
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

5-2021 

Optically Active Rare-Earth Doped Films Synthesized by Pulsed Optically Active Rare-Earth Doped Films Synthesized by Pulsed 

Laser Deposition for Biomedical Applications Laser Deposition for Biomedical Applications 

Charles William Bond 
cbond4@vols.utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

 Part of the Bioimaging and Biomedical Optics Commons 

Recommended Citation Recommended Citation 
Bond, Charles William, "Optically Active Rare-Earth Doped Films Synthesized by Pulsed Laser Deposition 
for Biomedical Applications. " PhD diss., University of Tennessee, 2021. 
https://trace.tennessee.edu/utk_graddiss/6625 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F6625&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/232?utm_source=trace.tennessee.edu%2Futk_graddiss%2F6625&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Charles William Bond entitled "Optically 

Active Rare-Earth Doped Films Synthesized by Pulsed Laser Deposition for Biomedical 

Applications." I have examined the final electronic copy of this dissertation for form and content 

and recommend that it be accepted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy, with a major in Biomedical Engineering. 

Jacqueline A. Johnson, Major Professor 

We have read this dissertation and recommend its acceptance: 

Russel L. Leonard, Claudia J. Rawn, Feng-Yuan Zhang 

Accepted for the Council: 

Dixie L. Thompson 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



Optically Active Rare-Earth Doped Films Synthesized by Pulsed Laser 

Deposition for Biomedical Applications  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

A Dissertation Presented for the 

Doctor of Philosophy 

Degree 

The University of Tennessee, Knoxville 

 

 

 

 

 

 

 

 

 

 

 

 

 

Charles William Bond 

May 2021 



ii 

 

Copyright © 2021 by Charles William Bond.  

All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

DEDICATION 
 

I dedicate this work to my family. 

 

 

 

 



iv 

 

ACKNOWLEDGEMENTS 
 

 

I would like to express my sincere appreciation to my advisor, Dr. Jacqueline Johnson, for 

giving me the opportunity to do research at the University of Tennessee Space Institute, 

which allowed me to continue my education while being close to my family. Her generosity 

and support have helped me to grow in many ways, and this dissertation is a product of 

that.  

 

I would like to express my gratitude to my committee co-chair, Dr. R. Lee Leonard, for his 

guidance during this endeavor. He has served as a mentor to me since I began. Through 

many hours in the laboratory, long meetings, and movie references I did not know, he has 

helped me grow as a researcher and in many other ways. 

 

I would like to thank Dr. Claudia Rawn and Dr. Feng-Yuan Zhang for their participation 

in my Dissertation Committee.  

 

The research presented in this dissertation was a collaborative process that gave me the 

privilege to work with many different researchers. The specific contributions of each 

collaborator are acknowledged at the beginning of each experimental chapter.  

 

I would like to thank all students, summer interns, faculty, and staff at UTSI that have made 

my time at UTSI so enjoyable. I especially thank my fellow BEAMS groupmates for their 

help and laughs throughout the years. Also, the technical assistance of Alexander Terekhov 

and Douglas Warnberg has been invaluable.  

 

My time at UTSI has given me the opportunity to work with many outstanding researchers 

from other institutions. Special mention goes to Dr. Amanda Petford-Long from 

Northwestern University, Dr. Rosalia Serna and Dr. Jose Gonzalo from the CSIC Institute 

of Optics, and Dr. Richard Lubinsky from SUNY, Stony Brook. 

 



v 

 

I would like to thank Yu Jin from Northwestern University for working with me through 

many different projects. Her microscopy expertise was invaluable and gives great detail to 

the work in this dissertation.  

 

I would like the thank the Laser Processing Group from the CSIC Institute of Optics, who 

allowed me to come as a visitor to their laboratory. I have thoroughly enjoyed our 

collaboration and I am appreciative of their generosity.  

 

All projects in this dissertation were supported by the National Science Foundation under 

grant numbers DMR 1600783 and DMR 1600837 

 

The projects described in CHAPTER II and III were supported by the Spanish Research 

Council under grants LINKA20044 and RTI2018-096498-B-100 (MCIU/AEI/FEDER, 

UE). 

 

 

 

 

 



vi 

 

ABSTRACT 

 
Optically active materials are used in many biomedical applications ranging from medical 

imaging to light therapies. Investigating the effects of differing nanostructure 

configurations on the optical performance of these materials can improve tunability, 

efficiency, and practicality for their respective applications. This work utilizes pulsed laser 

deposition (PLD) to develop nanostructured thin films and determines their optical 

performance for applications in computed radiography for medical imaging and in LEDs 

which can be used in biomedical applications such as photobiomodulation.  

 

In computed radiography, scattering of the stimulation light by the storage phosphor crystal 

grain boundaries in imaging plates negatively impacts spatial resolution. Storage phosphor 

plates with thinner phosphor layers have been developed to reduce scattering distance and 

increase spatial resolution, although at the expense of reduced x-ray absorption. A 

transparent or translucent nanostructured film, containing a much higher percentage of 

storage phosphor crystals achievable in bulk glass-ceramic materials made by conventional 

methods, may have acceptable photostimulated luminescence efficiency and imaging 

performance characteristics greater than commercial imaging plates. In an attempt to 

achieve a nanostructured film with superior performance in x-ray imaging, a glass-ceramic 

imaging plate for computed radiography was synthesized via PLD for the first time. The 

imaging plate was comprised of Eu-doped BaCl2 crystallites and an amorphous matrix. 

 

Nanolayered films comprising of BaF2, Eu2O3, and Al2O3 were synthesized via PLD with 

differing layered configurations to manipulate the coordinate surrounds of the europium 

dopant and determine its effects on optical properties. TEM cross-section analysis was 

conducted to verify the desired nano-layering. Different post-deposition heat treatments 

were investigated, and the films were evaluated for applications as a phosphor layer for 

UV-pumped white light LEDs which can be used for solid-state lighting and biomedical 

light therapies. A Mn dopant was added to europium to discover the threshold for the 

amount of manganese necessary to optically influence the nanolayered films. Although 
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Mn/Eu co-doping did not prove advantageous for white light LEDs, all nanostructures of 

Eu-doped films have the potential for the desired application.  

 

Nanoscale control of optically-active thin films was demonstrated using pulsed laser 

deposition. Determining the effects of differing nanostructures on optical properties can 

lead to improvements in certain biomedical applications.  
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INTRODUCTION  
 

X-ray Imaging 

 

Computed radiography (CR), digital radiography (DR), and screen-film radiography are 

three different types of imaging modalities that are used in medical imaging to produce 

radiographs. An overview of these three modalities is shown in Figure 1. The traditional 

screen-film methods of producing x-ray images are largely outdated, and researchers have 

primarily focused on improving the modalities of computed and digital radiography since 

the late 1990s [1]. The screen-film method boasts advantageous characteristics such as 

simplicity and high information density, but these were overshadowed by the digital 

revolution and the ability of computed and digital radiography to produce digital images 

[2]. When compared to its analog counterpart, a digital x-ray image allows for easier 

storage, transport, and image data manipulation. Aside from integral digitalized images, 

computed and digital radiography outperforms screen-film methods in increased dose 

efficiency, a larger dynamic range, and the ability to reduce x-ray dose to the patient [3].   

 

Digital radiography can be classified as either direct or indirect conversion, with multiple 

ways to achieve both. Direct conversion DR converts x-rays into electrical charges by using 

a photoconductor. Indirect conversion DR converts x-rays to visible light through a down-

photon energy converting scintillator that is then quantified by a charge-coupled device or 

a thin film transistor array. Scintillators used for indirect conversion typically consist of 

Gd2O2S or CsI crystals in a polymer binder material [4]. Both indirect and direct 

conversation radiography develops an instantaneous digital radiograph. 
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Figure 1. Overview of various types of x-ray imaging. 
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Computed radiography is characterized as an indirect conversion technique and uses an 

imaging plate containing storage phosphors. The image is acquired in a two-step process 

that is comprised of an exposure phase and a read-out phase. First, the imaging plate is 

placed in a light-tight enclosure and placed behind the object that is to be imaged for the 

exposure phase. Following exposure, the read-out is achieved by raster scanning of the 

imaging plate with a stimulating laser to trigger a process called photostimulated 

luminescence (PSL) [5]. A photomultiplier tube is used to quantify the PSL signal pixel-

by-pixel to form the x-ray image. An illustration of the workflow of computed radiography 

is shown in Figure 2. The material in a CR imaging plate typically consists of BaFBr:Eu2+ 

(BFB) storage phosphors in a polymer binder material. BFB storage phosphors can hold a 

latent image for over 8 hours and can be optically bleached and used again [6]. When 

compared to its digital counterpart, the passive read-out plates used in CR allow for easier 

positioning and set-up when compared to a DR plate that must be connected to a computer. 

Another advantage of CR over DR is the cost of implementation and maintenance.  

 

Although PSL has been extensively researched and many storage phosphor materials have 

been developed and compared to the traditional BFB, a detailed mechanism of PSL is 

complex and controversial [7]. When a material capable of storage phosphor characteristics 

is exposed to x-ray radiation, free charge carriers are trapped in electron and hole traps that 

are created due to impurities and lattice defects [8]. A large bandgap from the impurities 

and lattice defects results in a metastable state in which the free charge carrier remains in 

the trapped position. In the case of BFB, the trap is an F-center with the bromine F-center 

being the only one to contribute to photostimulability [9]. An electron trapped in the 

bromine F-center transfers to Eu2+ complexes and not the conduction band when a 

stimulating laser is applied to the metastable state, resulting in PSL [10]. 
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Figure 2. The process of computed radiography.  
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Many different experimental storage phosphor plates have been developed in an attempt to 

compete with the spatial resolution and conversion efficiency of commercial BFB plates. 

The spatial resolution of commercial plates is limited due to crystalline grain boundaries 

which causes scattering of the stimulating laser beam during the readout step, as illustrated 

in Figure 3(a). A storage phosphor plate transparent to the stimulating laser beam mitigates 

the chances of scattering (Figure 3(b)) and allows for images with increased spatial 

resolution. Although superior spatial resolution has been accomplished, the conversion 

efficiency of transparent plates is less than that of commercial BFB plates [11].  

 

Light-Emitting Diodes 

 

A light-emitting diode (LED) is a semiconductor device comprised of a P-N junction (a 

hole current and an electron current) and a phosphor layer. When a current is applied to the 

P-N junction, electrons are transferred from the N-type portion to an active region and 

holes are transferred from the P-type portion to an active region. During this transition, 

electrons transfer through an energy bandgap, and a photon is emitted. The energy of the 

emitted photon is largely dependent on the type of semiconductor device, or LED chip, and 

can result in an emission from the ultraviolet to infrared [12]. A phosphor layer can be 

applied to the transparent covering of the LED chip to provide additional tunability to the 

emission by using the up- or down-conversion process. An illustration of the basic make-

up of an LED is shown in Figure 4.  

 

LEDs are often referred to as solid-state lighting when they are employed in applications 

traditionally served by incandescent and fluorescent light sources. These applications 

include general indoor lighting, streetlights, automotive lights, and backlights in digital 

displays. Initially, LEDs were used as indicator lights and displays and were not considered 

as solid-state lighting until the early 2000s, when their energy-saving potential was 

recognized [13]. It was determined that the assimilation to solid-state lighting would 

decrease the electrical power used by lighting by more than 50% [14]. Another potential 
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benefit of more widespread use of LED solid-state light sources includes reduced emission 

of greenhouse gases as a byproduct of less energy consumption [15, 16].  

 

The focus of the LED industry is solid-state light, but the developing technology has been 

influential to human health and many different biomedical applications [17]. The most 

widely studied effect of lighting on human health pertains to its impact on the human 

circadian rhythm, in which receiving sufficient biologically active light benefits an 

individual’s well-being and productivity [18]. LED technology can also be beneficial to 

medical imaging, photobiomodulations, and optogenetics. With a simultaneous multiplane 

imaging technique, the ability of LEDs to produce a narrow band emission can be used to 

capture images at different depths. This is demonstrated in work conducted by Orsinger et 

al., in which a holographic image of ovarian cancer was reconstructed [19]. The same 

narrow band characteristics are used in narrow-band imaging to produce images with good 

contrast in capillaries and identify areas of increased vasculature [20]. Although traditional 

photobiomodulation treatment utilizes inert gas and semiconducting lasers, LEDs are 

quickly becoming a safer and more feasible alternative. LED photobiomodulation provides 

a safe treatment option with no side effects for a variety of different clinical applications, 

as shown in Figure 5 [21]. 

 

Pulsed Laser Deposition 

 

Pulsed laser deposition (PLD) is a thin film synthesis technique that uses high energy 

photons to create a directional plume of target material that is collected on a substrate. The 

high energy photons are applied via laser pulses to avoid melting of the target material and 

lessen the chances of a laser-plume interaction. The laser beam is typically focused on a 

target at a 45° angle of incidence. When the laser ablates the target, a transient plume is 

developed, comprised of many different species of the target material. The plume can be 

comprised of electrons, ions, neutral atoms, atom clusters, micron size particulates, and 

molten droplets [22]. The plume materials expand rapidly away from the target, with the 

densest portion of the plume ejected at a 90° angle relative to the target. A schematic of a 
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PLD apparatus is shown in Figure 6. A traditional PLD apparatus uses a UV excimer laser 

and a substrate that is largely dependent on the desired application of the thin film. Figure 

7 shows an image of the PLD apparatus in the Center for Laser Applications at the 

University of Tennessee Space Institute.  

 

When compared to other thin-film synthesis techniques, PLD is unique in its capability for 

stoichiometric transfer from target to substrate, the vast number of materials that can be 

used as a target, ease of film thickness control, and the ability to make multilayer films 

[23]. The technique is historically known for developing superconducting thin films but 

has been used for a large variety of applications. Some of these applications include 

electrical circuit components, optical materials, and coatings for medical applications [24]. 

 

Summary of Work 

 

This work details the use of PLD to produce optically active rare-earth doped films that 

can be used for biomedical applications. Chapter I focuses on the development of an Eu-

doped BaCl2 glass-ceramic storage phosphor film by exploring different glass matrix 

materials and evaluating their performance for computed radiography applications. 

Chapter II investigates different nanolayered configurations in an Eu-doped BaF2/Al2O3 

thin film and determines their suitability to be used as a phosphor material in UV-pumped 

white-light LEDs. Chapter III explores the optical effects of adding a Mn dopant to the 

films developed in Chapter II. 
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Figure 3. (a) Scattering of the stimulating laser beam at the grain 

boundaries of a polycrystalline storage phosphor causing a decrease 

in spatial resolution and (b) reduced scattering in a glass-ceramic 

storage phosphor for improved spatial resolution. [12]. Used with 

permission.  
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Figure 4. Basic schematic of a light-emitting diode. 
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Figure 5. LEDs with different wavelengths and corresponding 

biomedical applications. Used with permission [17]. 
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Figure 6. Schematic of pulsed laser deposition apparatus. 
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Figure 7. Pulsed laser deposition apparatus at UTSI. 

 

 

 

 

 

 

 

 

 

 

 

  



13 

 

CHAPTER I 

EUROPIUM-DOPED BARIUM CHLORIDE STORAGE PHOSPHOR 

PLATE SYNTHESIZED BY PULSED LASER DEPOSITION 
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McDearman, A.F. Howansky, R.L. Leonard, A.R. Lubinsky, A.K.Petford-Long, and J.A. 

Johnson: 

 

 Bond CW, Jin Y, McDearman JC, et al. Europium-doped barium chloride storage 

phosphor plate synthesized by pulsed laser deposition. J Am Ceram Soc. 2021;00:1–9. 

doi.org/10.1111/jace.17775 

 

C.W. Bond was responsible for all writing and research activities in the original 

article except as noted: Y. Jin provided the SEM images. J.C. McDearman assisted with 

sample synthesis. A.F. Howansky and A.R. Lubinsky conducted PSL measurements. J.A. 

Johnson, A.K. Petford-Long, and R.L. Leonard provided overall guidance.  

 

Abstract  

 

In computed radiography, scattering of the stimulation light by the storage phosphor 

crystals in the imaging plates negatively impacts spatial resolution. Storage phosphor plates 

with thinner phosphor layers have been developed to reduce scattering distance and 

increase spatial resolution, although at the expense of reduced x-ray absorption. The 

authors hypothesize that a transparent or translucent nanostructured film, containing a 

much higher percentage of storage phosphor crystals than achievable in bulk glass-ceramic 

materials made by conventional methods, may have acceptable photostimulated 

luminescence efficiency and imaging performance characteristics greater than commercial 

imaging plates. Films have been produced via pulsed laser deposition by alternating target 

materials of the storage phosphor BaCl2:Eu2+ and either silica or silicon. X-ray diffraction 

and photoluminescence characterization were conducted to confirm the presence of 

BaCl2:Eu2+ crystallites. The films were able to store optical data and be read out to produce 

x-ray radiographs demonstrating 50 µm spatial resolution. The performance of the 

experimental storage phosphor plates was compared to commercially-available imaging 

plates. The authors demonstrate for the first time the synthesis of a glass-ceramic imaging 

plate for computed radiography by pulsed laser deposition. 
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Introduction 

 

Optical data storage utilizes photons and electron trapping materials (ETM) to read and 

write information in applications such as radiography [25] and, more recently, big data 

storage [26, 27]. An irradiation light source is used to create electron-hole pairs within the 

ETM, followed by sequential recombination of the electron holes that release photons 

resulting in the rendering of the stored data through photostimulated luminescence (PSL). 

The electron-hole recombination is typically facilitated by an excitation laser in 

radiography or by heating for thermally stimulated luminescence in high-capacity storage 

systems [28-30]. Depending on the application, the importance of particular ETM 

characteristics will vary. With regards to medical imaging, adequate detective quantum 

efficiency (DQE) and modulation transfer function (MTF) are necessary to render quality 

radiographs [31, 32]. 

  

Computed radiography (CR) is a type of digital x-ray imaging technique that is used for 

medical imaging and nondestructive testing, where the ETM is referred to as a storage 

phosphor plate. The advantages of CR over other digital x-ray imaging modalities include 

its inexpensive implementation, ease of image plate placement, and dynamic range with a 

linear trend to X-ray exposure over four orders of magnitude [33, 34]. BaFBr:Eu2+ (BFB) 

is the most common commercially-used storage phosphor plate, followed by BaFI:Eu2+ 

[35, 36]. These crystalline materials are held together by an organic binder as powder 

plates, with particle size ranging up to 40 µm [37]. The primary limiting factor to spatial 

resolution in CR radiographs, which typically ranges from 10 – 20.0 lp/mm, is scattering 

of the stimulation light in the turbid phosphor layer [38].  

 

Due to their ability to host small optically-active crystallites in a transparent amorphous 

matrix, rare-earth doped glass ceramics have been considered as an alternative storage 

phosphor plate material for high spatial resolution radiographs [39]. Fluorochlorozirconate 

(FCZ)-based glass ceramics utilizing europium-doped barium chloride nanocrystals in the 

orthorhombic phase [40] have been a popular material for radiographs recorded with CR. 
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Experimental storage phosphor plates using barium chloride single crystals with a cerium 

rare-earth dopant, and lithium borate glass matrices with a europium dopant have also been 

developed [41-43]. When compared to commercially available BFB plates, FCZ storage 

phosphor plates have demonstrated high spatial resolution of 13 lp/mm, but with a 20% 

diminished relative PSL intensity [44, 45]. 

 

FCZ storage phosphor plates are initially synthesized as an amorphous material, and 

subsequent thermal annealing precipitates doped nanocrystals within the glass matrix, 

providing the optically-active luminescent centers [11, 46]. When more luminescent 

centers are introduced into the glass matrix, via more crystalline material or increased 

thermal treatment, aggregation of the crystallites becomes an issue [39, 47]. The 

aggregation results in diminished spatial resolution due to light scattering caused by 

increased crystalline size [40]. 

 

The goal of this study is to demonstrate a scalable synthesis option to produce storage 

phosphor plates with superior spatial resolution, coupled with comparable relative DQE 

intensity, by producing a nanostructured transparent glass-ceramic storage phosphor plate 

via pulsed laser deposition (PLD). The films contain small nanocrystals isolated by a 

surrounding amorphous matrix. Experimental thin films produced by this physical vapor 

deposition technique lack the amount of material found in commercially available or 

experimental bulk storage phosphor plates, but conclusions can be made by comparing a 

material ratio to optical performance. PLD has been used to produce films with a thickness 

of over 100 µm for alternate applications [48, 49]. With an automated synthesis process, 

this novel technique could be applied to produce samples with comparable thickness and 

amount of material as its commercial counterpart.  

 

A piece of sintered, doped barium chloride and a glass matrix material were affixed to an 

aluminum disk to create a multicomponent PLD target. Fused silica and silicon wafers were 

used as PLD targets for the glass matrix materials. Alternating target materials were ablated 

with a laser so that the glass matrix will isolate the crystalline material. This constrains the 
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crystallites to a size much smaller than the wavelengths of visible light, allowing the 

samples to retain their transparent properties. The samples’ structural characteristics were 

determined by x-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis 

and the luminescent properties were determined by phosphorimetry. The PSL intensity of 

the experimental storage phosphor plates was compared to that of commercially available 

BFB.  A radiograph of a test phantom was produced, allowing determination of achievable 

spatial resolution.  

 

Materials and Methods 

 

Films were grown on four 25 x 25 mm substrates concurrently: three fused silica substrates 

and one silicon substrate were coated during each deposition procedure. The fused silica 

substrates were cut from a UV Grade Corning 7980 500 µm thick wafer and the silicon 

substrates were single-side polished test grade 475-575 µm thick wafers with <100> crystal 

orientation. Prior to film growth, the substrates were cleaned ultrasonically in high purity 

acetone for ten minutes, followed by ten minutes in high purity methanol. After the 

ultrasonic cleaning, the fused silica substrates were soaked in piranha solution (1:1 volume 

ratio of 93% H2SO4 and 35% H2O2) for two minutes, then soaked in ultrapure water for 1 

minute and dried with compressed argon. Following ultrasonic cleaning, the silicon 

substrates were soaked in a buffered oxide etch solution (6:1 volume ratio of 40% NH4F in 

water to 49% HF in water) for 20 seconds, and then rinsed with ultrapure water and dried 

with compressed argon. The mounting hardware used to affix the substrate to the sample 

holder creates masked areas, i.e., regions without film on the substrate.  

 

Three different materials were used for PLD targets: fused silica, silicon, and europium-

doped barium chloride. The silica and silicon specifications and cleaning procedures are 

identical to the aforementioned substrates. The europium-doped barium chloride target was 

synthesized in an argon atmosphere glovebox with an attached tube furnace. The barium 

chloride was doped with 1% europium (II) chloride, with a total sample mixture weight of 

10 g used for the melt. Initially, the BaCl2 powder was dried in a platinum crucible for 10 
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minutes at 300 °C. Following the drying, EuCl2 was added to the crucible and mixed 

thoroughly. The crucible was then placed back in the furnace and heated to 1000 °C at a 

rate of 5 K/min. The sample was held at 1000 °C for 30 minutes before cooling to 25 °C at 

a rate of 1 K/min. The sample was removed from the crucible and polished before being 

fixed to an aluminum holder along with the respective host material target, illustrated in 

Figure 8. The target had an approximate diameter of 35 mm and thickness of 3 mm. A new 

BaCl2:Eu2+ target was synthesized for each sample.  

 

Samples were synthesized via pulsed laser deposition using an ArF excimer laser (ExciStar, 

Coherent Inc) with a wavelength of 193 nm. A 200 Hz repetition rate was used with a rated 

pulsed length of 15 ns. The computer-controlled laser energy was set to 5.0 mJ, which 

equates to a laser fluence of 8.3 J/cm2 based on a 0.06 mm2 spot size. All samples were 

synthesized under vacuum with the background chamber pressure remaining below 3.0 x 

10-6 Torr. During depositions, the substrate temperature remained below 27 °C. The targets 

were fixed to the holder with rotational movement controlled by a stepper motor (Nema 23 

Integrated StepSERVO, Applied Motion Products). Two samples were made with different 

host materials (fused silica or silicon) and a BaCl2:Eu2+ target. The matrix was deposited 

first using 1000 laser pulses on the respective host, followed by 5000 laser pulses on the 

BaCl2:Eu2+. This bilayer was repeated for a total of 500 cycles and then capped with a final 

1000 laser pulses on the glass matrix target material. The final deposition of the glass 

matrix target material is intended to be a protective layer to prevent oxidation of the sample.  

 

The thickness was characterized with stylus profilometry (Dektak 150, Veeco). The 12.5 

µm diamond tip stylus traveled from one masked portion of the substrate to another with a 

force of 6.50 mg, revealing the step height. The length of the scan was 500 µm with a 

duration of 120 seconds resulting in a resolution of 0.014 µm/sample. The masked portion 

was used as the reference and the plateau was averaged to determine an average step height 

and average roughness.  
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Scanning electron microscopy (SEM) (Nova 600 NanoLab, FEI) was used to characterize 

the surface morphology and the cross-section structure of the film sample. To obtain the 

cross-section of the film, the sample was cleaved from the back side of the substrate by 

using a diamond scribe and cleaving pliers. Then the sample was mounted on an SEM 

holder with the cross-section of the sample facing upwards for characterization. 

 

A Philips X’Pert MRD X-ray Diffractometer (PANalytical Inc) with a Cu anode x-ray 

source  and a PW 3011/10 detector was used for x-ray diffraction measurements. Scans 

were conducted over a 2 range of 20 ° to 80 ° with a step size of 0.05 ° and a dwell time 

of 10 s at each angle.  

 

The photoluminescence of the samples was characterized by a PTI QM30 model 810/840 

phosphorescence/fluorescence spectrofluorometer. The PTI Felix32 software was used to 

collect the excitation and emission spectra. The scans used a 1 nm step size, 50 µs 

integration time, and a 100 Hz lamp frequency. The resultant data is the average of three 

subsequent scans and a background acquired prior to the measurements. The excitation 

scan ranged from 225 to 390 nm with an emission wavelength of 400 nm. The emission 

scan ranged from 310 to 525 nm with an excitation wavelength of 310 nm.  

 

The ability of the films to store optical data was determined by measuring photostimulated 

luminescence using a 532 nm pumped diode Nd/YAG laser (Compass 215M, Coherent 

Inc) and a 4-inch integrating sphere with ports for the sample and for a photomultiplier 

tube module. A shutter controlled the stimulating laser light, and the photostimulated 

emission was collected by the integrating sphere and directed to the photomultiplier tube, 

where 2 colored bandpass filters block the laser light and pass the photostimulated light. 

The photostimulation signal vs. time was recorded by a digital storage oscilloscope (TDS 

2024B, Tektronix). Before photostimulation, the samples were exposed to x-rays using an 

x-ray tube with a tungsten anode at 70 kVp. A comparison commercial sample was exposed 

for 320 msec at 10 mA, and with 20 mm of Al filtration, producing 27.7 mR of x-ray 
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exposure at the sample. The experimental samples were exposed for 1.25 sec at 400 mA, 

producing 80 R of x-ray exposure at the sample.   

 

To compare the photostimulated luminescence output, an exponential decay curve was 

fitted to the voltage data of the two experimental samples and a BFB commercial sample. 

The data was fitted using the CFTool in MATLAB to the following equation: 

 

𝐼(𝑡) = 𝐼0𝑒−𝜆𝑡       (1) 

 

The initial signal intensity is I0 and the stimulation speed is λ. The stimulation speed is a 

measure of how fast stored data can be retrieved from the phosphor plate. Because the PSL 

signal of samples lasted approximately 8 seconds, the following definite integral was 

performed for quantitative comparison: 

 

𝑃𝑆𝐿 𝐴𝑟𝑒𝑎 = ∫ 𝐼(𝑡)𝑑𝑡
8

0
      (2) 

 

The values were determined both mathematically and graphically across a range of 800 

points. The absorbed x-ray energy was determined separately for each experimental sample 

and for the commercial sample. The x-ray fluence per units of exposure was determined 

by the following equation [50]: 

 

𝜉(𝐸) =
5.34 ×105

𝐸(
𝜇𝑒𝑛(𝐸)

𝜌
)𝑎𝑖𝑟

            (3)  
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Figure 8.  Illustration of multi-component target showing a europium-doped barium 

chloride puck and a host material fixed to a target holder. 
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The energy of the x-ray in units of keV is E and the mass energy absorption coefficient for 

air in units of cm2/g is µen/ 𝜌. An estimated 10:1 molar ratio of BaCl2:Eu2+ (1% EuCl2) to 

host matrix (Si or SiO2) and a 3.8 g/cm3 density was used to calculate the x-ray mass 

attenuation coefficients for the experimental samples. The coefficients were calculated 

based on a 50:50 molar ratio BaF2:BaBr2 mixture and a 4.8 g/cm3 density for the 

commercial BFB sample.  

 

For x-ray imaging, the sample was exposed to a copper anode x-ray tube with a wavelength 

of 1.54 Å operating at 45 kVp and 40 mA. The sample was exposed for 10 minutes and the 

readout was conducted 5 minutes after exposure. A line-pair phantom with a lead thickness 

of 0.03 mm and a resolution range of 1.5 – 20.0 lp/mm was placed on top of the storage 

phosphor plate during exposure. Image readout was obtained with a computed radiography 

scanning apparatus similar to the one detailed in Lubinsky et al. [51].  

 

Results and Discussion 

Visual Characterization  

 

One of the as-made europium-doped barium chloride targets is shown illuminated with 

visible light in Figure 9(a). Visual observation of the target under a 254 nm UV lamp was 

conducted to ensure the europium was distributed in the crystalline BaCl2 during synthesis. 

As seen in Figure 9(b), the target exhibited a violet emission when excited by the UV lamp, 

which is characteristic of BaCl2:Eu2+ emission.  

 

The two sample types were visually similar, being translucent with a slight white 

coloration. A sample composed of BaCl2, Eu, and SiO2 is shown in Figure 10(a), with half 

circles visible on the edges of the substrate due to masking during sample growth. The 

sample retained the characteristic BaCl2:Eu2+ emission that was seen by the target when 

excited by UV light, shown in Figure 10(b).  The sample with a silicon matrix had a 

thickness of 12.70 µm with an average roughness of 4.49 µm while the fused silica matrix 

had a thickness of 12.71 µm with an average roughness of 12.76 µm. Although the sample 



23 

 

containing the silicon matrix was smoother, both samples were much rougher than 

expected, which was undesirable for achieving a nanostructured sample. An explanation 

for the unexpected roughness is provided in the results section of the SEM characterization. 

The films demonstrated adequate adhesion to the substrate with no delamination occurring 

during initial characterization.  

 

SEM analysis validated the thickness measurements determined by profilometry. A top-

view SEM image of the film with a Si matrix is shown in Figure 11(a). The surface of the 

film is made up of mostly spherical particulates with a size range of 1–4 µm. The 

particulates are responsible for the rough topography of the films as well as for their 

translucent, cloudy appearance. Cross-section SEM analysis revealed voids throughout the 

sample due to the variation in size of the particulates within the film. A cross-section SEM 

image is shown in Figure 11(b) with an inset of a high magnification SEM image 

highlighting the voids within the film. After the sample was exposed to the atmosphere for 

approximately 1 hour, delamination of the film from the silica substrate occurred. The 

delamination suggests that the protective capping layer of the glass matrix was not 

continuous and allowed moisture penetration. Due to the hygroscopic nature of BaCl2, the 

moisture penetration resulted in structural changes, causing the film adhesion to fail under 

ambient conditions. 

 

The authors hypothesize that the abundance of particulates within the sample is the result 

of BaCl2:Eu2+ target degradation. Although the target was polished prior to ablation, its 

surface appeared rough after the deposition process was completed. Multiple laser passes 

on the target were required due to the relatively large amount of material necessary to 

synthesize a functional imaging plate. Ablation of the roughened surface on subsequent 

passes may have led to the ejection of large particulates, which negatively affected layered 

growth. The authors speculate a more transparent film with fewer particulates could be 

synthesized by using a lower laser fluence and more frequent target polishing. A technique 

that will be used in future work is positioning the substrate off-axis with respect to the 

target, which results in a film with fewer particulates.  
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Figure 9. As-made BaCl2:Eu2+ pulsed laser deposition target in 

(a) visible light and (b) excited by a 254 nm UV light exhibiting 

violet emission. 

 

 

 

Figure 10. Sample composed of BaCl2, Eu, and SiO2 in (a) 

visible light and (b) excited by a 254 nm UV light exhibiting 

violet emission. 
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Figure 11. SEM (a) top view and (b) cross-section images of experimental BaCl2 film 

with a Si matrix. A higher magnification image revealing voids in the film is included 

as an inset. The top view reveals mostly spherical particles on the surface. 
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X-ray Diffraction 

 

The X-ray diffraction data for the two experimental samples is shown in Figure 12 along 

with calculated x-ray diffraction patterns for orthorhombic barium chloride (ICSD 16915), 

hexagonal barium chloride (ICSD 2190), and cubic silicon (ICSD 51688). Both samples 

exhibited observed peaks at 21.0, 22.0, 23.9, 31.0, 38.1, and 39.3 o 2 which is indicative 

of orthorhombic phase BaCl2 crystallites. There is a possibility of hexagonal phase BaCl2 

in both films, which accounts for the small observed peaks at 32.0 o 2. Barium chloride 

predominately forms in the orthorhombic phase over the unstable hexagonal phase, but a 

small amount of hexagonal BaCl2 cannot be excluded [52]. The peaks in the X-ray 

diffraction pattern are broad, likely as a result of the small crystallite size in the BaCl2 

layer, but also as a result of crystalline disorder within the nanocrystals. No crystalline 

silicon was detected in the Si matrix sample, indicating that the silicon was deposited as an 

amorphous material. A broad amorphous peak is shown in the data that can be attributed 

to the matrix materials within the sample. The peak observed at 26.6 o 2  is attributed to 

an unknown phase, which has previously been documented in the literature [32, 44, 53]. 

Peaks observed at 35.2 and 43.7 o 2 are indicative of aluminum and can be attributed to 

the sample stage.  

Optical characterization 

 

The emission spectra for the ablation target and the two films are shown in Figure 13. All 

spectra display a broad emission peak associated with the 4f65d1 to 4f7 emission of Eu2+ 

[54]. However, the emission peaks of the films are blue shifted and slightly broader than 

that of the target, which can be explained by differences in the crystal field. Wang et al. 

proposed that different intrinsic stresses can weaken the Eu2+ crystal field splitting due to 

effects of neighboring cations and result in a blue-shifted emission [55]. The 5d electron 

transition for Eu2+ occurs in the outer orbitals, which allows the atomic coordination in the 

surrounding BaCl2 host to influence the transition [56]. Due to the deposition process, the 

BaCl2:Eu2+ crystallites in the two films are likely more crystallographically disordered than 
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the BaCl2 in the target, leading to a decreased crystal field and the blue shifting and 

broadening of the spectra. The formation of disordered crystalline phases as a consequence 

of PLD synthesis is detailed in work conducted by Bendersky et al.  [57]. Additionally, for 

the thin films, the SiO2 and Si amorphous matrices may influence the crystal field at their 

interface with the BaCl2:Eu2+ crystallite surfaces, leading to additional differences in the 

spectra; the effects, however, would likely not be very pronounced, as they apply only to 

the surface of the crystallites and not the entirety of their volume. Peak analysis by 

deconvolution did not yield further insight into the source of the shifting and broadening 

of the peaks or their asymmetrical nature.  

Computed Radiography 

 

The PSL curve fits for the experimental storage phosphor plates are shown in Figure 14, 

along with an inset of the fit curve of a commercial plate for reference. It should be noted 

that the experimental samples and the commercial sample did not receive the same dosage 

of x-ray exposure, but differences in the absorbed x-ray energy have been accounted for in 

the comparison. The PSL area values, absorbed energies, and conversion efficiencies (CE) 

along with the CE ratio relative to the commercial plate are shown in Table 1.  

 

The BFB commercial storage phosphor plate had a CE that is 1530 times higher than that 

of the experimental plate with a silica matrix and 4900 times higher than the experimental 

plate with a silicon matrix. The CE of both experimental plates is too low to be considered 

as a potential replacement to traditional BFB storage phosphor plates in dose-critical 

applications such as medical imaging. The sample with the silica matrix had a CE that is 

about three times higher than the sample with the silicon matrix, despite the much rougher 

surface. The authors hypothesize that SiO2 provides a superior, more continuous, final 

protective layer, preventing degradation of the luminescent material, BaCl2:Eu2+, which is 

hygroscopic, resulting in a more efficient imaging plate.  Some degradation was visually 

observed in both samples, however. 
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Using a line-pair phantom, it was determined that the images rendered from the 

experimental storage phosphor plate with an SiO2 matrix could resolve 10 lp/mm, or a 

spatial resolution of 50 µm. The spatial resolutions of the experimental plates are 

comparable to most commercially-used storage phosphor plates and, depending on scanner 

specifications, can be considered high-resolution [58]. A radiograph of the line-pair 

phantom achieved from an experiment plate is shown in Figure 15.  

 

Although the CE of the experimental plates was much less than that of the traditional BFB 

storage phosphor plate, the potential remains for the favorable spatial resolution of the 

experimental plate to be utilized in nondestructive testing applications, where dose is of 

lesser concern when compared to medical imaging. Nondestructive testing is often used to 

detect welding discontinuities and defects using longer exposures and higher energy 

photons. Further experimentation would need to be conducted, using increased exposure 

dose and imaging thicker materials, to evaluate the practicality of applications for the 

experimental films in nondestructive testing.  

Future Work 

 

Although the experimental plates are not practical in computed radiography applications, 

this synthesis technique could be applied to develop a scintillating film that can be 

incorporated into a flat panel detector for use in indirect digital radiography. PLD can be 

employed to synthesize a glass-ceramic film, with high scintillator to glass ratio, with the 

opportunity to utilize certain scintillating materials that may not be applicable with bulk 

glass ceramics synthesized via traditional methods.   

 

Traditional indirect flat panel detectors (FPD) are typically comprised of an x-ray 

conversion screen of scintillating phosphors and a photodiode-thin film transistor (TFT) 

array deposited on a glass substrate that is not optically active. It is common, increasingly 

so in higher energy applications, for x-rays to pass through the conversion screen and the 

TFT array unattenuated, which can limit the performance of these devices. Developing an 

FPD with a sandwich of two x-ray conversion screens, in which the bottom screen is an 
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optically active glass-ceramic screen that serves a substrate for a bidirectional TFT array, 

has shown the potential to enhance the performance of these devices in work conducted by 

Leonard et al. [59]. The glass-ceramic substrate has the ability to capture previously 

unattenuated x-rays and convert them to visible light so that they may contribute to the 

radiograph. A schematic of an indirect flat panel detector with a scintillating glass-ceramic 

film is shown in Figure 16. The schematic shows an optional glass thin film on top of the 

scintillating film, which can be used to facilitate the incorporation of the TFT array. 

 

A prototype has been developed using PLD, consisting of BaCl2:Eu2+, which serves as both 

luminescent and scattering centers, and a borosilicate glass top layer. Using an ArF excimer 

laser, 2.5 × 106 laser pulses were applied to a BaCl2:Eu2+ target, followed by 5.0 × 104 laser 

pulses on a borosilicate target. The resultant film is shown in visible light and luminescing 

when exposed to 45 keV x-rays in Figure 17. Although the BaCl2:Eu2+ film demonstrated 

the ability to use the synthesis technique for this application, further work needs to be 

conducted to investigate different luminescent materials to increase scintillation yield.  

Conclusion 

 

Translucent layered thin films composed of alternate layers of europium-doped barium 

chloride nanocrystals and an amorphous glass matrix were synthesized via pulsed laser 

deposition. XRD was conducted to confirm that orthorhombic phase BaCl2:Eu2+ 

crystallites were incorporated into the film. SEM results revealed that the desired 

nanostructured layered films were not achieved, which was hypothesized to be due to 

inclusion of large particulates caused by PLD target degradation. The silicon and silica-

based films were similar in performance. The films exhibited a characteristic Eu2+ emission 

at 405 nm when excited by UV light. When the films storage phosphor capabilities were 

compared to a commercially available BFB plate, the conversion efficiency (CE) was 

approximately three orders of magnitude lower, even though the difference in amount of 

material and in x-ray attenuation were considered. However, for applications such as 

nondestructive testing, in which dose is not critical, the CE would be of lesser concern. The 

experimental storage phosphor plate was used to image a line-pair phantom through 



30 

 

computed radiography. The radiograph revealed a spatial resolution of 10 lp/mm, which is 

commercially considered to be high-resolution. The authors demonstrate for the first time 

the synthesis of a glass-ceramic imaging plate for computed radiography by pulsed laser 

deposition. This synthesis technique has the ability to develop scintillating glass-ceramic 

substrates that can be used in indirect FPD, but further material investigation must be 

conducted.  
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Figure 12. X-ray diffraction results for two samples with 

different targets used for host matrices: (a) film grown with 

SiO2 target, (b) film grown with Si target, (c) orthorhombic 

phase BaCl2 powder diffraction file (ICSD 16915), (d) 

hexagonal phase BaCl2 powder. 
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Figure 13. Normalized emission spectra of sample with (a) SiO2 matrix, (b) Si matrix, 

and (c) material from the BaCl2:Eu2+ PLD target. All samples were excited at 310 nm. 

The emission of the experimental films exhibited a blue shift when compared to the 

target, which is attributed to increased crystalline disorder.  
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Figure 14. PSL decay curves for experiment storage phosphor plates with a (a) SiO2 

matrix and a (b) Si matrix. Exponential decay curve fits are shown with a dashed line. 

A PSL curve for a commercial BFB storage phosphor plate is included as an inset. 

 

Table 1. Values from integrals of PSL decay curve fits along with data regarding to 

the amount of material. 

Sample PSL Area 

Absorbed 

Energy 

(keV/mm2) 

Conversion 

Efficiency 

(PSL/Energy) 

Ratio 

SiO2 Matrix 0.517 1.02 × 1010 5.05 × 10-11 6.53 × 10-04 

Si Matrix 0.157 9.96 × 109 1.58 × 10-11 2.04 × 10-04 

BFB  9.27 1.20 × 108 7.73 × 10-8 1 
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Figure 15. Radiograph of line-pair phantom recorded using an 

experimental storage phosphor plate and the corresponding profile 

taken at 10 lp/mm. 
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Figure 16. Cross-section view of dual-screen sandwich indirect flat panel detector 

displaying a scintillating conversion thin film coated on a glass substrate. 

 

 

Figure 17. Scintillating thin film prototype in (a) visible light and (b) exposed to 45 

keV x-rays. 
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CHAPTER II 

OPTICAL PROPERTIES OF DIFFERING NANOLAYERED 

STRUCTURES OF EUROPIUM DOPED BARIUM FLUORIDE THIN 

FILMS SYNTHESIZED BY PULSED LASER DEPOSITION 
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Abstract  

 

Optically-active thin films are employed in a variety of applications, such as LEDs and 

photovoltaics, due to their ability to act as up- or down-photon energy converters. Their 

performance depends critically on their composition and structure; thus, the use of novel 

synthesis techniques that allow for their control at the nanoscale level can result in 

improved efficiency and practicality. Layered thin films consisting of Eu-doped BaF2 

nanocrystalline layers separated by amorphous Al2O3 were synthesized via sequential 

pulsed laser deposition using three separate targets for the different components; this 

synthesis technique provides precise control of layer thickness at the nanoscale along with 

dopant distribution within the film. Cross-section transmission electron microscopy 

analysis verified the desired nano-layering. Post-deposition heat treatments in a nitrogen 

atmosphere resulted in samples exhibiting steady and robust emission with a broad peak 

ranging from 400-600 nm and a shoulder at 410 nm. The CIE 1931 chromaticity 

coordinates are x = 0.26-0.29 and y = 0.32-0.35 as a function of the sample configuration. 

Because the chromaticity coordinates are close to those of a pure white light (x = 0.33, y = 

0.33), these films demonstrate properties advantageous for applications with UV-pumped 

white light LEDs. 

Introduction 

 

Light-emitting diode (LED) solid-state lighting boasts many advantageous characteristics 

including low energy consumption, high brightness, and a long lifetime [60-62]. Currently, 

the most common commercially-available white-LEDs use an InGaN chip, which produces 

blue light, combined with the phosphor YAG: Ce3+, which downshifts a portion of the blue 

emission to create broadband emission [63-65]. A white light LED producing broadband 
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visible emission and incorporating a single-phase host material would result in a simpler 

manufacturing process. Different materials are being investigated to improve 

commercially-available white-LEDs [56]. A possible concept that is in its infancy of 

development is an ultraviolet (UV)-pumped white-LED, in which UV photons are 

downshifted to provide broadband visible emission [66].  

 

Although the recent progress of LED research has mainly been focused on general lighting 

applications, there are many different health care applications that can benefit from the 

advantageous characteristics of LEDs compared to other light sources. As detailed in Dong 

and Xiong [17], LEDs have potential applications in medical imaging, light therapies, and 

photo-biomodulations. White LEDs have been combined with blue-light lasers to bypass 

the use of filters and mechanically-rotating wheels to give optimal signal-to-noise ratio in 

multi-spectral imaging [67, 68]. LED therapies with emissions in the visible range have 

proved to be beneficial in treating a broad range of medical conditions including 

Parkinson’s disease, osteoporosis and inflammation, and in wound healing [21, 69, 70]. 

 

Divalent europium can present broadband emission that is highly susceptible to crystal 

field splitting [71]. The broad tunable emission has made Eu2+ a popular doping candidate 

for single-phase host materials with white-LED applications [72]. The Eu2+ emission is 

associated with the 4f65d1 to 4f7 electron transition which occurs in the outer orbitals [54]. 

The location of this transition allows coordinate surroundings of the host to influence the 

energy of the emitted photon [56]. Changes in the nephelauxetic effect of different host 

lattices along with crystal field splitting allow Eu2+ emission to emit over the range of 

ultraviolet to red light [73]. The effects of crystal field splitting on Eu2+ emission is 

illustrated in Figure 18.  

 

Glass-ceramics containing rare-earth doped fluoride crystalline material have been 

developed for potential applications such as wavelength shifters for solar cells and LEDs 

[46, 74]. The low phonon energy fluoride nanocrystalline matrix provides a favorable host 

for rare-earth dopants [75, 76]. Likewise, an oxyfluoride amorphous material provides a 
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low phonon energy environment advantageous for optically-active dopants [77]. It has 

been shown that when europium is added to aluminum oxide, the Al3+ cation facilitates the 

reduction of Eu3+ to Eu2+ to develop materials capable of broadband emission ideal for 

white light LED applications [78, 79]. Their performance depends critically on their 

composition and structure; thus, the use of novel synthesis techniques that allow for control 

at the nanoscale level can result in improved efficiency and practicality. 

 

In this study, optical behavior of thin films with layers of nanocrystalline BaF2, amorphous 

Al2O3, and a europium dopant, were synthesized by using sequential pulsed laser 

deposition. This synthesis technique provides precise control of layer thickness at the 

nanoscale level along with dopant distribution within the film. The amorphous Al2O3 layers 

contribute to encapsulating the fluoride host to prevent oxidation, which can limit optical 

performance. Different nanolayered structures were synthesized and photoluminescent 

(PL) emission measurements were obtained using a 355 nm excitation laser to determine 

the ability of the material to act as a UV-pumped LED. While all three experimental sample 

structures show promising optical characteristics for UV-pumped, white-LED applications, 

the differences in the nanolayered structures give a better understanding as to how the 

emission is affected by the Eu2+ coordinate environment. Cross-section transmission 

electron microscopy (TEM) analysis was conducted to verify the nanolayered structure of 

the samples. A complementary article focusing on BaF2 the structural evolution and film 

growth of BaF2 films deposited by controlled PLD conditions will be published.  

Materials and Methods  

 

Commercially available targets of Al2O3, BaF2, and Eu2O3 were ablated to produce layered 

thin films via pulsed laser deposition (PLD). The pressure in the system was maintained at 

below 3.0 x 10-6 Torr during deposition. An ArF excimer laser with a 193 nm wavelength 

beam with a rated pulse length of 20 ns was used. Films were deposited on single side 

polished, 475-575 µm thick, test grade silicon wafers in the <100> crystalline orientation. 

The substrates were cleaned with an acetone rinse, ultrasonically in ethanol for 5 minutes, 

then dried with compressed nitrogen prior to their placement in the deposition chamber.  
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Al2O3, BaF2, and Eu2O3 deposition parameters are detailed in Table 2. The different 

substrates positions are illustrated in Figure 19. 

 

Three different layer configurations were designed in order to explore the Eu doping of 

BaF2 (Structures 1 and 3) and the potential of having the Eu doping at the BaF2/Al2O3 

interface (Structure 2). Schemes of the structure of the different sample are shown in Figure 

20.  

 

Sample Structure 1 (Figure 20(a)) was synthesized by sandwiching an Eu2O3 layer between 

two BaF2 layers and the Al2O3 matrix layers. An initial 2000 laser pulses were used on the 

Al2O3 target, followed by 2140 laser pulses on BaF2, 430 laser pulses on Eu2O3, and 2140 

laser pulses on BaF2. This sequence (Al2O3/BaF2/Eu2O3/BaF2) was initially repeated 5 

times and a final 2000 pulse Al2O3 layer was grown as a protective cap. At this point in the 

process, a sample was removed from the deposition chamber, and an additional 5 layers 

with a final cap was grown on top of a sample that remained in the chamber.  

 

Sample Structure 2 (Figure 20(b)) was synthesized by depositing an Eu2O3 layer on top of 

BaF2 layers with Al2O3 base layers. An initial 2000 laser pulses were used on the Al2O3 

target, followed by 4280 laser pulses on BaF2 and 430 laser pulses on Eu2O3. This sequence 

(Al2O3/BaF2/Eu2O3) was initially repeated 5 times and a final 2000 pulse Al2O3 layer was 

grown as a protective cap. Identical to the previous structure, a sample with 5 layers and 

another sample with 10 layers were grown.  

 

Sample Structure 3 (Figure 20(c)) was synthesized by alternating BaF2 and Eu2O3 between 

Al2O3 layers. After an initial 2000 laser pulses on the Al2O3 target, 1710 laser pulses were 

used on the BaF2 target, followed by 100 laser pulses on the Eu2O3 target. The BaF2/Eu2O3 

sequence was repeated 10 times and a final 2000 pulse Al2O3 layer was grown as a 

protective cap. A sample was kept with 1 (Al2O3/(BaF2/Eu2O3) x10) sequence and 2 
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additional sequences were grown on a separate sample, resulting in a total of 3 repeating 

sequences.  

 

Cross-section TEM samples were prepared from Sample Structure 1 films by focused ion 

beam (FIB) milling. To protect the films from FIB damage, the samples were coated with 

a layer of Au using electron-beam evaporation before milling. TEM was carried out using 

a JEM-2100F instrument with 200 kV incident electron energy, in order to investigate the 

structure of the cross-section samples. 

 

Heat treatments were performed in both ambient atmosphere and using nitrogen purge gas 

to determine the effects of the different heat treatment conditions. Samples that were heat 

treated in an ambient atmosphere will be referred to as (amb) and samples heat treated in a 

nitrogen atmosphere will be referred to as (N2). The ambient atmosphere heat treatments 

were performed in a MESTRA HP-25 muffle furnace. The heat treatments in a nitrogen 

atmosphere were performed in a Thermconcept 50/250/12 tube furnace using a lab-grade 

N2 purge gas. In both atmospheres, the samples were heat treated at a heating ramp of 10 

K/ min to 300 C, and held at that temperature for 1 hour, then allowed to cool to ambient 

temperature over time. 

 

After the emission from the different sample structures were compared, the best sample 

configuration for UV-pumped white light LEDs was determined. Using this configuration, 

the emissions of a sample with 5 repeating sequences and 10 repeating sequences were 

compared to determine the effect of layer numbers on emission intensity. In addition, both 

samples were heat treated to 300 C in a nitrogen atmosphere for 1 hour. Following the 

post-deposition heat treatments, emission data were collected, and emission intensities 

were compared.  
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Figure 18. Partial energy level diagram of Eu2+ demonstrating 

how broadband emission is an outcome of crystal field 

splitting. 
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Table 2. PLD parameters of all of the materials that were ablated. 

Material 
Laser 

Fluence 

Laser 

Frequency 

Substrate 

Positiona 

Target-substrate 

Distance 

Al2O3 4.7 J·cm-2 20 Hz 20  37.8 mm 

BaF2 4.7 J·cm-2 10 Hz 180  86.0 mm 

Eu2O3 1.3 J·cm-2 10 Hz 20  37.8 mm 

a Substrate position is angle off-axis relative to the shared axis position. 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 

 

 

 

 

 

 

Figure 19. Illustration displaying different substrate positions 

used to deposit Al2O3 and Eu2O3, rotated 20° from the 

conventional 90° perpendicular to the target (substrate position 

1), and BaF2, rotated 180° from the conventional 90° 

perpendicular to the target (substrate position 2). 
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Figure 20. Illustration of different thin film layer configurations synthesized to 

investigate dopant incorporation. (a) Sample Structure 1, (b) Sample Structure 2, and 

(c) Sample Structure 3. 
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Photoluminescence studies were conducted by using a 355 nm Genesis CX 355-200 

Optically Pumped Semiconductor Laser (Coherent) with a power of approximately 8 mW 

as the excitation source. A monochromator (ActonSpectraPro300i, diffraction grating= 

1200 g/mm (Vis)) filtered the light emitted by the samples, which was detected through a 

photomultiplier tube (EMI9659QB-S20). In addition, the signal was amplified with a 

standard lock-in technique. CIE 1931 chromatic coordinates were obtained by processing 

the emission data in Origin 2021 version 9.8 (OriginLab) and utilizing the Chromaticity 

Diagram v1.1 application.  

Results and Discussions 

Microscopy 

 

Cross-section TEM analysis verified that the films were grown with the intended layered 

nanostructures. Figure 21 shows a TEM cross-section of Structure 1 as-made with 5 and 

10 layers. Both samples show clear layering with the layers being uniform throughout the 

film. The darker contrast layers correspond to the Eu2O3 deposits, the lighter contrast layers 

are attributed to Al2O3, and the BaF2 shows an intermediate contrast. The 5-layer film has 

a total thickness of 50 nm and the 10-layer sample has a total thickness of 99 nm. The 10-

layer film (Figure 21(b)) presents an anomaly in the multilayer periodicity, two layers 

down from the gold protective cap, where the layer does not show the dark contrast 

associated with Eu2O3. This is hypothesized to be due to experimental error, possibly a 

malfunction of the stepper motor that controlled the target position, resulting in Eu2O3 not 

being ablated for that layer. The wide light layer in the middle of the sample seen in Figure 

21(b) is because of the double thickness of Al2O3 deposited between the first and second 5 

repeat sequences (see Figure 20(a)).  

 

Optical characterization 

 

The emission spectra of the three as-deposited sample structures are shown in Figure 22. 

The three sample structures resulted in distinctly different PL emissions. These differences 

demonstrate the consequence of their structural configuration on the emission of these 
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materials. Structures 1 and 2 were synthesized with the same amount of Al2O3, BaF2, and 

Eu2O3, with the only difference coming from the fact that in Structure 1, the Eu2O3 is 

sandwiched between two BaF2 layers in each repeat, yet a difference in emission is seen. 

The layer sequence determines the local coordination environment of the luminescent 

center (Eu), which can be manipulated depending on the desired emission.  

 

The emission spectra for Sample Structure 1 with 5 layers as-made and heat treated are 

shown in Figure 23. The as-made sample did not exhibit any measurable emission expected 

from crystalline BaF2, thus indicating that all of the layers in the sample were amorphous, 

which was verified by electron diffraction patterns and detailed in the complementary 

article.  A peak at 410 nm and a broad emission from 450 – 600 nm is seen in Structure 1 

(amb). The 410 nm peak can be attributed to the 4f65d1 to 4f7 transition of Eu2+ incorporated 

in BaF2 nanocrystals. The authors hypothesize that the broad emission from 400 – 600 nm 

can be attributed to Eu2+ in different environments such as the BaF2 nanocrystalline matrix, 

the BaF2/Al2O3 interface, and the Al2O3 layers as shown in Figure 24. In Structure 1 (N2), 

the intensity of the broad emission increases, and the 410 nm emission is expressed as a 

shoulder indicating the movement of the Eu dopant into different environments. 

 

The emission spectra for Sample Structure 2 with 5 layers as-made and heat treated are 

shown in Figure 25. The as-made film exhibited a broad emission centered at 540 nm. The 

spectrum of Structure 2 (amb) shows a 410 nm peak along with a broad emission that is 

comparable to Structure 1 (amb). Structure 2 (N2) exhibits a broad emission from 400 – 

600 nm and a shoulder at 410 nm is shown, but of lesser intensity when compared to 

Structure 2 (amb). Both the emission spectra of Structure 2 (N2), and Structure 2 as-made, 

exhibit a slight peak at 610 nm that can be attributed to a 5D0
 to 7F2 electron transition of 

Eu3+ [80]. This sample structure had the largest amount of Eu2O3/Al2O3 adjacent layers, 

which could prevent Eu from migrating into a reducing atmosphere due to the smaller 

percentage of adjacent BaF2/Eu2O3 layers or the amount of oxygen present in the Al2O3 

layers.  
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The emission spectra for Sample Structure 3 with 5 layers as-made and heat treated are 

shown in Figure 26. Unlike the previous two sample structures, the as-made Structure 3 

exhibited the most intense emission when compared to the emissions after heat treatment. 

A sharp peak at 410 nm with a broader peak at 430 nm was found. Growing thicker layers 

of BaF2 resulted in the layers being nanocrystalline as deposited, which then were able to 

luminesce prior to any post-synthesis heat treatment. With the Structure 3 (amb) emission, 

the 410 nm peak intensity decreased resulting in a broader, less intense, peak with a range 

from 400 - 500 nm. A broad emission with consistent intensity between 400 - 650 nm was 

measured in Structure 3 (N2). 

 

The 410 nm peak, attributed to BaF2:Eu2+, is seen in all three structures following heat 

treatment in an ambient atmosphere. This result shows that heat treatments facilitated Eu 

diffusion into the BaF2 matrix and could have resulted in oxygen-aided emission quenching 

in the Al2O3 layers. Structure 3 exhibits the most intense BaF2:Eu2+ emission due to an 

increased percentage of adjacent Eu2O3/BaF2 layers when compared to Structure 1 and 2. 

The authors hypothesize that broadening of the emission peaks following heat treatments 

in an inert atmosphere could be caused by the Eu dopant diffusing into Al2O3 layers, but 

without the emission quenching that was found with ambient atmosphere heat treatments. 

The dramatic changes in the emission of Structure 3, a structure with a relatively small 

amount of Eu/Al2O3 adjacent layers, found after different heat treatment conditions, 

support this hypothesis. 

 

When repeated emission measurements were conducted at the same sample location on 

films that had been heat treated in an ambient atmosphere, the emission intensity decreased 

as demonstrated by Structure 1 in Figure 27. The longer the excitation laser was focused 

on the same location, the more the emission intensity decreased. A decrease in emission 

intensity due to UV laser degradation was found for all sample structures following post 

synthesis heat treatments in an ambient environment and is repeatable for different sample 

locations. The main proposed mechanism in the literature for the degradation is 

photogeneration of defects [81, 82]. When Structure 1 was heat treated in nitrogen, no 
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emission degradation occurred after exposure to the UV excitation laser, as shown in 

Figure 28. This could be related to the passivation of the Eu with nitrogen bonds, which 

leads to samples with a very robust response. These results agree with the work conducted 

by Amidani et al. [83], who stated that oxidation of Eu2+ to Eu3+ is the main mechanism 

that results in emission quenching. Further studies need to be conducted to determine if the 

degradation of these samples is reversible through heat treating or laser stimulation.   

 

Since emission intensity that does not significantly diminish overtime is necessary for the 

proposed LED application, and we have seen that the emission stability against UV laser 

degradation of the samples heat treated in nitrogen was superior to that of samples subject 

to an ambient atmosphere, we have only analyzed the chromatic coordinates of the nitrogen 

heat-treated samples. The chromatic coordinates of all three sample structures following a 

1-hour, 300 C post-synthesis heat treatment in nitrogen, using CIE 1931, are shown in 

Figure 29. The coordinates were (x = 0.26, y = 0.33) for Structure 1, (x = 0.26, y = 0.32) 

for Structure 2, and (x = 0.29, y = 0.35) for Structure 3. Pure white CIE 1931 chromatic 

coordinates are considered to be (x =0.33, y = 0.33). The chromatic coordinates show that 

all three sample structures emit white light that could be used for UV-pumped, white-LED 

applications. Structure 1 (N2) exhibits a white light emission that was more intense and had 

the best emission stability against UV laser degradation when compared to that of 

Structures 2 and 3; therefore, Structure 1 is the best layer configuration for the intended 

application. 

 

The emission spectra of Structure 1 (N2) consisting of 5 layers and 10 layers are shown in 

Figure 30. The emission exhibited a 39% increase in intensity at 472 nm when the number 

of layers doubled from 5 to 10. This demonstrates an increase of light output from the films 

when more material is deposited. The increase in emission due to increase in the number 

of layers is expected to reach an asymptote due to self-absorption. Although the emission 

intensity was increased, the emission spectrum became less favorable for white light 

applications. The spectrum exhibited a broad emission throughout the entire measured 

range, showing a broad apex peak from 440 – 460 nm, a shoulder at 410 nm, and a broad 
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shoulder near 500 nm. This emission demonstrates chromaticity coordinates of (x = 0.25, 

y = 0.32). 

Conclusion 

 

Nanolayered barium fluoride/ europium oxide/ aluminum oxide films were synthesized via 

sequential pulsed laser deposition using three different layer configurations. Cross-section 

TEM analysis of the samples showed that the layers are uniform throughout the film. The 

different sample structures were subjected to post-synthesis heat treatments in ambient and 

nitrogen atmospheres to precipitate optically-active nanocrystals. Photoluminescent 

emission was measured from the samples, both as-made and following heat treatments. All 

sample structures subject to ambient atmosphere heat treatments exhibited emission 

degradation when subject to the excitation laser. However, it is found that with heat 

treatments in a nitrogen atmosphere this degradation can be suppressed. Sample Structure 

1, consisting of europium sandwiched between barium fluoride layers, was determined to 

be the best performing structural configuration based on its emission intensity and stability 

against UV laser degradation; after heat treatment in nitrogen, the film exhibited a broad 

emission from 400 - 600 nm with a shoulder at 410 nm. Chromaticity coordinates plotted 

from the acquired emission spectra ranged from x = 0.26-0.29 and y = 0.32-35, which 

demonstrates a potential application in UV-pumped white light LEDs. Emission intensity 

was compared to film thickness to show a 39% increase in light output when the number 

of sample layers was doubled from 5 to 10.  
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Figure 21. TEM cross-section images of as-made Sample 

Structure 1 Al2O3/BaF2/Eu2O3 thin films synthesized with (a) 5 

layers and (b) 10 layers. 
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Figure 22. Emission spectra from a 355 nm excitation source for as-

made (a) Structure 1 with 5 layers, (b) Structure 2 with 5 layers, and 

(c) Structure 3 with 1 layer. 
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Figure 23. Emission spectra of Sample Structure 1 with 5 layers from 

355 nm excitation source after (a) 1-hour heat treatment at 300 °C in 

ambient atmosphere, (b) 1-hour heat treatment at 300 °C in a nitrogen 

atmosphere, and (c) as-made sample. 
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Figure 24. Illustration showing atomic layers of a barium 

fluoride/aluminum oxide thin film and three different possible 

locations of a europium dopant. 
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Figure 25. Emission spectra from a 355 nm excitation source for 

Sample Structure 2 with 5 layers after (a) 1-hour heat treatment at 300 

°C in ambient atmosphere, (b) 1-hour heat treatment at 300 °C in a 

nitrogen atmosphere, and (c) as-made. 
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Figure 26. Emission spectra of Sample Structure 3 with 5 layers from 

355 nm excitation source after (a) 1-hour heat treatment at 300 °C in 

ambient atmosphere, (b) 1-hour heat treatment at 300 °C in a nitrogen 

atmosphere, and (c) as-made sample. 
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Figure 27. Emission spectra of Sample Structure 1 with 5 layers from a 

355 nm excitation source after a 1-hour, 300 °C post-synthesis heat 

treatment in an ambient atmosphere. The spectra were obtained from 

consecutive measurements at the same sample location. Spectrum (a) is 

the first measurement, (b) is the second measurement, and (c) is the 

third measurement.  
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Figure 28. Emission spectra of Sample Structure 1 with 5 layers from a 

355 nm excitation source after a 1-hour, 300 °C post-synthesis heat 

treatment in a nitrogen atmosphere. The spectra were obtained from 

consecutive measurements at the same sample location. Spectrum (a) is 

the first measurement and (b) is the second measurement. 
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Figure 29. Color points in the CIE 1931 chromaticity diagram of (1) 

Sample Structure 1, (2) Sample Structure 2, and (3) Sample Structure 

3 after a 1-hour heat treatment at 300 °C in a nitrogen atmosphere. 

 

 

 

 

 

 

 

 

 



60 

 

 

 

 

 

 

Figure 30. Emission spectra of Sample Structure 1 from a 355 nm 

excitation source with a sample containing (a) 10 layers and (b) 5 layers. 
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CHAPTER III 

OPTICAL CHARACTERIZATION OF ALUMINUM OXIDE/ 

BARIUM FLUORIDE LAYERED THIN FILMS CODOPED WITH 

EUROPIUM AND MANGANESE SYNTHESIZED BY PULSED 

LASER DEPOSITION 
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C.W. Bond was responsible for the writing of this chapter and all research activities 

presented, except as noted: P. Gómez-Rodríguez conducted PLD synthesis and emission 

measurements. J. Gonzalo, R. Serna, A.K. Petford-Long, R.L. Leonard, and J.A. Johnson 

provided guidance for the overall project and critical feedback.  

 

Abstract 

 

The Eu2+/Mn2+ complex is a popular dopant option in white light applications due to the 

broadband emission of the Eu2+ ion and the red component of the Mn2+ ion. Codoping 

europium with manganese has the potential to increase emission intensity and provide a 

purer white light when compared to singly doped Eu material. This study investigates the 

optical effect of manganese on europium doped BaF2/Al2O3 layered thin film synthesized 

by pulsed laser deposition. Using a layered configuration determined in previous studies, 

two different amounts of manganese were introduced into the films using an MnO target. 

The samples were subject to post-deposition thermal treatments in a nitrogen atmosphere, 

then emission measurements were conducted using a 355 nm excitation laser. The sample 

with a 1:8 Mn/Eu ratio showed no change in emission trends when compared to a sample 

with only Eu dopant. The sample with a 1:2 Mn/Eu ratio showed a blue shift in emission 

with chromic coordinates of x= 0.23 and y= 0.26, which could be advantageous for 

applications with UV-pumped blue-light LEDs.  

 

Introduction 

 

The use of transition metals is favorable for solar cell, semiconductor, and optical devices 

due to their large tunable bandgap and physical properties arising from the localized 

character of d-elections [84, 85]. The transition of an electron from an excited state to a 

ground state, or in terminology used for band gaps, from a conduction band to a valence 

band, can produce the emission of a photon i.e. luminescence. The optical performance of 
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the Mn2+ ion relies on 3d-3d electron transitions which are forbidden by the Laporte 

selection rule which states a change in parity must occur for allowed transitions. The Mn2+ 

ion is nearly colorless with poor emission performance which restricts its applications in 

luminescent materials  [8, 86, 87]. The Laporte rule can be relaxed by coupling of the 

electronic transition with vibrations to result in a loss of symmetry, but the Mn2+ ion is 

typically paired with a sensitizer to increase optical performance [88]. 

 

The Eu2+ ion is a popular sensitizer to an Mn2+ activator that has yielded desirable 

photoluminescent properties in several host lattices [89-91]. Even at low dopant 

concentrations, the Eu2+ to Mn2+ energy transfer has been observed in many different halide 

crystal matrices [92-95]. An excited 5d1 electron in Eu2+ can be at the 6P5/2 or 6P7/2 energy 

level, which is similar to the 4E(4D) energy level in an excited Mn2+ ion [96]. The similar 

energy levels allow for an electron transfer from Eu2+ to Mn2+ and emission from the Mn2+ 

ion through a mechanism illustrated in Figure 31. Emission from Mn2+ is typically in the 

red region of the visible spectrum but can range from 500 – 700 nm depending on the 

crystalline matrix it occupies. The Eu2+/Mn2+ dopant complex is a popular phosphor 

material for LED applications: Eu2+ contributes to broad emission in the blue region of the 

visible spectrum while Mn2+ contributes to broad emission in the red region resulting in a 

high-quality white-light LED.  

 

The optical influence of the transition metal manganese is presented in this study by 

characterizing two samples with different amounts of MnO added to nanolayered thin 

films. The layered configuration and post-synthesis heat treatments used were based on 

results from Chapter II. One sample was synthesized with a 1:8 Mn to Eu dopant ratio and 

one with a 1:2 Mn to Eu ratio. The ratios are based on the quantities of cations and assuming 

similar densities. Samples, as-made and following post-synthesis heat treatments, are 

compared by photoluminescent emission characterization achieved using a 355 nm 

excitation laser. The optical influence of the Mn dopant is determined by comparing the 

emission of a sample with only an Eu dopant. Comparing the two different amounts of 
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MnO in the samples demonstrates a threshold of material needed for Mn optical influence 

in the regions measured.  

Materials and Methods 

 

Commercially available targets of Al2O3, BaF2, Eu2O3, and MnO were ablated to produce 

layered thin films via pulsed laser deposition (PLD). The pressure in the system was 

maintained below 3 x 10-6 Torr during deposition. An ArF excimer laser with a 193 nm 

wavelength beam with a rated pulse length of 20 ns was used. Films were deposited on 

single side polished, 475-575 µm thick, test grade silicon wafers in the <100> crystalline 

orientation. The substrates were cleaned with an acetone rinse, ultrasonically in ethanol for 

5 minutes, then dried with compressed nitrogen prior to their placement in the deposition 

chamber.  

 

Associated PLD set up for materials Al2O3, BaF2, and Eu2O3  are detailed in Chapter II. 

The deposition parameters of the ablated materials, including MnO, are shown in Table 3. 

 

Samples using the same layered configuration and two different Mn dopant amounts were 

grown, as illustrated in Figure 32.  

 

Codoped Sample 1 (Figure 32(a)) was synthesized with a small amount of MnO relative to 

the amount of Eu2O3. An initial 2000 laser pulses were used on the Al2O3 target, followed 

by 4280 laser pulses on BaF2, 430 laser pulses on Eu2O3, 100 laser pulses on MnO, and 

4280 laser pulses on BaF2. This sequence (Al2O3/BaF2/Eu2O3/MnO/BaF2) was repeated 5 

times and a final 2000 pulse Al2O3 layer was grown as a protective cap. Based on 

preliminary in situ spectroscopic ellipsometry, the number of stated pulses will equate to 

layers of 10 nm Al2O3, 5 nm BaF2, and 0.5 nm MnO.  

 

Codoped Sample 2 (Figure 32(b)) was synthesized with a projected 1:1 Eu2O3 to MnO 

thickness ratio. An initial 2000 laser pulses were used on the Al2O3 target, followed by 

4280 laser pulses on BaF2, 430 laser pulses on Eu2O3, 400 laser pulses on MnO, and 4280 



65 

 

laser pulses on BaF2. This sequence (Al2O3/BaF2/Eu2O3/MnO/BaF2) was repeated 5 times 

and a final 2000 pulse Al2O3 layer was grown as a protective cap. The project thickness of 

the layers is the same as Codoped Sample 1, except for a 2.0 nm layer of MnO instead of 

0.5 nm.  

 

The samples were heat treated in a nitrogen atmosphere at a heating ramp of 10 K/ min 

from ambient temperature to 300 C and held at that temperature for 1 hour, then allowed 

to cool to ambient temperature over time.  

 

Photoluminescence studies were conducted by methods detailed in Chapter II.  

Results and Discussions 

 

The emission spectra of Codoped Sample 1 synthesized with 0.5 nm of MnO as-made and 

following a 1 hour 300 °C heat treatment in a nitrogen atmosphere achieved by a 355 nm 

excitation wavelength is shown in Figure 33. The as-made sample exhibited a sharp peak 

at 418 nm and a steady decrease in intensity throughout the rest of the visible spectrum 

with the exception of a shoulder at 446 nm. The sample heat treated in a nitrogen 

environment exhibited a broad emission with the most intensity found between 450 and 

550 nm. A shoulder is seen at 420 nm and a steady decrease in intensity is exhibited from 

550 nm through the remainder of the visible spectrum.  

 

The emission spectra of Codoped Sample 2 synthesized with 2 nm of MnO as-made, and 

following a 1 hour 300 °C heat treatment in a nitrogen atmosphere achieved by a 355 nm 

excitation wavelength are shown in Figure 34. When observing the 420-500 nm region, the 

sample heat treated in nitrogen exhibited an emission approximately four times greater than 

the as-made sample. The emission of both samples exhibited similar trends and spectral 

shapes. The most intense emission is exhibited in the 418-468 nm range with two broad 

peaks at 422 and 448 nm and a shoulder at 460 nm.  
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Table 3. PLD parameters of all of the materials that were ablated. 

Material 
Laser 

Fluence 

Laser 

Frequency 

Relative Substrate 

Position 

Target-substrate 

Distance 

Al2O3 8.0 J/cm2 20 Hz 20  37.8 mm 

BaF2 8.0 J/cm2 10 Hz 180  86.0 mm 

Eu2O3 2.0 J/cm2 10 Hz 20  37.8 mm 

MnO 8.0 J/cm2 10 Hz 20  37.8 mm 
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Figure 31. Illustration of a proposed mechanism of energy transfer between Eu2+ and 

Mn2+ ions. 
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Figure 32. Illustration of samples with the same layered configuration and two 

different manganese dopant amounts. 
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The optical influence of the Mn dopant on the Eu/Mn complex is shown in Figure 35 by 

comparing the emission of the two codoped samples to a sample with only Eu (Sample 

Structure 1) from Chapter II. In the sample with 2.0 nm MnO, the first broad peak at 420 

nm can be attributed to the 4f65d1 to 4f7 electron transition of an Eu2+ ion in a BaF2 matrix. 

This peak is similar to the emission of Eu-doped samples heat treated in an ambient 

atmosphere and aligns with the shoulders found in the emission of samples heat treated in 

a nitrogen atmosphere. The second broad peak can be attributed to either emission from 

Eu2+/Mn2+ complexes or Mn2O3 nanoparticles [97, 98]. 

 

Because the phase diagram of Mn-O is comprised of MnO, MnO2, Mn2O3, and Mn3O4, 

luminescence from Mn2+, Mn3+, and Mn4+ ions must be considered [99, 100]. Emission 

from the Eu2+/Mn2+ complexes would indicate electrons transferring from the excited 6P5/2 

or 6P7/2 energy state of Eu2+ to the excited 4E(4D) energy level of Mn2+ followed by the 

emission of photons. Emission from Mn2O3 nanoparticles could indicate oxygen vacancy-

related defects. Emission from Mn4+ can be ruled out as it is usually exhibited in the near-

infrared region [101, 102]. To confirm the origins of the emission, an excitation spectrum 

would need to be measured. A peak at approximately 300 nm is expected in the excitation 

spectrum in photoluminescence attributed to 4E(4D) energy levels [103]. Grazing incidence 

x-ray diffraction could be used to determine the presence of Mn2O3 nanoparticles.  

 

The emission of the codoped sample with 0.5 nm MnO showed similar trends and 

intensities when compared to the sample only doped with Eu, indicating no optical 

influence of the Mn dopant. Because optical characteristics were changed with an increased 

amount of MnO, it is hypothesized the 0.5 nm sample did not contain enough Mn2+ or Mn3+ 

ions to yield a measurable emission. Using a PLD target that has more favorable 

stoichiometry to producing Mn2+ ions, such as MnF2, could increase the optical influence 

of Mn with less ablated material. However, switching from an oxide to a fluoride target 

would introduce the disadvantage of increased material costs and the necessity for more 

intricate storage and handling procedures to avoid oxidation.  
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The chromatic coordinates of the two co-doped samples are plotted using CIE 1931 and 

shown in Figure 36. The emission of the 0.5 nm MnO sample had a similar trend to a 

sample with only Eu, so the chromic coordinates are identical (x=0.26, y=0.33) as 

expected. The coordinates of the sample with 2.0 nm MnO were (x= 0.23, y=0.26), which 

exhibits a blue-shift when compared to europium-doped samples. Because pure white CIE 

1931 chromatic coordinates are (x=0.33, y=0.33), MnO dopant does not appear to be 

beneficial for UV-pumped white-LEDs, but which could be advantageous for applications 

with UV-pumped blue-light LEDs. Blue-light has shown to be beneficial for good health 

with increasing exposure improving alertness and subjective well-being [104]. 

 

Previous experiments demonstrated the possibility of decreased emission output with 

increased exposure time to an excitation source. The samples heat treated in a nitrogen 

atmosphere showed a steady emission intensity when exposed to an excitation laser source, 

which correspondences with results found in Chapter II. Figure 37 and Figure 38 show 

repeated emission measurements conducted on the same sample location for both co-doped 

samples.  

Conclusion 

 

A threshold range was found for the amount of manganese necessary to optically influence 

nanolayered thin films of barium fluoride, europium oxide, and aluminum oxide 

synthesized via pulsed laser deposition. Samples were synthesized with two different 

amounts of manganese, one with a 1:8 Mn to Eu ratio (0.5 nm MnO) and one with a 1:2 

Mn to Eu ratio (2.0 nm MnO) based on projected deposited material thickness. The 1:8 Mn 

to Eu ratio sample showed no change in emission trends when compared to a sample singly 

doped with europium. The 1:2 Mn to Eu ratio exhibited a new emission at 448 nm that was 

not found in the other samples. The altered emission resulted in a blue-shift in the chromic 

coordinates (x= 0.23, y=0.26), which could be advantageous for applications with UV-

pumped blue-light LEDs. The emission intensity of both samples was steady when exposed 

to a UV excitation laser.  
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Figure 33. Emission spectra of the 0.5 nm MnO sample after a 1-hour heat treatment 

at 300 °C in (a) a nitrogen atmosphere and (b) as-made. A 355 nm excitation source 

was used. 
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Figure 34. Emission spectra of the 2 nm MnO sample after a 1-hour heat treatment 

at 300 °C in (a) a nitrogen atmosphere and (b) as-made. A 355 nm excitation source 

was used. 
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Figure 35. Emission spectra of (a) 2 nm MnO sample, (b) 0.5 nm MnO sample, and 

(c) sample without Mn. All samples were heat treated for 1-hour at 300 °C in a 

nitrogen atmosphere. A 355 nm excitation source was used. 
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Figure 36. Color points in the CIE 1931 chromaticity diagram of the (a) 0.5 nm MnO 

sample and the (b) 2 nm MnO sample after a 1-hour heat treatment at 300 °C in a 

nitrogen atmosphere. 
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Figure 37. Emission spectra of the 0.5 nm MnO sample from a 355 nm excitation 

source after a 1-hour post-synthesis heat treatment in a nitrogen atmosphere. The 

spectra were contained from consecutive measurements of the same sample location. 

Spectrum (a) is the first measurement and (b) is the second measurement. 
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Figure 38. Emission spectra of the 0.5 nm MnO sample from a 355 nm excitation 

source after a 1-hour post-synthesis heat treatment in a nitrogen atmosphere. The 

spectra were contained from consecutive measurements of the same sample location. 

Spectrum (a) is the first measurement and (b) is the second measurement. 
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CONCLUSION 
 

Optically active films were successfully synthesized via pulsed laser deposition and 

evaluated for applications in computed radiography or light-emitting diodes. The films 

were comprised of a halide crystal, a europium dopant, and an amorphous matrix material. 

The structural and optical characteristics of these films were dependent on target materials, 

pulsed laser deposition parameters, and post synthesis thermal treatments. The optical 

performance of the films for biomedical applications was determined. 

 

The incorporation of BaCl2:Eu2+ crystallites into an amorphous matrix was confirmed in 

approximately 13 µm films via x-ray diffraction. The films’ storage phosphor capability 

was determined with the analysis of photostimulated luminescence. The investigation of 

two different amorphous matrices (Si and SiO2) revealed that both materials make a 

suitable host for the crystallites. A radiograph was developed using computed radiography 

and an experimental film that demonstrated a spatial resolution of 10 lp/mm, which is 

commercially considered to be high-resolution. The conversion efficiency of a commercial 

BFB storage phosphor plate was superior to that of the experimental storage phosphor films 

demonstrating a lack of practicality in medical imaging. However, for applications such as 

nondestructive testing, in which dose is not critical, the CE would be of lesser concern. 

This synthesis technique has the ability to be applied to the creation of scintillating glass-

ceramic substrates that can be used in indirect flat panel detectors. A prototype has been 

made, but additional material investigation must be conducted to improve scintillating 

efficiency.  

 

The nanolayered configuration of BaF2/ Eu2O3/ Al2O3 films was shown to influence their 

optical properties due to the europium dopant being in different coordinate environments. 

Three layered configurations were synthesized and optically characterized following 

different post-synthesis heat treatment procedures. Cross-section TEM showed that layers 

of each material were deposited as continuous, uniform layers. Films subject to ambient 

atmosphere heat-treatments exhibited emission degradation when subject to an excitation 
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laser. However, it is found that with heat treatments in a nitrogen atmosphere, this 

degradation can be suppressed. All sample structures demonstrated the potential for 

applications in UV-pumped white light LEDs. Manganese was used to synthesize codoped 

samples, and a threshold for the amount of Mn necessary to optically influence the 

nanolayered films was determined.  

 

Nanoscale control of synthesizing optically active thin films was demonstrated using 

pulsed laser deposition. The effects of differing nanostructures on optical properties that 

were determined can led to improvements in biomedical applications such as medical 

imaging and photobiomodulation. 
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