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Abstract

The interplay between charge, structure, magnetism, and orbitals leads to rich

physics and exotic cross-coupling in multifunctional materials. Superlattices pro-

vide a superb platform to study the complex interactions between different degrees

of freedom. In this dissertation, I present a spectroscopic investigation of natural

and engineered superlattices including FexTaS2 and (LuFeO3)m/(LuFe2O4)1 under

external stimuli of temperature and magnetic field as well as chemical substitution.

Studying the phase transitions, symmetry-breaking, and complex interface interac-

tions from a microscopic viewpoint enhances fundamental understanding of coupling

mechanism between different order parameters and the exciting properties.

In FexTaS2, we use optical spectroscopies to analyze the electronic properties.

Strikingly, Fe intercalation dramatically changes the metallic character, revealing two

separate free carrier responses in the Fe monolayer and TaS2 slabs, respectively. Sig-

natures of chirality are deeply embedded in the electronic structures. These include

a transition of electron density pattern from triangular to Kagome to honeycomb, a

hole→ electron pocket crossover at the K-point, and low energy excitations between

spin split bands that cross the Fermi surface. These findings advance the under-

standing of intercalation and symmetry-breaking on the fundamental excitations in

metallic chalcogenides, while at the same time, raise important questions about how

the embedded metal monolayer affects vibrational properties due to the free-carrier

response screened the infrared-active phonons.

iv



To address these issues, we extended this work using Raman scattering spec-

troscopy to reveal the vibrational properties. We particular focus on the coherent

excitations in the Fe monolayer. The results reveal both in- and out-of-plane vibra-

tional excitations at low frequencies in the intercalated Fe monolayer. Extending the

measurements to other intercalated chalcogenides such as Cr1/3NbS2 and RbFe(SO4)2

reveals structural-property relations, which confirms the intercalated monolayer ex-

citations are general and intrinsic. Furthermore, the intercalated monolayer excita-

tions have a trend that depend upon the metal-metal distance, the size of the van

der Waals gap, and the metal-to-chalcogenide slab mass ratio. A model for how

mass ratio affects the frequencies of the monolayer excitations is developed as well,

which excellently fits to our experimental trend. These findings suggest that external

stimuli such as pressure and strain may be able to tune these intercalated monolayer

excitations.

In the (LuFeO3)m/(LuFe2O4)1 multiferroic superlattices (m = 3, 7, and 9), we

combined optical spectroscopy, magnetic circular dichroism, and first-principle cal-

culations to uncover the origin of high temperature magnetism and charge-ordering

states in a site-specific manner. Analysis of the dichroic spectra reveals optical

hysteresis loops for different Fe sites. The site-specific coercivity vs. temperature

curves are extracted from the optical hysteresis, which demonstrates that bulk mag-

netism derives principally from the LuFe2O4 layers. Magnetism emanating from the

LuFe2O4 layer becomes more robust as the (3, 1)→ (7, 1)→ (9, 1) series progresses

- a trend that correlates with increasing Lu-layer distortion. To understand this

relationship more deeply, we extract the spectral signature of the interface for the

(LuFeO3)m/(LuFe2O4)1 series (m = 3, 7 and 9). While the overall contribution of

spin-down channel excitations is persistent over the sequence, enhanced Lu-layer dis-

tortion at the interface increases the contribution of the Fe2+ → Fe3+ charge-transfer
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excitation in the spin-up channel. This amplifies LuFe2O4 layer magnetization and

pinpoints the role of Fe2+. Key to this discovery is the ability of magneto-optical

spectroscopy to provide direct, microscopic, site-specific information about interface

magnetism in a two-dimensional material with multiple magnetic centres. Compari-

son of the theoretically predicted magnetic circular dichroism with the experimental

spectrum also establishes the non-polar self-doped structure as the precise charge-

ordering arrangement within the LuFe2O4 layer of the (3, 1) superlattice, thus re-

solving controversy regarding the many different isoenergetic charge states. In addi-

tion to introducing a remarkably powerful and versatile spectroscopic decomposition

technique for revealing microscopic spin and charge character at the interface of a

multiferroic superlattice with many different iron centres in a site-selective manner,

this work provides a pathway to link bulk and interface properties in other engineered

materials.
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Chapter 1

Introduction: Superlattice

architectures lead to new

functionalities

A superlattice is a periodic structure with repeating atomically thin layers of two

or more materials along a certain crystalline direction. They attract broad research

interest because the nature of combining two distinct components can lead to new

types of functional materials. In addition, complex interactions at the interface

present unique opportunities for the discovery of entirely new quantum phenom-

ena. There are two general types of superlattices: natural occuring and engineered

superlattices [Fig. 1.1]. In this work, I have been interested in both.

1.1 Natural occuring and engineered superlattices

Natural occuring superlattices are based on periodicity in a material’s own crystal

structure. They are known as homologous phase compounds, and can usually be

obtained by chemical substitution. Intercalated transition metal dichalcogenides

1



Fe1/4TaS2 (LuFeO3)3/(LuFe2O4)1
(a) (b) (c)

Natural-occurring 

superlattice
Engineered 

superlattice

Figure 1.1: (a) Crystal structure of the natural occuring superlattice Fe1/4TaS2.
The Fe intercalation at the van der Waals gap results in a 2a × 2a superstruc-
ture. (b) Unit cell of the engineered superlattice (LuFeO3)3/(LuFe2O4)1, grown on
(ZrO2)0.905(Y2O3)0.095 substrates using molecular-beam epitaxy [1]. (c) STEM image
of the (LuFeO3)3/(LuFe2O4)1 superlattice, viewed along the [110] zone axis. Atomic
number contrast shows the bright, heavy lutetium atomic rows layered with the less
bright iron atomic rows.
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such as FexTaS2 and CrxNbS2 are typical natural occuring superlattices. Within

this family of materials, the 3d transition metal elements are intercalated in the

van der Waals gap betweem two neighbouring layers of TX2, forming the weakly

bonded atomically thin monolayer [Fig. 1.1 (a)]. Superstructures are formed after

intercalation, which profoundly modifies physical properties.

Engineered superlattices are artificially created by alternating the growth of ultra-

thin films of different materials on a proper substrate [Fig. 1.1 (b,c)]. Each layer in

the superlattice is atomically thin, which is why heteroepitaxy is sometimes said to

form “interface materials”. Two typical methods for synthesis engineered superlat-

tices are pulsed laser deposition and molecular-beam epitaxy. They are mostly used

for the growth of complex oxides with the precise control of their composition, thick-

ness, and structures [2]. Lattice mismatch between the substrate and the growing

film has significant effects on epitaxy, which can induce structural defects between

the film-substrate interface, affect the growth morphology of the film in both 3D is-

land and 2D layer growth modes, and influence the epitaxial orientation of the grown

film by affecting the heterogeneous nucleation process [3]. These effects are due to

the interfacial energy which is related to the strength of bonding at the interface as

well as to the degree of lattice mismatch [3].

1.2 Interface-induced properties in FexTaS2 and

(LuFeO3)m/ (LuFe2O4)n

For both natural occuring and engineered superlattices, the interface is the key factor

that can lead to exotic physical properties [1, 4, 5]. For example, domain walls can

be formed at the interface [6, 7], which can localize charges and modulate phonon

modes [7–9]. Helical magnetic order is observed in Cr1/3NbS2 due to the interlayer
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Dzyaloshinskii-Moriya interactions [10,11]. Lattice distortions can take place at the

interface region due to the increasing lattice strain, which can dramatically boost

magnetic transition temperature [1, 4]. In this work, we selected two different sys-

tems, with which to study the interface properties. One family of materials is the

natural occuring superlattices FexTaS2 (x = 1/4 and 1/3), and the other system in-

volves a series of engineered multiferroic superlattices (LuFeO3)m/(LuFe2O4)n. We

use the former as platforms for exploring the electronic signatures of chirality, phonon

properties of the intercalated metal monolayer, and the latter to probe interface mag-

netism in a site-specific manner.

FexTaS2 is a material within the metal-intercalated transition metal dichalco-

genides family. This system attracts broad interest because of fascinating domain

and domain wall patterns, as well as large magnetoresistivities and switching be-

havior [6, 12, 13]. The materials are based upon 2H-TaS2 and have a set of stable,

well-ordered intercalation plateaus at x = 1/4 and 1/3 [6]. The x = 1/4 compound

yields a 2a × 2a superstructure with a centrosymmetric space group P63/mmc. For

x = 1/3, the Fe intercalation pattern is different and leads to a
√

3a ×
√

3a super-

structure with a non-centrosymmetric and chiral space group P6322 [6]. Figure 1.2

displays the domain and domain wall patterns in FexTaS2 (x = 1/4 and 1/3). In

Fe1/4TaS2, it reveals the Z4 type domain patterns with antiphase boundaries. While

in Fe1/3TaS2, the domain patterns change to Z2 × Z3 type, and the domain bound-

aries become antiphase and chiral, forming the structural Z6 vortices [14]. That

these domain topologies are rarely observed in other intercalated compounds such as

Cr1/3NbS2 and Fe1/3NbS2 makes the FexTaS2 an interesting system to study.

It has been determined that the domain topology in FexTaS2 has a significant ef-

fect on the magnetic properties [6]. Figure 1.2 (c) displays magnetic hysteresis curves

at 4 K. The inset shows the extracted coercivities as a function of Fe concentration.
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Antiphase + chiral domain walls in Fe1/3TaS2

Antiphase domain walls in Fe1/4TaS2

(a)

(b)

(c)

Figure 1.2: (a,b) Domain and domain wall patterns in Fe1/4TaS2 and Fe1/3TaS2,
respectively. (c) Magnetic hysteresis curves of x = 0.18, 0.25, 0.34, and 0.47. These
curves were measured at 4 K in magnetic fields along the c axis. Note that x = 0.18
and 0.25 show the 2a × 2a-type superstructure, whereas x = 0.34 and 0.47 exhibit
the
√

3a ×
√

3a-type one. The inset shows the magnetic coercivity as a function of
Fe composition [6].
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The hysteresis of Fe1/4TaS2 with the Z4 type domains exhibits sharp switching of

magnetization with large coercivities. On the other hand, the hysteresis of Fe1/3TaS2

with Z2 × Z3 domains show relatively broad switching of magnetization with small

coercivity. The distinct magnetic behaviors are associated with different degrees of

pinning of domain walls [6].

The unique and exotic domain and domain wall patterns in Fe1/3TaS2 are due to

its structural chirality. Other than those structural domain patterns, chirality can

also induce complex magnetic ordering in the intercalated transition metal chalco-

genides. Another such example is Cr1/3NbS2, where the chiral helical magnetic or-

dering forms below 131 K [10, 11]. However, there are very few studies about how

chirality affects electronic properties. The difficulty is due to the bulk measurement

techniques such as magnetization and electronic transport only reveal an average

response but not the insight of interplay between structures, charge, spin, and or-

bit for a particular site. Particularly for the FexTaS2 system, the insight of how

symmetry-breaking affects electronic structures, lattice excitations, charge densities,

and spin-lattice coupling are highly under explored. Revealing those properties are

important to advance the fundamental understanding of the interlayer interactions

and interface properties in the entire family of intercalated transition metal dichalco-

genides.

Another interesting system in this study is the engineered multiferroic superlat-

tices (LuFeO3)m/(LuFe2O4)n. This series of materials displays high magnetic tran-

sition temperature and fully coupled ferroelectric ferrimagnetism at the same time,

which rarely coexist. This family of materials consists of two end members. One end

member h-LuFeO3 is a polar, improper ferroelectric below 1020 K, and it orders an-

tiferromagnetically at 147 K in a pattern in which symmetry allows a slight canting

of the spins - giving rise to weak ferromagnetism [16–19]. The other end member
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LuFe2O4 is an antiferroelectric with a complex phase diagram, exemplified by a se-

ries of charge ordering transitions above room temperature, a 240 K ferrimagnetic

ordering temperature, and a structural transition near 170 K [20–24]. In certain

members of the (LuFeO3)m/(LuFe2O4)n series (m = 9 and n = 1), ferroelectric ferri-

magnetism emerges with ordering temperatures up to 281 K [1]. Such a superlattice

has a higher magnetic ordering temperature than either of its end members due

to interface effects [1], generating families of room temperature multiferroics [Fig.

1.3]. The high temperature multiferroicity is closely related to the Lu-layer distor-

tion at the LuFeO3-LuFe2O4 interface [Fig. 1.3] [1]. This Lu-layer distortion raises

as the superlattice periodicity becomes larger due to the increasing lattice strain.

The Lu-layer distortion also affects the bulk magnetization and coercivities in the

superlattices.

There are a number of questions that emerge from this prior work [1]. For exam-

ple, the pathway by which the rumpling in the LuFeO3 layer (Lu-layer distortion that

causes broken inversion symmetry) couples to the magnetism in the LuFe2O4 layer

is not established [15]. The origin of high temperature magnetism is not clear. The

microscopic nature of these interface effects is highly under-explored. The electronic

ground state is not determined due to multiple nearly degenerate charge-ordered

states induced from the interfacial lattice distortion. One of the challenge to un-

derstanding the inner workings of these complex magnetoelectric multiferroics is the

multitude of distinct Fe centres and their associated environments due to the ex-

traordinary complexity from combining multiple components in a single unit. Since

macroscopic techniques characterize average responses rather than the role of indi-

vidual iron centres, a site-specific analysis of spin and charge is required to resolve

the interplay between the interfacial lattice distortion and magnetism of each Fe site.
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LuFe2O4

Ferrimagnetic Ferroelectric Multiferroic

LuFeO3

+ =(a)
(b)

Figure 1.3: (a) crystal structures and STEM images of LuFe2O4 (left), LuFeO3

(middle), and (LuFeO3)m/(LuFe2O4)n superlattices (right), respectively [15]. (b)
Magnetization vs temperature for different superlattices [1].
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1.3 Spectroscopy reveals properties in a site-specific

manner

Spectroscopy provides a site-specific technique to understand the fundamental exci-

tations of spin, charge, lattice as well as their interplay. Measurements in different

energy regions can probe many different types of elementary excitations, as shown

in Fig. 1.4. Two fundamental excitations of interest to my work include phonons

and electronic excitations.

In the low frequency range, infrared spectroscopy can be employed to detect

magnetic excitations, magnons, low lying electronic excitations, free-carrier response

and vibrational modes (phonons) [Fig. 1.4], which play a major role in many mate-

rial properties including thermal and electrical conductivities [25]. Phonons with odd

symmtries can be detected by this technique. Strong infrared-active phonons are usu-

ally observed in semiconductors and insulators. However, for metalllic compounds,

infrared-active phonons are screened by the low energy free-carrier response. In this

case, Raman scattering spectroscopy is also used to compliment infrared techniques.

Phonons that are Raman-active are the even symmetry modes. Combined with lat-

tice dynamics calculations and a group theory analysis, phonon symmetries and their

displacement pattern can be revealed to understand local structure environment and

lattice distortion.

Phonons can also couple to the magnetism, which is called spin-lattice coupling.

When lattice interacts with light and vibrates, some of the vibrational modes can

change the bonding length and angle between metal and ligands, which modifies

exchange interactions between metal centers. Magnetic materials usually display

phase transitions when varying temperatures and magnetic field. During the transi-

tion, magnetic moments are reoriented, including spin flop, canting, or aligning
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Figure 1.4: Chart showing optical processes in solids, with an indication of the
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towards the fully polarized magnetic state [27–29]. The reorientation of magnetic

moments sometimes accompanied with a local lattice distortion, which can break

symmetries and result in a splitting or a frequency shift of a particular phonon

mode [28]. In this case, we use spectroscopy under variable temperatures or magnetic

fields to explore the spin-phonon coupling effect. By tracking the phonon frequency

vs. temperature or magnetic field, we can extract the spin-phonon coupling constant

through the Boltzmann sigmoid model [29–31].

In the higher frequency region, optical spectroscopy is performed to explore the

on-site d to d and interband charge transfer excitations [Fig. 1.4]. The on-site d to d

excitations usually reside in the energy range below the charge transfer gap. They are

due to crystal field splitting, and a Tanabe-Sugano diagram predicts where on-site

d-to-d excitations should manifest, depending on the crystal field symmetry around

the metal ion. Charge transfer excitations determine the band gap of materials.

First-principles calculations (when they are correctly calculated) including density of

states and band structures provide insight into the electronic structure of a material.

Comparison of the theory and experimental spectra can provide accurate assignments

of electronic excitations in a site-specific manner and even reveal more complex

phenomenon such as charge-ordering.

Magnetic circular dichroism is another spectroscopic technique, which focuses on

revealing magneto-optical properties of materials in a site-specific manner. We do

this work in visible optics range. The dichroic intensity is linearly proportional to

the magnetization, which is also correlated to the joint density of states and even

to specific bands [32, 33]. The dichroic response (change in α(E)) is also correlated

to the first-derivative of the linear absorption spectra, which provides a pathway to

link magnetism with various electronic excitations.

In this work, I focus on revealing the spectroscopic properties of natural occur-
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ing and engineered superlattices under external stimuli like temperature, magnetic

field, and chemical substitution. The materials of interest include intercalated tran-

sition metal dichalcogenides FexTaS2 and (LuFeO3)m/(LuFe2O4)1 multiferroic super-

lattices. For FexTaS2, I investigate the spectroscopic signatures of chirality and spin-

lattice coupling induced from the Fe intercalation. In the (LuFeO3)m/(LuFe2O4)1

multiferroic superlattices, our work focuses on uncovering the microscopic origin of

high tempearture magnetism and charge-ordering in a site-specific manner. My de-

tailed findings are summarized in Table 1.1.

1.4 Main findings in FexTaS2 and multiferroic su-

perlattices (LuFeO3)m/(LuFe2O4)1

1.4.1 Electronic properties of FexTaS2

Figure 1.5 summarizes our spectroscopic findings in FexTaS2. We observed two sepa-

rate free-carrier responses in Fe monolayer and TaS2 slabs, respectively [Fig. 1.5 (d)].

Examining the electron density patterns verifies the existence of the weak free-carrier

response between two neighbouring Fe domains [Fig. 1.5 (b)]. At higher energies,

the spectra reveal several localized electronic excitations [Fig. 1.5 (e)]. Compared to

the Fe1/4TaS2, the spectrum of the x = 1/3 compound shows a clustered excitation

because the Fe conduction bands move up in energy and become more dispersive.

Signatures of chirlity in the Fe1/3TaS2 are deeply embedded in the electronic struc-

tures. These include charge-density patterns that progress from triangular (x = 0) to

Kagomé (x = 1/4) to honeycomb (x = 1/3) [Fig. 1.5 (b)], a hole → electron pocket

crossover at the K point, and low-energy excitations between spin split bands that

cross the Fermi surface [Fig. 1.5 (f)]. These findings advance the understanding of

symmetry-breaking in quasi two-dimensional systems and are useful for the

12



Table 1.1: Scientific problems and important findings in this dissertation

Model
Compound

Scientific Problem Our Findings

FexTaS2 (x = 1/4
and 1/3)

FexTaS2 (x = 1/4
and 1/3),

Cr1/3NbS2, and
RbFe(SO4)2

• Revealing how metallic char-
acters change with the interca-
lation concentration (x)
• Investigating the spectro-
scopic signatures of chirality in
Fe1/3TaS2

• Revealing phonons of the
intercalated Fe monolayer and
spin-lattice coupling
• Revealing the structural-
property relations between
different intercalated chalco-
genides

• Two Drude responses in Fe and
TaS2 layers
• Electron density pattern tran-
sits from triangular to Kagomé to
honeycomb with increasing x
• A hole to electron pocket
crossover at the K-point
when structure changes from
centrosymmetric to non-
centrosymmetric
• Low energy excitations be-
tween spin split bands in the
non-centrosymmetric compound

• In- and out-of-plane mono-
layer excitations are identified,
which display structural-property
relations. Their frequencies de-
pend on in-plane metal-metal
distance, size of the van der
Waals gap, and the metal-to-
chalcogenide slab mass ratio
• A mass ratio model to describe
thresholds of monolayer excitation
frequencies

(LuFeO3)m/(LuFe2O4)1
superlattices (m = 3,

7, 9)

• Revealing the magnetic
response of each individual
Fe center
• Revealing the origin of the
bulk magnetism and high
magnetic TC

• Revealing the structrual-
property relations
• Uncovering the interfacial
magnetism
• Determine the charge-
ordering states in the (3,1)
superlattice

• Site-specific optical hysteresis
loops are obtained
• Bulk magnetism derives princi-
pally from the LuFe2O4 layer
• Interface dichroic spectra are
extracted
• Enhance magnetism and TC
come from the increasing Fe2+

and Fe3+ density of states in the
spin-up channel
• A non-polar Fe bilayer charge-
ordering state with asymmetric
Lu-layer distortion are determined
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Figure 1.5: (a) Crystal structures of 2H-TaS2, Fe1/4TaS2, and Fe1/3TaS2. (b) Electron
density patterns of x = 0, 1/4 and 1/3 materials. (c) Optical conductivity of the
Fe1/3TaS2 at 300 and 7 K. (d) Close-up view of using two Drude functions to fit the
experimental spectra. (e) Optical conductivity of the x = 1/4 and 1/3 compounds.
(f) Close-up view of the low energy electronic excitations. (g) Oscillator strength vs.
temperature for the 22 and 38 meV modes.
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development of low-symmetry multifunctional chalcogenides.

1.4.2 Phonon properties in FexTaS2 and their structural analogs

Figure 1.6 summarizes our Raman results. The Fe intercalation induces clear, strong,

and coherent in- and out-of-plane intercalated monolayer excitations below 200 cm−1

[Fig. 1.6 (d)]. Those monolayer excitations are also observed in other intercalated

transition metal dichalcogenides including Cr1/3NbS2 and RbFe(SO4)2 [Fig. 1.6 (d)],

which indicates the intercalated metal monolayer excitations are intrinsic and gern-

eral. The frequencies of the metal monolayer excitations depend upon the metal-

to-chalcogenide slab mass ratio [Fig. 1.6 (e)]. We developed a mass ratio model

to provide a threshold frequency of the in- and out-of-plane monolayer excitations.

Beyond this limit, interlayer interactions become comparable to intralayer interac-

tions, the system behaves more like a standard multilayered material. The in- and

out-of-plane excitations also reveal a strong spin-phonon coupling in the Fe1/4TaS2

material [Fig. 1.6 (f)]. These findings indicate the monolayer excitations are highly

tunable by pressure or chemical substitution, which are potentially useful to design

ultra low-frequency resonators.

1.4.3 Site-specific measurements of spin and charge in mul-

tiferroic superlattices (LuFeO3)m/(LuFe2O4)1 (m = 3,

7, 9)

Figure 1.7 summarizes our spectroscopic findings in (LuFeO3)m/(LuFe2O4)1. The

dichroic spectra reveal several distinct Fe-related excitations at different energies

[Fig. 1.7 (c)]. Fixed cuts at characteristic energies reveal optical hysteresis loops for

distinct Fe sites [Fig. 1.7 (d)]. The extracted coercivity vs temperature Curves
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Figure 1.6: (a) Crystal structure of Fe1/4TaS2. (b) Crystal structure of Fe1/3TaS2

or Cr1/3NbS2 with a non-centrosymmetric space group. (c) Crystal structure of
RbFe(SO4)2. (d) Intercalated monolayer excitations of different chalcogenides. (e)
Frequency of the in-plane monolayer excitation vs. metal-to-chalcogenide slab mass
ratio. (f) Frequency vs. temperature trend of the in-plane Fe monolayer excitation
in the Fe1/4TaS2 material.
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Figure 1.7: (a) Crystal structure of the (3, 1) superlattice. d represents the Lu-layer
distortion. (b) STEM images of the (3, 1), (7, 1), and (9, 1) superlattices. Below
displays the magnetic Curie temperatures and the amplitude of Lu-layer distortion
for each superlattice. (c) Magnetic circular dichroism spectra of the (3, 1) superlattice
at ± 25 T and 0 T. (d) Optical hysteresis loop of the spin-up and spin-down channel
Fe2+ → Fe3+ charge transfer excitations. (e) Extracted coercivity vs temperature
trend for all types of Fe-related excitations. (f) Extracted magnetic circular dichroic
spectra of interfaces. (g) Remnant dichroic intensity as a function of superlattice
periodicity (m) for different types of Fe-related excitations. The Lu-layer distortion
vs m is also plotted to show the correlations.
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indicate the bulk magnetism principally derives from the LuFe2O4 layer [Fig. 1.7 (e)].

We successfully extracted the interface spectra [Fig. 1.7 (f)]. The same energy cuts

in the interface dichroic spectra reveal that the Lu-layer distortion at the LuFeO3-

LuFe2O4 interface selectively enhances the magnetization of the spin-up channel

Fe2+ → Fe3+ charge transfer excitation [Fig. 1.7 (g)]. We also reveal a self-doped

type charge ordering state in the (3,1) superlattice by comparing the theoretically

calculated and experimental dichroic spectra. This charge ordering state contains

asymmetric Lu-layer distortion and a non-polar Fe bilayers. These findings provide

an insight of how interface rumpling couples to the magnetism in a local site, which

advances the understanding of expanding the classes of multiferroics across a hetero-

interface.

1.5 Outline

The remainder of the dissertation is organized as follows: Chapter 2 presents a lit-

erature survey of properties of multiferroics and transition metal dichalcogenides, as

well as the other intercalated transition metal dichalcogenides systems. Chapter 3

discusses basics of infrared, Raman and optical spectroscopies, as well as magnetic

circular dichroism. Theories of how light interacts with matter, sample preparation,

and other experimental and theoretical techniques are introduced as well. Chapter

4 and 5 present our spectroscopic findings of FexTaS2, including both electronic and

vibrational properties. Chapter 6 gives the details of how we perform a site spe-

cific measurement of spin and charge in high temperature multiferroic superlattices

(LuFeO3)m/(LuFe2O4)1. Chapter 7 summarizes my work.
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Chapter 2

Literature survey

2.1 Multiferroic materials

Materials with ferroic order can display interesting physical properties because their

order parameters can be switched by a conjugate field [35–37]. There are four pri-

mary ferroic terms: ferromagnetic, ferroelectric, ferroelastic and ferrotoroidic order.

Figure 2.1 displays the schematic view of these primary ferroic orders. Ferromag-

netic materials exhibit a spontaneous magnetization, the direction of which can be

switched by the external magnetic field. The spontaneous magnetization is due to

breaking of the time-reversal symmetry. Ferroelectricity displays a spontaneous po-

larization in the materials. Electric field can be applied to switch the polarization

direction. Spatial inversion symmetry has to be broken for a ferroelectric material.

Similarly, ferroelasticity corresponds to a spontaneous lattice strain. However, ferroe-

lasticity does not require to break either time-reversal or spacial inversion symmetry.

Ferrotoroidicity is more complex, it related to a spontaneous magnetic vortex, which

can generate a “toroidal moment”. In general, a toroidal - like moment is formed by

N ≥ 2 spins per unit cell. It originates from two pairs of spins yielding oppositely

oriented toroidal moments of different amplitude. A spontaneous uniform alignment
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Figure 2.1: Schematic view of the four types of primary ferroic orders [37].
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of toroidal moments is the basis of a ferrotoroidic state [38]. Ferrotorodicity re-

quires breaking both spacial inversion and time reversal symmetry. The symmetry

requirement for all types of ferroic orders are summarized in Table 2.1.

Multiferroic materials are defined by simultaneously exhibiting two or more fer-

roic, ferrioic or antiferroic ordering parameters. They attract broad interest to re-

searchers because of the cross-coupling between different ferroic orders, which has a

great potential for the device applications. In this chapter, we particularly focus on

the magneto-electric multiferroic materials, which is a specific type of materials that

combine ferroelectricity and magnetic behaviors.

2.1.1 Cross-coupling in multiferroics

The most interesting phenomenon in multiferroics is the cross-coupling between dif-

ferent ferroic order parameters. Figure 2.2 displays a schematic view of using various

external stimulus to control the phase in multiferroics. In a ferroic material, P , M ,

or σ are spontaneously formed to produce ferromagnetism, ferroelectricity, or ferroe-

lasticity, respectively. In a multiferroic, the coexistence of at least two ferroic forms

of ordering leads to additional interactions. For example, interactions between the

ferroelectricity and magnetic ordering induce magnetoelectric effect, which means

the electric polarization can be switched by magnetic fields, or the induction of mag-

netization by an electric field. The interaction between lattice strain and electric

dipole moment leads to piezoelectricity. As a result, multiferroics may lead to faster,

smaller, more energy-efficient data-storage technologies.

The most important type of multiferroics is magnetoelectric materials. These

materials attract broad research interest because of their huge potential for making

new device architectures. Although multiferroic materials can display both ferroelec-

tricity and magnetism in a single phase, they are not always coupled because
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Table 2.1: Spatial-inversion and time-reversal symmetry in ferroics

Ferroic orders Spatial-inversion symmetry ? Time-reversal symmetry ?
Ferromagnetism Yes No
Ferroelectricity No Yes
Ferroelasticity Yes Yes

Ferrotoroidicity No No
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Figure 2.2: A schematic diagram shows how magnetic field H, electric field E, and
stress σ control the magnetization M , electric polarization P , and lattice strain ε,
respectively. The cross coupling between different ferroic orders leads to an electric
field controlled magnetization and a magnetic field controlled electric polarization
(green arrows). Figure is taken from Ref 39.
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of the contradiction of the mechanism between ferroelectricity and magnetism [40–

42]. As a result, the magnetoelectric coupling is the most interesting effect in mul-

tiferroics.

From the mathematical perspective, the free energy of a system can be described

by Landau’s expression:

F (E,H) = F0 − P s
i Ei −M s

iHi −
1

2
ε0χ

e
ijEiEj −

1

2
µ0χ

v
ijHiHj − αijEiHj − · · · (2.1)

where, P s
i = - ∂F

∂Ei
, M s

i = - ∂F
∂Hi

, and αij = ∂Pi
∂Hj

= ∂Mi

∂Ej
, Pi and Mi are the static elec-

tric polarization and magnetization, and αij is the linear magneto-electric coupling

coefficient.

2.1.2 Magnetoelectric multiferroics

Magnetoelectric materials are very rare in nature. The reason is that the existence

of both ferroelectricity and ferromagnetism is, in itself, a contradiction (typically,

ferroelectricity and magnetism are mutually exclusive) [40–42]. One simple reason is

that ferroelectic materials are typically insulators to maintain a sustainable electric

polarization, whereas ferromagnetic materials are usually metals. However, this is

not the case for materials with ferrimagnetic or antiferromagnetic ordering, which

are typically insulators. The more in depth reason is the so called ferroelectric “d0”

rule [42]. Ferroelectric materials must undergo a phase transition to eliminate the

center of symmetry. In conventional ferroelectric materials, the polarization arises

when nonmagnetic cations shift away from the center of their surrounding anions.

This uneven displacement, or noncentrosymmetry, between positive and negative

charges is what gives rise to an electric dipole moment. Magnetic cations, however,
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tend to sit exactly at the center of the surrounding anions, in centrosymmetric posi-

tions, such that no dipole moment forms. This can be understood by the occupancy

of d orbitals. The non-magnetic cation has empty d shells (d0-orbital). Energy of

the covalent or ionic bonding is much larger than the Coulomb interaction in the

non-magnetic cation, this generates an electric dipole moment that leads to a polar-

ization. As a result, the non-magnetic cation tends to move off-center to favor the

ferroelectricity. In contrast, in magnetic materials, the magnetic cation requires a

partially occupied d orbital, the Coulomb repulsion between electrons is larger than

the bonding energy, which prohibits the ions to move out of center. This contra-

diction explains why magnetic ferroelectric is so rare in nature. The ferroelectric d0

rule can be broken if details of chemistry or structure create an asymmetric potential

with a double potential well in spite of the d occupation of the magnetic cation [42],

however, synthesis the magnetoelectric multiferroics with this type are not easy. This

mechanistic picture is developed for ABO3 perovskites.

Multiferroics can be classified as two different types according to whether the

ferroelectric and the magnetic transition temperatures are the same or not. Type

I multiferroics corresponds to materials with different transition temperatures. The

most famous example is BiFeO3 [43, 44]. This material has the perovskite structure

where Bi occupies the non-magnetic A-site and Fe occupies the B-site. The A-site

cation moves off-center, breaking the inversion symmetry and brings ferroelectricity;

the Fe atoms display antiferromagnetic ordering below the magnetic Curie temper-

ature. The material is categorized as a proper ferroelectric (Type I), because the

ferroelectricity is not caused by the magnetic ordering. As a result, the ferroelec-

tric and magnetic transition temperatures are different. The disadvantage of Type I

multiferroics is that the magnetoelectric coupling is weak due to the different mach-

anism of ferroelectricity and magnetic ordering. Type II multiferroics displays the
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same transition temperature for ferroelectricity and magnetic ordering. They are

categorized as the improper ferroelectrics as the magnetic ordering breaks the inver-

sion symmetry and induces electric polarization. Type II multiferroics exhibits large

magnetoelectric coupling, however, the transition temperature is usually not high

enough. One famous example of the Type II multiferroics is TbMnO3 [45]. Clearly,

the most challenging work in the field of multiferroics is to systhesis materials that

can combine large magnetoelectric coupling and high transition temperatures.

2.1.3 Mechanisms supporting multiferroicity

The mechanisms that support multiferroicity are quite complicated. Ferroelectricity

can be driven by four typical mechanisms: electronic lone pairs, geometric effects,

charge-ordering and magnetism. In the first three cases, the magnetic and ferroelec-

tric orders are not strongly coupled, and occur independently. The multiferroics with

these three mechanisms are denoted as Type I. For the last case, the ferroelectric

and magnetic transitions emerge jointly and are strongly coupled. This mechanism

supports for the type II multiferroics.

Lone-pair mechanism: Lone-pair mechanism is first proved in the most famous

single-phase multiferroic BiFeO3 [37, 46]. Lone-pair ferroelectricity is based on the

spatial asymmetry created by anisotropic distribution of unbounded valence electrons

around the host ion (Fig. 2.3a). In BiFeO3, the large electric polarization is driven

from a pair of Bi3+ valence electron, in the 6s orbital, which is not involved in the

sp hybridization. This lone-pair electron create a local dipole moment that induces

polarization of of 100 µCcm2 below the ferroelectric Curie temperature (TC = 1103

K) [47]. Fe 3d electrons contribute to the antiferromagnetism in the system with TN

= 643 K [48]. Among the lone-pair systems, BiFeO3 is the only room-temperature

single-phase multiferroic material [37]. Magnetoelectric coupling is observed in this
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Figure 2.3: a, Lone-pair ferroelectricity in BiFeO3. The isosurface (red) of the elec-
tron localization function illustrates the lone-pair. b, A tilt and deformation of
MnO5 bipyramids induces geometric ferroelectricity in h-RMnO3. c, Charge order-
ing in LuFe2O3 creates alternating layers with Fe2+ / Fe3+ ratios of 2:1 and 1:2. This
can create a spontaneous polarization between the two layers. d, Mechanisms for
spin-induced ferroelectricity [37,49]. Figure is taken from Ref 37.
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material, however, the coupling strength is not strong due to the different origins of

ferroelectricity and magnetism.

Geometric ferroelectricity: Geometric ferroelectricity is caused by space-

filling effects. Geometric constraints can cause structural instabilities in materials.

If such steric effects, rather than bond chemistry, lead to ionic shifts that result in

the formation of a polar state, the term geometric ferroelectricity can be used [37].

In geometric multiferroics, the small non-magnetic cation (in the A-site) allows for a

rotation or tilt of the polyhedra centered with the B-site cation, which often accom-

panies with the shift of the A-site cation that generates the polarization. Since the

rotation or tilting of the polyhedra can induce a canted magnetism, this mechanism

offers a coupling between polarization and magnetism.

Depending on whether the spontaneous polarization is the primary order param-

eter or as a secondary consequence from a lattice distortion, ferroelectric materials

can be identified as a proper or improper type, respectively. One example of proper

ferroelectrics is BaMF4 (M = Mn, Fe, Co, or Ni). The ferroelectricity of this family

of materials originate from the softening of a single polar phonon mode, which in-

volves both rotational motions of the fluorine octahedra and polar displacements of

the Ba cations [50]. Since the distortion is polar in nature, this family of materials

represent a confirmed example of the proper geometric ferroelectrics. One famous

example of improper ferroelectrics is hexagonal phase rare-earth manganites RMnO3,

in which the ferroelectricity comes from a coupling between unstable zone-boundary

mode with a stable zone-center mode [51]. Figure 2.3b illustrates this mechanism.

Since the ferroelectricity is not directly caused by a polar distortion, this material is

a typical improper ferroelectric. The h-LuFeO3 thin film in this dissertation is the

improper multiferroic, due to this mechanism.

The magnetoelectric coupling of the geometric ferroelectrics are usually larger
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than that from the lone-pair mechanism due to the structural distortion can cause

a canted magnetism in the system. However, for improper ferroelectrics, it is chal-

lenging to switch the polarization by electric field because the electric field is not a

conjugate field for polyhedral rotations. As a result, understanding the fundamental

mechanism of polarization switching in such improper ferroelectrics is a key next

step, alongside the development of improved proper geometric ferroelectrics [46].

Charge-ordering: Charge-ordering is another mechanism to support ferroelec-

tricity. Valence electrons can be distributed non-uniformly around their host ions

in the crystal lattice to form a periodic superstructure [37]. The most famous ma-

terial with the charge-ordering mechanism is LuFe2O4. This material has the Fe

double layers with alternatively ordered Fe2+ and Fe3+ sites [Fig. 2.3] [34]. The

unequal distribution of charge inside the Fe bilayers induces an internal electric po-

larization. Although there are some studies questioned about the ferroelectricity in

LuFe2O4 [20,242], a charming development in charge-ordered multiferroics is the es-

tablishment of a polar charge-ordered state below 100 K in the first technologically

relevant magnet, ferrimagnetic magnetite, Fe3O4 [46, 52]. For now, charge order-

driven multiferroicity essentially remains at the stage of an interesting concept.

Spin-driven mechanisms: The magnetic ordering can also break the spatial

inversion symmetry of the lattice and induce the ferroelectric polarization. The inter-

action of spins and charges may transfer the non-centrosymmetry from the magnetic

to the electric lattice, driving the formation of a polar state [37]. Since the ferro-

electricity is a secondary effect from the magnetic ordering, multiferroics with this

mechanism is improper ferroelectrics. There are three main types of the spin-driven

mechanisms.

The first type of mechanism is called inverse Dzyaloshinskii-Moriya (DM) inter-

action. The term DM interaction describes an antisymmetric exchange between two
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magnetic ions through a third ion, which breaks the inversion symmetry with respect

to the two magnetic ions and causes a canting of the collinear spins through the spin-

orbit interaction [53]. The inverse DM interaction is the exact opposite effect, where

the canted spin structure drives a non-centrosymmetry displacement of charges by

minimize the lattice energy. This can cause the electric polarization. Multiferroics

with this type of mechanism was first found in Cr2BeO4 and TbMnO3 [45, 54].

Other than the inverse DM interaction, exchange striction is another type of the

spin-driven mechanism. This type of mechanism describes the symmetric exchange

for a collinear spin structure. The collinear magnetic ordering can cause an acentric

displacement of charges by optimizing the spin product Si · Sj, which induces a

ferroelectric polarization [Fig. 2.3d] [55]. Since this interaction is much stronger than

the DM interaction, the electric polarization induced by this mechanism is usually

an order of magnitude larger than that originates from the inverse DM interaction.

One of the example is o-TbMnO3, where the polarization amplitude dramatically

increases during the magnetic transition from a canted mangetic state to a collinear

antiferromagnetic state under pressure [56].

The third type of the spin-driven mechanism is through the spin-dependent p−d

hybridization [37, 49, 57, 58]. Other than the inverse DM interaction and exchange

striction, which describe the electric polarization induced from the spin-spin corre-

lation, this mechanism only corresponds to the single spin. The spin-dependent p–d

hybridization mechanism is based on the fact that the locally polar bond eil con-

necting the spin site i and the ligand site l can be modulated by the spin-direction

dependent hybridization arising from the spin-orbit coupling [49]. The polarization

is proportional to (Si ·êil)2êil, where êil is the unit vector that connects the transition

metal and ligands. Some examples of this mechanism include Ba2CoGe2O7 [57] and

CuMnO2 (M = Fe or Cr) [58].
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Overall, the spin-driven multiferroics usually display small polarization because

the ferroelectricity is a secondary effect, in this case, materials with this mechanism

are usually Type II multiferroics. On the other hand, the magnetoelectric coupling in

the spin-driven multiferroics are strong, which leads to potential device applications.

However, the main challenge that prevents the development in this direction is the

low magnetic transition temperatures.

2.1.4 Heterostructure multiferroics

Figure 2.4 summarizes multiferroics with different types of mechanisms. For appli-

cation purposes, the dream is to make multiferroics that can display strong mag-

netoelectric coupling and high transition temperatures at the same time. It is ex-

tremely challenging to combine those two factors into the conventional single-phase

multiferroics because of the contradiction between the mechanism of ferroelectricity

and magnetism. A new direction is to make composite multiferroics by artificially

combining a non-magnetic ferroelectric (such as BaTiO3) and a non-ferroelectric

magnet (such as CoFe2O4). This attracts a lot of research attention recently. The

(LuFeO3)m/(LuFe2O4)n superlattices in this work belongs to this composite multi-

ferroics family.

Oxide thin films can be grown layer by layer with atomic scale precision, thus

much more accurately and controllably than bulk crystals. The idea is to grow mate-

rials with certain properties by applying heteroepitaxy growth on a proper substrate.

In particular, the effects of strain and interfaces in thin-film architectures are impor-

tant because they can influence the ferroelectric and magnetic properties profoundly.

The interfaces between different phases can either transfer the interaction between

the constituents of the system or have an active role in determining the properties

of the material [37].
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Figure 2.4: Multiferroicity, arising from the combined interplay of magnetic and
ferroelectric mechanisms, can result from several different sources. Here, we outline
different combinations of these ‘root’ mechanisms and how they are responsible for
different types of multiferroic materials. This visualization shows the combinations
of magnetic and ferroelectric mechanisms that occur in existing multiferroics, and
also suggests less explored options that may prove fruitful in the future. Figure is
taken from Ref 46.
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Epitaxial strain: Heteroepitaxy growth usually accompanies with large epitax-

ial strains due to the lattice mismatch between the film and its substrate. Control-

ling the epitaxial strain is useful to moderate the properties of thin films and induce

phase transitions. For example, strain was used to demonstrate the correlation be-

tween ferroelectric and magnetic spiral order in BiFeO3 thin films [59]. Strain can

also induce the ferroic orders in non-ferroic compounds. For example, polar order

and ferromagnetism are induced in SrTiO3 [60] and LuMnO3 [61] films, respectively.

Furthermore, strain can be used to couple ferroelectric domains to ferromagnetic

domains across an interface through magnetostrictive and magnetoelectric coupling

[Fig. 2.5] [37, 62, 63]. A typical example with this effect is in the CoFe–BaTiO3 su-

perlattice, where the anisotropy and ordering temperature of interfacial magnetism

can be controlled by electric fields [64].

Interface enhanced functionality: In heterostructure multiferroics, study-

ing the interface is very important to understand the origin of multiferroicity. In

composite multiferroics, the interface between two components usually displays low

local symmetry, confinement effects, strain gradients, domain walls and chemical

anisotropy [Fig. 2.6] [37]. Typical examples of multiferroicity induced by the in-

terface interaction is found in the BaTiO3 thin film [65]. The interface can break

the spatial inversion symmetry and induce ferroelectricity [1], however, it does not

break the time-reversal symmetry. In this case, understanding how interface affects

the magnetic properties is the key to develop new strongly coupled multiferroics. In

this work, we performed a magnetic circular dichroism measurement on room tem-

perature multiferroic (LuFeO3)m/(LuFe2O4)n superlattices to resolve the interface

magnetism.
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Figure 2.5: the magnetoelectric coupling between a piezoelectric and magnetostric-
tive constituent is established via strain σ [37].
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Figure 2.6: In 2D confined multiferroics, only the interface between two material
phases is multiferroic. In this figure, these phases are the permittivity, , and perme-
ability, , states of different compounds, and multiferroicity emerges as an interface
effect. Figure is taken from Ref 37.
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2.1.5 Domain and domain walls

Domains are regions with a uniform orientation of the relevant order parameter

(polarization or magnetization in multiferroics). A typical ferroic material consists

of multiple domains. Between two neighbouring domains, the interface region with

the lower symmetry is called domain walls. They denote the region across which the

order parameter reorients between adjacent domains. The width of domain walls are

usually on the order of tens of nanometers.

Domains and domain walls are crucial for the control of many material prop-

erties, such as coercivity and resistance [37]. Since bulk multiferroics consist of

many domains, understanding the magnetoelectric coupling between an individual

magnetic domain and a ferroelectric domain is important. This gives us a micro-

scopic approach to understand the cross-coupling in multiferroics. Scanning-probe

and electron-microscopy techniques pushed the resolution of domain imaging to

nanoscale, which makes it possible to study domain walls. At the walls, spin or

charge dynamics can be quite different compared to the domains, the famous ex-

ample is the observation of electrical conductivity at the ferroelectric domain walls

in BiFeO3, while all nearby domains are insulating [66–68]. This finding opened an

entirely new avenue of research into novel functionalities at multiferroic domain walls

motivated by the prospect of metallic transport through nanoscale channels that can

be electrically written, erased and moved [69,70].

Besides the electronic properties of the domain walls, new techniques have been

developed recently to study the phonon behavior at the domain walls. Traditional

phonon-probe techniques such as far-field infrared spectroscopy only provides an av-

erage response and unable to address the nano-scale heterogeneities of domain walls

due to its poor spatial resolution. Recently, scientists successfully combined atomic

force microscopy and near-field infrared spectroscopy to detect the local phonon
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behavior at the domain walls in Ca3Ti2O7 [8]. This allows for a microscopic anal-

ysis of how centain vibrational mode changes with the rotation of structural order

parameters [Fig. 2.7].

2.2 Intercalated transition metal dichcogenides

2.2.1 Transition metal dichalcogenides

Two-dimensional materials attracts broad research interest because of their fasci-

nating physical properties and potential applications in the semiconductor industry.

The first two-dimensional material that was obtained is graphene [71], which is a

well known 2D material which displays unprecedented electronic, mechanical, ther-

mal, and optical properties. Transition metal dichcogenides is another important

type of materials in the two-dimensional material’s family. The chemical formula is

of the form MX2, where M stands for a transition metal (such as Mo, W, Ta, Nb)

and X represents a chalcogen element, such as S, Te, or Se. Compare to graphene,

transition metal dichalcogenides consist of more than one element, which makes their

lattice dynamics more complicated. These group of materials display interesting elec-

tronic and optical properties, and they are also very sensitive to external stimulus

such as strain, pressure or temperature. Furthermore, the physical properties in

transition metal dichalcogenides are layer dependent, involving a transition from an

indirect gap for multi-layer samples to a direct gap for single-layer samples [72–76],

pointing out the important role of interlayer hopping of carriers in these compounds.

The most used method to obtain monolayer transition metal dichalcogenides and

graphene is by mechanical exfoliation [Fig. 2.8].
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c

Figure 2.7: a. Atomic force microscopic (AFM) images of the crystal surfaces showing
the two ferroelastic domain walls of interest. b. Contour plots of the near-field
amplitude normalized to a gold reference across the ferroelastic domain wall. c.
Order parameter space. The order parameters for the X−3 octahedral tilt and X+

2

octahedral rotation are shown with blue and red arrows, respectively. Figure is from
Ref 8.
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Figure 2.8: Schematic diagram that shows the mechanical exfoliation method to
obtain two-dimensional materials [77].

39



2.2.1.1 Crystal structures of transition metal dichalcogenides

Transition metal dichcogenides have many polytypes, the three typical structures

are 1T, 2H, and 3R, where T represents trigonal, H means hexagonal, and R stands

for rhombohedral. The number 1, 2, 3 refers to the number of layers in an unit

cell. Figure 2.9 displays the difference between those three structural phases. For

the 2H and 3R phases, the transition metal occupies the center of the trigonal prism

formed by six chalcogen atoms. The upper triangle is the mirror image of the bot-

tom triangle in each prism. The transition metal center can also has an octahedra

environment, where the bottom triangle is the inversion of the top triangle in an unit

cell. This structure configuration represents for the 1T phase. The electronic and

optical properties are very different between the trigonal prismatic symmetry and

octahedral coordination of metal atoms. For example, strong charge density waves

are observed in the 1T-TaS2 system, while in the 2H phase, the charge density wave

has been dramatically suppressed [78, 79]. For monolayer MoS2, the 2H phase is

semiconducting while 1T phase is metallic [80,81].

Figure 2.10 displays the schematic of the in-plane two-dimensional Brillouin zone

of MX2. The Γ, M , and K are three high symmetry points. The six Q points corre-

spond to the minimum of the conduction band for multi-layer samples. The electronic

properties at the different symmetry points are closely related to the specific crystal

structures, which we will discuss in later sections.

The MX2 group of materials usually display a large crystal anisotropy. In the

MX2 slabs, the atoms are strongly bonded; Between the layers, the slabs are weakly

bonded by the van der Waals force. This gives a possibility to intercalate transition

metal centers into the van der Waals gap, which will form different superstructures

depending on the doping concentration. The intercalation boosts the dimensionalty

and dramatically changes the physical properties. We will talk about this effect in
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Figure 2.9: Schematic view of the 2H, 3R, and 1T phases in transition metal dichalco-
genides. a and c represent the lattice constants [82,83].
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Figure 2.10: Two-dimensional Brillouin zone of MX2. The high-symmetry points Γ =
(0,0), M = 4π

3a
(0,
√
3
2

) and K = 4π
3a

(1,0) are shown. The Q points (which are not high
symmetry points) indicate the position of the conduction band edge in multi-layer
samples. Figure is taken from ref 84.
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detail in later sections.

2.2.1.2 Electronic properties of transition metal dichalcogenides

Based on the electronic properties, transition metal dichalcogenides (TMDs) can

be classified as two groups: metallic or semiconducting TMDs. Metallic TMDs

(such as TaS2) display interesting coexistence of charge density waves and supercon-

ducting phase at low temperatures, which originates from strong electron-phonon

coupling [85]. Semiconducting TMDs (such as MoS2), exhibit layer-dependent band

gaps, which can be tuned by external strain field [86]. In this subsection, we will

introduce the electronic, transport, and vibrational properties of these two classes of

TMDs. The work in this dissertation mainly focuses on the metallic transition metal

dichalcogenides.

Metallic tranisition metal dichalcogenides Metallic TMDs such as TaS2,

NbS2, TaSe2 and NbSe2 are an important branch in the transition metal dichalco-

genides family. In their electronic structures, the Fermi level is always crossing a band

with d-orbital character, implying that the electrons move mostly in the chalcogenide

slabs [87]. The density of states at the Fermi level is usually quite high. The most

interesting physics in the metallic transition metal dichalcogenides is the coexistence

of charge density waves (CDW) and the superconducting phase at low temperatures.

One ideal platform to study the charge density wave transitions is TaS2 [78,79,88,89].

TaS2 has two stable phases: 1T and 2H. The electronic structure of these two

phases are very distinct. The former is a semiconductor at room temperature, which

displays several different charge density waves transitions that depend on both tem-

perature and sample thickness. The latter is a metal with the charge density wave

transition at 78 K and the superconducting transition at 1 K [79, 89]. Figure 2.11

displays different charge density wave states in 1T-TaS2. The crystal structure is
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Figure 2.11: (A) The side and top view of the crystal structure of 1T-TaS2. Also
shown is the optical microscope image of a typical nano-thick crystal device. (B)
Schematic pictures of a Ta atom network in the CCDW (left), hexagonal NCCDW
(middle), and ICCDW (right) phases. The dark blue circles represent the Ta atoms
displaced from their undistorted lattice coordinates, forming the David-star clus-
ters. (C) Temperature dependence of the resistivity for bulk and nano-thick crys-
tals of 1T-TaS2. The solid and broken lines represent the cooling and warming
cycle, respectively. The notation sc-NCCDW represents supercooled NCCDW. (D)
Temperature-thickness phase diagram of 1T-TaS2 nano-thick crystals upon cooling
at 1 K/min [88]. Figure is taken from ref 88.
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hexagonal, where the planes of Ta atoms are surrounded by six S atoms in an oc-

tahedral arrangement. The top view of the crystal structure shows a star of David

cluster, where 12 Ta atoms within the layer move toward a 13th central Ta atom [88].

Panel B displays a schematic view of the commensurate charge density wave state

(CCDW), the nearly commensurate charge density wave state (NCCDW), and the

incommensurate charge density wave state (ICCDW). These different CDW states af-

fect the electronic conductivity profoundly. For the low temperature phase (CCDW),

the strong charge density wave suppresses the free-carrier response and increases the

resistance by opening a gap at the Fermi level. If the temperature is reduced further,

1T-TaS2 can even transform into a Mott insulator or a superconductor depending on

the applied external field [90–97]. For the NCCDW phase, the charge density wave

forms domain structures, the electron conduction derives from the mobile carriers

in domain boundaries or the discommensurate region. At higher temperatures, the

NCCDW state transits to the incommensurate charge density wave state (ICCDW).

In this state, the charge density wave is weak because of the small shift of the Ta

atoms. Above 543 K, the charge density wave is gone and the system become fully

metallic. As a result, the material experiences a metal-semiconductor-insulator tran-

sition due to the increasing lattice instability as temperature decreases, which makes

this material very interesting.

Compared to the 1T-TaS2, changes of the electronic properties due to charge

density waves are more subtle in the 2H phase due to the incommensurate CDW

state at low temperatures (TCDW ≈ 78 K). Figure 2.12a displays the resistivity as

a function of temperature for 2H-TaS2 and two Na doped samples. Other than

an abrupt change of resistivity in 1T-TaS2 [Fig. 2.11c], the changes here are more

smooth and gradual. Figure 2.12b shows the optical conductivity spectra for 2H-TaS2

above and below the charge density wave transition temperature. Overall, the
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Figure 2.12: a, Temperature-dependent resistivity for 2H-TaS2 and two NaxTaS2

crystals. The values are normalized to respective values at 300 K. The inset shows
the real part of ac susceptibility below 5 K, which identifies Tc for two NaxTaS2

crystals as 2 and 4.2 K, respectively [79]. b, The real part of optical conductivity
of the 2H-TaS2 at some select temperatures. The inset shows a close-up view. For
2H-TaS2, the experiment data, a Drude fit, and the result of σ1(ω) minus Drude
fit are plotted by a black line, a gray dash dot line, and a dark gray dash line,
respectively [79]. Figure is taking from Ref 79.
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spectra are very similar. The difference is from a subtle peak in the mid-infrared

region in the spectra at 10 K. The charge density wave gap is calculated around 45

meV from the analysis of this feature. These behaviors indicate the charge density

wave does not dramatically change the electronic properties of 2H-TaS2.

However, the charge density wave can have a relatively large influence on phonon

properties in 2H-TaS2. Figure 2.13 displays the Raman spectra, mode assignments,

and the mode displacement patterns in bulk 2H-TaS2. Clearly, a lot of new peaks

emerge at low temperatures due to the symmetry-breaking induced by the charge

density waves. Peaks below 110 cm−1 are assigned as amplitude modes caused by the

charge density waves since they modulate the magnitude of the CDW rather than its

phase [89,98,99]. Lack of inversion symmetry breaking in the incommensurate CDW

state of bulk 2H-TaS2 prevents the observation of phase modes by Raman scattering.

The soften and broadening of the two amplitude modes when warming across TCDW

are the key signatures of the CDW state. Another important CDW mode is the two-

phonon peak centered around 180 cm−1. This peak is from second order scattering

of acoustic and quasi-acoustic modes near the CDW wave vector QCDW ≈ 2
3

ΓM and

is commonly observed in other Group V TMDs [100–104]. The fact that this mode

persists even at the room temperature indicates there is a structural instability above

the charge density wave transition temperature. As a result, short-range CDW state

can exist at room temperature in 2H-TaS2. One of the work in this dissertation is to

study the vibratinoal response of the FexTaS2 system, in which the Fe is intercalated

between the van der Waals gap in 2H-TaS2. Identify the phonons related to the

charge density wave is very useful to help assign the features in the intercalated

compounds.

Semiconducting tranisition metal dichalcogenides: The other branch of

the transition metal dichalcogenides is the semiconducting TMDs such as MoS2,
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Figure 2.13: a, Variable temperature Raman spectra of the 2H-TaS2. The CDW
modes Eamp and Aamp are indicated. The Lorentzian fit shown for the data at 4 K.
b, Displacement pattern of the normal Raman modes and the CDW-related modes.
c, Close-up view of the Raman spectra of bulk 2H-TaS2 with observed modes and
their assignments. Figure is taking from Ref 89.
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WS2, MoSe2, and WSe2. These materials are interesting because they present a gap

in the optical range of the energy spectrum that makes them candidates for device

applications. A lot of experiments have demonstrated that the band structures of

these materials are highly dependent on the layer thickness. The band gap for

multilayer samples are indirect, whereas a direct band gap forms in the single layer

samples. Furthermore, their electronic properties can be tuned by external stimulus

including strain, pressure, and temperature, which makes those materials a potential

for device applications. Table 2.2 summarizes the energy of band gaps in MoS2, WS2,

MoSe2, and WSe2, from which we can see the gap energy is associated to the layer

thickness.

Figure 2.14 displays the band structures for single layer, bilayer, and bulk MoS2,

MoSe2, WS2, and WSe2 [84, 105]. Closely examine the band structures can reveal

some important electronic properties in the semiconducting MX2 family. First, the

band structure of the monolayer samples are quite different compared to the bulk and

bilayer samples in terms of the minimum of the conduction band and maximum of

the valence band. All single layer compounds exhibit direct band gaps, with the gap

lying at two inequivalent K and K′ points of the Brillouin zone [Fig. 2.10]. However,

when the layer thickness increases, the minimum of the conduction band shift to the

Q point, meanwhile, the maximum of the valence band shifts to the Γ point, at the

center of the hexagonal Brillouin zone. This reveals that the band gaps for multilayer

compounds are all indirect. Second, the band structures for all compounds reveal a

large splitting of valence bands at the K point due to the spin-orbital interaction.

Since the spin-orbital coupling is larger for heavier atoms, the splitting of WX2 on

the bottom channel of Fig. 2.14 is more obvious than the MoX2 (top channel in Fig.

2.14). Specifically, the splitting energies of the MoX2 and WX2 are on the order of

150 meV and 400 meV, respectively. The spin-orbital coupling also results in a
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Table 2.2: Band gap energies of some typical semiconducting transition metal
dichalcogenides. All energies are expressed in the unit of eV [84,105].

Materials Monolayer Bilayer Bulk
MoS2 1.72 1.71 - 1.2 1.71 - 0.79
MoSe2 1.41 1.42 - 1.2 1.39 - 0.85
WS2 1.66 1.66 - 1.34 1.64 - 0.92
WSe2 1.44 1.44 - 1.3 1.41 - 0.91
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Figure 2.14: Band structure of single layer, (a), bilayer (b), and bulk (c) of MoS2,
MoSe2, WS2, and WSe2 obtained from density functional theory calculations [84,
105]. Dashed vertical lines indicate the position of the Q point in the Brillouin
zone [84,105]. Figure is taken from ref 105.

51



splitting of bands at the K points in the conduction bands, which leads to a secondary

minimum at the Q points.

Another interesting aspect is that the band gaps can be tuned by external stimulus

including strain, pressure, and electric field. Figure 2.15 displays how band structures

of MX2 (M = Mo and W, X = S and Se) develop under applied biaxial strains.

Under biaxial tensile strains, the X atom moves toward the M atom, which leads to

a decrease in the X-M-X angle [106]. Clearly, both the maximum of the valence bands

and the minimum of the conduction bands at the K points increase monotonically

with the strength of the negative strains. As a result, the energy gap at K points

becomes larger with the increasing negative strain strength. This trend is consistent

for all semiconducting TMDs and does not depend on the transition metal elements.

Another interesting behavior is that the maximum shifts from the K points to the Γ

points when the strength of the positive strain increases, which changes the direct

gap at K-K′ to an indirect gap from Γ to K′.

Pressure can also be applied to TMDs to tune the band gaps. Figure 2.16 shows an

example of how band gaps change with pressure in MoS2. In contrast to the applied

strain field, the band gap energies change non-monotonically with the increasing

pressure. For monolayer 2H-MoS2, the band gap increases below 25 GPa and then

decreases monotonically when pressure is greater than 30 GPa. At around 68 Gpa,

the band gap fully closes and the material transit to a metallic state [107]. As

the layer thickness increases, the critical pressure becomes much smaller. Panel (b)

summarizes this behavior in a phase diagram. A metallic state is more easily reached

in the bulk state because more interlayer interactions are present [107]. This phase

diagram can be understood in terms of orbital hybridization between the Mo dx2y2 ,

dz2 and S px, py, and pz orbitals. The conduction and valence bands are composed

by these orbitals. At relatively low pressure, the increasing pressure moves those
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Figure 2.15: The change of highest valence band and lowest conduction band of
(a) MoS2 (b) MoSe2 (c) WS2 and (d) WSe2 under compressive and tensile biaxial
strains [106].
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Figure 2.16: (a) Band gaps as a function of hydrostatic pressure for 2H-MoS2 at
different layer thicknesses. MoS2 with the 1T’ phase is added for comparison. (b)
Pressure-layer thickness phase diagram for MoS2. Figure is taking from Ref 107.
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orbital away from the Fermi level, which increases the band gap energy. However,

when the pressure is high, the out-of-plane compression becomes more dominant,

the Mo dz2 and pz orbitals interact strongly with the S p orbitals, which leads to

an orbital hybridization and decreases the energy gap. As the pressure continues to

increase, the strong intra-plane hybridization will ultimately change the system to

metallic [107]. This is consistent with the easier metallization behavior in the bulk

MoS2 material.

Finally, the band gaps can be also tuned by the electric field. Figure 2.17 (a)

displays the band structure of MoS2 under the external electric field. Clearly, the

foundamental gap of MoS2 decreases with the increasing electric field, and it fully

closes when E = 3 V/nm [108]. Figure 2.17 (b) shows how band gaps respond to

electric field for a series of MX2 materials. The band gaps of all TMD semiconductors

decreases monotonically with the increasing electric field. Interestingly, when the

chalcogen elements change from S to Se to Te, the critical electric field decreases

systemically. This is because the increasingly diffuse nature of the valence pz orbitals

in going from S to Te, the latter facilitating greater charge transfer from the chalcogen

to Mo at the same level of electric field. The effect of changing the transition metal

from Mo to W while retaining the chalcogen (S) was very weak [108,109].

To summarize, the band gaps of the TMD semiconductors are highly tunable by

external stimulus such as strain, pressure, and electric field. At the same time, by

applying exfoliation, very thin films with atmoic scale thickness can be obtained. The

monolayer TMDs exhibit very interesting and distinct electronic properties. All of

these facts make the TMDs very useful in applications in making electronic devices.

We will talk about some applications in the next section.
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Figure 2.17: (a) Band structure of MoS2 along ΓKMΓ direction in reciprocal space
as a function of applied external electric field. (b) Band gap vs. applied electric field
E for MoS2, MoSe2, MoTe2, and WS2. Figure is taking from Ref 109.
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2.2.1.3 Devices based on transition metal dichalcogenides

One of the important applications by using transition metal dichalcogenides semicon-

ductors is transistors. A transistor is a device composed of a semiconductor material

with typically three terminals for connection to an external circuit [109]. Voltage

can be applied to one pair of its terminals to control the current at another pair of

terminals. This is the fundamental principle for an amplifier, in which one can use a

small signal to produce a much stronger signal through the transistor. Alternatively,

the transistor can be used to turn current ON or OFF in a circuit as an electrically

controlled switch.

One of the typical type of modern transistors is the field-effect transistor (FET).

A typical FET is composed into three main parts: source, gate, and drain. For a

NPN-type transistor, the gate is a P-type semiconductor. The input current flows

from the gate to source, and the output current flows from source to drain. The

current amplitude in the gate associates to the free carrier densities (for NPN type

the carrier is holes).

Figure 2.18 displays a typical type of FET transistors using MoS2 as a gate ma-

terial. In this device, 6.5 Å thick exfoliated MoS2 layer served as the semiconducting

channel. It was deposited on SiO2 and covered by a 30 nm thick layer of HfO2,

which served as the top-gate dielectric. A mobility of at least 200 cm2 V−1 s−1 was

obtained. The transistor exhibited a current on/off ratio exceeding 108 at room

temperature [110]. Besides the very high on/off ratio, the device exhibited off-state

currents smaller than 100 fA (25 fA/µm) [109,110]. The high degree of electrostatic

control is also reflected by the subthreshold slope S = (d(logIds)/dV tg)
−1, which was

as low as 74 mV/dec [109].

The encapsulation of MoS2 using insulating HfO2 was crucial to achieve high

mobility. A complementary approach to achieve high mobility consists in vacuum
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Figure 2.18: (a) Ids vs. Vtg curves recorded for a bias voltage ranging from 10 to
500 mV. Measurements were performed at room temperature with the back gate
grounded. Inset Three-dimensional schematic view of one of the transistors. (b) Ids
vs. Vds curves recorded for different values of Vtg [110]. Figure is taking from Ref
109.
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annealing to remove adsorbates. Using this approach, intrinsic (field-effect) mobility

as high as 1000 cm2 V−1s−1 was obtained at low temperature in both monolayers and

bilayers [109,111]. Intrinsic mobility and conductivity of single-layer MoS2 in single

and dual-gated geometry was also studied in ref 112. It was found that at charge

carrier densities n2D below ≈ 1013 cm−2, the MoS2 single-layer exhibits decreasing

conductance as the temperature is decreased [109]. For n2D larger than 1013 cm−2,

the conductance increased with decreasing temperature, which is the hallmark of a

metal-insulator transition [109].

2.2.2 Intercalation leads to new functionalities

Metal centers can be intercalated into the multilayered transition metal dichalco-

genides, forming different superstructure patterns depending upon the concentra-

tion. When incorporated in this manner, the intercalated elements forms metal

monolayers within the van der waals gap, which supports high temperature mag-

netic ordering [10, 13, 113], novel metallicity that is distinct from that of the parent

compound [79,114], and superconductivity [115]. Intercalated metal monolayers are

also responsible for the development of different types of domain walls in layered

chalcogenides [6]. It is well-established that the 3d transition metals occupy octahe-

dral sites between the trigonal prismatic tansition metal dichalcogenides layer for the

2H- polytype. Moreover, the intercalated TMDs (MxTX2, where M = intercalated

elements, T = Nb or Ta, X = S or Se) are ordered on
√

3a ×
√

3a or 2a × 2a super-

lattices for x = 1/3 and 1/4, respectively. The former sports a non-centrosymmetric

and chiral space group P6322 [Fig. 2.19(a)] and the latter gives a centrosymmetric

space group P63/mmc [6, 116–118]. They are the only stoichiometric compounds

that attract our interest here.

The intercalation can dramatically change the magnetic properties of the parent
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Figure 2.19: (a) Crystal structure of Cr1/3NbS2. The Cr atom is intercalated between
the van der Waals gap of two NbS2 prisms, resulting in a non-centrosymmetric and
chiral space group P6322 [10]. (b) Ground state left-handed chiral helimagnetic
structure along c axis [10]. (c) Whole structure of the left-handed chiral helimagnetic
state [10]. (d) Magnetic structure of the chiral soliton lattice state [10]. (e) Phase-
diagram of Cr1/3NbS2 [11].
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compound. One example is the chiral helimagnet Cr1/3NbS2. This material attracts

a lot of attention because of the helical magnetic phase along the c-axis below 131

K [10, 11]. Figure 2.19 (b-d) displays the schematic view of the different magnetic

phases in Cr1/3NbS2. At low temperatures, the material exhibits long-range helical

magnetic order along the chiral axis c. The origin of this magnetic phase is due to the

competition between Dzyaloshinskii–Moriya interaction between localized neighbor-

ing spins S1 and S2 along the crystallographic c-axis and the isotropic ferromagnetic

(FM) coupling in the ab-plane [10, 11]. Figure 2.19 (e) displays the temperature-

magnetic phase diagram of Cr1/3NbS2. Below 131 K, the sample transitions from a

paramagnetic phase to other magnetic phases that depend on the amplitude of the

magnetic field. At low field amplitude, the material displays purely helical magnetic

phase. When one gradually increases the strength of the magnetic field perpendicular

to the helical axis, more moments are aligned in the ab-plane, inducing a chiral mag-

netic solition lattice phase [Fig. 2.19 (d)]. Continue to increase the magnetic field

strength perpendicular to the chiral axis eventually results in a fully-polarized fer-

romagnetic phase. The saturation field is around 1300 Oe. These types of magnetic

ordering are important for the applications in spintronics.

The magnetic ordering in Cr1/3NbS2 also modifies its transport and electronic

properties profoundly [11]. Figure 2.20 (a) displays the measured resistivity as a

function of temperature in Cr1/3NbS2. Clearly, a sharp slope change is observed at

the chiral helical magnetic transition temperature 131 K. This feature is magnified

in the inset derivative plot. This is due to reduction in the spin disorder scattering in

the magnetic phase [11]. Figure 2.20 (b) shows the magnetoresistance measure at 2

K as a function of magnetic field. The change in magnetoresistance around 1 kOe is

quite sharp and coincides with the solition lattice phase indicated by magnetization

measurements. As the applied magnetic field begins to align the moment toward its
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(a) (b)

Figure 2.20: (a) Electrical resistivity of Cr1/3NbS2 as a function of temperature
measured in the ab-plane. Inset shows the temperature derivative of the resistivity
[11]. (b) Magnetoresistance measured at T = 2 K. The upper inset shows the change
in slope in the magnetoresistance in the vicinity of the field where the metamagnetic
transition is observed in the magnetization measurements. The lower inset shows
the derivative of the resistivity with respect of the field. The sharp change occurs at
1 kOe [11]. Figure is taken from Ref. 11.
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direction, spin disorder scattering decreases thereby reduce the electric resistivity.

When the magnetic field fully polarizes the spins, there is no further change observed

at higher fields.

The band structures are also deeply influenced by the magnetic ordering. Figure

2.21 (a,b) displays the calculated band structure of Cr1/3NbS2 for the non-magnetic

and magnetic state, respectively. In the non-magnetic phase, there are several bands

crossing the Fermi level, and in addition flat bands virtually abutting the Fermi level

fromM toK andH toM . Those crossing bands lead to a high density of states at the

Fermi level [Fig. 2.21 bottom panel]. When moving to the magnetic phase, there are

less bands in the Fermi level. At the same time, they become more dispersive. The

density of states at the Fermi level is dramatically reduced, indicating a substantial

loss of spectral weight around EF .

Intercalation can also induce superconductivity. Figure 2.22 shows a phase dia-

gram in CuxTiSe2. As the intercalation concentration increases, the charge density

wave is suppressed. The transition from a CDW state to a superconducting state

takes place when x ≥ 0.04. The superconducting transition temperature is highest

when x = 0.08, followed by a decrease of Tc before the chemical phase boundary

is reached at x = 0.11. There is a small boundary composition region (0.04 ≤ x

≤ 0.06), where superconductivity and CDW behaviour seem to coexist. The ori-

gin of this coexisting is complex. One possiblity is that the Cu doping results in a

tendency towards increasing the dimensionality of the Fermi surface, destabilizing

the CDW and allowing for correlations to build in a third dimension, tipping the

balance in favour of superconductivity [115]. The other possibility is that the change

in electron count on Cu doping [115]. In any case, the intercalation is the key to the

superconducting phase.

In this work, we will focus on studying the spectroscopic properties of the
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(a) (b)

Non-magnetic state Magnetic state

Figure 2.21: (a) The calculated band structure and density of states of Cr1/3NbS2 in
the nonmagnetic state. (b) Ground state left-handed chiral helimagnetic structure
along c axis [11]. (b) The calculated band structure and density of states of Cr1/3NbS2

in the magnetic state [11]. Figure is taken from Ref. 11.
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Figure 2.22: Phase diagram of CuxTiSe2. Open circles represent the charge density
wave transition temperature, and the filled circles correspond to the superconducting
transition temperature. The shaded circle at x = 0.04 indicates that the transition
temperature is just below our minimum available temperature, and the dashed circle
at x = 0.06 marks the barely visible CDW transition at x = 0.06. Inset: Crystal
structure of CuxTiSe2 [115].
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intercalated transition metal dichalcogenides FexTaS2, with x = 1/3 and 1/4. The

detailed discussions are in chapters 4 and 5.

2.3 Materials of interest

2.3.1 Intercalated transition metal dichalcogenides: FexTaS2

(x = 0, 1/4, and 1/3)

Research on engineered superlattice materials has blossomed in recent years due to

the discovery of unexpected properties deriving from interface effects [1, 119–121].

Naturally occurring superlattices like intercalated oxides and chalcogenides are of

contemporary interest as well. Examples include the chiral helimagnets Cr1/3NbS2

and [Pb2BiS3][AuTe2], superconducting Pd-intercalated IrTe2, and interlayer I-doped

BiOIO3 nanoplates [10, 11, 122–124]. The FexTaS2 system attracts our attention

because of its interesting magnetic properties and fascinating domain wall patterns

due to stacking effect of the Fe intercalated monolayers [6, 126, 127]. This system

is based upon 2H-TaS2 [79, 128] and has a set of stable, well-ordered intercalation

plateaus at x=1/4 and 1/3 [6]. Figure 2.23 (a-c) displays the crystal structures

of FexTaS2 with x = 0, 1/4, and 1/3, respectively [114]. The Fe is intercalated

in the van der Waals gap between two neighbouring TaS2 slabs, forming a single

metal monolayer. For x = 1/4 compound, the Fe atoms stack identically along the

c-axis (AA-type), supporting a centrosymmetric space group P63/mmc [6]. When

the intercalation concentration increases to 1/3, the Fe layers alternatively stack

along the c-axis (AB-type), which breaks the inversion symmetry and results in

a non-centrosymmetric and chiral space group P6322 [6]. The symmetry-breaking

effect profoundly modified the electron density pattern in these materials. As the Fe

concentration increases, the projected charge density patterns in the Fe plane transit
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Figure 2.23: (a) Crystal structure of 2H-TaS2 in the centrosymmetric P63/mmc
space group [125]. Ta4+ is at the center of a prism formed by six S2− centers.
(b) Fe1/4TaS2 also belongs to the P63/mmc space group [6]. Each Fe center is
octahedrally coordinated by six S2− atoms. Stacking along c is AA type, yielding an
expanded 2a×2a superlattice. (c) The structure of Fe1/3TaS2 is non-centrosymmetric
and chiral (space group P6322) [6]. Stacking along c is alternating (AB) type, yielding
a
√

3a×
√

3a superlattice. (d, e, f) Projected charge density in the Fe plane for 2H-
TaS2, Fe1/4TaS2, and Fe1/3TaS2.
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from triangular (x = 0) to Kagomé (x = 1/4) to honeycomb (x = 1/3) [114]. More

detailed discussions about this is in Chapter 4.

One of the most interesting phenomenon in this set of materials is the domain and

domain wall patterns that are depending on the intercalation concentration at room

temperature. Figure 2.24 displays the domain and domain wall patterns of FexTaS2

(x = 1/4 and 1/3). The antiphase boundaries, separating neighboring antiphase

domains, are clearly visible as dark line contrasts in superlattice dark-field images in

both cases. The domain patterns are quite different for the x= 1/4 and x= 1/3 cases,

which can be understood by using the color theory. For the x = 1/4 case, the domain

pattern is Z4 (red, blue, yellow, and green)-colorable, and these Z4 colors correspond

to the AA-, BB-, CC-, and DD-type 2a × 2a superstructures, respectively. The

domain pattern in the x = 1/3 compound is much more complicated. First, there

are six domain edges (domain walls) always merge into a vortex point. Furthermore,

each domain is always surrounded by an even number of vertices, thus forming a

so-called “even-gon” [6]. To map this domain pattern, the standard one-step proper

coloring can be extended to that of two-step (tensorial) proper coloring. The first-

step is to classify the six domains as light and dark colors, where dark domains are

not touching bright domains with the same color through edges, and vice versa. For

example, the dark red domain and the pink domain are not connecting through their

edges. For the second step, the dark and light domains can be further painted with

three colors (In Fig 2.24(b), they are red, blue and green). We call the domain

type with these configurations as the Z2 × Z3 domain patterns. The Z3 corresponds

to three types of
√

3a ×
√

3a superstructure antiphase domains, that is, AB-, BC-,

and CA-type antiphase domains. The Z2 is associated with chiral domains without

centrosymmetry [6]. In this case, the domain wall type in the x = 1/4 is purely

antiphase. However, in the x = 1/3 compound, the domain wall is antiphase and
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Fe1/4TaS2

Antiphase domain wall

Fe1/3TaS2

Antiphase + chiral domain wall

(a) (b)

Figure 2.24: (a) Dark-field image, schematic view of domains, and local structure an-
tiphase domain walls in Fe1/4TaS2. (b) Dark-field image, schematic view of domains,
and local structure of antiphase + chiral domain walls in Fe1/3TaS2 [6].
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chiral simultaneously.

It has been turned out that the domain topologies has a strong influence on

the magnetic properties of FexTaS2. Figure 2.25 d displays the magnetic hysteresis

(M(H)) curves at 4 K with the magnetic field along the c-direction, and magnetic

coercivity, extracted from M(H) curves, vs x in FexTaS2. It clearly shows that

for the low concentration samples (x = 0.18 and 0.25), the coercivity is very large.

Since in both x = 0.18 and 0.25 samples, there are large density of Z4 type domains

with small domain size, there seems indicate that high-density antiphase boundaries

associated with Z4 domains are probably associated with a strong pinning effect of

magnetic domain walls and lead to an avalanche-like depinning of magnetic domain

walls in the presence of high external magnetic fields [13,129]. On the other hand, for

large Fe concentration samples with large domain size and Z2 × Z3 domain patterns,

the magnetization exhibits a broad switching with small coercivity. This indicates

large Z2 × Z3 domains with a small number of antiphase/chiral domain boundaries

accompany weak pinning of magnetic domain walls and a small coercivity field [6].

The magnetotransport properties of FexTaS2 are determined to be strongly de-

pendent on the intercalation concentration x. FexTaS2 has a ferromagnetic ground

state for x = 0.23 - 0.4 with the magnetic easy axis along the c-axis [12,128]. When

x is great than 0.4, the system becomes more antiferromagnetic [6]. Figure 2.26 dis-

plays the magnetoresistance measurement for FexTaS2 at different concentrations.

The value of magnetoresistance is very sensitive to the concentration x, and the

trend is non-monotonic. When x changes from 0.249 to 0.264, the magnetoresis-

tance increases dramatically. The maximum vaule is observed at x = 0.28. Further

experiments indicates the magneoresistance increase even more when x = 0.297 [12].

Above x = 0.297, the magnetoresistance begins to drop, and when x = 0.348, the

magneoresistance drops to the similar magnitude as x = 0.231. The large variation
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Figure 2.25: Domain evolution and magnetic properties in FexTaS2. (a,b) The
top-view and side-view schematics of the crystallographic structures of Fe1/4TaS2

and Fe1/3TaS2, respectively. Only Fe (red) and Ta (green) ions are depicted. The
side-view schematics correspond to the portions indicated in orange in the top-view
schematics. The arrows depict the displacement of Ta ions along the c-axis. (c)
Schematics of the evolution of a Z2 × Z3 domain during the disorderorder transition
of Fe ions. (d) Magnetic hysteresis curves of x = 0.18, 0.25, 0.34, and 0.47. These
curves were measured at 4 K in magnetic fields along the c-axis. Note that x = 0.18
and 0.25 show the 2a × 2a-type superstructure, whereas x = 0.34 and 0.47 exhibit
the
√

3a ×
√

3a type one. The inset shows the magnetic coercivity as a function of
Fe composition. Figure is taken from Ref. 6.
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Figure 2.26: Magnetoresistance of FexTaS2 at (a) x = 0.231, (b) 0.246, (c) 0.249, (d)
0.264, (e) 0.280, and (f) 0.348. Arrows in (b) indicate the field sweep direction [12].
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of the magnetoresistance is due to the magnetic disorder scattering, which originates

from the misalignment of the magnetic moments. The misalignment is attributed to

crystallographic defects, such as vacancies due to the deviation from the commensu-

rate Fe concentrations (1/4 or 1/3), the antiphase boundaries [6] or both [12].

Considering all of these interesting properties, in this work, we perform spectro-

scopic measurements to understand the symmetry-breaking and spin-lattice coupling

from a microscopic point of view. Details of the work is introduced in Chapters 4

and 5.

2.3.2 Engineered superlattices: (LuFeO3)m/(LuFe2O4)n (m

= 3, 7, 9; n = 1)

The dream of a ferroelectric ferromagnet that is fully coupled at room temperature

is the grand challenge of multiferroics and magnetoelectrics. Heteroepitaxy enlarges

the design space to achieve this difficult but important goal, and examples abound

of superlattices and interfaces at which exotic properties emerge [130–148]. Super-

lattices of the form (LuFeO3)m/(LuFe2O4)n that sport ferroelectric ferrimagnetism

are prominent examples [1]. The layer indices run from 0 to 9 and for simplicity are

denoted (m, n). One end member h-LuFeO3 is a polar, improper ferroelectric below

1020 K, and it orders antiferromagnetically at 147 K in a pattern in which symmetry

allows a slight canting of the spins - giving rise to weak ferromagnetism [16–19].

The other end member LuFe2O4 is an antiferroelectric with a complex phase dia-

gram, exemplified by a series of charge ordering transitions above room tempera-

ture, a 240 K ferrimagnetic ordering temperature, and a structural transition near

170 K [20–24,149].

Figure 2.27 displays the crystal structures of two end-members and the high-angle

annular dark field scanning transmission electron microscopy (STEM) images of the

73



Figure 2.27: a, End-members LuFe2O4 (left) and LuFeO3 (right). b,
(LuFeO3)m/(LuFe2O4)1 superlattice series for 1 ≤ m ≤ 10. Samples are imaged
along the LuFeO3 P63cm [100] zone axis. LuFe2O4 is imaged down the equiva-
lent zone axis, which, owing to the primitive unit cell of LuFe2O4, is the [120] zone
axis. Schematics of the LuFe2O4 and LuFeO3 crystal structures are shown in a with
lutetium (Lu), iron (Fe) and oxygen (O) in turquoise, yellow and brown, respectively.
Figure is taken from Ref. 1
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(LuFeO3)m/(LuFe2O4)n superlattices. The characteristic “up-up-down” pattern of

the lutetium atoms in LuFeO3, which is also present in the hexagonal manganites

[150], is evident and reflects the polar nature of the h-LuFeO3 film. This “up-up-

down” pattern of the Lu-layer displacement is also observed in the LuFeO3 layers in

superlattices. The other end member LuFe2O4, however, does not show any Lu-layer

displacement. Interestingly, in the m ≥ 2 superlattices, the Lu-layer in the LuFe2O4

- LuFeO3 interface becomes distorted and displays some displacements. This is due

to the increasing lattice strain originates from the lattice mismatch between the two

components [1]. This Lu-layer displacement at the interface monotonically increases

when the superlattice periodicity and has a significant influences on the magnetism

and ferroelectricity.

Figure 2.28a displays the magnetization as a function of temperature in the

(LuFeO3)m/(LuFe2O4)n superlattices. Strikingly, the magnetic Curie temperatures

increase with the number of LuFeO3 layers (m). Ferrimagnetic TC in superlattices is

higher than any of the end members. For the (9,1) case, it reaches to 281 K, which is

very close to the room temperature. This result is very important because this is the

first observation of the room temperature multiferroics with simultaneously ferrimag-

netism and ferroelectricity. Conventional single phase multiferroics such as BiFeO3

is also a room temperature multiferroic, however, the magnetization is weak because

of the antiferromagnetism in the system. In this case, the magnetoelectric coupling

strength is small in BiFeO3. Type II multiferroics such as TbMnO3 can display the

stonger magnetoelectric coupling, however, the magnetic transition temperature is

really low.

Figure 2.28b shows the magnetization curves for the (9,1) superlattice. A large

coercivity around 5 T at low temperature is observed, which indicates a robust

magnetism in the system. The hysteric behavior persists at 300 K, which indicates
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Figure 2.28: a, M–T curves for a series of (LuFeO3)m/(LuFe2O4)1 superlattices cooled
in a 1-kOe field. b, Loops of the magnetization as a function of the magnetic field for
the (LuFeO3)9/(LuFe2O4)1 superlattice, at various temperatures. c, The ferromag-
netic Curie temperatures TC,mag extracted from the M–T curves (some of which are
shown in a) plotted as a function of the fraction of iron ions that sit in the LuFeO3

layers, m/(m+ 2n). Regions I and II show data for the (LuFeO3)1/(LuFe2O4)n and
(LuFeO3)m/(LuFe2O4)1 series, respectively. The Curie temperature reaches a max-
imum of 281K for the (LuFeO3)9/(LuFe2O4)1 compound. d, The total moment per
iron cation in LuFe2O4 at 50K assuming the moment of LuFeO3 remains constant.
The measured moment of end-member LuFe2O4 is displayed as a horizontal line
for reference. e, Average polarization from HAADF-STEM for superlattice layering
plotted as a function of composition. Ferroelectric distortions are observed for the
(LuFeO3)m/(LuFe2O4)1 superlattices with m ≥ 2 (m/(m + 2n) ≥ 0.5). Figure is
taken from Ref. 1.
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there is some short-range ferromagnetism above the magnetic transition temperature.

Figure 2.28c,d shows the Curie temperature and the saturation magnetic moment

as a function of LuFeO3 layer number. Both Curie temperature and magnetic mo-

ments increases monotonically with m. This has been determined to be associated

with the stronger Lu-layer distortion at the interface [1], however, the mechanism

of how the Lu-layer distortion influences the magnetization is not very clear. In

this dissertation, we proposed a spectroscopic method to investigate the microscopic

origin of this high temperature magnetism.

Figure 2.28e displays the polarization as a function of m. The polarization is ex-

tracted from the STEM images through the Lu-layer distortion amplitude. It clearly

shows that the electric polarization increases with m, which proves the superlat-

tices are ferroelectric. The temperature dependence of the ferroelectric order in the

(LuFeO3)m/(LuFe2O4)1 superlattices was further probed using variable-temperature

X-ray linear dichroism (XLD). Fittings to a universal order parameter suggest fer-

roelectric transitions at about 550 K and 500 K for the m = 3 and m = 5 samples,

respectively. The dichroic signal for the m = 9 sample persists beyond the measure-

ment range, suggesting a higher-temperature ferroelectric transition [1]. Figure 2.29

displays the local ferroelectric switching in (9,1) superlattice by using the piezore-

sponse force microscopy (PFM). A (LuFeO3)9/(LuFe2O4)1 film was electrically poled

at 300 K to construct distinct “up” and “down” c-oriented polar domains as shown

in Fig. 2.29a. The resulting magnetic order was then imaged at 200 K and 320 K

using X-ray magnetic circular dichroic photoemission electron microscopy (XMCD

PEEM) on the Fe L3 edge [1]. As shown in the ratio images in Fig. 4b, c, the

magnetic ordering directly correlates with the electrically poled domain structure,

demonstrating magnetoelectric coupling between ferroelectricity and magnetism [1].

Another important problem in this family of materials is to determine the correct
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Figure 2.29: a, Out-of-plane piezoresponse force microscopy (PFM) image at 300K
of the domain structure following electrical poling using a d.c. bias applied to the
proximal tip. The “up” and “down” c-oriented domains appear in turquoise and
red, respectively. Scale bar, 3 m. b, c, X-ray magnetic circular dichroism (XMCD)
PEEM ratio images from the Fe L3 edge acquired at 200 K (b) and 320 K (c). The
correlation between the electrical poling and magnetic imaging demonstrates electric-
field control of ferrimagnetism at 200 K. d, Comparison of the dichroic signals along
the yellow lines in b and c. Figure is taken from ref. 1

78



charge-ordering states in the superlattices. It is well known that there are degenerate

charge-ordering states in the LuFe2O4 end member [34,242]. The charge-ordering in

the Fe-bilayers are the key to determine ferroelectricity in this system. Prior studies

reveal an antiferroelectric charge-ordering state in the bulk LuFe2O4 [242]. The

charge ordering in the superlattices are much more complicated due to the Lu-layer

distortion at the interface. Figure 2.30 displays three possible charge-ordering states

in the (LuFeO3)m/(LuFe2O4)n superlattices. These three charge-ordered states are

nearly degenerate [1]. For the single domain type, all the Lu-layer distortion is along

the same direction, with the “up-up-down” pattern along the c-axis. This result in a

ferroelectric state where all the polarization are pointing to the upper c direction. In

the Fe bilayers in the LuFe2O4 site, the upper Fe layer has the ratio of 1:2 between

the Fe2+ and Fe3+ centers, whereas the bottom Fe layer shows the 2:1 charge ratio.

This state supports for polar Fe double layer. Cases are more complicated in the

doped-type charge-ordering pattern. In this state, there is a spontaneous electron

transfer from the Fe2+ site in the Fe bilayer to the Fe3+ site in the middle Fe layer

in the LuFeO3 layers. This reverses the Lu distortion at the interface and flips the

polarization direction. In this case, the tail-to-tail and head-to-head ferroelectric

domain walls are formed in the non-polar LuFe2O4 layer. The undoped-states is

in between those two states. Determining the correct charge-ordering states in the

superlattices are essential because it determines the magnetic ground state in the

superlattices. In this dissertation, we combine the magnetic circular dichroism and

the first-principle calculations to resolve this issue. Details of this work is described

in Chapter 6.
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Figure 2.30: Different charge-ordering states in the (LuFeO3)m/(LuFe2O4)n super-
lattices. Figure is taken from Ref. 1.
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Chapter 3

Spectroscopic Methods

3.1 Spectroscopy of materials

This chapter describes the theory of light-matter interaction and experimental setup

of some spectroscopic techniques including infrared, Raman, optical spectroscopy and

magnetic circular dichroism. Spectroscopic methods under different external stimu-

lus such as variable temperatures and high magnetic field are introduced as well. At

the end of this chapter, we explain the detailed procedure of sample growth, spectro-

scopic measurements, data analysis, and complementary first-principles calculations

on intercalated transition metal dichalcogenides and engineered high-temperature

multiferroic superlattices.

3.1.1 Fundamentals of absorption spectroscopy

One of the most common spectroscopic techniques is absorption spectroscopy. It

measures the absorption of electromagnetic radiation as a function of wavelength or

frequency. Usually, we use infrared, visible or ultraviolet light as a radiation source.

Quantum mechanically, particles in the matter will absorb the energy of photons,
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which leads an electronic excitation to higher energy levels (Fig. 3.1).

Light fields will act to couple quantum states of the matter, and provide a time-

dependent perturbation to the potential of the Hamiltonian:

ˆH(t) = Ĥ0 + ˆV (t). (3.1)

Here, Ĥ0 is the unperturbed Hamiltonian and ˆV (t) defines the time dependence of the

interaction between the system and external (perturbing) field(s). The interaction

operator introduces time-dependence into the Hamiltonian.

When the frequency of the light matches the energy difference of the two quantum

states, the light may be absorbed or emitted, as shown in Fig. 3.1. For instance,

the transition rate created by one-photon from initial state to final state |i〉 is, in

accordance with Fermi’s golden rule, proportional to the transition moment squared

of the invoking operator [151–154], as shown by the following:

Pij(ω) =
π

2~2
|M |2δ(ω − ωij). (3.2)

Here, ω is the frequency of the optical field, ~ωij = Ej - Ei, M = 〈i|µ̂|j〉 is the transi-

tion moment integral, 〈i| and |j〉 correspond to the initial and final state, respectively.

µ̂ is the dipole moment operator (for the infrared and optical spectroscopy). This

dipole moment is a function of r and can be expanded as a Taylor series about the

equilibrium position r = re. The magnitude of M gives the intensity of the absorp-

tion response. For infrared and optical spectroscopy, the intensity is proportional to

the square of the change in the dipole moment:

I ∝ |M |2 ∝ |dµ
dr
|2re . (3.3)

Therefore, Eqn 3.3 describes the selection rule for the infrared and optical
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Figure 3.1: Schematic view of the light-induced electronic excitation and emission.
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spectroscopy: if the moment integral is equal to zero, the transition is not allowed.

If it is not equal to zero, then the transition is allowed.

Spectroscopy of solids differs from that of a molecule. It is far more complex

due to the periodic arrangement of atoms/ions/molecules in a solid state. We study

different properties of materials by using certain frequency range of light. Figure

3.2 displays a chart that identifies some of the excitations that govern the mate-

rial’s physics and indicates the part of the spectrum where they might be expected

to appear. In this dissertation, we mainly focus on studying phonons, free-carrier

responses, and interband electronic excitations of materials.

A Phonon is a collective lattice vibration in solids. In a 3D crystalline material

with N number of atoms per unit cell, lattice vibrations are described in terms of

3N branches for the phonon dispersion curves. The latter contains three acoustic

branches and 3N - 3 optical branches (Fig. 3.3). Infrared spectroscopy probes

excitations at the center of the first Brillouin Zone (k = 0), while their dispersion

is usually explored by inelastic neutron scattering techniques. Acoustic phonons

includes one longitudinal mode and two transverse modes. The former are waves that

occur due to in phase displacement of atoms present in the lattice of the crystal. The

latter is a moving wave where atom oscillations are perpendicular to the direction of

the wave or path of propagation. Acoustic phonons travel with sound velocity and

converges to zero at the center of the Brillouin zone. Optical phonons are “internal

vibrations” of atoms which exhibit non-zero frequency at the center of the Brillouin

Zone. They are of interest to spectroscopists. Since infrared spectroscopy probes

the dipole moment change inside materials, the displacement motion of the infrared

active phonon has to be asymmetric.

Besides phonons, some low energy electronic excitations can also take place in

the far infrared region. For metallic materials, electrons at the Fermi level are easily
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Figure 3.3: Phonon dispersion curves for the simple linear diatomic chain (-A-B-A-
B-type), with optical and acoustic branches [155].
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excited, which causes a strong free carrier response (a Drude peak) at very low ener-

gies. In this case, infrared active phonons are usually screened. For semiconductors

and insulators, phonons are strong and usually easy to identify in the spectra. How-

ever, some of the materials have electronic excitations or magnons at low energies,

which can mix with the phonons at the far infrared region. One way to separate them

from phonons is to perform the oscillator strength sum rule analysis on the variable

temperature spectra. The oscillator strength of a pure phonon peak is conserved

with temperature, whereas that of a phonon peak mixed with electronic excitations

or magnons is not conserved with temperature.

We use visible and ultraviolet light to study the electronic excitations at higher

energies. These excitations are usually associated with the crystal field splitting or

the band gap of materials. Tracking the energy of those type of excitations with

temperature, pressure, or magnetic field can provide us a deep understanding of the

electronic structures, phase transitions, and spin-charge coupling inside solids.

3.1.2 Theory of Raman spectroscopy

Raman spectroscopy is another important technique for exploring the vibrational

properties of materials. The origin of the Raman signal is different from that of the

infrared spectroscopy because Raman is based on the scattering of photons rather

than on the absorption. The scattering process can be illustrated readily on the basis

of classical physics. When a medium is subject to an electric field of strength E, it

undergoes a distortion due to the opposite motion of electrons and nuclei governed

by the Coulomb interactions. As a result, the applied field induces a dipole moment

in the material:

µind = αE = αE0cos(2πν0t). (3.4)
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Here, α is the polarizability. If a molecule vibrates and modulates this induced dipole

moment then the linear dependence of the polarizability on vibrational coordinate

can be expressed as:

α = α0 +
dα

dQi

∣∣∣∣
Qi=0

Q0
i cos(2πνt). (3.5)

Here Q is the vibrational coordinate, Q0
i is the vibrational amplitude, and α0 and

dα/dQi are evaluated the equilibrium position. Substituting the eqn 3.5 into eqn 3.4

one obtains:

µind = α0E0cos(2πνt) +
1

2

dα

dQi

∣∣∣∣
Qi=0

Q0
iE0[cos2π(ν0 + ν)t+ cos2π(ν0 − ν)t]. (3.6)

The first term is responsible for the Rayleigh scattering at ν0 while the second and

third terms correspond to the inelastic Raman scattering, anti-Stokes (ν0 + ν) and

Stokes (ν0 - ν), respectively. Thus, for the vibration to be Raman-active, the change

in polarizability is required (i.e. (dα/dQi) 6= 0). As in the case of infrared spec-

troscopy, the measured Raman intensity is proportional to the square of the change

in the polarizability:

I ∝ | dα
dQi

|2. (3.7)

When considering the quantum mechanics interpretation, light is considered as a

collection of photons with different frequencies. Figure 3.4 displays the fundamental

concept of the Raman spectroscopy. Rather than an absorption technique (infrared),

Raman spectroscopy studies the scattering of photons. The incoming photon collides

with crystal lattice, result in an energy and momentum transfer. Atoms in the crystal

lattice absorb the photon energy after collision, being excited to a virtual energy
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and Anti-Stokes scattering, as well as the concept of IR spectroscopy.

89



state. When this occurs, there are three different potential outcomes. First, the

atoms can relax back down to the ground state and emit a photon of equal energy

to that of the incident photon; this is an elastic process and is again referred to as

Rayleigh scattering (νi = νf ). Second, the atoms can relax to a real phonon state

and emit a photon with less energy than the incident photon; this is called Stokes

shifted Raman scattering (νi > νf ). The third potential outcome is that the atoms

are already in an excited vibrational state, is excited to a higher virtual state, and

then relaxes back down to the ground state emitting a photon with more energy

than the incident photon; this is called Anti-Stokes Raman scattering (νi < νf ). Due

to the fact that most atoms in the crystal lattice will be found in the ground state

at room temperature, there is a much lower probability that a photon will be Anti-

Stokes scattered. As a result, the intensity of the Anti-Stokes lines is much smaller

than the Stokes scattering. In this work, most Raman measurements are performed

considering only the Stokes shifted light.

3.1.3 Maxwell’s equations and dielectric properties of mate-

rials

Since light has both electric and magnetic field vectors, the interaction between light

and matter are well described by the Maxwell’s equations. Spectroscopy provides a

microscopic study of the electronic properties of materials, therefore, we only focus

on the differential form of the Maxwell’s equations (In SI units) [156]:
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∇ ·D = ρext (3.8)

∇ ·B = 0 (3.9)

∇× E = −∂B

∂t
(3.10)

∇×H =
∂D

∂t
+ Jcond + Jext, (3.11)

where E and H are the electric and magnetic fields, D and B are the displacement

field and magnetic induction, J cond is current density arising from the motion of

conduction electrons, and Jext and ρext are current and charge density induced by

external force.

When electromagnetic waves interact with different media, their electric and mag-

netic field vector will induce the internal polarization or magnetization of the media,

and cause the charge and spin re-distribution at the surface. For isotropic media, the

linear relations between the internal polarization or magnetization and field vectors

can be obtained as:

P = χeE (3.12)

M = χmH (3.13)

D = εE (3.14)

B = µH (3.15)

Jcond = σE, (3.16)

where P is polarization, M is magnetization, χe is the electric susceptibility, χm is

the magnetic susceptibility, ε is the dielectric function, µ is the magnetic perme-
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ability, and σ is the conductivity. For anisotropic and inhomogeneous media, the

susceptibility or conductivity will be a tensor.

Now we consider how light interaction with an isotropic media. Since our world

is neutral, ρext = 0. The dielectric constant ε is not depend on the spatial direction.

Then we can simplify the Maxwell’s equation and obtain the following equation:

∇2E =
ε

c2
∂2E

∂t2
(3.17)

We only consider the electric field here because the energy provided by the electric

field vector is much greater than by the magnetic field for an electromagnetic wave.

This is a typical plane-wave equation, the solution of this equation should be in a

complex form:

E = E0e
[i(k·r−ωt)] (3.18)

where k is the wave vector and ω is the angular frequency. Substituting equation

3.18 into equation 3.17 yields

k2 =
ω2

c2
ε(ω). (3.19)

Now we introduce the frequency dependence of the dielectric constant ε because of

the oscillation of electric field vector in a plane wave.

In this dissertation, a significant portion involves how circular polarized light

interacts with materials. So we will also show how some corresponding relation-

ship/extension in parallel to the classically defined methodology. When light shines

on a material, either transmission, reflection, or absorption will happen. The total

energy of the light is the summation of these three parts: A + T + R = 1, where A,

T , and R refer to absorbance, transmittance, and reflectance coefficient. For a plane
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wave, the refraction coefficient will be in a complex form. The complex refractive

index with unpolarized and circularly polarized light are:

N(ω) = n(ω) + iκ(ω) (3.20)

N±(ω) = n±(ω) + iκ±(ω), (3.21)

Similarly, the dielectric functions are also complex:

ε(ω) = ε1(ω) + iε2(ω) (3.22)

ε±(ω) = ε1±(ω) + iε2±(ω), (3.23)

Here, n and κ are the refractive index and the extinction coefficient, ε1 and ε2 are

the real and imaginary part of complex dielectric function, and the ± represents the

right- and left-circularly polarized (RCP/+ and LCP/-) light components.

The relation between N(ω) and ε(ω) can be expressed by:

N(ω) =
√
ε(ω), (3.24)

By combining equation 3.19 and equation 3.24, we can obtain the following relation:

k =
Ñω

c
. (3.25)

Combining equation 3.20, 3.22, and 3.24, we can derive the following relations:

N2 = n2 − κ2 + 2inκ = ε = ε1 + iε2. (3.26)
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Where we can easily see that

ε1 = n2 − κ2 (3.27)

ε2 = 2nκ. (3.28)

In turn, we can express n and κ as a function of ε1 and ε2:

n =
√

(|ε|+ ε1)/2 (3.29)

κ =
√

(|ε| − ε1)/2, (3.30)

where |ε| =
√

(ε1)2 + (ε2)2.

From these equations, a lot of optical constants can be derived; here, we will

focus on finding the absorption coefficient α and optical conductivity σ. Because

when light hit a solid, the electromagnetic wave will be dampened with a decay

length c/ωκ. A new wave equation that includes a damping factor can be rewritten

as:

E(x, t) = E0e
i[(Ñω/c)x−ωt] = E0e

−(2πκ/λω)xei(kx−ωt) (3.31)

The expression 2πκ/λω describes the attenuation of the field and λω is the light

wavelength in vacuum. The first exponential factor describes the attenuation of

wave amplitude with distance.

We consider the Poynting vector S of the electromagnetic wave. The time-

averaged Poynting vector of an electromagnetic wave can be written as:
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S =
1

2
E×H (3.32)

Substitute the wave equations of both electric and magnetic field, and then take the

real part of equation 3.32, we have:

S = |E2
0|e

−2xωκ
c (3.33)

The time-averaged Poynting vector is directly proportional to the intensity, which is

also proportional to the square of amplitude of the electric field vector. As a result,

by combining Beer’s law, we have:

I(x) = EE∗ = I0e
−αx, (3.34)

then a relationship between κ and α is found as

α =
2ωκ

c
=

4πκ

λω
. (3.35)

Note that because ε2 = 2nκ, α can be related to the imaginary part of the dielectric

function as:

α =
ωε2
cn

(3.36)

Adding the circular polarization to this equation, we obtain:

α± =
ωε2±
cn±

(3.37)

For a medium with finite conductivity, from the Maxwell’s equations, we can

calculate the relation between dielectric function and conductivity:
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ε(ω) = 1 +
iσ(ω)

ωε0
(3.38)

ε±(ω) = 1 +
iσ±(ω)

ωε0
, (3.39)

Then, we can re-write the absorption coefficient as a function of conductivity as:

α =
σ1
nε0c

(3.40)

α± =
σ1±
n±ε0c

, (3.41)

Where σ1 is the real part of the conductivity. From this relation, we know that

a material with low resistivity (high conductivity) has high absorption. Table 3.1

lists the relationships between the various response functions of ε(ω), σ(ω), and

Ñ(ω). [156]

3.1.4 Beer - Lambert law

Despite the derivation of the absorption coefficient from the above mentioned method,

we can also obtain the absorption coefficient from the measured transmittance spec-

tra. Beer - Lambert law provides a more direct way to analyze the attenuation of

the light for a sample thickness d < δ = c
ωκ

, where δ is the penetration depth.

The Beer-Lambert law is a linear relationship between the absorbance and the

concentration of the attenuating species (c), molar attenuation coefficient (ε) and

optical path length (l) of a material:

A = εlc (3.42)
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Table 3.1: Relationships between the various response function ε(ω), σ(ω), and
N(ω)

Dielectric constant ε(ω) Conductivity σ(ω) Refractive index N(ω)

ε = ε1 + iε2

σ1 = ωε2
4π

σ2 = (1− ε1) ω4π

n = ( 12 ((ε
2
1 + ε22)

1/2 + ε1))
1/2

κ = ( 12 ((ε
2
1 + ε22)

1/2 − ε1))1/2

ε1 = 1− 4πσ2

ω

ε2 = 4πσ1

ω

σ = σ1 + iσ2

n = ( 12 (((1 −
4πσ2

ω )2 +

( 4πσ1

ω )2)1/2 + (1− 4πσ2

ω )))1/2

n = ( 12 (((1 −
4πσ2

ω )2 +

( 4πσ1

ω )2)1/2 − (1− 4πσ2

ω )))1/2

ε1 = n2 − κ2

ε2 = 2nκ

σ1 = nκω
2π

σ2 = (1− n2 + κ2) ω4π

N = n+ iκ
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For a sample with small reflectance, the intensity of the transmitted light is given

by:

I = I0e
−αd (3.43)

with I and I0 being the intensities of the transmitted and incident beams, respec-

tively, d being the thickness, and α the absorption coefficient. We then can calculate

the absorbance using the following two equations:

T =
I

I0
(3.44)

A = −ln
I

I0
= αd. (3.45)

Finally, the absorption coefficient α(ω) is given by:

α = −1

d
ln(T (ω)), (3.46)

giving the absorption coefficient α directly from sample thickness d and from trans-

mittance as a function of frequency (T (ω)). [157]

One important limitation of the Beer - Lambert law is the requirement of minimal

or negligible reflectance. For a material with significant reflectance, the reflectance,

optical constants can be derived from a combination of reflectance and transmittance

spectra. A correction that includes the contribution of the reflectance is given as:

T =
(1−R)2e−αd

1−R2e−2αd
(3.47)

where R is the reflectance at the sample surface [158, 159]. The full connection is

called Glover-Tinkham analysis [156,160].
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3.1.5 Polarized light and crystal anisotropy

Light is a transverse wave, the oscillation direction of the electric field wave vector

E lies in the plane perpendicular to the light wave propagating direction [Fig. 3.5].

Polarized light is produced when the direction of E in the plane perpendicular to the

direction of propagation is constrained in some fashion.

In general, the polarized light can be divided into three different types: linear,

circular, and elliptical. The classification is based on the phase difference between

Ex and Ey. Let Ex = E0xe
[i(kz−ωt)], Ey = E0ye

[i(kz−ωt+φ)], where φ refers to the

phase, the conditions for different polarized light is summarized in Table 3.2. As an

example, figure 3.5 displays a diagrammatic representations of linearly and circularly

polarized light as produced by an unpolarized light beam entering from the right and

propagating through first a linear polarizer oriented at 45 degree and then a quarter

wave plate with its fast axis oriented vertically. The linear polarizer transmits fully

linearly polarized light, while the quarter wave plate delays the horizontal component

of this light by 1/4 wave relative to the vertical component, producing left-handed

circularly polarized light [161].

In anisotropic materials, their physical properties are directional dependent. The

crystal symmetry is strongly associated with the electronic, vibrational, and magentic

properties. When light interacts with an anisotropic crystal, the speed of light is

dependent on the light polarization direction because of the different refraction index.

In this case, the dielectric constant becomes a tensor, the relations between the

electric displacement D and the electric field E can be written as:

Dx = εxxEx + εxyEy + εxzEz

Dy = εyxEx + εyyEy + εyzEz

Dz = εzxEx + εzyEy + εzzEz

(3.48)

The nine quantities εxx, εyy,... constitute the dielectric tensor. The dielectric
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Figure 3.5: Schematic diagram of the representation of the unpolarized, linearly
polarized, and circularly polarized light. Panels A and B illustrate two ways of
portraying polarization (as axes or vectors). Panel C shows the successive peaks of
the horizontal (green) and vertical (blue) components of the same circularly polarized
wave, as well as the helical path traced by their resultant vectors (red) [161]. (Figure
modified from Wikipedia.)
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Table 3.2: Conditions for different polarized light

Phase difference ∆φ Types of polarization

∆φ = nπ, (n = 0, 1, 2...) linear polarization
∆φ = arbitrary but constant, (exclude nπ and nπ

2
) elliptical polarization

∆φ = nπ
2

, (n = ± 1, 3, 5) left or right circular polarization
φ, Ex, and Ey are randomly varying on a timescale unpolarized

that is much shorter than that needed for observation light
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properties of an anisotropic material is thus depend on the light polarization direc-

tion.

3.1.6 Drude and Lorentz model

When materials interact with light, the electronic properties can usually be described

by two models: the Drude model and the Lorentz model. The former quantitatively

characterizes the free-carrier response of metallic materials, and the latter applies to

the semiconductors and insulators.

The dielectric function of materials can be modeled by three parts:

ε = εfree + εbound + ε∞, (3.49)

where εbound is contributed from bound carriers and εfree is the contribution from free

electrons (or holes). For metallic compounds, at relatively low energies (below the

plasma frequency), εfree dominates the optical response and screen the contributions

from εbound due to the large densities of the free-carriers. Above the plasma frequency,

the energy is large enough to populate the bound carriers, where the interband

excitations begin to dominate the optical response.

We will discuss the Drude model first. Figure 3.6 displays a schematic view of

the charge distribution in a metallic crystal. Each metal ion consists of a nucleus

and core electrons, which are immobile. Valence electrons are weakly bounded to the

metal ions, generating the free-electron gas. Those electrons are highly delocalized

and are also called conduction electrons.

There are four assumptions for the Drude model: (i) electron – electron, electron

– metallic ion interactions between collisions are neglected. (ii) Drude only consider

the collision between electrons and impenetrable ion cores, which is an instantaneous

process. The scattering due to electron – electron collisions are neglected. (iii) An
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Figure 3.6: (a) The schematic view of the nucleus, core electrons, and valence elec-
trons in an atom, the different amount of charges are indicated below [25]. (b) The
schematic view of the charge distribution in a metal [25].
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electron experiences a collision with a probability per unit time 1/τ , The probability

to undergo a collision within a small time interval dt is dt/τ . Where τ is called

relaxation time or mean free time, which means the average travel time for a ran-

dom electron before its next collision. (iv) After each collision an electron emerges

with a velocity that is randomly directed and with a speed appropriate to the local

temperature.

Based on the above mentioned assumptions, the equation of motion of the Drude

model can be written as:

m
d2r

dt2
+mΓ

dr

dt
= −eEloc (3.50)

where r is the displacement, m is the effective mass of the free-carriers (usually

electrons), Γ is the damping constant, which is also equal to 1/τ , e is the electron

charge, and Eloc is the local electric field acting on the electron.

Assuming the electric field acting on the conduction electron is homogeneous,

combining equation 3.50 and the Maxwell’s equations, we can derive the dielectric

functions in the following:

ε(ω) = εc −
4πne2/m

ω2 + iω/τ
(3.51)

where εc ≈ 1 when not considering the polarization of the ion core. Then the real

and imaginary part of the dielectric function can be derived as:

ε1 = εc −
ω2
p

ω2 + 1/τ 2
(3.52)

ε2 =
ω2
p

ωτ(ω2 + 1/τ 2)
(3.53)
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where ωp =
√

4πne2

m
is called the plasma frequency.

Using the relations described in Table 3.1, we can obtain the expression of the

optical conductivity:

σ1 =
ne2τ/m

1 + ω2τ 2
=

σdc
1 + ω2τ 2

(3.54)

σ2 = ωτ
ne2τ/m

1 + ω2τ 2
= ωτ

σdc
1 + ω2τ 2

(3.55)

where σdc = ne2τ
m

is the dc conductivity of the material.

The Lorentz model supposes that the bound electrons to the nucleus act sim-

ilar to a harmonic oscillator, or a mass-spring system. The electrons react to an

electromagnetic field via vibrating. The equation of motion now becomes:

m
d2r

dt2
+mΓ

dr

dt
+mω2

0r = −eEloc (3.56)

There is an additional term mω2
0r, which describe the binding energy between the

bound electrons and the nucleus.

Figure 3.7 displayed a schematic model of how external electric field polarizes

an insulating material. Compared to metals, the electric field will cause an internal

polarization in the medium because of the separation between positive and negative

charges inside the material in response to the external electric field. Now the total

electric field is acting on an electron is:

Eloc = Eext + Eneighbor + Eint (3.57)

where, Eext and Eint are the external and internal electric field, respectively. Eneighbor

is electric field due to the neighboring dipoles. Thus, the total electric field is the
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Figure 3.7: The schematic model to describe the electric polarization in an insulating
material. The electric field, electric polarization, and charge distribution are depicted
[26].
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sum of all the fields.

The solution to equation 3.56 yields

r(ω) =
1

m

−eEloc
(ω2

0 − ω2) + iΓω
. (3.58)

From this, the induced dipole moment µ is related to r through this equation:

µ(ω) =
e2Eloc

m[(ω2
0 − ω2) + iΓω]

, (3.59)

Since µ(ω) = α(ω)E(ω), the polarization per unit volume is given by

P (ω) = Nα(ω)E(ω) = ε0χ(ω)E(ω). (3.60)

The susceptibility χ(ω), from the prior equation, is then

χ(ω) =

(
Ne2

ε0m

)
1

ω2
0 − ω2 + iΓω

, (3.61)

where (4πNe2/m) is the plasma frequency squared (ω2
p). The dielectric function can

then be written as

ε(ω) = 1 +
ω2
p

ω2
0 − ω2 + iΓω

, (3.62)

where ωp equals

ωp =

√
Ne2

ε0m
. (3.63)

From this dielectric function, many optical parameters can be calculated, such as

absorption (α(ω)), optical conductivity (σ(ω)), refractive index (n(ω)), and so on.

For this work, several instances call for the use of both the Drude and Lorentz

models. These two models are extremely useful because we can use them to fit the
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experimental spectra to obtain the relaxation time, plasma frequency, dc conductiv-

ity, effective mass, and the carrier densities of different materials. By comparing the

fit parameters for various doping concentrations, magnetic fields, or temperatures,

trends can be observed. In this case, we are able to analyze how the material and

specific excitations can be sensitive to different phase transitions.

3.1.7 Kramers-Kronig analysis and sum rules

There are many cases that materials do not transmit light. Therefore, reflectance

measurements are needed. Kramers-Kronig analysis is a useful method to extract

optical functions [156]. The reflectivity for normal incidence is given by r and the

power reflectance is given by:

R(ω) = rr∗ =
(n− 1)2 + κ2

(n+ 1)2 + κ2
. (3.64)

The power reflectance R(ω) does not contain the phase information. The total

reflectivity is given by:

r =
√
Reiφ, (3.65)

The power reflectance and the phase-dispersion shift φ(ω) are related by Kramers-

Kronig transformation [156]:

φ(ω) =
ω

π

∫ ∞
0

lnR(ω)− lnR(ω
′
)

ω′2 − ω2
dω
′
. (3.66)

and combining equations 3.64, 3.66, and 3.65, n and k can be determined by R(ω)

and φ(ω) as
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n(ω) =
1−R(ω)

1 +R(ω)− 2
√
R(ω) cosφ(ω)

(3.67)

κ(ω) =
2
√
R(ω) sinφ(ω)

1 +R(ω)− 2
√
R(ω) cosφ(ω)

. (3.68)

From earlier identities and relationships, the real part of dielectric function and the

real part of optical conductivity can be determined:

ε1 = n2 − k2 (3.69)

σ1 =
ωε2
4π

=
ωnk

2π
. (3.70)

All of these optical constants are frequency dependent. We can extract other op-

tical constants such as α(ω), τ(ω) and so on. Notice that in Eq. 3.66, the integration

is from zero to ∞. In reality, our optical measurements usually cover the frequency

range from far-infrared to ultraviolet, proper extrapolations should be used for the

low and high frequencies of the spectrum.

For the low-frequency extrapolation, there are four models can be used, depending

on the properties of materials at hand. These models include: (i) a Hagen-Rubens

formula, (R(ω) = 1 − (2ω/πσ0)
1/2), is used for a metallic materials. A constant dc

conductivity extrapolation is used for insulators/semiconductors in the low frequency

range. (ii) The two-fluid model: (R(ω) = 1−(2ω/πσ0)
2). (iii) Marginal Fermi Liquid

model: (R(ω) = 1−(2ω/πσ0)). (iv) Superconducting model: (R(ω) = 1−(2ω/πσ0)
4).

Notice the only difference between those models are the power index of ω.

For the high frequency extrapolation, the equation is modeled as R ∼ ω−x, where

x varies from 0-4 and does not have to be an integer. The exact value of x can be
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determined by selecting the best match between the measured and calculated spectra

when varying x.

Together with physical arguments about the behavior of the response in certain

limits, the Kramers-Kronig relation can also be used to derive sum rules. That is

∫ ∞
0

ω′Im(−1/ε(ω′))dω′ = 1/2πω2
p, (3.71)

where ωp is the plasma frequency. A partial sum rule [156] is also useful in quantifying

the change of absorption spectra

f ≡ 2c

Neπω2
p

∫ ω2

ω1

nα(ω,B) dω. (3.72)

Here, f is the oscillator strength, Ne is the number of electrons per ion site, n is the

refractive index, ωp is the plasma frequency ≡
√

e2ρ
mε0

, e and m are the charge and

mass of an electron, ε0 is the vacuum dielectric constant, ρ is the density of magnetic

ion sites, c is the speed of light, and ω1 and ω2 are the frequency limits of integration.

3.1.8 Magnetic circular dichroism

Magnetic circular dichroism (MCD) is a technique that measures the absorption

difference between the left- and right- circularly polarized light under the external

magnetic field. It is an magneto-optical effect, which describes a universal property

of light absorption for all matter when placed in a magnetic field. The origin of the

MCD signal is due to electromagnetic interaction of the external field with electronic

charge within the sample. Compared to the natural circular dichorism cause by the

difference of the speed of light between left- and right- circularly polarized light in

a chiral molecule or crystal, MCD is an intrinsic effect for all materials. The MCD

intensity can be expressed as:
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∆α = α− − α+ = ∆εMclB (3.73)

Where ∆α is the absorption difference between the left- and right- circularly polarized

light, α± represents the absorption coefficient of the left- or right- circularly polarized

light, respectively. ∆εM is the difference of the molar attenuation coefficient, c is the

speed of light, l is the penetration depth, and B is the magnetic induction.

Magnetic circular dichroism originates from the Zeeman splitting:

HZeeman = −gµBJ ·B (3.74)

Here, µB is the bohr magneton, J is the total electronic angular momentum, g is the

Landé g-factor. The general form of the MCD intensity can be expressed as [162]:

IMCD ∼ [A(
∂f(E)

∂E
) + (B +

C

kT
)f(E)] (3.75)

where f(E) is the linear absorption as a function of the photon energy. Notice

in the Eqn 3.75, there are three terms A, B, and C. These terms have different

origins. The A term describes the MCD signal from degenerate excited states. In

contrast, the MCD C term originates from degenerate ground states. Since the

population of electrons from the ground state depends on the thermal energy, this

term is temperature-dependent. The origin of the B term relates to the mixed excited

states. The physics of those terms can be better understood from the following energy

diagram. Figure 3.8 displays the origin of the MCD A term as an example [162].

As shown in the figure, the 1P1,0,−1 is a three-fold excited state. When applying the

external magnetic field, this state splits to three different states due to the Zeeman

splitting. The excitation energies induced by the left- and right- circularly polarized

light is different when the external magnetic field is not zero. This is due to the
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Figure 3.8: Energy levels for the atomic s2 → sp transition. 1S0→ 1P1,0,−1.
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different selection rules for the left and right circularly polarized light (∆m = +1 for

lcp; ∆m = -1 for rcp).

We can extend the understanding of the origin of MCD to solids. Figure 3.9

displays a schematic view of how band splits in a magnetic semicondutor. Since the

angular momentum of the circularly polarized light can couple with the spin-angular

momentum, the left and right circularly polarized light can probe the excitations in

different spin channels. For a non-magnetic material (panel (a)), the excitation from

the valence band to the conduction band has no spin-dependence, the corresponding

MCD signal is zero in this case. For a magnetic semiconductor (panel (b)), the

Zeeman interaction induces exchange splitting in the valence and conduction bands

that depends upon the spin direction, forming a spin-polarized band structure which

result in an absorption difference between the left and right circularly polarized light.

The MCD signal is thus generated. Moreover, since the total magnetic moment in

solids equals to the difference between the density of states in the spin-up and spin-

down channel, the dichroic intensity is directly proportional to the magnetization in

materials.

When the circular polarized light interacts with materials, it will probe the off-

diagonal components of the dielectric tensor as [164]:

ε =

∣∣∣∣∣∣∣∣∣∣
εxx iεxy 0

−iεxy εyy 0

0 0 εzz

∣∣∣∣∣∣∣∣∣∣
≈ n2

∣∣∣∣∣∣∣∣∣∣
1 iQmz 0

−iQmz 1 0

0 0 1

∣∣∣∣∣∣∣∣∣∣
, ε± = εxx ± εxy

Here, ± sign represents the left or right circular polarization, respectively. Notice

in the dielectric tensor, the off-diagonal component is linearly proportional to the

magnetic moment projected on the z-direction. This equation indicates the magnetic

circular dichroism signal is directly proportional to the magnetization of materials.

The magnetic circular dichorism intensity can also be correlated to the joint
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Figure 3.9: Schematic view of the density of states for (a) a non-magentic and (b) a
magnetic semiconductor [163].
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density of states and even to specific bands. These relationships are expressed as

[32,33,165]:

∆α(E)MCD = ~µi ·~k = |~µi||~k| cos θ ≈ (α+(E)− α−(E))d

2
≈ ∆E

2

1

α(E)

dα(E)

dE
. (3.76)

Here, ∆α(E)MCD is the absorption difference between right and left circularly polar-

ized light (α+(E)−α−(E)), dα(E)/dE is the energy derivative of the linear absorp-

tion spectrum, d is the sample thickness, ∆E is the peak-to-peak energy difference,

~µi is the magnetic moment projected onto the light propagation direction ~k, and θ

is the angle between the magnetic moment and the light propogation. The moment

is proportional to magnetic field. Equation 3.76 nicely highlights the first-derivative

relationship between the linear absorption and magnetic circular dichroism. Any

inflection point in the linear absorption spectra will be amplified in the dichroic

response.

The dichroic response can be modeled using the calculated matrix elements of

the optical conductivity tensor as [165,166]:

∆αMCD ≈
dω

2c
=(

↔
n+ −

↔
n−) ≈ 2πd

c
=[

↔
σxy

(1 + ı4π
ω

↔
σxx)1/2

]. (3.77)

Here,
↔
n± = (

↔
εxx ±

↔
εxy)

1/2 is the refractive index of right or left circularly polarized

light arising from the dielectric function ε, d is the sample thickness, and c is the

speed of light. In this case, we can have a direct comparison between the calculated

and measured magnetic circular dichroism spectra.
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3.2 Spectrometers

The heart of spectroscopy is to study how materials interact with electromagnetic ra-

diation. The electromagnetic radiation covers a wide energy range, from microwaves,

terahertz, infrared, visible, to ultraviolet. Materials exhibit different physical proper-

ties in response to the variation of the incoming photon energy. For example, we can

study the lattice vibrations and electronic excitations by using infrared light. Spec-

troscopy provides a microscopic understanding of how lattice, charge, and spin are

coupled. In this work, the probing light of interest falls in the infrared through the

ultraviolet region. Several different spectrometers were used in the analysis of each

of the different regions. Each of these spectrometers overlap in their energy regions

as to allow for merging and obtaining a full spectra, sweeping from 20-55,000 cm−1.

The following sections will lay out the spectrometers used, from lowest frequency to

highest frequency.

3.2.1 Fourier transform infrared spectroscopy

One of the spectrometers in this work is the Fourier-transform infrared spectrome-

ters. The goal of this technique is to obtain a continuous absorption spectrum of

materials over a wide frequency range in the infrared region. The central part of the

FTIR spectrometer is the interferometer, which is used to introduce an optical path

difference between two beams of light and to produce an interference pattern. The

interferometer allows to produce a unique type of signal that has all of the infrared

frequencies “encoded” into it, which is a method for measuring all of the infrared

frequencies simultaneously rather than individually.

Figure 3.10 displays a schematic view of a Michelson interferometer. The incident

broadband infrared beam splits into two parts by a 50/50 beam splitter. Different

types of beam splitters are chosen based on the frequency range of the light source.
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Figure 3.10: Schematic view of a Michelson interferometer in a Fourier transform
infrared spectrometer setup.
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One part of the beam is transmitted to a fixed mirror (M1). The other part of the

beam is reflected by the beam splitter and travels to a moving mirror (M2). The

returned beams reflected from the two mirrors (M1 and M2) are merged in the beam

splitter. The recombined beam is then sent to the sample chamber. Signals are col-

lected by the detector and then a computer will perform the Fourier transformation

to the raw signal. The moving mirror periodically modifies the optical path difference

between the two arms of the beam, generating constructive or destructive interfer-

ence pattern. Therefore, the intensity is a function of the moving displacement x,

known as an interferogram [167].

If M2 travels at a constant velocity, the relation between the interferogram func-

tion I(x) and the source intensity B(ω) is given by

I(x) =
1

2

∫ ∞
0

B(ω, x)cos2πωdω, (3.78)

where ω is the frequency in wavenumbers. I(x) is the cosine Fourier transform of

B(ω) and contains complete information about the spectrum [167]. This function

describes the Fourier transformation of the raw signal, which converts the spatial

displacement x to the frequency domain. This gives the single beam infrared spec-

trum. The typical transmittance or reflectance spectrum is the ratio spectrum of

sample to reference.

3.2.2 Bruker IFS 113v Fourier transform infrared spectrom-

eter

The majority of the far-infrared (21-700 cm−1) and middle infrared (450-5000 cm−1)

reflectance and transmittance spectra in this work were obtained by using Bruker

IFS 113v Fourier Transform Infrared (FTIR) spectrometer. Figure 3.11 displays a
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Figure 3.11: Schematic view of the Bruker IFS 113v FTIR spectrometer [168].

119



detailed design of the optical path inside the Bruker 113v spectrometer. The spec-

trometer contains four chambers – source, interferometer, sample, and detectors. The

interferometer used here is Genzel-type, which is similar to the michelson interferom-

eter described in the prior section. In the Bruker IFS 113v, a secondary laser/white

light interferometer physically attached to the main Genzel-type interferometer pro-

vides an “optical marker” to initiate the start of spectrum data acquisition and also

to precisely determine the optical path difference and speed of the main moving mir-

ror. The sample chamber has the front and back channels, which are optimized for

transmittance or reflectance measurements, respectively.

This system operates under vacuum to reduce the background noise. The Si or

B-doped Si bolometer, which is cooled with liquid helium, provides extra sensitivity.

A schematic view of the beam path and optics are provided in Fig. 3.11.

In order to capture different energy regions most efficiently, the instrument uses

a series of sources, detectors, and beamsplitters for optimal resolution and signal. A

list of these different parts are listed in Table 3.3.

3.2.3 Bruker Equinox 55 FTIR spectrometer with Bruker

IR Scope II

Another important spectrometer in our lab is Bruker Equinox 55 FTIR spectrometer

with Bruker IR Scope II. This instrument is a combination of a spectrometer with

a microscope attachment. Compared to Bruker 113v, this instrument uses several

different light sources, beam splitters, and detectors to provide a broader frequency

range as well as the higher resolution and sensitivity for the measurements (600 -

17000 cm−1). In this case, we have the overlapped energy regions to compare the

spectra from this instrument with Bruker 113v, which allow us to double-check the

accuracy and reliability of the shape and reflectance level of a spectrum.
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Table 3.3: Bruker IFS 113v operating parameters

Range (cm−1) Source Beam splitter Opt. Filter Polarizer Detector

10-50 Hg arc Mylar 50 µ Black PE 1 Si bolometer, DTGS
30-120 Hg arc Mylar 23µ Black PE 1 Si bolometer, DTGS
50-240 Hg arc Mylar 12µ Black PE 1 Si bolometer, DTGS
100-600 Hg arc Mylar 3.5µ Black PE 1 Si bolometer, DTGS
450-4000 Globar KBr open 2 B-doped Si bolometer, DTGS

PE = polyethylene. Polarizer 1 = wire grid on oriented PE, Polarizer 2 = wire grid on AgBr
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Furthermore, the Bruker IR Scope II is designed for accurate measurement of

micro samples, or small areas on larger samples. The different types of sources,

beam splitters, and detectors are listed in Table 3.4.

The optical beam path of the spectrometer can be seen in Fig. 3.12.

3.2.4 Perkin Elmer λ-900 grating spectrometer

Besides the Bruker 113v and Bruker Equinox 55 FTIR spectrometers, we use a Perkin

Elmer λ-900 grating spectrometer to measure spectra in the near-infrared, visible,

and ultraviolet regions (3300 - 190nm, 3000 - 52000 cm−1). The Perkin-Elmer λ-900

(or -1050) spectrometer features an all-reflecting, double-monochromator, double-

beam optical system. The spectrometer is operated under nitrogen purging. The

optical system is depicted schematically in Fig. 3.13.

Instead of using the interferometer, this instrument uses grating to get a spe-

cific energy/wavelength of light. An optical grating can split and diffract light into

several beams travelling in the different directions. For the chromatic light, the

diffraction angle is depend on the wavelength and the separation distance d between

two successive grooves. This relation is known as the grating equation, given by

d sin θ = mλ (3.79)

where m is an integer and the order of diffraction, d is the groove spacing, λ is

the diffracted wavelength, and θ is diffraction angle. A series of sources, polarizers,

gratings, and detectors are used in order to achieve the optical data. All of them

change automatically when different energy windows are measured. The detailed

information of those components are listed in Table 3.5.

Figure 3.13 displays the detailed optical path diagram for λ-900 (or -1050). Source

change is controlled by flipping mirror M1. The radiation of source is reflected by
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Table 3.4: Operating parameters of Bruker IRscope II

Range (cm−1) Source Beamsplitter Detector

600-7500 Globar KBr MCT
4000-12000 with near-infrared polarizer Tungsten Quartz InSb

9000 -17000 with visible polarizer Tungsten Quartz Si diode
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Figure 3.12: Optical path diagram of Bruker IRscope II. 1,16: visible light source;
2,19: visible light aperture; 3,22: motorized switch mirror; 4,18: optional iris or
knife edge aperture; 5,9,10,17: beamsplitter changer; 6: objective lens; 7: Sample; 8:
iris or knife edge aperture which defines the area of sample analyzed; 12: binocular
eyepiece; 13: two position detector selection mirror; 14: mirror routing to detector;
15: detector; 20: condenser; 21: IR beam (from spectrometer); 23,24: camera port;
25,26,27: polarizers [168].
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Figure 3.13: Optical layout of Perkin-Elmer λ-900 or -1050 [168].
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Table 3.5: λ-900 or -1050 operating parameters

Range (cm−1) Source Grating Polarizer Detector

3100-14250 Halogen Lamp 1200 lines/mm Glan-Thompson prism PbS
11240-31330 Halogen Lamp 1200 lines/mm Glan-Thompson prism Photomultiplier
31330-52000 Deuterium Lamp 2400 lines/mm Glan-Taylor prism Photomultiplier
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mirror M2, M3, and passes optical filter FW. Then, the beam is brought in monochro-

mator I through M4, slit SA, and M5. Depending on the desired wavelength range,

the collimated radiation beam strikes either the 2400 lines/mm grating or the 1200

lines/mm grating. The rotation position of the grating effectively selects a segment

of the spectrum, reflecting this segment to mirror M5, to go through the exit slit,

and enter Monochromator II. The advantage of the double-monochrometer is to

maintain high spectral purity with an extremely low stray radiation content. The

automatic grating change during monochromator slewing avoids the time-consuming

re-alignment of the optics pathway due to the monochromator change.

The double beam is achieved via the chopper assembly C. As the chopper rotates,

a mirror segment, a window segment and two dark segments are brought alternately

into the radiation beam. When a window segment enters the beam, radiation passes

through to mirror M9 and is then reflected via mirror M10 to create the reference

beam (R). When a mirror segment enters the beam, the radiation is reflected via

mirror M10’ to form the sample beam (S). When a dark segment is in the beam

path, no radiation reaches the detector, permitting the detector to create the dark

signal (D). Then, the measured spectrum is expressed as:

spectrum = (S −D)/(R−D). (3.80)

3.2.5 LabRAM HR Evolution Raman spectrometer

The LabRAM HR Evolution Raman microscopes are ideally suited for both micro

and macro measurements. It contains the lasers with three different wavelength: 633

nm (red), 532 nm (green), and 473 nm (blue). This instrument is a triple Raman

spectrometer and covers a wide frequency ranges from 25 - 3000 cm−1. There are

10X, 50X, and 100X magnification microscopes, which give us a precise control of
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measuring different surface spots in a material. A CCD detector is used to collect

signal.

Figure 3.14 displays a schematic view of a typical Raman spectrometer. There

are four major parts in a conventional Raman spectrometer, which are: (i) The laser

source, (ii) sample illumination and collection optics (set of mirrors and lenses), (iii)

monochromator, and (iv) a detector. [157] The scattered beam from the sample is

recollected to pass through a set of lenses and filters. Several mirrors then send

the beam into a diffraction grading. The rotation of the diffraction grading selects

different wavelength of the light and thus the spectrum is obtained. Finally, the

spherical mirror focus the beam and direct it to the detector. Grating and width

of the slit play the key role in obtaining the maximum spectral resolution. Grating

resolution is given as:

Rs =
λω

∆λω
= N ·m, (3.81)

where N is the number of illuminated slits and m is the order of the diffraction. We

can see from Eqn 3.81 that the best way to improve the resolution is to increase the

number of slits. In this case, a triple monochromater is used to better filter or reject

of the stray light and thus can be used to measure Raman bands located very close

to the Rayleigh line. Rayleigh filter (Fig. 3.14) is an essential part of the Raman

instrumentation that allows selective elimination of the strong Rayleigh scattering

and analysis of the weak Raman scattering. High detection sensitivity and signal-

to-noise ratios are achieved by the use of array detectors, usually photodiode arrays

or CCD’s (charge-coupled devices). [157,169]
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Figure 3.14: Schematic view of the Raman spectrometer. RF-Rayleigh filter, L-lens,
S-entrance slit, 1-diffraction grating, 2-spherical mirror.
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3.3 Spectroscopy under extreme conditions

Materials can display interesting properties under extreme conditions such as low

temperature, high magnetic field, and high pressure. Spectroscopy under these ex-

treme conditions provides a microscopic approach to detect how physical properties

change through the phase transitions or due to the broken of symmetry, and how

spin, charge, and lattice are coupled to each other. In this dissertation, we measure

the reflectance or transmittance spectra of different materials to study the optical

properties of materials under variable temperature and high magnetic field. Note

that for reflectance measurements, we use the Aluminium mirror as the reference.

The spectra signature of the Aluminium mirror is corrected by renormalization.

3.3.1 Variable temperature spectroscopy

We use an open-flow cryostat to perform the variable temperature spectroscopic

measurements. The low-temperature experiments with the Bruker IFS 113v and

Perkin-Elmer λ-900 are performed in combination with an APD LT-3-110 Heli-Tran

cryostat system with dual temperature sensors and a Lakeshore Model 330 temper-

ature controller. Measurements with the Bruker Equinox 55 are made with Oxford

Instruments MicrostatHe.

Figure 3.15 displays the complete setup of the system for variable temperature

measurements. A series of components are needed to perform the spectroscopy mea-

surements. These include a helium dewar, a helium gas tank, a transfer line, an open

flow-cryostat, a temperature controller, a vacuum pump and a flowmeter. The he-

lium dewar is connected to a He gas tank, which can build pressure inside the dewar

in order to start the helium flow. A high efficiency transfer line is then connected

so that helium can be transferred from the dewar to the cryostat. The sample is

mounted at the sample holder at the tip end of the cryostat. Crycon grease is placed
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Figure 3.15: Set-up of LT-3-110 Heli-Tran liquid transfer line and cryostat [168].
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between the cold stage of the cryostat and the sample holder to improve thermal

contact. A heater is build in the cryostat to better control the temperature. The

sample chamber has to be under vacuum when performing the measurements at low

temperatures in order to avoid ice forming. A turbo pump station is thus connected

to the vacuum pump-out port. The system must precool before helium flow will

begin, which often takes 20-25 minutes. The lowest stable temperature is ∼5 K. After

cooling the sample, the liquid helium evaporates and the gas is distributed in two

ways: through the helium exhaust port on the side of the cryostat and back through

the transfer line with exit at the shield outlet port. The additional shield/return

flow helps to keep the transfer line cold. The base of the cryostat is also equipped

with another heater to prevent ice buildup and vacuum seal freezing.

We control the cooling rate in several different ways: (i) changing and maintaining

pressure in the supply dewar, (ii) adjusting the flowmeter (attached to the helium

exhaust port and the shield gas outlet), and (iii) adjusting the knob that controls the

position of the needle valve at the end of the transfer line. Samples are mounted with

GE varnish, rubber cement, and silver paste. The sample is then mounted on the

heat exchanger/sample holder, under vacuum, and optical access is achieved through

appropriate windows (depending on the frequency/energy/wavelength of light that

is being worked with). Two different thermal sensors are available. One is embedded

in the tip of the cold stage and the other is mounted onto the sample holder. This

gives a good measure of the real sample temperature.

3.3.2 Magnetic circular dichroism setup at National High

Magnetic Field Laboratory

The magnetic circular dichroism experiments were performed at National High Mag-

netic Field Laboratory using the 25 T split helix magnet [170]. Figure 3.16 (a)
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(c)

(b)(a)

Figure 3.16: (a) Detailed structure of the 25 T split helix magnet in the NHMFL. Im-
ages are available at: https://nationalmaglab.org/about/around-the-lab/meet-the-
magnets/meet-the-split-helix-magnet. (b) Sample mounting probe of the magnetic
circular dichroism experiment. (c) MCD experimental setup in the NHMFL.
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displays a cutaway design of the split helix magnet cryostat. This magnet consists

of two resistive coils with four wide optical ports. These ports are used to shine

light on the sample from the horizontal plane, giving access to more intricate and

complicated measurements. High electric currents are applied in the resist coils to

generate a magnetic field up to 25 T along the vertical direction. The direction of

electric current can be switched in order to switch the magnetic field direction.

Figure 3.16 (b) shows the sample mounting probe for the transmission mode of

the MCD experiment. The sample is mounted in a spherical sample holder by GE

varnish. Since we use the Faraday geometry for the MCD experiment, the bottom

part of the probe consists of a sliver mirror and a converging lens. The sliver mirror is

used to reflect the light by 90 degree so that the light is propagating along the vertical

direction, which is parallel or antiparallel to the direction of the magnetic field. Since

the reflection will change the phase of the left and right circularly polarized light by

an equal amount, using the sliver mirror will not affect the MCD signal. The sample

holder is fixed at the back focal point of the converging lens to maximize the light

power density.

Figure 3.16 (c) displays a complete setup for the magnetic circular dichroism

experiment. A series of optical components are used to optimize the MCD signal.

We use a 240 W Xe lamp as a light source and a 0.25 m monochromator. An optical

chopper is employed to increase the signal to noise ratio at a constant frequency,

followed by a linear polarizer that is set to 45 degree. A photoelastic modulator

is placed after the linear polarizer to convert the linearly polarized light into left

or right circular polarized light periodically at a constant time interval δ(t) = λ/4

sin(ωt). Several lenses are used to increase the power density. We did not need to

keep the phase information, so an optical fiber is used to collect the light and route

it to the detector. The detector has the best sensitivity between 0.8 and 2.8 eV.
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All signals were separated by lock-in amplifiers. The probe is in the liquid helium

environment, a heater is built inside the probe to better control the temperature.

3.4 Project specific details: Sample growth, mea-

surements and complementary calculations

3.4.1 FexTaS2 (x = 0, 1/4, 1/3) and CrxNbS2 (x = 0 and

1/3)

3.4.1.1 Single crystals growth

High quality single crystals of FexTaS2 (x =1/4 and 1/3) were grown by chemical

vapor transport methods. The Fe concentration was verified by magnetization and

TEM [6,171]. Cr1/3NbS2 was grown by chemical vapor transport using iodine as the

transport agent [11, 172]. Energy dispersive x-ray spectroscopy results along with

a measurement of the magnetic transition temperature were used determine the Cr

stoichiometry [11, 171, 173, 174]. For comparison with the intercalated materials,

single crystals of 2H-TaS2 and 2H-NbS2 were grown by chemical vapor transport

techniques and acquired from HQ graphene, Inc.

3.4.1.2 Spectroscopic measurements

We combined optical spectroscopy and inelastic Raman scattering measurements to

reveal the electronic and vibrational properties of these crystals. For the optical

spectroscopic method, we measured ab-plane reflectance using a series of spectrome-

ters (4 meV-6.5 eV; 4.2-300 K) and employed a Kramers-Kronig analysis to extract

the optical constants. Here, we are primarily interested in the optical conductivity

(σ1(E)) and the oscillator strength sum rule on σ1(E). For the data analysis, we
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employed traditional peak fitting techniques.

Raman scattering measurements (λexcit = 476, 532 nm; ≤3.2 mW; averaged 45

s integrations; 4.2 - 300 K) were performed in the back-scattering geometry using a

Labram HR Evolution spectrometer. An open flow cryostat provided temperature

control.

3.4.1.3 Electronic structures calculations

Electronic structure calculations was performed using Density Functional Theory

provided by Atomistix Toolkit [175,176]. Using a spin-polarized generalized gradient

approach with an on-site potential (SGGA+U), the electronic structure, density of

states (DOS), and electron density were determined [177]. The onsite potential

localizes the Fe electrons that contribute to the overall magnetic moment; we find

3.8 µB for the Fe moment.

3.4.1.4 Lattice dynamics calculations

Phonon calculations were performed utilizing density functional theory (DFT) pro-

vided with QuantumATK [178–180]. Given the number of atoms in the interca-

lated unit cells, we employed a local density approximation (LDA) method to reduce

computational time with an overall 3×3×3 k-point sampling on the same crystal

structures used in Ref. 114. For the dynamical matrix calculations, we used 3×3×3

repetitions of the various unit cells, which produced supercells consisting of 27 unit

cells with a total of 162 to 702 atoms depending on the system resulting in about

20,000 computational hours. In our analysis, we calculated the phonon density of

states (DOS) and vibrational modes for comparison with and assignment of the ex-

perimental features.

Figure 3.17 shows the calculated phonon DOS for TaS2, Fe1/4TaS2, and Fe1/3TaS2.
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Figure 3.17: The calculated phonon DOS for TaS2 (black), Fe1/4TaS2 (red), and
Fe1/3TaS2 (blue). The curves have been offset for clarity.
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The phonon calculations were performed with 5×5×2 k-point sampling. These calcu-

lations help provide a general understanding for the assignment of the lattice modes.

The peaks between 100 and 175 cm−1 in the x = 1/4 and 1/3 compounds attract our

attention because they are related to the intercalated Fe monolayer excitations. This

assignment is based on the fact that no modes are predicted in the parent compound

at this frequency range. For a single unit cell of FexTaS2, the metal monolayers

will have either in- or out-of-phase planar motion. The Raman-active out-of-phase

excitations are (both in- and out-of-plane) of interest here because these motions

provide an overall change in polarizability.

3.4.2 (LuFeO3)m/(LuFe2O4)1 superlattices (m = 3, 7, 9) and

two end members (LuFeO3 and LuFe2O4)

3.4.2.1 Film growth and characterization of (LuFeO3)m/(LuFe2O4)1

(LuFeO3)m/(LuFe2O4)1 (m = 3, 7 and 9) superlattices thin films were grown using

reactive-oxide molecular-beam epitaxy on (111) (ZrO2)0.905(Y2O3)0.095 substrates [1].

Lutetium and iron were evaporated from elemental sources and oxidized by a mixture

of ≈2% O3 and O2. The oxygen partial pressure was varied during the deposition

to access the different iron valence states in LuFe2O4 (Fe2.5+) and LuFeO3 (Fe3+).

The (LuFeO3)m/(LuFe2O4)1 (m = 3, 7 and 9) superlattices were grown as part

of a full series of (LuFeO3)m/(LuFe2O4)n thin films to demonstrate consistent and

reproducible trends in the ferroelectric and magnetic properties; characterization

of the identical (LuFeO3)3/(LuFe2O4)1 film presented here by x-ray diffraction and

bulk SQUID magnetometry is presented in Ref. 1. The (3, 1), (7, 1) and (9, 1)

superlattices as well as the two end member films of LuFeO3 and LuFe2O4 were

grown to a consistent number of iron layers to optimize the optical density and

sensitivity for the transmission mode magnetic circular dichroism measurements.
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Cross-sectional TEM specimens were prepared using an FEI Strata 400 Focused Ion

Beam with a final milling step of 2 keV to reduce surface damage. High-resolution

HAADF-STEM images were acquired on an aberration-corrected 300 keV FEI Titan

Themis with a probe convergence semi-angle of 30 mrad.

3.4.2.2 Fe valence in the (LuFeO3)3/(LuFe2O4)1 superlattices

The Fe valence states are the key to understand the electronic properties of the

(LuFeO3)m/(LuFe2O4)1 superlattices. In prior work, the Fe valence in the LuFeO3

and LuFe2O4 parent compounds was studied. Single phase LuFeO3 films were grown

by molecular-beam epitaxy and the effect of stoichiometry on the magnetic proper-

ties were investigated [16]. Using the phase-pure samples, Fe3+ in LuFeO3 samples

is demonstrated by EELS. Annealing the samples in ozone post-synthesis did not

change the observed valence or other properties, further suggesting that the synthe-

sized samples in this dissertation were fully oxidized. In addition, excess Fe in these

films tends to accumulate as Fe3O4 precipitates (Fe2.67+) which are readily observed

by magnetometry, AFM, and TEM imaging. The superlattice films used for mag-

netic circular dichroism spectroscopy, presented in this dissertation, are free of these

Fe3O4 inclusions as well.

The Fe valence in the LuFe2O4 end member is also explored by EELS [181]. While

an average Fe+2.5 valence is observed, discrete Fe3+ and Fe2+ states from a charge

ordering pattern were unable to be identified. This could be due to instrumental

limitations, for instance, performing a room temperature measurement during which

the electron beam averages through a column of Fe atoms. This measurement was,

however, in contrast to other prior work [34] which found discrete charge-ordering.

Nevertheless, the samples in this dissertation are consistent with a bulk valence of

Fe2.5+.
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The Fe3+ valence in the LuFeO3 layer in the (LuFeO3)m/(LuFe2O4)1 superlattices

is also confirmed by EELS. The iron valence in the LuFe2O4 layer is slightly different

than the expected 2.5+. The origin of this effect is related to the different charge-

ordering states. Prior DFT models suggest that there should be a small amount of

Fe2+ present in the LuFeO3 layers in the superlattices as a result of the ferroelectric

domain walls [1, 7]. Those charged domain walls are due to the spontaneous charge

transfer from the Fe2+ site in the LuFe2O4 layer to the Fe3+ site in the LuFeO3

layer, which causes a symmetric/asymmetric Lu-layer distortion at the LuFeO3 -

LuFe2O4 interface and changes the polarization inside the Fe bilayers [1, 7]. This

result in several nearly degenerate charge-ordered states in the superlattices. The

charge transferred to the domain wall should be approximately 0.1 e-, yielding a net

valence of 2.9+ if it were to be accumulated on a single Fe site.

We can place bounds on the likely fraction of Fe2+ in the LuFeO3 layers by

examining the candidate domain wall structure in the self-doped charge-ordering

state reported in Ref. 1. Assuming that 0.1 e− is transferred to only the middle

Fe layer in LuFeO3 - as prior theoretical model suggests - we find a maximum Fe2+

fraction of 3%.

Oxygen defects can also be present in films of this type, particularly in the

LuFe2O4 layer that hosts the magnetism. There is not a good lattice match for

LuFeO3, so while the samples are phase pure and oriented, there are threading dislo-

cations and similar types of structural defects. Similar dislocations are also present

in the LuFeO3 and LuFe2O4 parent compounds in approximately the same concen-

tration. Prior works reported the magnetic moment from these defects is at least an

order of magnitude smaller than that of the host compound [16, 22]. We therefore

conclude that the magnetic circular dichroic signal from these defects is extremely

weak.
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3.4.2.3 Optical spectroscopy

We measured the ab-plane transmittance of the (3, 1), (7, 1) and (9, 1) superlattices,

the LuFeO3 and LuFe2O4 end members, as well as the blank substrate using a λ-900

grating spectrometer covering the energy range from 1 - 6 eV. The linear absorption

spectrum is calculated from measured transmittance as α(E) = −1
d

ln(T (E)), where

T (E) is the measured transmittance as a function of energy E and d is the sample

thickness. The absolute absorption of (3, 1), (7, 1) and (9, 1) superlattices as well

as the end members were determined by subtracting the response of the substrate.

Because the optical density of the films was optimized for magnetic circular dichroism

spectroscopy rather than linear absorption, the excitations are not as pronounced as

in prior work [21, 182]. An open flow cryostat provided temperature control (4.2 -

300 K).

3.4.2.4 Magnetic circular dichroism spectroscopy

We measured the dichroic response of the superlattices (m = 3, 7 and 9), the LuFeO3

and LuFe2O4 end members and the (ZrO2)0.905(Y2O3)0.095 substrate between 0.8 and

2.8 eV. This is the energy window where our films transmit light. It is also the energy

window where the most important excitations occur [21, 182]. These experiments

were performed at the National High Magnetic Field Laboratory using the 25 T split

helix magnet [170] in Faraday geometry along with a 240 W Xe lamp and a 0.25

m monochromator. We measured the difference in transmittance between left- and

right-circularly polarized light at various magnetic fields and converted the result to

absorbance difference as discussed in detail below. Thus, the dichroic spectrum is the

difference in absorption between left- and right-circularly polarized light. A chopper

was employed to increase the signal to noise ratio at a constant frequency, followed

by a linear polarizer that was set to 45◦. A photoelastic modulator was placed after
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the linear polarizer to convert the linearly polarized light into left or right circular

polarized light periodically at a constant time interval δ(t) = λ/4 sin(ωt). We did

not need to keep the phase information, so an optical fiber was used to collect the

light and route it to the detector. All signals were separated by lock-in amplifiers.

The field sequence was chosen based upon the needed resolution, always within the

+25 T → 0− T → -25 T → 0+ T → +25 T run pattern. The positive or negative

sign of the magnetic field corresponds to the magnetic field direction and is parallel

or antiparallel to the light propagation direction, respectively. The 0− and 0+ are

both zero field data; the sign denotes the sweep direction. Moreover, a training loop

with this pattern was performed before each data collection run. The phase of the

lock-in was set at full field. Magnetic circular dichroism spectra were taken at several

different temperatures - from approximately 18 to 157 K for the (3, 1) and (7, 1)

superlattices. For the (9, 1) superlattice, the temperature range was successfully

increased to 218 K by adding an extra heater in the probe. Even so, we could not

heat above this temperature.

3.4.2.5 Magnetic circular dichroism data treatment

In this dissertation, we report the magnetic circular dichroism spectra in two differ-

ent ways: as an absolute ∆αMCD for each superlattice or one that is normalized by

the number of repeat units (which is just ∆αMCD/N). Here, N is the number of

repeat units for the superlattices or end members. The latter rendering allows com-

parison of interface effects. Substrate correction to the magnetic circular dichroism

spectrum is also important. As shown in the later chapters, the MCD spectrum of

the (ZrO2)0.905(Y2O3)0.095 substrate is not zero because of the weak ferromagnetism

induced from the defects [183]. We therefore subtracted it from the dichroic response

of the superlattices to obtain the true ∆αMCD (or ∆αMCD per repeat unit).
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The magnetic circular dichroism spectra are obtained using the signal from the

lockin referenced to the photoelastic modulator divided by the signal from the lockin

referenced to the chopper. The chopper frequency is set to 217 Hz to improve the sig-

nal to noise ratio. There is, however, still some magnetic field dependent background

signal in the raw data (including the natural circular dichroism and the signal due to

the drift of the probe), which dramatically affects the data quality when the dichroic

signal from the sample is low - for instance in a non-magnetic or antiferromagnetic

material. To reveal the pure magnetic circular dichroism spectrum (∆αMCD), the

field-induced background signal (∆αbackground) was subtracted from the total spec-

trum (∆αtotal) as: ∆αMCD = ∆αtotal - ∆αbackground. At a given field H, we isolate

∆αbackground by averaging the positive and negative signals of the same field mag-

nitude. This is because the ∆αbackground for both the positive and negative fields is

only dependent on the intensity (and not the sign). In contrast, ∆αMCD depends on

both the sign and the intensity of the magnetic field - making it an odd function. As

a result, at the field of interest, the following relations should apply:

∆αMCD =
1

2
× (∆α+H −∆α−H) (3.82)

∆αbackground =
1

2
× (∆α+H + ∆α−H), (3.83)

where ∆α±H is the raw MCD signal from the measurement at a positive or negative

magnetic field H, respectively. These equations indicate the pure MCD signal from

the sample should be the average of the difference between the positive and negative

fields. This method of analysis was applied to the (3, 1), (7, 1) and (9, 1) superlattices

as well as to the spectra of the two end members.
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3.4.2.6 Extracting the coercive field and interface response from the

dichroic spectra

There are two aspects of the data treatment that deserve special mention. The first

is the constant energy cuts of the MCD data. The second is the manner in which we

extract the interface spectra. Constant energy cuts of ∆αMCD were used to reveal the

behaviour of specific Fe centres and how the excitations of these centres contribute

to the overall magnetic response. By taking fixed energy cuts of the dichroic spectra

over the full +25 T → 0− T → -25 T → 0+ T → +25 T data set, we can generate

optical hysteresis loops corresponding to the excitation of interest. For instance,

cuts at 1.33 eV probe the Fe2+ → Fe3+ charge-transfer excitation in the spin-down

channel and the hysteresis loop generated by these iron centres. We can extract a

site-specific value of the coercive field from this type of optical hysteresis loop.

We also sought to isolate the interface response for each of the (LuFeO3)m/(LuFe2O4)1

superlattices (m = 3, 7 and 9). This is important because high-temperature mag-

netism emanates from strain and rumpling at the interface. We could not, however,

compare the measured MCD spectra directly because, even though each of the films

were specifically designed to have a consistent number of Fe layers. This is because

they have a different number of interfaces. To obviate this problem, we normalized

the spectra by the number of repeat units. The MCD spectra per repeat unit is given

by:

∆α(E)per−repeat =
∆α(E)MCD

N
, (3.84)

where N is the number of repeat units. This quantity contains the information about

the interface that we seek, but the response of the LuFeO3 and LuFe2O4 layers has to

be eliminated in order to uncover it. To estimate the effect of the different LuFeO3

and LuFe2O4 layers in the absence of the interfaces, we created a composite spectrum

and subtracted this quantity from the measured MCD spectrum per repeat unit. We
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construct the composite spectrum of a hypothetical superlattice as:

∆αcomposite = m× ∆αLuFeO3

N
+

∆αLuFe2O4

N
, (3.85)

where m = 3, 7 and 9. As mentioned above, ∆αInterface = ∆αMeasured−∆αComposite

on a “per repeat unit” basis. This process is discussed in detail in Chapter 6.

3.4.2.7 First-principles electronic structure theory

Density functional theory + U (DFT + U) calculations were performed using the

plane augmented wave method (PAW) as implemented in the Vienna Ab-Initio Pack-

age (VASP), and selecting the Perdew-Burke-Ernzerhof form of exchange correlation

functional (PBE). Lu 4f states were considered in the core and we set U = 4.5 eV

and JH = 0.95 eV for the Fe 3d states. Density of states calculations (DOS) were

performed on the relaxed (LuFeO3)3/(LuFe2O4)1 superlattice exhibiting a 2:1 ratio

between Fe3+ and Fe2+ charges in each monolayer of the LuFe2O4 block. Specifically,

in the Fe3+ - Fe3+ - Fe2+ layer of the LuFe2O4 block, the Fe3+ centers are anti-parallel

to each other; one of the Fe3+ spins is up, and the other is down. The Fe2+’s are

in different layers and align ferromagnetically. The details of this structure which

was found to be the lowest energy configuration among different charge orders were

previously described in Ref 1. The DOS were calculated with a 4×4×2 k-point mesh

and a kinetic energy cut-off of 500 eV. In order to probe the robustness of our results

with respect to U , we also performed our calculations for a larger value, e.g., U=5.5

eV. This introduces a global shift in the states above and below the Fermi level but

leaves the main features of the DOS unaltered. This type of change in the value of

U does not impact our transition assignments.
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3.4.2.8 Absorption and magnetic circular dichroism spectra calculation

based on different charge-ordering patterns

The dichroic response can be modeled using the calculated matrix elements of the

optical conductivity tensor as [165,166]:

∆αMCD ≈
dω

2c
=(

↔
n+ −

↔
n−) ≈ 2πd

c
=[

↔
σxy

(1 + ı4π
ω

↔
σxx)1/2

]. (3.86)

Here,
↔
n± = (

↔
εxx ±

↔
εxy)

1/2 is the refractive index of right or left circularly polarized

(RCP or LCP) light arising from the dielectric function ε, d is the film thickness,

and c is the speed of light. The theoretical predictions for both the parent com-

pounds and the (3, 1) superlattice were made based on this equation. The dielectric

functions were calculated using exact diagonalization as implemented in VASP. The

theoretically predicted magnetic circular dichroism spectra were calculated based

on the predicted density of states of different charge-ordering patterns in LuFe2O4

layers. The spin configuration considered in each case corresponds to the ferrimag-

netic collinear arrangement of spins obtained from direct calculation of the magnetic

ground state. They are mostly characterized by a ferromagnetic alignment of the

Fe2+ spins and an antiferromagnetic alignment of the Fe3+ ones. The magnetic

dichroism spectrum of the LuFeO3 was computed considering the non-collinear A2

magnetic phase, which has been determined to be the magnetic ground state for this

system and corresponds to a 120◦ angle in-plane (with a small tilt in the z-direction)

arrangement of the spins within the Fe-monolayers in LuFeO3. [17] Because LuFeO3

(where the spins form a 120◦ non-collinear structure) is expected to provide a smaller

contribution to ∆α(E) than the LuFe2O4 layer (chapter 6), ∆α(E)MCD of the two

candidate charge-ordering models considering collinear spin structures in the LuFeO3

layer are computed.
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Chapter 4

Electronic chirality in the metallic

ferromagnet Fe1/3TaS2

4.1 Layered free carrier response

Figure 4.1(a,b) displays the reflectance and optical conductivity of Fe1/4TaS2 and

Fe1/3TaS2 compared with that of 2H-TaS2 [79]. Intercalation dramatically changes

the character of the optical conductivity. The trend is non-monotonic, with the

Drude response in the x=1/3 system being more robust than for x=1/4. Although

this family of transition metal dichalcogenides is metallic, there are several small

structures between 10 and 40 meV in the x=1/3 compound that are not completely

screened. They are present at 300 K but much more evident at low temperature [Fig.

4.1 (c,d)]. The energy scale of these features is consistent with assignment as either

phonons or electronic excitations between spin split bands. Temperature effects are

overall modest.

Figure 4.1 (e) displays a close-up view of the Drude-Lorenz fit to the optical

conductivity of Fe1/3TaS2. Two Drude functions are needed to capture the response.

The two-component nature of the free carrier behavior is due to the superposition
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Figure 4.1: (a) Reflectance of Fe1/4TaS2, Fe1/3TaS2, and 2H-TaS2. The 2H-TaS2

data is reproduced from Ref. 79. Inset: close-up view of the low energy response.
(b) Optical conductivity of these materials. Literature values of the dc conductivity
[184–186] are also plotted; σ1(E) extrapolates to these values reasonably well. (c)
Reflectance of Fe1/3TaS2 at 300 and 7 K. (d) Optical conductivity of the x=1/3
material at 300 and 7 K. Inset displays a close-up view of low energy response. (e)
Close-up view of the two Drude oscillators needed to fit the response of Fe1/3TaS2.
(f) Oscillator strength sum rule for the x=0, 1/4, and 1/3 compounds. (g) Drude-
Lorentz fit of the localized excitations in Fe1/3TaS2. (h) Optical conductivity of
Fe1/4TaS2 and Fe1/3TaS2 highlighting the difference in the localized excitations.
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of Fe and TaS2 layer conductivities. The former has only about 1% of the oscillator

strength of the latter. Compared to 2H-TaS2, intercalation at the x=1/3 level reduces

the oscillator strength associated with the TaS2 slab by approximately 40%, the

plasma frequency by 15%, and the relaxation time by 35% [Table 4.1]. These trends

quantify the fact that the TaS2 layers are well isolated between Fe sheets. The Drude

associated with the Fe layer is much narrower than that deriving from the Ta bands

(which so prominently cross the Fermi surface).

A similar situation arises in Fe1/4TaS2 where fits to the optical response require

two Drude oscillators. The metallic character is weaker than in the x=1/3 system

due to a different degree of mixing of the hybridized Ta + Fe d bands crossing the

Fermi level. The Fe Drude is extremely narrow because the distance between Fe

centers is quite large (6.614 Å for x=1/4 vs. 5.737 Å for x=1/3), an effect that is

evident in the charge density patterns. The lower density of atomic centers in the Fe

sheet of the x=1/4 material reduces overlap and increases the relaxation time [Table

4.1]. An oscillator strength analysis [Fig. 4.1 (f)] provides additional evidence for a

narrow Drude even though with phonons present in the vicinity.

Turning our attention to the higher energy portion of the spectra, the pattern of

well-separated on-site and charge transfer excitations in the x=1/4 material and the

superimposed set of features in the x=1/3 system seem dramatically different [Fig.

4.1 (h)]. Closer examination, however, reveals that the localized and charge transfer

excitations reflect the trend in the Fe levels. In the x=1/4 system, we assign the band

centered at 0.7 eV as a minority channel Ta d→ Ta d excitation and those at 2.0, and

2.6 eV as Ta d→ Fe d charge transfer excitations in the spin-down channel. The 3.2

eV peak is assigned to a minority channel Fe d → Fe d excitations. Four excitations

also appear in the spectrum of the x=1/3 material, but they are clustered together

at 1.2, 1.6, 2.2, and 3 eV [Fig. 4.1 (g)], and the assignment changes somewhat.
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Table 4.1: Drude parameters of FexTaS2 (x=0, 1/4, 1/3) obtained from fits to the
optical conductivity at 300 K. Error bars on the fit parameters are on the order of
1%, with the exception of the very narrow Fe Drude in the x=1/4 material, where
the error bars are on the order of 5%.

Materials Oscillator strength Plasma freq Relaxation time
(eV2) (eV) (s)

2H-TaS2 0.18 1.19 2.5×10−14

Fe1/4TaS2

Fe Drude 0.37×10−3 0.02 3.5×10−12

TaS2 Drude 0.038 0.66 1.3×10−14

Fe1/3TaS2

Fe Drude 1.78×10−3 0.24 7.5×10−13

TaS2 Drude 0.11 1.02 1.6×10−14
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These excitations are superimposed at overall higher energy because the Fe bands

have moved up in energy and are significantly more disperse compared to those in

the x=1/4 system. This allows the Fe levels to hybridize with the Ta bands around

2 eV. There is also a band centered near 5.3 eV in both materials. In 2H-TaS2,

it is assigned as a Ta 5dz2 conduction band to S 3p valence band excitation [187].

The characterization shifts to greater d-band contributions in the x=1/4 and 1/3

systems.

4.2 Electronic signatures of the chirality

Figure 4.2 displays the calculated electronic band structure and projected density

of states for the three systems of interest. We used this band structure to assign

all of the optical excitations in these materials. Where comparable, our findings are

in good agreement with prior work [81, 188, 189]. In our analysis of 2H-TaS2, there

exist two distinct Ta-derived bands crossing the Fermi level [Fig. 4.2(a)] that are

characteristic of Dirac lines [190]. These bands make the system metallic and produce

excitations to the bands near 3.5 eV. These aspects of the electronic structure remain

recognizable even with the addition of Fe and hybridization with Fe-related bands.

Electron and hole pockets are predicted at the M- and K-points, respectively.

Introduction of an atomically thin layer of Fe into the van der Waals gap modifies

the electronic structure profoundly. Our calculations employ a Hubbard U (similar

to Ref. [189]) which acts to localize the Fe bands, leaving only a remnant of Fe

density at the Fermi level. Localization is thus responsible for the weak metallicity

of the Fe layer in the x=1/4 system (evidenced by small but distinct second Drude

oscillator in the inset of Fig. 4.1 (b)). When Fe density increases (x=1/3), orbital

overlap is improved, and the localized Fe bands are swept upward. This gives greater

metallicity to the Fe layer because density at the Fermi surface is larger and, at the
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x=0

x=1/4

x=1/3

Figure 4.2: Calculated electronic band structure and DOS (total, partial, and local)
for (a) 2H-TaS2, (b) Fe1/4TaS2 , and (c) Fe1/3TaS2. The black and red bands in
the electronic structure and the solid and dashed lines in the DOS plots denote the
spin-up and spin-down channels, respectively.
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same time, raises the energy of the localized Fe bands which allows them to hybridize

with the Ta-derived bands. This process strengthens the Fe-derived Drude and makes

the localized excitations seem to disappear. The persistence of the Dirac lines pro-

duced by the TaS2 slabs at high symmetry points demonstrates that these modifica-

tions are due to differences in overall electronic behavior rather than intercalation-

induced structural changes.

To further examine the connection between symmetry and electronic structure,

we projected the charge density onto the plane defined by the Fe centers [Fig. 2.23

(d-f)]. With these renderings, we see that as the Fe concentration increases, the

overlap between Fe sites becomes stronger and more direct, and at the 1/3 level, the

Fe centers even move out of the way of the S ions allowing for more direct orbital

overlap. Thus, while the dominant Drude response is connected with free carriers

in the Ta bands, the Fe ions introduce a second metallic signature - consistent with

our spectroscopic findings. Remarkably, these contour plots also reveal a progression

from a triangular (x=0) to Kagomé (x=1/4) to honeycomb (x=1/3) charge density

pattern [Fig. 2.23 (d-f)]. The latter is (ironically) indicative of increased symmetry

in the Fe plane - even though the overall crystal symmetry is reduced.

Another consequence of the evolving charge density pattern can be seen by com-

paring the electronic structure at the M and K symmetry points. In the centrosym-

metric case [Fig. 4.2 (a, b)], the M-point sports an electron pocket whereas the

K-point has a hole pocket. However, in the non-centrosymmetric case [Fig. 4.2 (c)],

both locations host electron pockets. This hole to electron pocket crossover at the

K-point, while certainly not simple, may be observable in a Hall measurement and

could have important implications for the field of valleytronics [191]. We note that

the crossover to electron pockets in Fe1/3TaS2 is not just due to increased carrier

density from the Fe centers (although additional density does accumulate at the K-
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point) but rather due to the manner in which Fe breaks crystal symmetry. Therefore,

a gating experiment that merely raises and lowers the Fermi energy against a rigid

band structure should not show this effect.

Finally, we point out that broken inversion symmetry in the x=1/3 material is

predicted to lift the spin degeneracy of the electronic bands near the Fermi surface

[Fig. 4.3 (a)]. The energy scale of this splitting is on the order of tens of meV,

consistent with the aforementioned features at 22 and 38 meV in the optical con-

ductivity. Figure 4.3 (b) displays a close-up view of these structures. Although the

excitation energies are in line with what might be expected for electronic band split-

ting, assignment is not straightforward because they are also consistent with phonon

positions [192]. As shown in Fig. 4.3 (b, c), decreasing temperature red shifts the 22

and 38 meV structures and increases the oscillator strength. These trends are also

apparent in the raw reflectance spectra (inset, Fig. 4.1 (c)). Both trends differ from

what is expected for phonons on a conducting background [193]. Moreover, we do

not anticipate significant differences in phonon effects between the x=1/4 and 1/3

materials, which again argues against a phonon interpretation. Returning to our pic-

ture of low energy spin split electronic excitations, there are several bands crossing

the Fermi energy with vertical band-to-band transitions in the correct energy range

[Fig. 4.3 (a)]. Recent models of Rashba splitting in BiTeI [194] suggest that ther-

mal expansion and electron-phonon coupling effects combine to reduce the effective

Rashba parameter and smear the gap(s) at elevated temperatures. Of course, while

the 2H- structures technically lack inversion symmetry, they do have a vertical mirror

plane, so we do not anticipate the same kind of strong inversion-breaking Rashba

effects that are observed in BiTeI [195]. Additional evidence that the 22 and 38 meV

excitations may be electronic in origin comes from the x=1/4 system where these

features are not observed.
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Figure 4.3: (a) Close up view of the band structure of Fe1/3TaS2 between the Γ and
K-points. Inset: low energy excitations on the order of a few tens of meV due to
the band splitting. (b) Temperature dependence of the optical conductivity of the
x=1/3 materials in the vicinity of the 22 and 38 meV excitations. (c) Peak position
and oscillator strength of the 22 meV feature as a function of temperature.
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Chapter 5

Excitations of intercalated metal

monolayers in transition metal

dichalcogenides

Metal monolayers have a long and fascinating history [196]. Whether due to sur-

face adsorption [197, 198] or intercalation [199], these structures display distinc-

tive electronic and magnetic properties [118, 200] and play key roles in photovoltaic

cells [201], semiconductor surfaces [202], and catalysts for batteries [203]. The im-

portance of monolayer interactions has been demonstrated in metal intercalated

graphite [204–206] and bilayer graphene [207, 208], both of which reveal supercon-

ductivity. Metal centers can also be intercalated into other van der Waals materials

such as transition metal dichalcogenides [118, 209, 210], forming different patterns

within the gap depending upon the concentration. When incorporated in this man-

ner, metal monolayers support high temperature magnetic ordering [10,13,113], novel

metallicity that is distinct from that of the parent compound [79, 114], and super-

conductivity [115, 211, 212]. Intercalated metal monolayers are also responsible for
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the development of different types of domain walls in layered chalcogenides [6]. The

FexTaS2 family of materials [6] attracted our attention as a platform with which to

reveal the fundamental excitations of the atomically-thin network of metal atoms

embedded within the van der Waals gap.

2H-TaS2 is well-known to display a P63/mmc space group [125]. The crystal

structure consists of TaS2 slabs separated by a van der Waals gap and stacked to-

gether along the c-axes. Within a slab, each Ta center is surrounded by a trigonal

prism of S anions. The structures of FexTaS2 (x = 1/4 and 1/3) are shown in

Fig. 5.1(a,b). It is well established that the transition metal dichalcogenide layers

have strong covalent bonding, leaving the Fe atoms (which form a single metallic

layer within the van der Waals gap) weakly bound. We refer to these ultra-thin

well-ordered metal layers as “monolayers” or “atomically thin layers of metal atoms

sandwiched between chalcogenide slabs” but of course, they are not isolated, free-

standing monolayers in the sense of graphene or other exfoliated systems. They

are embedded in the crystal itself - a consequence of the intercalation process. As

shown in Fig. 5.1(a,b), the x = 1/4 system is centrosymmetric whereas the x = 1/3

material is non-centrosymmetric and chiral [6]. The embedded Fe monolayer layer

brings a significant, distinct density of states to the Fermi level [81, 188, 189] and a

narrow free-carrier response to the optical properties (in addition to the Drude that

emanates from 2H-TaS2 itself) [114]. Chirality in the x = 1/3 member manifests in

(i) the nature of the hole/electron pockets, (ii) electron density patterns in the Fe

plane, and (iii) the formation of Z2 × Z3 structural domains with Z6 vortices [6,114].

The entire family of FexTaS2 materials is metallic. As demonstrated by prior op-

tical properties work [114], metallic character precludes observation of odd-symmetry

infrared-active phonons across the various magnetic transitions due to screening by

the free carrier response. As a result, the local lattice distortions in this class of
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Figure 5.1: (a) Fe1/4TaS2 displays a centrosymmetric P63/mmc space group [6]. The
Fe layers have a 2a × 2a superstructure in the plane and an AA-type stacking pat-
tern along the c-axis. (b) Non-centrosymmetric, chiral structure of Fe1/3TaS2 and

Cr1/3NbS2 (space group P6322) [6,11]. The Fe layers have a
√

3a ×
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3a superstruc-
ture in the plane and an AB-type stacking pattern along c. (c) Crystal structure of
RbFe(SO4)2 at room temperature (space group P 3̄) [213]. This system also has an
Fe monolayer with AA-type stacking.
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materials - particularly those that involve the metal monolayer - are highly under-

explored. This is problematic because, as we shall discuss below, a number of prop-

erties and mechanisms depend upon phonons and their behavior [214]. We there-

fore turn to Raman scattering spectroscopy to reveal the even-symmetry vibrational

modes and to search for evidence of monolayer excitations. As a reminder, the selec-

tion rules of infrared and Raman scattering spectroscopies determine whether odd or

even symmetry vibrational modes are sampled. It is the site-specific nature of these

techniques that allows us to extract the signature of the metal monolayer from the

complex mode pattern in these materials.

In order to explore the vibrational properties of intercalated chalcogenides, we

measured the Raman response of FexTaS2 (x = 0, 1/4, and 1/3) and compared our

findings with complementary lattice dynamics calculations. For the first time, we

identify a set of characteristic excitations of the embedded Fe monolayer that have

both in- and out-of-plane components. These in- and out-of-plane vibrations of the

intercalated Fe monolayer reveal frequency, linewidth, and intensity trends as well as

spin-phonon coupling. In order to test whether similar excitations appear in other

systems with weakly bound layers, we extended our work to include CrxNbS2 (x = 0,

1/3) [10, 116,215–218] and RbFe(SO4)2 [213,219,220] which have comparable metal

ordering patterns inside the van der Waals gap [Fig. 5.1(b,c)]. In each case, we find

that the metal monolayer is moving in a coherent fashion - not just filling space,

adding/subtracting, or compensating charge. These results enable the development

of structure-property relations and modeling of frequency vs. mass ratio effects. We

discuss the consequences of in- and out-of-plane metal monolayer excitations on the

properties of these materials as well.
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5.1 Localized vibrational modes induced by Fe in-

tercalation

Figure 5.2(a) displays the Raman spectra of the FexTaS2 family of materials at room

temperature. We begin by assigning the modes of the parent compound - a process

that also isolates excitations that emanate from the intercalated metal layer. In line

with prior work on 2H-TaS2, we assign peaks at 240, 308, and 380 cm−1 as E1g, E2g,

and A1g modes, respectively [Table. 5.1] [89,98,192,221,222]. We do not observe the

26 cm−1 E2g mode due to the use of a cut-off filter. We assign the broad band centered

near 180 cm−1 as a two-phonon mode [89, 98, 100]. It arises from the persistence of

short-range charge density waves [89] and diminishes at low temperatures due to

screening [Fig. 5.3(a)]. Several other features below 110 cm−1 are activated by

remnant charge density wave effects as well [Fig. 5.3(a,b)] [89, 221]. One direct way

to identify those charge density wave features is to compare the Raman spectra of

2H-TaS2 with its structural analog. Figure 5.3(c) displays the Raman response of

2H-NbS2 at 300 and 4 K for comparison. Prior literature reported that this system

does not have a charge density wave transition [223–226]. The Raman behaviors at

4 and 300 K are nearly identical except that the phonon frequencies harden at low

temperature. No new peaks emerge. This behavior confirms that symmetry breaking

in 2H-TaS2 is due to the charge density wave transition.

Next, we turn our attention to the intercalated materials [Fig. 5.2(a)]. A similar

mode pattern emanates from the transition metal dichalcogenide slabs in the x = 1/4

and 1/3 compounds, although the exact symmetry designations reflect space group

differences [Fig. 5.1]. The response below 200 cm−1 is more interesting. In the x =

1/4 compound, peaks emerge at 122 and 129 cm−1 whereas in the x = 1/3 material,

new features appear at 139 and 156 cm−1 [Fig. 5.2(b)]. Based upon our lattice
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Figure 5.2: (a) Raman spectra of the FexTaS2 family of materials (x = 0, 1/4,
and 1/3) at 300 K. (b) Close-up view of the in- and out-of-plane Fe monolayer
excitaions in Fe1/4TaS2 and Fe1/3TaS2. (c,d) Schematic view of the in- and out-of-
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Table 5.1: Raman modes of FexTaS2, along with extracted symmetries, displacement
patterns, and spin-phonon coupling constants.

material
experimental calculated

mode displacement pattern symmetry
spin-phonon coupling

(cm−1) (cm−1) constant (cm−1)

2H-TaS2

380 350-370 TaS2 out-of-plane bending A1g -
308 255-310 TaS2 in-plane bending E2g -
240 200 - 225 TaS2 twisting mode E1g -
180 - Two-phonon modes - -

- 30 - 100 TaS2 layer shifting mode E2g -

Fe1/4TaS2

389 380 - 410 TaS2 out-of-plane bending A1g 1.03
320, 346 310 - 370 TaS2 in-plane bending E2g 0.78, 0.83

234 - Two-phonon mode - -
129 120 - 140 Fe in-plane monolayer excitation E2g 1.1
122 125 - 145 Fe out-of-plane monolayer excitation A1g 0.3
110 110 - 150 TaS2 layer twisting mode E1g -0.77
43 30 - 100 TaS2 layer shifting mode E2g -

Fe1/3TaS2

393 400 - 420 TaS2 out-of-plane bending A1 -
325, 337 320 - 370 TaS2 in-plane bending E2 -0.16, 0.07

245 - Two-phonon mode - -
139 130 - 160 Fe in-plane monolayer excitation E2 -
156 160 - 180 Fe out-of-plane monolayer excitation A1 -
114 110 - 150 TaS2 layer twisting mode E1 -
46 30 - 100 TaS2 layer shifting mode E2 -
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dynamics calculations, we assign these peaks as in- and out-of-plane excitations of

the Fe monolayer [227]. We therefore find that an intercalated metal monolayer has a

unique set of excitations and a fully-identifiable pattern even though it resides inside

the van der Waals gap of a more complex material. The exact displacement pattern

is challenging to visualize, but the motion is similar to that shown in the schematics

[Fig. 5.2(c,d)].

One way to prove our assignments of the in- and out-of-plane Fe monolayer exci-

tation is to compare the Raman spectra of intercalated ones with that of the parent

compound. For the Raman spectra of the 2H-TaS2 at 300 K, we did not observe

any additional peaks between 100 and 200 cm−1 except for a two-phonon mode [Fig.

5.2(a)]. However, two new modes emerge between 110 and 150 cm−1 in 2H-TaS2

at low temperatures. These features attracted our attention because they are very

close to the proposed metal monolayer excitations at 122, 129, 139, and 156 cm−1

[Table 5.1]. However, the fact that these structures disappear above 200 K shows

that they can be attributed to charge density wave-induced symmetry-breaking [Fig.

5.3(a,b)]. This finding is in good agreement with Ref. 221. It also reaffirms our as-

signment of in- and out-of-plane monolayer excitations at room temperature in the Fe

intercalated compounds. Some lattice distortions associated with the charge density

wave persist to higher temperature due to structural instabilities and short-range

interactions [89].

Figure 5.2(b) displays a close-up view of the Fe monolayer excitations. A chalco-

genide layer twisting mode involving weak interlayer interactions between the mono-

layer and TaS2 slab is observed near 110 cm−1 as well. Although the in- and out-

of-plane metal monolayer excitations have similar frequencies, they are best distin-

guished by relative intensities. The in-plane excitation is always the most intense.

In order to understand why this is so, it is important to realize that the TaS2 slabs
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are not rigid. As a result, they interact with (and dampen) the out-of-plane exci-

tations of the metal monolayer. This effect is especially important in the x = 1/4

material and even causes the frequency of the out-of-plane excitation to shift below

that of the in-plane mode. By contrast, in-plane Fe rattling is relatively unencum-

bered by the TaS2 slabs. This leads to a higher intensity for the in-plane mode and

a weaker intensity for the out-of-plane counterpart. The out-of-plane excitation is

easy to identify in Fe1/4TaS2, but it is extremely weak in Fe1/3TaS2 [227]. We discuss

frequency trends below.

5.2 Metal monolayer excitations in related mate-

rials

In order to develop structure-property relations involving intercalated metal mono-

layer excitations, we extended these Raman scattering measurements to include sev-

eral related compounds. We begin with CrxNbS2 (x= 0 and 1/3) due to the similarity

in the crystal structure and packing pattern of the Cr monolayer. Figure 5.4(a) dis-

plays the Raman spectra of the CrxNbS2 family of materials (x = 0 and 1/3). As

expected, E1g, E2g, and A1g modes are observed in the 2H- parent compound. The

two-phonon mode is absent due to the lack of a density wave ground state. Turning

to the x = 1/3 system, in- and out-of-plane vibrational modes of the Cr network are

identified at 192 and 208 cm−1, respectively. As before, the in-plane excitation is

most intense. The out-of-plane excitation is significantly less intense compared to the

in-plane mode, and it resonates at a higher frequency. This is because, although the

out-of-plane excitation contains a small amount of slab motion, it is a less important

part of the displacement pattern in the x = 1/3 system (compared to x = 1/4). We

therefore see that metal monolayer excitations are an intrinsic part of the dynamics
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of intercalated transition metal dichalcogenides.

To further test our findings, we measured the Raman scattering response of

RbFe(SO4)2. This system has Fe monolayers sandwiched between Rb(SO4)2 slabs

with an AA-type stacking along the c-axis [Fig. 5.1(c)]. Figure 5.4(b) displays a

close-up view of the Raman spectrum of Cr1/3NbS2, Fe1/3TaS2, and RbFe(SO4)2.

Well-defined metal monolayer excitations emerge in all three compounds. The out-

of-plane Fe monolayer mode is not present in RbFe(SO4)2 - even though the in-plane

component is strong. We attribute its disappearance to the extremely narrow 2.31

Å van der Waals gap in this system [213] [Table 5.2], which quenches the out-of-plane

motion of the embedded Fe monolayer.

Figure 5.5 summarizes how the monolayer excitations scale with characteristic

distances and the metal-to-chalcogenide slab mass ratio. These parameters are sum-

marized in Table 5.2. We find that the frequencies of the in- and out-of-plane metal

monolayer excitations decrease with increasing metal-metal distance in the plane

[Fig. 5.5(a,b)]. These trends emanate from softer potentials (and weaker force con-

stants) in more weakly associated lower concentration networks. As we shall see

below, an analysis of frequency trends in terms of the mass ratio provides an even

more comprehensive framework for understanding these effects.

The in-plane metal-metal distance also impacts relative intensities of monolayer

excitations [Fig. 5.5(c)]. The intensity of the out-of-plane excitation diminishes (and

even falls to zero in RbFe(SO4)2) as the Fe network tightens and the narrower van

der Waals gap confines motion to the ab-plane. In other words, when tightly packed,

the out-of-plane motion of the metal monolayer is quenched, and the matrix element

drops to zero.
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Table 5.2: Summary of in-plane metal-metal distances, thicknesses of van der Waals
gaps, and mass ratios for the materials of interest here. The metal-metal distances
and van der Waals gap thicknesses are extracted from their structure files. [13, 188,
220] The mass ratio is defined as: c × Minterc/Mhost. Here, c is the concentration
of intercalated element, Minterc is the atomic mass of the intercalated element, and
Mhost is the atomic mass of the host elements [228].

Materials In-plane metal-metal Thickness of van Mass
distance (Å) der Waals gap (Å) ratio

Fe1/4TaS2 6.61 2.93 0.06
Fe1/3TaS2 5.73 3.07 0.08
Cr1/3NbS2 5.75 2.89 0.11

RbFe(SO4)2 4.71 2.31 0.20
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Figure 5.5: (a) Frequency of the in-plane metal monolayer excitation vs. in-plane
metal-metal distance in FexTaS2 (x = 1/4 and 1/3) and the analog materials. Results
from Cr1/3NbS2 are normalized by the mass of the transition metal center as well as
the slabs to better compare with the Fe-containing series. (b) Out-of-plane monolayer
excitations as a function of in-plane metal-metal distance. (c) Relative intensity of
the out-of-plane to in-plane rattling mode vs. in-plane metal-metal distance. (d)
In-plane frequency vs. mass ratio between the intercalated metal monolayer and the
chalcogenide slab. The red line is a fit to Eqn. 5.2. We find ωR,max = 192 cm−1 and
κ = 0.059.
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5.3 Modeling frequency vs. mass ratio effects

To examine the frequency vs. mass ratio relationship, we expanded the mode fre-

quency ωm about the mass ratio µ as:

ωm = ωm,max − κ(dωm/dµ). (5.1)

Here, ωm,max is the maximum mode frequency, and κ is an “effective” spring ratio

between the monolayer and slab. The mass ratio is defined as the ratio of metal

monolayer to the slab within the unit cell (Mm/Ms) [Table 5.2]. Assuming that κ is

constant for the mode environment, frequency is given by:

ωm = ωm,max

(
1− e−

µ
κ

)
. (5.2)

This solution fits the data in Fig. 5.5(d) very well. We extract a maximum in-

plane mode frequency of 192 cm−1 and an effective spring ratio of 0.059. Equation

5.2 also has a conceptually interesting limit impacting the growth process of these

materials. Comparing the maximum mode frequency to the data in Fig. 5.5(a), we

find that the minimum metal-metal distance is near 4.5 Å. The maximum possible

mass ratio is therefore between 0.21 and 0.25, suggesting an intercalation threshold.

Beyond this limit, interlayer interactions become comparable to intralayer inter-

actions, blurring the distinction between weakly bound metal monolayers between

chalcogenide slabs and a more standard multilayered material.

Initially, only the Fe and Cr systems were used for the fit, providing a prediction

for other similar materials. To test our model further, we included data from Ref.

229. In sodium intercalated cobalt dioxide (Na0.8CoO2), only the Na atoms in the 2b

Wyckoff site associated with clusters of three vacancies display in-plane excitations

[229]. Strikingly, the mode frequency in Na0.8CoO2 is in excellent agreement with
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the overall frequency vs. mass ratio trend [Fig. 5.5(d)]. The agreement reveals that,

for this specific type of chemical structure, the mass ratio effect is not dependent on

the different chemical and interaction environments such that they do not modify

the effective spring ratio for an intercalated metal monolayer. Although, the spring

ratio is different for the in- and out-of-plane modes. This effect is also valid for

the out-of-plane monolayer excitation where different ωm,max and κ parameters are

required to capture out-of-plane mode frequency vs. mass ratio effects.

5.4 Spin-phonon coupling in Fe1/4TaS2

In order to further explore metal monolayer excitations, we measured the Raman

response of these materials as a function of temperature. Fe1/4TaS2 is unique in that

it exhibits strong spin-phonon coupling across the magnetic ordering transition. This

coupling may be due to the robust ferromagnetic ground state and sharp coercive

field in the x = 1/4 compound. In contrast, the x = 1/3 member has frustration

due to the triangular Fe lattice and a much softer coercive field. [6,118] Figure 5.6(a)

displays a close-up view of the Raman response of Fe1/4TaS2 at three characteristic

temperatures. The rattling excitations become sharper and more well-separated with

decreasing temperature due to standard mode hardening and line width effects. The

in-plane excitation hardens most noticeably, at roughly twice the rate of the out-

of-plane mode. We also observe a TaS2 layer twisting mode nearby at 110 cm−1,

which softens at low temperatures. This effect is probably associated with a weak

interlayer interaction between the Fe monolayer and TaS2 slab.

Figure 5.6(b,c) displays frequency vs. temperature for the in- and out-of-plane

modes of the intercalated Fe monolayer in Fe1/4TaS2. We use a Boltzmann sigmoid

model to capture anharmonic and short-range interactions. [29, 230] The spectral

data deviate from the fit below the 160 K ferromagnetic ordering temperature. The
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strong frequency shift across a magnetic ordering transition is clear evidence for spin-

phonon coupling. [30,231,232] Assuming only nearest neighbor exchange interactions

in the Fe monolayer (probably interacting through the S centers on the chalcogenide

slabs), we extract the spin-phonon coupling constant as: [30,31]

ω = ω0 + λ〈Si · Sj〉. (5.3)

Here, ω0 denotes the unperturbed phonon frequency, ω is the renormalized frequency

in the presence of spin-phonon coupling, 〈Si ·Sj〉 is the spin-spin correlation function,

and λ is the spin-phonon coupling constant. To extract the coupling constant, we

assume a limiting low-temperature value of the spin-spin correlation function: 〈Si·Sj〉

= S2 = (2)2 = 4. We find λ’s for the in- and out-of-plane excitations to be 1.1 and

0.3 cm−1, respectively. In-plane coupling is thus an order of magnitude larger than

the out-of-plane effect. Spin-phonon coupling constants for other vibrational modes

in Fe1/4TaS2 are summarized in Table 5.1.

5.5 How do metal monolayer excitations influence

properties?

It is well known that rattlers in filled cavities and channels impact thermoelectricity

and ionic conductivity [229, 233–235]. In this context, a rattler consists of a weakly

bound atom with a large thermal elipsoid confined to a cavity or cage. Our situation

is different because metal monolayer excitations are coherent, and as a result, they

can change properties in completely different ways. In fact, any mechanism requiring

a highly polarizable response or peak in the dielectric constant can benefit from these

excitations. Since the collective excitations of intercalated metal monolayers act as
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highly sensitive terahertz resonators, this work may open opportunities for sensing

and flash LiDAR detection. That the in-plane mode is more intense than the majority

of chalcogenide slab-related phonons is useful for these applications.

Our structure-property relations suggest that external stimuli can tune metal

monolayer excitations. One such example is electrical switching in Fe1/3NbS2, an-

other magnetically intercalated transition metal dichalcogenide of interest as an an-

tiferromagnetic spintronic device [118]. Here, the current draws the Fe centers back

and forth, supported by the facile in-plane motion of the Fe network that we dis-

cuss in this work. Switching occurs as the field-induced motion of the ions changes

both the low-temperature magnetism and transport properties. The ability to use a

current pulse to rotate an in-plane component of the antiferromagnetic order [118]

is also interesting and potentially related to the ability of the x = 1/3 materials to

support chiral phonons [236].

Metal monolayer excitations may even influence crystal growth and microstruc-

ture. For instance, the structural Z6 vortices in chiral Co1/3NbS2 and Cr1/3TaS2 are

associated with antiphase domains with in-plane shift of intercalants, and the forma-

tion of Z6 vortices [14] likely results from an order-disorder transition of intercalants

far above room temperature. The in-plane monolayer excitation may act as a soft

mode for this type of transition.
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Chapter 6

Site-specific spectroscopic

measurement of spin and charge in

multiferroic superlattices

(LuFeO3)m/(LuFe2O4)1

Interface materials offer a means to achieve electrical control of ferrimagnetism at

room temperature as was recently demonstrated in (LuFeO3)m/(LuFe2O4)1 super-

lattices. A challenge to understanding the inner workings of these complex magne-

toelectric multiferroics is the multitude of distinct Fe centres and their associated

environments. This is because macroscopic techniques characterize average responses

rather than the role of individual iron centres. Here, we combine optical absorption,

magnetic circular dichroism and first-principles calculations to uncover the origin of

high-temperature magnetism in these superlattices and the charge-ordering pattern

in the m = 3 member. In a significant conceptual advance, interface spectra establish

how Lu-layer distortion selectively enhances the Fe2+ → Fe3+ charge-transfer contri-
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bution in the spin-up channel, strengthens the exchange interactions and increases

the Curie temperature. Comparison of predicted and measured spectra also identi-

fies a non-polar charge ordering arrangement in the LuFe2O4 layer. This site-specific

spectroscopic approach opens the door to understanding engineered materials with

multiple metal centres and strong entanglement.

6.1 Crystal structures of the LuFeO3 and LuFe2O4

end members

Figure 6.1a displays the crystal structure of h-LuFeO3 viewed along the [100] direc-

tion. Fe is in a trigonal bipyramidal environment surrounded by five oxygen atoms,

forming Fe3+ polyhedra that are corner shared by the oxygen atoms in the ab-plane.

The space group is P63cm, which is polar. This space group results from distortion

of the nonpolar P63/mmc space group with the rotations of the FeO5 polyhedra

and Lu displacement along the c-direction [237]. This breaks inversion symmetry

and allows for polarization to develop along the c-axis. LuFeO3 is thus an improper

ferroelectric [18, 237].

The other end member is LuFe2O4. The system contains Fe bilayers with both

Fe2+ and Fe3+ sites. The Fe atoms are in trigonal bipyramidal environments. Prior

studies reveal an antiferroelectric ground state [20,23] due to charge-ordering in the

Fe bilayer. Figure 6.1b displays the structure of the antiferroelectric state viewed

along the [120] direction. Charge-ordering in the A and B bilayers are mirror im-

ages, which induces opposite electric polarizations along the c-axis. This leads to

a centrosymmetric C2/m space group with no net electric polarization. Lu-layer

distortion is forbidden in this state.
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Figure 6.1: Crystal structures of the end members. a Crystal structure of
h-LuFeO3 with the P63cm space group. b Crystal structure of LuFe2O4. The light
and dark blue polyhedra represent the Fe2+ and Fe3+ site, respectively.
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6.2 Uncovering the electronic excitations of dif-

ferent Fe centres in the (3,1) superlattice

We begin with the (3, 1) superlattice because it is the most theoretically tractable.

Figure 6.2a,b displays the crystal structure highlighting the (LuFeO3)3/(LuFe2O4)1

layer pattern along with a scanning transmission electron microscope (STEM) image

of the film. Inversion symmetry in the LuFe2O4 layer is broken due to the rumpling

imposed by the adjacent LuFeO3 layers [1]. This is because the pattern of Lu-layer

distortions around the Fe double layer is asymmetric with both down/up/up and

down/up/down displacements along c. Here, d represents the size of the Lu-layer

displacement. One way to separate the role of the different metal sites - at least in

principle - is by projecting out the contribution of various layers and their Fe centres.

Figure 6.2c displays the spin-projected density of states for the Fe double layer in

LuFe2O4, the adjacent monolayer and the central monolayer in LuFeO3. The six

types of excitations (summarized in Table 6.1) provide for a site-specific analysis of

magnetism in (LuFeO3)3/(LuFe2O4)1. This is an unusual amount of complexity for

dichroic analysis of an iron-containing material. Fortunately, of these six excitations,

only three are important due to the relative size of the matrix elements. For instance,

the two charge transfer excitations are quite strong in the linear absorption and

magnetic circular dichroism because they involve Fe sites with different charges. The

on-site Fe2+ d-to-d excitation is important in the dichroic response due to the large

Fe2+ density of states in the spin-down channel [Fig. 1c]. This feature is also evident

in the optical absorption of the LuFe2O4 end member [21]. That these structures

occur in different energy regions allows us to separate closely-related Fe-containing

excitations in both the optical absorption and magnetic circular dichroism.
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[110] zone axis. Atomic number contrast shows the bright, heavy lutetium atomic
rows layered with the less bright iron atomic rows. The scale bar is the same for
all images. Trends in the ferrimagnetic TC and Lu-layer distortion (which increases
with the number of LuFeO3 layers) are also shown. c Spin-projected density of
states of the Fe double layer in LuFe2O4, an adjacent monolayer of LuFeO3 and the
central LuFeO3 monolayer. These calculations were performed using the self-doped
charge-ordering model as discussed in the text [Fig. 6.8b]. The Fe double-layer is
non-polar, and the Lu-layer displacement is asymmetric with both down/up/up and
down/up/down distortion patterns around the Fe bilayer. The Fe3+ and Fe2+ states
are indicated with dark and light blue, respectively. The arrows denote different
types of excitations.
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Table 6.1: Summary of different types of Fe excitations in the (3, 1) super-
lattice. The first three rows indicate the most important excitations. The energy
range for our measurement is from 0.8-2.8 eV.

Type of Excitation Layer in the Energy range Intensity
excitation channel superlattice (eV) (∆α(E), α(E))

Fe2+ → Fe3+ charge transfer spin-down LuFe2O4 1 - 2.4 strong, strong
Fe2+ → Fe3+ charge transfer spin-up LuFe2O4 2 - 2.8 strong, strong

Fe2+ d → d on-site spin-down LuFe2O4 2.5 - 2.8 medium, medium
Fe3+ d → d on-site spin-up LuFe2O4 2 - 2.8 weak, weak
Fe3+ d → d on-site spin-down LuFe2O4 2 - 2.8 weak, weak
Fe3+ d → d on-site spin-down LuFeO3 1 - 2.8 weak, weak
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Figure 6.3a,b summarizes the spectroscopic response of (LuFeO3)3/(LuFe2O4)1.

The challenge that arises immediately - even upon cursory inspection of the dichroic

spectra - is how to distinguish the different Fe contributions. One path forward is to

employ the linear absorption spectrum, α(E), along with assignments from electronic

structure calculations [1, 16, 17, 21, 182, 238] to determine characteristic excitation

energies of each type of iron centre. Figure 6.3a displays the optical absorption

spectrum of the (3, 1) superlattice. Based upon our spin-projected density of states

calculations [Fig. 6.2c and Table 6.1], the Fe-related excitations take place over a

broad energy range. We can address the various site-specific Fe-related excitations

by dividing the spectra into different energy regions and performing subtractions

where necessary. As a reminder, the most important are (i) the Fe2+ → Fe3+ charge-

transfer excitations in the spin-up and spin-down channels of the LuFe2O4 double

layer and (ii) the Fe2+ d → d on-site excitation in the spin-down channel of the

LuFe2O4 double layer. These features are indicated in Fig. 6.3a.

Figure 6.3b displays the magnetic circular dichroism spectrum of the (3, 1) su-

perlattice at full field. Access to the 25 T split helix magnet at the National High

Magnetic Field Laboratory [170] was crucial to this work, providing both direct op-

tical access and a field high enough to saturate the magnetic state of interest. Two

zero-field spectra are also included. They are not the same because the measure-

ment pathway is hysteretic (25 T → 0− T → − 25 T → 0+ T → 25 T), and the

ferrimagnetic film is not fully demagnetized when the field is removed. At full field,

the dichroic spectra reveal a broad, asymmetric structure centered at 1.5 eV and

a smaller lobe near 2.2 eV. Based upon Fig. 6.3a, we assign the 1.5 eV feature to

the Fe2+ → Fe3+ charge-transfer excitation of the LuFe2O4 layer in the spin-down

channel. The small 2.2 eV feature has a more complex origin because excitations are

heavily mixed in this energy range. Our analysis shows that this structure emanates
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Figure 6.3: Linear absorption spectrum, magnetic circular dichroism, and
the magnetic behaviour of different Fe centres in (LuFeO3)3/(LuFe2O4)1.
a Linear absorption spectrum of the (3, 1) superlattice. The three most important
Fe-related excitations are indicated. b Magnetic circular dichroism spectra of the (3,
1) superlattice at ± 25 and ± 0 T after substrate correction. c Fixed energy cut of
the magnetic circular dichroism spectrum at 1.33 eV as a function of magnetic field
at various temperatures. d Optical hysteresis loop obtained from the analysis of the
Fe2+ → Fe3+ charge-transfer excitation in the spin-up channel compared to that in
the spin-down channel. e Hysteretic behaviour of the Fe2+ on-site d-to-d excitation
in the spin-down channel. f Coercive fields extracted from the optical hysteresis loops
for each type of excitation as a function of temperature. The model fit is described
in the text. Bulk magnetization is included for comparison [16].
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from a combination of charge-transfer excitations in both the spin-down and spin-

up channels. The sign change at 2.1 eV is a reminder of how the spin-up channel

density of states comes to dominate the response. There is another inflection point

near 2.4 eV, above which ∆α changes sign due to the way in which the spin-down

channel Fe2+ d → d excitation dominates the dichroic response. The on-site d-to-d

excitations of Fe3+ have much lower intensity [Table 6.1]. Importantly, features in

the dichroic spectra ∆α(E)MCD are directly proportional to net magnetization, and

since we can analyze this effect at different energies, the response can be correlated

with specific iron centres. [32,33,165]

6.3 Revealing the role of each individual Fe centre

In order to uncover the role of each type of Fe centre, we take constant energy cuts

of the dichroic spectra based upon the excitation of interest. For instance, constant

energy cuts of the spectra at 1.33 eV reveal the behaviour of the Fe2+→ Fe3+ charge-

transfer excitation in the spin-down channel. Remarkably, a plot of ∆αMCD at 1.33

eV vs. magnetic field unveils an optical hysteresis loop [Fig. 6.3c]. Because the

charge-transfer excitation is located in the LuFe2O4 layer, we can explicitly connect

the behaviour of the Fe bilayer to the magnetic response. We also measure the

dichroic spectra of the (3, 1) superlattice at different temperatures. Analysis again

reveals optical hysteresis loops that close with increasing temperature [Fig. 6.3c].

We also consider how other Fe centres support high-temperature magnetism in

the (3, 1) superlattice by taking cuts of ∆αMCD at several different energies [Fig.

6.3d,e]. While the optical hysteresis loop at 1.33 eV has a traditional shape, the loop

becomes irregular at higher energies due to mixing [Fig. 6.4b,c]. The challenge is to

extract the response of each individual Fe centre from the mixed state. We perform

constant energy cuts at 1.8, 2.2 and 2.6 eV to address this issue [Fig. 6.4]. By
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subtracting the dichroic response at 1.8 eV from that at 2.2 eV, we can obtain

the pure signal of the charge-transfer excitation in the spin-up channel [Fig. 6.3d].

The direction of the hysteresis loop thus obtained is reversed because the spin state

changes from down to up. A similar analysis is applied to the 2.6 eV energy cut of

the spectral data. Here, spin-up charge transfer is strongly mixed with spin-down

Fe2+ d-to-d on-site excitations. Subtraction yields the signature of the Fe2+ site [Fig.

6.3e]. Note that the shape of the hysteresis loop returns to “normal” because the

spin state flips again.

In order to link the microscopic response of the spin in the Fe double layer with the

bulk magnetic properties [1, 16], we extract the coercive fields from the optical hys-

teresis loops [Fig. 6.3c-e] and plot these spectroscopically-determined coercive fields

(Hc) with those obtained from bulk magnetization as a function of temperature [Fig.

6.3f]. The trend in Hc is similar for all Fe centres, and the extracted coercive fields

are in excellent agreement with bulk magnetization [1, 16]. This demonstrates that

a significant portion of the magnetism in the (3, 1) superlattice originates from the

LuFe2O4 layer. In other words, the global coercive field is approximately equal to the

local coercive field in the LuFe2O4 layer. We fit the temperature dependence of the

coercive field in the (3, 1) superlattice with the Néel relaxation and Bean-Livingston

models [239,240], which relate Hc to the single ion anisotropy (K), ferrimagnetic TC

and the power index n [Fig. 6.3f]. Overall, this model is in reasonable agreement

with our data, although n = 2.6 may indicate a slightly non-classical response.

6.4 Interfacial responses in (LuFeO3)m/(LuFe2O4)1

In order to unravel the mechanism of high-temperature magnetism and the conse-

quences of Lu-layer distortion on the electronic structure of the interface, we mea-

sured the dichroic response of the (7, 1) and (9, 1) superlattices and compared the
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results to those of the (3, 1) material. As a reminder, higher order superlattices con-

tain more LuFeO3 layers, which increases the amplitude of the asymmetric Lu-layer

distortion and raises the Curie temperature TC [Fig. 6.2]. In order to make the most

effective comparison, we need to isolate the spectroscopic response of the interface.

We begin by normalizing the magnetic circular dichroism spectra on a “per repeat

unit” basis by taking the raw dichroic signal and dividing by the number of repeat

layers [Fig. 6.5b]. Next, we use the normalized spectra of two end members to

construct a “composite spectrum” for each superlattice. The composite response is

simply the dichroic signal generated from combining the per repeat unit end member

spectra based upon the composition as given by m and n [Fig. 6.5c]. We extract

the interface spectrum of each film by subtracting the composite response from the

measured spectrum on a “per repeat unit” basis. A detailed discussion of this pro-

cedure is available in Chapter 3. We immediately see that the interface spectra,

∆αMCD, Int., is significant - at least at certain energies [Fig. 6.6a]. This indicates

that additional magnetism arises from the LuFe2O4-LuFeO3 layer interaction.

Figure 6.6a summarizes the interface response of our set of superlattices. Re-

markably, the interface spectra are nearly identical below 2 eV, demonstrating that

magnetism emanating from the Fe2+ → Fe3+ charge-transfer excitation in the spin-

down channel is only minimally dependent upon the size of the Lu-layer distortion (or

the number of LuFeO3 layers in the superlattice). The situation is different above 2

eV where, despite mixing with the spin-down channel transitions, the charge-transfer

excitation in the spin-up channel dominates the dichroic response [Fig. 6.2c]. This

reveals that increased Lu-layer distortion selectively enhances the magnetic moment

emanating from the spin-up channel Fe2+ → Fe3+ charge-transfer excitation, which

amplifies the LuFe2O4 layer magnetization and therefore the dichroic signal. This

analysis naturally raises the question of exactly how Lu-layer distortion impacts
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(LuFeO3)m/(LuFe2O4)1 (m = 3, 7, 9), along with the composite spectra
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individual Fe sites in the LuFe2O4 bilayer.

We unveil the interface behaviour of each Fe centre by taking constant energy cuts

of ∆αMCD, Int. and plotting these values as a function of magnetic field. In addition

to coercivity and related trends in the single ion anisotropy [Fig. 6.6b], the optical

hysteresis loops that we extract from the magnetic circular dichroism spectra of the

interface yield a remnant value of the dichroism (∆αMCD, rem.) that is proportional

to remnant magnetization [Fig. 6.4 d-f]. We can therefore reveal how superlattice

periodicity affects local Fe site magnetization. Figure 6.6c displays ∆αMCD, rem. for

the different Fe-related excitations as a function of the number of LuFeO3 layers.

Because superlattice periodicity and the Lu-layer distortion are correlated, there is

a relationship between ∆αMCD, rem. and the Lu-layer distortion as well. Above m

= 3, the remnant signal from the charge-transfer excitation in the spin-up channel

increases sharply - consistent with the theoretically predicted saturation moment

in the LuFe2O4 layer [1]. By contrast, spin-down charge transfer and the Fe2+ d

→ d excitation are relatively insensitive to the number of LuFeO3 layers (and the

Lu-layer distortion). This behaviour demonstrates that increasing magnetic moment

in the LuFe2O4 layer emanates from rising Fe2+ and Fe3+ density of states in the

spin-up channel of the higher order superlattices. This conclusion emanates from

the corresponding changes in the dichroic spectra. At the same time, it provides a

microscopic explanation for how high-temperature magnetism in these superlattices

derives from Lu-layer distortion as well as the more growth-oriented parameter of

superlattice periodicity. We can understand in part why the enhanced magnetic

moment emanates from the spin-up channel excitations by considering the charge-

ordered state in greater detail.
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6.5 Determining the charge ordering pattern in

(LuFeO3)3/(LuFe2O4)1

Because charge ordering is one of the highest energy scales in the system [1, 20, 21,

23], magnetism in the (LuFeO3)m/(LuFe2O4)1 superlattices depends intimately upon

the charge ordering pattern in the Fe double layer. In order to reveal the relative

importance of these states and distinguish between them, we calculated magnetic

circular dichroism of several different candidate charge ordering patterns using first-

principles methods and compared the results to the experimental dichroic spectra.

The (3, 1) material has a large supercell containing 132 atoms, so we began by testing

our predictions against the end members. Importantly, we tested two different states

for the LuFe2O4 parent compound: CO-I and CO-II. The COII state is higher than

the COI by about 4 meV per formula unit. Here, CO-I is an antiferroelectric state

in which Lu trimer distortion is forbidden by symmetry [Fig. 6.7a] [20, 242]. CO-II,

on the other hand, allows Lu trimer distortion and has alternate Fe2+- and Fe3+-

rich layers, the stacking of which breaks inversion and introduces ferroelectricity

[Fig. 6.7b] [243]. The computed spectra of both LuFe2O4 and LuFeO3 are in good

agreement with our measurements [Fig .6.8a, b], and a CO-I pattern is identified in

the LuFe2O4 end member [20, 242]. We therefore extended this approach to the (3,

1) superlattice.

The charge ordered state in (LuFeO3)3/(LuFe2O4)1 is more complicated than

that in the LuFe2O4 end member due to Lu-layer distortion at the interface which

is induced by the LuFeO3 layer. As a result, the CO-II type state is more stable

than CO-I for m > 3 superlattices even though it has higher energy scale in the bulk

LuFe2O4. Based on a CO-II arrangement in the LuFe2O4 bilayer, theory predicts two

possible charge-ordering patterns for the (3, 1) superlattice [1]. These candidates,
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termed CO-FE and CO-DOPED for reasons that will become clear below, are slight

variations (subsets) of the aforementioned CO-II pattern. What differentiates these

candidates is (i) polar vs. non-polar character of the Fe double layer and (ii) symmet-

ric vs. asymmetric Lu-layer displacement. The latter is closely associated with the

phase shift across the ferroelectric domain wall in the superlattices [7]. We find that

the single-domain type charge ordering state (CO-FE) is ferroelectric [Fig. 6.9a].

This is because the Lu-layer distorts in the same direction along c and with the

same down/up/up pattern throughout the material. On the other hand, the Lu-

layer displacement is asymmetric in the doped-type state (CO-DOPED). Here, our

calculations predict a spontaneous electron transfer from Fe2+ sites in the bilayer to

Fe3+ sites in the LuFeO3 layer [Fig. 6.9b]. This leads to an Fe3+-rich bilayer, which

increases magnetization in the LuFe2O4 slab - consistent with a larger coercive field

and higher moment. It is the electron transfer that periodically reverses the Lu-layer

distortion to create the asymmetric down/up/up and down/up/down pattern across

the Fe bilayer. This changes the direction of electric polarization across each domain

wall which acts to create a non-polar Fe double-layer and overall antiferroelectric

state. As we shall see below, this is the state that corresponds most closely with

experiment.

Figure 6.9c compares the dichroic spectra for the (3, 1) superlattice with our

calculations. As discussed above, two different CO-II type charge-ordering patterns

were imposed in the simulations with the goal of distinguishing between them. These

include CO-FE and CO-DOPED [Fig. 6.9a,b]. Overall, the experimental spectrum

is in agreement with the CO-DOPED model. This means that the Fe double layer

is non-polar, and the Lu-layer displacement is asymmetric. Comparison reveals very

similar results below ≈1.5 eV for both states. The model predictions separate above

this energy - similar to what we find for the case of bulk LuFe2O4 [Fig. 6.8b]. Spectral
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Figure 6.9: Candidate charge-ordering patterns for (LuFeO3)3/(LuFe2O4)1
and comparison of calculated vs. measured dichroic spectra. a Ferroelectric
single-domain type (CO-FE) charge-ordered state with a polar Fe bilayer. The Lu-
layer displacement is symmetric, and red arrows indicate the polarization direction.
b Self-doped type (CO-DOPED) multi-domain charge-ordered state with a non-polar
Fe bilayer, unveiling spontaneous electron transfer from the Fe bilayers to the LuFeO3

layers. The polarization changes direction across the domain boundaries (dashed
lines) as shown by the red and blue net dipole arrows, and the Lu-layer displacement
is asymmetric with both down/up/up and down/up/down Lu distortion patterns
surrounding the Fe double layer. c Experimental dichroic spectra ∆α(E)MCD along
with calculated ∆α(E)MCD of the CO-FE (polar Fe bilayer) and CO-DOPED (non-
polar Fe bilayer) charge-ordering states in the (3, 1) superlattice.
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signatures that distinguish the CO-DOPED model include the minimum near 1.5

eV and sign change near 2 eV. The overall agreement becomes less quantitative at

higher

energies - possibly due to additional complexity in the charge ordering pattern due

to charged ferroelectric domain walls or reduced measurement sensitivity as the ab-

sorption coefficient rises [Fig. 6.3a]. In any case, all of our calculations in Figs. 6.2c

and 6.9c implement this particular charge ordering pattern and are internally con-

sistent. The CO-DOPED model is likely to apply to the higher-order superlattices

(m = 7, 9) due to the stronger Lu-layer distortion, although calculations cannot be

performed at this time due to the extraordinary size of the unit cells. Our finding

for the non-polar CO-DOPED model is consistent with real space HAADF-STEM

images as well [Fig. 6.2b] [1].

6.6 Developing interface design rules for increas-

ing TC and enhancing magnetoelectric coupling

In order to develop a heuristic argument for why the spin-up channel charge transfer

excitation is so important in the (LuFeO3)m/(LuFe2O4)n superlattices, we sought to

identify which orbitals are active in the Fe double-layer. To do so, we consider a slab

of LuFe2O4 surrounded by LuFeO3. Each Fe center - regardless of charge - is in a

trigonal bipyramidal geometry. Given this local structure, the dx2−y2 and dxy orbitals

are in-plane [Fig. 6.10a]. They are also degenerate and orthogonal. We hypothesize

that the in-plane orbital arrangement in the spin-up channel is responsible for the

increasingly robust magnetism [Fig. 6.6b] and higher TC in the (3, 1) → (7, 1) →

(9, 1) series. How the overlap and hybridization change in response to distortion of

the Lu layer is likely to impact magnetoelectric coupling as well.
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Figure 6.10b,c displays the in-plane orbitals in a hypothetical LuFe2O4 slab. The

top-down view emphasizes the honeycomb arrangement of the Fe2+ and Fe3+ centres,

the dx2−y2 and dxy orbitals, and their overlap with the O px and py orbitals. The

side-on schematic - with its simplified linear arrangement of polyhedra and lack of

O px and py orbitals - allows us to clearly see the structural distortions that take

place in the bilayer. Examination reveals that Lu rumpling has an important effect

on the overlap of the in-plane orbitals. This is due to the tendency of the Fe3+-

containing trigonal bipyramids to rotate and elongate in response to the Lu-layer

distortion. The Goodenough-Kanamori rules govern how local structure distortions

modify orbital overlap and exchange interactions [244]. Based upon the modification

of orbital overlap and hybridization, these rules qualitatively explain trends in the

(3, 1), (7, 1), and (9, 1) series.

We already know from STEM and first principles calculations that larger m yields

greater Lu-layer distortion and higher TC [Fig. 6.2] [1]. Our analysis suggests that

the Lu-layer distortion causes the Fe3+ polyhedra in the LuFe2O4 double layer to

elongate and rotate, changing the in-plane orbital overlap in such a way as to make

the spin-up charge transfer more important. Therefore, by controlling the atomistic

details of the rotation, one can influence hybridization. The structurally-induced

orbital reconstruction modifies the net magnetic moment on the Fe3+ sites such that

bilayer magnetism becomes more robust. This raises the coercive field [Fig. 6.6b]

and the magnetic Curie temperature.

One consequence of an elongated polyhedron is a possible off-mirror plane distor-

tion of the Fe3+ centers. Such a distortion was recently observed in the ferrimagnetic

quantum paraelectric BaFe12O19 [245]. Our STEM images provide an upper bound of

≤ 10 - 20 pm to any Fe3+ off-centering in the (LuFeO3)m/(LuFe2O4)1 superlattices.

This level of off-centering is negligible and does not contribute to the properties

196



Fe2+ Fe3+

Fe3+ Fe2+

b
Θ Θ

Fe3+

Lu

O

Fe2+ Fe3+ Fe2+

a

dx2-y2dxydx2-y2dxy

Fe3+

d3z2

dxz
dyz

Fe2+

d3z2

dxz dyz

z

z
x

y

dxy

x

y

+dx

y

dx2-y2

z

y

x

dx2-y2

z

x

y

px , py

c

Figure 6.10: Schematic view of the in-plane orbital overlap and the con-
sequences of Lu-layer distortion. a Schematic view of the Fe dxy and dx2−y2
orbitals + the O px and py orbitals. The ground state energy diagrams for the Fe2+

and Fe3+ sites are shown as well. b Top view of the LuFe2O4 double layer in the
self-doped structure showing how tilting of the FeO5 trigonal bipyramids modifies
hybridization. This changes the overlap of the in-plane orbitals. c Schematic side-on
view of a hypothetical linear array of FeO5 trigonal bipyramids and the rotation and
elongation that result from Lu-layer distortion. The tilting and elongation is highly
exaggerated in this rendering, and the O px and py orbitals are omitted for simplicity.

197



of these materials.
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Chapter 7

Summary and Outlook

In this dissertation, I present a spectroscopic investigation of natural occuring and

engineered superlattices, revealing how symmetry-breaking and interface characters

lead to interesting and exotic properties. While probing the fundamental excitations

in these materials under external stimuli such as low temperature, high magnetic

field, and chemical substitution, I reveal the microscopic mechanism of coupling

between spin, charge, and lattice degrees of freedom in a site-specific manner. These

findings advance the understanding of the interfacial problem in low-dimensional

multilayered systems.

The first project focuses on investigating the spectroscopic signatures of chirality

in the natural occuring superlattices FexTaS2 (x = 1/4 and 1/3). We bring to-

gether optical spectroscopy and first-principles calculations to reveal how electronic

properties change with the Fe intercalation concentration. The Fe intercalation dra-

matically modifies metallic characters such as plasma frequency and relaxiation time

of the parent compound 2H-TaS2, which also induces a second free carrier response

in the Fe monolayer. When crystal structures change from centrosymmetric to non-

centrosymmetric, signatures of chirality for the Fe1/3TaS2 are deeply embedded in the

electronic structures. These include a transition of the electron density patterns from
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triangular to Kagomé to honeycomb, a hole → electron crossover at the K-point,

and low energy electronic excitations between spin split bands at the Fermi level.

These findings advance the understanding of intercalation and symmetry breaking

on the fundamental excitations in metallic chalcogenides.

The second project is closely related to the first. Here, we extend the work on

FexTaS2 by combining Raman scattering spectroscopy, correlation group analysis,

and lattice dynamics calculations to reveal the vibrational properties. The results

uncover coherent in- and out-of-plane excitations in the Fe monolayer. Extending the

measurements to other chalcogenides including Cr1/3NbS2 and RbFe(SO4)2 reveals

that the intercalated monolayer excitations are intrinsic and general. In addition,

the frequency and linewidth of the monolayer excitations are strongly associated

with the in-plane metal-metal distance, size of the van der Waals gap, and metal-

to-chalcogenide slab mass ratio. We developed a mass ratio model to fit the experi-

mental data, which reveals that different chemical and interaction environments can

modify the effective spring ratio for an intercalated metal monolayer. We also find

the monolayer excitations couple to the magnetism in Fe1/4TaS2. These findings ad-

vance the understanding of how intercalation affects the interactions between metal

monolayers and its surroundings in different chemical environments. This work also

provides a possible explanation of electrical switching in antiferromagnetism and

chiral phonons in the M1/3TX2 systems.

The third project focuses on investigating the origin of high temperature mag-

netism in multiferroic superlattices (LuFeO3)m/(LuFe2O4)n. Here, we combine op-

tical spectroscopy, magnetic circular dichroism, and first-principles calculations to

uncover the interface induced magnetism and charge-ordering in a site-specific man-

ner. Analysis of the magnetic dichroic spectra reveals optical hysteresis for different

Fe sites. We extract the coercivity vs. temperature trends for different types of
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Fe-related excitations and compare them with the trend from bulk magnetization

measurement. The result indicates that bulk magnetism principally comes from the

LuFe2O4 layer. We successfully extract the interface dichoic spectra by subtracting

the composite response from the experimental spectra. Analysis of interface spec-

tra reveals that the enhanced magnetism in the higher order superlattices comes

from increasing spin-up channel Fe2+ and Fe3+ density of states in the LuFe2O4

layer. Comparison of the theoretically predicted magnetic circular dichroism with

the experimental spectrum also establishes the non-polar self-doped structure as the

precise charge-ordering arrangement within the LuFe2O4 layer of the (3,1) film, thus

resolving controversy regarding the many different isoenergetic charge states. These

findings provide direct, microscopic, and site-specific information about interface

magnetism in a two-dimensional material with multiple magnetic centres. In ad-

dition, this work provides a pathway to link bulk and interface properties in other

engineered materials.

Looking forward, this work provides several opportunities for future research.

One direction is to perform the Raman scattering measurements under variable

pressure in the intercalated transition metal dichalcogenides. The metal monolayer

excitations are highly sensitive to volume and different chemical environments of

the crystal. We expect to observe dramatic changes of frequencies, lineshapes, and

amplitudes of the monolayer excitations. Studying the controlling and switching

behaviors of these monolayer excitations are important because they have huge po-

tential for designing new types of resonators in the terahertz range. Another direc-

tion is to detect chiral phonons using Raman spectroscopy. Circular polarizors need

to be used to reveal the phonon chirality. Revealing the chiral phonons are impor-

tant for understanding electron-phonon coupling in solids, phonon-driven topological

states, and energy-efficient information processing [236]. For (LuFeO3)m/(LuFe2O4)1
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superlattices, our interface extraction technique can be applied to analyze other

heteroepitaxial superlattices with higher magnetic transition temperature such as

(LuFeO3)m/(CoFe2O4)n. Moreover, magnetic linear dichroism can be performed to

(LuFeO3)m/(LuFe2O4)n superlattices to reveal the magnetoelectric coupling constant

in a site-specific manner. Combining our interface extraction technique, we should

be able to study how site-specific magnetoelectric coupling changes with the interfa-

cial lattice distortion. Revealing the microscopic origin of magnetoelectric coupling

is very important because it can open the door of designing new multiferroics with

coexistence of large magnetoelectric coupling and room-temperature magnetic tran-

sition temperature.
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