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Abstract

The premise of this dissertation is the study of and reduction of systematic uncertainties in

the MicroBooNE experiment at the Fermi National Accelerator Laboratory. MicroBooNE

is a short-baseline oscillation experiment using the innovative liquid argon time projection

chamber technology to study, with unprecedented detail, neutrino interactions. The primary

goal of MicroBooNE is the investigation of the MiniBooNE low energy excess (LEE) of

electron neutrino events, a result which raised fundamental questions on the existence of

sterile neutrinos with broad implications to the field of particle physics. The principal

study of this dissertation is a study of systematics as part of the LEE search seeking an

explanation to the MiniBooNE low energy excess anomaly via neutrino-induced single photon

events. A detailed knowledge of uncertainties is necessary to achieve the required precision,

and the work presented in this thesis allowed for an estimated three times reduction of

systematic uncertainties in the single photon analysis. In addition, a study of beamline

properties and systematics on the source beam for MicroBooNE, the Booster Neutrino

Beam, with a method of recovering data deemed unfit due to beamline related issues has

been performed. Significance of beam-related measurements depends on the protons on

target collected and, as such, this result could potentially increase the neutrino data received

by MicroBooNE. Overall, these studies have significantly contributed to the precision and

confidence of the single photon analysis along with potential for improvements to future

analyses in MicroBooNE.
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Chapter 1

Overview of Thesis

A series of accelerator neutrino experimental results has led to a search for novel physics

in what is known as the short-baseline region. The principle subject of this thesis is to

investigate the Mini Booster Neutrino Experiment (MiniBooNE) [11] measurement of νe-

like excess at low energies or the Low Energy Excess (LEE) [11]. The Micro Booster

Neutrino Experiment (MicroBooNE) [1] at Fermi National Accelerator Lab (Fermilab) is

the most modern data collecting experiment in this direction. While efforts to define

theories accounting for the LEE are being developed, including sterile neutrinos, which do

not interact via the weak force, with broad implications to Standard Model particle physics,

MicroBooNE investigates the MiniBooNE anomaly experimentally with new tools to reduce

backgrounds and produce more accurate measurements. MicroBooNE is in the process of

examining neutrino interactions with unprecedented detail compared to what MiniBooNE

performed using a mineral oil Cherenkov detector. As a liquid argon time projection chamber

(LArTPC), the MicroBooNE detector can reconstruct events in three dimensions via signals

on wire planes and drift time with greater precision. Properties measured in the MicroBooNE

detector also have broad implications to future LArTPCs including the Deep Underground

Neutrino Experiment (DUNE) and the Short Baseline Neutrino (SBN) program.

MicroBooNE must account for uncertainties from both its neutrino beam flux prediction

and underlying cross-section assumptions for interactions within the detector. My work,

therefore, covers several approaches towards estimating and reducing MicroBooNE’s sys-

tematic uncertainties. Several concurrent analyses exist in MicroBooNE investigating the
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Low Energy Excess and measuring more generic neutrino-argon cross section properties. My

principle analysis is therefore tied specifically to the Single Photon or gamma LEE analysis

effort investigating an explanation to the LEE involving misidentified photons or unexplored

backgrounds leading to new physics. My work has largely focused on implementation of

tools developed in the MicroBooNE collaboration to the specific single photon analysis and

subsequent investigation. This implementation is crucial to determining the significance level

of the gamma LEE results and confidence intervals.

There is also accompanying work on the Booster Neutrino Beamline (BNB) which applies

to MicroBooNE more generically. Investigations were attempted to improve the knowledge

of the BNB neutrino flux by analyzing beam instrumentation data and studying secondary

proton re-interactions in the beamline. Results here may allow increasing the amount of

usable data via new instrumentation data analysis. The significance of MicroBooNE results

depends on the quantity of data, therefore data recovery could be invaluable.

In the remainder of the text, chapter organization is discussed with an overview of the

individual chapters of this dissertation. Ch. refch:neutrinos briefly outlines the properties

of neutrinos with a focus on properties relevant to our experimental goals. It also covers

open-questions in the field including those investigated by MicroBooNE. Ch. 3 describes the

MicroBooNE detector in detail along with its physics goals and status of the operations of

the experiment. Ch. 4 covers the methods of data extraction, reconstruction, and simulation

in the MicroBooNE experiment necessary for discussion of my analysis methods. Ch. 5

gives an introduction to the Single Photon or gamma Low Energy Excess analysis for

which I performed a complete evaluation of systematic uncertainties crucial to determining

significance levels and precision of final measurements. Ch. 6 covers this systematics work

including several approaches to calculating uncertainties. It also covers sensitivity projections

towards our final fit significance given the current state of systematic uncertainties. Ch. 7

briefly covers the field of accelerator neutrino experiments, and describes the BNB and

Neutrinos at the Main Injector (NuMI) beamlines which contribute to neutrino flux received

by MicroBooNE. Ch. 8 covers my specific analysis of the Booster Neutrino Beamline and

related systematics. It includes efforts to better model the neutrino flux prediction from the
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beamline, and to improve our knowledge of the beam status via instrumentation data. Ch. 9

summarizes the results of this thesis and gives an outlook towards future work.
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Chapter 2

Neutrino Physics

This chapter introduces the Standard Model (SM) of particle physics and explains basic

neutrino concepts to serve as reference for the rest of the thesis. It also states the open

questions in neutrino physics as motivation for the dissertation work presented here. Sec. 2.1

gives a brief overview of the Standard Model and neutrinos’ place therein. Sec. 2.2 gives

an overview of neutrino history. Sec. 2.3 explains key properties of neutrino oscillations.

Sec. 2.4 explains the types and mechanics of neutrino interactions. Sec. 2.5 goes over open

questions in the field of neutrino physics. Finally, Sec. 2.6 gives an overview of neutrino

experiments.

2.1 Standard Model

The Standard Model or Glashow-Weinberg-Salam [26, 27, 28] model developed in the 1970s

aims to describe interactions in the small distance and high energy regime. It currently

stands as a complete quantum field theory that describes nearly all physical interactions.

It is defined by the gauge group SU(3)C × SU(2)L × U(1)Y where C, L, and Y stand for

chirality, left handed, and hypercharge respectively. These groups have symmetries such that

under particular transformations physical phenomena will be unchanged, but which can be

broken under certain conditions. With the Higgs symmetry breaking (in vacuum), the model

is converted to SU(3)C×U(1)Q where U(1)Q is the gauge symmetry group corresponding to

conservation of charge. Interactions are determined via the generators of each group referred
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to as bosons. These bosons and particles together make up the components of the Standard

Model as seen in Fig. 2.1.

Fundamental particles are assumed to be point-like with no internal structure, and are

separated into fermions with half-integer spin and bosons with integer spin. Also each

particle has a corresponding anti-particle. Fermions are the fundamental building blocks of

matter separated into six quarks and six leptons. They are grouped into three generations

each, including two quarks and two leptons as seen in Tab. 2.1. Quarks and leptons are

distinguished by the properties that strong force only applies to quarks, and quarks cannot

exist independently.

As stated, bosons are the generators of the Standard Model groups with five bosons that

have been predicted and detected as shown in Fig. 2.1. Bosons mediate force by acting

as propagators that transmit quantities (charge, mass, lepton number, energy) between

fermions. Boson exchange can be characterized by a propagator term proportional to (q2 ±

m2)−1 where q2 is the scalar product of the interaction 4-momentum (E/c, px, py, pz) and m

is the mass of the boson.

Quantum electrodynamics (QED) is defined by the U(1)Y charge group with its generator

being the photon (γ). The photon is massless and chargeless as demanded by theory. Due

to its massless nature, electromagnetic interactions mediated via the photon remain strong

over significantly larger distances than the weak or strong forces. However, electromagnetic

forces are significantly weaker at small distances than weak or strong forces.

Weak interactions are mediated via the generators of the SU(2)L group including three

massive gauge bosons W+, W−, and Z0. These interactions can be unified with the

electromagnetic for electroweak theory of the SU(2)L × U(1)Y group. Chirality is defined

by how particles transform under a Lorentz boost, and it is identical to helicity for massless

particles and in the high-energy regime. Helicity is defined by the projection of the spin

vector onto the momentum vector. When helicity and chirality are identical, positive helicity

(aligned) becomes right-handed chirality and negative helicity (unaligned) becomes left-

handed chirality. Left handed particles interact as doublets [27] based on generations of

particles described in Fig. 2.1 i.e.
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Figure 2.1: The Standard Model of particle physics.

Table 2.1: Generational description of quarks and leptons.

1st generation 2nd generation 3rd generation
quarks u (up) c (charm) t (top)

d (down) s (strange) b (bottom)
leptons νe (electron neutrino) νµ (muon neutrino) ντ (tau neutrino)

e (electron) µ (muon) τ (tau)
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LL=

νeL
eL,

, QL=

 uL

dL

.

Right handed particles are then singlets uR and eR and are unaffected by charged current

weak interactions. However, as will be elaborated upon in Sec. 2.5, the nature of right handed

neutrinos is unknown. Weak conversions between neutrinos and charged leptons are thus

transformations on these doublets. Flavor lepton number conservation is a consequence of

the electroweak formulation where the number of each flavor of lepton is conserved in weak

interactions (and consequently the total lepton number as well). But while the Standard

Model demands flavor conservation, neutrinos notably do not conserve flavor while oscillating

which will be discussed in Sec. 2.3.

Quantum Chromodynamics (QCD) is defined via the eight generators of the SU(3)C

defined as eight gluons, and the strong force acts only between quarks and gluons. Color

charge is a property necessary to allow quarks to exist within hadrons without possessing

identical quantum states. These were designated as red, green, and blue with corresponding

anti-colors. Free particles must have a neutral color charge. Neutral color charge can be

achieved either by combining a quark and anti-quark i.e. the combination of a red and anti-

red quark to form a meson, or by combining each of the three colors (or anti-colors) i.e. a

combination of a red quark, green quark, and blue to form a baryon.

Neutrinos in the Standard Model make up three neutral leptons of spin 1/2 with flavor

states corresponding to each charged lepton. Neutrinos interact only weakly i.e. in beta

decay n→ p+ e−+ ν̄e. It has been shown that neutrinos propagate as mass states which are

superpositions of flavor states, but the Higgs mechanism, responsible for generating mass

in the Standard Model, seems incompatible with neutrino nature. The Higgs mechanism

generates mass of W and Z gauge bosons and fermions. The mechanism is based on

spontaneous symmetry breaking by the scalar Higgs Field when applied to the fields of

fundamental fermions and gauge vector bosons in the Standard Model. The Higgs was

defined by Francois Englert and Peter Higgs [29] as a SUL(2) doublet
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φ(x) =

φ+(x)

φ−(x)

.

This generates a potential term in the Lagrangian ultimately breaking the SU(2)L×U(1)Y to

a U(1)Q group. It should be noted this symmetry breaking only occurs in vacuum otherwise

the SU(2)L × U(1)Y group remains symmetrical. The Higgs mechanism generates lepton

mass via the Lagrangian LlepY = −Σl1,l2 l̄
′
1LYl1,l2l

′
2R(ν + H) [30]. Here l̄

′
1L is a left-handed

lepton field, Yl1,l2 is the Yukawa mixing matrix, and l
′
2R is a right handed lepton field. ν is

the lepton mass term and H is the Higgs field. So the Higgs mechanism depends on a mixing

of right and left handed fields, and in the absence of right handed fields it cannot generate

mass.

While long theorized, the Higgs was finally detected in 2012 by the ATLAS and CMS

detectors at the Large Hadron Collider (LHC) [31]. A Nobel Prize would be awarded jointly

in 2013 to the co-founders of the theory, Francois Englert and Peter W. Higgs.

2.2 Neutrino history

The first hint at a neutrino-like particle was the measured energy spectrum of outgoing

electrons in Beta decay in 1914. The experiment assumed the decay n → p + e− would

necessitate a discrete value, but the measured spectrum was continuous as illustrated

in Fig. 2.2. Pauli would make a, so called, desperate prediction to save the theory of

conservation of energy. He predicted a chargeless particle of spin 1/2 to carry the resulting

energy missing in the measured continuous spectrum.

It would not be until 1956 that neutrinos were actually observed by Reines and Cowan.

Their experiment consisted of a hydrogenous liquid scintillator receiving neutrino flux from

a nuclear reactor which detected interactions of νe [2]. Event displays from this experiment

can be seen in Fig. 2.3. In 1957, Bruno Pontecorvo would predict the oscillatory property

of neutrinos [32]. In 1962, the νµ was detected by Leon M. Lederman, Melvin Schwartz,

and Jack Steinberger at Brookhaven National Lab in the Alternating Gradient Synchrotron

(AGS) beamline neutrino experiment [33]. The group would receive the Nobel Prize for this
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in 1988. In 1965, the Homestake [34] experiment would first observe the oscillatory properties

of neutrinos via a deficit in the flux of solar neutrinos compared to the prediction of the

Standard Solar Model [35]. In 2002, the founder of this experiment, Raymond Davis, Jr.,

would receive part of a Nobel prize for this work. The Nobel prize was shared with Masatoshi

Koshiba who designed Kamiokande [21] and Super-Kamiokande [36] which expanded the

study of solar neutrinos. While it was then logical to conclude the existence of a third flavor,

corresponding to the τ lepton, the tau neutrino (ντ ) would not be detected until 2001 in the

DONUT experiment [37] finally completing the three flavor model experimentally.

2.3 Neutrino Oscillations

Neutrinos interact as flavor states corresponding to each lepton, but propagate as mass states

that are superpositions of flavor states. The formulation of mass eigenstates implies the

property of neutrino oscillations where a neutrino interacting as one flavor can be measured

or interact as another flavor after being propagated. Mixing between flavors was formalized

theoretically in 1962 by Ziro Maki, Masami Nakagawa, and Shoichi Sakata [38] to explain

the neutrino oscillations previously predicted by Bruno Pontecorvo [32]. Oscillations were

first observed by the atmospheric neutrino experiment Super-Kamiokande [39] in 1998, then

in the solar experiment (SNO) [40] in 2001, and in 2015, a Nobel Prize would be awarded

jointly to the two experiments. After this, the first reactor experiment to investigate neutrino

oscillations was KamLAND [41] in 2005. The three flavor formulation mixing is defined by

νlL(x) =
3∑
i=1

UliνiL(x) (2.1)

where νiL represents the neutrino mass states, νlL represents flavor states, and νiL(x) =

e−iEitνiL(0). U is the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mixing matrix [38], a

3 × 3 unitary matrix defining the transfer from mass state basis to flavor state basis [30]
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Figure 2.2: The left figure shows an illustration of the measured exiting beta energy spectrum
vs the expected discrete spectrum. The right figure shows a beta decay Feynman diagram.

Figure 2.3: Oscilloscope traces from the Reines and Cowan experiment for first measurement
of neutrinos [2]. The left figure shows the signals for positron annihilation and the right figure
for neutron capture, on each of three detectors.
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given by 
νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1

ν2

ν3

 , (2.2)

or more explicitly

U =


c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

−s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 . (2.3)

It is defined by three mixing angles where cab = cos θab, sab = sin θab, for which a, b = 1, 2, 3,

a 6= b, and phase factor δ. These mixing angles have been well defined by experiments. The

Charge Parity (CP) violating phase δCP is not yet known and will be discussed in Sec. 2.5.5.

Note that this matrix assumes neutrinos are Dirac instead of Majorana, but Majorana nature

is not expected to have any impact on transition probabilities. The evolution of a given

neutrino flavor state is therefore determined by projecting to the mass state, propagating,

then reconverting to flavor states

|ν〉t = e−iH0t |νl〉t =
∑
l′

|νl′〉 (
∑
l

Ul′ie
−iEitU∗li) (2.4)

The transition probability between two flavors is then

P (νl → νl′) =

∣∣∣∣∣δl′l +
∑
i 6=p

Ul′i(e
−i(Ei−Ep)t − 1)U∗li

∣∣∣∣∣
2

(2.5)

where p is an arbitrarily fixed index. If the neutrino is ultra-relativistic, the following

approximation can be made

Ei =
√
p2
i +m2

i ≈ pi +
m2
i

2E
(2.6)

such that

(Ei − Ep)t ≈
∆m2

piL

2E
' 1 (2.7)
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with ∆m2
pi = m2

i −m2
p [30].

A two flavor model is sufficient for the transition region of most neutrino experiments.

The simplified two flavor model is then

Pα →β = sin2(2θ)sin2(1.27
∆m2L

E
) (2.8)

Oscillations of this region are illustrated in Fig. 2.4.

Thus transition probabilities depend upon the mixing angle θ, the distance between the

neutrino source and detector, referred to as baseline L, the neutrino energy E, and the

mass squared differences of neutrino mass states ∆m2. Therefore neutrino experiments

can tune their baseline and energy to maximize a given oscillation probability. Short

baseline experiments have L/E less than any estimated ∆m2 and so seek to estimate

neutrino interaction properties or search for exotic physics. Long baseline experiments

consist of two detectors such that neutrino flavor conversions are measured at two locations

with the distance between them tuned with the neutrino energy to the region of the

desired ∆m2 values. The latest measurements of the mixing properties are listed in

Tab. reftab:neutrinoproperties [42].

2.4 Neutrino Interactions

Neutrino events can be divided into neutral current (NC) and charged current (CC)

interaction channels defined by whether the exchanged boson carries charge. Feynman

diagrams for these are seen in Fig. 2.5. Note that only CC interactions allow flavor

detection through the outgoing corresponding charged lepton. Therefore flavor of neutrinos

in NC interactions cannot be determined by the interaction itself. NC events with the

same outgoing particles can be mis-identified as CC events, but cannot be used to make

measurements on particular flavors making them a problematic background. These categories

can be further divided into Charged Current Quasi-Elastic (CCQE), Resonant (RES), Deep

Inelastic Scattering (DIS), and Coherent (COH) interactions. The energy regimes of the first

three are shown in Fig. 2.6.
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Figure 2.4: Shown is a 2 flavor neutrino oscillation illustration. The oscillation probability
as a function of the baseline, L, for a given set of mixing parameters.

Figure 2.5: Feynman diagrams for elastic neutrino-electron scattering with charged current
(CC) on the left and neutral current (NC) on the right. Note the outgoing particles are
identical despite being different processes.
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(a) (b)

Figure 2.6: Total neutrino and anti-neutrino per nucleon charged current cross sections
(for an isoscalar target) [3] divided by neutrino energy and plotted as a function of energy
for neutrinos (left) and anti-neutrinos (right). Also shown are the various contributing
processes including quasi-elastic scattering (dashed), resonance production (dot-dash), and
deep inelastic scattering (dotted). Data points are represented by triangle [4], asterisk [5],
square [6], and star [7] symbols.

.
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As will be elaborated on in Ch. 3, the MicroBooNE receives neutrino flux with average

energy of ∼1 GeV. Neutrino interactions occur in liquid argon, chosen for its relatively heavy

nuclei, scintillation, and other useful properties. The primary focus of my work, the single

photon Analysis, focuses on resonance productions but has significant background from other

pion-producing interactions as will be discussed in Ch. 5.

2.4.1 Charge Current Quasi-Elastic Interactions

Quasi-elastic scattering is the most prominent interaction process in the energy region

∼100 MeV to 1 GeV. It is quasi-elastic as the energy transfer is small compared to the

incident energy of the scattered particles. This positions the interactions between the two

regimes of inelastic where the energy transfer is larger and elastic where it is negligible.

Interaction channels include

νl + n→ p+ l− (2.9)

νl + p→ n+ l+ (2.10)

where l corresponds to lepton flavors, the n and p are neutron and proton respectively.

Charge current quasi-elastic (CCQE) events which include an electron or positron can be

misidentified as our single photon signal, but are distinguishable by the electron-photon

separating power of the MicroBooNE detector. CCQE modelling uses the Llewellyn Smith

formalism as described in [43]. However, an improved model is the Nieves [44] CCQE model

which includes a correction for long-range nucleon correlations and an approximation of the

Coulomb interaction of outgoing charged leptons from the nucleus.

2.4.2 Deep Inelastic Interactions

Deep Inelastic Scattering (DIS) occurs largely at higher neutrino energies but can occur at

neutrino energies as low as ∼2 GeV. In this regime, the incident neutrino wavelength is

sufficiently small to induce hadronization including the processes

νl +N → l +X (2.11)
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νl +N → νl +X (2.12)

where N is a proton or neutron and X is a hadron shower. MicroBooNE uses The Bodek-

Yang [45] model for DIS interactions.

2.4.3 Resonant Interactions

Resonant pion production dominates the few-GeV energy range. It occurs when neutrino

interactions in target nucleon cause a resonance excitation creating an excited baryon state.

This excited baryon state then decays emitting a pion. There are three CC channels and

four NC channels for this process including

νl + p→ l + p+ π+ (2.13)

νl + n→ l + p+ π0 (2.14)

νl + n→ l + n+ π+ (2.15)

for CC, and

νl + p→ νl + p+ π0 (2.16)

νl + p→ νl + n+ π+ (2.17)

νl + n→ νl + n+ π0 (2.18)

νl + n→ νl + p+ π− (2.19)

(2.20)

for NC. Note the interactions are listed with resulting pions and nucleons, but this is because

these are the most common decays of the baryon which are produced. The single photon

selected signal is composed of resonance events where a delta particle decays instead directly

into a photon and nucleon. However, pion decays will produce photons which will pair

convert into electron-positron pairs producing ionization showers in the detector resulting in

a very similar signal, as will be discussed in Ch. 5. Modeling for these processes is commonly
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done via the Rein-Sehgal model [46]. MicroBooNE uses the improved Berger-Sehgal model

which was updated to include the effects of lepton mass.

2.4.4 Coherent Interactions

In this process, neutrinos scatter elastically off a nucleus in its entirety (instead of individual

nucleons) producing pions. Both CC and NC channels exist including

νl + A→ l + A+ π+ (2.21)

νl + A→ νl + A+ π0. (2.22)

This occurs largely with low momentum transfer. Coherent pion production is also modeled

with a Berger-Sehgal formulation. Pions produced in coherent processes are a sub-dominant

contribution in our single photon selections.

2.4.5 Neutrino-Argon Interactions Developement

Historically, neutrino detectors used lighter nuclei such as Hydrogen and Deuterium, but with

the advent of Liquid Argon Time Projection Chamber detectors, determining the properties

of the much denser Argon nuclei has become crucial. Future experiments of the Short

Baseline Neutrino (SBN) program [47] and the Deep Underground Neutrino Experiment [48]

will depend on modern measurements of neutrino-argon properties. MicroBooNE is well

positioned to provide high statistics neutrino cross section measurements on argon.

2.5 Open Questions in Neutrino Physics

Although neutrinos have been studied by a diverse set of experiments for over 70 years,

many questions about neutrino properties and their interactions remain unanswered. This

section will provide a brief overview of open questions in neutrino physics along with current

experimental efforts underway to address them.
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2.5.1 Neutrino Mass Hierarchy

Solar and atmospheric neutrino experiments have estimated two of the neutrino mass squared

differences ∆m2
21 and ∆m2

31 therefore referred to as ∆m2
sol and ∆m2

atm respectively. However,

the absolute masses of neutrinos have yet to be precisely determined. Therefore two

possibilities exist for the order of neutrino mass states referred to as “normal” and “inverted”

hierarchies, as can be seen in Fig. 2.7. The difference is in the position of m2
3 which is either

heavier or lighter than the other two. This is because, while ∆m2
31 has been measured, the

sign of ∆m31 is unknown [8].

The sign of these mass differences can be probed via matter effects in flavor conversion.

For example enhancement of electron neutrinos due to matter effects in the sun determined

the sign of ∆m21 > 0 [49]. For ∆m2
31, enhancement of νe would indicate normal ordering

while enhancement of ν̄e would indicate inverted mass ordering [49]. Tokai to Kamiokande

(T2K) [21] and NuMI Off-axis νe Appearance (NOνA) [50] experiments are both evaluating

sensitivities to this effect while the upcoming Deep Underground Neutrino Experiment

(DUNE) [48] and Taiko to Hyper-Kamiokande (T2HK) [51] should both have enhanced

sensitivity.

2.5.2 Absolute Masses of Neutrinos

The measurement of absolute mass of neutrino states is difficult due to their (estimated)

incredibly low value and the fact that neutrinos only interact weakly. An upper bound on

the combined mass of the three mass states was determined by considering their contribution

to the universal known mass density using cosmological data. It was determined as Σimi <

14 eV [52].

There is an effort to measure absolute neutrino masses via distortion of the β decay

spectrum in Tritium experiments. Two experiments which have attempted this are

Mainz [53] which placed an upper bound on the νe mass of m ≤ 2.3 eV/c2 and Troitsk [54]

which gave an upper bound value of νµ mass of m < 2.12 eV/c2, both at 95% confidence

level. In 2019, the KATRIN experiment announced a reduction of the upper bound of νe to

m < 1.1 eV at 90% confidence level, and it continues to collect data for more precision [55].
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Other future experiments are Project 8 [56], ECHO [57] and HOLMES [58] which are all

aiming for sub-eV sensitivity.

2.5.3 Additional Neutrino States

As will be elaborated in Ch. 3, both LSND [10] and MiniBooNE [11] saw results indicating

the potential of oscillation in a region, ∆m2 ≈ 1 eV2, where it should be forbidden. This

has led to the theory of an intermediary sterile neutrino νµ → νs → νe that allows for

the oscillation and does not interact via the weak force. This would align them with the

properties of right-handed neutrinos as will be discussed Sec. 2.5.4. MicroBooNE is the

principal investigator of the anomaly observed by MiniBooNE with the goal to evaluate

the sterile neutrino interpretation. MicroBooNE is also part of the more extensive short-

baseline neutrino (SBN) [59] program which is exploring existing hints for sterile neutrinos.

In addition, JSNS2 [60] at JPARC [61] (Japan) has just started taking data and aims for a

direct test of LSND.

2.5.4 Majorana or Dirac Nature

The three charged fermions are known to be Dirac fermions which have distinct antiparticles.

However, it is unknown if neutrinos are Dirac or Majorana, where Majorana nature implies

that neutrinos are their own anti-particles. Neutrinos unlike charged leptons possess no

charge or other conserved quantity that would distinguish a particle from an antiparticle.

Results from the Large Electron-Positron (LEP) collider [62] concluded that a theoretical

right-handed neutrino could not couple with weak bosons, so lack of observation of right-

handed neutrinos does not forbid their existence. However, experiments have determined

that produced neutrinos have negative helicity which equates to left-handedness in the high

energy regime. The Goldhaber Experiment [63] first proved the negative helicity of neutrinos

via resonant scattering of gamma rays following orbital electron capture.

Another aspect to consider is generation of mass, which as discussed requires left

and right-handed fields for the Higgs mechanism. Upper bounds for neutrino mass from

cosmological data [30] put neutrino at ∼6 orders of magnitude below the smallest known
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scale of the electron mass. This indicates neutrinos do not receive mass by the typical Brout-

Englert-Higgs mechanism that generates Dirac masses. No Standard Model interaction exists

to give Majorana mass implying that neutrino masses must come from beyond the Standard

Model physics.

Confirmation of the Majorana neutrino could be accomplished via neutrinoless double

beta decay. Here a virtual neutrino (antineutrino) is exchanged in two simultaneous beta

decay interactions such that no neutrinos are emitted (shown in Fig. 2.8). This is only

possible if the neutrino and antineutrino are interchangeable. Measurement is difficult both

due to the general difficulty in measuring neutrino production with precision and the low

expected likelihood of such an interaction.

CUORE [64] is an ongoing effort to measure neutrinoless double beta decay with a series

of detectors. The experiment placed a limit on the half-life of neutrinoless double beta decay

of T1/2 > 3.0 × 1025 years in 130Te and many detectors in the future (e.g. LEGEND [65],

SuperNEMO [66], nEXO [67], DARWIN [68]) hope to contribute to the study using different

isotopes and experimental techniques.

2.5.5 Charge Parity Violation

As discussed before, a transformation being symmetrical means that all physical laws and

processes should remain unchanged following the transformation. Foundational symmetries

to the Standard Model are charge conjugation (C) where each particle is replaced with its

anti-particle, parity transformation (P) which flips chirality, and time reversal (T), although

each is broken under different circumstances. The charge conjugation symmetry carries the

implication that matter and antimatter should be of equivalent abundance in the universe,

but this does not seem to be the case. There is also the issue that charge conjugation would

transform a left-handed neutrino into a left-handed antineutrino, the nature of which is

unknown. Parity was believed to be an unbroken symmetry until 1956 when Tsung-Dao Lee

and Chen-Ning Yang [69] documented that the symmetry was as yet unconfirmed in weak

interactions and proposed experiments for such a verification. Wu E. Ambler would lead an

experiment in 1957 proving non-conservation in beta decay of Cobalt-60 [70]. However, the

parity symmetry remains unbroken in strong and electromagnetic interactions.
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Figure 2.7: Neutrino mass ordering with normal (left) and inverted (right) hierarchies. The
coloration represent the flavor composition of each state. As the absolute masses are not
precisely determined, the distance from m2=0 is not defined on the diagram [8].

Figure 2.8: Feynman diagrams for normal (left) and neutrinoless (right) double beta decay
processes.

21



It was determined that a combination of charge and parity transformations would restore

symmetry in the experimental interactions leading to the concept of CP symmetry. C

symmetry would be broken in weak interactions to cancel out the asymmetries of a parity

transformation. In 1964, indirect CP violation was observed by James Cronin and Val

Fitch [71] by measuring the transformation of kaons. Transformation rates of kaons involving

transformation of their component quarks to anti-quarks (and vice-versa) were found to

have differing probabilities in different directions. This is considered indirect proof as it

could be explained by either CP violation or T violation. Direct CP violation would not

be conclusively demonstrated until 1999 from the KTeV [72] experiment at Fermilab and

NA48 [73] experiment at CERN by measuring a difference in CP symmetric decays of kaons

to pions.

CPT is a combination of symmetries that remains unbroken and has strong theoretical

backing established in 1954 by Gerhat Luders and Wolfgang Pauli [74]. This symmetry

implies violations of CP symmetry must be cancelled by violations in the T symmetry. CP

violation could explain the matter-antimatter asymmetry of the universe, but the measured

rate in kaons is not large enough to work as a sole explanation. Measurements in the

neutrino sector could expand this theory. CP violations have yet to be confirmed in neutrino

experiments, but the theoretical factor δCP has been incorporated into the PMNS matrix

with relation to the reactor mixing angle θ13.

Long baseline experiments such as NOvA [50] and T2K [21] experiments have some

sensitivity to δCP but are limited. Next generation long-baseline experiments such as

DUNE [48] and Hyper-K [51] are designed to provide discovery sensitivities to δCP . Both

experiments are expected to take physics data in late 2020s.

2.6 Neutrino Experiments

Neutrino experiments are divided into several categories based on their neutrino source.

These each probe neutrinos at different energies as can be seen in Fig. 2.9. Initial experiments

searching for the existence of the neutrino could be small-scale and rely on event counting

requiring less precision. To more properly measure neutrinos, larger and higher-precision

22



detectors are necessary. Bubble chambers were initially favored, such as those at Argonne

National Laboratory [75] and Brookhaven National Laboratory [76]. Their working principle

is to have an ionizing particle produce microscopic bubbles on a material and to reconstruct

the interactions via photographic images. Bubble chambers boast high precision but have

a number of limitations including their photogenic output and difficulty of construction at

larger sizes. Liquid argon time projection chambers (LArTPCs) have emerged as a balance

of precision and ability to be scaled to large sizes as can be seen in Fig. 2.10. LArTPCs

possess other advantages such as digitized outputs for ease of analysis. As has been noted,

the focus of this dissertation is MicroBooNE, an accelerator LArTPC experiment which will

be more thoroughly explained in Ch. 3.

2.6.1 Neutrino Accelerator Experiments

Accelerator neutrino experiments can be divided into the categories of long baseline (∼1000

km) and short baseline (∼1 km). The baseline indicates how far the neutrinos will travel

after production before passing through the (final) detector. This is primarily for defining

the L/E ratio, where L denotes baseline and E the neutrino energy, which corresponds

to a certain region of ∆m2 in the neutrino oscillation spectrum as defined in Sec. 2.3.

Long baseline experiments utilize near and far detectors to precisely measure the rates of

neutrino appearance or disappearance, as flavor states mix over the travel distance. These

measurements can be used to address the question of neutrino mass hierarchy as well as

investigate other questions like CP violation relating to the matter-antimatter asymmetry

and precision measurements of neutrino oscillation parameters. Short baseline experiments,

on the other hand, investigate the potential for novel physics unsupported by current models

(e.g. sterile neutrinos). Detectors are set in a region of ∆m2 that does not fit with current

mass-hierarchy predictions, but has been indicated by several short baseline experiments

as a region of interest for sterile neutrinos or other novel physics. Both short and long

baseline experiments provide opportunities to perform R&D and measure interaction cross

sections as well as other properties in the detector, which can be beneficial to future neutrino

experiments.
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Figure 2.9: Representative example of various neutrino sources across decades of energy.
The electroweak cross-section for νee

− → ν̄ee
− scattering on free electrons as a function of

neutrino energy (for a massless neutrino) is shown for comparison [3].
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Figure 2.10: Detectors interaction vertex resolution plotted by year built. The size of the
marker scales logarithmically with detector mass. The detectors are roughly separated by
the technology they used. In some cases detectors fall into multiple categories. For example,
MiniBooNE uses both scintillation light and Cherenkov light. When experiments have had
multiple runs in different configurations, a dashed line connects the runs. The vertical grey
line indicates the year 2019 [9].
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2.6.2 Long Baseline Experiments

Current long baseline experiments taking data include Tokai to Kamioka Experiment

(T2K) [21] in Japan and NuMI Off-axis νe Appearance Experiment (NOνA) [50] in the

United States. The first to begin was T2K experiment so named since it uses a beam

of neutrinos produced in the Japan Proton Accelerator Research Complex (J-PARC) then

detected in the Super-KamioKande (Super-K) detector in Kamioka (see Fig. 2.11). The

beamline consists of majority of muon neutrinos produced on a graphite target and is used

to investigate muon to electron and muon to tau conversions at a baseline of 295 km and

energy of 600 MeV. There is a near detector, ND280, 280 m from the target and the far

detector is the Super-K detector, a massive Cherenkov detector of ultra-pure water. The

detector is 2.5 degrees off the center of the neutrino beam which leads to a narrower set of

energies.

The next major experiment would be at Fermilab in the United States with the NOνA

experiment. The beamline it uses (NuMI)is explained in greater detail in App. C. NoνA uses

a pair of detectors, with similar designs, but different scales. These include a 300 metric-ton

near detector at Fermilab and a 14 metric-kiloton far detector in Minnesota. The detector

utilizes cells of highly reflective plastic PVC each filled with liquid scintillator. Another long

baseline search was the Main Injector Neutrino Oscillation Search (MINOS, MINOS+) [77]

long baseline experiment in the NuMI beam at Fermilab. This sent neutrinos 450 miles away

to the Soudan Underground Mine in northern Minnesota, and has been taking data since

2005 and recently ended operations.

Finally the Deep Underground Neutrino Experiment (DUNE) [48] is planned along a new

beamline at Fermilab using the NuMI and BNB via the planned Proton Improvement Project

(PIP-II) accelerator. The DUNE beamline is shown in Fig. 2.12. The Long Baseline Neutrino

Facility (LBNF) will provide the infrastructure and facilities at both near and far sites. The

experiment uses a pair of detectors, one of which will be placed at Fermilab and the other at

Sanford Underground research Facility (SURF) in South Dakota. The DUNE far detector

will be a liquid argon time projection chamber (LArTPC) with 40 kilotons of active liquid

argon mass. DUNE is the next generation long baseline experiment and is the ultimate
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experiment to measure remaining properties of neutrinos. MicroBooNE and other short

baseline LArTPC experiments will provide valuable input to DUNE both technologically

and through physics measurements.

2.6.3 Short Baseline Experiments

LSND or Liquid Scintillator Neutrino Detector [10] is the start of the chain of measurements

which lead to the MicroBooNE detector. LSND was located at Los Alamos National

Laboratory (LANL) running from 1993−1998. The beam was produced via the Los Alamos

Neutron Science Center accelerator (LANSCE) which outputs a highly concentrated beam of

low energy neutrinos. In 1993−1995, it used a 30 cm long water target with water-cooled Cu

beam dump, but in 1996 it was replaced for “a close packed, high-Z target”. The accelerator

is a linear accelerator with proton current of 1 mA at 798 MeV making it ideal for producing

and studying low energy neutrinos. Questions posed by the LSND measurement led to the

MiniBooNE experiment on the Booster Neutrino Beam (BNB) at Fermi National Laboratory

(Fermilab). The Booster Neutrino Beamline will be discussed in detail in Sec. 3.3, but, for

reference, produces neutrinos with an energy peak of ∼800 MeV. To produce a similar L/E

ratio to that of LSND, the baseline of MiniBooNE was set to 541 m. As discussed, the

MiniBooNE detector was a mineral oil detector that works by collecting Cherenkov light.

While it did not report the same excess as LSND, it did report an excess in ν̄e appearance

in the low energy region (<500 MeV). This is now commonly referred to as the low energy

excess (LEE). Additional statistics collected since then have shown an increasing discrepancy

between data and prediction over the range of 200−475 MeV [78]. MiniBooNE is unable

to distinguish between signal electron events and background photon pair conversions, and

investigation of this would be the primary motivation for construction of the MicroBooNE

detector described in Ch. 3. MiniBooNE and LSND will be further discussed in Sec. 3.1.

The Short Baseline Neutrino Detector (SBND) is under construction as part of the

Short-Baseline Neutrino (SBN) Program at Fermilab (see Fig. 2.13). It is located on the

Booster Neutrino Beam utilizing existing experiments, MicroBooNE and ICARUS-T600,

as intermediate and far detectors respectively. The SBN program with the three detector

arrangement is aimed at more definitively addressing the sterile neutrino question where
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Figure 2.11: T2K beamline in Japan.

Figure 2.12: DUNE Beamline in the United States.
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there are existing hints. While the detectors are not identical, as desired by near and far

detectors, each is a liquid argon time projection chambers with comparable properties and

being on the same beam line significantly reduces systematic uncertainties across the three

detectors.
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Figure 2.13: Fermilab Short-Baseline Neutrino program with three LArTPC detectors:
MicroBooNE, SBND and ICARUS.
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Chapter 3

The MicroBooNE Experiment

This chapter describes the physics motivation and concepts of the MicroBooNE experiment.

Sec. 3.1 covers the predecessor experiments, LSND and MiniBooNE, as motivation for

MicroBooNE. Sec. 3.2 establishes the goals of the MicroBooNE experiment. Sec.3.3

covers necessary information on the primary flux source of MicroBoooNE, the Booster

Neutrino Beamline. Sec. 3.4 describes the construction and operation of the detector.

The MicroBooNE detector is also introduced in detail along with component sub-systems.

Finally, Sec. 3.5 gives an overview of MicroBooNE’s run time and collected data.

3.1 Experimental Motivation

As discussed before, the Liquid Scintillator Neutrino Detector (LSND) showed an excess

of appearance of ν̄e events above what was expected at that baseline, 30 m, and energy

0 − 250 MeV of ν̄µ as shown in Fig. 3.1. This would imply a ∆m2 of 0.2 − 10 eV2/c4

implying one neutrino state has a mass greater than 0.4 eV/c2 well above what current

models predict [10]. This observation led to many theories involving additional neutrino

states referred to as sterile neutrinos. Model agreement with data actually favors a 2-sterile

neutrino model [79, 80].

To investigate this anomalous result, MiniBooNE was commissioned in the same ∆m2

region as LSND. MiniBooNE is a surface-based mineral oil Cherenkov detector (see Fig 3.2a).

Cherenkov light is produced by particles moving through a dielectric medium with velocity
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(a)

(b)

Figure 3.1: (Left) Basic design of the LSND experiment. (Right) LSND result of selected
events versus L/Eν where L is the distance traveled by the neutrino and Eν is the neutrino
energy [10]. The red and green portions of the histogram represent the expected background.
The blue histogram represents an additional neutrino state oscillation with ∆m2 ∼ 1 eV2.

32



greater than the phase velocity (speed of propagation of photons) in that medium. Polarized

particles returning to the ground state will then emit photons in a pattern comparable to

sound emitted in a sonic boom. In the MiniBooNE detector, light is collected on photo-

multiplier tubes, which is used to reconstruct particle interactions. MiniBooNE began

operation in 2002 and stopped running in 2017 after collecting about 18.75×1020 POT

worth of neutrino data. While it did not exactly replicate the LSND excess exactly, it

instead reported an excess in ν̄e appearance in the low energy region (<500 MeV). The most

recent data results of the excess is shown in Fig. 3.2b [11], and a side by side comparison

with LSND is shown in Fig 3.3b. This is now commonly referred to as the low energy

excess (LEE). Additional statistics collected since then have shown an increasing discrepancy

between data and prediction over the range of 200−475 MeV with a significance of 4.8σ [78].

MiniBooNE being a Cherenkov detector has difficulty distinguishing signal electron events

and background photon pair conversions. This is illustrated in Fig. 3.4. The issue is photons

from π0 can be reconstructed as electrons (the primary signal of a νe interaction) if one

photon ring is not reconstructed or if they significantly overlap to appear as one ring. The

source of this excess remains an open mystery so investigation of the MiniBooNE result

would be the primary motivation for construction of the MicroBooNE detector as described

in Sec. 3.2.

3.2 MicroBooNE and Physics Goals

The primary physics goal of Micro Booster Neutrino Experiment (MicroBooNE) is to

measure short baseline neutrino oscillations with a focus on examining the excess of low

energy electron-like events observed by the MiniBooNE experiment. MiniBooNE was unable

to distinguish signal electrons from the background of photon conversions and it is expected

that MicroBooNE’s superior capability to separate electrons from photons can resolve

questions on the MiniBooNE LEE. This resolution power comes from the MicroBooNE

detector’s construction as a Liquid Argon Time Projection Chamber (LArTPC). The

detector is surface-based, with a volume of ∼100 tonnes, and is located on the Booster

Neutrino Beam (BNB) with a baseline at 470 m similar to that of MiniBooNE (541 m). The
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(a) MiniBooNE scale and active region (b) MiniBooNE excess

Figure 3.2: (Left) The MiniBooNE detector diagram. (Right) The MiniBooNE neutrino
mode EQE

ν distributions [11], which corresponds to to a total 18.75 ×1020 POT data for νe
CCQE data (points with statistical errors) with included. predicted backgrounds (colored
histograms). A constrained background is shown as additional points with systematic error
bars. The dashed histogram shows the best fit to the neutrino-mode data assuming the
known two-neutrino oscillation model.
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(a)

(b)

Figure 3.3: Comparison of LSND excess (left) vs MiniBooNE excess (right) plotted with
neutrino energy. In the case of LSND, the top plot is from the 1993-1995 run span and the
bottom is from the 1996-1998 following a change of the beam target as discussed in Ch. 7.
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Figure 3.4: An illustration of the signals seen in MiniBooNE. Note the similarity in electron
and photon signals. From top to bottom, a muon neutrino charged-current quasi-elastic
(CCQE) interaction, an electron neutrino CCQE interaction, and a neutral current, neutral
pion production interaction. For each interaction the expected Cherenkov rings are shown
on the right along with a candidate event.
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Booster Neutrino Beam delivers a beam of predominantly muon neutrinos produced primarily

from pion decays, with energies peaking around 700 MeV as shown in Sec. 3.3.2 and Fig. 3.6.

Further details of the operation of this beam will be provided in Ch. 8. MicroBooNE is also

exposed to an off-axis component of the NuMI beam produced from pion and kaon decays

with average neutrino energies of about 0.25 GeV and 2 GeV respectively. MicroBooNE

observed its first cosmic ray tracks in August 2015 and began collecting neutrino beam data

in October 2015.

MicroBooNE has several supplemental goals in supporting other ongoing experiments

and making measurements for next generation detectors. In particular, MicroBooNE is

performing a range of analyses on neutrino-argon cross sections as well as important R&D for

future multi-kiloton LArTPC experiments like the Deep Underground Neutrino Experiment

(DUNE). Due to nuclear effects in neutrino interactions on argon, a great variety of nucleon

emission and event topologies can be observed within the detector. The single photon

analysis actually includes both an effort to explain the LEE and also efforts to measure

cross-sections for neutrino interactions on argon.

MicroBooNE also serves as the mid detector in the Fermilab short baseline neutrino

(SBN) program along with two other LArTPCs: ICARUS and the Short Baseline Neutrino

Detector (SBND) with the goal of a highly sensitive search for sterile neutrino oscillations

in the region L/E ∼ 1 km/GeV where there are existing hints for sterile neutrinos. Finally,

the detector is capable of contributing to supernova analysis and proton decay. While

MicroBooNE itself does not have enough active volume to enable a competitive sensitivity

to proton decay, it is capable of doing a proof of concept for larger detectors and can do

background measurements [1].

3.3 Booster Neutrino Beam

The Booster Neutrino Beam is the primary source of flux for the MicroBooNE experiment.

The secondary source NuMI is not considered for my analyses (and can be disregarded given

the difference in beam timing). Secs. 3.3.1 and 3.3.2 cover the relevant information to the
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Single Photon analysis. Further discussion of the accelerator and beamline will be included

in Ch. 7 and Ch. 8.

3.3.1 Beam Target and Horn

Production of mesons is done via a beryllium target surrounded by a magnetic horn which

focuses the mesons produced before they decay. It can be switched between neutrino-mode

where it focuses π+ that decay as π+ → µ+ + νµ and diverts π− that would decay to

π− → µ− + ν̄µ and anti-neutrino mode which reverses this. Focused mesons go through

the collimator which blocks particles that do not contribute to neutrino flux and reduces

radiation levels. The mesons arrive in a 50 m decay region (open air) where mesons decay

producing the neutrino beam. A beam stop blocks nearly all non-neutrino particles and the

neutrinos propagate through dirt to the detector. A simple diagram of the path from the

booster to the detector can be seen in Fig. 3.5.

3.3.2 Booster Neutrino Beam MicroBooNE Era

MiniBooNE already had a well developed GEANT4 [81] framework when MicroBooNE

entered operation which included techniques for systematic uncertainty which will be

expanded in Ch. 6 and 8. As discussed in Sec. 3.3.1, the magnetic focusing horn focuses

pions for a dominant νµ signal. However, sub-dominant electron neutrino component from

unfiltered kaon decays, K+ → νe + e+ + π0 and K0
L → νe + e+ + π0, remains. Improvements

in flux prediction were made using SciBooNE’s [82] measurement of p + Be→ K+ and the

Hadron Production Experiment (HARP) [83] pion production data. In 2018, adaptions were

made for a prediction at MicroBooNE’s location [84]. Figure 3.6 shows a comparison of the

booster neutrino flux at MiniBooNE and MicroBooNE.

Beamline instrumentation is used to monitor the beam on a spill-by-spill basis keeping

the uncertainty due to POT to ∼2%. Other beam systematic uncertainties are small when

compared to those from modeling interactions and those having to do with detector effects,

which will be elaborated in Ch. 6. MicroBooNE also has a neutrino flux contribution from
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the the Neutrino at Main Injector (NuMI) beamline, but as these events do not contribute

to this dissertation, its properties are discussed in App. C.

3.4 MicroBooNE Construction

Liquid argon time projection chambers (LArTPCs) are prominent in neutrino research with

experiments around the world utilizing them to detect neutrino interactions. LArTPCs are

time projection chambers that consist of liquid argon in an electric field provided by anode

and cathode planes. The TPC is enclosed in a cryostat (see Fig. 3.7) with a purification and

re-circulation system in order to keep the liquid argon ultra pure. Charged particles produced

in neutrino-argon interactions propagate through the detector and ionize the surrounding

medium along their trajectory, causing released electrons to drift towards the anode. Charged

particles also create prompt vacuum ultraviolet (VUV) scintillation photons which can be

detected by a light collection system. The working principle of a LArTPC can be seen in

Fig. 3.8.

3.4.1 TPC

The MicroBooNE detector is surface-based with an 89-ton active volume (total volume

of 170 tons). It consists of a drift chamber with a cathode plane at −70 kV and anode

plane with a 2.56 m drift distance between them, resulting in an electric field of strength

273 V/cm. A field cage made up of 64 stainless steel tubes is placed between cathode and

anode planes across which a resistor chain is installed to gradually step down the voltage to

ensure a uniform electric field along the drift distance. An image of the TPC while it was

being constructed can be seen in Fig. 3.9. Measurement of drift electrons is done by finely

segmented anode wire planes, two induction planes and one collection plane, with a 3 mm

pitch and 3 mm wire plane spacing. An overview of TPC properties is given in Tab. 3.1.

The TPC volume is described in a right-handed Cartesian coordinate system, with the origin

defined to be located on the upstream face of the LArTPC, centered halfway up the vertical

height of the active volume and horizontally centered on the innermost anode plane closest

to the cathode. In this system, x ranges from 0.0 m at the innermost anode plane to +2.56
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m at the cathode, y ranges from −1.15 m on the bottom of the active volume to +1.15 m

at the top of the active volume, and z ranges from 0.0 m at the upstream end of the active

volume to +10.4 m at the downstream end.

The Cathode

The cathode is composed of 9 individual stainless steel sheets framed by round stainless steel

tubes on the edge. To ensure field uniformity, the cathode plane sheets are shimmed ensuring

it is parallel to within 0.0413◦ to the anode plane. Maximum deviations are low with best

fit +6.6 mm and −6.5 mm, with 90% of 10,000 survey points within 5 mm deviation of the

best fit plane. The Cathode has been set to −70 kV for the entire data collection run-span

of the experiment.

The Field Cage

The field cage encloses the TPC active volume that being the volume between the cathode

plane and anode plane. The field cage structure consists of 64 rectangular loops of thin-walled

stainless steel tubes around the perimeter of the active volume parallel to the cathode and

anode planes. They are linked via a resistor chain step down voltage to ensure a uniform

electric field. The steps have been set to 1.09 kV for a drift field of 273 V/cm. A diagram

of the field cage can be seen in Fig. 3.10.

The Anode Planes

The anode section consists of three wire planes, one collection plane and two induction

planes which are angled vertically, and at ±60◦ to the vertical, respectively. A bias voltage

of −200 V, 0 V, and +440 V is applied to the U, V, and Y planes respectively to allow

electrons to drift past the U and V induction planes to the Y collection plane. Ionization

electrons produce bipolar waveforms on induction planes and unipolar waveforms on the

collection plane. A picture of the anode section prior to installation can be seen in Fig. 3.11.

An example of induction and collection plane waveforms can be seen in Fig. 3.12.
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Figure 3.5: Diagram of the beam path beginning in the Booster and ending at the
MicroBooNE detector.

Table 3.1: A list of construction properties of the MicroBooNE TPC [1].

Parameter Value

Anode planes spacing 3 mm
Wire pitch 3 mm
Wire pitch 3 mm
Wire diameter 150 µm
Wire coating 2 µm Cu, 0.1 µm Ag
Design Wire tension 6.9N ± 1.0 N
Number Wires (total) 8256
Number Induction plane U wires 2400
Number Induction plane V wires 2400
Number Collection plane Y wires 3456
Wire orientation (w.r.t. vertical) +60,−60, 0 (U, V, Y )
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Figure 3.6: Total flux of Booster Neutrino Beam in the neutrino mode at MiniBooNE (top)
and MicroBooNE (bottom). Flux is averaged through detector volume and each neutrino
flavor is shown.
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3.4.2 Light Collection

The light collection system consists of an array of 32 Hamamatsu cryogenic photomultiplier

tubes (PMTs) and four light-guide paddles. It is located directly behind the anode planes

on beam-right, facing the detector volume through the anode planes. Light collection is

vital for cosmic ray rejection and event selection. Each PMT is located behind a wavelength

shifting plate coated in tetraphenyl-butadiene (TPB) to shift the difficult to detect ∼128 nm

scintillation light to wavelengths closer to the detection peak in the 350−450 nm region.

The resulting shifted spectrum is 425±20 nm. Quantum efficiency values in the peak region

are ∼20% [1]. The four light paddles or acrylic light guides were a test of concept, as

they provide more coverage for the same number of electronics channels, cables, and feed-

throughs. However, they are not currently used in data collection. The PMTs are connected

via a splitter circuit, located outside of the cryostat which separates the high voltage (HV)

of the PMT from its output signal. This is subsequently split into a high-gain (HG) and a

low-gain (LG) channel which carry 18% and 1.8% of the total signal amplitude respectively.

All electronics here work submerged in the liquid argon within the single-walled cryostat.

Signals are passed out of the cryostat via front-end electronics mounted directly on the

LArTPC which amplify the signals on the wires and pass the signals to disk storage.

3.4.3 Cryogenic System

The cryogenic system consists of three major systems: argon purification, nitrogen

refrigeration, and monitoring system. Minimizing contaminants such as oxygen, water and

nitrogen are crucial for preventing attenuation of ionization charge signals and quenching as

well as absorption of scintillation light. Two pumps allow for circulation of the Argon even

while one is being serviced. Two identical filter units are each referred to as filter skids.

Each consists of two subfilters, one a molecular sieve largely to remove water contamination

and the other a pelletized material of copper impregnated on a high-surface-area alumina [1]

to remove oxygen. The nitrogen contamination cannot be purified and is purchased with

needed purity from the manufacturer. Cooling is performed via a liquid nitrogen system of
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two liquid nitrogen coils which can handle a heat load of ∼9.5 kW per day. These maintain

a consistent liquid argon temperature of 89.2±0.3 K.

In 2017, the O2-equivalent contamination was measured to be 17 parts per trillion

(ppt) [20] using cosmic ray muons. This corresponds to a signal loss of around 12%. This

indicates excellent performance from MicroBooNE in achieving required liquid argon purity.

3.4.4 Cosmic Ray Tagger

To compensate for the cosmic backgrounds MicroBooNE encounters as a surface detector,

a cosmic ray tagger (CRT) was added which began operation in December 2017 (shown in

Fig. 3.14). The CRT works via scintillation light produced by cosmic rays passing through

its panels which include scintillating strips and photomultipliers. It has an independent

readout chain, and its output is called “CRTHits” which contain a position in 3D and a time

stamp with nanosecond resolution. With this, events at the same time in the detector can

be compared by extending their tracks to the intersection with the CRT [85].

3.4.5 Data Acquisition

To collect data from within the cryostat, custom low-noise electronics were developed to

operate in low temperature liquid Argon and surrounding space. The electronic readout

can be largely divided between TPC wires and PMTs both of which are transferred from

inside the cryostat (cold electronics) to outside the cryostat (warm electronics) in the Data

Acquisition (DAQ) module in the detector hall. An illustration of this can be seen in Fig 3.16.

TPC DAQ

The signals from the 8256 TPC wires are collected by a CMOS-based ASIC with 516 chips

designed to read in 16 wires apiece each in a separate channel. Intermediate amplifiers

∼12 dB are necessary for the transfer over 20 m long cables to the warm readout electronics.

Signals are also synchronized to a common 16 MHz by a clock fanout board. This was later

reduced to 2 MHz via a Stratix III Altera FPGA optimized using the expected pulse shape

provided by the convolution of the cold electronics, the expected LArTPC field responses,
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and the O(1 µs) diffusion effects which govern charge drift within the liquid argon. The

ultimate readout consists of 4.8 ms of data divided into four 1.6 ms frames (1.6 ms before

the trigger and 3.2 ms after). This gives the best chance to reconstruct a neutrino interaction

and identify cosmic ray signals occurring near the interaction time to be filtered.

PMT DAQ

The 32 PMTs follow a similar readout scheme. Each PMT signal is split between high and

low gains and split again for flexibility in processing. Three PMT modules digitize them to

64 MHz. Preamplifier/shaper boards shape the signals into unipolar 60 ns peaks. As the

64 MHz sampling rate would generate too much data in the 4.8 ms window, a series of Front

End Modules (FEMs) and discriminators reduce the data, but allow for a 3.4 µs exception

during BNB activity.

Readout

MicroBooNE employs two types of triggers to determine when an event should be recorded:

software and hardware. The Trigger Board within the PMT readout crate sends commands

to systems to take data. Triggers include a BNB trigger input (maximum rate of 15 Hz), a

NuMI trigger input (1.25 Hz), a Fake Beam trigger input (configurable frequency), a PMT

trigger input, and two calibration trigger inputs, provided by the laser calibration system

and a cosmic ray muon tracker respectively. When the hardware trigger is fired, windows

for data collection open: a 4.8 ms TPC readout stream and PMT 23.4 µs readout. The

hardware trigger efficiency is 99.8%. The software trigger reduces the collection of unusable

data by checking for optical activity above a threshold in photo-electrons (PE) of 6.5 PE [1].

The PMT trigger must also be fulfilled for BNB data collection. Finally there is the external

(EXT) trigger that is used to collect cosmic data for background studies. The completed

readout data is managed by the DAQ software and saved to disks for reconstruction and

analysis.
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3.5 MicroBooNE Data Collection

As noted before, MicroBooNE began collecting data in 2015. During the summer time, there

is usually a beam shutdown for maintenance work where no beam data is collected as can be

seen in Fig. 3.17. This has led to the division of data into run spans, seen in Tab. 3.2, which

are often treated distinctly given varying detector conditions and levels of investigation into

each run. The measure of quantity of data collected is denoted by protons on target (POT)

referring to the number of protons impinging on the BNB target. This is further described

in Sec. 7.2. The POT correlates with the number of neutrinos produced through the process

described in Sec. 3.3.

46



Figure 3.7: An image of the MicroBooNE cryostat.

Table 3.2: POT values for each run period.

Run 1 Run 2 Run 3 Run 4 Run 5

1.7× 1020 POT 2.7× 1020 POT 2.6× 1020 POT 3.2× 1020 POT 2.2× 1020 POT
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Figure 3.8: Diagram illustrating signal formation in the MicroBooNE LArTPC with three
wire planes. The signal on each plane produces a 2D image of the event. For simplicity, the
signal in the U induction plane is not shown.[12].
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Figure 3.9: MicroBooNE TPC during construction.
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Figure 3.10: Diagram of the MicroBooNE field cage with components labelled.
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Figure 3.11: A picture of the TPC and anode wire planes prior to installation.
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Figure 3.12: Overlaid sample wire signals from each TPC anode plane. Field responses
(induced/collected-current) from various paths of a single drifting ionization electron for the
three wire planes are shown. Y-axis is integrated charge over 0.5 µs [12].
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(a) PMT image
(b) PMT diagram

Figure 3.13: MicroBooNE PMT image (left) and concept (right).
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Figure 3.14: The design of CRT planes as part of the MicroBooNE detector. Simulation
of cosmic rays crossing the CRT, the brown lines represent possible cosmic ray trajectories.
There are four CRT planes: top plane, bottom plane, pipe side plane and feed-through side
plane. In the shown coordinate system the beam direction is along the z axis [13].
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Figure 3.15: Diagram of the MicroBooNE cosmic ray tagger surrounding the cryostat.
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Figure 3.16: The MicroBooNE DAQ chain overview [1]. The left part of this image represents
the detector, with the front end motherboards embedded in the liquid argon, while the right
part of the image represents the DAQ machines in the detector hall.
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Figure 3.17: Weekly and cumulative POT received by the MicroBooNE detector.
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Chapter 4

MicroBooNE Reconstruction and

Simulation

This chapter describes how MicroBooNE reconstructs and simulates events. Sec. 4.1

describes MicroBooNE’s simulation, and Sec. 4.2 describes the actual process of extracting

signals from the detector. Then Sec. 4.3 explains the details of event reconstruction.

4.1 MicroBooNE Simulation

MicroBooNE’s analysis approach is for analyses on different neutrino signals to optimize their

selection procedure using simulation of events (models of what data should be collected using

truth information). When simulated reconstruction reaches a threshold of capability for

accuracy and completion, unboxing of actual collected data and subsequent reconstruction

can be performed. In this way, MicroBooNE avoids bias towards a particular result. Thus

the bulk of material in this dissertation and that MicroBooNE has presented so far is based

on this simulation along with a small fraction of open data used mainly to check data-MC

agreement. However, the data opening process known as unboxing has already begun as

will be described in Ch. 9, and the same reconstruction techniques described here should be

applicable to data. The MicroBooNE simulation is based on the Liquid Argon Software

(LArSoft) [86] framework which itself utilizes the art event processing framework [87].

This framework allows for storing and accessing of event information for simulation and
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analysis and is shared between multiple LArTPC experiments. An overview of the simulation

algorithm used can be seen in Fig. 4.1. At the particle generation stage, interactions within

the detector are created. In the particle tracking stage, generated particles are propagated

through the detector. The detector simulation stage applies detector specific effects. After

this, the generated events go through an equivalent process for data reconstruction. Pre-

reconstruction includes processes like deconvolution and hit-finding as will be discussed in

Sec. 4.2. Following this is the Pandora-based reconstruction [18] which will be discussed in

Sec. 4.3. Finally, the data is prepared into analysis files to be delivered to analyzers.

4.1.1 Neutrino Flux Simulation

As mentioned in Sec. 3.3.2, the simulation of the Booster Neutrino Beam flux has been ported

and updated from that used in MiniBooNE. The target proton interaction is simulated

via a Geant4-based Monte-Carlo using version v4 10 6 p01 [81] simulating both primary

interactions and subsequent decays. An important update was the shift to using the fit from

the HARP [83, 82] experiment for pion production. The HARP [83, 82] experiment was an

effort for precision measurement of hadrons on various targets. The double differential cross

section for π± and K0 production were fit to the Sanford-Wang parameterization [88]

d2σ

dp dΩ
= c1 · pc2(1−

p

pbeam − c9

)exp[−c3
pc4

pc5beam
− c6 θ(p− c7 pbeam(cosθ)c8)] (4.1)

where the proton beam momentum is pbeam and θ is the angle between the proton and meson.

The parameters c1, ..., c9 are set via fitting. My own efforts for a Sanford-Wang fit on proton

data will be described in detail in Ch. 8.

4.1.2 Cosmic Generation

As a surface-based detector, MicroBooNE has significant cosmogenic backgrounds, therefore

it requires a generator for cosmic ray events. This is performed by the Cosmic Ray

Simulations for Kascade (CORSIKA) [89] package using the Constant Mass Configuration.

Interactions of p, He, N, Mg, and Fe are simulated in atmosphere. The FLUKA [90] package

was selected for hadronic interactions below 80 GeV. FLUKA uses hadron-nucleon interaction
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models based on resonance production in the few-GeV region combined with the Dual-Parton

model[91].

4.1.3 Neutrino Interactions

The output of neutrinos by the beam Monte Carlo are passed into the GENIE neutrino

generator [92]. GENIE version 3 00 06 is the latest version used by MicroBooNE, but some

earlier versions are still relevant to the single photon analysis. A MicroBooNE tune has

been developed and is in use to more properly capture the properties of the detector. A

Nieves/Valencia [44] relativistic Fermi gas model (RFG) models the nuclear environment.

Here, the nucleus is treated as a set of non-interacting fermions. It does not include effects of

nucleon-nucleon correlations, but it does include nuclear medium correlations due to Random

Phase Approximation (RPA) and Coulomb effects.

The charged current (CC) quasi-elastic (QE) cross section model also comes from

Nieves [44], but is tuned to T2K [21] data. GENIE includes two meson exchange current

(MEC) models, empirical and Valencia [44]. MicroBooNE elected the Valencia model which,

together with the Nieves QE model, creates a coherent picture that agrees with MiniBooNE

QE data. The Valencia model is also tuned to T2K for usage in MicroBooNE.

The Berger-Sehgal [93] model, an update to the Rein-Sehgal [46] model, is selected to

model resonant events. This update added the effects of lepton mass and uses axial form

factors from MiniBooNE fits.

Non-resonant interactions are modeled by the Bodek-Yang [45] model, but this model is

intended for combined resonant and non-resonant interactions. Therefore it must be reduced

in magnitude so that the sum of the resonant model (Berger-Sehgal) and Bodek-Yang add

to the combined resonant and non-resonant models. This is an imperfect solution, but no

other model is available. To mitigate the effect, the resonant model is used solely below

Wcut=1.9 GeV above which the combined model, described above, is used. Fitting of these

events has been done to deuterium data, but a high uncertainty is still assigned.

The coherent pion production also uses the Berger-Sehgal model, and deep inelastic

scattering (DIS) also uses a Bodek-Yang model.
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Neutral current (NC) interactions are poorly constrained by data. Most data is from

deuterium targets in bubble chambers. Therefore NC simulation is inferred theoretically

from CC models. This is the case for the above listed model for resonant events (RES)

(Berger-Sehgal) and non-resonant events (Bodek-Yang combined). The DIS model applies

equally well to both NC and CC. Fits have been done for these interactions in MiniBooNE

for π0 production.

The final state interaction (FSI) uses a model called hA2018. This model is a data-

driven empirical model produced by GENIE collaborators. Total cross section components

including absorption, charge exchange, inelastic, and pion absorption are taken from pion-

nucleus data [94].

4.2 MicroBooNE Signal Processing

4.2.1 Time Projection Chamber Signals

As mentioned before, ionization signals are made up via ionization electrons produced by

charged particles passing through the liquid argon. These ionization electrons should drift to

the anode for collection, due to the constant electric field, but there are some complicating

factors. Electron recombination occurs at the point of ionization where liberated electrons

quickly recombine with argon ions. The size of this effect is inverse to the electric field

strength as a higher strength will limit the time available for ions and electrons to recombine.

Diffusion is another complicating factor, in this case referring to the modification of the

shape of the cloud of ionization electrons. It is divided between longitudinal and transverse

diffusion, where longitudinal is the impact on the timing resolution in the drift direction

and transverse corresponds to the position resolution perpendicular to the field. Note while

longitudinal diffusion does scale with the electric field strength, in our region, this scaling is

minimal [14]. In 2021, MicroBooNE submitted a measurement of its longitudinal diffusion

rate to the Journal of Instrumentation (JINST) stating a diffusion rate of DL = 3.74+0.28
−0.29

cm2/s at an electric field of 273.9 V/cm [14]. Transverse diffusion is more difficult to account

for, but is included in systematic uncertainties.
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Figure 4.1: Overview of the MicroBooNE simulation algorithm.

Figure 4.2: Summary of world data for longitudinal electron diffusion in liquid argon [14].
The orange dashed curve and blue dot-dashed curve shows theoretical predictions from
Atrazhev-Timonshkin [15] and a parameterization from Li et al [16]. The red and dark
blue points show the ICARUS [17] and Li et al. [16] measurements, respectively. Note that
the ICARUS error bars (±0.2 cm2/s) are covered by the data point.
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Optical signals are picked up via the photo-multiplier tube (PMT) array. As a bright

scintillator, liquid argon will produce O(10, 000) photons per MeV of deposited energy with

peak wavelength at 128 nm. As noted in Sec. 3.4, to be sensitive to these wavelengths,

a wavelength-shifting plate is used to shift the wavelength to peak at 425 nm. Quantum

efficiency values in the peak region are ∼20% [1]. There are two processes for luminescence

via the production of dimers. The first is self-trapping where an argon atom becomes excited

by an ionizing particle and combines with a neutral argon atom. The second is recombination

luminescence when an argon ion becomes excited, ionizes then combines with another argon

ion to produce a charged argon dimer. After this, ionization electron thermalizes and

recombines with the charged argon dimer to produce an excited argon dimer. Both processes

are shown in Fig. 4.3. The photons are divided into a fast component released within 6 ns

resulting from singlet states and a slow component around 1500 ns from triplet states at a

later time. Some light is also produced via Cherenkov radiation. Nitrogen contamination

makes liquid argon more opaque to its own light reducing the light yield.

4.2.2 Signal Extraction

The true signal of events within the detector can be modeled as a combination of M(ω)

the measured signal, R(ω) the detector response, and F (ω) the Gaussian noise filter. These

factors can be combined for 1D deconvolution in time

S(ω) =
M(ω)

R(ω)
Ḟ (ω) (4.2)

Functions are determined by sending known signals on the wires. However 1D convolution

does not account for interactions between multiple wires. Therefore a two dimensional

deconvolution is needed to account for the signal induced from the neighboring wires. Here

the measured signal is defined by

Mi(t0) =

∫ ∞
−∞

(...+R1(t0 − t) · Si−1(t) +R0(t0 − t) · Si(t) +R1(t0 − t) · Si+1 + ...) · dt (4.3)
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where Si is accounted for with neighboring wires Si−1 and Si+1. R0 and R1 are average full

response functions for ionization charge passing through the primary and secondary wires

respectively. The two dimensional deconvolution in time and wire space is demonstrated in

Fig. 4.4. The result is a Gaussian shaped signal waveform where the signal peak will not

exceed a predefined value [12]. An image of an event on each wire plane can be seen in

Fig. 4.5.

Hit finding follows deconvolution and is a relatively simple process of fitting a Gaussian

function to peaks in the waveform. The time of the interaction and the charge deposited

(determined by pulse area) are combined with wire plane and wire number to define a hit.

These hits are then passed into reconstruction algorithms.

4.3 Reconstruction

For reconstruction, the signals on the anode wire planes provide 2 dimensions and signals

on the PMT provide the third drift dimension. There is, as yet, no standard solution

for automatic reconstruction in LArTPCs, so MicroBooNE investigates several methods of

reconstruction. Pandora [95] and TrajCLuster [96] are each pattern recognition algorithms

which cluster hits in each plane and match these clusters in three dimensions to identify

particle trajectories. The WireCell [97] paradigm works more directly to cluster 3D using

charge and sparsity information. Finally, there is an analysis effort to use deep learning [98]

techniques to identify events via images. For the purposes of this thesis and MicroBooNE’s

immediate results, Pandora is the primary method used for reconstruction.

4.3.1 Pandora

The Pandora multi-algorithm pattern recognition framework uses reconstructed hits as input

and produces Particle Flow Objects (PFOs) containing Particle Flow Particles (PFPs).

Particle flow means each reconstructed object is related to other reconstructed objects so a

PFP can be a parent or child to another PFP where parentage implies being closer to the

initial neutrino vertex. In effect, parent particles lead to child particles as seen in Figs. 4.6

and 4.7.
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The Pandora reconstruction consists of two algorithms which are passed over data

sequentially as shown in Fig. 4.8. The first algorithm referred to as PandoraCosmic, is

tuned to target cosmic rays which are more track oriented and downward going. It also

targets their daughter delta rays which are reconstructed as showers.

The second pass referred to as PandoraNu is tuned to reconstruct signal neutrinos from

the BNB. The candidate neutrino vertex is identified first, and subsequent interactions are

reconstructed with that as the basis. Each of these passes includes two similarly formatted

stages. The first stage is two-dimensional reconstruction. Hits are clustered onto each plane

accepting only unambiguous straight lines of particles. For these clusters, purity (the ratio of

true signals to total signals) is prioritized over completeness (the ratio of selected true signals

to total true signals). To perform this, every time there is a significant change in direction or

other ambiguity, a new cluster is created. Then a series of clustering algorithms are applied

to merge disparate clusters to increase completeness using factors such as if the clusters are

oriented towards each other or are in close proximity. The next stage is three-dimensional

track reconstruction, where the clusters determined by two-dimensional reconstruction are

matched across the three anode planes. The first matching variable is time which is common

between the three planes. An algorithm then sorts through the matches identifying and

modifying ambiguities i.e. single clusters on one plane matched to two on another. The final

result is reconstructed tracks and showers.

4.3.2 Optical Reconstruction

Optical reconstruction has the same concept as wire reconstruction which is to take raw

waveforms and output reconstructed objects, in this case optical flashes containing light

information. PMTs in MicroBooNE are split between high and low gain channels: this way

if the high gain channel is saturated by a particularly intense event, the low gain can be used

with a gain correction factor. Otherwise, the high gain is used solely. To reconstruct optical

signals, first a baseline must be established to set what level of light intensity is qualified

as a hit. For the cosmic discriminator, this is established via the ADC (analog to digital

converter value) of the first sample. For the beam discriminator, a rolling mean in a sliding

window, and extrapolation is performed to find the baseline in the signal region. After this,
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a hit peak width and area of pulse can be determined and stored. These optical hits are

then grouped into an optical flash after which there is a dead time of 8 µs where no more

flashes can be reconstructed.

4.3.3 Calorimetry

For defining the energy of an event, the principle factor is that the electrons liberated is

proportional to the energy deposited. To reconstruct a shower, one must then combine

energy of different hits collected on the wire planes. A calibration constant, as defined in

Sec. 4.3.5, is needed to convert the hit integral to a total charge Q(e−) accurately. The

following formulation is used to reconstruct energy,

E =
Wf

RC

×Q, (4.4)

where Wf is the ionization work function of argon describing how many drift electrons are

produced (set to 23.6×10−6 MeV/e−), and RC is the recombination factor also described

in Sec. 4.3.5. However, there are factors that modify these theoretical values that must be

accounted for as part of calorimetric reconstruction and calibration.

As a surface detector, MicroBooNE is exposed to cosmic rays which continuously interact

to ionize the argon within the detector. Electrons and ions can become separated and drift

to the cathode or anode respectively. This results in a build-up of Ar+ ions near the cathode,

creating a position dependant change in the electric field. This is known as the space charge

effect which manifests itself by bending and/or rotating previously straight tracks. To recover

true interaction topologies, it is necessary to measure observed signals as a function of drift

position. For this, a calibration map must be constructed and in MicroBooNE, this is

accomplished via high intense laser tracks from an external calibration system. The results

of this are demonstrated in Fig. 4.9.

There are also regions in the anode wire planes where no useful information may be

extracted from channels due to mechanical faults. Some regions are functional with only 2

readout planes reducing the non-reconstructable region to about 3%. This is illustrated in

Fig. 4.10.
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Another effect which must be accounted for is the electron drift-lifetime. This refers to

the contaminants (primarily H2O and O2) which can capture drifting ionization electrons

shortening their effective lifetime in the detector. This can be seen in Fig. 4.11. MicroBooNE

has demonstrated excellent argon purity resulting in negligible contaminants during stable

running. In addition, electron drift-lifetime corrections have been made as part of calibration

to correct for any residual losses due to the presence of argon contaminants. The methods

for calibrating these effects will be discussed in more detail in Sec. 4.3.5.

4.3.4 Particle Identification

Crucial to MicroBooNE’s physics goal of analysing the MiniBooNE LEE is proper identi-

fication of particles most notably distinguishing photons and electrons. Muons, pions, and

protons traversing the detector will be reconstructed as tracks, as each produces a narrow

streak of energy deposition per unit length (dE/dx). Average values can be estimated via

the Bethe-Bloch equation

− dE

dx
= ρK

Z

A

z2

β2

[
1/2 ln

(
2mec

2β2γ2Wmax

I2

)
− β2 − δ(Bγ)

2

]
(4.5)

where ρ is the density of material (g/cm3), z is the charge number of the incident particle, Z

and A are the atomic number and atomic mass of the material (in g.mol−1), me is the electron

mass, I is the mean excitation energy (in eV), and β and γ are the relativistic kinematic

variables. K = 4πNAr
2
emec

2 with NA the Avogadro’s number (6.022 × 1023 mol−1) and re

the classical electron radius (2.818 fm). δ(βγ) is the density effect correction, and Wmax is

the maximum energy transfer in a single collision defined by

Wmax =
2meβ

2γ2

1 + (2γme)/M + (me/M)2
; (4.6)

where M is the mass of the incident particle. This formulation is valid within a few percent

of uncertainty in application to a LArTPC. This formula produces an effective minimum

for each particle at which point particles of that energy are referred to as minimum-ionizing
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particles (MIPs). With this formula, a Bragg peak is formed for various particles as seen in

Fig. 4.12.

Reconstructed proton track energy is extracted using the track length and the stopping

power of protons in Argon. The NIST Standard Reference Database 124 (named PSTAR)

was used to translate the measured track length to initial kinetic energy. The track mean

dE/dx is reconstructed via Pandora. Protons deposit energy over a shorter distance (with

a higher dE/dx), whereas muons and pions have longer tracks, therefore protons can be

separated via this signature. Electrons propagating through the detector also obey Bethe-

Bloch equation but lose energy primarily through photon emission (Bremsstrahlung) leading

to electromagnetic showers with the resulting photons cascading into more interactions.

Photons of sufficient energy can pair convert into an electron and positron producing similar

showers of energy. Once again, dE/dx is a powerful discriminator as electron showers cluster

around their MIP energy (∼2 MeV) and photons producing two MIP particles will cluster

near double this energy (∼4 MeV). This is illustrated in Fig 4.13.

Another identification factor is the structure of the hits. This can be represented visually

with event displays. A NC π0 event containing photon showers is shown in Fig. 4.14a and

an event containing an electron shower is shown in Fig. 4.14b. In event displays, energy

is represented by coloration. Photon showers should typically have separation between the

vertex and the start of the shower. This is because photons will propagate invisibly (ionizing

no electrons) before undergoing pair production. Conversely, the electron shower should

begin immediately at the vertex with the interacting particle.

4.3.5 Calibration

Calibration is needed to normalise the calorimetric response across the detector and

reconstruct the energy deposition per unit length (dE/dx) read out from the detector.

Calibration is divided between dQ/dx which makes the detector response uniform across

the detector volume and dE/dx which sets the absolute energy scale of the detector. As

discussed in Sec. 4.3.3, many effects introduce non uniformity in the charge density of the

detector i.e. shorted regions, channel-to-channel gain variations, electron attenuation and

diffusion. To calibrate dQ/dx for these effects, MicroBooNE maps the charge deposition of
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cosmogenic muons in three dimensional volumes within the detector to make a correction

map. Following this energy deposition, (dE/dx) calibration is done by the formula,

dE

dx

calib.

=
exp(dQ

calib/dx
C

βpWion

pε
− α)

βp
ε

(4.7)

where,

• Wion is the work function of Argon (23.6 MeV/electron)

• ε is the electric field (0.273 kV/cm)

• ρ is the density of LAr (1.38 g/cm3)

• α and β are the recombination constants measured by the ArgoNeut experiment at

0.481 kV/cm (α=-0.93 ± 0.002 kV/cm, β=-0.93 ± 0.02 kV/cm)

• C is the calibration constant used to convert ADC to number of electrons

The calibration constant is measured by constructing multiple dE/dx distributions built as

a function of residual range (the distance from the current point to the end of the track) and

are fit with a Landau-convoluted Gaussian distribution in order to extract the most probable

value. An example of this methodology can be seen in Fig. 4.15.
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Figure 4.3: Scintillation processes in Liquid Argon. Both the self-trapped and recombination
methods can produce either a singlet or triplet excited dimer state, which give rise to the
fast and slow components of the scintillation light, respectively.
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Figure 4.4: A neutrino candidate event from MicroBooNE data measured on the U plane.
(a) The noise filtered raw waveform in units of average baseline and ADC scaled by 250 per
3 µs. (b) The charge spectrum given in units of electrons per 3 µs after signal processing
with 1D deconvolution. (c) The charge spectrum in units of electrons per 3 µs following
signal processing with 2D deconvolution [12].
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30 cm
Run 3469 Event 28734, October 21st, 2015 

(a) Induction Plane U

30 cm
Run 3469 Event 28734, October 21st, 2015 

(b) Induction Plane V

30 cm
Run 3469 Event 28734, October 21st, 2015 

(c) Collection Plane Y

Figure 4.5: A neutrino interaction candidate event is displayed in all three planes of the
MicroBooNE anode. It appears to be CC π0 event as two photon showers and a muon track
can be identified, with a potential smaller proton track.

72



Figure 4.6: An illustration of the hierarchy of particles reconstructed for a simulated charged-
current νµ event in MicroBooNE is shown. The visible final state includes a muon, proton
and charged pion shown in separate colours. In this interaction, the neutrino particle has
a reconstructed interaction vertex and three track-like primary daughter particles. The
produced charged-pion decays into a µ+, which further decays into a e+ and is reconstructed
as a shower-like secondary daughter particle. The proton later scatters off a nucleus,
giving a track-like secondary daughter particle. Pandora identifies each particle as track-
like or shower-like and then explicit particle types are identified using information from the
simulation [18].

73



Figure 4.7: Here is shown, the Pandora output data products, as utilized in the LArSoft
Event Data Model. Navigation between PFParticle hierarchies is performed by using the
PFParticle interface, here represented by dashed lines. The solid lines refer to navigation
from PFParticles to their associated object. [18].
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Figure 4.8: Here is shown a simple representation of the two multi-algorithm reconstruction
paths used by MicroBooNE. Particles formed by the PandoraCosmic reconstruction are
examined by a cosmic-ray tagging module, external to Pandora. Then, the hits associated
with unambiguous cosmic-ray muons are flagged. With these hits omitted, a cosmic-removed
hit collection provides the input to the PandoraNu reconstruction [18].
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Figure 4.9: The space charge effect. Shown are plots of deviation from the nominal (constant)
electric field in the X and Y plane of the detector volume. The left shows the deviation of
the field in the X (drift) direction and the right shows the deviation in the Y direction [19].
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Figure 4.10: Distribution of dQ/dx in the collection plane as a function of Y and Z
coordinates. The diagonal region in the dotted lines includes U plane channels which are
shorted to one or more V plane channels. The vertical region in the other dotted line includes
Y plane wires shorted to one or more V plane channels.
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Figure 4.11: Free charge absorption as a function of drift distance and electron drift-
lifetime [20].

Figure 4.12: Theoretical curves for dE/dx residual range (distance from end of track) for
particles inside a LArTPC. Each colored curve corresponds to a different particle.

78



Figure 4.13: Demonstration of the separation power of the variable dE/dx. Two distinct
peaks are shown with electron showers around a ∼2 MeV/cm peak while photons are
concentrated around a 4 MeV/cm peak.
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(a) (b)

Figure 4.14: (Left) An event display of an NC π0candidate which includes two reconstructed
photon showers and a reconstructed proton track. The event results from the BNB beam
and is shown for the collection plane. (Right) An event display of an electron neutrino event
including a reconstructed electron shower and a reconstructed proton. The event results
from the NUMI beam where electron neutrino events are more prominent.
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Figure 4.15: Energy loss vs residual range fitting performed on a muon (top row) and proton
(bottom row) track in simulation with an induction plane on the left and an induction plane
on the right. The truncated dE/dx refers to a smoothing function applied to dE/dx to
remove outliers from the calculation of the mean dE/dx.
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Chapter 5

Single Photon Low Energy Excess

Search

This chapter gives an overview of the Single Photon Low Energy Excess search analysis. The

premise of this abalysis search is covered in Sec. 5.1. An overview of the analysis methods

is given in Sec. 5.2. Information on the process of selecting events is given in Sec. 5.3 and

Sec. 5.4. My work on systematic uncertainties will be covered in Ch. 6.

5.1 Goals and Hypothesis

As discussed in Ch. 3, the primary physics goal of MicroBooNE is the investigation of

the MiniBooNE low energy excess (LEE) of candidate electron neutrino and antineutrino

charged current quasi-elastic events. One possible interpretation of the MiniBooNE LEE

is that it is comprised of neutrino-induced single-photon events. This analysis is an effort

to test this hypothesis via study of neutral current ∆ resonance production followed by ∆

radiative decay (∆→ Nγ). A 3× standard model rate of this hypothesis would account for

the excess, and this enhancement fits within the bounds of the current best measurement

from the T2K experiment as seen in Fig. 5.1. To optimize selection of these events for

efficiency and reduction of cosmogenic and beam-related backgrounds, a Boosted Decision

Tree (BDT) framework has been developed. The result of this study should be an evaluation

of the standard model (SM) predicted rate for the NC ∆ → Nγ process and a test of the
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interpretation of the previously observed MiniBooNE low energy excess as NC ∆ → Nγ

events, using the full anticipated MicroBooNE data set of 12.25×1020 POT.

5.2 Analysis Overview

To develop an efficient and pure selection of events with a topology consistent with neutrino-

induced NC ∆ → Nγ events, two primary topologies based on final states are examined:

one with a single photon and a single proton in the final state (1γ1p), and one with a single

photon and zero protons in the final state (1γ0p). In both signals, no other tracks or showers

can be reconstructed as part of the interaction. In simulation, it was discovered there is a

significant background to these topologies from NC π0 events, where one of the two daughter

photons of a π0 decay is not reconstructed due to (a) leaving the detector, (b) overlapping

with the primary shower, (c) pair-converting at a significant distance away thus failing to

be associated with the primary neutrino interaction, or (d) failing to reconstruct due to it

having too low energy. To understand and reduce these backgrounds, a concurrent analysis

of π0 rich selections has been undertaken. It defines two similar topologies: one proton and

two photons (2γ1p), and zero proton and two photons (2γ0p). Once again, if there are other

tracks and showers reconstructed in the final state, then the event cannot be included in

these selections. These selections provide high-statistics samples for data-to-Monte Carlo

comparisons used in validation of the analysis and a direct constraint on NC π0. Feynman

diagrams for the 1γ and 2γ selected signals can be seen in Fig. 5.2. More details on the

Single Photon Analysis can be found in the MicroBooNE public note [22] released in concert

with Neutrino 2020 conference presentations.

5.3 Single Photon Selection

The selection of NC ∆ radiative events begins by using Pandora-reconstructed information to

select neutrino interaction vertices that match signal topology definitions. This topological

selection is defined as requiring exactly one reconstructed shower and one reconstructed track

associated to the candidate vertex.
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Figure 5.1: The current world’s best bound on the NC ∆ radiative cross-section at O(1 GeV)
energy by T2K [21]. Shown also in green is the Wang et al. Standard Model (SM) cross-
section scaled up by a factor of 3, which is what would be needed to explain the observed
MiniBooNE low-energy excess [22].

Figure 5.2: Feynaman diagrams for the 1γ (left) and 2γ (right) selected signals. Note the
outgoing nucleons (N) can be a proton or a neutron which is undetectable in the MicroBooNE
detector, contributing to the 0p variants. If a γ is missed in the 2γ output, the interaction
appears very similar to the 1γ signal.
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Figure 5.3: Cartoon illustrations of the two topological signatures of NC ∆ → Nγ events
targeted by the single-photon low-energy excess search. Left: 1γ1p; right: 1γ0p.

Figure 5.4: An example of simulated ∆+ → pγ event, showing a short proton track with
Bragg peak, as well as non-zero conversion distance of the photon before pair-producing into
an e+e− pair that subsequently forms an electromagnetic shower in the liquid argon. This
event represents a classic example of the topology with the 1γ1p selection.
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A simple illustration of these topologies is shown in Fig. 5.3, and an event display showing

a Monte Carlo simulation of a 1γ1p event with a clear proton track and photon shower in

the MicroBooNE LArTPC is shown in Fig. 5.4. Following topological selection, a series

of cuts are applied to select the samples and reduce backgrounds. The ∆ baryon energy

can be reconstructed for the 1γ1p distribution from the proton and photon candidates.

This is often chosen as a plotting variable for analysis because true NC ∆ radiative events

should be centered on the ∆ mass of 1232 MeV. The distributions compare unblinded data

from MicroBooNE’s run period 1 (Run 1) to simulated predictions. The Run 1 data-set

corresponds to approximately 5× 1020 POT, or < 5% of the total MicroBooNE data set for

Runs 1-5, although after data-quality cuts the available POT shown on subsequent plots is

closer to 4.1× 1020 POT. Data begins at the topological stage where the only requirement is

meeting the topological requirements in reconstruction. Topological selection stage plots can

be seen in Fig. 5.5. Plots are shown as stacked histograms of the signal and each background.

To illustrate our hypothesis for the MiniBooNE LEE, NC ∆ radiative decay events included

both scaled to the standard model expected rate in GENIE as well as scaled to a factor of

2 enhancement (combining for the 3× factor necessary to explain the LEE). Other events

are sorted into categories including NC 1 π0 Coherent, NC 1 π0 Non-Coherent, NC 2+π0,

CC νµ π
0 and CC νe/νe intrinsic, all representing particular sub-components of the total

BNB interactions in the MicroBooNE cryostat. The remaining BNB interactions within the

cryostat, that do not fit into the above six definitions, are grouped together and referred to

as BNB Other, the majority of which are CC νµ events with no exiting π0. The Dirt category

represents all BNB neutrino-induced backgrounds that originate outside the cryostat (in the

surrounding concrete, steel and dirt) but scatter inside the TPC and produce reconstructable

charge.

After topological selection, a series of pre-selection cuts such as track and shower energy

thresholds and fiducial volume requirements are applied in order to reduce both any obvious

and clear backgrounds as well as the number of selected events with reconstruction failures.

Examining the 1γ1p selection, cuts reduce the total contribution of backgrounds from ∼3136

events to ∼281 events (normalized to the open run 1 POT). The SM scaled signal is only

reduced from ∼1.5 events to ∼0.9 events. However, the signal purity for the 1γ1p topology

86



1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45
Implied Invariant Mass of Photon-Proton Pair [GeV] (corrected)

200

400

600

800

1000

1200

1400

E
ve

nt
s  Radiative 1.50∆1x SM NC  Radiative (LEE) 3.00∆x2 SM NC 

 Coherent 2.600πNC 1  Non-Coherent 110.380πNC 1 
 4.090πNC 2+  69.840π 1 µνCC 

BNB Other 796.47  Intrinsic 13.28eν/eνCC 
Dirt 269.26 Run 1 Cosmic Data 1841.44
Flux & XS Systematics : 3111.85 Run 1 On-Beam Data 3284.00

1p   0.41e20 POTγ1
MicroBooNE Preliminary

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

Implied Invariant Mass of Photon-Proton Pair [GeV] (corrected)

0

0.5

1

1.5

D
at

a/
P

re
di

ct
io

n

: 0.195)val P2χ: 22.88/18)    (DOF/n2χ(Data/MC: 1.06)     (KS: 0.526)     (

(a) 1γ1p Selection at Topological Stage

0 50 100 150 200 250 300 350 400 450 500
Corrected Calorimetric Shower Energy [MeV]

50

100

150

200

250

E
ve

nt
s  Radiative 1.13∆1x SM NC  Radiative (LEE) 2.26∆x2 SM NC 

 Coherent 3.100πNC 1  Non-Coherent 56.840πNC 1 
 2.040πNC 2+  10.530π 1 µνCC 

BNB Other 149.13  Intrinsic 5.56eν/eνCC 
Dirt 74.85 Run 1 Cosmic Data 423.35
Flux & XS Systematics : 728.78 Run 1On-Beam Data 790.00

0p   0.41e20 POTγ1
MicroBooNE Preliminary

0 50 100 150 200 250 300 350 400 450 500

Corrected Calorimetric Shower Energy [MeV]

0

0.5

1

1.5

D
at

a/
P

re
di

ct
io

n

: 0.567)val P2χ: 16.37/18)    (DOF/n2χ(Data/MC: 1.08)     (KS: 0.881)     (

(b) 1γ0p Selection at Topological Stage

Figure 5.5: 1γ1p and 1γ0p Monte Carlo predicted distributions after the topological selection
stage. Predictions are scaled to and compared to the open Run 1 data set corresponding
to 4.1×1019 POT. Here, the dominant backgrounds are cosmogenic backgrounds, in green
(labeled “cosmic data”, as they are directly extracted from MicroBooNE data measured in
situ when the BNB is off), followed by “BNB other” and dirt induced backgrounds, in light
blue. Overall, reasonable data to Monte Carlo agreement is observed, within statistical and
systematic uncertainties. Note: detector systematic uncertainties have been evaluated but
are omitted in these distributions.

87



is still < 1% of total selected events, so a stronger selection method is necessary to reduce

backgrounds. The method selected was a boosted decision tree.

A decision tree is effectively a series of conditionals that are tuned to get the best efficiency

(fewest true signal events removed) and accuracy (fewest backgrounds remaining). This is

then boosted by having many of these trees run in parallel and combining the results. The

1γ boosted decision tree algorithm was developed with five separate multivariate BDTs

that each target a different background topology: cosmic, νe, NC π0, second shower veto

(SSV) further targeting NC π0 backgrounds, and other. The other category is trained on all

remaining BNB neutrino backgrounds that are not directly targeted by the previous three

BDTs. The trees train over a set of variables. The pre-selection data plotted via two of

the top training variables can be seen in Fig. 5.6, which gives a visual representation of the

separation of background and signal. Figure 5.6a shows the track truncated mean dE/dx.

This gives separation power between different particles allowing us to separate µ and p tracks.

Figure 5.6b shows the shower dE/dx. This variable has powerful e/γ separation due to the

distinction between an initial electron vs electron-positron pair from a photon conversion as

explained in Sec. 4.3. Therefore, it is valuable for discriminating νe backgrounds.

The same process as for 1γ1p selection can be performed for 1γ0p with only a few key

changes. Here the topological signal is described as requiring exactly one reconstructed

shower associated to the candidate vertex. The ∆ Baryon energy cannot be reconstructed

without the proton track so some BDT variables are no longer applicable (e.g. those related

to a track topology). Topological selection efficiency for 1γ0p signal is at 64.3%. A BDT

score1 cut is then applied to select a given topology with desired efficiency and accuracy. The

BDT response distributions for 1γ1p and 1γ0p are shown in Figs. 5.7 and 5.8, respectively. A

summary of optimized BDT score cuts applied to each selection along with signal efficiencies

is shown in Table 5.1.

The final selection distributions for 1γ1p and 1γ0p are shown in Fig. 5.9. Now the

resulting backgrounds are reduced from ∼281 at precut stage to ∼2 events. With ∼0.3

signal events remaining (with SM prediction) the ratio between signal and background is

1A BDT score is effectively how likely the BDT thinks that the selected event is a given topology (1γ1p
and 1γ0p) as desired with 1 being the maximum.
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Figure 5.6: Monte Carlo prediction to data comparisons for two of the top training variables
used for the 1γ1p BDTs, in terms of the total gain, shown at the pre-selection cut stage. Note:
detector systematic uncertainties have been evaluated but are omitted in these distributions.

Table 5.1: Summary of optimized BDT score cuts applied to each selection, 1γ1p and 1γ0p,
and corresponding signal efficiencies. Note the lack of a proton track makes the νe BDT and
SSV BDT inapplicable to the 1γ0p.

Selection Cosmic BNB Other NC π0 BDT νe BDT SSV BDT
BDT BDT

1γ1p Selection
Score cut: 0.975 0.963 0.467 0.571 0.522
Signal efficiency: 18.9% 15.5% 14.7% 17.9% 23.5%

1γ0p Selection
Score cut: 0.988 0.893 0.429 - -
Signal efficiency: 55.3% 69.6% 47.4% - -
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Figure 5.7: BDT response distributions for the 1γ1p selection. The Monte Carlo predictions
are scaled to 4.1×1019 POT, and compared to corresponding data from Run 1. The data
and Monte Carlo agree reasonably within statistical and systematic uncertainties, and each
BDT is capable of providing noticeable signal to background differentiation. Note: detector
systematic uncertainties have been evaluated but are omitted in these distributions.
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(c) 1γ0p NC π0 BDT Response

Figure 5.8: BDT response distributions for the 1γ0p selection. The Monte Carlo predictions
are scaled to 5×1019 POT, and compared to corresponding data from Run 1. The data
and Monte Carlo agree reasonably within statistical and systematic uncertainties, and each
BDT is capable of providing noticeable signal to background differentiation. Note: detector
systematic uncertainties have been evaluated but are omitted in these distributions.
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dramatically improved. However, NC π0 events remain the most dominant background with

∼1.8 events. Two data events passing the final single photon selection are shown in Fig. 5.10

which is within the uncertainties of this small data set.

5.4 Neutral Current π0 Selection

NC π0 forms the dominant background to the NC ∆ radiative decay selection. Thus a

concurrent analysis of 2γ1p and 2γ0p has been performed with the purpose of selecting high-

purity, high-statistics sample of NC π0 events. It also allows for reduction of systematic

uncertainty on the NC π0 background via a combined single-photon and NC π0 fit. Efforts

to quantify this constraint are discussed in Ch. 6.

The 2γ selection follows the same process as the 1γ selections beginning with topological

and low-level pre-selection cuts that are run over MicroBooNE data. It is crucial to filter

sufficient NC ∆ signal events so blindness is maintained. This is accomplished via a dedicated

filter.

Similar to 1γ, for these selections, a variable is selected for plotting. The invariant mass

of the two photons is useful, because true NC π0 events should peak at the π0 mass of

135 MeV. At this stage, the selection is isolated mostly as CC or NC π0 event. Once again,

a BDT analysis is applied to filter the remaining cosmic contaminated events and the CC

π0. A single BDT was proven to be more efficient for this selection. The BDT is trained

to select NC π0 events using a set of calorimetric and geometric variables. Comparable to

1γ0p, with the 2γ0p selection the lack of a proton candidate track makes it impossible to

calculate variables such as the conversion distance. Therefore the selection has a reduced

number of cuts. The topological stage event count isn’t meaningful as NC π0 filters are built

into the algorithm. The pre-selection contains ∼735 NC π0 signal events compared to ∼2362

background events (scaled to Runs 1-3 POT).

In 2γ, the track mean dE/dx variable remains a powerful discriminator as shown in

Fig. 5.11. In this case, it is selecting highly ionizing protons over both cosmic and BNB νµ

CC. The resulting BDT responses can be seen in Fig. 5.12, with the NC π0 piling up on
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Figure 5.9: The top plots are 1γ1p final selection with all cuts applied with the left for
Run 1 open data and right for the full MicroBooNE data set of 12.25×1020 POT. The top
left plot shows 2 surviving data events in the selection, with an expectation of ∼ 3 Monte
Carlo events. The bottom plots are the 1γ0p final selection with the same format. The
bottom left figure shows 7 surviving data events in the selection, with an expectation of
∼ 9.8 Monte Carlo events. The shaded band corresponds to the combined flux, cross-section
and statistical (due to finite statistics) uncertainty on the Monte Carlo. Note: detector
systematic uncertainties have been evaluated but are omitted in these distributions.
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the right (note that the small amount of signal on the left hand side tends to be cosmic

contaminated events).

The final selection now has ∼505 true signal events compared to ∼300 background events.

Matching with Runs 1-3 open data is within uncertainty, with 804.4 simulated events vs

740.1 data events from combined cosmic and beam data. Tab. 5.2 breaks down the signal

events in the 2γ final selection in terms of interaction types along with respective efficiencies.

Figure 5.13 shows the final selection reconstructed π0 invariant mass distributions. Finally,

Figs. 5.14 shows two example event displays of a candidate NC π0 interaction that passes

the final 2γ1p selection.
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(a) 1γ1p (b) 1γ0p

Figure 5.10: The two data events passing the final 1γ selection in the open Run 1 data
sample. Left: 1γ1p; the first event showing clean conversion distance and no strong evidence
of a secondary shower that would be suggestive of it not being NC π0 in origin. Right: 1γ0p
shower show a large dE/dx at the shower start, with the characteristic e+e− pair production
‘V’ shape.

Table 5.2: Breakdown of interaction types in the 2γ selections, both at the pre-selection
stage and final selection stage.

2γ1p Resonant DIS QE Coherent MEC

Pre-Selection 81.3% 16.3% 1.3% 1.31% 0.06%
Final Selection 85.2% 13.2% 1.2% 0.28% 0.07%

2γ0p Resonant DIS QE Coherent MEC

Pre-Selection 79.1% 14.9% 0.52% 5.5% 0.02%
Final Selection 79.2% 13.5% 0.45% 6.8% 0.00%
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(b) Data and MC Distributions

Figure 5.11: (a) Monte Carlo predicted distribution of reconstructed track (mean truncated)
dE/dx, separated between signal and BNB backgrounds. (b) Data to Monte Carlo
distribution comparison for the same variable. Note: detector systematic uncertainties have
been evaluated but are omitted in these distributions.
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Figure 5.12: Data to Monte Carlo comparisons for the 2γ1p BDT response (left) and 2γ0p
BDT response (right). To maximize efficiency times purity in the final selection, a cut is
placed at 0.854 for 2γ1p and a cut at 0.950 for 2γ0p. Note: detector systematic uncertainties
have been evaluated but are omitted in these distributions.
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Figure 5.13: Final distributions show predictions scaled to 5.85×1020 POT, which correspond
to the total POT for filtered Runs 1-3, and corresponding data. These distributions
correspond to the GENIE central value (CV) prediction, i.e. no normalization correction
has been applied to the NC π0 production. Note: detector systematic uncertainties have
been evaluated but are omitted in these distributions.
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Run 6026 Subrun 30 Event 1546

Figure 5.14: Two event displays which survive the final 2γ1p selection. (Left) recorded
during Run 3 of MicroBooNE. Leading shower energy was reconstructed as 332 MeV with
a sub-leading shower energy of 98 MeV, and a corresponding invariant mass of 158.2 MeV.
(Right) recorded during Run 1 of MicroBooNE. The reconstructed invariant mass is 146.2
MeV.
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Chapter 6

Single Photon Systematics

This chapter describes the systematics treatment work that I have led for the single photon or

gamma LEE analysis. Sec. 6.1 covers general concepts for the systematics analysis tools used

in the gamma LEE analysis. Sec. 6.2 covers systematics generated via an event reweighting

model, corresponding to flux and cross-section based effects. Sec. 6.3 covers systematics

incompatible with these methods including detector and photo-nuclear effects. Finally,

Sec. 6.4 covers efforts to reduce systematic uncertainties and their impact on the final single

photon sensitivity measurement.

6.1 Systematics Frameworks

Several frameworks have been developed allowing for study of systematics on samples

of the MicroBooNE simulation and following application to data measurements. These

include EventWeight—an event reweighting module allowing us to obtain systematically

varied distributions; Short Baseline Neutrino Fit (SBNFit)—an analysis module which

produces correlation and covariance matrices; and a framework for comparing independently

simulated Monte Carlo universes with varied parameters to represent sources of systematic

uncertainty not included in EventWeight. Systematic uncertainties can largely be divided

into 3 categories: flux, cross section, and detector systematics. Flux and cross-section effects

are compatible with EventWeight, but detector effects are incompatible. There was also an
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analysis to evaluate photo-nuclear absorption in a hybrid approach, as will be explained in

Sec. 6.3.3.

6.1.1 Covariance Matrix Construction

The SBNFit module has been used for the creation of covariance matrices that encapsulate

systematic uncertainties, including bin-to-bin and sample-to-sample systematic correlations.

SBNFit [59] is a module built for the Short Baseline Neutrino (SBN) program, enabling

simultaneous fitting of an arbitrarily large number of distributions corresponding to different

beam running modes, detectors, and selection channels, with full accounting for their

systematic correlations. Uncertainty accounting is done with the use of a fractional

covariance matrix containing the statistical and systematic uncertainties and systematic

correlations among different samples involved in the fit. Each sample is constructed by

studying variations on selected event distributions generated from underlying systematic

variations to simulation input parameters.

SBNFit calculates a series of matrices, one for each simulation input parameter variation

set (referred to as systematic variation knob k). The resulting total full covariance matrix

is the sum of individual covariance matrices constructed for each underlying source of

systematic error k, where k might represent, e.g., π+ production uncertainties in proton-

target interactions in neutrino flux production.

Each individual covariance matrix Mk, corresponding to an underlying source of

systematic uncertainty, k, is constructed by considering N = up to 1000 separate varied

distributions V k
n of the final selected samples, where n = 1, .., N . The varied distributions

are calculated each time by varying the underlying source of uncertainty k within its

associated error band. The distributions are typically broken down by sub-channels of signal,

background type, etc., as a function of bin i (or j) in some reconstructed variable over which

the fit is to be performed. The deviations of those varied distributions relative to the central

value prediction, P , are then mapped onto the covariance matrix, constructed from the
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distributions as follows

Mij =
1

N

N∑
n=1

(Pi − V k
i,n)× (Pj − V k

j,n), (6.1)

where i, j are bin numbers.

The varied distributions can be obtained either via reweighting of the Monte Carlo central

value prediction, as described in Sec. 6.2, or via the methods described in Sec. 6.3.

The summation of the uncertainties for the single photon analysis can be described as

M total = M flux +M cross−section +Mdetector. (6.2)

When plotting distributions, uncertainties on the bin boundaries of a given distribution

are determined by the diagonal of the full systematics covariance matrix. Specifically, the

elements of the full covariance matrix Mii correspond to σ2
ii, where σii is the error bar on

bin i.

6.2 Reweightable Systematic Uncertainties

6.2.1 EventWeight Module

The EventWeight module is used to evaluate flux and cross section systematic uncertainties

on an event-by-event basis. It accepts files containing event information from any stage of

selection and outputs event weight files (effectively collection of weights tied to each event),

where the weights have been calculated to vary a physics parameter away from its central

value according to

P −→ P ′ = P (1 + xp ∗ (δP/P )), (6.3)

where P and P ′ represent the central value and systematically-varied value of the physics

parameter, δP represents the standard deviation of P , and xp is the scale of the deviation

drawn from a Gaussian distribution. Internal GENIE [92] calculators are used to determine

how the likelihood of each event occurring would respond to the shift in P ′. These new

likelihoods become weights assigned to each event such that for every P ′, every event will
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have an assigned weight. When forming selections, treating each event as a number of

events equal to the weighted value forms an effective systematically varied sample. This

method has a limitation in that events cannot be weighted into existence, but sufficiently

large samples should negate this, and this method is most optimal given limited allocated

computing resources.

Because the single photon analysis only uses artroot [87] in the initial steps of the analysis

before converting to simple root files and EventWeight is designed to work with artroot

files, an intermediate processing step is necessary to allow reweighting on our final samples.

This intermediate step is accomplished via the TreeReader and Arborist modules, where

TreeReader is designed to run EventWeight over simple root files and Arborist converts

the output of TreeReader into simple root files readable by SBNfit. These will be used

in conjunction with the original vertexed files which contain detailed event information for

systematic analysis.

TreeReader is a module included in uboonecode1 for which we use the version v08 00 00 40.

It should be noted the accompanying GENIE version is v3 00 04 ub2, but discussions with

GENIE collaborators indicate that an update to v3 00 06 was not crucial to this analysis.

6.2.2 Input Samples

The covariance matrices generated via reweighting make use of the final selections for 1γ1p,

1γ0p, 2γ1p, and 2γ0p produced as described in Ch. 5. Covariance matrices at earlier selection

stages are also generated for the purpose of including systematic error bars on distributions

prior to the final selection stage. However, this section will only include final selection

analysis as it is crucial to our result and more illustrative of systematic effects.

It is often instructive to break down systematic uncertainties by sub-sample. Final

selected samples are often sorted using truth-level information (information assigned by the

simulation instead of being reconstructed). The fractional composition of the final selections

for 2γ1p, 2γ0p, 1γ1p, and 1γ0p, in terms of the above sub-sample categories, is provided in

Table 6.1. Although in the following sections some of the smaller backgrounds (such as NC

1A combined set of MicroBooNE algorithm code base shared by most analyses.
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multiple π0s) often show large systematic uncertainties of >30%, it must be noted that these

makeup less than 1% of our final 1γ backgrounds.

Note in Sec. 6.2, we show the 1γ1p selection in six bins but for final calculations only one

bin is used due to statistical limitations.

6.2.3 Flux Systematics

Standard MicroBooNE flux variations are provided by beam analysis collaborators as

described in Tab. 6.2. The flux variations were tested for consistency with the MiniBooNE

final flux uncertainties and have been implemented into the EventWeight framework.

Below we describe the most important (dominant) flux systematics for the analysis. Note

we use the terms unisim and multisim. Traditionally unisim means a variation to a single

discreet value whereas multisim is a set of variations. However, unisim in the context of flux

variations refers to internal processes, and a set of variations are actually produced. The

size of our combined flux systematic uncertainty on the total events in our final 2γ1p, 2γ0p,

1γ1p, and 1γ0p selections is provided in Table 6.3. A breakdown of each individual source

of uncertainty can be found in Tabs. 2 through 5 in Appendix A.

• Skin depth: The skin-depth flux unisim refers to the effect of time varying electric

currents penetrating into the horn conductor. It is estimated by calculating weights

with separate models and assuming the variations are Gaussian distributed. The effect

of skin depth variations on the non-coherent π0 component of the 2γ and 1γ final

selected samples is illustrated in Figs. 6.1 and 6.2, respectively. This systematic is

higher for our analysis (compared to other LEE excess analyses focusing on the electron

channel) as while the reconstructed energy of the photons in our selection is near the

LEE region, the parent neutrinos were of higher energy ∼1 GeV, and this systematic

has greater impact in that energy region. A demonstration of the energy structure of

this systematic can be seen in Fig. 6.3.

• π+ production: The majority of the neutrino flux at MicroBooNE comes from π+

production in proton-Be target interactions. As such, uncertainties associated with

the primary hadron Sanford Wang Central Spline parametrizing π+ production are
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Table 6.1: Fractional composition of the final selections for 2γ1p, 2γ0p, 1γ1p, and 1γ0p
samples. Highlighted in bold are the dominant categories in each of the final stage selected
topology, stressing the dominance in all selections of NC 1 π0.

Sub-sample Category 2γ1p 2γ0p 1γ1p 1γ0p

BNBExt 12.1% 14.9% 0.00% 5.5%
BNBOther 9.8% 7.5% 7.6% 10.5%
CC1π0 9.0% 6.4% 1.5% 8.2%
Dirt (Outside TPC) 4.6% 11.1% 0.00% 21.1%
NCDeltaRad (SM) 0.1% 0.1% 15.1% 3.8%
NC1π0Coh 0.2% 4.3% 0.00% 4.6%
NC1π0NotCoh 63.3% 55.4% 74.6% 39.7%
NueOverlay 0.7% 0.4% 1.2% 6.6%

Table 6.2: Description of flux and cross section reweightable systematics used in final
uncertainty calculations.

Flux Variation Label Description

expskin FluxUnisim Skin Depth for electric currents penetrating conductor

horncurrent FluxUnisim Horn Current in magnetic focusing horn

kminus PrimaryHadronNormalization K− production normalization

kplus PrimaryHadronFeynmanScaling K+ Sanford Wang Central Spline Variation

kzero PrimaryHadronSanfordWang K0 Sanford Wang

nucleoninexsec FluxUnisim Nucleon Total Inelastic cross section on Be

nucleonqexsec FluxUnisim Nucleon Total Quasi-elastic cross section on Be

nucleontotxsec FluxUnisim Nucleon Total cross section on Be

piminus
PrimaryHadronSWCentralSplineVariation π− Sanford Wang Central Spline Variation

pioninexsec FluxUnisim Pion Total Inelastic cross section on Be

pionqexsec FluxUnisim Pion Total Quasi-elastic cross section on Be

piontotxsec FluxUnisim Pion Total cross section on Be

piplus
PrimaryHadronSWCentralSplineVariation π+ Sanford Wang Central Spline Variation
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significant on the majority of the events in our final selections. Like other hadron

production weights, uncertainties on this parameterization are propagated via multi-

Gaussian smearing. The WeightCalc function of the EventWeight package contains

algorithms to smear a set of parameters within a vector utilizing a covariance matrix

containing the uncertainties and correlations of those parameters. As this affects

the majority of events in final selection, this source of uncertainty is necessarily an

important one for all of our signals and backgrounds. The effect of π+ production

variations on the NC π0 non coherent component of the 2γ and 1γ final selected

samples is illustrated in Figs. 6.4 and 6.5, respectively.

Summary of Flux Systematics

Flux systematics are sub-dominant to cross-section and well determined. The largest

variations: Skin depth and π+ Sanford Wang Central Spline Variation have been discussed

and each only reaches ∼8% uncertainty. It is thus acceptable to apply them to our analysis

without further examination. While they are included in the constraint estimation method

described in Sec. 6.4.1, this is more so a matter of consistency than a real need for reduction

of uncertainty.

6.2.4 Cross Section Systematics

Cross section systematic uncertainties have seen many changes in the collaboration-wide

analyses move from the historical MCC82 to the modern MCC9 and from GENIE version

2 to GENIE version 3. The modern uncertainty is performed via the GENIE all combined

variation (with a few other variations). The GENIE all set of variations runs a suite of

variations for a number of GENIE systematic knobs simultaneously. Because it accounts

for correlations between individual variation knobs, it is more appropriately used for the

calculation of final uncertainties and production of covariance matrices. It is run with 1000

total multisims. The effect of cross section variations from GENIE all is illustrated in Fig. 6.6

and Fig. 6.7, for the NC π0 non-coherent of the 2γ and 1γ final selection stages. A list of

2The overarching Monte-Carlo for MicroBooNE simulation
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Figure 6.1: A variation plot illustrating the skin depth flux uncertainties’ effect on the NC
π0 non-coherent signal in the final 2γ0p (left) and 2γ1p (right) selections. The color z scale
represents the density of multisims or reweighted iterations that land in that particular bin
thus giving a visual representation of the spread of prediction created by this underlying
systematic uncertainty.

Figure 6.2: A variation plot illustrating the skin depth flux uncertainties’ effect on the NC
π0 non-coherent background in the final 1γ0p (left) and 1γ1p (right) selections. The color z
scale represents the density of multisims or reweighted iterations that land in that particular
bin thus giving a visual representation of the spread of prediction created by this underlying
systematic uncertainty.
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Figure 6.3: A variation plot illustrating the skin depth flux uncertainties’ effect on the NC
π0 non-coherent background in the final 1γ1p (left) and 2γ1p (right) selections, but with the
x axis now representing the true parent neutrino energy so that the energy dependence of
the effect is visible.

Table 6.3: Table of combined flux systematics on each final selection subsample. A hyphen
represents an empty sample. The OTPCinc sample in the last column refers to true neutrino
events outside the TPC volume.

Variation BNB CC1π0 Dirt NC∆Rad NC1π0 NC1π0 CCνe OTPCinc
Other Coh NotCoh

2γ1p 8.65 6.32 8.17 7.13 14.95 7.50 6.60 8.04

2γ0p 8.73 6.11 5.15 6.59 8.21 7.20 6.31 7.89

1γ1p 9.07 7.16 - 6.45 - 7.35 10.87 -

1γ0p 7.81 7.20 7.63 6.59 7.27 7.04 8.42 8.86
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Figure 6.4: A variation plot illustrating the central Sanford Wang π+ flux uncertainty effect
on the NC π0 non-coherent signal in the final 2γ0p (left) and 2γ1p (right) selection. The
color z scale represents the density of multisims or reweighted iterations that land in that
particular bin thus giving a visual representation of the spread of prediction created by this
underlying systematic uncertainty.

Figure 6.5: A variation plot illustrating the central Sanford Wang π+ flux uncertainty effect
on the NC π0 non-coherent background in the final 1γ0p (left) and 1γ1p (right) selection.
The color z scale represents the density of multisims or reweighted iterations that land in
that particular bin thus giving a visual representation of the spread of prediction created by
this underlying systematic uncertainty.
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the final cross section knobs used is shown in Tab. 6.4. GENIE all and the minimum and

maximum variations are the only variations used for results shown in this thesis. Tab. 6 in

App. A shows the components of GENIE all individually.

A large component of the combined GENIE uncertainty is the Neutral Current Resonant

Axial Mass which is an important source of systematic uncertainty as it is a variation on

the form factor for our primary signal both for the 2γ and 1γ selections. It nominally has

the value of MResAxial
A = 1.07 GeV and it enters in the cross section calculation via the

form factor 1/(1 + Q2/M2
A), where Q is the four-momentum transfer in the interaction.

Currently (for this analysis), it is assigned an uncertainty of ±20% as the formulation here

was effectively copied from the CC Resonance Axial Mass which was measured in Argonne

National Laboratory (ANL) and Brookhaven National Lab (BNL) bubble chambers. The

factor was allowed to float freely and inherited the same uncertainty value of 20% without

direct experimental justification, so it may be overestimated.

For the purpose of evaluating the size of specific cross section systematic uncertainty,

individual GENIE cross section variations are run in pm1sigma3 mode with two multisims

at +1σ and −1σ of the known uncertainty. For cross section uncertainty only the GENIE all

and these supplemental model parameters which do not lend themselves to the GENIE all

multisim approach are used for the constraint and other measurements. These parameters

have been developed by the systematics and GENIE analysis groups to account for various

effects. For each of these, one of the two (minimum or maximum) variations stored by

EventWeight corresponds to the tuned central value (CV). Therefore there is only one

weight value distinct from the CV. The only exception is the RPA CCQE UBGENIE

variation where both minimum and maximum are distinct from the central value. The

XSecShape CCMEC UBGENIE variation was removed upon discovery of some issues in its

calculation4. In this mode, the uncertainty is defined as the absolute difference between two

extremes rather than relative to a particular CV. The uncertainty of the combined GENIE

variation can be found in Table 6.5, and the combined uncertainty of the supplemental

3EventWeight definition
4Following the production of our samples and use in the GENIE MicroBooNE tune, issues were discovered

with this knob producing nonsensically large weights. Discussion with cross section experts and the
GENIE tune group indicate the impact should not effect the validity of our analysis as anomalous weights
have been removed and meson exchange current (MEC) events have a low impact on our analysis.
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Table 6.4: Description of cross sections reweightable systematics used in final uncertainty
calculations.

Variation Label Description

All UBGenie All multisim mode GENIE variables combined

Min/Max Mode Variations

NormCCCOH UBGenie Normilization for CC Coherent Processes (in developement)

NormNCCOH UBGenie Normilization for NC Coherent Processes (in developement)

RPA CCQE UBGenie Strength of RPA correction for central tune

Theta Delta2Npi UBGenie Variation of angle of pion with respect to detector z axis

VecFFCCQEshape UBGenie VecFFCCQEshape UBGenie

DecayAngMEC UBGenie Changes angular distribution of nucleon cluster

AxFFCCQEshape UBGenie Varies CCQE axial form factor model between dipole (CV)
and z-expansion.

Figure 6.6: A variation plot illustrating the GENIE all uncertainties’ effect on NC π0 non
coherent component in the final 2γ0p (left) and 2γ1p (right) selection. The color z scale
represents the density of multisims or reweighted iterations that land in that particular bin
thus giving a visual representation of the spread of prediction created by this set of underlying
systematic uncertainties.
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variations can be found in Table 6.6. Further information on each individual variation is

included in App. A where Tables 2 through 5 provide the fractional error on final stage

selections from each source of systematic uncertainty for the 2γ1p study, broken down by

component sub-samples. Tables 7−14 in App. A show the variations contained within the

combined GENIE variation.

Summary of Cross Section Systematics

Cross-section systematics are the dominant reweightable systematics. While not as

thoroughly investigated as the flux systematics, there has been a robust effort by GENIE

and MicroBooNE collaborators to improve the systematic uncertainty predictions for cross

section. The highest consistent uncertainty is from GENIE systematics (GENIE all) and

more specifically MResAxial
A reaching up to 30%, but we have discussed why underlying

assumptions for it may be inaccurate. Unfortunately, without new data this does not itself

present a method for reduction, but the constraint estimation method described in Sec. 6.4.1

is very powerful on this uncertainty in our signal region reducing it to ∼10%.

6.2.5 Total Flux and Cross Section Tables

The final values for flux and cross section systematics are shown in Tables 2, 3, 4, and 5 in

App. A for each of the four samples. As previously described, the individual components

of GENIE all are also included in App. A, Tab. 7-14, but these have not been reproduced

at the current iteration of our analysis as they are not essential to our final fitting. There

is a large factor from the NormCCCOH (normalization charged-current coherent processes)

knob in several NC π0 coherent sub-samples. This is believed to be a result of low statistics

of those particular sub-samples and that this knob would have strong effect on virtually the

entirety of those types of events. It was determined to not be an issue based on its low

impact to our sensitivity given its low statistics.
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Figure 6.7: A variation plot illustrating the GENIE all uncertainties’ effect on NC π0 non-
coherent component in the final 1γ0p (left) and 1γ1p (right) selections. The color z scale
represents the density of multisims or reweighted iterations that land in that particular bin
thus giving a visual representation of the spread of prediction created by this set of underlying
systematic uncertainties.

Table 6.5: Table summarising the combined GENIE systematic (GENIE all) on each final
selection subsample. A hyphen represents an empty sample, and a zero means that the
sample in question was not effected by the variation.

Variation BNB CC1π0 Dirt NC∆Rad NC1π0 NC1π0 CCνe OTPCinc
Other Coh NotCoh

2γ1p 14.91 25.01 16.02 28.05 0.00 24.56 15.79 16.78

2γ0p 16.11 27.19 20.29 24.93 0.00 22.12 22.36 18.22

1γ1p 17.46 24.16 - 25.56 - 24.40 17.10 -

1γ1p 16.56 26.89 15.34 23.26 0.00 22.60 20.01 19.63
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6.2.6 Flux and Cross Section Covariance Matrices

Covariance is the joint variability between two variables as we discussed in Sec. 6.1.

Covariance matrices store this information for each bin of of each signal in our samples.

Correlation matrices are easily calculated from covariance matrices by dividing each entry

by the product of the contributing bins’ standard deviations. Correlation matrices are more

visually readable defining the correlation (representing similarity in behavior under variation)

between the same bins. A simple illustration of a correlation matrix is shown in Fig. 6.8.

Final covariance and correlation matrices are used to add uncertainty to our predictions

and will ultimately be used for our NC π0 constraint (estimation described in Sec. 6.4.1)

and for final fits described in Sec. 6.4. For illustration, observe the produced matrices for

GENIE all in Figs. 6.9 and 6.10, which is the most dominant systematic. The combined flux

and cross section fractional covariance matrix, and full covariance matrix for all four final

selected samples are shown in Figs. 6.11, 6.12, and 6.13, respectively. In each of these, all

sub-selections listed in Sec 6.2.2 are re-combined into larger signals i.e., 1γ1p. The plotted

variables and binning were chosen to optimize the constraint analysis explained in Sec. 6.4.1.

A few features can be noted in the correlation matrices which are more visually readable than

covariance matrices. The high correlations observed between the more populated bins of the

2γ1p and 1γ1p indicate the constraining power of the 2γ1p analysis as the most significant

background. Lower correlations are generally due to lower statistics in that region. Also, the

generally high correlations between bins of the same sub-sample indicate that the samples

are well selected since events behave similarly under variations.

6.3 Non-Reweightable Systematics

In the previous iteration of the MC production in MicroBooNE (referred to as MCC8),

detector response was defined by varying detector response associated parameters, such as

ionization electron diffusion, prior to creating simulated samples. Due to the computational

requirements, only samples varied with 1σ from the central value were created (known as
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Table 6.6: Table of combined contribution of each min-max formatted GENIE variation
on each final selection subsample. A hyphen represents an empty sample. Note while the
NC1π0Coh variation appears to have a large uncertainty, it is entirely from a single variation:
NormNCCOH (see Appendix A). Due to the smallness of the sample, it should not have a
large impact on final uncertainty and fitting.

Variation BNB CC1π0 Dirt NC∆Rad NC1π0 NC1π0 CCνe OTPCinc
Other Coh NotCoh

2γ1p 1.70 3.85 5.96 0.00 87.37 1.48 10.93 6.67

2γ0p 4.05 4.54 13.33 0.00 20.87 1.44 22.57 3.81

1γ1p 9.38 69.08 - 0.00 - 6.48 26.83 -

1γ0p 4.54 5.55 7.91 0.00 33.79 0.46 14.35 5.73

Figure 6.8: A simple illustration of a correlation matrix.
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Figure 6.9: The fractional covariance matrix for the GENIE all version of cross section
systematic uncertainties, constructed for the four final selected samples side by side. Unlike
a summed combination of the individual matrices, the GENIE all covariance matrix more
properly accounts for correlations among different systematic knobs. The single-photon
samples are each binned in 5 and 3 bins of shower energy, for 1γ0p and 1γ1p, respectively,
and the NC π0 samples are each binned in 8 bins of NC π0 momentum.
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Figure 6.10: The correlation (matrix for the GENIE all version of cross section systematic
uncertainties, constructed for the four final selected samples side by side. Unlike a summed
combination of the matrices, the GENIE all correlation matrix more properly accounts for
correlations among different systematic knobs. The single-photon samples are each binned
in 5 and 3 bins of shower energy, for 1γ0p and 1γ1p, respectively, and the NC π0 samples
are each binned in 8 bins of NC π0 momentum.
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Figure 6.11: Collapsed flux and cross section correlation matrix of the final 2γ1p, 2γ0p, 1γ1p,
and 1γ0p selections. Note that the color scale (indicating the correlation strength) starts
at 25% correlated, with the correlations between the primary constraint and signal channels
2γ1p and 1γ1p being >70% in bins, with the most populated bins being correlated by >90%.
This exceptionally high correlation is what allows the dramatic reduction in flux and cross
section systematics for the signal channels.
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Figure 6.12: Collapsed flux and cross section fractional covariance matrix of the final
combined 2γ1p, 2γ0p, 1γ1p, and 1γ0p selections. Overall, flux and cross section systematic
uncertainties never exceed ∼15% fractional covariance.
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Figure 6.13: Collapsed flux and cross section full Covariance matrix of the final 2γ1p, 2γ0p,
1γ1p, and 1γ0p selections (all sub-selection background samples combined).
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unisim format). These were used to create systematic covariance matrices

Mij =
S∑
k=1

(NCV
i −Nk

i ) · (NCV
j −Nk

j ) (6.4)

where Mij is the element of covariance matrix M for row i and column j, S is the number

of uni-sims, Ni (Nj) represents the number of POT weighted events in bin i (j) of the

corresponding histogram, and CV refers to the central value sample. In the most recent

MC production, referred to as MCC9, the novel wire-modification method allows for more

complete and efficient estimation of some detector response uncertainties. The method

characterizes the detectors response in terms of the charge magnitude (Qhit) and width (σhit)

of Gaussian hits on wires for various effects (see Fig. 6.14). These values are used to define

continuous ratio functions R
(data/MC)
Q and R

(data/MC)
σ seen in Fig. 6.15. These continuous ratio

functions can then be applied to Monte-Carlo events to match the data. In this way, even

effects that are unknown or difficult to simulate in Monte-Carlo can still be applied. This

method is also applied post-deconvolution for reduced computing time required to produce

variation samples.

Naturally, systematic effects not pertaining to wires still require other methods. Thus

modern detector systematics are produced in three categories: LArTPC wire related

systematics, photo-multiplier light yield (LY) related systematics, and other systematics for

any source of systematic uncertainties not included in the first two categories. These primary

categories are separated into further subcategories. The wire systematics (using the wire-

modification method) are defined via the detector coordinate system for the wire modification

X variation defining effects related to the detector x coordinate (direction of electron drift),

and then the effects on the other two coordinates are merged for the wire modification

YZ variation. Likewise, angle effects are defined for the track angles θXZ and θY Z , called

AngleXZ and AngleYZ. In the Light Yield (LY) category, there are samples that include a

25% reduction in light yield. Other variations are light yield attenuation (LYAtt) and light

yield Rayleigh scattering length (LYRay). The category of other detector effects includes

the space charge effects (SCE) variation and electron-ion recombination (Recom2) variation.

Detector systematic samples have been produced for Run 1 and Run 3 of MicroBooNE.
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Figure 6.14: Schematic of a hit: The blue region represents fitting the hit with a Gaussian
function, where Qhit and σhit are the integrated area (charge) and standard deviation from
the Gaussian fit, respectively.

Figure 6.15: Schematics of data to MC ratio of Qhit and σhit with respect to detector X
coordinate. The obtained continuous functions RQ and Rσ are used to modify the MC event
hits.
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However, Run 1 has an incomplete set of detector effects, and the existing samples also

suffer from other issues. Most were produced before the inclusion of Space Charge and

recombination, and the Light Yield variations were produced with a different central value

which could introduce a bias to our analysis. Therefore, information presented here is solely

from the Run 3 analysis.

6.3.1 Detector Systematics Selections

The process for producing the 1γ1p and 1γ0p samples is identical to what is described in

Ch. 5, except it is run over smaller systematically varied samples. Table 6.7 summarizes the

percentage uncertainties assessed on each 1γ sub-sample at final selection stage. Detector

variations, again have small effect on the NC ∆ signal with the largest individual uncertainty

being 3.75% in 1γ1p and 4.02% in 1γ0p from Recom2. The effect for NC π0 non-coherent is

also relatively small, ∼5.5% from WireX is the largest contribution. For the final stage νe

samples, low statistics begin to impact performance, and for CC π0 and BNB-other samples,

the statistics are too low for systematics to be meaningful although the values are still

calculated. For Dirt (Inside Cryostat) and NC π0 coherent, it is even impossible to extract

the percentage difference, as no event survives at this stage.

The method for NC π0 samples is identical and the results are comparable. However,

the pre-selection study statistics allow for finer binned studies to explore if some of the

observed data-MC disagreements are covered by any systematic in particular. The final

stage systematics are shown in Tab. 6.8.

6.3.2 Detector Systematics in the Final Selections

While the flux and cross-section reweightable uncertainties are calculated using the same

(high-statistics) Monte Carlo samples that make up the final selection, the detector

systematics samples themselves are substantially smaller in statistics. While this is especially

evident for the general BNB beam sample, even some of the dedicated high-statistics samples,

such as CC π0, have low statistics at the final selection stage. These statistics were further

reduced by the requirement that we remove MC events that were included in BDT training

122



Table 6.7: Percent (%) shifts in number of events for each 1γ sub-sample, for each systematic
variation, defined as (N var−NCV )/NCV ×100%, at the final selection stage. As noted before,
the first two samples, NC ∆ and NC π0 Non-Coherent are both primary components and also
the only two high statistics detector variation samples that would be most robust to statistical
variations. The combined (summed in quadrature) detector normalization uncertainty for
NC ∆ and NC π0 non-coherent are 6% and 12% respectively. For other sub-samples, the
statistics are too low at this stage and although the percentage differences can be obtained
for some of them, they are not usable to assert the detector systematics.

Sub-sample 1γ1p WireX WireYZ AngleXZ AngleYZ LY LYAtt LYRay SCE Recom2 Tot

NC ∆ 0.840 1.264 1.463 3.229 0.320 2.14 0.938 1.124 3.754 5.982
NC 1π0 Not Coh 5.485 2.5 2.893 0 1.24 5.085 1.282 6.881 4.741 11.98
NC 1π0 Coh - - - - - - - - - -
Dirt(Inside Cryostat) - - - - - - - - - -
CC νµ 1π0 30 40 10 30 20 0 0 11.11 50 80.77
Intrinsic νe/ν̄e 3.226 0 0 10 3.226 3.333 - 28.57 23.08 38.48
BNB Other 0 50 50 0 50 0 100 200 300 384.1

Sub-sample 1γ0p WireX WireYZ AngleXZ AngleYZ LY LYAtt LYRay SCE Recom2 Tot

NC ∆ 3.073 1.324 1.839 0 0.089 0.246 0.350 3.211 4.027 6.426
NC 1π0 Not Coh 1.716 7.453 3.226 3.39 0.614 2.24 0.161 0.169 0.162 9.267
NC 1π0 Coh 5.682 4.598 1.136 3.409 2.273 4.651 0 18.52 14.29 25.3
Dirt(Inside Cryostat) 5.128 26.83 9.524 7.317 4.762 5.128 2.564 52.94 84.21 104.1
CC νµ 1π0 19.15 10.42 2.128 0 21.28 23.4 2.128 9.091 19.05 43.93
Intrinsic νe/ν̄e 5.439 0.402 5.19 4.743 0.569 0.402 0.193 2.582 9.281 13.13
BNB Other 0 8.696 18.18 26.09 4.348 9.091 18.18 13.33 25 48.18
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to avoid bias. While the NC ∆ radiative samples in our 1γ selections and our most important

backgrounds (NC π0 Non-Coherent) in all selections have substantial MC statistics, all

remaining backgrounds have fewer than an average of 100 MC entries per bin at the final

selection, with the BNBOther sub-sample containing only a couple of MC entries in the

1γ1p final selection. Sub-samples with less than 100 events per bin show extremely large

fluctuations between detector CV and individual detector systematic variations and thus

cannot reliably be used to estimate detector uncertainty on them. The strategy employed

to mitigate this is to use the final selection sub-samples to estimate the uncertainties for

the high-statistics signal NC ∆ Radiative events, and for our primary background of NC π0

Non-Coherent events, but for the remaining lower statistics sub-samples, we construct the

covariance matrices using pre-BDT samples which have much higher statistics.

Theoretically the construction of covariance matrices from detector variation unisims,

does yield meaningful correlations between bins, due to being overwhelmed by individual

variations, it is likely they do not represent true correlations in our samples. It was decided to

make a conservative estimate (meaning minimizing the power of the constraint) for detector

systematics by treating all bins as uncorrelated. Therefore, the process for total detector

uncertainty can be characterized as the bin-by-bin absolute fractional difference between

an individual detector variation sample and the detector CV, summed in quadrature over

all detector systematics. With this method, the final correlation matrices are shown in

Fig. 6.16. The 1γ1p selection is placed in a single bin due to low statistics, but this should

be acceptable given the analysis goal of searching for a flat increased rate of NC ∆ radiative

decay. A comparison of the scale of detector systematic sources with others is shown in

Fig. 6.17.

6.3.3 Photonocuclear Absorption Uncertainties

There is another category of systematic uncertainties provided in the Monte Carlo known

as GEANT4 dealing with interactions beyond the nucleus. These determine individual final

states for a given interaction which is less well modeled by adjusting the weight or likelihood

of occurrence, making the EventWeight method impractical. However, it was decided to

include GEANT4 photonuclear absorption uncertainties which have a potentially high impact

124



Table 6.8: Percent (%) shifts in number of events for each 2γ sub-sample, for each systematic
variation, defined as (N var−NCV )/NCV ×100%, at the final selection stage. The Tot column
shows the quadrature sum of all individual detector effects.

Sub-sample 2γ1p WireX WireYZ AngleXZ AngleYZ LY LYAtt LYRay SCE Recom2 Tot

NC ∆ 5.788 0.649 0.971 2.903 1.967 0.851 0.321 5.804 8.803 12.62
NC 1π0 Not Coh 2.477 0.818 1.282 0 0.083 0.713 0.238 1.092 1.138 3.392
NC 1π0 Coh 8.824 3.03 17.65 2.857 0 2.941 3.03 16.13 17.65 31.56
Dirt(Inside Cryostat) 13.46 1.923 8 13.46 20.37 15.09 5.556 66.67 63.16 97.66
CC νµ 1π0 3.636 0 6.115 4.762 4.676 6.939 0 2.703 8.547 14.96
Intrinsic νe/ν̄e 0.980 1.737 2.439 0.488 1.869 4.265 3.073 10 10.39 15.78
BNB Other 6.569 11.68 6.818 1.429 3.676 5.109 0.709 54.72 60.66 83.31

Sub-sample 2γ0p WireX WireYZ AngleXZ AngleYZ LY LYAtt LYRay SCE Recom2 Tot

NC ∆ 12.74 3.846 0 1.911 1.923 3.54 3.185 1.504 9.79 17.47
NC 1π0 Not Coh 1.231 1.553 1.004 1.2 0.421 0.751 0.817 1.031 2.566 3.928
NC 1π0 Coh 2.671 7.396 1.17 0 1.166 5.325 2.115 5.466 0.926 11.32
Dirt(Inside Cryostat) 5.618 4.494 12.5 1.205 0 3.371 3.448 15.22 4 21.92
CC νµ 1π0 0 2.439 2.439 10.92 6.504 10.26 3.252 23.85 3.774 29.54
Intrinsic νe/ν̄e 4.828 2.069 3.448 8.163 7.947 11.92 1.351 22.41 1.667 28.61
BNB Other 30.51 3.279 16.07 8.333 15 19.35 6.557 16 16 49.23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Collapsed Correlation matrix

0 5 10 15 20 25 30
Reco Bin i

0

5

10

15

20

25

30

R
ec

o 
B

in
 j

Collapsed Correlation matrix

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Collapsed correlation matrix

0 5 10 15 20 25 30
Reco Bin i

0

5

10

15

20

25

30

R
ec

o 
B

in
 j

Collapsed correlation matrix

Figure 6.16: The collapsed correlation matrix between all four samples at final selection stage,
1γ1p, 1γ0p, 2γ1p, and 2γ0p, respectively, from left to right. The left matrix has only GENIE
interaction and flux uncertainties included, and the right plot shows the effect of including the
uncorrelated detector systematics. Higher energy bins of 1γ0p show a significantly reduced
correlation factor, due to the wash-out effect of the larger detector systematics in this region,
however, the correlations between the primary signal 1γ1p selection and the 2γ selections,
although reduced, remain extremely high in the 80−90% range.
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Figure 6.17: A summary of the systematics included on the final four selections before
applying the conditional constraint. The blue, green and red curves represent flux, cross
section (GENIE) and detector systematics respectively. The black curve is the total
systematics. The magenta and dashed grey are intrinsic MC statistics and data sized
statistical uncertainties estimated by

√
N , where N represents the number of events. Overall,

systematics are between 20% to 30% in the primary bins of interest; however, for the main
signal of the 1γ1p, the dominant systematic is the cross section uncertainty (GENIE), which
is what is primarily constrained by the associated 2γ selections.
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on our analysis. This effect at first order creates a topologically-irreducible background to

single photons by removing one of the photons in an NC π0 decay via nuclear absorption on

Argon. The rate of this process for photon energies ranging between 0-500 MeV is 0.366%,

determined using photons from the raw generated NC π0 sample in the cryostat.

The photon energy distribution from NC π0 decays in MicroBooNE is shown in Fig. 6.18,

and the photonuclear absorption cross section dependence on photon energy is shown in

Fig. 6.19. The largest contribution to single-photon backgrounds is expected from the

giant dipole resonance (GDR) region. An increase in the absorption cross section would

lead to an increase in NC π0 background in our signal region. To calculate a systematic

uncertainty, a custom EventWeight module is used to apply a ±30% variation of the

photonuclear absorption cross section to a high statistics NC π0 sample. This module

allows for event level reweighting with a photon-energy-dependent modified probability of

photonuclear absorption. The weighting is given by:

Wevent = Πall primary photonsWphoton sur(E)Wphoton int(E) (6.5)

where

Wphoton sur(E) = (1− w ∗ Pint(E))/(1− Pint(E)) (6.6)

is the weight on the photons which are not undergoing photonuclear absorption, and

Wphoton int(E) = (w ∗ Pint(E))/Pint(E) = w (6.7)

is the weight on the photons which are undergoing photonuclear absorption. The resulting

central value prediction and ±1σ variations are shown in Fig. 6.20. Covariance values

were about ∼0.09 (=0.32) across all the bins in the covariance matrix corresponding to

the photonuclear subchannel making this a very sub-dominant uncertainty compared to

∼20−25% GENIE uncertainties, and thus it was concluded this effect would be negligible to

our prediction.
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6.4 Systematics Constraint and Final Results

6.4.1 Estimating the Neutral Current π0 Systematic Constraint

An estimation of the level of constraint on the uncertainty of the final 1γ signal measurement

is made by considering the NC π0 sideband (2γ) measurements, in a way analogous to how

constraints were estimated for νe backgrounds using observed νµ events in the MiniBooNE

and MicroBooNE experiments. This analysis is an important proof of performance, but the

method for determining final fits is actually distinct.

The constraint estimation procedure is as follows: one begins with the total covariance

matrix Mij, containing statistical and systematic uncertainties (and correlations) for both

the 1γ background samples and the 2γ signal and background samples, which is then inverted

to give M−1
ij . The Chi-square of a combined fit is then given by

χ2 =
∑
ij

(Ndata
i −NMC

i )M−1
ij (Ndata

j −NMC
j ) (6.8)

Here Ndata
i represents measured events and NMC

i represents simulated Monte Carlo events

both per bin i of data. To estimate the power of the constraint, we use N fit
i instead of Ndata

i

where N fit
i represents combined fit values for 1γ and 2γ per energy bin. Minimizing the

chi-square for the null-hypothesis (χ2 = 0) yields.

N fit
i = NMC

i ±
√
Mii (6.9)

We then pull a term from the chi-square function with the assumption that N fit
i = Ndata

i

within statistical errors (σdata
i =

√
Ndata
i ) yielding

χ2 =
∑
ij

(N fit
i −NMC

i )M−1
ij (N fit

j −NMC
j ) +

∑
i

(N fit
i −Ndata

i )2

(σdatai )2
(6.10)

χ2 =
∑
ij

(N fit
i −NMC

i )M−1
ij (N fit

j −NMC
j ) +

∑
i

(N fit
i −Ndata

i )2

Ndata
i

. (6.11)
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With a further assumption that Ndata
i = NMC

i for the 2γ portion of the matrix, the second

term becomes N fit
i −NMC

i such that it can be folded back into the first expression for

χ2 =
∑
ij

(N fit
i −NMC

i )(M−1
ij )new(N fit

j −NMC
j ) (6.12)

where (M−1
ij )new = M−1

ij + 1/NMC
i for the 2γ portion of the matrix and is unchanged in the

1γ portion.

While derivation of the process is complex, implementation is a simple matter of inverting

the covariance matrix applying (M−1
ij )new = M−1

ij +1/NMC
i to the 2γ portion of the diagonal

and re-inverting. The new diagonal 1γ portion of the matrix will be reduced in the process of

re-inverting, such that the uncertainties defined by it are now constrained uncertainties. The

level of constraint (i.e. the level of uncertainty reduction) grows with increased 2γ statistics.

This method of obtaining constrained systematic uncertainties is useful in foreshadowing

the level of sensitivity improvement expected from a simultaneous fit to 1γ and 2γ selections,

and it is useful to consider for systematic studies. We will first study the maximum constraint

achievable on the Flux and GENIE systematics in the absence of detector systematics. The

GENIE uncertainties represent the largest systematics that we wish to constraint, as the

underlying NC π0 model parameters, such as the neutral current resonance axial mass have

high uncertainties. The results of the constraint can be seen in Fig. 6.21. Across the entire

energy range of both 1γ1p and 1γ0p, we see very large reductions. This large reduction is

perhaps unsurprising when one considers that the overall correlation factor between the 1γ

and 2γ spectra in the flux and cross-section correlation matrix is above 85% in the majority

of bins, as was observed in Fig 6.16.

Inclusion of detector systematics both increases the uncertainty itself, but more

importantly effectively reduces the correlations between the 1γ and 2γ samples, in particular

for the 1γ0p sample. Figure 6.22 (and the same information in Tab. 6.9) are the key results of

this section, showing the dramatic reduction in the bin-by-bin systematic uncertainty before

and after the constraint, highlighting the performance of the 2γ selections. Systematic

uncertainties of 25% in the signal region of 1γ are reduced to <20% in most bins after the 2γ

constraint is applied. Further detail about the exact individual GENIE systematics that are
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being constrained the most can be found in the supplementary App. B, which allows us to

probe which underlying uncertainties are being constrained and which are not being aided

by the 2γ sideband. The level of constraint evaluated using this method suggests one should

expect a promising reduction of the systematic uncertainty on the background components

of 1γ1p and 1γ0p samples, which are highly correlated with the 2γ1p and 2γ0p samples.

The individual performance of each final variable can be seen in in Tab. 6.10 for flux and

in Tab. 6.11 for cross section. Note the flux variations are generally less well constrained,

but as their uncertainty was less initially, this is acceptable. The dominant variation, named

GENIE all, is well constrained and examination of individual variations in Fig. 15 of App. B

shows this is because the highest uncertainty variations are also among those most reduced

by the constraint (i.e., the neutral current axial mass), although, once again, these values

are not representative of the final analysis.
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Figure 6.18: Energy distribution of photons from NC π0 decays in MicroBooNE; the NC π0

sample used is the generated NC π0 sample, with no cuts applied.

Table 6.9: Effect of constraint per bin, provided in terms of a reduction factor on the
total flux, cross section and detector systematic uncertainty on the backgrounds of the 1γ
selections. The number of events corresponds to the available Runs 1-3 of 6.9e20 POT,
however, the NC π0 (2γ) selections that provide the constraint are fixed at the POT of the
filtered samples, 5.84e20 POT and 5.89e20 POT for 2γ1p and 2γ0p respectively.

1γ1p Bkgd. Bins Events Unconstrained Constrained Reduction Factor
of Shower Energy (GeV) Uncertainty Uncertainty

0 - 0.6 29.4339 24.55% 9.53% 2.58

1γ0p Bkgd. Bins Events Unconstrained Constrained Reduction Factor
of Shower Energy (GeV) Uncertainty Uncertainty

0.1 - 0.2 10.22 17.63% 12.19% 1.45

0.2 - 0.25 21.47 17.77% 10.06% 1.77

0.25 - 0.3 33.40 17.38% 7.63% 2.28

0.3 - 0.35 34.10 18.13% 7.35% 2.47

0.35 - 0.4 28.80 19.61% 9.35% 2.10

0.4 - 0.45 16.61 21.59% 11.68% 1.85

0.45 - 0.5 11.12 20.77% 15.14% 1.37

0.5 - 0.55 6.44 23.97% 19.27% 1.24

0.55 - 0.6 3.99 28.08% 25.48% 1.102

0.6 - 0.7 3.71 24.24% 16.96% 1.43
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Figure 6.19: Photonuclear process cross section as a function of photon energy. The first peak
in the < 100 MeV region corresponds to the Giant Dipole Resonance (GDR). The second
peak in the > 100 MeV region corresponds to the ∆ resonance. The solid blue line shows
the photonuclear process cross section embedded in Geant4 and is used in MicroBooNE
simulation. The green dotted-line represents the International Atomic Energy Agency
(IAEA) [23] recommendation. The solid red line shows 30% reduction from the Geant4
nominal values. The solid purple line shows 30% increase from the Geant4 nominal values.
For the second resonance region, 27Al and 63.5Cu absorption cross sections are overlaid. Note
that the 30% reduction graph from Geant4 is above the 27Al graph.
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Figure 6.20: Left: Central value (CV) prediction for the final 1γ1p selection, showing
the photonuclear absorption background component. The photonuclear background is
subdominant to the NC π0 mis-identified background. Right: The same photonuclear
absorption background in the 1γ1p CV prediction as a function of 1γ1p invariant mass, in red,
contrasted with variations corresponding to a ±30% enhancement/reduction in photonuclear
absorption cross section, in green/blue. The variations are obtained through the Geant4
reweighting scheme described in this section.
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Figure 6.21: A visual representation of the reduction in flux and cross-section systematic
uncertainty on the 1γ1p and 1γ0p final selections, due to the high statistics NC π0 samples.
See Fig. 6.22 for the effect of including detector systematics. Note that this plot is for the
full final selections, including the signal channels, where as Table 6.9 is for backgrounds only.
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Figure 6.22: A visual representation of the reduction is systematic uncertainty on the 1γ1p
and 1γ0p final selections, due to the high statistics NC π0 samples. Note that this plot is for
the full final selections, including the signal channels, where as Table 6.9 is for backgrounds
only.
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Table 6.10: Combined sum of predicted background rate in the the 1γ1p and 1γ0p selections, and corresponding unconstrained
and constrained flux uncertainties, broken down by systematic uncertainty source. A hyphen value indicates no uncertainty.

Variation Name Unconstr. Constr. Reduction Unconstr. Constr. Reduction
Error 1γ1p Error 1γ1p Factor 1γ1p Error 1γ0p Error 1γ0p Factor 1γ0p

expskin FluxUnisim 4.94% 3.78% 1.31 4.17% 3.19% 1.31

horncurrent FluxUnisim 0.68% 0.67% 1.01 0.57% 0.56% 1.01

kminus PrimaryHadronNormalization - - - - - -

kplus PrimaryHadronFeynmanScaling 0.61% 0.61% 1.00 0.51% 0.51% 1.00

kzero PrimaryHadronSanfordWang 0.07% 0.07% 1.00 0.23% 0.23% 1.00

nucleoninexsec FluxUnisim 0.85% 0.84% 1.01 0.77% 0.76% 1.01

nucleonqexsec FluxUnisim 2.49% 2.28% 1.09 2.36% 2.17% 1.09

nucleontotxsec FluxUnisim 0.74% 0.74% 1.01 0.67% 0.67% 1.01

piminus PrimaryHadron
SWCentralSplineVariation - - - 0.16% 0.16% 1.00

pioninexsec FluxUnisim 1.24% 1.21% 1.02 1.08% 1.06% 1.02

pionqexsec FluxUnisim 0.83% 0.82% 1.01 0.75% 0.74% 1.01

piontotxsec FluxUnisim 0.89% 0.88% 1.01 0.80% 0.79% 1.01

piplus PrimaryHadron
SWCentralSplineVariation 4.38% 3.54% 1.24 3.96% 3.11% 1.27
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Table 6.11: Combined sum of predicted background rate in the the 1γ1p and 1γ0p selections, and corresponding unconstrained
and constrained cross section uncertainties run individually. GENIE all is a composite uncertainty and each following one is a
minimum and maximum uncertainty that cannot be included as part of the composite.

Variation Name Unconstr. Constr. Reduction Unconstr. Constr. Reduction
Error 1γ1p Error 1γ1p Factor 1γ1p Error 1γ0p Error 1γ0p Factor 1γ0p

All UBGenie 22.66% 7.67% 2.95 15.13% 6.09% 2.48

AxFFCCQEshape UBGenie 0.18% 0.18% 1 0.24% 0.24% 1

DecayAngMEC UBGenie - - - 0.48% 0.48% 1

NormCCCOH UBGenie - - - 0.11% 0.11% 1

NormNCCOH UBGenie - - - 1.73% 1.73% 1

RPA CCQE UBGenie 0.01% 0.01% 1.00 1.06% 1.06% 1.00

Theta Delta2Npi UBGenie 5.83% 5.83% 1 1.12% 1.12% 1

VecFFCCQEshape UBGenie 0.55% 0.55% 1 0.27% 0.27% 1
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6.4.2 Hypothesis Testing

The simplest method we plan for testing properties of the NC ∆ events pertaining to the

LEE is via simple two-hypothesis tests. Namely:

“Can we rule out, or reject, a particular hypothesis (the null hypothesis, H0) in

favour of a different hypothesis (the alternative hypothesis, H1) with our data?

And, if so, at what significance?”

The hypotheses are simple meaning there are no free parameters or necessary relations

between them. The three hypothesis of this analysis are

• HNo∆: The No-∆ hypothesis (x∆ = 0), in which there is no NC ∆ radiative decay at

all.

• HSM: The SM hypothesis (x∆ = 1), in which the rate of NC ∆ radiative decay is equal

to the CV prediction in GENIE.

• HLEE: The LEE hypothesis (x∆ = 3), in which the rate of NC ∆ radiative decay is three

times the SM CV prediction in GENIE; this represents the approximate normalization

increase that would be required for NC ∆ radiative decay to completely explain the

observed MiniBooNE excess.

With our projected sensitivity, distinguishing between the No-∆ and the SM hypothesis

is beyond the scope of this analysis, but distinguishing them from the LEE hypothesis

is a critical goal. Without free parameters to be used in fitting, we have to rely on a

Combined-Neyman-Pearson (CNP) pseudo-experiment method. This works by simulating

a large number of pseudo-experiments for each hypothesis under consideration. Each of

these will require correlated distributions from the full systematic covariance matrix via

Choloskey decomposition. We then sample from these pseudo-experiments via a Poisson

random number around the systematic, to obtain an integer pseudo-experiment data point,

Di. Then for each such pseudo-experiment data set D, the χ2
CNP is calculated between this

particular pseudo-data and each hypothesis. The difference between each CNP chi-square,

∆χ2 = χ2
CNP (D,H0)−χ2

CNP (D,H1) is calculated to build a probability distribution function.
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Therefore knowledge of uncertainties is crucial to this method. Median significance values

can be determined by assuming the alternative hypothesis is true and calculating the p-value

of the null hypothesis relative to this. The result of applying this to the final single photon

selection results in a median significance of rejecting the SM hypothesis in favor of the LEE

(x3 SM) hypothesis assuming LEE is true is 1.5σ (see Fig. 6.23).

6.4.3 Fitting to a Neutral Current ∆ Radiative Decay Rate

Parameter

Given the lack of direct measurements of SM NC ∆ radiative decay on Argon, a direct

measurement could be invaluable. We have settled on two fit approaches:

• LEE search: search for an NC ∆ excess over SM-predicted NC ∆ radiative decay

events.

• NC ∆ radiative branching ratio measurement: extract the enhancement of the

branching ratio of NC ∆ radiative decay

The fundamental difference is the decision of the fit parameter. For the LEE search

method the fit factor is an NC ∆ excess assuming first the SM NC ∆ process. The second

method fits directly the NC ∆ → N + γ branching ratio. The 1γ and 2γ selections are fit

simultaneously to use the constraining power of the 2γ distribution.

Fit Method 1: Low Energy Excess Search

For this fit, an LEE component is added to our projected selections as effectively another

subsample with a scaling factor which is varied to minimize the CNP ∆χ2. For this analysis,

systematics will need to be applied to the new LEE component treating it as extra NC ∆

radiative decay events. However, because we are fitting for normalization of this component,

GENIE normalization factors must be removed. So the systematic covariance matrix used

in the fit includes:

• Full flux and detector uncertainties and correlations for all components, including the

LEE component
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Figure 6.23: Two-hypothesis test frequentist studies for the hypothesis of ∆ radiative rates
of the LEE rate (×3 expected) for the available Run 1-3 data set of 6.9×1020 POT.
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• GENIE shape-only uncertainty and correlation for the LEE component, and full

GENIE uncertainty and correlations for other components.

Fit Method 2: Neutral Current ∆ radiative branching ratio measurement

Here a scaling factor is instead assigned directly to the SM NC ∆ radiative component with

no independent LEE factor introduced. The ∆χ2 is thus determined by varying this scaling

factor. Once again, we must remove relevant systematics in this case including normalization

of NC ∆ radiative decay. Thus the systematic covariance matrix used in the branching ratio

measurement includes:

• Full flux and detector uncertainties and correlations for all components

• Almost full GENIE uncertainty and correlations for all components except: the

normalization uncertainty of NC ∆ radiative decay branching ratio is removed from

the GENIE covariance matrix (and assumed to be uncorrelated with NC π0).

Systematic Effect on Sensitivity

Systematic uncertainty is a defining factor of the final sensitivity of our measurements.

The impact can be seen in Fig. 6.24 broken down into components. All systematic (and

statistical) covariance matrices included except either cross-section, or flux, or detector, or

all systematic covariance matrices removed. The left figure shows sensitivities with only one

source of systematic uncertainties (in addition to statistical uncertainties) included in the

fit. The plot indicates that the principle focus should be reduction of detector systematic

uncertainties. The power of 2γ constraint on the of 1γ selections via correlations is shown

in Fig. 6.25, illustrated by the overlaid sensitivity curves in dashed lines, where off-diagonal

correlations are explicitly zeroed out during the fit. Note it is especially powerful for flux

and cross-section systematics as was demonstrated in Sec. 6.4.1.

140



0 1 2 3 4 5 6
 BRγ->N∆Enhancement for NC 

0

5

10

15

20

25

30

35

40

 
2 χ

∆ 

σ1
90%

99%

Stat Only
Flux Only
XS Only
Det Only
Flux, XS & Det

 distribution2χ∆

0 1 2 3 4 5 6
 BRγ->N∆Enhancement for NC 

0

5

10

15

20

25

30

35

40

 
2 χ

∆ 

σ1
90%

99%

Stat Only
Flux & XS (No Det)
Flux & Det (No XS)
XS & Det (No Flux)
Flux, XS & Det

 distribution2χ∆

Figure 6.24: ∆χ2 median sensitivities assuming observation of the expected spectra (the
Asimov data set) under the No-∆ hypothesis, in which we fit the NC ∆ radiative branching
ratio enhancement. On the left plot, we show the changes in ∆χ2 using only one class
of systematics at a time (plus statistical uncertainties), and on the right plot, we show the
same but removing one class of systematics at a time from the full covariance matrix (always
keeping in statistical uncertainties). Note that, on the right plot, the blue line lies almost
directly behind the purple line showing that flux uncertainties are negligible in this analysis,
presumably due to the nearly 100% flux correlation between all (NC-dominated) samples.
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Figure 6.25: 1D ∆χ2 median sensitivities assuming observation of the expected spectra (the
Asimov data set) under the No-∆ hypothesis in the NC ∆ branching ratio measurement,
which illustrates the power of the NC π0 constraint for Runs 1-3.
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Chapter 7

Booster Neutrino Beam Accelerator

Concepts

This chapter provides an overview of accelerator concepts in the context of the Fermilab’s

Booster Neutrino Beam (BNB) which are the subject of beam-related studies in Ch. 8 and

the beam flux-related portion of single photon systematics described in Ch. 6. Sec. 7.1

covers basic design of accelerators, and Sec. 7.2 covers the particular details of the Fermilab

accelerator complex.

7.1 Accelerator Concept

Linear accelerators rely on electrostatic forces (often alternatingly pulsed) of plates to

accelerate charged particles. However, they are limited in terms of energies they can reach.

To reach higher energies, the concept of accelerator rings was developed. Using magnetic

fields along the beamline, the particles can be made to move circularly. Thus a few linear

accelerators, called boosters, along with beamline can serve to increase the energy via the

same method as above but can be used repeatedly on cycling particles. This poses the

challenge of maintaining a consistent radius of cycling particles, such that the beam remains

in the accelerator as the energy increases. This both shifts the variables within the basic

formula (mv2/r = qvB) and also can incur relativistic effects as the particles reach speeds

closer to the speed of light. Synchrotrons solve this problem via increasing the magnetic
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field with the increasing particle energy and maintaining a very precise radius of orbit. This

means all particles within the ring must be at the same energy so synchrotons must work

in spills which means all particles enter the synchrotron at the same energy, and then no

further particles are injected until these particles are ejected. However, the precision of the

beam allows for a much narrower magnetic field and separate quadrupole magnets serve to

maintain the focus of the beam.

7.2 Fermilab Accelerator Complex

An outline of the modern Fermilab beam complex can be seen in Fig. 7.1. The most

important parts to the MicroBooNE detector are the Booster Neutrino Beam (BNB) which

is its primary beamline and the NuMI beam which has an off axis component in the

MicroBooNE detector.

The source of the beamline is two H− ion sources which work by filling a cavity with

hydrogen gas and applying a voltage which creates an arc ionizing the hydrogen to H+ to

form a plasma. A magnetic field sends the H+ towards the cathode such that some will

capture two electrons from the plasma to create H−. The anode and cathode are then

pulsed at −35 kV transporting the H− to a grounded extraction cone. As the raw shape of

these pulses is undesirable, the pulses are chopped by an Einzel lens to 100 µs bursts with

frequency 15 Hz [24], as seen in Fig. 7.2. Radio frequency quadrupoles focus, bunch, and

accelerate beam to 750 keV and the Medium Energy Beam Transport (MEBT) with two

quadrupole doublets and an RF buncher cavity further bunches the beam and orients to the

linear accelerator (Fig. 7.3) [24].

7.2.1 Linear Accelerator

The linear accelerator (LINAC) works on the same principle of most linear accelerators:

accelerating by pulsing sections between positive and negative charge. It is divided into high

energy and low energy sections. The low energy portion is composed of large RF cavities

which shield the beam from unwanted electric fields. Drift tube cavities accelerate the H−

ions from 750 keV to 116.5 MeV. Dipole magnets maintain beam trajectory, and quadrupole
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Figure 7.1: An overview of the modern Fermilab accelerator complex.
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Figure 7.2: Einzel lens being used as a beam chopper that reflects the beam when on and
allows it to pass when off [24].

Figure 7.3: Fermilab pre-accelerator concept.
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magnets maintain focus. A transition section performs longitudinal matching to transition

to the new RF frequency (201.24 MHz→ 804.96 MHz) of the next section using side-coupled

cavity structures. The high energy section uses side-coupled structures of accelerating cells

and coupling cells that accelerate the beam to 400 MeV.

7.2.2 Booster

The Booster rapid cycling synchrotron is responsible for accelerating the beam particles from

400 MeV to 8 GeV (minimum for Main Injector). Before being injected into the Booster,

a stripping foil strips electrons from the H− ions producing protons. Paraphrasing is the

process by which the beam is converted from the LINAC frequency to that of the booster via

RF buckets: areas in phase space where the beam is captured. Combined-function magnets

along the circumference provide both the focusing quadrupole field and the orienting dipole

field. The Booster RF system consists of 19 stations that accelerate the beam to 8 GeV.

The ultimate result is an output in batches with frequency 15 Hz, with each batch made

up of 84 bunches of beam each contained within buckets. These batches are then sent to

either the main injector or along the Booster Neutrino Beam path. The properties of the

Booster Neutrino Beam can be seen in Table 7.1. The Booster Neutrino Beam is the primary

beamline of the MicroBooNE detector delivering primarily νµ of energy O(1) GeV. Along

the neutrino beam path a spill of 4 × 1012 protons is delivered on the target for durations

of about 1.6 µs. The number of protons delivered to the target is referred to as protons on

target (POT) [99].

At this point the beam is separated between the Booster neutrino beam and the MI-8

line to the Main Injector.

7.2.3 Target and Horn Details

The Booster Neutrino Beam target consists of 7 cylindrical slugs of beryllium of total length

71.1 cm with 0.51 cm radius. The slugs are contained in a beryllium sleeve of 1.37 cm

inner radius and 0.9 cm thickness. Three beryllium fins hold the slugs within the sleeve.

The magnetic focusing horn consists of inner and outer conducting shells with inner radius
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varying between 0.87 and 2.58 inches and outer diameter of 23.62 inches and a total length

of 73 inches with inner shell just outside the beryllium target. It is pulsed at 174 ± 1 kA

current producing a toroidal magnetic field of strength reaching 1.5 Tesla.

7.2.4 Beamline Instrumentation and Devices

The proton beam is measured and driven by a variety of devices and detectors. Toroid

detectors measure the beam current that passes through them by measuring the created

magnetic field. The toroids are structured comparably to a classical transformer with the

source voltage replaced by the single loop of the beam passing through (see Fig. 7.4). Signal

strength is estimated at 0.5 volt per ampere yielding ∼250 MeV. Located on either end of

the beamline, toroids serve as a first check that the beam is on target and is of expected

strength, and are used to normalize other monitors. The toroids are themselves normalized

by measuring the output from known currents. Twenty-two beam position monitors (BPMs)

are placed along the beamline each consisting of four impedance matched striplines in a

cylindrical housing, two spaced vertically and two spaced horizontally. Each stripline is a

section of a circle subtending an arc of 60 degrees. These position monitors detect the beam

position via the difference of image currents on each stripline when the beam passes through,

and are used for beam tuning and data-quality checks. Seventeen loss monitors are placed

along the beamline that read intensity of radiation reflected from the target and inhibit

the beam if a certain threshold is reached. Each loss monitor consists of cylindrical argon

ionization proportional chambers that have high gain and fast response, tuned to the beam’s

15 Hz. Finally, six low precision retractable multi-wire proportional chambers are located

along the beamline. Multi-wires consist of arrays of wires: typically 48 horizontal and 48

vertical with 1 mm spacing that give a reading of the beam profile via charge induced on

the wires.
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Table 7.1: Booster Neutrino Beamline properties.

Property Value

Injection Energy 400 MeV

Extraction Energy 8 GeV

Circumference 474.2 m

Periods 24

Revolution Period 2.2 µs/1.6 µs

RF Frequency 37.77 MHz to 52.8 MHz

Harmonic Number 84

RF Voltage Gain Per Turn 920 kV/turn

Figure 7.4: Toroid detector Structure with comparison to a classical transformer.

148



Chapter 8

Booster Neutrino Beam Systematic

Analsysis

For precision analysis into the low energy excess (LEE) region, a robust knowledge of the

neutrino beamline is necessary. While MicroBooNE has a well founded model for the

beamline, as well as instrumentation to ensure consistency, I received Office of Science

Graduate Student Research (SCGSR) fellowship to evaluate new methods to both improve

accuracy and recover data that might otherwise be deemed unusable. Sec. 8.1 covers beam

position analysis with a focus on a new method I developed that establishes a figure of merit

(FOM) for data recovery. Sec. 8.2 covers an effort to fit HARP data for secondary protons

in the beamline to improve our neutrino flux prediction. Preliminary results of this study

were reported in the SCGSR report to the Department of Energy (DOE) and were shown

at the American Physics Society (APS) meeting in April 2018.

8.1 Beam Position Study

As was covered in Sec 3.3.1, neutrino flux is produced by impinging a proton beam onto

a beryllium target. The Booster Neutrino Beam (BNB) has instrumentation and software

tools for ensuring the beam is consistent in targeting and intensity. However, unexplained

results in a target scan and occasional technical issues motivated an expansion of methods

using beamline instrumentation as well as more extensive analysis of beam data.
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8.1.1 Target Scan Procedure

Target scans are the process of translating the beam across the target. A simple diagram

illustrating the scans can be seen in Fig. 8.1. Three scans are typically done in succession:

horizontal, vertical, and fin. Horizontal and vertical scans are both centered on the target,

then translated in their respective directions to the edges of the container. The fin scan is

comparable to a horizontal scan except the beam is first vertically displaced to the bottom

fin, and the scan is used to more accurately determine the target center. As described in

Sec. 7.2.4, loss monitors measure intensity of radiation reflected from the target. Readings

from loss monitors (LMs) increase when the beam is on target or hitting the sleeve of the

target. The readings can be used to identify the center position for beam position monitors

(BPMs), which must periodically be re-normalized as their electrical centers drift compared

to the geometrical center. Multi-wires (MWs) can also gather information during a target

scan, and further uses from them are being evaluated. Finally, toroids are used to normalize

loss monitor readings to the true proton flux. The position monitors used for this analysis are

selected for their proximity to the target and include BPM875 and BPM876 with components

referred to as HP875 and HP876 for horizontal position and VP875 and VP876 for vertical

position. Likewise, loss monitors LM875A, LM875B, LM875C, multi-wires MW875 and

MW876, and toroids 875 and 876 were primarily the other instruments examined in this

analysis. All instruments except some loss monitors (see Fig. 8.2) are on the beamline with

those labeled 875 closest to the target.

Unexplained Target Scan Reading

The initial premise of this study was an anomalous target scan. The target scan was

performed on 07-14-2016 and a newer one was performed on 06-20-2017 that exhibited more

expected behavior. Both can be seen in Fig. 8.3. With the goal of maximizing beam-on time

(delivering measurement quality POT to the target), the number of target scans that can be

performed is limited. Scans are usually taken following some interruption in beam-on time

such as the regular summer shutdowns. The newer scan taken for this study has the expected

behavior: dips in LM intensity corresponding to when the beam passes between the target
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Figure 8.1: Simple diagram of target scans where the target is shown in yellow, the fins in
blue, and the translation of the beam in red. The circle corresponds to the target sleeve.

Figure 8.2: (Top) Side view of the downstream end of the BNB showing loss monitor
positions. The three loss monitors shown here are inline with the beam pipe horizontally.
(Bottom) View from the top (looking down) showing LM875B displaced horizontally.
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and sleeve, and symmetry as expected for the symmetrical target. The older scan shows the

unexpected behavior with no dip on one side and a reduced dip on the other meaning it is

unexpectedly asymmetrical.

Simplified Monte-Carlo Studies

As a first look, a simplified Monte-Carlo (compared with the intensive real beam Monte-

Carlo) was used for investigation. The simplified Monte-Carlo simulates loss-monitor

intensities via an inverse squared relationship with points of interaction between proton

beam and target and allows for easy modification of the beam or target angle. An initial

hypothesis, was that the beam could have been at an angle with the target without being

identified by the instruments. Several target scans were simulated with a variety of angles

(examples can be seen in Figs. 8.4 and 8.5), but the simplified Monte-Carlo was unable to

match the behavior of the anomalous scan even when put at angles well above what might

reasonably be expected. Further analysis of beam angle would require much more intensive

simulation, and with little evidence to corroborate the angle hypothesis it was decided to

instead move to a more extensive analysis of beam data using multi-wires for gathering more

angle information or developing new hypotheses.

8.1.2 Figure of Merit Multi-Wire Study

MW875 and MW876 are the closest functional multi-wires to the target as the former closest

multi-wire (MWTGT) has degraded beyond usability likely due to radiation. A simplified

diagram of the multi-wire and position monitor locations can be seen in Fig. 8.6. Given the

multi-wires have access to both position and profile of the beam, they are a prime candidate

for expanding knowledge of the beam-line.

A simple Gaussian is applied to fit to multi-wire data to extract the central position with

a goal to use the Chi-square of the fit as a filter (see Fig. 8.7).

While angle analysis was attempted and will be covered in Sec. 8.1.2, the most significant

result of the multi-wire study is the potential for a supplementary figure of merit (FOM)

method. The figure of merit is the fraction of proton beam passing through the entirety of
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Figure 8.3: Horizontal target scans including the scan taken on 07-14-2016 (top) showing
unexpected behavior with reduced dips and asymmetry and the target scan taken 06-20-2017
(bottom) showing expected reasonably symmetric behavior with significant dips when the
beam is between target and shell.
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Figure 8.4: Virtual horizontal scan performed in the simplified Monte-Carlo (translating
the beam horizontally). Note the shown plot goes beyond the typical bounds of a physical
scan at about ±12 mm at the edge of the container and instead reaches the horn at about
±18 mm. This would not be performed physically, but it serves to show that the geometry
is responding as expected. The structure at the center in the range ±15 mm is comparable
to that of an actual horizontal scan.
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Figure 8.5: Here the simulated beam is incident at an angle of 2 mrad to the target. There
are slight differences (notice the bump around −20 mm), but the desired behavior is not
reproduced.

Figure 8.6: Illustration of the beam monitor positions (note: not to scale).

155



the beryllium target as defined by instrumentation. For a selection of MicroBooNE data

to be usable, this value must be consistent and above a threshold set at 95%. The current

method uses a beam transfer matrix to calculate the beam position and width at three

positions along the target: beginning, center, and end of the target length. FOM values

of above one will be output for known failure conditions. There have been periods of time

when HP875 has suffered from technical issues. With the current method for defining FOM

using HP875, the data collected while these issues were ongoing had to be deemed unfit

for MicroBooNE’s primary beam based measurements. Thus, a method to simulate HP875

could recover data and prevent such losses in the future, but only if it met prerequisites

for precision and performance. An analysis began, to determine if a method of multi-wire

interpolation could meet these prerequisites. The method works by reading beam position

on MW875 and MW876 then interpolating via a linear fit to the position of BPM875. Region

1 and region 4 are discussed in detail as good and bad data regions.

To establish overall performance, first a run-by-run performance was evaluated where

interpolation is calculated and averaged for each run and compared to the position monitor.

For efficiency, only the first 10,000 entries were collected from each run. Because the beam

position monitors’ center is a virtual value set in software and can drift over time, a factor

is necessary to make the interpolation value match HP985. As drift is slow, except in the

case of mechanical work on the beamline, these factors should be consistent over time. This

factor may also be unnecessary in the final implementation as will be explained in Sec. 8.1.2.

Regions of Stability

For testing of this method, data was sampled over the period of MicroBooNE data collection.

The timespan was split into regions based on MicroBooNE downtime and stability of the

shift factor needed between the HP875 value and the interpolation value. This can be seen

in Fig. 8.8. While there are some anomalous runs, this was sufficient to establish the shift

factors and begin analyzing performance on a region by region basis. As this study was

initially performed in early 2019 the analysis stops there, but could be expanded to newer

data.
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Figure 8.7: Gaussian fit to multi-wire intensity vs wire spacing. The Chi-square of the first
fit was 3.04 and the bad fit was 88.32.

Figure 8.8: Evaluation of interpolation stability using data collected in 2015−2018. The
difference between run average interpolation value and HP875 value is evaluated for a series
of runs in the time span. The average interpolation remains consistent within <1 mm (often
0.5 mm) except in a few runs.
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A closer investigation of Stable Region 1 can be seen in Figs. 8.9 and 8.10. Overall

agreement of FOM between the methods is quite good at 97.7%. Recovery of entries when

HP875 data was unavailable is 97.2%, but only internal checks on the interpolation can be

performed to define if entries not recovered are truly regions where the beam performance

was not within acceptable parameters or if the method failed due to other issues. There are

still points of unexpected behavior, but these can largely be cut via simple filters and efforts

to understand them continue.

Region 4 had dramatically less consistency in the difference between BPM and interpo-

lation method although it should be noted it is still within 1 mm. Performance for region 4

can be seen in Fig. 8.11 and 8.12. Recovery rate is only 52.4%, although agreement remains

high at 97.1%. However, the variability of the difference between the methods makes suspect

any regions where HP875 lacks enough data to establish consistency, meaning this may be

a region where this technique isn’t applicable. This region did reveal the prospect of further

tuning our cutoff for chi-square, as there are a significant number of failures due to the cut of

the chi-square on the multi-wire fits. It can be seen in Fig. 8.13 that higher chi-square values

may still generate fits usable for defining a central value. A summary of the performance

over all regions is shown in Tab. 8.1.

A prime target for data recovery is a period of time around the 2017−2018 New Year

where HP875 had mechanical issues and so the data was deemed unusable. Performance is

promising as shown in Fig. 8.14. This can serve as an example for future data recovery.

Implementation

While testing of entry by entry behavior is ongoing, it was decided a test version could

be implemented into the beam data collection algorithm. Thus far, the analysis has been

performed in a standalone fashion after data is collected and processed. Implementation

into the beam algorithm can allow for testing to continue with greater access to data not

accessible via standalone methods, and without worrying that transfer of the code may cause

unexpected errors. In addition, analyzers can choose to use the method accepting its current

performance at their discretion. Implementation into the existing code may not need shift

factors for its core function as the multi-wire value can instead be projected directly to
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Figure 8.9: Overall performance across the entire stable region 1 as shown in Fig. 8.8, plotted
in terms of entries (points of collected data with frequency 5 Hz rate on average ). Data
used include runs collected between 12/11/2015−06/10/2016. Regions of disagreement are
obvious (the points around 6 mm) and are cut by the filter.
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Figure 8.10: Run by run performance over stable region 1 (12/11/2015−06/10/2016). The
top two plots show the run by run accuracy (right) and efficiency (left) of the stable region.
The lower two plots are the run average chi-square for each multi-wire. The chi-square serves
as an internal check on the Gaussian fitting to multi-wires and the run average gives good
indication if the beam profile was well determined on the multi-wires.
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Figure 8.11: Shown is the overall performance across the entire stable region 4 plotted in
terms of entries (points of collected data with frequency 5 Hz rate on average ). Runs were
collected from 11/30/2017−04/19/2018. Overall, the precision of the position is reduced in
the interpolation method. Note the spike at −1 mm position. This is due to assignment
of values that are out of bound and can be ignored. Here, the FOM disagreement is more
drastic.

Table 8.1: Performance fractions of multi-wire interpolation FOM method for all regions.

Stable Regions Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Start Date 12/11/15 10/14/16 10/27/17 11/30/17 6/2/18 9/17/18

End Date 6/10/16 7/7/17 11/30/17 4/19/18 7/6/18 12/2/18

Recovery Rate 0.97 0.81 0.00 0.52 0.00 0.48

Agreement 0.98 0.96 0.08 0.97 0.00 0.64

MW FOM Pass HP875 Fail 0.00 0.01 0.00 0.00 0.00 0.00

HP875 Fail 0.01 0.01 0.70 0.10 1.0 0.14

Both Methods Fail 2.04E-06 3.57E-05 0.511431 0.04471 1.0 0
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Figure 8.12: Shown is the run-by-run performance over stable region 4
(11/30/2017−04/19/2018). The top two plots show the run by run accuracy (right)
and efficiency (left) on bad data. The lower two plots are the run average chi-square for each
multi-wire. The chi-square serves as an internal check on the Gaussian fitting to multi-wires
and the run average gives good indication if the beam profile was well determined on the
multi-wires.
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Figure 8.13: Multi-wire fit with high chi-square, but usable. Gaussian center=-0.17, gaussian
sigma=3.45, gaussian chi-square=28.38.

Figure 8.14: Data was collected from the end of the year 2017 to the start of 2018 when
HP875 was intermittently functional. 148424 entries were recovered from a total of 152085
resulting in a recovery rate of 98.4%. Agreement on limited HP875 data near the time span
is 98.5%.

162



the target position for FOM calculation. However, interpolating to HP875 will remain an

important check on accuracy. Implementation is in progress, and testing on a small set of

data showed identical FOM given by both methods. A public note is planned to accompany

this implementation for accessibility to other MicroBooNE analyzers and ultimate portability

to other experiments such as SBND [100] or DUNE [48].

Multi-Wire Angle

Supplementary to the figure of merit study, an effort to verify the angle of the beam using

the multi-wires was developed. It uses measurements from the multi-wires and the distance

between them for a simple angle calculation. By assuming the average angle between the

beam and target is 0◦ during a normal run (as should be the case), the deviations from this

central angle can be evaluated. In the lower two graphs of Fig. 8.15, it can be seen that

the run average angle remaining mostly consistent (average shifted to zero) and standard

deviation remaining in the range of ∼1 mrad. In addition, preliminary studies of the impact

of beam angle on the neutrino flux are underway. Using the maximum beam angle from the

multi-wire method, a study was performed to evaluate the impact on neutrino flux. Fig. 8.16

shows that with a significant beam angle, a great deal of protons that were expected to pass

through the entire target (if not interacted) would instead have left the target region by the

edges of the target. The resulting impact on flux can be seen in Fig. 8.17.

Further analysis would require use of the full beam Monte-Carlo, a much more intensive

algorithm. Given both the small expected impact and the demands of further investigation, it

was decided to focus on other aspects of the beam analyses, but this study remains accessible

for future investigations.

8.2 Hadron Production Experiment Data Fitting and

BNB Flux Prediction

The current prediction of flux coming from MiniBooNE uses the pion production cross section

measurement for a thin (2 cm thick) Be target from the Hadron Production Experiment
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Figure 8.15: Shown are combined run average plots of Horizontal Position Monitor 875
(HP875) (top, left), multi-wire interpolation to the position of HP875 (top, right), the multi-
wire angle (bottom, left), and the run standard deviation of the multi-wire angle (bottom,
right). Data is collected in year 2016−2017 accepting runs with greater than 10,000 entries.
Run averages are shifted such that their mean is zero.
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Figure 8.16: Plot of protons at the end of the target in X-Y plane generated via beam
Monte-Carlo method: projected from 1 cm in front of target at nominal angle 0 mrad and
with angle 6 mrad without interactions.
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Figure 8.17: Comparison of Monte-Carlo run with nominal (zero degree angle) and chosen
angles of 1 mrad and 6 mrad showing flux of νµ (top frame) and ratio between nominal and
chosen angles (bottom frame).
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(HARP). As discussed in Sec. 3.3.2, pions produce the dominant νµ flux while kaons produce

a sub-dominant νe component.

The HARP experiment measured cross-sections of many particles with several targets

of differing materials and thicknesses [83]. The data is well suited for use in MicroBooNE

with momentum of the incoming proton beam, pbeam ≈ 8.89 GeV/c comparable to that of

the BNB pbeam ≈ 8.9 GeV/c. The thin target proton production cross section data that is

available from HARP is well suited for modeling secondary protons within the target. A

quick comparison of the proton production data with the current BNB simulation shows

a significant deviation, probably arising due to modeling differences of proton production

processes in the simulation (see Fig. 8.18). Thus an attempt to fit the HARP thin target

proton production data has been performed.

8.2.1 HARP Data

The HARP experiment was located at European Organization for Nuclear Research (CERN)

in Switzerland and was an effort to measure hadron production data on a suite of targets

at differing angles and momentum. It utilized the T9 beamline, and particle detection was

accomplished via the HARP spectrometer as seen in Fig. 8.19.

The HARP thin target proton production data was measured with proton beam of

momentum pbeam ≈ 8.89 GeV/cm and beryllium target thickness t ≈ 2.046 cm. The

double differential cross section was measured in 13 momentum bins in the region 0.75<

p <6.5 GeV/c and six angular bins in the region 30< θ <210 mrad. The exact binning is

listed below.

• pbeam=[0.75, 1.0, 12.5, 1.5, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 4.0, 5.0, 6.0, 6.5]

• θ=[30, 60, 90, 120, 150, 180, 210]

8.2.2 Proton Contribution to Neutrino Flux

Secondary protons created by the initial interaction between the proton beam and beryllium

target will re-interact with the potential of ultimately producing neutrinos. An example
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of such an interaction chain can be seen in Fig. 8.20. The contribution of the resulting

neutrinos to the net predicted neutrino flux has been analyzed to evaluate the potential

impact of implementing the HARP proton data. The contribution from secondary protons

compared to the total neutrino flux with cuts p <8 GeV (the region where proton data can be

reasonably modelled from this fit) and to the bounds of the HARP experiment can be seen in

Fig. 8.21. A table of the percentage of these cuts compared to the net predicted neutrino flux

can be seen in Tab. 8.2. Small but not insignificant contribution comes from the secondary

protons especially for the ν̄µ, likely because π−s produced via secondary protons are lower

in momentum and less likely to leave the target region and get subsequently filtered by the

horn magnetic field. However, significant contribution also occurs in lower energy bins which

is the low energy excess (LEE) area of study.

8.2.3 Sanford-Wang Parametrization

The Sanford-Wang [88] parametrization was used to model charged pion production in

proton-beryllium collisions in the MiniBooNE and K2K experiments and by HARP itself.

It is an empirical formula originally developed to model charged pion production of proton-

beryllium interactions. In this study, its applicability to proton production was evaluated

by fitting of HARP data. The formulation is shown in Eq. 8.1

d2σ

dp dΩ
= c1 · pc2(1−

p

pbeam
)exp[−c3

pc4

pc5beam
− c6 θ(p− c7 pbeam(cosθ)c8)] (8.1)

where, ci are parameters of the function for i = 1...8, p is the momentum of the resulting

particle (in our case secondary protons), and pbeam is the incident proton momentum. For the

parameters, c1 is an overall normalization factor while c2, c3, c4, and c5 describe the overall

momentum dependence. The paramter c2 adjusts the direct momentum dependence while

the component of (1− p
pbeam

)exp[−c3
pc4

p
c5
beam

] can be described as a shape factor dependent on

the ratio of beam momentum to the resulting particle momentum. The angle and cosine term

provide detailed angular structure with c6, c7, and c8 defining behavior of the distribution

at larger angles [101].
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Figure 8.18: Beam Monte-Carlo estimates of proton cross section compared to the HARP
data. Each individual plot is outgoing angular bin and within each plot, the double
differential cross section is binned in momentum.

Table 8.2: Percentage of total flux comprised of neutrinos from secondary protons at
pp <8 GeV and with HARP bounds (0.75< pp <6.5 GeV and 30< θ <210 mrad).

Cuts νµ ν̄µ νe ν̄e
pp < 8 GeV 4.49% 11.37% 5.09% 6.75%

HARP bounds 1.67% 4.41% 1.70% 2.17%
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Figure 8.19: Schematic drawing of the HARP spectrometer. Particle identification at large
angles is accomplished via a TPC and resistive plate chambers (RPC), and more forward
going particles are identified using a Cherenkov detector, five drift chambers, and a time-of-
flight scintillator wall, a muon identifier, and an electromagnetic calorimeter.

Figure 8.20: Simple illustration of secondary proton interaction chain that produces
neutrinos.

170



Figure 8.21: Comparison of the total neutrino flux per energy bin with the contribution of
neutrino flux from secondary protons restricted to pp < 8 GeV (region where it is expected
to reasonably predict behavior) and to the HARP experimental bounds 0.75 < pp < 6.5 GeV
and 0.03 rad< θ <0.21 rad. Plots are made using 2000 runs with 10,000 POT per run.
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8.2.4 HARP Data Fitting

To fit data, the chi-square function was minimized as shown in equation 8.2

χ2(c1, ..c8) =
∑
i

(Di − c9 · SWi)COV
−1
i,j (Dj − c9 · SWi) +

(c9 − 1)2

σ2
k

(8.2)

The first minimizer attempted was the Nelder-Mead minimization implemented via SciPy [102]

a Python-based package. The Nelder-Mead [103] algorithm is a direct search numerical

method using a polytope of n + 1 vertices where n is the number of parameters being fit

which iterates by replacing worst points of the fit. The initial fitting effort also fit over

only the diagonal of the covariance matrices saving processing time. The fit using this

methodology can be seen in Fig. 8.22. The data fitting is good except in a few regions,

but on examination of the plot, the end point behavior is not what is physically expected

(see Fig. 8.23). Also, the negative values of the parameters indicate the fitting may not be

physical.

Expanding the fitting algorithm to the full covariance matrix using this as a base failed

to improve the endpoint behavior and indeed seemed to actually worsen the agreement as

seen in Fig. 8.24.

Efforts were undertaken to improve the fit via bounding endpoints (forcing the fit to a

particular value at its endpoints) and to force the parameters to be positive, but this resulted

in much poorer fitting as seen in Fig. 8.25. Other attempts were made using the Extended

Sanford Wang (ESW) parametrization [83] and other fitting algorithms, but nothing was

produced with as good matching.

This may indicate that the intended shape of the function is incompatible with this

data, but this is difficult to prove. Due to lingering issues with the fit and the low

expected contribution to the flux prediction, it was decided not to implement the fit into the

MicroBooNE flux prediction. However, the fit and algorithm remains available should it be

desired in the future.

172



Figure 8.22: Results of fitting HARP thin beryllium target proton cross-section data with
Sanford-Wang parametrization, fitting only the diagonal of the covariance matrix. As with
Fig. 8.18, individual plots correspond to certain angular bins, and within each plot, the
double differential cross section is binnedin momentum for the data. The Sanford-Wang fit
is plotted as a function of double differential cross section vs momentum with central values
of the angular bin used for each plot.

Figure 8.23: The same fit as in Fig. 8.22 is displayed here but with x-axis range extended.
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Figure 8.24: Fitting using the full covariance matrix.

Figure 8.25: Best Fit with bounded endpoints and parameters.
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Chapter 9

Summary and Outlook

This dissertation presents analysis efforts to understand the MiniBooNE Low Energy Excess

(LEE) anomaly, which has broad implications to the field of particle physics including the

existence of sterile neutrinos. This work focuses on analyzing a photon-like explanation for

the MiniBooNE LEE by providing a complete evaluation of systematic uncertainties. This

is done both in the context of the Single Photon analysis and separately through detailed

studies on the Booster Neutrino Beamline.

The beam study produced a method for increasing usable data via Figure of Merit

recovery. This method is being implemented into the MicroBooNE beam analysis algorithm

for testing purposes. Preliminary results of this analysis were presented at the American

Physical Society (APS) April 2018 meeting1, and a public note is planned in the near future

to share the concept with other collaborators and potentially other experiments with similar

instrumentation. Other studies on beam angle and HARP proton production data were

inconclusive, but were an important investigation into avenues for analyses. Furthermore,

these analyses remain open for future explanation.

A complete set of systematic uncertainties from flux, cross-section, and detector effects

were provided to the gamma LEE analysis. While improvements are still being pursued,

the neutral current (NC) π0 selection provided a powerful constraint to significantly reduce

the systematics on the gamma LEE signal region. The implication of these systematic

reductions to our signal sensitivity has been evaluated resulting in significant improvement.

1https://meetings.aps.org/Meeting/APR18/Session/J08.1
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Reduction of systematic uncertainties via NC π0 was shown to reduce overall uncertainties

from ∼20% to ∼10% in high statistics regions. Without this reduction, distinguishing

between our hypotheses of LEE signal would have been impossible given current data

availability. Furthermore, analysis has commenced on data in the Near and Far signal-

like regions. Near sidebands are naturally closer to our signal region than the Far sidebands.

My most recent presentation of the systematic prediction was at the annual meeting of the

APS Southeastern Section (SESAPS) in 20202. First results from the gamma LEE analysis

were published as a MicroBooNE public note [22] and presented at the XXIX International

Conference on Neutrino Physics (Neutrino 2020) in July 2020. A more comprehensive

analysis note is currently under collaboration review with an accompanying far sideband

analysis note. Furthermore, two submissions to Physical Review Letters (PRL) are planned

in the immediate future, for which I will author the systematics sections.

MicroBooNE is nearing its sixth year of data collection. Steps towards unblinding data

have begun with analysis based on simulation and a small open data-set reaching preset

thresholds for accuracy and performance. The single photon and other LEE analyses will

be completed on this data in the near future shedding light on the MiniBooNE anomaly.

MicroBooNE will resume running as part of the Short Baseline Neutrino program at Fermilab

in the near term to further probe the phase space where there are existing hints on

sterile neutrinos. The oscillation results and neutrino-Argon cross-section measurements

from MicroBooNE will provide key inputs to the upcoming Deep Underground Neutrino

Experiment (DUNE) [48].

Neutrino experiments continue to probe fundamental questions in the field of particle

physics. Upcoming long-baseline experiments, such as DUNE [48], seek to measure potential

Charge-Parity conservation violating properties of neutrinos. This factor could be crucial in

explaining the matter-antimatter asymmetry of the universe. Experiments in the short-

baseline region, such as the SBN program [47], seek discovery of new particles (sterile

neutrinos). Sterile neutrino analyses also have the potential to resolve the issue of neutrino

mass generation.

2https://meetings.aps.org/Meeting/SES20/Session/B05.4
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A Appendix: Comprehensive Set of Reweightable

Uncertainty Tables

Here we summarize each individual flux and cross-section variation and their contribution

to the single photon LEE uncertainty. The total uncertainty of each variation on each

subsample is shown. Note there are some high values in the NormNCCOH variation for the

NCπ0Coh subsample, but these are very small subsamples with very small contribution to

the single photon selections. Tab. 1 describes each flux and cross section variation briefly,

and Tab. 2-5 give the uncertainty values. These values correspond to the final selection

stage of the gamma LEE analysis. As a study done at an earlier stage of the gamma LEE

analysis, the individual elements of the combined genie variation were run individually. As

these numbers are not used in final fitting or constraint, and we expect there has been no

significant change, these results were not regenerated but are provided here for reference.

The format is the same as previous tables in this appendix where uncertainty from each

variation with different subsamples is shown. Tab. 6 gives a brief description of each cross

section variation, and Tab. 7-14 list the uncertainty values calculated.
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Table 1: Description of flux and cross sections reweightable systematics used in final uncertainty calculations.

Variation Label Description

All UBGenie All multisim mode GENIE variables combined

Flux Variations

expskin FluxUnisim Skin Depth for electric currents penetrating conductor

horncurrent FluxUnisim Horn Current in magnetic focusing horn

kminus PrimaryHadronNormalization K− production normalization

kplus PrimaryHadronFeynmanScaling K+ Sanford Wang Central Spline Variation

kzero PrimaryHadronSanfordWang K0 Sanford Wang

nucleoninexsec FluxUnisim Nucleon Total Inelastic cross section on Be

nucleonqexsec FluxUnisim Nucleon Total Quasi-elastic cross section on Be

nucleontotxsec FluxUnisim Nucleon Total cross section on Be

piminus PrimaryHadronSWCentralSplineVariation π− Sanford Wang Central Spline Variation

pioninexsec FluxUnisim Pion Total Inelastic cross section on Be

pionqexsec FluxUnisim Pion Total Quasi-elastic cross section on Be

piontotxsec FluxUnisim Pion Total cross section on Be

piplus PrimaryHadronSWCentralSplineVariation π+ Sanford Wang Central Spline Variation

Min/Max Mode Variations

NormCCCOH UBGenie Normilization for CC Coherent Processes (in developement)

NormNCCOH UBGenie Normilization for NC Coherent Processes (in developement)

RPA CCQE UBGenie Strength of RPA correction for central tune

Theta Delta2Npi UBGenie Variation of angle of pion with respect to detector z axis

VecFFCCQEshape UBGenie VecFFCCQEshape UBGenie

DecayAngMEC UBGenie Changes angular distribution of nucleon cluster

AxFFCCQEshape UBGenie Varies CCQE axial form factor model between dipole (CV) and z-expansion.
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Table 2: Percent error on the final selection 2γ1p subsamples from all final flux and cross section reweightable systematics. The
“Combined” variation corresponds to all variations of that category added in quadrature.

Variation NC∆Rad NCπ0 NCπ0 CC1π0 BNBOther CCνe Dirt OTPCinC
Coh NotCoh Extra

All UBGenie 28.05 0.00 24.56 25.01 14.91 15.79 16.02 16.78

Combined Min/Max 0 87.37 1.48 3.85 1.70 10.93 5.96 6.67

AxFFCCQEshape 0.00 0.00 0.00 0.26 0.30 0.26 0.63 0.69

DecayAngMEC 0.00 0.00 0.14 0.06 0.81 6.32 2.45 4.03

NormCCCOH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.83

NormNCCOH 0.00 87.37 0.00 0.00 0.00 0.00 0.00 0.00

RPA CCQE 0.00 0.00 0.00 0.44 0.07 0.85 0.05 1.58

Theta Delta2Npi 0.00 0.00 1.47 3.78 1.35 8.77 5.31 4.48

VecFFCCQEshape 0.00 0.00 0.00 0.46 0.56 1.37 0.94 1.32

Combined Flux 7.13 14.95 7.50 6.32 8.65 6.60 8.17 8.04

expskin FluxUnisim 4.47 2.05 4.80 3.36 6.24 0.39 4.51 5.29

horncurrent FluxUnisim 0.63 0.52 0.68 0.53 0.78 0.15 0.57 0.68

K− PrimaryHadronNormalization 0.00 0.00 0.01 0.00 0.12 0.00 0.00 0.00

K+ PrimaryHadronFeynmanScaling 0.30 0.00 0.32 0.20 0.58 2.13 1.48 0.81

K0 PrimaryHadronSanfordWang 0.00 0.00 0.05 0.01 0.00 3.11 0.00 0.26

nucleoninexsec FluxUnisim 0.83 0.90 0.84 0.88 0.75 0.61 0.82 0.85

nucleonqexsec FluxUnisim 2.49 2.52 2.47 2.50 2.46 2.73 2.61 2.54

nucleontotxsec FluxUnisim 0.73 0.80 0.75 0.77 0.70 0.57 0.75 0.74

π− Primary SW CV SplineVar 0.19 0.00 0.16 0.00 0.20 0.00 0.72 0.00

pioninexsec FluxUnisim 1.27 1.31 1.28 1.23 1.25 0.22 0.97 1.21

pionqexsec FluxUnisim 0.85 0.86 0.87 0.87 0.85 0.47 0.69 0.80

piontotxsec FluxUnisim 0.89 0.87 0.95 0.82 0.93 0.28 0.75 0.85

π+ Primary SW CV SplineVar 4.45 14.43 4.68 4.21 4.97 4.55 5.78 5.00
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Table 3: Percent error on the final selection 2γ0p subsamples from all final flux and cross section reweightable systematics. The
“Combined” variation corresponds to all variations of that category added in quadrature.

Variation NC∆Rad NCπ0 NCπ0 CC1π0 BNBOther CCνe Dirt OTPCinC
Coh NotCoh Extra

All UBGenie 24.93 0.00 22.12 27.19 16.11 22.36 20.29 18.22

Combined Min/Max 0.00 20.87 1.44 4.54 4.05 22.57 13.33 3.81

AxFFCCQEshape 0.00 0.00 0.00 0.24 0.30 2.29 0.44 0.17

DecayAngMEC 0.00 0.00 0.00 1.20 1.57 15.45 10.20 0.82

NormCCCOH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03

NormNCCOH 0.00 20.87 0.00 0.00 0.00 0.00 0.00 0.80

RPA CCQE 0.00 0.00 0.00 0.40 0.51 3.53 0.77 0.51

Theta Delta2Npi 0.00 0.00 1.44 4.32 3.64 15.65 8.51 3.41

VecFFCCQEshape 0.00 0.00 0.00 0.51 0.61 2.87 0.55 0.40

Combined Flux 6.59 8.21 7.20 6.11 8.73 6.31 5.15 7.89

expskin FluxUnisim 3.92 4.62 4.52 3.22 5.99 0.57 2.79 5.24

horncurrent FluxUnisim 0.56 0.64 0.65 0.52 0.76 0.35 0.45 0.65

K− PrimaryHadronNormalization 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

K+ PrimaryHadronFeynmanScaling 0.59 0.22 0.36 0.27 0.56 2.27 0.74 0.97

K0 PrimaryHadronSanfordWang 0.00 0.00 0.04 0.09 0.24 3.80 0.00 0.00

nucleoninexsec FluxUnisim 0.84 0.86 0.84 0.90 0.77 0.73 1.03 0.85

nucleonqexsec FluxUnisim 2.51 2.49 2.49 2.51 2.55 2.89 2.82 2.51

nucleontotxsec FluxUnisim 0.73 0.75 0.76 0.77 0.75 1.05 0.76 0.76

π− Primary SW CV SplineVar 0.26 0.25 0.11 0.00 0.09 0.00 0.00 0.13

pioninexsec FluxUnisim 1.23 1.29 1.25 1.24 1.31 0.54 0.79 1.19

pionqexsec FluxUnisim 0.80 0.88 0.86 0.85 0.88 0.30 0.71 0.79

piontotxsec FluxUnisim 0.86 0.93 0.91 0.80 0.98 0.45 0.47 0.89

π+ Primary SW CV SplineVar 4.10 5.89 4.49 4.00 5.32 3.05 2.65 4.80
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Table 4: Percent error of 1γ1p subsamples at the final selection stage from all final flux and cross section reweightable systematics.
The “Combined” variation corresponds to all variations of that category added in quadrature.

Variation NC∆Rad NCπ0 NCπ0 CC1π0 BNBOther CCνe Dirt OTPCinC
Coh NotCoh Extra

All UBGenie 25.56 - 24.40 24.16 17.46 17.10 - -

Combined Min/Max 0.00 - 6.48 69.08 9.38 26.83 - -

AxFFCCQEshape 0.00 - 0.00 0.00 1.48 7.98 - -

DecayAngMEC 0.00 - 0.00 0.00 0.00 0.00 - -

NormCCCOH 0.00 - 0.00 0.00 0.00 0.00 - -

NormNCCOH 0.00 - 0.00 0.00 0.00 0.00 - -

RPA CCQE 0.00 - 0.00 0.00 0.51 3.06 - -

Theta Delta2Npi 0.00 - 6.48 69.08 7.75 19.33 - -

VecFFCCQEshape 0.00 - 0.00 0.00 5.05 16.52 - -

Combined Flux 6.45 - 7.35 7.16 9.07 10.87 - -

expskin FluxUnisim 3.65 - 4.83 4.43 6.68 0.83 - -

horncurrent FluxUnisim 0.58 - 0.69 0.50 0.80 1.54 - -

K− PrimaryHadronNormalization 0.00 - 0.00 0.00 0.00 0.00 - -

K+ PrimaryHadronFeynmanScaling 0.19 - 0.64 0.54 0.26 1.62 - -

K0 PrimaryHadronSanfordWang 0.07 - 0.00 0.00 0.00 5.52 - -

nucleoninexsec FluxUnisim 0.88 - 0.86 0.68 0.78 1.96 - -

nucleonqexsec FluxUnisim 2.49 - 2.49 2.56 2.38 3.16 - -

nucleontotxsec FluxUnisim 0.78 - 0.75 0.66 0.64 2.50 - -

π− Primary SW CV SplineVar 0.16 - 0.00 0.00 0.00 0.00 - -

pioninexsec FluxUnisim 1.26 - 1.25 1.01 1.24 0.97 - -

pionqexsec FluxUnisim 0.88 - 0.83 0.81 0.90 0.26 - -

piontotxsec FluxUnisim 0.87 - 0.89 0.88 0.99 0.85 - -

π+ Primary SW CV SplineVar 4.15 - 4.39 4.60 5.18 7.76 - -
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Table 5: Percent error of 1γ0p subsamples at the final selection stage from all final flux and cross section reweightable systematics.
The “Combined” variation corresponds to all variations of that category added in quadrature.

Variation NC∆Rad NCπ0 NCπ0 CC1π0 BNBOther CCνe Dirt OTPCinC
Coh NotCoh Extra

All UBGenie 23.26 0.00 22.60 26.89 16.56 20.01 15.34 19.63

Combined Min/Max 0.00 33.79 0.46 5.55 4.54 14.35 7.91 5.73

AxFFCCQEshape 0.00 0.00 0.00 0.68 0.53 0.77 5.35 0.52

DecayAngMEC 0.00 0.00 0.00 2.47 3.51 1.70 0.00 0.96

NormCCCOH 0.00 0.00 0.00 0.00 0.00 1.57 0.00 0.00

NormNCCOH 0.00 33.79 0.00 0.00 0.00 0.00 0.00 0.00

RPA CCQE 0.00 0.00 0.00 0.66 1.10 13.98 1.04 0.00

Theta Delta2Npi 0.00 0.00 0.46 4.73 2.35 0.25 4.14 5.60

VecFFCCQEshape 0.00 0.00 0.00 1.21 1.12 2.11 3.97 0.50

Combined Flux 6.59 7.27 7.04 7.20 7.81 8.42 7.63 8.86

expskin FluxUnisim 3.68 4.22 4.41 4.44 4.91 0.29 4.32 6.02

horncurrent FluxUnisim 0.57 0.62 0.63 0.62 0.65 0.16 0.56 0.78

K− PrimaryHadronNormalization 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

K+ PrimaryHadronFeynmanScaling 0.21 0.19 0.31 0.49 0.34 1.67 2.42 0.58

K0 PrimaryHadronSanfordWang 0.01 0.00 0.00 0.00 0.00 3.38 0.00 0.00

nucleoninexsec FluxUnisim 0.87 0.81 0.86 0.87 0.87 0.77 0.53 0.85

nucleonqexsec FluxUnisim 2.49 2.50 2.48 2.53 2.47 2.92 2.90 2.44

nucleontotxsec FluxUnisim 0.79 0.71 0.75 0.78 0.73 0.66 0.52 0.72

π− Primary SW CV SplineVar 0.20 0.67 0.19 0.00 0.39 0.04 0.00 0.15

pioninexsec FluxUnisim 1.26 1.30 1.26 1.27 1.24 0.36 1.03 1.32

pionqexsec FluxUnisim 0.87 0.85 0.87 0.85 0.87 0.26 0.54 0.88

piontotxsec FluxUnisim 0.89 0.98 0.89 0.83 0.87 0.40 0.77 0.93

π+ Primary SW CV SplineVar 4.33 4.84 4.36 4.54 5.07 6.83 4.74 5.54
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Table 6: Description of GENIE cross section reweightable systematics.

Variation Label Description

AGKYpT1pi UBGenie Pion transverse momentum for Nπ states in AGKY

AGKYxF1pi UBGenie Pion Feynman x for Nπ states in AGKY

AhtBY UBGenie A HT higher twist param in BY model scaling variable ξw ±25 %

BhtBY UBGenie B HT higher twist param in BY model scaling variable ξ w

CV1uBY UBGenie C V 1u u valence GRV98 PDF correction param in BY model

CV2uBY UBGenie C V 2u u valence GRV98 PDF correction param in BY model

CoulombCCQE UBGenie Changes angular distribution of nucleon cluster

EtaNCEL UBGenie Strange axial form factor η for NC elastic

FrAbs N UBGenie Nucleon absorption probability.

FrAbs pi UBGenie Pi absorption probability

FrCEx N UBGenie Fractional cross section for nucleon charge exchange

FrCEx pi UBGenie Fractional cross section for πcharge exchange

FrInel N UBGenie Nucleon fractional cross section for inelastic scatting

FrInel pi UBGenie π fractional cross section for inelastic scatting

FracDelta CCMEC UBGenie Varies relative ontribution of δ diagram to total MEC cross setion

FracPN CCMEC UBGenie Varies fraction of initial nucleon pairs that are pn

MFP N UBGenie Nucleon mean free path (total rescattering probability)

MFP pi UBGenie π mean free path (total rescattering probability)

MaCCQE UBGenie Axial Mass for CCQE

MaCCRES UBGenie Axial mass for CC resoce neutrino production

MaNCEL UBGenie Axial mass for NC elastic

MaNCRES UBGenie Axial mass for NC resoce neutrino production

MvCCRES UBGenie Vector mass for CC resoce neutrino production

MvNCRES UBGenie Vector mass for NC resoce neutrino production

NonRESBGvbarnCC1pi UBGenie Non-Res background normalization ν̄ neutron CC1π scattering

NonRESBGvbarnCC2pi UBGenie Non-Res background normalization ν̄ neutron CC2π scattering

NonRESBGvbarnNC1pi UBGenie Non-Res background normalization ν̄ neutron NC1π scattering

NonRESBGvbarnNC2pi UBGenie Non-Res background normalization ν̄ neutron NC2π scattering

NonRESBGvbarpCC1pi UBGenie Non-Res background normalization ν̄ proton CC1π scattering

NonRESBGvbarpCC2pi UBGenie Non-Res background normalization ν̄ proton CC2π scattering

NonRESBGvbarpNC1pi UBGenie Non-Res background normalization ν̄ proton NC1π scattering

NonRESBGvbarpNC2pi UBGenie Non-Res background normalization ν̄ proton NC2π scattering

NonRESBGvnCC1pi UBGenie Non-Res background normalization ν neutron CC1π scattering

NonRESBGvnCC2pi UBGenie Non-Res background normalization ν neutron CC2π scattering

NonRESBGvnNC1pi UBGenie Non-Res background normalization ν neutron NC1π scattering

NonRESBGvnNC2pi UBGenie Non-Res background normalization ν neutron NC2π scattering

NonRESBGvpCC1pi UBGenie Non-Res background normalization ν proton CC1π scattering

NonRESBGvpCC2pi UBGenie Non-Res background normalization ν proton CC2π scattering

NonRESBGvpNC1pi UBGenie Non-Res background normalization ν proton NC1π scattering

NonRESBGvpNC2pi UBGenie Non-Res background normalization ν proton NC2π scattering
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Table 7: Percent error of 2γ1p subsamples at the final selection stage from cross section
(GENIE) reweightable systematics (Table 1 of 2). Genie All uses multisims while individual
variations use ±1σ.

Variation BNB CC1π0 Dirt NC∆Rad NCMultiπ0 NC1π0 NC1π0 CCνe
Other Coh NotCoh

Genie All 14.44 24.22 14.93 27.71 25.30 0.00 23.49 15.12

AGKYpT1pi 0.16 0.48 0.92 0.00 0.50 0.00 0.16 0.50

AGKYxF1pi 0.06 0.11 0.35 0.00 0.22 0.00 0.68 0.30

AhtBY 0.01 0.04 0.21 0.00 0.06 0.00 0.00 0.31

BhtBY 0.03 0.04 0.39 0.00 0.09 0.00 0.01 0.32

CV1uBY 0.02 0.04 0.27 0.00 0.00 0.00 0.00 0.31

CV2uBY 0.02 0.04 0.25 0.00 0.00 0.00 0.00 0.31

CoulombCCQE 0.17 0.01 0.12 0.00 0.00 0.00 0.00 0.52

EtaNCEL 0.15 0.00 0.20 0.00 0.00 0.00 0.00 0.31

FrAbs N 5.68 6.64 5.05 6.60 3.11 0.00 5.21 5.49

FrAbs pi 3.18 12.03 3.22 0.43 6.80 0.00 6.12 2.76

FrCEx N 5.62 5.82 2.15 5.31 0.10 0.00 5.28 1.19

FrCEx pi 0.09 20.94 1.62 0.54 12.23 0.00 10.07 1.26

FrInel N 2.60 9.90 4.61 3.25 2.85 0.00 1.85 4.99

FrInel pi 2.92 6.76 3.25 0.12 4.41 0.00 3.24 3.56

FracDelta CCMEC 0.49 0.08 0.82 0.00 0.00 0.00 0.00 1.87

FracPN CCMEC 0.38 0.09 0.39 0.00 0.00 0.00 0.00 1.21

MFP N 3.03 2.86 3.87 3.11 3.49 0.00 2.42 2.34

MFP pi 1.21 1.84 2.32 0.18 4.72 0.00 1.50 0.92

MaCCQE 0.77 0.11 0.70 0.00 0.00 0.00 0.00 1.28

MaCCRES 5.57 11.98 4.61 0.00 0.00 0.00 0.00 4.90

MaNCEL 4.29 0.00 0.43 0.00 0.00 0.00 0.81 0.31

MaNCRES 4.44 0.00 4.99 24.95 16.96 0.00 20.25 0.31

MvCCRES 5.41 10.40 3.71 0.00 0.00 0.00 0.00 4.36

MvNCRES 2.46 0.00 1.69 9.90 7.39 0.00 8.20 0.31

197



Table 8: Percent error of 2γ1p subsamples at the final selection stage from cross section
(GENIE) reweightable systematics (Table 2 of 2). Genie All uses multisims while individual
variations use ±1σ. Min/Max variations are not included in Genie All.

Variation BNB CC1π0 Dirt NC∆Rad NCMultiπ0 NC1π0 NC1π0 CCνe
Other Coh NotCoh

NonRESBGvbarnCC1pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31

NonRESBGvbarnCC2pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31

NonRESBGvbarnNC1pi 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.31

NonRESBGvbarnNC2pi 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.31

NonRESBGvbarpCC1pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31

NonRESBGvbarpCC2pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31

NonRESBGvbarpNC1pi 0.21 0.00 0.00 0.00 0.00 0.00 0.07 0.31

NonRESBGvbarpNC2pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31

NonRESBGvnCC1pi 1.31 4.98 3.69 0.00 0.00 0.00 0.00 0.76

NonRESBGvnCC2pi 1.45 3.18 2.02 0.00 0.00 0.00 0.00 2.09

NonRESBGvnNC1pi 0.96 0.00 0.00 0.00 2.19 0.00 3.25 0.31

NonRESBGvnNC2pi 0.21 0.00 1.01 0.00 1.67 0.00 0.55 0.31

NonRESBGvpCC1pi 0.49 0.04 0.00 0.00 0.00 0.00 0.00 0.31

NonRESBGvpCC2pi 0.00 1.30 0.00 0.00 0.00 0.00 0.00 0.34

NonRESBGvpNC1pi 0.55 0.00 0.00 0.00 0.81 0.00 1.25 0.31

NonRESBGvpNC2pi 0.55 0.00 0.00 0.00 13.63 0.00 1.34 0.31
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Table 9: Percent error of 2γ0p subsamples at the final selection stage from cross section
(GENIE) reweightable systematics (Table 1 of 2). Genie All uses multisims while individual
variations use ±1σ.

Variation BNB CC1π0 Dirt NC∆Rad NCMultiπ0 NC1π0 NC1π0 CCνe
Other Coh NotCoh

Genie All 15.66 24.22 18.53 24.46 23.90 0.00 21.00 16.95

AGKYpT1pi 0.23 0.48 0.12 0.00 0.48 0.00 0.10 4.59

AGKYxF1pi 0.87 0.11 0.44 0.00 0.74 0.00 0.34 4.49

AhtBY 0.01 0.04 0.00 0.00 0.10 0.00 0.00 4.65

BhtBY 0.02 0.04 0.00 0.00 0.31 0.00 0.00 4.65

CV1uBY 0.03 0.04 0.00 0.00 0.00 0.00 0.00 4.64

CV2uBY 0.03 0.04 0.00 0.00 0.00 0.00 0.00 4.65

CoulombCCQE 0.33 0.01 0.11 0.00 0.00 0.00 0.00 4.62

EtaNCEL 0.01 0.00 0.24 0.00 0.00 0.00 0.01 4.58

FrAbs N 6.82 6.64 2.55 6.08 3.46 0.00 5.38 9.92

FrAbs pi 3.60 12.03 1.82 0.08 9.18 0.00 3.24 4.58

FrCEx N 1.67 5.82 3.16 3.14 1.83 0.00 4.99 6.14

FrCEx pi 1.52 20.94 1.02 0.19 9.07 0.00 5.92 4.75

FrInel N 8.31 9.90 4.05 7.86 2.02 0.00 8.09 11.97

FrInel pi 1.83 6.76 0.12 0.08 0.92 0.00 1.94 4.66

FracDelta CCMEC 0.17 0.08 3.76 0.00 0.00 0.00 0.00 4.78

FracPN CCMEC 0.20 0.09 2.71 0.00 0.00 0.00 0.00 4.61

MFP N 2.71 2.86 1.35 2.30 2.61 0.00 1.94 5.66

MFP pi 0.93 1.84 1.23 0.04 3.27 0.00 0.96 4.59

MaCCQE 0.53 0.11 0.66 0.00 0.00 0.00 0.00 4.76

MaCCRES 5.39 11.98 2.04 0.00 0.00 0.00 0.00 5.53

MaNCEL 4.02 0.00 0.29 0.00 0.00 0.00 0.24 4.58

MaNCRES 4.77 0.00 0.50 21.41 12.61 0.00 17.81 4.58

MvCCRES 5.12 10.40 1.71 0.00 0.00 0.00 0.00 5.17

MvNCRES 2.68 0.00 0.18 8.65 7.59 0.00 7.08 4.58
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Table 10: Percent error of 2γ0p subsamples at the final selection stage from cross section
(GENIE) reweightable systematics (Table 2 of 2). Genie All uses multisims while individual
variations use ±1σ.

Variation BNB CC1π0 Dirt NC∆Rad NCMultiπ0 NC1π0 NC1π0 CCνe
Other Coh NotCoh

NonRESBGvbarnCC1pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.58

NonRESBGvbarnCC2pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.58

NonRESBGvbarnNC1pi 0.00 0.00 0.00 0.00 0.00 0.00 0.01 4.58

NonRESBGvbarnNC2pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.58

NonRESBGvbarpCC1pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.58

NonRESBGvbarpCC2pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.58

NonRESBGvbarpNC1pi 0.00 0.00 0.00 0.00 0.00 0.00 0.01 4.58

NonRESBGvbarpNC2pi 0.00 0.00 0.00 0.00 1.79 0.00 0.00 4.58

NonRESBGvnCC1pi 1.92 4.98 1.48 0.00 0.00 0.00 0.00 4.67

NonRESBGvnCC2pi 1.17 3.18 1.48 0.00 0.00 0.00 0.00 4.60

NonRESBGvnNC1pi 0.34 0.00 0.00 0.00 1.33 0.00 4.98 4.58

NonRESBGvnNC2pi 0.00 0.00 0.00 0.00 1.79 0.00 0.39 4.58

NonRESBGvpCC1pi 0.00 0.04 0.00 0.00 0.00 0.00 0.00 4.58

NonRESBGvpCC2pi 0.00 1.30 0.00 0.00 0.00 0.00 0.00 4.58

NonRESBGvpNC1pi 0.25 0.00 0.00 0.00 0.00 0.00 0.74 4.58

NonRESBGvpNC2pi 0.00 0.00 0.00 0.00 16.07 0.00 1.03 4.58
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Table 11: Percent error of 1γ1p subsamples at the final selection stage from cross section
(GENIE) reweightable systematics (Table 1 of 2). Genie All uses multisims while individual
variations use ±1σ. A hyphen represents an empty subchannel. Note that the Dirt, NC 1π0

Coherent and NC Multi π0 subsamples are missing as they have no surviving events in the
final selection.

Variation BNB CC1π0 Dirt NC∆Rad NCMultiπ0 NC1π0 NC1π0 CCνe
Other Coh NotCoh

Genie All 19.17 30.03 - 25.27 - - 24.22 14.51

AGKYpT1pi 0.36 0.00 - 0.00 - - 0.55 0.00

AGKYxF1pi 1.10 0.00 - 0.00 - - 0.28 0.00

AhtBY 0.00 0.00 - 0.00 - - 0.01 0.00

BhtBY 0.00 0.00 - 0.00 - - 0.02 0.00

CV1uBY 0.00 0.00 - 0.00 - - 0.03 0.00

CV2uBY 0.00 0.00 - 0.00 - - 0.03 0.00

CoulombCCQE 0.16 0.00 - 0.00 - - 0.00 0.59

EtaNCEL 0.31 0.00 - 0.00 - - 0.02 0.00

FrAbs N 5.56 6.47 - 5.58 - - 4.78 5.76

FrAbs pi 1.16 19.38 - 0.08 - - 5.44 3.11

FrCEx N 14.31 20.37 - 11.42 - - 8.73 12.46

FrCEx pi 3.26 20.40 - 0.07 - - 10.24 2.25

FrInel N 3.61 5.44 - 1.58 - - 0.70 1.97

FrInel pi 1.47 1.65 - 0.14 - - 3.61 4.69

FracDelta CCMEC 0.00 0.00 - 0.00 - - 0.00 1.89

FracPN CCMEC 0.00 0.00 - 0.00 - - 0.00 1.13

MFP N 2.73 3.97 - 2.13 - - 2.40 3.08

MFP pi 3.22 1.92 - 0.01 - - 1.58 0.32

MaCCQE 0.50 0.00 - 0.00 - - 0.00 1.55

MaCCRES 4.42 9.07 - 0.00 - - 0.00 2.55

MaNCEL 2.40 0.00 - 0.00 - - 0.19 0.00

MaNCRES 11.79 0.00 - 22.64 - - 20.69 0.00

MvCCRES 4.93 7.32 - 0.00 - - 0.00 2.01

MvNCRES 5.69 0.00 - 9.08 - - 8.72 0.00
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Table 12: Percent error of 1γ1p subsamples at the final selection stage from cross section
(GENIE) reweightable systematics (Table 2 of 2). Genie All uses multisims while individual
variations use ±1σ. A hyphen represents an empty subchannel. Min/Max variations are not
included in Genie All.

Variation BNB CC1π0 Dirt NC∆Rad NCMultiπ0 NC1π0 NC1π0 CCνe
Other Coh NotCoh

NonRESBGvbarnCC1pi 0.00 0.00 - 0.00 - - 0.00 0.00

NonRESBGvbarnCC2pi 0.00 0.00 - 0.00 - - 0.00 0.00

NonRESBGvbarnNC1pi 0.00 0.00 - 0.00 - - 0.19 0.00

NonRESBGvbarnNC2pi 0.00 0.00 - 0.00 - - 0.00 0.00

NonRESBGvbarpCC1pi 0.00 0.00 - 0.00 - - 0.00 0.00

NonRESBGvbarpCC2pi 0.00 0.00 - 0.00 - - 0.00 0.00

NonRESBGvbarpNC1pi 0.00 0.00 - 0.00 - - 0.00 0.00

NonRESBGvbarpNC2pi 0.00 0.00 - 0.00 - - 0.00 0.00

NonRESBGvnCC1pi 0.00 0.00 - 0.00 - - 0.00 0.00

NonRESBGvnCC2pi 0.00 9.25 - 0.00 - - 0.00 0.00

NonRESBGvnNC1pi 0.00 0.00 - 0.00 - - 3.53 0.00

NonRESBGvnNC2pi 0.00 0.00 - 0.00 - - 0.00 0.00

NonRESBGvpCC1pi 3.26 0.00 - 0.00 - - 0.00 0.00

NonRESBGvpCC2pi 0.00 9.25 - 0.00 - - 0.00 0.00

NonRESBGvpNC1pi 0.00 0.00 - 0.00 - - 1.22 0.00

NonRESBGvpNC2pi 0.00 0.00 - 0.00 - - 0.64 0.00
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Table 13: Percent error of 1γ0p subsamples at the final selection stage from cross section
(GENIE) reweightable systematics (Table 1 of 2). Genie All uses multisims while individual
variations use ±1σ.

Variation BNB CC1π0 Dirt NC∆Rad NCMultiπ0 NC1π0 NC1π0 CCνe
Other Coh NotCoh

Genie All 15.07 25.08 16.05 22.89 36.63 0.00 21.56 16.74

AGKYpT1pi 0.59 0.32 2.25 0.00 1.61 0.00 0.23 2.93

AGKYxF1pi 0.69 0.33 5.47 0.00 5.11 0.00 0.17 2.91

AhtBY 0.00 0.06 0.38 0.00 0.00 0.00 0.00 2.91

BhtBY 0.00 0.07 0.41 0.00 0.00 0.00 0.01 2.91

CV1uBY 0.00 0.08 0.41 0.00 0.00 0.00 0.01 2.91

CV2uBY 0.00 0.08 0.41 0.00 0.00 0.00 0.01 2.91

CoulombCCQE 0.09 0.02 0.18 0.00 0.00 0.00 0.00 2.96

EtaNCEL 0.04 0.00 0.18 0.00 0.00 0.00 0.02 2.91

FrAbs N 6.55 7.01 1.29 5.41 0.00 0.00 4.49 9.06

FrAbs pi 3.84 9.73 1.36 0.05 0.00 0.00 3.37 3.28

FrCEx N 3.45 0.56 0.05 2.28 0.00 0.00 1.61 4.15

FrCEx pi 0.21 18.64 0.73 0.08 0.00 0.00 5.17 2.99

FrInel N 8.19 7.18 1.45 6.60 0.00 0.00 5.28 10.47

FrInel pi 4.25 5.49 1.15 0.12 0.00 0.00 1.25 3.57

FracDelta CCMEC 0.96 0.08 0.00 0.00 0.00 0.00 0.00 3.00

FracPN CCMEC 1.24 0.08 0.00 0.00 0.00 0.00 0.00 3.35

MFP N 3.71 3.46 0.50 1.29 1.63 0.00 1.75 3.39

MFP pi 0.52 2.46 1.30 0.01 5.20 0.00 1.09 2.92

MaCCQE 0.59 0.18 2.40 0.00 0.00 0.00 0.00 3.02

MaCCRES 5.69 13.85 5.35 0.00 0.00 0.00 0.00 3.10

MaNCEL 0.44 0.00 0.66 0.00 0.00 0.00 0.23 2.91

MaNCRES 3.93 0.00 0.85 20.25 27.93 0.00 18.94 2.91

MvCCRES 5.21 12.21 6.02 0.00 0.00 0.00 0.00 2.96

MvNCRES 2.15 0.00 0.72 7.83 10.35 0.00 7.85 2.91
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Table 14: Percent error of 1γ0p at the subsamples at the final selection stage from cross
section (GENIE) reweightable systematics (Table 2 of 2). Genie All uses multisims while
individual variations use ±1σ.

Variation BNB CC1π0 Dirt NC∆Rad NCMultiπ0 NC1π0 NC1π0 CCνe
Other Coh NotCoh

NonRESBGvbarnCC1pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.91

NonRESBGvbarnCC2pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.91

NonRESBGvbarnNC1pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.91

NonRESBGvbarnNC2pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.91

NonRESBGvbarpCC1pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.91

NonRESBGvbarpCC2pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.91

NonRESBGvbarpNC1pi 0.00 0.00 2.03 0.00 8.45 0.00 0.00 2.91

NonRESBGvbarpNC2pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.91

NonRESBGvnCC1pi 3.38 4.42 0.00 0.00 0.00 0.00 0.00 2.91

NonRESBGvnCC2pi 1.94 3.06 4.07 0.00 0.00 0.00 0.00 2.91

NonRESBGvnNC1pi 1.94 0.00 0.00 0.00 0.00 0.00 5.18 2.91

NonRESBGvnNC2pi 0.00 0.00 0.00 0.00 0.00 0.00 0.42 2.91

NonRESBGvpCC1pi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.91

NonRESBGvpCC2pi 0.95 1.29 0.00 0.00 0.00 0.00 0.00 2.91

NonRESBGvpNC1pi 0.50 0.00 0.00 0.00 0.00 0.00 0.53 2.91

NonRESBGvpNC2pi 0.95 0.00 0.00 0.00 16.19 0.00 0.90 2.91
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B Constraint Tables

Here we provide Tab. 15 of the constraint performance on independently varied genie

variations for the gamma LEE analysis. These results have not been reprocessed for the

latest iteration of the analysis as they are not used to build the final covariance matrices and

are contained within Genie All. They are included here for illustrative purposes to inform

which underlying physics is driving the uncertainties. As can be seen from the table, the Ma

NC Resonant variation, highlighted in bold, is one of the primary uncertainties on the NC

π0 backgrounds and is reduced by a factor of 3.5 with the constraint.
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Table 15: Combined sum of predicted background rate in the the 1γ1p and 1γ0p
selections, and corresponding unconstrained and constrained individually run cross section
uncertainties, broken down by systematic uncertainty source.

Variation Name Uncon. Con. Reduc. Uncon. Con. Reduc.
Error 1γ1p Error Factor Error Error Factor

1γ1p 1γ1p 1γ1p 1γ0p 1γ0p 1γ0p

AGKYpT1pi 0.43% 0.43% 1.00 0.36% 0.36% 1.00

AGKYxF1pi 0.34% 0.34% 1.00 0.18% 0.18% 1.01

AhtBY 0.00% 0.00% 1.00 0.23% 0.23% 1.00

BhtBY 0.01% 0.01% 1.00 0.23% 0.23% 1.00

CV1uBY 0.03% 0.03% 1.00 0.23% 0.23% 1.00

CV2uBY 0.03% 0.03% 1.00 0.23% 0.23% 1.00

CoulombCCQE 0.03% 0.03% 1.00 0.22% 0.22% 1.00

EtaNCEL 0.02% 0.02% 1.00 0.21% 0.21% 1.00

FrAbs N 4.91% 3.21% 1.53 4.61% 3.02% 1.53

FrAbs pi 5.12% 3.26% 1.57 3.33% 2.13% 1.57

FrCEx N 9.58% 6.69% 1.43 1.58% 1.10% 1.43

FrCEx pi 9.32% 4.36% 2.14 4.18% 1.96% 2.13

FrInel N 1.11% 0.74% 1.50 5.39% 3.60% 1.50

FrInel pi 3.14% 2.78% 1.13 0.30% 0.28% 1.07

FracDelta CCMEC 0.05% 0.05% 1.00 0.32% 0.32% 1.00

FracPN CCMEC 0.03% 0.03% 1.00 0.22% 0.22% 1.00

MFP N 2.47% 2.19% 1.13 1.94% 1.72% 1.13

MFP pi 1.73% 1.65% 1.05 0.97% 0.93% 1.05

MaCCQE 0.09% 0.09% 1.00 0.34% 0.34% 1.00

MaCCRES 0.66% 0.60% 1.10 2.41% 2.20% 1.10

MaNCEL 0.42% 0.41% 1.02 0.28% 0.28% 1.01

MaNCRES 18.94% 5.45% 3.48 10.44% 3.01% 3.47

MvCCRES 0.68% 0.63% 1.08 2.18% 2.02% 1.08

MvNCRES 8.06% 4.77% 1.69 4.41% 2.61% 1.69

NonRESBGvbarnCC1pi - - - 0.21% 0.21% 1.00

NonRESBGvbarnCC2pi - - - 0.21% 0.21% 1.00

NonRESBGvbarnNC1pi 0.16% 0.16% 1.00 0.21% 0.21% 1.00

NonRESBGvbarnNC2pi - - - 0.21% 0.21% 1.00

NonRESBGvbarpCC1pi - - - 0.21% 0.21% 1.00

NonRESBGvbarpCC2pi - - - 0.21% 0.21% 1.00

NonRESBGvbarpNC1pi - - - 0.27% 0.27% 1.00

NonRESBGvbarpNC2pi - - - 0.21% 0.21% 1.00

NonRESBGvnCC1pi - - - 0.97% 0.96% 1.01

NonRESBGvnCC2pi 0.13% 0.13% 1.00 0.78% 0.78% 1.00

NonRESBGvnNC1pi 3.01% 2.51% 1.20 2.92% 2.44% 1.20

NonRESBGvnNC2pi - - - 0.30% 0.30% 1.00

NonRESBGvpCC1pi 0.35% 0.35% 1.00 0.21% 0.21% 1.00

NonRESBGvpCC2pi 0.13% 0.13% 1.00 0.35% 0.35% 1.00

NonRESBGvpNC1pi 1.04% 1.02% 1.02 0.40% 0.40% 1.01

NonRESBGvpNC2pi 0.55% 0.52% 1.04 0.79% 0.76% 1.04
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C Neutrinos at the Main Injector Beamline

The MicroBooNE detector also sees an off axis component of the Neutrinos at the Main

Injector (NuMI) beamline. The NuMI target hall is shown in Fig. 1. This shares the same

beam path as the BNB until leaving the booster where it is sent to the Main Injector ring

and protons are accelerated to 120 GeV. The target consists of carbon plates instead of the

BNB solid beryllium but works on the same principle by producing mesons which decay

producing neutrinos. It is focused via a pair of magnetic focusing horns where the first one

diverts particles with the wrong charge sign away and sends the correctly charged particles

to the second horn which more properly orients them along the desired beam path. However,

sometimes particles of opposite charge, particularly forward going ones, make it through the

beam path creating an undesired background. The most common decay is π+ → µ+ + νµ

in the neutrino mode which is used predominately. There are also a large number of kaons

which decay to produce electron neutrinos in three body decays given by K+ → νe+ e+ +π0

and K0
L → νe + e+ + π−. This creates a significant νe component which is actually useful

for MicroBooNE, as the BNB produces fewer of these. To reach MicroBooNE, a particle

must deviate approximately 8◦ from the center. This produces the flux distribution as seen

in Fig. 2. The NuMI beam systematics are less well known compared to the BNB [25].
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Figure 1: NuMI target hall and decay region along with its instrumentation [25].

Figure 2: Flux from NuMI received by the MicroBooNE detector. NuMI has 200 MeV higher
average energy compared to the BNB but has a significant low energy component as well.
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