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ABSTRACT 
 

Wide-area monitoring systems (WAMSs) provide an unprecedented way to collect, 

store and analyze ultra-high-resolution synchrophasor measurements to improve the 

dynamic observability in power grids. This dissertation focuses on designing and 

implementing a wide-area monitoring system and a series of applications to assist grid 

operators with various functionalities. The contributions of this dissertation are below: 

First, a synchrophasor data collection system is developed to collect, store, and 

forward GPS-synchronized, high-resolution, rich-type, and massive-volume 

synchrophasor data. a distributed data storage system is developed to store the 

synchrophasor data. A memory-based cache system is discussed to improve the efficiency 

of real-time situation awareness. In addition, a synchronization system is developed to 

synchronize the configurations among the cloud nodes. Reliability and Fault-Tolerance of 

the developed system are discussed. 

Second, a novel lossy synchrophasor data compression approach is proposed. This 

section first introduces the synchrophasor data compression problem, then proposes a 

methodology for lossy data compression, and finally presents the evaluation results. The 

feasibility of the proposed approach is discussed. 

Third, a novel intelligent system, SynchroService, is developed to provide critical 

functionalities for a synchrophasor system. Functionalities including data query, event 

query, device management, and system authentication are discussed. Finally, the resiliency 

and the security of the developed system are evaluated.  

Fourth, a series of synchrophasor-based applications are developed to utilize the 

high-resolution synchrophasor data to assist power system engineers to monitor the 

performance of the grid as well as investigate the root cause of large power system 

disturbances. 

Lastly, a deep learning-based event detection and verification system is developed 

to provide accurate event detection functionality. This section introduces the data 

preprocessing, model design, and performance evaluation. Lastly, the implementation of 

the developed system is discussed. 
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PREFACE 
 
 

Before I started my PhD study in engineering, there were some arguments on the 

what would such a PhD degree program look like. There are some people holding a belief 

that an engineering PhD degree program should only graduate those who can deduct 

complex functions, publish tons of papers, and advance an area from the theoretical realm. 

On the opposite side, some would suggest PhD students focus on practical things and be 

down-to-earth people. Through the past years of my PhD study, I never find any of these 
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supervisor says, you don’t want to do research to publish papers, or you will eventually 
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people who lose their passions as well by doing similar engineering projects again and 

again.  
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create something meaningful to the industry. Most of my research topics are rooted from 

practical projects, while proposing complex algorithms and publishing papers are always 

the least considerations. Surprisingly, I always find there are things I can, or I should, do 

to improve the existing technologies and they are usually complex as well. Trying to 

address these issues are enjoyable because it is likely that I will apply what I develop to 

move the industry one step further.  

I love what I have been doing because they might benefit hundreds of thousands of 

people out there on this planet. This is why I gave up the computer science master offer 

from Columbia University several years ago and chose to become a PhD student at the 

University of Tennessee.  

Life is too short, why not dream big.  
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CHAPTER ONE  
INTRODUCTION OF THE MODERN WIDE AREA MONITORING 

SYSTEM 

1.1 Phasor measurement unit 

Phasor measurement units (PMU) provide high-resolution, rich-type and large-

volume measurements in modern power systems to support situation awareness, analytics, 

control, and protection. The first PMU was invented by the Virginia Polytechnic Institute 

and State University in 1990s [1]. Since then, many have improved the original prototype 

by proposing better phasor estimation algorithms and synchronization methods. 

Nowadays, PMUs utilize different phasor measurement techniques and the Global 

Positioning System (GPS) to provide synchronized phasor measurements 

(synchrophasors). Due to the wide recognition of PMUs, in recent years, they have been 

increasingly deployed in the wide area measurement systems (WAMS) [2]. Due to the high 

cost of conventional PMUs, in recent years, some micro-PMUs are developed to provide 

equally high-resolution and highly accurate synchrophasor measurements but in much 

lower costs. In the North American grids, there are several types of widely used micro-

PMUs, including frequency disturbance recorder (FDR) [3], universal grid analyzer (UGA) 

[4], and microPMU (μPMU) [5]. At present, the PMUs and the micro-PMUs are widely 

installed in the worldwide power systems. Figure 1-1 shows a map of deployed micro-

PMUs in the distribution-level synchrophasor system, FNET/GridEye.  
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Figure 1-1 Deployment map of FNET/GridEye in North America 
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1.2 Phasor data concentrator  

A phasor data concentrator (PDC) is a combination of hardware and software 

system that collects and processes synchrophasor measurement data. According to the 

IEEE C37.247-2019 [6] protocol, a PDC provides functionalities including data collection, 

data forwarding, data processing, data analytics, and data storage. In modern WAMSs, 

PDCs can be configured via multiple communication schemes [7]. A PDC can directly 

collects measurement data from PMUs or other PDCs depending on its configuration level. 

With the advances in computer technology, both academia [8], [9] and industry  have 

proposed and implemented some PDC systems [10], [11]. 

Due to the increasing deployment of PMUs and micro-PMUs, the performance of 

PDCs has been challenged in recent years. First, PMUs from difference manufacturers can 

introduce different communication protocols. As the result, it is required that the PDC 

should handle multiple communication protocols as the receiving end. Second, as the 

reporting rates of PMUs grow increasingly higher, the PDC is expected to provide a large 

enough throughput for a large-volume synchrophasor data. Third, the large volume 

synchrophasor data should be efficiently stored so that it does not consume many resources. 

Finally, the PDC must provide an efficient data distribution system so that it supports 

online/offline power system applications. In the past several years, many have explored to 

address the first three challenges.  Nowadays, commercial PDCs can support major PMU 

communication protocols [12], provide enough throughput for the large-volume data 

collection, and compress the data for efficient storage [13].  
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However, there are some issues in the modern PDCs. First, although efficient 

synchrophasor data compression draws much attention of the academia, the proposed 

compression methods may be vulnerable to large power system disturbances. For example, 

due to the complex characteristics of large frequency disturbance, the reconstruction 

performance of many state-of-the-art compression methods can be significantly 

deteriorated. Second, the reliability of the data storage draws much less attention of the 

academia. Synchrophasor data can be extremely valuable especially when it depicts the 

detailed dynamics of large disturbances. Such details may help engineers understand the 

cause of the disturbances and prevent them from future occurrence. Therefore, a data loss 

can be unaffordable due to its value. To reliably store the synchrophasor data should 

receive much more attention from the academia. Third, the challenge of data distribution 

system is still a vacant research topic in both academia and industry. The state-of-the-art 

commercial PDCs [10]-[12] are not capable of efficiently distributing the synchrophasor 

data. In fact, the data distribution system is an important component that can support 

online/offline synchrophasor applications, which provide critical functionalities to the 

monitoring and control of the power system. Therefore, to study the efficient distribution 

of synchrophasor data should receive more attention as well. 

1.3 Synchrophasor applications 

Synchrophasor applications utilize the field-collected synchrophasor 

measurements to perform tasks including disturbance detection, control, and protection. 

Synchrophasor applications can roughly be categorized into real-time and offline ones. 

Real-time synchrophasor applications are usually implemented as modules in the PDC and 
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they receive the real-time raw measurement data, which is usually pushed from the PDC, 

and process the real-time raw measurement data to generate meaningful analytical results, 

calculations, visualizations, etc. As opposed to the real-time ones, offline applications are 

usually implemented as standalone software that pull the data from the data storage system 

to generate post event analysis, statistical analysis, etc. Synchrophasor applications can 

target at solving problems at generation, transmission, and distribution levels. Nowadays, 

many synchrophasor applications are developed for frequency disturbances detection, 

voltage stability assessment, state estimation, load control, etc.  

Among the synchrophasor applications, many target at assessing and ensuring the 

reliability of the power grids. 

1.4 Motivations and objectives 

Due to the outstanding challenges brought by the advances of synchrophasor 

technology, it is an urgent need to develop a series of efficient, reliable, and secure software 

systems that satisfy the ever-growing needs in the modern WAMSs and support the day-

to-day operations of utilities, balancing authorities (BA), regional coordinators (RC) and 

electricity reliability organizations (ERO).  

This dissertation develops a series of software systems that cover critical 

functionalities targeting at the WAMS industry including synchrophasor data collection, 

storage, distribution, and analytics. The dissertation utilizes the distribution-level WAMS, 

FNET/GridEye [3], as the basis and demonstrates multiple developments based on it. It 

tries to fill the vacancy in the modern PDC research and introduce some useful tools that 

can support the field power system operation.  
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Chapter II demonstrates the development of a novel PDC system, SynchroConnect. 

Chapter III introduced the development of a novel synchrophasor data storage system, 

SynchroStorage. Chapter IV discusses a novel lossy data compression to efficiently store 

the large volume synchrophasor data. Chapter V demonstrates the development of a micro-

service, SynchroConnect, that facilitates the data exchange between different entities. 

Chapter VI summaries a few advanced synchrophasor applications that are developed 

based on the SynchroStorage and SychroConnect systems and their use cases in the power 

industry. 
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CHAPTER TWO  
DEVELOPMENT OF THE SYNCHROCONNECT SYSTEM 

2.1 Data Collection  

The SynchroConnect system collects GPS time synchronized, real-time 

measurement data from micro-PMUs including frequency disturbance recorders (FDR) 

and universal grid analyzers (UGA). Micro-PMUs stream measurement data to the 

SynchroConnect system through internet connections via transport control protocol (TCP). 

The SynchroConnect system adopts the client-server model. Micro-PMUs act as TCP 

clients, who request to establish connections to the SynchroConnect server, while the 

SynchroConnect server accepts the requests and sends acknowledge back to micro-PMUs. 

When a connects is established, the micro-PMU starts to stream measurement data. In this 

dissertation, the UGAs use the IEEE C37.118-2011 protocol [26], and FDRs use the 

FNET/GridEye data protocol to format the measurement data. For generality, the 

SynchroConnect system is designed to receive both formats. At the server side, there are 

two components. A data collection module writes the newly received data into a buffer and 

notifies adapters to consume it. The data collection module also includes a timestamp 

checking function, so that the bad timestamps are filtered out before further operations. 

The adapters can forward or try storing the data to remote hosts. The data collection module 

and the adapters are designed to run asynchronously to improve the efficiency of the 

system. Moreover, to increase the redundancy, the SynchroConnect system is deployed in 

two servers to operate independently. Figure 2-1 demonstrates the architecture of the data 

collection module in the SynchroConnect system. 
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Figure 2-1 The architecture of the data collection module 
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2.2 Data Forwarding 

The SynchroConnect system can also forward collected data to other systems. The 

data forwarding function is designed to support the real-time synchrophasor applications 

as well as the data storage in a distributed manner. By forwarding the measurement data to 

dedicated servers, the collection, analytics, and storage of data are decoupled. This strategy 

improves the overall reliability of the system so that the failure of a single machine does 

not affect the others. The data forwarding function is typically implemented by an adapter 

and the data forwarding module also adopts the TCP client-server model. To forward data, 

the TCP adapter requests to establish a TCP connection to a remote server as a client, then 

streams the collected data through the established connection via user-define protocols.  

2.3 Data Storage  

The SynchroConnect system may store collected data into various storage 

mediums. Upon receiving the data stream, the SynchroConnect system verifies the 

validness of the data then begins the storage procedure. The SynchroConnect system may 

store the data as local formatted files or send it to other time-series databases that are 

deployed either locally or remotely. In this dissertation, a master-slave model is adopted to 

store the measurement data in a distributed manner. Specifically, it defines two types of 

nodes, master node and slave node as shown in Figure 2-2. A master node keeps a list of 

canonical PMU configurations as a reference but does not store the measurement data. A 

slave node keeps a local PMU configuration and stores the associated measurement data.  
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Whenever a change of configuration happens, it will be populated among the slave 

nodes to ensure the consistency of configurations. The main reason of adopting the master-

slave structure is its easiness of data management. By decoupling the configuration and the 

measurement data, manual changes are only allowed in the master node, which eliminate 

the potential human errors on updating all nodes. Furthermore, this structure may allow a 

more efficient redundancy plan, where the redundancy is achieved by assigning only part 

of the data to a slave node and properly overlapping the slave nodes by redundant data [7]. 

In this way, the slave nodes can be implemented in a partially redundant mode to save 

storage space.  

Furthermore, the master-slave structure allows heterogenous storage mediums. Due 

to the upgrade of legacy systems, there can be some old storage mediums that are still be 

used along with the newer ones. By managing the configurations at the master node, the 

storage subsystem knows and automatically updates the configurations of the slave nodes. 

This makes it possible to easily manage the redundancy plan and the configurations for the 

slave nodes without accessing the configuration of each slave node. Due to its efficiency 

in data storage and query, this paper uses open source time-series databases to store 

synchrophasor data on slave node [12], [14]. Table 2-1 shows the time-series databases 

that are supported by the SynchroConnect system.  
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Figure 2-2 The architecture of the data storage module 

Table 2-1 Supported time-series databases 

Name Master node Slave node 
Configuration Configuration Measurements 

OSIsoft PI system Yes No Yes 
OpenHistorian Yes Yes Yes 

InfluxDB Yes No Yes 
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2.4 Data redundancy 

Data redundancy improves the reliability of data storage, offering immunity to 

occasional machine failures that may lead to data loss. Generally, data can be fully or 

partially redundant. A fully redundant strategy requires each node host an identical piece 

of data. The fully redundant strategy offers the best storage reliability. Given the total 

number of nodes n, each chunk piece of data gets replicated n times, which makes the 

probability of a data loss extremely low. Nevertheless, this strategy may greatly increase 

the cost since each disk keeps an identical copy of data, which might be unnecessary and 

costly in practice. As opposed to it, the partially redundant strategy only requires a piece 

of data be replicated for x times, where x is much less than n. This strategy can offer 

similarly low data loss probability, but it is of a much lower cost. The partially redundant 

strategy is widely adopted in cloud storage technology.  

In the SynchroConnect system, both strategies are adopted to satisfy different 

scenarios. The fully redundant strategy is implemented in the master nodes. This is because 

the data size of the configuration is small, and it is usually stored in structural query 

language (SQL) databases, where the fully redundant strategy is easier to implement. On 

the other hand, the partially redundant strategy is implemented in the slave nodes, where 

each piece of data is replicated by two slave nodes at a time. This is due to the large size 

of the synchrophasor data and its nature for easy segmentation. The choice of two 

replications might seem to be a suboptimal solution to prevent a data loss since three 

replications can increase the mean time between data loss (MTDL) from 10 to 100 years. 

However, the main purpose of the data storage system in the SynchroConnect is to host 
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several years of data. Furthermore, synchrophasor measurements that are older than several 

years may not be of a great usage unless it contains significant disturbances. Considering 

these practical reasons, the two-replication strategy is chosen to ensure an acceptable data 

reliability yet reduces the costs of hardware.  

2.5 Node synchronization 

Node synchronization is a necessity in a distributed data storage system. Due to its 

distributed storage structure, the SynchroConnect system also requires a well-designed 

synchronization system to ensure the consistency of slave nodes. In the SynchroConnect 

system. the majority of the synchronizations happens in the PMU configuration. The PMU 

configuration specifies both runtime information such as name, location, reporting rate, 

types of measurements, TCP connection string, etc. and hardware information including 

the digital signal processing (DSP) module, internet module, etc.   To reduce the network 

traffic, each slave node maintains and uses a local copy of the configuration. It is worth to 

note that, configurations between two slave nodes can be different. This is because two 

slave nodes can be configured to store different part of the data. In the SynchroConnect 

system, the configuration in the master node is always the latest, while that of a slave node 

can be nearly latest. A slave node only updates its configuration file by accepting and 

executing the synchronization command from the master node after a series of updates is 

posted. The synchronization command can be sent manually or automatically. The manual 

synchronization command is sent when the PMU administrator finishes updating the 

configurations and. As opposed to it, the SynchroConnect system also maintains a time 

interval τ for periodical automatic synchronization. Whenever a τ-length of time elapses, a 
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synchronization command is sent to the slave nodes to allow them to update their 

configurations.  

To update the slave nodes, the SynchroConnect system first stores the changes, on 

the master node, that are made by the PMU administrators into an operation cache. When 

the update on the master node is done, the system analyzes the operation cache and 

compares the changes with the configurations of the slave nodes, then enqueues necessary 

updates for all slave nodes. Whenever a manual synchronization command is sent or τ 

elapses, the master node dequeues the updates and populates them to the slave nodes 

sequentially. A typical workflow of the synchronization process is shown in Figure 2-3. 
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Figure 2-3 Node synchronization workflow 
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CHAPTER THREE  
SYNCHROPHASOR LOSSY COMPRESSION FOR EFFICIENT 

DATA STORAGE 

3.1 Introduction 

PMUs have been increasingly deployed in the past decades since their invention, 

which overperform traditional supervisory control and data acquisition system (SCADA) 

thanks to their high reporting rates, rich measurement types, and high accuracy. These 

features enable many advanced applications that help ensure the reliability of power grids 

[15]-[18]. Typically, a PMU collects phasors including voltage magnitude, voltage angle, 

current magnitude, current angle, frequency, etc. A typical PMU collects GPS-

synchronized phasors and streams them to a phasor data concentrator (PDC) at 10-120 Hz 

reporting rate [18], [19]. On the other hand, grid structures nowadays are complex [20]-

[24], which require more and more PMUs to cover the transmission system. For example, 

according to [25], to cover the transmission system in the USA, more than 1100 PMUs are 

required. Clearly, the high reporting rate and the large number of PMUs will result in a 

huge amount of data. For example, assuming there are 1100 PMUs reporting data at 30 Hz 

via the IEEE C37.118 protocol [26], over 700 gigabytes (GB) data will be generated per 

day. Furthermore, using advanced PMUs, which report at 120 Hz, the total data volume 

can exceed 2.8 terabytes (TB) per day. Realizing the challenge from the large-volume PMU 

data, data compression techniques need to be exploited to efficiently compress [27] and 

store the data.  
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In general, compression techniques can be categorized into lossy and lossless 

approaches [28]. Lossless compression focuses on exploring the statistics of the data and 

using efficient bit-wise encoding techniques to compress it. Lossless compression allows 

compressed data to be compressed with no information loss. Comprehensive comparisons 

are conducted among well-known lossless compression models including Deflate, Bzip2, 

Lempel-Ziv 77 (LZ77), Lempel-Ziv-Markov-algorithm (LZMA), and the Szip [29], [30]. 

These works imply using the Szip model may achieve the best compression performance 

for synchrophasors. However, lossless compression methods can hardly reach a high 

compression ratio (CR) since the dimension of the synchrophasor data is ignored.  

On the contrary, lossy compression emphasizes trading controllable errors for a 

better CR. For synchrophasor data compression, the lossy compression models mainly rely 

on two philosophies. The first and most straightforward way is to compress the data by 

analyzing each PMU independently. Models such as discrete wavelet transformation 

(DWT) [31], [32], improved DWT [33]-[35], exception compression (EC)-swing door 

trending (SDT) [36], etc. are proposed. Among these models, the SDT method can achieve 

good CR with small normalized mean square error (NMSE). Another way to compress the 

data exploits the linearity in the synchrophasor data. Within an interconnected power grid, 

synchrophasors may contain high linearity. For example, a principal component analysis 

(PCA) based model is proposed to use dimensionality reduction to perform early event 

detection [37]. This work lays the basis of using dimensionality reduction approaches to 

analyze PMUs’ data in the modern smart grid and it implies its potential to compress the 

PMU data as well. Towards this end, an SCD-PCA-DWT/DCT model is proposed to 
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compress the synchrophasors [38]. In this work, the PCA compression achieves good 

performance on various measurements. Similarly, another PCA-based algorithm is 

proposed to compress the distribution-level synchrophasors [39]. In this work, the data can 

be compressed at good CRs with controllable errors. Recently, a multiscale PCA model is 

proposed to decide different parameters for the PCA model. It first performs a spatial-wise 

cluster analysis, then uses different PCA models to compress corresponding clusters. This 

work can achieve good CR under ambient conditions and acceptable CR under generator 

trip conditions. However, this model was not extensively tested with disturbance events 

such as oscillations, and inter-area oscillations, where the clusters can have a similar 

density.  

3.2 Issues of lossy compression methods 

Though it seems promising, there are several issues in using PCA to compress the 

synchrophasor data. The first one is the choice of the principal components or the 

compression space R. Some have proposed to separate the data into ambient condition and 

fault conditions and decide the compression space R respectively. However, the choice of 

principal components is still not well defined. In [38], 80% static normalized cumulative 

variance (NCV) is used under ambient conditions, while 95% NCV is used under fault 

conditions. A similar score selection philosophy is implemented in another work [39]. This 

rather static rule has a chance of losing important information during data compression, 

even if the RMSE seems acceptable.  

As shown in Figure 3-1, when the data is compressed and reconstructed under 

99.0% score, there is still a significant information loss. For the reconstructed data, the 
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maximum frequency is reduced from above 60.25 Hz to 60.08 Hz, while the minimum 

frequency is elevated from 59.80 Hz to 59.88 Hz. This error can result in inaccurate 

frequency response assessments, which are required in standard BAL-003 [40] by North 

American Electric Reliability Corporation (NERC). Another issue is the effects of 

disturbances. A related work proposes to use statistical change detection (SCD), where the 

deviations from the measuring values to the nominal values are quantified given a time 

window [38]. In this work, the “nominal values” are calculated by averaging the measured 

values of the current device in the time window. However, from the wide-area standpoint, 

using the average measurements of a single device may lead to several drawbacks. First, 

under islanding conditions, the measured quantities of some locations can go way off from 

other locations due to desynchronization. Using the SCD method, the islanded devices may 

still report itself as running under nominal conditions if their data does not contain large 

excursions. This will affect the calculation of the SCD because if all devices report 

themselves as running under nominal conditions, no statistical change will be detected. 

Second, using the average value of the past several seconds may be insufficient to measure 

the chaos in the data since it can be sensitive to normal frequency changes under low load 

conditions. In such a scenario, the synchrophasor measurements can contain high linearity 

even if the SCD algorithm reports a statistical change.  

Figure 3-2 shows the frequency, the SCD, and the wide-area deviation (WAD) of a 

typical frequency ramping. Here, the WAD is represented by the difference between the  
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Figure 3-1 Frequency data comparison (110 units) 

 
Figure 3-2 Frequency ramping under low load condition 
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measurements and the system medians. As seen in Figure 3-2, a scheduled load change 

causes the frequency to ramp up to 60.024 Hz, while the frequencies are still synchronized 

across the grid. High linearity is observed in the data as the WAD is very smooth. However, 

the SCD reports a statistical change, which cannot accurately reflect the real system 

dynamics.  

This paper tries to address the abovementioned issues by evaluating and 

compressing the synchrophasor data via cross-entropy and the state-of-the-art PCA variant, 

singular value decomposition (SVD) [39]. First, this paper exploits a machine learning 

concept, cross-entropy, to evaluate the patterns within the synchrophasor data. Then, it 

generates compression periods according to the evaluation result. Finally, the proposed 

model compresses the synchrophasor data using the SVD algorithm, under relative error 

thresholds.  

3.3 Proposed lossy compression method 

Cross-Entropy for Synchrophasor Data 

Cross-entropy [41] is a widely used concept in machine learning. It is commonly 

used in machine learning loss functions to measure the difference between the model 

outputs and the ground truth. For synchrophasors, the cross-entropy can be written as 

𝐻𝐻 �𝑀𝑀𝑡𝑡 ,𝑀𝑀𝑡𝑡� = −∑ 𝑃𝑃 �𝑀𝑀𝑡𝑡�𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃 (𝑀𝑀𝑖𝑖
𝑡𝑡)                               (1) 

where i and t represent the device ID and the time index, respectively. 𝑀𝑀 is the 

distribution of the measurements, 𝑀𝑀�  is the distribution of the nominal value, 𝐻𝐻 �𝑀𝑀𝑡𝑡 ,𝑀𝑀𝑡𝑡� 

represents the cross-entropy of 𝑀𝑀𝑡𝑡 with respect to 𝑀𝑀𝑡𝑡, 𝑃𝑃(𝑥𝑥) is the probability of sample 𝑥𝑥. 
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Cross-entropy can be used as an ancillary criterion for data compression due to its 

indication of off-nominal patterns. Under disturbance scenarios, the synchrophasor signals 

can have obvious off-nominal patterns. The off-nominal patterns represent the extent to 

which the system runs “chaotically”. The introduction of cross-entropy helps describe how 

different the synchrophasor data is from the nominal patterns. Since the off-nominal 

patterns are observed during fault conditions and the nominal patterns are observed during 

ambient conditions, the evaluation of the synchrophasor data can be generalized as a 

bipartite classification problem. A simplified cross-entropy function for a bipartite 

classification can be written asw 

𝐻𝐻𝐵𝐵(𝑀𝑀𝑖𝑖
𝑡𝑡) = - �𝑀𝑀𝚤𝚤

𝑡𝑡����𝑙𝑙𝑙𝑙𝑙𝑙[𝑃𝑃(𝑀𝑀𝑖𝑖
𝑡𝑡)] + �1 −𝑀𝑀𝚤𝚤

𝑡𝑡����� 𝑙𝑙𝑙𝑙𝑙𝑙�1 − 𝑃𝑃(𝑀𝑀𝑖𝑖
𝑡𝑡)��                 (2) 

where, 𝐻𝐻𝐵𝐵(𝑀𝑀𝑖𝑖
𝑡𝑡) represents the bipartite cross-entropy of 𝑀𝑀𝑖𝑖

𝑡𝑡.  

Now, the target is to identify the chunk of data that has off-nominal patterns, 

evaluate its cross-entropy, and separate it from others that have nominal patterns. 

Therefore, (2) can be further simplified as (3), since presumably only the logarithmic 

distance between the distribution 𝑀𝑀𝑖𝑖
𝑡𝑡 and the target 0 is concerned.  

𝐻𝐻𝐵𝐵(𝑀𝑀𝑖𝑖
𝑡𝑡) = -𝑙𝑙𝑙𝑙𝑙𝑙[𝑃𝑃(𝑀𝑀𝑖𝑖

𝑡𝑡)]                                            (3) 

In the compression algorithm, the nominal value of the frequency data is defined as 

the median frequency of an interconnected grid and the distribution M is calculated by 

subtracting the system median frequency value using PMUs’ reported actual frequencies. 

The nominal value of the voltage magnitude is the normal voltage magnitude per unit (pu), 

and its distribution M is calculated by subtracting each PMU’s normal voltage magnitude 

(pu) using this PMU’s actual voltage magnitude.  Finally, the nominal value of the phase 
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angle is the median of unwrapped angles. It is worth noting that phase angles may vary 

greatly compared to the frequency and voltage magnitudes. Therefore, for a certain PMU, 

it is required to subtract its phase angle value at the first timestamp from all rest phase 

angle values [42], then normalize it through a [0,1] range.  

Algorithm 1: Calculate the cross-entropy of the 
synchrophasor data, and generate partitions according to 
the cross-entropy levels 
  Input: Sdatal: the synchrophasor data, where l is the 
length of the data; Ndatal: the nominal-value data; 
Threshold_entropy: the entropy threshold separating the 
ambient and the disturbance conditions; ew_size: the 
window size to pre-partition the data; mw_size: the 
window size to merge the pre-partition results. 
  Output: Partitions: the partitions generated by the 
algorithm 
Initialization: c ← 0, j ← 0, Partitions ← [], k ← 1, 
Merged_patitions ← []. 
while j < l do 
    entropy ← Sdataj - Ndataj 
    if entropy > Threshold_entropy then 
        if c = 0 then  
            s ← j 
        end if 
     c ← ew_size 
    else 
         if c > 0 then 
             c ← c -1 
             if c = 0 then 
                  e ← j 
                  Append [s, e] to Partitions 
             end if 
        end if 
while k < l do 
    if Partitions[k][0]-Patitions[k-1][1]<mw_size then 
        Append [Partitions[k-1][0], Partitions[k][1]] to          
Merged_partitions 
    end if 
k ← k - 1 
end while 
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Cross-Entropy-Based Evaluation 

The purpose of the cross-entropy analysis of the synchrophasor data is to identify 

the periods that are chaotic, i.e. they contain low linearity. Identifying these periods are 

crucial to the data compression because the dimensionality reduction-based compression 

models exploit the high linearity of the synchrophasor data to achieve optimal compression 

performance. Therefore, if a chunk of data is of high cross-entropy, a lower CR is required 

to maintain the information in the data, otherwise, a higher CR may be used to achieve a 

superior compression ratio without losing too much information.  

This paper proposes a cross-entropy based synchrophasor measurement evaluation 

approach combining the information from a wide area. Algorithm 1 shows a general 

partitioning method that calculates the cross-entropy and generates the partitions for a 

chunk of synchrophasor data. However, on some occasions, it will generate partitions that 

are temporally close to each other. This is because high-linearity and low-linearity periods 

are interweaved under fault conditions. Although the number of partitions may not affect 

the compression performance directly, more partitions can result in excessive overheads 

that may take considerably large space when the data chunk is small. To avoid excessive 

overheads, the temporally close partitions are merged to reduce the number of partitions. 

Error! Reference source not found. shows the entropy distribution of a chunk of 

frequency measurements. As is seen from the figure, the entropy of the ambient periods is 

around 10-7, which is relatively trivial compared to that of a fault period. Meanwhile, the 

entropy of the fault period goes up to over 10-3, which is 104 times larger than that of an 

ambient period. With entropy being calculated, generating partitions becomes a rather 
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straightforward task. Figure 3-3 also shows the merged result from step 2. For the 

frequency data, the nominal value at timestamp always equals to the median frequency of 

the grid. Then this paper uses the proposed algorithms to partition the frequency data into 

chunks. As is seen from the figure, the frequency data is partitioned into 3 chunks. The first 

and the last partitions reflect the system-wide frequency distribution under ambient 

conditions, while the second partition reflects that under a generator trip condition. The 

first and the last partitions also imply high linearity, as their data are more “concentrated”. 

In the meantime, the second partition shows low linearity, as its data contains more 

excursions. 

Synchrophasor Data Compression via Singular Value Decomposition Considering 

Disturbances 

Using dimensionality reduction models to compress the synchrophasor data is not 

a new area of research. However, as aforementioned, the optimal decision of the 

compression space R is more of a human experience-based trade-off between compression 

performance and accuracy.  

A static choice of R is relatively biased in terms of the type, the volume, the 

resolution, and the entropy of the synchrophasor data. The choice of R for a small 

synchrophasor network may not work for a large synchrophasor network assuming higher 

linearity exists when the number of devices is larger. On the other hand, under disturbance-

involved power system dynamics, the linearity of the synchrophasor data can change 

drastically [42], which makes the choice of R rather difficult. Information vanishing is 

likely to happen if improper R is chosen.  
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Figure 3-3 Entropy distribution of frequency measurement during a generator trip 
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To address this issue, this paper exploits the local characteristics of the 

synchrophasor data, proposing a dynamic singular value decomposition model to decide 

the best R for each data chunk. On the other hand, the proposed model also uses a relative 

evaluation methodology, which is capable of tracing very small fluctuations in the data. 

Singular Value Decomposition  

SVD is a widely accepted dimensionality reduction algorithm, which decomposes 

a large matrix 𝑴𝑴𝒎𝒎×𝒏𝒏  into three smaller matrix 𝑼𝑼𝑚𝑚×𝑛𝑛 , 𝜮𝜮𝑛𝑛×𝑛𝑛 , and 𝑽𝑽𝑛𝑛×𝑛𝑛 . The SVD 

algorithm can be represented as 

𝑴𝑴𝑚𝑚×𝑛𝑛 = 𝑼𝑼𝑚𝑚×𝑛𝑛𝜮𝜮𝑛𝑛×𝑛𝑛𝑽𝑽𝑛𝑛×𝑛𝑛
𝑇𝑇                                         (4) 

where m is the number of samples, n is the number of PMUs, 𝑼𝑼𝒎𝒎×𝒏𝒏 is the left 

singular vectors, 𝜮𝜮𝒏𝒏×𝒏𝒏 is the diagonal matrix that represents the singular values, and 𝑽𝑽𝒏𝒏×𝒏𝒏 

is the right singular vectors. 

The compression algorithm takes the top K singular vectors out of the N singular 

vectors. Therefore, the SVD reduces the problem to  

𝑴𝑴𝑚𝑚×𝑛𝑛
′ = 𝑼𝑼𝑚𝑚×𝑘𝑘𝜮𝜮𝑘𝑘×𝑘𝑘𝑽𝑽𝑘𝑘×𝑛𝑛

𝑇𝑇                                           (5) 

The compression ratio is calculated by measuring the total number of values of the 

original matrix and the reduced matrix. Therefore, the compression ratio (CR) is calculated 

by  

𝑪𝑪𝑪𝑪 = 𝑚𝑚×𝑛𝑛
𝑚𝑚×𝑘𝑘+𝑘𝑘×𝑘𝑘+𝑛𝑛×𝑘𝑘

= 𝑚𝑚×𝑛𝑛
𝑘𝑘(𝑚𝑚+𝑘𝑘+𝑛𝑛)                                        (6) 
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Model Tuning via Local Characteristics 

In this paper, a local characteristic evaluation methodology is proposed to address 

the vanishing of information caused by using a static NCV score as the threshold. The local 

characteristic LC is represented by 

𝐿𝐿𝐿𝐿𝑠𝑠,𝑒𝑒 = max
𝑖𝑖=1,…,𝑛𝑛

�𝑀𝑀𝑖𝑖
𝑠𝑠,𝑒𝑒 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑴𝑴𝒔𝒔,𝒆𝒆)�                                  (7) 

where 𝐿𝐿𝐿𝐿𝑠𝑠,𝑒𝑒 is the local characteristic of the ith measurement within a period, s is 

the start time, e is the end time, 𝑀𝑀𝑖𝑖
𝑠𝑠,𝑒𝑒 is the ith measurement data within the [s,e] time 

period.  

The idea of introducing the system median is it represents the most common 

distribution of the data. By calculating the maximum absolute deviation between the 

measurement and the system median, the proposed method recognizes the largest 

excursions that are caused by the disturbances. 

This paper calculates a proportion of the LC as the criteria to decide the tolerated 

reconstruction error threshold (TRET) by  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠,𝑒𝑒 = 𝜆𝜆 ∙ 𝐿𝐿𝐿𝐿𝑠𝑠,𝑒𝑒                                                 (8) 

where 𝜆𝜆 is a static coefficient that represents the TRET in percentage. This paper 

uses 0.05 as the value of 𝜆𝜆 throughout the performance evaluation. It is noted that the 

choice of 𝜆𝜆  is subject to the requirements of users. Users may choose a smaller 𝜆𝜆  to 

preserve more information or a larger 𝜆𝜆  to get bigger CR per the requirements of 

applications. 
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3.4 Performance evaluation 

Simulated Data 

This paper uses the “savnw” 23-bus system provided by PSS®E 33 [43], assuming 

each bus is equipped with a PMU, which measures the bus voltage (VM), voltage phase 

angle (VH), and frequency (F) at a reporting rate of 120 Hz. In this paper, all simulations 

last 60 seconds. Since synchrophasor data may subject to local distribution or transmission 

characteristics, it is common to observe noises in such data [44]. To make the simulated 

data more authentic, white Gaussian noises of 75dB, which equals to the observed average 

noise level in the field-collected data [45] as well as random phase and frequency jumps 

[46] are added to the simulated synchrophasor dataset.  

In the simulation, this paper considers disturbances including bus fault (BF), line 

fault (LF), transformer switch off (TF), and line trip (LT).  

In this paper, 2 criteria are considered to evaluate the reconstruction performance, 

which are maximum absolute error (MAE) and average root mean square error (ARMSE). 

The MAE is calculated by 

𝑀𝑀𝑀𝑀𝑀𝑀 = max
𝑚𝑚,𝑛𝑛

|𝑴𝑴𝑚𝑚×𝑛𝑛 −𝑴𝑴𝑚𝑚×𝑛𝑛
′ |,                                    (8) 

while the ARMSE is calculated by 

                                      (9) 
Table 3-1 shows the comparison of the proposed cross-entropy-based SVD (SVD-

CE) approach and the state-of-the-art statistical change detection-based SVD (SVD-SCD) 

algorithm. As is seen from the table, the proposed SVD-CE generally outperforms the 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
‖𝑴𝑴𝑚𝑚×𝑛𝑛 − 𝑴𝑴𝑚𝑚×𝑛𝑛

′ ‖

√𝑚𝑚𝑚𝑚
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SVD-SCD algorithm. For the comparison of the voltage magnitude data under BF, the 

performance of the SVD-CE algorithm has better CR while keeping lower recovery errors. 

This is because, under BF, steps changes happen after the short-circuits on the buses, which 

cannot be easily detected by the SVD-SCD algorithm. It is also seen from Table 3-1 that 

the SVD-SCD can achieve better CRs on some occasions, but they usually imply 

unaffordable information loss. This is because the SVD-SCD algorithm may generate a 

single data chunk, where the high-linearity and low-linearity periods are interweaved. 

During events where high-linearity periods outnumbers low-linearity ones, the overall 

linearity of the data chunk may rise. Under these scenarios, the SVD-SCD algorithm can 

compress the data more aggressively. Moreover, this feature can also result in lower 

ARMSEs among the high-linearity periods since the algorithm tends to fit the high-

linearity periods but undermine the low-linearity periods. These observations mostly 

happen under the LF and the LT conditions because under both conditions the high-

linearity periods well outnumber the low-linearity periods. As opposed to it, the proposed 

SVD-CE algorithm differentiates the high-linearity periods and the low-linearity periods 

using their cross entropies. It assigns the best CR to each period, while keeps superior 

reconstruction accuracy. As is shown in Table I, the proposed algorithm can restrain the 

MAEs within lower ranges, while maintaining comparable CRs.  

As a case study, Figure 3-5 shows the recovered angle data under a BF. The 

proposed SVD-CE algorithm reconstructs the data more accurately, while the SVD-SCD 

algorithm has human-eye perceivable errors at many time instants. This is because the 

SVD-SCD algorithm tends to find fewer principal components and causes the loss of 
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critical information. In this case, the average CR of the SVD-CE algorithm is 2.7, while 

that of the SVD-SCD algorithm is 3.8. Therefore, the SVD-CE algorithm reaches a 

comparable CR rate while keeps relatively lower errors. Figure 3-4 shows the 

reconstruction of frequency data under a complex disturbance, where an LT follows an LF. 

As seen in Figure 3-4 (a), there are a few frequency spikes in the original data around the 

fault location. After the disturbances, the frequency first rises, then drops to a steady level 

as frequency responses take place. As seen in Figure 3-4 (b), the proposed SVD-CE 

approach can reconstruct the data to reflect the dynamics under the disturbance. However, 

as seen in Figure 3-4 (c), the SVD_SCD algorithm over-generalizes the data. It only 

includes the trend of the frequency while loses critical information around the fault 

location.  

In conclusion, for the simulated data, the proposed model can maintain critical 

disturbances information while achieving a comparable CR rate. Nonetheless, as seen from 

Table 3-1, the CR improvement by the proposed SVD-CE algorithm is usually not obvious. 

This is because the simulated data contains less noise. The cleaner simulated data is mainly 

caused by the simplicity of the simulation system. In this simulation system, there are few 

renewable sources or power electronic interfaces, making the noises caused by harmonic 

pollution, etc. less obvious than those in a real, complex system. Therefore, there has not 

seen a significant improvement in the CRs on all signals.  
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Table 3-1 Performance Comparison of Simulated Data 
 Sig. BF LF TF LT 
 CR MAE ARMS

E 
CR MAE ARMS

E 
CR MAE ARMS

E 
CR MAE ARMS

E 
SVD
-
SCD 

VM 5.8 1.2×10-

16 
7.4×10-

20 
5.7 3.2×10-

3 
1.7×10-

5 
4.6 2.2 × 1

0-4 
3.5 × 1
0-6 

5.7 7.4×1
0-4 

1.4×10
-5 

VH 3.8 4.6×10-

5 
5.4×10-

6 
11.
5 

5.1×10-

5 
3.6×10-

7 
11.
5 

1.6 × 1
0-5 

1.1 × 1
0-6 

11.
5 

5.7×1
0-6 

5.5×10
-7 

F 1.0
5 

1.7×10-

4 
2.5×10-

5 
7.6 2.0×10-

4 
3.4×10-

6 
11.
5 

9.6 × 1
0-5 

3.7 × 1
0-7 

11.
5 

1.5×1
0-4 

3.0×10
-6 

SVD
-CE 

VM 9.5 3.5×10-

17 
2.5×10-

20 
4.7 7.7×10-

4 
4.8×10-

5 
4.7 1.2 × 1

0-4 
2.9 × 1
0-6 

4.7 2.0×1
0-4 

3.4×10
-6 

VH 2.7 4.3×10-

5 
1.37 × 1
0-7 

11.
1 

5.8×10-

6 
2.0×10-

7 
9.7 8.3 × 1

0-6 
2.2 × 1
0-7 

11.
2 

5.2×1
0-6 

3.1×10
-7 

F 1.0 2.7×10-

18 
4.0×10-

18 
7.7 1.0×10-

4 
3.3×10-

6 
11.
4 

2.3 × 1
0-5 

4.9 × 1
0-7 

7.8 4.1×1
0-5 

2.4×10
-6 

 

              
(a)  Original frequency measurements                                 (b)  Reconstruction via SVD-CE 
 

 

 
                                     (c)  Reconstruction via SVD-SCD 

Figure 3-4 Frequency reconstruction performance LF & LT (23 units) 

 

Info. loss 
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Figure 3-5 Reconstruction performance angle BF (23 units) 
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Field Data 

In this subsection, the field-collected frequency and voltage phase angle from the 

U.S. eastern interconnection provided by the distribution-level wide-area monitoring 

system (WAMS) FNET/GridEye are used for performance evaluation [47]. For the field 

data, this paper evaluates the dynamic conditions including generator trip (GT), frequency 

ramping (FR), oscillation (OC), and forced oscillation (FO).  

Table 3-2 shows the performance comparison of the filed collected data. As is 

shown from table, under real-world scenarios, the proposed SVD-CE algorithm generally 

outperforms the SVD-SCD algorithm. Under GT and FO scenarios, although the CRs of 

the proposed algorithm is similar to the SVD-SCD algorithm, their errors are much less 

than the SVD-SCD algorithm because the SVD-CE algorithm has a stronger ability to 

pinpoint the high-entropy periods in the real-world scenarios, which have lower linearity 

for synchrophasor data in different locations. By specifying these periods, the algorithm 

can fit these periods with a tailor-made error threshold instead of an NCV.  

As is seen from Table 3-2, under LT scenarios, the proposed algorithm can achieve 

a much better result than the SVD-SCD algorithm. The reason is that static NCV does not 

work well when LT events present. The NCV tends to force the algorithm to find a much 

higher compression dimension to meet the NCV. However, the proposed algorithm finds 

the lowest possible compression dimension while keeping relatively low reconstruction 

errors. Moreover, under LT scenarios, there are tiny phase steps in the point of wave (POW) 

measurements that cause frequency deviations [48]. 
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Table 3-2 Performance Comparison of Field Data 

 Si
g. 

GT LT FR FO 
 C

R 
MA
E 

AR
MSE 

C
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E 

AR
MSE 

C
R 

MA
E 

AR
MS
E 

C
R 

MA
E 

AR
MS
E 

SV
D-
SC
D 

V
H 

49
.6 

1.2 ×
10-4 

1.7 ×
10-6 

17
.1 

3.7 ×
10-5 

1.8 ×
10-6 

38
.8 

1.7
× 10
-4 

3.4
× 10
-6 

40
.2 

6.8
×10
-6 

2.9×
10-6 

F 9.
3 

1.3 ×
10-3 

3.6 ×
10-5 

11
.9 

2.2 ×
10-4 

2.1 ×
10-5 

92
.0 

8.3
× 10
-5 

2.4
× 10
-8 

1.
7 

2.9
×10
-4 

1.8×
10-5 

SV
D-
CE 

V
H 

49
.4 

3.2 ×
10-5 

1.5 ×
10-6 
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.0 

3.6 ×
10-5 

1.7 ×
10-6 

41
.9 

1.7
× 10
-5 

3.7
× 10
-6 
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.1 

6.8
×10
-4 

4.4×
10-6 

F 9.
5 

4.1 ×
10-4 

2.6 ×
10-5 
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.5 

2.2 ×
10-4 

1.7 ×
10-5 

92
.0 

8.3
× 10
-5 

2.4
× 10
-8 

1.
6 

2.1
×10
-4 

8.0×
10-6 
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Under LT scenarios, the tripping of the line usually causes tiny phase steps in the 

POW, which in result causes tiny local angle variations. As is shown in Figure 3-6, the LT 

event causes angle variations at around 14.8s. The magnitudes of these variations are very 

small, making them hard to recognize via human eyes. However, these tiny variations 

represent the intrinsic characteristics of the POW data, which is of great significance in 

terms of deciding the credibility of the LT event. As is seen, the SVD-CE algorithm 

successfully preserves these tiny variations that the SVD-SCD algorithm does not reflect. 

On the other hand, it also suggests, under LT scenarios, the SVD-CE algorithm achieves 

better CR while keeping good reconstruction accuracy.  

Moreover, as Figure 3-7 shows, under FO scenarios, the proposed SVD-CE 

algorithm successfully retains the oscillation information, while the SVD-SCD algorithm 

only retrains partial oscillation information. Moreover, under FO scenarios, the 

information loss of the SVD-SCD algorithm can greatly affect the event analysis, since it 

loses critical sinusoidal signals at multiple points. As a result, the reconstructed data of the 

SVD-SCD algorithm would fail the classic forced oscillation analysis. Therefore, even 

though the SVD-SCD algorithm achieves better CR, it fails to retain critical information, 

which is crucial to event analysis.  

Data compression under complex disturbance conditions 

In field operations, the characteristics of disturbances are complex. Complex 

disturbances can greatly affect the dynamics of an interconnected power grid; thus, they 

can seriously deteriorate the performance of the compression algorithms.  
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Figure 3-6 Reconstruction performance angle LT (110 units) 

Phase step 
l  

 
Figure 3-7 Reconstruction performance angle FO (110 units) 

 

Sinusoidal sig. loss 
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A notable feature of the proposed method is its superior information retaining 

ability under complex disturbances. Figure 3-8 shows the performance comparison during 

an GT event. In Figure 3-8 (a)-(b), the x-axis represents the PMU channels, while the y-

axis represents the time index. A GT disturbance is observed at time index 192 and it causes 

system-wide frequency drops in all channels. As seen, the proposed SVD-CE method 

achieves good reconstruction performance. This is because the it can successfully identify 

the disturbances period and perform efficient compression strategies on disturbance period 

and ambient periods respectively.   

For the SVD-SCD method, it loses critical information during the disturbance and 

post-disturbance periods. The high reconstruction error during the disturbance period is 

caused by its inability to bound the TRET. While the high reconstruction error during post-

disturbance period is since the SVD-SCD approach treats the post-disturbance period as 

ambient periods. Therefore, it tends to over-simplify the post-disturbance characteristics 

by finding a much smaller compression space regardless of the important local 

characteristics. As opposed to it, the proposed SVD-CE algorithm still retains more 

information. A similar example is shown in Figure 3-9, where an LD disturbance is 

involved. As seen from Figure 3-9 (c), the SVD-SCD approach finds less accurate 

representations of the data. It still over-simplifies the data and causes inaccuracies in the 

post-disturbance period. On the other hand, on some channels, this approach results in 

erroneous reconstructions including spikes that are not presented in the original data.  

A more complex disturbance scenario is shown in Figure 3-10, where an LT 

happens at 4.0s and a GT happens at 16.0s. As seen from Figure 3-11 (c), the SVD-SCD 
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algorithm is able to accurately preserve the LT information at 4.0s. However, it fails to 

generalize the complex disturbance due to the high reconstruction errors during the GT and 

post-GT periods. However, the proposed SVD-CE algorithm succeeds in identify the LT 

and the GT and compresses the PMU data in a more accurate manner. As seen, the 

reconstructed data by the proposed approach is almost identical to the original data. Figure 

3-11 shows the reconstruction results under a continued FO. As seen, the reconstruction 

performance of the proposed model is superior. The reason is that during the FO event, the 

off-nominal characteristics from the wide-area are obvious. Therefore, the SVD-CE based 

method successfully recognizes the disturbance periods and selects proper CR to compress 

the data. For the SVD-SCD approach, the statistics of the synchrophasor data keep 

changing, thus the SCD algorithm is constantly triggered and the whole period is 

recognized as a disturbance period. However, like Figure 3-8 (c) without bounding the 

TRET, the reconstruction error of the SVD-SCE approach is still much higher than that of 

the proposed SVD-CE method. 

3.5 Discussion 

Online Implementation and Compression Time 

Since the matrix factorization algorithms like SVD are usually costly in time [49], 

it is necessary to evaluate its execution time for online adoption. Due to the high reporting 

rate of PMU, immediately processing the data once it arrives at the PDC may introduce 

unaffordable time overhead. Therefore, to overcome this issue, this paper follows a widely 

adopted batch-processing strategy [50] to perform an online data compression.  
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                (a) Original                                          (b)  SVD-CE                            (c) Reconstruction Errors 

Figure 3-8 Reconstruction performance on frequency under simple GT (110 units) 

 
 
 
 
 
 

            
                (a) Original                                      (b)  SVD-CE                            (c) Reconstruction Errors 

Figure 3-9  Reconstruction performance on frequency under simple LD (110 units) 
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                (a) Original                                     (b)  SVD-CE                                (c) Reconstruction Errors 

Figure 3-10  Reconstruction performance on frequency under LT & GT (110 units) 

 
 
 
 
 

           
                (a) Original                                     (b)  SVD-CE                                (c) Reconstruction Errors 

Figure 3-11  Reconstruction performance on frequency under simple FO (110 units) 
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The experimental computer is equipped with an Intel Core i7-8700 3.20GHz CPU, 

16.0GB memory, and Python 3.7. In this paper, when the PDC receives the measurements, 

it caches the data, where the cache has a capacity. Then, once the capacity is exceeded, the 

PDC invokes the compression algorithm to compression the cached data chunk. Here, the 

capacity of the data chunk is defined as 600, which equals to 60-second data at 10Hz 

reporting rate. The choice of the 60-second windows is primarily due to the requirement of 

disturbance analytical applications [51], [52] and it equals to around 3 megabytes (MB) 

data in the memory. Table 3-3 shows the average time consumption of the proposed 

algorithm. Utilizing the batch compression strategy, both 10Hz and 120Hz data can be 

compressed in a short time. It is worth to note the compression time of the field-collected 

10Hz data is greater than that of the simulated 120Hz data. This is because the field-

collected has greater variations, introducing greater entropy. Given this fact, the SVD-CE 

algorithm tends to search exhaustively for the best CR, so it takes a relatively long time to 

execute. However, under both scenarios, the compression procedure catches up well with 

the data collection procedure.  

Choice of coefficient 𝝀𝝀 

In this paper, the 𝜆𝜆 is set to 0.05, tolerating a maximum of 5% reconstruction error. 

Setting 𝜆𝜆  to 0.05 is mainly due to the requirement from compliance investigation. 

However, the determination of the 𝜆𝜆 depends on how the reconstructed will be used. For 

example, if there is no concern about the accuracy of each PMU’s data, the 𝜆𝜆 may be set to 

a much large value, e.g. 0.2.  
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Table 3-3 Average Time Consumption 
 Field Data (10Hz)  Simulated Data (120Hz) 
 Data Length Compression Time  Data Length Compression Time 

Ambient 
18.3s 46.0ms  1.6s 7.2ms 
28.0s 68.3ms  3.4s 18.8ms 
46.3s 114.3ms  4.8s 25.6ms 

Event 
2.6s 49ms  0.3s 2.1ms 
7.6s 98.9ms  0.7s 5.7ms 
12.2s 150.1ms  1.1s 7.6ms 
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The advantages of setting the 𝜆𝜆 to a larger value are it speeds up the execution of 

the compression procedure, and it usually acquires a high CR. However, under this 

condition, some important information will not be retained during disturbance periods. On 

the other hand, if there is a stringent requirement of data accuracy, e.g. compliance 

purposes, the 𝜆𝜆 shall be set to a lower value. Otherwise, the inaccurate reconstructed data 

could eventually result in a financial loss of power companies because it brings inaccuracy 

to the compliance investigation. Moreover, in this paper, the performance evaluation 

indicates that the 0.05 value of the 𝜆𝜆  is independent of data types, data volumes, 

disturbance types, etc. and using this value meets the requirement of compliance standards. 

However, it is urged to keep the 𝜆𝜆 within 0.1 (10%), where a series of data loss is observed 

under data reconstruction. 
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CHAPTER FOUR  
DEVELOPMENT OF THE SYNCHROSERVICE SYSTEM 

4.1  Introduction 

A phasor measurement unit (PMU) is one of the core components in a synchrophasor 

network. It provides high-resolution, rich-type, and GPS-synchronized measurements to 

help understand the real power system dynamics. Many synchrophasor applications 

including frequency monitoring [91], disturbance detection [92], frequency response 

analysis [93], visualization [94], cyber security [95], etc. are developed to assist the day-

to-day operation of power grids. The synchrophasor measurements from PMUs are 

collected by phasor data concentrators (PDC). In recent years, with the expansion of the 

PMU network and the increasing of the PMU reporting rate, the data volume is growing 

rapidly. Take the example of frequency monitoring network (FNET/GridEye) [91], a 

distributed level wide area monitoring system (WAMS). The number of the deployed 

synchrophasor measuring devices (SMD) has grown to 610 as of Jan. 2019. If each SMD 

sends its data at 10Hz rate, the server will receive over 8 gigabytes of data in total per day, 

not to mention the 120Hz mobile device PMU (MDPMU) that has 120Hz reporting rate 

[96]. Moreover, according to a report published by NASPI, over 1700 production level 

PMUs are deployed in North America [97]. Given the typical 30 Hz reporting rate, these 

units are creating over 80 gigabytes data per day. Obviously, the growing number of data 

is challenging the data collection, storage, and query of the nowadays synchrophasor 

network.  

For the data collection side, some efforts have been made on developing low-cost, low-
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latency, high-throughput, highly reliable PDCs [98]-[101]. For the data storage, MySQL 

[99], BTrDB [102], Hadoop [103], etc. have been exploited to store the synchrophasor 

data. However, few has studied the data retrieval issue for synchrophasor systems. In fact, 

a data retrieval system is an important component that supports critical functionalities 

including situation awareness, operation, compliance, etc. On the other hand, with the 

increasing penetration of distributed energy resources (DER) [104], the operational scheme 

[105] and the power system dynamics during disturbances with high DER penetration are 

different to conventional ones [88]. Therefore, existing applications are constantly 

improved to adopt to large-scale DER penetration [107], which further challenges the 

existing information system architecture. Moreover, although many advanced 

synchrophasor applications are developed to assist the monitoring, operation, control, etc., 

it is still hard to implement them due to the differences between programming languages. 

Therefore, it is urgent to develop an efficient software infrastructure to 1) facilitate the 

information exchange among regional coordinators, balancing authorities, and electric 

reliability organizations; and 2) connect the advanced synchrophasor applications to 

support the control room functionalities.    

 Towards this end, this paper develops a novel software as a service (SaaS) infrastructure, 

SynchroService, to increase the availability of synchrophasor systems. The proposed 

system exploits the latest advances in the micro-service technology, providing an efficient 

data collection, storage and distribution functionalities to facilitate the enterprise-level data 

exchange and to expose advanced synchrophasor applications as accessible services. In this 

paper, the developed SynchroService is deployed in the FNET/GridEye system, and its 
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performance is evaluated by some synchrophasor applications.  

4.2 SynchroService Structure 

The proposed SynchroService infrastructure consists of four layers, which are collection 

layer, analysis layer, storage layer, and service layer. The structure of the SynchroService 

infrastructure is shown in Figure 4-1.  

Collection layer 

As seen in Figure 4-1, in the data collection layer, SMDs connect to two PDCs through 

Ethernet via TCP/IP protocol. Once connected, SMDs send data frames that contain high-

resolution phasor measurements to PDCs via standard PMU communication protocols 

including IEEE C37.118-2011 [26]. Firewalls are configured on the servers where the 

PDCs reside to only accept interesting traffic from authorized IPs. Once the data frames 

are received, the PDCs forward them to the data storage and data analytical layers for future 

processing. 

It is worth to note that due to difference in the actual dynamics of PMUs, practical issues 

including filter-related timestamp shift, GPS-induced time inconsistency are common in 

commercial PMUs. To address these issues, the data collection layer performs an angle-

frequency-based time shift correction when the data is received [90]. 

Analysis layer 

In the analytical layer, two PDCs host a same set of applications simultaneously to 

provide critical functionalities including event detection, location, statistical analysis, etc.   
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Figure 4-1 Architecture of the SynchroService system 
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Each application accepts the real-time synchrophasor data and uses dedicated algorithm 

to analyze it. If the analytical algorithm has an output, it will be stored in a relational 

database, such as MySQL [111] and an alarm request will be forward to the service layer.  

Storage layer 

In the storage layer, two types of nodes, the meta node and the data node are defined. A 

meta node keeps a list of canonical SMD configurations as a reference but does not store 

the synchrophasor data. A data node keeps a local copy of the canonical SMD 

configurations and stores the associated synchrophasor data. Changes in the SMD 

configurations will be populated among the data nodes to ensure data consistency. To 

improve the data availability, the meta nodes and the data nodes are implemented in a fully 

redundant mode. Due to its efficiency in data storage and query, this paper uses an open 

source time-series database to store synchrophasor data on data nodes [112].  

Service layer 

The service layer connects synchrophasor applications to the analysis layer and storage 

layers, providing application programming interfaces (API) for synchrophasor application 

to 1) query the synchrophasor data, 2) retrieve the analytical results, 3) perform remote 

procedure call (RPC).  As Figure 4-1 shows, the service layer is implemented via a micro-

service technology in different programming languages. The main reason is to reduce the 

number of cross-language RPCs, which add time delays to the proposed system.  

The service layer includes 3 service class. The class I services implement fundamental 

functionalities that support the SynchroService infrastructure. Such functionalities include 
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active domain (AD) authentication, data node management, database management, 

configuration synchronization, internal logging. For security consideration, the first service 

class is implemented via ASP .NET as a private component, which is only visible to in-

domain users. The class II services provide functionalities that support synchrophasor 

applications. Such functionalities include synchrophasor data query, disturbance events 

query, real-time alarms, access control, etc. The class II services are implemented in Spring 

Boot as representation style transfer (REST) APIs via JavaScript Object Notation (JSON) 

format. The class III services are implemented in Flask as a public component which is 

visible to out-of-domain users. The class III services provide RPC interfaces for users to 

invoke advanced analytical programs including TensorFlow, PSS@E, MATLAB, etc.  

4.3 Result Formats 

The result format may vary based on the functionality. As seen from Figure 4-2 (a), for 

synchrophasor data query, the protocol includes 

• Status_word (NR): The status of the query result. 

• Grid_ID (NR): The ID of an AC-connected power grid. 

• Signal_ID (NR): The ID of the phasor signal. 

• Timestamp (R): The initial time of the event. 

• Value (R): The measurement value. 

• Data_quality (R): The quality of Value. 

Here, NR indicates that the field is non-repeatable, while R indicates the field is 

repeatable. Therefore, the response to each synchrophasor data query request may contain 

multiple records, which allows the flexibility to support various applications.  



 

51 
 

As seen from Figure 4-2 (b), for event analytical result query, the protocol includes 

• Status_word (NR): The status of the query result. 

• Event_ID (NR): The ID of the event. 

• Grid_ID (NR): The ID of an AC-connected power grid. 

• Timestamp (NR): The initial time of the event. 

• Field (R): A feature value of the event.  

Here, the Field is a repeatable key-value pair. A key indicates the name of an analytical 

result (e.g. event magnitude, event coordinate, etc.). The number of Fields depends on the 

type of the event.  

4.4 Performance Analysis 

This paper uses query speed and throughput to measure the performance of the developed 

infrastructure against the conventional database [99]. 

The query strategy utilizes the computational capacities of the data nodes. Assuming the 

computational capacities are the identical for each data node, the total approximated query 

time is 

T(n) = 𝑡𝑡(𝑛𝑛 𝑘𝑘⁄ ) + 𝑘𝑘�𝑡𝑡𝑝𝑝� + 𝑚𝑚𝑚𝑚𝑚𝑚�𝑡𝑡𝑟𝑟𝑖𝑖 � + 𝑡𝑡𝑠𝑠(𝑘𝑘)                              (1) 
where T(n) is the total query time for n data points, k is the number of the data nodes,  

𝑡𝑡(𝑛𝑛/𝑘𝑘) is the time to query 𝑛𝑛 𝑘𝑘⁄  data points in a data node, 𝑡𝑡𝑝𝑝  is the time overhead to 

transmit a query request to a data node, 𝑡𝑡𝑟𝑟𝑖𝑖  is the time to return the ith result, and 𝑡𝑡𝑠𝑠(𝑘𝑘) is 

the time to reduce k results. In practice, 𝑡𝑡𝑝𝑝 is negligible.   
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  (a) Synchrophasor data                        (b) Event analytical result 

Figure 4-2 Data format 
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Furthermore, if assuming a high-speed internal network, the 𝑡𝑡𝑟𝑟𝑖𝑖  is also negligible. 

Therefore, the query time can be written as 

 T(n) = 𝑡𝑡(𝑛𝑛 𝑘𝑘⁄ ) + 𝑡𝑡𝑠𝑠(𝑘𝑘) + 𝑎𝑎 + 𝑏𝑏                                          (2) 
where a represents the latency of the partition procedure, and b represents the of returning 

partial results.  

Note we assume the computational abilities of the slave nodes are identical. Hence, if the 

sub-requests are sent sequentially, the partial results will be returned in partially sorted 

order. Under this condition, a linear time sorting algorithm can be used to sort the partial 

results [113], such that 

𝑡𝑡𝑠𝑠(𝑘𝑘) = 𝑂𝑂(𝑘𝑘)                                                   (3) 
In conclusion, theoretically, given a fixed number of data points, the query time will 

decrease while the number of the partitions increases. Table 4-1 shows the total query time 

comparison between the SynchroService and the MySQL database at various down sample 

rates (DSR) and data points level. In Table I, the total query time includes the time to 

transmit the request, to query the data, and to transfer the data. As seen from the figure, the 

query time of the MySQL database grows linearly as the requested data volume increases. 

As opposed to it, the developed SynchroService has good data query speed. Under a low 

DSR and small data volume, the developed system may support synchrophasor-based 

applications including monitoring and control [114].  

Furthermore, it is also seen that the throughput of the system increases with the requested 

data volume. This is due to the parallel query mechanism. For large-volume data request, 

the data query request is broken into k sub-requests. Each sub-request is sent to a data node, 

thus the amount of data requested for a single data node is reduced.   
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Table 4-1 Data Query Performance Comparison 

Data 
Points 

 Query Time  Throughput 
DSR Synchro- 

Service 
SQL 

Method 
 Synchro- 

Service 
SQL 

Method 
2835 4s 16.5 ms 67 ms  5.50 MB/s 1.23MB/s 
11340 1s 206 ms 268 ms  1.81 MB/s 1.39MB/s 
113400 0.1s 504 ms 2.68 s  7.26 MB/s 1.35MB/s 
226800 0.1s 880 ms 5.36 s  8.25 MB/s 1.35MB/s 
 

  



 

55 
 

As a result, to query same amount of data, the SynchroService generally consumes less 

time, making its throughput higher.   

4.5 System Security 

System security defines which part of the system is accessible by a specific user. In the 

SynchroService system, users are categorized into several types such are developer, 

administrator, domain user, and outside user.  

Developers can access all parts of the system including the file system (FS). Developers 

can view the logs of the system, which are written into the FS, for debugging. Developers 

can also write logs into the FS to do troubleshooting in real-time.  

Administrators can access most parts of the system including a read-only privilege to the 

FS. Administrators can view the logs of the system, restart the system, invoke application 

programming interfaces (APIs). and manage the members of the system. 

Domain users have access to Class II and III APIs. For the domain users, no further 

restriction is placed when invoking the APIs. Outside users only have access to Class II 

APIs. Outside users are further categorized into several trusting levels. Different restricts 

are put onto these trusting levels. Generally, the SynchroService system puts stricter 

restricts as the trusting level goes lower. Table 4-2 shows the relationship of the four user 

types, where R, W, and E represent read, write, and execute respectively. 

4.6 Communication Protocols 

The SynchroService system provides two ways for the users to invoke. 
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Table 4-2 Security system design 

 FS access Service 

Management 

Private 

APIs (Class 

II&III) 

Public APIs 

(Class III) 

Trusting 

level-based 

restrictions 

Developer R/W/E E E E R/W 

Administrator R E E E R/W 

Domain users   E E  

Outside users    E  
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First, simple object access protocol (SOAP) is a permitted protocol. SOAP is an 

extensible and independent communication protocol that is especially suitable for web 

services. SOAP uses extensible markup language (XML) to wrap the request as a simple 

object for the SynchroService to parse. The main advantage of using SOAP as the protocol 

is its independence. SOAP allows users to invoke web services and receive responses 

independent of programming language and operating system. Figure 4-3 demonstrates the 

template of a SOAP request and a SOAP response the web function “GetMultipleEvents”.  

In this figure, part (a) is the SOAP request, while part (b) is the SOAP response. In the both 

parts, an HTTP header covers information from the start to “Content-Length: length”, 

while the HTTP content convers information sfrom “?<xml …” to “</sopa12:Evelope>”. 

For the request, there are five parameter wrappers (eventType, username, userPwd, 

startTime, endTime), which are further wrapped by a “GetMultipleEvents” markups. These 

parameters must be given actual “string” values when the user tries to invoke the web 

function. On the other hand, for the response, there is a return value, which is wrapped by 

the “GetMultipleEventsResult” markup. SOAP is by default using HTTP POST. 

Alternatively, the user can also use pure HTTP GET/POST method to invoke the web 

function. For the HTTP GET method, the user can specify the values of parameters in the 

uniform resource locator (URL) directly, which is included in the HTTP header. Then, the 

response will be returned as an XML file. For the HTTP POST method, the user should 

specify the values of the parameters in the HTTP content instead of the HTTP header.   
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(a) SOAP Request 

 

(b) SOAP Response 

Figure 4-3 SOAP Communication format 

 

Figure 4-4 HTTP Communication format 
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CHAPTER FIVE  
ADVANCED GRID VISUALIZATION APPLICATIONS 

5.1 Introduction 

Nowadays, with the advances of synchrophasor technology, more accurate, small-

granularity data becomes available to the operators. However, in the modern control center, 

the synchrophasor data is usually displayed as plots and is not fully exploited to help the 

day-to-day applications. First, synchrophasor data has not been utilized in the real-time 

reliability assessment in a visual manner. Moreover, synchrophasor data has not been 

utilized with other data such as critical infrastructures to provide operators a 

comprehensive situation awareness tool to pinpoint the fault. 

Therefore, in this chapter, some advanced grid visualization applications are developed 

to assists operators on various perspectives including resource monitoring, reliability 

assessment, fault diagnostics, etc.  

 

5.2 Resource Adequacy Visualization Tool 

Introduction 

As an indicator for bulk power system reliability, resource adequacy represents the 

ability of the electric system to supply the aggregate electric power and energy 

requirements of electricity consumers at all times, considering scheduled and expected 

unscheduled outages of system components. Furthermore, resource adequacy is usually 

measured within a balancing area. Due to the importance of the resource adequacy, it is 
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urgent to develop a visualization software that dynamically displays the resource adequacy 

in the balancing areas. 

System structure 

The resource adequacy visualization tool is built on an OSIsoft PI historian, which 

receives the real-time measurements via the SynchroService system. The visualization tool 

then retrieves and displays the real-time area control error (ACE) data in a dynamic mode 

so that operators may monitor the demand and supply relationship of each reliability 

coordinator (RC) and balancing authorities (BA). 

Example 

Figure 5-1 shows an example of the developed system. In this figure, the visualization at 

the center is displaying the ACE data of three North American interconnections (Eastern, 

ERCOT, and Quebec) at the RC level. In the figure, a red or orange colored area represents 

that this RC is supplying more power than its demand, while a blue or green colored area 

represents that this RC is supplying less power than its demand. The cells at the bottom are 

an information board showing current entity’s ACE value and description, a list of ACE 

values for all RCs, a list of ACE values for BAs, and a system info console. By default, the 

list of BA ACE values is empty. It will only be shown when the operator clicks on a row 

in the list of RC ACE values. The tree view on the right is showing the RCs and the BAs 

within their geographical footprints. Clicking and “+” button of an RC will expand the 

view to show BAs. Clicking any item in the tree view will update the information of the 

information board (left most cell at the bottom).  
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Figure 5-1 HTTP Communication format 
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5.3 Balancing Authority ACE Limit Visualization Platform  

Introduction 

Balancing authority ACE limit (BAAL) is defined in the BAL-001-2 standard. BAAL 

measures the operating performance of balancing authorities (BAs) across the North 

American. In the standard, it is required that the clock-minute average of Area Control 

Error (ACE) does not exceed its BAAL for more than 30 consecutive clock-minutes, it is 

an urgent yet practical need to develop a real-time visualization platform to help operators 

assess the operating performance from the BA level.   

System structure 

The resource adequacy visualization tool is also built on an OSIsoft PI historian, which 

receives the real-time measurements via the SynchroService system. The visualization tool 

then retrieves and displays the real-time area control error (ACE) and system median 

frequency data in a dynamic mode so that operators and auditors may view the performance 

of each RC against the NERC’s reliability standard. Last but not the least, this system 

connects to the RCIS message system via Microsoft outlook, so that it can retrieve the time 

error correction (TEC) schedules since it will change the scheduled frequency. 

Example 

Figure 5-2  shows an example of the BAAL visualization platform. The platform mainly 

includes two modules. 

The first part is the visualization module. The center cell is a dynamic visualization of 

the RCs’ performance against the standard BAL-003 in the U.S. Eastern Interconnection. 
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The horizontal axis represents the frequency while the vertical axis represents the ACE. 

Two curves are drawn on the visualization to display the exceedance areas. Each solid 

circle represents the current frequency-ACE standing of an RC. When they are not in the 

exceedance areas, they are colored in green, while when they are in either exceedance area, 

their colors will change to the exceedance’s boarder’s color. The top right cell shows a list 

of all BAs and their current ACE data. 

The second part is the TEC schedule module, which is in the bottom left corner. In this 

module, the engineers can set up TEC schedules to update the visualization. In this module, 

operators can create, edit, and synchronize TEC schedules. As Figure 5-3 shows, clicking 

“New” or “Edit” button pops up a dialog that allows the engineer to type in the information 

of the TEC schedule. After clicking confirmed, the TEC schedule will show up in the TEC 

schedule module’s list display. Besides, the engineer can click “Pull TEC” button to pop 

up another dialog, as shown in Figure 5-4. Here the engineer can click “Sync RCIS emails” 

button to allow the system to retrieve the RCIS emails and parse them into TEC schedules. 

Then, the engineer may click on a TEC schedule and click “confirm”, to add it into the 

TEC schedule module’s display.  

5.4 Situation Awareness for NERC, FERC and Regions (SAFNR) 

Introduction 

Situation awareness in crucial to the operation of an electric power system since 

operators may assess the current situation and take actions to mitigate the impacts caused 

by faults, disturbances, etc. 
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Figure 5-2  BAAL Visualization Platform - Main Display 

 
Figure 5-3  BAAL Visualization Platform – TEC Schedule Subsystem 
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Figure 5-4  BAAL Visualization Platform – TEC Query System 
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Situation Awareness for NERC, FERC, and Regions (SAFNR) is a software platform 

that visualizes the transmission lines in USA. To enhance the situation awareness capability 

of the SAFNR system, it is of a great significance to include the critical disturbance 

detection functionalities in such a system. With the development of the SynchroService, 

disturbance event information can be easily share with the SAFNR platform to provide an 

instant notification to operators and immediately raise their attentions. The SAFNR 

desktop application directly connects to the SynchroService and periodically queries the 

most recent forced oscillation disturbance event. Whenever a new event is detected, the 

application updates its interface to show the event. 

Example 

Figure 5-5 demonstrate a snapshot of the SAFNR application, which incorporates the 

forced oscillation information from the FNET/GridEye. As seen, the measuring units that 

first detect the forced oscillation as marked as red “FO” squares. Then, an elliptical is 

drawn to indicate the area, where the forced oscillation is possible to evolve. At the same 

time, the event record is inserted into a dashboard on the left. Operators may click on the 

record to update the UI for any specific event. 

5.5 Reliability Monitoring for Advanced Grid Visualization 

Application 

Introduction 

Grid visualization applications are required to have high availability. The down time of 

such applications should be controlled as minimum in real-time operation.  
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Figure 5-5  SAFNR_V3 Forced Oscillation Display 
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It is crucial to monitor the applications and ensure they are running in good status. The 

traditional approach to monitor a self-developed application are mainly using text logs. The 

advantage of this approach is its superior customizable ability. The software developers 

may design a text format, in which the logs are written, to provide a structured view of the 

system’s behavior. Meanwhile, the disadvantages of this approach are obvious. First, it 

lacks a retention policy that periodically clears the historical logs that fall out of interest. 

This can be unaffordable at a long run since the log may take up much storage space. 

Second, it is hard to quantitatively visualize the system’s behavior due to the lack of a 

visualization module. Third, the developer must develop a series of monitoring programs 

to translate the logs to meaningful information to alert users for system down times. 

In this section, a time-series database-based approach is proposed to monitor the 

performance of the system. In the proposed approach, Applications send statistical 

information to the time-series database periodically. Then the time-series databases 

handles the data retention, visualization, and alerts.   

System Structure 

The time-series database provides an application programing interface (API) for the 

developer to insert data. At the same time, it stores the statistics of each application in a 

specific bucket. Each application uses this API to send formatted stats to the time-series 

database. The time-series database also includes some preconfigured alerting rules, against 

which the newly received stats are evaluated. If the alerting rule passes, the system will 

alert the users.   
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Example 

Figure 5-6 shows a snapshot of the Product Stats dashboard. It displays the statistics of 

all products provided by the GridEye system and provides a core reference when 

abnormalities happen. In this dashboard, administrator can specify a timespan, within 

which the data is retrieved to check the health of the GridEye system as a whole for the 

past several hours, and days. Each cell in the dashboard is configured with a corresponding 

CA rule, which ensures the product is running in good health. Once a CA rule is violated, 

the monitoring system will send an alert to the information hub, based on Slack. As Figure 

5-7 shows, a formatted message will present the product that violates the CA, and the 

violation’s datetime and severity.  

5.6 Resource Mix Change Observation using Inertia and Load Data 

Introduction 

Nowadays, power grids, like ERCOT, have seen a steady increase on load due to the 

growing population. To satisfy the increasing load, more and more power resources are 

brought into the power systems. However, the increasing introduction of inverter-based 

resources leads to a non-linear change of the inertia-to-load ratio. This means although the 

overall system inertia may increase, the integration of more inverter-based resources can 

make the increase insufficient with respect to the increase of load. This impedes the 

reliability of the grid since the inverter-based sources usually contributes very low inertia 

in frequency response. Therefore, it is important to track and understand the inertia-to-load 

ratio to understand how resource mix affects the inertia of the grid. 
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Figure 5-6 SynchroService Internal Monitoring 

 
Figure 5-7 SynchroService Internal Alerting 
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To track the change of the inertia-to-load ratio, this section explores the seasonal load 

and inertia data of ERCOT to depict the change of resource mix from 2016 to 2020. The 

result shows that the inertia-to-load ratio keeps decreasing through the years, which may 

indicate a decrease of the system’s reliability.  

Standalone Analysis of Inertia and Load 

Power system inertia mainly comes from traditional energy sources including coal and/or 

combined cycle gas generation units. As seen from Figure 5-8 and Figure 5-9, in ERCOT, 

the inverter-based power generation has risen from around 15% to 25%, while the gas/coal-

based power generation has seen a drop from 76.4% to 64% of the total generation [53]. 

Although the generation percentage drops, the gas/coal-based power generation has not 

seen an obvious drop, nor a rise, in its absolute value. This has led to a steady curve of 

system inertia. As seen from Figure 5-10 and Figure 5-11, the monthly minimum and 

maximum inertia does not see drastic changes in each season from 2016 to 2020. 

Nevertheless, the minimum monthly inertia does see some rises in the summers from 2016 

to 2019, due to the intermittent nature of inverter-based resources and the needs to meet 

the load requirement during the day [53].  

For load, with the rapid growth of move-in population, ERCOT has seen a steady 

increase in load in the past several years. As seen from Figure 5-12 and Figure 5-13, the 

load has been steadily increasing in most of the seasons from 2016 to 2019 despite a drop 

in summer 2020 due to the COVID-19 pandemic.  
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Figure 5-8 Generation Source Mix 2016 

 
 
 
 

  
Figure 5-9 Generation Source Mix 2020  
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Figure 5-10 Monthly minimum inertia 2016-2020 

 
Figure 5-11 Monthly maximum inertia 2016-2020 
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Figure 5-12 Monthly minimum load 2016-2020 

 
Figure 5-13 Monthly maximum load 2016-2020 
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Analysis of Inertia-load ratio 

Figure 5-14 and Figure 5-15 show the minimum (MIN) and maximum (MAX) inertia-

load ratio of ERCOT from 2016 to 2020, respectively. As seen, the MIN inertia-load ratio 

decreases with years. The clear decreasing trend is caused by several reasons. First, 

ERCOT has drastically increased the wind generation as a response to its growing 

electricity demand. This has led to more low-inertia generation units, while the load keeps 

rising. Second, the typical generation profile of ERCOT shows wind power does not align 

well with the market demand, because most of the wind generation happens at nights (20:30 

– 4:30), when the load is low. Therefore, the decreasing trend of ERCOT’s inertia-load 

ratio is obvious. As opposed to it, the MAX Inertia/load ratio does not have a clear trend. 

This is primarily because the high-load conditions are mostly seen during the day, where 

traditional generation units are dominant.  

For a seasonal analysis, Figure 5-17 shows the generation mix in ERCOT from July 2016 

to December 2020. As the figure shows, the inverter-based sources are increased with the 

years. There are three notable trends. First, wind power has been greatly increased, 

especially in summers. Second, coal-based generation has been decreased rapidly. Third, 

the solar-based generation has been growing fast. They all contribute to the decrease of the 

overall system inertia.   
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Figure 5-14 Texas Monthly MIN Inertia/Load Ratio 2016-2020 

 
 

 
Figure 5-15 Texas Monthly MAX Inertia/Load Ratio 2016-2020 
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Figure 5-16 Typical Resource Mix under a High-load Season (August, 2020) 

 
Figure 5-17 Monthly Generation Mix 2016-2020 (Percentage) 
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CHAPTER SIX DEEP LEARNING BASED EVENT DETECTION 

SYSTEM 

6.1 Introduction 

Power system disturbances can be caused from small to large impacts on the operation 

of an interconnected power grid. While a small disturbance may only cause a negligible 

frequency variation, a rather big disturbance usually implies more serious power quality 

issues. These power quality issues can greatly affect the grid and cause severe 

consequences such as large-scale blackout, which can cost up to $7-$10 billion [54]. The 

frequency disturbances are commonly caused by generator trips and load disconnections. 

Therefore, the detections of both events are of great importance in terms of monitoring the 

resource adequacy, pinpointing the fault location, and ensuring the reliability of the grid.  

The detection of the frequency disturbance event has become easy to implement thanks 

to the invention of phasor measurement units (PMUs). A PMU provides GPS synchronized 

measurement of electrical quantities (synchrophasors) from across the power system. The 

increasing deployment of the PMUs gives a rather thorough understanding of the system 

dynamics, making the event detection and location more accurate. In recent years, PMUbs 

have been widely used in wide area monitoring [55], load control [56] and disturbance 

event detection and location [57]. PMU based event detection is mainly model-driven or 

data-driven. Model-driven approaches rely on a known system topology. Many model-

driven approaches are proposed to address the detection of line outages [58] and 

oscillations [59]-[60]. Data-driven approaches are becoming popular with the advances on 

the computational power of the modern computers. Some data-driven models have been 
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proposed to detect simple frequency disturbances [61]-[64], and complex frequency 

disturbances [65]. 

With the evolutionary advance in combining the graphical processing unit (GPU) with 

deep learning, some have adopted deep learning in solving various power system problems 

including event classification [66], cybersecurity [67], wind forecasting [68], load 

forecasting [69], security screening [70], and power quality classification [71]. It may 

sound unusual to take advantage of an efficient, emerging, image recognition tool, 

convolutional neural network (CNN), to detect frequency disturbance events. However, 

due to its extraordinary feature generalization ability, it is logical to exploit this ability in 

detecting frequency disturbance events, which contain complex spatio-temporal 

characteristics.  

Recently, a CNN based model was proposed to recognize the event type [66]. The 

experimental results show this model can successfully classify frequency events. However, 

this model, as well as other data-driven models, focus on exploiting the frequency signal 

alone to detect frequency disturbance events. A potential issue is that the frequency signal 

alone may not be accurate enough for event detection. Since the motor load provides 

frequency response to the power grid, under a light load condition, less frequency response 

can be obtained from the motor. In the meantime, the frequency will keep ramping down 

since not enough frequency response is provided, even if no event is involved [72]. In this 

scenario, many of the aforementioned models could have sent out false alarms due to the 

failure of telling a frequency ramping from a real event. 

To address this issue, the relative angle shift (RAS) signal is introduced as another 
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indicator. An event creates an electromechanical wave that propagates through an 

interconnected power grid with finite speed [73]. The wave causes the angle shifts among 

the power grid [61]. Based on this fact, some literatures have proposed to use the phasor 

angle to locate event source [57], and detect single line outage [58]. On the other hand, as 

a transformation of the frequency signal, the rate of change of frequency (ROCOF) is used 

by some to detect frequency events [74]. Both works achieve good results since the 

ROCOF signal demonstrates more obvious frequency change characteristics under event 

conditions. 

Since the ROCOF signal and the RAS signal are both good indicators for frequency 

disturbance events, this paper exploits the CNN model using both signals as inputs to build 

an efficient and accurate event detection model. This paper chooses two important types of 

events: generation trip (GT) and load disconnection (LD) [64] to compare the performance 

of the proposed model with the conventional event detection model, and frequency only 

CNN model [66]. 

The main contribution of the paper is four-fold: 1) it analyzes the angle-wise difference 

between an event and a frequency ramping;  2) it constructs informative ROCOF and RAS 

images for the CNN model; 3) it proposes a novel ROCOF_Net-RAS_Net model to detect 

events; 4) it conducts extensive evaluation of the proposed model using a large number of 

manually classified disturbance events from the U.S. eastern interconnect (EI).  

The rest of this paper is organized as follows: Section 6.2 gives theoretical analysis and 

comparison of a generator trip and a frequency ramping. Section 6.3 demonstrates the 

proposed ROCOF_Net-RAS_Net model. Section 6.4 demonstrates the effectiveness and 
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the accuracy of the proposed model. Section 6.5 discusses requirements, potential 

limitations, and implementations of the proposed model, Finally, the conclusions and 

future work are discussed in Section 6.6.  

6.2 Frequency Event Modeling 

Consider a sinusoidal waveform with signal of frequency f = 2π/ω given by 

𝑥𝑥(𝑡𝑡) = 𝑋𝑋 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔 + 𝜑𝜑)                                                   (1) 
where X is the amplitude, ω is the angular velocity, and φ is the phase angle. 

The voltage angle of the generator with respect to a synchronously rotating reference is 

given by 

𝜃𝜃(𝑡𝑡) = 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ 𝑡𝑡 + 𝛿𝛿                                                        (2) 
where ωsyn is the angular velocity of synchronously rotating reference and δ is the relative 

angle with respect to the synchronously rotating reference. 

The swing equation is shown as follows 

 𝜔𝜔 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

                                                       (3) 
 

(3) can be further written via frequency f, so that 

𝑓𝑓 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 + 1
2𝜋𝜋
⋅ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

                                                        (4) 

𝑓𝑓 − 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 = 1
2𝜋𝜋
⋅ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

                                                        (5) 
where fsyn is the frequency of the synchronous reference.  

From (5), theoretically, the change of the magnitude of the angle shift is decided by the 

frequency difference of the current generator and the synchronously rotating reference. 

During an event, since the frequency differences vary among the grid, the resulted angle 

shifts will vary as well. Large angle shifts are usually observed near the event source, since 

the frequency differences are large. Similarly, smaller angle shifts are observed far from 
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the event source, since the frequency differences are small.  

Take a generator trip and a frequency ramping. When a generator trips offline due to a 

fault, it creates an instant mismatch between the source and the load. To compensate the 

mismatch, other generators immediately consume their kinetic energy, thus their speeds 

are slowed down. Because the generators are affected sequentially, the angle shifts appear 

sequentially as well. However, a frequency ramping is usually caused by scheduled control 

changes in an interconnected power grid. Since a scheduled change is a planned reduction 

or increase of the generator output power, no fault is involved, thus the angle shifts are 

synchronous. A generator event and a frequency ramping captured by the FNET/GridEye 

are shown in Figure 6-1 and Figure 6-2 respectively. In  Figure 6-1 (a), frequency 

excursions are observed before the system frequency drops, which create large positive 

ROCOF signals. In Figure 6-1 (b), angle shifts happen sequentially at different magnitudes, 

creating obvious RAS signals. In Figure 6-2 (a), frequency drops are seen even though no 

frequency excursions are observed, which creates similar ROCOF signals. However, in 

Figure 6-2 (b), angle shifts happen simultaneously at similar magnitudes, where no obvious 

RAS signals are created.  

Load disconnection events have similar characteristics. Generally, the disconnection of 

loads causes similar RAS signals and negative ROCOF signals. This paper summarizes the 

characteristics of all conditions in Table 6-1.  
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            (a) Frequency                      (b) Unwrapped relative angle 

Figure 6-1 Frequency Disturbance 

              
            (a) Frequency                      (b) Unwrapped relative angle 

Figure 6-2 Frequency Ramping           

Table 6-1 Frequency Disturbance Characteristics 
Type ROCOF ROCOF Sign RAS 
Generator Trips √ + √ 
Ramping down √ +  
Load Disconnection √ - √ 
Ramping up √ -  

                
  

Excursions Sequential 
angle shifts 
at different 
magnitudes 

 Synchronous 
angle shifts 
at the same 
magnitude 
 

Ramping 
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6.3 Proposed Convolutional Neural Network Model 

This paper designs two CNN models based on the typical CNN components [75]. In the 

following sections this paper explains the construction of the input images, the design of 

the layers, the choices of the parameters, and the logic of decision. 

CNN Input Characteristics 

Data preparation or feature engineering is the key to most, if not all, of the machine 

learning models [76]. In order to prepare informative inputs for a CNN, two things need to 

be considered: 

Spatial information: The first and most important thing to consider is the spatial 

information. The CNN is efficient on image recognition because it can generalize multiple 

spatial features. To exploit this ability, the input must have enough spatial information.  

Channel: Channel is important since the image recognition class usually incorporates 

color as an important feature. However, multiple channels may not help when spatial 

information is much more important than colors.  

Gray Image 

In image recognition, the spatial information can be independent to the color channels. 

For example, as seen from Figure 6-1, the spatial information of the RAS signal is more 

obviously reflected by the magnitude of the shifts instead of its color. Therefore, gray-scale 

images can be yet another representation of the spatial information. This paper uses the 

following function [77] to generate the gray-scale images: 

𝑔𝑔𝑑𝑑𝑡𝑡(𝑘𝑘) = 0.3 × 𝑟𝑟𝑡𝑡(𝑘𝑘) + 0.59 × 𝑔𝑔𝑡𝑡(𝑘𝑘) + 0.11 × 𝑏𝑏𝑡𝑡(𝑘𝑘)                          (6) 
where gdt(k) is the gray degree as of timestamp k.  
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ROCOF Image Construction 

A ROCOF calculation is written as follows 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑡𝑡(𝑘𝑘) = 𝐹𝐹𝑡𝑡(𝑘𝑘−𝜏𝜏+1)−𝐹𝐹𝑡𝑡(𝑘𝑘)

𝑡𝑡(𝑘𝑘−𝜏𝜏+1)−𝑡𝑡(𝑘𝑘)
                                            (7) 

where ROCOFt(k) is the ROCOF value at timestamp k, Ft(k) is the frequency at timestamp 

k, and τ is the time interval.  

The ROCOF is time-series data, with temporal characteristics enclosed. However, as 

CNN features spatial characteristics extraction, the temporal characteristics can be 

transformed to a spatial representation. Here, the time-series ROCOF is transferred to a 

matrix P as 

𝑷𝑷 = �
𝑃𝑃𝑡𝑡(1) ⋯ 𝑃𝑃𝑡𝑡(𝑘𝑘) ⋯ 𝑃𝑃𝑡𝑡(𝑚𝑚)
⋮ ⋱ ⋮

𝑃𝑃𝑡𝑡(𝑛𝑛−𝑚𝑚+1) ⋯ 𝑃𝑃𝑡𝑡(𝑛𝑛)

�                                     (8) 

 where Pt(k) is the converted pixel value at timestamp k, m is the number of 

points/timestamps at each row, n is the total number of points/timestamps in the image.  

 The ROCOF matrix is converted to a pixel image by 

( ) min

( ) max min

( ) ( )

max ( )( )

max min

255

0

255

t k

t k

t k t k

t kt k

ROCOF ROCOF
r ROCOF ROCOF

P g
ROCOF ROCOFb
ROCOF ROCOF

− 
×   −  

 = = 
   −   × − 

                                   (9) 

 where, rt(k), gt(k), and bt(k) are the red, green, and blue strength at the timestamp k 

respectively. ROCOFmax and ROCOFmin are the maximum and the minimum ROCOF from 

t(1) to t(n) respectively. Here, a static value 0 is assigned to the green (g) position. The 

purpose is to make the 2 types of image differentiable. However, other values are possible 

as long as they can make the images differentiable for the CNN.  
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Some sample ROCOF images are shown in Figure 6-3. The images are of 20×20 size 

which contains 40-second frequency measurements. Note this paper uses 40-second data 

because the frequency excursion normally lasts for less than 10 seconds. This paper 

includes the 15-second pre-event and post-event data to construct better input images. From 

Figure 6-3, each event type has a unique spatial footprint that differentiates it from others. 

A generation trip has a blue belt while a load disconnection has a red belt due to the 

frequency dip and frequency spike. Similarly, looking at the gray-scale images, a 

generation trip has a gray belt in a black background while a load disconnection has a black 

belt in a gray background. It is seen from the constructed images, in both formats, the 

temporal information (time-series data) is preserved spatially (image).  

RAS Image Construction  

As seen in Figure 6-1 (b), angle shifts have rather obvious spatial differences. This paper 

calculates, aligns, and plots the relative angle shifts as 2D images. A relative angle is 

written as follows:  

𝐴𝐴𝑠𝑠𝑡𝑡(𝑘𝑘)
𝑖𝑖 = 𝑉𝑉𝐴𝐴𝑡𝑡(𝑘𝑘)

𝑖𝑖 − 𝑉𝑉𝐴𝐴𝑡𝑡(𝑘𝑘)
𝑠𝑠𝑠𝑠𝑠𝑠                                                (10) 

where Asit(k) is the angle shift of the ith device at timestamp k, VAit(k) is the voltage 

angle of the ith device at timestamp k, and VAsynt(k): the voltage angle of a synchronously 

rotating motor.  

Figure 6-4 shows some sample RAS images of 100×100 size. As seen from Figure 6-4 

(a), sequential RASs are very obvious when an event is involved, while from Figure 6-4 

(c), synchronous RASs are observed when no event is involved. Similarly, the conclusion 



 

87 
 

holds true for gray-scale images. Since the RAS signals contain obvious spatial 

characteristics, their gray-scale images reflect strong spatial characteristics as well. 

Layers 

A CNN mimics the structure of the brain visual cortex. A typical CNN consists of 

multiple stages. Usually, each stage consists of many layers, which are the convolution 

layer, the activation layer, the max-pooling layer, and the drop-out layer (optional). 

However, the last stage is usually composed of fully connected layers for classification 

purpose. Here, the function of each layer is explained as follows: 

Convolution Layer: A convolution layer takes n1 2D feature maps of size n2×n3 as the 

input. It transfers the input feature maps to m1 2D feature maps of size m2×m3 using m1 

trainable kernels of size l1×l2. Each kernel detects a particular spatial character at every 

location on the input. Based on the sizes of the input images, this paper places 4 sequential 

convolution layers to reduce the size of the images gradually. Note 4 is specially tuned for 

the constructed images in this paper. On other occasion where the size of the picture is 

larger, more convolutional layers may be needed.  

Activation Layer: An activation layer takes the 2D feature maps of size m2×m3, which 

are generated by the last convolution layer as the input. Traditionally, an activation layer 

is assigned a non-linear activation function. The purpose of the activation layer is to add 

non-linearity to the model, making it capable to compute any function. Some popular non-

linear activations functions include sigmoid, tanh [78] and rectified linear unit (ReLU) 

[79]. Since ReLU is the most widely used activation function since negative inputs to the 

neuron are ignored. This paper uses ReLU as the activation function.  
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(a) GT color              (b) GT gray-scale        (c) LD color          (d) LD gray-scale  

Figure 6-3 Sample images 

                                          
                     (a) Event-related RAS                   (b) Gray-scale event-related RAS 

                                          
                     (c) Non-event RAS                        (d) Gray-scale non-event RAS 
 

Figure 6-4 Sample RAS images 
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Max-pooling Layer:  A pooling layer is to merge semantically similar features into one, 

thus it reduces the dimension of the feature maps. A max-pooling unit computes the 

maximum of a local path of units in one feature map (or in a few feature maps). This paper 

follows the classic design of the max-pooling layer [80]. It applies multiple max-pooling 

layers where the size of an image is reduced to a half. 

Drop-out Layer (optional): A drop-out layer [81] is applied at the end of each stage to 

prevent the CNN from overfitting. The drop-out layer ignores part of the neurons, thus it 

reduces the total feedback during the back propagation. This paper applies 2 dropout layers 

in each CNN model to reduce the speed of the learning process. Note, in this paper, 2 

dropout layers are chosen based on the 4 convolution layers. If more convolution layers 

are introduced, more dropout layers may be needed.  

Parameters 

CNN parameters [75] are important values that decide its performance. CNN parameters 

include: 

Kernel size: Kernel size is the most important parameter in a CNN model. Kernel size 

decides the first 2 dimensions of the convolutional output. A proper kernel size decides the 

spatial generalization capability of the current convolution layer. A proper kernel size 

typically depends on the size of the input.   

Feature map number: Feature map number is another important parameter. It decides 

the last dimension of the convolutional output. A proper feature map number decides the 

number of local features to extract. A proper feature map number typically depends on the 

complexity of the input. 
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Stride: Stride is the number of pixels that the model skips between operations. For 

example, in a convolution layer, if stride=n, the kernel moves rightward by n pixels when 

the current convolution is done. 

Zero-Padding: Padding is usually used to keep the input and output the same dimension. 

Padding improves the overall performance of a CNN by keeping information at the borders. 

Input neuron number (fully-connected layer): Typically, the input neuron number 

matches the number of the flattened outputs of the former layer.  

Output neuron number (fully-connected layer): The output neuron number should be 

carefully chosen. A proper number of output neurons preserves the information from the 

former layer yet makes the model efficient to train. Note the number of neurons at the last 

layer typically matches the number of image categories.  

Figure 6-5 illustrates the structure of the CNN models, while Table 6-2 and Table 6-3 

demonstrate the structure of the two CNN models that are used by this paper respectively, 

where k is the kernel size, f is the number of the feature maps, s is the stride, p is the zero-

padding, in is the input neuron number, and out is the output neuron number. 

The output size is decided by the following function [76]. 

 𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑀𝑀𝑖𝑖𝑖𝑖−𝑘𝑘+2𝑝𝑝
𝑠𝑠

+ 1                                            (11) 
where Min is the width/height of the input, and Mout is the width/height of the output.  

Classifier fusion 

A classifier fusion decides the final detection result by combining the results from 

multiple models. In this paper, the detection result relies on the outputs of the ROCOF_Net 

and the RAS_Net. 



 

91 
 

        
(a) ROCOF_Net                                                                          

      
(b) RAS_Net 

Figure 6-5 Proposed CNN Models 

Table 6-2 CNN Structure for The ROCOF Data 
Input Operation Output 
20×20×3 Conv_1(k=2,f=32,s=1,p=1) 20×20×32 
20×20×3 Act_1 20×20×32 
18×18×32 Conv_2(k=3,f=32,s=1,p=0) 18×18×32 
18×18×32 Act_2 18×18×32 
18×18×32 MaxPool_1(k=2,s=2,p=0) 9×9×32 
9×9×32 Dropout_1 9×9×32 
9×9×32 Conv_3(k=2,f=64,s=1,p=1) 9×9×64 
9×9×64 Act_3 9×9×64 
9×9×64 Conv_4(k=2,f=64,s=1,p=0) 8×8×64 
8×8×64 Act_4 8×8×64 
8×8×64 MaxPool_2(k=2,s=2,p=0) 4×4×64 
4×4×64 Dropout_2 4×4×64 
4×4×64 Flatten 1024×1 
1024×1 FC_1(in=1024, out=512) 512×1 
512×1 Act_5 512×1 
512×1 Dropout_3 512×1 
512×1 FC_2(in=512, out=4) 2×1 
4×1 Act_6 2×1 
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Table 6-3 CNN Structure for The RAS Data 

Input Operation Output 
100×100×3 Conv_1(k=10,f=32,s=3,p=0) 31×31×32 
31×31×32 Act_1 31×31×32 
31×31×32 Conv_2(k=3,f=32,s=1,p=0) 29×29×32 
29×29×32 Act_2 29×29×32 
29×29×32 MaxPool_1(k=2,s=2,p=0) 14×14×32 
14×14×32 Dropout_1 14×14×32 
14×14×32 Conv_3(k=3,f=64,s=1,p=1) 14×14×64 
14×14×64 Act_3 14×14×64 
14×14×64 Conv_4(k=3,f=64,s=1,p=0) 12×12×64 
12×12×64 Act_4 12×12×64 
12×12×64 MaxPool_2(k=2,s=2,p=0) 6×6×64 
6×6×64 Dropout_2 6×6×64 
6×6×64 Flatten 2304×1 
2304×1 FC_1(in=2304, out=512) 512×1 
512×1 Act_5 512×1 
512×1 Dropout_3 512×1 
512×1 FC_2(in=512, out=2) 2×1 
2×1 Act_6 2×1 
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This paper uses the output from the ROCOF_Net to decide the possible event type of a 

ROCOF image. Then, it uses the output from the RAS_Net to rule out the falsely detected 

events. A lookup table is created to reflect the determination strategy as is shown in Table 

IV. Note for the RAS_Net output, 0 denotes the RAS signal that suggests an event, while 

1 denotes otherwise. Therefore, events with confirmation on the RAS signal are classified 

as real events, otherwise they are classified as other conditions.  

Figure 6-6 shows a diagram of the workflow of the event detection system. For data 

preprocessing, the system maintains an n-size queue, Q, of ROCOF values, ROCOFmax, 

and ROCOFmin. At each time instant k, the system pops the first ROCOF value out, pushes 

the newly calculated ROCOF value into the tail of the queue, and updates the ROCOFmax, 

and ROCOFmin. Afterwards, the system converts the ROCOF values via (8) and (9) into 

images. Here, to convert the ROCOF values into gray-scale images, an extra processing 

will be done via (6). Two event detection modules are shown in Figure 6-6. The 

ROCOF_Net and the RAS_Net run in parallel to provide fusion result and the system enters 

the OUTPUT state. Afterwards, the system returns to the START state and keeps running. 

6.4 Results Analysis 

This paper takes the confirmed generator trip (GT), load disconnection (LD), frequency 

ramping down (FR_down), and frequency ramping up (FR_up) events recorded by the 

FNET/GridEye system (Liu, et al., 2017) from January to December, 2018 to validate the 

proposed model. The histogram of the cases is shown in Table 6-5. 
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Table 6-4 Classifier Fusion Lookup Table 
ROCOF_Net RAS_Net Decision 
0 0 GT 
1 0 LD 
0 1 FR_down 
1 1 FR_up 

 

Push ROCOFt(k) at 
the tail of Q

size(Q )<n?

Increase k by 1 

Pop the head from Q 

Update the 
ROCOFmax and 

ROCOFmin

Calculate Pn×1 via 
(9)

Reshape Pn×1 to 
Pm×m via (8)

Invoke the CNN 
Models

Yes

ROCOF_Net 
loaded?

Load ROCOF_Net 

Detect an event via 
ROCOF_Net

RAS_Net loaded?

Load ROCOF_Net 

Verify an event via 
RAS_Net

Generate RAS input 
via (10)

Yes
No

Yes
No

No

OUTPUT

START
Preprocessing Event detection

 

Figure 6-6 Deep learning-based event detection system diagram 
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For generality, this paper uses 5-fold cross validation to evaluate the performance of the 

model instead of splitting the data into fixed training and testing sets. First, the data is split 

into 5 pieces. Then, in each evaluation, this paper selects an unused piece as the validation 

set and packs the rest as the training set. Then, it reinitializes the model, trains and validates 

it using the current training and validation sets, until all pieces are used once as the 

validation set. In the training, this paper uses categorical loss as the loss function and 

stochastic gradient descent (SGD) as the update function, with learning rate as 0.001, 

weight decay as 10-6, and momentum as 0.9.  

ROCOF_Net Standalone Evaluation 

As is shown in Figure 6-7 (a), the training set converges at around 6th epoch, while the 

validation set converges at around 5th epoch. An interesting observation is the validation 

set always converges faster than the training set. This observation is due to the strong 

spatial characteristic constructed by (9). As for the accuracy, the average validation 

accuracy is 100%. The result proves the ROCOF_Net is efficient in classifying the two 

types of event.  

As is shown in Figure 6-7 (b), using gray-scale images, the model converges slower than 

using color images. This is because the original constructed images (with RGB channels) 

contains more obvious spatial characteristics, while the gray-scale transformation blurs 

these characteristics. However, the eventual accuracy is 100% as well regardless of the 

slow convergence speed. 
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Table 6-5 Experimental Cases 
Type Region Case# 

GT 

MRO 13 
NPCC 9 
RFC 55 
SPP 10 
SERC 39 
FRCC 10 

LD 

MRO 18 
NPCC 36 
RFC 66 
SPP 1 
SERC 84 
FRCC 3 

FR_down 

MRO 7 
NPCC 10 
RFC 37 
SPP 1 
SERC 33 
FRCC 2 

FR_up 

MRO 71 
NPCC 15 
RFC 168 
SPP 6 
SERC 150 
FRCC 32 

 
            (a)  ROCOF_Net color image training                   (b) Comparison of color and gray images 

Figure 6-7 ROCOF_Net evaluation results 
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Note that even though the average validation accuracy of the ROCOF_Net is 100%, it 

does not mean the event detection accuracy has no error. This is because the ROCOF_Net 

only suggests an event type based on the constructed image.  

In conclusion, both color images and gray images are good input candidates for the 

ROCOF_Net, although it converges faster using color images. 

RAS_Net Standalone Evaluation 

As shown in Figure 6-8 (a), for LD events, the training set converges after 400th epoch, 

while the validation set converges around 210th epoch, then diverges afterwards. The 

difference in the convergence performance is mainly caused by edge cases in LD training 

set and overfitting. The edge cases are those whose spatial characteristic resemble both an 

event and a ramping. Due to complex operational conditions and locations of disturbances, 

the manifestation of LD events is more complex. Therefore, some edge cases are 

introduced into the training set. As a result, when more edge cases are included, longer 

epochs are needed for the training set to converge. Since the CNN tries to generalize these 

edge cases, it is possible to get overfitted. In fact, Figure 6-8 (a) shows the overfitting 

causes the validation loss to diverge after 210th epoch. However, the rise of validation does 

not affect the validation accuracy much.  

As shown in Figure 6-8 (a), the validation accuracy does not drop much even though the 

validation loss exceeds its initial value. Nonetheless, the overfitting issue still slightly 

deteriorates the performance on the validation set, as the best validation accuracy is 

observed at 210th epoch, where the validation loss reaches the minimum. 



 

98 
 

  
                     (a)  RAS_Net color image LD                                 (b) RAS_Net comparison LD 

  
                     (c)  RAS_Net color image GT                                    (d) RAS_Net comparison GT 

Figure 6-8 Evaluation Results  
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In conclusion, for LD events, the number of training epochs should be limited to avoid 

overfitting on the training set, otherwise it will detetioriate the overall performance of the 

proposed model.  

Figure 6-8 (b) demonstrates the comparison of using color images and gray-scale images 

under LD events. As shown in Figure 6-8 (b), using gray-scale images, the evaluation loss 

becomes less chaotic than using color images. Upon convergence, the performance of using 

color images is slightly better than using gray-scale images. This is because the gray-scale 

images simplify the information from the color images, which causes some information 

loss. The impact of the information loss is two-fold. Firstly, it deteriorates the performance 

of the model upon convergence. On the other hand, it stabilizes the performance of the 

model. Eventually, the accuracy of using gray-scale images is similar to that of using color 

images. This is because the model eventually rules out the effect by the RGB channels, 

while it concentrates on the magnitudes of the RASs. 

As seen from Figure 6-8 (c), for GT events, however, both the validation accuracy and 

loss are stable even if the model converges on the training set. The main reason is GT 

events can have clearer spatio-temporal characteristics than LD events, which avoids 

introducing too many edge cases. As opposed to the LD events, the validation set maintains 

convergence when the training set converges.  

As seen from Figure 6-8 (d), using gray-scale images under GT events does not help 

much on improving the performance of the model. The model achieves similarly good 

performance using both images. However, a more stable validation loss is still observed 

when using gray-scale images. 
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Fusion Evaluation 

In this paper, apart from accuracy, precision and recall are used to evaluate the fusion 

result. The definitions of these criteria are explained below: 

Precision: the percentage of the real events out of the total events reported by the model, 

which is calculated by 

𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

                                     (12) 
Recall: the percentage of the real events out of the ground truth events, which is 

calculated by 

𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

                                      (13) 
As seen from (12) and (13), the precision and the recall represent the false positive 

exclusion ability and the true positive inclusion ability respectively. Specifically, the 

precision represents how good the proposed model is at excluding false alarms. Other the 

other hand, recall represents how good the proposed model is at not missing true events.  

This paper compares the performance of the ROCOF method [57], the frequency-only 

CNN [66], and the proposed model. It compares the average true positives, false positives, 

true negatives, and false negatives. Finally, as CNN is known to work well on large-volume 

datasets, the fusion evaluation considers a different amount of training data.  

As seen from Table 6-6, on all conditions, the ROCOF method and the CNN (Frequency) 

model both achieve 100% in recall, which means they do not miss any events. Their 

superior recalls are brought by their inability to differentiate frequency rampings from 

disturbances.   
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Table 6-6 Precision, Recall, and Accuracy Comparison 

Traini
ng 
Data 

Perf ROCOF  CNN 
(Frequency) 

Proposed Model 
(Color) 

Proposed Model 
(Gray) 

 GT LD GT LD GT LD GT LD 

10% 

Prec. 0.67 0.40 0.67 0.40 0.91 0.77 0.91 0.77 
Rec 1 1 1 1 0.91 0.94 0.91 0.94 
Acc 0.67 0.40 0.67 0.40 0.88 0.77 0.88 0.77 
Cnv.  N/A N/A 10~2

0 
10~2
0 

1300
+ 

700+ 1200
+ 

800+ 

25% 

Prec. 0.45 0.48 0.45 0.48 1 0.85 1 0.84 
Rec. 1 1 1 1 1 0.900 1 0.94 
Acc. 0.45 0.48 0.45 0.48 1 0.83 1 0.84 
Cov. N/A N/A 10~2

0 
10~2
0 

600~
700 

250~300 600~
700 

250~30
0 

50% 

Prec. 0.58 0.51 0.58 0.51 1 0.94 1 0.90 
Rec. 1 1 1 1 1 0.90 1 0.90 
Acc. 0.58 0.51 0.58 0.51 1 0.895 1 0.87 
Cnv. N/A N/A 10~2

0 
10~2
0 

400~
600 

200~250 400~
600 

200~25
0 

75% 

Prec. 0.49 0.53 0.49 0.53 1 0.91 1 0.94 
Rec. 1 1 1 1 1 0.86 1 0.90 
Acc. 0.49 0.53 0.49 0.53 1 0.855 1 0.895 
Cnv. N/A N/A 10~2

0 
10~2
0 

200~
300 

200~250 200~
300 

200~25
0 

100% 

Prec. 0.51 0.59 0.51 0.59 1 0.98 1 0.98 
Rec. 1 1 1 1 1 0.94 1 0.96 
Acc. 0.51 0.59 0.51 0.59 1 0.94 1 0.94 
Cnv. N/A N/A 10~2

0 
10~2
0 

150~
200 

180~220 150~
200 

180~22
0 
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This disadvantage deteriorates their precisions since many ramping cases are reported as 

disturbances. As seen from the figure, the precisions of these 2 methods are between 

48.95% and 66.67% for GT events, and between 39.66% to 59.40% for LD events. For 

these two methods, their accuracy performances are only impaired by the false positive 

(false alarms). Therefore, their accuracies equal to their precisions for all cases. The 

evaluation results suggest that the false alarm challenges the credibility of both algorithms.  

As opposed to them, the proposed model achieves superior performance on all criteria 

for both event types. As seen from Table 6-6, using 100% training data, the proposed model 

achieves 100% accuracy on GT events, and 94.42% accuracy on LD events. The superior 

performance on GT events is due to their clear spatio-temporal characteristics. However, 

for LD events, the accuracy and precision are slightly slower. This is because some LD 

events can have ambiguous spatio-temporal characteristics, which can resemble those of 

frequency ramping. The ambiguous spatio-temporal characteristics are mainly observed in 

the LD events captured under low load conditions. These LD events usually occur in early 

mornings [82], when the overall load is low. Under such conditions, even a small-

magnitude LD event can cause the system frequency to drop drastically, which triggers the 

ROCOF_Net. However, its RAS signals are usually nonobvious because of its small 

magnitude. Therefore, these small-magnitude LD events can be recognized as frequency 

rampings, which deteriorate the recall rate (more false negatives). However, in practice, 

since their magnitudes are usually small, these false negative cases usually have little 

impact to the bulk power system reliability. In fact, they are too trivial to be considered in 
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balancing and frequency control regulations. Therefore, the performance of the proposed 

model is still acceptable. 

Effect of training data amount 

Since the performance of a deep learning model can rely on the number of training data, 

this paper uses different training set volumes in the evaluation as well. Figure 6-9 (a) and 

(b) demonstrate the impact of the number of training data on precision, recall, and accuracy.  

As seen in Figure 6-9 (a), the number of training data has some but limited impact on 

GT events. This is because the spatio-temporal characteristics of GT events are generally 

clearer. As aforementioned, clearer spatio-temporal characteristics help reduce the number 

of edge cases. This makes the performance on the GT events stable and superior. However, 

as seen in Figure 6-9 (a), the performance of the model can still be deteriorated if the 

number of training samples is too small.  

As opposed to GT events, Figure 6-9 (b) suggests that the number of training data has 

greater impact on LD events. This is because the spatio-temporal characteristics of LD 

events are more ambiguous, which results in more edge cases. However, to avoid false 

negative rate (missing event), the edge cases are labeled as true events in the training set. 

Therefore, when the number of training samples is smaller, the percentage of the edge cases 

can become larger. They lead to lower precision and accuracy, while keeping comparable 

recall. With the increase of the training set, the impact from edge cases becomes trivial. 

Therefore, the precision and accuracy increase with the training data size.  

On the other hand, using smaller-size training data slows down the convergence speed 

on all cases. As Figure 6-9 (c) and (d) show, less training data results in more epochs for 
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the proposed model to converge. This is because the proposed model needs more epochs 

to generalize the spatio-temporal features when the number of training samples is limited. 

However, this effect can be trivial since the training of the proposed model can be 

implemented offline.  

Detection efficiency 

This paper uses two NVIDIA GeForce GTX 1080 Ti GPU units as the hardware, 

TensorFlow 1.12.0 as the deep learning platform, and Windows 10 pro as the operating 

system. The proposed model is implemented as a micro-service via Flask [87] on an in-

domain remote server. 

The comparison of the detection time is demonstrated in Table 6-7. In Table 6-7, 

Detection time A represents the time overheads including data caching, network 

communication, etc. Meanwhile, detection time B represents the actual time of the 

algorithm logic. Total detection time represents the difference between the time when the 

event is detected and the time when the event emerges. The total detection time is the sum 

of the detection time A and the detection time B. Note, in this paper, 2 GPU units are used 

in parallel for the ROCOF_Net and the RAS_Net respectively. Furthermore, the 

initialization time of the GPU units is ignored since they only need to be initialized once 

when the model starts up.  

As seen from Table 6-7, the ROCOF method is the fastest algorithm to detect disturbance 

events overall. The detection time A of the ROCOF method mainly comes from data 

caching.   
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(a) GT events                                                       (b) LD events 

 
(c) GT events                                                      (d) LD events 

Figure 6-9 Learning curve 

 

 

Table 6-7 Detection Time Comparison 

 ROCOF 
Method 

CNN 
(Frequency) 

Proposed Model 
(Color) 

Proposed 
Model (Gray-
scale) 

Detection time A 
(ms) 

2230 2346 2356 2356 

Detection time B 
(ms) 

100 113 120 115 

Total detection time 
(ms) 

2330 2459 2476 2471 
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The detection time of the ROCOF method is trivial, which indicates that it concludes the 

detection result whenever the data collection is done. On the other hand, the proposed 

model needs slightly more detection time A since it communicates with the remote server 

to transmit the data and generate the input. For detection time B, the proposed method is 

comparable to the ROCOF method. Finally, the total detection time of the proposed model 

is slightly longer than the ROCOF based method. However, this difference can be ignored 

in terms of real-time monitoring.   

Therefore, the average running time of the proposed model could be controlled in micro-

second level given the GPU keeps running. This makes the model suitable for some real-

time control problems [83].  

6.5 Discussion 

Synchrophasor data in steady state conditions 

Since the proposed model fully depends on synchrophasor measurements, the 

requirements of their data are discussed. This paper uses the frequency disturbance 

recorders (FDRs), whose reporting rate is 10Hz, with TVE less than 0.14% at steady state 

[84]. Many commercial PMUs are manufactured with higher reporting rates and lower 

TVEs.  For example, an arbiter 1133A PMU can have 1-60 Hz reporting rate, with TVE 

less than 0.1% [85]. Some PMUs are proved to have < 0.1% on input magnitude and less 

than 0.0365% on phase angle (deg.) with 50Hz reporting rate [86]. Therefore, the proposed  

method may work with any PMUs which have report rate larger than 10Hz and TVE less 

than 0.14%. However, due to different operational conditions, the requirement of the data 
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resolution may change. In this paper, the data from the U.S. eastern interconnection was 

utilized to evaluate the model. However, for small systems such as ERCOT and QUEBEC, 

higher-resolution data will be necessary since the propagation of the traveling wave can be 

quicker. Moreover, since the steady state performance of commercial PMUs can vary from 

one manufacturer to another, some parameters in the proposed model, including the 

window size in image generation and hyper parameters in CNN, need adjustment as well.  

Synchrophasor data in dynamic conditions 

Unlike steady state, the actual dynamic performance of PMUs can vary greatly from one 

manufacturer to another. Practical issues including filter-related timestamp shift, GPS-

induced time inconsistency, and in-consistent frequency measurements are common in 

commercial PMUs [89]. For the ROCOF data, PMUs from different manufacturers can 

report different values due to the difference in the estimation algorithm [89]. This 

difference can affect the total detection time of the proposed model. On the other hand, the 

RAS data can be affected by time shifts[89]. Since this paper considers measuring units 

from the same manufacturer, the ROCOF calculations are considered consistent. However, 

the time shift issue is common in the angle data, which can lead to inaccurate RAS 

calculations. Therefore, the timestamp shifts are detected and offset by calibrators [90] 

before the image generation. This is a required step in order to make the proposed model 

work, otherwise the time shift can cause chaotic RAS signals.  
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Training data 

As discussed in Section IV, to achieve best detection accuracy, the proposed model needs 

relatively large training data to generalize the dynamic characteristics under various 

operational conditions. A potential limitation of the proposed model is it does not directly 

include operational conditions, such as real power, reactive power, system inertia, 

percentage of renewables, etc., as inputs. Operational conditions can impact the actual 

ROCOF and RAS signals during disturbances. For example, due to higher and higher 

penetration of distributed energy resources (DERs), the actual ROCOF and RAS 

manifestations under the DER-related disturbances can be different from conventional ones 

[88]. In fact, the performance of the proposed model can be further improved by 

incorporating these operational conditions as inputs. The proposed model can be initialized 

as multiple instances, where each instance is trained via data under similar operational 

conditions. Decision algorithms such as decision tree can be used to select appropriate 

instance for specific operational condition to get a more accurate result.  

Implementation 

The proposed model can be implemented in both online and offline modes. For online 

implementation, since the proposed model is implemented in TensorFlow 1.12, it can be 

integrated into the existing synchrophasor system via a socket-based software daemon or 

micro-service technology such as Flask [87]. Figure 6-10 demonstrates an example online 

implementation of the proposed model in FNET/GridEye. The proposed model is hosted 

via Flask as a microservice. It provides a likelihood estimation for the event report. Under 

the “Likelihood Estimation” section, it reports “Disturbance” or “Ramping” to help 
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operators understand if the detected event is a real disturbance. For offline implementation, 

the proposed model can be invoked periodically to classify the historical events. In 

conclusion, the proposed model can provide online detection results to assist real-time 

situation awareness as well as offline event analysis. However, since these implementation 

methods are based on distributed systems, they require a high-speed, secure, and reliable 

network transmission pipeline. The maintenance and troubleshooting of such a complex 

system can be challenging in practice.  

6.6 Conclusion 

This paper proposed a deep learning-based power system frequency event detection 

model. This paper shared important knowledge on building image inputs and CNN to 

detect the frequency disturbance events. This paper utilized the verified event data from 

the U.S. eastern interconnection to prove its feasibility in event detection. The exciting 

results presented in this paper allow power companies to foresee such model becoming a 

fundamental tool for situation awareness in bulk electric power system. The proposed 

model is of great significance in terms of helping the system operators know the condition 

of the system and decide the next necessary operations.  

Limited by the confirmed event cases, this paper only collected the generator trips and 

the load disconnections from the power industry. Events including line trips and inter-area 

oscillations also have obvious ROCOF and RAS signals. In the future, more research will 

be conducted on including other disturbance events. 
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Figure 6-10 Real-time disturbance alarm 
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