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ABSTRACT 

   Phasor measurement units (PMU), measuring voltage and current phasor with synchronized 

timestamps, is the fundamental component in wide-area monitoring systems (WAMS) and 

reveals complex dynamic behaviors of large power systems. The synchronized measurements 

collected from power grid may degrade due to many factors and impacts of the distorted 

synchronized measurement data are significant to WAMS. This dissertation focus on developing 

and improving applications with distorted synchronized measurements from power grid. The 

contributions of this dissertation are summarized below. 

In Chapter 2, synchronized frequency measurements of 13 power grids over the world, 

including both mainland and island systems, are retrieved from Frequency Monitoring Network 

(FNET/GridEye) and the statistical analysis of the typical power grids are presented. The 

probability functions of the power grid frequency based on the measurements are calculated and 

categorized.   

Developments of generation trip/load shedding and line outage events detection and 

localization based on high-density PMU measurements are investigated in Chapters 3 and 4 

respectively.  Four different types of abnormal synchronized measurements are identified from 

the PMU measurements of a power grid. The impacts of the abnormal synchronized 

measurements on generation trip/load shedding events detection and localization are evaluated. 

A line outage localization method based on power flow measurements is proposed to improve 

the accuracy of line outage events location estimation.   

A deep learning model is developed to detect abnormal synchronized measurements in 

Chapter 5. The performance of the model is evaluated with abnormal synchronized 

measurements from a power grid under normal operation status. Some types of abnormal 
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synchronized measurements in the testing cases are recently observed and reported. An extensive 

study of hyper-parameters in the model is conducted and evaluation metrics of the model 

performance are presented.  

A non-contact synchronized measurements study using electric field strength is investigated 

in Chapter 6. The theoretical foundation and equation derivations are presented. The calculation 

process for a single circuit AC transmission line and a double circuit AC transmission line are 

derived. The derived method is implemented with Matlab and tested in simulation cases.  
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Chapter 1 Introduction  

1.1 Synchrophasor measurement and frequency monitoring network  

The modern power grid is the most complicated artificial system, which has been evolving in 

recent decades with various technologies [1]-[3]. Meanwhile, renewable energy sources have 

been promoting and integrated into power grids in recent years [4], [5]. Power grid structures and 

dynamic behaviors are becoming more complex, due to the flexibility from the new technologies 

and fluctuating nature of renewable energy sources [6], [7].  The changes bring challenges to the 

traditional power grid monitoring and management system, the supervisory control and data 

acquisition system (SCADA) and energy management systems (EMS) [3]. Wide-area monitoring 

systems (WAMS), consists of advanced measurement technology, information tools, and 

operational infrastructure that facilitate the understanding and management of the increasingly 

complex behavior exhibited by large power systems [8]. With real-time, global positioning 

system (GPS) time-synchronized measurements at high data rates, WAMS reveals 

unprecedented insights into power grid dynamics and will be the next-generation operational-

management systems [3], [9]-[11]. Phasor measurement units (PMU), measuring voltage and 

current phasor with synchronized timestamps, are the fundamental components in WAMS [3], 

[12].  

Frequency Monitoring Network(FNET/ GridEye), a pilot of WAMS, consisted of hundreds of 

low-cost and high-accuracy GPS synchronized sensors worldwide. The server of FNET/GridEye 

is located at the University of Tennessee. The details of FNET/GridEye architecture and 

synchronized measurement sensors are introduced in Chapter 2.3. Around 200 synchronized 

measurement sensors are deployed at Eastern interconnection (EI), Western Electricity  
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Coordinating Council (WECC) and Electric Reliability Council of Texas (ERCOT) in U.S., 

which are shown in Fig. 1.1. The synchronized measurement sensors have been collecting 

frequency and angle measurements and streaming them to the server at UTK for real-time 

applications or post-event analysis. The frequency and angle visualization at FNET/GridEye are 

shown in Fig. 1.2 and 1.3 respectively.  

Numerous real-time synchronized measurement applications have been developed based on 

FNET/GridEye. FNET/GridEye has been successfully operating and monitoring interconnections 

in the U.S. for more than a decade. One of the major real-time applications on FNET/GridEye is 

events detection and location estimation. The real-time applications have detected and located 

more than 1000 events, which are confirmed by utilities, in the U.S.. The algorithm and 

successful experience of real-time events detection applications on FNET/GridEye are reported 

on the top journals and conferences in IEEE and filed for patents in the U.S.. The detected event 

results of two typical real-time applications on FNET/GridEye: generation trip events detection 

and islanding events detection are shown in Fig. 1.4 and 1.5.  

1.2 High-density synchrophasor measurements and issues 

As one of the core technologies for the next-generation energy management system, 

synchrophasor technology has been prompting in industry and more PMUs are deployed in the 

power grid. This change brings both challenges and opportunity of existing real-time events 

detection and location applications based on synchronized measurements in two aspects: 

(1). High density of synchrophasor measurements 

The most existing reported algorithms and applications of events detection based on 

synchrophasor measurements are tested or demonstrated with limited numbers of PMUs [13]-

[20]. However, it has been reported that around 400 PMUs have been installed in a power grid, 
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Figure 1.1. FNET/GridEye synchronized measurement sensors deployment map in U.S. 

 

 
Figure 1.2. FNET/GridEye real-time frequency visualization in U.S. 
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Figure 1.3. FNET/GridEye real-time frequency visualization in EI system. 

 

 

Figure 1.4. A Generation trip event detection and location report from FNET/GridEye 
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Figure 1.5. An oscillation event detection report from FNET/GridEye 
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which covers only one province territory in China [21]. The huge volume of high-resolution 

measurements brings high computation burdens to real-time applications. Additionally, the 

deployment of PMU in such a relatively small area also questions the validity of the existing 

real-time applications. The traditional method of locating events without system parameters is 

based on disturbance propagation speed difference or disturbance magnitude. The assumptions 

were made based on several synchrophasor measurements are deployed in a large area [22]-[24].  

(2). Data quality issue 

In operating power gird, communication failure, hardware malfunction and inappropriate 

configuration of PMUs may cause data quality issues in PMU measurement. Several papers have 

been published about recovering data quality issues in PMU measurements and improving robust 

algorithms with low data quality PMU measurements [25]-[31]. However, the common types of 

PMU measurement anomalies in the papers are random spikes and missing data. The patterns of 

PMU measurement anomalies from operation power gird are more sophisticated and some new 

types of PMU measurement anomalies are recently reported [21]. The impacts of the PMU 

measurement anomalies on the existing algorithms and applications have not been evaluated. 

Additionally, the method of detecting and classifying the recently reported anomalies is not 

developed.  

1.3 Organization of study 

This dissertation focus on different aspects of synchrophasor measurements of data 

conditioning and its real-time applications. The rest of the dissertation is organized as follows: 

Chapter 2 presents an observation and statistical study of power grid frequency operation 

status worldwide with synchrophasor measurements from FNET/GridEye system. The typical 
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power grids at the mainland and island in four continents are analyzed. The distributions of the 

power grid operation frequency are calculated and categorized.   

Chapter 3 presents a real-time generation trip and load shedding events detections application 

for a power grid with a high density of PMU deployment. New types of PMU measurement 

anomalies from field measurements are reported. The implementation is tested with simulation 

event cases, ambient cases and a generation trip event. The impacts of PMU measurement 

anomalies on the implementations are evaluated.  

Chapter 4 proposed a line outage event location estimation method based on power flow 

measurements. The proposed method based on power flow distribution factor is analyzed and 

validated with TVA and ISO-NE system in simulation. The proposed is implemented and tested 

with ISO-NE system in comprehensive study simulations. A comparison between the proposed 

method and traditional methods without system parameters indicates the improvement of 

location estimation accuracy.  

Chapter 5 proposed a deep learning method to identify data quality issues. Four types of data 

anomalies are identified in PMU frequency measurements collecting from power grid. The 

training and testing sample sets are created and labeled from ambient measurements from a 

power grid. Hyper-parameters in the proposed structure are evaluated by a tentative study. The 

performance of the proposed structure is demonstrated with high accuracy results and evaluation 

metrics. 

Chapter 6 proposes a method to calculate AC transmission line voltage via electric field 

strength. The equations and calculation processes are derived for both single circuit and double 

circuit transmission lines. Electric field strength distribution of a single circuit and double circuit 
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transmission line from a textbook are reproduced and used to validate the derived equation and 

methods. 
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Chapter 2 Frequency Observations and Statistic Analysis of 
Worldwide Main Power Grids Using FNET/GridEye 

2.1 Background and motivation 

Renewable energy sources have been promoted all over the world in recent years, due to its 

clean, low-cost and inexhaustible features, compared to the traditional power generation [4]-[5]. 

Meanwhile, the intermittent and unpredictable natures of renewable energy sources enhance the 

system frequency fluctuation, which brings challenges to power system operations and grid 

security [32]-[36]. Numerous factors determine power grid power frequency deviation [37], e.g. 

system capacity, load types, regulation requirements, power imbalance and etc. To maintain the 

system stability and meet system frequency regulation, more reserve power sources are required 

to accommodate the increasing renewable energy sources in the power grids. To compromise 

between stability risks and expensive cost of reserve power, research has been conducted to 

develop new control strategies and reserve sizing techniques [37]-[39]. In another direction, 

some researchers proposed that a flexible frequency operation strategy would satisfy load 

demands with limited reserve power sources [40]. It is noticed that although many studies have 

been contributed into moderating the problem, there are few observations and reports about what 

are the present power frequency status and frequency fluctuation ranges of worldwide power 

grids [41]-[43]. Power frequency deviation varies in different power grids, especially for the 

grids on small islands. Hence, it is worthwhile to investigate the power frequency status in 

worldwide major power grids and what are power frequency differences between the mainland 

and island. 

Wide-area monitoring systems (WAMS), consisting of advanced measurement technology, 

information tools, and operational infrastructure, facilitates the understanding and management 
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of the increasingly complex behavior exhibited by large power systems [44]. With the real-time, 

global positioning system (GPS) time-synchronized measurements at high data rates, WAMS 

reveals unprecedented insights into power grid dynamics and will be the next-generation 

operational-management systems [45]-[49]. However, the worldwide WAMS systems have not 

been built yet, let alone the frequency observations for the worldwide power systems. 

FNET/GridEye, a kind of wide-area measurement system (WAMS), has been developed and 

operated over decades [47]. Hundreds of frequency disturbance recorders (FDR) are installed 

over the world, which is sending high time resolution measurements to FNET/GridEye servers. 

The FNET/GridEye servers are located at the University of Tennessee, Knoxville (UTK) and 

Oak Ridge National Laboratory (ORNL). With the valuable measurements, FNET/GridEye, as 

an independent observer, observes power grid operation frequency status in different regions 

over the world [47]. Based on measurements from FNET/GridEye, static analysis of the power 

system frequency and rate of change of frequency (ROCOF) in different power grid have been 

published and provided guidance in different research areas [41]-[43]. In this chapter, the 

frequency data of worldwide major mainland and island power grids are analyzed and studied 

from the view of statistics, based on FNET/GridEye measurements 

Though research has been conducted on studying the power frequency in the actual power 

grids, a few papers reported the power frequency in the worldwide main power grids, and thus 

the insights for the worldwide power system frequency are seldom offered. Using the data from 

FDRs, this paper offers a statistical analysis of the frequency in the different regions, which is 

helpful for the frequency study. 
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2.2 Review of power system frequency recommendations and regulations 

System frequency deviation may impact major components in power system and must be 

regulated in a limited range. Various frequency limits and thresholds are specified or 

recommended in standards or utility operation regulations. In this section, frequency 

requirements and recommendations at normal operation for different components in power 

system are reviewed and summarized. 

(1). Under frequency load shedding (UFLS) 

In [50], The North American Electric Reliability Corporation (NERC) specifies automatic 

UFLS schema requirements to arrest frequency decline. It requires a minimum of three 

frequency set points in UFLS schema. For the highest setting of the setting is  

59.3 Hz ≤ƒhigh ≤59.5 Hz 

For the lowest setting of the setting is  

58.4 Hz ≤ƒmin 

The interval between the setting points is 

0.2 Hz ≤ƒinterval ≤0.5 Hz 

In [51] NERC defines real power balancing control performance to regulate interconnection 

operation frequency in North America. It specifies both high and low balancing authority ACE 

limits for different interconnections in North America and requires balance authorities operates 

within the limits.   Balancing authority ACE limits are determined by frequency trigger limits. 

The frequency trigger limits (FTLs) are calculated by  

𝑭𝑻𝑳𝒔 = Fs − 3ε       (2.1) 
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Fs is the scheduled frequency in Hz. ε  is the constant derived from a targeted frequency 

bound for each Interconnection land derived from data samples over a given year [50]-[51]. 

Scheduled frequency, ε  and FTLs specified by NERC are summarized in Table 2.1. 

 (2). Voltage quality and frequency regulation 

Power system frequency status and deviation may result in power quality degradation and 

bring potential unstable issues to power system operations. Certain types of loads may be 

vulnerable to the power quality and hazards and losses may occur under power quality 

degradation.  IEEE standards specify susceptive load, which may also be referred as sensitive 

load, in various areas and define the tolerated frequency of the susceptive load. In [52], 

susceptive load mainly focuses on (1). Data processing equipment and (2). Life safety and life 

support systems. The applications of data processing equipment are categorized for both 

industrial and commercial classifications.  The detailed information of the data processing 

equipment is described and available at [52]. The susceptible loads discussed in the standard [53] 

include (1). Computers, (2). Process control, (3). Telecommunications, (4). Electric arc lighting 

and (5). Consumer electronics.  Additional, power system operation frequency limits are critical 

to power system stability and reliability. Utilities define their own frequency regulation 

requirements to specify power system operation frequency arranges under different 

circumstances. The major IEEE standard recommendations and frequency regulation from 

utilities are reviewed and summarized in Table 2.2. 

(2). Power generation 

The main concern about power system frequency at power plants is its impacts on gas and 

steam turbine prime movers.  Torsional vibration, which causes mechanical damage, may 

happen when gas and steam turbine operate at off-nominal speeds and are resonant with power  
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Table 2.1 Targeted frequency bound constant of interconnections in North America 

Interconnection ε1(Hz) FTLLow (Hz) FS(Hz) 

Eastern Interconnection 0.018 59.928 59.982 

Western Interconnection  0.0228 59.9088 59.9772 

ERCOT Interconnection 0.030 59.88 59.97 

Quebec Interconnection  0.021 59.916 59.979 

 

Table 2.2. Frequency recommendation and regulations  

Standards Frequency ROCOF Description 

IEEE Std 446 [52] ±0.5 Hz 1 Hz/s The standards listed types of sensitive 

loads in industry.  

IEEE Std 1250 [53] ±0.5 Hz 1 Hz/s Reference IEEE Std 446 

IEEE Std 1250 [53] 

(expectations) 

±0.015 Hz NA Voltage quality performance 

expectations, which are based on 

typical steady-state maximum 

frequency deviation in an 

interconnected power system in North 

America. 

IEEE1100 [54] ±0.5% 0.3 Hz/s 0.3 Hz for 60 Hz Systems and 0.25 

Hz for 50 Hz systems 
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Table 2.2 continued 

Standards Frequency ROCOF Description 

GB/T 15945 [55] ± 0.2 Hz NA Frequency regulation in China. 

Frequency limits are relaxed to ± 0.5 

Hz when the system capacity is small.  

AEMS FOS [56] (Mainland) ± 0.15 Hz NA Australia frequency operating 

standard 

AEMS FOS[56] (island) ± 0.5 Hz NA Australia frequency operating 

standard 

AEMS FOS [56] (Mainland 

– during supply scarcity) 

± 0.5 Hz NA Australia frequency operating 

standard 
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system  frequency. For generator perspective, International Organization for Standardization 

(ISO) defines frequency limits for gas and steam turbine regard to mechanical vibration [57]. It is 

recommended for generator manufacture to meet the standard requirements when generators are 

tested and installed. The ISO recommendation about generator frequency is summarized in Table 

2.3.  

2.3 FNET/Grideye overview and observation data preprocessing 

FNET/GridEye is the first WAMS system ever designed to be deployed at the distribution 

level, whose mission is to pioneer and promote the WAMS technologies in electric power 

utilities [45]-[49]. Data processing, visualizing and analyzing applications have been 

implemented on the FNET/GridEye system to process near real-time measurements, collected by 

variable types of FDRs [43]. Up to date, 297 FDRs are deployed in 31 counties across the world. 

The locations of FNET/GridEye FDR sensor over the world are shown in Fig. 2.1. FDR 

deployment map demonstrates that the FNET/GridEye could observe the frequencies of 

worldwide main power grids. 

One of the most distinctive features of FNET/GridEye is the employment of low-cost and 

high-accuracy sensor, installed at the distribution level, which provides the probability to install 

FDR sensors over the world with low costs. After years of efforts, contributed by PowerIT group 

at UTK, three generations of FDR with different features have been developed, including 

smartphone-based FDR, magnetic and electric field based FDR, and universal grid analyzer 

(UGA) [58]-[60]. A photo of UGA is shown in Fig. 2.2. At present, the sample rate of the FDRs 

in FNET/GridEye is 10 times per second. The FDRs transmit the nearly real-time data with GPS 

synchronized timestamp to FNET/GridEye server via the internet.  
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Table 2.3 summary of ISO torsional frequency exclusion zones [57] 

Torsional zone Frequency Limit 

Allowable grid frequency +2.5% 

Field test (full speed, full train) +3.5% 

Full speed shop test + 4% 

Full speed, factory test data +5.0% 

Primary exclusion +6.0% 

Temperature effect: +1% 

 

 

Figure 2.1. FDR Worldwide deployment map. 
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Figure 2.2. The prototype of UGA. 
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At the FNET/GridEye data center, a data concentrator is employed to receive and process 

FDR steaming data. After filtering out bad data, all the data are achieved into a database for data 

analysis [47]. The streaming data is visualized and published at http://fnetpublic.utk.edu/, while 

historical data is accessible with further privilege authorization. With a vast volume of frequency 

measurement data collecting over the world, FNET/GridEye provides an opportunity to observe 

and analyze different power grids frequency status. In the next section, the frequency data 

collected by FDRs will be analyzed. 

For a comprehensive observation purpose, 6 mainland power grids and 7 island power grids, 

which spread over America, Asia, Europe, Oceania, and Africa, are observed and analyzed in 

this section. According to [61], [62], frequency in different voltage levels is identical, while 

frequency differences in different regions of one system are relatively small. Measurements of 

one FDR in each country is selected for the analysis. The three-month frequency measurement 

data of the power grids collected by FNET/GridEye are retrieved from the database. The 

measurement data used in this studied reflect both normal operation and transient status of the 

power grids. 

All the simulations are conducted on a computer running a 64-bit Windows 10, with a 3.60 

GHz Intel I7-7700U CPU and 16 GB memory. The sample ratio of FDR is 10 points per second 

and the studied period is three months, thus the overall volumes of the 13 selected systems 

measurements data are 9.01 GB. To perform an efficient analysis, R language is employed to 

implement data processing and analyzing. 

The nominal frequencies of the selected power grids include both 50 Hz and 60 Hz, which is 

shown in TABLE 2.4. Hence, the frequency measurement data are converted to per-unit value 

(i.e., the unit is p.u.) for a convenient comparing purpose. 
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Table 2.4 The Operation Frequency of Power Grids Worldwide 

Country Continent Nominal Frequency (Hz) 

EI, U.S. America 60 

WECC, U.S. America 60 

Hawaii, U.S. America 60 

ERCOT, U.S. America 60 

Germany Europe 50 

Saudi Arabia Asia 60 

Japan Asia 60 

Northern Ireland Europe 50 

Ireland Europe 50 

England Europe 50 

Australia Oceania 50 

Bahamas America 60 
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To promote repeatability of the simulation, the procedure of the data loading and 

preprocessing is outlined below and shown in Fig. 2.3. 

Step 1: Load historical FDR measurement data files of the studied systems. 

Step 2: Align the measurement data with studied periods. 

Step 3: Pre-process the measurements and filter bad data. 

Step 4: Normalized the measurements of the studied systems. 

2.4 Statistical analysis of frequency in power grids 

For a specific power grid, the statistic of frequency could reveal some insights into the 

operation status. Standard deviation and mean of the frequency measurement data are calculated 

in this paper. The mean of system frequency could be used to show the balance between the 

generation and the demand. Moreover, the standard deviation of the frequency is offered to 

demonstrate the frequency fluctuation. It should be noted that some operations in the power grid 

could also impact on the mean and standard deviation. 

As shown in Fig. 2.4, the mean values of frequency in power grids in different regions are 

listed in descending order. Meanwhile, the standard deviation values of frequency are listed in 

descending order in Fig. 2.5. As shown in Fig. 2.5, the frequencies in all mainland power grids 

have smaller standard deviations, comparing to the frequencies in island power grids. One of the 

potential reasons for this situation is that the sizes of the mainland power grids are larger than the 

sizes of island power grids. However, it should be noticed that there are some exceptional cases. 

For Hawaii power grids, its frequency deviation is smaller than those of most mainland power 

grids. Another extreme case is Egypt power grid, which is located in the mainland, but its 

frequency deviation is the highest among the power grids studied in this paper. 
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Figure 2.3. The procedure of FDR historical data process and analysis 
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Figure 2.4. Mean of frequency in power grids in different regions 
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Figure 2.5. The standard deviation of frequency in power grids in different 
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According to [63], the highest relay setting of load shedding frequency f required by North 

American Electric Reliability Corporation (NERC) is 59.3 Hz (0.9883333 p.u.) <f<59.5 Hz 

(0.9916667 p.u.). The measurement data includes transient status, such as generation trip and 

load shedding events. As shown in Fig. 2.5, most power grids operate with the safe frequency 

fluctuations in a reasonable margin, comparing to NERC load shedding frequency. However, the 

frequency standard deviation of Egypt power grid during the observation time in this paper is the 

highest, which close to the NERC load shedding criteria. 

To perform a more detailed statistical analysis, three typical power grids are selected: (1). EI 

system (North America, mainland power grid), (2). Egypt system (Africa, mainland power grid) 

and (3). Japan (Asia, island power grid). As shown in Fig. 2.5, there three power grids have the 

smallest, largest and average standard deviation in the power grids. The standard deviation and 

mean values of the power grids are calculated for each day. Here, the analysis period is selected 

as one month. As shown in Fig. 2.6(a), the standard deviation of EI power grid frequency is 

smallest on a daily basis, compared to Japan and Egypt power grids frequency. Means of daily 

frequency in Egypt power grid are not a straight line as shown in Fig 2.6(b). It means that Egypt 

power grids are operated at an under-frequency status. Compared to Egypt power grids 

frequency mean, the means of daily frequency in EI and Japan power grids are almost flat, which 

indicates that the two systems are operated steadily around the nominal frequency. Also, the 

results indicate that the frequency fluctuation in Egypt system is higher than that in EI and Japan 

power grids. 

In the following, the probability density function of the frequency is calculated, which is 

shown in Fig. 2.7. It can be seen that the probability density functions can divide into two types: 

1) single-peak distribution, such as the probability density function of the frequency in EI, 
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Figure 2.6． Standard deviation and mean of frequency in each day in three power grids. (a) 

Standard deviation (b) Mean. 
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(a)                                                                         (b) 

 

(c)                                                                         (d) 

 

(e)                                                                         (f) 

Figure 2.7. Probability density function of frequency in different power grids. (a) EI, U.S. (b) 

WECC, U.S. (c) Hawaii, U.S. (d) Germany. (e) Japan. (f) Australia. (g) Egypt. (h) ERCOT, U.S. 

(i) Saudi Arabia. (j) Northern Ireland. (k) Ireland. (l) England. (m) Bahamas. 
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 (g)                                                                         (h) 

 

(i) (j) 

 

(k)                                                                         (l) 

 

(k)                  

Figure 2.7 continued 
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WECC, Hawaii, Germany, Japan, Australia, and Egypt; 2) multi-peak distribution, such as the 

probability density function of the frequency in ERCOT, Saudi Arabia, Northern Ireland, Ireland, 

England, and Bahamas. 

As shown in Figs. 2.7(a)-2.7(g), for the single-peak distribution of the frequency, the normal 

distribution is considered an appropriate choice to describe it. The mean and standard deviation 

values of frequency are calculated and shown in Fig. 2.4 and Fig. 2.5. Based on the calculated 

mean and standard deviation values, the corresponding probability density functions of the 

frequency which almost follow normal distribution can be obtained, which is drawn as the red 

lines in Fig. 2.8. Meanwhile, the real probability density functions of the frequency statistically 

calculated by the observation data are also shown as the bars in Fig. 2.8. Obviously, the normal 

distribution provides a suitable profile for the single-peak distribution of the frequency. 

2.5 Conclusions 

This paper utilizes the frequency measurement data provided by FNET/GridEye, to observe 

and statistically analyze the power frequency status of various power grids over the world, 

including the grids located in both mainland and islands. The comparison results show that 

frequencies of most power grids in mainland operate in a relatively smaller range than those in 

the islands. From the perspective of regions, the power grids in America has the smallest 

frequency standard deviation. The standard deviation of Asian and European power grids 

frequency is at an average level in this study. The frequencies of power grids in Oceania and 

Africa operate at a high deviation status. Additionally, the distributions of frequency show two 

different categories in the worldwide power grids, i.e., the single-peak distribution and multi-

peak distribution. Furthermore, a meaningful insight that the single-peak distributions of the 

frequency almost follow the normal distribution is found. Since the lack of the report about the  
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(a)                                                                         (b) 

 

(c)                                                                         (d) 

 

(e)                                                                         (f) 

Figure 2.8. Comparison of probability density function obtained by statistics and the 

corresponding normal distribution. (a) EI, U.S. (b) WECC, U.S. (c) Hawaii, U.S. (d) Germany. 

(e) Japan. (f) Australia. (g) Egypt. 
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(g) 

Figure 2.8 continued 
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frequency in the worldwide power grids, the analysis in this paper may provide some references 

for further research or making regulation criteria on the frequency. 
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Chapter 3 Power System Event Detection and Triangulation using 
High-Density PMU Measurements 

3.1 Introduction  

The modern power grid is the most complicated artificial system, which has been evolving in 

recent decades with various technologies [64]-[66]. Meanwhile, renewable energy sources have 

been promoting and integrated into power grids in recent years [67]. Power grid structures and 

dynamic behaviors are becoming more complex, due to the flexibility of the new technologies 

and the fluctuating nature of renewable energy sources. With real-time, global positioning 

system (GPS) time-synchronized measurements at high data rates, Wide-area monitoring 

systems (WAMS) reveals unprecedented insights into power grid dynamics and will be the next-

generation operational-management systems [68]-[69]. 

However, a huge amount of PMU data comes with a high resolution brought new challenges 

for real-time applications:  

(1). How to detect abnormal events in a power grid?  

(2). Where is the location of the abnormal events in the power grid?  

To address these questions, numerous methods have been proposed for power system event 

detection and location identification based on PMU data. In 2001, Frequency Monitoring 

Network (FNET) system, a pilot WAMS system, was developed for power system event 

detection [61]. Decision tree technique and event detection using the rate of change of frequency 

(ROCOF) was proposed based on real-time measurements from the FNET system [62], [70]. 

Meanwhile, event detection based on generation-load mismatches and triangulation location 

identification technique were proposed and implemented [23], [72]. Recently, [24] proposed a 
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framework based on a sparse linear unmixing technique to detect multiple cascading events in 

power system for FNET system. Besides, algorithms used in other areas of power systems were 

also leveraged for event detection and location identification. Wavelet analysis was performed to 

extract the feature of FDRs data and support vector machine (SVM) was introduced to classify 

power system events in [13]. In [14], wavelet transform was employed on voltage and frequency 

measurements from PMU data to identify generation trip and load shedding events. Short time 

Fourier Transform and statistical techniques were applied to phase angle for online event 

detection in [15]. In [16], disturbance component can be solved with positive current phasor 

based on superposition theorem. The event types and location were identified by matching the 

calculated disturbance component with patterns extracted from historical fault events. Attempts 

to use principal component analysis (PCA) for power system event detection were conducted in 

[17]. Later, PCA was employed for real-time event detection at the distribution level [18]. A 

real-time event detection based on moving windows PCA was developed and demonstrated in 

the United Kingdom and Irish systems [19]. An investigation of using data mining technique to 

detect the event and identify event location was introduced in [20]. One of the common study 

and research scenarios in the aforementioned papers is that the algorithms are tested based on 

PMUs with low density deployment for demonstration purposes. The accuracy and robustness of 

event detection applications are seldom tested and reported when it is applied in a power grid 

with industrial scale PMUs for operation purposes.  

Recently, UTK power IT lab cooperated with Global energy interconnection research institute 

North America (GEIRINA) to develop a real-time event detection and location identification 

application based on PMUs measurements from the Jiangsu power grid in China. It provides a 

good opportunity to further explore the capability of the event detection and triangulation in a 
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power grid with high-density PMU measurements. Meanwhile, low data quality of PMU 

measurements brings new challenges to this application. In fact, bad data is introduced into PMU 

measurements due to measurement noise and instrumentation channel errors [25]. The impacts of 

bad data in simulated PMU measurements have been discussed in other research areas of power 

system and some solutions were also proposed in [26]-[28]. However, the impacts of low data 

quality in actual high-density PMU measurement on event detection and location identification 

have not been reported yet.  

In this paper, we use real measurements PMU data from the Jiangsu power grid to evaluate 

the impacts of low data quality issues on the performance of event triangulation. The event 

detection was implemented based on the pair-wise comparison from multiple location PMUs and 

triangulation technique was employed for event location identification. The main contributions 

of this chapter are summarized as follows: (1) Four types of practical low data quality issues 

from onsite PMUs are presented. (2) The impacts of bad data on power system disturbance 

triangulation are explored using simulation and real-time measurement cases from Jiangsu power 

grid. 

3.2 Overview of disturbance triangulation in Jiangsu power grid 

A. Overview of high-density distributed PMU deployment in Jiangsu power grid  

Jiangsu power grid is located in the east of China and connects with multiple adjacent power 

grids. There are 114 and 238 PMUs installed at the northern and southern areas of Jiangsu power 

grid, respectively. As shown in Fig. 3.1, the density of distributed PMU is significantly high. 

PMUs are mainly installed at terminals of 500kV transmission lines and parts of 220 kV 

transmission lines with the reporting rate of 25 Hz. To utilize the PMU data and achieve wide-

area monitoring purposes, a PMU based situational awareness data analytics platform is  
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Figure 3.1. Map of PMU deployment in Jiangsu power grid [73] 
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developed by GEIRINA. Once the PMU data are transmitted to the control center, the data is 

streamed into multiple power system applications. Event detection and location identification 

application are composed of three components: event detection, event location identification, and 

event visualization. The event detection only focuses on detecting if the system is experiencing 

any generation trip and load shedding events, while triangulation was designed to identify the 

event location in the power grid.  

To deploy the event detection and triangulation application on GEIRINA WAMS platform, an 

interface was implemented to achieve data exchanges. The basic flowchart of the event detection 

and triangulation application is shown in Fig. 3.2. The measurements from GEIRINA are aligned 

based on the timestamp and streamed into the event detection application frame by frame. A 

certain length of frames is stored in the buffer temporarily. Once a disturbance is confirmed, the 

data in the buffer will be extracted and delivered to triangulation and visualization applications 

for location identification and notification.  

B. Mechanism of disturbance triangulation 

As frequency perturbations travel throughout grid as electromechanical waves dispersing at 

finite (measurable) speeds, the PMUs located throughout the grid detect said waves with unique 

time delays proportional to the electrical distance between each respective unit and the 

disturbance location. Thus disturbance triangulation mainly involves two steps: (1) the 

determination of the wave-front detected by each unit and its corresponding arrival time and (2) 

estimating the disturbance location. Once the PMUs close to the disturbance are selected via 

wave-front detection, the disturbance location can be triangulated by using least square 

optimization to minimize the estimated distance error as 
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Figure 3.2. Scheme of event detection and triangulation for GEIRINA 
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min∑ [(𝛼 − 𝛼 ) + (𝛽 − 𝛽 ) − 𝑣 (𝑡 − 𝑡 ) ]    (3.1) 

s.t.      𝛼 < 𝛼 < 𝛼  

𝛽 < 𝛽 < 𝛽  

0 < 𝑡 < 𝑡 , ∀𝑖 ∈ {1,2, … , 𝑛} 

where n denotes the number of PMUs used to estimate disturbance location, (𝛼 , 𝛽  ) and 

(𝛼 , 𝛽  )represent the coordinates of Lambert projection from i-th PMU and real disturbance 

location, 𝑣 denotes the propagation speed of the electromechanical wave, 𝑡   denotes the start 

time of the disturbance and 𝑡    denotes the wave-front arrival time of i-th PMU. 

C. PMU measurement preprocessing filter 

Data quality of raw PMU measurements from operating power grids may degrade due to 

various factors such as temporal communications failure, synchronization inaccuracy and etc. To 

eliminate the noise and extract the signal of interest events from raw PMU measurements, a 

PMU data preprocessing filter was designed and implemented [22]. The block diagram of the 

PMU data preprocessing filter is shown in Fig. 3.3. PMU raw measurements are fed into a 

threshold filter to remove random noises. Then a low-pass filter combining with a moving 

median filter is used to remove high-frequency noise. Another low-pass moving average filter is 

employed to extract the trend of filtered frequency measurements. The data after preprocessing 

filter is delivered to the event detection and triangulation application for further analysis. 

3.3 Practical data quality issue of high-density deployed PMU  

In practical industrial applications, measurements from onsite PMU are likely to contain 

different types of low data quality issues caused by communication or PMU hardware  
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Figure 3.3. PMU measurement preprocessing block diagram 
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malfunction. This section presents four major data issues discovered in PMUs deployed in 

Jiangsu power grid. 

A. Constant measurements 

Constant PMU measurements are mainly caused by PMU hardware issues. The value of 

measurements periodically repeats with different intervals under both ambient or event 

conditions. A typical constant measurement is presented in Fig. 3.4. When the most PMU 

frequency measurements drop during a generation trip event, some of the PMU measurements 

keep the constant periodical patterns before and after the event thus missing the information of 

the power system event. 

B. Random spikes in measurements 

Random spike in measurements is another typical data quality issue caused by PMU hardware 

issues. The frequency and magnitude of the spikes vary case by case. Thus it is difficult to 

extract the feather of the spike and apply a uniform filter to remove them. It can be observed in 

Fig. 3.5 that some measurements have random spikes in the aspect of amplitude and time interval. 

Additionally, some spikes keep swinging around system frequency as shown in Fig. 3.5. The 

tendency of the swing indicates that the mean value of the measurement keeps changing over 

time. 

C. Missing data in measurements 

Missing data happens in PMU measurements due to several uncontrollable factors (e.g. GPS 

signal lost, network failure, power failure, etc. [74]). Detecting the missing data is 

straightforward since each PMU measurement is assigned a unique time index thus a 

discontinuous timestamp implies the existence of missing data. The entire raw data are broken 

down into several non-overlapping frames. The miss data results in discontinuity and outlines of  
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Figure 3.4. Illustration of constant measurement during a generation trip 

 

 

Figure 3.5 Illustration of random spike issue 
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PMU measurements. As shown in Fig. 3.6, missing data at the GEIRINA PMUs platform can 

occur frequently and the result suddenly jumps to “0” Hz in frequency measurement from 

PMU2.High-frequency noise in measurement 

The measurement with high-frequency noise can be caused by an inaccurate sampling interval 

control related to PMU calibration and wrong PMU hardware configuration [75]. It makes the 

measurements with high-frequency noise and keeps swinging around the actual system 

frequency. Based on the measurement data from the Jiangsu power grid, the amplitude of the 

noise varies in a relatively wide range, from 0.01 to 0.2 Hz. As shown in Fig. 3.7, high-frequency 

noise for each PMU has slight differences in amplitude. Thus, the randomness and variety of the 

high-frequency noise make it difficult to be removed with a uniform threshold filter. 

3.4 Simulation and real-word cases study 

To investigate the performance and robustness of the event detection and triangulation location 

application, a series of tests, including load shedding and generation trip events simulation and 

one real-world generation trip event, are designed and conducted. To further evaluate the 

robustness of the application under normal operation status with low data quality PMU 

measurements, the application is tested with ambient PMU measurements collected from Jiangsu 

power grid.  

(1). Simulation cases  

To verify the effectiveness of the event detection and triangulation application in a power grid 

with high density PMU, 8 generation trip and 2 load shedding events in Jiangsu power grid are 

simulated. The Jiangsu power grid covers 39,614 mi2 and consists of two major regions: Su Nan 

and Su Bei. The power grids in two regions are connected via four 500 kV transmission lines.  
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Figure 3.6.  Illustration of data missing issue 

 

 

Figure 3.7. Illustration of high-frequency noise issue 
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Jiangsu power grid is modeled as a system with 2488 buses and 4811 branches within PSD-BPA. 

PSD-BPA is a widely-used power system analysis software package in Chinese electric power 

industry, which was introduced around the 1980s and further developed by China Electric Power 

Research Institute (CEPRI) [76]. To comprehensively exam the application, the events are 

selected at different locations in the two regions and the amount of generation and load impacted 

by the events are from 200 MW to 1167 MW. The details of the simulation cases and actual 

event locations are summarized in Table 3.1. Each case contains 1-minute PMU measurements, 

which are collected with 40 Hz sampling ratio. All the events occur at 5 seconds of the 

simulation cases.   

The event detection and triangulation application successfully detected all the simulation 

events at the correct times and pinpoint the event location accurately. The reported locations of 

the applications are marked in a red circle from Fig. 3.8 to Fig. 3.16. Based on the operation and 

event detection experiences of UTK FNET system, the performance of the event detection and 

triangulation application in Jiangsu power grid is remarkable in the simulation cases.  

(2). Real-world generation trip case 

To further evaluate the capability of the event detection and triangulation application, a real-

world generation trip case, which occurred in Jiangsu power grid at 2015, is tested and analyzed. 

The generation case includes 7 minutes of measurements collected from Jiangsu power grid. The 

measurements start at 21:57:00 and the event happens at 21: 57:59. The system frequencies 

measured by PMUs during the event are plotted in Fig. 3.17. 

As shown in Fig. 3.17, the PMU measurements contain multiple low data quality PMUs, 

some of the PMUs frequencies stay the same after the event happens. The event was successfully 

detected and located by the application. The reported information about the event is summarized  
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Table 3.1. Description of simulation cases 

Case Name 
Event type Size 

(MW) 

Truth 

Latitude Longitude 

Bixi  Generation trip 1167 31.7574 120.9782 

Nantong power plant Generation trip 412 32.0527 120.8062 

Yang er Chang Generation trip 728 32.2953 119.4118 

Xinhai Chang Generation trip 1145 34.5958 119.1519 

Huzhong Gang Load shedding 218 Chongming island 

Yang er Chang Load shedding 1000 32.2953 119.4118 

Jianbi Chang Generation trip 1000 32.1726 119.5812 

Gaogang Chang Generation trip 1000 32.2389 119.9298 

Chenjiang Gang Generation trip 660 34.0329 119.8586 

 

 

 

Figure 3.8. Event detection and triangulation results of Bixi case 
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. 

Figure 3.9. Event detection and triangulation results of Nantong power plant case 

 

 

Figure 3.10. Event detection and triangulation results of Yang er Chang Generation trip case 

 

 

Figure 3.11. Event detection and triangulation results of Xinhai Chang case 
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Figure 3.12. Event detection and triangulation results of Huzhong Gang case 

 

 

Figure 3.13. Event detection and triangulation results of Yang er Chang Load shedding case 

 

 

Figure 3.14. Event detection and triangulation results of Jianbi Chang case 
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Figure 3.15. Event detection and triangulation results of Gaogang Chang case 

 

 

Figure 3.16. Event detection and triangulation results of Chenjiang Gang case 

 

 

Figure 3.17. PMU frequency measurements during a generation trip in Jiangsu power grid 
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in Table 3.2. The estimated location is approximately 12 miles away from the actual location. 

Based on the event detection experience of UTK FNET system, this error is acceptable for the 

Jiangsu power grid. The estimated location and actual location are plotted in Fig. 3.18. 

 (3). Ambient cases   

As discussed in section 3.3 and demonstrated in a real-world generation trip case above, the low 

date quality issues of PMU measurements in Jiangsu power grid are common and severe. It has 

been concerned that the low data quality issues of PMU measurements may cause a false alarm 

of the event detection application under normal operation status. To validate the robustness of 

the event detection application, 75 ambient cases with one-minute PMU measurements from 

Jiangsu power grids are steamed into the application for false alarm tests. In Fig, 3.19, a typical 

ambient case is plotted. As shown in Fig. 3.19, the multiple PMU measurements jump to 0 and 

come back and some measurements stay at extremely higher than the system frequency. To 

further analyzed the cases, frequency higher than 52 Hz and lower than 48 Hz are removed for a 

better visualization purpose. Many PMUs measurements still have data quality issues, after 

removing extreme measurements and two typical ambient cases are plotted in Fig. 3.20 and Fig. 

3.21. The event detection application remains stable and no false alarm was triggered with all the 

ambient cases.  

To further investigate the stability of event detection application under communications issue, 

a one-hour ambient case is provided by GEIRINA and plotted in Fig. 3.22. The one-hour 

ambient case emulates a scenario that all PMUs measurements are lost simultaneously and 

recovered after a while, due to communication failures of the PMU data platform. The test result 

indicates that the event detection application does not have any erroneous alarming under such 

circumstances.  
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Table 3.2. Reported event information of a generation trip event in Jiangsu power grids 

Detected event time 21: 57:59 

Frequency propagation speed 866.64 mile/second 

Relative event time -0.011015 second 

Estimated latitude 31.5071 

Estimated longitude 119.8953 

Triangulation calculation error 1.9606 

 

 

Figure 3.18. Generation trip event location and estimated location in Jiangsu power grid 

 

 

Figure 3.19. A typical ambience case in Jiang power grid 

Actual location 

Estimated location 
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Figure 3.20. Filtered ambience case (a) from Jiang power grid 

 

 

Figure 3.21. Filtered ambience case (b) from Jiang power grid 

 

 

Figure 3.22. A one-hour ambience case from GEIRINA data platform 
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3.5 Impact of Data Quality on Event triangulation 

The purpose of this section is to investigate the impacts of low data quality on the accuracy of 

event triangulation when using high-density PMU measurements. To this end, an actual 

generation trip in the Jiangsu power grid is selected for this study. Each bad data issue mentioned 

in Section 3.3 is considered. It is assumed that the measurements of a PMU that is the first one 

responding to the actual event disturbance, referred as PMU1 deployed at latitude 31.60 and 

longitude 119.99), encounters with bad data issues. The scenarios of each testing case are given 

below: 

1) Base case: original raw data case without any bad data issue 

2) Case 1: PMU1 with constant measurement issue 

3) Case 2: PMU1 with random spike and missing data issue 

4) Case 3: PMU1 with high-frequency noise issue 

Based on the triangulation method, the estimated locations for each case are illustrated in Fig. 

3.23 to Fig. 3.26. The summary result is listed in Table 3.3. In the based case, the estimated 

location is close to the actual location within 12 miles estimation error, which demonstrates the 

TDOA can estimate location accurately in normal conditions. It can be seen from Fig. 3.24 that 

the constant measurement issue will lead to a large estimation error. The estimated location is 

more than 100 miles far away from the actual location. The impact of other types of data issues 

including random spike, missing data, and high-frequency spike is negligible according to the 

results Fig. 3.25 to Fig. 3.26, which indicates that the preprocessing filter has successfully 

eliminated the impact of these bad data issues before the measurements been fed into TODA 

algorithm. 
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Figure 3.23.  Base case without any base data issue 

 

 

 

Figure 3.24. Case 1: PMU1 with constant measurement 

Actual location 

Estimated 

Actual location 

Estimated 
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Figure 3.25. Case 2: PMU1 with random spikes 

 

Actual location 

Estimated 

Actual location 

Estimated 
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Figure 3.26. Case 3: PMU1 with high-frequency spikes 

 

 

Table 3.3. Summary of impact of low data quality on event triangulation 

Cases  Latitude Longitude 

Error to the 

actual location 

(miles) 

Impacts 

Base case 31.50 119.89 12 NA 

Case 1 31.98 118.69 100 High 

Case 2 31.50 119.89 12 negligible 

Case 3 31.50 119.89 12 negligible 
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3.6 Conclusion 

Onsite PMU measurements always have low data quality issues due to various uncontrollable 

and unpredictable factors, which will degrade the performance of measurement based 

applications. To investigate this problem from an industry perspective, this paper presents four 

typical types of low data quality issues in high-density PMU measurements. Since the event 

triangulation is one of the commonest applications using high-density PMUs, the impacts of the 

low data quality issues on event triangulation are explored using measurements from the Jiangsu 

power grid as an example. It is discovered that the constant measurement will cause the 

inaccuracy of event triangulation significantly while the impacts of other low data quality issues 

are negligible due to the utilization of the preprocessing filter. This paper provides a practical 

reference for utilizing PMU data in the application of event triangulation. 
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Chapter 4 Line Outage Detection and Localization using High-
Density PMU Measurement 

4.1 Introduction 

The detection and localization of transmission line outage in power system are of great 

significance for the system operators to take prompt action to avoid the widespread damage and 

maintain the reliability of power supply [77]-[78]. Most of the current methods rely on angle data 

along with network susceptance matrix to calculate power injection change, which is a high 

computation burden and requires the information of system parameters [78]-[83]. The method 

using PMU angle data and network susceptance was originally proposed in [78] and pre- and 

post-outage power flow were calculated to match the measured event. Later, compressive 

sensing and global optimization techniques are proposed to improve the method in [79] and [80]. 

A general Bayesian criterion was employed to handle the uncertainty issue of PMU data in [81]. 

Different new schema and frames are developed to deal with bad PMU measurements in [82] 

and [83]. However, the system parameter may not be available all the time due to strict security 

concerns.  

With the rapid transformation from the traditional power system into the smart grid, there are 

various types of novel applications involved in the system [84]-[88]. All these smart grid 

applications are relying on the high-sampling rate data [89]-[90], such as synchrophasor 

measurements. Nowadays, the density of synchrophasor is increasing dramatically to observe the 

dynamic behavior of the system following a contingency, which gives the unpreceded insights to 

the system [47], [91]-[92] For example, there are 114 and 238 PMUs installed at Jiangsu power 

grid, respectively. As shown in Fig. 3.1, the density of distributed PMU is significantly high, 

which covers all 500kV transmission lines and parts of 220 kV transmission lines with the  
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reporting rate of 25 Hz. To utilize the PMU data and achieve wide area monitoring purposes, a 

PMU based situational awareness data analytics platform has been developed by Global Energy 

Interconnection Research Institute North America (GEIRINA) [93]-[95]. The PMU based 

platform collects synchrophasor measurements with massive channels in real-time from Jiangsu 

power grids and processes a large amount of data, which can be affected by latency from PMU 

device or communication network. The platform not only incorporates event detection 

application developed by GEIRINA, but also provide an interface for event detection 

applications from third parties. The density synchrophasor measurement brings the opportunity 

to detect the line outage location and locate the fault location without knowing the system 

parameters. The line outage detection approach introduced by [22] was employed in the PMU 

based platform and the reported line outage locations have a significant deviation from actual 

line outage location. Similar phenomenons were also founded in simulation cases in New 

England ISO (ISO-NE) and Tennessee Valley Authority (TVA) systems. 

To address the issue mentioned above, this paper focuses on the method for line outage 

detection and localization via high-density synchrophasor measurement. First, the line outage is 

detected via employing low pass filter and peak detector on synchronized frequency 

measurements. Once a line outage event is triggered, the location of the fault line will be 

pinpointed using power flow change. The requirement of computational effort for the whole 

process is not high thus outage location can be estimated in real time. The proposed method is 

straightforward and easy to implement. It also can be used for cross-checking line outage events 

via SCADA. 
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4.2 Line Outage Detection and Localization  

The proposed method for line outage detection and location estimation in the paper includes 

two steps: (1). Line outage event detection using frequency measurement; (2). Outage line 

localization using active power measurement.  

The frequency measurements from deployed PMUs are used to monitor that if there is 

ongoing a line outage event in the system. The principle of outage detection can be found in Ref 

[22], [95]. The frequency measurements are first fed into a moving median filter to remove 

random spikes and high-frequency noises. After that, a moving mean filer is used to extract the 

frequency trend as a reference. Then de-trended frequency data is subtracted frequency trend 

from filtered frequency measurements. Two thresholds are empirically set based on statistical 

analyses of historical data [22]. The event outage will be triggered using threshold evaluation. 

The event time can be determined via GPS timestamp on the measurements [74], [96]-[98], 

which will be utilized further for event location estimation with active power measurements.  

When a line outage event happens, the active power flow will be redistributed partially since 

the power flow on the tripped line has to transfer the rest of the system abruptly, which provides 

useful information for line outage location estimation. The Power Transfer Distribution Factors 

(PTDFs) of line l respect to a power flow transaction ∆w in a lossless model is defined as [99] -

[100]: 

φ =
∆

∆
   (4.1) 

 where ∆𝑤 is MW of power transfer between two locations and ∆𝑙 is the power transfer via 

branch l respect to the transaction. Then, for an outage at line m, Line Outage Distribution Factor 
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(LODF) is defined as the portion of pre-outage real power flow transfer to a line k [99], which 

can be represented as 

ς =
∆

=       (4.2) 

where ∆𝑃  is the power flow transfer changes at line k and 𝑃  is the of pre-outage real power 

flow at line m. According to the definition in Eq. (4.1) and (4.2), PDTF and LODFs are less than 

1. 

Meanwhile, buses in pre-and post-outage conditions must follow Gustav Kirchhoff’s Current 

Law (KCL). Defining the power flow change at terminal k1 is ∆𝑃 , the power flow change 

outage follows: 

∆𝑃 = Sum ∆𝑃 ,       (4.3) 

𝑠. 𝑡. , 𝑗 ∈ 𝑏𝑟𝑎𝑛𝑐ℎ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑘  

where 𝑗 is the indexes of the lines. 

In an actual power system, the disturbance usually spread out from the source to the 

rest of the system. As a result, the bus with relatively large power flow changes might be 

closer to the location of the outage line, that is ∆𝑃 > ∆𝑃  when the distance of k_1 to 

the outage location is smaller than 𝑗 . Therefore, the bus of the outage line is likely to 

have the largest power change in the system. 

Using the active power change from synchrophasor, the location of an outage can be 

estimated. Specifically, once a line outage event is detected, noise in active power 

measurement is filtered by a median filter. With detected event timestamp, the active 
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power change between pre-outage and the post-outage is calculated with the filtered 

active power measurements. By ranking the active power change on the monitored 

transmission lines, the location of the outage line can be determined with maximum 

value. The process of the line outage detection and localization method is presented in 

Fig. 4.1. 

4.3 Distribution of Power Change in TVA and ISO-NE  

This section investigates the characteristic of power flow change distribution caused 

by line outage via PSS/E simulation. Line outage events are simulated in both ISO-NE 

and TVA systems, respectively. ISO-NE system consists of 3447 buses and 2479 

branches in 71,992 mile².  The total generation is 18.1GW and the total load is 21.8 GW 

in the system. There are 16 tie lines, which carry 3.7 GW power flow, connecting to the 

system. TVA system has 1920 buses and 1720 branches. There are 28.1 GW generation 

and 31.6 GW load within TVA system. The TVA system is connected with external 

systems via 70 tie lines and a total of 3.5 GW energy is delivered by the tie lies. The 

simplified system diagram of ISO-NE and TVA systems are shown in Fig. 4.2 and Fig. 

4.3, respectively. 

For a comprehensive study, 6 transmission lines in ISO-NE and TVA system are selected and 

tripped. The voltages levels of the outage line are from 115 kV to 765 kV. The terminal locations 

(latitude and longitude) of the outage line and pre-outage real power flow on the lines are given 

in Table 4.1. The locations of the disturbance and distribution of power flow changes caused by 

the line outage are shown from Fig. 4.4 to Fig. 4.5. It can be seen that the power flow changes at 
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Figure 4.1. Flowchart of line outage detection and localization 

 

 

Figure 4.2. ISO-NE model—transmission network map [101] 
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Figure 4.3. Diagram for Tennessee Valley Authority [102] 

 

Table 4.1.  Analysis for line outage location estimation 

System Case name 
Termial1 

(Lat,Lon) 

Termial2 

 (Lat,Lon) 

Power flow 

(MW) 

Voltage 

level(kV) 

ISO-NE 

Line1  41.51,-72.56 41.29,-72.90 407.36 345 

Line2  42.63,-71.05 42.70,-70.87 100.75 115 

Line3 42.91,-70.86 42.91, -70.86 1101.7 345 

TVA 

Line4 35.10,-85.02 34.05,-85.08 856.78 500 

Line5  37.78,-86.48 37.26,-86.98 246.72 161 

Line6 35.15, -90.27 35.17, -89.75 1507.1 765 
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(a) 

 

(b) 

Figure 4.4. Distribution of power change in ISO-NE system (a) Line1 outage (b) Line2 outage (c) 

Line3 
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(c) 

Figure 4.4 continued 

 

 

(a) 

Figure 4.5. Distribution of power change in TVA system (a) Line4 outage (b) Line5 outage (c) 

Line6 outage 
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(b) 

 

(c) 

Figure 4.5 continued 
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the terminals of the outage line have the highest value for both cases. What is more, the power 

flow change closer to the outage line generally has a larger value than the line far away from the 

event location. 

4.4 Simulation Study  

To verify the effectiveness of the proposed method for line outage detection and localization, 

a simulation is conducted in ISO-NE which assumes that synchrophasor covers all 345 kV and 

part of (26%) 230 kV transmission lines. Line outages events are triggered in PSS/E to evaluate 

the performance of the events at different voltage levels. The parameters of the filter for line 

outage detection are selected based on [22], which are listed in Table 4.2. The event detection 

module is implemented in C#, while the location module is developed by MATLAB. The 

simulation tests are on a computer running a 64-bit Windows 10, with a 3.60 GHz Intel I7-

7700U CPU and 16 GB memory. 

The line outage events can be successfully detected, and event time can be accurately 

recorded for all simulation cases. The location estimation of the events is further analyzed. The 

information of the line outage location and estimation error are in Table 4.3. As shown in Table 

4.3, the proposed method is able to identify the outage line location precisely, when the outage 

lines are monitored by synchrophasor. For the outage lines without synchrophasor monitoring 

(115 kV), the estimated location is close to actual outage line terminals. For the cases with a 

large error in the 115 kV case, the actual outage lines are far away from PMU locations and the 

reported PMU is the closest location to the actual outage line terminals.  

For the purpose of comparison, the locations of six line outage cases from 115 kV and 345 kV 

were estimated by the proposed methods and the traditional methods using the maximum 

frequency magnitude change in Ref. [22] and [103]. The estimation errors for each case are 
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Table 4.2. Parameter selection for line outage detection 

Parameters Values 

Median filter window 7 points 

Mean filter size 31 points 

Detection window 20 points 

First peak threshold 0.0045 Hz 

Second peak threshold 0.0025 Hz 

 

Table 4.3. Result of line outage location estimation 

Voltage level 
Monitored  

by PMU 
Cases numbers 

Max error 

(Mile) 

Average error 

(Mile) 

345 kV Y 37 0 0 

230 kV Y 20 0 0 

230 kV N 8 13.72 6.32 

115 kV N 30 82.49 10.42 
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given in Table 4.4. The estimation locations and actual line outage for each case are plotted from 

Fig. 4.6 to Fig. 4.11 As shown in these figures, distances between the estimated locations by 

proposed methods and the actual location of outage line are small while the estimated location by 

methods using frequency changes has significant deviations from actual outage locations. 

4.5 Conclusion and Future Works 

Awareness of line outage event and its location is critical to prevent cascading outages in 

today's modern power system. This paper presents a fast line outage detection and localization 

method utilizing high-density synchrophasor measurements. The line outage is first detected via 

a peak detector on synchronized frequency measurements, and the location of the fault line is 

directly estimated via active power flow change. The proposed is straightforward and does not 

need the pre-knowledge on system topology and parameters. The feature of active power change 

distribution caused by line outage is explored in both TVA and ISO-NE system. A 

comprehensive simulation study in ISO-NE shows the method can precisely identify the outage 

line with reasonable accuracy. It can work as an effective tool for real-time line outage detection 

and localization. 

Simulation results manifest that the proposed approach is promising for line outage detection 

and localization in large-scale power system. The performances of the proposed approach have 

not been validated with line outage events from a real power grid. Additionally, the approach has 

not been fully tested for real-time implementation. Following are some future works for further 

development: 

(1). Validate the proposed approach with a confirmed line outage event from utilities.  

(2). Test the robustness of the approach with synchrophasor measurements with low data  
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Table 4.4. Performance comparison for location estimation   

Case name Voltage level Monitored by PMU 
Power flow 

(MW) 
Power change (mile) 

Max freq. 

(mile) 

1 345 kV Y 725.17 0 93 

2 345 kV Y 407.37 0 126.04 

3 230 kV Y 224.43 0 123 

4 230 kV N 285.65 9.366 126 

5 230 kV N 196.61 13.72 196.30 

6 115 kV N 100.45 0 18 

 

 

Figure 4.6. Comparison of line outage localization (case 1) 
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Figure 4.7. Comparison of line outage localization (case 2) 

 

 

Figure 4.8. Comparison of line outage localization (case 3) 

L
at

itu
de

L
a

tit
u

de



 

71 

 

 

Figure 4.9. Comparison of line outage localization (case 4) 

 

 

Figure 4.10. Comparison of line outage localization (case 5) 
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Figure 4.11. Comparison of line outage localization (case 6) 
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quality.  

(3). Implement interface with available PMU data platform and test the approach with real 

synchrophasor measurements 
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Chapter 5 A Novel Deep Learning Model to Detect Various 
Synchrophasor Data Anomalies  

5.1 Introduction 

Synchrophasor technology provides high-resolution global positioning system (GPS) time-

synchronized phasor measurements [104]-[106]. It reveals unprecedented insights into power 

grid dynamics and is widely used in applications including disturbance detection, fault location, 

data mining, cybersecurity [107]-[112], etc.   

Since these applications fully depend on synchrophasor measurements, the anomalies in the 

measurements can impact their performance to various extents. A recent study analyzes the 

impact of inaccurate synchrophasor measurements on the application disturbance 

triangulation[113]. According to this work, the location result is sensitive to inaccurate angle 

measurements when the magnitudes of the disturbances are small. Inaccurate measurements can 

also affect the accuracy of line outage detection especially noise in synchrophasor measurements 

is a common issue for the online application [114]. Moreover, incomplete phasor measurement 

data can have various-scale impacts on fault locations [115] and voltage stability assessment 

[116].  

Due to issues including bad communications, hardware malfunctioning, GPS loss, etc. [117]-

[118], anomalies are usually observed in field-collected synchrophasor measurements. To detect 

data anomalies several model-based methods have been proposed [25]-[31]. However, the 

model-based approaches heavily depend on knowledge of system topology and model 

parameters. Their detection performances can be deteriorated when the system topology and the 

model parameters are unknown. Therefore, data-driven approaches are proposed to detect the 
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anomalies in the synchrophasor data, eliminating the reliance on the system topology and model 

parameters. For example, a dimensionality reduction approach is proposed to detect the missing 

data. However, the computational cost of matrix decomposition is unaffordable for large-scale 

synchrophasor data.  Moreover, a Spatio-temporal approach is proposed to detect the outliers in 

the synchrophasor measurements [119]. However, this approach may not apply to other data 

anomaly types. A recent study tries to combine various detectors to provide a comprehensive, 

unsupervised model to detect missing data and outliers [120]. However, it still cannot cover all 

data anomaly types due to the heterogeneity of synchrophasor U data anomalies [28]. 

As aforementioned, anomaly detection in synchrophasor is a rather complex issue. (1) Many 

approaches are targeted at specific types of abnormalities and cannot work with others. (2) 

Parameter tuning of models can be rather tricky and it usually requires prior knowledge. (3) 

Some models require high computational efforts and are hard to implement in real-time. 

To address these issues, this paper exploits the power of deep learning, proposing a 

convolutional neural network (CNN) model to detect various PMU data anomalies. The 

contribution of this works is four folds. 

1). A CNN model is proposed to detect various PMU data anomalies. 

2). Over 1500 field-collected ambient samples from Jiangsu, China, including both normal 

and anomaly data, are manually labeled to train and test the model. 

3). The proposed model is extensively evaluated and is proved to achieve superior detection 

accuracy on all anomalies. 

4). The proposed model is compared with several traditional methods 
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5.2 Proposed deep CNN structure 

As present in the previous section, the patterns of the synchrophasor data anomalies are varied 

and random. Additional, good synchrophasor measurements also keep fluctuating around system 

nominal value due to system operation statues and unbalance between generation and load. Deep 

learning CNN is characterized by automatically retrieve significant features without human 

knowledge, compared to traditional mathematical, statistical methods, and other machine 

learning methods. It makes deep learning CNN a distinguishing method to detect and classify the 

diversified data anomalies issue in high-resolution synchrophasor measurements. First, this 

section introduces the design of the input dataset, label, and data preprocessing. Then, the overall 

structure of the proposed CNN network structure, hyper-parameters are described and the 

features extracted in the proposed structure are also presented. Finally, the techniques used to 

reduce the overfitting issue are introduced. 

5.2.1 Dataset design, labeling and data pre-processing  

In real-time applications, the measurements from one synchrophasor are consecutive with 

time stamps. For real-time application consideration, each data set only contains measurement 

from a single PMU measurement point and the measurements are aligned with time sequence. 

The size of the dataset intends to be minimized, thus data anomalies will be detected and 

identified in a short period for further appropriate treatment or data recovery. On another side, 

considering the complicated patterns of the aforementioned practical PMU data anomalies, a 

large-size of consecutive measurement in the dataset will provide essential information for better 

judgment of the anomalies type and labeling. To compromise between the efficiency and 

accuracy, 100 consecutive measurements of one PMU are selected as one dataset. The labels of 

the dataset are categorized into 4 types: 
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1. Good measurement 

2. Spiking/Missing anomalies 

3. High frequency noise anomalies 

4. Erroneous pattern anomalies 

Input normalization is an essential step for improving the converge and speed of CNN 

network. The purpose of input normalization is to reduce the deviation of input data. In practical 

PMU measurements, the normal measurements and some of the data anomalies are around 

nominal value while the spikes or missing data may have large deviations from the nominal 

value. It will cause CNN to over-compensate in training process for one particular type of 

anomalies and reduce sensitivity for other anomalies. Thus, the raw PMU measurements are pre-

processed with the following steps: 

1) For the ith measurement, find the maximum value 𝑓  and the minimum value  𝑓  

2) Normalized the ith measurement using the following equation, 

𝑓 , =    (5.1) 

where 𝑓  represents the jth sample of the ith measurement. 

3) Each normalized measurement will be in the range of [0,1]. It should be noticed that if all 

measurements in the type of constant measurements anomaly is a pure DC signal in some 

cases, so all the measurements in the samples with DC signal measurements are set to 0 in 

the normalization. 
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5.2.2 Design network structure 

The proposed deep CNN structure is shown in Fig. 5.1. It contains 4 layers of convolutional 

layers, 3 layers of max-pooling layers, and n layers of fully-connected layers. Each type of the 

layers is described respectively below. 

(1) Convolutional Layers   

The convolutional layers are implemented to extract the spatio-temporal features by kernels. 

Each kernel converts the input measurements by 

𝑆(𝑖, 𝑗, 𝑓) = 𝑀 ′× ′(𝑖 − 𝑚′, 𝑗 − 𝑛′)𝐾 ′× ′(𝑓)  (5.2) 

where 𝑆(𝑖, 𝑗, 𝑓) is the signal value at coordinates (i, j) in feature map f after convolution, 

𝑀 ′× ′ is the input measurements, 𝐾 ′× ′(𝑓) is the kernel at feature map f. In (1), 𝑚′ is 

the width of the kernel, which is less than the input width m, and 𝑛′ is the height of the kernel, 

which is less than the input height n. In this paper, since the input data is flattened, (1) can be 

further written as 

𝑆(𝑖, 1, 𝑓) = 𝑀 ′× (𝑖 − 𝑚′, 0)𝐾 ′× (𝑓)   (5.3) 

The first two convolutions layers CL1 and CL2 connect to the normalized input dataset and 

extract 100 features, which are shown in Fig. 5.2 (b) and (c). The CL3 and CL4 layers extract 

200 features, which are presented in Fig. 5.2 (d) and (e),  from the output of max-pooling layers 

MP1. 

(2)  Max-pooling Layers 

Max-pooling layers abstract the output from the convolutional layers by applying max filters on 
the output. Max-pooling layers not only reduce the size of the extracted features by retaining



 

79 

 

CL1
100@1×100

CL2
100@1×100

MP1
100@1×50

CL3
200@1×50

CL4
200@1×50

MP2
200@1×25

FC1
1×100

FC2
1×100

Output layer
1×4

Normalized input data
1×100

Raw PMU measurements
1×100

...
a

...
a

... a

Right Class

 

Figure 5.1. Structure of proposed deep CNN 
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(a)        (b) 

 

(c)        (d) 

 

(e) 

Figure 5.2. Extracted features of a high frequency noise anomalies sample from Deep CNN (a). 

Normalized frequency, (b). Feature from CL1 (c). Feature from CL2 

(c). Feature from CL3 (d). Feature from CL4 
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representative information, but also tend to prevent overfitting. The max-pooling used in the 

structure is presented as  

𝑀𝑃(𝑖, 1, 𝑓) = 𝑚𝑎𝑥 {𝑆(𝑖, 1, 𝑓), … , 𝑆(𝑖 + ,1, 𝑓)}    (5.4) 

(3) Fully-connected Layers 

A 2n fully-connected layers using softmax are connected to the output of MP2 to perform 

classification. Output feature maps after the last max-pooling layer are appended to a vector 

𝑜𝑢𝑡𝑝𝑢𝑡_1 × , where 𝑙𝑚 = 𝑛𝑓 × 𝑓𝑚, 𝑛𝑓is the number feature maps and 𝑓𝑚 is the final width 

of each feature map. Fully-connected layers classify the data by 

𝑜𝑢𝑡𝑝𝑢𝑡_2 × = 𝑜𝑢𝑡𝑝𝑢𝑡_1 × × 𝑤 × ,   (5.5) 

5.2.3 Techniques for overfitting  

Overfitting is a general issue, which is caused by too complicated network and closed fitting 

to training dataset for deep learning methods. Overfitting will reduce the capability of deep CNN 

for generalizing and estimating with the new dataset. As result, the accuracy of a CNN model 

with the overfitting issue will decrease after epochs in the training process reach a certain point. 

There are many effective methods, which have been developed to address the overfitting issue, 

such as data augmentation, regulation, etc [121]. The two regularization techniques used in the 

proposed networks introduces:  

(1) Dropout 

Dropout technique is to randomly abandon a portion of the neurons of a deep learning model 

in each cycle of a training process.  Since the root cause of overfitting is that neighboring 

neurons over relay a certain specific feature of training dataset during neuron weights tuning 

process, randomly dropout neurons will make the network predicting for the disabled neurons. In 
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the proposed model, two dropout layers are implemented in after each full-connected layer. The 

percentage of dropout neurons, dropout rate, are tuned and presented in the following section.  

(2)  L2 regularization  

L2 regularization, weight decay regulation, is one of the most common techniques for the 

overfitting issue in deep learning models. The idea of L2 regularization is to add the sum of the 

squares of all the weights in the network into the cost function during the backpropagation 

process, which is presented as: 

𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑙𝑜𝑠𝑠 + ∑ 𝜔    (5.6) 

where the loss is the cross-entropy loss calculated in the backpropagation. 𝜔 is the weight in the 

network and n is the side of the training set. The regularization term is the sum of all the weights 

in the fully-connected layers.  λ>0  is the regularization parameter, and n is the size of the 

training set. The cost function is calculated as the sum of cross-entropy loss and a regularization 

term. The extra term forces the network preferring small weights in the training process and it 

guarantees that no specific feature will be over-relied in the network. The regularization 

parameter λ is tuned and presented in the following sections.  

5.3 Performance evaluation 

5.3.1 Dataset and tentative test 

The evaluation of the proposed deep learning CNN structure use field-collected PMU 

frequency measurements from a Jiangsu power grid.  The PMU deployed in Jiangsu power grid 

is plotted in Fig 3.1. The nominal frequency of the power grid is 50Hz. The PMU frequency 

measurements are collected from 155 PMUs and the sample ratio of the PMUs in the power grid 
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is 25 Hz. All the PMU measurements are collected under normal operation status of the power 

grid. As discussed in Section 1, 1150, and 350 datasets are created and labeled based on the 

author’s judgment for training and testing the proposed model. The detail of the training and 

testing dataset are summarized in Table 5.1. 

For a tentative purpose, the kernel size and learning rate in the proposed model are initially 

selected as 5 and 0.01 respectively. The proposed model is trained for 50 epochs. The training 

and testing convergence and accuracy in each epoch are plotted in Fig 5.3. The proposed model 

achieves 100% accuracy in training while the best testing accuracy is 95.8%. However, it should 

be noticed that testing accuracy achieves almost 100% after 38 epochs, but the training accuracy  

doesn’t increase significantly. The testing cost curve slightly increases after 38 epochs, which 

indicates that the proposed model with initially selected parameters has an overfitting issue. The 

training and testing results show that the proposed structure with four convolution layers and two 

max-pooling layers are sufficient to extract the features of the data anomaly and system 

fluctuation during normal operation in the dataset. To further validate the structure of the 

proposed model in the tentative test, Deep learning CNN models with 2 to five convolutional 

layers are implemented, trained, and tested with the same parameters in the previous test. The 

accuracy of the models in the tests is compared in Figure 5.4. The accuracy of the models rises as 

the hidden layers of the models increase, and the four layers model achieve the best performance. 

When the layers increase to 5 layers, the accuracy drop, due to the overfitting issue, which a 

common issue to a complex model. 

5.3.2 Hyper-parameters evaluation 

To address the overfitting issue in the proposed model, the drop-out and regularization 

techniques are applied in the proposed model. The hyper-parameters including kernel size,  
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Table 5.1. Summary of training and testing data set 

Dataset name Data types Number of measurements 

Training 

Good 729 

EP, 266 

RS/ MP 91 

HFN 64 

Total 1150 

Testing 

Good 252 

EP, 66 

RS/ MP 7 

HFN 25 

 Total 350 

 

 

(a) 
Figure 5.3. Convergence and accuracy comparison of the tentative test (a). Convergence (b). 
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 (b) 
Figure 5.3 continued 

 

Figure 5.4. Test accuracy comparison of models with different layers  

  

0 5 10 15 20 25 30 35 40 45 50

Epochs

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
(%

)

Training

Testing
A

cc
u

ra
cy

 in
 t

e
st

 (
%

)



 

86 

 

drop-out rate, and regularization parameter, affect the performance of the model. In this paper, an 

extensive study of the hyper-parameters is conducted to evaluate the effects of these hyper-

parameters. In the evaluation, the same sample sets, epoch number, and learning rate are used as 

in section 5.3.1. 

(1) Kernel size 

To evaluate the impacts of the kernel size, the kernel size in the proposed CNN model is 

increased from 1 to 20. The best accuracies in training and testing achieved by each kernel size 

are presented in Fig 5.5. The training accuracy reaches 99.83 % after the kernel size is larger 

than 10. The testing accuracy slightly increases after the kernel size is larger than 8. The best 

accuracy of the testing result is 97.14%. It indicates that the kernel size has limited impacts on 

training accuracy and overfitting issue when it research certain thresholds. The best accuracy of 

kernel size 19 is selected at the following evaluations.  

(2) Dropout rate and regularization parameter 

Both dropout and L2 techniques are utilized to improve the overfitting issue. As discussed in 

the aforementioned section, the dropout and L2 used different mechanisms to improve the 

overfitting issue, the combination of both techniques doesn’t guarantee the best performance of 

the proposed model. Thus, the hyper-parameters in both techniques are evaluated simultaneously 

and the best accuracy of each combination is present in Fig 5.6 and Fig. 5.7. 

As shown in Fig. 5.7, a larger dropout rate and smaller λ result in better accuracy in the 

training results. The proposed model achieves 100% accuracy in training when the dropout 

rate≥0.5 and λ≤0.01. For the testing results, 6 combinations of the dropout rate and λ achieve the  
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Figure 5.5. Accuracy comparison with different Kernel sizes 

 

 
Figure 5.6. Training accuracy evaluation with L2 and drop-out regulation 
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Figure 5.7. Testing accuracy evaluation with L2 and drop-out regulation 
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best accuracy of 97.71%, but major ranges of the parameters are 0.4≤dropout rate≤0.6 and 

λ=0.01. It also indicates that the accuracy drops when the dropout is too high or λ is too low. 

Comparing to the best accuracy in the previous scenario, overfitting is slightly improved.  

The limited improvement of dropout and L2 techniques in the proposed model can be 

contributed to two factors: (a). the best accuracy of the previous scenarios is considered very 

high, the improvement space is limited. (b). The size of the training and testing dataset is 

relatively small. However, it should be noticed that the dataset used in the evaluation may not be 

utilized traditional data augmentation techniques, due to the RP and EP types. 

5.3.3 Evaluation Metrics  

To further evaluate the complete performance of the proposed model results, the false 

classified samples in the previous best scenarios are identified. Precision and recall, popular 

metrics in machine learning classification, are used to analyze the performance of 

misclassification in the proposed model. 

(1) Evaluation Metrics 

In the precision and recall metrics, a model classification results are categorized based on the 

true/false classification results [122]. The confusion matrix in the testing at the best scenario of 

the proposed model is summarized in Table 5.2 

In a classification task, precision reflects the percentage of the actual good measurement 

samples in the classified good measurement samples by a model. It can be calculated by 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
( )

   (5.7) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
( )

   (5.8) 
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Table 5.2. Confusion matrix of the proposed deep learning model 

 Actual 

P
re

di
ct

ed
 

 Good EP RS/ MP HFN 

Good 247 0 1 1 

EP 3 66 1 0 

RS/ MP 2 0 5 0 

HFN 0 0 0 24 

Total 252 66 7 25 
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On the other side, recall indicates the percentage of the actual good measurement samples are 

classified by a model, which can be presented as 

Based on Table 5.2, the precision and recall of the proposed model achieved in the best 

scenario are 0.9919 and model  d0.9761. Both high precision and high recall indicate the propose

dence able to detect the data anomaly sample and classified into correct types in high confi is

low chance to misclassify a good measurement sample as abnormal data.a while there is  

(2) Cross-validation 

To further evaluate the performance of the proposed model, 200 samples of the training and 

testing dataset used in the previous section are randomly exchanged five times and used as 

datasets in cross-validation. The details of the new dataset are listed in Table 5.3. In Table 5.3, 

the numbers of data anomaly in each combination are organized as training samples/testing 

samples.   

Each dataset is trained and tested as in the aforementioned section and the best accuracy of 

cross-validation results are listed in Table 5.4. As shown in Table 5.4, the testing accuracy in 

cross-validation indicates the proposed model achieves similar performances with different 

combinations of the training and testing dataset. 

 (3) Compassions  

To compare the performance of the proposed CNN with some common used outlier 

classifications methods, Support Vector Machine (SVM), Artificial Neural Network (ANN), 

Principal Components Analysis-SVM (PCA-SVM), and the Long Short Term Memory (LSTM) 

are implemented and tested with the normalized dataset used in section 5.4.2.. The Radial Basis 

Function (RBF) kernel is selected in SVM. For ANN, the two-layer structure is used. To  
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Table 5.3. Summary of training and testing dataset in cross-validation 

Dataset Good EP RS/ MP HFN 

1 748/233 264/68 71/27 67/22 

2 740/241 257/75 86/12 67/22 

3 754/227 255/77 81/17 60/29 

4 748/233 261/71 80/18 61/28 

5 744/237 258/74 82/16 66/23 

 

Table 5.4. Trainingand testing accuracy in cross-validation  

Dataset 

Training 

accuracy  

Testing 

accuracy 

1 100% 96.29% 

2 100% 97.42% 

3 100% 96.29% 

4 100% 98.29% 

5 100% 98.86% 

 

 

 

 

 

 

 

 



 

93 

 

Table 5.5. Comparison results of different methods 

Methods Structure 
Average  

accuracy 

ANN Nodes: 100-50-20 89.14 % 

SVM RBF kernel 92.28 % 

PCA-SVM 10 Principal Components 68.00 % 

LSTM 4 layers with 120 hidden units 88.00 % 

Proposed CNN Four convolutional layers 97.43 % 
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compare with the dimensional compression method, the PCA and SVM are combined to achieve 

feature extraction and classification capabilities. As can be seen from Table 5.5. The SVM 

performs better than the ANN and LSTM. However, the result of PCA-SVM is 64.57 % and it is 

 not as good as SVM, which indicates that there may be a loss of information during the PCA 

process. Overall, the proposed CNN obtains the best accuracy. 

5.4 Conclusion  

Real-world synchrophasor measurements have anomalies issues including erroneous pattern, 

random spike, missing point, and high frequency components, which would degrade the 

performance of synchrophasor based applications. In this paper, a deep learning approach is 

proposed for the detection of synchrophasor anomalies using a convolutional neural network， 

which could help the system operators know the quality of synchrophasor measurements in real-

time. To evaluate the performance of the proposed network, experiments are conducted using 

field-collected synchrophasor in Jiangshu Power grid. The test results show the proposed model 

can achieve an accuracy of 97.71%, which demonstrates the proposed CNN can effectively 

detect abnormality in synchrophasor measurements.  
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Chapter 6 Non-Contact Synchronized Measurement Using Electric 
Field Study 

6.1 Introduction 

As vital components of a wide area monitoring system, traditional synchrophasor 

measurement units are usually installed at potential transformers (PTs) and current transformers 

(CTs) of a bus or power line [123]. The installation and maintenance cost of a synchrophasor 

measurement unit, especially in a transmission network, is expensive. According to [124], the 

installation cost of one single transmission-level synchrophasor measurement unit is over $8,000. 

However, developing low cost synchrophasor measurement unit is one of the evolution 

directions for synchrophasor technology [125]. Synchrophasor measurement unit with features of 

flexible installation and easy to maintain is desired for large-scale applications in power grids.  

As a pioneer of synchrophasor technology, PowerIT group in the University of Tennessee at 

Knoxville (UTK) designed a non-contact synchronized measurement unit by utilizing electric 

field generated by power line [126]. One of the key designs in the [126] is that it uses copper as 

electric field sensor. The alternative electric field generated by power lines induces voltage 

signals on the sensors. Then, the voltage signal is processed and calibrated to the power line 

voltage. The hardware design of the non-contact synchronized measurement unit is shown in Fig. 

6.1.  A prototype of the non-contact synchronized measurement unit was implemented and tested 

under a 500 kV transmission line at Knoxville, Tennessee. The field testing results demonstrate 

the feasibility of the non-contact synchronized measurement unit with low cost and flexibility.  

In traditional power line measurement, researches and developments have been investigated 

using alternative electric field to measure power line voltage [127]-[132]. It measures electric  
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Figure 6.1. Hardware design of non-contact synchronized measurement unit by UTK[126] 
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field vectors generated by power line, which requires an expansive and sophisticated electric 

field sensor. Then, the power line voltage can be calculated by electromagnetic theory with the 

measured electric field vector. On the other side, the electric field strength meter is very mature 

with a lower cost. Using electric field strength to determine voltage may reduce the cost of the 

solution significantly. Meanwhile, it may provide a potential solution to improve measurement 

accuracy for the non-contact synchronized measurement unit. In this chapter, the theoretical 

foundation of calculating power line voltage via electric field strength is discussed. The 

calculating process and equations are derived for a single circuit AC transmission line and a 

double circuit AC transmission line respectively. The derived equations and calculating process 

are implemented in Matlab code and tested with a 525 kV single circuit transmission line and 

double circuit transmission line configurations from [133]. The simulation testing results show 

that the proposed method can determined power line voltage via electric field strength with high 

accuracy.  

6.2 Theoretical foundation and equation derivation  

In this section, the theoretical foundation of calculating transmission line voltage level via 

electric field strength are discussed. The calculating process is derivated for both single circuit 

and double circuit transmission line configurations.    

6.2.1 Single circuit transmission line  

According to [133], the traditional configurations of three-phase single circuit transmission 

lines are categorized into three types: horizontal, vertical and delta configuration. In this section, 

a horizontal configuration is utilized in the equation derivation, but the derivate equations are 

valid for the three configurations.  
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As defined in [133], the electric field of a power line can be calculated by superimposing the 

electric field generated by each power line conductor. A traditional infinite and balanced model 

of single circuit three-phase transmission line is used for electric field calculation and presented 

in Fig. 7.1.  The following are the assumptions and simplifications used in this chapter.  

(1). Conductor positions and GMR 

The coordinates of the transmission line conductors of phases a, b and c are defined as (Xa, 

Ya), (Xb, Yb) and (Xc, Yc). The coordinates of transmission line conductors may vary depending 

on different transmission line configurations. For one transmission, the coordinates are assumed 

constants once the transmission line is constructed. For each phase of conductors, it may consist 

of one or multiple bundle conductors.  The bundle conductors can be converted into an 

equivalent tubular conductor with the equations defined in [133]. The radius of the equivalent 

tubular conductor is defined as 𝑟 , which is determined by the actual conductor type and 

bundles numbers. Both conductor radius and coordinates in the chapter are referred to as the 

equivalent conductor.  

(2). Ground effects 

The energization of the conductors generates charges both on the conductors and in the 

ground under the conductors. The ground effect is simulated by placing image conductors as  

shown in Fig. 6.2. The image conductors carry negative charges and are placed under the ground 

level. The bundled conductors of the transmission line are converted into equivalent conductors.  

As shown in Fig. 6.2, an electric field sensor is placed at location s and the coordinate is 

defined as xs and ys. Since the sensor is placed on the ground, ys is set to 0. The electric field 
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Figure 6.2. Transmission line horizontal configuration and sensor position 
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 strength measured by the sensor is Em. It is assumed that the voltage of the transmission line is 

balance and line to ground voltage of the conductors are defined as: 

𝑽𝒂𝒑 = 𝑉 𝑐𝑜𝑠(2𝜋𝑓𝑡 + 𝛽) = 𝑉 ∠0      (6.1) 

    𝑽𝒃𝒑 = 𝑉 𝑐𝑜𝑠(2𝜋𝑓𝑡 + 𝛽 + 120°) = 𝑉 ∠120       

    𝑽𝒄𝒑 = 𝑉 cos(2𝜋𝑓𝑡 + 𝛽 + 240°) = 𝑉 ∠240       

where 𝛽 is the initial angle and  𝑉  is the line to ground voltage.   

Equation (6.1) can be converted into complex format: 

𝑽𝒂𝒑 = 𝑉 + 𝑉 𝑖     (6.2) 

      𝑽𝒃𝒑 = (𝑉 + 𝑉 𝑖) × (−0.5 + 0.866𝑖)     

              𝑽𝒄𝒑 = (𝑉 + 𝑉 𝑖) × (−0.5 − 0.866𝑖)     

where 𝑉  and 𝑉  are the real and imaginary parts of voltage in phase a respectively and two 

unknown variables to be determined below.   

As defined in [133], for an energized transmission line, the voltage differences between 

conductors and ground can be calculated by 

𝑉 = ∑ 𝑞 _ ln ( )    (6.3) 

where 𝑞 _  is charges on the conductors and shield wires on a transmission line. k, 𝑑   and 

𝐷  are the distances from conductor k to conductor l and its image conductor l’ respectively. m 

is the number of overhead conductors and shield wires. k, l=1,2,3,..…, m. 𝜀  is vacuum 

permittivity and select 𝜀 = 8.854 × 10 𝐹/𝑚. 

Equation (6.3) can be presented in a matrix form as: 
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𝑽 = 𝑷𝑸   (6.4) 

where 𝑷 is potential coefficients of a transmission line, which can be determined by  

𝑃 = ∑ ln ( )    (6.5) 

For the single circuit transmission line shown in Fig. 6.2, the distant from conductor k to the 

actual conductors and image conductors can be determined in matrix form as  

𝒅 =

𝑟 (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) (𝑥 − 𝑥 ) + (𝑦 − 𝑦 )

(𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) 𝑟 (𝑥 − 𝑥 ) + (𝑦 − 𝑦 )

(𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) 𝑟

 (6.6) 

𝑫 =

2𝑦 (𝑥 − 𝑥 ) + (𝑦 + 𝑦 ) (𝑥 − 𝑥 ) + (𝑦 + 𝑦 )

(𝑥 − 𝑥 ) + (𝑦 + 𝑦 ) 2𝑦 (𝑥 − 𝑥 ) + (𝑦 + 𝑦 )

(𝑥 − 𝑥 ) + (𝑦 + 𝑦 ) (𝑥 − 𝑥 ) + (𝑦 + 𝑦 ) 2𝑦

 

(6.7) 

As a consequence, potential coefficients 𝑷 can be calculated by submitting (6.6) and (6.7) into 

(6.5). To calculate charges on the conductor and shield wires 𝑸, Equation (6.4) is inversed as: 

𝑽 = 𝑷 𝟏𝑸   (6.8) 

and the inversion of potential coefficients 𝑷 for the transmission line can be presented as: 

 

 

𝑷 𝟏 =
( × × ) ( × × ) ( × × )

×
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𝑝 × 𝑝 − 𝑝 × 𝑝 𝑝 × 𝑝 − 𝑝 × 𝑝 𝑝 × 𝑝 − 𝑝 × 𝑝
𝑝 × 𝑝 − 𝑝 × 𝑝 𝑝 × 𝑝 − 𝑝 × 𝑝 𝑝 × 𝑝 − 𝑝 × 𝑝
𝑝 × 𝑝 − 𝑝 × 𝑝 𝑝 × 𝑝 − 𝑝 × 𝑝 𝑝 × 𝑝 − 𝑝 × 𝑝

   (6.9) 

For a simplification purpose, 𝑷 𝟏 is presented in the following format and each element of the 

matrix is known: 

𝑷 𝟏 =

𝑝 𝑝 𝑝

𝑝 𝑝 𝑝

𝑝 𝑝 𝑝

  (6.10) 

Submitting equations (6.2), (6.10) into equation (6.8) and the relationship between charges 

and voltages can be built: 

𝑄 = (𝑉 + 𝑉 𝑖 ) × 𝑝 + (𝑉 + 𝑉 𝑖) × (−0.5 + 0.866𝑖) × 𝑝 + (𝑉 + 𝑉 𝑖) ×

(−0.5 − 0.866𝑖) × 𝑝    (6.11) 

𝑄 = (𝑉 + 𝑉 𝑖 ) × 𝑝 + (𝑉 + 𝑉 𝑖) × (−0.5 + 0.866𝑖) × 𝑝 + (𝑉 + 𝑉 𝑖) ×

(−0.5 − 0.866𝑖) × 𝑝       

𝑄 = (𝑉 + 𝑉 𝑖 ) × 𝑝 + (𝑉 + 𝑉 𝑖) × (−0.5 + 0.866𝑖) × 𝑝 + (𝑉 + 𝑉 𝑖) ×

(−0.5 − 0.866𝑖) × 𝑝       

For a simplification purpose, equations (6.11) can be expressed as  

𝑄 = 𝐾 (𝑉 + 𝑉 𝑖 )   (6.12) 

  𝑄 = 𝐾 (𝑉 + 𝑉 𝑖 )     

  𝑄 = 𝐾 (𝑉 + 𝑉 𝑖 )      

where 𝐾 , 𝐾  and 𝐾  are the constant coefficients determined in equation (6.11). 
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The electric field at point s due to charges on conductor k and its image conductors can be 

calculated by 

𝐸 _ =
( ) ( )

      (6.13) 

𝐸 _ = −
( ) ( )

      (6.14) 

where 𝑄  is the charges on conductor k. 

The relationships between the transmission line voltage and electric field amplitude at 

position s generated by each conductor and the imagine conductor can be derived by submitting 

equation (6.12) into equation (6.13) and (6.14) 

 𝐸 _ =
(  )

( ) ( )
   (6.14) 

                      𝐸 _ = −
(  )

( ) ( )
    

     𝐸 _ =
(  )

( ) ( )
     

𝐸 _ = −
(  )

( ) ( )
    

𝐸 _ =
(  )

( ) ( )
     

𝐸 _ = −
(  )

( ) ( )
    

The angles of the electric field at position s generated by conductor k are calculated by  

𝛳 _ = 𝑎𝑡𝑎𝑛   (6.15) 

Thus, equation (6.14) can be expressed in a simplified format as: 
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𝐸 _ = 𝐿1(𝑉 + 𝑉 𝑖 )   (6.16) 

𝐸 _ = 𝐿 (𝑉 + 𝑉 𝑖 ) 

𝐸 = 𝐿 (𝑉 + 𝑉 𝑖 ) 

𝐸 _ = 𝐿 (𝑉 + 𝑉 𝑖 ) 

𝐸 = 𝐿 (𝑉 + 𝑉 𝑖 ) 

𝐸 _ = 𝐿 (𝑉 + 𝑉 𝑖 ) 

where 𝐿 , 𝐿 , 𝐿 , 𝐿 , 𝐿  and 𝐿  are the constant coefficients determined in equation (6.14) 

For any electric field generated by one conductor and its image conductor can be 

expressed by real and imaginary parts. The electric field at the s point is the superposition of 

electric fields generated by one conductor and its image conductor, 

𝐸 _ = 𝐸 _ + 𝐸 _  𝑖   (6.17)  

           𝐸 _ = 𝐸 _ + 𝐸 _  𝑖     

          𝐸 _ = 𝐸 _ + 𝐸 _ + (𝐸 + 𝐸  ) 𝑖      

Then, equation (6.16) can be represented as 

𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = 𝐿 (𝑉 + 𝑉 𝑖 ) × 𝑐𝑜𝑠 (𝛳 _ ) + 𝐿 (𝑉 + 𝑉 𝑖 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖 

(6.18) 

𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = 𝐿 (𝑉 + 𝑉 𝑖 ) × 𝑐𝑜𝑠 (𝛳 _ ) + 𝐿 (𝑉 + 𝑉 𝑖 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖 

𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = 𝐿 (𝑉 + 𝑉 𝑖 ) × 𝑐𝑜𝑠 (𝛳 _ ) +  𝐿 (𝑉 + 𝑉 𝑖 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖 

𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = 𝐿 (𝑉 + 𝑉 𝑖 ) × 𝑐𝑜𝑠 (𝛳 _ ) + 𝐿 (𝑉 + 𝑉 𝑖 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖 

𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = 𝐿 (𝑉 + 𝑉 𝑖 ) × 𝑐𝑜𝑠 (𝛳 _ ) +  𝐿 (𝑉 + 𝑉 𝑖 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖 

𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = 𝐿 (𝑉 + 𝑉 𝑖 ) × 𝑐𝑜𝑠 (𝛳 _ ) +  𝐿 (𝑉 + 𝑉 𝑖 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖 
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And total electric field at the point s generated by the transmission line can be 

calculated by 

𝐸 _ = 𝐿 × 𝑐𝑜𝑠 𝛳 _ + 𝐿 × 𝑐𝑜𝑠 𝛳 _ + 𝐿 × 𝑐𝑜𝑠 𝛳 _ + 𝐿 × 𝑐𝑜𝑠 𝛳 _ +

𝐿 × 𝑐𝑜𝑠 𝛳 _ + 𝐿 × 𝑐𝑜𝑠 𝛳 _ × (𝑉 + 𝑉 𝑖 )   (6.19) 

𝐸 _ = 𝐿 × 𝑠𝑖𝑛 𝛳 _ + 𝐿 × 𝑠𝑖𝑛 𝛳 _ + 𝐿 × 𝑠𝑖𝑛 𝛳 _ + 𝐿 × 𝑠𝑖𝑛 𝛳 _ +

𝐿 × 𝑠𝑖𝑛 𝛳 _ + 𝐿 × 𝑠𝑖𝑛 𝛳 _ × (𝑉 + 𝑉 𝑖 )   

For a simplification purpose, equation (6.19) can be represented as 

𝐸 _ = 𝑀 × (𝑉 + 𝑉 𝑖 )    (6.20) 

𝐸 _ = 𝑀 × (𝑉 + 𝑉 𝑖 )      

where 𝑀  and 𝑀  are determined in equation (6.19). 

The total electric field strength at the point s generated by the transmission line can 

be calculated by   

|𝐸 | = ( 𝐸 _ ) + ( 𝐸 _ ) = (|𝑀 × (𝑉 + 𝑉 𝑖 ) |) + (|𝑀 × (𝑉 + 𝑉 𝑖 ) |)   

 (6.21) 

Where |𝐸 | is known as electric field strength measured at position s.  

Since 𝑀  and 𝑀  are constant coefficients, equation (6.21) can be transformed as 

|𝐸 | = 𝑀 + 𝑀 × |(𝑉 + 𝑉 𝑖 ) |  (6.22) 

Based on the physical meaning of the element, measured electric field strength and voltage 

amplitude are positive. The relationship between transmission line voltage amplitude and 

measured electric field strength at position s can be derived as follows: 

|(𝑉 + 𝑉 𝑖 ) | = |𝑉 | =
| |

    (6.23) 
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6.2.2 Double circuit transmission line 

Similar to the single circuit transmission line, a traditional infinite and balanced model of a 

three-phase double circuit transmission line is used for electric field calculation and presented in 

Fig. 6.3.  The same assumptions and simplification about conductor coordinates, GMR, and 

ground effect are used in this section.  

As shown in Fig. 6.3, the bundled conductors of the transmission line are converted into 

equivalent conductors. An electric field sensor is placed at location s and the coordination is 

defined as xs and ys. Since the sensor is placed on the ground, ys is set to 0. The electric field 

strength measured by the sensor is Em. It is assumed that the voltage of the transmission line is 

balance and line to ground voltage of the conductors are defined as: 

𝑽𝒂𝟏𝒑 = 𝑉 ∠0      (6.24) 

   𝑽𝒃𝟏𝒑 = 𝑉 ∠120       

𝑽𝒄𝟏𝒑 = 𝑉 ∠240       

where 𝑉  is the line to ground voltage at circuit 1.   

𝑽𝒂𝟐𝒑 = 𝑉 ∠0      (6.25) 

    𝑽𝒃𝟐𝒑 = 𝑉 ∠120       

𝑽𝒄𝟐𝒑 = 𝑉 ∠240       

where  𝑉  is the line to ground voltage at circuit 2.   

Equation (6.24) and  (6.25) can be converted into complex format: 

𝑽𝒂𝟏𝒑 = 𝑉 + 𝑉 𝑖     (6.26) 
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Figure 6.3. Double circuit transmission line configuration and sensor position 
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      𝑽𝒃𝟏𝒑 = (𝑉 + 𝑉 𝑖 ) × (−0.5 + 0.866𝑖)     

              𝑽𝒄𝟏𝒑 = (𝑉 + 𝑉 𝑖 ) × (−0.5 − 0.866𝑖)   

where 𝑉  and 𝑉  are the real and imaginary parts of circuit 1 voltage in phase a respectively 

and two unknown variables to be determined below.   

𝑽𝒂𝟐𝒑 = 𝑉 + 𝑉 𝑖     (6.27) 

      𝑽𝒃𝟐𝒑 = (𝑉 + 𝑉 𝑖) × (−0.5 + 0.866𝑖)     

              𝑽𝒄𝟐𝒑 = (𝑉 + 𝑉 𝑖) × (−0.5 − 0.866𝑖)    

where 𝑉  and 𝑉  are the real and imaginary parts of circuit 2 voltage in phase a respectively 

and two unknown variables to be determined below.   

As discussed in the aforementioned section, for the double circuit transmission line shown in 

Fig. 6.3, the distant from conductor k to the actual conductors and image conductors can be 

determined in 6×6 matrices as  

𝒅 =
𝑟 ⋯ (𝑥 − 𝑥 ) + (𝑦 − 𝑦 )

⋮ ⋱ ⋮

(𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) ⋯ 𝑟

 (6.28) 

𝑫 =
2𝑦 ⋯ (𝑥 − 𝑥 ) + (𝑦 + 𝑦 )

⋮ ⋱ ⋮

(𝑥 − 𝑥 ) + (𝑦 + 𝑦 ) ⋯ 2𝑦

 (6.29) 

Similarly, potential coefficients 𝑷 can be determined by submitting equation (6.28) and (6.29) 

into equation (6.5) and inversion of 𝑷 is expressed 

𝑷 𝟏 =

𝑝 ⋯ 𝑝

⋮ ⋱ ⋮
𝑝 ⋯ 𝑝

     (6.30) 
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The relationship between charges on the conductors and voltages can be built: 

𝑄 = 𝑉 × 𝑝 + 𝑉 × (−0.5 + 0.866𝑖) × 𝑝 + 𝑉 × (−0.5 − 0.866𝑖) × 𝑝 +

𝑉 × 𝑝 + 𝑉 × (−0.5 + 0.866𝑖) × 𝑝 + 𝑉 × (−0.5 − 0.866𝑖) × 𝑝  (6.31) 

𝑄 = 𝑉 × 𝑝 + 𝑉 × (−0.5 + 0.866𝑖) × 𝑝 + 𝑉 × (−0.5 − 0.866𝑖) × 𝑝 +

𝑉 × 𝑝 + 𝑉 × (−0.5 + 0.866𝑖) × 𝑝 + 𝑉 × (−0.5 − 0.866𝑖) × 𝑝   

𝑄 = 𝑉 × 𝑝 + 𝑉 × (−0.5 + 0.866𝑖) × 𝑝 + 𝑉 × (−0.5 − 0.866𝑖) × 𝑝 +

𝑉 × 𝑝 + 𝑉 × (−0.5 + 0.866𝑖) × 𝑝 + 𝑉 × (−0.5 − 0.866𝑖) × 𝑝   

𝑄 = 𝑉 × 𝑝 + 𝑉 × (−0.5 + 0.866𝑖) × 𝑝 + 𝑉 × (−0.5 − 0.866𝑖) × 𝑝 +

𝑉 × 𝑝 + 𝑉 × (−0.5 + 0.866𝑖) × 𝑝 + 𝑉 × (−0.5 − 0.866𝑖) × 𝑝   

𝑄 = 𝑉 × 𝑝 + 𝑉 × (−0.5 + 0.866𝑖) × 𝑝 + 𝑉 × (−0.5 − 0.866𝑖) × 𝑝 +

𝑉 × 𝑝 + 𝑉 × (−0.5 + 0.866𝑖) × 𝑝 + 𝑉 × (−0.5 − 0.866𝑖) × 𝑝   

𝑄 = 𝑉 × 𝑝 + 𝑉 × (−0.5 + 0.866𝑖) × 𝑝 + 𝑉 × (−0.5 − 0.866𝑖) × 𝑝 +

𝑉 × 𝑝 + 𝑉 × (−0.5 + 0.866𝑖) × 𝑝 + 𝑉 × (−0.5 − 0.866𝑖) × 𝑝   

For a simplification purpose, equations (6.31) can be expressed as  

𝑄 = 𝐾 × 𝑉 + 𝐾 × 𝑉    (6.32) 

𝑄 = 𝐾 × 𝑉 + 𝐾 × 𝑉  

𝑄 = 𝐾 × 𝑉 + 𝐾 × 𝑉  

  𝑄 = 𝐾 × 𝑉 + 𝐾 × 𝑉      

𝑄 = 𝐾 × 𝑉 + 𝐾 × 𝑉  
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𝑄 = 𝐾 × 𝑉 + 𝐾 × 𝑉  

where the constant coefficients 𝐾 are known constants determined in equation (6.31). 

The electric field at point s due to charges on conductor k and its image conductors can be 

calculated by submitting equation (6.32) into equation (6.13) and (6.14). The relationships 

between the transmission line voltage and electric field amplitude generated by each conductor 

and its imagine conductor can be derived: 

𝐸 _ =
× ×

( ) ( )
   (6.33) 

                   𝐸 _ = −
× ×

( ) ( )
   

  𝐸 _ =
× ×

( ) ( )
    

                       𝐸 _ = −
× ×

( ) ( )
   

𝐸 _ =
× ×

( ) ( )
    

                       𝐸 _ = −
× ×

( ) ( )
   

𝐸 _ =
× ×

( ) ( )
     

                 𝐸 _ = −
× ×

( ) ( )
   

  𝐸 _ =
× ×

( ) ( )
    

                       𝐸 _ = −
× ×

( ) ( )
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𝐸 _ =
× ×

( ) ( )
    

                       𝐸 _ = −
× ×

( ) ( )
   

where the constant coefficients 𝐾 are known constants determined in equation (6.31).  

The angles of the electric field at position s generated by conductor k are calculated by 

equation (6.15).  

Equation (6.33) can be represented for a simplification purpose: 

𝐸 _ = 𝐿 × 𝑉 + 𝐿 × 𝑉    (6.34) 

                   𝐸 _ = −𝐿 × 𝑉 − 𝐿 × 𝑉      

  𝐸 _ = 𝐿 × 𝑉 + 𝐿 × 𝑉      

                       𝐸 _ = −𝐿 × 𝑉 − 𝐿 × 𝑉      

𝐸 _ = 𝐿 × 𝑉 + 𝐿 × 𝑉      

                       𝐸 _ = −𝐿 × 𝑉 − 𝐿 × 𝑉      

𝐸 _ = 𝐿𝑎 × 𝑉 + 𝐿𝑎 × 𝑉      

                 𝐸 _ = −𝐿 × 𝑉 − 𝐿 × 𝑉      

  𝐸 _ = 𝐿 × 𝑉 + 𝐿 × 𝑉      

                       𝐸 _ = −𝐿 × 𝑉 − 𝐿 × 𝑉      

𝐸 _ = 𝐿 × 𝑉 + 𝐿 × 𝑉      

                    𝐸 _ = −𝐿 × 𝑉 − 𝐿 × 𝑉      
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where the constant coefficients 𝐿 are known constants determined in equation (6.33).  

The electric field generated by each conductor and its image conductor at the s point is 

calculated by submitting equation (6.34) into equation (6.17): 

𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑐𝑜𝑠 (𝛳 _ ) +

 (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖   (6.34) 

      𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = (𝐿 (𝐿 × 𝑉 + 𝐿 × 𝑉 ) ×

𝑐𝑜𝑠 (𝛳 _ ) + (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖  

𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑐𝑜𝑠 (𝛳 _ ) +

 (𝐿 × 𝑉 +   𝐿 × 𝑉 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖    

𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑐𝑜𝑠 (𝛳 _ ) +

 (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖     

𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑐𝑜𝑠 (𝛳 _ ) +

 (𝐿 × 𝑉 +   𝐿 × 𝑉 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖    

𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑐𝑜𝑠 (𝛳 _ ) +

 (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖     

𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑐𝑜𝑠 (𝛳 _ ) +

 (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖     

𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑐𝑜𝑠 (𝛳 _ ) +

 (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖     

𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑐𝑜𝑠 (𝛳 _ ) +

 (𝐿 × 𝑉 +  𝐿 × 𝑉 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖     



 

113 

 

𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑐𝑜𝑠 (𝛳 _ ) +

 (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖     

𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑐𝑜𝑠 (𝛳 _ ) +

 (𝐿 × 𝑉 +   𝐿 × 𝑉 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖     

𝐸 _ = 𝐸 _ + 𝐸 _ 𝑖 = (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑐𝑜𝑠 (𝛳 _ ) +

 (𝐿 × 𝑉 + 𝐿 × 𝑉 ) × 𝑠𝑖𝑛 (𝛳 _ )𝑖      

where 𝛳 _  and 𝛳 _  are calculated by equation (6.15). 

Then, the total electric field in the X and Y axis at the s point can be expressed by using 

superposition method 

 𝐸 _ = 𝐸 _ + 𝐸 _ + 𝐸 + 𝐸 _ + 𝐸 _ + 𝐸 _ + 𝐸 _ + 𝐸 _ +

𝐸 _ + 𝐸 _ + 𝐸 _ + 𝐸 _     (6.35) 

𝐸 _ = 𝐸 _ + 𝐸 _ + 𝐸 + 𝐸 _ + 𝐸 _ + 𝐸 _ + 𝐸 _ + 𝐸 _ +

𝐸 _ + 𝐸 _ + 𝐸 _ + 𝐸 _       

Equation (6.35) can be simplified as  

   𝐸 _ = 𝑀 × 𝑉 + 𝑀 × 𝑉     (6.36) 

𝐸 _ = 𝑀 × 𝑉 + 𝑀 × 𝑉  

where 𝑀 , 𝑀 , 𝑀  and 𝑀  are constant coefficients determined in equation  (6.34) and 

(6.35). 

The total electric field strength |𝐸 | at the point s generated by the transmission line can be 

calculated by   
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|𝐸 | = ( 𝑀 × 𝑉 + 𝑀 × 𝑉  ) + ( 𝑀 × 𝑉 + 𝑀 × 𝑉  )  (6.37) 

Since 𝑀 , 𝑀 , 𝑀  and 𝑀  are the constants vector determined in equation (6.34) and 𝑉 , 

𝑉  are unknown scalar, the equation (6-37) can be expanded as: 

|𝐸 | = (|𝑀  | × 𝑉 + |𝑀  | × 𝑉 + 2 × |𝑀  | × |𝑀  | × 𝑉 × 𝑉 ×

cos (𝛳 _ )) + ( 𝑀  × 𝑉 + 𝑀  × 𝑉 + 2 × 𝑀  × 𝑀  × 𝑉 × 𝑉 ×

cos (𝛳 _ ))     (6.37) 

where 𝛳 _  is the angle between the known vector 𝑀  and 𝑀 , 𝛳 _  is the angle 

between the known vector 𝑀  and 𝑀 .  

Thus, the equation can be simplified as: 

|𝐸 | = 𝐶 × 𝑉 + 𝐷 × 𝑉 + 𝐹 × 𝑉 × 𝑉  (6.38) 

where 𝐶 , 𝐷  and 𝐹  are the known constants determined in (3-37). 

To determine 𝑉  and 𝑉 , two sensors are placed in different locations under the 

transmission line and the following equation set can be established and voltages of the 

transmission line can be determined by solving the equation set with Matlab. 

|𝐸 | = 𝐶 × 𝑉 + 𝐷 × 𝑉 + 𝐹 × 𝑉 × 𝑉

|𝐸 | = 𝐶 × 𝑉 + 𝐷 × 𝑉 + 𝐹 × 𝑉 × 𝑉
  (6.39) 

6.3 Simulation validation  

To validate the effectiveness and performance of the proposed method, the derived equations 

are implemented in Matlab code. A 525 kV single circuit transmission line and a 525 kV double 

circuit transmission line configurations from [133] are utilized to test the method. The electric 
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field strength generated by the transmission line on the ground level are duplicated by Matlab 

code based on the methods from [133] and used as measured electric field strength in the 

proposed method. The simulation tests are conducted on a computer running a 64-bit Windows 

10, with a 3.60 GHz Intel I7-7700U CPU and 16 GB memory. 

(1). Three-phase single circuit transmission line  

A 525 kV three-phase single circuit transmission line with a flat configuration from [133] is 

selected as a test case. The information of the configuration, including conductor size, bundle 

size, actual conductor size and conductor coordinates, are summarized in Table 6.1. The lateral 

profiles of the electric field at ground provided in [133] is shown in Fig. 6.3. The electric field 

strength profiles duplicate by Matlab code with the specified configuration is plotted in Fig. 6.4. 

The duplicated electric field profile is used as the input measurement of the proposed method.  

The conductors in the configuration are converted into equivalent conductors with Matlab 

code and used in the proposed method testing. A sensor placed at different locations beneath the 

transmission line in two scenarios and the corresponding electric field strength at the locations is 

selected from Fig. 6.5 as measured input. The sensor locations, the measured electric field 

strength and the calculated voltage are summarized in Table 6.2.  As shown in the table, the 

sensor locations are one meter away in two scenarios, which caused the measured electric field 

strength is slightly different. The calculated voltages in both scenarios of the proposed method 

are identical to the line voltage specified in the configuration.  

(2). Three-phase double circuit transmission line  

A 525 kV three-phase double circuit transmission line configuration from [133] is selected as 

a test case. The information of the configuration, including conductor size, bundle size, actual  
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Table 6.1. Flat configuration of 525 kV single circuit transmission line  

 Conductor1 Conductor2 Conductor3 

X axis (m) 10 0 -10 

Y axis (m) 10.6 10.6 10.6 

Bundle Num. 3 3 3 

Bundle spacing (m) 0.45 0.45 0.45 

conductor diameter (m) 0.033 0.033 0.033 

Line to ground voltage (kV) 303 303 303 

Voltage angle (degree) 120 0 240 

 

 

Figure 6.4. Single circuit transmission line electric field distribution at ground [133] 
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Figure 6.5. Single circuit transmission line electric field distribution at ground generated by 

Matlab code 

 

Table 6.2. Testing conditions and results of 525 kV single circuit transmission line  

 

X axis (m) Y axis (m) 
Measured EF strength 

  (kV/m) 

Calculated voltage 

(kV) 

Scenario 1 0 1 6.009317907 303 

Scenario 2 1 1 5.951386844 303 
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conductor size and conductor coordinates, are summarized in Table 6.3 and Table 6.4. The 

lateral profiles of the electric field at ground provided in [133] are shown in Fig. 6.5. The electric 

field strength profiles duplicated by Matlab code with the specified configuration and #1 phase 

arrangement is plotted in Fig. 7.6. The duplicated electric field profile is used as the input 

measurement of the proposed method.  

The conductors in the configuration are converted into equivalent conductors with Matlab and 

used in the proposed method testing. For the three-phase double circuit transmission line, two 

sensors are placed at different locations beneath the transmission line in two scenarios. The 

corresponding electric field strength at the locations in each scenario is selected from Fig. 6.7 as 

measured inputs. The sensor locations, the measured electric field strength and the calculated 

voltage are summarized in Table 6.5. As shown in the calculation results, the estimated 

transmission line voltages are slightly lower than the measured voltage in both scenarios. 

However, the maximum estimated error is 0.561%, which is considered very trivial. The 

estimated voltages differences in the two scenarios indicate that the locations of the sensor have 

impacts on the estimated results and symmetric placement of the sensors will lead to a more 

accurate result.  

6.4 Conclusion 

This chapter proposes a method to estimate three-phase transmission line voltage by using 

measured electric field strength for non-contact synchronized measurement. The theoretical 

foundation and the assumptions in the estimating process are discussed and presented. Linear 

relationships between measured electric field strength and transmission line voltage are derivated 

and established. A three-phase single circuit transmission line with flat configuration and a three-

phase double circuit transmission line are used to demonstrate the derivation process.  
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Table 6.3. Circuit 1 configuration of 525 kV double circuit transmission line  

 Conductor1 Conductor2 Conductor3 

X axis (m) 5.56 8.61 5.56 

Y axis (m) 13.72 23.78 33.4 

Bundle Num. 3 3 3 

Bundle spacing (m) 0.457 0.457 0.457 

conductor diameter (m) 0.0325 0.0325 0.0325 

Line to ground voltage (kV) 303 303 303 

Voltage angle (degree) 240 120 0 

 

Table 6.4. Circuit 2 configuration of 525 kV double circuit transmission line 

 Conductor1 Conductor2 Conductor3 

X axis (m) -5.56 -8.61 -5.56 

Y axis (m) 13.72 23.78 33.4 

Bundle Num. 3 3 3 

Bundle spacing (m) 0.457 0.457 0.457 

conductor diameter (m) 0.0325 0.0325 0.0325 

Line to ground voltage (kV) 303 303 303 

Voltage angle (degree) 240 120 0 
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Figure 6.6. Double circuit transmission line electric field distribution at ground [133] 

 

 

Figure 6.7. Double circuit transmission line electric field distribution at ground generated by 

Matlab code 
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Table 6.5. Testing conditions and results of 525 kV double circuit transmission line 

 sensor X axis (m) Y axis (m) 
Measured EF strength 

  (kV/m) 

Calculated voltage 

(kV) 

Scenario 1 

Sensor #1 0 1 8.708581562 𝑉 =302.4 

𝑉 =301.3 Sensor #2 1 1 8.731588219 

Scenario 2 

Sensor #1 1 1 8.708581562 𝑉 =301.9 

𝑉 =301.9 Sensor #2 -1 1 8.708581562 
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The proposed method is implemented in Matlab code for both three-phase single and double 

circuit transmission line. Simulation tests are conducted based on a three-phase 525 kV single 

circuit transmission line and a double circuit transmission line from [133]. The testing results 

show that the proposed method can precisely estimate the transmission line voltage. It also 

indicates that the symmetrical placement of the electric field strength sensor provides better 

performance. It can work as an effective method for real-time non-contact synchronized 

measurement.  
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Appendix 

Appendix A. A Time-Domain Electromechanical Co-Simulation Framework for 
Power System Transient Analysis with Retainment of User Defined Models 

A.1. Introduction 

Time domain dynamic simulation software enables engineers and researchers to study power 

systems dynamics under transient conditions [134]. There are several simulation tools available 

including PSS/E, PSLF, PowerTech TSAT, and PowerWorld [135]. Each electric utility has its 

own selection for a simulation tool for dynamic analysis. As a result, one particular software has 

been continuously used and the corresponding power system models have been tuned and 

maintained over the years. For example, utilities in U.S Eastern Interconnection (EI) generally 

use PSS/E and utilities in Western Electricity Coordinating Council (WECC) use PSLF for 

transient-stability simulation. 

Unfortunately, when there is a need to explore the interaction between systems whose models 

are built in different software, simulation cannot be performed due to the following reasons. 1) 

Each software has its unique simulation algorithms and modeling techniques. Even standard 

models might not yield the exactly same result in time domain simulation. 2) There are large 

numbers of user-defined models developed in particular software for specific components e.g., 

High Voltage Direct Current Transmission (HVDC) and Static Var Compensation (SVC). 

Replacing them with generic models will generate discrepancies in system dynamics. 3) Most of 

the user-defined models are proprietary and their source code cannot be accessed due to strict 

security concerns. Therefore, it is not feasible to convert power system models with user-defined 

models between multiple software. 

To fully investigate system behaviors and perform wide-area awareness studies between 

interconnections or utilities, a simulation technique that is able to integrate models built in 
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different software is required. For example, Real-time North American Energy Resiliency Model 

(R-NAERM) is one of the offices of Electricity’s priorities to address vulnerabilities in the North 

American energy system [136]. Currently, the compromised solution for whole-system 

simulation is to assume all out-regional systems as static [137]. It defines buses between 

transmission and distribution systems as interface and models of the external systems as a load or 

power source in each simulation step. However, for the simulation of two transmission systems 

with UDMs, it cannot provide a solution since the tie lines between the networks cannot be 

ignored.  

To bridge the gap, this paper proposes a framework to accomplish concurrent running of 

multiple time-domain software for power system electromechanical transient stability analysis 

with retainment of UDMs. The main contribution is preserved user-defined models and allows 

maximum simulation accuracy for power system transient analysis. This co-simulation is 

achieved through federation, in which each simulator runs as its own process and a middleware 

manages the data exchange via transmission line-ties and clock synchronization between the 

simulators considering boundary condition. The power transfers between two simulations are 

exchanged in each time step via its boundary model, which reflects the actual connection in 

transmission/transmission co-simulation.  

The effectiveness of the proposed framework is validated via PSS/E and PSLF co-simulation 

on Northeastern Power Coordinating Council (NPCC) system. It is the first attempt to provide a 

solution for co-simulation in transmission system level with different time domain dynamic 

simulation tools. The proposed framework eliminates the requirement of model conversion in 

either tool and ensures the user-defined models are retained to allow maximum accuracy.  
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A.2. Methodology  

A.2.1. Co-simulation interface and boundary model  

The dynamics of transmission networks can be represented by a set of differential and 

algebraic equations, thus it is feasible that a network can be simulated by dividing into multiple 

sub-systems and analyzing with separate simulators for transient stability analysis[138], [139]. In 

order to avoid divergence problems of co-simulation, the initial power flow of the transmission 

networks must be presented at the same operational point. Defining two transmission networks A 

and B that are connected via I transmission tie-lines, the injected power flow at the 

corresponding boundary buses bus_𝑘  must follow tie-line power flow transfer in time domain, 

which can be present as follow: 

 𝑺 _ (𝑡) = ℎ 𝑺 _ (𝑡), 𝑽 _ _ (𝑡)     (A.1) 

 𝑺 _ (𝑡) = ℎ 𝑺 _ (𝑡), 𝑽 _ (𝑡)     (A.2) 

where t is the time index. 𝑺 _ (𝑡) and 𝑺 _ (𝑡) are the power flow at the terminals of 

the tie line 𝑘  in the transmission network A and B respectively.  𝑽 _ (𝑡) and 

𝑽 _ (𝑡)  are the bus voltage of the tie lines 𝑘  at the transmission network A and B sides, 

respectively. ℎ(. ) is the power flow transfer function of the transmission line boundary model 

between the transmission networks.  

Each individual transmission network simulator may have its own algorithm and swing buses 

for load flow calculation. To achieve an effective information exchange between simulators, only 

power flow on tie lines are exchanged during the co-simulation process where each tie-line is 

modeled as a constant power load. The power flow exchanges on the tie-lines are calculated by 

the transmission line boundary model which depends on how the transmission networks are 
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connected. For co-simulation of transmission networks, it is assumed that when one transmission 

network performs dynamic simulation in a small step 𝛥𝑡 , the dynamic status of the other 

transmission networks remains constant. The changes of dynamic status in one transmission 

network are then propagated to the other network via the boundary models. The equation (A.3) 

presents the impact of a dynamic simulation step in network A from 𝑡 to 𝑡 + 𝛥𝑡 on the power 

flow in network B via the tie line 𝑘  

𝑺 _ (𝑡 + 𝛥𝑡) = ℎ 𝑺 _ (𝑡), 𝑽 _ (𝑡), 𝑽 _ (𝑡 + 𝛥𝑡)   (A.3) 

where 𝑽 _ (𝑡) and 𝑽 _ (𝑡 + Δ𝑡) are the voltage at the terminals of the tie line 𝑘  in 

the A before and after executing a dynamic simulation. The impact from B to A can be obtained 

in a similar way. The co-simulation is implemented by performing dynamic simulation 

alternately at A and B every time step and exchanging the power flow via all the tie-lines. Figure 

A. 1. Illustration of Co-simulation information exchange illustrates the basic concepts of the co-

simulation of two systems A and B, which can be concluded in four steps in each time instant. 

Step 1. All boundary conditional load 𝑺 (𝑡 − Δ𝑡)  at B are calculated 

using 𝑺 _ (𝑡 − Δ𝑡), 𝑽 _ (𝑡 − Δ𝑡) and 𝑽 _ (𝑡) via the boundary model.  

Step 2. The dynamic simulation is executed for transmission network B from 𝑡 − Δ𝑡 to t with 

updated 𝑺 (𝑡 − Δ𝑡).  

Step 3. All the boundary conditional load 𝑺 (𝑡) in A are calculated using𝑺 _ (𝑡), 

𝑽 _ (𝑡 − Δ𝑡) and 𝑽 _ (𝑡) via the boundary model.  

Step 4. The dynamic simulation is executed for transmission network A from 𝑡 to t+Δ𝑡 with 

updated 𝑺 (𝑡). 
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Figure A. 1. Illustration of Co-simulation information exchange 
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Step 5. Then it goes back to step 1 and this iterative co-simulation process is moved on.  

A.2.2. Transmission line boundary models 

In this subsection, PI and simple transmission line boundary models in the co-simulation 

framework are introduced. It is assumed that two transmission networks are connected via n 

transmission line tie lines for demonstration as shown at Figure A. 2. Transmission network A 

and B are connected via n tie lines. The tie lines can be modeled as either simple transmission 

line model or PI transmission line model. Each type of the transmission line boundary models is 

presented respectively as an example for power flow exchange. Assuming the dynamic 

simulation of A network is completed for time index t, the power flow change in A will 

prorogate to B network via tie lines. 

A. PI transmission line boundary model 

Taking the ki PI transmission line boundary model, which is shown in Figure A. 3. PI 

transmission line boundary model for power flow exchange from A to B, as an example, the 

current can be calculated by power flow injection 𝑺 _ (𝑡) and voltage 𝑽 _ (𝑡) as 

𝑰 _ (𝑡) =
𝑺 _ ( )

𝑽 _ ( )

∗

− 𝑽 _ (𝑡) × 𝑗    (A.4) 

where * represents conjugate transpose and b is the capacitance parameter of the PI 

transmission line model. The voltage 𝑽 _ (𝑡) can be calculated as  

 𝑽 _ (𝑡) = 𝑽 _ (𝑡) − 𝑰 _ (𝑡) × 𝒁 _    (A.5) 

where 𝒁 _  is the impedance of the tie line ki. As discussed above, the dynamic status at the 

network B remains constant when the dynamic simulation is executed in network A from 𝑡 to 

t+Δ𝑡. The power flow on tie-line ki is determined by 𝑽 _ (𝑡 + Δ𝑡) and 𝑽 _ (𝑡). The 



 

139 

 

Transmission 
network B

Zline_1= r1 + jx1

bus_1-B
Iline_1

Ground

b1/2 b1/2

Transmission 
network A

bus_n-A bus_n-B

.

.

.

bus_1-A

Zline_n= rn + jxn

 

Figure A. 2. Transmission network A and B are connected via n tie lines 
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Figure A. 3. PI transmission line boundary model for power flow exchange from A to B 
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power flow injection at 𝑺 _  caused by A network can be calculated as 

𝑺 _ (𝑡) = 𝑽 _ (𝑡) ×
𝑽 ( ) 𝑽 ( )

− 𝑽 _ (𝑡) × 𝑗   (A.6) 

Though equation (A.6), the dynamic statues change of bus_𝑘 − A in A network is propagated 

to bus_𝑘 − B  in B network. 

B. Simple transmission line boundary model 

Similar to the aforementioned PI transmission line model, the current at the ki simple model 

tie line can be calculated by power flow injection 𝑺 _ (𝑡) and voltage 𝑽 _ (𝑡) as 

𝑰 _ (𝑡) =
𝑺 _ ( )

𝑽 _ ( )

∗

     (A.7) 

where * represents conjugate transpose. 

 

The voltage 𝑽 _ (𝑡) can be calculated as  

 𝑽 _ (𝑡) = 𝑽 _ (𝑡) − 𝑰 _ (𝑡) × 𝒁 _    (A.8) 

where 𝒁 _  is the impedance of the tie line ki. As discussed above, the dynamic status at the 

network B remains constant when the dynamic simulation is executed in network A from 𝑡 to 

t+Δ𝑡. The power flow on tie-line ki is determined by 𝑽 _ (𝑡 + Δ𝑡) and 𝑽 _ (𝑡). The 

power flow injection at 𝑺 _  caused by A network can be calculated as 

𝑺 _ (𝑡) = 𝑽 _ (𝑡) ×
𝑽 ( ) 𝑽 ( )

    (A.9) 
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Though equation (A.9), the dynamic statues change of bus_𝑘 − A in A network is propagated 

to bus_𝑘 − B  in B network as shown in Figure A. 4. Simple transmission line boundary model 

for power flow exchange from A to B. 

A.3. Simulation Study 

To validate the effectiveness and performance of the proposed framework, a co-simulation 

with two transmission network are implemented with PSS/E and PSLF software. A Python script 

based middleware is developed to control the co-simulation process and exchange data via the 

boundary model at each time step. The time step is 1 ms. Northeastern Power Coordinating 

Council (NPCC) model [140] is utilized to compare the performances of the co-simulation and 

PSSE-only simulation. The NPCC system is composited by a 140 bus and 206 branches and the 

diagram of the NPCC system is shown in Figure A. 5. The NPCC system is divided into two sub-

systems, which are connected via two tie lines: 35-73 and 29-37. The two tie lines are modeled 

as PI model transmission line, and line parameters and voltage level are listed in Table A. 1. 

Summary of tie line information. The sub-system A and B in Figure A. 5. Diagram of 144-bus 

NPCC model for co-simulation test are modeled in PSLF and PSS/E, respectively. Bus 5 and 

Bus 65 are selected as observation bus for comparison. The voltage level of bus 5 and 65 are 345 

kV and 115 kV respectively. The full NPCC system in PSS/E is used as a reference to validate 

the performance of co-simulation.  

A. Generation trip  

A 194 MW and -21.50 MVar generator trip is applied at Bus 61 in B subsystem at 1 second as 

shown in Figure A. 6. Generation trip at bus 61 in NPCC model. Both co-simulation and full 

PSSE model execute dynamic simulation for 10 seconds. The comparison of power flows on the 

tie lines, and frequency and bus voltage at the observation bus are plotted and presented from  
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Figure A. 4. Simple transmission line boundary model for power flow exchange from A to B 

 

 

Figure A. 5. Diagram of 144-bus NPCC model for co-simulation test 
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Table A. 1. Summary of tie line information 

Name Line 37-29 Line 73-35 

Voltage level  345 kV 345 kV 

Resistant (R) 3.5×10  P.U. 2.3×10  P.U. 

Reactance (X) 4.11×10  P.U. 3.63×10  P.U. 

Susceptance (B) 0.7 P.U. 0.38 P.U. 

 

 

 

Figure A. 6. Generation trip at bus 61 in NPCC model  
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Figure A. 7. To Figure A. 10. 

Pearson correlation coefficient, average and maximum deviation between the co-simulation 

and full system measurements are calculated to evaluate the co-simulation performance. The 

calculation windows from the disturbance applied to 10 seconds and calculation results are listed 

in Table A. 2. Generation trip co-simulation error evaluation. It is observed from comparison 

plots and calculation results that the co-simulation results are very close to the full system 

simulation. 

B. Three-phase bus fault 

A three-phase bus fault is applied at 230 kV Bus 62 in B subsystem at 1 second as shown in 

Figure A. 11. The bus fault is cleared at 1.1 seconds. Both co-simulation and full PSSE model 

execute dynamic simulation for 10 seconds. The comparison of power flows on the tie lines, and 

frequency and bus voltage at the observation bus are shown from Figure A. 12. to Figure A. 15. 

Pearson correlation coefficient, average and maximum deviation between the co-simulation 

and full system measurements are calculated to evaluate the co-simulation performance. The 

calculation windows from the disturbance applied to 10 seconds and calculation results are listed 

in Table A. 3. Three-phase bus fault co-simulation error evaluation. It is observed from 

comparison plots and calculation results that the co-simulation results are very close to the full 

system simulation. It should be noticed that the maximum deviation of the two tie lines is 

significantly higher, which is caused by a spike when the disturbance was applied as shown in 

Figure A. 12 and Figure A. 13. The root cause of the spike is that it is assumed that when one 

subsystem executes dynamic simulation, the rest of the sub-systems hold constant in the co-

simulation framework. As consequence, the status of sub-system B had rapid changes when the 

disturbance was applied and cleared, and the sub-system A remained at the status as before the 
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(a) 

 

(b) 

Figure A. 7. Tie line from Bus 73 to 35 power flow comparison with a generation trip: (a) active 
power; (b) reactive power. 
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(a) 

 

(b) 

Figure A. 8. Tie line from Bus 37 to 29 power flow comparison with a generation trip: (a) active 
power; (b) reactive power. 
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(a) 

 

(b) 

Figure A. 9. Bus 65 comparison with a generation trip: (a) Frequency; (b) Voltage. 
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(a) 

 

(b) 

Figure A. 10. Bus 5 comparison with a generation trip: (a) Frequency; (b) Voltage. 
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Table A. 2. Generation trip co-simulation error evaluation  

 
Measurement 

type 

Pearson correlation 

coefficient 
Average deviation 

Maximum 

deviation 

Tie line from 

73 to 35 

Active power  0.9997 0.6756 MW 1.2367 MW 

Reactive power 0.9949 -0.1909 Mvar 0.4197 Mvar 

Tie line from 

37 to 29 

Active power  0.9996 0.7612 MW 1.4544 MW 

Reactive power 0.9950 -0.1347 Mvar 0.3877 Mvar 

Bus 65 
Frequency 0.9999 -1.4193×10  Hz 3.5295×10  Hz 

Voltage 0.9994 -1.4149×10  P.U. 1.0276×10  P.U. 

Bus 5 
Frequency 0.9949 1.6123×10  Hz 1.7×10  Hz 

Voltage 0.9925 6.8620×10  P.U. 1.9182×10  P.U. 

 

 

Figure A. 11. Three-phase bus fault at bus 62 in NPCC model  
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(a) 

 

(b) 

Figure A. 12. Tie line from Bus 73 to 35 power flow comparison with a three-phase bus fault: (a) 
active power; (b) active power. 
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(a) 

 

(b) 

Figure A. 13. Tie line from Bus 37 to 29  power flow comparison with a three-phase bus fault: (a) 
active power; (b) active power. 
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(a) 

 

(b) 

Figure A. 14. Bus 65 comparison with a three-phase bus fault: (a) Frequency; (b) Voltage. 
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(a) 

 

(b) 

Figure A. 15. Bus 5 comparison with a three-phase bus fault: (a) Frequency; (b) Voltage. 
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Table A. 3. Three-phase bus fault co-simulation error evaluation  

 Measurement 

type 

Pearson correlation 

coefficient 

Average deviation Maximum 

deviation 

Tie line from 

73 to 35 

Active power  0.9986 -2.45×10  MW 17.1565 MW 

Reactive power 0.9926 -8.1×10  Mvar 21.7055 Mvar 

Tie line from 

37 to 29 

Active power  0.9991 8.68×10  MW 21.8424 MW 

Reactive power 0.9826 2.45×10  Mvar 41.8466 Mvar 

Bus 65 Frequency 0.9978 -2.598×10  Hz 1.12×10  Hz 

Voltage 0.9835 2.5222×10  P.U. 4.39×10  P.U. 

Bus 5 Frequency 0.9081 -6.7244×10  Hz 8×10  Hz 

Voltage 0.9914 5.9593×10  P.U. 8.4×10  P.U. 
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disturbance was applied and cleared. Then the imbalance status of the voltage at the boundary 

transmission line terminals lead into a power flow jump at the tie lines. The power flow 

deviation was corrected rapidly by the system as shown in Figure A. 12.and Figure A. 13. 

C. Branch trip 

A three-phase branch fault is applied at the branch from 91 to 98 in the subsystem B at 1 

second as shown in Figure A. 16. The tie line parameters are listed in Table A. 4. NPCC branch 

91 to 98 line parameters. The power flows of the branch from bus 91 are 423.6 MW and 139.6 

Mvar respectively. The power flows of the branch from bus 98 are 445.7 MW and 17.5 Mvar 

respectively The Both co-simulation and full PSSE models execute dynamic simulation for 10 

seconds. The comparison of power flows on the tie lines, and frequency and bus voltage at the 

observation bus are shown from Figure A. 17. To Figure A. 20. 

 Pearson correlation coefficient, average, and maximum deviation between the co-simulation 

and full system measurement are calculated to evaluate the co-simulation performance. The 

calculation windows from the disturbance applied to 10 seconds and calculation results are listed 

in Table A. 5. It is observed from comparison plots and calculation results that the co-simulation 

results are very close to the full system simulation. It should be noticed that the maximum 

deviation of the two tie-lines is significantly higher in most measurements, compared to the 

average deviation. It is caused by that the differences between co-simulation and full-PSSE 

model results increased after 6 seconds. The reason for the differences is that there is a status gap 

between subsystems in each co-simulation calculation step and the errors have been cumulated in 

the co-simulation process. Since this disturbance is relatively larger, compared to the generation 

trip and the bus fault cases, the cumulated error in the first several seconds is not obvious.  

It is noted that the values of the simulation time step will impact the performance of  
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Table A. 4. NPCC branch 91 to 98 line parameters  

Name Line 37-29 

Voltage level 345 kV 

Resistant (R) 3.5×10  P.U. 

Reactance (X) 4.11×10  P.U. 

Susceptance (B) 0.7 P.U. 

 

 

 

Figure A. 16. Branch trip from 91 to 98 in NPCC model  
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(a)               

                  

     (b) 

Figure A. 17. Tie line from Bus 73 to 35 power flow comparison with a branch trip: (a) active 
power; (b) active power. 
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(a) 

 

(b) 

Figure A. 18. Tie line from Bus 37 to 29 power flow comparison with a branch trip: (a) active 
power; (b) active power. 
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(a) 

 

(b) 

Figure A. 19. Bus 65 comparison with a branch trip: (a) Frequency; (b) Voltage. 
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(a) 

 

(b) 

Figure A. 20. Bus 5 comparison with a branch trip: (a) Frequency; (b) Voltage. 
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Table A. 5. Branch trip co-simulation error evaluation 

 Measurement 

type 

Pearson correlation 

coefficient 

Average deviation Maximum 

deviation 

Tie line from 

73 to 35 

Active power  0.9992 1.9717 MW 6.2949 MW 

Reactive power 0.9984 -0.5901Mvar 2.2178 Mvar 

Tie line from 

37 to 29 

Active power  0.9992 2.1053 MW 7.3551 MW 

Reactive power 0.9921 -0.4442 Mvar 5.6323 Mvar 

Bus 65 Frequency 0.9996 -4.1552×10  Hz 2.3×10  Hz 

Voltage 0.9988 -4.0401×10 P.U. 8.75×10  P.U. 

Bus 5 Frequency 0.9731 1.3880×10  Hz 1.94×10  Hz 

Voltage 0.9932 2.1436×10  P.U. 1.1×10  P.U. 
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co- simulation in the aspects of the accuracy and running time. The error becomes large with an 

increasing time step. Moreover, When the simulation step is too large (e.g., >100ms ), it will 

cause the simulation unable to converge. On the other hand, a small time step will increase the 

running time of the co-simulation. For the present time step setting of 1 ms, it will take 

approximately 15 minutes to run a 15-second dynamic co-simulation on the 140-bus NPCC 

system. Selecting a smaller time step, for example. 0.1 ms, will effectively reduce the deviation 

but increase simulation time significantly. Another limitation of the proposed framework is that 

if the disturbance location is too close to tie-lines, a spike will occur, which may cause the co-

simulation unable to converge. 

A.4. Simulation Study with large scale system and issues 

To further validate the proposed co-simulation framework, large systems were used for 

testing. However, some issues were found during the test and remain an obstacle for employing  

the proposed framework with large systems.  The issues are presented below and should be 

addressed in the future.  

A. Creating a stable large scale system case 

To create a valid and meaningful test case, the testing cases must have a stable PSS/E or 

PSLF only simulation case as the base case and one stable co-simulation case, which contains 

two subsystems. There are two ways to build a case with the requirements: (1). Split a large 

system and (2). Connect two independent systems with tie lines. For method (1), the subsystems 

in large systems are usually connected with multiple subsystems and it is difficult to find the 

right location to split a large system. Besides that, the split subsystems may become unstable, 

which can not be used in the co-simulation framework. This method has been used for the Great 

Britain system, Electric Reliability Council of Texas (ERCOT) system, and U.S. Eastern 
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Interconnection (EI) system, but none of them were split successfully.  For method (2), it uses 

two stable systems and combines them into one model. Then connect the two systems with tie 

lines. The locations of the new tie lines are very critical for the joint system. If it is not selected 

appropriately, it may cause an unstable issue in the joint system. One safe way to connect two 

subsystems is that duplicate one system and connect the tie lines in similar locations of the two 

subsystems.  

B. Converge issue in large systems 

In the tests with large systems, a converge issue was found in the proposed framework. In the 

large system cases, when one subsystem has some changes during one simulation step, the 

changes are transferred to another subsystem. The changes of another subsystem will cause an 

opposite change at the boundary model, which is different from the case of the NPCC system. In 

this scenario, the changes of tie-line power flow will be amplified dramatically in several 

simulation steps. It can cause a system crash with small disturbances or operation points shifting. 

The reason for the two subsystems changing in two opposite directions is unknown. It will 

require a correction mechanism to rollback the simulation step and change the boundary 

conditions to adjust changes of the subsystems when the unstable issue happens. A correction 

mechanism in distributed simulation area is explained in [141] and it will be a potential 

improvement in the future.  

A.5. Conclusion 

This chapter proposes a time-domain co-simulation framework for transient stability analysis 

of multiple power system models which are connected via transmission lines. A middleware is 

developed to manage the power flow exchange and clock synchronization between simulators 

considering boundary model conditions. The requirement of model conversion of each 
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subsystem is eliminated, which guarantees user-defined models are preserved to allow maximum 

accuracy. The preliminary tests on PSS/E and PSLF co-simulation in the NPCC model 

demonstrate the validity and accuracy of the proposed framework. 
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