
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

5-2021 

Characterization and Bechmarking of Quantum Computers Characterization and Bechmarking of Quantum Computers 

Megan L. Dahlhauser 
University of Tennessee, Knoxville, mlilly1@vols.utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

 Part of the Other Computer Sciences Commons, and the Quantum Physics Commons 

Recommended Citation Recommended Citation 
Dahlhauser, Megan L., "Characterization and Bechmarking of Quantum Computers. " PhD diss., University 
of Tennessee, 2021. 
https://trace.tennessee.edu/utk_graddiss/6659 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F6659&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=trace.tennessee.edu%2Futk_graddiss%2F6659&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=trace.tennessee.edu%2Futk_graddiss%2F6659&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Megan L. Dahlhauser entitled 

"Characterization and Bechmarking of Quantum Computers." I have examined the final 

electronic copy of this dissertation for form and content and recommend that it be accepted in 

partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in 

Energy Science and Engineering. 

Travis S. Humble, Major Professor 

We have read this dissertation and recommend its acceptance: 

Cristian D. Batista, Raphael C. Pooser, Bruce J. MacLennan 

Accepted for the Council: 

Dixie L. Thompson 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



Characterization and Benchmarking

of Quantum Computers

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Megan Lilly Dahlhauser

May 2021



c© by Megan Lilly Dahlhauser, 2021

All Rights Reserved.

ii



Dedicated to Terry Lilly, Jane Lilly, and Thomas Dahlhauser

iii



Acknowledgments

First and foremost, I would like to thank my advisor, Travis Humble. His wisdom, kindness,

patience, and encouragement have forever shaped the way I approach science and life. I

could not have asked for a better mentor, and I will be forever grateful for my time as his

student.

Thanks also to Ian Hincks, Dar Dahlen, Egor Ospadov, Joseph Emerson, and Joel

Wallman at Quantum Benchmark for their help in working with the True-Q software and

understanding its capabilities, and to Erik Nielsen at Sandia National Laboratories for help

in working with the pyGSTi software and getting experiments set up.

To my doctoral committee members, Cristian Batista, Bruce MacLennan, and Raphael

Pooser, for teaching some of my absolute favorite classes and providing such helpful advice

and feedback throughout my graduate school experience.

To Eugene Dumitrescu for being a wonderful mentor during my internships at Oak Ridge

National Laboratory. With his guidance, I learned how to approach scientific research and

gained so much experience in such a short time.

To Lori Davis, my calculus teacher for three of my four years at William Monroe High,

for being a significant reason I was able to succeed in math and science.

To Michelle Halsted, Erica Grant, Paul Kairys, and Elizabeth Piersall for being on this

graduate school journey with me.

“Modeling Noisy Quantum Circuits Using Experimental Characterization” authored

by Megan L. Dahlhauser and Travis S. Humble and published by the American Physical

Society in Physical Review A [1] (DOI: https://doi.org/10.1103/PhysRevA.103.042603) is

iv



reproduced in Chapter 4 under the Creative Commons Attribution 4.0 International license

(CC BY 4.0) [2]. Changes to the formatting have been made but the content is unchanged.

We acknowledge the use of IBM Quantum services for this work. The views expressed

are those of the authors, and do not reflect the official policy or position of IBM or the IBM

Quantum team.

v



Abstract

Quantum computers are a promising technology expected to provide substantial speedups to

important computational problems, but modern quantum devices are imperfect and prone

to noise. In order to program and debug quantum computers as well as monitor progress

towards more advanced devices, we must characterize their dynamics and benchmark their

performance. Characterization methods vary in measured quantities and computational

requirements, and their accuracy in describing arbitrary quantum devices in an arbitrary

context is not guaranteed. The leading techniques for characterization are based on fine-

grain physical models that are typically accurate but computationally expensive. This

raises the question of how to extend characterization efficiently to larger scales. We

present an empirical-based approach to direct characterization of quantum circuits that

reconciles accuracy with scalability by using a reduced set of test circuits that target a

chosen application and coarse-graining the noise modeling process to reduce the model

complexity. We show that this method performs well in tests with Greenberger-Horne-

Zeilinger-state preparation circuits and the Bernstein-Vazirani algorithm, though it does

not describe all error present in the system. We benchmark this method with the leading

methods of gate set tomography, cycle benchmarking, and Pauli channel noise reconstruction

to characterize quantum circuits and we compare the accuracy of these methods in predicting

quantum device behavior. We find that our method for empirical direct characterization

offers competitive accuracy when compared with finer-grained techniques, while significantly

reducing the resources required for characterization. By testing on quantum devices, we

quantify the quantum and classical resources required for each characterization method

and we monitor the decrease in accuracy as a function of circuit size. We find that

these characterization methods can provide an accurate estimate of a quantum computer’s
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performance on a benchmark but the best-performing method varied by test. Our results

indicate that these characterization methods perform well in describing the noise of a

quantum computer but their performance depends on the size and the context of the

application.
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Chapter 1

Introduction

Quantum computing has been heralded as a new form of computing capable of expanding

our technological capabilities beyond the reach of classical computing. As classical

computing reaches foretold limits, quantum computing is a potential alternative and

enhancement for computational ability. Operating on the fundamental properties of quantum

mechanics, quantum computers can harness unique characteristics such as superposition and

entanglement to enable new computational operations. Yet as quantum computers emerge

and gain use, the importance of characterization and benchmarking techniques to understand

and evaluate these devices becomes ever more apparent.

Quantum computing has garnered attention largely because several algorithms have

indicated that these devices could be used to find solutions to problems that evade even

the most advanced modern technology. One of the earliest and most prominent examples

is Shor’s algorithm, developed in 1994 [9]. This algorithm demonstrates how a quantum

computer may efficiently find the prime factors of any integer. There are no existing efficient

classical algorithms for this problem, although it has not been proven that none can exist.

But the presumed hardness of this problem has led to its inclusion in cryptographic schemes,

such that finding the factors of an integer used in encryption would ultimately provide

the means to decrypt encrypted messages. The discovery of an efficient means to factor

integers using a quantum computer launched development of quantum computers into a

global security concern over the safety of encryption techniques.
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Several algorithms for performing chemical simulations on quantum computing hardware

demonstrate that quantum computers may be able to efficiently solve many problems of

relevance to chemistry. One such example is the electronic structure problem which is the

study of the energy levels of a chemical system. Such problems are difficult for classical

computers because every additional constituent of a chemical system grows the complexity

of the wavefunction description exponentially [10]. Quantum computers, however, achieve

polynomial scaling in this problem growth, and this can largely be attributed to the fact

that a quantum computer is operated on the same fundamentals as the system in question–

namely, quantum mechanics, a compelling idea first made famous by Richard Feynman in

1981 [11]. Chemistry simulations constitute a majority of the use of modern supercomputers,

and speedups offered by quantum computers either as a separate device or hybrid solver can

have a huge impact on computational capabilities.

Another application of quantum computing that has received great attention is that of

machine learning. Machine learning is the process by which a computer attempts to “learn”

a pattern or make deductions based on statistical methods applied to input data. Several

quantum algorithms exist which indicate achievable speedups to machine learning using

quantum computers. A quantum support vector machine, a technique which searches for

a hyperplane that bisects data into two classifications with maximum margin of separation

and probability of successful classification, could experience exponential speedup compared

to classical implementations. Similarly, quantum principal component analysis, a method

which reduces the dimensionality of data based on identifying the prominent trends and

correlations of the data, could also experience exponential speedup [12].

These are some of the most prominent and promising examples of what we might use

quantum computers to do. More examples exist and more are likely to be found as research

continues to advance our understanding of the capabilities of quantum computing [13]. Our

goal in pursuing quantum computing is nothing short of running these algorithms. The

applications for which quantum computing offers us an advantage over classical computing

are the reason to chase progress in quantum computing. Advantages gained from quantum

computers will likely manifest by either making previously intractable problems accessible or

in significantly reducing the resources required. This is particularly important in the realm of
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computational energy consumption, for example, which is projected to outpace total global

energy production within just a few decades [14].

Early examples of quantum computers have been emerging rapidly and undergoing even

more rapid testing and experimentation. Made up of quantum bits (qubits), some prominent

examples are those based on superconducting qubits and ion trap qubits, although several

other types of qubits have found success as well. In experiments, quantum computers have

successfully factored the integer 291311 [15], calculated the ground state of a water molecule

[16], and implemented a quantum support vector machine on handwriting recognition [17].

While none of this challenges what classical computers can do, this early stage gives us a

glimpse of what quantum computers might do someday.

This stage has come to be known as the “Noisy Intermediate-Scale Quantum” era, or

NISQ [18]. Practically, the NISQ era is a hardware-focused stepping-stone on the path to

quantum advantage. As the name suggests, the two major hallmarks of the NISQ era are

noise and small size. Every example of a NISQ-era device, of which there are many, is

susceptible to some level of noise and has a relatively small register of qubits. Some of the

most prominent examples are those produced by IBM [19], Rigetti [20], IonQ [16], Google

[21], and University of Innsbruck [22]. These devices have on the order of tens of qubits and

noise that manifests as error rates that vary by several orders of magnitude per device and

operation.

Understanding the dynamics of quantum computers and their ultimate capabilities

necessitates gaining in-depth knowledge of the machines themselves. Developing appropriate

metrics for quantum devices is therefore vital, especially in the NISQ era. The prevalence of

noise, the rapid growth in device size, and the pressing question of what NISQ devices are

capable of compel development of methods for understanding quantum devices at every level,

from qubits to processors to networks. For example, a quantum computer using quantum

error correction codes can operate at an arbitrarily low error rate so long as the error rates

in the physical qubits are below a particular threshold defined by the codes in use. This

property, referred to as fault tolerance, would of course be highly valuable for a quantum

computer, but determining error thresholds and tracking progress requires knowledge of the

error behaviors in quantum devices [23]. Characterization and benchmarking are crucial for
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understanding the capabilities and challenges of NISQ devices and charting a path forward.

Delineating the motivations and use cases for characterization and benchmarking methods

provides the necessary foundation for this discussion, and Fig. 1.1 outlines these terms, which

include characterization, verification, validation, benchmarking, and meta-metrics.

Characterization methods determine the effects of noise and control on a quantum system.

This provides the information needed to model quantum circuits and includes data such as

error rates and associated noise models. A primary use case of characterization methods is

estimating noise models to describe behavior of quantum devices in experiment, but other use

cases include error mitigation or low-level routing [24]. Characterization of quantum devices

represents the lowest-level information about the device and is therefore a foundation upon

which other metrics may be based.

Verification evaluates how well the controls perform a desired operation, typically up to a

certain threshold of precision. Verification methods are used to confirm that an application

circuit is designed correctly. An example of this is process fidelity, which measures how close

an operation implemented in experiment is to the expected ideal operation. In practice,

verification processes have a strong overlap with characterization techniques, since defining

how well an operation is performed is clearly related to the error rates of the operation.

However, the distinction between these two terms relates to the importance of defining

metrics such as fidelity to evaluate the performance of low-level operations. While error

rates inherently connect to a type of noise model, the measured process fidelity is more

general as it indicates the overlap between the noisy and noiseless operations independent

of a selected noise model.

Validation methods are used to confirm that an application implementation is executed as

designed. Validation demonstrates that a quantum computer can be applied to a particular

problem. The quantum supremacy experiment, an example problem that pits quantum and

classical computers against each other, is one such example [21]. This experiment confirmed

that a quantum computer could successfully execute a clearly defined application circuit.

Benchmarking methods evaluate performance metrics that are defined for specified

conditions. In particular, benchmarks measure the performance of a quantum computer

on a selected application in such a way that the resultant metric may be used to compare
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Figure 1.1: Different methods of evaluating the efficacy and performance of quantum
devices, from the lowest to highest levels of information. For example, characterization
methods provide information about the error rates of gates acting on individual qubits in a
quantum register, while benchmarks represent high-level performance tests.
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different devices’ performance in a meaningful way. Analyzing the solution quality of an

algorithm executed on a quantum computer can be considered a performance benchmark.

Benchmarking methods may seem to overlap with validation methods. However, while

benchmarks may be used to evaluate performance across quantum computing schemes,

validation techniques confirm that a quantum computing instance executed a performance

test as designed.

Lastly, we also consider “meta-metrics” to evaluate the performance of different examples

of all of these metrics. The complexity and nascence of quantum computing at this stage

warrant consideration of the efficacy of the characterization, verification, validation, and

benchmarking techniques that we develop and use. For example, measurements of the

efficiency or accuracy of different methods can be considered meta-metrics.

We focus on the evaluation of characterization techniques for quantum computers. We

assess the effectiveness and accuracy of various methods of characterization by applying

these methods in experiment on quantum computers. We analyze the results by comparing

against simulated and expected results and report metrics based on a well-defined use case.

We select as our use case the estimation of noise models which describe the behavior of

the quantum device in experiment. In addition, we establish a direct connection between

the characterization results and performance on a chosen benchmark and evaluate metrics

of these techniques, such as scalability and accuracy. From these metrics, we compare

characterization methods, evaluate their performance, and draw conclusions about their use

in the NISQ era and beyond.
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Chapter 2

Fundamentals

Quantum computers are made of quantum bits called qubits, which may be in any state

described by

|ψ〉 = α |0〉+ β |1〉 (2.1)

where the basis states |0〉 and |1〉 represent two levels of a quantum system and the coefficients

α and β represent the amplitudes, or probability distribution (|α|2 and |β|2), of those two

states. While in classical computing it is possible and often necessary to inspect the value

of a particular bit, it is a principle of quantum mechanics that it is not possible to exactly

determine the values of α and β by measurement. In general, measurement of quantum

states is described by a set of measurement operators {Mm} where the probability of result

m is

pm = 〈ψ|M †
mMm |ψ〉 (2.2)

and the state after measurement is
1
√
pm
Mm |ψ〉 (2.3)

In the quantum computing context, measurements are often projection operators in the

computational basis, i.e. M0 = |0〉 〈0| and M1 = |1〉 〈1|. When a qubit in state |ψ〉 =

α |0〉 + β |1〉 is measured in this basis the result will be either 0 with a probability of |α|2

or 1 with probability |β|2. Additionally, this measurement changes the quantum state–if the
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result is 0, the qubit’s new collapsed state is effectively |0〉, meaning it can be modeled as a

classical bit.

Measurements described by measurement operators Mm can be defined as a set of

operators Em such that

Em = M †
mMm (2.4)

and these operators form a set {Em} which is called a POVM for Positive Operator-Valued

Measure. POVMs are a special case of the general definition of quantum measurement

given by Eqs. 2.2 and 2.3. This formalism is often used in analysis of the probabilities of

measurement outcomes in instances where the state after measurement is not needed or

known. This is because POVMs provide the mathematical means to measure an ensemble

of quantum states and correctly distinguish among those states some of the time.

To express quantum states of multiple qubits, the computational basis must increase. A

two-qubit state may be described as

|ψab〉 = α00 |0a0b〉+ α01 |0a1b〉+ α10 |1a0b〉+ α11 |1a1b〉 (2.5)

for qubits labeled a and b where the square of each α coefficient gives the probability of

obtaining the associated state result from measurement. The number of amplitudes needed

to describe the quantum state scales as 2n, exponential in the number of qubits n. The

number of amplitudes needed to express the state of 270 qubits would be more than the

number of particles in the observable universe, yet these states happen in nature all the

time. These enormous amounts of data are constantly calculated and evolved through time

with incredible speed and perfect precision. Harnessing this natural computational power is

part of the tantalizing promise of quantum computing [23].

These |0〉 and |1〉 basis vectors may be written as

|0〉 =

1

0

 , |1〉 =

0

1

 (2.6)
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and we may write the quantum state |ψ〉 as

|ψ〉 = α |0〉+ β |1〉 = α

1

0

+ β

0

1

 =

α
β

 (2.7)

Just as the qubit is the quantum analogue to the classical bit, quantum gates are analogues to

classical logic gates. It is a postulate of quantum mechanics that the evolution of a quantum

state is described by unitary operators such as the Pauli operators X, Y , and Z,

X =

0 1

1 0

 , Y =

0 −i

i 0

 , Z =

1 0

0 −1

 (2.8)

which we use to express quantum gates in quantum computing. For example, the X gate

would act on a single qubit quantum state as

X |ψ〉 = X
(
α |0〉+ β |1〉

)
=

0 1

1 0

α
β

 =

β
α

 = α |1〉+ β |0〉 (2.9)

which is analogous to the classical NOT gate, flipping 0 to 1 and 1 to 0. Because quantum

states are represented by linear combinations of basis states, quantum gates can also affect

the relative phase, such as the Z gate which performs the following operation on a single

qubit quantum state:

Z |ψ〉 = Z
(
α |0〉+ β |1〉

)
=

1 0

0 −1

α
β

 =

 α

−β

 = α |0〉 − β |1〉 (2.10)

This operation does not have a classical analogue. Also unlike classical computation,

quantum computing is inherently reversible. Any unitary operator has an inverse that is also

a unitary operator, and therefore every quantum gate can be ‘undone’ by another quantum

gate.
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Multi-qubit states and gates can be expressed by vectors and matrices of larger

dimensions. For example, we may write the two-qubit state

|ψab〉 = α00 |0a0b〉+ α01 |0a1b〉+ α10 |1a0b〉+ α11 |1a1b〉 =


α00

α01

α10

α11

 (2.11)

where we have taken

|0a0b〉 =


1

0

0

0

 , |0a1b〉 =


0

1

0

0

 , |1a0b〉 =


0

0

1

0

 , |1a1b〉 =


0

0

0

1

 (2.12)

Multi-qubit operations are then matrices acting on these state expressions. For example, a

controlled-X gate, which is a common two-qubit gate also called a controlled-NOT (cnot)

gate, operates as

cnot
(
|ψab〉

)
=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




α00

α01

α10

α11

 =


α00

α01

α11

α10

 (2.13)

The cnot gate has the effect of flipping the state of qubit b if the state of qubit a is |1〉, and

has no effect if the state of qubit a is |0〉. Qubit a is labeled the control qubit and qubit b is

labeled the target qubit.

In come cases, multi-qubit states are inseparable, i.e. |ψab〉 6= |ψa〉 |ψb〉. One example

is the state |ψ〉 = 1√
2
(|00〉 + |11〉). States which cannot be expressed as a product of their

component states are called entangled, and the entanglement property is unique to quantum

mechanical systems.
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Qubits and gates interact in quantum circuits, which we may pictorially represent in

diagrams similar to the one in Figure 2.1. Qubits are typically labelled as qn for n = 0 to size n

of the quantum register, which is generally the size of the physical quantum processor. Qubits

are operated on by quantum operators represented as icons on a quantum “wire”. Each

wire represents the evolution of the qubit state through the circuit until final measurement

produces a classical bitstring.

The language of quantum states, gates, and circuits implies that quantum computing is

constrained to perfectly understood mathematical formalisms, but typically this is not the

case due to the presence of noise. Noise in quantum computers can originate from sources

which generally vary with the type of hardware but can include improper control of the

device, thermal activity, or qubit instability [23]. Regardless of the source, noise generates

errors which can be calamitous for computation, and remains the biggest overall threat to

quantum computing development.

Errors are not a concept unique to quantum computing. In the early days of classical

computing, scientists and engineers were convinced that error correction would be absolutely

necessary when devices reached a number of bits on the order of billions, trillions, or far more,

as we have now. After all, even an incredibly low error rate of 1 in a trillion can become

catastrophic for computers made of many times that number of bits. But surprisingly, this

fear never came to fruition as manufacture of classical hardware proved to be far more reliable

and controllable than originally expected [23].

In quantum computing, we may yet reach such a stage of highly reliable and controllable

hardware such that error correction and noise mitigation are not needed for effective

computing. But based on current knowledge and experiment we are a long way from

that, even if it is achievable. For one, qubits are naturally more delicate and prone to

error by design than their classical counterparts. In order to take advantage of quantum

entanglement, a key aspect for quantum computation, qubits must be easily entangled. Yet

that characteristic in turn makes it likely for qubits to become entangled in undesirable

ways such as with other qubits or with the qubits’ environment, which creates uncontrolled

and unanticipated behaviors in the computer. Additionally, it is more difficult to detect

quantum errors than classical errors because probing the quantum state may cause it to
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qa X • |1〉

qb |1〉

Figure 2.1: An example of a quantum circuit diagram. Qubits a and b, labeled qa and qb,
respectively, are initialized to state |0〉 and operated on by Xa and cnota→b. The result of
measurement (without the presence of noise) is shown with a double line, indicating “classical
wires” in contrast to the single line “quantum wires” connecting the qubit operations in the
circuit.
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collapse. Furthermore, because classical computing consists of encoding into states 0 and 1

the only observable errors are bit flips, where a 0 is incorrectly reported as 1 and vice versa.

Errors in quantum computers are more complicated, since they may impact not just the

states |0〉 and |1〉 but also their coefficients α and β, leading to a virtually infinite number of

ways an error may affect the state of a qubit. Moreover, noise in quantum systems may be

Markovian, which is uncorrelated and stochastic by nature, or non-Markovian, which might

be correlated, temporally dependent, or influenced by the circuit context [25].

The language used to describe the impact of noise in a quantum system is often density

matrices. This formulation is similar mathematically to the state vector formulation used in

Eq. 2.1, but allows for more flexibility in certain situations. For example, the density matrix

formulation is a natural expression for both pure and mixed states. As with Eq. 2.1, pure

states are known exactly, and under the density matrix formalism Eq. 2.1 can be written as

ρ = |Ψ〉 〈Ψ| =

α
β

(α∗ β∗
)

=

αα∗ αβ∗

βα∗ ββ∗

 (2.14)

Mixed states describe a combination of pure states in an ensemble, which can be defined as

the density matrix

ρ ≡
∑
i

pi |ψi〉 〈ψi| (2.15)

for each state |ψi〉 which the quantum system is in with respective probability pi. With the

density matrix formalism quantum operations are defined as

ρ′ = ε(ρ) (2.16)

where the operation ε can be operations such as unitary transformations or measurements.

For example, applying an X operator to the state ρ is expressed as

εX(ρ) = XρX† (2.17)

Density matrices are particularly useful in the discussion of quantum systems and their

environments and therefore typically convenient for investigating the effects of noise. Closed
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systems, i.e. quantum systems which are isolated from their surrounding environment, may

be described with unitary transforms while open systems, i.e. quantum systems comprised

of a principle system interacting with its environment, generally cannot. Specifically, for a

state ρ which is coupled to its environment while operated on by some transformation U ,

it cannot be assumed that the final state ε(ρ) relates to the original state ρ by a unitary

transformation. Rather, the reduced state of the system without the environment may be

expressed by

ε(ρ) = Trenv[U(ρ⊗ ρenv)U †] (2.18)

This expression assumes that the state ρ and its environment are separable but generally this

is not the case. However, this picture is still useful in many scenarios practical to quantum

computing.

The operator-sum representation is a mathematically convenient way to describe

quantum operations on open systems. This representation rewrites Eq. 2.18 as

ε(ρ) =
∑
k

〈ek|U
[
ρ⊗ |e0〉 〈e0|

]
U † |ek〉 (2.19)

=
∑
k

EkρE
†
k (2.20)

where the operator elements Ek = 〈ek|U |e0〉 operate on the state space of the principle

system. These elements must satisfy

∑
k

E†kEk = I (2.21)

which is true for all trace-preserving quantum operations [23].
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Chapter 3

Characterization Methods

Several different characterization techniques for quantum computers have been developed

to address varying needs. The primary driving needs in the characterization space are the

information supplied by the protocol and the efficiency of the protocol in the quantum

computational characterization problem.

Currently, quantum computing characterization protocols can be divided into three tiers

delineated by characterization goal and acquired information [26]. The first tier provides

the most information about the quantum processor and can be used to develop a highly

detailed model, with a tradeoff in resource consumption and scalability. This includes

tomography processes (quantum state [27], quantum process [28], gate set [29], randomized

benchmarking [30]), robust phase estimation [31], and Hamiltonian estimation [32]. The

second tier represents protocols which focus on developing descriptions of certain error rates

to reduce resource consumption and improve scalability while sacrificing some amount of

information gained about the system. This includes coarse-graining techniques such as

direct fidelity estimation [33], randomized benchmarking [34], and cycle benchmarking [6].

The final tier is that which focuses solely on quantum processor performance, and does not

attempt to make statements about the low-level operations. This includes more holistic

characterizations such as quantum volume [35], volumetric benchmarks [36], and the use of

specific quantum circuits or applications as estimations of performance [37].

The suite of characterization methods for quantum devices provides a spectrum of

tradeoffs in information gain versus scalability of resource consumption, an example of

15



which is shown in Fig. 3.1. Scalability is becoming a determining factor for the choice of

characterization techniques. Because tomographic techniques can provide a full description

of a quantum operation, these methods would render any other method unnecessary if not

for their inefficiency in characterizing more than a handful of qubits at a time. As quantum

hardware rapidly increases in size well beyond handfuls of qubits, we are reaching regimes

which require scalable methods for characterization.

We select three protocols for characterization: gate set tomography, cycle benchmarking,

and empirical direct characterization. These three methods have commonalities that we

take advantage of in evaluating performance. Gate set tomography (GST) and cycle

benchmarking (CB) have similar goals, i.e. they are both focused on characterizing a quantum

process or operation. Empirical direct characterization (EDC) also intersects with this goal,

in estimating error rates for selected quantum gates. Moreover, all three methods share a

common language. From GST, we calculate the Pauli transfer matrix of a process, and from

this we extract information about the effective noise channels in the process as well as its

fidelity compared to the expected operation. Cycle benchmarking yields the process fidelity,

and we pair this with noise reconstruction (NR) protocols to produce effective Pauli noise

channels of the process [38]. Finally, using EDC we calculate estimates for selected noise

models tuned to experiment, which we select to match the noise models generated by CB

and GST to create a lateral comparison. To estimate the fidelity from EDC results, we

use the noise models in simulation and calculate an approximate fidelity for an operation

or subcircuit. Tables 3.1 and 3.2 summarize the primary characteristics of each selected

method.

Process fidelity and Pauli noise models are a common language among GST, CB, and

EDC and a basis for a benchmark of these benchmarks. We use protocols to estimate

these metrics and evaluate their performance with designed tests. To evaluate how accurate

each method is in characterizing the selected processes, we use estimated noise models in

simulation of the same process and compare simulation results to experiment results via

total variation distance.

To evaluate if these characterizations are capturing the fundamental behavior of the

device, we also test their accuracy in predicting results on new applications. We first
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Figure 3.1: Relationship among different characterization methods. In general, the more
information gained, the less scalable the method. This tradeoff is typically balanced based
on the experiment parameters. However, as quantum processors increase in size, scalability
will dominate as the primary motivation for characterization methodology selection and
development. This compels probing the accuracy and effectiveness of the most scalable
methods and continuing to develop highly efficient protocols for characterization.
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Table 3.1: Summary of the pros and cons of select characterization methods.

Method Strengths Weaknesses

GST
Less sensitive to state preparation
and measurement errors
Yields process matrix

Scales exponentially with register size

CB/NR

Robust to state preparation
and measurement errors
Scales approximately independently
of register size

Yields single metric (process fidelity)

EDC Efficient in quantum experiments Yields single metric (error rate)
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Table 3.2: Summary of the primary properties of each selected method for characterizing
quantum devices. Each method demonstrably characterizes at least as many qubits listed in
the “Characterization” column.

Method Characterization Quantum Resources Output

GST 1-2 qubits
Scales exponentially
in qubit count

Complete process matrix

CB/NR 1-20 qubits
Scales with randomization
parameters

Process fidelity
Pauli noise channels

EDC 1-27 qubits
Variable scalability
depending on application

Noise model of
selected noise channels
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select a performance test, e.g. a quantum algorithm that is not part of the characterization

methodology. To evaluate noise model estimates, we input the composite noise model of each

protocol into simulation and produce simulated results for our selected test. The closeness

of the simulated results to experimental results as measured by total variation distance

(TVD) defined in Chapter 4 by Eq. 4.1 demonstrates the protocol’s success in predicting

device behavior. We do a similar test to evaluate the process fidelity metric. By running

our performance test in experiment, we estimate the observed fidelity in experiment and

compare to the composite process fidelity estimated by our characterization protocols.

3.1 Gate Set Tomography

Gate set tomography (GST) is a method for extracting quantitative and qualitative

information about quantum gates implemented in a quantum computer [39, 29]. It arose as

an extension of quantum process tomography (QPT) [40, 41].

Quantum process tomography characterizes a quantum gate by generating an estimate

of the process matrix or the Pauli transfer matrix by measuring the components of a

quantum gate operating on a prepared quantum state. The QPT protocol assumes that the

quantum state preparation and the measurement are either known or error-free. However,

this is generally not the case in experiment, because state preparation and measurement

(SPAM) errors are prevalent in many, if not all quantum processing units (QPUs) to date.

Furthermore, in practice SPAM errors can often be the result of QPU components that QPT

would be used to characterize. Because of this, QPT can be inaccurate in realistic quantum

computing experiments. In particular, QPT can actually become less accurate as the gates

improve [40].

Gate set tomography rectifies this self-consistency problem by defining and characterizing

a set of gates that represents both the quantum gates of interest and the imperfect state

preparation and measurement operations. By characterizing the full set of gates at once,

GST is able to more accurately estimate the true quantum gates because SPAM operations

are characterized explicitly.
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Despite requiring more quantum experiments to gather the necessary information to

perform GST than quantum process tomography, the lessened sensitivity to SPAM errors

is expected to be vital for understanding how to utilize quantum error correction on near-

term devices. The degradation of QPT gate characterization results due to the influence of

SPAM can be highly problematic. This is particularly true for determining fault-tolerance

thresholds, which have stricter conditions on gate error than on SPAM error. Quantum

process tomography is unlikely to give accurate threshold estimates when SPAM error is

highly prevalent compared to gate error [29].

Gate set tomography completely characterizes

G = {|ρ〉〉, 〈〈E|, G0, ..., Gk} (3.1)

where |ρ〉〉 represents the initial state, 〈〈E| is a POVM, and each Gk is a quantum gate.

The set F = {F1, ..., FN} is defined as the SPAM gates which operate as |ρj〉〉 = Fj|ρ〉〉 and

〈〈Ei| = 〈〈E|Fi. Every Fn must be composed of gates from gate set G; therefore the set

G must include gates sufficient to compose the full set of states and measurements. One

example of such a gate set is G = {{}, Xπ/2, Yπ/2, Xπ} with F = G which includes the empty

gate {}. Each gate Gk can be reconstructed by measuring 〈〈Ei|Gk|ρj〉〉. The GST protocol

will characterize the full set G at once and only requires one initial state ρ and one final

measurement E.

The GST algorithm for one qubit is as follows [29]:

1. Initialize to state |ρ〉〉

2. For some i, j, k of i, j ∈ {1...N}, k ∈ {0...K} apply gate sequence Fi ◦Gk ◦ Fj

3. Measure POVM E which must be a positive semidefinite Hermitian operator with I−E

also positive semidefinite

4. Repeat steps 1-3 a large number of times n and per execution r record nr = 1 if

measurement is success or nr = 0 if failure

5. Average the results of step 4 to get mijk =
∑n

r=1
nr

n
which is a measurement of

expectation value pijk = 〈〈E|FiGkFj|ρ〉〉
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6. Repeat steps 1-5 for all i, j, k

7. Optional for additional independent measurements: repeat steps 1-5 to measure

expectation values pi = 〈〈E|Fi|ρ〉〉

3.2 Randomized Compiling

Randomized compiling is a method of transforming quantum circuits into a set of logically

equivalent circuits by utilizing randomly selected twirling operators [4]. First, a quantum

circuit is expressed in cycles, which are each a single time step of parallelized quantum

operators within the circuit with no more than one operation per qubit. These cycles are

decomposed into “easy” gates which are assumed to have low or negligible error rates and

“hard” gates which are assumed to have high error rates. Twirling operators are then

injected around the hard gates which have the effect of tailoring the noise in the system to

a stochastic Pauli channel. The injected twirling gates must be easy gates, and these are

compiled together with the other easy gates in the cycle such that they become a single

round of easy gates.

Randomized compiling can be used with a variety of twirling methods. We use Pauli

twirling, which is one of the most commonly used twirling techniques. Pauli twirling is a

method which turns a quantum operator into a Pauli channel,

TP (ε(ρ)) =
1

|P|
∑
P∈P

Pε(ρ)P † =
∑
P∈P

cPPρP
† (3.2)

where P is a Pauli matrix from the set P and the coefficients cP define the probability

distribution over the Pauli operators. The set P is defined as the Pauli matrices P⊗n for

n number of qubits in the system. The sampling set therefore grows exponentially in the

register size, so for systems with large n we may instead use randomized twirling,

TP (ε(ρ)) =
1

N

N∑
n=1

PnρP
†
n (3.3)
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where we select a limit of N operators from which to sample. In the limit of the highest

possible value of N = 4n, randomized Pauli twirling becomes equal to Eq. (3.2) [42].

Randomized compiling is implemented by adding gates from the twirling group, which

in our case are any Pauli gates from Eq. 2.8 and the corresponding correction operator such

that the overall unitary of the circuit is preserved. These added gates are compiled with

neighboring easy gates which reduces the impact of randomized compiling on the circuit

depth. This process is shown in Fig. 3.2. The final output of randomized compiling is a set

of quantum circuits with randomly applied operators. The results of a randomly compiled

quantum circuit are taken as the sum of the results over the set of these circuits.

Pauli twirling has been used in several different contexts in quantum computing,

from experiment reduction in characterization protocols to enhancement of computer

performance [42]. In randomized compiling, its purpose is to average the errors in the gate

implementations into a stochastic Pauli channel. This has several benefits. Stochastic Pauli

channels are more predictable and stable than other types of error such as coherent errors or

spatial correlations among quantum components. By averaging the effects of these types of

errors into a stochastic Pauli noise channel, we can estimate a description of the noise that

is less complex than that of the uncompiled circuit. Randomized compiling is also expected

to suppress error overall in the final results of compiled quantum circuits, at least in certain

error regimes. For instance, average gate error is reduced in the case of over-rotation noise

per gate with a factor of 10−2 difference in infidelity between easy and hard gates [4].

3.3 Cycle Benchmarking

Cycle benchmarking (CB) is a methodology for estimating the average process fidelity of a

specified quantum process [6]. It is based on defining a circuit in terms of cycles and utilizes

Pauli twirling to translate noise in a quantum system into a stochastic Pauli channel, as in

randomized compiling [4]. In CB, the benefit of Pauli twirling is to take advantage of this

uniform language by estimating the process fidelity under this common noise channel, leading

to the ability to benchmark progress and devices. Cycle benchmarking and randomized
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Figure 3.2: Graphical representation of randomly compiling a quantum circuit [4, 5].
Colored boxes represent easy gates; grey multi-qubit gates are considered to be hard gates
in this example. Starting with a quantum circuit in a) we inject twirling gates in b) which
are depicted by blue squares with dashed lines. Then in c) these gates are compiled together
to form a randomly compiled circuit. This process is repeated for a set of randomly selected
twirling gates to generate a set of n twirled quantum circuits which together represent the
randomly compiled quantum circuit.
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compiling are inextricably linked–CB provides a characterization of quantum processes in

the context of randomized compiling.

Pauli twirling is used in CB to randomize a cycle within a circuit to “twirl” noise effects

into a stochastic Pauli channel. In particular, for a process G in a target circuit, we can

apply Pauli twirling to the noisy process G̃ such that the implementation becomes

TP (G̃(ρ)) =
1

N

N∑
n=1

PnG̃(ρ)P †n (3.4)

In practice, errors occur in the state preparation and the measurement of the final state.

To make CB robust to SPAM, it incorporates multiple rounds of randomized Pauli sequences

and applications of the process G̃ and then extracts the overall process fidelity of G from

the decay of the fidelity as a function of the number of rounds of application.

Cycle benchmarking is implemented as follows [6]. For a noisy quantum process G̃, we

first select a set of n-qubit Pauli matrices which we define as set P. We also select two lengths

m1 and m2 which define how many applications or “cycles” we will use to benchmark G̃.

Because we do not want to change the logical output of the process G̃, we constrain m1

and m2 to values which satisfy G̃m1 = G̃m2 = I. Additionally, we define a length L which

determines the number of random sequences per P in P. Then for each Pauli string in P,

length m, and l ∈ {1, ..., L} we perform the following procedure:

1. Select m + 1 random Pauli cycles which are injected to create a randomized circuit.

The circuit can be expressed in three segments: a basis change to the selected Pauli

string P in P, m cycles of alternating random Paulis and applications of the process G̃

(starting and ending with a round of Paulis), and a basis change back which returns

to the original logical state.

2. Calculate the ideal (noiseless) outcome of the sequence

3. Implement the circuit in experiment and collect results
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4. Calculate the overlap between the experiment results C̃(P ) and the ideal outcome

C(P ) according to the expression:

fP,m,l = Tr[C(P )C̃(P )] (3.5)

5. Report the final composite process fidelity defined as:

F (G̃, G) =
∑
P∈P

1

|P|

(∑L
l=1 fP,m2,l∑L
l=1 fP,m1,l

) 1
m2−m1

(3.6)

Figure 3.3 [6] demonstrates this procedure.

3.4 Noise Reconstruction

In many ways, CB is an extension of randomized benchmarking. Noise reconstruction,

in turn, is an extension of CB. The generalization of NR therefore encompasses the basic

algorithms of CB, randomized benchmarking, and other related protocols.

Noise reconstruction is a protocol which enables estimation of process fidelities along with

the associated error probabilities. It stems from the relationship between Pauli fidelities fi

which measure how susceptible the Pauli operator Pi is to noise,

fi = 2−nTr(Piε(Pi)) (3.7)

and the Pauli channel expression of Pauli error rates pi which express the likelihood of the

occurrence of a Pauli operator Pi as an error on state ρ,

ε(ρ) =
∑
i

piPiρPi (3.8)

These two metrics–Pauli fidelities and Pauli error rates–are related via the Walsh-Hadamard

transform

fG = WG,Pnp (3.9)
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Figure 3.3: Graphical representation of the CB process. The green gates represent the
change of basis defined by the Paulis P , blue gates represent the randomized Pauli twirling
gates, and the red G̃ gate represents the cycle of interest. This figure is reproduced with no
changes from Erhard et al. [6] under the Creative Commons Attribution 4.0 International
license [2].
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for a group of Paulis G, where fG is the vector representation of the fidelities fg for elements

g ∈ G and p is the vector of Pauli error rates. The transform WG,Pn maps from group

Pn to G, where Pn is the quotient group of Paulis with its center. The columns of this

transform that correspond to Paulis that differ only by an element that commutes with all

g are interchangeable, and therefore cannot produce the necessary reconstruction between

fidelities and probabilities. Instead, we have to restrict the transform to the anticommutant

of the group G, such that

fG = WG,AG
pAG

(3.10)

In practice, applying the inverse Walsh-Hadamard transform to the fidelity vector can yield

the corresponding error probabilities [38].

The NR algorithm is described below [43].

1. Choose one- or two-qubit twirling sequences from the Clifford group (Hadamard, phase,

and/or CNOT gates)

2. Sample empirically to estimate the probability distribution from measurement out-

comes

3. Calculate the Walsh-Hadamard transform of this probability distribution

4. Fit these transformed values to the exponential decay Afm dependent on sequence

length m, yielding the fidelities f

5. Perform reverse transform and project onto probability vector, which will reconstruct

the entire list of effective qubit error rates

This procedure converges to the estimate of the average noise [38]. It scales polynomially

in the number of qubits and the number of error rates. But since the possible correlations

depends on the number of qubits, the number of error rates scales exponentially in the number

of qubits. To limit this scaling to polynomial rather than exponential, error correlations

are limited in range according to the physically-motivated constraints of error correlations

between a qubit and only its nearest neighbors as defined by the topology of the qubit

register.
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Chapter 4

Empirical Direct Characterization

The Empirical Direct Characterization method is introduced in “Modeling Noisy Quantum

Circuits Using Experimental Characterization” which is authored by Megan L. Dahlhauser

and Travis S. Humble and published by the American Physical Society in Physical Review A

[1] (DOI: https://doi.org/10.1103/PhysRevA.103.042603). It is reproduced here under the

Creative Commons Attribution 4.0 International license (CC BY 4.0) [2]. Changes to the

formatting have been made but the content is unchanged.

4.1 Introduction

Quantum computing is a promising approach to accelerate computational workflows by

solving problems with greater accuracy or using fewer resources as compared to conventional

methods [44, 45, 46, 47]. Testing and evaluation of early applications on experimental

quantum processing units (QPUs) is now possible using prototypes based on superconducting

transmons [48, 21, 49, 50] and trapped ions [51, 52, 53, 54] among other technologies.

Although these QPUs lack the fault-tolerant operations required for known computational

speed ups, they offer the opportunity to understand the behaviors of noisy quantum

computing [18].

Noisy, intermediate-scale quantum (NISQ) devices have enabled a wide range of early

application demonstrations [55, 56, 57, 58, 59, 21], but validating program performance in

the presence of non-reproducible device behaviors remains a fundamental challenge. NISQ
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devices are characterized by noisy and erroneous operations, where gate characterizations

often change in time and with the nature of the program being implemented [60, 61]. The

experimental characterization of individual gates has relied on high-fidelity physics models for

the underlying devices with common methods including quantum state tomography (QST)

[62], quantum process tomography (QPT) [63, 64], gate set tomography (GST) [41], and

randomized benchmarking (RB) [65, 66, 67]. Physics-driven characterizations offer valuable

insights into the underlying noise and errors that can inform the design of new devices

and control pulses. However, translating from gate-level characterizations to circuit-level

applications is typically resource intensive because these methods often scale exponentially

with the size of the qubit register to be characterized. [68].

As NISQ applications evolve toward deeper and wider quantum circuits, characterization

methods must also extend to these larger scales. There is also a growing need for

characterization techniques that can be executed swiftly and repeatedly to provide context-

specific characterization data. Resource-intensive, physics-driven gate characterization

techniques are not a scalable solution to characterizing devices and applications which are

rapidly increasing in size and generally do not allow for a high level of dynamic tuning.

Quantum circuit characterization methods may provide effective models of device behaviors

that are efficient to generate and easy to interpret by a supporting programming environment,

e.g., a compiler [69, 70, 71]. In particular, the validation of application behavior will require

debugging methods and programming techniques that support mitigating computational

errors in quantum circuits [72, 43]. Effective models of noisy gates and circuits have already

informed robust programming methods that lead to increased application performance

[73, 74, 75], but a general method for composing noisy quantum circuit models is still needed.

Here, we introduce methods for generating effective models for noisy quantum circuits

in NISQ devices derived from experimental characterization. Our approach is based on

modeling application-specific circuits using a suite of characterization tests that build a

representative set of noisy subcircuit models. We compose noisy subcircuit models to

generate noise models for more complicated circuits at larger scales, and we test the fidelity

of the resulting model against experimental data. We show how to iteratively adjust

the composite model selected for a noisy application circuit by comparing performance of

30



the predicted behavior against application observations using the total variation distance

(TVD) [73]. The iterative and flexible nature of this modeling approach is demonstrated

using applications based on GHZ-state preparation and the Bernstein-Vazirani algorithm for

search. We develop model composition for the fixed-frequency superconducting transmon

devices available from IBM, though we propose these techniques may extend to other NISQ

devices as well.

This characterization method is a coarse-grained yet fast approach to characterization

which scales linearly with the number of elements in the device, e.g. qubits and couplings.

Furthermore, it allows for dynamic tuning of characterization data to every execution of a

particular application and can be tailored to yield desired information, e.g. development of

a noise model using depolarizing parameters or performance of an entangling gate creating

an equal superposition. The tradeoff compared to physics-driven characterization techniques

is less total information received, which in some cases may result in a lower accuracy in the

final effective description of the device.

We present the steps in the modeling methodology in Sec. 4.2 followed by a series of

examples using the case of n-qubit GHZ states in Sec. 4.3. In Sec. 4.4, we present results

from experimental characterization for the GHZ state on NISQ QPUs and discuss the role

of model selection for characterization accuracy. In Sec. 4.5 we show the performance of our

noise models composed from this characterization on the GHZ state experimental results. In

Sec. 4.6, we apply these models to the case of the n-bit Bernstein-Vazirani algorithm, while

we offer final conclusion in Sec. 4.7.

4.2 Model Selection Methodology

We begin by detailing the coarse-grain modeling methodology before providing specific

examples of its implementation. Consider the input for noisy circuit modeling to be an

idealized quantum circuit C that is expressed in the available instruction set architecture

(ISA) for a given QPU [45]. While the gates defined by the ISA may not be directly

implemented within the QPU, the representation used for the ideal circuit will define the

operators available for gate characterization. The input circuit is decomposed into a set
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S(C) = {Si} of idealized subcircuits Si that each represent a subsection of the total area

of circuit C. The area of C is defined by its width (register size) and depth (length of the

operation sequence). The area of each subcircuit Si is defined by the selected subcircuit

width taken from C and the longest depth of the selected gate sequence. For example, a

circuit C composed of one- and two-qubit gates as shown in Fig. 4.1 may be decomposed

into a set S of two-qubit subcircuits which have depth of two gates and width of two qubits.

Circuit decomposition is not unique and a given decomposition is selected based on

tradeoffs in the cost of characterizing each subcircuit, prior knowledge of the suspected device

noise and error processes, and any potential structure or symmetry in the circuit design. A

complete characterization requires every gate and register element within the input circuit

to be included in at least one subcircuit. In general, the selected subcircuits need not be

disjoint. The ability to tune the decomposition enables coarse-graining of the noisy circuit

model, which is formed by composing the results from subcircuit characterization.

Next we test each subcircuit to characterize the noise present within the coarse-grained

area. Each test circuit specifies an idealized outcome based on the input state and gate

sequence for the subcircuit instance. We select test circuits to be informative yet limited in

both number and circuit dimensions in order to increase efficiency and improve scalability.

To test a subcircuit Si, we may select the full subcircuit Si provided the ideal outcome

is known, but we may select additional test circuits to gain more information and refine

our noise models. The set of test circuits T = {Ti} is therefore at least as large as S and

generally larger. For example, given a two-qubit subcircuit Si consisting of a one-qubit gate

followed by a two-qubit gate, we may select two test circuits–the first circuit consisting of

the one-qubit gate and the second circuit consisting of both gates.

The process for selecting test circuits T (S) = {Ti} for each Si follows a set of guidelines

detailed below.

1. Identify the components used in Si.

(a) Qubit register of size n with qubit identities qj ∈ {q0, q1, ..., qn}

(b) State preparation |ψj〉

(c) Measurement basis B
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Figure 4.1: An example of a subcircuit decomposition where subcircuit set S =
{Sblue, Sgreen}.
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(d) Gate sequence G

2. Generate measurement subcircuit Tmeas consisting of initialization of |ψj〉 and mea-

surement in B for each qj. If |ψj〉 is unknown or more tests are needed, select or

add the computational basis states |0〉 and |1〉. Additional input states may include

superposition states such as |ψ〉 = (|0〉 + |1〉)/
√

2 or randomly generated input states

|ψ〉 = α |0〉+ β |1〉.

3. Identify the set g = {gk} of the gates or gate compositions of G for which the expected

outcomes may be calculated for a given input.

4. Select set g′ for testing. Elements of g′ are gates from g or compositions of gates from

g which represent sequences of increasing depth from subcircuit Si. The selection of g′

may be based on tradeoff in the cost of characterization or informed by prior knowledge

of expected noise processes or iterative refinement, similar to subcircuit selection.

5. For each element g′k ∈ g′, generate a circuit Tk(g
′
k) which consists of initialization of

|ψj〉, application of g′k applied to the qj identified from Si, and measurement in B.

6. The set of test circuits is T = {Tmeas, Ti(g′k) ∀ g′k}.

The implementation and execution of test circuits on a QPU generates a corresponding set

of measurement observations. Each test circuit is executed multiple times to gather statistics

from the distribution of results Ri that characterize subcircuit Ti. The i-th characterization

is denoted as Hi = (Ti, Ri) and the set of all characterizations is given as H. The number of

characterizations is fixed by the number of test circuits |T |, while the number of measurement

observations acquired for each test circuit is set by the sampling parameter Ns. Assuming

the same sampling for all tests, then there are a total of Ns|T | measurement observations,

i.e., experiments, required for H.

The results of experimental characterization are used to formulate concise approximate

models of the subcircuits’ observed behaviors. We model each noisy subcircuit as the

idealized subcircuit followed by a quantum channel that accounts for the noise [76]. Let

the noisy subcircuit model Mi = M(Si, pi) representing subcircuit Si depend on model
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parameters pi. We estimate the channel parameters using the characterization Hi, where the

method of parameter estimation will vary with the selected model. Parameter estimation

may be either direct or optimized methods. For example, least-square error estimates may

be used to estimate parameters from noisy measurement observations by optimizing the

residual model error.

We quantify the error in the resulting models using the total variation distance (TVD)

[73], which is defined as

dtv(Hi,Mi) =
1

2

∑
k

∣∣∣r(Hi)(k)− r(Mi)(k)
∣∣∣ (4.1)

where r(Hi)(k) is the probability of the k-th outcome of the test circuit Ti and r(Mi)(k) is

the corresponding probability predicted by the noisy circuit model. The TVD vanishes as

the predictions of the model become more accurate in reproducing the observed results and

reaches a maximum of unity when the sets are completely disjoint.

After estimating the model parameters p = {pi} for all subcircuits, the corresponding

noisy circuit model M(C, p) for the input circuit C is composed. The method of composition

of the noisy subcircuit models is paired with the decomposition method to ensure a

consistent representation of the original input circuit. In the examples below, we consider

modeling methods based on independent noisy subcircuit models that permit separable

composition-decomposition methods and defer discussion of non-separable models, e.g.,

context-dependent noise, to Sec. 4.7.

Final selection of the noisy circuit model is then guided by the accuracy with which the

composite model reproduces the performance of the circuit C on the QPU. For clarity, we

define the actual executed circuit A = (C,Rc) with Rc the recorded results, and we measure

the accuracy of the noisy circuit model as dtv(A,M). The desired TVD sets an upper bound

on the threshold for model accuracy. If this user-defined threshold is not satisfied, selection

of the noisy subcircuit models is revisited. This iteration may include refinement of the

noisy subcircuit models to improve the accuracy of each Mi or redefinition of the circuit

composition-decomposition methods to manage the trade-offs in modeling complexity and

accuracy. The former requires repeated post-processing analysis of the characterization H,

35



whereas the latter requires additional characterization testing. In either case, model selection

continues until the threshold has been met. Once the accuracy threshold has been satisfied,

noisy circuit modeling is complete.

The noisy subcircuit models can then be tested for robustness in predicting the expected

outcome from both the input circuit and other circuits executed on the characterized device.

We again use TVD to measure the accuracy for selected models to characterize the behavior

of other application circuits within the same QPU context.

We summarize the complete procedure as follows.

1. Identify ideal circuit C.

2. Decompose the circuit into set S(C) = {Si} of ideal subcircuits Si.

3. Select set of test circuits T = {Ti} which define an input state and ideal outcome for

each element in S.

4. Propose a noisy subcircuit model Mi = M(Si, pi) for each element in S parameterized

by pi.

5. Implement and execute T on QPU to generate experimental characterizations Hi =

(Ti, Ri) using results Ri returned from QPU.

6. Using set of characterizations H = {Hi}, fit noise parameters pi based on calculated

expected probabilities for each Mi.

7. Compose the noisy circuit model M(C, p) for the target circuit and compare the actual

executed circuit A = (C,RC) with recorded results RC from the QPU to the noisy

circuit model using dTV (A,M).

8. If dTV is not at threshold return to 2, apply refinements to 2, 3, and 4, and continue

to 7 until threshold is met.

For step 8, refinements to step 2 include additional elements selected from the set g,

addition of compositions of elements in g such that the test components are larger, or

addition of elements to g not explicitly represented in G. Refinements to step 3 include
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additional initializations as test circuits. Refinements to step 4 include additional noise

model parameters pi or different noise channels to define M .

4.3 Application to GHZ States

We next illustrate the methodology of Sec. 4.2 using the example of a GHZ-state preparation

and measurement circuit. We generate noisy quantum circuit models for this application for

various circuit sizes executed on the IBM poughkeepsie QPU, which has a register and

layout as shown in Fig. 4.2. All data for characterization tests and applications is collected

in a single job sent to poughkeepsie, a process which typically required under 30 minutes

of execution time after queuing. As the poughkeepsie device is periodically calibrated, our

experimental demonstrations ensure that all data is collected within one calibration window

to preserve the QPU context. The software implementation of our examples below as well

as all experiment and simulation details such as subcircuits and noise models is available

publicly [77].

We consider the example of preparing the n-qubit GHZ state

|GHZ(n)〉 =
1√
2

(|01, 02, ..., 0n〉+ |11, 12, ..., 1n〉) (4.2)

where the subscript denotes the qubit and the schematic representation of the input circuit C

is given in Fig. 4.3. The instruction set for this circuit is limited to the one-qubit Hadamard

(H) and two-qubit controlled-NOT (cnot) unitaries along with the initialization and readout

gates acting on a quantum register of size n. We study this example for a range of register

sizes from n = 2 to 20 by composing a noisy circuit model that represents GHZ-state

preparation on a QPU based on superconducting transmon technology [78, 79]. This example

demonstrates the unique features of superposition and entanglement using a circuit depth

that is within the capabilities of the NISQ devices [80, 81].

We decompose the GHZ-state preparation circuit from Fig. 4.3 into a set of subcircuits

S based on the procedure detailed in Sec. 4.2. In this example, we identify a series of

overlapping 2-qubit subcircuits for coarse-graining the n-qubit state preparation. Spatial
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Figure 4.2: A graphical representation of the register connectivity in the poughkeepsie

QPU at the time of data collection, in which each node corresponds to a register element
and directional edges indicate the availability of a programmable two-qubit cross-resonance
gate.
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Figure 4.3: The schematic representation of the quantum circuit used for preparation of
the n-qubit GHZ state defined by Equation 4.2. The circuit layout satisfies the connectivity
constraints of the IBM poughkeepsie QPU shown in Fig. 4.2. The circuit uses a total of
n− 1 cnot gates and n measurement gates. Colored boxes denote subcircuit selections.
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variability in the device noise motivates a decomposition based on each register element qi.

We extend these subcircuits to generate a corresponding set of test circuits T by the set g

given as

g = {Hq0 ,cnotq0,q1} (4.3)

from which we select

g′ = {Hq0 , Hq0 ◦ cnotq0,q1} (4.4)

The expected outcomes of these particular test circuits are simple to calculate from the truth

tables for each operator [23]. We examine the models using these test circuits.

4.3.1 Noisy Measurement Model

We begin by characterizing the initialization and measurement test circuits, which are

necessary for modeling noisy unitary gate behavior. The measurement process for each

register element discriminates an analog signal to generate a classical bit [82], and errors

in signal discrimination may lead to the wrong value. Characterization of measurement

records the number and type of outcomes observed for each initial state. We characterize

each register element with respect to both the 0 and 1 output states. The leading errors in

the observed results occurs when the j-th register element maps an expected output value

to its complement, i.e., 0→ 1 and 1→ 0.

We model measurement of the j-th element as a binary process subject to errors which

act on the post-measurement classical bit string, and we consider two models for the

measurement error process: symmetric readout noise (SRO) and asymmetric readout noise

(ARO). The SRO model is defined by a single parameter psro that specifies the probability

for a bit to flip, and we define a test circuit to characterize this process as measurement

immediately after initialization to state |0〉. We directly estimate the value of psro from

the number of errors when preparing this computational basis state as psro = r(1), where

r(k) is the observed probability of k errors recorded. This model implicitly delegates

initialization errors to the readout error model. The SRO model is developed by test circuits

T = {Tmeas(|0〉)} where the final SRO model is defined by MSRO = M(Tmeas, psro).
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By contrast, the ARO model uses two parameters: p0 for the probability of error in

readout of |0〉 and p1 as the probability of error in readout of |1〉. The ARO model therefore

represents a refinement of both the noise model parameters pi and the test circuit suite T . We

may estimate p0 using the same test circuit above, but we must extend the characterization

to preparation and measurement of |1〉 to estimate p1. These additional test circuits will

require inclusion of the single-qubit X gate, and we also add a test circuit for the XX

operation of two successive X gates applied to a single qubit. The latter reproduces the

initial state |0〉, enabling the error in readout of state |1〉 to be isolated from the error

associated with the X gate. The ARO model is therefore defined by MARO = M(T, p0, p1)

where T = {Tmeas(|0〉), Tmeas(|1〉), TXX(|0〉)}.

We model the test circuits for the ARO process using an isotropic depolarizing channel

parameterized by px to describe noise in the X gate,

εDP (ρ) = (1− px)IρI +
px
3

(XρX + Y ρY + ZρZ) (4.5)

where I, X, Y , and Z are the Pauli operators. Characterization of the ARO model yields an

overdetermined system of equations relating the four experimentally observed probabilities

r(X)(0), r(X)(1), r(XX)(0), and r(XX)(1) to the parameters p0, p1, and px. Of these parameters,

only the latter two are unknown since p0 is determined by the same method outlined above

for pSRO. Because the experimental observations directly relate to each other via r(X)(0) +

r(X)(1) = 1 and r(XX)(0)+r(XX)(1) = 1, we select the following system of equations for each

register element based on counts of r(·)(0).

r(X)(0) =
2px
3

(
1− p0

)
+ p1

(
1− 2px

3

)
(4.6)

r(XX)(0) =(1− p0)

[(
1− 2px

3

)2

+

(
2px
3

)2
]

+ p1

[
4px
3

(
1− 2px

3

)] (4.7)

This system of equations is solved using the SciPy function fsolve, which is based on

Powell’s hybrid method for minimization [83].
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4.3.2 Noisy Subcircuit Models

Test circuits for characterizing noisy subcircuits generate results that include measurement

noise. We use the noisy measurement model above to account for these behaviors when

modeling the results from test circuits. For the SRO and ARO models discussed above, this

directly estimates the probabilities expected to be observed for each register. We use this

procedure when discussing the characterization below.

We first characterize the subcircuit representing the Hadamard operation. The test

circuit for a single Hadamard is defined with respect to the expected values for input

states drawn from the computational basis, which yield a uniform superposition of

binary results upon ideal measurement. We also use even-parity sequences of Hadamard

gates as a second test to estimate noise in the subcircuit. These test circuits T =

{TH(|0〉), THH(|0〉), T4H(|0〉), T6H(|0〉), ..., TnH} are used to characterize the Hadamard gate

to yield MH(T, pH).

We define test circuits for the cnot operations that mirror the subcircuits used in

the target application. For GHZ-state preparation, these are based on characterization

of Bell-state preparation. The test circuit specification shown in Fig. 4.4 produces the

idealized result of a uniform distribution over perfectly correlated binary values. These

test circuits may be defined across all pairings of register elements as represented by

Fig. 4.3. In particular, additional cnot test circuits may be added to the set g′ from

the set g, and additional cnot test circuits for couplings not explicitly in G may be

added as well. For convenience, we will denote the Bell-state preparation subcircuit as

UBS
(j,k) = U

(cnot)
(j,k) H(j) |0j, 0k〉.

The noisy test circuits for Bell-state preparation are modeled by a pair of identical,

independent depolarizing channels. Each channel, together defined as εDP
j,k = εDP

j ⊗ εDP
k , is

parameterized by pcnot, which represents the probability of a depolarizing error determined

independently for each qubit in the two-qubit cnot gate. We therefore use the test circuit

T = {TBS
(j,k)(|0j, 0k〉)} to compose model Mcnot = M(T, pcnot).

The probability of observing bits a and b is given by

rj,k(ab) = Tr
[
Πabε

DP
j,k

(
UBS
(j,k) |0j, 0k〉 〈0j, 0k|U

BS†
(j,k)

) ]
(4.8)
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Figure 4.4: The test circuit for characterizing the cnot operation acting on register
elements qj and qk. This test prepares the two-qubit Bell state as an instance of n = 2
in Fig. 4.3.
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where the operator Πab projects onto the state |a, b〉, and the resulting trace yields the

probability of the ideal measurement. The probabilities expected from the noisy Bell state

subcircuit on qubits j, k with ideal measurement is then given by

rj,k(00) = rj,k(11) =
1

2
− 2

3
pcnot +

4

9
p2cnot (4.9)

rj,k(01) = rj,k(10) =
2

3
pcnot −

4

9
p2cnot

Errors in readout transform these probabilities according to the noisy process, which may

be either the SRO or ARO model. For example, the probability following readout sj,k(00)

under the ARO channel is given by

sj,k(00) =(1− pj0)(1− pk0)rj,k(00) (4.10)

+ (1− pj0)pk1rj,k(01)

+ pj1(1− pk0)rj,k(10)

+ pj1p
k
1rj,k(11)

From the system of four equations generated by the readout probabilities sj,k(cd), we use

the method of least squares to estimate pcnot. We minimize the sum of the squared residuals,

∑
cd

(
sj,k(cd)− hj,k(cd)

)2
(4.11)

where each residual is defined as the difference between the modeled probability sj,k(cd)

and the experimentally observed probability hj,k(cd) for each state result cd. The value

hj,k(cd) represents the counts of state cd on qubits j, k measured during a total number of

experiments Ns. The value returned for pcnot is found using the SciPy fsolve function and

bounded between 0 and 1 [83].

4.4 Experimental Characterization

In this section, we report on the results of experimental characterization and noisy circuit

modeling of GHZ-state preparation using a QPU based on superconducting transmon
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technology developed by IBM. The IBM poughkeepsie device has a register of 20

superconducting transmon elements that encode quantum information as a superposition

of charge states [84]. Microwave pulses drive transitions between the possible charge

configurations and induce single-qubit gates. Coupling between register elements uses a

cross-resonance gate that drives a mutual transition between transmons and therefore only

occurs between two spatially connected elements [78].

The layout of the 20-qubit register in poughkeepsie at the time of data collection is

shown in Fig. 4.2. A common edge in the connectivity diagram specifies those register

elements that may interact through the cross-resonance operation. Individual registers are

measured through coupling to a readout resonator, which results in a state-dependent change

in the resonator frequency. Amplification of the readout signal then enables discrimination

of the state using a quantum non-demolition measurement [85, 48].

Circuits are sent to the backend where they are translated into the appropriate ISA. The

ISA for poughkeepsie consists of the gates U1, U2, U3, CX, and ID [86]. The U1, U2, and

U3 gates are unitary rotation operators, of which U1 is a “virtual” gate performed in software

and U2 and U3 are performed in hardware. The identity gate ID is used as a placeholder

to create a timestep since it does not alter a quantum state. CX represents the cnot gate

[87]. These instructions are implemented using low-level hardware operations. For instance,

the CX operator is implemented in hardware using a sequence consisting of cross-resonance

gates and single-qubit rotation gates [86, 88, 89].

The poughkeepsie QPU is accessed remotely using a client-server interface. We employ

the Qiskit programming language to specify the input circuit and test circuits for the

GHZ-state preparation application [90]. These Pythonic programs are transpiled to the

specifications and constraints of the backend, including ISA, connectivity layout, and register

size. Additional inputs to the transpiler may include optimization protocols for minimizing

circuit operations or noise levels. The transpiled programs are executed remotely on

the poughkeepsie device, which returns the corresponding measurements along with job

metadata.

We use a shot count of 8,192 for all of the circuits executed on poughkeepsie which

represents the number of times each circuit is individually executed and generates the
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distribution of output states from the input circuit. Therefore each probability estimated

by experiment is given by r(k) = C(k)/Ns, where C(k) is the number of events observed for

each measurement and Ns is the shot count of 8,192. These measurements are subject to

error due to variability in sampling in experiment from the QPU distribution. We restrict

our sample size to a single experiment of 8,192 shots to avoid introducing effects from drift

in the poughkeepsie QPU. We use the standard deviation of these measurements to report

error and statistical fluctuations, which is given by
√

(p(1− p)/Ns) where p is the binomial

distribution probability parameter measured from experiment.

We characterize measurement of all register elements in poughkeepsie and analyze the

results using the SRO and ARO models. The results for direct estimation of the ARO model

parameter p0 and p1 are shown in Fig. 4.5. The results for the SRO model correspond with

psro = p0. From these results, we observe a large spatial variability in readout error as well as

asymmetry per register element. The readout of state |1〉 is almost always more error-prone

than readout of state |0〉.

The results of estimating the parameter px for the depolarizing noise model of each X

gate are shown in Fig. 4.6. From these results, we see spatial variability in the recovered

error parameter. We observe one case of a negative error rate for qubit 17 recovered from

direct estimation using Eqs. 4.6 and 4.7. Because an estimated error rate of zero is within

the experimental error, this is most likely due to statistical fluctuations. However, it could

also be attributable to inconsistencies in the error behavior for the test circuits such that

the model cannot estimate a feasible parameter based on the results, or to errors for this

register that are not well described by a depolarizing channel such that a different model

may yield a better solution. All other error rates are relatively small and therefore we have

not investigated model refinement for this case because of the negligible contribution to the

noise.

We next characterize the Hadamard gate. We characterize error rates using test circuits

generated from long sequences of Hadamards acting on a single element. We observe small

error rates which correspond on average to 0.1% error per gate. We attempted to model the

Hadamard noise using a depolarizing channel but it did not lead to a better TVD than using

a noiseless model for the gate.
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Figure 4.5: Error rates under the ARO channel for each qubit of poughkeepsie. The SRO
channel is given by the error rates for state 0 shown here. Average p0 value is 0.0212 (standard
deviation of 0.0101 across all qubits) and average p1 value is 0.0681 (standard deviation of
0.0233). Each qubit is evaluated in a separate circuit, e.g. X0 |00, 01, ..., 019〉 to generate
Eq. 4.6 for qubit 0.
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Figure 4.6: Depolarizing error rates associated with X gate application for each qubit of
poughkeepsie. Average px value is 0.0033 with standard deviation 0.00303.
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We also characterized gate error models based on unitary rotation noise in X, Y ,

and Z for the Hadamard gate which represents coherent errors. These characterizations

did not yield a smaller TVD than using a noiseless model. Our choice to restrict

characterizations to computational basis measurements significantly limits the achievable

accuracy or effectiveness of this model. In general, such characterizations are not capable

of identifying arbitrary coherent noise and are limited, e.g. only X and Y noise have an

observable effect in the Z measurement basis. Additional test circuits could address this

limitation at the expense of increased experiment count. For our purposes, we concluded

that error rates associated with the Hadamard operation were negligible as this noise was

100 times smaller than the next leading gate error.

We next characterize the Bell-state preparation circuits for each pair of possible

interactions shown in Fig. 4.2. We select the depolarizing noise model because it is a well-

understood model for quantum noise that captures several different fundamental aspects

of quantum behavior. We do not expect the depolarizing model to be a perfect fit to

experimental data but this model provides a useful method to understand noise levels in

the system and how noise from different components interacts. We use least-squares error

estimation to find the value of depolarizing parameter pcnot that best fits the results while

accounting for readout error as in Equation 4.10. This approach yields more consistent

results than solving each equation in the system explicitly and using a selection process to

determine the final pcnot value from among these solutions which are often highly varied.

The estimated parameter values are shown in Fig. 4.7. The magnitude of the error bars for

the parameter estimations highlights the relative magnitude of gate noise to readout noise.

We test the accuracy of the noisy subcircuit models with estimated parameters from

experimental characterization. For these tests, we use explicit numerical simulation of the

quantum state prepared by each noisy subcircuit model. We estimate the measurement

outcomes for these modeled circuits using the simulated quantum state, and we compare

these simulated observables with the corresponding experimental observations from the

poughkeepsie device. The accuracy of the noisy subcircuit model is quantified using the

total variation distance (TVD) defined in Equation 4.1.
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Figure 4.7: Error rates for cnot gates under the depolarizing channel for each coupled
qubit pair of poughkeepsie. These values are fitted to include the ARO channel noise with
rates shown in Fig. 4.5. Reported error bars represent the upper limit of the error from the
least squares calculation.
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Our simulations of the quantum state use a numerical simulator bundled into the Qiskit

software framework. The Aer software simulates both noiseless and noisy quantum circuits

using the same Qiskit programs sent to the poughkeepsie device as input. We constrain

the simulator to a statevector simulation method. Within Aer, we input the noise models

using the error rates and noise operators of depolarizing and readout channels as defined

in Sec. 4.3. Aer models gate noise using error functions parameterized by these error rates

which create noisy descriptions of gates for simulation. When a noisy simulation is run,

these functions sample errors and inject them as operations within the circuit. We tailor

the simulations to match the developed noisy subcircuit models. Each test case acquired

Ns samples in order to mimic the finite statistics from experimental characterization. We

generate a number of simulation samples of 8,192 shots per sample to create a sampling

distribution. We report the standard deviation of this distribution which represents error

due to variability in sampling in simulation.

A comparison of accuracy for different noisy subcircuit models is shown in Fig. 4.8 for

simulating the Bell state circuit on qubits 0 and 1 on the poughkeepsie device. We calculate

the TVD between experiment and simulation using six different noise cases. We consider

symmetric readout only (SRO), asymmetric readout only (ARO), cnot depolarizing error

only (DP), symmetric readout with cnot error (SRO+DP), and asymmetric readout with

cnot error (ARO+DP). The error rate parameters are optimized for each composite noise

model, e.g. the optimal depolarizing parameter in the SRO+DP case may not be the same

value found for the ARO+DP case. We also simulate a noiseless Bell state for a baseline

comparison.

The results shown in Fig. 4.8 clarify the noisy circuit model yielding the smallest

TVD is composed from the asymmetric readout channel with a cnot depolarizing channel

(ARO+DP). Since each noise model achieves a clear improvement in TVD as measured by

a decrease from the noiseless case that is outside of error bars, we can be confident that

each selected model is capturing some of the noise behavior present in the system while

also illustrating which models provide the best descriptions of the noise. For example, in the

noise model case ‘DP’ we have modeled a depolarizing channel for which the pcnot parameter

is calculated to account for all noise in the system. This model has a clear improvement
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Figure 4.8: Comparison of possible choices for composite model. The best performance is
achieved in the ARO+DP case. Error bars represent the distribution of TVD values across
100 sets of 8,192 samples per simulation case.
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on TVD and therefore is likely to be an effective description of the noise in the system.

However, the addition of readout noise models for the ‘SRO+DP’ and ‘ARO+DP’ cases is

evidently a more accurate noise model because these models achieve further improvements

in TVD.

4.5 Performance Testing Results

We now present the performance of the selected composite model on n-qubit GHZ-state

preparation circuits. Using the estimated ARO and cnot error rates, we demonstrate

iterations of this composite noise model which represent varying model complexity and

experimental efficiency to achieve a particular accuracy. These iterations are shown in

Fig. 4.9. The 2-qubit average case represents the performance of a noise model with only three

parameters–p0, p1, pcnot–which are taken as the average of the error rates for only qubits 0 and

1. This represents a case of characterization using the fewest quantum resources, requiring

only 7 experiments. We also consider a case which uses these same three parameters averaged

over the entire register which retains low model complexity of only three noise parameters

but requires the full suite of experiments. Our most detailed model accounts for spatial

variations in the error parameters and uses individualized readout error rates for each qubit

and cnot error rates for each coupling. As with the Bell state example in Fig. 4.8, we show

the noiseless case for the sake of context and comparison. Finally, we also show the sum of

the minimum TVD achieved for noisy simulation of the Bell state across each qubit pair for

which a cnot was applied in the GHZ preparation circuit.

Figure 4.9 demonstrates a significant improvement in model accuracy for GHZ state

preparation using our composite noisy circuit model. The improvement is a 3-fold decrease

in TVD as compared to the noiseless simulation. Our fully spatial model performs better

than the coarser-grained models, such as the average two-qubit model, particularly for larger

sizes of GHZ state preparation. We also examine the scaling in the error with respect to the

area of the circuit. We normalize the computed TVD by the number of cnot gates in each

GHZ preparation circuit, and we find that the per-qubit model accuracy is nearly constant

across all GHZ circuit instances, as shown in Fig. 4.10. This trend would also hold when
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Figure 4.9: Performance of selected noise model on n-qubit GHZ states. The best
performance is achieved with the fully spatial noise model. Error bars represent the
distribution of TVD values across 6 sets of 8,192 samples per simulation case.
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Figure 4.10: Scaled performance of selected noise model on n-qubit GHZ states, where
TVD is divided by the number of cnot gates in each circuit. Error bars represent the
distribution of TVD values across 6 sets of 8,192 samples per simulation case.
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TVD is scaled by qubit count, since qubit count and cnot count are strongly linked in the

GHZ example. Since the TVD increases at a rate commensurate with cnot count or qubit

count, this may indicate that higher levels of entanglement or larger Hilbert spaces impact

the predictability of noise in the device.

4.6 Bernstein-Vazirani Application

We next test the performance of this noisy circuit model on a different application to evaluate

its ability to capture fundamental characteristics of the device. We test the performance

by modeling several quantum circuit instances of the Bernstein-Vazirani algorithm. This

algorithm considers a black box function that is encoded by a secret binary string which

the Bernstein-Vazirani algorithm finds in one query [91]. Figure 4.11 shows an example

of our circuit implementation of this algorithm using a three-bit string. We use a phase

oracle qubit as the black box function encoded with the secret string. Upon measurement of

the non-oracle qubits we obtain the secret binary string. We select the Bernstein-Vazirani

algorithm because it is implemented using the same gate set we have characterized for the

GHZ example, so we do not require additional characterization circuits.

Given the connectivity constraints of the poughkeepsie device, the maximum bit string

we can test without introducing SWAP operations is of length three. We choose qubits 6,

8, and 12 with oracle qubit 7 because this set has among the lowest error parameters. We

execute the Bernstein-Vazirani algorithm for every possible encoding of the three-bit secret

string and record the accuracy as the probability that the encoded string was observed. We

include collection of these measurements during the same job used to characterize the device.

Figure 4.12 plots the simulated accuracy of the circuit outcome using the fully spatial

noise model alongside the experimental accuracy. Our model captures the decrease in

experimental observed accuracy across the various binary strings. The loss in accuracy

scales with the number of 1 bits in the secret string for both the experiment and simulation.

However, the accuracy predicted by simulation is consistently higher than the accuracy

observed experimentally, indicating a state-dependent noise source remains missing from

this model.
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Figure 4.11: Circuit implementation of the Bernstein-Vazirani algorithm. The bottom
qubit of the register is the oracle; the top three yield the secret string, here given as 101 as
example. Other secret strings are produced by changing the cnot gate sequence such that
control qubits correspond to output bits of 1.
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Figure 4.12: Performance of Bernstein-Vazirani algorithm evaluated as the measured
probability of the prepared secret string. Simulation is subject to noise defined by the
fully spatial model.
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4.7 Conclusion

We have presented an approach to noisy quantum circuit modeling based on experimental

characterization. Our approach relies on composing subcircuit models to satisfy a desired

accuracy threshold, model complexity, and experimental efficiency, which we implement

using the total variation distance. We have tested our ideas using the IBM poughkeepsie

device, which enables evaluation of our characterization methods as well as the comparison of

predicted performance for GHZ-state preparation and an instance of the Bernstein-Vazirani

algorithm. The initial example focused on GHZ-state preparation examined model fidelity

with respect to both width and depth of an input circuit. Models for the readout and cnot

subcircuits accounted for a majority of the model error. Our analysis of a second test circuit

using instances of the Bernstein-Vazirani algorithm reveals additional sources of errors not

captured in the original GHZ circuit characterization. Because both tests depend on the

same gates for state preparation, the appearance of new errors suggests a possible state-

dependent noise model that warrants further investigation. While our demonstrations have

focused on specific devices and input circuits, the methodology provides a robust and flexible

framework by which to generate noisy quantum circuit models on any device.

A significant feature of this approach to noise model decomposition is to iteratively adjust

the models until sufficient accuracy is obtained. Improvements in accuracy may be obtained

by changing characterization circuits or parameter estimation. The Bell-state and GHZ-

state preparation examples demonstrate how this model adjustment may be performed by

varying the experimental efficiency and the input to the model to change the accuracy of

the final composite model. Our demonstrations have focused on the depolarizing channel

for gate modeling, but circuit characterization can be directly extended to account for new

noise models, components, applications, and algorithms. For example, in both the GHZ and

Bernstein-Vazirani results, we observe an increase in TVD that scales with the number of

cnot gates applied in the circuit. A more sophisticated cnot noise model may improve

accuracy of the final noise model. Since placing limitations on coarse-graining may introduce

insensitivities to certain error types, for instance measurement only in the computational

basis creates insensitivity to Z error types, it will likely be necessary to refine test circuits to
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address more sophisticated models. Additionally, this methodology assumes separability

in composition-decomposition, i.e. it assumes that the noise present in the decomposed

subcircuits is not substantially different from that of the composed circuit and that any

differences may be tuned away by refinement. If this assumption is not true, there may be

an upper limit to the achievable accuracy of noise modeling using subcircuit testing. Further

model refinement and testing would be necessary to demonstrate this non-separability.

Our original motivation was to address the growing challenge of characterizing NISQ

applications, for which efficient and scalable methods are necessary. We have shown how

to construct a set of test circuits that scales with the area of the input circuit C and the

underlying decomposition strategy. In the GHZ-state preparation example, the number of

total experiments needed for full spatial characterization scales with the size of the register q

and the number of couplings c according to Ns(2q+2c+1). This resource requirement enables

characterization to be run alongside the state preparation circuit when the job is sent to the

QPU. This efficiency should help ensure noise characterization is performed within the same

processor context as the sought-after circuit. We anticipate such real-time characterizations

to be valuable for dynamic compiling and tuning of quantum programs [75, 92, 24].

Our approach to characterization has relied on model selection using minimization of

the total variation distance (TVD) between noisy simulation and experimental results. This

demonstration used a small set of the possible models for characterizing the observed QPU

behavior, and expanding the set of potential models is possible for future work. There is

a necessary balance, however, between the sophistication of the model and the utility for

characterizing QPU behavior. While fine-grain quantum physical models are capable of

capturing a more detailed picture of the dynamics present on small scales, the dawning of

the NISQ era requires the addition of new techniques to our toolbox that have a higher-

level and larger-scale approach. For scalable numerical analysis of quantum computational

methods, it is essential that we develop coarse-grained, top-down approaches to capture the

core behavior of QPUs.
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Chapter 5

Characterization and Benchmark

Experiment Design

5.1 Overview

The methodologies described in Chapters 3 and 4 are components of the toolset for

characterization and benchmarking of quantum computers. Our goal is to evaluate

the performance of these quantum computing characterization protocols. We test the

performance of GST, CB, NR, and EDC on a variety of components and contexts. These

protocols are selected because their motivations are different, as are their advantages,

disadvantages, and resource consumption, but their outputs are complementary. They

have commonalities which we use in developing comprehensive comparisons among these

protocols. In particular, they utilize the description of Pauli noise, as described in Chapter

3. We use this common language to design tests which identify the effectiveness of the

protocols at characterizing quantum computers.

We design several tests for metrics of interest. The primary metric is the accuracy of

each method in capturing the fundamental behavior of the device. We evaluate this in two

ways. First, we calculate the distance between the empirical results and results estimated

using the selected protocols using noisy simulation with noise models parameterized by the

characterization results. We use the total variation distance (TVD) defined in Eq. 4.1 as

the metric for this calculation. Second, we evaluate the ability of the protocols to predict
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performance of a QPU on a benchmark application. To do this, we identify quantum circuit

implementations which are composed of components we have characterized. We gather

experimental data for these applications and simulation data under noise models designed

from characterization information from each protocol. We compare simulated results to

empirical results and evaluate how close our simulation is to experiment using TVD.

Another metric of interest is efficiency, specifically how these protocols scale with the

size of the quantum register. The scalability is often based on the dependencies of the

algorithm, and the number of quantum experiments needed for each of our selected protocols

to characterize a particular gate set on a selected qubit register is known. However,

more precisely establishing the tradeoff between experiment count and accuracy of the

characterization measured by TVD is a key metric for evaluating these methods. In

particular, we measure the relationship between the experiment count of implementations

of each protocol and the TVD between these characterizations used in noisy simulation

and their associated empirical results. This relationship helps to identify thresholds for the

achievable accuracy under a particular experiment count limit, for example, the practical

limitation of maximum experiment count per job sent to a QPU.

Classical processing and computing efficiencies are important considerations as well. For

instance, classical computational resources are used in processing characterization data to

generate protocol output. The efficiency of GST, CB, NR, and EDC is dominated by the

quantum computational resources rather than classical computational resources, but classical

resource costs may be prohibitive for large quantum circuit simulations and optimization over

large data sets, for example.

Our experiment design is outlined as follows.

1. Select characterization protocols–GST, CB, NR, EDC–which generate metrics such as

process fidelity and error rates that predict low-level performance.

2. Select a suite of test circuits to characterize. We use Bell-state preparation circuits

and GHZ-state preparation circuits.
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3. Select a suite of circuits to test the predictive capacity of each protocol’s characteriza-

tion output. We use the Bernstein-Vazirani algorithm, implemented for all accessible

secret string encodings.

4. Select QPUs and collect experimental data for each protocol and each application

circuit. We use the IBM Q suite of QPUs [3].

5. Analyze characterization data to generate protocol output and noise models. This

analysis includes calculating noise parameters that best fit the data and metrics such

as process fidelities and noise rates per component, for example.

6. Report on metrics of these results. This includes:

• Accuracy of noisy simulation based on measured characterization parameters in

both application circuit performance and predicted performance in additional

applications.

• Efficiency and scaling of methodology in computational resources, including time,

quantum experiments and classical processing and analysis.

• Effectiveness of the translation of characterization data to a performance bench-

mark.

5.2 Devices Tested

To gather empirical data for testing our benchmarking protocols we use the IBM Q suite

of quantum processors (QPUs) [3]. All of our selected characterization protocols may be

straightforwardly executed on any QPU which has a gate-level interface, but we select the

IBM suite because they are publicly available and provide an array of QPUs of differing

register properties. We focus our experiments on toronto, a 27-qubit superconducting

transmon device with layout as shown in Fig. 5.1, which has a limit of 900 circuits per job

and the option to reserve dedicated time [3]. The relatively large register size of toronto

compared to other QPUs available makes toronto a good choice for testing the scalability of

these protocols while also remaining well within the limits of classical simulation of quantum
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Figure 5.1: A graphical representation of the register layout of the 27-qubit toronto QPU
at the time of data collection. Each node corresponds to a register element and directional
edges indicate the availability of a programmable two-qubit cross-resonance gate.
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computers. The importance of a high circuits-per-job limit and dedicated QPU time is to

keep a high throughput, which prevents the introduction of drift in the system noise [93].

We map GHZ-state preparation circuits onto toronto as illustrated in Table 5.1. This

mapping is not unique nor is it optimized for any performance gains. The use of SWAP gates

would enable less rigid adherence to the spatial topology of the device, but their addition

would likely introduce additional noise sources so we restrict gate selections to the layout as

shown in Fig. 5.1.

For the Bernstein-Vazirani (BV) algorithm circuits defined in Section 4.6, we select oracle

qubit 25 and secret string encoded qubits 22, 24, and 26. We limit our BV algorithm

implementation to a total of 4 qubits because this is the maximum number of qubits we

may use without introducing SWAP gates. These qubits are selected because they have

comparable or slightly lower error rates than other identically-connected 4-qubit groupings

on toronto as measured by IBM’s routine calibration data [3].

5.3 Characterization Experiments

5.3.1 Empirical Direct Characterization

We utilize a set of quantum circuits for EDC characterization experiments as outlined in

Chapter 4. To characterize asymmetric readout, we use circuits of X and XX gates done

in parallel and in isolation with one operation per circuit. We also use a blank circuit with

no operations which will return a zero state in the absence of noise because IBM QPUs

are initialized to the all-zero state. To characterize the error on cnot gates we use a set

of Bell-state preparation circuit tests which are applied to each qubit coupling of toronto

according to Fig. 5.1. We use the Bell state because it is a subcircuit of the GHZ state

and therefore a good candidate to characterize the GHZ-state preparation circuits. We use

EDC to characterize GHZ-state preparations of qubit register size 2-27 on toronto. This

methodology is outlined in Section 4.2.
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Table 5.1: GHZ-state preparation circuit mapping onto toronto’s topology. For each GHZ
size n, the preparation circuit is built by applying the gates of all sizes [2, n] in series.

GHZ Size Gate Added Qubit Added

2
H(0)
cnot (0,1)

0
1

3 cnot (1,2) 2
4 cnot (2,3) 3
5 cnot (3,5) 5
6 cnot (5,8) 8
7 cnot (8,9) 9
8 cnot (8,11) 11
9 cnot (11,14) 14
10 cnot (14,13) 13
11 cnot (13,12) 12
12 cnot (12,10) 10
13 cnot (10,7) 7
14 cnot (7,6) 6
15 cnot (7,4) 4
16 cnot (12,15) 15
17 cnot (15,18) 18
18 cnot (18,17) 17
19 cnot (18,21) 21
20 cnot (21,23) 23
21 cnot (23,24) 24
22 cnot (24,25) 25
23 cnot (25,26) 26
24 cnot (25,22) 22
25 cnot (22,19) 19
26 cnot (19,20) 20
27 cnot (19,16) 16
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5.3.2 Cycle Benchmarking and Noise Reconstruction

Cycle benchmarking and Pauli channel noise reconstruction characterize noise of randomly

compiled (RC) circuits. These characterizations rely on Pauli twirling and utilize a similar

structure of experiment design for quantum circuit characterization. These are outlined in

Sections 3.3 and 3.4.

For both CB and NR, we use the True-Q software to generate circuit collections

for execution on IBM QPUs and to calculate the estimated process fidelities from cycle

benchmarking (CB) and the Pauli channel descriptions from NR [5]. This software is

developed by the company Quantum Benchmark. Noise reconstruction is referred to as

k-body noise reconstruction (KNR) in True-Q, so we use KNR for clarity in reporting our

results. K-body refers to the number of gates for which an error description is estimated.

For instance, a cycle with three parallel gates could be defined with up to k = 3. Then if

k = 2, Pauli channels would be estimated for every two-gate subset within the cycle. We

have a software-enforced limit of 20 qubits for experiment design, circuit generation, and

results in True-Q, so we limit our experiment design of CB and KNR for GHZ cycles and

the RC GHZ circuits to the first 20 qubits of the 27-qubit GHZ mapping we use on toronto.

Our CB and KNR for BV cycles and RC BV circuits are executed on a 4-qubit subset on

toronto and therefore do not reach this limit.

We design experiments using KNR to characterize the components of the GHZ-state

preparation and BV circuits. Specifically, we use KNR to characterize the Hadamard

and cnot gates for the qubits used in the n-qubit GHZ-state preparation as well as the

Hadamard, cnot, and X gates used in the BV algorithm circuits. The Pauli error rates

estimated with KNR can then be used as input to noisy simulation, which we compare to

experiment to evaluate the accuracy of the KNR characterization. Similarly, we use CB to

estimate the process fidelities of these components.

The experiments for KNR and CB are defined in terms of cycles. Because cycles must be

one time step of a circuit, i.e. only one round of parallel gates, we select two different types

of cycles to characterize for GHZ. We use a per-gate cycle design which defines one cycle per

gate of the GHZ circuit. In the GHZ circuit example, each gate is necessarily a separate time
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Table 5.2: Alternate cycles for characterizing the GHZ-state preparation circuits.

Cycle Name Gates Gate Count

A1
cnot (0,1) cnot (2,3) cnot (5,8) cnot (10,7)
cnot (11,14) cnot (13,12) cnot (15,18) cnot (21,23)

8

A2
H(0) cnot (1,2) cnot (3,5) cnot (7,6)
cnot (8,9) cnot (12,10) cnot (14,13) cnot (18,17)

8

A3 cnot (7,4) cnot (8,11) cnot (12,15) cnot (18,21) 4
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step, so this cycle selection is the most natural decomposition for the GHZ-state preparation

circuits. This yields a total of 20 unique cycles for our 2-20-qubit GHZ-state preparation

circuits. The second set of cycles that we test is a set of maximally parallelized cnot

operations. This yields 3 unique cycles which are listed in Table 5.2. Three cycles is the

minimum cycle count that characterizes all gates used in the GHZ circuits. The results from

these larger cycles may capture noise effects which are only observable in the context of the

other applied gates, so these cycles may provide a helpful description of noise behaviors in

the largest systems. However, for building our primary noise models we will use the per-gate

cycles so that we may develop a noise model for the device components and model all sizes

of GHZ-state preparation circuits.

For Bernstein-Vazirani algorithm circuits, each timestep of the circuit is defined as one

cycle. Preparation of secret bitstring encodings uses three cnot gates which are applied

such that the control qubit corresponds to any encoded ‘1’s in the bitstring. These cnots

are characterized as one cycle each. Every BV secret string encoding is preceded and

succeeded by parallel Hadamard gates on every qubit and an X gate on the oracle qubit.

The Hadamards are characterized as one cycle together and the X gate is characterized as

one cycle.

5.3.3 Gate Set Tomography

Because GST is prohibitively intensive for qubit registers beyond a couple of qubits [39, 29],

we will limit characterization with GST to 2 qubits. We can use GST as described in Section

3.1 to characterize a gate set which contains a collection of single-qubit and cnot gates and

use the results to generate a Pauli noise model from the process matrix. This data will

represent a standard to which we can compare our other techniques, as GST should yield

the most accurate picture of the noise present in the Bell-state preparation example.

To run the GST protocol, we use the python implementation called pyGSTi, which

stands for Python Gate Set Tomography Implementation [8]. This implementation provides

a software code framework for generating a circuit collection for execution on a QPU and

data analysis of quantities of interest including average gate fidelity and estimated process

matrices. pyGSTi is developed by a team based at Sandia National Laboratories.
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For our GST experiments, we use a standard model within the pyGSTi framework

which contains the gate set {RX(π
2
),RY (π

2
),RZ(π

2
),I,cnot}. We perform the standard GST

analysis on our data set (maximum likelihood gate set tomography, or MLGST). This process

estimates the gate set that is the best fit to the experimental data by maximizing the log-

likelihood with the gate set probabilities [8].

5.4 Benchmark Experiments

5.4.1 Noise Models

For EDC, our estimated noise models include isotropic depolarizing two-qubit channels. This

channel εDP is defined in terms of pDP such that

εDP (ρ) = (1− pDP )IρI +
pDP

3
(XρX + Y ρY + ZρZ) (5.1)

where εj,kDP = εjDP ⊗ εkDP for qubits j, k.

For KNR, our estimated noise models include stochastic Pauli channels of one and two

qubits. In all of our experiments, we consider only k = 1 because almost all of our cycles are

defined with just one gate based on the structure of the GHZ and BV circuits. Incorporating

correlated errors among subsets of gates in the cycles with parallelized gates might enhance

the detail of the final noise models, but using k = 1 is a necessary first step for characterizing

all our selected cycles and is most comparable to other methods.

As defined from Eq. 3.2, stochastic Pauli noise channels are of the form

εSP (ρ) =
∑

P∈Pd
⊗n

cPPρP
† (5.2)

where each P is an n-qubit Pauli matrix with dimension d = 2 for qubits. The KNR protocol

provides estimates of a set of probabilities cp and Pauli matrices P which describe the noise

of a cycle.

For both EDC and KNR noise models, we also estimate an asymmetric readout channel.

The asymmetric readout channel is defined in terms of p0 and p1 which are the probability
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of a bit flip in the measurement of state 0 and state 1, respectively. The probability of a

correct measurement then follows directly as (1− p0) and (1− p1), respectively.

For GST, we use the Pauli Transfer Matrix (PTM) to describe the noise model of our

quantum gates. The elements of the PTM are defined as

PTMi,j =
1

d
Tr{PiΛ(Pj)} (5.3)

for dimension d = 2, Pauli matrices P and quantum operation Λ. This PTM represents the

noisy gate and can be applied directly in simulations.

Gate set tomography also estimates state preparation and measurement (SPAM) errors.

For two-qubit tomography experiments these SPAM parameters provide estimates of error

on each two-bit measurement output in a 4x4 matrix. The matrix elements represent the

probabilities of measuring each classical two-bit outcome given an expected outcome.

5.4.2 Simulation Methods

For our simulations, we use Qiskit Aer [94]. Aer is a quantum circuit simulator which can

simulate ideal or noisy quantum circuits with a variety of methods. For our simulations we

use Aer’s statevector simulator which simulates quantum circuits by applying operators to

the statevector which describes the quantum state of the qubit register. It can simulate any

of the gates and noise models that we use for our tests but the size of the computation scales

exponentially in the size of the qubit register. Consequently, for our GHZ-state preparation

circuits with register sizes around 20+ qubits we use the Aer statevector simulator on the

IBM Q backend. This is a dedicated classical computing resource which is optimized for

quantum circuit simulation such that large simulations can be completed more quickly than

on a personal computer.

We model the noise in quantum circuits as an ideal quantum operator followed by a

noise operator which represents the noise associated with the ideal operator when applied in

experiment. This is a common but not unique method to describe noise in quantum systems

[90]. The quantum error functions that are native to the Aer simulator methods utilize this
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expression of quantum noise. We define our noise models in the Aer framework to implement

them in simulation.

For simulations of the Bell-state preparation circuit using the GST estimated noise model,

we use the pyGSTi simulation capability. pyGSTi supports quantum circuit simulation

that uses the estimated model results calculated directly from the GST protocol. Because

GST reports a more complex model of the characterized gate set than the other methods,

simulating the Bell state directly in pyGSTi provides the most accurate translation of GST

model results to circuit outcomes.

Because GST simulations are limited to the two-qubit example, we do not simulate

the GHZ or BV circuits using the GST model. For the Bell-state preparation circuit, our

GST model defines a noisy cnot gate and a noisy Hadamard gate which is defined as a

decomposition into a rotation about Y by π/2 and two rotations around Z by π/2. The

GST model also includes the state preparation and measurement error which maps the

probability of every two-qubit input state to be observed as each two-qubit output state.

The code and data used in these experiments can be found at the public repository [95].

5.4.3 Application Testing

The outcome of any measured quantum circuit is a bitstring of zeroes and ones. To evaluate

the distance between two distributions of bitstring outcomes, we use the total variation

distance (TVD). The TVD is given by

dtv(H,M) =
1

2

∑
k

∣∣∣r(H)(k)− r(M)(k)
∣∣∣ (5.4)

for two distributionsH andM with probability r of state k, just as in Eq. 4.1. The probability

r is calculated by the number of times the state k is returned divided by the total number

of measurements which comprise the distribution.

Error propagation in the TVD calculation is given by

δTVD =
1

2

√
(δαi)2 + (δαj)2 + (δβi)2 + (δβj)2 + ... (5.5)
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for states α, β, ... of two distributions labelled i and j. The error of each state is given by

δα =

√
p(1− p)

N
(5.6)

for probability p of measuring the state out of N total measurements.

The Bernstein-Vazirani (BV) algorithm is our selected application test. The circuits

which implement the BV algorithm utilize a gate set closely related to the GHZ-state

preparation circuits. We use this algorithm as a benchmark of performance. The output of

a BV circuit in the absence of noise is the encoded secret string, so we compare the accuracy

of our noisy simulation in returning the encoded secret string to the accuracy obtained in

experiment from the QPU. The accuracy is defined as the number of times the encoded

secret string is observed out of the total shot count of the circuit. This provides a means

to benchmark the noise models used in simulations–the closer the accuracy agrees with

experiment, the more likely the noise model accurately describes the QPU.
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Chapter 6

Characterization and Benchmark

Results

We report results of characterization and performance testing using our selected methodolo-

gies as presented in Chapter 5. We executed GST, CB, NR, and EDC protocols on toronto

over a 12-hour period of dedicated QPU time on February 14, 2021. We executed the GST

circuits first. Next we ran KNR and CB experiments for GHZ cycles followed by the RC GHZ

circuits. Then we executed the circuits for KNR and CB for the BV cycles followed by the

RC BV circuits. Interspersed among these were multiple runs of EDC circuits. Uncompiled

GHZ and BV circuits were included in the jobs that execute EDC circuits. We refer to these

uncompiled circuits as bare circuits (BC).

6.1 Quantum Resources Usage

A central feature of characterization methods is their resource use and scalability. In Table

6.1, we summarize the resource requirements of our experiments, in particular the amount

of time taken to acquire results and the size of the computational jobs. All quantum

experiments are sent to IBM Q devices as jobs with a limit of 900 circuits per job. The

number of shots per circuit on these devices is limited to 8192. Because data was taken

during a 12-hour window of dedicated QPU time, there were no queue wait times for any

experiments. We record the amount of time taken for an experiment set as the wall clock time
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Table 6.1: Quantum resources used in our selected protocols for all experiments executed.
Sequence lengths in CB and KNR are the experimental values of m from Fig. 3.3.

Method Details Circuits Shots Time

GST
2-qubit gate set
{RX(π

2
),RY (π

2
),

RZ(π
2
),I,cnot }

20094 1024 2.28 hours

CB (GHZ)
Per-gate cycles (20)
Sequence lengths 4,12

10440 128 25 minutes

KNR (GHZ)
Per-gate cycles (20)
Sequence lengths 4,12

10440 128 17 minutes

CB (GHZ)
Parallelized cycles (3)
Sequence lengths 4,12

3300 128 16 minutes

KNR (GHZ)
Parallelized cycles (3)
Sequence lengths 4,12

1620 128 11 minutes

RC GHZ
2-20-qubit GHZ
circuits compiled into
32 RC circuits each

608 128 12 minutes

CB (BV)
Time step cycles (5)
Sequence lengths 4,12

2520 128 9 minutes

KNR (BV)
Time step cycles (5)
Sequence lengths 4,12

1980 128 6 minutes

RC BV
All 3-bit strings
compiled into 32 RC
circuits each

256 128 6 minutes

EDC
27-qubit
characterizations

205 8192

11 minutes
BC GHZ

2-27-qubit GHZ
circuits

26 8192

BC BV All 3-bit strings 8 8192
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from the creation of the first job containing experiments for the protocol to the completion

of the last job containing experiments for the protocol. In the cases of CB, KNR, and RC

experiments, the job creation and validation are parallelized by the True-Q software interface

which substantially decreases the total time taken for these experiments compared to that

of GST and EDC.

For GST, the 2-qubit 5-gate set we characterize is computationally expensive. The qubit

count and gate count are the primary drivers of the total experiment count necessary to

build a GST estimate. For instance, reducing this to just a single qubit example of the same

gate set without cnot would reduce the circuit count by ten times. We use a shot count

of 1024 which is the default shot count setting and generally ensures sufficient statistics as

shown in Appendix A.

For KNR and CB, the primary factors which determine computational expense are the

sequence lengths and the number of cycles. There are 20 cycles needed to characterize every

component of the GHZ circuits, so we utilized a minimum sequence count to keep resource

costs manageable. We use sequence lengths of 4 and 12 because the error rates of cnot

gates tend to be high so the performance degrades after a short sequence of gates. The error

bars on these estimates are consequently larger however, as a result of fewer data points

to fit the decay curve over multiple sequence lengths. We use a shot count of 128 because

these protocols calculate estimates based on the decay functions, so the sampling size of each

individual data point may be reduced [5]. This also helps to manage the resource cost.

The EDC circuit count includes the circuits which we use to characterize readout errors

which are applied for both EDC and KNR noise models. The EDC circuit count increases

linearly with the number of qubits and the number of operators to characterize. We use the

maximum shot count for these tests because there are few enough circuits that the resource

cost is still low.

6.2 Experimental Data

We next report device characteristics across the time period these experiments ran. IBM Q

devices are periodically calibrated, and this calibration includes sampling for measurement
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error approximately every hour. The results of these tests inform the calculation of the

discriminator plane that distinguishes a measurement result of 0 from a result of 1 [96].

Figures 6.1, 6.2, and 6.3 show results from EDC readout error analysis using the methodology

outlined in Chapter 4.

We use this data to inform our selection of data set for further analysis. We avoid data

sets with outliers in the error results such as those from 0805 or 1917. We also want to select

a GHZ-state preparation data set with good performance as measured by close agreement to

an ideal GHZ-state preparation, as this would be a typical first-pass approach for running

quantum algorithms to select the best available data. We then select the readout data closest

to the GHZ-state performance data we select.

Figures 6.4 and 6.5 show the performance of RC and BC GHZ circuits across the collected

data sets reported as the rate that the all-zero and all-one states were observed in experiment.

For BC GHZ circuits this rate is calculated out of a total experiment count of 8192, and

for RC GHZ circuits this rate is calculated out of a total experiment count of 4096 from 32

randomly compiled circuits with 128 shots each.

From these results, we see that in the BC GHZ circuit performance there are decreases in

the rate of expected outcomes at register sizes 10 and 16. These correspond to the addition

of a particularly noisy qubit in the entangled GHZ-state–for size 10, qubit 13 is added and

for size 6 qubit 15 is added. From the readout error rates shown in Figs. 6.1 and 6.2 we can

see that these two qubits are well above the typical error rates of the register components.

In the RC GHZ-state preparation circuits these decreases are not as noticeable, which may

indicate that randomized compiling has the effect of reducing the impact of outlier qubits.

For our selected RC and BC GHZ-state preparation circuits, we plot the TVD between the

experimental results and noiseless results, i.e. ideal outcomes, in Fig. 6.6. For the noiseless

case of GHZ-state preparations, we use an equal split of Ns/2 counts in state |00, ..., 0n〉

and Ns/2 counts in state |10, ..., 1n〉 for Ns total shots and n qubits. From these results,

we see that the BC circuits are closer to the ideal outcomes than the RC circuits because

their TVD remains closer to zero. This is likely because injecting twirling gates in the GHZ

circuits can lead to a dramatic increase in the total gate count, which in this instance is most

likely increasing the overall error rate of the circuits. The randomized compiling protocol
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Figure 6.1: Error rate in readout of state 0 on toronto using the EDC methodology.

Figure 6.2: Error rate in readout of state 1 on toronto using the EDC methodology.

Figure 6.3: Depolarizing error rate for the X gate on toronto using the EDC methodology.
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Figure 6.4: Rate expected outcomes were observed from BC GHZ-state preparation circuits
executed on toronto across a 12-hour period. The decay function of the best performing
set (1555) is 1.112e−0.0834x with R2 = 0.989 for register size x [7].

Figure 6.5: Rate expected outcomes were observed from RC GHZ-state preparation circuits
executed on toronto across a 12-hour period. Decay function of the best performing set
(first set) is 1.148e−0.12x with R2 = 0.9855 for register size x [7].
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Figure 6.6: TVD between experiment results and noiseless GHZ-state preparations. RC
circuits are limited to the first 20 qubits. The RC TVD increases with register size x as
0.2418e0.0801x with R2 = 0.978 and the BC TVD increases as 0.2625e0.053x with R2 = 0.963
[7].
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compiles the twirling gates with neighboring single-qubit gates, but in the case of GHZ-state

preparation all circuits consist only of two-qubit gates which are all twirled around. This

is corroborated by the close agreement of RC and BC TVDs for the smallest GHZ states,

when the total number of added twirling gates is lowest compared to the total gate count of

the uncompiled circuit.

In Fig. 6.7 we show the TVD between experiment results and noiseless GHZ-state

preparations trimmed to only qubits 0 and 1 such that the full bitstring of each state observed

is classified by the first two bits. We show these results to address the probabilistic decrease

in observing a fully all-zero or all-one state from the largest register sizes. It becomes

more likely that at least one bit of the bitstring outcome is flipped due to an error as the

measured register size increases. The TVD of these results is reduced over the TVDs shown

in Fig. 6.6, which may also suggest that larger qubit registers correlate with higher error

rates in experiment. However, the TVD increases steadily for larger sizes of GHZ-state

preparation, which may capture the effects from decoherence on the first two qubits which

idle while cnot gates are performed on the other qubits of the register.

6.3 Characterization Results

We report the characterization results of GST, CB, KNR, and EDC of our experiments.

6.3.1 Gate Set Tomography

Gate set tomography provides a detailed picture of the characterization of a defined gate

set on a selected qubit subspace. We executed GST on qubits 0 and 1 of toronto and

obtain estimates of SPAM operators and the gates {RX(π
2
),RY (π

2
),RZ(π

2
),I,cnot}, as well

as estimates of the model fit and metrics of gate performance such as process fidelity.

We calculate the completely-positive trace-preserving (CPTP) map that best fits the GST

experiment data [8, 26]. The CPTP estimate results are about 45 standard deviations away

for the shortest circuits of length 1 and 2 gates and about 250 standard deviations away from

a Markovian gate set for the longest circuits of length 32 gates. This indicates the presence

of non-Markovian noise, especially for longer gate sequences.
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Figure 6.7: TVD between experiment results and noiseless GHZ results. For each size
of GHZ-state preparation, the results are trimmed to the first two qubits. The RC TVD
increases with register size x as 0.0906e0.0445x with R2 = 0.999 and the BC TVD increases
as 0.0889e0.024x with R2 = 0.999 [7].
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In Fig. 6.8 we show the GST estimate of the Pauli Transfer Matrix (PTM) for the cnot

gate. The PTM represents the implementation of the operator in experiment. The ideal

PTM consists of a single value of 1 or -1 in each row and column–noise manifests in the

PTM in the non-zero terms which are lightly shaded in Fig. 6.8.

Figure 6.9 shows the SPAM estimates from the GST model. We present the matrix of

values which represent the probabilities of observing versus preparing each two-qubit state.

The highest error rates are observed in the 11 state and the lowest are observed in the 00

state. This readout model inherently accounts for correlations in the two qubits by separately

estimating the error on each two-qubit state.

6.3.2 Cycle Benchmarking and Noise Reconstruction

Cycle benchmarking protocols return the process infidelity of a cycle in the context of

randomized compiling. The process infidelity eF is related to the process fidelity F defined

in Eq. 3.6 as 1 − eF = F [5]. Table 6.2 presents the results of CB protocols executed for

cycles defined per gate and cycles with maximally parallelized gates for the gates used in the

GHZ circuits. We also calculate the estimated process fidelity of the larger cycles (A1, A2,

A3) based on multiplying together the process fidelities of the process fidelities measured in

experiment for the constituent gates. The multiplied process fidelities are generally higher

than the process fidelity observed in experiment, which indicates that the larger cycles are

capturing additional noise sources that would not be predicted by only considering the

process fidelities of the components.

From KNR, we obtain the full stochastic Pauli channel estimated for the specified cycle.

In Fig. 6.10 we show the error rates estimated using KNR where we have defined each cycle

as a cnot gate operating on a coupling on toronto. Some error types are indistinguishable

in the KNR protocol for certain gates because the errors operate in the same way on the

cycle of interest. For example, a cnot gate cycle KNR result conflates IY and ZY Pauli

errors. To construct our noise model, we preferentially select weight-one errors (any two-

qubit Pauli operator that has an I operator) where possible under the assumption that

weight-one errors are more likely and assign the reported error probability to that error type.

For indistinguishable weight-two errors there is no guiding principle for which error is more
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Figure 6.8: The Pauli transfer matrix estimated for cnot on qubits 0 and 1 from GST [8].
The color scale ranges from red for values close to 1 and blue for values close to -1.
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Figure 6.9: Readout matrix representing results from GST SPAM estimates.
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Table 6.2: Process fidelities measured by CB using the True-Q software framework.

Cycle Gates Experiment F Multiplied F
0 H(0) 0.99903
1 cnot (0,1) 0.96539
2 cnot (1,2) 0.98663
3 cnot (2,3) 0.98550
4 cnot (3,5) 0.98404
5 cnot (5,8) 0.99011
6 cnot (8,9) 0.98861
7 cnot (8,11) 0.99088
8 cnot (11,14) 0.98688
9 cnot (14,13) 0.98395
10 cnot (13,12) 0.97753
11 cnot (12,10) 0.98632
12 cnot (10,7) 0.98912
13 cnot (7,6) 0.99267
14 cnot (7,4) 0.98442
15 cnot (12,15) 0.98174
16 cnot (15,18) 0.97980
17 cnot (18,17) 0.97658
18 cnot (18,21) 0.98206
19 cnot (21,23) 0.97807

A1

cnot (0,1) cnot (2,3)
cnot (5,8) cnot (10,7)

cnot (11,14) cnot (13,12)
cnot (15,18) cnot (21,23)

0.77743 0.86137

A2

H(0) cnot (1,2)
cnot (3,5) cnot (7,6)
cnot (8,9) cnot (12,10)
cnot (14,13) cnot (18,17)

0.62929 0.90214

A3
cnot (7,4) cnot (8,11)

cnot (12,15) cnot (18,21)
0.92761 0.94045
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Figure 6.10: Total error rates for each cnot characterized by KNR. Values represent the
sum of all error types measured by the protocol.

87



likely, so we select the first reported error of the two. Because the errors are lexicographically

ordered there is a slight bias towards X-type errors, but we expect this to have little to no

effect on the final results of the noise model since these error types are indistinguishable in

practice.

In Fig. 6.11 we show the estimated portion of these errors which could be modeled as

a depolarizing channel. To estimate this parameter, we consider a single-qubit depolarizing

channel like the one defined in Eq. 4.5 except that the parameter p is allowed to vary per

error gate operator (X, Y , or Z). We sum together the single-qubit (weight-one) error rates

per qubit provided by the KNR estimate and average the two estimates together. This is an

approximation of a depolarizing parameter that could describe the noise in a two-qubit gate

as the channel εDP
j,k = εDP

j ⊗ εDP
k in the same way EDC depolarizing estimates are defined.

Several degrees of freedom that are estimated by KNR are ignored in this approximation

but it is a useful comparison to the EDC-estimated depolarizing rates.

6.3.3 Empirical Direct Characterization

In Fig. 6.12 we show estimated readout error rates for measurements of state zero and state

one. The p0 parameter is the rate of error in readout when state zero was the expected

outcome; similarly the p1 parameter is the rate of error in readout when state one was the

expected outcome. These parameters are estimated from results of a blank measurement

circuit and a circuit with a single X gate applied to every qubit in parallel. We also test

other methods of readout parameter estimation using one X gate operation per qubit per

circuit and adding circuits which use two X gates to solve for error rates on X such that the

error rate p1 is corrected for the error of applying X. However, this method provided the

best performance in our tests which are shown in detail in Section 6.4. These readout error

estimates are also used in the KNR noise model, as this method for estimating readout is

the same approach used in True-Q.

The readout error rates indicate spatial variability across the qubit register, as well as a

consistent asymmetry between states zero and one. In particular, most qubits have a higher
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Figure 6.11: Estimate of the depolarizing component of the noise channels estimated by
KNR.
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Figure 6.12: Readout error rates for toronto estimated by EDC.

90



error rate in readout of state one. Additionally, most qubits have under 5% error rates, but

qubits 13 and 15 are significant outliers with around 30% error.

Using EDC we calculate the depolarizing parameter which best fits Bell-state preparation

circuit outcomes for Bell circuits executed on each qubit pair of the layout of toronto shown

in Fig. 5.1. In Fig. 6.13 we show these parameters which are evaluated for cnot gates applied

with both configurations of control and target qubits. The error bars represent the upper

limit of the error from the least squares calculation. These error rates are calculated using

the readout error rates from Fig. 6.12.

The results from EDC for depolarizing error rates show lower error rates and more spatial

variability than the depolarizing estimates derived from KNR. The estimated error from EDC

is frequently lower than the KNR depolarizing estimate, and the relative noise of the qubit

couplings among each protocol estimate does not generally agree. The differences between

the two estimates may largely be attributed to the use of RC in the KNR estimates, and this

comparison provides a numeric estimate of the effect of RC on the observed error rates.

6.4 Comparative Analysis of Characterization

In Table 6.3 we report the process fidelities reported from CB results and the Hellinger

fidelities calculated from the GHZ-state preparation results. The Hellinger fidelity is defined

as

FH =
∑
i

√
piqi

2 (6.1)

for states i of distributions p and q. The Hellinger fidelity is a metric which provides a basic

comparison of the circuit results in experiment to the estimated process fidelities of each

cycle in experiment. For each example shown in Table 6.3 the Hellinger fidelity is lower than

the process fidelity of the constituent circuit components, and the difference between these

metrics may largely be attributed to the effects of readout error. For the largest example of

20-qubit GHZ-state preparation, the process fidelity of the parallelized cycles (A1, A2, and

A3) is closer to the Hellinger fidelity of the GHZ circuit in experiment than the constituent

cycles. This underlines the value of characterizing cycles rather than components. However,
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Figure 6.13: Error rates of cnot for toronto estimated by EDC.
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Table 6.3: Comparison of estimated process fidelities using GST and CB. Square brackets
indicate cycle fidelity estimates that are multiplied together.

Method Fidelity
BC Bell state circuit qubits (0,1) 0.81767 (Hellinger)
GST cnot qubits (0,1) 0.97692 (process)

RC Bell state qubits (0,1) 0.78493 (Hellinger)
CB H qubit (0) 0.99903 (process)
CB cnot qubits (0,1) 0.96539 (process)
CB [H qubit (0)] [cnot qubits (0,1)] 0.96445 (process)

RC GHZ 20 qubits 0.11528 (Hellinger)
CB cycles [A1][A2][A3] 0.45381 (process)
CB cycles [0][1][2]...[18][19] 0.73081 (process)
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it also highlights the difficulty in defining cycles for circuits that do not have an inherent

cyclical structure. For GHZ circuits, the natural cycle definition is one cycle per gate. Our

parallelized cycles ignore the actual structure of GHZ circuits in favor of characterizing cnot

gates in the context of a large set of cnot operations at once. While this provides a closer

estimate of fidelity in experiment than the natural cycle definition of GHZ, it still does not

come close to the final circuit fidelity in experiment. This could be because the cycles A1,

A2, and A3 are not representative of operation sequences used in GHZ circuit experiments.

In Fig. 6.14 we show the results of simulating a Bell-state preparation circuit using noise

models derived from KNR results. We use the gate noise estimates from KNR shown in

Fig. 6.10. The “Gate Only” noise model consists of just these error rates. We then add

to this gate model four different methods of readout error. The readout error estimates

are derived from using a single blank measurement circuit, a circuit with a single X gate

applied per qubit, and a circuit with two X gates applied per qubit. The “2C full register”

readout model uses the first two of these circuits to estimate readout. The “3C full register”

readout model uses all three of these circuits to estimate readout. We can apply these X

and XX gates once per qubit per circuit such that we have as many circuits as qubits. The

motivation of this approach is to take any correlations between simultaneous operators into

account. This approach is used in the “2C per qubit” and “3C per qubit” models.

In Fig. 6.15 we show these results for EDC models with the same set of four readout

models. We use the gate noise estimates from Fig. 6.13. For both the KNR and EDC results,

we compare the performance of these noise models to the TVD between the experiment

results and a noiseless Bell-state preparation, which is an exactly equal split between the 00

and 11 states, just as we defined the noiseless GHZ state.

In Fig. 6.16 we show the results of simulating a Bell-state preparation circuit using

the best noise model from EDC, KNR, and GST. We again compare to the TVD of the

noiseless Bell-state preparation of equal counts of state 00 and state 11. We also compare

to “self-simulated” cases, which is the TVD between the targeted Bell circuit results from

experiment and another data set of Bell circuit results executed on toronto. The self-

simulation examples indicate a potential best-case simulation of toronto simulating itself

by generating additional data sets.
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Figure 6.14: TVD to experiment of composite noise models constructed from error rates
estimated using KNR. Error bars are calculated as the standard deviation across 100 trials
of the Bell-state preparation circuit distributions.

Figure 6.15: TVD to experiment of composite noise models constructed from error rates
estimated using EDC. Error bars are calculated as the standard deviation across 100 trials
of the Bell-state preparation circuit distributions.
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Figure 6.16: TVD between experiment and noisy simulation of the Bell state on qubits
0 and 1 using noise models constructed from GST, KNR, and EDC protocols. Error bars
represent the standard deviation across 100 trials of Bell state simulation distributions. The
error for the noiseless and self-simulation cases is calculated as the error propagation in TVD
from the distributions.
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The difference in performance of RC circuits and BC circuits is highlighted in the noiseless

results. The lower TVD between the noiseless Bell results and the BC Bell results indicates

that the BC Bell results are closer to ideal than the RC circuits. The KNR TVD is calculated

to the RC Bell data, and the GST and EDC TVD is calculated to the BC Bell data. The

noise model with the closest fit to experiment was KNR, although EDC is within error of

KNR. In the RC self-simulation case, the TVD result likely indicates the effects of drift,

since the additional data set used for comparison was taken several hours later. For BC Bell

circuits, the additional data set is taken from the same job.

6.5 GHZ Benchmark Results

We evaluate the performance of noise models built using KNR and EDC methods in

simulating GHZ-state preparation circuits. We calculate the TVD between our noisy circuit

simulation outcomes and the circuit outcomes in experiment from toronto and show these

results in Fig. 6.17. We compare these results to the TVD calculated between our selected RC

and BC GHZ-state preparation circuit results and noiseless GHZ-state preparation results,

for which we use an equal split between the all-zero and all-one states. We also compare to

the TVD calculated between the selected RC and BC GHZ-state preparation circuit results

and an additional data set of the same circuits run on toronto during the same time frame.

We find that the EDC noise model comes closest to accurately simulating the results

of the GHZ circuits in experiment. The EDC noisy simulations are both closer to the self-

simulated (best case) results and farther from the noiseless (worst case) results than the

KNR noisy simulation results are to the respective RC GHZ results. At a size of 20 qubits,

the EDC noise model simulation is about 0.4 lower TVD than noiseless, whereas the KNR

noisy simulation is about 0.2 lower TVD than noiseless. For GHZ circuits of size 2 and 3

qubits, KNR simulation TVD is lower than the self-simulated TVD, but reaches a maximum

distance away from self-simulated of 0.26 at 10 qubits, whereas EDC simulation TVD reaches

a maximum distance from self-simulated of only 0.16 at 17 qubits.

These results indicate that the EDC noise model provides a closer description of the noise

present in toronto than the KNR noise model.
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Figure 6.17: Total variation distance between experiment results and simulation results.
Solid lines indicate TVDs calculated with randomly compiled results; dashed lines indicate
TVDs with bare circuits. TVD for the noiseless case is calculated between experiment and
results exactly split between an all-zero state and an all-one state. TVD for the “self-
simulation” case is calculated between experiment and GHZ results executed on toronto

during the same 12-hour period.
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6.6 Bernstein-Vazirani Benchmark Results

In Fig. 6.18 we show the performance of our EDC and KNR noise models on the Bernstein-

Vazirani algorithm. We compare these to the performance of the targeted experiment. In

the case of EDC, this is the set of BV circuits which were executed in the same job as the

characterization experiments and GHZ circuits. In the case of KNR, this is the set of BV

circuits which were executed closest in time following the KNR characterization experiments.

The EDC noise model used to model GHZ circuits is sufficient to model BV circuits because

it consists of the same components. We use the KNR protocol to characterize cycles which

define BV circuits and construct a noise model from these results as detailed in Section 5.3.2.

We compare the results of noisy BV circuit simulations to a “self-simulating” experiment,

which for EDC is a set of BC BV circuits from a job about 15 minutes later and for KNR

is a set of RC BV circuits executed a few hours later. The time differences are due to the

amount of experiments which happened in between. In particular the short time between

EDC circuit trials is a result of running the EDC circuit set multiple times to track error over

time as in Figs. 6.1 and 6.2. BV secret strings should be returned by 100% of the results in

the absence of noise, and therefore the noiseless case of BV circuit implementation returns

an accuracy of 1.

The randomly compiled BV circuits performed better than the uncompiled BV circuits

for every secret string encoding. The KNR noise model also performed better than the EDC

noise model for every secret string, coming closer to the BV circuit results from toronto

though both noise models were outside of error bars in every bitstring example. For encoded

strings 101 and 110, the KNR noise model performed about as well as the self-simulated

results.

Additionally, for both noise models the difference in accuracy between the noisy

simulation and experiment increases with the number of cnot gates. This is a correlation

we observed in the data from poughkeepsie in Chapter 4. It might indicate that there are

additional noise sources present in cnot that are not accounted for in either the KNR model

or the EDC model.
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Figure 6.18: Bernstein-Vazirani results from experiment and noisy simulation.
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6.7 Classical Resources Usage

We evaluate classical computation expense for these methods in creating experiments,

analyzing the data, and performing classical simulations of quantum circuits. We report

these in Table 6.4 measured by the amount of time taken to complete the computation. In

general, the computational intensity of creating experiments is negligible. Although creating

a GST experiment set can be computationally intensive, we are using a pre-built experiment

set in pyGSTi. Analyzing the data of CB, KNR, and EDC requires a trivial amount of

time to calculate on a basic laptop, but calculating the results of GST is computationally

intensive as the algorithm for the GST analysis optimizes a model to best fit the experiment

data [26].

Classical simulations of noisy quantum circuits are notoriously intensive, and we present

a detailed report of their performance in Fig. 6.19. The classical computational expense

of simulating quantum circuits grows exponentially in the size of the qubit count, and this

trend is demonstrated in all of our noisy GHZ-state preparation circuit simulations.
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Table 6.4: Estimates of classical resources used in our selected protocols. The “local”
simulations were computed on a laptop with 16 GB RAM and Intel Core i7 processor. The
“backend” simulations were sent as jobs to the IBM Q ibmq qasm simulator, a dedicated
quantum circuit simulator backend which is available through the IBM Q suite [3]. While the
GST classical calculation is computationally expensive, it may be parallelized on multiple
processors to achieve speedup.

Method Details Time Taken
GST Calculate results 70.13 hours

KNR
Simulate noisy RC GHZ circuits
(2-20 qubits, local)

1.95 hours

EDC
Simulate noisy BC GHZ circuits
(2-18 qubits, local)

33.53 minutes

EDC
Simulate noisy BC GHZ circuits
(19-27 qubits, backend)

21.02 hours

KNR
Simulate noisy RC BV circuits
(8 four-qubit circuits compiled
into 32 circuits each)

1 minute

EDC
Simulate noisy BC BV circuits
(8 four-qubit circuits)

1 minute
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Figure 6.19: Time taken for noisy GHZ simulation as a function of qubit count. Noisy BC
GHZ circuit simulations were switched from the local laptop to the IBM Q simulator backend
for 19+ qubits due to the computational intensity of the largest GHZ circuit simulations.
The IBM Q simulation backend has a limit of 32 qubits [3].
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Chapter 7

Conclusion

In Chapter 1 we presented the background on quantum computers and the need to

characterize and benchmark them. We introduced fundamental concepts in Chapter 2

and in Chapter 3 we presented a set of methods to characterize and benchmark quantum

computers. In Chapter 4 we presented an approach to characterization focused on developing

a coarse-grained model based on data from a small set of targeted subcircuit experiments.

In Chapter 5 we present an experiment design to test a set of methods for characterizing

and benchmarking quantum computers. In Chapter 6 we report our results from using these

methods and discuss our analysis. Finally, we present our conclusions.

7.1 Characterization and Benchmarking Conclusions

We have implemented several different characterization methods in experiment on quantum

computers. We demonstrate the effectiveness of each method in estimating device parameters

and the accuracy of the resulting noise model in describing the QPU outcomes. We show that

EDC, a highly efficient approach which yields a coarse-grained noise model, offers competitive

accuracy with other state-of-the-art methods in tests on standard quantum algorithms.

Our results demonstrate that the best characterization method depends on the applica-

tion. The structure, components and size of the circuit to be characterized all play a role

in choosing characterization approaches. Furthermore, our results show that an increase in
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experiment count and consequently information gain does not correlate with higher accuracy

in noise descriptions used to simulate a QPU.

Our BV circuit results can be further applied as a benchmark of QPU performance. While

BV algorithm circuits are unlikely to represent a broad indication of QPU performance,

they share some hallmarks of benchmark tests with other commonly used benchmarks. For

instance, BV circuits represent a practical calculation that a QPU might be used to solve.

They are easily extensible and include several features of a typical quantum computation,

such as single- and two-qubit gates, entanglement, superposition, and measurement.

Furthermore, the expected outcome of BV is a single bitstring, which means that any results

that are not the expected bitstring are the result of errors.

In this way, KNR may provide an estimate of performance of a QPU on BV algorithm

benchmarks. KNR had close agreement to experiment in the reported accuracy of the

encoded secret string. Using noise models constructed by KNR in simulation of BV

benchmark experiments could provide valuable insight into expected performance of a QPU

on a relevant test.

None of the models derived from the three methods were able to describe all noise present

in the device. We tested all three on the Bell state and none of the results achieved zero

TVD, although the TVD was low for KNR and EDC. In addition, the TVD results for GHZ

circuits grew with the size of the circuit qubit register, indicating not only that there are

additional soures of noise present in the system but that they might correlate with qubit

count. In the GHZ example, some of this additional noise may come from decoherence

of idling qubits as shown in Fig. 6.7. However, TVD sharply increases for larger circuits,

approaching the maximum of one for the maximum register sizes (20-27 qubits), indicating

that these experiments reach the limit of the capabilities of the QPU’s ability to produce

correct or predictable results.

The best characterization method varied by test. EDC performed better in GHZ tests,

and KNR performed better on BV benchmarks. The structure of the quantum circuit might

be a factor in this difference. To improve EDC performance on BV it may be beneficial

to re-characterize the components in the BV circuit context and define a set of tests to

characterize more components of the circuit. To improve KNR performance on GHZ, we
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may be able to change the experiment setup in a way that is more optimized for the circuit

and set of cycles, such as testing different combinations of cnot parallelizations or sequence

lengths.

If the performance of RC circuits and KNR noise models are strongly correlated and the

performance of BC circuits and EDC noise models are similarly correlated, it may be possible

to test what characterization method is most useful for a particular circuit. We could test

the circuit of interest or a subcircuit of it for which we know the expected outcome both with

and without randomized compiling. If the RC circuits perform better than the BC circuits,

that might indicate that KNR is the best noise model choice. Likewise, if the BC circuits

perform better than RC circuits, EDC may be the better noise model.

The main findings are generally corroborated among the protocols. For instance, the

relative noise levels between asymmetric readout states and single- and two-qubit gates are

similar among the protocols. However, the fidelity metrics and gate error levels are not

always in agreement.

Non-Markovian noise is present in the system and particularly in the cnot gates. GST

indicates this, as does the performance of RC circuits to a lesser extent. RC circuits should

perform best at tailoring noise into stochastic Pauli channels in the presence of arbitrarily

non-Markovian noise [4]. Because the performance of KNR noise models steadily degrades

for larger counts of cnot gates, these stochastic channels evidently do not predict the QPU

results and therefore the noise has not been tailored well.

7.2 GST

The expense of GST is not prohibitive for a two-qubit example. However, it is large enough

that over the time period that GST experiments are run it is possible that parameter drift

comes into play which affects the accuracy of the best-fit model. Drift is more likely to impact

GST results than KNR, CB, or EDC primarily because GST requires the most experiments.

To characterize a similar two-qubit example using KNR or EDC requires about 1/40th or

less of the circuit count of GST.
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However, the results of GST have more information to offer. In our experiments, GST

confirms the presence of non-Markovian noise particularly prevalent in cnot gates, which

are also the noisiest gates in our tests. Non-Markovian noise impacts the accuracy of noise

models built using GST, KNR, and EDC, and is likely to be a source of the additional error

not accounted for in our best-fit models.

7.3 KNR and CB

In our GHZ circuit tests, the KNR noise model did not account for all the noise in the

system. The KNR model achieved a poorer fit to RC GHZ experiment results than the

EDC model fit to the BC GHZ experiment results as measured by TVD. Furthermore, the

RC GHZ circuit results themselves have generally lower performance than uncompiled GHZ

circuit results as measured by the rate of observation of the expected outcomes. As the

circuit qubit register size increases, this performance worsens more quickly in the RC GHZ

circuits than in the uncompiled GHZ circuits.

On the other hand, the KNR noise model performs better than the EDC noise model on

the BV circuit benchmark as measured by the agreement between simulation and experiment

in accuracy reported by the algorithm. This was true for every encoded secret string.

Additionally, the RC BV circuit results had better performance than the uncompiled BV

circuits by this same measure for every encoded secret string.

These two aspects of the KNR protocol results–performance of the KNR model fit and

performance of the RC application circuit–are likely correlated. In the GHZ example, the

performance of the KNR model and the RC circuits was poor yet in the BV example, the

performance of the KNR model and the RC circuits was good. One likely reason for this is

that while the gate set of GHZ and BV is the same, the structure of GHZ circuits is very

different from the structure of BV circuits. GHZ circuits are a chain of cnot gates with

no cyclical structure, no parallelized gates, one easy gate and virtually all hard gates. In

contrast, BV circuits have a cyclical structure, many parallelized gates, many more easy gates

than hard gates, and only a few hard gates that are applied right before or after easy gates

which allows twirling gates to be compiled together with the easy gates. The way that hard
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gates are used in the circuit is likely a primary factor in the performance of RC and KNR

noise models. The chain of unparallelized hard gates of GHZ circuits means that each hard

gate becomes its own cycle and randomly compiling GHZ circuits results in a potentially large

number of twirling gates inserted around each cycle. For the largest GHZ circuit examples

we implemented, this can be up to an additional 300 single qubit easy gates inserted into the

GHZ circuit. For the BV circuits, the additional gate count is no more than 8. This means

that the potential for additional noise is much higher for the GHZ example than the BV

example, leading to a commensurate degradation in performance of the application circuit.

Likewise, this would have the effect of altering the noise channels measured by the KNR

protocol such that the results of KNR may not be sufficiently descriptive of the application

circuit to yield an accurate noise model.

7.4 EDC

The model of EDC is the simplest of all the methods and therefore provides the least detail

of the underlying device or circuit characteristics. However, the EDC model provides a

description of noise present on every tested component of the QPU and yields a noise model

which performs best in simulating GHZ circuits as measured by TVD to experiment. It also

requires the fewest experiments and scales only linearly in the characterized components,

making it the most efficient approach to characterization.

While the EDC model did not perform as well as the KNR model in simulating BV

circuit results, it does not provide a noise model for the single-qubit gates present in the

BV circuits. Developing a noise model for single-qubit gates using the EDC method may

improve the accuracy of the EDC model in the BV example.

In the BC GHZ circuit results, there are sharp increases in TVD between experiment

and a noiseless GHZ when unusually noisy qubits are included in the circuit. These results

demonstrate that it is worthwhile to avoid low-quality qubits. These results from toronto

would likely be improved using routing techniques to better handle highly noisy qubits [74].
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7.5 Computational Resources

A central focus of our tests is scalability, namely how accuracy of characterization correlates

with experiment count. Our results suggest that this is not a strong correlation. EDC has a

low resource count but high accuracy in some of our tests. KNR had high accuracy in other

tests but requires significantly more circuits than EDC. GST has the highest experiment

count which yielded a suite of information about the 2-qubit system but did not perform

well in the Bell state test.

Classical computation resources needed to calculate GST are considerably higher than

those needed for other protocols. These are not prohibitive in our example and can be

reduced over our reported classical performance using parallelization and enhanced classical

hardware. However, it is noteworthy that the classical computation expense of GST is a

consideration in the overall experiment design, whereas for EDC, KNR, and CB the classical

portion of the methodology is negligible.

While the experiment count of KNR and CB does not scale with qubit count, the total

number of experiments needed to characterize all necessary cycles of the circuit of interest

might still be high. Efficiency in experiments can be tuned in selecting the sequence lengths,

number of sequence lengths, shot count, and circuit decompositions into cycles.
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A Sampling Effects in Experiment and Simulation

Because of the statistical nature of quantum computers, the effects of sampling on final

results are an important factor in analyzing output from experiments as well as from

simulations when performed in a finite sampling mode as ours are. In particular, for binomial

distributions defined by a probability parameter p, e.g. an error rate, we verify that our

sampling statistics are maintaining reasonably small error bars on the measurement of p.

In Fig. 1 we plot the standard deviation for a binomial distribution as a function of

the value p. The standard deviation is given by Eq. 1 where N is the number of samples,

e.g. shots per circuit, and p is the binomial probability parameter, e.g. error rate. We plot

this function for N = 8192, the maximum shot count per quantum circuit sent to the IBM

quantum and simulation backends as an example.

Est.dev. =

√
p(1− p)

N
(1)

The peak standard deviation occurs when p = 0.5. We next plot the standard deviation

as a function of sample number, again up to a maximum of N = 8192, for p = 0.5 in

Fig. 2. Figure 3 plots this same relationship but limits the window to small sample sizes for

N < 200.
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Figure 1: Standard deviation of a binomial distribution for N = 8192. The maximum
standard deviation is when p = 0.5.
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Figure 2: Standard deviation of a binomial distribution for p = 0.5.
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Figure 3: A closer view of Fig. 2 to show standard deviation at small sample sizes.
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