of the tremendous effort surrounding this problem is (at least in the QMC community) the

discovery of sign-problem-free Hamiltonians and the symmetries that protect them. Two

recent studies have claimed to prove definitively that only two fundamental sign-problem-

free symmetry classes exist: Kramers class and Majorana class [297, 298]. With these
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insights, it is possible to look for more sign-problem free Hamiltonians relevant to many-

body physics. In particular, Hamiltonians describing topological superconductors with time-

reversal symmetry are candidates for the Majorana class of sign-free problems [298].

B.11 Hubbard-Holstein Model

Thus far, we have described DQMC with the Hubbard model alone, which is the simplest

interacting canonical model for e-e interactions. Adding phonons into the problem via the

simplest e-ph model available, the Holstein model presents an opportunity to examine the

competition between the two types of interactions. This Hubbard-Holstein (HH) model is

described by Ĥ = ĤHub+Ĥph+Ĥe-ph where ĤHub is the Hubbard model described previously.

The extra Holstein terms are

Ĥph =
∑
i

[
P̂ 2
i

2M + K

2 X̂
2
i

]
(B.80)

and

Ĥe-ph = g
∑
i,σ

X̂i

(
n̂i,σ −

1
2

)
. (B.81)

After this makes it through the Trotter decomposition and the terms are partitioned into

their respective values on each time slice l, we have

Ĥph,l =
∑
i

 P̂ 2
i,l

2M + 1
2MΩ2X̂2

i,l

 (B.82)

and

Ĥe-ph,l = α
∑
i,σ

n̂i,σX̂i,l . (B.83)

where Ω is the phonon frequency of a dispersionless optical mode, and X̂i,l, P̂i,l are the

position and momentum operators for the oscillator at site i during time-slice l. The

e-ph interaction strength, α, tunes the strength of the e-ph interaction and is isotropic

(independent of momentum). The lattice DOF are handled by replacing the position

operator with a continuous variable Xi,l, which changes the momentum operator to a discrete
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difference step on the imaginary time grid

Pi,l = Xi,l+1 −Xi,l

δτ
. (B.84)

The procedure for dealing with the interaction is the same as before except now the matrices

Bσ
s,l are modified to

Bσ
s,l ≡ e∆τ(−1)σλv(l)−∆τgX(l)e∆τKσ . (B.85)

where now X(l) represents a matrix with an ith diagonal element equal to the lattice

displacement Xi,l.

With the inclusion of phonons, we must update both the HS and phonon fields. The

displacement fieldXi,l can be updated in two different ways, (i) local site update and (ii) block

updates. We won’t discuss the scheme in detail here, but note that the local update proposes

a displacement field shift ∆X weighted by a uniform probability distribution centered at 0.

This new displacement field relates to the old one via X ′i,l → Xi,l + ∆X and with it the

acceptance ratio for a configuration update changes to R = R↑R↓e∆τg∆Eph where ∆Eph is

the change in kinetic and potential energy of the phonon fields in the update.

The second update procedure is known as a block update and refers to the simultaneous

update of the entire set of displacements along a block of imaginary time slices. The

imaginary time interval’s size to be updated simultaneously is set by the need to recover

Bose statistics. Unfortunately, the fast updates allowed by the Sherman-Morrison updating

scheme outlined before are not viable when using block updates. The block updates’

primary purpose is to counter a slowing of single-site updates’ acceptance rate at low

temperatures. Low-T values correspond to low phonon momentum, and thus the changes

in the displacement field correspond to relatively large momentum shifts. The likelihood

of acceptance for such changes becomes small, and thus the phonon configuration becomes

‘frozen’ in place. One must obtain statistically independent configurations for sampling, and

thus static phonon field configurations need to be unfrozen by more uniform changes.
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B.12 Equilibration, Auto-Correlation, and Measurements

This section will briefly discuss how measurements are organized and what additional

constraints need to be considered to justify the simulation as producing physically meaningful

results.

Equilibration Time: One cannot simply begin keeping measurements too soon after the

first configuration on the lattice is updated. Our theoretical framework aims to find finite

temperature expectation values at thermal equilibrium, and therefore we must wait until

enough updates have equilibrated the system. We call these preliminary steps through non-

equilibrated configurations warmup sweeps, and the amount required for equilibrium depends

on the interaction parameters and temperature to a significant degree. Generally speaking, a

conservative estimate for typical calculations on an 8×8 lattice, with Ω ∼ t and β ∼ t . . . 10t

is Nwarmup ∼ 2× 104 . . . 5× 104.

Autocorrelation Time: To guarantee that measurements are drawn from statistically

independent field configurations, one must update the system several times between actual

measurements. The amount of time one must wait in order to eliminate this statistical

bias is known as the autocorrelation time. We can estimate this time by calculating the

autocorrelation function for various quantities such as the phonon displacement fields Xl

which we denote Xl,

Xl = 〈Xn+lXn〉 − 〈Xn〉2

〈X2
n〉 − 〈Xn〉2

. (B.86)

Here we have used that 〈Xn+lXn〉 = 1
Nsweeps

∑Nsweeps
n=1 Xn+lXn with l as the sweep number and

Nsweeps as the total number of Monte Carlo sweeps. Long autocorrelation times add to the

total CPU runtime for the calculation and should be minimized within reason (if possible).

Although methods for reducing autocorrelation times exist, we will not discuss them here.

Measurements: Computing the expectation values and estimating the statistical error

requires the calculation of mean measurements and their respective variances (in equilibrium

of course). The total number of measurement sweeps in the entire simulation denoted Nsweeps

is divided into Nbin number of intervals and the values in each bin are averaged, thereby

creating Nbin measurements. The binned measurements are considered to be statistically
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independent and used to find a sample mean

x̄ = 1
Nbin

Nbin∑
i=1

xi (B.87)

and a sample variance

σ2
x = 1

N − 1

Nbin∑
i=1

(xi − x̄)2 (B.88)

which are taken to be the final measurement and square of the error estimate respectively.

Error bars, wherever they may appear, are given from the estimate σx for each measured

quantity.
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C Proof of Identity Tr[Ŵ ] = det[1 + eT]

In the previous section, we used Eqn. B.31 to state (without proof) that the trace over imaginary-

time evolution operators, B̂σ
s,l, was equivalent to a determinant containing their matrix-form

counterparts. In this section, we provide a detailed proof of this identity with pedagogy in mind.

Again, I am indebted to the detailed notes found in my advisor’s dissertation [292] and the source

of those notes written by Assaad et al.[104] I consider this discussion as a an “update” with more

details and corrections of mistakes found in those references. I have made a considerable effort to

compose many of the derivations to my standards and greatly appreciate any typos or mistakes

noticed by the reader.

C.1 Tracing out the Fermion degrees of freedom.

A crucial step in simplifying the trace over the Fermion degrees of freedom (d.o.f.) was to

utilize the identity

Tr
[
eĉ†T̂1ĉeĉ†T̂2ĉ . . . eĉ†T̂nĉ

]
= det

[
1+ eT1eT2 . . . eTn

]
(C.1)

A proof of this identity will now be presented (in a pedagogical way) within this appendix

using Slater determinants.

A Slater determinant is comprised of fermion operators and it preserves the anti-

symmetric exchange of fermions in multi-particle states. These operators are essential for

expressing the second quantized Hamiltonian for a particular physical system. Let us first

consider a single particle Hamiltonian Ĥ0 = ∑
i,j ĉ
†
i (H0)i,j ĉj which is bilinear in the fermion

creation and annihilation operators ĉ†i and ĉj with i running over all of the N single particle

states. The matrix element (H0)i,j belongs to the N × N matrix H0, and H0 is always

Hermitian. This implies that some orthogonal transformation U exists such that U†H0U = Hd

where Hd is a diagonal matrix. Starting with Hamiltonian already introduced, we will show

the transformation first, in a matrix form, using ĉ† = [ĉ†1, ĉ†2, . . . , ĉ†n] and an analogous column
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vector for ĉ :

Ĥ0 = ĉ†H0ĉ

= ĉ†UU†H0UU†ĉ

= ĉ†UHdU†ĉ

= γ̂†Hdγ̂ (C.2)

where the unitarity of U was used to insert the identity matrix between terms since

U†U = UU† = 1.

The last equation C.2 represents the diagonal form of our Hamiltonian, and it can be

alternatively expressed as a sum across the diagonal elements of Hd:

Ĥ0 =
∑
i

(Hd)i,i γ̂
†
i γ̂i (C.3)

The fermion operators in the diagonal basis are then clearly given by

γ̂†i =
∑
j

ĉ†jUji γ̂i =
∑
j

U †ij ĉj (C.4)

which satisfy the anti-commutation relations
{
γ̂†i , γ̂j

}
= δi,j , and

{
γ̂†i , γ̂

†
j

}
=
{
γ̂i , γ̂j

}
= 0

due to the unitarity of U . We will need to create multi-particle states of fermions by using

the fermion operators γ̂†i and γ̂i , which can be used express an arbitrary p-particle state

eigenstate of the Hamiltonian as

γ̂†α1 γ̂
†
α2 . . . γ̂

†
αp |0〉 =

p∏
n=1

∑
j

ĉ†jUj,αn

 |0〉 =
p∏

n=1

(
ĉ†P

)
n
|0〉 (C.5)

The above features the vacuum state |0〉, the rectangular N × p matrix P, and the matrix

product
(
ĉ†P

)
n
which denotes that the product be evaluated using only the nth column of

the 1× p row vector
(
ĉ†P

)
. The last equation, ∏p

n=1

(
ĉ†P

)
n
|0〉 provides a definition for the

Slater determinant, which is completely characterized by the rectangular matrix P. Since it

must be true that N ≥ p, the matrix P is actually a N × p submatrix of the N ×N unitary
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matrix U. It may not be completely clear from the last expression in Eqn.(C.5), but the

different permutations of the creation operators (arising from the multiplication through all

terms in the product series), yields the familiar (antisymmetric) minus signs of the Slater

determinant10. Moreover some of the terms will contain two or more of the same creation

operator, thus yielding zero on the vacuum state. The (single-particle) bilinear Hamiltonian

as seen in Eqn.(C.3) is solved by the Slater determinant.

With the above arguments used to give us a working form of the p-particle state, let us re-

turn to our task at hand. Recall that we need to evaluate the trace Tr
{

eĉ†T̂1ĉeĉ†T̂2ĉ . . . eĉ†T̂nĉ
}
,

which has a general form

Tr
{

eĉ†T̂1ĉeĉ†T̂2ĉ . . . eĉ†T̂nĉ
}

=
∑
m

〈m| eĉ†T̂1ĉeĉ†T̂2ĉ . . . eĉ†T̂nĉ |m〉 (C.6)

where the basis set {|m〉} can be any orthonormal basis set, but is ideally the set of

many-particle eigenstates of an operator in the trace. Our states are the p-particle Slater

determinants, which means we’ll need to know how to evaluate something like

eĉ†T̂ ĉ
p∏

n=1

(
ĉ†P

)
n
|0〉 (C.7)

The result of this operation is well known, and it can be stated with a subsidiary declaration

followed by a proof of this lemma.

Lemma 1: When a Slater determinant is multiplied by the operator exp
(
ĉ†Tĉ

)
where T

is a Hermitian (or anti-Hermitian) matrix, the result is also a Slater determinant as in

eĉ†Tĉ
p∏

n=1

(
ĉ†P

)
n
|0〉 =

p∏
n=1

(
ĉ†eTP

)
n
|0〉 . (C.8)

This is effectively a propagation of a Slater determinant with a single-particle propagator.

Proof: Let us transform T into a diagonal form with a unitary transformation like the

one used on the Hamiltonian, namely, U†TU = λ. Again U is a unitary matrix and λ and if
10This is because we can anticommute all of the operators back to the proper numerical ordering. For

example, if N = p = 3 one of the nonzero terms will be ĉ†2ĉ
†
1ĉ
†
3P2,1P1,2P3,3 = −ĉ†1ĉ

†
2ĉ
†
3P2,1P1,2P3,3

203



T is a Hermitian (or anti-Hermitian) matrix, λ is a real (purely imaginary) diagonal matrix.

The steps are identical to what was done for the result seen in Eqn.(C.2), and we will be

using the gamma vector γ̂† = ĉ†U (implying that γ̂†U† = ĉ†).

eĉ†Tĉ
p∏

n=1

(
ĉ†P

)
n
|0〉 = eγ̂†λγ̂

p∏
n=1

(
γ̂†U†P

)
n
|0〉

= eγ̂†λγ̂
(
γ̂†U†P

)
α1

(
γ̂†U†P

)
α2
. . .
(
γ̂†U†P

)
αp
|0〉 (C.9)

Each term in parenthesis can be unpacked as a sum over fermion operators multiplied by a

specific column vector generated within the matrix product of U†P. For example, take the

ith term
(
γ̂†U†P

)
αi
,

(
γ̂†U†P

)
αi

= γ̂†1
(
U†P

)
1,αi

+ . . .+ γ̂†N
(
U†P

)
N,αi

=
N∑
j=1

γ̂†j
(
U†P

)
j,αi

(C.10)

which suggests another representation of Eqn.(C.9) as

eĉ†Tĉ
p∏

n=1

(
ĉ†P

)
n
|0〉 = eγ̂†λγ̂

p∏
n=1

 N∑
j=1

γ̂†j
(
U†P

)
j,αn

 |0〉 . (C.11)

This expression will result in terms that have carry a product of p fermion creation operators,

but we know that wherever they may appear, terms like
(
γ̂†j
)k
|0〉 = 0 for k > 1. This implies

that the only t erms in Eqn.(C.11) that survive are those in which any fermion creation

operator γ̂†j appears only once. As it turns out, for N single particle states and p-particles,

there will be
(
N
p

)
= N !/(N − p)! different terms that survive since there are

(
N
p

)
possible

permutations of the product γ̂†j γ̂†k . . . γ̂
†
l where there are p terms in total for each product.

Since λ is diagonal, we can write

eγ̂†λγ̂ = e
∑

i
λi,iγ̂

†
i γ̂i

=
(

eλ1,1γ̂
†
1 γ̂1

)(
eλ2,2γ̂

†
2 γ̂2

)
. . .
(

eλN,N γ̂
†
N γ̂N

)
(C.12)
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which is exact since
[
γ̂†i γ̂i , γ̂

†
j γ̂j

]
= 0. Moreover, the many-particle states these exponentials

act upon can also be rewritten for practical purposes:

p∏
n=1

 N∑
j=1

γ̂†j
(
U†P

)
j,αn

 |0〉 =
 N∑
j1...jp

γ̂†j1 . . . γ̂
†
jp

(
U†P

)
j1,α1

. . .
(
U†P

)
jp,αp

 |0〉 . (C.13)

Brief interlude on commuting the exponential operator with the creation operator:

If we wanted to commute the exponentials through the creation operators to get to and act upon the vacuum state,

we would need to recall the relation for commuting an exponential operator with another operator. Say we have the

operators Â and B̂ and a scalar λ, it can be shown easily that

[
Â, eλB̂

]
= ÂeλB̂ − eλB̂Â = λ

[
Â, B̂

]
eλB̂ (C.14)

which implies that

eλB̂Â = ÂeλB̂ − λ
[
Â, B̂

]
eλB̂ . (C.15)

For our problem, we will need to examine [
γ̂†j , γ̂

†
i γ̂i
]

(C.16)

which is motivated by our desire to commute the exponential operators through some arbitrary amount of creation

operators. So naturally, we are looking to replace terms like eλi,iγ̂
†
i
γ̂
i γ̂†j with their commutation relations, as is shown

with eλB̂Â in Eqn.(C.15):

eλi,iγ̂
†
i
γ̂
i γ̂†j = γ̂†j eλi,iγ̂

†
i
γ̂
i − λi,i

[
γ̂†j , γ̂

†
i γ̂i
]

eλi,iγ̂
†
i
γ̂
i . (C.17)

Evaluating the unknown commutator is as follows:

[
γ̂†j , γ̂

†
i γ̂i
]

= γ̂†j γ̂
†
i γ̂i − γ̂†i γ̂i γ̂†j︸︷︷︸

{ }

= γ̂†j γ̂
†
i γ̂i − γ̂†i

(
δi,j − γ̂†j γ̂i

)
= γ̂†j γ̂

†
i γ̂i − γ̂†i δi,j + γ̂†i γ̂

†
j︸︷︷︸

{ }

γ̂i

= �
��

γ̂†j γ̂
†
i γ̂i − γ̂†i δi,j −�

��
γ̂†j γ̂
†
i γ̂i

= −γ̂†i δi,j . (C.18)
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Now we can rewrite Eqn.(C.17) with this result,

eλi,iγ̂
†
i
γ̂
i γ̂†j = γ̂†j eλi,iγ̂

†
i
γ̂
i + λi,iγ̂

†
i δi,je

λi,iγ̂
†
i
γ̂
i ,

= (1 + λi,iδi,j) γ̂†j eλi,iγ̂
†
i
γ̂
i . (C.19)

In summary, we only pay the commutator penalty if i = j, so we might consider avoiding the exchange of terms

where i = j in the remaining steps.

End interlude

Let us revisit the main term we are interested in working with:

(
eλ1,1γ̂

†
1 γ̂1

)
. . .
(

eλN,N γ̂
†
N γ̂N

) N∑
j1...jp

γ̂†j1 . . . γ̂
†
jp

(
U†P

)
j1,α1

. . .
(
U†P

)
jp,αp

 |0〉 . (C.20)

As stated earlier, only those permutations with creation operators appearing once (and only

once) for each state will survive the multiple summation. Thus, our summations reduce to

a summation over all permutations π as in

(
eλ1,1γ̂

†
1 γ̂1

)
. . .
(

eλN,N γ̂
†
N γ̂N

)(∑
π

γ̂†π(1) . . . γ̂
†
π(p)

(
U†P

)
π(1),α1

. . .
(
U†P

)
π(p),αp

)
|0〉 . (C.21)

For each of the
(
N
p

)
possible permutations, we can move the respective exponential term

to just before the creation operator that shares the same indicies (as not to incur any

commutation penalties) and all of the other (N − p) remaining exponentials can be placed

wherever as they commute with everything11. This leaves us with the permutation sum

∑
π

eλπ(1),π(1)γ̂
†
π(1)γ̂π(1) γ̂†π(1) . . . e

λπ(p),π(p)γ̂
†
π(p)γ̂π(p) γ̂†π(p)

(
U†P

)
π(1),α1

. . .
(
U†P

)
π(p),αp

|0〉 . (C.22)

The above expression reveals that every relevant exponential in each permutation will adopt

an eigenvalue 1 and becomes a scalar eλπ(n),π(n) . If the p-particle state-ket (resulting from the
11They could be commuted through to the vacuum state, which will result in an eigenvalue of 0 in the

exponential, and be equal to unity (i.e., eλi,iγ̂†
i
γ̂
i |0〉 = e0 |0〉 = |0〉).
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creation operators only) for a particular permutation is |ψπ〉 then we could write

∑
π

eλπ(1),π(1)γ̂
†
π(1)γ̂π(1) γ̂†π(1) . . . e

λπ(p),π(p)γ̂
†
π(p)γ̂π(p) γ̂†π(p)

(
U†P

)
π(1),α1

. . .
(
U†P

)
π(p),αp

|0〉

=
∑
π

eλπ(1),π(1) . . . eλπ(p),π(p) |ψπ〉
(
U†P

)
π(1),α1

. . .
(
U†P

)
π(p),αp

=
∑
π

e
∑

π
λπ,π |ψπ〉

(
U†P

)
π(1),α1

. . .
(
U†P

)
π(p),αp

. (C.23)

It becomes clear that the exponential operator we started with becomes a simple scalar

quantity that can be placed anywhere. Taking some steps back toward the original form we

find

∑
π

e
∑

π
λπ,π |ψπ〉

(
U†P

)
π(1),α1

. . .
(
U†P

)
π(p),αp

=
∑
π

|ψπ〉 e
∑

π
λπ,π

(
U†P

)
π(1),α1

. . .
(
U†P

)
π(p),αp

=
∑
π

γ̂†π(1) . . . γ̂
†
π(p) |0〉 e

∑
π
λπ,π

(
U†P

)
π(1),α1

. . .
(
U†P

)
π(p),αp

=
∑
π

γ̂†π(1) . . . γ̂
†
π(p)e

∑
π
λπ,π

(
U†P

)
π(1),α1

. . .
(
U†P

)
π(p),αp

|0〉 (C.24)

=
p∏

n=1

 N∑
j=1

γ̂†j eλj,j
(
U†P

)
j,αn

 |0〉 (C.25)

=
p∏

n=1

(
γ̂†eλU†P

)
n
|0〉

=
p∏

n=1

(
ĉ†UeλU†P

)
n
|0〉

=
p∏

n=1

(
ĉ†eTP

)
n
|0〉 q.e.d. (C.26)

The leap from Eqn.(C.24) to Eqn.(C.25) is related to an observation that analogously

took us from Eqn.(C.20) to Eqn.(C.21), and it can be shown by proper expansion of the

matrix multiplication, product series, and elimination of all terms with repeated (same-

state) creation operators that the two expressions are equivalent. In effect we have proved

Lemma (1) expressed in Eqn.(C.8).

Lemma 2: The scalar product of two Slater determinants |ψ〉 = ∏p
n=1

(
ĉ†P

)
n
|0〉 and
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|ψ̃ 〉 = ∏p
n=1

(
ĉ†P̃

)
n
|0〉 can be expressed by

〈ψ|ψ̃ 〉 = det
[
P†P̃

]
. (C.27)

This expression can be obtained by working through the scalar product of the two states as

follows:

〈ψ|ψ̃ 〉 = 〈0|
0∏

n=p

(
P†ĉ

)
n

p∏
n=1

(
ĉ†P̃

)
n
|0〉 *notice product series limits

= 〈0|
1∏

n=p

 N∑
j=1

P †αn,j ĉj

 p∏
n=1

 N∑
j̃=1

ĉ†
j̃
P̃j̃,αn

 |0〉
= 〈0|

(
P †αp,1ĉ1 + . . .+ P †αp,N ĉN

)
. . .
(
P †α1,1ĉ1 + . . .+ P †α1,N ĉN

)
(
ĉ†1̃P̃1̃,α1 + . . .+ ĉ†

Ñ
P̃Ñ,α1

) (
ĉ†1̃P̃1̃,αp + . . .+ ĉ†

Ñ
P̃Ñ,αp

)
|0〉

=
∑
j1...jp
j̃1...j̃p

P †αp,jp . . . P
†
α1,j1P̃j̃1,α1 . . . P̃j̃p,αp 〈0| ĉjp . . . ĉj1 ĉ

†
j̃1
. . . ĉ†

j̃p
|0〉 (C.28)

In this last expression we have all possible permutations of creation and annihilation

operators permitted by the sums, and as in the previous lemma, we must recognize that

only certain permutations will result in nonzero values of 〈0| ĉjp . . . ĉj1 ĉ
†
j̃1
. . . ĉ†

j̃p
|0〉. In this

case, we must have that all the ji : i ∈ {1, 2, . . . , p} take different values and that there is a

permutation π, of the p numbers such that

j̃i = jπ(i). (C.29)

This result implies that all of the matrix elements will resolve to the sign of the permutation

(−1)π. The scalar product can be written as

〈ψ|ψ̃ 〉 =
∑
j1...jp

∣∣∣ĉ†j1 . . . ĉ†jp |0〉∣∣∣2∑
π

(−1)πP †αp,jp . . . P
†
α1,j1P̃jπ(1),α1 . . . P̃jπ(p),αp (C.30)

where π ∈ Sp, with Sp being defined as the a group of permutations with p elements to

permute. The Pauli exclusion principle keeps the terms with ji = jk from contributing.

Moreover, we can omit the matrix element term since the sum over permutations vanishes
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for ji = jk for any i 6= k. This is seen more easily if we consider an example where p = 2

and j1 = j2 = j :

∑
π∈S2

(−1)πP †αp,jp . . . P
†
α1,j1P̃jπ(1),α1 . . . P̃jπ(p),αp = P †α2,jP

†
α1,jP̃j,α1P̃j,α2

∑
π∈S2

(−1)π = 0 (C.31)

since
∑
π∈S2

(−1)π = 1− 1 = 0 .

We can now rewrite the overlap

〈ψ|ψ̃ 〉 =
∑
j1...jp

∑
π∈Sp

(−1)πP †αp,jp . . . P
†
α1,j1P̃jπ(1),α1 . . . P̃jπ(p),αp

=
∑
j1...jp

∑
π∈Sp

(−1)π−1
P †αp,jp . . . P

†
α1,j1P̃j1,π−1(1) . . . P̃jp,π−1(p) (C.32)

To get from the first line to the second line we need to recognize that the following is true:

∑
j1...jp
π∈Sp

(−1)πP †αp,jp . . . P
†
α1,j1P̃jπ(1),α1 . . . P̃jπ(p),αp =

∑
j1...jp
π∈Sp

(−1)π−1
P †αp,jp . . . P

†
α1,j1P̃j1,π−1(1) . . . P̃jp,π−1(p)

(C.33)

Another interlude section on some pertinent details of permutations will follow. Skip ahead

if necessary.

Brief interlude on permutations.

Consider a set A of N sequential integers S = {1, 2, . . . , N} (though they could be more general variables x1, x2, . . . xN

). A permutation of set S is a bijective (one-to-one) function π : S → S. We can express π in a matrix form

π =

 1 2 . . . N

π(1) π(2) . . . π(N)

 (C.34)

which is useful in visually applying operations. There exists an identity permutation ε which just maps every element

to itself again.

ε =

1 2 . . . N

1 2 . . . N

 (C.35)
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We can also evaluate group compositions between permutations π and σ such denoted πσ = π ◦ σ. As an example,

lets say we have a set A = {1, 2, 3, 4} and the permutations π and σ defined as:

π =

1 2 3 4

1 3 4 2

 , σ =

1 2 3 4

4 1 2 3

 . (C.36)

Let us find πσ by going top-bottom and right-left fashion evaluating the mapping of each element one-by-one:

πσ =

1 2 3 4

1 3 4 2

1 2 3 4

4 1 2 3

 =

1 2 3 4

2 1 3 4

 (C.37)

This was found by following through the mapping operations

1 7→ 4 7→ 2

2 7→ 1 7→ 1

3 7→ 2 7→ 3

4 7→ 3 7→ 4

which is the same procedure one would use to show that the identity returns the original permutation, i.e. πε = επ =

π. For some permutation π there exists an inverse π−1 that satisfies ππ−1 = π−1π = ε. Let us use the previously

defined π to demonstrate how one would find the inverse π−1:

π−1π =

 1 2 3 4

π−1(1) π−1(2) π−1(3) π−1(4)

1 2 3 4

1 3 4 2

 =

1 2 3 4

1 2 3 4

 (C.38)

which gives us the mappings

1 7→ 1 7→ π−1(1) = 1

2 7→ 3 7→ π−1(3) = 2

3 7→ 4 7→ π−1(4) = 3

4 7→ 2 7→ π−1(2) = 4

hence

π−1 =

1 2 3 4

1 4 2 3

 . (C.39)
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To make a connection to the manipulations made in Eqns.(A.32) and (C.33) we should discuss the group of

permutations that appears in our summations over π, where π is shorthand for πi where i indexes the particular

permutation. Lets consider πi ∈ S3 where S3 contains all the permutations of the integers 1, 2, and 3. The possible

permutations can be expressed explicitly:

π0 =

1 2 3

1 2 3

 , π1 =

1 2 3

1 3 2

 , π2 =

1 2 3

2 1 3

 , π3 =

1 2 3

2 3 1

 , π4 =

1 2 3

3 2 1

 , π5 =

1 2 3

3 1 2


(C.40)

where it is apparent that π0 = ε (the identity permutation) and that there are 3! permutations of S3. The inverse

permutations π−1 are easy to obtain by eye:

π−1
0 =

1 2 3

1 2 3

 = π0 , π
−1
1 =

1 2 3

1 3 2

 = π1 , π
−1
2 =

1 2 3

2 1 3

 = π2 (C.41)

π−1
3 =

1 2 3

3 1 2

 = π5 , π
−1
4 =

1 2 3

3 2 1

 = π4 , π
−1
5 =

1 2 3

2 3 1

 = π3 (C.42)

where we have extended the equations to show that all of the original permutations are collectively reproduced by

the inverse permutations. We can use this to show that Eqn.(C.33) is true.

End interlude

Returning to the problem at hand we can now recognize that the sum over all permutations

that belong to Sp will contain all of the inverse permutations as well. Consider again the

case where we have S3. If we expand the sum over the permutations we get

∑
j1,j2,j3
π∈S3

(−1)πP †3,j3P
†
2,j2P

†
1,j1P̃jπ(1),1P̃jπ(2),2P̃jπ(3),3 =

∑
j1,j2,j3

[
(−1)π0P †3,j3P

†
2,j2P

†
1,j1P̃jπ0(1),1P̃jπ0(2),2P̃jπ0(3),3

+ (−1)π1P †3,j3P
†
2,j2P

†
1,j1P̃jπ1(1),1P̃jπ1(2),2P̃jπ1(3),3 + (−1)π2P †3,j3P

†
2,j2P

†
1,j1P̃jπ2(1),1P̃jπ2(2),2P̃jπ2(3),3

+ (−1)π3P †3,j3P
†
2,j2P

†
1,j1P̃jπ3(1),1P̃jπ3(2),2P̃jπ3(3),3 + (−1)π4P †3,j3P

†
2,j2P

†
1,j1P̃jπ4(1),1P̃jπ4(2),2P̃jπ4(3),3

+ (−1)π5P †3,j3P
†
2,j2P

†
1,j1P̃jπ5(1),1P̃jπ5(2),2P̃jπ5(3),3. (C.43)

Lets examine a couple of the terms in the expansion on the rhs of the above expression.

First, notice that the most trivial term (the first term for π0) contains a symmetry about its
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indices which would remain even if we had swapped location of permutation in (jπ0(i), i) with

the ordinary particle index i and replaced the newly located permutation with its inverse as

in (jπ0(i), i)→ (ji, π−1
0 (i)). More explicitly with the first term, we have

P̃jπ0(1),1P̃jπ0(2),2P̃jπ0(3),3 = P̃j1,1P̃j2,2P̃j3,3 = P̃j1,π−1
0 (1)P̃j2,π−1

0 (2)P̃j3,π−1
0 (3) (C.44)

Lets examine a term with a more varied permutation such as the term for π3 (see Eqn.(C.40)).

P̃jπ3(1),1P̃jπ3(2),2P̃jπ3(3),3 = P̃j2,1P̃j3,2P̃j1,3

= P̃j1,3P̃j2,1P̃j3,2

= P̃j1,π−1
3 (1)P̃j2,π−1

3 (2)P̃j3,π−1
3 (3) (C.45)

As it happens, this will occur for all of the terms, and moreover, it will occur for any p in the

context of πi ∈ Sp : ∀ i ∈ {1, 2, . . . , p}. Hence we have proved Eqn.(C.33). Moving forward,

notice Eqn.(C.33) possesses matrix multiplication implicit in the notation of the sums over

ji. We have terms like ∑N
ji
P †αi,jiP̃ji,π−1(i), which is simply equal to the element in the ith-row

and π−1(i)- column of the matrix formed by P†P̃. So we will use the expression

N∑
ji

P †αi,jiP̃ji,π−1(i) =
(
P†P̃

)
i,π−1(i)

(C.46)

to rewrite the scalar product 〈ψ|ψ̃ 〉 as

〈ψ|ψ̃ 〉 =
∑
j1...jp
π∈Sp

(−1)π−1
P †αp,jp . . . P

†
α1,j1P̃j1,π−1(1) . . . P̃jp,π−1(p)

=
∑
π∈Sp

(−1)π−1 (P†P̃)
1,π−1(1)

. . .
(
P†P̃

)
p,π−1(p)

=
∑
π∈Sp

(−1)π
(
P†P̃

)
1,π(1)

. . .
(
P†P̃

)
p,π(p)

= det
[
P†P̃

]
q.e.d. (C.47)

Two comments should be made here: (1) The step from the second line to the third line

is valid because both contain identical terms when expanded out, thus we may replace
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the inverse permutations with the standard ones. (2) The third expression is precisely the

definition12 of the determinant of a matrix P†P̃.

With the completed lemmas above we are now ready to establish the relation

Tr
[
eĉ†T̂1ĉeĉ†T̂2ĉ . . . eĉ†T̂nĉ

]
= det

[
1+ eT1eT2 . . . eT3

]
(C.48)

where the trace will be made over the Fock space F . Conventionally, the following

substitutions are made:

B = eT1eT2 . . . eTN (C.49)

Ŵ = eĉ†T̂1ĉeĉ†T̂2ĉ . . . eĉ†T̂N ĉ. (C.50)

We may start with the determinant term and expand it to search for an expression that

reveals equivalence to the trace evaluated in the space of F .

det [1+ B] =
∑
π∈SN

(−1)π (1+ B)1,π(1) . . . (1+ B)N,π(N)

=
∑
π∈SN

(−1)π
(
δ1,π(1) +B1,π(1)

)
. . .
(
δN,π(N) +BN,π(N)

)

=
∑
π∈SN

(−1)π
[
δ1,π(1) . . . δN,π(N) +

N∑
i=1

Bi,π(i)δ1,π(1) . . . δi,π(i) . . . δN,π(N)

+
N∑
i<j

Bi,π(i)Bj,π(j)δ1,π(1) . . . δi,π(i) . . . δj,π(j) . . . δN,π(N)

+
N∑

i<j<k

Bi,π(i)Bj,π(j)Bk,π(k)δ1,π(1) . . . δi,π(i) . . . δj,π(j) . . . δj,π(j) . . . δN,π(N) + . . .

. . .+B1,π(1)B2,π(2) . . . BN,π(N)

]
(C.51)

12We should recall the definitions for determinants and permanents of some n× n matrix M:

det [M] ≡
∑
π∈Sn

(−1)π (M)1,π(1) . . . (M)n,π(n)

Per [M] ≡
∑
π∈Sn

(M)1,π(1) . . . (M)n,π(n)
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The last expression has some notation which can be further clarified:

• The sums with inequalities have condensed notation

N∑
i<j

=
N∑
i=1
j=2
i<j

,
N∑

i<j<k

=
N∑

i=1,j=2
k=3
i<j<k

(C.52)

Note that inside the bracketed term of Eqn.(C.51), there are (N − 4) additional sums implied between the + . . .+ after the i, j, k-term

• The wide over-bar on a Kronecker delta (e.g. δi,π(i)) indicate that the term is excluded

from the product ∏N
m=1 δm,π(m) that appears in most terms of the expansion.

Attending to each term in Eqn.(C.51), we can evaluate as follows:

The first term is ∑
π∈SN

(−1)πδ1,π(1) . . . δN,π(N) = 1 (C.53)

where the identity permutation ε is the only π to contribute. Now we look at the second

term, which is also easily simplified as

∑
π∈SN

(−1)π
N∑
i=1

Bi,π(i)δ1,π(1) . . . δi,π(i) . . . δN,π(N) =
N∑
i=1

Bi,i,

since the only surviving permutation is again the identity permutation. A more interesting

term is the one containing two matrix elements, where it is now possible for both the identity

permutation (π(i) = i, π(j) = j) and transposition permutations (π(i) = j, π(j) = i) to

survive the delta product. The transposition introduces a minus sign on its respective term

due to the (−1)π = (−1)1 prefactor.

∑
π∈SN

(−1)π
N∑
i<j

Bi,π(i)Bj,π(j)δ1,π(1) . . . δi,π(i) . . . δj,π(j) . . . δN,π(N)

=
N∑
i<j

(Bi,iBj,j −Bi,jBj,i)

=
N∑
i<j

det
[
P†(i,j)BP(i,j)

]
(C.54)
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where P(i,j) is defined to be a rectangular matrix of dimension N × 2 with entries of the first

(second) column set to 1 at row i (j) and 0 otherwise. An example of this matrix is shown

below.

P(i,j) =

1 2



0 0 1

0 0 2
... ... 3 : (i-1)

1 1 i
... ... (i+1):(j-1)

1 1 j
... ... (j+1):(N -1)

0 0 N

The matrix multiplication P†(i,j)BP(i,j) then yields a simple 2× 2 matrix:

P†(i,j)BP(i,j) =

Bi,i Bi,j

Bj,i Bj,j

 (C.55)

from which it becomes obvious that det
[
P†(i,j)BP(i,j)

]
= Bi,iBj,j − Bi,jBj,i. This trend can

continue with the next term with three matrix elements where the matrix P(i,j) becomes

P(i,j,k), which is an N × 3 matrix.

The new determinant bears resemblance to a form which invites the application of

Eqn.(C.8) and Eqn.(C.27):

det
[
P†BP

]
= det

[
P†P̃

]
= 〈ψ|ψ̃ 〉 (C.56)

where we have used Eqn.(C.8) to enforce the finding that if P represents some N × p Slater

determinant, and B is of the form eT1eT2 . . . eTN (as defined earlier) then BP is also a Slater

determinant in which we denote by P̃. It then follows from the second lemma that this is

simply equal to the overlap 〈ψ|ψ̃ 〉. Now we can resume looking at the p = 2-case with our
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newly obtained relation in Eqn.(C.56). For purposes of generalization, we will change the

previous notation for P(i,j) with P(2) such that for higher order terms with, say, p-particles

we could write P(p)

det
[
P†(2)BP(2)

]
= det

[
P†(2)P̃(2)

]
= 〈ψ(2)|ψ̃(2) 〉 = 〈ψ(2)|Ŵ |ψ(2) 〉 = 〈0|ĉi ĉjŴ ĉ†j ĉ

†
i |0〉 (C.57)

where we used lemma 1 to equate |ψ̃(2) 〉 = Ŵ |ψ(2) 〉 and steps similar to what was seen in

the equations leading to Eqn.(C.28) to get the last expression13 Gathering all we have found

thus far, we are equipped to present the final relations explicitly:

det
[
1+ eT

]
= 〈0|0〉+

∑
i

〈0|ĉiŴ ĉ†i |0〉+
∑
i<j

〈0|ĉi ĉjŴ ĉ†j ĉ
†
i |0〉+

∑
i<j<k

〈0|ĉi ĉj ĉkŴ ĉ†kĉ
†
j ĉ
†
i |0〉+ . . .

(C.58)

which is recognized to be the definition of Tr
[
Ŵ
]
evaluated in F . This concludes the proof

of Eqn.(C.48).

13In this case all of the coefficients of the Slater determinant terms which we denoted Pi,αi previously are
equal to either 0 or 1 in this case. Hence the only surviving terms have a value of unity, and only their
respective creation or annihilation operators are shown.
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D Self-consistent Migdal’s Approximation

In this section, I will discuss the Feynman diagrams used in Migdal’s approximation in the self-

consistent formalism pioneered by Marsiglio [140]. The important difference between Ref. [140]

and most of the treatments prior is the use of the full phonon propagator in the equations for

the self-energy. This allows for electron and phonon self energy to be treated on equal footing,

and includes renormalization effects. What follows is a simple assembly of the self energies based

on the Feynman diagram rules. If anything, this short appendix could prove useful to students

getting their feet wet with the approach.

D.1 Diagrams for the single-particle propagators:

Our desire is to calculate the one-electron Matsubara Green’s function

Gσ(k, iωn) = [iωn − εk −Σσ(k, iωn)]−1 , (D.1)

where iωn = iπT (2n−1) (with n ∈ Z) are the fermion Matsubara frequencies and Σ(k, iωn) is

the electron self-energy due to the e-ph interaction14. We will use a diagrammatic approach

for the propagators and susceptibilities and discuss the expressions associated with such

diagrams. We first assemble Dyson’s equations (diagrammatically) for both the electron and

phonon (dressed) Green’s functions starting with the propagators.

According to Fig.(D.1), the dressed electron Green’s function G(k, iωn) is shown in a

Dyson’s equation for G in the Hartree-Fock approximation. The first non-interacting line,

G0(k, iωn), is the zeroth order term in the expansion. The other diagrams are the first order

terms describing the electron self-energy Σ(k, iωn) which utilize dressed propagators G and

D in some places, a fact which makes the approximation a self-consistent one. The dressed

phonon propagator in Fig.(D.2), Dλ(q, iνn), is written in using Dyson’s equation whereby

the zeroth-order line is just the non-interacting phonon Green’s function D0(q, iνn) and the
14The convention kB ≡ ~ ≡ 1 is used along with the expression of all energies in units of the hopping, t.
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(k, σ, iωn)
=

(k, σ, iωn)
+

(k, σ, iωn)

(k− k′, λ, i(ωn − ωn′))

(k′, σ, iωn′)(k, σ, iωn)
+

(k, σ, iωn)

(0, λ, 0)

(k, σ, iωn)

(k′, σ′, iωn′)

Figure D.1: Dressed electron Green’s Function in Migdal-Eliashberg theory.
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second term is the polarizability of interacting electrons, Π(q, iνn). Note that λ is a phonon

branch index.

The equations represented by figures (D.1) and (D.2) can be written explicitly as

Gσ(k, iωn) = G0
σ(k, iωn) + G0

σ(k, iωn)Σσ(k, iωn)Gσ(k, iωn) (D.2)

and

Dλ(q, iνn) = D0
λ(k, iνn) +D0

λ(k, iνn)Πλ(q, iνn)Dλ(q, iνn), (D.3)

respectively. These expressions have the form x = a+ ab(x)x, which can be partially solved

for x :

x = a+ ab(x)x =⇒ x = a

1− ab(x) = 1
a−1 − b(x) , (D.4)

whereupon substitution of the actual Green’s functions and self-energies gives

Gσ(k, iωn) = [iωn − εk −Σσ(k, iωn)]−1 (D.5)

for the electron Greens’s function (as seen before) and

Dλ(q, iνn) =
[(

(iνn)2 − (Ωq,λ)2
)
/(2Ωq,λ)− |Mq,λ|2Πλ(q, iνn)

]−1
(D.6)

for the phonon propagator. To arrive at the above expressions, we used the Matsubara form

of the non-interacting Green’s functions G0 and D0 for electrons and phonons, respectively:

G0(k, iωn) = 1
iωn − εk

(D.7)

and

D0
λ(q, iνn) = 2Ωq,λ

(iνn)2 − (Ωq,λ)2 . (D.8)

The non-interacting Hamiltonian for free electrons is Ĥ = ∑
k εkĉ

†
kĉk where the band

dispersion shifted by a chemical potential µ is εk = ε0k − µ. Analogously, the phonon

non-interacting Hamiltonian Ĥ = ∑
q Ωqâ

†
qâq and associated phonon dispersion Ωq plays

the same role in the non-interacting propagator.
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(q, λ, iνn)
=

(q, λ, iνn)
+

(q, λ, iνn)

(q + k′, σ, i(νn − ωn′))

(q − k′, σ, i(νn − ωn′))

(q, λ, iνn)

Figure D.2: Dressed phonon Green’s Function in Migdal-Eliashberg theory.
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Feynman Rules for e-ph Interaction

When treating the e-ph interaction as a perturbation, we can expand the electron Green’s

Function to various orders in that perturbation. The thermal average of the product of an

odd number of phonon field operators φ̂q,λ(τ) = eĤτ φ̂q,λ(0)e−Ĥτ , where φ̂q,λ(0) = âq,λ+â†−q,λ,

yields zero, and thus we only have even orders of the expansion that survive. One can derive

the rules by using Wick’s theorem to evaluate the various propagator arrangements, but we

will only cite the rules here:

1. Draw all the topologically distinct diagrams with Nph lines, with two external electron

lines and (2Nph − 1) internal electron lines at order 2Nph in the e-ph interaction.

2. For each normal electron line of coordinates (k, σ, iωn), assign a non-interacting Green’s

function G0
σ(k, iωn). For each double electron line of coordinates (k, σ, iωn), assign a

dressed Green’s function Gσ(k, iωn).

3. For each normal phonon line of coordinates (q, λ, iνn), assign a product of the non-

interacting phonon Green’s function and coupling matrix element, |Mq,λ|2D0
λ(q, iνn).

For each double phonon line of coordinates (q, λ, iνn), assign a product of the dressed

phonon Green’s function and matrix element |Mq,λ|2Dλ(q, iνn).

4. At each vertex, conserve momentum (wave vector), frequency, and spin with delta

functions.

5. Sum over all internal coordinates.

6. Multiply each fermion (electron) loop by −1.

7. Multiply by the factor
(

1
~

)2Nph (−1
β~

)Nph
With all of the rules summarized, we can now construct the proper mathematical

equivalents to the Feynman diagrams in the figures. In the next section, we will start

with the electron propagator.
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Interacting Electron Green’s Function G

Examining Fig.(D.1) and Eqn.(D.2) reveals that the internal diagrams are described

completely by the self energy Σσ(k, iωn), which comes in two parts. The first diagram

represents the self-consistently renormalized electron self energy due to e-ph scattering

processes completely categorized by “rainbow" diagrams. The second term is known as

the Hartree contribution to the self-energy, and it represents a sort of mean-field interaction

with the background. Let us apply the rules for the diagrams starting with the first one on

the rhs:

1. There is only one dressed phonon line, hence Nph = 1.

2. The internal dressed electron propagator gives us a Gσ′(k′, iωn′).

3. The internal dressed phonon propagator yields |Mq,λ|2Dλ(q, iνn′′).

4. We need to conserve spin, momentum, and frequency at the vertices with appropriate

delta functions:

• spin conservation with incoming σ and internal σ′ implies δσ,σ′ ,

• momentum conservation with incoming k, outgoing (internal electron) k′, and

outgoing (internal phonon) q is expressed as k− k′ − q = 0 =⇒ δ(k−k′),q.

• The frequency conservation at the first vertex yields i(ωn − ωn′ − νn′′) = 0 such

that δ(ωn−ωn′ ),νn′′ .

5. We now need to sum over all the internal coordinates, thus we will have∑k′,σ′
∑

q,λ
∑
n′,n′′

.

6. There are no electron loops in the diagram, so F = 0 and thus this prefactor is

(−1)F = 1.

7. Lastly, since Nph = 1, we will have a prefactor contribution of (1/~)2(−1/β~) =

(−1/β~3).

222



Σσ(k, iωn) =

(k− k′, λ, i(ωn − ωn′))

(k′, σ′, iωn′)
+

(0, λ, 0)

(k′, σ′, iωn′)

.

Figure D.3: Dressed electron Green’s Function showing self-energy explicitly.

223



Now we are in a position to assemble the first diagram depicted in Fig.(D.3):

ΣM
σ (k, iωn) = −1

β~3

∑
k′,σ′

∑
q,λ

∑
n′,n′′
|Mq,λ|2Dλ(q, iνn′′)Gσ′(k′, iωn′)δσ,σ′δ(k−k′),qδ(ωn−ωn′ ),νn′′ , (D.9)

which can be further reduced after application of all of the delta functions

ΣM
σ (k, iωn) = −1

β~3

∑
k′

∑
λ,n′
|Mk−k′,λ|2Dλ(k− k′, i(ωn − ωn′))Gσ(k′, iωn′) . (D.10)

This term accounts for the contribution of certain types of scatterings between electrons and

phonons in the fully renormalized case. We will revisit this term later to discuss it further,

but for now we will evaluate the second self-energy contribution given by the balloon-like

diagram in Fig.(D.3).

The second diagram is often referred to as the Hartree self-energy term ΣH
σ (k, iωn),

from Hartree-Fock mean field theory. Before we stripped the external fermion lines from

the internal part, we actually had the so-called Hartree diagram GHσ (k, iωn), which is 0

particular cases where: (i) if we didn’t include the q = 0 vector, since it corresponds to

infinite wavelength (moving entire crystal), and (ii) if the phonon line was instead a Coulomb

line, and we had a charge compensating background. To be clear, the diagram is not equal

to zero in magnitude, rather it is momentum and energy independent. This independence

makes the term a simple constant, and thus it is common to simply absorb it into the

definition chemical potential µ. The vertical self-closing electron line is sometimes called a

non-propagating line15, and it means that we must include a convergence factor exp(iωn′η+)

when translating these lines into functions. The factor η+ is a positive infinitesimal such that

its product with infinity is still infinite (η+ · ∞ = ∞). If we assemble the terms according

to the rules, then the diagram yields:

1. There is one phonon line, hence Nph = 1.

2. The internal non-propagating dressed electron propagator gives us a Gσ′(k′, iωn′) exp(iωn′η+).
15This happens if same-time operators are contracted. The circular line emerges from and reenters the

same vertex.
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3. The internal free phonon propagator yields |M0,λ|2D(0)
λ (0, 0).

4. In this case, no additional conservation needs to be added via delta functions. This is

due to the fact that vertices all occur at the same time (or imaginary time).

5. We now need to sum over all the internal coordinates, thus we will have ∑k′,σ′
∑
λ

∑
n′

.

6. There is one electron loop in the diagram, so F = 1 and thus this prefactor is (−1)1 =

−1.

7. Lastly, since Nph = 1, we will have a prefactor contribution of (1/~)2(−1/β~) =

(−1/β~3).

Putting all the pieces together gives us the second self-energy contribution

ΣH(k, iωn) = 2
β~3

∑
k′,n′

∑
λ

|M0,λ|2D(0)
λ (0, 0)G(k′, iωn′)eiωn′η+ (D.11)

where the factor of 2 arises from the sum over spin. In its current form, Eqn.(D.11) can be

further modified by examining the sum over n′ given by

1
β~

∑
n′
G(k′, iωn′)eiωn′η+

. (D.12)

The positive infinitesimal η+ is related to the negative infinitesimal η− via η+ = −η−,

and thus we can write the expression above as one that looks like a Fourier transform to

imaginary time τ− = η−:

1
β~

∑
n′
G(k′, iωn′)e−iωn′η− = G(k′, τ−; k′, 0) (D.13)

where G(k′, τ−; k′, 0) is usually evaluated with a thermal trace

G(k′, τ−; k′, 0) = −Tr
[
eβ(Ω̂−Ĥ)T̂τ

{
ĉk′(τ−)ĉ†k′(0)

}]
. (D.14)
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The respective fermion creation and annihilation operators ĉ†k′(τ) and ĉk′(τ) have an

imaginary time dependence given in the Heisenberg representation, as in ĉ†k′(τ) = eĤτ ĉ†k′e−Ĥτ

where Ĥ = Ĥ − µN̂ and the thermodynamic potential Ω appears as a trivial operator

Ω̂ ≡ 1̂ ·Ω. The imaginary time ordering operator T̂τ orders the smallest τ (closest to −β) to

the rightmost position, and orders the remaining terms leftward from least to greatest (e.g.

T̂τ {f1(τ1)f2(τ2)} = f2(τ2)f1(τ1) for τ1 < τ2 ) Lets work out the trace operation:

G(k′, τ−; k′, 0) = −Tr
[
eβ(Ω̂−Ĥ)T̂τ

{
ĉk′(τ−)ĉ†k′(0)

}]
= Tr

[
eβ(Ω̂−Ĥ)ĉ†k′(0)ĉk′(τ−)

]
= eβΩTr

[
e−βĤĉ†k′e

Ĥτ− ĉk′e−Ĥτ−
]
.

Now we can take the limit as τ− goes to zero:

G(k′, τ−)
∣∣∣
τ−=0

= eβΩTr
[
e−βĤĉ†k′ ĉk′

]
=
〈
ĉ†k′ ĉk′

〉
= nf (εk′) (D.15)

or alternatively = eβΩTr
[
e−βĤ

(
1̂− ĉk′ ĉ

†
k′
)]

= eβΩ Tr
[
e−βĤ

]
︸ ︷︷ ︸

e−βΩ

−eβΩTr
[
e−βĤĉk′ ĉ

†
k′
]

= 1−
〈
ĉk′ ĉ

†
k′
〉

= G0(k′, 0+) + 1 , (D.16)

where the last step utilized the relation G0(k′, τ = 0+) = −
〈
ĉk′ ĉ

†
k′
〉
. If we use the result that

G(k′, τ−)
∣∣∣
τ−=0

= nf (εk′) in the self energy expression that remains, we obtain a sum over k′

across the Fermi-distribution nf (εk′):

ΣH(k, iωn) = 2
~2

∑
λ

|M0,λ|2D(0)
λ (0, 0)

∑
k′
nf (εk′)

= N

~2

∑
λ

|M0,λ|2D(0)
λ (0, 0).

As one can see, the Hartree contribution is independent of momentum and frequency and

related to the number of fermions in the system.
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