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Abstract 

Landslides are natural phenomena in mountainous areas that cause damage to properties and 

death to people around the world. In Bangladesh, landslides have caused enormous economic loss 

and casualty in Chittagong Hilly Areas (CHA). In this dissertation, a landslide inventory of CHA 

was prepared using Google Earth and field mapping. Google Earth-based mapping helped in 

recording landslides in inaccessible areas like forests. In contrast, field mapping helped in mapping 

landslides in accessible areas like areas near road networks. This research also proposed a 

Mahalanobis distance (MD) based absence-data sampling method to objectively select non-

landslide locations for landslide susceptibility mapping. This proposed method was demonstrated 

in the landslide susceptibility mapping of the three Upazilas (subdistricts) of Rangamati district, 

Bangladesh, and the generated landslide susceptibility map was compared with the map produced 

by the slope-based absence data sampling. Fifteen landslide causal factors, including slope aspect, 

plan curvature, and geology, were used in the random forest model for landslide susceptibility 

mapping. The areas under the success and prediction rate curves, as well as statistical indices, 

showed that both absence-data sampling methods provided similar accuracy, but the seed cell area 

index (SCAI) showed that MD based landslide susceptibility map is more consistent and does not 

overestimate the landslide susceptibility like the slope-based model. Finally, this dissertation 

research assessed the impact of three land use/land cover (LULC) scenarios (a. existing (2018); b. 

proposed LULC (Planned); and c. simulated (2028) LULC) on the landslide susceptibility of the 

Rangamati municipality using the random forest model. The results showed that high susceptibility 

zones would increase in both proposed and simulated LULC scenarios, but the increase is 

comparatively low in the proposed LULC. Although the proposed LULC scenario did not consider 

landslide susceptibility, the implementation of general LULC planning rules, such as avoiding 

sleep slopes for road and build-up constructions, helped to mitigate landslide susceptibility.  
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1.1. Research Overview 

      Landslides refer to the movement of debris, rocks, soil, and earth under the influence of gravity 

(Cruden and Varnes, 1996). It is a naturally occurring phenomenon in mountainous areas (Roy 

and Saha, 2019) and accounts for 9% of the natural disasters in the world (Galli et al., 2008; 

Kanwal et al., 2016). Landslides cause damage to infrastructure, leading to human fatalities and 

economic losses (Guzzetti et al. 2000; Yilmaz, 2009; Chen et al., 2017; Wang et al., 2017). For 

example, it caused the death of 8739 people and affected 3.2 million people directly and indirectly 

from 2004 to 2013 (Ahmed and Dewan, 2017).  

      Landslides are affected by causal and triggering factors. Causal factors create a suitable 

condition for landslides, whereas triggering factors initiate the landslides (Guzzetti et al., 2012). 

The causal factors of landslides include slope, aspect, curvature, geology, and land use/land cover 

(Ahmed 2015). Landslides can be triggered naturally by snow melting, volcanic activity, 

groundwater pressure, and prolonged rainfall (Guzzetti et al., 2012; Arora et al., 2014; Chen et al., 

2017). Landslides can also be triggered by human activities, such as excavation, deforestation, 

land-use change, hillslope cutting, construction of roads, and subsequent excessive vibration by 

traffic and agricultural cultivation (Althuwaynee et al., 2014; Althuwaynee et al. 2016; Chen et al., 

2017).  

      Landslide inventory and susceptibility mapping have been argued as the first two steps towards 

landslide assessment (Guzzetti et al. 2006; Guzzetti et al. 2009; Guzzetti et al. 2012; Kanwal et al. 

2016; Chen et al. 2017). Landslide inventory shows the locations of landslides that occurred in the 

past and can be used to produce and validate landslide susceptibility maps (Zezere et al., 2017). 

Landslide causal factors are also critical for landslide susceptibility mapping (Ahmed, 2015; 

Ahmed et al., 2018). Detailed analysis of landslide causal factors at landslide locations is useful to 

determine the likelihood of landslides over an area and produce the susceptibility maps (Yilmaz, 

2009; Yilmaz, 2010; Sterlacchini et al. 2011).  

1.1.1 Landslide Inventory Maps 

      A landslide inventory map shows the locations and distribution of landslides that have left 

discernible traces over an area (Guzzetti et al., 2012). It contains different attributes, such as type, 

extent, location of occurrence, information about the surrounding area, and landslides' damage 

(Guzzetti et al., 2006; Guzzetti et al., 2012). Depending on the mapping scale, landslides can be 
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represented as a point or an area. Landslide inventory provides a snapshot of the landslides during 

a given period but may not show the evolution of landslides in the long term. Landslide inventory 

documents the extent, type, and causes of landslides, helping prepare and validate the susceptibility 

models (Guzzetti et al. 2006; Ahmed and Dewan, 2017). 

      Mapping landslide inventory depends on the scale and mapping purpose (Guzzetti et al., 2012). 

Medium to large scale (<1:10000) landslide inventories can be derived from the interpretation of 

high-resolution aerial photographs, satellite imagery, and extensive field mapping (Guzzetti et al. 

2002). Small scale (>1:100000) landslide inventories can be documented based on literature, 

newspaper, journals, technical and scientific reports, governmental reports, and the interview of 

experts (Glade, 2001).  

      Traditional methods in landslide inventory mapping are mainly based on field mapping and 

visual interpretation of aerial images, topographic maps, printed maps, and archives or reports 

(Alkevli and Ercanoglu, 2011). Automated and semi-automated mapping techniques and 

interpretation of digital images are also developed based on the analysis of very high-resolution 

Digital Elevation Model (DEM), interpretation of high or medium optical remote sensing data, and 

analysis of Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) data 

(Guzzetti et al. 2012). All methods have advantages and disadvantages. Field mapping ensures a 

better assessment, but it is time-consuming, and some remote places are inaccessible (Alkevli and 

Ercanoglu, 2011). Aerial photographs cover large areas, but their interpretation may be subjective, 

and the accuracy of the interpretation depends on the experience and skills of the interpreter and 

the quality of the stereoscope (Alkevli and Ercanoglu, 2011; Guzzetti et al. 2012).  

1.1.2. Landslide Susceptibility Mapping 

      Landslide susceptibility map shows the probability of landslides over an area. It uses previous 

landslide locations and their relationship with the causal factors to predict the likelihood of future 

landslides (Ayalew and Yamagishi, 2005). The principle of landslide susceptibility mapping 

assumes that future landslides will occur in areas where geo-environmental conditions are similar 

to where landslides previously occurred (Guzzetti et al., 2012).  

      Landslide susceptibility can be investigated using quantitative and qualitative methods. 

Quantitative methods determine the relationship between landslides' locations and their associated 

causal factors (Althuwaynee et al., 2014). These methods are limited by the oversimplification of 
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causal factors. Quantitative methods can be categorized as deterministic and statistical methods. 

In a deterministic approach, a safety factor is commonly defined based on a few causal factors to 

determine the landslide susceptibility of an area (Yilmaz, 2009). It is suitable for small areas due 

to the challenge of measuring the safety factor over a large area (Ayalew and Yamagishi, 2005). 

Statistical methods can be either bivariate or multivariate (Vakshoori and Zare, 2016). Bivariate 

techniques compare landslide locations with each causal factor. In this method, each causal factor 

is divided into a set of classes using user-defined methods, such as natural break or equal interval. 

Bivariate methods consider the relationship between landslide locations and divided classes of 

each causal factor. For example, we can divide slopes into several classes and derive the 

relationship between landslide occurrence and slope classes. Then, we can repeat the same method 

for other factors (Althuwaynee et al., 2013). In summary, the bivariate models only assess the 

relationship between landslide occurrence and one factor at a time, although landslides are 

controlled by a combination of multiple factors (Ayalew and Yamagishi, 2005). The commonly 

used bivariate methods include frequency ratio, the weight of evidence, fuzzy logic, evidential 

belief function, and statistical index (Vakshoori and Zare, 2016; Chen et al., 2017). The 

multivariate statistical methods determine the relationship between landslide occurrence and 

multiple causal factors. Examples of multivariate methods include logistic regression, adaptive 

regression spline, general additive models, and simple decision trees. These methods can 

outperform the bivariate and multivariate methods (Yilmaz, 2010) but usually lack the power of 

interpretability (Althuwaynee et al., 2014).  

      Qualitative methods depend on expert knowledge and judgment. Examples of qualitative 

methods include the Analytical Hierarchy Process (AHP) and Weighted Linear Combination 

(Yilmaz, 2009). These methods are mainly based on the weights of causal factors that are 

subjectively assigned based on expert knowledge and then combine the weighted value of each 

factor to produce the susceptibility map (Kanwal et al., 2016). 

      The selection of methods for landslide susceptibility mapping depends on the scale, cost, and 

timeline of the analysis (Yilmaz, 2009). For instance, deep learning techniques like Artificial 

Neural Networks (ANN) show high predictive capability but require time and high computational 

power (Akgun et al., 2012). Bivariate analysis requires an inventory that covers the whole area 

because its produced landslide susceptibility maps follow the known landslide locations. However, 
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it is impossible to map all landslides in a complicated terrain; thus, the produced susceptibility 

maps can be biased towards the known landslide locations (Schicker and Moon, 2012; Petschko 

et al., 2014). Multivariate models like logistic regression have generalization capacity, and results 

are easily interpretable (Akgun et al., 2012). It is up to the researchers to compare different models 

and determine which one is the best for a specific area (Vakshoori and Zare, 2016).  

      Appropriate model selection for regional and national susceptibility mapping requires prudent 

judgments. These maps are created for regional planning and land use management (Sabatakakis 

et al., 2012; Schicker and Moon, 2012). It is necessary to select a proper sampling strategy, factors, 

and methods. Bivariate models do not require non-landslide locations, while multivariate and 

machine learning methods require the sampling of both landslide and non-landslide locations. If 

the selection of non-landslide locations is not representative, the susceptibility maps would be 

biased towards specific geomorphic or topographic units (Chen et al., 2019).  

      In recent years, the use of integrated or hybrid models has increased to reduce the variance and 

increase the prediction capability (Althuwaynee et al., 2014; Li et al., 2019). Hybrid models can 

integrate bivariate models with multivariate, machine learning, and qualitative models 

(Althuwaynee et al., 2016). Althuwaynee et al. (2014) integrated evidential belief function (EBF), 

a bivariate model with analytical hierarchy process (AHP) and logistic regression for Pohen and 

Gyeongju cities of South Korea. This integration reduced subjectivity and increased prediction 

capability to 80 - 82.3%. However, their study area was relatively small; thus, the question remains 

whether the integration can produce better predictions for large areas. Xu et al. (2019) integrated 

the index of entropy with logistic regression and support vector machine for Shaanxi Province of 

China. Their results indicated that the integration with the logistic regression provided a better 

prediction than the integration with support vector machines. Some studies suggested that 

integrating bivariate and multivariate models produces better results than the integration of 

bivariate and machine learning models (Althuwaynee et al., 2014). Chen et al. (2018) integrated 

three bivariate models of the index of entropy, certainty factor, and statistical index with a machine 

learning method of random forest from Shaanxi province of China. This study suggested that the 

integration of certainty factor with random forest shows better prediction capability. Althuwaynee 

et al. (2016) integrated the chi-squared automatic interaction detection with AHP and suggested 

this integrated approach outperforms the AHP method. Rossi et al. (2010) introduced an optimal 
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landslide susceptibility model by combining two or three models. They did not integrate the 

models during the building stage. Instead, they produced the susceptibility maps for each model 

and then integrated them as the optimal model using a regression-based approach. They compared 

the optimal model results with the ones produced using linear discriminant analysis, quadratic 

discriminant analysis, and logistic regression and indicated that the optimal model produced the 

best prediction among these models.  

1.1.2.1 Sampling non-landslide locations 

      Most statistical models and machine learning methods require both landslide and non-landslide 

locations for landslide susceptibility mapping. Landslide locations are derived from the landslide 

inventory, while the determination of non-landslide locations requires certain sampling strategies. 

Random sampling is the most common approach to choose a non-landslide location. The 

assumption is that all locations other than the landslides can be considered non-landslide locations 

(Tsangaratos and Benardos, 2014; Regmi et al., 2014). Some studies used data exploratory analysis 

to select a safe zone (where the chance of landslides is minimum), and non-landslide locations are 

selected randomly from this area (Althuwaynee et al., 2014). Data exploratory analysis often 

brings bias to the susceptibility maps. For instance, if a safe zone is selected based on slope, the 

results will be biased to the slope (Hong et al., 2019). The proportion of landslide and non-landslide 

locations is an important factor for multivariate and machine learning methods, and it can be 1:10, 

1:5, 1:2, and 1:1 (Othman et al. 2018). Heckmann et al. (2014) opined that the 1:1 method gives 

the best prediction.  

1.1.2.2 Selection of Causal Factors 

      The quality and plausibility of landslide susceptibility maps depend on the quality of landslide 

inventory and causal factors (Budimir et al., 2015). The selection of causal factors depends on the 

availability of data, timeline, cost of the project, and size of the study area (Remondo et al. 2003). 

DEM is essential data for the determination of causal factors. Different topographic factors, such 

as slope, aspect, topographic wetness index (TWI), and stream power index (SPI), are generated 

from DEM using GIS (Marchesini et al. 2014). Free satellite images like the Landsat series are 

used to prepare land use/land cover and normalized difference vegetation index (NDVI) maps 

(Ahmed, 2015). Several studies have classified these factors into different categories (Budimir et 

al., 2015). Kanwal et al. (2016) classified causal factors into four groups: a) human-induced 

parameters, including land use/land cover and road density; b) topographic parameters, including 
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slope, aspect, and curvature; c) hydrological parameters, such as river network, SPI, and TWI; and 

d) geology, including lithology and fault lines. Reichenbach et al. (2018) divided causal factors 

into five clusters: a) morphological; b) geological; c) land cover; d) hydrological and e) other 

variables. It is recommended to take at least one factor from each of the groups for landslide 

susceptibility mapping (Budimir et al., 2015).  

      Commonly used causal factors include slope, aspects, curvature, distance to the road network, 

river network, fault lines, land use/land cover, TWI, and SPI (Budimir et al. 2015). Reichenbach 

et al. (2018) opined that distance to linear features like road networks often brings biases to the 

model. The landslide susceptibility maps follow the pattern of mapped landslides (Guzzetti et al., 

2012).  

      In bivariate models (other than the weight of evidence), causal factors cannot be selected based 

on their significance. All the factors are included in the model, and multicollinearity is not 

considered, leading to biases and poor prediction capability. This is a problem for regional and 

national scale landslide susceptibility mapping (Regmi et al., 2014). Multicollinearity is usually 

considered in multivariate and machine learning methods, producing more plausible results.   

1.1.2.3 Model Evaluation 

      Model fit and prediction performances are used to evaluate the susceptibility maps (Rossi et 

al. 2010). During model formulation, landslide locations are divided into two sets: training and 

validation sets (Yilmaz, 2009). The training set is used to test how well the model describes the 

known landslide locations. Validation sets are used to test how well the model can predict the 

unknown landslides (Frattini et al. 2010). The partitioning of the dataset can be based on different 

ratios. Most studies use either 80:20 or 70:30 ratios (Sabokbar et al., 2014). The receiver operating 

characteristics (ROC) curves are used to show success and prediction performance. For ROC 

curves, the larger the area under the curves (AUC), the better the model performance (Vakshoori 

and Zare, 2016; Shirzadi et al., 2017; Zhu et al. 2019). Relative density index, frequency measures, 

and confusion matrices are also used for model evaluation (Guzzetti et al. 2006). Different model 

evaluation methods have their specific advantages and disadvantages. It is recommended to use 

multiple evaluation metric to assess the model performance (Rossi et al. 2010).  
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1.2. Objectives and significance of this study 

      This dissertation research focuses on mapping landslides, proposing an objective absence-data 

sampling method for landslide susceptibility mapping, and evaluating the impact of land use/land 

cover change on landslide susceptibility. The study area is the Chittagong Hilly Areas of 

Bangladesh. The detailed objectives are: 

1. To map all known landslide locations of CHA using field mapping and Google Earth 

mapping. 

2.  To evaluate the Mahalanobis distance (MD)-based absence-data sampling or non-

landslide location selection for landslide susceptibility mapping. 

3. To evaluate the effects of different land use and land cover scenarios on landslide 

susceptibility.  

      Landslides are the third deadliest disaster in the world (Ahmed, 2015). In recent decades, 

human activities have expanded to mountainous areas due to population growth and tourism 

development. This reduced the slope stability, contributing to an increase in landslides (Guzzetti 

et al., 2012). Landslide inventory and susceptibility mapping are essential for urban and regional 

planning to take precautionary measures in the landslide-prone areas. 

      Landslides are common hazards in the CHA, but CHA does not have a landslide inventory 

except for the two urban areas of the Chittagong Metropolitan Area (CMA) and Cox’s Bazar 

municipality. This study provided the first landslide database of CHA. Field mapping is the most 

widely used method for landslide inventory mapping, but this method can only be applied to 

accessible areas (Fell et al. 2008). To ensure both the accessible and inaccessible areas are covered 

for landslide inventory mapping, this study integrates field mapping with the Goggle Earth image 

interpretation to map landslides in CHA. This inventory can be used for landslide susceptibility 

mapping for the entire CHA.  

      Landslide susceptibility mapping requires both presence (landslides) and absence (non-

landslide locations) data (Zhu et al., 2019); however, the selection of absence-data is usually 

subjective. This research proposed an objective MD-based absence-data sampling based on a 

theoretical Chi-square distribution of MD values and a specific confidence level. This method was 

then compared with a traditional slope-based absence-data sampling method to evaluate the model 
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performance, accuracy, and consistency in the landslide susceptibility mapping of three Upazilas 

of Rangamati district, Bangladesh. 

      Most landslide causal factors, such as slope, aspect, and geology, are relatively stable and 

static. Anthropogenic factors like land use/land cover can frequently change in areas like CHA 

where people live in the foothills and change the slope structure for different development 

activities. The dynamics of land use/land cover change may affect the susceptibility of landslides. 

This study assessed the contribution of land use/land cover change on landslide susceptibility. This 

work would provide a useful guidance for land use planning in landslide-prone areas. 

1.3. Dissertation organization 

      This dissertation is organized in a manuscript format that includes three manuscripts targeted 

for different journals. 

      Chapter 2 focuses on mapping landslides in the CHA, Bangladesh. A total of 730 landslides 

were mapped based on the integration of field mapping and Google Earth mapping. These 

landslides occurred between 2001 to 2017. Google Earth mapping helped cover inaccessible areas 

like the forests, and field mapping helped cover accessible areas such as the urban areas to map 

the landslides in the study area.  

      The proposed MD-based absence-data sampling method for landslide susceptibility mapping 

was described in Chapter 3 with a comparison of a commonly used slope-based absence-data 

sampling. Three Upazilas (subdistrict) of Rangamati district, Bangladesh, were used as the test 

site. Fifteen landslide causal factors, including slope aspect, elevation, plan curvature profile 

curvature, distance from the drainage network, and rainfall and 261 landslide locations were used 

in calculating the MD and later compared with the Chi-square distribution to determine a threshold 

above which safe zone for absence-data sampling can be defined. The random forest model was 

used for landslide susceptibility mapping, for accuracy assessment and consistency analysis, and 

to compare the effects of MD and slope-based absence-data sampling on landslide susceptibility 

mapping, success and prediction rates, statistical indices, including the Kappa values and seed cell 

area index were used.  

      Chapter 4 presents the work to evaluate the impact of land use/landcover (LULC) on landslide 

susceptibility maps in the Rangamati municipality of Rangamati district, Bangladesh, based on 
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three LULC scenarios: the existing LULC (2018); a proposed LULC (planned); and a simulated 

(2028) LULC. The random forest model was used in landslide susceptibility mapping, and success 

and prediction rates were used for accuracy assessment. The overall correlation was used in 

assessing the correlation among the three landslide susceptibility maps. Spatial and areal 

comparisons were used to determine whether the planned and simulated LULC increased the study 

area's landslide susceptibility.  

      Chapter 5 summarizes the findings of the landslide inventory mapping in CHA, MD-based 

absence-data sampling method, and the impact of LULC on the landslide susceptibility map. It 

also discusses the potential future work regarding the landslide inventory and susceptibility 

mapping.  
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Chapter 2 

An Integrated Approach to Map Landslides in Chittagong Hilly Areas, Bangladesh, using 

Google Earth and Field Mapping 
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This chapter is a manuscript and published in Landslides journal. According to the author’s 

guidelines, it is mandatory to have a separate figure and table files. The format of this chapter 

follows the requirements of this journal. The use of “we” in this chapter refers to co-author, Dr. 

Yingkui Li, and me. As the first author, I did the analysis and wrote the manuscript. 

 

Abstract  

      This paper presents a landslide inventory map for the Chittagong Hilly Areas of Bangladesh 

based on Google Earth and field mapping. We developed a set of criteria to identify landslides in 

Google Earth and introduced a method to assess the accuracy of mapped landslides in Google 

Earth, which is suitable for the landslides that are mapped as points rather than polygons in the 

field. In total, 230 landslides (mainly occurred in 2001-2016) were mapped in Google Earth. Field 

mapping identified 548 landslides that occurred mainly during Summer 2017. The total inventory 

includes 730 landslides for Chittagong Hilly Areas area from 2001 to 2017. The accuracy 

assessment suggests that the accuracy of mapped landslides using Google Earth varies from 69-

88%. Field work helps to map landslides in urban areas, near to road networks, human settlements, 

and accessible areas, whereas Google Earth helps to map landslides in inaccessible areas. The 

combination of these two approaches provides a means to prepare the landslide inventory for an 

entire area.  
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2.1. Introduction 

      Landslides are a common earth surface process in mountainous areas and play an important 

role in landscape evolution (Galli et al. 2008; Netra et al. 2014). They represent 9% of the natural 

disasters in the world (Guzzetti et al. 2000), causing damage to infrastructure and loss of lives 

(Guzzetti et al. 2000; Yilmaz 2009; Netra et al. 2010; Myronidis et al. 2016; Wang and Li 2017; 

Chen et al. 2017). Landslides can be triggered naturally by rapid snow melting, volcanic activity, 

groundwater pressure, and prolonged rainfall (Guzzetti et al. 2012; Pandey 2015; Peruccacci et al. 

2017; Chen et al. 2017). They can also be triggered by human activities, such as excavation, 

deforestation, land use change, hill cutting, and road construction agricultural cultivation (Chen et 

al. 2017). 

      Landslide inventory mapping is an important step for landslide susceptibility, hazard, and risk 

assessment (Guzzetti et al. 2012; Kanwal et al. 2016). Landslide can be mapped as a point or a 

polygon depending on the scale (Guzzetti et al. 2012). Landslide inventory includes archival and 

geomorphological inventories (Alkevli and Ercanoglu 2011). An archive inventory shows the 

extent, type and location of landslides. Geomorphological inventories include historical and 

seasonal or multi-temporal inventories. A historical inventory shows cumulative landslide events 

over hundred and thousand years. A seasonal inventory shows single or multiple landslide events 

during a single season or few seasons (Galli et al. 2008). 

      Various techniques have been used for landslide inventory mapping (Guzzetti et al. 2012). 

Traditional methods include the interpretation of aerial photographs, satellite imagery and field 

mapping. These methods are commonly used to generate landslide inventory maps for a large area 

(Alkevli and Ercanoglu 2011). Data obtained from the literature, newspaper, journals, technical 

reports, governmental archives, and the interviewing of experts were also used to prepare landslide 
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inventories for small areas (Glade 1998). In recent years, landslides have also been mapped using 

high resolution Digital Elevation Model (DEM), Light Detection and Ranging (LiDAR), and 

Synthetic Aperture Radar (SAR) data (Guzzetti et al. 2012).  

      Bangladesh is a primarily low-lying floodplain country in South Asia. Mountainous terrain 

covers only 18% of the land on the north, northeast and southeast. Landslides are common in the 

hilly regions, especially the Chittagong Hilly Areas (CHA) (Fig. 2.1) in south-eastern Bangladesh 

(Banglapedia 2015). Most landslides occur during the monsoon season in the CHA due to extreme 

rainfall events (>40 mm/day) within a short period (2-7 days) (Khan et al. 2012). High cloud cover 

during this season prevents the identification of landslides from high (0.5-5m) and medium (15-

30m) resolution multi-spectral images, such as Landsat imagery. High-resolution aerial 

photographs and imagery are either not available or not free in this area. In addition, vegetation 

regrows quickly after a landslide event in sub-tropical areas like CHA and it is challenging to 

identify the landslide in satellite images or aerial photographs after a few months of landslides 

(Samodra et al. 2015). 

      Most landslide inventory projects have focused on the major cities of CHA (Ahmed 2015 and 

CDMP-II 2012).  For example, Ahmed and Dewan (2017) and Ahmed (2015) compiled landslide 

inventories for Chittagong Metropolitan Area (CMA) and Cox’s Bazar municipality and developed 

different techniques in landslide susceptibility mapping. In contrast, few studies have been 

conducted outside of these two cities. We used the visual interpretation of multi-temporal imagery 

in Google Earth and extensive fieldwork to map old and recent landslides in CHA. The inventories 

identified using these two methods are combined to produce a landslide inventory map. High-

resolution multi-temporal Google Earth imagery allows for identifying landslides in remote areas 

where field mapping is not possible. Several studies have used Google Earth for landslide mapping 
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(Sato and Harp 2009; Fisher et al. 2012; Vakhshoori and Zare 2016), but no criteria are available 

for identifying landslides in Google Earth. In this study, we developed six criteria for detecting 

landslides in Google Earth. In addition, previous studies associated with Google Earth-based 

landslide mapping have not presented any accuracy assessment (Sato and Harp 2009; Fisher et al. 

2012; Vakhshoori and Zare 2016). We also introduced an accuracy assessment method for Google 

Earth-based landslide mapping.  

2.2. Study Area 

      The Chittagong Hilly Area (Fig. 2.1) (20,957 km2) is in the southeast Bangladesh (20.46°–

23.40° N and 91.27°–92.18° E) and includes five districts: Bandarban, Rangamati, Khagrachari, 

Chittagong and Cox’s Bazar.  CHA has tropical monsoon climate with annual rainfall ranging 

from 2540 mm in north and east to 2794 to 3777 mm in south and west. This area has three distinct 

seasons: the Dry and Cool Season from November to March; the Hot or Pre-monsoon season from 

April to May, and the Monsoon or Rainy Season from June to October (Rashid 1978; Banglapedia 

2015). About 80% of the landslides occurs between May to September when rainfall is >200 mm 

per month in this area (Khan et al. 2012).  

      The hilly area can be divided into the low hill ranges (<300 m) and the high hill ranges (>300 

m) (Banglapedia 2015). The low hill ranges are under Dupi Tila and Dihing formation whereas 

the high hill ranges under Surma and Tipam formation (Fig. 2.2) (Brammer 2012). Most of the 

areas in west have slope <5° and the areas in the east have slope>30° (Fig. 2.2).  

2.3. Data Source 

      We used Google Earth imagery and an existing landslide database to generate the landslide 

inventory map. Google Earth contains available Landsat imagery (15m–30m pan-sharpened), 

orthophotos (0.5–2m), high resolution commercial datasets (SPOT, FORMOSAT-2: 0.5–8m; 
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World View-1 and World View-2: 0.5–2.5m) (Fisher et al. 2012; Crosby 2012). These datasets 

provide access to sub-meter resolution images for visual interpretation of landslides (Fisher et al. 

2012). Google Earth also provides historical imagery to explore the spatio-temporal landslide 

changes. The users can also delineate features and save them to KML files in Google Earth (Bailey 

et al. 2012). Google Earth has been used to delineate landslides and assess their extents and 

characteristics (Sato and Harp, 2009).  

      Bangladesh does not have an official database for landslides. Department of Disaster 

Management of People’s Republic of Bangladesh records landslides without detailed locations. 

Most recorded landslides have the locational information only to the low-level administrative 

division of Bangladesh, such as name of the village. This record is also not updated regularly and 

not available online. Comprehensive Disaster Management Programme of the Ministry of Disaster 

and Relief of Bangladesh provides the detailed landslide inventory for Cox’s Bazar 

and Teknaf municipality areas (CDMP-II, 2012). Rahman et al. (2016) and Ahmed et al. (2014) 

provided landslide inventory for the Chittagong Metropolitan Area (CMA). These inventories 

provide GPS coordinates, extent, fatalities, and estimated loss of landslides. Newspaper reports on 

landslides can be another data source as they give the description of where, when, and why 

landslides occurred, how many people died, and estimated economic loss. However, these reports 

lack detailed location and dimension of landslides.  

2.4. Method 

      The methodology includes four steps: 1) visual interpretation of Google Earth imagery; 2) field 

data collection and mapping; 3) field validation and accuracy assessment; and 4) final map 

production. 
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2.4.1. Visual Interpretation of Google Earth Imagery 

      Due to the availability of Google Earth imagery, landslides were mapped from January 2001 

to March 2017. The whole region was divided into 4911 rectangles (3.3 km long and 1.3 km wide) 

to keep track of mapping and prevent visual interpretation of an image more than once (Fig 3.3.f). 

These rectangles were created using the Fishnet tool in ArcGIS and then converted to a KML file. 

We started the mapping from the upper-left rectangle (near the Feni river where the Chittagong 

District starts) and checked the images from left to right in each rectangle. The landslides were 

identified in Google Earth based on six criteria: change of vegetation in historical images 

(vegetation was absent in one image but present in previous images), morphological change in 

historical images (change detection by comparing two historical images), change of texture and 

color in historical images, the slope and elevation of suspected areas for landslides, and the 

presence of debris at the toe of suspected areas. 

      The historical images were examined to detect changes in vegetation and morphology (Fig 

3.3.a and Fig 3.3.b). Landslide can remove or destroy the vegetation of an area to expose bare land. 

However, open field and harvested paddy field can also appear as bare land in Google Earth. The 

slope and elevation were measured to separate these different possibilities. The change in slope 

and elevation from the top to the bottom of a suspected landslide area or the bedrock scarp indicates 

that landslide process has removed bedrock and vegetation; landslide usually does not occur in a 

gentle slope (Duric et al. 2017). The Add Path tool in Google Earth was used to check the slope of 

the bare land. This tool generates the topographic profile along the path (line or polygon) (Bailey 

et al. 2012). We draw the central line of each bare land (Fig 3.3.c) to examine the slope and 

elevation change along the profile. When landslide occurs, bedrocks and soils are generally 

deposited at the toe. This deposit was considered as an indication of landslides. The changes in the 
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texture and color and the presence of mottling in the image can be considered as the presence of 

landslide (Guzzetti et al. 2012). We went through Google Earth images using a constant eye 

altitude of 300 m to check all these changes and identify landslides. Zoom in and out tools were 

used when the eye altitude was not enough to detect these changes.  

       In our study, the vegetation change and the presence of bare land were the first two indicators 

of landslides and then the slope and elevation were measured. After that, the morphological change 

and the presence of mottling and debris at the toe were checked. The presence of mottling and 

debris depends on the quality (resolution) of the image, and we did not find them in all mapped 

landslides because temporal high-resolution images are not available in all areas. Thus, our 

primary criteria for the landslide identification are the presence of bare land, change in vegetation 

and morphology, and the measurement of slope and elevation. The presence of debris is optional 

and increases the mapping confidence when available. We also determined the type of landslide 

according to Cruden and Varnes (1992) and draw polygon (Fig. 3.3.d) around the scarp and run 

out (if identifiable). The identification of the landslide type depends on the quality of image and 

extent of landslides. It was relatively easy to determine the type for a large landslide.  

      Jhum (Traditional Shifting Cultivation) is a common practice of plantation in CHA. It is a type 

of rotational farming: one slope of the land is cleared by controlled fire for cultivation and then 

farmers left the slope to regenerate after few years (Masum 2011). Rotational cultivation is the 

principal driving force for vegetation removal in hilly forest areas of tropical Asia (Fox et al. 2000). 

In our method, removal of vegetation is considered as one of the primary indicators of landslides. 

Thus, in CHA where jhum cultivation is practice, there is a high chance that these areas can be 

misinterpreted as landslides because these areas become barren land (Fig. 3.3.e) after the 



24 
 

harvesting of crops and remain fellow for next season to regrow vegetation. The availability of 

historical images in Google Earth helps differentiate areas under jhum cultivation from landslides. 

We explored the pre- and post-images of the bare land to check the presence of jhum crops in that 

area. In addition, farmers usually select a rectangular or square slope area for slash-burning and 

crop cultivation. After harvesting the crops, the area becomes a barren land with the rectangular 

or square shape. Landslide is a natural process, and its boundary (scarp or run out) is usually 

irregular.  

2.4.2. Field Data Collection and Mapping 

      Landslide records from local newspaper and existing literature, including published and 

unpublished articles, thesis, and reports, government documents and archives, and available 

inventory maps, were used for the field mapping (Table. 2.1). Experts, officials of Disaster 

Management Department of People’s Republic of Bangladesh, city planners, and local political 

leaders were interviewed to figure out which areas are vulnerable to landslides, why landslides 

occur, and whether there is any change of the pattern of landslides in the area. We collected 

newspaper reports on landslides from 1980 to July 2017 at the library of the University of Dhaka. 

The data collection was mainly based on three Bengali newspapers (The Daily Ittefaq, The Daily 

Inqilab, and The Daily Prothom Alo) and two English newspapers (The Daily Observer and The 

Daily Star). We hired four data collectors because digital copies of these newspapers were not 

available. The data collectors collected the date, time, and locations of landslides, number of death 

and injured, damage of infrastructures, types and causes of landslides, and so on. Some reports 

provided the name of the vulnerable areas and the areas where people are living on the foot of 

excavated hills. These reports helped identify target areas for field investigation and mapping. 

Local offices of Roads and Highways Department of the People’s Republic of Bangladesh 
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provided the locations of landslides that occurred along the roads during June 2017 under their 

jurisdictions. Most landslides we collected occurred near roads and human settlements both in 

rural and urban areas. 

      We adopted participatory field mapping proposed by Samodra et al. (2015) and used the 

collected landslides from newspapers and existing literature for field checking and mapping. Most 

collected data provide the general areas where landslides occurred or are vulnerable to landslides 

without detailed locations (latitudes and longitudes). We asked local people, political leaders, 

governmental officials, and aid agencies to help find these locations. The field mapping was carried 

out from July to August 2017. A GPS receiver (Gramin Trex 20x) with an accuracy of 3-10 m was 

used to collect the latitude and longitude information of each landslide (Fig. 2.4.c, 2.4.d, and 2.4.f). 

Chain and tape were used to measure the length and width of the landslide. In some cases, the GPS 

coordinates were measured 3-10 m away from the landslides because of dangerous field conditions 

as numerous landslides occurred in June 2017 and were occurring during the field mapping. We 

measured the distance between the GPS location and the landslide using chain or tape. We checked 

all collected locations in Google Earth to verify whether they are on the right locations. We did 

not measure the extent of the landslide in the field due to the lack of topographic maps in this area. 

Instead, we measured the length and width of each landslide.  

      A form was used to record time and date (if available), landslide characteristics (if 

recognizable), land use and land cover type of the area and visually identifiable causes and 

categorical damage assessment. We first visited each targeted area and then checked with the local 

people (Fig. 2.4.a and 2.4.b) on whether landslides occurred or not in the area. In some cases, the 

database from the Department of Disaster showed that landslides occurred in completely flat lands 
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and local people also failed to remember any landslide events there, indicating that there are errors 

in the government database. With the help of local guides, we found that some landslides occurred 

inside the compound of houses. We found all landslides reported by newspapers, indicating that 

newspaper reports are reliable. Landslides occurred in June 2017 were easily identifiable in the 

field. All recent landslides occurred within the landslide prone areas identified from newspaper 

reports. Most landslides we mapped in the field are new landslides due to the numerous numbers 

of landslides occurred recently. Motorbikes and three wheelers were used to make sure that the 

survey was conducted as quickly as possible. In average, we mapped about 25 landslides per day. 

We took photographs of each landslide and its surrounding area to help verify the landslide 

characteristics that we identified during the field investigation. 

2.4.3. Validation and Accuracy Assessment 

      Several methods are available for the validation and accuracy assessment of the landslide 

mapping. Carrara et al. (1992) introduced a method based on polygon overlay for the landslide 

validation and accuracy assessment. This method, however, does not consider the uncertainty, 

errors, and subjectivities of mapped landslide boundaries. Galli et al. (2008) suggested to use a 

100 m buffer around landslide polygons as a threshold to account for the uncertainties and errors 

in landslide mapping. It treats the landslides (polygons) mapped from satellite imagery and the 

landslides mapped in the field the same if they are within 100 m. We adopted this buffer distance 

in our study. However, we mainly recorded the landslides as points in the field, whereas delineated 

landslides as polygons in Google Earth. It is also not possible to check all Google Earth-identified 

landslides in the field. We chose three sites (Fig 2.5) for the validation and accuracy assessment. 

We conducted the field mapping in a test site at Bandarban and compared with landslides that we 

identified in Google Earth. The next site was the Chittagong Metropolitan Area (CMA). We did 

not conduct field mapping in the CMA because Rahman et al. (2016) provided 57 landslide 
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locations. The third site was Cox’s Bazar municipality where CDMP-II (2012) provided 77 

landslide locations. All landslide points provided by these two reports were not used in our study 

because some of the landslides in in these reports occurred in 1990 and the oldest landslide that 

we detected in Google Earth was in 2003. We used the proximity of the landslides from two 

inventories (landslide points in field mapping and landslide polygons in Google Earth) to assess 

the accuracy. Specifically, if a landslide mapped in Google Earth is <100 m to the landslide points 

in the field, we treat them as the matched landslides. The Near tool in ArcGIS was used to 

determine the nearest distance between the Google Earth-mapped landslides and their closest 

landslide points recorded in the field. Based on the threshold distance of 100 m, the overall 

accuracy can be defined as: 

X= 
𝑎

𝑏
 

where, X is the overall accuracy, a is the number of landslides mapped in Google Earth that are 

within 100 m distance from landslide points recorded in the field, and b is the total number of 

landslide points recorded in the field. In addition, we also examined the commission and omission 

errors. The commission error refers to the percentage of misidentified landslides in Google Earth 

(100 m away from the landslide recorded in the field). The omission error refers to the percentage 

of landslides that were recorded in the field, but not identified in Google Earth.  

2.4.4. Final Inventory Map Production 

      The final inventory map is the combined landslides mapped from both the field and in Google 

Earth. Some landslides identified in both Google Earth and field mapping were removed using the 

Select by Location tool in ArcGIS. In final map, the feature type of the landslides was point. 
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2.5. Results 

       Visual interpretation of Google earth imagery identified 230 landslides that occurred between 

2003 to 2016 (Fig. 2.6.a). In the field, we recorded 414 landslides. We also included 57 landslides 

in CMA provided by Rahman et al. (2016) and 77 landslides in Cox’s Bazar and Teknaf 

municipalities provided by CDMP-II (2012). In total, we collected 548 landslides based on field 

mapping (Fig. 2.6.b). The field mapping covered accessible areas where landslides were reported, 

and the field-recorded landslides that mainly occurred in June 2017 (356 out of 548). Among these 

recent landslides, 305 of them occurred in the landslide prone areas mentioned in newspaper 

reports and 51 occurred in new areas. In Bandarban, 101 landslides were identified and from them 

25 landslides occurred before June 2017 and the oldest on dated back to 1993. In Rangamati, all 

field-mapped landslides occurred during June 2017. Among 82 landslides in Khagrachari, only 12 

of them occurred before 2017. Out of 137 field-mapped landslides in Chittagong, 74 landslides 

occurred before 2017. Table 2 shows the distribution of the landslides identified in Google Earth 

and field mapping in the CHA.    The mean elevation of landslides identified in Google Earth is 

127.3 m (SD= 121.0 m), the maximum elevation is 652.0 m and 85% of the landslides are less 

than 200.0 m (Fig. 2.7.a). For landslides identified in the field mapping, the mean elevation is 72.0 

m (SD=121.0 m), the maximum elevation is 483.0 m, and about 82% of the landslides are less 

than 100.0 m (Fig. 2.7.a).  Identifying the type of landslide is difficult in Google Earth, depending 

on the quality of the imagery and the skill of the interpreter. Among 230 landslides mapped in 

Google Earth, 62 landslides were undefined due to the difficulty to determine their types. Slide is 

the dominant type of landslides and flow and fall are other two major types identified in Google 

Earth (Fig. 2.7.b). Among 15 unrecognized landslides, 12 are from Cox’s Bazar district because 

we did not carry out the fieldwork there and landslide locations were provided by CDMP-II (2012). 

In field mapping, flow is the dominant type of landslides, accounting for 40% of the total landslides 
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(Fig. 2.7.b). Slide is the second dominant type. There are also 28 complex landslides which are 

combination of two or more types of landslides. Most field mapped landslides are shallow 

landslides (depth less than 10 m) with only 20 (out of 548) deep landslides which were large slope 

failures and depths were >10m. 

      The final landslide inventory includes the locations of 730 landslides, as well as their types 

and time of occurrence. About 48.8% (356 out of 730) of the landslides in the inventory are recent 

landslides. This dataset is the largest landslide inventory of the CHA (Fig. 2.6.c). The mapped 

landslides are clustered in some specific areas (Fig. 2.6.a-c). The clusters are associated with the 

natural factors that influence landslides and the areas covered during field mapping. For example, 

landslides are clustered near the fault lines and in areas where the slope gradient is between 10-

30°. Our field mapping was mainly in urban areas and along the roads.  

      The validation and accuracy assessment were conducted in three test sites in Bandarban, CMA, 

and Cox’s Bazar municipality. In our test site in Bandarban, we identified 25 landslides during 

field mapping and 22 landslides in Google Earth. All these landslides are <100 m buffer distance 

from the landslides identified in the field mapping (8 have 0 distance) (Table 2.3). Therefore, the 

overall percentage accuracy is 88% using the 100 m threshold buffer. The commission error is 0%, 

indicating that all landslides identified in Google Earth are actual landslides (Table 2.3). The 

omission error is 12%, meaning that 12% of the landslides we identified in the field were not 

mapped in Google Earth.  

      In CMA, we mapped 63 landslides in Google Earth. We used 44 landslides field-mapped by 

Rahman et al. (2016) for validation. Among the 63 landslides, 9 landslides are at 0 m distance, 30 

landslides are <100 m buffer distance from the field-mapped landslides (Table 2.3). The overall 
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percentage accuracy is 68.2% for the 100 m threshold buffer. The commission error is 52.4 % and 

the omission error is 31.8% (Table 2.4). In Cox’s Bazar municipality, we identified 54 landslides 

in Google Earth and used 64 landslides identified by field mapping of CDMP-II (2012) for 

validation. Among these 54 landslides, 7 landslides are at 0 m distance, 44 landslides are <100 m 

buffer distance from the landslide identified in the field mapping (Table 2.3). The overall 

percentage accuracy is 68.7% for 100 m threshold buffer. Here commission error is 18.5% and 

omission error is 31.3% (Table 2.4).  

      The apparently higher accuracy in our test site than two other areas is likely caused by the 

different field mapping methods used in these sites. We mapped landslides in Google Earth and 

validated all these landslides at the test site in Bandarban. The field-mapped landslides in CMA 

and Cox’s Bazar municipality are likely only those causing casualties. In Cox’s Bazar, field map 

of CDMP-II (2012) helped include landslides in high-density urban areas, but we could not identify 

them in Google Earth. Although Google Earth has high-resolution imageries for urban areas, it 

may not be enough to detect landslides in high-density urban areas. Therefore, field mapping is 

still the best option to detect landslides in high-density urban areas. The omission errors range 

from 12% to 31% in these three sites, indicating that we may miss 10-30% of the landslides in 

Google Earth, especially in urban areas. 

2.6. Discussion and Conclusions 

      We produced a landslide inventory map of CHA in Bangladesh based on Google Earth imagery 

and field mapping. In our study, field mapping helped identify more recent landslides that occurred 

in June 2017 in five districts of the study area.  In Bangladesh, vegetation regrows very quickly 

and in urban areas the rate of anthropogenic activities is very high, so the sign of landslides may 

be removed quickly. As our field work was conducted just one month after the occurrence of the 
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new landslides, we mapped more landslides in the field than in Google Earth. In addition, 

uncertainties and biases may exist in mapping landslides in Google Earth. Historical Google Earth 

imagery may not have continuity. Specifically, there is no regular monthly or yearly interval 

among two historical images and the time gap between two historical images can be up to several 

years. Landslides may occur within such large time map but cannot be included in the inventory 

because the vegetation regrows quickly, and the sign of landslide may not be found in the next 

available image. Thus, the inventory prepared by Google Earth may not be a complete one. Field 

mapping may help in this regard, but in our study, field mapping mostly captured landslides that 

occurred during June 2017. Thus, field mapping could not help reducing the uncertainty caused by 

the unavailability of historical imagery. Uncertainties and biases exist in the field mapping as well. 

We mapped landslides mainly along roads, in urban areas, and in areas where are accessible, 

whereas the inaccessible forest and mountain areas are excluded in the field mapping.  

      We developed a set of criteria to identify landslides using Google Earth imagery. These criteria 

can be adopted in other areas, especially in developing countries where high-resolution satellite 

imagery and aerial photographs are not available. We also introduced a method for differentiating 

areas under jhum cultivation from landslides. It can help landslide detection in areas where slash 

and burning are practiced. A method for accuracy assessment was developed when landslides are 

mapped as points rather than polygons in the field. Detail topographic maps are not available for 

some areas especially in developing countries and landslides polygons cannot be drawn around the 

landslides in the field. Our assessment method would be helpful for this type of scenarios.  

      This work produced an updated landslide inventory of CHA. Previous studies mainly covered 

three urban areas and we expanded the mapping to all districts in CHA. We found that the 

Rangamati district has the second highest number of landslides although few studies were 
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conducted there. We mapped 211 landslides in Bandarban and Khagrachari districts, accounting 

about 27% of the total of CHA. Therefore, this work helps refine the spatial distribution of 

landslides. Future work is needed to conduct the morphometric and engineering analysis on the 

landslides in these new areas. 
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Appendix  

Table 2.1. List of Main Landslide Information Sources 

Source of Information Information Collected 

Local Newspaper Date, time and locations of landslides 

Rahman et al. (2016) 57 landslide locations of CMA 

CDMP-II (2012) 77 landslide locations of Cox’s Bazar and 

Teknaf municipalities 

Records of Department of Disaster 

Management of People’s Republic of 

Bangladesh 

Name of the locations of landslide that 

caused casualties 

Roads and Highways Department Locations of landslides that caused road 

damages 

 

Table 2.2. Distribution of Landslides identified in Google Earth and Field Mapping among 

Districts of Chittagong Hilly Areas 

Districts Google Earth Field Mapped 

Chittagong 121 137 

Bandarban 22 101 

Cox’s Bazar 48 77 

Khagrachari 6 82 

Rangamati 33 151 
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Table 2.3. Percentage of Landslide Locations at different Distance from Ground Points in 

Bandarban, CMA and Cox’s Bazar 

Study Site Distance 

(m) 

0 1-10 10-20 20-50 50-100 Above 

100 

Bandarban Number of 

Landslides 

8 1 3 4 6 3 

Percentage 32.0 4.0 12.0 16.0 24.0 12.0 

Cumulative 

Percentage 

32.0 36.0 48.0 64.0 88.0 100.0 

CMA Number of 

Landslides 

9 5 3 5 8 14 

Percentage 20.5 11.6 6.8 11.4 18.2 31.9 

Cumulative 

Percentage 

20.5 31.8 38.6 50.0 68.2 100.0 

Cox’s 

Bazar 

Number of 

Landslides 

7 18 8 8 3 20 

Percentage 10.9 28.1 12.5 12.5 4.7 31.3 

Cumulative 

Percentage 

10.9 39.0 51.5 64.0 68.7 100.0 
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Table 2.4. Accuracy Assessment Table for Bandarban, CMA and Cox’s Bazar (Column: Field 

mapping Row: Google Earth) 

Study Sites  Landslide Non-

Landslide 

Total Commission 

Error (%) 

Bandarban Landslide 22 0 22 0.0 

Non-

Landslide 

3 -   

Total 25    

Omission 

Error (%) 

12.0    

CMA Landslide 30 33 63 52.39 

Non-

Landslide 

14 -   

Total 44    

Omission 

Error (%) 

31.82    

Cox’s Bazar Landslide 44 10 54 19.52 

Non-

Landslide 

20 -   

Total 64    

Producer’s 

Accuracy 

(%) 

68.75    

Omission 

Error (%) 

31.25    

 

 



46 
 

 
Fig. 2.1. Geographical Position of Chittagong Hilly Areas 

 

 

Fig. 2.2. Geological, Slope, and Elevation Maps of Chittagong Hilly Areas 
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Fig. 2.3. Landslide Detection in Google Earth.  (a) and (b): Change Detection and Identification 

in Google Earth; (c): Landslide Identification through Elevation Profile in Google Earth; and (d): 

Polygon Drawn around the Scarp and Run out of Landslide (e) Presence of Clear-Cut (f) Fishnet 
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Fig. 2.4. Field Mapping. (a) and (b): Field Mapping with the Assistance of Local People, (c) to 

(f): Identification of Landslides and GPS Coordinate Collection 
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Fig. 2.5. Location of Study Sites for Map Validation and Accuracy Assessment 

 

Fig. 2.6. Landslide Inventory Maps of Chittagong Hilly Areas of Bangladesh. (a): Landslide 

Inventory Map based on Google Earth; (b): Landslide Inventory Map based on Field Mapping; 

and (c) Final Landslide Inventory Map 
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Fig. 2.7. Different Statistics of Identified Landslides in Google Earth and Field Mapping. (a): 

Number of Landslides at different Elevation (Google Earth and Field Mapping) based on 

ASTER 30 m DEM; and (b) Number of Different Types of Landslides (Google Earth and Field 

Mapping) 
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Fig. 2.8. Distribution of Different Types of Landslides in Chittagong Hilly Areas of Bangladesh. 

(a): Slide; (b): Flow (c) Fall and (d) Topple and Complex 
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Chapter 3 

An objective method to determine absence-data sampling for landslide susceptibility 

mapping 
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This chapter is a manuscript in preparation for Landslide. The use of “we” in this chapter refers to 

co-authors, Drs. Yingkui Li, Haileab Hilafu, and me. As the first author, I conducted the field 

work, led the data analysis, and wrote the manuscript. 

Abstract 

      The accuracy and quality of the landslide susceptibility map depend on the available landslide 

locations and the sampling strategy for absence-data (non-landslide locations). In this study, we 

proposed an objective method to determine the critical value for sampling absence-data based on 

the Chi-square distribution of the Mahalanobis distances (MD) and a user-specified confidence 

level. We demonstrated this method on landslide susceptibility mapping of three subdistricts 

(Upazilas) of the Rangamati district, Bangladesh, and compared the results with the landslide 

susceptibility map produced based on a widely used slope-based absence-data sampling method. 

We first determined the critical value of 23.69 (at 95% confidence level) based on the Chi-square 

distribution of the MD values of the 261 landslide locations derived using 15 landslide causal 

factors, including slope, aspect, plan curvature, and profile curvature. This critical value was then 

used to determine the sampling space for 261 random absence-data. In comparison, we chose 

another set of the absence-data based on a slope threshold of <3º. The landslide susceptibility maps 

were then generated using the random forest model based on the landslide and non-landslide 

samples. The success and prediction rates and the Kappa index were used for accuracy assessment, 

while the Seed Cell Area Index (SCAI) was used for consistency assessment. Landslide 

susceptibility map produced using our proposed method has relatively high success (88.4%), 

prediction (86.2%), and Kappa values (0.75). The SCAI values also indicate that the landslide 

susceptibility map is consistent. In contrast, even though the landslide susceptibility map produced 

by the slope-based sampling also has relatively high accuracy, the SCAI values suggest lower 

consistency. Furthermore, the slope-based sampling is highly subjective; therefore, we recommend 

using the MD-based absence-data sampling for landslide susceptibility mapping. 
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3.1. Introduction 

      Landslides are the movement of rock, soil, and earth along a slope (Cruden and Varnes, 1992) 

when the shear stress on the slope materials exceeds the shear strength (Ahmed and Dewan, 2017). 

It causes damage to infrastructure and the loss of human lives worldwide (Guzzetti et al., 2002; 

Yilmaz, 2009; Yilmaz, 2010). Landslide inventory and susceptibility mapping are critical to 

mitigate the losses caused by landslides (Ahmed, 2015; Ahmed and Dewan, 2017; Chen et al., 

2017; Hong et al., 2018; Ahmed et al., 2018). Landslide inventory documents previously occurred 

landslides (Guzzetti et al. 2012), while landslide susceptibility describes the probability of 

landslides over an area (Sterlachini et al., 2011). Landslides are affected by various causal factors, 

such as slope, curvature, land use/land cover, geology, and elevation (Althuwaynee et al., 2014; 

Althuwaynee et al. 2016; Chen et al. 2017). Landslide inventory and its relationship with different 

causal factors can be used to derive the landslide susceptibility map (Reichenbach et al., 2020).    

Various statistical methods have been used for landslide susceptibility mapping, including logistic 

regression, support vector machines, random forest, and gradient boosting (Ayalew and 

Yamagishi, 2005, Vakshoori and Zare, 2016; Reicehnbach et al. 2018). These statistical methods 

use landslide causal factors as independent variables and landslide locations (presence data) and 

non-landslide locations (absence-data) as dependent variables (Yilmaz, 2009). The presence data 

are mainly from the landslide inventory. In contrast, the absence-data are usually unavailable and 

require a specific sampling strategy (Zhu et al. 2014; Chen et al. 2017). The quality and accuracy 

of the landslide susceptibility maps depend not only on the quality of causal factors and presence 

data but also on the sampling strategy for the absence-data (Zhu et al., 2017). 

      Random sampling is the most common approach for the absence-data. It considers all locations 

other than the recorded landslides for absence-data (Tsangaratos and Benardos, 2014; Regmi et 

al., 2014). This method requires a representative landslide inventory of all landslides for the whole 

area (Zhu et al., 2019). It is suitable for the landslide susceptibility mapping in a relatively small 

area but faces challenges at a large area or regional scale (Althuwaynee et al. 2014). The accuracy 

of the landslide susceptibility map based on random sampling is generally low and biased towards 

the known landslide locations (Zhu et al., 2019). Various absence-data sampling methods have 

been proposed to improve the accuracy and quality of landslide susceptibility mapping, including 

prior data exploratory analysis, buffer-controlled sampling, distance and density-based measures 

like Kernel density estimation, Euclidean distance, one class or presence only classification 
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method, and species density distribution modeling like Bioclim (Althuwaynee et al. 2014; Chen et 

al. 2017; Hong et al. 2018; Zhu et al. 2019).  

      Prior data exploratory analysis determines a safe zone for absence-data sampling based on the 

available landslide locations (Chen et al., 2017; Huang et al., 2017; Adnan et al., 2020). This 

method generally chooses one of the most important causal factors, such as slope and geology, to 

determine the safe zone for the absence-data sampling (Althuwaynee et al. 2014, Huang et al., 

2017). However, the results generated using this method are biased towards the selected factor. 

For instance, if the safe zone is determined based on slope, the model will likely be biased towards 

the slope (Hong et al., 2018). Yao et al. (2008) used a buffer-controlled sampling method, 

assuming that the areas near each other are more similar than those distant apart. The selection of 

the buffer distance is subjective because it depends on expert knowledge (Zhu et al., 2019). Hong 

et al. (2018) proposed a one-class classification or presence only method similar to the one-class 

support vector machine method. In this method, classification like absence and presence data are 

not given in the model's training stage. Only the presence data is used to classify an area into two 

parts: one part is similar to the presence data or landslides, and the other has dissimilarities with 

the landslides. The area with high dissimilarities is used for absence-data sampling.  

      Distance-based sampling assumes that areas with similar environmental conditions (explained 

by the causal factors) experience similar geomorphic processes like landslides (Zhu et al., 2019; 

Hong et al., 2018). A distance threshold, known as the critical value, is needed to determine the 

sampling space for absence-data (Tsangaratos and Benardos, 2014). Although several distance-

based measures have been used, determining this critical value is not explained (Zhu et al., 2019). 

Generally, users select the critical value subjectively to maximize the accuracy of the landslide 

susceptibility map (Hong et al., 2018). Moreover, only one method, like the area under the curve 

or Continuous Boyce Index, is used to assess the mapping accuracy (Zhu et al. 2014; Zhu et al. 

2019; Reichenbach et al., 2018) without the assessment of the mapping consistency (Reichenbach 

et al., 2018; Abedini and Tulabi, 2018). A landslide susceptibility model can achieve high accuracy 

by increasing the area under high and very high landslide-prone zones. However, it may 

overestimate the landslide susceptibility by assigning landslide-free areas as prone zones (Schiker 

and Moon, 2012). It is impossible to implement the overestimated map for practical purposes as 

the map loses its consistency (Reichenbach et al., 2018). Zhu et al. (2019) found that decreasing 

the sampling space of the absence-data increases the accuracy of the landslide susceptibility map, 
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but may overestimate the landslide susceptibility (Hong et al., 2018; Zhu et al., 2019). It is essential 

to choose the critical value or threshold for to satisfy both accuracy and consistency.  

      In this work, we proposed an objective method to determine the critical value of absence-data 

sampling based on the Chi-square distribution of the Mahalanobis distance and a user-specified 

confidence level. We applied this proposed method to the landslide susceptibility mapping in the 

three Upazilas (sub-district) of the Rangamati district, Bangladesh, and compared the model 

performance with a traditionally used slope-based method for absence-data sampling.  

3.2. Methodology 

      This study employed the third law of geography to determine sampling space for absence-data 

sampling. According to the third law of geography, if two areas have the same geographical 

environment, they will experience the same geographical processes such as landslides (Zhu et al., 

2019). The characteristics of the geographic environment used in this study are the landslide causal 

factors. Since we are searching for sampling space for (landslide) absence-data sampling, we must 

find out areas with the least similarities with landslide locations. We assume that landslide 

locations will have a geomorphic environment defined by the landslide causal factors. For 

example, the slope is a landslide causal factor, and for all the landslide locations, there will be a 

typical value of slope (e.g., the average slope for the observed landslide locations). We seek 

locations whose slope possesses the highest dissimilarities with the typical slope of the landslide 

locations. If we have n number of landslide locations and p number of causal factors, then these 

locations will have a mean environmental condition based on the p causal factors. Non-landslide 

locations will be farther away from that mean condition. This study employs Mahalanobis distance 

to measure the distance between the mean landslide condition and the condition of a potential site 

to determine whether it has similarities or dissimilarities with the landslide locations.  

3.2.1. Mahalanobis Distance 

      Mahalanobis Distance (MD) is a distance metric that measures the distance between the data 

point location and the distribution of datasets (Nader et al., 2014; Prabhakaran, 2020). MD is an 

extension of the Euclidean Distance metric and can improve clustering and classification 

algorithms (Tsangaratos and Benardos, 2014). The Euclidean distance measures the distance 

between two points in p-dimensional space. It works well when the dimensional spaces are 

independent of each other (Prabhakaran, 2020). MD takes care of this interdependency of the 

dimensional spaces by dividing the Euclidean distance with the covariance matrix (Tsangaratos 
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and Benardos, 2014). More specifically, the MD of a potential (non-landslide) point represented 

by a vector of causal factors X from the centroid representation of a landslide point cloud with 

mean vector m and a covariance matrix C given by:  

𝑀𝐷 = √(𝑋 − 𝑚)𝑇 𝐶−1(𝑋 − 𝑚) … … … … … … … … … … … . . (1) 

As can be seen from (1), MD reduces the correlation of variables by dividing the distance matrix 

by the covariance matrix (Nader et al., 2014). MD has been generally used in outlier detection and 

multi-class classifications (Prabhakaran, 2020). In landslide susceptibility mapping, MD can be 

used to define the sampling space for absence-data. The recorded landslide locations only cover a 

very small portion of the whole study area. Therefore, a large part of the area is not classified as 

landslides or non-landslides (Prabhakaran, 2020). Based on landslide locations and distribution of 

the causal factors, MD defines the similarity of an area to landslides' conditions. If the similarity 

is high, the area has a high chance for landslide and is not suitable for absence-data sampling.  

 

      It is, however, hard to determine if the similarity of an area is different enough for the absence 

of data sampling. Some studies used the 5th quantile value to define the absence sampling space 

(Tsangaratos and Benardos, 2014). Zhu et al. (2019) tested a set of user-defined thresholds to 

determine the appropriate value for landslide susceptibility mapping. The work demonstrated that 

reducing absence sampling space continuously increases in the accuracy but overestimates the 

landslide susceptibility. However, this simple try-out strategy does not provide a statistical means 

to determine the optimal threshold value for absence-data sampling.  

      We proposed an approach to offer a statistical means for determining the MD threshold for 

absence-data sampling. The MD is a normalized quantity. If the causal factors have a distribution 

that the p-variate Gaussian distribution can approximate, the MD follows a Chi-squared 

distribution with p-1 degrees of freedom. Even if the causal factors do not have an approximate p-

variate Gaussian distribution, the MD has an approximate Chi-squared distribution with p-1 

degrees of freedom, as long as the number of causal factors is large enough (Nader et al., 2014). 

Based on this assumption, a critical value can be determined for a specified significance level, 

such as the commonly adopted significance level of 0.05. For example, if we use 15 causal factors 

in our study, the critical value of the MD, i.e., an MD beyond which we would conclude a potential 

non-landslide location is a viable sample, is 23.69. That is, when the MD is greater than this critical 
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value, it is considered as an outlier or different enough from the rest of the data (Nader, 2014). 

Therefore, we use such a critical value to determine the locations for absence-data sampling.  

 

      Fig. 3.1 shows the flow chart of our proposed method. As stated above, n represents the number 

of available landslide locations, and p represents the number of causal factors. A critical value is 

determined based on the p-1 degrees of freedom. This critical value determines if a new point or 

location is a potential candidate for absence-data sampling. For any new candidate location, MD 

was calculated based on the mean value and the covariance matrix of the distribution of the causal 

factors of the n landslide locations. A location or point with an MD value greater than the critical 

value is designated as a safe zone for absence-data sampling.  

 

      To demonstrate the efficiency of this proposed method, we applied it to the landslide 

susceptibility mapping on three Upazilas (sub-district) of the Rangamati district, Bangladesh, and 

compare its derived landslide susceptibility map with the map produced based on a traditional 

slope-based method for absence-data sampling. 

3.3. Case Study 

3.3.1. Study Area and Landslide Inventory 

      This study focused on three Upazilas (sub-district) of the Rangamati district, Bangladesh: 

Rangamati Sadar, Kaptai, and Kawkhali (Fig 3.2). Rangamati Sadar is the largest city in this area. 

In June 2017, more than 100 people were killed by landslides in this district, and these three 

Upazilas were the most affected areas (Abedin et al., 2020). This district covers 1145 km2 (BBS, 

2011) with an elevation range from 7 to 576 m above mean sea level and a slope range from 0º to 

52º. The western part of the area has a comparatively gentle slope, while the west and central 

regions are relatively steep. The bedrock of this area comprises several geological formations, 

including Dihing, Dupitila, Girujan Clay, Bhuban, Bokabil, and Tipam Sandstone (Rabby et al. 

2020). Most of the area is covered by natural vegetation or plantation agricultural fields. Plantation 

agriculture and unplanned land use/land cover changes create conducive conditions, and intensive 

rainfall triggers landslides in this area (Ahmed, 2015; Abedin et al., 2020). 

      A total of 261 landslide locations (Fig 3.2) were recorded from January 2001 to January 2019. 

These landslides were collected by Rabby and Li (2020) based on the integrated field and Google 

Earth mapping and Rabby et al. (2020) based on Google Earth mapping.  
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3.3.2. Landslide Causal Factors 

      We used 15 landslide causal factors for landslide susceptibility mapping (Fig 3.3-3.4). The 

raster maps of these factors were prepared by Abedin et al. (2020) and Rabby et a. (2020). Table 

3.1 lists the factors, resolutions, types, and data sources of these raster maps. Since the resolution 

of most factors is 30 m, we selected 30 m as the resolution for the landslide susceptibility mapping. 

3.3.3. Absence-data Sampling 

      We derived the MD values for all landslide locations based on the 15 causal factors. MD value 

was ranged between 1.2 to 200.8 (Fig. 3.5). The degree of freedom for the Chi-square distribution 

of these 15 factors is 14, resulting in a critical value of 23.69 for the significance level of 0.05. We 

calculated the MD value for each location based on the mean and covariance matrix derived from 

the landslide locations and then applied this critical value to determine the sampling space for 

absence-data (Fig 3.5). Specifically, the locations where MD values are greater than the threshold 

are used for absence-data sampling to generate 261 absence-data randomly.  

      In comparison, we also used a slope-based sampling to determine the low landslide probability 

area for absence-data (Chen et al. 2018). The slope threshold is determined based on expert 

knowledge and judgment. Adnan et al. (2020) used the slope of <2º for absence-data sampling in 

Cox’s Bazar district of Bangladesh. Ali et al. (2021) determined areas where slope <3º for absence-

data sampling in their study in the Kysuca river basin of Slovakia. We used a threshold of slope<3º 

to randomly sample the 261-absence-data (Fig. 3.6).  

3.3.4. Landslide Susceptibility Mapping 

      We used the random forest model to produce the landslide susceptibility maps. The random 

forest model proposed by Breiman (2001) is an ensemble learning method (James et al., 2017). 

Bootstrap aggregation is employed in RF to select subsets of observation. It generates a set of 

decision trees (Zhu et al., 2019; Rabby et al., 2020) and decorrelates the trees (James et al., 2017). 

The ensembles of decision trees decided the class membership of the dependent variables based 

on the highest number of votes (Pham et al., 2020). While training the model, instead of using all 

the predictors, RF uses a random sample of predictors (James et al., 2017). There can be a couple 

of strong predictors in a study, and in splitting the trees, these predictors will have an influence. 

RF uses a subset of predictors to overcome this problem (Zhu et al., 2019; Rabby et al., 2020). 

Since all the datasets are not used in modeling, the unused data are known as out-of-bag (OOB) 

(Youssef et al., 2016). These unselected datasets are used in determining the error and importance 
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of the predictors in the model (James et al., 2017). We used the "randomForest" package in R to 

develop the RF model for the landslide susceptibility mapping (Liaw and Weiner, 2001).  

 

      As described earlier, we generated the same number of non-landslide locations (261). This 

produced a dataset of 522 (261: presence data; 261 absence-data). We divided the dataset into 

training (391: 75%) and validation datasets (130:25%) for the landslide susceptibility mapping. In 

the MD-based sampling method, we used all 15 factors for the landslide susceptibility mapping. 

We did not include slope in the landslide susceptibility mapping for the slope-based method 

because the absence-data were sampled based on the slope threshold. 

3.3.5. Evaluation of the model performance and consistency 

3.3.5.1. Performance Assessment 

      We used success and prediction rate curves and statistical index-based measures to assess the 

model performance. The success and prediction rates are produced by plotting the landslide 

susceptibility or probability on X-axis and cumulative percentage of landslides on Y axis (Cheng 

and Fabbri, 1999). In order to compare the success and prediction rates we used the area under the 

curve (AUC) method which shows the area in terms of percentage of area under the graph (Carrara 

et al. 2008).  The training dataset was used to calculate the area under the curve (AUC) of the 

success rate, and the validation dataset was used to calculate the AUC of the prediction rate. AUC 

values range from 0-100%. The greater the value, the better is the model. Generally, an AUC value 

>70% is considered as a fair model, and <50% indicates that the model is classifying the data 

randomly (Althuwaynee et al., 2016, Rasyid et al., 2016). The steeper is the curve the larger is the 

number of landlside locations fall into the most susceptible classes (Sterlacchini et al. 2011).  

 

      We also derived statistical index-based measures: true positive rate (TPR) (sensitivity), true 

negative rate (TNR) (specificity), and Kappa index. TPR measures the proportion of landslide 

pixels were classified correctly as landslide pixels by the model. TNR implies the proportion of 

absence-data that are correctly classified as absence-data by the model (Chen et al., 2017). Kappa 

index (Eq 2) is the ratio of observed and expected agreement, representing the model's reliability 

(Pham et al. 2020; Chen et al. 2017).  

𝐾𝑎𝑝𝑝𝑎 =
𝑃𝑜𝑏𝑠   − 𝑃𝑒𝑥𝑝

1 −  𝑃𝑒𝑥𝑝
… … … … … … … … … … … … … … … … . . (2) 
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Where  

Pobs= observed agreement 

Pexp= expected agreement 

 

𝑃𝑜𝑏𝑠      =  
𝑇𝑃 + 𝑇𝑁

𝑛
… … … … … … … … … … … … … … … … … . (3) 

 

𝑃𝑒𝑥𝑝     =  
(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃)(𝐹𝑃 + 𝑇𝑁)(𝐹𝑁 + 𝑇𝑁)

√𝑁
… … … … … … … … … … … … … … … … … . (4) 

 

Where 

TP= true positive 

TN=true negative 

FN=false negative 

FP=false positive 

n= proportion of pixel that are classified correctly 

N= the number of total training pixels 

Kappa index ranges from 0-1 where 0 indicates the agreement occurred due to random guess. 

Whereas 1 indicates perfect agreement. 

3.3.5.2. Consistency Assessment 

      The seed cell area index (SCAI) proposed by Suzen and Doyuran (2004) was used for the 

consistency assessment of the models. SCAI is the ratio between the areal extent of susceptibility 

classes and the percentage of landslides that occurred in the susceptibility classes and can be 

described as Eq 5. 

𝑆𝐶𝐴𝐼 =  
𝑁𝑖

𝑛𝑖
… … … … … … … … … … … … … … … … … … . . (5) 

where 

Ni= percentage of area under i susceptibility class 

ni= percentage of landslides under i susceptibility class 

 

SCAI value ranges from 0 to ∞. The smaller is the SCAI value, the more consistent the model is. 

SCAI value decreased from a very low susceptibility zone to a very high susceptibility zone 
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(Arabameri et al. 2020). This index determines whether landslide locations or pixels are spread 

over a very conservative areal extent (Sdao et al., 2013). It can identify whether a model is 

overestimating landslide susceptibility. If a model overestimates landslide susceptibility, it will 

classify most areas as high susceptibility zones, or the percentage of areas under high susceptibility 

zone will be comparatively higher than other zones. 

3.4. Results 

3.4.1. Variable Importance of the Causal Factors 

      Variable importance shows which causal factors have the most predictive power in a random 

forest model (Chen et al., 2017). In our proposed MD-based sampling method (Fig 3.7), elevation 

(100.0) was the most important causal factor, followed by the distance from drainage network 

(75.7), distance from the fault lines (66.1), slope (61.6) and geology (50.1). Factors like profile 

curvature (0.0), NDVI (11.0) has the least importance in the model. 

      In the slope-based sampling (Fig 3.7), TWI (100.0) was the most important causal factor. 

Followed by the distance from the road network (86.8) and elevation (49.7). TWI is a slope 

product, and since in slope-based sampling, the slope was excluded from the model, TWI became 

the most important causal factor. Factors like aspect (0.0), SPI (9.3), and PR (17.4) were the least 

critical causal factors. SPI is another slope product; since TWI became an essential causal factor, 

another slope product had less importance in the model. If we compare the variable significance 

of MD and slope-based sampling, it is evident that the sampling method impacts deciding the 

causal factor's significance. For example, in MD-based sampling, elevation is the most important 

causal factor, but it was the third most important causal factor in the slope-based sampling method.   

In MD-based sampling, comparatively smaller areas than the slope-based sampling were used for 

absence-data sampling. But it was spread over a large area. On the other hand, in the slope-based 

sampling Kaptai lake, areas near Kaptai lake and areas with gentle slopes in the southwest were 

designated as a safe zone for absence-data sampling. Therefore, landslide locations were the same, 

but the outcome was different because of the difference in absence-data sampling.  

3.4.2. Landslide Susceptibility Maps 

      Each landslide susceptibility map provides landslide probabilities from 0.0 to 1.0. We used a 

natural break method to classify the landslide probabilities into five susceptibility zones (Fig 3.8): 

very low, low, moderate, high, and very high. 
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      In landslide susceptibility map produced using proposed MD-based sampling, valleys in the 

southeast areas (Fig 3.8) near the Rangamati lake were classified as either low or very low 

susceptibility zones. High and very high susceptibility zones spread around the surrounding areas 

of the landslides. There were high susceptibility zones in the north-west of the study areas. These 

areas contain Chittagong-Rangamati highway. It is because distance from the road network had 

higher variable importance in the random forest model in determining the landslide susceptibility. 

Elevation and slope were the other two important causal factors and that’s why areas with 

comparatively higher elevation and steeper slope were classified either as high or very high 

susceptibility zones. At the same time distance from the fault lines was another causal factor which 

had comparatively higher variable importance in the model. In the study area there is a fault lines 

that stretched from the north-west to south-west and thus areas near to that fault was classified as 

either high or very high susceptibility zones.  

 

      On the other hand, for slope-based absence-data sampling Kaptai lake and areas near to the 

lake and some small patches in the south-east were classified as either very low or low 

susceptibility zones. From visual interpretation and comparison of slope and MD based methods 

it is evident that, in slope-based sampling method comparatively more areas were classified as 

either high or very high susceptibility zone than the MD-based sampling method. Some areas in 

the south east of the study area, were classified as low or moderate susceptibility zones but in 

slope-based absence-data sampling same areas were classified as either high or very high 

susceptibility zones. Moreover, in the study area, there is a fault line that stretches from the north 

west to south west. In this area elevation is also comparatively high than the other parts of the 

study area. In slope-based sampling these areas were classified as either high or very high 

susceptibility zone. But in MD-based sampling method in these areas there were patches of very 

high and high susceptibility zones. It did not classify the whole area as either high or very high 

susceptibility zones like the slope-based sampling method.  

3.4.3. Performance of Landslide Susceptibility Maps 

3.4.3.1. Success and Prediction Rates 

      In MD-based sampling the success and prediction rates (Fig 3.9.a) were 88.4% and 86.21% 

respectively. On the other hand, in slope-based sampling the success and prediction rates (Fig 
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3.9.b) were 89.51% and 88.71% respectively. For both success and prediction rates slope-based 

sampling outperformed MD-based sampling by 1.24% and 2.90%. Generally, the performance of 

a model is evaluated based on the prediction rate or how well it will predict the unknown 

landslides. From this perspective, the slope-based sampling is slightly better. However, the 

prediction and success rates are in good category of 80.0–90.0% in both the sampling methods, so 

that the difference in accuracy is not significant. From visual interpretation we can see that slope-

based sampling classified comparatively more areas as high or very high susceptibility zones. 

These results suggest that the slightly high accuracy of the slope-based sampling is likely caused 

by the fact that this method classified more areas as high or very high susceptibility zones, an 

evidence of overestimation of landslide susceptibility of the slope-based sampling.  

3.4.3.2. Statistical Index based Measures 

      For MD-based sampling TPR and TNR (Table 3.2) were 0.93 and 0.92, respectively. It means 

MD-based sampling method had same accuracy in differentiating the absence and presence data 

of landslides. TPR and TNR were 0.89 and 0.87 respectively for the validation data set. For the 

training dataset, the model attained strong agreement (Kappa >0.8), but for validation, the Kappa 

value was 0.75, which is moderate agreement.  

In slope-based sampling for training dataset, TPR and TNR (Table 3.2) were 0.94 and 0.93, 

respectively. Like MD-based sampling, here the model showed similar performance in 

distinguishing absence and presence data. For validation dataset TPR and TNR were 0.90 and 0.93, 

respectively. Here, for unknown data, the model was 3.33% more accurate in detecting absence-

data than detecting presence data. Kappa indices for the training and validation dataset were 0.84 

and 0.83, respectively. Generally, the model that have the lowest difference in accuracy between 

the training and validation dataset is the best model.  

3.4.3.3. Seed Cell Accuracy Index (SCAI) 

      SCAI assesses the consistency and desirability of the landslide susceptibility model. The SCAI 

value will decrease from very low to very high susceptibility zones (Arabameri et al., 2019). The 

model that has the lowest SCAI value for the very high susceptibility zone will be the most 

desirable (Abedini and Tulabi, 2018; Arabameri et al., 2019). It means the model will classify the 

least percentage of the area as a very high susceptibility zone, and most of the landslides will fall 

in this zone. 
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In the landslide susceptibility map produced by the MD-based sampling method, around 58.0% of 

the study area was classified as very low or low susceptibility zones, while around 35.0% of the 

study area was classified as high or very high susceptibility zones. The SCAI values decreased 

from 28.21 to 0.13 with the increase of the susceptibility from very low to very high. This indicates 

that the susceptibility map is consistent, and it classified a significant portion of the study area as 

very low or low susceptibility zones. A landslide susceptibility model overestimates landslide 

susceptibility when it cannot effectively differentiate high and low susceptibility zones. In 

particular, it misclassifies many low landslide susceptible areas to high susceptibility zones. This 

reduces the consistency and practical applicability of the model. The SCAI value of the MD-based 

model is low (0.13), indicating that it classified very few areas as high susceptibility zones where 

most of the landslides occurred. Therefore, the model is consistent.  

      In the landslide susceptibility map produced by the slope-based sampling, around 42.0% of the 

study area was classified as low or very low susceptibility zone, and around 46.0% of the study 

area was classified as high or very high susceptibility zones (Table 3.3). Compared to the MD-

based sampling, the slope-based sampling classified almost two times more areas to high and very 

high susceptibility zones. Both slope and MD based sampling gave similar accuracy, but the 

landslide susceptibility map produced by the slope-based sampling classified almost half of the 

area as high and very high susceptibility zones. This indicates that the slope-based model may 

classify more low susceptible areas to high susceptible zones, a sign of overestimating landslide 

susceptibility. The SCAI value decreases with the increase of susceptibility. The SCAI value is 

0.43 for the very high susceptibility area, which is 3 times of the SCAI value for the same zone 

produced by the MD-based sampling. Therefore, the landslide susceptibility map produced using 

the slope-based sampling is not as consistent and desirable as the map produced by the MD-based 

sampling of absence-data.  

3.5. Discussion 

      We assessed the MD-based absence-data sampling method and compared it with the slope-

based method for landslide susceptibility mapping. The MD values were compared with the chi-

square distribution to determine the threshold for absence-data sampling. In MD-based sampling, 

the absence sampling space was spread over the entire study area. Since the whole dataset 

including landslide locations and 15 causal factors, the use of this sampling method does not bias 

towards any specific landslide location. Several other distance-based matrices like similarity index 
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have been used for absence-data sampling (Zhu et al. 2019), but it is still unclear how to choose 

the critical value to determine the safe zone. Our proposed method provides an objective means to 

determine the critical value based on the Chi-square distribution of the MD values of the landslide 

locations and a user-specified confidence level.  

      The slope-based threshold has been commonly used for absence-data sampling. However, 

unlike the MD-based sampling, it is impossible to determine the critical value for the slope-based 

sampling because the degree of freedom is zero. In our comparison study, the size of the sampling 

space based on the threshold of slope < 3º was comparatively larger than the MD-based sampling, 

but the sampling space was more clustered in the Kaptia lake and its nearby area. Therefore, the 

absence-data based on the slope threshold were sampled only from these clustered areas, while 

absence-data was sampled from a variety of areas in the MD-based method. The slope-based 

sampling classified most areas as either very high or very low susceptibility zones. It also classified 

some landslide free zones as vulnerable zones, overestimating the landslide susceptibility of the 

area (Hong et al. 2018; Zhu et al. 2010).  

      The slope-based sampling has been widely used in landslide susceptibility mapping 

(Althuwaynee et al., 2014; Tsangaratos and Bernados, 2014). Some studies have also included 

slope in the model although it has already been used for absence-data sampling. The double 

counting of the slope factor likely produced a biased model. We recommend that when the slope 

is used in absence-data sampling, it should not be included in the model.  

      Success and prediction rates and statistical measures are generally used for accuracy 

assessment, and in most cases, the consistency and desirability of the map are ignored 

(Althuwaynee et al., 2014; Abedini and Tulabi, 2018; Zhu et al. 2019; Rabby et al. 2020). The 

threshold based on which the safe zone is determined generally depends on the accuracy (Zhu et 

al., 2019). However, the landslide susceptibility map may lose its consistency because the higher 

accuracy can be achieved by increasing the areas of high and very high susceptibility zones 

(Abedini and Tulabi, 2018). Therefore, both accuracy and consistency should be assessed. Our 

study showed that MD-based sampling provides a landslide susceptibility map with satisfactory 

accuracy and consistency. In contrast, the slope-based sampling may increase the accuracy, but 

damage the consistency because the model classified most areas as high susceptibility zones 

(Abedini and Tulabi, 2018). 
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      For our proposed MD-based sampling method, the MD values can be compared with a 

probability distribution and a confidence level to determine the critical value. In contrast, the 

determination of the slope threshold is subjective. Our proposed method reduces the subjectivity 

in choosing the threshold. Our proposed method is more statistically robust and scientifically 

viable than the slope-based sampling.  

3.6. Conclusions 

      This study proposed an objective MD-based absence-data sampling method for landslide 

susceptibility mapping. We compared our proposed method with a commonly used slope-based 

absence-data sampling in producing landslide susceptibility maps based on a random forest model. 

Our results indicate that the landslide susceptibility map produced using the MD-based method is 

satisfactory in accuracy and consistency. Our proposed approach is less subjective because the 

critical value was determined based on a Chi-square distribution and a user-specified significance 

level. On the other hand, the slope-based sampling is subjective and results in a biased model 

towards the slope. We recommend excluding the slope from the model if it is used in absence-data 

sampling. Although the slope-based method produces a better accuracy for landslide susceptibility 

map in terms of AUC and statistical indices, the SCAI values indicated this method overestimates 

landslide susceptibility. The slope-based absence-data sampling method depends on the 

researcher's judgment and is based on one landslide causal factor. In contrast, multiple factors are 

used in MD-based absence-data sampling to determine the sampling space. Therefore, our 

proposed MD-based sampling method is more objective ad statistically robust than the slope-based 

method. It can be used for landslide susceptibility mapping in other areas, especially where 

landslide inventory is not representative for the whole region.  
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Appendix  

Table 3.1. Landslide Causal Factors used in this Study 
Factor Name Type Data Source Resolution Reasons to choose 

Elevation Geophysical Abedin et al. 

(202) 

30m Geomorphic, environmental, and 

anthropogenic processes depend on 

elevation (kanwal et al. 2016). 

Slope Geophysical Abedin et al. 

(2020) 

30m With the increase of slope probability of 

slope failure increase (Chen et al. 2019). 

Plan 

Curvature 

Geophysical Abedin et al. 

(2020) 

30m Affects the concentration of water over 

the surface after rainfall and thus can 

control the pore pressure of the soil 

(Ayalew and Yamagishi, 2005). 

Profile 

Curvature 

Geophysical Abedin et al. 

(2020) 

30m Affects the concentration of water over 

the surface after rainfall and thus can 

control the pore pressure of the soil 

(Ayalew and Yamagishi, 2005). 

Aspect Geophysical Abedin et al. 

(2020) 

30m Aspect involves how much sunlight an 

area will receive. Consequently, it has 

effects on several geomorphic processes, 

including erosion and evapotranspiration 

(Chen et al. 2018). 

TWI Hydrological Rabby et al. 

(2020) 

30m Represents stream power of erosion 

(Kanwal et al. 2016). 

SPI Hydrological Rabby et al. 

(2020) 

30 m Represents stream power of erosion 

(Kanwal et al. 2016). 

Distance from 

Road 

Network 

Anthropogenic Rabby et al. 

(2020) 

1000m Road construction in the hilly areas alters 

the structure of the landscape, increasing 

the probability of landslides (Kanwal et 

al. 2016). 

Distance from 

Drainage 

Network 

Hydrological Rabby et al. 

(2020) 

1000m The probability of landslides is generally 

high near the stream network (Chen et al., 

2018). 

Distance from 

the Fault lines 

Geological Rabby et al. 

(2020) 

1000m Fault lines show the zones of weakness 

where the probability of landslides is 

high (Rabby and Li, 2020). 

Geology Geological Rabby et al. 

(2020) 

1000m Geological formations: Dihing and Dupi 

Tila are susceptible to landslides 

(Ahmed, 2015). 

Rainfall Hydrological Abedin et al. 

(2020) 

1000m Excessive rainfall in a short time acts as a 

triggering factor (Althuwaynee et al., 

2014). 

Normalized 

Difference 

Vegetation 

Index (NDVI) 

Environmental Abedin et al. 

(2020) 

30m It shows the vegetation health and in a 

vegetated surface probability of landslide 

is low (Kanwal et al. 2016). 

Land 

use/Land 

cover (2018) 

Environmental Abedin et al. 

(2020) 

30m One of the main driving factors of 

landslides in the study area (Abedin et al. 

2020). 

Land 

use/Land 

cover change 

Environmental Abedin et al. 

(2020) 

30m The rate of land use land cover change is 

high in the study area which creates 

conducive condition for landslides 

(Rabby et al. 2020). 
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Table 3.2. Statistical Measures of Random Forest Model for Different Thresholds of 

Mahalanobis Distance 

Sampling 

Method 

Dataset TPR TNR Kappa 

MD-based Training 0.93 0.92 0.86 

 Validation 0.89 0.87 0.75 

Slope-based Training 0.94 0.93 0.84 

 Validation 0.90 0.93 0.83 
 

 

 

 

Table 3.3. SCAI Values for each Susceptibility Zones of Mahalanobis Distance-based Landslide 

Susceptibility Mapping 

Sampling 

Method 

Susceptibility Area (%) Landslide (%) SCAI Index 

Mahalanobis 

Distance-based 

Very Low 33.57 1.19 28.21 

 Low 24.87 4.76 5.22 

 Moderate 19.34 15.87 1.22 

 High 15.10 21.83 0.69 

 Very High 7.12 56.35 0.13 

Slope-based Very Low 32.55 0.0 - 

 Low 9.41 2.38 3.95 

 Moderate 8.63 3.97 2.17 

 High 15.67 13.10 1.20 

 Very High 33.75 80.56 0.42 
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Fig 3.1. Flow Chart of the MD based Absence-data Sampling 
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Figure 3.2. Study Area: Locations of Three Upazilas (Rangamati Sadar Kaptai and Kawkhali) 
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Fig 3.3. Landslide Causal Factors: a. Elevation; b. Slope; c. Plan Curvature; d. Profile Curvature; 

e. Aspect; f. TWI; g. SPI; h. Distance from the Road Network; i. Distance from the Drainage 

Network; j. Distance from Fault Lines 

 

 

Fig 3.4. Landslide Causal Factors: a. Geology; b. Rainfall; c. NDVI; d. Land use/Land cover; e. 

Land use/Land cover Change 
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Fig 3.5. Spatial Distribution of Mahalanobis Distance (MD) and Sampling Space 
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Fig 3.6. Absence-data Sampling Area based on Slope-Based Sampling 
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Fig 3.7. Variable Importance Plot of Random Forest Model Based on MD and Slope-based 

Absence Data Sampling 
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Fig 3.8. Landslide Susceptibility Maps based on the Random Forest Model using a. Mahalanobis 

Distance Based Absence-data Sampling; b. Slope-based Absence-data Sampling 
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Fig 3.9. Success and Prediction Rate of Landslide Susceptibility Map based on a. Mahalanobis 

Distance Method b. Slope based Sampling 
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Chapter 4 

Impact of Land use/ Land cover Change on Landslide Susceptibility in Rangamati 

Municipality of Rangamati District, Bangladesh 
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This chapter is a manuscript in preparation for Science of Total Environment. The use of “we” in 

this chapter refers to co-authors, Drs. Yingkui Li and me. As the first author, I conducted the 

fieldwork and data analysis and wrote the manuscript. 

Abstract 

       Landslide susceptibility depends on various causal factors, such as geology, land use/land 

cover (LULC), slope, and elevation. Unlike other factors that are relatively stable over time, LULC 

is a dynamic factor associated with human activities. This study evaluates the impact of LULC 

change on landslide susceptibility in the Rangamati municipality of Rangamati district, 

Bangladesh, based on three LULC scenarios: the existing (2018) LULC; the proposed LULC 

(proposed in 2010, but has not been implemented yet); and the simulated LULC of 2028 using the 

artificial neural network (ANN) based cellular automata. The random forest model was used for 

landslide susceptibility mapping. The model showed good accuracies for all three LULC scenarios 

(Existing: 82.7%; Proposed: 81.4%; and 2028: 78.3%) and strong positive correlations (>0.8) 

between different landslide susceptibility maps. LULC is either the third or fourth most important 

factor in these scenarios, suggesting a moderate impact on landslide susceptibility. Future LULC 

changes likely increase the landslide susceptibility with up to 14.5% increases in the high 

susceptibility zone for both proposed and simulated LULC scenarios. These findings would help 

policymakers carry out proper urban planning and highlight the importance of considering 

landslide susceptibility in LULC planning.  
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4.1. Introduction 

      Landslides cause damage to infrastructure and casualties worldwide. As a representation of the 

spatial probability of landslides over an area (Reichenbach et al., 2018; Samia et al., 2018) 

landslide susceptibility mapping is critical to mitigating landslide disasters (Fell et al., 2008; 

Guzzetti et al. 2012; Segoni et al. 2018). Landslide susceptibility maps are produced using 

landslide inventory and causal factors (Guzzetti et al., 2005; Zhu et al., 2019; Dou et al. 2020). 

Landslide inventory shows the locations of landslides while landslide casual factors create suitable 

conditions for landslides (Ayalew and Yamagishi 2005; Guzzettie et al. 2012). Various statistical 

and machine learning models, including logistic regression, linear discriminate analysis, random 

forest, support vector machines, decision tree, extreme gradient boosting (XGBoost), frequency 

ratio, and certainty factor, have been used for landslide susceptibility mapping (Ayalew and 

Yamagishi, 2005; Nefeslioglu 2008; Bai et al. 2010; Regmi et al. 2014; Budimir et al. 2015; Zhang 

et al. 2018; Zhu et al. 2019; Rabby and Li, 2020). These models explore the relationships between 

landslide occurrences and causal factors to determine the spatial probability over the area 

(Althuwaynee et al., 2014; Dou et al., 2016; Reichenbach et al., 2018). Simple statistical models 

like logistic regression, frequency ratio, and certainty factor can produce easily understandable 

results with satisfactory accuracy (Ayalew and Yamagishi, 2005; Abedini and Tulabi, 2018). 

Advanced machine learning models like random forest and artificial neural network (ANN) 

usually produce much higher accuracy but less interpretability (James et al., 2013).  

      Landslide causal factors can be categorized into geological factors including lithology and 

distance from the fault lines, physiographic factors, such as slope, aspect, plan curvature, and 

profile curvature and environmental factors, like land use/land cover (LULC) and distance from 

the river (Kanwal et al. 2016). Geological and physiological factors are generally considered as 

static because they are relatively stable. In contrast, environmental factors, particularly LULC, are 

dynamic (Reichenbach et al., 2014). Different LULC types have different impacts on landslides. 

For example, vegetation usually stabilizes the slope because tree roots hold the soil together. 

Removing vegetation, either naturally or by anthropogenic activities, can create a conducive 

condition for landslides (Reichenbach et al., 2014). Similarly, infrastructural development like 

road construction alters slopes and causes landslides (Abedin et al. 2020).  

      Several studies have assessed the impact of LULC change, mainly deforestation, on landslide 

susceptibility (Genet et al., 2008; Reichenbach et al., 2014; Chen et al., 2019). Mainly associated 
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with agricultural activities, deforestation increases the weathering and erosion processes and 

ultimately increases the landslide susceptibility of an area (Mao et al., 2014). Chen et al. (2019) 

assessed the impact of LULC on landslide susceptibility based on decade wise LULC maps. 

Reichenbach et al. (2014) assessed the impact of different LULC scenarios on the landslide 

susceptibility in the Briga catchment of Messina, Italy. However, these studies simply used 

different LULC scenarios for the assessment without the consideration of the role of the LULC 

changing trend on the landslide susceptibility. 

      In recent days, machine learning methods have been used to simulate LULC change and the 

transitional potential of LULC types (Deng et al. 2009; Karimi et al., 2019; Hasan et al., 2020). 

The simulated LULC has been considered as the business as usual (BAU) scenario and this 

scenario reduces the subjectivity (Reichenbach et al. 2014; Mao et al. 2014; Chen et al. 2018). At 

the same time, LULC planning has been adopted to minimize the effects of natural hazards. 

Although it is generally assumed that planned LULC mitigates the impacts of natural hazards, few 

studies have evaluated the effects of a planned LULC on landslide susceptibility.  

      In this study, we assessed the impact of LULC change on the landslide susceptibility of 

Rangamati municipality, Bangladesh. Landslides occur mainly in the Chittagong Hilly Areas 

(CHA) (Ahmed 2015; Rabby and Li, 2019) in Bangladesh, especially in the three urban areas of 

Chittagong Metropolitan Area (CMA), Cox’s Bazar, and Rangamati municipalities. These urban 

areas suffer from unplanned LULC change (Rahman et al., 2016; Rabby and Li; 2019; Abedin et 

al., 2020). Therefore, it is critical to assess future LULC changes on the landslide susceptibility in 

the Rangamati municipality. We evaluated the change of landslide susceptibility using the 

proposed LULC plan and simulated the LULC of 2028 (BAU). Specifically, this study helped 

answer the following research questions: a) what would be the landslide susceptibility scenario in 

BAU condition of LULC change and b) can planned LULC change prevent the increase of 

landslide susceptibility in the study area? 

4.2.  Materials and Methods 

4.2.1. Study Area 

      Rangamati municipality (Fig 4.1) is the administrative headquarter of the Rangamati district. 

It covers approximately 64.8 km2 of the area between 22º37’60 N and 91º2’0 E. The total 

population is around 150000, six times more than its carrying capacity. Population density is about 
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200 people/ km2 (BBS, 2011). The elevation ranges from 0 to 195 m above sea level. The 

vegetation covers 75%, and water bodies cover 18% of the study area. Half of the study area is 

inhabitable, and that’s why people clear forests and cut the hills to spread settlements and build 

new infrastructures (Prothom Alo, 2017). The maximum and minimum annual average 

temperatures are 36.5º C and 12.5 º C, respectively. The average annual rainfall is around 2673 

mm, and (BBS, 2011).  

      Rangamati municipality is prone to landslides, and during June-July 2017, 73 people died due 

to landslides (Prothom Alo, 2017). The excessive monsoon rainfall triggered the landslides in a 

very short period (Abedin et al., 2020; Rabby et al., 2020). In the study area, population density 

has been doubled in the recent two decades because people migrated to this city (Prothom Alo, 

2017). Due to the proximity to the Kaptai lake and natural scenic landscapes, tourism industries 

have started to grow. In recent years, plantation has become common in the city's western part 

(Abedin et al. 2020). Natural vegetation has been removed for plantation, increasing soil erosion 

(Prothom Alo, 2017). Unplanned LULC, infrastructural and tourism development and agriculture 

have increased the risk of landslides in this area.  

4.2.2. Landslide Susceptibility Mapping 

4.2.2.1. Landslide Inventory 

      We used 65 landslide locations (Fig 4.1) for susceptibility mapping. These landslides occurred 

during June-July 2017 and were mapped in the field. The same number of non-landslides (absence-

data) were generated from the comparatively safer zones based on Mahalanobis distance-based 

absence-data sampling that we proposed in the previous chapter. These landslide and non-landslide 

locations were split into training (80%: 104) and validation (20%: 26) datasets.  

4.2.2.2. Landslide Causal Factors 

      In this study, ten landslide causal factors: elevation, slope, aspect, topographic wetness index 

(TWI), stream power index (SPI), distance from the drainage network, plan curvature, profile 

curvature distance from fault lines, and LULC were used. We selected 30-m as the resolution for 

the landslide susceptibility map because most causal factors are with this resolution.  

4.2.2.2.1 Relatively stable causal factors 

      Most causal factors we selected, except for the LULC, are relatively stable factors. The 

Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) (30m×30m) DEM was 
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used to derive elevation, slope, aspect, plan curvature, and profile curvature (Fig 4.2.a-e). The 

slope is considered one of the most important causal factors because with the increase of slope, 

landslide probability increases (Kanwal et al. 2016). Other factors like pore pressure and water 

drainage also depend on the slope (Zhu et al., 2019). Aspect represents the direction of the slope. 

Profile curvature is defined as the parallel to the direction of the maximum slope. In contrast, plan 

curvature is perpendicular to the direction of maximum slope (ArcGIS 2020). These three factors 

may not directly affect the landslide susceptibility but, together with other factors, can create 

conducive conditions for landslides (Ahmed, 2015; Kanwal et al., 2016). Distance from the 

drainage network (Fig 2f) was derived from the drainage network downloaded from GeoDash, an 

open-access geospatial database provided by Bangladesh's government. Both the Topographic 

Wetness Index (TWI) (Fig 4.3.a) and Stream Power Index (SPI) are hydrological factors associated 

with the runoff potential (Kanwal et al. 2016), and they were also derived from the DEM (Fig 

4.3.b). The map of fault lines from the Geological Survey of Bangladesh (GSB) was used to 

determine the distance from the fault lines (Fig 4.3.c). The closer distances to fault lines generally 

represent the weak locations with a high probability of landslides (Kanwal et al. 2016).  

4.2.2.2.1 Land use/Landcover 

      Different from the stable factors described above, LULC is a dynamic factor. Abedin et al. 

(2020) found that LULC affects the landslide susceptibility of the study area. In particular, 

anthropogenic activities like plantation agriculture and urban infrastructure development cause 

rapid LULC change. In this paper, we examined the impact of three LULC scenarios on landslide 

susceptibility: (a) the existing (2018) LULC; (b) a proposed LULC; and (c) a simulated LULC of 

2028. 

Existing LULC of 2018 

      A Landsat 8 OLI image during the dry season (11/29/2018) was used to classify the LULC of 

2018. The geometric and radiometric corrections were performed before the classification, and the 

image was reprojected to the Bangladesh Transverse Mercator System (BTM). We classified the 

image based on a modification of the Anderson Level-I scheme (Anderson, 1976). Before 

classification, all satellite data were studied using spectral and spatial profiles to ascertain the 

digital numbers (DNS) of different land use/cover categories. The classification scheme was 

established based on ancillary information of field survey, visual image interpretation, and local 
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knowledge of the study area. The classification of images was performed using a supervised 

maximum likelihood classification (MLC) algorithm. Based on the visual interpretation of the 

locations on Google Earth and the image itself, 60 polygons were digitized for each category. 

Using Rangamati district guide maps and Google Earth images, the land cover maps were 

validated. Four land-cover types, namely built-up, water bodies, vegetation, and bare land, were 

classified based on study area knowledge. Post-classification refinement was used to improve the 

classification accuracy (Dewan and Yamaguchi 2009). A 3*3 majority filter was also applied to 

reduce the salt-and-pepper effect to the classified maps (Lilesand and Kiefer 1999). 

      The classification accuracy was assessed using field data and the geographical features on land 

use maps, topographic maps from the survey of Bangladesh, and visual interpretation of very high 

spatial resolution data from Google Earth. The Landsat-derived classified images' total accuracy 

was 96%, with a corresponding kappa coefficient of 0.93. The user’s and producer’s accuracies of 

individual classes were ranging between 73-100% and 89-100%, respectively. The accuracy meets 

the standard of 85-90% for LULC mapping studies, as suggested by Anderson et al. (1976). 

Proposed Land use/ Landcover 

      The second LULC scenario is a proposed LULC map by the town planning unit of Rangamati 

municipality under the “Urban Governance and Infrastructure Improvement Project.” This 

proposed LULC has not been implemented yet. We aimed to assess whether the proposed LULC 

map can reduce the landslide susceptibility. The communication with urban planners of the 

municipality and the stakeholders indicates that the landslide susceptibility or the landslide risk 

was not considered when proposing the LULC map. However, all the rules of urban planning were 

used during the preparation of proposed LULC. For example, the new industrial and urban areas 

were proposed only in gentle slope areas.  

      We digitize this proposed land use map in ArcGIS. To be comparable with other LULC maps, 

we combined the LULC classes of the proposed map into four types: vegetation, water bodies, 

built up, and bare land.  

Simulated Land use/ Land cover 

      The third LULC scenario is a simulated LULC in 2028. For LULC simulation, it is necessary 

to determine the factors that drive the LULC change of an area. These LULC classes are controlled 
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by different factors (Hasan et al., 2020). For Chittagong Hilly Areas (CHA), Hasan et al. (2020) 

used four categories of influencing factors: socio-economic, proximity to building infrastructure, 

climate, geophysical, and environmental factors. Since Rangamati municipality is situated in CHA. 

Table 4.1 shows the factors and their data sources used in the LULC simulation of 2028 in this 

study.  

      An artificial neural network (ANN) based cellular automata (ANN-CA) model was used to 

simulate and predict the LULC of 2028 based on the LULC change between 2008 and 2018. We 

assumed that the trend and dynamics of LULC changes would continue till 2028 (the BAU 

scenario).  

      Table 4.2 shows the transitional probability matrix of different LULC from 2008 to 2018. It is 

based on the percentage of LULC change from 2008 to 2018. The values in the matrix range from 

0 to 1. The higher the value, the higher is the transitional probability of a land use type to convert 

into another type. The most active LULC type was vegetation and bare land since it had a higher 

probability of changing with (0.28) and built up (0.34). Waterbodies and built-up areas were the 

most stable type since Kaptai lake is a protected area in the study area. The probability of change 

of Kaptai lake is minimum. On the other built-up area will not convert back into vegetation or 

water bodies.  

      An open-source software package QGIS’s MOLUSCE (Modules for Land-use Change 

Evaluation) plugin, was used to implement the ANN-CA model. This plugin measures the 

percentage of change area for each LULC of a study area. The transitional potential, calculated 

using the percentage of the change of LULC and its relationship with the influencing factors (Table 

4.3), was used as the input in the cellular automata simulation of MOLUSCE plugins to predict 

future LULC (Saputra and Lee, 2019). ANN multilayer perception is used for transitional potential 

modeling, and the neural network had three layers: input hidden and output. In this study, eight 

exploratory variables were the input layers. Five hidden layers were used based on the 2n/3 

approach where n=8. The learning rate was 0.001. The transitional probability provided by the 

ANN model was used in the cellular automata (CA) simulation for predicting the future LULC of 

2028. In CA-based simulation, the composition and correlation of one cell with the surrounding 

cells are considered. CA-based simulation depends on the number of iterations, and the change of 
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LULC depends on the threshold value, ranging from 0 to 1. For a stable prediction, we set the 

threshold as 0.9 (Saputra and Lee, 2019).  

4.2.2.3. Random Forest Model and Accuracy Assessment 

      The random forest model was used for landslide susceptibility mapping. Random forest is a 

widely used model in landslide susceptibility mapping since it shows better prediction capability 

(Chen et al., 2019; Zhu et al., 2019; Rabby et al., 2020). Random forest uses bootstrap aggregation 

and selects samples from the training dataset to develop a classification tree (James et al., 2013). 

Out of the bag samples or the unselected samples are used to determine the error and the 

importance of the model's factors (Zhu et al., 2019). The random forest model gives prediction by 

integrating individual classification trees (Chen et al., 2019; Pham et al., 2020). This model 

depends on two hyperparameters ntree or the number of trees and mtry or the number of nodes 

splits. For a stable model, ntree can be a large value and mtry=E/3 where E is the number of 

independent variables. “randomForest” package of R 3.8 was utilized to carry out the random 

forest modeling (Liaward and Weiner, 2002).  

      The area under the success and prediction rate curves were used for model validation. The 

training dataset was used to calculate the area under the success rate curve (AUC), while the 

validation dataset was used to calculate the area under the prediction rate. The AUCs of success 

and prediction rates range between 0.5 to 1.0 or 50% to 100% (Althuwaynee et al., 2014). 90-

100% accuracy falls under the excellent category; 80-90% accuracy falls under the good category; 

70-80% accuracy falls under the moderate category, and <70% falls under the poor category 

(Abedini and Tulabi, 2018). Model validation using the AUCs only assesses the accuracies of the 

models. It cannot show whether LULC maps in three different scenarios bring any change in the 

landslide susceptibility maps. We conducted the correlation analysis between the maps using the 

band collection statistics tool in ArcGIS to compare the three landslide susceptibility maps. If the 

use of different LULC maps brings substantial change to the appearance and susceptibility of the 

study area, then it is expected to have a low correlation between the maps.   
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4.3. Results 

4.3.1. LULC Scenarios  

4.3.1.1 Existing LULC of 2018 

      In 2018 (Fig 4.4.b), around 48.9% (Table 4.3) of the study area was designated as waterbodies. 

The percentage of vegetation covered around 36.5% of the study area. The percentage of built-up 

area and bare lands were 8.2% and 6.5%, respectively.  

4.3.1.2 Proposed LULC  

      In the proposed LULC (Fig 4.4.d), around 38.4% were designated as either built-up areas or 

bare land. According to this proposed plan, some vegetation would be removed to develop 

industrial and commercial areas. Some areas in the southwest were designated as a fellow or bare 

land.  

4.3.1.3 Simulated LULC in 2028 

      LULC of 2028 was simulated based on the trend of change of LULC from 2008 to 2018 and 

their association with the eight explanatory variables. From 2008 to 2018, vegetation decreased by 

10.1% (Table 4.3), while bare land increased by 27.0% and built-up area increased by 88.9%. The 

increasing population and development of tourism industries are the reason behind the sharp 

increase of built-up area and decrease of vegetation. The simulated LULC pattern suggests that the 

build-up area would increase by 77.2%, and the bare land will increase by 54.8%. In contrast, 

vegetation would decrease by 4.9%, and the water bodies would reduce by 19.8% due to the 

conversion to the built-up or bare land.  

4.3.2. Landslide Susceptibility Mapping 

      The variable importance plot (Fig 4.5) shows that, for the existing (2018) LULC, elevation 

(100.0) is the most important causal factor, followed by distance from the fault lines (65.5), 

distance from the drainage network (55.4), and LULC (55.3). In the proposed LULC scenario, 

elevation (100.0) was the most important causal factor, followed by distance from the fault lines 

(74.9) and distance from the drainage network (54.0). In this scenario, the importance of LULC 

(23.9) was not as high as the existing LULC scenario. For the simulated (BAU) LULC of 2028, 

elevation (100.0) was the most important causal factor, followed by distance from the drainage 

network (51.1), and distance from the fault lines (50.8).  
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      Since elevation was the most important causal factor in the existing LULC scenario (Fig 4.6), 

areas with the higher elevation in the northwest and south-west regions were classified as either 

high or very high susceptibility zones. Simultaneously, the same areas near the built-up area were 

classified as either high or very high susceptibility zones. On the other hand, areas near the water 

bodies were classified as low susceptibility zones. For the proposed LULC map, the same areas 

were classified as either high or very high susceptibility zones. Moreover, high susceptibility zones 

spread around the classified high susceptibility zones by the existing LULC. In this scenario, the 

same areas near the water bodies and Kaptai lake were classified as moderate susceptibility zones. 

In the simulated LULC scenario (Fig 4.6), like the previous two models, the same areas were 

classified as high susceptibility zones and spread around the classified high susceptibility zones 

by the existing LULC. Like the proposed scenario, areas near the water bodies and the Kaptai lake 

were classified as moderate susceptibility zones because these areas were classified as the 

vegetation of built-up areas in the proposed and simulated LULC scenarios. In contrast, these areas 

were classified as water bodies in the existing LULC with low landslide probability.  

      In the existing LULC scenario (Table 4.4), 20.2% of the area was classified as high 

susceptibility zone. The high susceptibility zones were increased by 28.7% and 34.2% for the 

proposed and simulated LULC scenarios. Because only LULC was changed in three scenarios, the 

increase in the high susceptibility zones reflect the impact of LULC change, and its interaction 

with other factors.                                               

      The success (Table 4.5) (88.9%) and prediction rates (82.7%) were higher for the existing 

LULC than those of the other two LULC scenarios. The success rates are >80.0% for all scenarios. 

The prediction rates for the current and proposed LULC scenarios are relatively high (> 80%) than 

the rate for the simulated (2028) scenario (<80.0%). Table 4.6 shows positive correlations (>0.9) 

between the landslide susceptibility map produced for the existing LULC and the maps of 

proposed and simulated LULC scenarios. The variable importance of the random forest models 

shows similar ranking of the causal factors, resulting in high correlations between the landslide 

susceptibility maps. 

4.4. Discussion 

      In this study, we assessed the impact of LULC on landslide susceptibility mapping in the 

Rangamati municipality based on three LULC scenarios. The landslide susceptibility map for the 
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existing LULC has the highest accuracy. The landslide locations used in this study occurred mainly 

during June-July 2017 and likely have a closer relationship with the existing LULC than the 

proposed LULC and simulated LULC of 2028.  

      In our study area, LULC is not the most significant factor for landslides. However, due to its 

dynamic nature, it can affect landslide susceptibility (Chen et al., 2019). Well-planned LULC can 

limit the increase of high susceptibility zones, and the business-as-usual scenario can exacerbate 

the condition (Reichenbach et al., 2014). Therefore, LULC change affects landslide susceptibility 

in the future.  

      In Rangamati municipality, the LULC changing rate is comparatively higher than the other 

parts of the Rangamati district. The random forest model showed that landslide susceptibility 

would increase for both proposed and simulated LULC scenarios, but the increase is lower in the 

proposed scenario. This suggests that the proposed LULC scenario is more sustainable than the 

BAU scenario. Although landslide susceptibility was not considered in the proposed LULC, the 

urban planning rules and regulations applied to the proposed LULC do mitigate the increase of 

landslide susceptibility. As mentioned before, in proposed LULC, the area under the built-up areas 

will increase, but new built-up areas will be proposed only in areas with gentle slopes. In contrast, 

BAU is dependent on the past trend of the LULC change. If the LULC changing trend continues, 

LULC will likely elevate the landslide susceptibility much higher. The changes in the built-up and 

bare lands are similar for the proposed and BAU scenarios. In BAU, the analysis was conducted 

at the pixel level, leading to more sporadic changes. In contrast, the proposed LULC was vector-

based with large and continuous areas designated for a single LULC type. For example, the 

southwest portion of the study area includes four LULC types in the BAU scenario, but only two 

LULC types in the proposed LULC.  

      In future scenarios, BAU will increase the percentage of areas under high susceptibility zones. 

It is also evident that new high susceptibility zones will spread around the already classified 

susceptibility zones by the existing landslide susceptibility map based on LULC of 2018. It 

indicates that high susceptibility zones will not shift to an entirely new place; instead, it will spread 

around the previous locations.  

      Previous studies have found that LULC plays an essential role in determining the landslide 

susceptibility in this area (Rahman et al., 2016; Abedin et al. 2020). Our study confirmed previous 
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studies and suggested that the impact of LULC will increase in the future scenarios. The quality 

of the landslide susceptibility map depends on the quality and accuracy of landslide inventory and 

the causal factors (Kanwal et al., 2016; Guzzetti et al., 2012). In this study, 65 landslide locations 

were used for training and validating the models. These landslides occurred in 2017 and most of 

the landslides were near the settlement and other infrastructures like road networks. Because these 

landslides caused infrastructural damages and causalities, they were reported in newspapers and 

governmental reports. The resolution of the available satellite images was not high enough and 

some landslides may not be detected. Thus, the landslides were clustered in specific areas and may 

be not representative of the whole area. To reduce the biases, we excluded the factors like distance 

from the road network from the model. Due to the lack of high-resolution rainfall data, rainfall 

was not included as a causal factor in landslide susceptibility mapping. Geology is another critical 

factor that determines the susceptibility of an area. However, Rangamati municipality does not 

have a detailed geological map. Therefore, geology was excluded from the model.  

    This study only assessed the impact of LULC change on landslide susceptibility with the 

assumption that all other factors are unchanged. We acknowledge that other dynamic factors may 

also affect landslide susceptibility scenario. In particular, climate change may affect the pattern of 

rainfall, leading to the changes in landslide susceptibility. In our study area, landslides are mainly 

triggered by the intensive rainfall and climate change may result in more or less intensive rainfall 

events in the future. More studies are needed to assess the impact of climate change on landslide 

susceptibility.   

4.5. Conclusions 

      In landslide susceptibility mapping, geomorphic and physiographic factors like slope, aspect, 

plan curvature, profile curvature, and geology are static. On the other hand, LULC a dynamic 

factor and is related to human activities. We assessed the impact of LULC change on landslide 

susceptibility based on three scenarios: existing, proposed, and simulated LULC patterns. The 

random forest model showed that due to LULC change, landslide susceptibility would increase, 

and thus the percentage of high susceptibility zone would also increase. All models showed 

satisfactory accuracy (>80.0%) for both success and prediction rates. The landslide susceptibility 

maps produced using three LULC scenarios had a very strong correlation. Future landslide 

susceptibility would keep changing with high susceptibility zones spreading around the existing 

high susceptibility zones mainly in the urban areas and areas with high elevation in the north and 
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southeast of the study area. A proper LULC management plan should be implemented to minimize 

the increase of high susceptibility zones. This study highlighted that high susceptibility zone likely 

spreads around existing high susceptibility zones. Proper LULC management policy is necessary 

to mitigate the increase of the high susceptibility zones.  

      In this study, we did not use causal factors, such as geology, rainfall, and soil characteristics, 

in landslide susceptibility mapping due to data unavailability. We also did not consider climate 

change in the assessment. Therefore, the produced landslide susceptibility maps may have some 

bias and uncertainties. Future work is necessary to include more factors in the assessment and 

assess the impact of climate change on landslide susceptibility.   

      Our results suggest that the proposed LULC scenario may have relatively lower increase in 

landslide susceptibility compared to the BAU scenario. However, it is unclear if the proposed 

LULC minimize the landslide susceptibility. It is important to explore different LULC scenarios 

to minimize landslide susceptibility in LULC planning and management.  
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Appendix  

Table 4.1: Influencing Factors of LULC in Rangamati Municipality 

Factor Type Influencing Factor Data Source 

Socioeconomic Factors Population Density LandScan Project 

Proximity to Build 

Infrastructures 

Distance from the Road 

Network 

GeoDash 

 Distance from Urban Areas Landsat 8 

Climatic Variables Rainfall Bangladesh Meteorological 

Department (BMD) 

  Elevation ASTER (30m) 

 Slope ASTER (30 m) 

 NDVI Abedin et al. 2020 

 Distance from Drainage 

Network 

GeoDash 

 

Table 4.2: Transitional Probability Matrix of Different Land use/Land covers in the Rangamati 

Municipality from 2008 to 2018. 

LULC types Waterbodies Vegetation Bare land Built up 

Waterbodies 0.90 0.09 0.0 0.0 

Vegetation 0.04 0.36 0.28 0.34 

Bare land 0.0 0.01 0.93 0.06 

Built up 0.0 0.08 0.04 0.88 
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Table 4.3: Percentage of LULC Change in Different LULC Scenarios 

Scenario Year Waterbodies 

(%) 

Vegetation 

(%) 

Built-up (%) Bare land (%) 

 2008 50.2 40.2 4.3 5.1 

Base Year 2018 48.9 36.5 8.2 6.5 

Business as 

Usual (BAU) 

2028 40.8 30.7 14.5 10.6 

Proposed  46.7 19.2 14.9 19.2 
 

 

Table 4.4: Percentage of Area Under Different Susceptibility Zones Random Forest Model. 

Model Land use Susceptibility Area (%) 

Random Forest Existing Low 63.6 

  Moderate 16.2 

  High 20.2 

 Proposed Low 59.0 

  Moderate 15.0 

  High 26.0 

 2028 (Simulated) Low 53.0 

  Moderate 19.9 

  High 27.1 

  Moderate 6.6 

  High 28.9 
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Table 4.5: Success and Prediction Rates of Random Forest Models. 

Model Land use Data Success Rate Prediction Rate 

Random Forest Existing 88.9 82.7 

 Proposed 87.0 81.4 

 2028 84.1 78.3 

 

 

 

 

 

Table 4.6: Overall Correlation Between the Susceptibility Maps produced using Random Forest 

Model and Three Land use/Land Cover Scenarios 

Model Land use Existing Proposed 2028 

Random Forest Land use Existing Proposed 2028 

 Existing 1.00 0.92 0.93 

 Proposed 0.92 1.00 0.88 

 2028 0.93 0.88 1.00 
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Fig 4.1. Location of Rangamati Municipality in Rangamati District, Bangladesh 
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Fig 4.2. Landslide Causal Factors: a. Elevation; b. Slope; c. Aspect; d. Plan Curvature; e. Profile 

Curvature; f. Distance from the Drainage Network 
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Fig 4.3. Landslide Causal Factors: a. TWI; b. SPI; d. Distance from the Faultline; d. Land 

use/Land cover 
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Fig 4.4: Land use/ Land cover Maps: a. Land use/ Land cover of 2008; b. LULC of 2018; c. 

Simulated LULC (2028) d. Proposed Land use/Land cover 
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Fig 4.5: Variable Importance Plot for Random Forest Models based on Three LULC Scenarios 

 

 

 

 

Fig 4.6: Landslide Susceptibility Maps Based on Random Forest: a. Existing Land use/Land 

cover; b. Proposed Land use/Land cover; c. Simulated Land use/ land cover of 2028 
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Chapter 5 

Summary and Future Work 
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5.1. Summary and Major Findings 

      This dissertation research presented an integrated approach for landslide mapping using 

Google Earth and field mapping for CHA, Bangladesh. I also developed an MD-based absence-

data sampling for landslide susceptibility mapping and applied this method in the landslide 

susceptibility mapping of three Upazilas of Rangamati district, Bangladesh. Finally, the impact of 

LULC change on landslide susceptibility mapping was evaluated in the Rangamati municipality 

of Rangamati district, Bangladesh. 

      CHA is prone to landslides, but no landslide inventory is available for the whole region 

(Ahmed, 2015; Rahman et al., 2017; Ahmed et al., 2020; Rabby and Li, 2020). This study produced 

a useful landslide inventory of CHA, which can be used for landslide susceptibility mapping of 

the whole area. In CHA, landslide inventories are only available in cities and towns, such as 

Chittagong Metropolitan and Cox’s Bazar, based on field mapping (Ahmed 2015; Rahman et al. 

2016). In this research, I prepared a landslide inventory for the whole area using an integrated 

method. I identified 230 landslides in Google Earth based on six criteria in the study area. This 

Google Earth-based method has the advantage of mapping landslides in inaccessible areas (Rabby 

and Li, 2019).  This research also incorporated a 100-meter threshold-based accuracy assessment 

for Google Earth mapping (Galli et al. 2008). The accuracy of this mapping varies 69-88% based 

on the assessment of the two sites in the Chittagong Metropolitan Area (CMA) and Bandarban 

district. Five hundred forty-eight landslides were mapped using participatory field mapping 

(Samodra et al., 2018). In participatory field mapping, newspaper and government reports and 

published documents were used to determine where to carry out the field mapping. Then, the 

assistance of local people and stakeholders helped detect the actual location of landslides. 

Participatory field mapping helped identify and record landslides in urban areas, areas near road 

networks, and settlements. The combination of Google Earth mapping and participatory field 

mapping provided a detailed inventory with 730 landslides.  

      Landslide susceptibility mapping requires both presence (landslides) and absence (non-

landslide locations) data (Zhu et al., 2019); however, the selection of absence-data is usually 

subjective. This research introduced MD-based absence-data sampling. MD values were 

calculated for 261 landslide locations using fifteen landslide causal factors, including slope, aspect, 

plan curvature profile curvature, geology, and distance from the road network. These MD values 

were compared with the Chi-square distribution to determine the critical value in determining the 
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space for absence-data sampling. The landslide susceptibility maps produced by the MD-based 

and slope-based absence-data sampling using the random forest model showed similar prediction 

performance at the test sites of the three Upazilas of Rangamati district, Bangladesh. However, the 

MD-based susceptibility map is more consistent and practically applicable. The slope-based 

susceptibility map classified more areas as high susceptibility zone, resulting in comparatively 

better accuracy but less consistency. In addition, the MD-based absence-data sampling is objective 

and statistically robust because it is based on a theoretical distribution and a specific confidence 

level.  

       Different from relatively stable factors, such as geology, slope aspect, plan curvature, and 

profile curvature. LULC is a dynamic factor affected by human activities (Reichenbach et al. 2014; 

Abedin et al. 2020). This research used the existing LULC of 2018, a simulated LULC (2028; also 

called the BAU scenario), and a proposed LULC to evaluate the impact of LULC on landslide 

susceptibility in the Rangamati municipality. The model produced satisfactory landslide 

susceptibility maps for all three LULC scenarios. The high susceptibility zone increases by 28.7% 

and 43.1% for planned and simulated LULC scenarios. It seems that although landslide 

susceptibility was not considered in the proposed LULC, the high susceptibility zone does not 

increase as high as for the BAU scenario. Neitherless, landslide susceptibility likely increases in 

both LULC scenarios.  

5.2. Plans for the Future Work 

       This research established a criteria-based Google Earth mapping of landslides. Visual 

interpretation of Google Earth images was time-consuming and labour-intensive. In the future, 

automated methods can be developed in the Google Earth Engine to map landslides. The accuracy 

assessment used in this research can be applied to Google Earth Engine-based landslide mapping. 

The six criteria-based mappings can also be integrated into teaching to help the students develop 

knowledge on geomorphic analysis and visual interpretation of high-resolution images. High-

resolution satellite images were not available in the study area. If funding is available, commercial, 

very high-resolution satellite images can be acquired in the future. Deep learning and machine 

learning-based methods can be used to detect landslides in satellite images. 

Future studies can apply the MD-based absence-data sampling to various types of landslides in the 

world and evaluate the sensitivity of different confidence levels and casual factors. This research 

has demonstrated the impact of LULC change on landslide susceptibility and concentrated on the 
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change of all types of LULC. Future studies can assess the role of urban growth on landslide 

susceptibility. This study only considered LULC as a dynamic factor and treated other factors as 

static. In fact, climate change and its associated rainfall change are also dynamic factors. Future 

work is necessary to evaluate the impacts of climate change, especially the changing rainfall 

pattern, on the landslide susceptibility.  
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