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Abstract 

As the global share of electricity generation from intermittent renewable energy sources increases, 

developing efficient and scalable electricity storage technologies becomes critical to modernizing 

the grid, matching the supply and demand, and raising the capacity factor of renewable generation. 

The Ground-Level Integrated Diverse Energy Storage (GLIDES) is an efficient energy storage 

technology invented at Oak Ridge National Laboratory (ORNL). GLIDES stores energy by 

compressing gas using a liquid piston in pressure vessels benefiting from employing hydraulic 

turbomachinery which are more efficient than gas turbomachinery. Therefore, GLIDES has higher 

round-trip efficiency (RTE) than Compressed Air Energy Storage (CAES). Since GLIDES 

employs pressure vessels, it is not geographically limited as CAES and pump storage hydro (PSH) 

are. Two proof-of-concept prototypes were design and built at ORNL with nominal capacity of 1 

and 3 𝑘𝑊ℎ. GLIDES 2nd generation prototype achieved 98.5% isothermal compression efficiency 

experimentally. A physics-based performance model was developed simulating the GLIDES 

behavior during operation and was validated using the experimental data. For cost reduction 

purposes, the first cost of GLIDES when employing steel vessels, carbon fiber vessels, pipe 

segments, and underground pressure reservoirs was modeled. The results of the cost model showed 

first cost as low as ~$14/𝑘𝑊ℎ and ~$346/𝑘𝑊ℎ could be achieved for a grid-scale GLIDES 

using depleted oil/gas reservoirs and high-pressure pipe segments, respectively. Employing the 

studies done on liquid piston compression and direct heat exchange with micron-sized sprayed 

droplets in GLIDES, a one of a kind near isothermal liquid compressor (IsoLiqComp), capable of 

compressing any refrigerant, is designed and developed at ORNL. A secondary physics-based 

performance model was developed to study the condensable gas behavior. Based on simulation 

results, 95% isothermal efficiency can be achieved. A 1st generation IsoLiqComp prototype was 
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built using a 0.005 𝑚! compression chamber. The results of this research show GLIDES is a low-

cost efficient energy storage technology competitive to conventional Lithium-ion and Lead acid 

batteries. Significant increase in compression efficiency in comparison to conventional 

compressors is achievable using IsoLiqComp. HVAC systems, natural gas transportation, and 𝐶𝑂" 

extraction systems (etc.) can highly benefit from employing IsoLiqComp and the studies 

performed in this research. 
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Chapter 1: Introduction 

1.1 Motivation 

Grid modernization is vital to the nation’s safety, economy, and modern way of life. Grid 

modernization can reduce the societal cost of power outage by more than 10%, decrease the cost 

of reserve margins by 33%, and reduce the cost of wind and solar integration by 50%, providing 

more than $7 billion in annual benefits for the US economy [1]. On the other hand, with the 

increase in the release of greenhouse gases into the atmosphere and their effect on the environment, 

the shift from fossil fuels to renewable energies is more critical now than ever before. In 2018, 

around 63% of the world’s total electricity production was from fossil fuels, 5% from nuclear 

energy and around 36% from renewable energy sources (including 23% from natural gas and 13% 

from other renewable sources) [2].  

Based on the Renewables 2018 Global Status Report by the Renewable Energy Policy Network 

for the 21st Century (REN21), with the commitment to phase out coal power by 2030, more than 

20 countries including Italy, Mexico, and the United Kingdom launched the Powering Coal 

Alliance in 2017. Along with these countries in 2017, China, the United States, and Europe 

provided nearly 75% of the total global investment in renewable power and fuels [3]. In addition, 

with the passage of US Senate Bill 100 in 2018, electric utilities and other service providers are 

required to increase the amount of electricity generated by renewable energies from 50% to 60% 

by 2030 and the state of California is required to phase out coal power and replace it with clean 

sources to produce 100% of its power by 2045 [4]. The challenge with renewable energies is the 

variability in their output, which is due to their availability (e.g., lack of sunlight at night or lack 

of wind). Given the unpredictability of electricity demand, the output variability of the renewable 
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energies, and the need for a power supply to meet the demand, the concept of energy storage is 

critical. Higher employment of renewable energies, grid modernization, and the global goal of 

decarbonizing the energy economy has increased the need for energy storage. As reported by 

California ISO (CAISO), in 2019, California slashed more than 950,000 MWh [5] of solar and 

wind power to balance supply and demand as the renewables are intermittent. To meet the 

electricity demand and have a low error margin, current power generation and distribution 

infostructures are forced to generate continuously resulting in losses during off-peak hours. The 

challenge with renewable energies is the variability in their output, which is due to their availability 

(e.g., lack of sunlight at night or lack of wind). Given the unpredictability of electricity demand, 

the output variability of the renewable energies, and the need for a power supply to meet the 

demand, the concept of energy storage is critical and by employing energy storage, the losses due 

to excess electricity generation can be neglected. Various energy storage technologies have been 

developed over the past few decades storing energy when available from the renewable sources or 

when cheap electricity is available during off-peak hours from the grid and using the stored energy 

when renewable sources are unavailable or during peak hours when electricity is expensive, aiming 

to improve grid reliability and meet the increase in use of renewable energies. Given the limitations 

associated with intermittent renewable energies and to avoid grid instability, developing low-cost, 

efficient energy storage systems is critical and can provide many benefits. For example, electricity 

generated from renewable sources, such as wind and solar, can be stored when available and used 

when those sources are unavailable or the price of electricity is high from the grid (grid services 

and peak shaving); stored when the demand is lower than the supply, such as nights when low-

cost power plants continue to operate. Peak shaving is a technique used to reduce building power 

consumption during high-demand periods by employing behind the meter energy storage and has 
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the potential to lower the consumer’s electric bill. Energy storage technologies can both discharge 

power quickly and slowly depending on the technology. Energy storage is valuable in grid 

stabilization, beneficial in electric vehicles, during power outages, in natural disasters, and in areas 

located away from the grid (e.g., islands and microgrids). To date, there are 1,600 energy storage 

projects worldwide (operative and in progress) with a total of around 191 GW of energy storage, 

with Pumped Storage Hydro as the highest existing capacity and electrochemical technology 

(batteries) as the leading technology with the highest number of projects in progress [6] [7].  

1.2 State-of-the-Art Energy Storage Systems 

To promote the integration of the expected growth in renewables into the electricity generation 

mix and grid modernization, various energy storage technologies have been developed. These 

technologies can be classified into four major categories: mechanical, electrical, chemical, and 

electrochemical [8]. The main characteristics used to compare energy storage technologies are 

rated power, energy capacity, energy density (ED), round-trip efficiency (RTE), and energy cost 

in $/kWh. Rated power is the maximum instantaneous power the system can output (kW, MW, GW, 

etc.); however, since the energy stored in the system is finite, the time in which the system can 

output the maximum instantaneous power until all energy is discharged plays an important role. 

Energy capacity is the numerical integration of the instantaneous power over the time it takes to 

completely discharge the energy stored in the system. Energy density (ED) is the amount of energy 

stored per unit of volume of the storage system. Roundtrip efficiency (RTE) is the ratio of the total 

energy that can be extracted from the system through discharging to the energy needed to charge 

the system to its full energy capacity. Many energy storage technologies have been deployed to 

date. Some of the existing energy storage technologies include but are not limited to those 

discussed below. 
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1.2.1 Mechanical Energy Storage 

Some of the mechanical energy storage technologies include Pumped Hydroelectric Storage 

(PHS), Compressed Air Energy Storage (CAES), and Flywheel Energy Storage (FES). The 

technical and economical characteristics of these energy storage technologies are included in Table 

1. 

1.2.1.1 Pumped Hydroelectric Storage (PHS) 

Pumped hydroelectric storage is the most widely used large-scale electrical energy storage. PHS 

technology accounts for around 97% of the world’s electricity storage [9]. This technology 

converts electrical energy to potential energy using two water reservoirs at different elevations, a 

unit to pump water to the higher elevation, and a turbine to generate electricity. 

During charging, a hydraulic pump is used to pump water from a lower reservoir (e.g., a lake or 

river) to a higher water reservoir (e.g., pond). During discharge, the elevated water can be released 

back into the lower reservoir. The water spins a hydraulic turbine that drives an electric generator 

to generate electricity [10,11]. 

Pumped hydroelectric storage has a relatively low capital cost, high roundtrip efficiency, and more 

than 40 year lifetime. The capacity of this system solely depends on the difference in elevation 

between the two reservoirs and the size of the reservoirs. The main disadvantage of this technology 

is its limited expansion prospect in the United States because most of the favorable sites have 

already been developed. Pumped hydroelectric storage also suffers from scalability and 

geographical limitations [10,11]. 
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1.2.1.2 Compressed Air Energy Storage (CAES) 

Compressed Air Energy Storage (CAES) stores electrical energy in the form of high-pressure air 

using gas compressors. The compressed air is stored in a container (i.e., underground caverns or 

aboveground tanks), and a multi-stage turbine is employed to dispatch the stored energy. 

During charging, CAES use gas compressors to compress air into an underground cavern or 

aboveground pressure reservoir. During discharging, the compressed air is expanded through a 

high-pressure gas turbine. The air is then mixed with fuel, and the mixture is combusted and 

expands through a low-pressure gas turbine. The low- and high- pressure turbines are connected 

through a common shaft to a generator to generate electricity. 

There are only two operating CAES facilities in the world. Both systems are cavern based. The 

first ever CAES plant built is in Huntorf, Germany. It uses two salt dome-based caverns as the 

storage reservoirs. The other operating CAES is in the United States, in McIntosh, Alabama. It 

uses one salt dome–based cavern. CAES technology provides good part-load performance and a 

reasonable response speed. However, it suffers from low roundtrip efficiency due to the usage of 

gas turbomachines and also suffers from geographical limitations. High construction cost is the 

major barrier to deploying large-scale CAES plants [10,11]. 

1.2.1.3 Flywheel Energy Storage (FES) 

Flywheels have been used for centuries to store energy in the form of kinetic energy. A flywheel 

energy storage system consists mainly of a flywheel, a reversible motor/generator, and an 

evacuated chamber. These systems can be classified as low and high speed. The flywheels 

themselves are usually made of steel and an advanced composite material such as carbon fiber. 
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During charging, the flywheel is spun by an electric motor. During discharging, the rotational 

energy of the flywheel is then used to spin the same motor, which now acts as a generator, to 

generate electricity. 

The advantages of FES include long lifetime, high roundtrip efficiency, and relatively quick 

charging. Normally, FES systems can supply power for a short period of time. Therefore, they are 

not used as standalone backup power unless they are used with other energy storage technologies. 

Other disadvantages of this technology include idling losses during standby time and the need for 

a vacuum chamber. Flywheel malfunction during rotation is common and is usually caused by the 

propagation of cracks through the rotors [10–12]. 

1.2.2 Electrochemical Energy Storage (Batteries) 

Electrochemical energy storage batteries have different chemistries and include lead acid, lithium 

ion, sodium-based, nickel-based, and flow batteries. The first large-scale battery storage 

installation in the United States entered service in 2003 using nickel-based and sodium-based 

batteries [13]. By the end of 2017, 708 MW of large-scale battery storage was in operation in the 

United States [14]. Some of the Electrochemical Energy Storage technologies include but are not 

limited to Lead Acid Batteries, Lithium-ion Batteries, Sodium-Sulfur Batteries, and Flow Battery 

Energy Storage. The technical and economical characteristics of these energy storage technologies 

are also included in Table 1. 

1.2.2.1 Lead Acid Batteries 

Lead acid batteries use two electrodes—one is composed of highly porous lead dioxide (𝑃𝑏𝑂") 

and the other of finely divided metallic lead (Pb). The lead-dioxide electrode is the positive 

electrode, and the metallic lead is the negative electrode. The two electrodes are submerged in an 
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electrolyte solution of dilute aqueous sulfuric acid. The negative electrode reacts with the hydrogen 

sulfate ion (𝐻𝑆𝑂#$) of the electrolyte and produces lead sulfate (𝑃𝑏𝑆𝑂#), hydronium ions (𝐻!𝑂%), 

and electrons (𝑒$). The positive electrode reacts with the hydrogen sulfate ion of the electrolyte, 

hydronium ions, and electrons to produce lead sulfate and water. 

Lead acid batteries are the most popular low-cost batteries. Their RTE is around 70%. The 

disadvantages of these batteries, compared to other battery technologies, include relatively low 

cycle life (50–500 cycles), and the possibility of corrosion [12]. 

1.2.2.2 Lithium-ion Batteries 

Lithium-ion battery (LIB) technology is based on the use of lithium-intercalation compounds. A 

cathode, the electrode where a reduction reaction takes place and electrons enter the cell, is a 

lithiated metal oxide (an oxide due to higher potential) that is often characterized by a layered 

structure. An anode, where an oxidation reaction takes place, is made of graphitic carbon which 

holds lithium in its layers. Both electrodes are capable of reversibly inserting and removing lithium 

ions from their structure. 

Lithium-ion batteries outperform other electrochemical energy storage technologies by a factor of 

2.5 in terms of energy capacity while providing high specific power. Over the last decade, the 

energy density of lithium-ion batteries has improved from 100 kWh/𝑚! to around 730 kWh/𝑚! 

[15]. The high energy density, around 97% roundtrip efficiency, relatively long life, and rapid 

charging of lithium-ion batteries have made them the first choice for powering electric vehicles 

[8,10,11]. Lithium-ion batteries suffer from degradation of maximum charge storage at high 

temperatures, thermal runaway and capacity loss when overcharged, and chemical and fire hazards 

[12]. 
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1.2.2.3 Sodium-Sulfur Batteries 

Sodium-sulfur batteries are an energy storage technology with the potential for use in grid support 

due to their long discharge period. Sodium-sulfur batteries use molten sodium as the anode 

(negative electrode), molten sulfur as the cathode (positive electrode), and beta alumina as the 

conducting solid electrolyte. These batteries operate at a temperature range of 270℃ to 350℃. 

Hazardous materials, including metallic sodium, which is combustible when exposed to water, are 

used in sodium-sulfur batteries. This requires sodium-sulfur batteries construction to be airtight, 

double-walled, and sealed in stainless-steel enclosures. These enclosures contain arrays of sodium-

sulfur cells to mitigate fire and to anchor the cells. These cells are sealed and surrounded with sand 

[12]. 

1.2.2.4 Flow Battery Energy Storage (FBES) 

Flow batteries can be classified to redox flow batteries and hybrid flow batteries. The power of 

flow battery energy storage systems, unlike other electrochemical technologies, is independent of 

its storage capacity and is determined by the number of cells in the stack and the size of the 

electrodes used. The storage capacity of these systems is based on the concentration and the 

volume of the electrolyte used, meaning the system capacity can be increased by simply increasing 

the volume of reactants used or by increasing the electrolyte concentration [11]. Redox flow 

batteries use two circulating soluble redox couples as the electroactive species contained in 

external liquid electrolyte tanks. The simplicity of the reactions is distinct from other battery 

chemistries. Other batteries typically involve phase change, electrolyte degradation, and electrode 

morphology changes. There have been few field demonstrations of redox-flow batteries to date. 

The electrolytes, the electrodes, tanks, pumping systems, structure, power electronics, and controls 

have a longer lifespan than the cell stack, making the cell stack the life-limiting component of 
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redox-flow batteries. Other drawbacks include nonuniform pressure drops (pressure drop due to 

the flow of electrodes in channels) and the limitation in the reactant mass transfer, causing low 

system performance, high manufacturing costs, and low energy density [8,11,12]. 

1.3 US Department of Energy’s Energy Storage Goal 

The DOE’s 2010 “ARPA-E’s Grid-Scale Rampable Intermittent Dispatchable Storage (GRIDS) 

program [16] focused on development of low-cost storage technologies for the electric grid. 

Specifically, GRIDS aimed to address the challenge of renewable generation ramping. Initiated in 

2010, ARPA-E’s GRIDS program is aimed at developing new storage technologies at a capital 

cost of less than $100 per kilowatt-hour that can scale to store megawatt-hours of electricity and 

be used at any location on the grid” [17]. Therefore, there is a need for a low-cost high-RTE high-

energy-density dispatchable energy storage system that can meet the DOE’s target. 

As explained above, CAES suffers from low efficiency of around 54% [19]. CAES also suffers 

from low efficiency due to employing gas turbomachinery, heat loss during the compression 

process, and need for heat addition during the expansion process. With rapid air compression to 

high pressures and minimal heat transfer using the conventional gas compressors, high amount of 

energy is converted into increasing the air temperature [22]. This increase in temperature decreases 

the compression efficiency as at the end of the compression process, as air temperature drops, the 

air pressure and compression efficiency decrease. To improve the CAES efficiency, variety of 

different CAES applications have been studied including Diabetic CAES (DCAES), Adiabatic 

CAES (ACAES), and Isothermal CAES (ICAES) [23]. In DCAES the heat generated during the 

compression process is dissipated and lost to the ambient as the compressed air would not be 

discharged immediately; and external heat source is used to increase air temperature prior to  

expansion to prevent any condensation or icing. The two existing CAES plants use this  
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Table 1, Technical and economical characteristics of energy storage technologies. 

Technology 
ED 

(𝑘𝑊ℎ/𝑚!) 

Rated 

(𝑀𝑊ℎ) 

Lifetime 

(Years) 
RTE % 

Discharge 

Time 

(ℎ𝑜𝑢𝑟𝑠) 

Energy cost 

($/𝑘𝑊ℎ) 

PHS [18,19] 0.2–2 400-32,000 30–60 70–85 4-16 
106-200 

5–100 

CAES [18,19] 2–6 200-30,000 20–40 40–70 20-30 94-229 

Flywheel 

[19–21] 
20–80 <0.1 ~15+ 85–95 15 s–15 min 

4,320-

11,520 

1,500–6,000 

Lead-acid 

[18,19] 
50–80 0.001–800 5–15 50-90 < 10 358-631 

Li-ion 

[9,19,20] 
200–400 0.001–2,000 5–15 90–95 ~1 min–8 h 

393-581 

360–1200 

Na-S [19–21] 150–300 0.01–800 10–15 70–90 ~1 
599-1,293 

263–735 
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mechanism.  On the other hand, in ACAES the heat generated during the compression process is 

stored in thermal energy storage (TES) and used prior to expansion and eliminate the need for 

external heater. In ICAES, it is proposed to minimize the heat generated during the compression 

process and achieve near-isothermal compression, increasing the compression efficiency [23]. 

Liquid Air Energy Storage (LAES) is another energy storage technology which stores energy by 

liquifying air and storing at low pressure in  insulated vessels [24]. LAES suffers from low 

efficiency as gas turbomachinery are used. 

Research has been performed on various ways to increase compression efficiency to achieve near-

isothermal compression as it requires less work to achieve the same pressure ratio as an adiabatic 

process. As conventional mechanical gas compressors and combustion engines suffer from poor 

heat transfer due to high frequency and low heat transfer from the gas to the surroundings, other 

ideas have been proposed to increase the surface area to volume ration of the gas [22]. Coney et 

al. described the development of a reciprocating compressor with water injection capability and 

built a prototype along simulation model and reported compression up to around 25 bar 

maintaining the temperature below 100 ℃ compared to 500 ℃ of an adiabatic compression [25]. 

Van de Van et al. proposed employing liquid piston in multi-chamber gas compressor to improve 

compression efficiency and reported increase in compression efficiency from 70% to 83% based 

on a simulation model (no experimental data was reported) [22]. To farther increase the 

compression efficiency of liquid piston Van de Van et al. had proposed, Qin et al. proposed 

addition of spray droplets to a liquid piston on top of reciprocating piston and reported 98% 

compression efficiency based on simulation modeling validated using experimental data of 

addition of spray droplets to shock waves (no prototype was built) [26,27]. Patil et al. 

experimentally investigated the heat transfer in a liquid piston compressor by employing a 



 
 

12 

hydraulic pump to pump water into the compression chamber as the liquid piston and to spray 

water into the chamber compressing air to 70 psi (4.8 bar) maximum pressure and reported 95% 

isothermal compression efficiency [28]. The applications of employing liquid piston and spray 

injection compression mentioned above are all used in low-pressure fast-stroke gas compressors. 

As air compressed to 300 bar has energy density comparable to that of lead-acid batteries [29] and 

hydraulic turbomachinery have high efficiencies around 90% , the hydropneumatics energy 

storage system of interest, Ground-Level Integrated Diverse Energy Storage (GLIDES), is 

designed as a combination of pumped storage hydro and compressed air energy storage which 

stores energy by gas compression using a spray piston and employing spray compression and using 

a liquid piston to achieve more than 98% isothermal compression efficiency. In the next chapter, 

the GLIDES concept is explained along introduction of the two proof-of-concept prototypes and 

detailed analysis of experimental and simulation analysis of near-isothermal spray compression 

employing the 2nd generation prototype built at ORNL. 
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Chapter 2: Ground-Level Integrated Diverse Energy Storage, GLIDES 

Ground-Level Integrated Diverse Energy Storage (GLIDES) is an energy storage system that was 

invented at the Oak Ridge National Laboratory (ORNL) [30]. GLIDES stores energy by 

compression and expansion of air using water as a liquid piston inside high-pressure reservoirs. 

This system is a combination of CAES and PHS systems but is more efficient and has higher 

energy density than either technologies. As shown in Figure 1, the GLIDES system consists of a 

hydraulic motor, a hydraulic pump, high-pressure reservoirs (i.e., pressure vessels), a hydraulic 

turbine, and an electrical generator. The high-pressure reservoirs in this system are sealed vessels. 

These high-pressure reservoirs are pre-pressurized with air to a certain pressure. The choice of this 

initial pressure is explained in section 7.3. During charging, an electric motor is run which drives 

a positive displacement (PD) hydraulic pump. The pump pushes water into the pressurized 

reservoirs. With the water volume increasing inside the high-pressure reservoirs, the air above the 

water is compressed, causing its pressure to increase and storing energy. During discharging, water 

is discharged from the vessels, causing the air above the water column to expand. The water flows 

through a hydraulic turbine that drives an electric generator, and electricity is generated. Multiple 

lab-scale prototypes of GLIDES have been built at ORNL since 2015 [31] and a preliminary 

analysis of market potential of the GLIDES system including a mathematical model is introduced 

in [32]. The first prototype was built with a system nominal size of 3 kWh. This system consisted 

of an ambient pressure water storage, electric motor, electric generator, PD hydraulic pump, four 

steel high-pressure vessels, and a hydraulic Pelton turbine. Use of a hydraulic PD pump and Pelton 

turbine to charge/discharge the GLIDES system is one of the main advantages over CAES systems 

as no gas turbomachinery used, resulting in much higher roundtrip efficiency. The GLIDES system 

is easily scalable and dispatchable. The storage capacity can be increased by simply adding high- 
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Figure 1, The invented GLIDES layout during (a) charging and (b) discharging [31]. 
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pressure storage volume (i.e. more vessels). The power capacity can be increased by using larger 

hydraulic machines, or several in parallel. The proof-of-concept prototypes are described in the 

following sections. 

2.1 GLIDES Proof-of-Concept Prototypes 

2.1.1 1st Generation Prototype 

The first-generation proof-of-concept prototype of the GLIDES technology was developed at 

ORNL using four 500-liter carbon steel pressure vessels, an 11 kW electric motor, a 42 LPM 

positive displacement pump, two Pelton turbines, and a 5 kW single phase 120 VAC 60 Hz 

electrical generator [33]. As shown in the experimental data reported by [31] (Figure 2.a), the air 

temperature increases by around 45℃ during the charging process. This increase in air 

temperature, as explained before and although not as high as adiabatic compression in CAES, 

decreases the compression efficiency. This loss due to the increase in air temperature can be shown 

as the area enclosed between the curves from 1 to 2 (compression process) and 3 to 4 (expansion 

process) on the P-V diagram shown in Figure 2.b. Other losses in the 1st generation prototype 

include losses in motor, 30-40% losses from the pump, 50% losses from the turbine and 25-32% 

losses from the generator [33]. To explain in more detail why the increase in gas temperature 

increases the losses in the system, the P-V diagram shown in Figure 3 was made. As seen in Figure 

3, comparing two different compression processes, adiabatic and isothermal compression, it can 

be seen that starting at the same gas volume and pressure (point 1), at the same compression rate 

(inlet water flow rate), the maximum gas pressure is reached faster during an adiabatic 

compression (point 2), meaning less water is pumped into the vessel than during an isothermal 

process (lower volume ratio) due to the increase in air temperature causing the air pressure to 
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increase at a faster rate. As the charging stops, during the pause process (the time between charging 

ends and discharge begins), after an adiabatic compression, as the air temperature inside the vessel 

is higher than the ambient, heat transfer occurs between air and water in the vessel and the 

surrounding ambient air through the vessel walls and therefore air temperature drops (if not 

isolated). As the gas temperature decreases, the gas pressure drops as well. This drop in gas 

pressure during the pause process results in lower available output power during the discharge 

process and therefore lower system efficiency. 

It is therefore desired to achieve isothermal compression during GLIDES charging process to 

increase the compression efficiency. To achieve near-isothermal compression, other 

configurations of the GLIDES system were introduced by Odukomaiya et al. [31]. As shown in 

Figure 4, compression using the first configuration (Figure 4, a), is done by pumping water into 

the vessel from the bottom of the vessel (same as the compression using the 1st prototype). To 

achieve near-isothermal compression, the second configuration is introduced which employs spray 

cooling during the compression process (Figure 4, b). This configuration is set to pump water to 

the top of the vessel and spray into the vessel. As the water is sprayed into the vessel, each micro 

size sprayed droplet has direct heat exchange with the compressed air while traveling from the top 

of the vessel to the water level. As the water level rises in the vessel, water acts as a liquid piston  

and air compression takes place. The third configuration (Figure 4, c) represents the discharge 

process. As the air temperature decreases during the discharge process, a third configuration is 

proposed which employs a circulating pump and an active heat exchanger to achieve near 

isothermal expansion/discharge and other cycles. With this configuration, during the discharge 

process, some of the water leaving the pressure vessel goes through the hydraulic turbine and some 

gets pumped to the top of the pressure vessel and sprayed into the vessel to prevent decrease in air  
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Figure 2, a) Air and water temperature (left axis), and air pressure (right axis) during a complete GLIDES run. b) 

GLIDES 1st generation prototype experimental full-cycle P-V diagram [31]. 
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Figure 3, P-V diagram showing the pressure difference at the same final air volume. 
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temperature. 

To achieve isothermal compression and expansion using the second and third configuration and to 

showcase GLIDES scalability, a 1 kWh 2nd generation proof-of-concept GLIDES prototype was 

built at ORNL. This prototype was built using a carbon fiber pressure vessel as the pressure 

reservoir. 

2.1.2 Experimental Set Up / 2nd Generation Prototype 

GLIDES 2nd generation prototype (shown in Figure 5) is a 1 kWh system which consists of a high-

pressure vessel, a 200-liter atmospheric-pressure water tank, a reversible electric motor/generator 

which works as a motor during the charging process and as a generator during the discharge 

process, a reversible hydraulic pump/turbine which works as a hydraulic pump during charging 

and as a hydraulic turbine (motor) during generation. Employing reversable motor/generator and 

pump/turbine decreases the losses in turbomachinery as both more efficient parts are used and 

instead of four parts, as in the 1st generation prototype, only two parts are employed. The pressure 

vessel selected for this prototype is a Luxfer 287-liter polymer lined carbon fiber pressure vessel 

capable of handling pressures up to 248 bars. The reversible electric motor/generator is a 2 

horsepower, 115/208-230 volts, 60 Hz brushless permanent magnet motor/generator and the 

reversible positive displacement hydraulic pump/turbine is a 1.7 kW, 4 cm^3/revolution axial 

piston hydraulic pump. The piping and instrumentation diagram (P&ID) of GLIDES second 

generation prototype is shown in Figure 7. As explained above, this system consists of a water 

tank, a hydraulic pump (PM1), the pressure vessel, and a second pump which is added on a 

secondary flow path (explained in future research). Two pressure relief valves were installed on 

the system for safety including one on the pressure vessel and one on the pump. The lines shown 

in the diagram all represent ½” high-pressure stainless-steel tubing. Several instruments including 
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pressure transducers and thermocouples were added to the system for data collection purposes. 

Motorized valves with 5 seconds cycle time, manual valves, and check valves were also added to 

the system to control the flow. Also, a full cone spray nozzle with spray angle of 80-85 degrees, 

producing droplets with average diameter of 50-660 µm is added to the top of the pressure vessel 

to break the flow entering the vessel from the top. A LABVIEW environment was modeled as well 

to collect the data using the DAQ system. The list of the pressure transducers, thermocouples, the 

valves, and their functions are shown in Table 2. 

2.1.2.1 P&ID Charging Process 

The first step before storing energy in GLIDES is to pressurize the vessel with air. The analysis 

on the best initial pressure was done in [34] and is shown in section 7.3. GLIDES 2nd generation 

prototype can be charged two ways (Figure 8). First way being the first configuration (Figure 4 ,a) 

which is to pump water into the vessel from the bottom of the vessel (same way as the first 

prototype). To charge GLIDES using this method, manual valves MV1, 2, 4, and 6 along motorized 

valve M2 are opened while keeping all other valves closed. The reversable electric 

motor/generator, acting as a motor, runs the reversable hydraulic pump/turbine (PM1), acting as a 

pump, pumping water into the pressurized vessel, compressing the air on top, and storing energy. 

The second way of charging GLIDES 2nd generation prototype is to use the second configuration 

(Figure 4, b). To charge the system using the second configuration with spray cooling, manual 

valves MV1, 2, 4, and 5 along motorized valve M3 are opened (while all the other valves remain 

close), water is pumped to the top of the vessel and sprayed into the vessel through the spray 

nozzle. As the water level rises in the vessel, the air on top is compressed and energy is stored. 
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Figure 4, GLIDES a) Base, b) 2nd, and c) 3rd configuration. 

 
 

 

Figure 5, GLIDES 2nd generation proof-of-concept prototype. 
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Figure 6, GLIDES 2nd generation prototype. 

 

 

Figure 7, GLIDES 2nd generation piping and instrumentation diagram (P&ID). 
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Table 2, Instrumentation summary. 

P&ID Code Function 

Thermocouples 

TC1 Storage tank water temperature 

TC2 Pressure vessel air temperature 

TC5 Ambient temperature 

TC6 Lower vessel temperature 

TC7 Upper vessel temperature 

TC8 Water temperature below vessel 

Pressure Transducers 

PT1 Storage tank water level 

PT2 Air pressure inside the vessel 

Motorized Valves 

M1 
Controls the water flow from the 

pressure vessel to PM1 

M2 Controls the flow below the vessel 

M3 
Controls the flow from the top of the 

vessel 

Manual Valves 

MV (1-9) Manually directing the flow 
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Figure 8, GLIDES 2nd generation prototype P&ID. Charging using a) 1st configuration, b) 2nd configuration. 

 

Figure 9, GLIDES 2nd generation prototype P&ID, discharge.  
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Chapter 3: Experimental Data Employing Spray-Cooling 

To study the thermodynamic behavior of the 2nd generation prototype, various experiments were 

conducted. The experimental data collected during these studies are presented in this section. 

The first experiment conducted was to run the prototype using the first configuration. To do so, 

the vessel was pressurized to an initial air pressure of 35 bars. Using the ideal gas law at room 

temperature, around 12 kg air exists in the pressure vessel. During the operation of the system, a 

torque meter is used to read the actual speed of the motor/generator (rpm). Based on these data 

and the equations provided by the pump manufacturer, the actual effective flow rate (𝑄&'') 

entering the pressure vessel is calculated. The flow rate (𝑄&'') at various pressure (𝑃) can be 

calculated using Equation (1) [35]. 

 

 𝑄#$$ = 𝑄%& − [3𝑄%& − 𝑄(𝑃'())7 × (𝑃 𝑃'()⁄ )] (1) 

   

 𝑄%& =
𝑉 × 𝑛
1000

 

 

(2) 

Where 

• 𝑄():             Theoretical flow (l/min) 

o 𝑉:   Displacement (𝑐𝑚!/rev) 

o 𝑛:   Motor speed (rpm) 

• 𝑄(𝑃*+,):    Flow rate at maximum pressure (l/min) 

• 𝑃*+,:           Maximum pressure (barg / psig) 

• 𝑃:                 Pressure (barg / psig) 
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Setting the motor to a speed of around 1090 rpm, flow rates of around 4 l/min was achieved. As 

explained above, the flow rate was affected by the pressure, but since a positive displacement 

pump is used, the change in flow rate was insignificant. With 4 l/min flow rate, 30 bars initial air 

pressure, and 21℃ initial air temperature, the charging began. Using the data collected, the 

pressure-volume (PV) diagram of the GLIDES full-cycle is plotted and shown in Figure 10. 

As seen in Figure 10, starting from point 1 initial conditions, with the decrease in air volume, the 

air pressure increases from 35 bars to 87 bars. Charging can be continued to desired pressure while 

the pressure is lower than the maximum allowable pressure specified by the manufacturer. For this 

experiment, charging was stopped at around 87 bars pressure and 45℃ temperature. As the 

charging is stopped at point 2, the pause process between the end of the charging and start of the 

discharge process is shown between 2 and 3. From 3 to 4 discharge takes place. As the air volume 

is expanded, air pressure drops as well as the air temperature. During this experiment, discharge 

was continued until (almost) no water was left in the vessel. Charge and discharge can be done 

continuously or can be broken down to meet electricity demands. As the discharge comes to an 

end, the second pause process takes place before charging restarts. It should be mentioned that 

based on the electricity needs, the pause processes can be neglected. 

As seen in Figure 10, the area between the top curve (compression) and the bottom curve 

(expansion) marks the heat transfer losses during both the compression and the expansion process. 

The temperature and pressure profile of this experiment are shown in Figure 11. 

It can be seen during the charging process, as the pressure increases, the air temperature increases 

from 21℃ to around 45℃ and as the charging process stops, the air temperature drops to room 

temperature after around 6 hours. This loss in temperature during the pause process is the cause of 

the drop in pressure and therefore, the drop in available energy to discharge and lower compression  
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Figure 10, 2nd generation GLIDES full cycle using the base configuration. 

 
 

 

Figure 11, Base-configuration full-cycle temperature (left axis) and pressure (right axis) vs. time, first experiment. 
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efficiency. The second experiment employed spray cooling as in the second configuration. For this 

experiment, the pressure vessel was filled with 10 kg of air at initial conditions of 30 bars pressure 

and 22℃ temperature. Running the motor at 1172 rpm for this run, the effective flow rate was 

calculated to be around 4.5 LPM. Based on the data provided by the manufacturer and the PM1 

flow rate, the pressure difference across the spray nozzle varies between 0 and 1 MPa. This 

pressure difference has been implemented in pressure and flow rate calculations. Calculations were 

also done on pressure losses due to the excess piping needed, but since this pressure drop was 

insignificant, it was neglected. During this run, as shown in Figure 12, compression was done from 

30 bars to 87 bars air pressure from 287 liters to 100 liters air volume respectively. During the 

charging process of this experiment, an interesting trend occurred to the temperature profile. As 

shown in Figure 13, during the compression process, the air temperature decreased from 21.1℃ to 

18.9℃ instead of increasing or constant (isothermal condition), but right after charging stopped, 

the temperature jumped to around 23.4℃. After analyzing the data, it was discovered the water 

temperature being pumped into the pressure vessel dropped during the charging process. As the 

charging is in process, as the water level in the water reservoir drops below around 50 cm, the 

pump cavitates. To prevent this from happening and still achieve the desired air pressure in the 

vessel, buckets of tap water were added to the water reservoir. Analyzing the data, it was clear that 

the air temperature followed the pattern of the water temperature (TC1) which as the buckets of 

tap water were added decreased by 4℃. On the other hand, as there is no drop in vessel wall 

temperature (TC7), the jump in air temperature at the end of the charging process cannot be from 

heat transfer from the vessel walls to the compressed air. Therefore, since this increase in air 

temperature occurs over around 30 seconds after charging has stopped, it is concluded the 

temperature reported by the thermocouple inside the vessel is affected by contact with the water 
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droplets and it can be assumed that the actual air temperature rises to the value reported at the end 

of the 30 seconds temperature increase. Although there is an increase in air temperature during the 

charging process, this increase is not significant and the maximum temperature during this run is 

around 23.4℃ making this an overall 2.3 degrees increase in air temperature (near isothermal with 

a polytropic constant of 1.0085 (isothermal = 1)). As anticipated, less than 1 bar air pressure was 

lost during the pause process decreasing the thermodynamic losses compared to the first 

experiment. 

As explained, the change in water temperature due to adding tap water had a high impact on air 

temperature during the compression process. To study the behavior of the system without the effect 

of change in water temperature, a third experiment was conducted. To prevent cavitation and still 

have enough water to achieve a desired high pressure, a couple of buckets were filed with tap water 

and were left overnight to be in equilibrium with ambient temperature. For this experiment, the 

vessel was filled with 18 kg of air at an initial pressure of 55 bar and initial temperature of 21.7℃. 

Setting the motor to 1177 rpm, compression starts using spray charging with an average flow rate 

of 4.4 l/min and is continued to a maximum pressure of 98 bars. During the compression process, 

as seen in Figure 14, the air temperature increases from 21.7℃ to a maximum temperature of 

26.3℃, which is a 5.4 degrees increase in air temperature; making this a near isothermal 

compression with a polytropic constant of 1.03. 

GLIDES 2nd generation prototype roundtrip efficiency depends mainly on indicated efficiency 

which is highly dependent on the compression efficiency, motor/generator, and pump/turbine 

efficiencies. Figure 16 and Figure 17 show the change in indicated (multiplication of pressure and 

flow rate) and shaft power (multiplication of torque and speed) on the left axis and pump efficiency 

(-!""
-#$

) on the right axis vs. time and pressure respectively. 
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Figure 12, 2nd generation GLIDES full cycle PV using spray cooling, 2nd experiment. 

 
 

 

Figure 13, 2nd generation GLIDES full cycle air temperature vs. time using spray cooling, 2nd experiment. 

  

0
10
20
30
40
50
60
70
80
90

100

50 100 150 200 250 300

Pr
es

su
re

 [b
ar

]

Volume [lit]

0

5

10

15

20

25

0 100 200 300 400

Te
m

pe
ra

tu
re

 [°
C]

Time [min]



 
 

31 

 

 

Figure 14, 2nd generation GLIDES full cycle air temperature vs. time using spray cooling, 3rd experiment. 

 
 

 

Figure 15, 2nd generation GLIDES full cycle air pressure vs. time using spray cooling, 3rd experiment. 
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Figure 16, Indicated and shaft power (left axis) and pump efficiency (right axis) vs. time. 

 

 

Figure 17, Indicated and shaft power (left axis) and pump efficiency (right axis) during the charging process vs. 

pressure. 
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The losses due to the turbomachinery can be seen as the area between the shaft and indicated 

power. Comparing the power used to charge GLIDES 1st and 2nd generation prototypes (1st 

generation data reported by Odukomaiya et al. [33]), the indicated power required to charge the 1st 

prototype is more than 10 times higher than that required to charge the 2nd prototype. It should be 

mentioned, as the 1st prototype has four pressure vessels, higher power is required. 
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Chapter 4: Simulation Model 

A physics-based performance model was developed to match the experimental data collected 

employing the GLIDES 2nd generation prototype using spray cooling. The physics-based 

performance model takes 1. Vessel specifications, 2. Air mass, 3, Initial temperature, 4. Initial 

pressure, 5. Motor speed, 6. Desired maximum pressure, and 7. Pause times as inputs and simulates 

the four parts of the GLIDES operation, charging process (compression), pause time after 

charging, discharge (expansion), and the pause time after the discharge ends. The model, 

developed in MATLAB, uses various equations and energy balances developed by [31] to 

simulate, in detail, the system behavior and heat transfer from the compressed air to the water 

droplets, to the water level in the vessel, and to the surrounding vessel walls and ambient. The 

model is developed using four while-loops. 

As explained above, the model simulates three main thermal masses including air, water, and 

vessel walls Figure 18. The vessel walls are split into two sections, one in contact with air and the 

other in contact with the rising water. To simulate the behavior of these masses, energy balance 

was done on each of them. The energy equation for air simulates the convection heat transfer 

between air and the sprayed droplets, air with the rising water level, air with the vessel walls and 

the ambient, and the compression work done on the air. Equation (3) shows air’s energy equation 

where the term on the left is the time rate of change of contained energy in air, the first term on 

the right represents the rate of heat transfer between air and water, the second term on the right is 

the net rate of heat transferred from the compressed air to the tank walls and the ambient during 

the charging process, the third term on the right is the rate of heat transfer from the compressed air 

to the sprayed droplets, and the last term on the right is the rate of work done on the air by the 

rising water level [31]. 
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Figure 18, Heat transfer bodies and energy balance. 
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 𝑚*𝑐+,*
𝑑𝑇*
𝑑𝑡

= −ℎ*,-𝐴*,-(𝑇* − 𝑇-) − 𝑈𝐴*(𝑇* − 𝑇('.) − �̇�/01 − 𝑃*
𝑑𝑉*
𝑑𝑡

 

 

(3) 

Where the overall heat transfer coefficient of air, 𝑈𝐴. , represents the air convection heat transfer 

inside the vessel, conduction heat transfer through the vessel walls, and convection heat transfer 

of the surrounding outside air. 

 

 𝑈𝐴* =
1

D 1
ℎ2,*𝐴2,*

E + D 𝑡3
𝐾3𝐴(+#,*

E + D 1
ℎ4𝐴4,*

E
 

 

(4) 

On the other hand, �̇�/01 represents the rate of direct heat exchange from the compressed air to the 

sprayed droplets. To calculate this heat transfer rate, it is assumed a single droplet falls at constant 

velocity which can be calculated using Equation (5). Using the calculated droplet velocity, the time 

it takes the droplet to reach the existing water level is calculated using Equation (6). The number 

of droplets generated can also be calculated using the flow rate and the spray droplet diameter as 

shown in Equation (7). As at each time step, a certain number of droplets are generated, Equation 

(8) can be used to calculate the total number of droplets traveling through the air at any given 

instance. 

 
𝑣%#1' = H

4𝐷51𝜌51𝑔
3𝜌*𝐶6

 
(5) 

   

 
𝑡%1(+ =

𝐿(𝑡)
𝑣%#1'

 
(6) 
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�̇�51 =

6�̇�/01
𝜋𝐷51!

 
(7) 

   

 𝑁51 = �̇�51 ∙ 𝑡%1(+ (8) 

 

Using the calculated convection heat transfer coefficient, the thermal time constant of the droplet 

is calculated using Equation (11). 

 

 𝑁𝑢51 = 2 + 0.6𝑅𝑒7/"𝑃𝑟7/! (9) 

 

 ℎ51 =
𝑁𝑢 ∙ 𝑘51
𝐷51

 (10) 

   

 𝜏51 =
𝜌51𝑉51𝑐51
ℎ51𝐴/,51

 (11) 

 

As each droplet travels through the air from the top of the vessel to the existing water level (the 

bottom of the vessel at the beginning of the charging process), heat is transferred from the 

compressed air to these droplets. Equation (12) is used to calculate the temperature of the droplets 

right before hitting the surface of the existing water level. 

 

 𝑇51,9:% − 𝑇*
𝑇51,2; − 𝑇*

= e<
%!"#$
=%"  

(12) 

 

Where 𝑇21,45 is the droplet temperature as it enters the vessel and 𝑇21,67( is the droplet temperature 

right before hitting the existing water level in the vessel. Using Equation (13), and the calculated 
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droplet temperature, the heat transfer from the compressed air to the water droplets is calculated 

and the rate of the total heat transfer from all the spray droplets is calculated using Equation (14). 

 

 𝑄51 = 𝜌51𝑉51𝑐51(𝑇51,9:% − 𝑇51,2;) 

 

(13) 

 �̇�/01 = �̇�51 ∙ 𝑄51 (14) 

 

To simulate the change in air pressure, Redlich-Kwong equation of state was used. As shown in 

Equation (15), this equation relates the pressure, temperature, and volume. 

 

 𝑃 =
𝑅	𝑇

𝑉' − 𝑏
−

𝑎
√𝑇	𝑉'	(𝑉' + 𝑏)

 (15) 

 

Where, P is the pressure, R is the gas constant, T is the air temperature, 𝑉* is the molar volume, 

and a and b are constants calculated based on the air critical temperature and pressure as shown 

below. 

 
𝑎 = 0.42748	

𝑅"𝑇>".@

𝑃>
 

(16) 

   

 𝑏 = 0.08664	
𝑅	𝑇>
𝑃>

 (17) 

 

The energy balance of water in the vessel is shown using Equation (18). As seen in this equation, 

the time rate of change of the energy contained within the liquid (term on the left) depends on the 

heat transfer with air (first term on the right), with the vessel walls and the ambient (second term 



 
 

39 

on the right), and the net rate of energy transfer due to the mass flow entering the vessel (third term 

on the right). 

 

 𝑚-𝑐-
𝑑𝑇-
𝑑𝑡

= −ℎ*,-𝐴*,-(𝑇* − 𝑇-) − 𝑈𝐴-(𝑇- − 𝑇('.) + �̇�-𝑐-(𝑇('. − 𝑇-) 
(18) 

 

Where the overall heat transfer coefficient 𝑈𝐴8 is calculated using Equation (19) representing the 

water convection heat transfer inside the vessel, conduction heat transfer through the vessel walls, 

and convection heat transfer of the surrounding outside air. 

 

 𝑈𝐴- =
1

D 1
ℎ2,-𝐴2,-

E + D 𝑡3
𝐾3𝐴(+#,-

E + D 1
ℎ4𝐴4,-

E
 (19) 

 

As explained above, the droplet temperature leaving air and entering the existing water level was 

calculated using equation (12). Using this temperature, as the droplets enter the existing water, 

heat transfer occurs between the entering droplets and the existing water and therefore, a mixed 

water temperature is calculated using Equation (20). 

 

 
𝑇-,'2)#5 =

�̇�/01 	∆𝑡	𝑐51𝑇51 +𝑚-𝑐-𝑇-
(�̇�/01 	∆𝑡 + 𝑚-)𝑐-

 
(20) 

 

The other mass simulated in this model is the vessel wall, which is broken into two sections, the 

top part in contact with the air and the bottom part in contact with the rising water. Equations (21) 

and (22) are used to simulate the rate of energy contained within the corresponding mass in contact 

with air and water respectively. 
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 𝑚3,*𝑐3
𝑑𝑇3,*
𝑑𝑡

= ℎ2,*𝐴2,*3𝑇* − 𝑇3,*7 − ℎ4𝐴4,*3𝑇3,* − 𝑇('.7 
(21) 

   

 𝑚3,-𝑐3
𝑑𝑇3,-
𝑑𝑡

= ℎ2,-𝐴2,-3𝑇- − 𝑇3,-7 − ℎ4𝐴4,-3𝑇3,- − 𝑇('.7 
(22) 

   

4.1 Simulation Results 

The experimental data gathered were used to validate the developed simulation model. To validate 

the model, vessel volume 287 liter, 19 kg of air, 21.3℃ initial air temperature, 55 bar initial air 

pressure, 1177 rpm motor speed, 97 bar maximum pressure, and 1.5 and 1.4 hours of pause time 

for the first and second pause respectively were given to the model as the inputs. Figure 19 and 

Figure 20 show the data comparison on the P-V diagram and temperature profile vs time 

respectively. Data in Figure 19 show almost exact match other than volume at the end of the 

compression process which is lower than the volume recorded in the experimental data. Also, it 

can be seen in Figure 20 the air temperature increase during the compression process is lower than 

what is recorded in the experimental data. It should be mentioned the discharge process was 

stopped before all water was discharged from the vessel due to safety issues and should be 

neglected in this study. 

As explained before, the main force preventing increase in gas temperature during the compression 

process using the 2nd configuration is the direct heat exchange of the droplets with air. As seen in 

Figure 20, the increase in gas temperature during the compression process is lower than the 

experimental data gathered. Analyzing the data, it was concluded the simulation model accounts 

for 100% of the air volume being sprayed on and not account for air volume not being sprayed on. 

To account for the nozzle angle, some geometry equations were added to the simulation model. 
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Based on the spray angle and the vessel height, maximum diameter of the sprayer cone is 

calculated. If maximum diameter is higher than the vessel diameter, the height at which the vessel 

diameter is reached is calculated and using this height, cone volume is calculated. If the cone 

diameter is less than the vessel diameter, cone volume is calculated and gas volume is calculated 

based on the cone volume. Volume not sprayed is calculated by subtracting sprayed gas volume 

from the total gas volume. Based on the data provided by the nozzle manufacturer for the full cone 

nozzle used on the GLIDES 2nd generation prototype, depending on the pressure, spray angle can 

vary between 45 to 85 degrees. As shown in Figure 19, the air volume matches perfectly and as 

seen in Figure 20 as seen in the compression process, at the beginning of the process, the air 

temperature increases around 3℃ during the first 2 minutes. This makes sense as temperature 

difference is needed to have any heat transfer. Hence the air temperature increases at first. The air 

temperature reaches the maximum temperature by the end of the charging process. The pressure 

profile vs time is also shown in Figure 23. 

Using the simulation model, the change in flow rate at various initial pressures vs. time are shown 

in Figure 24. It is seen as the air pressure increases, the flow rate decreases around 1 l/min. Figure 

25 and Figure 26 show the change in flow rate and change in indicated power (product of pressure 

and flow rate) during an isothermal and adiabatic process along the experimental data vs. time 

respectively. 

Based on the experimental data and the simulation analysis, it is therefore determined using spray 

compression during charging of the GLIDES 2nd prototype, isothermal compression efficiencies 

as high as 98.5% are achievable. GLIDES capital cost depends on various parameters including 

the thermodynamic efficiency. To study the capital cost of the GLIDES system, a technoeconomic 

model was developed and is discussed in the next chapter.  
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Figure 19, P-V diagram experimental vs. simulation data. 

 

Figure 20, Temperature vs. time experimental vs. simulation data. 
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Figure 21, P-V diagram experimental vs. simulation data. 

 

Figure 22, Temperature vs. time experimental vs. simulation data. 
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Figure 23, Pressure vs. time. 

 

 

Figure 24, Flow rate profile during the charging process vs. time. 

0 50 100 150 200 250
Time [min]

55

60

65

70

75

80

85

90

95

100

Pr
es

su
re

 [b
ar

]

Experimental
Simulation

0 5 10 15 20 25 30 35
Time [min]

3

3.2

3.4

3.6

3.8

4

4.2

4.4

Fl
ow

 R
at

e 
[l/

m
in

]

30 [bar]
40 [bar]
50 [bar]
60 [bar]



 
 

45 

 

Figure 25, Change in flow rate during isothermal and adiabatic compression along the experimental data vs. time. 

 

Figure 26, Change in indicated power during an isothermal and adiabatic compression along the experimental data 

vs. time. 
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Chapter 5: Waste Heat Integration 

As explained in previous chapters, increase in gas temperature during the compression process and 

decrease in gas temperature during the discharge process decrease the GLIDES efficiency. To 

decrease the efficiency losses due to gas expansion, spray heating is proposed to prevent air 

temperature from decreasing and achieving near isothermal expansion. To simulate the effect of 

spray heating during the discharge process, the physics-based performance model was updated to 

include the spray heating during the discharge process. The simulation data along experimental 

analysis of the GLIDES 3rd configuration is discussed in this chapter. 

5.1 GLIDES 3rd Configuration 

As shown in Figure 14, during the discharge process, as the high-head water is discharged through 

the hydraulic turbine, air expands causing the pressure and temperature to drop rapidly. Air 

temperature drops to temperatures as low as 5℃ which is due to the expansion work and the low 

heat transfer between air and the surrounding and is the cause of the losses during the discharge 

process. Increasing the expansion efficiency improves the cycle efficiency providing higher output 

power. An option to increase the expansion efficiency is to employ spray heating during the 

discharge process. As air temperature in the vessel reaches temperatures as low as 5 ℃, spraying 

water with temperatures of around 21℃ would provide direct heat exchange between air and the 

water droplets decreasing the change in air temperature and achieving near-isothermal expansion. 

As explained before and shown in Figure 4, GLIDES 3rd configuration includes a second-loop 

capable of pumping water from the bottom of the vessel to the top using a secondary pump and 

sprayed into the vessel while water is being discharged through the hydraulic turbine. To farther 

increase the expansion efficiency, low-grade waste heat can be employed to increase the water 
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temperature being sprayed into the vessel farther increasing the air temperature. Odukomaiya et 

al. showed results of studies done on a simulation model on system performance employing 

isothermal compression (spray cooling) and spray heating including the following processes: 1) 

an isothermal expansion after the pause process, 2) isochoric heat input during the pause process 

after compression is over and isentropic expansion, and 3) isochoric heat input during the pause 

process after the compression is over and isothermal expansion and isochoric heat out during the 

pause time after the discharge process [31]. 

5.2 Simulation Model 

To simulate the system behavior during the discharge process, the discharge section of the 

simulation model is formed. The discharge simulation continues while water volume exists in the 

vessel simulating heat transfer between air and water surface in the vessel, air and the vessel walls, 

and air and the droplets. Various flow rates ranging from 1-10 LPM were studied using the 

simulation model to select the secondary pump providing the best heat transfer. As seen in Figure 

28, with increasing second pump flow rate from 0 to 10 LPM, the change in discharge temperature 

decreases from around 22℃ to around 2℃. As explained before, the area between the charging 

and discharging curves on a P-V diagram represent the losses both due to losses in compression 

and expansion process. Figure 29 shows the decrease in the losses with increasing the second pump 

flow rate going from the blue line with no spray to the red line with 10 LPM flow rate, increasing 

the overall indicated efficiency. 
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Figure 27, GLIDES 2nd prototype P&ID, discharge using spray heating. 

 

Figure 28, Air temperature profile with various second pump flow rates. 
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Figure 29, P-V diagram with various second pump flow rate. 
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To achieve the other cycles mentioned above, higher droplet temperatures are required. This can 

be achieved by employing waste heat to increase the droplet temperatures before spraying into the 

vessel. These cycles can include heating the air temperature during the pause time before discharge 

begins which still requires heat addition during the discharge process to achieve a near isothermal 

expansion or adding heat only during the discharge process. If heat is added during the pause 

process, less heat would be required to achieve a near isothermal expansion. Another way would 

be to add heat during both pause and the discharge process and either store the excess heat after 

the discharge or dissipate to the ambient. Using excess heat can have the benefit of using a lower 

flow rate second pump. To show the change in data by adding heat during the discharge process 

employing 8 LPM secondary pump, Figure 30 was developed. It can be seen during the discharge 

process, if droplet temperature is less than that of air temperature at the end of the pause process, 

air temperature experiences a U-shaped temperature profile during which temperature decreases 

initially and then increases. 

Figure 32 through Figure 34 were plotted to show how the cycle changes by employing spray 

heating during both pause and discharge process assuming heat addition to increase the water 

 temperature before spraying to 25℃, 30℃, and 35℃. 

5.3 Experimental Data 

To perform experiments on GLIDES employing spray heating, an 8 LPM positive displacement 

pump was installed. GLIDES vessel was pressurized with air to initial pressure of 32 bar. Using 

spray charging, GLIDES was charged to maximum pressure of 89 bar. The second pump was 

turned on right before the discharge process. While discharging, a Variac was used to keep the 

speed at around 1000 RPM. 
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Figure 30, Temperature profile using various temperature droplets during the discharge process. 

 

Figure 31, P-V diagram showing the difference between spraying with low- and high-temperature droplets. 
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Figure 32, P-V using 25C spray during both pause and discharge process. 

 

Figure 33, P-V diagram using 30 C spray during both pause and discharge. 
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Figure 34, P-V diagram using 35C spray heating during both pause and discharge process. 

 
 

 

Figure 35, Temperature profile during discharge vs time. 
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Figure 35 shows the air temperature profile vs time during the discharge process. As seen in this 

figure below, air temperature dropped to temperatures as low as 1.2℃ and therefore the experiment 

was stopped to prevent ice forming in the vessel and prevent equipment malfunction. It should be 

noted the minimum air temperature without employing the second pump was around 5℃. 

The P-V diagram of this process is shown in Figure 36. To study the effect of using the second 

pump during discharge, the data collected during this experiment were compared to another 

experiment without employing the second pump. One way to compare the two experiments is to 

compare the polytropic coefficients during the expansion process. To do so, although the initial 

volume was not exactly similar, natural log of the pressure was plotted vs natural log of the volume 

for both experiments with and without spray heating. As seen in Figure 37, the polytropic 

coefficient of the process with spray heating is around 1.07 and the process without spray heating 

is around 1.33, which for an isothermal process n=1 and n=1.4 for an adiabatic process. Although 

this plot/calculation propose an isothermal expansion for the experiment using spray heating, as 

the temperature dropped to very low temperatures, other calculations must be performed before 

conclusions are made. The drop in temperature can be due to evaporation in the vessel and as 

explained before the data is partially affected by the spray droplets coming in contact with the 

thermocouple. 

As air is an ideal gas, Equation (23) can be employed to solve for the polytropic coefficient n using 

pressure and temperature. This was done as both pressure and temperature are data collected during 

the experiment and volume was calculated based on the motor speed and the water flow rate 

entering the water reservoir. 

 𝑇"
𝑇7
= D

𝑃"
𝑃7
E
(;<7) ;⁄

= D
𝑉7
𝑉"
E
;<7

 
(23) 
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Figure 36, P-V diagram of the entire cycle employing second pump. 

 
 

 

Figure 37, Ln(P) vs Ln(V). 
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Using pressure and temperature in Equation (23), 𝑛 = 1.12 and 𝑛 = 1.17 were calculated for the 

experiment without spray heating and with spray heating respectively making these processes 

almost identical. Based on the calculations done, it is concluded the second pump either 

malfunctioned and failed to pump the desired flow rate against the high pressure air inside the 

vessel or isothermal expansion was achieved, but due to evaporation lower temperatures were 

recorded. 

After the experiment was stopped, an electric resistance heater wrapped around the secondary loop 

piping was turned on and off maintaining a pipe surface temperature of around 45℃ (and not 

higher to prevent issues with the pipes and couplings) to increase the water temperature inside the 

vessel as second pump was running to circulate the water. As the heater power is low (~1kW), it 

would take hours to heat up the water in the vessel. To achieve the cycles mentioned above 

experimentally, other methods to increase water temperature are required to perform the 

experiments. 
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Chapter 6: Isothermal Liquid Compressor (IsoLiqComp) 

The overall goal of the project is to prototype and characterize the performance of liquid-piston 

spray-cooled gas compressor. The working principle of the compressor enables optimized high-

efficiency operation over very wide range of operating conditions, unlike conventional 

compressors that are optimized for a narrow range of operating conditions. The compressor is 

suitable for wide range of applications, such as gas pipeline transport and gas storage. The project 

aims to demonstrate the performance of the compressor in heat pump application. 

As explained in previous sections, in traditional gas compressors, as the gas is compressed using 

mechanical pistons, one of the limiting factors is the temperature increase during the compression 

process. This limiting factor and other losses associated in traditional compressors can be avoided 

by leveraging two recent studies that facilitate advanced gas/refrigerant compression using liquid-

piston compression and advanced heat exchange via micron-sized sprayed droplets and achieving 

a third innovation, large-bore, flexible stroke compressor. Successfully combining these three 

studies could enable a step change reduction in refrigerant compression energy consumption and 

achieving (near) isothermal compression. The proposed technology will provide adjustable 

compression ratio capabilities which make one compressor compatible with all refrigerants and 

applications. The designed systems are capable of simulating both 𝐶𝑂"/oil and air/water 

combinations as the working fluids. A second physics-based performance model was developed 

to simulate the 𝐶𝑂" compression including condensation, making IsoLiqComp capable of 

compressing to high-pressure gas or compressing beyond condensation conditions to employ in 

applications which can benefit from liquid 𝐶𝑂". 
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6.1 The Proposed Compressor 

Employing spray cooling and liquid piston, it is proposed to design a near-isothermal efficient gas 

compressor compatible with all refrigerants and applications called Isothermal Liquid Compressor 

(IsoLiqComp). As seen in figure 2, IsoLiqComp has 4 main processes during which the entire 

cycle takes place including the low-pressure gas intake stroke, compression stroke, delivery stoke, 

and the expansion stroke. During the first step, the valve controlling the low-pressure gas flow is 

opened while all other valves remain closed, and the compression vessel is filled with gas. During 

the second step, after the vessel is entirely filled with gas, the gas flow is stopped, and the 

compression process takes place by pumping oil to the top of the vessel and spraying the oil from 

the top into the vessel causing a near-isothermal compression as the oil level rises. This process is 

continued until the gas pressure is increased to the set pressure of the regulator valve (no oil or gas 

exit the vessel during this process). The regulator valve is opened once the gas pressure reaches 

the discharge pressure in step 3. Oil is continuously sprayed until no gas is left in the vessel. In 

step 4, the gas flow and the oil discharge valves are opened. Oil is discharged back to the reservoir 

due to the pressure of the entering gas and the head of the oil in the vessel and the vessel is charged 

with low-pressure gas returning to step 1. As the temperature of oil has increased during the 

compression process, this heat is recovered using a heat exchanger as oil is discharged back to the 

reservoir returning to the initial temperature. 
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Figure 38, IsoLiqComp cycle design. 
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6.2 Physics-Based Performance Model 

Since the start of this project, multiple physics-based performance models have been developed 

and reported simulating the system behavior. In the first model developed, only gas compression 

without considering any condensation was reported. To account for condensation, a second model 

was developed simulating gas compression and condensation. To simulate these conditions, many 

constraints were introduced including temperature, pressure, and vapor volume, limiting each loop. 

To make these conditions and the model more realistic and to include superheated fluid conditions, 

a third physics-based performance model has been developed. The new model aims to simulate all 

conditions during 𝐶𝑂" compression including vapor compression, condensation, liquid 

compression, and supercritical conditions. As reported in literature, 𝐶𝑂" behavior under various 

conditions is shown on two main diagrams: the 𝐶𝑂" phase diagram and the pressure-enthalpy (P-

H) diagram shown in Figure 39 and Figure 40 respectively. As seen in Figure 39, while pressure 

is less than the 𝐶𝑂" critical pressure (72.9 bar), 𝐶𝑂" can be found in vapor or liquid conditions 

depending on the temperature and when pressure rises above the critical point, supercritical fluid 

forms. On this diagram it can also be seen that when pressure is less than the critical pressure, but 

above the saturation pressure, and temperature is lower than the critical temperature, condensation 

takes place. Another way of showing these conditions, is to use a P-H diagram. As shown in Figure 

40, the red star at the peak of the dome marks the critical pressure (73.9 bar) below which, both 

vapor and liquid conditions can be present depending on the temperature. 

The most useful parameter on this diagram (Figure 40) is enthalpy. As explained before, we used 

temperature, pressure, and vapor volume to track the conditions in previous models. Using a P-H 

diagram, this can be done with much higher accuracy by employing enthalpy. As seen in Figure 

40, below the critical pressure, three modes can be present depending on the temperature (each 



 
 

61 

blue line represents a constant temperature line) and enthalpy including superheated vapor region 

on the right side of the dome, saturated mixture (vapor and liquid mixture) within the dome and 

compressed liquid region on the left side of the dome. On the other hand, for pressures above the 

critical pressure, the supercritical region is specified. To employ this knowledge in our new 

physics-based model, as shown in Figure 41, the model was broken into 7 sections. Unlike 

previous models, only one while-loop was employed in this model which is to run the simulation 

while the overall pressure is less than the maximum set pressure (140 bar in this study). Within 

this while-loop, if-statements were employed to specify the 𝐶𝑂" condition and to therefore use the 

right equations (see Figure 41). 

While the pressure is lower than the maximum pressure, the model checks to see if the pressure is 

less than the critical pressure. If so, the model checks to see if the enthalpy at that temperature and 

pressure is less than the saturation vapor enthalpy (the enthalpy value corresponding to the 

saturation vapor line of the dome, right of the critical pressure). If the enthalpy is not less than the 

saturation vapor enthalpy, vapor compression using spray cooling mechanism takes place (to the 

right of the dome). If enthalpy is less than the saturation vapor enthalpy, the model checks to see 

if enthalpy is less than the saturation liquid enthalpy (the enthalpy value corresponding to the 

saturation liquid line on the dome, left of the critical pressure). If enthalpy is not less than the 

saturation liquid enthalpy, condensation takes place (within the dome where enthalpy is less than 

the saturation vapor enthalpy and higher than saturation liquid enthalpy). If enthalpy is less than 

the saturation liquid enthalpy (left of the dome), liquid compression takes place. On the other hand, 

if pressure is not less than the critical pressure, supercritical fluid exists, and supercritical 

compression takes place (above the dome). Since only one while-loop is used, each iteration starts 

from the top and checks all these statements. 
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Figure 39, 𝐶𝑂% phase diagram. 

 

 

Figure 40, 𝐶𝑂% pressure-enthalpy, P-H diagram. 
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Therefore, if pressure is less than the critical pressure, enthalpy is higher than saturation vapor 

enthalpy, compression occurs. If the enthalpy decreases to the saturation vapor enthalpy, 

condensation takes place at constant temperature and pressure until enthalpy decreases to the 

saturation liquid enthalpy, after which only liquid exists in the compression chamber. Liquid 

compression takes place until pressure reaches the critical pressure and after that, supercritical 

fluid compression continues until the maximum pressure is reached. Specific equations used 

during each statement are reported in the next section. 

6.2.1 Equations 

Most of the equations used to develop the new model including heat transfer due to employing 

spray cooling in Chapter 4: and are included here as well. To simulate the temperature and pressure 

change during the compression process, the spray droplet calculations below are used to calculate 

the number of droplets (Equation (25)), the temperature of droplet after travelling from the top of 

the compression chamber to the existing oil level (Equation (26)), the heat transfer rate due to 

direct heat exchange between the droplets and the 𝐶𝑂" (Equation (29)), and the updated oil 

temperature after each droplet enters the existing oil volume (Equation (30)). 

 
�̇�51 =

6�̇�/01
𝜋𝐷51!

 
(24) 

   

 𝑁51 = �̇�51 ∙ 𝑡%1(+#D (25) 

 

 𝑇51,9:% − 𝑇E
𝑇51,2; − 𝑇E
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%!"#$&'
=%"  

(26) 

 

 

 



 
 

64 

 

 

 

Figure 41, Model-3 flow diagram. 
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 𝜏51 =
𝜌51𝑉51𝑐51
ℎ51𝐴/,51

 (27) 

 

 

 𝑄51 = 𝜌51𝑉51𝑐51(𝑇51,9:% − 𝑇51,2;) (28) 

 

 �̇�/01 = �̇�51 ∙ 𝑄51 (29) 

 

 
𝑇F,'2)#5 =

�̇�/01∆𝑡𝑐51𝑇51 +𝑚F𝑐F𝑇F
(�̇�/01∆𝑡 +𝑚F)𝑐F

 
(30) 

 

The following equations represent the overall heat transfer coefficients of vapor and oil (Equations 

(31) and (32)), energy equations used to calculate the vapor and oil temperature (Equations (33) 

and (34)), and Redlich-Kwong equation of state to calculate the vapor pressure while only vapor 

exists (Equations (35)-(37)). 

 

 𝑈𝐴E =
1

D 1ℎ2,E
E + D 𝑡3

𝑘3𝐴(+#,E
E + ( 1

ℎ9𝐴9,E
)
 (31) 

 

 

 

 𝑈𝐴F =
1

D 1
ℎ2,F𝐴2,F

E + D 𝑡3
𝑘3𝐴(+#,F

E + ( 1
ℎ9𝐴9,F

)
 (32) 

 

 

 

 𝑚E 	𝐶E 	
𝑑𝑇E
𝑑𝑡

= −ℎE,F	𝐴E,F	(𝑇E − 𝑇F) − 𝑈𝐴E(𝑇E − 𝑇('.) − �̇�/01 + 𝑃E 	
𝑑𝑉E
𝑑𝑡

 (33) 

 



 
 

66 

 

 𝑚F	𝐶F 	
𝑑𝑇F
𝑑𝑡

= ℎE,F	𝐴E,F	(𝑇E − 𝑇F) − 𝑈𝐴E(𝑇F − 𝑇('.) + �̇�F𝑐F(𝑇F,'2) − 𝑇F) 
(34) 

 

 

 𝑃 =
𝑅	𝑇

𝑉' − 𝑏
−

𝑎
√𝑇	𝑉'	(𝑉' + 𝑏)

 (35) 

 

 

 
𝑎 = 0.42748	
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𝑃>
 

(36) 

 

 

 𝑏 = 0.08664	
𝑅	𝑇>
𝑃>

 (37) 

 

While condensation is in process, temperature and pressure are assumed to be constant and the 

densities are found using CoolProp from the calculated temperature and pressure. Using the 

calculated densities, the vapor quality is calculated using (Equation (38)). During condensation, 

vapor mass is calculated based on (X * total mass) and liquid mass is updated accordingly. 
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After condensation is over, the below equations were used to simulate liquid conditions by first 

calculating the liquid density (Equation (40)) based on the liquid mass (which is equal to the initial 

vapor mass after condensation is over) and volume. 

 

 𝜌D2H:25 =
𝑚𝑎𝑠𝑠D2H:25
𝑉D2H:25

 (40) 

 

Using this updated density, the overall heat transfer coefficient (Equation (41)), and the energy 

equation for liquid 𝐶𝑂" (Equation (42)), the liquid temperature is calculated. Using the calculated 

liquid density and temperature, the liquid pressure is calculated using CoolProp [36]. 

 

 𝑈𝐴- =
1

D 1ℎ2,-
E + D 𝑡3
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E + ( 1
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)
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 𝑚E 	𝐶- 	
𝑑𝑇-
𝑑𝑡
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𝑑𝑉-
𝑑𝑡

 (42) 

 

As pressure rises above the critical pressure (supercritical), the density is calculated using the 

supercritical fluid mass and volume (mass/volume). Using the below overall heat transfer 

coefficient (Equation (43)) and the energy equation (Equation (44)), supercritical temperature is 

calculated. Supercritical pressure is therefore calculated using the temperature and density in 

CoolProp. 
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6.2.2 Sizing / Flow Rate Calculations 

To achieve the desired cooling capacity, the required mass flow rate is calculated using Equation 

(45) and the following inputs. 

 

 �̇� = 	
𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

ℎ#+(091(%91()! −	ℎ#+(091(%91*+
 (45) 

 

• Cooling capacity is 1 kW at 35°C ambient 

• Evaporator saturation temperature is 7.2°C 

• Evaporator superheat is 5.8°K 

 

Where, ℎ&9+061+(61&'# is set by the saturation temperature of the evaporator and the evaporator 

superheat (Equation (46)) and ℎ&9+061+(61() depends on the discharge point of the compressor. 

 

 ℎ#+(091(%91*+ = 𝐻(𝑇#+(091(%91/(% + 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟𝑆𝑢𝑝𝑒𝑟𝐻𝑒𝑎𝑡 (46) 

 

The following EES code was developed to calculate the required mass flow rate for different 

compressor discharge pressures assuming 
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• Compression liquid temperature is 5°K higher than ambient 

• Expansion from discharge pressure to evaporator pressure is isenthalpic 

• Compression is isothermal 

 

T_ambient = 35[C] 

T_CL = T_ambient + 5[C] 

Evap_superheat = 5.8[C] 

T_evap = 7.2[C] 

CoolingCapacity = 1[kW] 

P_cond_out = 8000[kPa] 

P_evap = pressure('CarbonDioxide', T=T_evap, x=0) 

  

h_cond_out = enthalpy('CarbonDioxide', T = T_CL, P = P_cond_out)  

h_evap_out = enthalpy('CarbonDioxide', T = T_evap+Evap_superheat, P = P_evap) 

m_dot = CoolingCapacity / (h_evap_out - h_cond_out) 

rho_comp_in = density('CarbonDioxide', T = T_evap + Evap_superheat, P = P_evap) 

The results of this study are shown in Table 3. 

6.2.3 Displacement Volume and Compression Liquid Flowrate 

Mass flowrate of 𝐶𝑂" is defined in terms of displacement volume and periodic time as shown 

below. 

 �̇� = 	
𝜌	𝑉
𝜏

 (47) 
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Table 3, Required 𝐶𝑂% mass flow rate at different compressor discharge pressures. 

Compressor 

discharge 

pressure, kPa 

Compressor 

discharge 

pressure, psi 

𝐶𝑂" mass 

flowrate, 

kg/s 

8000 1168 0.0289 

9333 1362.618 0.009132 

10667 1557.382 0.007559 

12000 1752 0.00707 

13333 1946.618 0.006798 

14667 2141.382 0.006615 

16000 2336 0.006482 

17333 2530.618 0.006379 

18667 2725.382 0.006298 

20000 2920 0.006232 
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Where 𝜌, the density of CO2, is calculated at the beginning of the compression stroke (P = 

saturation pressure of evaporator, T = saturation temperature of the evaporator + evaporator 

superheat). 𝜏 is the total time of one cycle. It is the sum of the time it takes for the compression 

liquid flow and the time it takes for the compression liquid to flow back to its reservoir. 

The displaced volume was calculated for each of the discharge pressures in Table 3 and different 

periodic times. These results are shown in Table 4. 

For any set cycle time, the higher the discharge pressure the lower the required displaced CO2 

volume. The rate of change of the required CO2 displaced volume however decreases significantly 

at pressure higher than 120 bar. For any discharge pressure, the required displaced CO2 volume is 

linearly proportional to the cycle time. Therefore, the compressor system will be designed for 

maximum working discharge pressure of 140 bar. Although increasing the discharge pressure 

beyond 120 bar does not result in reducing the required displaced volume, additional 20 bars are 

added for operational flexibility. 

6.3 Results 

To compare the results of the physics-based model and the isothermal process, the results were 

plotted for various flow rates in a 0.5-liter compression chamber and shown below. As shown in 

the figures below, temperature difference of around 4℃ is achievable during the compression 

process, but since the temperature and pressure are less than the critical conditions, condensation 

occurs. 

As seen in Figure 42-Figure 51, as the heat transfer between 𝐶𝑂" and oil is very high, temperature 

does not vary much and therefore same patterns occur including condensation. To reduce the heat 

transfer and show the results without spray, the following figures were plotted for a 0.5-liter 

compression chamber and 7 LPM flow rate. 
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Table 4, Displaced Volume in Liters. 

Discharge 

pressure, 

kPa 

Mass 

flowrate, 

kg/s 

Periodic time (compression liquid flow time + drain time), 

seconds 

3 5 7 10 15 20 

8000 0.0289 0.7673 1.2788 1.7903 2.5575 3.8363 5.1150 

9333 0.009132 0.2424 0.4041 0.5657 0.8081 1.2122 1.6163 

10667 0.007559 0.2007 0.3345 0.4683 0.6689 1.0034 1.3379 

12000 0.00707 0.1877 0.3128 0.4380 0.6257 0.9385 1.2513 

13333 0.006798 0.1805 0.3008 0.4211 0.6016 0.9024 1.2032 

14667 0.006615 0.1756 0.2927 0.4098 0.5854 0.8781 1.1708 

16000 0.006482 0.1721 0.2868 0.4015 0.5736 0.8604 1.1473 

17333 0.006379 0.1694 0.2823 0.3952 0.5645 0.8468 1.1290 

18667 0.006298 0.1672 0.2787 0.3901 0.5573 0.8360 1.1147 

20000 0.006232 0.1655 0.2758 0.3861 0.5515 0.8273 1.1030 
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6.4 IsoLiqComp Piping and Instrumentation Diagram (P&ID) 

After meeting with the ORNL safety personnel and pressure systems subject matter expertise, an 

initial draft IsoLiqComp’s piping, and instrumentation diagram (P&ID) was developed as shown 

in Figure 57. 

This compressor has three main processes per cycle. These processes include filling the 

compression chamber with 𝐶𝑂" (intake stroke), near-isothermal compression (compression 

stroke), and high-pressure discharge (release stroke). Each process is explained in detail and is 

shown on the corresponding P&ID with red lines as following. 

6.4.1 Intake stroke, P&ID 

As shown in the P&ID below (Figure 58), as the pressure read by PT-12 falls below a set pressure 

(20 bar in this study), V-12 control valve is opened and 𝐶𝑂" passes through the pressure regulator 

PR-1 and the compression chamber is filled with vapor 𝐶𝑂" until the set pressure is reached. A 

heater is added in-line with the pipes (red line) to prevent the temperature drop during 𝐶𝑂" 

movement from the supply cylinder to the compression chamber. Check valve CV-2 and control 

valve V-12 are added to this line for flow control and flow meter FM-1, thermocouple I-6 and 

pressure transducer I-12 are added to this line for accurate data collection. The red line at the 

bottom of the compression chamber and the compression chamber specifications would be 

explained in discharge process. 

6.4.2 Compression Stroke, P&ID 

When the desired minimum pressure in compression chamber is reached (20 bar), V-12 is closed, 

V-11 and V-6 are opened, and the hydraulic positive displacement pump PP-1 is turned on starting 

the compression process shown in Figure 59.  
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Figure 42, Vapor mass vs time, 1 LPM. 

 

 

Figure 43, Total volume vs time, 1 LPM. 
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Figure 44, Pressure vs time, 1 LPM. 

 

 

Figure 45, Temperature vs time, 1 LPM. 
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Figure 46, Pressure – Enthalpy diagram, 1 LPM. 

 

 

Figure 47, Vapor mass vs time, 7 LPM. 
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Figure 48, Total volume vs time, 7 LPM. 

 

 

Figure 49, Pressure vs time, 7 LPM. 
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Figure 50, Temperature vs time, 7 LPM. 

 

 

Figure 51, Pressure – Enthalpy Diagram, 7 LPM. 
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Figure 52, Vapor mass vs time, 7 LPM – no direct heat transfer with droplets. 

 

 

Figure 53, Total volume vs time, 7 LPM – no direct heat transfer with droplets. 
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Figure 54, Pressure vs time, 7 LPM – no direct heat transfer with droplets. 

 

 

Figure 55, Temperature vs time, 7 LPM – no direct heat transfer with droplets. 
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Figure 56, Pressure – Enthalpy, 7 LPM – no direct heat transfer with droplets. 
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Oil is pumped from the atmospheric-pressure reservoir E-1 to the compression chamber and is 

sprayed from the top into the compression chamber falling from the top to the existing oil level in 

the chamber. Flow meter FM-2, watt transducer I-17, and thermocouple I-8 are added to this line 

to monitor the oil flow rate, power consumption, and oil temperature respectively. Check valve 

CV-1 is also added for flow control purposes. 

6.4.3 Discharge stroke, P&ID 

As the compression process continues, the backpressure regulator PR-2 is set to open when the 

pressure inside the compression chamber reaches the maximum set pressure (140 bar in this study).  

As shown in Figure 60, with the control valve V-9 open, as the pressure reaches the maximum set 

pressure, PR-2 opens and high-pressure 𝐶𝑂" is released flowing through a catch can CC-1 designed 

to capture any oil and return it to the oil reservoir while releasing 𝐶𝑂" into the ambient.As the 

compressed 𝐶𝑂" is discharged, as explained above and Figure 58, V-12 is opened and low pressure 

𝐶𝑂" enters the compression chamber pushing the oil from the previous cycle out of the 

compression chamber back to the oil reservoir E-1. 

This marks the completion of one full cycle of the IsoLiqComp near-isothermal compressor. 

6.5 IsoLiqComp Prototype Parts 

As shown in the IsoLiqComp P&IDs, the main equipment which would be used to design and 

develop the first prototype, include the 𝐶𝑂" supply cylinder which feeds the 𝐶𝑂" to the 

compression chamber, the compression chamber, and the positive displacement hydraulic pump. 

All the materials needed are summarized in Table 5. Two heat exchangers (one heater and one 

chiller) are also added to the system and were shown on the P&ID. 
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Figure 57, IsoLiqComp P&ID. 

 

Figure 58, Intake stroke P&ID. 
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Figure 59, Compression stroke P&ID. 

 

Figure 60, Discharge stroke P&ID. 
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Table 5, Bill of materials. 

Equipment/Instrumentation Range Unit 

Pressure transducer 140 barg 

T-Type thermocouple - C 

Ball valves 140 bar 

Flow meter 50 g/s 

Flow meter 7.2 lpm 

Watt transducer 3 kW 

Level Switch - - 

Pressure Regulator 275 bar 

Oil-Gas separator 17 bar 

Backpressure regulator Adjustable bar 

Sight glass 172 bar 

Pump 172 bar 

Reservoir 3 gal 

Heat exchanger - - 

Catch can 145 bar 

Compression chamber 1 lit 
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The compression chamber is designed as a 1-liter chamber capable of handling pressures up to 140 

bar and temperatures up to 40℃. The detailed design sketch of the compression chamber is shown 

in Figure 61. 

6.6 Future Design 

The first-generation prototype of the Isothermal Liquid Compressor, IsoLiqComp, was designed 

to study the compressor behavior and validate the physics-based performance model using the 

experimental data. Future design of the compressor involves a double chamber closed-loop 

compressor capable of circulating the working fluid between the two chambers. An early stage 

design of the next generation IsoLiqComp was developed and is shown in Figure 63. 
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Figure 61, Compression chamber sketch. 

 
 

 

Figure 62, IsoLiqComp First Prototype.  
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Figure 63, IsoLiqComp 2nd generation design. 

 

 

 

 

  

S S

S S

SS

SS

CO2, g

CO2, l

V1 V2



 
 

89 

Chapter 7: Technoeconomic Analysis 

Manufacturing of carbon steel vessels is largely non-automated. High manual labor and welding 

costs are associated with the manufacturing of steel vessels, causing them to be the dominant cost 

items of GLIDES. To meet DOE’s target cost, several other pressure reservoirs are investigated in 

this chapter including carbon fiber pressure vessels and high-pressure pipe segments. Carbon fiber 

vessels and high-pressure pipe segments are less expensive as they are mass manufactured semi-

automatically and fully automatically, respectively. A techno-economic model of the GLIDES 

system (including the performance model explained above and a cost model), detailed results 

comparing pressure reservoirs, and further cost reduction opportunities are discussed in this 

chapter. 

7.1 Cost Model 

To compare the costs associated with the systems using steel vessels, carbon fiber pressure vessels, 

and high-pressure pipe segments, a cost analysis model was developed using the MATLAB 

programing package. The cost analysis model is an optimization model that solves for the lowest 

$/kWh system cost based on steel and carbon fiber pressure vessels and high-pressure pipe 

segments cost data gathered from manufacturers to build the desired GLIDES system size. As 

shown in Figure 64, the model takes the desired system size (kWh), an estimated roundtrip 

efficiency value, a pressure ratio (max/min pressure), and the pressure reservoir data (diameter, 

height, volume, maximum pressure, and price per vessel) from the manufacturers as the input. 

Using these inputs, based on the boundary work relation in a polytropic process (𝑊: =

∫ 𝑃𝑑𝑉"
; , 𝑃 = 𝐶𝑉5) the amount of energy which can be stored per unit volume is calculated using 

(48). It then solves for the total storage volume needed based on the total energy storage needed 
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and the desired system capacity (kWh) using (49). Based on (49) and vessel volume data from the 

manufacturer, the number of vessels needed to meet the desired system are calculated. Knowing 

the number of vessels needed and the cost per vessel, the cost model calculates the total cost and 

finds the pressure reservoir that results in the minimum cost. Based on the number of vessels, the 

cost model then adds the cost of the required piping, fittings, and valving along with the cost 

associated with selected motor/pump and turbine/generator. Summing up these costs, the model 

then once again looks for the option with the lowest total cost. As the data is different for different 

pressure reservoirs being studied, separate models were made for each system (pressure reservoir) 

type. 

 

 

𝐸/% =
𝑝'() i

𝑝'()
𝑝'2;

j
<	7; − 𝑝'2;

1 − 𝑛
 

(48) 

   

 𝑉/% =
𝑅𝑎𝑡𝑒𝑑	𝑃𝑜𝑤𝑒𝑟	 × 	𝑠𝑡𝑜𝑟𝑎𝑔𝑒	𝑡𝑖𝑚𝑒

𝜂K3L 	× 	𝐸/%
 (49) 

 

As discussed above, one of the inputs into the cost model is the pressure ratio. This is the ratio of 

maximum to minimum pressure of the working gas in the pressure reservoir, which is the range of 

pressure the system operates between. As the maximum allowable operating pressures of pressure 

reservoirs are set input data gathered from the manufacturers, the minimum pressure can be set to 

any pressure. This minimum pressure is the initial air pressure the system is pre-pressurized to. To 

determine the optimal pressure ratio (i.e., the best minimum pressure the system should initially 

be pressurized to), a physics-based performance model was developed. The physics-based 

performance model simulates the system transient profile (i.e., liquid/gas volume, temperature,  
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Figure 64, Cost Model flow chart [37]. 
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pressure behavior) and the energy stored in the system at any time. As the required storage volume 

in the cost model is a function of the roundtrip efficiency, the cost model benefits from interaction 

with the performance model. 

7.2 Entrance Model 

To combine the manufacturers’ data, the cost model, and the physics-based performance model, 

an entrance model was introduced Figure 65. With overall system inputs of desired storage 

capacity (kWh) and an estimated value for the roundtrip efficiency, the cost model optimizes the 

system design for the lowest cost. The cost model outputs the selected pressure reservoir’s 

parameters, maximum pressure, number of vessels, and total projected $/kWh capital cost. In 

taking the system parameters, maximum pressure, and the number of vessels from the cost model, 

the physics-based performance model simulates the gas/water behavior and outputs work and 

power profile and an updated roundtrip efficiency based on the performance of the selected system. 

The overall model then outputs the total system cost, the $/kWh cost, transient profile, and the 

updated roundtrip efficiency. The updated roundtrip efficiency is then fed back into the cost model 

to now run the calculations/optimization with an improved value for roundtrip efficiency. The 

system runs the loop until the lowest cost is found and a stope criteria for small change in the 

roundtrip efficiency is met and outputs the final values for cost, efficiency, and the transient profile. 

7.3 Results 

Energy storage systems, depending on their scalability, can be used in both household and grid 

applications. To analyze the cost and performance of GLIDES for these two applications, a system 

was sized for steel, carbon fiber pressure vessels, and high-pressure pipe segments and for system 

capacities ranging from 10 kW (close to Tesla’s Powerwall [38]) to 300 MW (close to that of a   
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Figure 65, Overall model flow chart [37]. 
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CAES plant). These systems were sized for storage hours ranging from 2 to 6 hours and pressure 

ratios ranging from 1.3 to 20. As explained above, the only controllable parameters in this analysis 

are the type of the pressure reservoirs, the system’s energy capacity, hours of storage, and pressure 

ratio (𝑃*+,/𝑃*45). On the other hand, the goal of this analysis is to find the system with the highest 

energy density, highest roundtrip efficiency, and lowest cost. Therefore, to do this analysis, from 

the studied systems, the change in system cost per kWh with the change in the system size (kWh) 

and pressure ratio was significant. As anticipated, the total cost of the system increased with the 

increase in system size, but the $/kWh cost of the system decreased. Another interesting trend was 

the change in the system $/kWh cost and energy density with the change in pressure ratio. To 

analyze the change in $/kWh and the ED with the change in pressure ratio, these data were plotted 

on the same chart, with $/kWh on the left axis and ED on the right axis for a 100 kW system with 

2, 4, and 6 hours of storage and pressure ratios ranging from ~1 to ~20. The system roundtrip 

efficiency did not change much and ranged between ~75–80%. As shown on the left axis of Figure 

66, $/kWh system cost decreases between pressure ratios of ~1.3 and ~2.7 and increases from ~2.7 

to ~20. The lowest $/kWh cost in this trend occurs at a pressure ratio of ~2.7. As shown on the 

second axis of Figure 66, the energy density of the said system increases between pressure ratios 

of ~1.3 to ~2.7 and decreases from ~2.7 to ~20. The highest ED of the system is measured at 

pressure ratio of ~2.7, at which the lowest cost occurs. A pressure ratio of 2.7 means that if the 

maximum allowable pressure of a pressure reservoir is ~200 bars (set by manufacturer), to have a 

system with the maximum ED and lowest $/kWh, each pressure reservoir (within the studied cases) 

best be pre-pressurized to ~74 bar air pressure. This pressure ratio, as shown in Figure 66, is found 

to be the best pressure ratio for all the pressure reservoirs studied. Experimental results also suggest 

a polytropic constant of n = 1.2 for the GLIDES system. These data can be proved by 
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differentiating (48) with respect to the 𝑃*45, which can give the optimum pressure ratio using (50) 

(using n = 1.2 polytropic constant as during the base configuration), suggesting that the best 

pressure ratio for the system, at which the energy storage per unit volume is maximized, can be 

described as: 

 

 (
𝑃'()
𝑃'2;

)90%2':' = 𝑛M
;

;<7N (50) 

7.3.1 Parametric Analysis 

To analyze the cost of GLIDES at various scales, the cost of GLIDES using steel pressure vessels, 

carbon fiber pressure vessels, and pipe segments was analyzed in this section. Some detailed 

simulation data including system capacity, number of vessels, and cost are included in Appendix 

A, B, and C. 

7.3.1.1 Steel Pressure Vessels 

The cost of GLIDES using steel pressure vessels ranges from $4,500/kWh for a 300 MW and 6 

hours system with a 2.7 pressure ratio to $5,100/kWh for a 10 kW and 2 hours system with a 2.7 

pressure ratio. 

The cost and efficiency of a 100 kW and 2 hours system and a 2.7 pressure ratio is analyzed. As 

shown in Figure 67(a), ~93% of the system cost is associated with the cost of the steel pressure 

vessels, followed by ~3% in turbine/generator cost, ~3% in valve cost, and ~1% in pump/motor, 

piping, and fitting costs. For the 200 kWh system studied, ~160 3,000-liter steel pressure vessels 

with a maximum pressure of 200 bar are needed to meet the storage requirements. 
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Figure 66, Parametric study, cost ($/kWh) and energy density vs. pressure ratio for the systems with (a) steel 

pressure vessels, (b) carbon fiber vessels, and (c) high-pressure pipe segments as the pressure reservoir [37]. 
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A total cost of ~$1,200k and ~$4,700/kWh is calculated for this system. This total cost can be 

broken down into ~$1,190k in steel pressure vessel cost, ~$33k in turbine/generator cost, ~$8k in 

motor/pump cost, and ~$4k in fitting, valve, and piping cost. As explained above, RTE and ED 

are two important performance characteristics of any energy storage technology. A pie chart in 

Figure 67(b) shows the breakdown of efficiency losses in this system (a constant efficiency of 90% 

is assumed for the turbomachinery of the GLIDES system which has an RTE of ~83% with an 

energy density of ~0.51 kWh/𝑚!. The rate of change of cost with changing the storage length is 

shown in Figure 68. 

7.3.1.2 Carbon Fiber Pressure Vessels 

The cost of GLIDES using carbon fiber pressure vessels ranges from $760/kWh for a 10 MW and 

3 hours system and a 2.7 pressure ratio to $1,000/kWh for a 100 kW and 1 hour system and a 2.7 

pressure ratio. 

The cost and efficiency of a 100 kW and 2 hours system and a 2.7 pressure ratio is analyzed. As 

shown in Figure 69(a), ~74% of the system cost is associated with the cost of the carbon fiber 

pressure vessels, followed by ~12% in turbine/generator cost, ~5% in valve cost, and ~8% in 

pump/motor, piping, and fitting costs. For the 200 kWh system studied, ~120 900-liter carbon fiber 

pressure vessels with a maximum pressure of 248 bar are needed to meet the storage requirements. 

A total cost of ~$650k and ~$2,100/kWh is calculated for this system. This total cost can be broken 

down to ~$580k in carbon fiber pressure vessel cost, ~$33k in turbine/generator cost, ~$15k in 

valve cost, and ~$23k in pump/motor, fitting, and piping cost. The pie chart in Figure 69(b) shows 

the breakdown of efficiency losses in this system which has an RTE of ~74% with an energy 

density of ~2.45 kWh/m!. Costs as low as $736/kWh for a 100 MW 10 hours system can be 
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achieved and range up to $835/kWh for a 10 MW 1 hour system with a 2.7 pressure ratio as seen 

in Figure 70. 

7.3.1.3 High-Pressure Pipe Segments 

The cost of GLIDES using high-pressure pipe segments ranged from $250/kWh for a 300 MW and 

6 hours system and a pressure ratio of 2.7 to $1,100/kWh for a 10 kW and 2 hours system and a 

2.7 pressure ratio.  

The cost analysis of a 100 kW and 2 hours system and a 2.7 pressure ratio is analyzed. As shown 

in Figure 71(a), ~78% of the system cost is associated with the cost of the high-pressure pipe 

segments, ~15% in turbine/generator cost, ~4% in motor/pump, and less than 1% in piping, fitting, 

and valve costs. For the 200 kWh system, ~32 30-meter-long pipe segments with a volume of 

~6,200 liters and a maximum pressure of 145 bar are needed to meet the storage requirement. 

A total cost of ~$225k and ~$715/kWh is calculated for this system. This total cost can be broken 

down to ~$176k in pipe segment cost, ~$33k in turbine/generator cost, ~$8k in motor/pump cost, 

and ~$8k in fitting, valve, and piping cost. The pie chart in Figure 71(b) shows the breakdown of 

efficiency losses in this system which has an RTE of ~76% with an energy density of ~1.42 

kWh/𝑚!. Figure 72 shows the rate of change of cost. 

As explained above, GLIDES cost depends on various parameters including the thermodynamic 

efficiency. To study the effects of the increase in this efficiency and decrease in compression losses 

while employing spray cooling, the physics-based performance model developed above is 

combined with the cost model. To study the effect of thermodynamic efficiency on the total capital 

cost and energy density, the isothermal, adiabatic, and experimental data were gathered using the 

physics-based performance model. 

  



 
 

99 

 

Figure 67, (a) System cost breakdown, (b) roundtrip efficiency/losses, and (c) performance of a 200 kWh system, 

steel pressure vessel. 

 

Figure 68, Cost rate of change for a grid-scale GLDIES using steel pressure vessels. 
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Figure 69, (a) System cost breakdown, (b) roundtrip efficiency/losses, and (c) performance of a 200 kWh system, 

carbon fiber pressure vessel. 

 

Figure 70, Cost rate of change for a grid-scale GLDIES using carbon fiber pressure vessels. 
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Figure 71, (a) System cost breakdown, (b) roundtrip efficiency/losses, and (c) performance of a 200 kWh system, 

high-pressure pipe segments. 

 

Figure 72, Cost rate of change for a grid-scale GLDIES using high-pressure pipe segments.  
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Comparing these data for three various pressure reservoirs, by using an isothermal compression 

process over an adiabatic process, for pipe segments, the energy density increases by 21% and 

$/kwh capital cost decreased 16%. These data for carbon steel and carbon fiber pressure vessels 

included an increase of 15% in energy density and decrease of 13% in $/kwh capital cost. 

Comparing the experimental and isothermal data for various system capacities varying from 1 kW 

to 1 MW with 2 hours storage time (most beneficial storage time based on the studies done by 

Abu-Heiba et al. [39] and Chen et al. [32]), it is determined using spray compression, 99% 

isothermal energy density can be reached using pipe segments, 97% using carbon fiber vessels, 

and 99% using carbon steel vessels. Other ways to increase GLIDES energy density include using 

other working gas/fluids including R134a and mineral oil as explained by Odukomaiya et al. [40] 

or a combination of 𝐶𝑂" and 𝑁" as explained by Abu-Heiba et al. [41]. 

7.4 Cost Reduction Opportunities 

Based on the analyzed data using the models discussed in previous sections, energy storage costs 

as low as ~$346/kWh can be achieved for a 60 MWh grid-scale GLIDES using high-pressure pipe 

segments. This system has an RTE of ~80% and an ED of ~1.46 kWh/𝑚! using ~9,000 16-meter-

long segments. For comparison, a grid-scale renewable photovoltaic (PV) field capable of 

producing the same amount of energy (60 MWh) uses around 50,000 PV panels (assuming 1.2 

kWh/panel produced in 4 hours each day). As explained in the Results section, most of the cost 

associated with the GLIDES system is attributed to the pressure vessels. To farther reduce the cost 

of the system closer to DOE’s target, other pressure reservoirs were analyzed including 

underground reservoirs and abandoned pipelines. 
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7.4.1 Underground Reservoirs 

One cost-reduction option is to use the GLIDES technology underground. Underground reservoirs 

have been used for natural gas storage for decades [42]. A smaller footprint, larger reservoirs, and 

lower costs are possible advantages of taking GLIDES underground (Figure 73). Some of the 

underground reservoirs studied are discussed in this section. 

7.4.1.1 Depleted Oil/Gas Reservoir 

GLIDES can use depleted oil/gas reservoirs (formed in porous rock) as the pressure reservoir. As 

the productivity of a well decreases or the well operation is not economical anymore, the operator 

is required to remove all equipment and seal the abandoned well to prevent leakage. Some wells 

are plugged, meaning all equipment was removed and the top and bottom of the well was filled 

with cement as required. In many cases, however, wells are not plugged and are abandoned. This 

mostly happens when oil prices drop and the operator files for bankruptcy, or in some cases some 

wells are abandoned, and no operator is filed (especially for wells drilled in early 1980s). Depleted 

oil and gas reservoirs are the most common underground natural gas storage facilities [43]. These 

reservoirs occur naturally, but as they are not originally designed to be leak tight, a pressure test is 

required to determine the maximum pressure the reservoir can practically hold [42]. Around 2.3 

million abandoned wells exist in the United States [44,45]. It should be mentioned that most of the 

depleted fields that were converted to gas storage reservoirs are from depleted gas fields and not 

oil fields, as the combination of oil, gas, and water causes issues [46]. Typical owners and operators 

of the storage sites of natural gas are the interstate pipeline companies, distribution companies, 

and independent companies. The cost associated with using oil and gas reservoirs for storing 

natural gas is reported between $5 million and $6 million per billion ft! (between $177 and $212 

million per billion m!) [42]. 
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Using Equations (48 and (49, in a 1 billion ft! underground reservoir, assuming a maximum 

pressure range of 10–100 bar and around a $1 million cost (around 20 times higher than GLIDES 

using pressure vessels) associated with the turbomachinery (motor/pump, turbine/generator, and 

piping), a $/kWh cost of $13.6/kWh to $136.91/kWh can be achieved, respectively. 

7.4.1.2 Aquifers 

Another pressure reservoir option for GLIDES is aquifers. They are naturally occurring porous 

and permeable rock formations which contain freshwater or brine in the pore spaces. Aquifers are 

typically sandstones or carbonate rocks. Therefore, cap rocks are required in order to make them 

suitable for storage. Multiple wells can be drilled, depending on geographical conditions, which 

can give the option of pumping water from two wells into the reservoir and displacing air in another 

well. Aquifers are known to be capable of storing large volumes of gas. Using this storage volume, 

water/brine can be pumped down the well to compress existing/compressed air inside the reservoir. 

Elevation difference and maximum pressure needs to be studied to avoid problems. The air 

pressure in the reservoir is known to be equal to that of the local water pressure at static conditions 

when used for CAES. The pressure response of the aquifer is dependent on the permeability of the 

rock and the viscosity of the fluid, which affects how fast the liquid can flow in the reservoir. The 

main disadvantage with this system is the low flow rates, which cause this storage type to be only 

used one annual cycle at steady injection/withdrawal rates. Minimum and maximum mean storage 

pressures of 20 and 80 bars are recommended [42,46,47]. A number of aquifers have operated as 

natural gas storage reservoirs for many decades. 

7.4.1.3 Salt Caverns 

Salt caverns could be another underground storage reservoir option for GLIDES. Over the decades, 

with the oceans and lakes evaporating, the resultant leftover salt was buried underneath layers of 
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dust. Solution mining is used for extraction of salt from the salt domes or salt beds, which can be 

as deep as 2 km beneath the surface. Solution mining is done by drilling a well into the salt 

formation and dissolving the salt by injecting water. As the salt is dissolved in water, the brine is 

displaced to the earth’s surface, creating a large empty space. A blanket medium is injected which 

has a lower density than both water and brine, keeping the salt in the upper part of the cavern from 

dissolving in the water to prevent the cavern from collapsing. Leaching can be continued until the 

planned cavern size is reached; it is recommended not to exceed a height-to-diameter ratio of 5.0 

[46,47]. Cavern sealing is not required in solution mined salt caverns due to their low permeability 

and self-healing characteristics [47]. The cavern construction process can take up to 5 years 

depending on the desired cavern size (multiple caverns can be mined close to one another to 

increase the storage volume if desired). As the cavern construction period can be long and the cost 

expensive, other options can be considered, such as working with salt companies with extensive 

experience in solution mining or using existing salt caverns. Also, some profit can be made by 

providing the brine from mining to the salt/chemical companies. Some advantages of using salt 

caverns for GLIDES technology can include a very large reservoir volume, high safety standards, 

a much smaller footprint, a much higher RTE than CAES, and a much lower specific investment 

cost. Some of the disadvantages include the solubility of salt in water (if water is used as the 

working fluid), which would cause the cavern size and likewise the cavern pressure to change 

(working fluid/gas would be further investigated). The cost associated with the salt caverns can go 

upwards of $10 million/Bcf ($353 million/B𝑚!) of working gas capacity. There are two working 

CAES plants in the world—one in Huntorf, Germany, and one in the United States in Alabama. 

The CAES plant in Germany consists of two salt caverns which can provide 321 MW over a 2 hour 

period and has a total volume of around 310,000 m! with a 43 bar regular minimum operational 
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pressure and a 79 bar permissible and operational maximum pressure. The Alabama plant can 

provide 100 MW over a 24 hour period and has one salt cavern with a volume of around 540,000 

m! designed to operate between a minimum pressure of 45 bar and a maximum pressure of around 

74 bars [46–48]. 

Other mining options include hard-rock mining techniques, which can be used to create hard-rock 

caverns (Figure 74). Hard-rock mining techniques include tunnel boring machine, drilling, and 

blasting. These caverns can be located at any depth desired with almost any desired shape, but as 

expected, rock strength improves with depth. Structural strength, low permeability, and adequate 

volume are required of each selected location. Sealing is most likely needed to prevent leakage in 

this technique [47]. Hard-rock caverns are expensive, and therefore small scale would be more 

desirable. 

7.4.2 Abandoned Pipelines, Vessels 

Pipelines are said to be abandoned when an oil and gas company owner of the pipelines ceases 

operation and is no longer in need of the pipelines. Regardless of the owner’s decision, the pipeline 

company is required to clean the pipes and if the pipes are to be left in place, the sides must be 

locked. These pipes could be adapted for use as pressure reservoirs for the GLIDES system. The 

major cost associated with these pipes mainly involves welding activities. The working pressure 

of the pipes depends on their thickness. 
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Figure 73, Geologic opportunities for underground storage size in the United States [43]. 

 

Figure 74, Hard rock cavern as underground reservoir for GLIDES. 
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Chapter 8: Conclusion 

Ground-Level Integrated Diverse Energy Storage (GLIDES) is a hydropneumatics energy storage 

technology which employs liquid piston and spray cooling to achieve near-isothermal air 

compression. Using experimental and simulation data, a thorough study on advantages of 

employing spray compression and expansion on efficiency, energy density, and capital cost in a 

hydropneumatics energy storage technology, GLIDES, is presented. Based on the experimental 

data, isothermal compression efficiencies as high as 98.5% are achievable using spray 

compression. Multiple pressure reservoirs are described, most of which are being used for natural 

gas storage but can be used for systems like GLIDES, involving water and hydraulic 

turbomachinery. The advantages of using spray charging also includes as high as 21% increase in 

energy density compared to an adiabatic compression process and as high as 16% decrease in 

capital cost $/kwh. The experimental data gathered using the GLIDES 2nd generation prototype 

along heat transfer equations were used to build a simulation model to further study the behavior 

of the system. Based on the analyzed data using the models discussed in previous chapters, energy 

storage costs as low as ~$14/kWh and ~$346/kWh (RTE ~80%) can be achieved for a grid-scale 

GLIDES using depleted oil/gas reservoirs and high-pressure pipe segments respectively. Some 

advantages of using underground reservoirs include large storage reservoir (grid-scale) and lower 

$/kWh cost; a much smaller footprint compared to above ground reservoirs. Some of the 

disadvantages of using underground reservoirs include scalability, geographical location with 

limited access to water reservoirs or renewable energy plants, and hazards, including drinking 

water contamination. Employing the experimental and analytical data gathered for the GLIDES 

project, a first in kind near isothermal compressor was designed leveraging the two ORNL studies 

done on liquid piston compression and advanced heat exchange via micron-sized droplets. A 1st 
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generation prototype was built at ORNL using a 0.005 𝑚! compression chamber and is in 

characterization process. Based on this research, GLIDES and IsoLiqComp are both promising 

technologies capable of providing efficient energy storage to stabilize the grid, rising the capacity 

factor of renewable generation, and provide efficient gas compression to various applications 

including HVAC systems, natural gas transportation, and 𝐶𝑂" extraction technologies.  
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Chapter 9: Future work 

As near-isothermal compression has been reached by employing spray compression, to farther 

increase the GLIDES RTE and ED, farther experimental analysis of isothermal expansion is 

proposed using spray heating during GLIDES discharge process (Figure 4, c). By employing spray 

heating, various thermodynamic cycles can be reached resulting in lower losses during GLIDES 

discharge process, achieving higher RTE. Also, As explained before, improvements to the 

GLIDES prototypes to increase the technology readiness include improvement in turbomachinery 

and cost reduction. As GLIDES has extreme head, it requires novel turbomachinery. A new 

innovative approach is desired to design an efficient and reversible pump/turbine unit to farther 

increase the GLIDES efficiency and technology readiness for commercialization. Various studies 

and simulations are needed to analyze specification of the right pump/turbine for scalable 

GLIDES. Some of these studies can include a) pump size selection for various system sizes and 

heat transfer needs, b) maximum operating pressure and losses at high pressures, and c) various 

materials, strength, and frictions. On the other hand, oil and gas wells require clean up after they 

are no longer profitable and no longer in use as explained before and require costly cleanups. With 

the power outages due to natural disasters, local energy storage can provide reliability to the grid. 

Employing abandoned pipelines and depleted oil/gas reservoirs can provide promising low-cost 

energy storage introducing very competitive market for energy storage. Farther investigation of 

using such pressure reservoirs and detail studies on system behavior using such pressure reservoirs 

is beneficial in achieving such low-cost energy storage. Other path to future is to employ 

Submerged Integrated Diverse Energy Storage (SIDES) to store energy offshore close to offshore 

windfarms. Farther investigation in this filed invention disclosure is required. The IsoLiqComp 
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double chamber compressor can provide efficient compression. Integration of this compressor with 

various technologies including heat pumps gas transportation is required. 
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