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ABSTRACT 
 
 
In this last decade, several regulatory frameworks across the world in all modes of 

transportation had brought fatigue and its risk management in operations to the 

forefront. Of all transportation modes air travel has been the safest means of 

transportation. Still as part of continuous improvement efforts, regulators are 

insisting the operators to adopt strong fatigue science and its foundational 

principles to reinforce safety risk assessment and management. Fatigue risk 

management is a data driven system that finds a realistic balance between safety 

and productivity in an organization. This work discusses the effects of 

mathematical modeling of fatigue and its quantification in the context of fatigue risk 

management for complex global logistics operations. A new concept called Duty 

DNA is designed within the system that helps to predict and forecast sleep, duty 

deformations and fatigue. The need for a robust structure of elements to house the 

components to measure and manage fatigue risk in operations is also debated. By 

operating on the principles of fatigue management, new science-based predictive, 

proactive and reactive approaches were designed for an industry leading fatigue 

risk management program  

 

Accurately predicting sleep is very critical to predicting fatigue and alertness. 

Mathematical models are being developed to track the biological processes 

quantitatively and predicting temporal profile of fatigue given a person’s sleep 

history, planned work schedule including night and day exposure. As these models 

are being continuously worked to improve, a new limited deep learning machine 

learning based approach is attempted to predict fatigue for a duty in isolation 

without knowing much of work schedule history. The model within also predicts the 

duty disruptions and predicted fatigue at the end state of duty. 
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CHAPTER I 
SCIENCE BASED APPROACH TO FATIGUE RISK MANAGEMENT 
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1.1 Introduction 

  

1.1.1 Air Cargo Operations 

 
Recent Changes in U.S. hours of service regulations across several modes 

of transportation have brought to the foreground the question of what is a 

maximally acceptable level of fatigue risk (P. Gander et al., 2011). Advances in 

mathematical modeling of fatigue have facilitated systematic investigation of this 

issue in the context of fatigue risk management (Hursh & Van Dongen 2010). 

In the international logistics network, Air transport is a critical component to 

control the flow of goods and services. Logistics involves geographical 

repositioning of raw materials, work in progress and finished inventories (Bartsch 

2013). The air cargo market refers to transportation of good via air either by 

commercial airlines and the larger cargo airlines. Global e-commerce has been the 

primary driver to influence the growth of air cargo market. With much of the 

passenger flights grounded during COVID-19, It has proven even more essential 

for the cargo carriers in distributing essential goods all over the world, maintaining 

global value chains. In 2019 prior to COVID-19, freight volumes reached over 61.3 

million metric tons.   

 

1.1.2 Operational Challenges and Risk 

 
World’s largest express transportation company, provides fast and reliable 

delivery services to every US address and to more than 220 countries and 

territories. Its global air-and-ground network is among the most complex 

distribution networks in the world. With about 20,000 flights scheduled every month 

through 10 express global sort hubs, this express air cargo operations manages 

the schedules of 5000+ pilots in 6 worldwide crew bases across 5 different aircraft 

fleets. Express air cargo operations functions flights to more than 375 airports 

around the world under Domestic, Flag, and Supplemental FAA regulations. 
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Operations combine many types of flying such as repeated backside-of-the-clock 

flying, extended international operations, in-theater flying, day/night swapping, etc. 

Operational flexibility and scheduling reliability require flight and crew schedules 

that change dynamically from month to month.  

Given such a frequently changing and challenging operational environment, 

the express air cargo operation’s scheduling practices are evolving to include 

systems and processes that carefully balance operational needs, contractual rules, 

and the science of circadian rhythms and sleep to manage fatigue. Thus far, this 

effort has been accomplished primarily through a rule-based scheduling system in 

conjunction with an experience-based pilot schedule advisory group (scheduling 

improvement group; SIG). The schedules and rosters generated by this current 

process meet the federal aviation regulations (FARs) and the contractual 

provisions of the collective bargaining agreement (CBA). To supplement this 

process, a more dynamic, science-based fatigue risk management approach, 

based on state-of-the-art mathematical fatigue modeling (Achermann 2004), is 

being pursued. 

1.2 Fatigue 

 

1.2.1 Fatigue as Safety Risk 

 
Fatigue is a safety risk in aviation because of performance deficits in flight 

crews that have been shown to be correlated with fatigue. Per ICAO’s definition 

(ICAO, 2015) Fatigue is “a physiological state of reduced mental or physical 

performance capability resulting from sleep loss, extended wakefulness, circadian 

phase, and/or workload (mental and/or physical activity) that can impair a person’s 

alertness and ability to adequately perform safety-related operational duties”. At 

this express air cargo, owing to the around-the-clock and across-time-zones nature 

of its operations, the development of a science-based system for tracking and 

managing fatigue risk will be critical for safe operations and operational flexibility 

going forward. To improve upon proactively-implemented fatigue-friendly 
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scheduling policies, this thought leader in express air cargo operations developed 

science-based rostering and scheduling software (Costa et al, 1990) to further 

minimize fatigue and enhance alertness in operations. This paper outlines the 

development process for this software and discusses how that software model will 

integrate into the company’s operational processes. Once validated and 

implemented, the software model is likely to improve both scheduling performance 

and increase flight safety. 

Current methods of predicting fatigue require information about sleep times 

and durations that is measured, assumed, or mathematically estimated. However, 

individuals differ substantially in the timing and duration of their sleep under given 

circumstances due to neurobiological trait, prior sleep/wake history and circadian 

state, and/or situational factors such as availability of sleeping facilities or 

competing demands on their time. This causes potentially considerable inaccuracy 

in fatigue estimates from one individual to another. In settings where fatigue is of 

significant concern, such as 24/7 operations or trans meridian travel, this 

inaccuracy can have substantial adverse consequences for fatigue risk 

management and for mission safety and success. The present invention 

overcomes this deficiency by taking a statistical approach to accounting for sleep 

behavior in estimating fatigue. That is, a distribution of fatigue trajectories over time 

is derived, using an available mathematical model of fatigue, from the distribution 

of sleep timings and durations that has been or may be observed under given 

circumstances. The distribution of fatigue trajectories (D. Darwent et al, 2010) can 

be readily used to evaluate risk from fatigue, to compare alternative duty schedules 

to select the least fatiguing option, and to optimize sets of duty schedules to 

minimize fatigue risk while also maximizing productivity or other schedule 

objectives given operational scheduling constraints. 

There are three types of fatigue: transient, cumulative, and circadian: 

• Transient fatigue is acute fatigue brought on by extreme sleep 

restriction or extended hours awake within 1 or 2 days. 
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• Cumulative fatigue is fatigue brought on by repeated mild sleep 

restriction or extended hours awake across a series of days. 

• Circadian fatigue refers to the reduced performance during nighttime 

hours, particularly during an individual’s “window of circadian low” 

(WOCL) (typically between 2:00 a.m. and 05:59 a.m.). 

 

Researches show that the accumulation of "sleep debt" (K. Spiegel et al., 

1999), should be a consideration for the person to recover from cumulative fatigue. 

However, it depends on the amount of debt and time and quality of sleep during 

the recovery process. 

1.2.2 Need for Sleep 

 
1.2.2.1 Types of Sleep 
 

We are meant to spend about a third of our lives asleep. The optimal amount 

of sleep per night varies between individuals, but most adults require between 7 

and 9 hours. Sleep science (R. Ferri et al., 2008) makes it very clear that sleep 

cannot be sacrificed without consequences. Sleep has multiple functions – the list 

keeps growing - but it is clear that it has vital roles in memory and learning, in 

maintaining alertness, performance, and mood, and in overall health and well-

being. A complex series of processes is taking place in the brain during sleep. 

Various methods have been used to look at these processes, from reflecting on 

dreams to using advanced medical imaging techniques (JM. Gottselig, et al., 

2006). Sleep scientists have traditionally looked at sleep by monitoring electrical 

patterns (T. Åkerstedt, et al., 2002) in brain wave activity, eye movements, and 

muscle tone. These measures indicate that there are two very different types of 

sleep as shown in Fig 1. 

• Non-rapid eye movement (Non-REM) sleep; and  

• Rapid eye movement (REM) sleep.  
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1.2.2.2 Factors affecting sleep quality 
 

Sleep quality (its restorative value) depends on going through unbroken non-

REM/REM cycles (which suggests that both types of sleep are necessary and one 

is not more important than the other). The more the non-REM/REM cycle 

(McCarley 2007)  is fragmented by waking up, or by arousals that move the brain 

to a lighter stage of sleep without actually waking up, the less restorative value 

sleep (T. Roenneberga et al., 2007) has in terms of how you feel and function the 

next day. Uninterrupted non-REM/REM cycles are the key to good quality sleep, 

so operators should develop procedures that minimize interruptions to 

crewmembers’ sleep. Rest periods (in flight or on layovers) should include 

protected blocks of time (sleep opportunities) during which crewmembers are not 

contacted except in emergencies. These protected sleep opportunities need to be 

known to crewmembers and all other relevant personnel. For example, calls from 

crew scheduling should not occur during a rest period as they can be disruptive. 

The operators should collect data, understand the sleep distributions and establish 

data driven processes to protect the disruptions. 

 

1.2.3 Fatigue Science 

 

Fatigue resulting from sleep loss and circadian (i.e., 24-hour) rhythm is 

associated with decreased capacity to perform cognitive tasks and increased 

variability in performance (Jackson & Van Dongen 2010), leading to greater 

probability of errors, incidents and accidents (Van Dongen & Hursh 2010) and thus 

representing a safety risk (Philip & Åkerstedt 2006). Like any other safety risk in 

aviation, fatigue needs to be managed (MR Rosekind et al., 2002) (Caldwell 2005). 

For effective fatigue risk management in complex, around-the-clock operations, a 

scientific understanding of the neurobiological mechanisms underlying fatigue is 

essential.  At the cognitive/behavioral level, these mechanisms are well 

understood, involving two key physiological processes: a sleep/wake homeostatic 
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process and a circadian process (Borbély & Achermann 1982). The sleep/wake 

homeostatic process tracks sleep history (P. McCauley et al., 2009) and seeks to 

balance time spent awake with an appropriate amount of recuperative sleep. The 

circadian process, driven by the biological clock in the brain, tracks time of day 

(Waterhouse & DeCoursey 2003) and seeks to place wakefulness during the day 

and sleep during the night.  

The homeostatic and circadian processes normally operate in tandem to 

provide a stable level of alertness during the day and consolidated sleep during 

the night (Dijk & Czeisler 1994). However, when deviating from a normal schedule 

of daytime wakefulness and nighttime sleep, the interaction of the two processes 

leads to fatigue and performance impairment (Van Dongen & Dinges 2005). During 

nighttime operations, the homeostatic and circadian processes align to steadily 

increase fatigue over time of night, while also making it difficult to obtain enough 

sleep during the day (Åkerstedt 2003). When crossing time zones, the circadian 

process becomes temporarily desynchronized and takes several days to adjust to 

the new time zone, which gives rise to the phenomenon of jet lag (T. Reilly et al., 

2005). These fatigue challenges are routinely faced by the flight crews. 

 

1.2.4 Fatigue and Alertness Model 

 

1.2.4.1 Fatigue Modeling 
 

In aviation operations involving backside-of-the-clock flying, international 

travel, day/night swapping, and/or other challenging schedules, it is difficult to 

foresee at which times the homeostatic and circadian processes produce the 

greatest level of fatigue. Fortunately, mathematical models have been developed 

(MM. Mallis et al., 2004) (Hursh & Van Dongen 2010) to track the two processes 

quantitatively and predict the temporal profile of fatigue given a person’s sleep 

history, planned sleep/wake schedule, and expected day/night exposure (i.e., time 

zone). Such fatigue models have been applied successfully in aviation (Belyavin 
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& Spencer 2004) (KJ. Kandelaars et al., 2006), and continue to be improved (P. 

McCauley et al., 2009) (MA. St. Hilaire et al., 2007) (T. Åkerstedt et al., 2008).  

Fatigue modeling can be integrated productively with rostering and scheduling 

software to produce schedules that manage both operational cost and predicted 

fatigue (Belenky & Van Dongen 2009) (Romig & Klemets 2009). At the planning 

side of operations, work schedules can be evaluated to determine if the roster 

solution is sufficiently fatigue-friendly. At operations control, schedule disruptions, 

commonly known as Irregular Operations (IROPS), can be reviewed in advance in 

order to implement fatigue mitigation strategies such as flight augmentation (JA. 

Caldwell et al., 2009). In more advanced applications (HPA. Van Dongen et al., 

2007), flight crews can utilize a personalized fatigue modeling tool to help them 

proactively manage fatigue, e.g., by planning rest opportunities at sleep-conducive 

circadian times. Fatigue modeling can also be useful for investigating fatigue-

related incidents or other post-schedule analyses.  

The current human alertness or fatigue models as shown in figure 2 does one 

of the following 1) takes input of sleep and work episodes and it will predict fatigue 

levels. 2) Provide input of work schedule. The sleep predictor algorithms 

embedded inside first determine the sleep episodes, the sleep and work are then 

inputted to the model to predict fatigue. Bio mathematical modeling is a means of 

objectively estimating the potential impacts of fatigue on performance. They focus 

purely on the Process S which is built on timing and duration of sleep and Process 

C the circadian system.  

Several bio mathematical models have come forward to provide a useful 

framework for the operations to predict the effects of fatigue on performance. This 

helps the operations to build fatigue friendly schedules. The newer models also 

take into account such as sleep inertia (Tassi & Muzet 2000) which is a component 

that occurs after awakening that can last anywhere from 30 minutes to few hours. 

Some models are beginning to understand the task related inputs like number of 

flights in a duty, time zone transitions (KJ. Kandelaars et al., 2006) etc. 
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1.2.4.2 Current Sleep Model and the Timing of Human Sleep 
 

In humans for many decades, the sleep and wake durations are modeled with 

exponential and power law models (S. Bernard et al., 1969). This model stages 

sleep regulating variable (Process S) where it decreases as exponential function 

when sleep and rises as power law function when awake. The regulative variable 

simply builds up the sleep pressure during awake and declines during sleep. Fig. 

3 above demonstrates the circadian waveform of wake threshold (L) using sleep 

deprivation results (S. Daan et al., 1984) (P. Achermann et al., 2004). Subscripts 

of S refer to 30 min units since onset of wakefulness at 7am. 

 

1.2.4.3 Sleep Prediction Model 

 

Sleep timing and duration are primary determinants of alertness. Sleep timing 

and duration depend on the same biology underlying alertness, but other, non-

biological factors also play a role when working consecutive nights or when 

traversing multiple time zones. Besides prior sleep/wake/work schedule, these 

factors range from jet-lag, availability of hotel facilities (time for check-in and -out) 

and store opening hours to communications with family at home, etc. Some of 

these factors vary substantially from person to person and from duty to duty, such 

that pre-duty, in-flight, layover and post-duty sleep schedules exhibit statistical 

distributions (Darwent et al., 2010). This industry leader air cargo airline is 

developing a distribution-based prediction model for sleep timing and duration 

(Van Dongen 2004) based not only on the underlying biology but also on 

observations of real-world in-flight and layover sleep behavior, as a function of time 

spent away from base, rate of change of time zone transitions, direction of time 

zone transition, time of day, prior duty schedule, location and the duty following. 

This will allow for probabilistic predictions of alertness that account for the natural 

variability in sleep behavior. Fig. 4, 5 shows a simulated example. Data from a 

recent study of actigraphy (DS. Lauderdale et al., 2008), a wrist-worn rest/activity 
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monitor were used as surrogate data for a scenario involving a duty start time and 

duration of 0100 and 8h respectively. This was followed by a layover period of 

~25h in which sleep was simulated as distributed according to the surrogate data, 

from which 100 random samples were drawn. For the duty period following the 

layover with extended wakefulness, alertness predictions were made after 12h of 

duty begin time (at time of day 00:00).  The Fig. 6,7 shows the distribution of 

alertness predictions based on the distribution of the layover sleep. This alertness 

distribution can be used to make informed decisions regarding the need for fatigue 

countermeasures or additional time for sleep. 

 

1.2.4.3 Validation of 2-process model 

 

The original Two Process model has been validated against many diverse 

disrupted sleep schedules, such as sleep deprivation and sleep restriction. It was 

confirmed by several experiments in the laboratory (D. Hand et al., 2001). Using 

subjective alertness data from a number of experiments of altered sleep/wake 

patterns, it was found that alertness was also predictable. Circadian and a 

homeostatic component in combination with a component for sleep inertia (Taasi 

& Muzet 2000). The output of the model has been validated against subjective 

ratings, performance and electrooculogram (EOG) measures of sleepiness, and 

has shown considerable accuracy (Folkard & Akerstedt 1991). There are a number 

of studies that have confirmed the variations (Carrier & Monk 2000) in 

performance. There are several mathematical models (MB Spencer 1987) (S. 

Folkard et al., 1997) (P. McCauley et al., 2009) that were developed based on the 

seminal process. 
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1.2.4.4 Limitations of the 2-process model 

 

All bio math models predict fatigue for an average person, assuming that 

individual requires about 8 hours of sleep per night to remain fully rested and has 

regular circadian rhythms. They help us to set up safer operations with risk 

assessments. They are good at doing incident or accident investigations when all 

the variables are known. (A. Shawn, et al., 2011). The model doesn’t not also 

understand the experience and history of the operations (CASA 2014). (For 

example, the model will not be able to differentiate the differences, mitigations and 

the learning history between the day and night operations). The model is definitely 

not recommended for the individuals in a specific operating environment and 

doesn’t necessarily correlate to a safety risk. Chronic sleep deprivation comes out 

as a big disadvantage and only couple of models have tried to address it. Models 

also haven’t addressed the increase in fatigue levels due to the workload in 

operation. The number of sectors combined with low duty times has seen increase 

in objective and subjective levels of fatigue (G. Belenky, FRMS Forum 2014) (D. 

Powell, et al., 2008) (HPA Van Dongen, et al., 2011).  

NASA-TLX developed a model to measure workload. The workload rating is 

based on the weighted average on size sub scales: 1) mental demand, 2) physical 

demand, 3) temporal demand, 4) effort, 5) performance and 6) frustration level. 

The measure combines weighted ratings on the six subscales to provide one 

integrated workload rating (SG Hart, 2006). For operations more emphasis is given 

to the errors and risks that the lower alertness exposes and not the alertness itself. 

Intersection of tasks demands to alertness should be explored and that’s the gap. 

There is a difference between in fatigued state when you are in cruise vs landing 

in a busy airport.  

The models were successful in predicting variations in alertness and 

performance in both laboratory and field settings. Unfortunately, while these 

mathematical models might be able to account for the trends in productivity 
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described above, they have great difficulty in accounting for the trends in risk. 

While the process captures well the seminal two process and predicts the 

neurobiological functions, the model doesn’t understand well the cumulative 

performance impairments observed over days of chronic sleep restrictions. This 

was exposed by the recent studies on sleep dose response (G. Belenky et al., 

2003) (HPA. Van Dongen et al., 2003). They found out that the existing of an 

additional process (ML. Johnson et al., 2004) that is modulating the homeostatic 

process over the long term.   

In one case that the McCauley and colleagues in Sleep and Performance 

research center are able to extend the effort and discovered a modeling solution 

(P. McCauley et al., 2009). The model only predicts alertness if sleep and wake 

schedules are provided. In our process, the model is extended to predict sleep and 

thereby performance. As you could see from the Fig. 8 below the model predictions 

for daytime averages of performance lapses on a psychomotor vigilance test, 

expressed a relative to baseline, across three different 4-week rotation schedules. 

This was captured from the medical residency program. 

 

1.2.5 Measuring Fatigue, Sleep and Circadian 

 
Fatigue is a complex phenomenon and measuring fatigue at an individual 

level is complicated. There is no single standard measurement that can be applied. 

A wide variety of fatigue measures are used in measuring human performance. 

Currently there are two types of measurements. Subjective questioning and 

objective measures.  

Subjective questioning (M. Matousek et al., 1988) helps the researchers to 

understand the state of the individual during the task or at the point of interest by 

the researcher. Measurements include understanding sleepiness, fatigue levels, 

type of person etc., Subjective measurements rely on individual mood, impression 

and will account for a lot of individual differences. However, they are inexpensive 

to collect and easier to analyze the data. In the industry settings, these 
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measurements are done in large numbers to account of skew in data. Sleep 

researchers have standardized these questionnaires to differentiate between the 

mental and physical fatigue levels. For subjective measurement of sleep length 

and quality, sleep diaries both paper and digital are widely used in laboratory and 

field test experiments.  For sleepiness and fatigue levels, there are a number of 

scales that is being used for measurement and the few commonly used are listed 

below 

• Epworth Sleepiness Scale (ESS) developed by Johns (1991) (YW. Cho et 

al., 2011) 

• Fatigue Assessment Scale (FAS) developed by Michielsen, De Vries, Van 

Heck.  (H. J. Michielsen et al., 2003) 

• Karolinska Sleepiness Scale (KSS) developed by Akerstedt and Gillberg (T. 

Akerstedt et al., 1990) 

• Samn-Parelli Fatigue Scale (SP) developed by (T. Akerstedt et al., 1990)  

Objective measurements include measuring sleep, reaction time, vigilance, 

circadian body clock cycle etc., Polysomnography is the most reliable technique 

for measuring sleep (E. Hertenstein et al., 2018) and it involves sticking electrodes 

to the scalp and face. It measures EEG (brainwaves), EOG (eye movements) and 

EMG (muscle tone). This method often requires the technicians in the lab and they 

are well trained. This is often measured in a lab setting and are relatively 

expensive, obtrusive and time consuming.  It’s hard to do the same in operational 

settings with field studies, in some remote cases it’s even impossible.  

Recently the scientist has explored a new method for measurement of sleep 

as sleep can also be measured through activity movement. Actigraphs (M. Marino 

et al., 2013) are wrist worn devices running on accelerometers. Sleep is measured 

from activity movement through an algorithm that is validated against the 

polysomnography.  The participants will be wearing these devices 24x7 during the 

test period. Actigraphy measurement (M. Marino et al., 2013) is widely used today 

due to the ease of data collection and it’s not obtrusive and relatively inexpensive. 
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Since its not directly measuring sleep there is always a possibility of predicting 

errors due to the algorithm that is translating the movement into sleep. 

The other important feature to help measuring cognitive performance is the 

circadian body clock (MH. Vitaterna et al., 2001). It is one of most difficult 

measurement of physiology markers. Core body temperatures (MH. Vitaterna et 

al., 2001) and melatonin (RJ. Reiter et al., 1984) hormones are the two rhythms 

that are measured. Core body temperatures are measured using ingested 

temperature pill or using rectal inserted probe. Melatonin is measured from blood, 

saliva or urine samples at different intervals. All these measurements are heavily 

challenged by the differences that exist between individuals (HPA. Van Dongen et 

al., 2007) (HPA. Van Dongen et al., 2005) 

 

1.2.6 Propose Fatigue Model Architecture for Aviation 

 

In 2009, Express Air Cargo Flight Operations began developing a 

framework for software to evaluate schedule effectiveness from a fatigue risk 

management perspective, laying a foundation for an improved schedule design 

and operations process. The software development process includes the 

implementation of a validated model for predicting fatigue risk in crew schedules 

across the breadth of its operations. Ideally, the software model and its 

applications will include the ability to:  

1) Perform fatigue predictions for pairings and rosters.  
 
2) Evaluate fatigue in “what if” scenarios during planning and operations. 

 
3) Apply phased fatigue mitigations during schedule building to enhance 

alertness and manage fatigue risks. 
 

4) Suggest physiologically realistic sleep strategies to mitigate fatigue in 
challenging operations.  
 

5) Advise the Systems Operations Center (SOC) on operational mitigations 
that could be applied to manage fatigue during IROPS. 
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6) Provide a scientific basis for planned fatigue mitigations such as split-
duty sleep opportunities, dedicated sleep rooms at hubs, lay-flat crew 
rest bunks on long-range flights, etc.  
 

7) Serve as a personal fatigue risk management tool for crew members to 
help them plan optimal, physiologically realistic sleep schedules. 

 

A related aspect of the software model development process will likely include field 

collection of de-identified human performance and alertness data to validate the 

effectiveness of current prescriptive scheduling controls and planned fatigue 

mitigation strategies. This data collection and analysis process is anticipated to be 

on-going, and should be valuable, in particular, for the development and validation 

of future improvements to software-based fatigue models throughout the airline 

industry. Currently, the airline’s fatigue model framework will require development 

and validation of the following software components: 

 

1.2.6.1 Basic Fatigue Model 

The model framework will be based upon the seminal two-process model of 

sleep regulation to predict fatigue (S. Daan et al., 1984). This model utilizes 

mathematical equations to predict fatigue throughout the sleep/wake homeostatic 

and circadian processes (Borbély & Achermann 1999). Anticipated improvements 

to the existing model include the development of modules to predict the cumulative 

effects of chronic sleep restriction (P. McCauley et al., 2009) and circadian phase 

shifting (RE. Kronauer et al., 2007). 

 

1.2.6.2 Sleep Solver 

The software model framework also calls for the development of a proprietary 

“sleep solver” component, which will identify all realistic sleep opportunities within 

a schedule based on the predicted sleep/wake homeostatic and circadian process 

states, and will include fatigue mitigation prescriptions unique to a particular 

schedule (i.e., identifying the best sleep opportunities predicted to minimize fatigue 
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within the overall context of rules and regulations, planned fatigue mitigations, 

augmentations, etc.). 

 

1.2.6.3 Knowledge Manager 

This software module will process de-identified alertness data collected in the 

field to track sleep and fatigue as a function of duty sequence patterns. Based on 

probabilistic modeling (D. Darwent et al., 2010) (Van Dongen & Hursh 2010), the 

knowledge manager should be able to improve the predictive capabilities of the 

sleep solver as increasing amounts of data are collected on actual sleep/wake 

behavior in the field. 

 

1.2.6.4 Mitigation Manager 

Within the model framework, the mitigation manager component would 

iteratively evaluate available fatigue mitigations, and compare predicted fatigue 

levels (generated by the basic fatigue model component of the program) both with 

and without these mitigations applied. Ideally, the mitigation manager would rank 

pairings on this basis and suggest a fatigue mitigation strategy that the other 

components of the software predicted to best achieve overall schedule 

effectiveness and alertness. This component would also estimate required 

napping opportunities and compute the number of augmentations and hub sleep 

rooms needed for the proposed schedule. 

 

1.2.6.5 Fatigue Workbench 

Within the model framework, the fatigue workbench component would enable 

ad hoc manipulation of schedules to help schedule designers interactively apply 

“what if” scenarios and evaluate the predicted fatigue-related benefits of 

incorporating specific sleep opportunities for the proposed schedule. 
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1.2.6.6 Fatigue Predictor 

The software model will also include parameters for the development of a 

fatigue predictor component. This component would be a comprehensive reporting 

system to provide planners and schedulers the ability to compare the predicted 

fatigue risk associated with different scheduling options. This component would 

permit the comparison of multiple pairing and roster solutions on the basis of their 

fatigue-friendliness in the context of other scheduling considerations and 

constraints. It then would enable planners and schedulers to apply fatigue 

mitigations and schedule changes in order to resolve high fatigue risk situations 

and improve the fatigue-friendliness of the overall operation. Other tools for the 

model framework under consideration for development include modules tracking 

crew status (HPA. Van Dongen et al., 2007), operating environment operational 

task demands (Van Dongen & Hursh 2010) and workload (KM. Vitellaro et al., 

2003). Future initiatives will address the potential roles of diet and exercise in 

fatigue risk management.  

1.3 Fatigue Prediction 

1.3.1 Risk Assessment and Human Factors 

 

Aviation systems are characterized by a huge number of complex 

interactions and interdependencies. Crewmember fatigue is now acknowledged as 

a hazard that predictably degrades various types of human performance and can 

contribute to aviation accidents and incidents. In addressing human factors in risk 

assessment, performance optimization is attempted to reduce human related 

failures. It is estimated that up to 90% of all workplace accidents have human error 

to cause (Feyer & Williamson 1998). Several approaches have evolved over the 

years to manage fatigue related risk developing defenses based on assessments 

of risk (V. Socha, et al., 2015). In the world of fatigue risk management two primary 

type of approaches are followed, a) Prescriptive or Compliance based approach: 

Where the operations must remain within the prescribed limits established by the 
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regulatory agencies. b) Performance or Risk based approach where a through 

examinations and protections to avoid risk are placed in the operational setting. 

Risk based approach manages the operations through predictive, proactive and 

reactive methods. The predictive process has to determine risk associated with 

fatigue through proper crew planning control and consideration of known factors 

affecting sleep and fatigue and their effect on performance.  Bio mathematical 

models (Roberts & Nesthus 2016) (Van Dongen 2004) are used for testing of 

current understanding of the matter how factors such as sleep deprivation; work 

load or circadian rhythms affect human performance. The process of modelling 

starts with simulation of so called” development data set”, where factors such as 

self-evaluation of the fatigue and data collected by fatigue measurement are used. 

That data is used for prediction of different situations. Then, the modelled 

predictions are tested using newly acquired data.  

 

1.3.2 Regulatory impact on Fatigue Risk Management 

 

1.3.2.1 Flight Time Limitations 

 

Since the fatigue factor is one of the possible causes in many accidents, in the 

1944 Chicago Convention, the civil aviation authorities determined that fatigue in 

the flight crew is an issue and formed rules and named it as FTL (Flight and Duty 

time Limitations). This is the rule set that is necessary for the flight crew has to 

comply so the safety of the flight is not decreased.  It limits for how many hours a 

pilot can work in a day, week or month. This can be complex and is prescribed 

typically for each state. For Example. European countries should comply with 

EASA flight time limitations and US based Carriers should comply with FAA Part 

117 regulations. The regulators are looking to revise the rules based on scientific 

findings with respect to sleep, sleep loss, fatigue, circadian rhythms, and 

performance into the prescriptive rules. 
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1.3.2.2 Prescriptive Approach 

 

Aviation regulations as dictated by each state regulators are relatively strict 

rules which must be followed. Typically, no exemptions are allowed. This forces 

the operators to define the more conservative ruleset so they don’t exceed due to 

operational impacts and constraints. This is characteristically achieved through air 

operational manual or through the collective bargaining agreement between the 

pilot’s association and the company. These prescriptive rules are very critical 

because it significantly improves safety and easier to be programmed through the 

company crew operations systems. Since the aviation network and its operation 

brings so much of complexity, a novel idea is needed to transition from a 

regulation-based framework to a performance-based framework.  This innovation 

move was further sponsored by US Federal regulations in Part 117 $117.7 

provision. This is a brave alternative to the “one-size fits all” prescriptive approach. 

Such alternatives have to go through the non-inferiority data analysis to prove that 

the performance-based criteria is equal or better than the regulator defined criteria.   

 

1.3.2.3 Performance Based Approach 

 

Non-significant (Mascha & Sessler 2011) could be due to the lack of statistical 

power. And therefore, is not a positive indication of equivalence. In contrast, 

attempts are made to apply the approach that is widely used in the pharmaceutical 

industry. The approach is non-inferiority design that can be used to test for 

equivalence, superiority, and non-inferiority (Walker & Nowacki 2011). Typically, 

the carriers apply for exemption to the state regulatory body which includes 

collecting human performance data and analyzing them for non-inferiority testing. 

The regulator then reviews all the information including operational data and if they 

are convinced will authorize the operate under the control parameters of the new 

performance-based regulation. 

 

https://www.sciencedirect.com/science/article/pii/S0001457518300204#bib0075
https://www.sciencedirect.com/science/article/pii/S0001457518300204#bib0100
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1.3.3 Probability based Fatigue Risk Prediction 

 

Sleep timing and duration depend on the same biological (homeostatic and 

circadian) processes as that underlying alertness. However, non-biological factors 

also play a role, especially when working consecutive nights or when traversing 

multiple time zones. Aside from the sleep/wake/work schedule itself, these factors 

range from availability of hotel facilities (check-in/out times) or store opening hours 

to communications with family at home, etc. Some of these factors vary 

substantially from person to person and from duty to duty, such that pre-duty, in-

flight, layover and post-duty sleep schedules exhibit probabilistic distributions. The 

air cargo airline is developing a prediction model for sleep timing and duration 

based not only on the underlying biological processes but also on systematic 

patterns in observations of real-world in-flight and layover sleep behavior (D. 

Darwent et al., 2010) (Van Dongen & Hursh 2010), as a function of prior and 

planned duty schedule, time of day, and location. This will allow for fatigue 

distribution modeling, which entails making probabilistic predictions of alertness 

that account for the predictable component of the natural variability in sleep 

behavior.  

Fig. 10 shows a simplified example of fatigue distribution modeling. Data from 

a recent study of actigraphy (i.e., wrist-worn rest/activity monitor) in 11 pilots were 

used as surrogate data for a simulated 48h scheduling scenario. The scenario 

involved a 9h duty period starting at 01:00. This was followed by a 25h layover 

period, in which sleep was simulated to be distributed according to the surrogate 

data, from which 100 random samples were drawn (with replacement). Then there 

was a second, 12h duty period starting at noon. Alertness predictions were made 

across the 48h scenario using the two-process model (AA. Borbély et al., 1999). 

Figure 1 shows the distribution of the alertness predictions during the layover and 

during the second duty period, based on the sampled distribution of the layover 

sleep. At the end of the second duty period, alertness scores were 0.35±0.05 

(mean ± standard deviation). Compare this to the beginning of the scenario, 48h 
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earlier, where the alertness score was 0.67 (assumed to be the same for each pilot 

in this simplified example). In the airline’s model framework, such alertness 

distribution information can be used to statistically compare the predictions to 

those of other possible duty schedules, and to make informed decisions regarding 

the need for alertness-enhancing countermeasures. In Fig. 10, Alertness 

predictions for a simulated scheduling scenario. Distribution modeling is shown for 

100 samples of varying sleep timing and duration in the layover period (some of 

the predicted alertness curves overlap). The gray bar indicates the layover period; 

black bars indicate times when sleep occurs in some or all of the sampled cases 

 

1.4 Fatigue Management 

1.4.1 Fatigue Management Process 

 

In commercial aviation and other safety-sensitive industries, advances in 

safety management approaches are expected to be widely shared among 

stakeholders. This also applies to fatigue risk management (FRM), which is an 

important facet of safety management in 24/7 operations. In this context, fatigue is 

operationally defined as a physiological state of reduced mental or physical 

performance capability resulting from sleep, circadian, or workload factors that can 

impair the ability to operate safely or perform safety-related duties (IATA. 2011). 

Fatigue is profoundly influenced by biological processes underlying sleep/wake 

regulation (Van Dongen et al. 2016), with a “homeostatic process” driving 

sleepiness as a function of time awake and prior sleep loss, and a “circadian 

process” driving alertness as a function of time of day. Together these two 

processes determine the overall level of fatigue in a manner that is predictable and 

captured in bio mathematical models of fatigue (Hursh et al. 2016).   

Manipulating the two biological processes provides a means of managing 

fatigue risk, but the circadian process is remarkably resilient to manipulation (Smith 

& Eastman 2012). By contrast, manipulating the homeostatic process merely 
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requires adjustment of the timing and duration of wakefulness and sleep. In 

practice, this can be accomplished, in part, by strategic scheduling of duty periods 

and protecting opportunities for sleep. As such, targeted scheduling of duty periods 

and protected rest breaks is a core aspect of FRM in many operational 

environments. Modern FRM approaches are multi-faceted, incorporating 

predictive, proactive, and reactive components based on science and operational 

experience, which collectively serve to manage fatigue and safety (Rangan et al. 

2013). The predictive component of FRM includes duty schedule generation and 

fatigue risk review processes, along with rostering, which occur in advances of 

daily operations. The proactive component includes schedule adjustments 

possibly needed during daily operations, as well as the application of fatigue 

countermeasures. The reactive component involves data collection, including a 

non-punitive fatigue reporting system, to continually evaluate and improve FRM 

processes.  

FRM approaches and procedures for commercial aviation are promulgated 

globally by international organizations (IATA. 2011), but know-how regarding the 

implementation of FRM in practice is not easily accessible across the spectrum of 

commercial aviation settings. Here, to help fill this gap, I focus on some science- 

and practice-based predictive and proactive approaches to FRM currently 

implemented at a US-based commercial cargo carrier. 

 

1.4.2 Fatigue Evaluation Process in Crew Schedules 

 
1.4.2.1 Predictive process of managing crew schedules 

 

In model-based FRM, a bio mathematical model of fatigue (BMF) is used to 

help generate duty schedules that meet operational needs while simultaneously 

mitigating fatigue risk (Van Dongen & Belenky 2012). Large-scale operations may 

accomplish this by integrating a BMF with a computer-based flight crew schedule 

optimizer, which can yield schedules that effectively avoid highly fatiguing duty 
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patterns (Romig & Klemets, 2009). However, this approach has the potential to 

produce duty schedules that meet operational needs by eliminating both highly 

fatigue-inducing and highly fatigue-avoiding schedules. Thus, the outcome could 

be a rearrangement rather than a reduction of overall fatigue risk across the 

operation, which may not achieve an acceptable balance between meeting 

operational demands and addressing fatigue and safety.  

A variation of model-based FRM that avoids this problem and incorporates 

best-practice principles of FRM (KA. Honn et al., 2019) involves first generating 

duty schedules without including a BMF in the optimization process. This is 

followed by an evaluation of proposed duty patterns using a BMF, to identify and 

address the most fatiguing duty periods through a process involving relevant 

stakeholder input. Fig. 12 (bottom) illustrates this approach as implemented at a 

US-based commercial cargo carrier, where the crew scheduling group, in 

coordination with the pilot union, engages in a predictive FRM process focused on 

proposed schedules for the upcoming month. There are two primary goals: 1) 

efficiently utilizing available resources (aircraft and pilots) to meet operational 

demands; and 2) solving that logistical problem such that pilot fatigue is considered 

and minimized to achieve high levels of safety. 

The process starts with the primary inputs of scheduled flights between airports 

using available aircraft and available pilots, which are considered by an automated 

system to solve the logistical problem. The initial solution is constrained by 

regulatory flight and duty time limits, additional limits potentially included in 

collective bargaining agreements, and predefined rules for avoiding trips known to 

be fatiguing based on historical experience. The result is a set of proposed trips 

that become the basis for the monthly flight schedules. This initial solution is 

subjected to an evaluation that considers potential fatigue risk factors determined 

from four sources: 

• BMF computations that estimate fatigue from the timing of the flights, 

opportunities for sleep, and time of day. 
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• Research data collected previously by the airline that have identified certain 

flight sequences as causing greater fatigue. 

• Fatigue reports from pilots that have experienced similar trips in the past. 

• Operational risk factors, such as complex airports, that could exaggerate 

risk if fatigue is present.  

These risk factors are considered, and proposed trips are rank ordered to flag 

trips that have the highest combination of risk factors. Flagged trips are then 

assessed to identify the primary fatigue factors involved, and, if needed, a revision 

process is undertaken. For the revision process, a fatigue management group 

including representatives from the crew scheduling group and, if applicable, from 

the pilot union examines the fatigue factors involved and proposes changes to the 

flagged trips.  

Proposed changes may be made manually to the specific trips for which risk 

factors have been identified, in order to include appropriate mitigations. For 

example, a schedule might be created that involves a series of four flight 

segments, all occurring at night. Depending on the destinations and the length of 

the segments, such a trip might not pose excessive fatigue risk. But, under other 

circumstances involving relatively long flight segments, little or no opportunities for 

sleep or rest between segments, and difficult airport approach requirements, such 

a trip could be split into two separate trip fragments. These fragments might be 

assigned to other trips containing flights that are shorter and less fatiguing. The 

original trip could also be revised to include a layover between the first two and the 

last two segments.  

Alternatively, changes may be made by adding additional constraints to the 

automated system to avoid fatigue factors globally and creating a new set of 

proposed trips. This new set is again assessed to ensure that the intended fatigue 

reduction is achieved, without introducing new fatigue factors. There are often 

multiple ways to change a schedule to achieve equivalent reductions in fatigue 

risk, allowing for a solution to be selected that does not cause unacceptable cost 
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increases. However, managing fatigue should be an overarching priority with long-

term value, so that reasonable short-term costs to reduce fatigue would normally 

be considered acceptable. When the revised set of trips is approved, the monthly 

schedule is published. 

 

1.4.2.2 Proactive sleep opportunity management 

 

Proactive planning of sleep periods immediately before and after duty periods 

(Boivin & Boudreau 2014), along with planned napping during duty periods 

(Ruggiero & Redeker 2014), can help mitigate fatigue, especially during night 

operations commonly encountered in cargo flight operations. Duty schedules that 

are protective of sleep opportunities and known well in advance can facilitate this 

approach to fatigue mitigation.  

The recuperative potential of sleep periods and naps depends in part on the 

availability and adequacy of sleep facilities. At a US-based commercial cargo 

carrier, in addition to providing hotel accommodation during layovers, this issue 

has been addressed as follows: 

1. Building quiet, comfortable, secure sleep rooms at departure and arrival airports, 

and making them available before, during, and after duty periods for pilots to 

maximize preparatory and recuperative sleep opportunities. 

2. Instituting a wake-up call program, which puts the responsibility of waking up a 

pilot napping before a flight on company personnel (e.g., the station manager in 

charge of the flight). In the wake-up call program of a US-based commercial cargo 

carrier, pilots using the wake-up call program are awakened prior to the scheduled 

report time (while allowing sufficient time for any impairment from sleep inertia to 

dissipate). If their flight is delayed, the wake-up call is also delayed, and the pilots’ 

sleep opportunity is increased. These proactive strategies are used frequently, 

especially at night; see Fig. 12 (bottom). Pilots have reported that they reduce 

anxiety and allow for additional, more restful, sleep. 
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1.4.2.3 Reactive Process of Managing Fatigue 

 

The predictive process will involve identifying specific pairing designs that 

create fatigue risk without intervention in the planning process. Here the fatigue 

model would be used to analyze the schedules generated through cargo carrier’s 

prescriptive rule sets, taking into account planned fatigue mitigations and 

physiologically realistic sleep estimates.  

Fig. 13 demonstrates how an us commercial cargo carrier have adopted the 

three major fatigue risk identification processes: predictive, proactive, and reactive. 

CBA = collective bargaining agreement; FARs = federal aviation regulations; SIG 

= scheduling improvement group; FRMS = fatigue risk management system. The 

proactive process involves identifying situations that may lead to fatigue during the 

day of operations. Here the fatigue model would be used to monitor schedule 

changes in real time and alert schedulers of increased fatigue risk, to apply fatigue-

friendly schedule revisions, and to suggest personalized sleep/wake strategies for 

pilots operating flight pairings at risk for fatigue. Finally, the reactive process 

involves data-driven identification of flight parings that resulted in fatigue risk 

during post schedule analysis. Here the model would also incorporate anecdotal 

data generated from fatigue and incident reports, and would be useful in preventing 

future fatigue-related incidents.    

 

1.5 Fatigue Data and Analysis 

 

1.5.1 Background 

 

Fatigue is inherent to flight operations that fly through multiple time zones and 

also on irregular shift patterns (Smith et al, 1998). Many aspects of performance 

are subject to fatigue-related impairment, and the consequences (G. Belenky et 

al., 2014) in a workplace can be complex. Operators have challenges to 

understand the impact of fatigue in their operations. Operators and Regulators 
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have turned towards using fatigue risk management system. A good foundational 

Fatigue Risk Management offers tools to manage and mitigate organizational 

fatigue. However, to provide scientific proof and guidance to their operations, a 

comprehensive robust data collection is necessary. Operational performance data 

collection helps to identify the practices requiring additional attention and also 

helps measure the effectiveness of the current risks. Subjective and objective data 

collection metrics can be used as the key safety performance indicators (SPIs) to 

help identify the fatigue hazards.  

 

It’s always challenging to collect data during aviation operations because there 

is not too much of opportunities to perform experimental controls and 

measurement strategies. However, collating and comparing data collected through 

a combination of techniques provides the airlines more avenues to help 

understand their operations.  

1.5.2 Types of Data 

 
In the fatigue risk management world, operators on their crew schedule 

network monitor sleep history, crew subjective feedback and performance 

measurements to have in-depth information to detect fatigue hazard. Crew will be 

asked to volunteer and participate in the efforts to help improve the safety of 

operations. This will be in more focus whenever there is a change to the existing 

pattern or a new pattern is introduced. The operators will typically compare to 

something that they felt safe to operate. The study design and measures used 

need to be provide scientifically defensible answers to the operational questions 

being asked about fatigue and safety. In the aviation context, recommended 

criteria for selecting measures include the following: They have been validated, to 

confirm that they measure what they purport to measure; they do not jeopardize a 

crew member’s ability  to  perform  operational  duties; and they have been  widely 

used in aviation, allowing data to  be compared between different types of 

operations (ICAO 2012) 
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1.5.2.1 Sleep 

 

Understanding the sleep/wake history is the most valuable information about 

the fatigue status, because sleep is one the two major factors that affects 

performance and other is circadian. Polysomnography is the gold standard 

laboratory measurement that has been used to monitor sleep for short periods of 

time and recently has been tried in field studies (T. Akerstedt et al., 1991) (RC. 

Graeber, et al., 1986) (P. Ho et al., 2005) as well, yet the effort to undertake the 

equipment and analytical measurements is expensive and time-consuming.  

An actigraphy, unlike polysomnography is an unobtrusive wristwatch that 

needs to be worn on the nondominant wrist, which sums movements across 

specified time period governed by the administrative setting of epoch time. In the 

1950s, the scientists started using mechanical sensors to evaluate psychologic 

disorders as many believe that’s the first medical use of actigraphy. This led to 

rapid development in the areas of piezoelectric sensors for enhanced accuracy, 

reliability and storage capacities. Many studies have used Actigraphy as a 

reasonable alternative to polysomnography especially to objectively monitor sleep 

in field studies. It has a very good reliability on total measurement of sleep time. 

The major drawback of this measure is it doesn’t fully identify the sleep stages (TL. 

Signal, et al., 2005) (KL. Stone et al., 2011) very well. The actigraphy manufactures 

have developed algorithms that understands the sensitivity of the accelerometer, 

combined with the epoch reading (TL. Signal, et al., 2005) to determine the state 

if the wearer is sleep or awake. The algorithms are usually validated against the 

polysomnography in a lab. Depending on the frequency of the epoch time interval, 

memory space and the battery holding time the data can be recorded for longer 

period of time. This is again another reason why actigraphy has gained a lot of 

interests in the field studies where you are collecting non-intrusive operational data 

for a longer period of time. In 1995, the American Academy of Sleep Medicine 
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(AASM) concluded that actigraphy was useful as a research tool for the study of 

sleep (ASDA 1995).   

Volunteers are also asked to keep track of the sleep diaries along with wearing 

the actigraph watch. This helps to gather the subjective data perspective and are 

either collected in the form of paper or electronically. The manufacturers have 

started to add additional sensors to enhance the quality of information. One such 

is the inclusion of light sensors on the device. For the operators this is useful to 

better understand the conditions that the crew members are preparing for sleep 

and also aids the sleep scorers to better compare and validate against the sleep 

diaries.  Fig.14 was generated by internally developed software program that uses 

the raw actigraphy data and overlapped that with activity information to give the 

full picture of the sleep wake history. Each row reshows the day of work beginning 

at midnight to midnight. Each vertical line represents an hour in home base time 

of the pilot. Work activity in shown in orange, Sleep is shown in blue, intensity of 

light exposure is shown in yellow, strength of activity is shown as vertical lines 

 

1.5.2.2 Subjective Sleepiness and Fatigue 

 

In the world of aviation fatigue data collection, two prominent scales 

validated have been recommended (ICAO 2012). The Karolinska Sleepiness 

Scale (KSS) is the scale from 1 to 9 where 1 = “extremely alert;” to 9 = “extremely 

sleepy, fighting sleep”; (Akerstedt & Gillberg 1990). This scale has been validated 

against EEG (M. Kaida, et al., 2006) and other behavioral variables. It is used to 

measure the subjective level of sleepiness at a particular time of the day. The 

participants of data collection scores their number that best reflects the psycho-

physical state experience in the last 10 minutes. It is the measure of situational 

sleepiness. The use of KSS as shown in Fig 15 has been used for studies related 

to shift work, jet lag, attention and performance (Kecklund & Akerstedt 1993).   

Samn-Parelli Scale (SP) is the scale (Samn & Parelli 1982) from 1=” fully 

alert, wide awake;” to 7=” completely exhausted, unable to function effectively;” 



31 
 

This self-assessment scale as shown in Fig 16 was originally developed in 1982 

for military airlift operations and recently is popular in many aviation studies. The 

performance impairment starts to show on score more than 5. The participants of 

data collection scores their number that best reflects the psycho-physical state 

experience in the last 10 minutes. It is the scale for an individual’s subjective 

fatigue measures. Although it can be easily administered, the wide range of 

individual variance limits its efficacy of once-off assessment tool. In the B747-400 

simulator study, the crews demonstrated greater sleep loss and higher subjective 

fatigue ratings associated with slower decision making and tendency to choose 

lower-risk options (RM. Petrilli et al., 2006) 

  

1.5.2.3 Performance 

 

For measuring performance in field studies, a number of approaches have 

been developed each with its own strength and weaknesses. With the invention of 

smart phones, well validated laboratory tasks are now implemented in smart 

phones that helps administer sleep studies (G Bekenky et al., 2014) (GD. Roach 

et al., 2006) (DR Thorne et al., 2005). One such task is Psychomotor Vigilance 

Task (PVT) (Basner & Dinges 2011) (Dinges & Powell 1985) is as shown in Fig 

17. This type of measurement of performance involves interrupting the normal flow 

of work and considered intrusive (TJ. Balkin et al., 2004). Participants have to 

pause what they are doing and take a test that ranges from 3 minutes to 10 

minutes. The more the time the better is the accuracy of data. However, the 10-

minute standard duration of PVT is regarded by many as too long for applied, 

operational settings. Shorter duration PVT versions (A. Samel et al., 1997) (PH. 

Gander et al., 2013) (PH. Gander et al., 2013) though is better from use 

perspective, still has challenges on being too short to detect relevant deterioration 

in vigilant detection. The test involves the participants to react to a stimulus that 

appears in the computer, tablets or the smart phones.  The time from the stimuli 

and the response from the participant records the reaction time. The test is 
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designed in such a way that the stimulus appears at random intervals so the 

participant cannot anticipate the impulse. Several lab studies have shown strong 

correlation between PVT performance and circadian nadir (EJ. Silva et al., 2010) 

(KP. Wright et al., 2002) and also PVT performance with cumulative sleep-dose-

dependence (G. Belenky et al., 2003) (HPA Van Dongen et al., 2003). The form of 

measurement is recommended for use in FRMSs in aviation and also highly 

recommended by the regulators (ICAO 2012) when the operators is looking for 

deviation from the regulations. 

1.6 Gaps and Research  

 

In 2012, this industry leading cargo airline committed to scientifically 

understand its complex operations and its current mitigations and practices on 

what is making its crew operate safely. These mitigations include fatigue-limiting 

scheduling policies, world class sleep facilities at the hub, schedule improvement 

group to review 100% of the schedules, wakeup call program, applying science-

based rostering, real-time fatigue predictions, contractual requirements of fatigue 

risk management, matured fatigue event review process, fatigue reporting policies.  

The around-the-clock and across-time-zones nature of its flight operations 

exceeds the boundaries of accuracy and validity of currently available fatigue and 

alertness models. Most of the tools to address the needs of the cargo airline to 

operationally manage fatigue is not in existence. This research would focus on 

bridging the gap with necessary tools, models and processes. The company plans 

to collect (de-identified) field data on human performance and alertness as part of 

its commitment to fatigue risk management. These data will advance our 

understanding of fatigue in the field, and will be useful to educate the pilots, 

schedulers and management about fatigue risks. The field data will also support 

the continued development of modeling software encompassing the scheduling 

parameters of airline’s air distribution network and applicable regulatory 

requirements. Data collection and research and development of modeling software 
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are critical aspects of the regulatory environment that will increasingly require 

airlines to develop science-based fatigue risk management systems. As outlined 

above, this airline has already taken several proactive steps to develop tools for 

generating alertness-friendly schedules that maintain operational integrity. The 

next major step is to further build the knowledge base that will allow for the 

prediction and advance mitigation of fatigue (and the resulting improvement in 

overall pilot alertness) across the many facets of airline’s air operations world-wide. 

In January 2014, the FAA introduced new duty hour regulations (Part 121, 

Section 117). The changes to work hour rules limit duty hours relative to duty start 

time and enforce a “hard stop” on crew duty length that leads to a violation when 

exceeded. Although the work hour rules are intended to minimize the likelihood of a 

crewmember working at an adverse circadian phase, the rules do not consider issues 

such as prior work/rest schedule, commuting, sleep in hotel rooms or daytime rest 

periods as confounders. Furthermore, the regulations do not account for the effects of 

sleep inertia during ultra-long-haul operations, where pilots are required to perform 

landing activities shortly after waking from in-flight rest. The change in duty hour 

regulations has also led to situations where crewmembers have reported experiencing 

an increase in fatigue. As part of this efforts and continued evolution of the program, 

I identified the following gaps and engaged in research to explore them for effective 

solutions, 

 

A. Streamlined data collection process that will help airlines to help 

collect human performance data and benchmark with other airlines 

B. Fatigue Model Estimations and Quantification of Fatigue Risk. 

C. Operational factors and impact on workload and crew duty delay.  

D. Forming clusters of work patterns to help predict fatigue calls from 

crew. 

E. Models to estimate Real-time fatigue detection without prior 

knowledge of sleep wake history. 
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CHAPTER II 
FIELD STUDIES, OPERATIONAL IMPACT AND ALERTNESS 

PREDICTIONS 
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2.1 Data Collection Process  

 

2.1.1 Process 

 

Collecting human performance data in the field settings can be complicated 

especially when comes to collecting data on irregular schedules. Fig. 18 

represents the full fatigue data collection cycle. The process of human 

performance data collection (Rattray & Jones, 2007) (M. Rosekind et al., 2000) in 

the field is shown in Fig below. To answer the key research questions the 

operators, have to collect data on certain operational settings. The process 

involves the committee comprised of pilot’s representatives, the pilots, company 

fatigue risk management team and the scientists who defines protocols and SOPs 

for the study. 

 

2.1.1.1 Identification 

 

Identification process begins with several triggers. It could be based on 

systemic risk that was detected by an effective crew reporting feedback system. 

The crew uses the company’s internal reporting system to inform the management 

about experienced fatiguing situations. These fatigue conditions could be 

attributed by combination of duty patterns, a hotel room etc,. These reports are 

reviewed by a committee and looked from a scientific perspective. The other 

triggers could be new design that is planned to operate. In all the cases above, the 

review committee if they don’t have all answers, will trigger the objective data 

collection process. 

 

2.1.1.2 Preparation 

 

After the problem is identified the operator prepares for data collection. This is 

an involved process. The first of the task in this process is engaging with a sleep 
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scientist to design the protocols for the study including (Institutional Review Board) 

IRB approvals. Depending on the problem and the research questions asked, the 

study design could carry one or more data collection variables. The design also 

determines the number of subjects and the length and the patterns of the work 

schedules. After defining the protocols, the data collection steering committee 

solicits for volunteers and explains the nature of the study and its protocols to the 

potential participants. A detailed communication is established to answer important 

questions on the study. Pilots will have to acknowledge and confirm their 

participation with a written consent. The data collection committee then selects the 

volunteers and confirms back the selection. Before beginning the process, the 

team will DE identify and assign them a pseudo number for further correspondence 

and analysis. 

 

2.1.1.3 Collection Process 

 

When the volunteers are identified along with their operating schedule design, 

the team gears up on preparing the study packet. The packet may include fully 

configured actigraphs, detailed instructions of use, PVT device, sleep and other 

logs. The team will provide 24x7 in-study support to administer any questions that 

might arise from the participants. The participants once completing the study will 

return the packet along with the devices back to the team who is administering the 

study. The data collection team will document the acceptance of the study packet. 

 

2.1.1.4 Analysis and Implementation 

 

Each of the study packet contents are both manually and electronically 

transferred in to a database management system. Analytical tools and methods 

(Braun & Clarke 2012) are applied to answer the research questions. The results 

are summarized and shared with the business owners. The analysis could also be 

recommendations to operators, crew or both to help improve on fatigue risk. Once 
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the solutions are implemented, the team may or may not decide on verifying if the 

solution is working or not. 

2.1.2 Data Structure and Taxonomy 

 
Centralized Data Management and Relationship Framework. The taxonomy 

(D. Grossi et al., 2005) that manages all the access, security, data ingest, visualize, 

analytics, reporting. Profile Data Base. Each of the profiles sets (Study, Actigraph, 

PVT, Subjects, Schedules) are individually managed within the system. Data Sets. 

Data from the subject’s common data sets include static information like airport 

information, time zone conversions, and other labels. 

2.1.3 Database and Analysis 

 

The creation of the fatigue management database system to help monitor 

and mitigate fatigue-related conditions for the pilots provided a huge leap in 

accelerating the conduction of the studies. The software allows the fatigue 

management team to visualize fatigue study information in near real time through 

the automation of several aspect of the data collection and analysis. The software 

built on top a human physiology taxonomy as shown in Fig 20 allows for the 

integration of a number of measurements including, the psychomotor vigilance 

task (PVT), actigraphy (accelerometer & ambient light), subjective sleepiness 

scales (Karolinska Sleepiness Scale (KSS) & Samn-Perelli (SP)), and duty 

schedules. In its present form, the software shows promise as an integration tool 

for the management and analysis of datasets, but it also has some shortcomings 

including: the absence of some commonly collected variables, glitches and 

usability errors, and design concerns. Below are few screens out of the data base 

management system built to analyze and visualize the data elements. 

This display as shown in Fig 21 is used to examine scatter plots of an 

individual PVT session for a selected subject. Information on the specific actigraph 



39 
 

watch is also displayed. The researcher can also see basic descriptive statistics of 

time of PVT session and how many lapses were present.  

The screenshot shown in Fig 22 represents a three-process model output for a 

single participant created by the software and based on collected data.  

This display as shown in Fig 23 represents multiple subjects wake-sleep curves 

overlaid with one another. This allows a researcher to visually examine general 

trends among individuals. 

This screenshot in Fig 24 shows the variety of additional displays that are 

executable within a participant's dataset. The arrows denote the windows that 

open with a click on the buttons along the top of the screen allowing additional data 

points to be presented.  

This display shown in Fig 25 presents the capabilities to examine scatterplots from 

a participant's overview screen. The boxes the arrows come from denote the 

number of lapses on a given PVT session, which once clicked, present a PVT 

scatter plot.  

The display shown in Fig 26 presents sleep distributions across multiple studies. 

The present configuration is displaying the differences between a day and a night 

time schedule. The pop-out figure displays probability that an individual subject is 

sleeping or working 

2.2 Fatigue Field Study Example - Night Hub Turn Study 

 

2.2.1 Background 

 

In this section, I will go through a real-world study conducted through the 

process per Section 5 and explain the impacts to fatigue model predictions. US 

passenger carriers’ regulations recently changed from FAR 121 to FAR 117. FAR 

117 provides a regulatory framework for the implementation of fatigue risk 

management systems on a foundation of iterative sleep and fatigue assessment 

and improvement.  
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NASA Ames Research Center previously gathered similar data (1987–1988). 

Findings were published in Gander, Gregory, Connell, Miller, Graeber & Rosekind 

(1996), “Crew Factors in Flight Operations VII: Psychophysiological Responses to 

Overnight Cargo Operations.” Much has changed in this cargo airline flight 

operations, and the data from the NASA study are no longer current. The present, 

multi-year strategic initiative plans to study all phases of the Cargo Airline system 

form. By gathering pilots’ sleep data, this cargo airline will be in ambitious position 

to understand the effects of mitigation and scientifically validate their system form 

through objective data. With this objective data, the company and the association 

will be able to accurately address their scheduling problems using fatigue 

forecasting software. Sleep and fatigue data can be compared from segment to 

segment and from trip to trip to help improve the system and support fatigue risk 

management. 

In this section, I present how human performance data is collected, interpret 

the results and promote the findings into prediction modeling. The study focuses 

on impact of sleep, performance on 4 consecutive nights operations in two different 

hubs Hub 1 and Hub2 and compare and contrast the differences in work and sleep 

patterns. These pilots represent a smaller group to study and a more controlled 

system form. They operate a schedule of 4 consecutive nights mostly from/to the 

same city each night. They have a layover in a hotel in a specific city every day 

after each flight duty period. An example of this type of sequence would begin each 

flight duty period in Oakland, CA (OAK). Each night, for 4 consecutive nights, the 

pilot flies OAK–Hub1–OAK, then returns to the same hotel in the morning (except 

for the last flight duty period, after which the pilot goes home).  

 

2.2.2 Study and Pilot Characteristics 

 

Data were available for 64 pilots, which each flew hub turns on 4 consecutive 

nights. The total data set consisted of 255 hub turn duty. Of the 255 hub turns, 187 
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were to Hub1, the other 68 were to Hub2. Pilots were scheduled to travel to and 

from the city where their week of work started by a commercial flight. For the 

majority of the pilots flying to Hub1, their residence was in the Eastern Time zone 

(ET), whereas for most of the pilots flying to Hub2, their residence was in either 

the Central or Pacific time zones (CT or PT). In this report, all times of day are 

expressed in base time (CT) unless otherwise specified.  

Duty start time was 22:01 base time on average for hub turns to Hub1, and 

22:27 base time on average for hub turns to Hub2. Block-in at the hub occurred at 

23:38 base time on average in Hub1, and at 00:52 base time on average in Hub2. 

As such, time spent at the hub was longer in Hub1 (3.83 hours on average) than 

in Hub2 (2.47 hours on average). Duty end time was 04:57 base time on average 

after returning from Hub1, and 05:59 base time on average after returning from 

Hub2. 

 

2.2.3 Hub Napping 

 

Out of the 255 hub turns, 176 had nap sleep at the hub as determined by 

wrist actigraphy. On average, pilots had hub naps 69.1% of the time, with a 

standard deviation over pilots of 40.3%. Pilots were relatively consistent in whether 

they napped or not (ICC=0.75, Z=5.18, p<0.001). Napping occurred more 

frequently in Hub1 (78.6% on average) than in Hub2 (42.6% on average). In those 

cases when a hub nap was taken, the naps were significantly longer (F1,127=5.5, 

p=0.020) in Hub1 (1.46 hours on average) than in Hub2 (0.93 hours on average). 

In terms of individual differences, pilots were relatively stable in their nap durations 

(ICC=0.72, Z=4.33, p<0.001).  

The difference in nap duration between Hub1 and Huub2 is not surprising, 

because time spent at the hub was 1.36 hours longer in Hub1 than in Hub2. 

Indeed, hub time was a significant predictor of hub nap duration (F1,190=76.4, 

p<0.001). After the first 0.71 hours of hub time (which was the minimum duration, 

on average, to have any sleep), hub nap duration increased by an average of 0.48 
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hours for every hour of hub time (i.e., roughly half of each hour of extra hub time 

was spent sleeping, on average). Regardless of whether the hub turn was at Hub1 

or at Hub2, pilots with residence in ET or PT napped more frequently than pilots 

with residence in CT or MT (F3,191=3.0, p=0.031). The nap duration of pilots with 

residence in ET or PT was also slightly longer than that of pilots with residence in 

CT or MT, but the difference was not statistically significant (F3,191=2.3, p=0.080). 

There was a trend for small but systematic changes in nap duration from the 

first to the fourth duty night of the hub turn sequence (F3,185=2.4, p=0.070). The 

second night showed the longest nap duration and the last night showed the 

shortest nap duration, regardless of whether the hub turns were at Hub1 or at 

Hub2. The average difference between the second and last duty nights was 0.2 

hours. Whether pilots napped in a hub room (as assessed by self-report) or in a 

hotel also made a difference for nap duration, with napping in a hub room adding 

0.46 hours of sleep time on average, although the difference with sleeping in a 

hotel did not reach statistical significance (F1,124=3.1, p=0.079). When hub sleep 

occurred, it took longer from block-in time to the start of sleep during the hub turn 

in Hub1 (0.91 hours on average) than in Hub2 (0.51 hours on average) – the 

difference was significant (F1,127=7.3, p=0.008). Some of this difference may be 

attributed to transportation time to a hotel from the Hub1 hub.  

The average difference in nap duration between Hub1 and Hub2 is not 

surprising, because average time spent at the hub was 1.36 hours longer in Hub1 

than in Hub2. Overall, hub time was a significant predictor of hub nap duration 

(F1,190=76.4, p<0.001), explaining 35.1% of the variance. See Fig. 27. After the 

first 0.71 hours of hub time (which was the minimum duration, on average, to have 

any sleep), hub nap duration increased by an average of 0.48 hours for every hour 

of hub time (i.e., roughly half of each hour of extra hub time was spent sleeping, 

on average). 
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2.2.4 Further Analysis 

 
A commonly expressed concern is whether sleep at the hub may interfere 

with sleep after the end of the duty period. There is some evidence to corroborate 

that concern in the present data set, in that increased hub nap duration significantly 

predicts reduced post-duty sleep duration (F1,190=7.4, p=0.007). However, for each 

hour of additional hub nap duration, only 0.43 hours of post-duty sleep is lost. Thus, 

in general, hub napping still constitutes a net gain in sleep obtained. There was no 

evidence in the present data for the opposite relationship. That is, across each of 

the duty nights and all of the subjects, sleep in the 24 hours before duty did not 

significantly affect hub nap duration (F1,190=2.14, p=0.15) – see Fig 28. This finding 

held up when only duty nights with more than zero minutes of hub nap duration 

were included (F1,126=1.27, p=0.26). 

It is important to note that the present results for sleep in the 24 hours prior 

to duty and sleep after duty are not independent of each other – in consecutive 

duty days, post-duty sleep is also included here in sleep during the 24 hours prior 

to the start of the next duty period. Subsequent analyses considering whole 4-day 

pairings at once are needed to tease this apart. These analyses will be pursued in 

the near future. Finally, to what extent the sleep findings discussed here are 

relevant for fatigue levels during the hub turns to Hub1 and Hub2 could be explored 

through biomathematical fatigue modeling (which will be pursued in the 

foreseeable future) and/or through fatigue measurement during a subsequent 

study. 

2.3 Fatigue Risk Quantification 

 

2.3.1 Shortcomings 

 

The question of what is a maximally acceptable level of fatigue risk is hotly 

debated in model-based fatigue risk management in commercial aviation and other 

transportation modes. A quantitative approach to addressing this issue, referred to 
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by the Federal Aviation Administration with regard to its final rule for commercial 

aviation “Flight crew Member Duty and Rest Requirements,” is to compare 

predictions from a mathematical fatigue model against a fatigue threshold. While 

this accounts for duty time spent at elevated fatigue risk (Goode 2003), it does not 

account for the degree of fatigue risk and may, therefore, result in misleading 

schedule assessments. I propose an alternative approach based on the first order 

approximation that fatigue risk is proportional to both the duty time spent below the 

fatigue threshold and the distance of the fatigue predictions to the threshold — that 

is, the area under the curve (AUC). The AUC approach is straightforward to 

implement for schedule assessments in commercial aviation and also provides a 

useful fatigue metric for evaluating thousands of scheduling options in industrial 

schedule optimization tools. 

 

2.3.2 Quantifying Fatigue Risk in Model-Based Fatigue Risk Management 

 

RECENT CHANGES in U.S. hours of service regulations across several 

modes of transportation have brought to the foreground the question of what is a 

maximally acceptable level of fatigue risk (P. Gander et al., 2011). Advances in 

mathematical modeling of fatigue have facilitated systematic investigation of this 

issue in the context of fatigue risk management (SR. Hursh et al., 2010). One way 

to approach the issue is by comparing model predictions of fatigue against a 

fatigue threshold to distinguish acceptable from unacceptable (overly fatigue-risky) 

duty schedules (SR. Hursh et al., 2011) (see Fig. 29).  

Comparison of two sleep/wake/duty schedules based on two different 

fatigue thresholds. The abscissa indicates cumulative clock time (0, 24, and 48 

denote midnight). Schedule 1 is shown on the bottom (black) and schedule 2 is 

shown on the top (gray), where solid bars indicate sleep periods and hatched bars 

indicate duty periods. The curves show fatigue predictions (expressed as 

effectiveness percentage) made with the SAFTE model for schedule 1 (thin black 

curve) and for schedule 2 (thick gray curve). The dashed lines show two different 
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fatigue thresholds, at 77% and 80% effectiveness, which could be used to evaluate 

the fatigue risk associated with the duty period on the second day in the two 

schedules. With the 80% effectiveness threshold, in both schedules the fatigue 

prediction curve falls below the threshold, indicating unacceptable levels of fatigue 

risk; whereas with the 77% effectiveness threshold, only schedule 1 would be 

considered unacceptably fatigue-risky. Regardless of which threshold is used, 

though, schedule 1 is predicted to have the most duty time with unacceptably high 

fatigue risk. Comparing schedule 1 to schedule 2, this is a consequence of the 

early awakening to begin an early duty period and the early afternoon placement 

of the nap on the first day in schedule 1.  

In 2011, the Federal Aviation Administration referred to this strategy in its 

discussion of public comments and final rule for commercial aviation “Flight crew 

Member Duty and Rest Requirements ” (Federal Aviation Administration 2011). A 

widely used mathematical model of fatigue called the Sleep, Activity, Fatigue, and 

Task Effectiveness (SAFTE) model (SR. Hursh et al., 2004) was used. This model 

predicts fatigue based on a homeostatic process tracking sleep/wake history and 

a circadian process tracking time of day; the model is distinct from most other 

mathematical models of fatigue in how well it captures the fatiguing effects of 

chronic sleep restriction and shifted sleep times. SAFTE model predictions are 

conventionally expressed on a “% effectiveness” scale, and a fatigue threshold of 

77% effectiveness has been used to distinguish acceptable from unacceptable 

duty schedules in commercial aviation. The fatigue threshold approach has been 

criticized because it does not account quantitatively for the degree of fatigue risk 

associated with a given schedule (HPA Van Dongen et al., 2012).  

Whether or not a schedule is deemed to be associated with an 

unacceptable level of fatigue depends on where the line is drawn, that is, the 

selected threshold level to which fatigue predictions are compared (see Fig. 29). 

This issue has led to debates in the literature, for example about whether or not a 

threshold level established for one mode of transportation is also applicable for 

another (SR. Hursh et al., 2010). Even though fatigue thresholds have found their 
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way into real-world operations (D. Dawson et al., 2011), these debates are 

ongoing.  

The issue of where to draw the line in an absolute sense is to some extent 

irrelevant in the context of schedule optimization, which intrinsically relies on 

relative comparisons between different schedules in terms of fatigue risk and other 

operationally relevant factors (HPA Van Dongen et al., 2012). This can be seen in 

Fig. 29, where regardless of which of two different threshold levels is used, the 

same schedule would be selected as the one predicted to be the least fatigue-

risky. Yet, there is ambiguity in this approach to using fatigue thresholds for 

comparing schedules. This problem can arise when the most relevant period of a 

schedule the duty period (or a safety-critical portion thereof) begins or ends with a 

predicted percent effectiveness that is below the threshold. This is illustrated in 

Fig. 30, where one schedule involves more duty time spent subthreshold, whereas 

another schedule involves less duty time spent subthreshold, but with a greater 

drop of percent effectiveness relative to the threshold. It is a priori unclear which 

of the two schedules involves the highest fatigue risk while on duty.  

We propose an alternative strategy for using fatigue thresholds which helps 

to overcome this ambiguity. A key ingredient in this approach is the realization that 

fatigue risk (i.e., risk of fatigue-induced errors, incidents, and accidents) is 

increased not only by more duty time spent below the threshold (regardless of the 

threshold level), but also by the degree of fatigue at those times. A reasonable 

linear approximation of this is that fatigue risk (Goode 2003) is proportional to both 

the duty time spent below the threshold and the distance of the fatigue predictions 

to the threshold. In other words, fatigue risk is proportional to the integrated area 

under the curve (AUC) across the duty period. Thus, we recommend that 

threshold-based fatigue evaluations of work schedules employ AUC as the primary 

metric of fatigue risk (see Fig. 31 for an illustration). The AUC approach connects 

readily with the neurobiology of sleep and fatigue as instantiated in the seminal 

two-process model of sleep regulation (AA. Borbély et al., 1982) (S. Daan et al., 

1984). In this model, a homeostatic process S builds up a pressure for sleep across 
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time awake (and dissipates this pressure during sleep). When the pressure for 

sleep exceeds a threshold H Hm C, where Hm is a constant and C is a circadian 

process modulating the threshold level over time of day, sleep is predicted to occur 

naturally. Staying awake causes, a state of sleep deprivation, yielding fatigue. In 

the two-process model, fatigue risk can be seen as proportional to both the time 

during which process S is above the threshold H and how far process S is above 

the threshold H at each time point. Thus, fatigue risk is proportional to the 

integrated area above the time varying threshold (see Fig. 32).  

Ambiguity in the comparison of duty periods based on fatigue thresholds. 

Plot elements are the same as in Fig. 29. Three days of two different schedules 

are shown: schedule 1 is shown on the bottom and in black; schedule 2 is shown 

on the top and in gray. Regardless of which of the two thresholds drawn is used, 

the last duty period in schedule 2 is predicted to have the most duty time with 

unacceptably high fatigue risk. However, due to different sleep/wake history, the 

last period in schedule 1 is predicted to involve greater reduction of percent 

effectiveness. This can make the selection of a schedule based solely on duty time 

spent below the fatigue threshold suboptimal in terms of mitigating fatigue risk.  

Magnification showing the AUC below the 77% effectiveness threshold for 

the two duty periods being compared in Fig. 37. Schedule 1 is shown in near-black 

and schedule 2 is shown in light gray; overlap is shown in dark gray. (Sleep periods 

are not shown.) Even though the duty period in schedule 2 clearly involves more 

duty time spent below the fatigue threshold, the AUC for schedule 1 is estimated 

to be 1.62 times greater than that for schedule 2. This suggests that schedule 1, 

not schedule 2, and is associated with the greater fatigue risk. 

Equivalent of Fig. 31 in terms of the two-process model of sleep regulation 

applied to schedule 1. A) Process S is shown in black (thick curve rising during 

wakefulness and falling during sleep); the threshold H (modulated by the circadian 

process C) is shown in gray (thin curve). The near-black area shows the integrated 

area during the duty period when process S is above the threshold H. B) By 

subtracting the circadian process from the homeostatic process and inverting the 
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scale (thick black curve), the two-process model view reduces to the AUC 

approach proposed here (with a threshold level of zero, shown in light gray). The 

near-black area is the neurobiological equivalent of the AUC for fatigue in Fig. 31. 

The AUC approach we propose here is no more difficult to implement than 

the threshold approach currently in use in various operational settings and could 

thus easily replace the latter. The AUC approach also provides a computationally 

feasible means of evaluating thousands of possible scheduling options, as will one 

day be needed to encompass fatigue risk management in industrial schedule 

optimization algorithms (E. Romig et al., 2009) (HPA Van Dongen et al., 2012). 

2.3.3 Fatigue Risk Estimation and Relationship to Errors and Flight Safety 

 
Fatigue model predicts alertness (E. Romig et al., 2009), however these 

models also started proposing thresholds for the operations to define acceptable 

and unacceptable schedules. This type of threshold approach has been criticized 

because it does not account quantitatively for the degree of fatigue risk. Different 

tasks require a different minimum level of alertness. As illustrated in Fig. 33, the 

required alertness level (the red line) changes over the duty period. Takeoff and 

landing have more duty, involve higher risk, and therefore require higher alertness 

level. Fatigue-related alertness level goes down over time. The shadow area 

measures the fatigue-related risk, which is more accurate compared to the single 

value of minimum level of alertness. The model will further be used to improve duty 

planning and mitigate overall risk. Extending further the AUC approach (S. Rangan 

et al., 2013) to risk assessment, we intend to develop a comprehensive risk model 

(S. Rangan Patent 9540118) for all fatigue factors defining logical relationship 

between the risks. We then would want to develop a dynamic way factor based on 

the risk on task to define threshold values on the alertness curve.  

In the literature of Crew Resource Management (CRM), crew training plays 

a critical role of mitigating risks caused by threats and errors. Here, threats are 

external conditions that have the potential to hurt the safety of a flight and include 

both expected threats and unexpected threats. The CRM literature focuses on how 
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to train pilots to recognize threats. However, a proactive risk management may 

purse mitigate threats, especially expected ones, through systematic and 

coordinated planning and adjustment. For example, weather, airport condition, and 

pilot’s familiarity on the airport are often considered common threats. A systematic 

way may not assign a pilot to an unfamiliar airport when there is a predicted 

hazardous weather. Errors are defined as crew action or inaction that leads to a 

deviation from crew or organizational intentions or expectations, including 

intentional noncompliance errors, procedural errors, communication errors, 

proficiency errors, and operational decision errors. Most researchers argue that 

errors are unavoidable and the focus should be on error management. An accident 

is often caused by a series of errors and CRM training is important for crew to 

better manage threats and errors. However, we argue that fatigue risk, measured 

in Fig. 34, could be a major contributor to the happening of initial errors, cause 

additional errors when crews detect and deal with errors, and exacerbate the error 

cycles to increase the chance of final accidents. Of course, threats may interact 

with fatigue risks to cause more risks and finally hurt the overall flight risk. 

Therefore, we will study the fatigue risk’s relationship with errors under the 

interaction with threats and final relationship with flight safety. The Operations 

Quality Assurance data and sleep data that have collected will be used to study 

the relationship that connects the area between the required alertness levels and 

fatigue-related alert levels and the counts of errors over time.  

Biomathematical models produces alertness, fatigue, lapses curve that is 

two dimensional. At time of the day in x axis, (alertness, fatigue and lapses) are all 

plotted on the y axis. Operations run the schedules through the model and draw a 

arbitrary thresholds to flag a particular schedule as fatiguing or non-fatiguing. The 

assumptions of the model on the homebased time of the individuals flying the 

schedule, age and other factors are kept static. So, quantification of risk is a big 

discussion item as the only way is to find the schedule above a threshold. As I 

discuss in my paper on Quantifying fatigue risk in model-based fatigue risk 

management. I would like to consider adding more dimensions to the 
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quantification. In addition to the length, the depth of exposure with the integral 

based AUC approach will be considered. Along with the depth and length, I would 

like to introduce the risk per minute. This will modify the thresholds to not be a 

straight line but a curve by itself based on all the factors. 

 

2.4 Crew Duty Scheduling 

 

2.4.1 Crew Planning 

 
Airline Crew scheduling is process where the airlines have to build monthly 

assignments for the crews which intends to minimize the cost for the operations. It 

is one of the most challenging planning problems faced by airlines. Although these 

problems are closely interrelated, they are typically solved sequentially, due to their 

size and complexity. Airlines usually begin by solving a schedule design problem, 

in which they determine the flights to be flown during a given time period. In the 

next step, the fleet assignment problem (Li & Tan 2013), they decide what type of 

aircraft (such as Boeing 767, 727, etc.) to assign to each flight, as a function of the 

forecasted demand for that flight.  

Once the maintenance planning activities are schedules, the flight 

schedules are up for generating the crew pairing and rostering which is a twostep 

sequential process that is the most challenging and compute intensive tasks in the 

industry. For large fleet sizes where the complexity increases, the planners with 

the use of optimization software can take multiple days to produce the pairing 

(sequence of segments as referred below). The runs are done on a monthly basis. 

The number of pairings is one the target that will be based on the number of 

available crews and the demand for flight hours for the airline for a given month. 

Crew rostering is an assignment phase where pairings and other activities like 

training are assigned to crew members according to their qualification, vacation 

days and other parameters as defined by their contractual agreement. As part of 

the rostering process, there is a bidding process that allows the crew to take some 
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control over their allocations. Different airlines around the world does this process 

differently. For example, majority of the North American carriers bid for predefined 

anonymous rosters where the senior members have priority over their other junior 

colleagues. The last step in the process is the day of operational recovery process. 

This is where the crew schedulers take control on resolving all the damages 

caused to the plan either due to unavailability of crew, cancellation of flights or pick 

additional demands.  The schedulers with the assistance of the day of operations 

crew tracking system evaluates combinations to determine the best crew on time.  

• Crew is referred as pilot and copilots needed to operate to commercial flight.  

• Flight is referred as the flight from a city also known as departure station to 

another city also called as arrival station at a given time.  

• Duty is referred as a period which the crew flies a set of segments without 

taking a legal rest break. 

• A trip is referred as a sequence of segments flown by the crew which typically 

originates and terminates at the base at which the crew is assigned to. On 

some cases they don’t have to start and stop the trip at base and some airlines 

also allows to fly their trip through the crew members base. 

 

2.4.2 Schedule DNA 

 
Pilot schedules are governed primarily by the regulatory framework of the 

respective country and also the negotiated agreements between the company and 

the pilots the latter being the most restrictive. Schedule also called as pairing 

consist of a sequence of duty periods where a duty is defined as the set of tasks 

to be performed by a crew member during a given day. A pairing is a sequence of 

connectable flight legs, within the same fleet, that starts from and ends at the same 

crew base, where the crew actually lives. A pairing is sometimes called an itinerary 

for the crew assigned to this journey. It typically spans from one to five days where 

some of them can go up to 15 days. Fig. 36 shows, a legal pairing is an alternating 

sequence of events that are mainly divided into duties and rests. Duties are in 
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orange blocks and rest is the space between the duties. The grey blocks are 

predicted sleep during the layovers. Sometimes crew members mitigate fatigue by 

taking nap in sleep room between flights in a duty period. Each duty period 

represents a daily task segment that can be subdivided into flight leg segments 

separated by sit connections. Hence duties must be formed before pairings. A duty 

can become a pairing if it starts from and ends at the same city. In United States, 

the length of a duty is largely determined by Federal Aviation Regulations (FAR). 

However, the length can vary from airline to airline. The Federal law only requires 

that a pilot cannot fly more than eight hours within a 24-hour period, and he/she 

must also be able to rest for eight hours in the same time span. A sit connection 

during a duty period mainly consists of the waiting time of the crew for changing 

planes on to the next flight leg. Finally, an overnight rest (or layover) is a rest period 

between two consecutive duties. If the overnight rest happens away from the home 

base of the crew, the airline must pay for their hotel expenses and additional 

compensations. 

 

2.4.2.1 Duty and Schedule DNA 

 

Flight duty period. The allowable length of a flight duty period depends on when 

the pilot's day begins and the number of flight segments he or she is expected to 

fly, and ranges from 9-14 hours for two pilot operations. The flight duty period 

begins when a flight crew member is required to report for duty with the intention 

of conducting a flight and ends when the aircraft is parked after the last flight. It 

includes the period of time before a flight or between flights that a pilot is working 

without an intervening rest period. Flight duty includes deadhead transportation, 

training in an aircraft or flight simulator, and airport standby or reserve duty if these 

tasks occur before a flight or between flights without an intervening required rest 

period. The pairings and duties are subjected to the contractual and state 

regulations and some of the examples are listed below 
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i. The total flying time within a duty cannot exceed an upper bound. There 

is also an upper bound on the total elapsed time within a duty.  

ii. There is a lower bound on the sit time which guarantees that the crew 

has enough time to connect between two consecutive flights within a 

duty. 

iii. The rest time between duties should be greater than or equal to a 

minimum rest time which ensures that the crew is sufficiently rested 

between duties. 

iv. There is typically an upper limit on the number of duties within a pairing. 

A typical duty in pilot schedule has a lot of variables such as duty start time, 

duty end time, length of the duty, number of flights in a duty, flight time vs total 

time, risk associated with duty, mitigations and countermeasures, number of time 

zones transitions etc., I have identified at least 10 variables that can possibly affect 

sleep and performance some being more prominent over others.  

2.4.3 Structure of DNA 

 

Generic DNA coding is being proposed to better cluster the individual 

schedules of work and sleep. Each of the attribute is coded into a two-digit alpha 

numeric code. This crew schedule in Fig. 37 has 4 duty periods. First duty from 

Memphis (MEM) to Anchorage (ANC), second duty from Anchorage to Osaka 

(KIX), third duty from Osaka to Pudong (PVG) and fourth duty from Pudong to 

Memphis.  

Extracting all the raw data from the schedule, see table 1 with all the attributes of 

the duty 

 

2.4.4 Coding DNA 

 

I am proposing the coding of the Duty DNA to be based on a threshold 

values of each of the attributes of the Duty. 
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For example in Fig. 38, P_L/O for last duty of 19hours and 23 minutes is converted 

into 2 digit alpha numeric code of LA. 00=start of duty, LS=short layovers upto 14 

hours, LA=adjusted layovers up to 20hours, LW=swap layovers up to 28hours, 

LR=reset layovers up to 36 hours, LX=extra-long layovers above 36 hours. 

Detailed DNA Code properties for all attributes are available in the dna.properties 

file. Similarly, two-digit alpha numeric codes are provided for duty start, duty length, 

duty end, landings, mitigations within duty, total flying time, time zone from base, 

time zone differential within duty, day in the sequence, base and aircraft. 

 

2.4.5 Sleep DNA Variables influencing the predictions 

 

As seen in Fig. 39, SleepDNAHead, contains all the historical information 

of the current predictor of sleep. SleepDNABody, contains all the current sleep 

opportunity attributes that influences the predictions of sleep. SleepDNATail, 

contains the future schedule opportunity that could influences the predictions of 

sleep. (eg, the restricted and/or higher risk opportunity. As need basis we could 

also include other environmental conditions such as global economic, geo political, 

weather, global events can contribute to the sleep patterns. (Super bowl can affect 

the sleep times). In Fig. 40, the sleep during Layover1 will be dependent on the 

sleep predictions of actual/predicted sleep in layover 0 and predicted sleep in 

layover 2. The layover1 sleep is also based on the predicted sleep in duty 1 and 

duty 2. Mid duty sleeps are typically mitigation sleep where crew could sleep in 

flight during long international flights or in between two flights which is part of the 

same duty. Excess sleep in Layover 0 and Duty 1 can affect the distribution of 

sleep in Layover 1. Also, there could be situations where the increased risks and 

reduced sleep opportunities of future duties (Duty 2 and Layover 2) could cause 

the individuals to bank sleep during layover 1.  
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2.4.6 Sleep Pressure Prediction based on Pattern of Duty Periods 

 

The sleep pressure level at the end of a duty period could be well predicted 

through the exiting process S function based on the sleep pressure level at the 

beginning of the duty period (ie. work schedule of the duty). The sleep pressure Si 

at the beginning of a duty period (duty 2) depends on the sleep pressure S (i-1) at 

the end of the previous duty period (duty 1) and the sleep periods between the two 

duties at illustrated in Fig. 41. Please note that the alertness level is negatively 

correlated to the sleep pressure but also depends on the circadian body clock 

cycle. However, intra and inter-individual variability of sleep patterns between the 

two consecutive duty periods may exist within the pilots. Depending on the 

variables associated with the pervious duty, including all DNA information 

discussed in the previous subsection, and the following duty, pilots may choose 

different sleep patterns. Numerous data regarding sleep pattern data have been 

collected from flights. In this task, a prediction model will be built and trained with 

the historical sleep pattern data. The input of the prediction model will be the DNAs 

of the previous duty and the following duty of a layover. The output of the model 

will be the predicted sleep pressure level at the beginning of the following duty, 

which is equivalent to the sleep pressure level at the end of the following duty 

under the assume sleep pressure level evolvement function and the DNA of the 

following duty. The hypothesis for this prediction is that the sleep patterns during 

the layover period depends on the duties immediately before and after it. The 

training data include the following historical data 

• Previous duty DNA, 

• Following duty DNA, and  

• Sleep pattern during the layover period.  

For each historical layover period, the sleep pressure level at the beginning 

of the following duty will be calculated based on the pervious duty DNA and then 

used for the training purpose. Statistical methods will be first applied to identify the 

major factors and the regression relationship (linear or nonlinear). If the results are 
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not satisfactory, machine learning methods, such as the neural network, will be 

investigated. Due the large amount of available data, we expect that a rather 

accurate prediction model will be possible.  

 

2.4.7 Clustering of Duty Periods 

 
2.4.7.1 Background 

 

In this research, I am attempting to understand the sleep structure better and 

how biology is interacting with the work schedules. Eventually this sleep 

predictions are applied to the biomathematical model and predict fatigue risks. 

These risks are further applied to the prediction of overall flight risk  

 
2.4.7.2 Duty and Sleep Plots 

 
Fig. 42 represents how the observed sleep patterns on a work schedule. The 

schedule of the DNA has variables that represents the structure of the DNA. These 

variables include but not limited to duty start time, end time, length of duty, number 

of flights etc., aligning all the schedules on the same scale ignoring the day start 

of the sequence and aligning them as if they all start on the same day but not the 

same time. The duties can be represented better visually to understand if there is 

any homogeneity within the sub group. These characteristics include how the crew 

members would act within a cluster. (Sleep determination within the subgroup).   

As a method to group the data to distinct subgroups, we can employ multiple 

algorithms. For the literature review, I am looking at some of the below mentioned 

clustering algorithms. 

 
2.4.7.3 Partition based clustering selection 

 

This is one of the most popular class of clustering algorithms. Partition based 

clustering (RO Duda et al., 2001) (J. Han et al., 2001) iteratively relocates data 
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points between cluster until an optimal partition is attained. One of the 

disadvantages of this algorithm is, it only converges local and the global optimal 

solution is not guaranteed. In our problem we have to answer how to classify the 

variables that differs by minute. In the aviation scheduling practices, the lowest 

denominator captured and analyzed in minute. The times like arrival, scheduled 

layover, duty time all is marked by the minute. One way to approach is to bin based 

on fixed threshold-based classification of splitting the arrival times into six, 4-hour 

periods. [0000-0359, 0400-0759, 0800-1159, 1200-1559. 1600-1959, 2000-2359].  

Currently in my work so far, I am using discrete classification of these identifiers to 

structure the dutyDNA. However, to avoid the loss of precision, In the future 

research I am planning to use suitable partition-based clustering methods to 

construct and populate the bins. This will find natural clusters instead of artificial 

cluster based on discrete threshold ranges. Loss of precision could lead to 

incorrect predictions 

 

2.4.7.4 Time Series Analysis 

 

Time series is a sequence of data points, measured typically at successive 

time points. This has been the focus in the data mining community for long period 

time (Roddick & Spiliopoulou 2002) It’s a collection of observations Xt, each one 

being recorded at time t. (Time t can either be discrete or continuous t>0). Time 

series data (Cowpertwait & Metcalfe 2009) is in a series of particular time periods 

or intervals. Time series analysis could be used for many applications in the areas 

of data compression, explanatory, signal processing, predictions etc, at the 

simplest it’s a set of time-ordered observations where interval between the 

observations remain constant.  
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2.4.7.5 Component of Time Series 

 

m(t) – trend component (R. McCleary et al., 1980) (Hyndman & Athanasopoulos 

2014) that changing in time. The overall movement and general direction of the 

data. Both the direction and slope (rate of change) of a trend may remain constant 

or change throughout the course of the series.  

c(t) – cyclical component (R. McCleary et al., 1980) (Hyndman & Athanasopoulos 

2014) that is typically available in data (patterns of oscillations) with long historical 

data. A cyclical component in a time series is conceptually similar to a seasonal 

component: It is a pattern of fluctuation (i.e., increase or decrease) that reoccurs 

across periods of time. It takes many years to play out.  

s(t) – seasonal component (R. McCleary et al., 1980) (Hyndman & Athanasopoulos 

2014) (Bell & Hillmer 1984) for known periods (either minute, hourly, daily, monthly, 

yearly). Unlike the trend component, the seasonal component of a series is a 

repeating pattern of increase and decrease in the series that occurs consistently 

throughout its duration. Although its underlying pattern remains fixed, 

the magnitude of a seasonal effect may vary across periods.  

Y(t) – random noise that comes with every data. Component such as unknown 

frequency that is uncontrolled. While the previous three components represented 

three systematic types of time series variability, the irregular component 

represents statistical noise and is analogous to the error terms included in various 

types of statistical models.  

When the magnitude of the trend-cycle and seasonal components remain 

constant, we will use additive decomposition model as follows 

Xt = m(t)  + c(t) + s(t) + Y(t)  

When the magnitude of the trend-cycle and seasonal component varies but still 

appears proportional over time, the series is better represented by multiplicative 

decomposition model.  

Xt = m(t)  * c(t) * s(t) * Y(t) 
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2.4.8 Clustering Time Series for Duty Sequences 

 

This is one of the most frequently used analysis of time series is time series 

clustering (M. Halkidi, et al., 2000). The clustering is broadly classified into two 

categories. Whole clustering is very similar to conventional clustering of discrete 

data objects. The time series data is grouped similar into same cluster. 

Subsequence clustering (E. Keogh, et al., 2003) where a single time series as 

extracted with sliding window and then clustering is performed within the sliding 

window (Golding & Kanellakis 1995). This is commonly used in rule discovery (P. 

Das, et al., 1993), classification (P. Cotofrei et al., 2002), prediction (C. 

Schittenkopf, et al., 2000) and anomaly detection (P. Tino et al., 2000). 

 
2.4.8.1 Subsequence clustering 

 
With duty sequence, alertness curves are generated using fatigue model 

equations. To demonstrate the subsequence clustering, 10 alertness curves are 

generated for different work sequences (see fig. 43). The orange line indicates 

work patterns and purple lines indicate sleep patterns. If we try to cluster these 

time series, subsequence clustering is one method that could be used. In a given 

time series T of length m, a subsequence Cp of T is a sampling of length w<m of 

contiguous positions from T, that is C=tp….tp+w-1 for l<= p <= m-w+1. We will use 

a concept of sliding window to achieve this. 

Sliding windows of length w that are user defined sequences that are 

extracted from the time series T of length m. A matrix S of all possible 

subsequences can be built across T and placing subsequence Cp in the pth row 

of S. the size of the matrix S is (m-w+1) by w. If all the 10 different alertness curves 

are overlapped one each other with the same starting time. There are different 

types of w that can be created. w fixed to 24hours (see fig. 44 window) and it will 

be (duty_end_time-16hours) to (duty_end_time+8h). This gives us opportunities to 

understand sleep preparation for duty and also recovery from the duty. Duty length 

is that is where the most difficult point in the duty with respect to workload and 
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fatigue. w can also be created with 24 hours before and after the duty_end_time 

that will keep the cluster center to the point to measure. w can be of varying length. 

In the example illustration we have created 6 different subsequences extracted by 

a sliding window. In our example similar steps will be iterated for all the 10 

examples. A total of 52 subsequences if we use the sliding window as mentioned 

in (Fig 44a).  

2.4.9 K-Means 

 
2.4.9.1 Definition 

 

This is one of the common algorithms used to partition a dataset into pre-

defined subgroups or clusters. These subgroups are typically non overlapping (ie 

in our paper the data point or the duty can only be within one subgroup or cluster). 

The goal of k-means (M. Haikidi, et al., 2000) will to group the duties as similar as 

possible but also create a farther distance between the next clusters of duties 

(Bradley & Fayyad 1998). Centroids are formed for each of the cluster and the sum 

of the squared distance between the data points and the subgroup (cluster’s) 

centroid is kept at minimum. In a 2-dimensional space, if x axis are the duty period 

start time and y axis is the length of the duty period. Then we should see a scatter 

plot of all the duties as clusters. K Means will help resolve the different clusters.  

 
2.4.9.2 Disadvantages 

 

There are several disadvantages. One of the main one is that the number of 

clusters needs to be pre-defined. It assumes spherical shapes of clusters. Due to 

centroiding, the radius is assumed to be equal distance between the centroid and 

the furthest data point.  Good example where this won’t work is if the clusters are 

of different shapes like elliptical.  
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2.4.9.3 Algorithm 

o Decide on a value for k.  

o Initialize the k cluster centers (randomly, if necessary).  

o Decide the class memberships of the N objects by assigning them to 

the nearest cluster center.  

o Re-estimate the k cluster centers, by assuming the memberships 

found above are correct. 

o If none of the N objects changed m 

 

2.4.9.4 Results 

 

Java program is written to parse 365 dutyDNA with three attributes 

(previous layover, duty start time and duty length) into 5 clusters as shown in Fig 

45. It’s written for three-dimension clusters. The data is attached in the excel 

sheet. See attached the java programs. 

2.4.10 Hierarchical Clustering 

 
2.4.10.1 Definition 

 
This is the most widely used clustering approaches and that is due to the 

visualization effects (Mantegna 1999). It groups the objects and produces a nested 

hierarchy according to the pairwise distance matrix. One big advantage compared 

to k-means is it generalizes and the user doesn’t have to provide the number of 

clusters. The disadvantages to this would be the size of data set due to quadratic 

computational complexity. However, when the dimensions are higher the 

clustering becomes meaningless because of the nearest neighbor and average 

neighbor becomes one. (R. Agrawal, et al., 1993) 

 

2.4.10.2 Algorithm 

• Calculate the distance between all objects. Store the results in a distance 

matrix.  
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• Search through the distance matrix and find the two most similar 

clusters/objects.  

• Join the two clusters/objects to produce a cluster that now has at least 2 

objects.  

• Update the matrix by calculating the distances between this new cluster 

and all other clusters.  

• Repeat step 2 until all cases are in one cluster 

In this example we are illustrating with 10 random clusters picked from the 

total of 52 subsequences if length w generated from the cluster of timeseries T. 

Fig. 46 shows how the time series are converted to k partitional clustering by sliding 

and the dendrograms. In this figure it shows we will have three types of clusters of 

subsequences. With the same timeseries clustering, we can also detect 

anomalies. The best example would be. Once we defined a cluster to exhibit 

certain sleep patterns based on observed training data. In the operations if the 

crew calls in and if he mentioned that he had a different sleep pattern then we can 

consider that as an anomaly and manage that risk in operations.  

 

2.4.11 Clustering DNA String 

 
2.4.11.1 Problem 

 

Creating the discrete range/bin I thought is the best way to analyze the data 

for predictive modeling. However, I do understand the loss of precision in creating 

random size bins with random thresholds. Collecting this continuous data by 

categories is also not a smart way and is well explained by (Good & Hardin 2006) 

That’s why I am being watchful in making sure we employ proper clustering 

methods (MR Anderberg 1973) to categorize the bins. (Wainer et al., 2006) argue 

that if a large enough sample is drawn from two uncorrelated variables, it is 

possible to group the variables one way so that the binned means show an 

increasing trend, and another way so that they show a decreasing trend. They 
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conclude that if the original data are available, one should look at the scatterplot 

rather than at binned data.   

 

2.4.11.2 Solutions considered 

 

Using partition-based clustering principles to find a natural cluster of data 

points is a better option instead of an artificial threshold-based on range of values. 

Based on scatter plots, we came up with the right thresholds to define the 

boundaries rather than fixed bins. The same process is used for all the 25 

attributes. See DNACode.properties file for the derived bins based on scatter plots 

and clusters. Once the clusters are defined for each of the attribute, the full DNA 

code is generated for a schedule depending on the cluster each of the attribute 

belongs. Full string DNA coding is done for each of the duty DNA, iterate and 

perform the same for all the duties. Sample DNA code will be as below. The 

challenge was to cluster these string duty DNA sequences. For that we need to 

find similarity between the sequences. One way to find the similarity of the DNA is 

to find the distance between the DNA string, see below the java program that ran 

through 15000 duty DNA samples and found the closest and farthest string. Similar 

approaches could be made to cluster the DNA sequences. 

 
For clustering string fields, there are two well-known methods  

a) Hamming Distance  

The Hamming distance H (Hamming 1950) is defined only for strings of the 

same length. For two strings s and t, H (s, t) is the number of places in which 

the two string differ, i.e., have different characters. 

 

b) Levenshtein Distance  

The Levenshtein (or edit) distance (Levenshtein 1966) is more sophisticated. 

It's defined for strings of arbitrary length. It counts the differences between two 
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strings, where we would count a difference not only when strings have different 

characters but also when one has a character whereas the other does not. 

For this exercise, I am using Hamming Distance where two equal sized 

strings are compared and it tells all the bits that’s compared different. Hamming 

distance is much, much faster than Levenshtein as a distance metric for 

sequences of longer length. Hamming distance can be considered in our program 

for comparing the two DNA sequences for a order-biased similarity metric rather 

than the absolute minimal number of moves to match the sequences. The program 

below as shown in figure 55 also finds the farthest and nearest point in the list of 

over 15550 dutyDNASamples.  

 
 

2.4.12 Feature Selection Process 

 
Isolating the variables that would improve the predictions is a very important 

process in machine learning. There are several methods and algorithms that were 

explored. The key is to select the right method that will fit to solve the problem. It 

is clear, that we have a multivariate dataset of many variables (LM Bermingham et 

al., 2015). To understand the relationship between variables, would like to bring a 

scatter plot of two variables to the discussion here.  We are looking at 

understanding the relation between length of Layover1 and length of Duty2, the 

sample scatter plot between the two is shown in Fig. 49 below. It is visually 

noticeable that this dataset is cluster able. You could see there are different types 

of layovers and duty length combination that exist in the system. This example is 

taken from a subset of the system that the company operates. Similar patterns will 

exist in other forms of operations. To determine the number of clusters for each 

relation, a heuristic Elbow method (Thorndike 1953) was used (Fig. 50 and 51). It 

plots the explained variation as a function of the number of clusters.  In this 

example, we demonstrate the use of elbow method to determine the number of 

clusters in the duty start. We are determining between 4-6 is the right cluster. 
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2.4.12.1 What variables needs to be used? 

 

Not all of the listed attributes are equal. Filtering those attributes is very critical 

and important to a successful prediction. The process of identifying the more 

prominent data to the research questions that is being asked is Feature Selection. 

In the sleepDNA attributes in Fig. 39, we will choose features. Any redundant and 

irrelevant variables will be removed. The classifiers performance may decrease if 

the dimensions increase without enough training samples. Feature selection 

methods was further explored to see what was available to experiment. There are 

two main types of feature selection algorithms. A) Wrapper methods and b) Filter 

methods. I am planning to attempt a new method called Recursive feature 

elimination algorithm which is a wrapper type of feature selection process.  

Recursive feature elimination algorithm (PM. Granitto et al., 2006) (I. Guyon et al., 

2002) which is a wrapper method type of feature selection process. This method 

considers the selection of selected features as a search problem where different 

features are compared to other combinations. As shown below we will start 

computing all the sleepDNA features and generate the feature importance in 

random forest (Ho 1998). Then the least important feature will be eliminated from 

the feature set. This is repeated until the highest performance is reached in the 

model.  

 
2.4.12.2 Recursive feature elimination algorithm 

• Initial: training set T 

o set of all features F 

• For iteration i in F 

o compute feature importance with Random Forest 

o rank the feature set 

o find the last ranked feature f* in F 

• Compute the performance with F-f* 

o if performance is improved: 

o update: F = F-f* 

o go back to Step 2 with new F 

o else break 
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Steps to be performed for the feature selection.  
Exploring all the attributes to be used 
Preprocessing sleep and work schedule data  
Running algorithms and select attributes. 

2.4.12.3 Classification of variables and clustering techniques 

 

Clustering technique helps us to analyze the internal structure of a complex 

data. (MacQueen 1967) stated that clustering applications are considered more as 

an aid for investigators to obtain qualitative and quantitative understanding of a 

large amount of multivariate data than only a computational process that finds 

some unique and definitive grouping for the data. In the recent years many 

clustering algorithms (Han & Kambler 2001) (D. Hand et al., 2001) were developed 

to support large complex and unsupervised data. According to (Anderberg 1973), 

these are the major elements in the clustering analysis study. 

Clustering methods helps to define the data in a cluster with internal cohesion 

and external isolation (Duda & Hart 1973). All clusters are defined with certain 

properties such as density, variance, dimensions, shape and separation 

(Aldenderfer & Blashfield 1984). We are looking for clusters to be created with tight 

and compact high-density region of data points when compared to other space. 

With fuzzy clusters there could be overlapping clusters where data points could 

belong to 2 clusters. In this research I am proposing we use distinct clusters with 

traditional partition clustering methods such as K-Means and Hierarchical 

methods.  

2.5 Operational Impact on Duty DNA Structure 

 

2.5.1 Flight and Crew Duty Impact Variables 

 

Even before the pandemic, the delays in flight operations costed tens of 

billions of dollars annually to the world economy. The data from Department of 

transportation (DOT) data show that flight delays and cancellations have generally 
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increased over the last decade. Since 1998 the flight delays have increased 62% 

nationwide. In 2007 alone the flight delay estimated was over $30bn (Ball et al., 

2010). For the time between 2011 and 2015, over 30% of the gets delayed over 

15 minutes and about 2% of the US domestic flights got cancelled. Since aviation 

network is a complex system, determining the causes has always been a 

challenging and considerable interesting discussion for the researchers and policy 

makers. The US Department of transportation classifies the delays into five main 

categories.  

i. Air Carrier Delays 

ii. Late Arriving Aircraft Delays 

iii. National Aviation System Delays 

iv. Extreme Weather Delays 

v. Security Delays 

In order to account for the delays, the airlines are introducing buffers or 

slack times that are distributed across the crew schedules. This can reduce 

extreme delays. There is always a trade-off between the goals of reducing delays 

and disruptions while not being overly conservative in buffer placement. 

2.5.1.1 Air Cargo Operations Delay Impact 

Cargo market has been consistently growing at the rate of 4-5% for the next 

20 years (Boeing 2018). There is not much literature that are focusing on 

estimating the cost of flight delay in the cargo operations. From a recent study, the 

estimates of flight delay ranges from $8000 to $38000 per flight hour, with an 

average of about $20,000. This number is roughly three times the cost of average 

block hour in this industry, the cost is due to the large late package delivery 

commitments and the cost of delay is higher than the cost to passengers. The 

delay due to the unpunctual deliveries often directly impacts the operating cost 
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such as on ground delivery cost and indirectly on degradation of services to 

shippers or recipients.  

2.5.2 COVID Impact to Airlines 

 
The global pandemic COVID-19 has disrupted the entire commercial 

industry that the losses in revenues are expected to be around 250B$. (IATA 2020) 

This resulted in a huge disruption to global supply chains as the freight carriers 

and commercial airlines are looking to bridge the gap in consumer spending.  

In contrast to the dramatic drop in passenger demand, air cargo operations 

are surging to respond to calls to move essential supplies. It’s primarily due to the 

loss of belly freight in passenger aircrafts which is about 40% of annual global air 

cargo. On the humanitarian side, air carriers had to think creatively to offer time 

sensitive relief shipments with less resources. The pandemic has created new 

dimensions to the operational impacts. The increased historical volumes are due 

to the supply chain demands, COVID protocols related to social distancing, 

application of disinfectants to machines and the shortage of workers contributes to 

major delays at the hubs. Outside of these challenges the freight flight operations 

have to deal with the challenges related to overfly regulations, operational curfews 

of airports, ever changing border restrictions. When the crew arrives at a 

destination, he is subjected to dynamic changing requirements for testing and 

quarantine where some requiring as much as 14-day quarantine for the entire 

crew. Not only the operators losing the crew for that long days but also the 

essential supplies of cargo need to be moved. 

2.5.3 COVID Duty Delays and Fatigue 

 
Operational disruptions in a complex aviation operation are inevitable. 

When the regulators and the union agreements prescribe limits, they include 

flexibility for day of operations extensions to allow the operator to manage on-the-

day operational disruptions. On the other side it also allows reducing the minimum 

rest during the operational disruptions.  The ability to use these duty extensions 
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and/or rest reductions should depend on the crew member’s assessment that they 

are fit to continue. Where such “flexibility” limits are prescribed, the airline operator 

should manage the frequency of their use as part of their normal Safety 

Management System (SMS) processes. Alternatively, the State may require the 

use of variations to allow the airline operator flexibility to manage operational 

disruptions on the day. Addressing unexpected operational circumstances and 

risks is discussed further in Comparing data on planned versus actual work periods 

can be used to identify times when fatigue might have been higher than expected. 

For example, an operator might track how often each month:  

• Flight duty periods end at least 30 minutes later than scheduled;  

• The maximum scheduled duty day is exceeded  

(e.g., duty days longer than 13 hours); 

• Flight duty periods start or end within the window of circadian low (WOCL); or  

• Reserve crew are called out on particular flights, at a particular crew base etc.  

These kinds of metrics point to possible mitigations if needed, for example changes 

to scheduled flight times or increasing the number of crew members at a given 

base. As part of routine SMS processes, the data need to be monitored regularly 

to evaluate whether the hazards identified warrant additional action. 

2.6 Modeling 

2.6.1 Biomathematical model parameters 

 
The equations of the original two process model defined by (Daan et al., 1984) are 
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Process S is the homeostatic process that is an increasing exponential function 

for being awake and decreasing exponential function during sleeping.  

 

d and r are the decay factor and rising factor that is used for S  

 - Time Constants for rising factor = 18.2h 

 - Time Constants for decay factor = 4.2h 

Δt = increment step defined at 0.5h 

As shown in Figure 4, Process S is generated through the recursive iteration 

with time indices t, t-1. 

Process C is a skewed sinusoidal equation that is independent of sleep and 

waking.  

 A = the sinusoidal sine wave’s Amplitude and the direction of skewing is 

determined by the sign 

 t = time 

 = period of the circadian process at 24h 

t0 = phase of the circadian at the beginning of the simulation = 8.6h 

Hm and Lm are the upper and lower threshold of the circadian waveforms 

as shown in Figure 4 (Orange and purple sine curves). 

 

Daan also suggested that the parameters could require changes depending 

on the applications and the type of simulations.  
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2.6.2 Dynamic Circadian Modulation in a Biomathematical Models 

 
Building on these equations on the two process seminal models of sleep 

and regulation formulated a new class of models in terms of first order ordinary 

differential equations (ODEs).  

 

The researchers at Washington State University used scheduled time in bed 

as input and calibrated with large datasets of neuro behavioral performance from 

laboratory-based dose response studies of sleep loss. The mathematical 

framework was focused on the temporal dynamics between sleep/wake cycles 
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across multiple days. The model presents the nonlinear interaction between the 

homeostatic process and the circadian process. The new set of differential order 

equations are presented by (McCauley et al., 2009) and (McCauley et al., 2013). 

where time is represented by t (expressed in hours); τ = 24h; the values of A and 

a1 through a5; θ = 12.7h and t0 = 8.6 h is taken from the two-process model. The 

ODE system equations describe two state variables p and u. p represents the 

primary outcome variable, which denotes predicted performance impairment. u 

represents the slow dynamic process that causes modulation of p over days. The 

parameters in figure α and σ governs the homeostatic changes in p and u 

respectively. Function c in (6) as represented in the two process model equations 

earlier is a 5-harmonic skewed sinusoidal oscillator function (Borbély & Achermann 

1999). The function c is scaled by Κ, offset by μ and shifted by Φ. Java programs 

are written for sleep predictions, two process oscillators and the ODE model for 

temporal dynamics and are found in appendix. I have used these to do validate 

assumptions, generate data and produce simulations,  

2.6.3 Predicting Fatigue without knowing the history of schedule 

 
2.6.3.1 Problem 

 

During the crew planning process, the schedules are constructed using the 

optimization models and operations have begun to use predictive biomathematical 

models to estimate fatigue levels for each of the duty planned. Further to the 

estimation of fatigue exposure, the operators runs through the complete fatigue 

risk evaluation process as provided in section 1.4.2.1 (Predictive process of 

managing crew schedules). Earlier in the sections we went through the disruptions, 

impact and how operators manage the disruptions. Owing to the disruptions, 

deformed schedules are repaired by fixing part of duties, duty itself or combination 

of duties. Sometimes these repaired portions of the duties will be flown by a 

different crew either reserve or adding the portion of the schedule to an existing 

crew who has more rest time in their schedule. During the process of duty repair 
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or rebuilding process, more often we won’t know the history of which crew the 

repairs will impact to involve the biomathematical process. As mentioned in section 

2.4, prediction of fatigue using biomathematical model requires the previous work 

history before the current duty in question at least to 4-5 days. We needed a 

prediction mechanism that will get us a fatigue prediction score with any random 

duty built in isolation which does not have any context of the previous duty period 

sequences. The approach we are taken is to come up with model framework that 

will deploy combinations of ML models to predict the future state of duties and its 

predicted fatigue variables. 

 
2.6.3.2 Proposed Approach 
 

Two ML models are constructed for this approach. One to predict the future 

end state of the duty based on what we know before the duty. Second is to predict 

the fatigue variables based on the new state of duty without any knowledge about 

the history before the duty. It’s more important to predict the fatigue variables 

without knowing the 96-hour time window before the duty. In the world of 

operations and recovery, we will know very little on the history because as we put 

together the duties the final sequence of multiples of duties are less known.  

 
2.6.3.3 Brief Explanation of the proposed model 
 

1.0 The flights schedules are imported and sequenced into a trip. This is a 

continuous sequence of flights generated through the optimization model. Refer 

2.4.1 and 2.4.2 on crew planning, duty and schedule DNA. 

 

1.1 The flights in a schedule sequence are grouped into duty periods where the 

duties are separated by legal rest periods. Depending on the type of duty periods 

legal rest can be anywhere from 9 hours to 12 hours. Schedule will have 1 or 

more duty periods connected through legal rest periods between them (Refer 

2.4.1).  
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(1.1.1, 1.1.2, 1.1.3) once the duties are assembled in a schedule, the schedule 

is passed through the sleep prediction algorithms where the model predicts 

minute by minute set of sleep states (0=wake,1=sleep). Sleep states are then 

converted into sleep segments and patterns that comprises of start time, end 

time and the location of sleep periods.  

(1.1.4, 1.1.5): Once sleep patterns are generated from work patterns, both the 

segments are fed into the biomathematical model to produce fatigue variables.  

1.1.6. We repeat the process for the last 10 months of data generating over 200k 

duty periods to preparing for the ML model.  

1.1.7. Do the exercise of data prepare, clean, model choosing, split, train and 

test ML model.  

1.1.8. Develop the model to predict fatigue variables for any random duty period 

DNA with all known variables.  

1.2.1. To help predict the duty deformation. (For the scope of this project, we are 

only considering duty extension as the deformation variable). Collect the data 

values as flown. To measure the extension of the duty, we will capture the actual 

duty start and duty end and compute the actual duty length and compare it with 

the scheduled duty length. For Example (if the duty scheduled to start at 10am 

and end at 2pm, the length of duty is 4 hours. If the duty actually started on time 

at 10am but ended at 3pm due to delays, then the duty extension variable is set 

to 1 hour).  

1.2.2. Repeat extracting these delays with 10 months of historical information 

generating over 200k records.   

1.2.3 Do the exercise of data prepare, clean, model choosing, split, train and test 

ML model. 1.2.4 Develop the model to predict the duty end state. For the 

purposes of this research is to predict the duty delay values.  

2.0 The new predicted duty end state for any random duty period is now passed 

into the ML model (1.1.8) and predict the fatigue variables.  
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1.2.1, the new values of duties are populated as duty start and duty end and sent 

to the model 1.1.8 to predict the fatigue variable.   

 

2.6.4 Machine Learning Approach to predict duty deformation. 

 
As discussed in section 2.5, the operational impact on a duty sometimes 

lead into decreased alertness. The operators try to deploy controls to keep the 

schedule in tact most of the times. However, beyond their control, sometimes due 

the reason as mentioned before could cause deformation and delays in a duty. 

This section describes methods to be able to accurately predict those situations 

and predict decreased alertness for proactively manage fatigue risk. In this 

schematic representation as shown in Fig 54, we will use combination of machine 

learning algorithms to predict fatigue at the end state of the duty as it would be 

operated given all the known variables of duty at the beginning of duty before 

operating.  More on the approach and models are mentioned below. 

 
2.6.4.1 Business Problem 
 

The Fig. 55 below is a representation of a duty for explanation purposes 

only. The trip in Fig. 55 is scheduled with three duty periods. Duty1 with one 

segment MEM-EWR, Duty2 with three segments EWR-PIT-IND-DFW, Duty3 with 

one segment DFW-MEM. In this representation I have highlighted how the trip and 

its duty has changed its structure when it operated due to several disruptions. Duty 

1 as operated took a delay in Memphis, MEM of an hour so it arrived late. The 

crew reported to duty on time and the flight took a delay of an hour possibly due to 

any of the combinations of reasons (maintenance, volumes, ATC clearance, 

weather etc.). This caused the duty to arrive in Newark, EWR an hour late. This is 

a simple deformation of a duty from originally planned. The second duty went 

through some complex changes, instead of crew going to Indianapolis IND from 

Pittsburg PIT, he was revised to go to Alliance AFW and from there to Atlanta ATL. 

Due to these changes and other factors on turning the aircraft the duty was 
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substantially extended to as much as 2 hours. The third duty had a change in route 

but the total duty time was the same as planned. In order to predict the futuristic 

state of risk in a crew, we need to predict the fatigue variables for not what was 

planned but to what the duty will transform to. In this section we will discuss the 

approach of predicting these transformations. To keep the scope limited we will be 

taking on the delay time in a duty from originally planned.  

 

2.6.4.2 Data Cleaning 
 

As part of this exercise, we collected data from multiple sources, joined 

them and looked for empty or null values and cleaned them. In total we generated 

65000 duty periods with about 27 features (‘Base’, ’LBT Tm’, ‘Int’, ‘Type’, ‘Op in 

Critical’, ‘D St’, ’D End’ etc.,) as shown in the table 2 below and 1 label ‘Duty 

Variance’ to train the machine learning model. The whole process can be divided 

into two part, encoding and training. Also, we introduced new fields like COVID 

impact to understand the current situation. 

 

2.6.4.3 Features and Encoding 
 

The data was further cleaned and coded where ever it is necessary. For 

example, the int field had to be coded to TRUE/FALSE, B-S field which represents 

the total flying time in that duty period was in HHmm time format, we had to convert 

that to the double value with 2 decimals. Duty variance that was originally 

computed as a difference between duty scheduled and duty actuals, was also 

coded into finite set of labels. Scored probabilities and labels are computed fields 

by the model (Table 2). 

 
2.6.4.4 Attempted ML Models 
 

This problem of predicting delay is characteristic of a classification problem. 

We attempted to categorize the type of delay. No Delay, Small Delay and Large 
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Delay coded as 0,1,2 respectively in the last column duty variance. Here are few 

examples of how the variables were used to train.  

In this task we are predicting a class label of a duty delay based on the input 

data in table 3. From modeling perspective this classification requires a training 

dataset with the input features. After studying a number of machine learning 

algorithms to solve classification problems, we zeroed in on first using the binary 

classification to first understand the baseline. Binary classification (Duda et al., 

2001) is the task of classifying the elements of this dataset into two groups. Did 

the duty encounter a delay or not? Based on the prediction rule, the individual data 

set can be put in one of these categories. Based on the understanding of data in 

binary classification, we can explore doing multiple labels with multi classification 

algorithms gradient boosting and also neural network classification to improve the 

accuracy further. 

 
2.6.4.5 Models and Baselines approach 
 

When looking at the 65k data spread over 3 covid months, in Figure below, 

we found not overly imbalanced but a fair distribution of the delay/duty variance. 

The first look at codifying these absolute delay values in minutes to a binary 

classification label gave a 70/30 split between 0 and 1. Any delay that is less than 

or equal to 30 minutes was considered a “No Delay”. Delays greater than 30 

minutes was considered a “Delay”. Duty variance field was adjusted to define 0 

and 1 values. On the baseline we used a 90/10 split between training and testing 

data with the 3 months of data. All these data are collected during Covid times. For 

the baseline we chose Gradient boosting (Breiman 1997) model. Gradient boosting 

is a technique used for both regression and classification problem where models 

are built on a stage wise boosting methods as an optimization algorithm on a 

suitable cost function. As part of the baseline of learning obtained from the 3 

months of data, we wanted to validate on a completely different month that was 

not part of the initial 3-month data. Also, we wanted to apply this baseline model 
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and see how it compared with the combination of covid and non covid impacted 

months. For the improvements, we wanted to expand the labels from binary to 

multiple labels to distinguish between shorter and longer delays. To do so we have 

to change the labels to 0, 1, 2 that represents less than 30 minutes delay, 30-60 

minutes delay and excess of 60 minutes delay 

 

2.6.5.7 Evaluation Metrics 

 

In the classification models, confusion matrix (Stehman 1997) is often used 

to describe the performance on the test and training data where true values are 

known. It is also known as error matrix. The table layout allows the visualizing of 

the algorithm as in Fig 57.  

Recall: Recall provides a measurement of all the positive classes, how much we 

predicted correctly. It should be high as possible. RC=TP/(TP+FN). 

Precision: Of all the positive classes we have predicted correctly, how many are 

truly positive. TP/(TP+TN). 

Accuracy: of all the classes, how much we predicted correctly, which will be 

(TP+TN)/Total.  

F-measure: is a measure we should use when we have low precision and high 

recall or vice versa. F-Score or measure helps to measure recall and precision at 

the same time. it uses the arithmetic mean.  = 2*Recall*Precision/ (Recall + 

Precision).  

2.6.5 Machine Learning Approach to predict fatigue variables 

 
In order to predict fatigue on the end state of a duty, we need to know two 

things a) to know how the end state of duty will look like b) to know the state of 

fatigue at the beginning of the duty. In section 2.6.4, we discussed the approach 

to the baseline on duty deformation. Using the duty variables, we will look to predict 

the fatigue at the start of duty and then use both these predicted variables to predict 

the end state of the duty. To predict fatigue on duty, start and duty end, I am 
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proposing to use ML approach to predict the fatigue variables. To do this we will 

first identify the various fatigue variables. Fig. 57 below is a representation of a 

biomathematical model output with both predicted sleep and predicted fatigue 

variables. The curve represents the predicted fatigue scores plotted minute by 

minute for a schedule with three duty periods. Duty 1 with one flight (MEM-LCK), 

Duty 2 with three flights (LCK-BNA, BNA-EWR, EWR-BOS) and Duty 3 with one 

flight (BOS-MEM). All the three duty periods are separated by a legal rest period. 

The orange overlay on the curve represents the flight segments. the purple overlay 

on the curve represents the predicted sleep segments per 1.1.3. Fig. 58 above 

represents the step by step functioning of this multi phased approach to solve duty 

end state fatigue predictions. Step 1 contains all the known duty variables at the 

duty start or prior to duty start. Step 2a computes the duty delay to predict the duty 

delay attribute. Step 2b which is independent of Step 2a and can be modeled 

separately. Step 2b is predicting the fatigue state of the duty period at the 

beginning of the duty. Combining these two predictions and feed into the third 

model is Step 3. The figure represents how the missing values are predicted using 

combinations of models  

 
2.6.5.1 Fatigue Variables 
 

For both Step 2b and Step 3 above, set of fatigue variables are computed. 

These five key fatigue variables/indicators will be the target variable for predictions 

in the Machine Learning model. these five variables are computed separately at 

the duty state in the beginning of duty period and the duty state at the end of the 

duty period. 

a. Fatigue Levels (KSS) at the beginning of the duty period 

b. Fatigue levels (KSS) at the end of duty period 

c. Sleep in the previous 24 hours at start of duty 

d. Sleep in the previous 24 hours at end of duty 

e. Sleep during the duty period 
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2.6.5.2 Data Generation 

 

For the first iteration, I wanted to run the model for subset of schedule by 

computing the 5 fatigue variables using the biomathematical model. A sample of 

about 20k duty records were chosen for the dataset. Along with fatigue variables, 

the duty DNA attributes were also captured.  

Data Generation 

- Extract schedule is in Table 4 for each pilot for the entire month 

- Generate duty periods in sequence 

- Construct Duty DNA with all parameters 

- Use sleep prediction algorithms to generate predicted sleep for entire 

set of duty sequences for the monthly period. 

- Use biomathematical model to compute predicted KSS 

- For each of the duty period, bind the 5 variables to the duty DNA 

- Repeat the same for all duty periods for the pilot 

- Repeat the same for all pilots in the month. 

- The output will be a list of all duties operated by all pilots in the month 

 
2.6.5.3 Data Cleaning 
 

As part of this exercise, we generated data from multiple sources, joined 

them and looks for empty or null values and cleaned it accordingly. Also all date 

and time formats were converted into numeric values and string based Boolean 

were converted into “true, false”. We also removed variables that didn’t add values 

to the model. We converted the date and time field of duty local base time start to 

“Day of week”, “month”, “year”, “hour”, “mins into day”. We understood that there 

are several operational factors that influenced these variables. For example, there 

could be additional volumes on a particular departure and hub turn city on certain 

day of the week that could cause additional delays in duty starts. Also, availability 
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of crew resources could vary by week or month. Also, we introduced new fields 

like COVID impact and if the turn city is operating through the hub or not.  

 
2.6.5.4 Features comparison and selection 

 

I ran the distribution plots and heatmaps for all the variables and their 

relationship with each other. The data we used was for a subset extracted as in 

Table 5 for a given month. In this I was looking to target 5 fatigue variables. These 

values for all 23k records were generated using biomathematical models as shown 

in Fig 61. 

a) Fatigue score KSS value at the beginning of duty period 

b) Fatigue score KSS value at the end of duty period 

c) Sleep count in the last 24 hours from beginning of duty period 

d) Sleep count in the last 24 hours from end of the duty period 

e) Sleep count within the duty period 

The distribution of those 5 values as computed by the biomathematical model is 

shown below. for the detailed analysis purposes and model improvements, we will 

keep the most significant fatigue feature (i.e. fatigue levels as scored at the end of 

the duty period). The reason this was selected over the KSS score at the start of 

the duty period was that the assumption that pilot will be adequately rested to start 

the duty period.  

 
 
2.6.5.5 Machine Learning Model 
 

For this model building we will be considering the machine learning 

technique (Mitchell 1997) where the algorithm learns through data to solve without 

programming the rules. in the classical algorithm, rules are explicitly given to the 

computer to perform a task. In the machine learning, a parameterized model that 

defines a family of possible rules is given to the computer along with whole bunch 

of data and strategy to find the better rules among the possible ones. We will be 

considering all the supervised machine learning techniques. In this technique we 
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will have set of input variables which will be all the features of the duty DNA and 

the output variable will be a target variable. If we are setting dutyEndKSS then 

YdutyEndKSS = f(XdutyDNA), similarly we can derive the output for all the 5 fatigue target 

variables as mentioned above. The goal will be the approximate the function so 

output variable is predicted based on the input variable.  

Since we will be setting up algorithms from the training or historical 

datasets, this will fall under the category of supervised machine learning (Russell 

& Norvig 2010). the algorithms are made to learn till we get it to the acceptable 

level of performance. This depends on the end user determining how the target 

variables needs to be approach and evaluated. The choice of the algorithms are 

largely dependent on several factors such as bias-variance and its tradeoff, 

complexity of the classifier or regression functions, amount of training data that will 

be used, higher dimensions of input features (Guyon & Elisseeff 2003) and noise 

of the output values with overfitting and underfitting (Cai 2016). For both the 

models in Step 2b and Step 3, we are considering regression type over 

classification because the target variable will be a real value (for example 

dutystartKSS and dutyendKSS will be a double value from 1 to 9.  Classification 

approaches are best suited for predicting categorical targets using training data 

while the regression is used to predict the continuous values.  

 

2.6.5.6 Models and Baselines approach 
 

In doing some background research for a suitable decision tree regression, 

we found gradient boosted regression trees (Elith 2008) (Friedman 2003) are the 

most effective machine learning model for predictive analytics also called the 

industrial workhorse of machine learning. The model uses the technique where the 

prediction model is built in the form of an ensemble of weak prediction models 

typically decision trees.  

For the model to predict duty end state, the goal was to generate one 

baseline with this decision tree approach. We will call this run as A1. The second 
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baseline was developed with the linear regression (Freedman 2009) technique. 

Since most of the values are numerical, this linear regression method was 

considered as another baseline to find the best fit line between the independent 

and the dependent variables.  Our goal in this technique was to predict the fatigue 

variables based on the generated datasets which are our explanatory variables. 

We will call this run B1. The third baseline was developed with a neural network 

deep learning technique (Schmidhuber 2015). This method is a much more 

complex and comprehensive linear regressions with a much better performance 

against nonlinear fitting. It tries to mimic the working of neuron in human brain for 

learning. At first it is unstable and after certain iteration of data it adjust itself such 

that it’s accuracy increases. Basically, you can apply any know function using 

neural network. We will call this run as C1. For the model to predict the fatigue 

levels at the duty start at the beginning of the duty period, we wanted to do a deep 

learning approach with neural network regression model. Since the scope was 

more leaning towards improving accuracy on the duty end state, we took a simple 

straight forward approach and left more room for further research and 

improvements. We took the baseline approach with 106k records. 

 

2.6.5.7 Evaluation Metrics 

 

There are metrics that helps us to evaluate the model performance. In our 

results we will be referring to these metrics and how they are performing. These 

metrics are computed from the generated line to the real data points. Mean 

absolute error (MAE), is the average of the absolute difference between real data 

points and the predicted outcome.  
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Mean square error (MSE), is the average of the squared difference between the 

real data points and predicted outcome (Hyndman & Koehler 2005).  

 
 

 

 
 
Root Mean squared error or RMSE, is the root of the man of the squared errors 

and is the most popular in determining the performance of regression models.  

 
 
Coefficient of Determination or R2, is the proportion of the variance in the 

dependent variable that is predicable from independent variables (Glantz & Slinker 

1990).  
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Total sum of squares SStot is proportional to the variance of the data whereas the 

SSres is the sum of the squares of residuals as described to the right of the picture 

above. If the modeled values are exactly matching the observed values then the 

value of SSres wil be 0 so R2 will be 1. Anything that is closer to 1 is considered 

good prediction model.  

Relative Squared Error (RSE), is relative to what it would have been if a simple 

predictor had been used. More specifically, this simple predictor is just the average 

of the actual values. Thus, the relative squared error takes the total squared error 

and normalizes it by dividing by the total squared error of the simple predictor. 

 

 

Relative Absolute Error (RAE). is very similar to the RSE (Thiel 1966) in the sense 

that it is also relative to a simple predictor, which is just the average of the actual 

values. In this case, though, the error is just the total absolute error instead of the 

total squared error. Thus, the relative absolute error takes the total absolute error 

and normalizes it by dividing by the total absolute error of the simple predictor. 
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2.6.5.8 Azure Machine Learning Studio 

 

Azure Machine Learning Studio is a GUI-based integrated development 

environment (Fig 62) for constructing and operationalizing Machine Learning 

workflow on Azure. For this exercise we used the combination of python 

programming and Microsoft azure portal for building, train, test and validate 

different models. The framework helps to formulate the entire machine learning 

development life cycle from pre-processing data, preparing data, preparing 

baseline ML models, evaluating to consuming ML model. 
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CHAPTER III 
RESULTS, CONCLUSIONS AND FUTURE WORK 
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3.1 Duty Delay Prediction Results 

 
The first of the algorithm is predicting the duty delay. The input variables will be 

the duty attributes that are known at the start of the duty period as shown in Fig 

54.  

3.1.1 Initial Baseline Results – Run D1, D2 and D3 

 

The initial run was started with a simple binary classification approach. The 

initial dataset used was 3 months of data captured during covid times when the 

operations experienced more delays compared to non covid times. The data set 

size was about 65k records of duty periods. The duty variance which is the 

difference between the actual duty length to schedule duty length were classified 

with 0 for delays <= 30 minutes and 1 for delays exceeding 30 minutes.  The data 

had about 68% of 0 and 32% of 1 value. For training 90/10 split model was used.  

 
3.1.1.1 Run D1 – Gradient Boosting Model – 65k records - Table 6 
 

The ML model used for the first of the initial baseline run was a well-known 

gradient boosting binary classification model. The model used 17 of 26 features 

that was provided and the most prominent features are the ones that is listed in 

reverse order in figure above. Sequence of tail numbers shows a higher correlation 

to the cause of delay compared to the others. This could be because of 

maintenance issues, the routing of a particular aircraft in a specific region.  

Day of the week is also another prominent feature. This could be because of the 

additional cargo volume on certain days of the week flowing through the system. 

The model results on test data showed an accuracy of 82% (See Table 7), that it 

predicted either delay happened (1337 times) and on time duty prediction of (3972 

times). Since the business objective is to predict delays, the recall percentage of 

delays were about 64%. This means that out of all the true values of delays, the 

model predicted 64% of times right. To further investigate, different true/predicted 

values of 0s and 1s were explored on the scored probabilities. The rule that is 
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applied for a Boolean 1 or 0 is a 50% mark. Currently as baseline we determined 

anything great than or equal to 50% probability on >30 mins delay will be a 1 and 

anything less than 50% will be 0. The above graph represents the plots of the 

different probabilities. If the goal of the problem is to predict risk, the emphasis 

should be more on the duties that predicts delay on actual delayed duties. 

Assuming that the risk on the ontime duties are known at duty construction phase 

and the operations accepted certain risk at that point. If the focus is on the Actual 

1 in Fig 63, then we have about 149 of the test data scored probabilities between 

0.4 to 0.5. As an improvement, AUC approach can be used to define the right 

threshold of where the segregation should be. 

 

3.1.1.2 Run D2 – Gradient Boosting Model – Validation 21k records – Table 8 
 
 

ML Model Run D2 used the same classification model that was trained with 

65k records but for validation we used a new month data of 21k records. This was 

to understand if the model was good enough to predict something for the values 

that aren’t known. The attempt was also made to see the validity of the model due 

to the ever-changing system form. The overall results came to good 80% for the 

entire month data used for validation. The model used 17 of 26 features that was 

provided and the most prominent features are the ones that is listed in reverse 

order in figure above. Sequence of tail numbers shows a higher correlation to the 

cause of delay compared to the others. This could be because of maintenance 

issues, the routing of a particular aircraft in a specific region. Day of the week is 

also another prominent feature. This could be because of the additional cargo 

volume on certain days of the week flowing through the system.  

The model results on test data showed an accuracy of 80% (Table 9), that 

it predicted either delay happened (10173 times) and on time duty prediction of 

(4780 times). Since the business objective is to predict delays, the recall 

percentage of delays were about 48%. This means that out of all the true values 

of delays, the model predicted 48% of times right. This could be because of the 
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imbalance in data and the characteristic of the delay couldn’t be answered by the 

model 

 

3.1.1.3 Run D3 – Gradient Boosting Model – 215k records – Table 10 
 

For the third of the baseline, ML Run D3 also used the same classification model. 

D3 used a larger dataset covering upto 10 months with 5 months during covid and 

5 months pre covid. In total the model had 215k records and used a 90/10 split for 

training.  

The overall results came to about 83% (Table 11). The Recall numbers of 

predicting the delay value of > 30 minutes was still at 50%. (ie we were able to 

predict only 50% of the times for all duties that had a delay of 30 minutes or more). 

One reason for low performance on recall is the fact that in the 215k records, only 

22% of the duties that had a delay of greater than 30 minutes. This is much lesser 

in percentage when compared to the covid months (in D1 set) that was about 32% 

of delayed duties. 

3.1.2 Improvements made to Duty Delay Prediction 

 
For improvements, there were two options considered. One to improve the 

predictions further by optimization or rebalancing the data. This can be done either 

by undersampling the higher ontime duty performance data and/or oversampling 

the lower number of delayed duty data. The second option is to consider increasing 

the number of labels and try improve the accuracy with additional labels. Due to 

the time constraints and the number of experiments, decision was made to further 

explore on increasing the number of labels. Classifying the delays further will 

provide more operational use on either removing the pilots from the trip if their 

predicted risk is higher over others. The data was prepared with new labels of 0,1,2 

for delay less than or equal to 30 minutes, between 30 and 60 minutes and excess 

of 60 minutes respectively. We call these delays as no delay, small delay and large 

delays. The data in Fig 64 shows a 68%,18%,14% in 0,1,2 labels respectively.  
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For improvements in modeling, I wanted to select one non-deep learning 

and one deep learning methods. Multi class boosted decision tree and multi class 

neural network classification model was considered. Boosted decision tree uses 

the ensemble methods to combine predictions from many individual trees whereas 

the deep learning neural network uses hidden layers between inputs and outputs. 

Other reasons for deep learning are that data generation for training models is not 

a problem. For this exercise, the same data of 65k records that was used for Run 

D1 is used. 

 

3.1.3 Final Results – Run D4 and D5 

 
The results from the improved classification model are documented below 
 
3.1.3.1 Multi Class Boosted Decision Tree Classification Model – Run D4  
 

In the boosted decision tree with 65k data, random split of 80/20 is used for 

training. Overall, the system was able to predict on time over 94% and small delays 

of 32% and large delays over 53% giving an overall accuracy of 78%. The recall 

for the delayed records showed increase to 60% from the baseline data.   

This result in Table 12 and 13 is a good progress because accuracy was expected 

to compromise with the increase in the number of labels.  

 
3.1.3.2 Multi Class Neural Network Classification Model – Run D5 – Table 14 
 
 
The second model that was used for improvement is the deep learning neural 

network classification model with the same 65k data. The model also used the 

same random split of 80/20 for training. A satisfactory performance was noticed on 

the overall accuracy given the fact that we added additional labels. Overall, the 

system was able to predict on time over 93% and small delays of 60% and large 

delays over 63% giving an overall accuracy of 83% and recall for any delays 

increased noticeably to 72% from baseline. The neural network classification 
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showed in Table 15 is a very good improvement on both the small and large delay 

predictions 

3.1.4 Results Comparison – All Duty Delay Prediction Models 

 
Comparing all the models for the delay predictions in Table 16, multi label 

neural network classification model came out as the best. This model can be 

further improved by rebalancing and improved optimization. Also, more duty 

records could be used to help improve deep learning models. The future work 

should also consider looking into other attributes like weather history, curfew, and 

maintenance records. These features has possibility of improving the predictions 

more. 

For further explorations on the binary delay or on time predictions approach, 

I will be considering the balancing options (He & Garcia 2009) with over and under 

sampling. Also, I will be look into using Area under the Curve (AUC) before 

rebalancing and after rebalancing to determine the threshold value to separate the 

Boolean value.  

3.2 Duty Begin State Fatigue Prediction Results 

 

The second of the algorithm is predicting the fatigue state of duty before duty starts. 

Predicting KSS at duty start and predicting duty delay are independent process 

and can be computed in parallel. The input variables will be the duty attributes that 

are known at the start of the duty period as shown in Fig 54. 

3.2.1 Baseline Results 

 

Predicting the duty end state fatigue required the predicted state of fatigue 

in the duty begin state. To help fast forward the evaluation and with over 100k 

records available, an attempt was made to check the accuracy with the deep 

learning neural network regression model. Regression was used because the 

values were predicted between 1 to 9. A total of 106k records was used as input 
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and 80/20 split was used to train the model. The model used about 17 features. 

Figure 65, 66 shows the graphical flow of how the neural network was model was 

built and executed. The frequencies are plotted on the y axis. The blue line is the 

data generated from the original biomathematical model or the target values. The 

orange line is the data scored by the neural network regression model. This model 

showed better predictions on higher KSS values and inaccuracies in the lower KSS 

values. The overall fit is at 88.3%.   

 

3.2.2 Future Improvements 

 
The above histogram plot in Fig 67 and Table 17 shows only 7% (1495 out 

of 21259) of the duties that fell outside of +/- 0.5 KSS. Out of the 7%, 3% of the 

duties had the target KSS of less than 3. This is considered extremely safe duties 

and are very fatigue friendly. If we are considering from risk perspective, not 

predicting this right might not have adverse safety impact to the operations. Since 

the model was already predicting close to 88% fit and also considering all the other 

scenarios above, the accuracy can be assumed even more. Further improvements 

to model can be achieved by running the model with additional data and exploring 

other models.  

3.3 Duty End State Fatigue Prediction Results 

 

The third and the last of the algorithm is predicting the fatigue state of end 

of duty or when the duty actually ends. This model will use the prior prediction 

model outputs along with the other duty variables as shown in Fig 54.  

3.3.1 Initial Baseline Results 

 

With the initial data set of 23k duty period, predictions were run for all the 

five variables. For defining the scope of this research, analysis is being limited only 

to one of the five variables. KSS score at the end of the duty being the most 
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important of all was selected as the target variable to demonstrate improvements 

and accuracy.  

  

These are the runs attempted for baseline results 

 

Run A1 – Boosted Decision Tree Regression 

Run B1 – Linear Regression 

Run C1 – Neural Network Regression 

 

3.3.1.1 Results from Boosted Decision Tree Regression – A1 – Table 18 
 

The model graph is shown in Fig 68. The graph describes the lifecycle of 

the machine learning model. It starts with extracting the data from traditional crew 

system data factory and formulate them into an excel/csv sheet. Data is then 

imported into Azure data platform. Inside the platform, column selections and data 

cleansing methods are deployed to get the data ready for model. Once the data is 

ready, the right model is chosen along with splitting the data for train/test. For this 

baseline approach the 80/20 split was used. Other splits could be checked for 

further improvements as necessary. Score model component helps to score the 

training and testing datasets. Scored output is then extracted for review and 

iterative improvements.  

The original KSS values at duty end computed from the biomathematical 

model is the target variable and is compared against the boosted decision tree 

regression model for all of 4.5k test records (Fig 69). The data was aggregated 

into bins of 0.5 between 1 and 9 on the x-axis. 1 being the least fatigued and 9 

being extremely fatigued. The frequencies are plotted on the y axis. The blue line 

is the data generated from the original biomathematical model. The orange line is 

the data scored by the boosted decision tree. The model showed larger differences 

in the original values between 3.5 to 5.5. For values greater than 5.5, the model 

predictions were better. The histogram plot in Fig 70 is the differences between 
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the original target value and scored value, it follows the nice normal distribution 

with majority of the duties are scored within +/- 0.5 of KSS. The output of the model 

shows a 91.4% fit with the following evaluation metrics. 

 
3.3.1.2 Results from Linear Regression – B1 – Table 19 
 

Similar to A1, the life cycle of B1 in Fig 71 is also the same except the model 

used is linear regression. The model was created with the same 80/20 split. The 

original KSS values at duty end computed from the biomathematical model is 

compared against the linear regression model for all of 4.5k test records (Fig 72). 

The data was aggregated into bins of 0.5 between 1 and 9 on the x-axis. 1 being 

the least fatigued and 9 being extremely fatigued. The frequencies are plotted on 

the y axis. The blue line is the data generated from the original biomathematical 

model. The orange line is the data scored by the linear regression. The model 

showed larger differences in the original values between 2.0 to 5.5. The above 

histogram plot in Fig 73 is the differences between the original value and scored 

value, it follows the normal distribution with over 500 duties were off by +/-1 KSS. 

The output of the model shows a simple 76% fit with the following evaluation 

metrics. 

 
3.3.1.3 Results from Deep Learning Neural Network Regression – C1 – Table 20 
 
 

Similar to A1 and B1, the life cycle of C1 in Fig 74 is also the same except 

the model used is neural network regression. Same 80/20 split was used; the 

trained model was scored on the 20% of the data. The original KSS values at duty 

end computed from the biomathematical model is compared against the neural 

network regression model for all of 4.5k test records (Fig 75). The data was 

aggregated into bins of 0.5 between 1 and 9 on the x-axis. 1 being the least 

fatigued and 9 being extremely fatigued. The frequencies are plotted on the y axis. 

The blue line is the data generated from the original biomathematical model. The 
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orange line is the data scored by the neural network regression model. This model 

showed a much closer prediction to the other two models.  

The histogram plot in Fig 76 is the differences between the original value 

and scored value, it follows the normal distribution with over 500 duties were off by 

+/-1 KSS. The output of the model shows a mere 94% fit and less than 100 duties 

have a difference of +/- 1 with the following evaluation metrics. 

3.3.2 Improvements  

 
All the three baseline models are put side by side for comparison (Table 

21). Keeping the model features and dataset size the same, the deep learning 

neural network regression performed the best at 94% overall fit. 

To improve further on the deep learning neural network regression, one of the 

options considered was to increase the number of records to 106k records. same 

exercise of the baseline models was repeated for the data generation, selecting 

columns, cleaning the dataset and coding the data set. The following three 

experiments were attempted for improvements.  

C2 – use the model and other model parameters the same but just increase 

the size of data to 106k records. train the model with this 106k records with 80/20 

split.  

C3 – use model C2, but validate against the a larger dataset of 242k records 

C4 – retrain the model with a larger dataset of 242k records with 80/20 split. 

Further improvements can be considered by changing the split, improving the data 

cleansing and maybe add additional features if needed. 

3.3.3 Final Results  

 
Model was built and experimented for runs C2, C3 and C4. See below their results 

and comparison 
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3.3.3.1 Neural network regression with 106k records – C2 – Table 22 

 

In this model, a total of 106k records was used with about 85k records for 

training and 21k records for testing. Similar to the baseline models A1, B1 and C1, 

the life cycle of C2 as shown in Fig 77 is also the same except the model used 

larger number of records. The experiment used the same 80/20 split for training 

the model. The original KSS values at duty end computed from the 

biomathematical model is compared against the neural network regression model 

for all of 21k test records. the data was aggregated into bins of 0.5 between 1 and 

9 on the x-axis. 1 being the least fatigued and 9 being extremely fatigued. The 

frequencies are plotted on the y axis. The blue line is the data generated from the 

original biomathematical model. the orange line is the data scored by the neural 

network regression model (Fig 78). This model showed a much better 

improvement in predictions as compared to C1 which was the best of the baseline 

models. The histogram plot in Fig 79 is the differences between the original value 

and scored value, it follows the normal distribution with just over 250 duties out of 

21000 duties were off by +/-1 KSS. The output of the model shows a mere 95.8% 

with the following evaluation metrics. 

 
 

3.3.3.2 Neural network regression – C3 – Table 23 
 

Same C2 model was used but validated against a new larger set of 242k 

records. this was to ensure for the prediction scaling to a larger variety of real-

world duties. Life cycle of C3 (Fig 80) is slightly different that 242k records was 

added to the flow. In the previous run, the testing was done with 21k records and 

for this run, validation is at 242k records. The picture below you could see that the 

validation part is mentioned within a dotted circle, cleaned and scored against the 

same neural network regression model. 
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The original KSS values at duty end computed from the biomathematical 

model is compared against the neural network regression model for all of 21k test 

records (Fig 81). the data was aggregated into bins of 0.5 between 1 and 9 on the 

xaxis. 1 being the least fatigued and 9 being extremely fatigued. The frequencies 

are plotted on the y axis. The blue line is the data generated from the original 

biomathematical model. the orange line is the data scored by the neural network 

regression model. This model showed a much better improvement in predictions 

as compared to C1 which was the best of the baseline models.  

The histogram plot in Fig 82 is the differences between the original value 

and scored value, it follows the normal distribution with just over 3.8k duties out of 

242k duties were off by +/-1 KSS. This account to just 1.5% of the duties that were 

incorrectly predicted by +/-1 KSS. The output of the model shows a strong 

accuracy of 94.5% with the following evaluation metrics. Even thou the overall fit 

was slightly down from C2, the amount of duties and the varieties was 10 times 

(21k vs 242k records) more than what was tested in C2. The model showed much 

more stability with larger variety of dataset. 

 
3.3.3.3 Neural network regression with 242k records – C4 – Table 24 
 

For the Run C4, a dataset that was used for validation is used to build and 

train the model. The new larger dataset that was extracted using the similar 

exercise to C2 is used to train the model. the model contains 242k records and 

194k records were used to train the model and 48k record were used to test. 

Similar to the baseline models and C2, the life cycle of C4 in Fig 83 is also the 

same except the model used much larger number of records. The original KSS 

values at duty end computed from the biomathematical model is compared against 

the neural network regression model for all of 48k test records. the data was 

aggregated into bins of 0.5 between 1 and 9 on the x-axis. 1 being the least 

fatigued and 9 being extremely fatigued.  

The frequencies are plotted on the y axis. The blue line is the data 

generated from the original biomathematical model. the orange line is the data 
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scored by the C4 neural network regression model (Fig 84). This model showed 

by far the best improvement in predictions as compared to all the baseline and 

previous C2 and C3 models.  

The above histogram plot in Fig 85 is the differences between the original 

value and scored value, it follows the normal distribution with just 500 duties out of 

48000 duties were off by +/-1 KSS. This is about 1% of the duties are off by +/- 1 

KSS. The output of the model shows a mere 96.3% with the following evaluation 

metrics. 

3.3.4 Results Comparison 

 
The full comparison of all the models and its evaluation metrics are shown in 

table 25. Choosing the deep learning neural network from the baseline and 

adding more training data helped the model to improve dramatically to 96.3%. By 

running some additional parallel tests, this model can be taken to production and 

used.
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3.3 Contributions and Future Work 

 

In this dissertation, three open areas were focused. First chapter entirely focused 

on the basics of fatigue science, models and innovative ways to manage fatigue 

risk management in operations. Second chapter focused on innovating the new 

fatigue data collection taxonomy, quantification of fatigue and modeling the risk. 

The third chapter extends itself to a novel idea of predicting fatigue risk in 

operations without the use of bio mathematical model that requires work history to 

predict fatigue score. The paper discusses the use of combination of classification 

and deep learning machine learning techniques to predict the work schedule 

deformation, initial fatigue state of the duty and thereby predicting its fatigue risk 

of an end state of duty. The ML models are trained with biomathematical score 

outputs.  

 
Key contributions made but not limited to 
 

• Introduced the new model architecture to manage fatigue in complex logistic 

operations. Published a journal paper. 

• Probability based fatigue risk prediction. Patent applied. 

• Introduction of several innovative fatigue management processes. Published 

a paper in leading journal. 

• Introducing the first of the kind data collection taxonomy to harmonize and 

tabulate data collection across the operation. The common taxonomy also 

allows airlines to share and understand safety data. Patent Approved 2020. 

• Conducted a human physiology field study and analysis in complex airline 

operations. Paper presented at Fatigue Conference, Fremantle Australia 

• Coding and Structure the new concept of Duty DNA 

• Clustering duty periods with K-Means and time series clustering with duty 

sequences. 
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• Predicting crew duty deformation using classification machine learning 

models. To be published. 

• Predicting fatigue variables to a duty end state using deep learning regression 

techniques. To be published. 

Further work 
 
The focus of this work is to lay the foundation and keep the scope limited to 

predicting an end state. The work involved several years of background research, 

process improvements and tool building. The modeling work involved applying the 

combination of clustering, classification and deep learning techniques to solve the 

prediction of fatigue during operational stress. While looking at duty deformation, 

the scope was kept only to duty delays. Also, when predicting the fatigue variables, 

the scope was limited to KSS values at the end of duty. 

 

Future work should look into but not limited to  

 

• Be able to predict further deformations like duty structural changes (dna 

sequence, multiple legs, origin delay, duty start changes, previous layover 

changes etc.). 

• Apply elbow methods and determine the clusters for all features not just 

select features. Once clusters are formed, assignment outcomes should be 

predicted on a duty period. for example predicting a sick call on a duty DNA. 

Other applications could be likeability of a dutyDNA by a segment of crew. 

• Bring additional features external to duty dna such as weather, 

maintenance, IT issues, cargo volumes, manpower planning, geopolitical 

sates etc., 

• Be able to predict the remaining 4 fatigue variables (sleep in duty, sleep in 

24 before duty strt, sleep in 24 before duty end, kss at duty start, max kss 

within duty. 
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• Use AUC for determining delay thresholds in binary tree classifications. 

Rebalancing and Optimization should be considered for all the models. 

• Be able to combine that with flight risk to predict the real risk on flight. 

Combinations of risk quantification and the predictions at different states. 
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Appendix - Figures 

 

 
 

 

Figure 1. Types of Sleep. 

Proportion of the night spent in each types of sleep, for a young adult 

 
 
 

 

Figure 2. Types of biomathematical models. 
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Figure 3. Evaluation of circadian waveform of wake threshold. 

 
 
 

 

Figure 4. Biphasic homeostatic sleep curves with circadian waveform 
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Figure 5. Shows distribution of S value at t=48 
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Figure 6: Probability plot of S Values at 12hrs after duty following layover.  

µ of 0.6035 and σ=0.05131 
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Figure 7: Probability plots of both the sleep period in the sample layover.  

A short long sleep pattern is observed during the layover 

 

 

 

 

Figure 8: McCauley Model for the homeostatic effects of sleep loss 
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Figure 9: Proposed Fatigue Workbench for Airline 

 
 
 

 
Figure 10: Alertness predictions for a simulated scheduling scenario 
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Figure 11: Sleep Pressure Curves generated using the two-process model 

(top) Sleep Pressure Curves generated using the two-process model (AA. Borbély et al., 1999) 
based on actual sleep data.  
(bottom) The horizonyal grey bars at the bottom represent sleep data captured from wristwatch 
actigraphy, horizontal purple bars represents length of work segment. Each row represents an 
individual subject data for two work periods.  
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Figure 12: Predictive duty fatigue management and sleep room use 

Predictive duty schedule fatigue management (top) and proactive sleep opportunity management 
(bottom) in a US-based cargo flight operation. The bottom graph shows data from four bases over 
a 6-month period in 2019. 
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Figure 13: Fatigue risk identification processes. 

 
 
 

 

Figure 14: Sleep Work Visualization – Airline’s software program 
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Figure 15: KSS Sleepiness Ratings and Sample plot 
 
KSS sleepiness ratings on flights from a study. Singapore-Los Angeles (solid line from the 
command crew, dotted line from relief crew) 

 

 

 

 

 

Figure 16: Samn Parelli Fatigue Ratings and Sample Plot 
 
Samn-Parelli fatigue ratings on flights from a study. Singapore-Los Angeles (solid line from the 
command crew, dotted line from relief crew) 
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Figure 17: PVT Plot – Sample data shows the mean reaction time. 
Graph is plotted at various test times on a study conducted between Singapore to Los Angeles. 
(Solid line from the command crew, dotted line from relief crew). Test 1 through 4 represents top of 
climb, start of inflight rest, close to top of descent and post flight respectively 

 

 

Figure 18: Data Collection Iterative Process and Continuous Improvement 
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Figure 19: Structure of individual study 

 
 
 

 
Figure 20: Common Taxonomy for human physiology database 
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Figure 21: Data Upload: PVT QA Check 
 
 
 

 
Figure 22: Data Upload: Three Process Model 
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Figure 23: Group Analysis – Homeostatic distribution 
 
 
 

 
Figure 24: Individual data Investigate Detail 
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Figure 25: Individual data – Investigate Detail 
 
 
 

  
Figure 26: Sleep Work Distribution across Multiple Studies 
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Figure 27: Nap duration (in hours) plotted against hub turn duration (in hours)  
Hub1 and Hub2, for each individual pilot and duty night.   

 
 

 
Figure 28: Sleep Work Distribution across Multiple Studies 
Scatter plot of nap duration at the hub (in hours) versus sleep duration in the 24 hours before 
duty (in hours). Although analyses were performed on the raw data, for the purpose of clarity the 
plot shows individual subjects’ averages across the 4 duty nights. 
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Figure 29: Comparison of two sleep/wake/duty schedules based on different thresholds 
 
 
 

 

Figure 30: Ambiguity in the comparison of duty periods based on fatigue thresholds. 
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Figure 31: AUC magnification to compare schedules 

 

 
 

 
 
 

Figure 32: Process S and Process C Interactions 
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Figure 33: New method to evaluate fatigue risk associated with required alertness levels 

 
 
 

 

 

 
Total risk = Static Risk + Variable at each minute of X. 
Figure 34: Representation of Three-dimensional quantification of fatigue risk 
Figure explains how the third-dimension quantification to fatigue risk is added based on 

computed risk score. Instead of the straight line of defining threshold, now a curve will be 

dynamically created based on the risks. 
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Figure 35: Sequential crew operations process 
 
 
 

 

Figure 36: schematic sequence of duties and rest.  

 
 
 

 

 
 
Figure 37: sample crew schedule and duty attributes.  

 
 

 
 
Figure 38: sample crew schedule and dna coding.  
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Figure 39: structure of sleep DNA as DNAHead, DNABody, DNATail.  

 
 
 
 

 
 

 
 

Figure 40: schematic of the duty sequence where predictions are made for layover.  
Top: Schematic of the duty sequence where predictions are made for Layover 1 which is in 
between duty DNA 1 and duty DNA 2. Bottom: These sleep predictions are connected. 
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Figure 41: sleep pressure curves generated using two-process model 
Sleep pressure curves generated using the two-process model  based on DNA of two duty periods. 

 
 

 

 
Figure 42: sleep and duty plots as observed, synchronized to reference time scale 

Sample duty and sleep plots observed. Blue indicates sleep and Orange indicates flight 

segments. each line represents one subjects sleep and work schedule observed over a period 

of time. 
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Figure 43: 10 sample alertness curves generated from different schedules. 
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Figure 44: generation of subsequences from alertness curves. 
 
Figure 44 (top) is an example illustration of timeseries T of length 300 hours creating a 
subsequence of length w.  
Figure 44 (middle). six subsequences of length 24 is created by the sliding window. 

Figure 44 (bottom). the extracted sequences of performance curves. 
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Pre clustering in 3d scatter plots plots Before 
clustering. 365 duty dnas. 

Post clustering. The clusters are grouped as 
157,66,65,42.36 data points 

 
Figure 45: K-Means clustering of duty dna – pre and post clustering  
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Figure 46: K-Means clustering of duty dna – pre and post clustering  

 

In the illustration of figure 44a, 44b, 44c, the values of subsequences are clustered.  
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Figure 47: Full String dutyDNA with all variables.  
List shows the list of 20 sample  dutyDNA Sequences. 
 
 

 
Figure 48: Java code written to measure the hamming distance from a given DNA to the rest of 
DNAs. 

LRSCDLENBLM1L1tatBPS01ME77Jun18

LXSNDXEDBXM2L1tbtBPS04ME77Jun18

LXSDDXENBXM2L1tbtBPM08ME77Jun18

00SEDXENBXM2L1tatBPS00ME77Jun18

LXSNDXEDBXM2L1tbtBPS04ME77Jun18

LWSDDLENBLM1L1TatBPM06ME77Jun18

00SEDXENBXM2L1tatBPS00ME77Jun18

LXSDDLENBLM1L1tbtBPS05ME77Jun18

LXSCDLENBLM1L1tatBPM07ME77Jun18

LWSNDXEDBXM2L1tbtBPM10ME77Jun18

00SEDXENBXM2L1tatBPS00ME77Jun18

LXSNDXEDBXM2L1tbtBPS03ME77Jun18

LRSNDMEEBLM1L1TaTAPS05ME77Jun18

LXSDDXENBXM2L1tbtBPM09ME77Jun18

00SEDXENBXM2L1tatBPS00ME77Jun18

LXSNDXEDBXM2L1tbtBPS03ME77Jun18

LRSNDMEEBLM1L1TaTAPS05ME77Jun18

LXSDDXENBXM2L1tbtBPM09ME77Jun18

LASCDMEDBLM1L1TbTAPS00ME77Jun18
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Figure 49: A scatter plot of 2 influencing variables in a duty. 

 
 

 

Figure 50: the elbow indicated when the curve straightens. The number of clusters is 4 above. 
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Figure 51: python program to compute elbow method. 

 
 

 
Figure 52: Scheduled Airline Capacity by Week 
Scheduled Airline Capacity by Week Compared to Schedules Filed on 20th January 2020 
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Figure 53: Proposed interconnected machine learning models to predict fatigue on duty end 
state 

 
 

 
Figure 54: schematic representation of the approach to solve the business problem. 

 
 

 
Figure 55: schematic representation of a crew member schedule with duty periods. 
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Figure 56: duty delay variance  

 
 

 

TP – you predicted positive and its true 

TN – you predicted negative and it true 

FP – you predicted positive and its false 

FN – you predicted negative and its false 

Figure 57: confusion matrix evaluation criteria for a classification 

 
 
 

 
Figure 58: schematic representation of variables prediction 
In the multi machine learning model approach, the schematic representation above explains 
how different variables are predicted to feed to the next model. 
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Figure 59: Sequence of Duty and the computed biomathematical model. 
also presented the five fatigue variables captured for each of the duty periods. Y-Axis is the 
KSS score 1-9 and x-Axis is time.  

 
 

 
Figure 60 top: Plots representing the feature importance, correlation and collinearity with each 
other. The stronger the color the stronger the correlation. 
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Figure 60: DNA Features, relationships and their histogram plots.  
Figure 60 middle: Plot of histogram for few features representing their distribution 



143 
 

 
Figure 60 bottom: Plot of histogram of all features representing their correlations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



144 
 

  

  

 

 
 
Figure 61: Fatigue Variables as scored by the biomathematical models in histogram plots 
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Figure 62: Azure data platform architecture 

 
 

 

Figure 63: probabilities of delays – Run D1 for > 30 minutes 
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Figure 64: multi classification labels and population data 

 

 

 
Figure 65: Run K1 – logical flow of the deep learning neural network regression 
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Figure 66: Run K1 – comparing the target for Run K1 with scored values 

 

 

 
Figure 67: Run K1 – histogram of variance 
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Figure 68: A1 Boosted Decision Tree Regression flow chart 
 
 
 

 
Figure 69: Target vs observed value comparison – A1 
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Figure 70: histogram plot of the variance. A1 
 
 
 

 
Figure 71: B1 Linear Regression flow chart – 23k records 
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Figure 72: Target vs observed value comparison – B1 

 
 
 

 
Figure 73: histogram plot of the variance. B1 
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Figure 74: C1 Neural Network Regression flow chart – 23k records 

 

 

 

 
Figure 75: Target vs observed value comparison – C1 
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Figure 76: histogram plot of the variance. C1 

 

 

 

 
Figure 77: C2 Neural Network Regression flow chart – 106k records 
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Figure 78: Target vs observed value comparison – C2 
 
 
 

 
Figure 79: histogram plot of the variance. C2 
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Figure 80: C3 Neural Network Regression flow chart – Model C2 with 242k records for 
validation 
 
 
 

 
Figure 81: Target vs observed value comparison – C3 
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Figure 82: histogram plot of the variance. C3  

 

 

 
Figure 83: C4 Neural Network Regression flow chart – 242k records 
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Figure 84: Target vs observed value comparison – C4 
 

 

 
Figure 85: histogram plot of the variance. C4 
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Appendix - Tables 

Table 1. Duty DNA. 

Base  domicile of the pilot, three letter airport code 

A/C  Aircraft type flown 

B_Lat latitude of the base 

B_Long longitude of the base 

Day# days away from original start time of pilot schedule 

LBT_S Time of duty start with reference to pilot home time. 

LBT_E Time of duty end with reference to pilot home time. 

P_L/O rest time (layover) prior to the duty 

Dep three letter airport code where duty begins 

D_Lat latitude of the departure airport 

D_Long longitude of the departure airport 

TZD-Base time zone differential from base time before beginning the duty 

LDepT local time when the duty start 

Arr three letter airport code where duty ends 

A_Lat latitude of the arrival airport 

A_long longitude of the arrival airport 

TZD Time zone differential between start of duty and end of duty 

D_Mins total minutes from duty start to duty end 

B_Mins total flying minutes from duty start to duty end 

MaxTurnCd airport code where there was turn from one flight to another  

MaxTurnTm amount of time spent between one flight to another within duty.  

#Crews number of crews flown together in the duty 

#flts total number of flights in the duty 

DOW day of the week this duty  

Key combination of number and the start time of the full schedule 
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Table 2. Features used for Duty Delay Prediction 

 
 

Column name Column Description Example

Base Base of the pilot MEM

Nth days away from base 7

DOW day of the week 4

Month month of the year 4

Year year 2020

hour hour of the day 14

Min In Day mins in the day 870

Int international=y FALSE

Type day=D, night=N, critical=C D

Op in Critical is duty operaing in C period FALSE

Prev LO previous rest time before duty 28

D St duty start location MEM

S Tzd time zone from base at duty start 0

Arr L Tm arrival time in local mins 1758

D-S duty scheduled start 5

B-S flight times in duty period 3.5

T-Time turn time iwthin duty 0.00

T-Loca turn location -

TZD time zone difference within duty -1

#Flt number of flights 1

Opt optional duty y/n FALSE

City Seq sequence of city in the duty MEMGTF$

Flt Num Seq sequence of flight numbers in the duty 938$

Tail SeQ sequence of aircraft tails 0542$

Covid Impact covid impact month y/n TRUE

HubTurn hub turn 0

Duty_variance1

duty variance - delay as measured

-  train and target. Values 0, 1, 2 1

Scored Probabilities_0 Probabilities of scoring a 0 0.29

Scored Probabilities_1 probabilities of scoring a 1 0.44

Scored Probabilities_2 probabilities of scoring a 2 0.27

Scored Labels final label that was scored by ML 1
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Table 3. Sample records after cleaning and preparing 

 
 

Base Nth DOW Month Year hour Min In Day Int Type Op in CriticalPrev LO D St S Tzd Arr L Tm D-S B-S T-Time T-Loca TZD #Flt Opt City Seq Flt Num SeqTail SeQ Covid ImpactHubTurn Duty_variance1

MEM 0 4 4 2020 8 480 FALSE D FALSE 15 BFM 0 1655 9.4 2.5 0.23 MEM 0 2 FALSE BFMMEM$MEMBFM$662$662$ 0860$0746$ TRUE MEM 1

MEM 7 3 4 2020 20 1224 FALSE N FALSE 13 GTF -1 41 4.8 3.3 0.00 - 1 1 FALSE GTFMEM$ 985$ 1348$ TRUE 0 0

MEM 0 6 4 2020 2 138 FALSE C TRUE 0 MEM 0 625 3.6 2.1 0.00 - 1 1 FALSE MEMROC$ 176$ 1528$ TRUE 0 0

MEM 1 5 4 2020 14 845 FALSE D FALSE 22 IND 1 1725 5.8 4.3 0.00 - -3 1 TRUE INDSAN$ 134$ 3713$ TRUE 0 0

MEM 0 4 4 2020 2 138 FALSE C TRUE 0 MEM 0 601 3.2 1.7 0.00 - 1 1 FALSE MEMFNT$ 723$ 1469$ TRUE 0 0

MEM 0 4 4 2020 13 815 FALSE D FALSE 0 MEM 0 1719 3.2 1.7 0.00 - 1 1 FALSE MEMDTW$321$ 0348$ TRUE 0 1

MEM 12 7 4 2020 8 480 FALSE D FALSE 26 DEN -1 1703 9.6 4.2 0.16 MEM 1 2 FALSE DENMEM$MEMSAT$318$307$ 0853$0379$ TRUE MEM 0

MEM 0 4 4 2020 2 168 FALSE C TRUE 0 MEM 0 521 5.1 3.6 0.00 - -2 1 FALSE MEMLAS$ 105$ 1440$ TRUE 0 1

MEM 0 3 4 2020 14 885 FALSE D FALSE 0 MEM 0 1838 3.4 1.9 0.00 - 1 1 FALSE MEMRIC$ 667$ 0794$ TRUE 0 2

MEM 6 4 4 2020 14 895 FALSE D FALSE 16 MEM 0 2251 8.4 4.3 0.11 ORF 0 2 FALSE MEMORF$ORFMEM$724$724$ 0399$1338$ TRUE 0 0

MEM 4 6 5 2020 18 1089 FALSE N FALSE 34 YOW 1 8 6.5 3.4 0.07 BUF -1 2 FALSE YOWBUF$BUFMEM$740$740$ 0153$0153$ TRUE 0 0

MEM 4 1 4 2020 15 900 FALSE D FALSE 62 MEM 0 2013 7.7 5.5 0.03 PHX -2 2 FALSE MEMPHX$PHXOAK$383$383$ 0982$0982$ TRUE 0 2

MEM 4 5 4 2020 19 1172 FALSE N FALSE 24 PDX -2 39 5.6 4.1 0.00 - 2 1 FALSE PDXMEM$ 643$ 1216$ TRUE 0 0

MEM 0 3 4 2020 21 1274 FALSE N FALSE 16 AUS 0 2358 3.2 1.7 0.00 - 0 1 FALSE AUSMEM$ 396$ 1227$ TRUE 0 0

MEM 0 3 4 2020 3 186 FALSE C TRUE 159 MEM 0 606 3.5 2 0.00 - 0 1 FALSE MEMHRL$ 138$ 1537$ TRUE 0 0
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Table 4. Data Extraction of Duty DNA for Fatigue Prediction. 

 
 

Extracted Fields and Duty Construction

Selected and 

Used for 

Training

BASE Base of the pilot MEM Y

B_Lat base coordinates - Latitude 35N N

B_Long base coordinates - Longitude -89W N

Nth Days away from base 0 Y

LBT_Dt Date of Duty 12-May-20 N

LBT_Tm HHmm - Hours Minutes 1325 N

Int International = Y N Y

Type Day - D, Night - N, Critical - C D Y

OpinCritical Is Duty Operating in Critical Period that is (0100 - 0500) N Y

PrevLO Rest time before Duty - If 0:00 means its first duty 0:00 Y

D_Org Duty Start Location MEM Y

DO_TB Time Zone Difference from Base 0 N

D_Dest Duty End Location EWR Y

DD_TB Time Zone Difference from Base 1 N

Dend_LT Local End Time wherever the duty is ending. 1801 N

D-S Total Scheduled Duty Minutes 7:12 Y

B-S Total Scheduled Flying Time within Duty 3:11 Y

D-A Total Actual Duty Minutes 8:01 N

B-A Total Actual Flying Time within Duty 3:18 N

T-Time Max Turn Time within Duty 1:18 Y

T-Loc Turning City ATL N

TZD Total Time Zone Difference within Duty 1 N

#Flt Total Number of Flight Segments in Duty 2 Y

Opt Is Duty Having Any Optional Duty Segments N N

Seq_Loc Sequence of Flights (OriginDestination) in duty MEM$ATL$EWR$ N

Seq_Tail Sequence of Tail Numbers Within duty 787$234 N

Seq_FltNum Sequence of Flight Numbers within duty 0524$0163$ N

Computed Fields
DOW using LBT_Dt, compute this field for day of the week3 Y

Month using LBT_Dt, extract month of the year 5 Y

Year using LBT_Dt, extract year 2020 Y

Hour using LBT_Tm, extract hour 13 Y

MinInDay using LBT_Dt, min in the day 805 Y

CovidImpact if the month is after Apr 2020, we set this flag to Y Y Y

HubTurn

if the T_loc goes through a sort facility, 

then set this field Y
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Table 5. Features, description and sample data for fatigue prediction 

 
 
  

Table 6. confusion matrix and prominent features for Run D1 

 

Feature Description

Base Base of the pilot who will work this duty MEM MEM MEM

Nth Nth day ths duty is operated in sequence 0 0 0

Int domestic or international duty FALSE FALSE FALSE

Type C = (0100-0459), D = (0500-1559), Else N D D N

Op in Critical if duty is flown during (0100-0459) FALSE FALSE TRUE

Prev LO 0 if this is 1st duty, otherwise in hrs 0 0 16

D-S duty in hours 4.2 6.23 8.92

B-S flight time in duty in hours 1.95 3.48 3.07

T-Time total turn time within duty 0.8 1.3 4.3

#Flt number of flights 2 2 3

Covid Impact is this duty in covid times FALSE FALSE FALSE

HubTurn is this duty going through one of hubs 0 0 MEM

DOW day of the week 3 3 3

Month month of the year 10 10 10

Year year 2019 2019 2019

hour hour of the day 14 14 20

Min In Day exact minutes in the day this duty starts 840 850 1238

kss_duty_start kss fatigue score at duty start 2.59 2.58 3.48

kss_duty_end kss fatigue score at duty end. training var 3.54 4.50 6.23

Scored Labels target variable for prediction 3.62 4.53 5.88

Diff variances between scored vs duty end kss 0.08 0.03 -0.35

Examples
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Table 7. Gradient Boosting Run – D1 - Summary  

 

param_grid= 

{'n_estimators':range(20), 

'max_depth':range(5), 

'min_samples_split':range(200), 

'min_samples_leaf':range(30)} 

 

 

Business Objectives

Run# D1 D1:D2 D3

Overall Records - 1000s 65

Train/Test Split 90/10

Training Data - 1000s 58.5

Testing Data - 1000s 6.5

Number of Features 17

Approach

Model

Overall Accuracy 82

Recall >30 mins delay 64%

Duty Delay Predictions

Binary Classification Approach

Gradient Boosting
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Table 8. confusion matrix and prominent feature for D2.  
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Table 9. Gradient Boosting Run – D2 - Summary  

 
 
 
 

Business Objectives

Run# D1 D1:D2 D3

Overall Records - 1000s 65 Same as D1

Train/Test Split 90/10 Same as D1

Training Data - 1000s 58.5 Same as D1

Testing Data - 1000s 6.5 21

Number of Features 17 17

Approach

Model

Overall Accuracy 82 80

Recall >30 mins delay 64% 48%

Duty Delay Predictions

Binary Classification Approach

Gradient Boosting
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Table 10. confusion matrix and prominent feature for D3. 215k records 
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Table 11. Model Run D3 and results  

 

 
 

Business Objectives

Run# D1 D1:D2 D3

Overall Records - 1000s 65 Same as D1 215

Train/Test Split 90/10 Same as D1 90/10

Training Data - 1000s 58.5 Same as D1 193

Testing Data - 1000s 6.5 21 21

Number of Features 17 17 17

Approach

Model

Overall Accuracy 82 80 83

Recall >30 mins delay 64% 48% 48%

Duty Delay Predictions

Binary Classification Approach

Gradient Boosting
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Table 12. Run D4 confusion matrix for multi class boosted decision tree classification  
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Table 13. D4 run results – multi class boosted decision tree  

 

 

Table 14. confusion matrix for multi class neural network classification 

 

Business Objectives

Run# D4

Overall Records - 1000s 65

Train/Test Split 80/20

Training Data - 1000s 58.5

Testing Data - 1000s 6.5

Number of Features 17

Approach

Model

Boosted 

Decision 

Tree

Overall Accuracy 78%

Recall >30 mins delay 60%

MultiClass Classification

Duty Delay Predictions
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Table 15. D5 run results – multi class neural network decision tree results  

 

 
 

Table 16. Comparison of all the Delay Models  

 

 

 
 
 
 

Business Objectives

Run# D4 D5

Overall Records - 1000s 65 65

Train/Test Split 80/20 90/10

Training Data - 1000s 58.5 58.5

Testing Data - 1000s 6.5 6.5

Number of Features 17 17

Approach

Model

Boosted 

Decision 

Tree

Multi Class 

Neural 

Network

Overall Accuracy 78% 82.9%

Recall >30 mins delay 60% 71.8%

MultiClass Classification

Duty Delay Predictions

Business Objectives

Run# D1 D1:D2 D3 D4 D5

Overall Records - 1000s 65 Same as D1 215 65 65

Train/Test Split 90/10 Same as D1 90/10 80/20 90/10

Training Data - 1000s 58.5 Same as D1 193 58.5 58.5

Testing Data - 1000s 6.5 21 21 6.5 6.5

Number of Features 17 17 17 17 17

Approach

Model

Boosted 

Decision 

Tree

Multi Class 

Neural 

Network

Overall Accuracy 82 80 83 78% 82.9%

Recall >30 mins delay 64% 48% 48% 60% 71.8%

MultiClass Classification

Duty Delay PredictionsDuty Delay Predictions

Binary Classification Approach

Gradient Boosting
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Table 17. KSS at Duty Start Predictions Summary for Run K1 

 
 
 
 
Table 18. A1 evaluation metrics. 

 

 
 
 

 

 

Business Objectives

Run# K1 K2 K3 K4

Overall Records - 1000s 106

Train/Test Split 80/20

Training Data - 1000s 85

Testing Data - 1000s 21

Number of Features 17

Approach

Model

Overall FIT 88.3%

Coefficient of Determination 0.8834

Relative Abs Error 0.2599

Relative Squared Error 0.1165

Root Mean Squared Error 0.276

Mean Absolute Error 0.1834

Regression - Deep Learning

Neural Network Regression

KSS Predictions at Start of Duty
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Table 19. B1 evaluation metrics. 

 

 

 

Table 20. C1 evaluation metrics. 
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Table 21. comparison of baseline model parameters and evaluation metrics 

 

 

 
Table 22. C2 evaluation metrics. 

 

 
 

Table 23. C3 evaluation metrics. 

 

 

Business Objectives

Run# A1 B1 C1

Overall Records - 1000s 23 23 23

Train/Test Split 80/20 80/20 80/20

Training Data - 1000s 18.5 18.5 18.5

Testing Data - 1000s 4.5 4.5 4.5

Number of Features 18 18 18

Approach Decision Tree Regression

Model

Booster 

Decision Tree

Linear

 Regression

Overall FIT 91.4% 76.7% 94.0%

Coefficient of Determination 0.9137 0.7674 0.9395

Relative Abs Error 0.2024 0.4206 0.1741

Relative Squared Error 0.0862 0.2325 0.0634

Root Mean Squared Error 0.2481 0.5727 0.299

Mean Absolute Error 0.1481 0.4303 0.1781

Neural Network Regression

KSS Predictions at End of Duty

Regression - Deep Learning
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Table 24. C4 evaluation metrics. 

 
 
 
 
Table 25. Comparison of all model parameters and evaluation metrics. 

 

 
 

 

 

 
  

Business Objectives

Run# A1 B1 C1 C2 C3 C4

Overall Records - 1000s 23 23 23 106 Use Model B 242

Train/Test Split 80/20 80/20 80/20 80/20 80/20

Training Data - 1000s 18.5 18.5 18.5 85 192

Testing Data - 1000s 4.5 4.5 4.5 21 200 30

Number of Features 18 18 18 18 18 18

Approach Decision Tree Regression

Model

Booster 

Decision Tree

Linear

 Regression

Overall FIT 91.4% 76.7% 94.0% 95.8% 94.5% 96.3%

Coefficient of Determination 0.9137 0.7674 0.9395 0.9575 0.9454 0.9627

Relative Abs Error 0.2024 0.4206 0.1741 0.1304 0.1641 0.1162

Relative Squared Error 0.0862 0.2325 0.0634 0.0424 0.0546 0.0372

Root Mean Squared Error 0.2481 0.5727 0.299 0.2463 0.268613 0.2213

Mean Absolute Error 0.1481 0.4303 0.1781 0.135 0.1603 0.1132

Regression - Deep Learning

Neural Network Regression

KSS Predictions at End of Duty
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