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Abstract 
 The process of physical adsorption finds a practical role in wide-ranging fields from 

catalysis, to lubrication, and even optoelectronics.  Furthermore, it provides a mechanism to 

probe the fundamental understanding of intermolecular forces and how symmetries can play a 

role in the behavior of a system.  Linear quadrupoles preferentially adopt square-T configurations 

when confined in two dimensions.  This would lead the system to adopt a four-fold symmetry in 

the molecular lattice.   

 Two archetypal surfaces often studied in physisorption research are MgO (100), which 

has a four-fold symmetry of alternating charges, and the basal plane of graphite, which has a six-

fold symmetry to its non-polar, weakly corrugated surface.  These differing surface symmetries 

provide two test cases for comparison.  In the case of MgO (100), the molecule-molecule and 

molecule-surface interaction are synergistic, both driving the film towards the same symmetry; 

whereas for graphite, the six-fold surface symmetry is incompatible with the preferred four-fold 

interaction symmetry of the molecules.  This presents the opportunity for structurally frustrated 

systems to arise.   

 Acetylene and allene are both simple, linear, rigid hydrocarbons with large quadrupole 

moments of similar strength.  The most distinct variations between these two molecules are size 

and axial rotational symmetry.  These molecules, just like the surface, provide two simple, but 

contrasting symmetry effects.  The simple 𝐷  point group of truly linear molecules of acetylene 

allow for them to lie completely flat against a surface.  The 90-degree dihedral angle between 

the hydrogen pairs on opposing sides of allene molecules prevent them from easily being able to 

lie perfectly flat against the surface, creating another opportunity for broken symmetry in the 

molecule-surface interactions – this instance in the vertical direction rather than the two 

dimensional adsorption plane.   

 This investigation aims to study the behavioral properties of acetylene and allene films 

through thermodynamic, structural, and phase behavior analyses when adsorbed on both 

graphite and MgO.  To this end, a combination of volumetric adsorption isotherms, elastic 

neutron diffraction, and computational modeling have been employed. 
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Chapter 1 – Introduction and Background 
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1.1 – Overview 

 The phenomenon of the physical adsorption of volatile molecules on solid surfaces is a 

topic that has been researched for centuries.  Though often overlooked by laymen, it has found 

a wide range of uses in applied and fundamental studies. The processes involved are inescapable 

to notice even in trivial examples in everyday life if one looks closely enough, from the fog on a 

mirror after a hot shower, to the behavior of one’s hair on a humid day.  More importantly, many 

processes and reactions occur at the boundaries between phases and are the basis of 

heterogeneous catalysis. 

1.1.1 – Early History  

 As far back as 1450, there are records of devices created with the intent to study the 

process of physical adsorption. Leonardo da Vinci, and several of his contemporaries, were even 

known to have observed the process using balances loaded with textile fibers to visualize mass 

changes that resulted from the adsorption of water vapor1-3.  Such devices lead to the 

development of the first simple and reliable hygrometers2.  In the 1780’s, a hygrometer using 

hair was developed that brought such devices to the masses2, and is so reliable that high-end 

hygrometers today still utilize filaments of human hair.   

   The first modern and quantitative research began in 1773, when the reversible uptake of 

air by charcoal was studied by Carl Wilhelm Scheele4.  These experiments with charcoal 

eventually lead in 1814 to the proposal by de Saussure that the adsorption capacity and surface 

area were intrinsically linked.  A few decades later, in 1843, this theory was challenged with the 

conjecture that pores in charcoal played a prominent role in the process3.  It would turn out, in 

time, that both of these viewpoints have validity and were describing two related phenomena: 

adsorption, the binding of molecules to the surface of a solid material, and absorption, the uptake 

of gas into a pore network in a solid material.  The resolution of this and the importance of the 

distinction may not have occurred for several more decades, however, as the first recorded use 

of the term “adsorption” dates to 18833.  The term “adsorption” is now so ubiquitous that it is 

often used as a malapropism to refer to absorption by pores as well as its correct usage as a 

surface phenomenon.  The true growth of this field into a large area of research interest did not 
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occur until the 20th century, as the ability to make pristine, high-surface area materials and the 

improvement and standardization of measurement techniques became a reality1-3, 5. 

1.1.2 – Applications 

 The study of physical adsorption and absorption have been useful in providing great 

fundamental understanding on the nature of intermolecular interactions.  It has provided key 

incites in the area of surface science and statistical mechanics5-10.  Beyond this, it also has 

practical applications in important areas of research such as catalysis11-13, gas storage11, 14, 

separation science11, 15, and optical and thin film electronics11, 16.  Additionally, it plays a role in 

applications encountered more commonly, such as adhesion, lubrication, detergency, and 

corrosion inhibition16.  Charcoal, the substance that initiated widespread interest in these 

phenomena, is now even used as a cheap and effective water filter due to its high capacity and 

ability to sorb many contaminants from solution.  Furthermore, volumetric adsorption isotherms, 

used to analyze the thermodynamics of adsorption, are a standard technique in the assessment 

of specific surface area and porosity of materials3, 5, 6, 8, 11, 16.  High-surface area and porous 

network materials are even finding useful avenues in biomaterials and regenerative medicine in 

the present day17-24 

 A more recent area where these studies find potential usefulness is in the study of two-

dimensional materials.  Since the isolation of graphene less than two decades ago, the search for 

other two-dimensional systems has proved difficult25.  The two-dimensional nature of adsorbed 

monolayer films provides an alternative method for the fabrication and study of such systems.  

While these films often lack the stability and permanence of materials like graphene, the number 

of possible systems that can and have been derived provide many possibilities in the exploration 

of the world of two-dimensional materials.  

1.1.3 – Experimental Methods in Adsorption Science 

 Investigations on thin films seek to characterize not only the process of adsorption itself, 

but also the properties of the phases and structures that result.  These examinations typically 

involve the characterization of thermodynamics, phase transitions, film structure, and dynamics 

(phonons, vibrations, rotations, diffusion, etc.). A large variety of experimental techniques are 

available to this end, having different purposes, some of which may work well for some systems, 
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but not others.  The following will not be an exhaustive list of possibilities, but will largely touch 

on techniques directly relevant to the studies in this work. 

 Perhaps the most widely utilized of these techniques is volumetric adsorption isotherms 

due to their relative ease of measurements and reliable mathematical models.  Isotherms explore 

the adsorbed amounts and capacities of a film as a function of the equilibrium pressure with the 

three-dimensional vapor phase.  These assist primarily in the analysis of the phase behaviors and 

thermodynamics of adsorbed systems26.  Other methods may be used to analyze the structural 

ordering or dynamics of molecules within a film. Alternatively, calorimetry is used to examine the 

enthalpy and specific heats of adsorption and to locate potential phase changes27.  These 

measurements can differ in the direction they pass through the phase diagrams (isotherms are 

constant temperature; calorimetry is at constant coverage), but ideally yield the same or 

complementary information.   

 Surface structure measurements can be either direct (i.e. real space28-30) or indirect (i.e. 

reciprocal space29, 31-33).   The most common and viable forms of direct structural imaging of a 

surface are atomic force microscopy (AFM) and scanning tunneling electron microscopy (STM).  

Both methods are tip-based scanning techniques that are easily capable of atomic scale 

resolution29.  During imaging, the tip remains in close proximity to the surface and itself will 

interact with the surface it is measuring.  For solid surfaces or strongly adsorbed systems with 

chemisorbed molecules or large physisorbed molecules (see section 1.2.1), these interactions 

would not significantly impact the surface structure and reliable real space images can be 

obtained29, 34, 35.  However, in more weakly bound systems, the perturbation of the molecules by 

the probe tip as it scans may significantly alter the structure it is trying to measure5.  Additionally, 

dynamic film structures, those with high equilibrium vapor pressure or high surface mobility of 

molecules, will always be in flux, preventing direct imaging.  Other real space imaging methods 

include field emission microscopy (FEM) and field ion microscopy (FIM).  The best resolution of 

these techniques is approximately 3 Å, falling short of the required resolution for accurate 

structural measurements16.  Furthermore, all of these imaging methods ideally require single 

crystal surfaces, with a comparatively small surface area.  This makes it more difficult, though not 

at all insurmountable, to accurately control the amounts adsorbed. 
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 Indirect structural measurements are those obtained of the reciprocal lattice through 

elastic diffraction experiments (section 1.5).  The three primary types of scattering probes used 

are x-rays, electrons, and neutrons, which are discussed in the introduction to the 

aforementioned section.  These methods are all easily performed on powders and can measure 

an ensemble average structure in both time and space.  The dynamics of adsorbed films may also 

be probed through quasielastic and inelastic diffraction experiments. Quasielastic measurements 

probe small random motions within the film36, 37 (e.g. diffusion) and inelastic diffraction probes 

higher energy motions33, 38 (e.g. phonons and vibrations).  As a result, diffraction represents the 

most common structural analysis tool for adsorbed systems.   

 Computational methods can be used to supplement these experimental methods to 

hopefully provide a clear picture of microscopic behaviors.  These can be used to examine 

preferred adsorption sites between a single molecule and the surface by employing geometry 

optimizations, or as an ensemble of an entire adsorbed system using molecule dynamics 

simulations.  In theory, these are capable of providing the clearest and most direct view of the 

microscopic behavior of a film; thus, these are useful in providing potential explanations of 

observed experimental behaviors.  For example, computational methods may help narrow down 

structural candidates for refinement of diffraction data or the examination of the mechanism of 

melting within a film29. 

1.1.4 – Competition of Symmetries 

 The exact characteristics of two-dimensional adsorbed systems are determined by the 

interplay between the molecule-molecule interactions and the molecule-surface interactions.  

While the type and relative strength of these interactions are critical to describe such systems, 

of equal importance are the relative symmetries of these interactions.  When the symmetries are 

compatible (e.g. three-fold and six-fold), along with the relative size scales, synergistic relations 

between the intermolecular interactions and the molecule-surface interactions can result.  

Conversely, when the systems are comprised of incompatible symmetries (e.g. four-fold and six-

fold), or if the molecular size and surface lattice are too different, competition between the 

molecule-molecule and molecule-surface interactions can result, in turn resulting in potentially 

frustrated structures and interesting phase behaviors.   
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1.2 – Adsorption and Wetting Behavior 
 Adsorption is the physical process that occurs between a fluid phase (liquid or gas) and a 

solid phase, in which these is an increase in molecular density or concentration at the interface 

of these phases39.  While adsorption, therefore, is not limited to gas-solid systems6, 11, the work 

of this dissertation will pertain exclusively to such cases.  The process occurs when the forces 

between free molecules and the substrate surface are sufficiently strong that, when the molecule 

impinge on the surface, they are trapped in a potential energy well and “stick” to the surface.  

The nature of the forces involved govern how strongly molecules can bind and, consequently, 

the properties of the adsorbed film. 

1.2.1 – Types of Adsorption 

 Adsorption processes are divided into two major classifications: physical adsorption 

(physisorption) and chemical adsorption (chemisorption)40.  The distinction between these two 

groups is due to the nature of the molecule-surface interactions.  In chemisorption, the binding 

of molecules to the surface involves the exchanging of electrons, thus forming a chemical bond 

between molecule and surface.  Examples of this are the passive oxidation layers that develop 

on metals like aluminum upon exposure to air41 and the adsorption of thiol-based molecules onto 

metals like copper42 and gold43.  Alternatively, physisorption, as pertains to this study, arises from 

the interaction of intermolecular forces (i.e. van der Waal’s and electrostatic interactions)5, 6, 11. 

 These two processes represent opposing ends on the spectrum of adsorption energies.  

Since chemisorption involves the formation of chemical bonds, it refers to the higher end of this 

spectrum, with a typical range of 100 to 500 kJ mol-1.  At the opposing end lies physisorption, 

with 5 to 50 kJ mol-1 being the normal range6.  Additionally, the average time that a molecule 

remains in contact with the surface varies with the strength of the interaction.  In physisorption, 

the time scales are approximately on the order of nanoseconds,  whereas in chemisorption can 

be on the scale of seconds to even years6.  Though some cases fall in the midpoint between these 

two extremes and may not be considered to be purely physical nor chemical adsorption, this 

classification is an acceptable general reference for most systems. 
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1.2.2 – Surface Wetting 

 Wetting is the term used to describe the way in which a fluid makes and maintains contact 

with a solid surface.  This process is easily observed in relation to bulk phases of matter in the 

behavior of droplets of water or other liquids on a solid surface.  The forces that govern this 

process for bulk condensed phases are the same as those in physically adsorbed thin films.  

Therefore, the description of adsorption in terms of wetting is often used. 

1.2.2.1 – Wetting in the Bulk Phase 

 The most easily and commonly observable form of physical adsorption is the bulk 

condensation of gas phase molecules onto a surface.  An everyday day example of this is in 

condensed water vapor onto the surface of a drinking cup.  One might also observe in this context 

that the nature of the droplets formed can vary depending on the materials the cup is made from, 

whether it be plastic, glass, or metal.  As already mentioned, when a condensed phase forms on 

a surface, it is the relative strength of the molecule-molecule and molecule surface interactions 

that govern its behavior.  In a system of bulk matter, like the droplets on the side of a glass, these 

forces emerge in the form of surface tensions (𝛾) at the resulting interfaces between the surface 

(𝑠), liquid (𝑙), and the interface (or vapor) region (𝑣).  The minimization of surface energy from 

these competing phases leads to the formation of droplets, whose contact angle with the surface 

is given by: 

 𝑐𝑜𝑠𝜃 =  , ,

,
                                       (1.1) 

where 𝜃 is the surface contact angle and 𝛾 , is the surface tension at the interface between the 

two respective phases of the given indices6, 11, 44. 

 Based on the behavior of the contact angle, surface wetting can be broadly categorized 

into three regimes: non-wetting, incomplete wetting, and complete wetting (Figure 1.1).  In the 

non-wetting case, the liquid molecules have no adhesion with the surface, and the liquid forms 

a spherical droplet with a contact angle of 180°.  At the other end of this spectrum, complete 

wetting is defined at a contact angle of 0°.  In this situation, the liquid spreads out evenly on the 

surface into a flat film of uniform thickness.  The intermediate regime between these two 

extremes is incomplete wetting, which is characterized by drops that are truncated spheres with 

contact angles between 0° and 180°. 
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Figure 1.1: Surface Wetting in bulk and adsorbed systems 
A) Contact angle of a droplet 
B) The three cases for wetting in bulk condensed phases 
C) Types of wetting as applied to adsorbed film growth 
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1.2.2.2 – Wetting in Two Dimensions 

 The adsorption of gases onto solid surfaces can result in the formation of molecularly thin 

adfilms with a quasi-two-dimensional nature.  The process involves the strength and competition 

between the molecule-molecule and molecule-surface interactions; thus, adsorbed film growth 

is analogous to bulk wetting and is often described using the same terminology45.  For the 

complete wetting case, the interactions between the molecules and the surface do not strain or 

overwhelm molecule-molecule interactions, and growth occurs in a layer-by-layer process.  With 

incomplete wetting, the intermolecular forces within the film differ significantly from the 

molecule-surface interactions, causing a breakdown of the layer formation process.  Initially, such 

systems may begin with layer growth, but as the number of molecules deposited into the film 

increases, formation of discrete layers is replaced by a continuous transition to the bulk phase.  

A non-wetting case would refer to a lack of adsorption and might seem to be irrelevant to most 

discussions of film growth.  However, systems of complete wetting may demonstrate regions of 

non-wetting in between each layering transition.  A second possibility that is demonstrated for a 

system in this dissertation is a non-wetting transition that immediately transitions into bulk 

condensation without any convergence between the two-dimensional and three-dimensional 

phases.   

1.3 – Forces and Interactions in Physical Adsorption 
 One way to view physical adsorption is that it is simply a consequence of intermolecular 

forces.  This is a gross over-simplification, as is the case of many emergent phenomena when one 

tries to explain them through reduction to their basic physical principles.  The real behavior of 

some adsorbed systems would be difficult or impossible to describe before empirical 

characterization based purely on an examination of these forces, and yet for others, some 

predictions can be made that are obvious.  Whether or not the final state of a system is obvious 

from an examination of the forces involved, physical adsorption is a phenomenon driven purely 

by intermolecular forces of attraction and repulsion5.  These interactions are most generally 

classified into two types: electrostatic and van der Waals5, 16.  Even the latter case here is 

electrostatic in origin when examined closely, the main difference between the two being one of 

strength and distance.  The molecules to be examined in this dissertation have atypical electron 

distributions that result in a polarization most commonly described as a molecular quadrupole.  



10 
 

To understand these systems, a formalism of the concept of a quadrupole must be elucidated, as 

well as a consideration of several different types of van der Waals interactions. 

1.3.1 – Electrostatic Forces 

 For many adsorbed systems, including the ones in this study,  the description of charge 

distribution of the molecule or atom as being either simple monopole or dipole (as is what is 

generally assumed to be the case for ions and polar molecules), is insufficient to accurately 

describe their behavior.  Higher-order multipoles, such as the quadrupole, octupole, or 

hexadecapole moments, often must be considered.  Electrostatic potentials are described in the 

context of Coulomb’s law.  For a fixed point in space, 𝒓, that is located at some location in space 

near a solitary point charge, the electric field at this point, 𝜑(𝒓), is given by46, 47: 

  𝜑(𝒓) =  
|𝒓 𝒓 |

=                          (1.2) 

where, 𝜀  is the permittivity of free space, 𝒓′ is the location of the point charge, and |𝒓 − 𝒓 |, or 

simply 𝑟, is the separation distance from the point charge.  If N number of point charges are 

present, the effective electric field at 𝒓 is simply the cumulative summation of individual point 

charges46: 

  𝜑(𝒓) =  ∑
|𝒓 𝒓 |

                         (1.3) 

Though this formalism does not adequately describe the true nature of how charge within a 

molecule behaves, it does have relevance to molecular dynamics.  For molecules, the charges are 

best described by a continuous charge distribution, 𝜌(𝒓′) (Figure 1.2), and replacing the 

summation above with an integral, the equation becomes: 

  𝜑(𝒓) =  ∫
(𝒓 ) 

|𝒓 𝒓 |
𝑑 𝒓′                        (1.4) 

 While this treatment of charge as a continuous distribution captures the nature of 

electron density within a polarized molecule, solving this equation must be done separately for 

every point in space, making it a computationally demanding proposition.  For points that are a 

sufficient distance outside of the region of charge density, an approximation can be arrived at by 

a Laplace expansion of the 
|𝒓 𝒓 |

 term.  In spherical coordinates, this yields the solution: 

  𝜑(𝑟, 𝜃, 𝜙) =  ∑ ∑ , 𝑌 , (𝜃, 𝜙)                      (1.5) 
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(Top): Gradient arrows show the direction of bond polarity for the acetylene molecule.  
Though the dipole moment is zero due to its symmetry, the pull of electrons towards the 
central carbon atoms results in an unequal distribution of charge (a linear quadrupole) 
(Bottom): More accurate representation of electron density (charge distribution) within the 
molecule.  The vectors shown are a depiction of those used in the derivation as explicated in 
the text 
Figure based on derivation adapted from phys.libretexts.org46 

 

 

 

 

 

 

Figure 1.2: Bond polarity of a quadrupole molecule and the resultant continuous charge 
distribution 



12 
 

where: 

  𝑞 , = ∫ 𝜌(𝒓′)(𝑟 ) 𝑌 ,
∗ (𝜃 , 𝜙 ) 𝑑 𝑟′                        (1.6) 

The function 𝑌 , (𝜃, 𝜙) is familiar as the solutions to spherical harmonics47 (Figure 1.3).  This 

expansion, in essence, approximates the effects of a charge distribution by successive divisions 

of the electric field into angular moments with an increasing number of angular poles.  The value 

of the term 𝑙 refers to particular n-poles for each spherical moment given as powers of 2 .  Hence, 

the monopole moment is at 𝑙 = 0, the dipole at 𝑙 = 1, the quadrupole at 𝑙 = 2, and so forth.  The 

term 𝑚 relates different orientational configurations for each n-pole.  Equation 1.6 represents 

the multipole moment of each term in the expansion. 

 In the cases of molecules like acetylene and allene, the symmetries of the molecules 

means that the first non-vanishing term in the multipole expansion is the quadrupole moment, 

𝑞 ,  (or commonly also Θ), which is a tensor matrix that separates the moment into its 

dimensional components such that48: 

  𝜣 =  

𝛩 𝛩 𝛩

𝛩 𝛩 𝛩

𝛩 𝛩 𝛩
           (1.7) 

and with the electric potential being given by: 

   𝜑(𝒓) =  ∑ 𝛩 𝑟 𝑟            (1.8) 

where 𝑖 and 𝑗 are the dimensional indices of the quadrupole tensor, and 𝑟  and 𝑟  are the 

components of the unit vector from 𝒓 to 𝒓 .  The symmetry classes of these molecules also result 

in the charge distributions having no angular dependence on 𝜙′ , and thus exclude the non-zero 

values of m.  For the m = 0 quadrupole, only the diagonal components of the tensor are non-zero.  

Further simplification also occurs in the symmetry relation of the remaining components such 

that 𝛩  = 𝛩  = -2𝛩 .  The strength of axially symmetric quadrupoles, such as the molecules 

evaluated in this study, can be referred to solely by the value of 𝛩 .49 

 The interaction energy for two linear quadrupolar molecules can be derived by 

considering a second charge distribution region interactive with the first such that: 

  𝑉(𝒓) =  ∫ 𝜑 (𝒓) 𝜌 (𝒓 )𝑑 𝒓            (1.9) 

which, when expanded in a Taylor series, results in the potential energy for two interacting linear  
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Figure 1.3: Representations of the first five orders of the multipole expansion as spherical 
harmonics and the decomposition of complex charge distributions 

A) Decomposes into a linear quadrupole (2 , 0) and linear octupole (3 , 0) 
B) Decomposes into an octupole (3 ,  -3) and a hexadecapole (4 , -2) 
C) Decomposes into monopole (0 , 0) and three dipoles (1 , -1)(1 , 0)(1 , 1) 
Legend for top of figure: green shaded regions are representations of linear multipole 
moments, purple shaded regions are the various non-linear quadrupole moments, the yellow 
region is the linear quadrupole moment.  
Representations of the spherical harmonics solutions were generated in Matlab using the 
spherical harmonics community library add-on50 
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quadrupoles being: 

 𝑉(𝒓, 𝜃 , 𝜃 , 𝜙) =  
 

 × Γ(𝜃 , 𝜃 , 𝜙)           (1.10) 

This is comprised of two components, the first being a function of the separation distance that 

decays as 𝑟 , as well as an angular component that defines the relative orientations of the two 

quadrupoles, shown in Figure 1.4.  The angular function, fully expanded, is51: 

 Γ(𝜃 , 𝜃 , 𝜙) = 1 − 5𝑐𝑜𝑠 (𝜃 ) −  5𝑐𝑜𝑠 (𝜃 ) −  15𝑐𝑜𝑠 (𝜃 )𝑐𝑜𝑠 (𝜃 ) +

                                         2(4 𝑐𝑜𝑠(𝜃 ) 𝑐𝑜𝑠(𝜃 ) − 𝑠𝑖𝑛(𝜃 ) 𝑠𝑖𝑛(𝜃 ) 𝑐𝑜𝑠(𝜙)     (1.11) 

 As a closing comment, it will be important to remember that this formalism describes a 

charge distribution as a superposition of increasing multipole moments.  It assumes the region 

of charge is spherical, and that the multipole moments in this model are simply angularly 

polarized point charges centered at the origin.  Therefore, application of this model directly to 

describe a process like the quadrupole interactions in acetylene will only reasonably be expected 

to work at large enough distances as it overestimates the interaction energies at close range52.  

Nevertheless, it does provide a good starting point to describe the meaning of a quadrupole 

moment and provides a basic model to describe how molecules might be expected to interact. 

1.3.2 – Van der Waals Forces 

 Van der Waals forces are weak interactions between molecules comprised of atoms with 

a typical energy variation of 0.4 to 4 kJ mol-1.  These forces include both attractive and repulsive 

elements that are heavily dependent upon separation distances between interacting species with 

a normal effective range of 3 to 6 Å.  There are several different types of interactions that are 

combined in the description of van der Waals forces: 

 Short range repulsive forces arising from the Pauli exclusion principle53 

 London dispersion forces creating transitory electrostatic moments5, 6, 53 

 Debye forces where permanent electrostatic moments induce transitory electrostatic 

moments in non-polar species6 

 Keesom forces, which are the ensemble average for molecules with orientable 

electrostatic moments at high enough temperature to cause dynamically varying 

orientations6 
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A) Approximation of the charge distribution of a simple linear quadrupole54 with a positive 
𝛩  value. For a negative 𝛩 , the sign of charges are reversed. 
B) Attractive (green dashed line) and repulsive (red dashed line) forces for two interacting 
linear quadrupoles55 
C) Diagram of relative coordinate system for governing the interactions of two linear 
quadrupoles. 
D) Newman Projection along 𝑟 demonstrating the dihedral rotation, φ, for the relative 
coordinate system. 
Representations of the spherical harmonics solutions were generated in Matlab using the 
spherical harmonics community library add-on50 

Figure 1.4:  The interactions of two linear quadrupoles 
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 The Pauli exclusion principle acts on two species when they are at a sufficiently close 

range for the boundaries of their electron clouds to encroach on each other.  The exclusion 

principle will not allow for overlap of these electron clouds, forcing a reduction in electron density 

of both species in the region of close contact.  This in turn reduces the effective shielding of their 

nuclear charges, resulting in a repulsive electrostatic interaction between the nuclei53. 

 London dispersion forces are observable between two non-polar species.  Fluctuations in 

the electron density of one species from the random motion of its electrons result in the creation 

of a transitory electrostatic moment.  The degree of this phenomenon relates to the polarizability 

of the species.  Oftentimes, only the transitory dipole moments need be considered as the dipole 

polarizability is much higher than for higher order multipoles.  Once such an instantaneous dipole 

is created, the charges act on the electron clouds of the surrounding species, inducing the 

creation of more instantaneous dipoles.  These dipoles then interact either attractively or 

repulsively due to the anisotropy of the dipole moments53.  It is perhaps relevant to mention that, 

for axially symmetric molecules, the quadrupole and octupole polarizabilities have had to be 

considered on occasion to explain observations56.  Since van der Waals forces are weak, they are 

usually only significant in the absence of permanent electrostatic potentials.  As such, they are 

most often of importance in the behavior of non-polar species, and it is therefore common for 

the terms “van der Waals forces” and “London dispersion forces” to be used synonymously. 

 Thirdly, Debye forces occur when a polar species interacts with a non-polar species.  The 

permanent electrostatic moment of the polar species induces the creation of instantaneous 

electrostatic moments in non-polar species in close proximity, which then interact.  This inductive 

effect is analogous to London dispersion and can be thought of as permanent-dipole-induced-

dipole interactions to the latter’s instantaneous-dipole-induced-dipole interactions.  Likewise, 

the dipole term is generally the most important in many systems, but higher order multipoles do 

contribute as well53. 

 The last case is that of Keesom forces.  These interactions occur for all types of n-pole 

molecules except the monopole, because they are anisotropic and depend on their relative 

orientation to one another.  In systems with sufficient thermal energy to overwhelm any 

preferred orientation of the interacting multipoles, the orientations become dynamically varied 

dependent on temperature.  The electrostatic interactions between species when viewed for the 
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entire system become disordered and are described by ensemble thermal averaging of the 

electrostatic moments.  The anisotropic nature of multipolar moments means this averaging 

includes both attraction and repulsion.  These forces are quite weak and very short range, but 

they do remain weakly attractive, indicating some degree of preferred orientation remains even 

in the disordered state.  For linear quadrupolar molecules, the potential energy for this type of 

interaction is given by53, 57: 

 𝑉(𝑟) =  
( )

             (1.12) 

where 𝑘  is Boltzmann’s constant and 𝑇 is the temperature of the system.  Note the extreme 

short-range nature of this interaction, which decays with distance by 𝑟 .  For an isotropic 2-

dimensional fluid state that might arise from the adsorption of linear quadrupole molecules, this 

type of attractive force, though often overlooked, would be a major part of the molecule-

molecule interactions within the film. 

1.4 – Structures and Surfaces 
 The idea has previously been introduced that the adsorption behavior of molecules can 

be heavily influenced by the structure, symmetry, and type of interactions they have with the 

substrate surface.  When a solid lattice in three dimensions terminates in a surface, the 

arrangement and incomplete coordination of the surface atoms creates electronic structures that 

are distinct from those of the bulk.  Section 1.3 showed that, for physisorption, all forces that 

govern this process are electrostatic and, therefore, depend heavily on the electronic states that 

exist within the exposed surface of the substrate.  The following discussion will serve to define 

the formalism with which to discuss surface and film structures, the nature of surface-molecule 

interactions, and some possible relationships between film and surface structures. 

1.4.1 – Crystal Lattices in Two and Three Dimensions 

 The structural characteristics of ordered solid materials can be described by an infinite 

tessellation of a fundamental structural unit, referred to as a “unit cell”.  In three dimensions, the 

unit cell can be used to reconstruct the entire lattice using simple translation vectors58: 

  𝑇 = 𝑛 �⃗� + 𝑛 �⃗� + 𝑛 �⃗�          (1.13) 
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where 𝑛  is any possible integer and �⃗� , �⃗� , and �⃗�  are the lattice vectors.  In the case of two 

dimensions, the above equation only requires two vectors59: 

  𝑇 = 𝑛 �⃗� + 𝑛 �⃗�                                                                                                 (1.14) 

These translation vectors can be used to reconstruct a properly defined unit cell for any possible 

lattice system and configuration.  In this two-dimensional case, nomenclature replaces the terms 

“unit cell” and “lattice” with “unit mesh” and “net”, respectively59.  However, it is far more 

common in practice that the three-dimensional terminology is directly applied to two-

dimensional systems without making such distinctions, which will be the case for this dissertation 

as well.  For the case of three dimensions, there are seven lattice systems that can be further 

divided into fourteen Bravais lattices, which further expand into 230 total space groups to 

account for all possible symmetries60.  With the interest of this study lying in 2D lattices, these 

numbers  can be greatly reduced to give only four lattice systems, five Bravais lattices (Figure 

1.5)59, and seventeen wallpaper (or plane) groups (two-dimensional equivalent of space 

groups)61. 

1.4.2 – Lattice Planes, Surfaces, and Miller Indices 

 In crystallography, definitions of directions within the lattice, planes of diffraction, and 

surface exposures are all given in terms of Miller indices, (ℎ 𝑘 𝑙).  These indices can be defined in 

the real space or reciprocal space lattice.  The meaning of “reciprocal space” will be discussed 

later as it pertains to diffraction.  In defining “real space”, the Miller indices correspond to a 

specific lattice plane of the lattice vectors (equations 1.13 and 1.14).  For any given values of ℎ, 

𝑘, and 𝑙, the corresponding lattice plane is that which intercepts the three lattice points: �⃗� /𝑙, 

�⃗� /𝑘, and �⃗� /𝑙32, 58, 60.  Figure 1.6 shows the derivation of several planes for a two-dimensional 

lattice and several families of lattice planes for correspondence to certain Miller indices, which 

reveals several equivalent planes for each family.  As the symmetries of the hexagonal lattice in 

three dimensions are not apparent, a forth index, 𝑖, is often used, corresponding to an axis that 

is 120° from both the x and y axes, where 𝑖 =  −(ℎ + 𝑘), making the index order now (ℎ 𝑘 𝑖 𝑙)60.   

This helps distinguish the similar planes that are rotated by 120° from each other in the hexagonal 

system and is why the carbon layer planes of graphite are described by the indices (0001).   
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Figure 1.5: The five Bravais lattices of two dimensions59 
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Figure 1.6: Relationship between lattice planes and their respective Miller indices 
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 Surfaces of solids are the result of the termination of a solid lattice and can be described 

by the plane along which they terminate.  Therefore, a surface facet of crystal is defined by the 

same notation as these lattice planes. 

1.4.3 – Surface Corrugation, Defects, and Adsorption Sites 

 When a molecule approaches a solid surface, it becomes trapped in the mutual potential 

energy field that exists between the molecule and the surface.  This field is a result of the 

summation of electrostatic and dispersion forces between the entire molecule and the entire 

surface.  Different atoms within the admolecule will have differences in the potential they 

experience between various locations on the surface.  This creates to a location and orientation 

specific variation in the potential energy field across the surface, which is referred to as the 

“surface corrugation”62.  For some substrates, this corrugation is nearly uniform in nature for 

most of the representative molecules, and the impact that the surface geometry will have on that 

of the adsorbed film will be mild38, 63.   In contrast, the surface of metal oxides like MgO are ionic 

and can have a large influence on any non-zero charge distribution possessed by the 

admolecule64.  These surfaces possess a much larger corrugation and stronger influence on the 

position and behavior of the molecule.  Furthermore, the contour of the corrugation will follow 

the symmetry of the surface.  

 The minima in the potential energy corrugation correspond to the adsorption sites for the 

physisorption process.  These are generally located at sites of high symmetry on the surface (i.e. 

atop surface atoms, the mid points of surface bonds, or center points of hollows between atoms).  

The adsorbate molecules want to maximize the interactions it has with the surface in order to 

minimize its potential energy.  For graphite and MgO surfaces, these favorable sites are depicted 

in Figure 1.7. 

 Defects in the surface can have a significant impact on molecular adsorption.  These 

include terrace (or step) defects in the surface, where the surface is displaced by one or more 

lattice planes, atom vacancies, and crystal edges and corners65, 66.  Such places on a surface have 

different coordination numbers than other surface atoms, which can significantly alter their 

polarizabilities or local charge density, changing significantly how they interact with admolecules.  

In the ideal world, surface scientists would work with materials that are pristine and clear of all 

defects.  Some systems in particular are preferred in this area of research because of their 
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Figure 1.7: High symmetry sites for (top) MgO (100) and (bottom) graphite (0001) 
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propensity for large, defect-free, single facet surface exposures (like exfoliated graphite and MgO 

(100)).  However, in the trade-off of increased surface area, some degree of edge effects from 

the finite particle size will always be unavoidable.  Exfoliated graphite offers another type of 

adsorption defect, as the open spaces between lattice planes where the surface exposures are 

can be narrow, especially when compressed, resulting in pseudo-pores being created by the small 

spaces.  This typically manifests at higher vapor pressures but depends on how compressed the 

sample is.    

1.4.4 – Commensurability 

 As has been mentioned, the nature of the film that develops as a result of adsorption is 

the result of synergy or opposition of the molecule-molecule and molecule-surface interactions.  

If the molecule-molecule forces are sufficiently stronger, they are free to adopt structures that   

are not subject to the symmetry constraints of the surface.  However, when the surface-molecule 

interactions are the dominant force, or if the symmetry of the molecule-molecule and molecule-

surface interactions are the same, then the structure of the film will conform to the influence of 

the surface corrugation and its structure will lie in registry with that of the substrate29, 62, 67.  This 

commensurate relationship between film and substrate need not be one to one, but for larger 

molecules, longer range commensurate structures are quite often observed59 (see Figure 1.8 for 

common examples on graphite and MgO).    

1.5 – Neutron Diffraction 
 One of the most useful probes of material structure in two and three dimensions has been 

diffraction.  The three types of radiation most commonly used for this are electrons, x-rays, and 

neutrons68.  Electrons have the advantage of being relatively inexpensive, and extremely surface 

sensitive, but they can cause radiation damage to sensitive systems like adsorbed films and are 

not always a preferred technique.  X-rays are generally quite useful in the studies of films in many 

cases, with the comparatively large number of synchrotron facilities making them highly 

accessible.  X-rays, however, scatter off of electrons are not a sensitive probe for systems of 

lighter atoms with lower electron densities, such as hydrocarbons.  Neutrons, by contrast, scatter 

off atomic nuclei and have a fairly uniform scattering intensity that is not strongly correlated to 

the size of the atoms, with a few notable exceptions of higher scattering cross-sections, such as 
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Figure 1.8: Examples of simple commensurate surface registries for MgO and Graphite 



25 
 

hydrogen.  This makes neutrons an ideal candidate for structural studies for many adsorbed 

films33, 69, 70. The reduced interaction and lower energy of neutrons compared to x-rays of 

comparable wavelength also makes them able to easily probe the dynamics of a system through 

inelastic scattering experiments.  The focus of this dissertation will only be on the analysis of 

elastic neutron diffraction and structural analysis.  As such, the following passages will refer to 

neutrons as the scattering radiation, however, much of the discussed processes are equally 

applicable to other types of scatterers. 

1.5.1 – Scattering Basics 
 As mentioned before in section 1.4.2, the long-range ordering of atoms within molecules 

of a crystal lattice allows for the planes exhibited by the crystal lattice being described by their 

Miller indices (ℎ 𝑘 𝑙).  These planes all have different spacings (“d-spacings”) between them, 

which is a result of the angle at which these planes intersect the lattice.  When radiation of similar 

wavelength to these d-spacings impinges on a crystal lattice, the radiations will reflect these 

planes and can interfere with one another constructively in cases where specific diffraction 

conditions are met; otherwise the waves will interfere destructively, and no reflections are 

seen68, 71. 

1.5.1.1 – Wave Scattering 

 For a traveling beam of neutrons, their momentum gives them a characteristic 

wavelength, λ, defined by the de Broglie equation as72: 

 𝜆 =  
⃗
                              (1.15) 

where 𝑝 is the momentum vector of the particle and h is Planck’s constant; however, a preferred 

formalism in crystallography is to express the momentum of the incoming wave in terms of its 

wave-vector, �⃗�73, 74: 

 �⃗� =  
⃗

ħ
=                                                                                                                                  (1.16) 

To meet the criteria for a scattering experiment, all of the incoming neutrons (or other scattering 

probes) must have the same wave vector, and therefore have the same momentum or 

wavelength.  When an incident neutron scatters off a lattice plane of the sample, it leaves with a 
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new wave vector, �⃗�′ (Figure 1.9).  During elastic diffraction, there is no momentum transfer 

between the neutron and the system, and the magnitude of the wave vectors is conserved68: 

  �⃗� =  �⃗�′                 (1.17) 

When the diffraction is not elastic (i.e. quasielastic or inelastic), momentum is transferred 

between the neutrons and the sample and this condition is not met68. Quasielastic scattering 

involves smalls exchanges of energy between neutrons and the sample corresponding to diffusive 

motions of atoms or molecules.  Inelastic scattering is analogous to the process of Raman 

scattering and provides information about vibrational and phonon transitions, but without the 

optical selection rules that prevent some transitions from being visible with other techniques.  

The change in the wave vector before and after diffraction is described by a new single scattering 

vector 𝑄 73: 

 𝑄 =  𝑘′⃗ − �⃗�                                                                                                                                  (1.18) 

1.5.1.2 – Scattering Conditions 

 In a diffraction experiment, the planes of the crystal lattice act analogous to a diffraction 

grating used in optics.  With optical gratings, the angle at which light leaves the surface as it 

scatters depends on the wavelength of light and the spacing between grooves on the grating.  

Likewise, the angle at which neutrons are scattered during diffraction off a crystal lattice depends 

on the wavelength of the neutrons and the spacing between the lattice planes. 

 The first successful method used to relate the observed diffraction angles to the crystal 

structure are the Laue equations.  Referring back to the definitions established in section 1.4.1, 

a crystal lattice, L, can be defined by a series of points in space defined by the three lattice vectors 

�⃗� , �⃗� , and �⃗�  and a translation vector that is an integer linear combination of these vectors.  

Relating these lattice vectors to the analogy of the optical diffraction grating, the intensity of 

diffraction at a given angle, 𝐼(𝛼), is expressed by the relationship71, 75: 

 𝐼(𝛼) ∝  
 ( )

 ( )
             (1.19) 

where 𝑁 is the number of grooves in the grating, 𝐷 is the spacing distance of those grooves, 𝜆 is 

the wavelength of light, and 𝛼 is the angle of diffraction from the grating.  As the number of  
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Figure 1.9: Basics of scattering vectors, and elastic, quasielastic, and inelastic neutron 
scattering 
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gratings tends towards infinity, the peaks in this function approach delta functions in shape, and 

are located at77: 

 𝐷𝑐𝑜𝑠(𝛼) = 𝑛𝜆                               (1.20) 

where n is an integer.  Expanding on the equations previously established in the previous section, 

the relationship: 

 𝑄 =               (1.21) 

is used to substitute for 𝜆 in equation 1.20. The grating spacing, 𝐷, can also be replaced by the 

lattice constant ‖�⃗� ‖ to yield: 

 ‖�⃗� ‖ 𝑄  𝑐𝑜𝑠(𝛼) = 2𝜋𝑛           (1.22) 

which is a cross-product of the lattice vector in question and the scattering vector. Doing this for 

each of the three lattice vectors yields the three Laue equations71: 

 �⃗� ∙ 𝑄 = 2𝜋ℎ             (1.23) 
 �⃗� ∙ 𝑄 = 2𝜋𝑘             (1.24) 
 �⃗� ∙ 𝑄 = 2𝜋𝑙             (1.25) 

where the left side of the expression is satisfied only if they are integer multiples of 2π.   These 

integers ℎ, 𝑘, and 𝑙 are the Miller indices.  Non-destructive interference will only occur in the 

diffraction pattern if all three of these conditions are met simultaneously.  

 A more intuitive explanation of diffraction is given by Bragg’s Law.  Section 1.4.2 

established that the long-range ordering of atoms or molecules in a crystal lattice allows for the 

description of lattice planes described by their Miller indices (ℎ 𝑘 𝑙).  These planes all have 

different spacings (“d-spacings”) between them, which is a result of the angle at which these 

planes intersect the lattice.  When radiation of similar wavelength to these d-spacings impinges 

on a crystal lattice, it will reflect these planes.  For the case of any particular set of identical lattice 

planes, the reflections off consecutive layers will interfere with one another (Figure 1.10).  

Constructive interference only occurs when exact scattering conditions are met, given by Bragg’s 

Law73: 

 𝑛𝜆 = 2𝑑 𝑠𝑖𝑛𝜃                                               (1.26) 
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Figure 1.10: Bragg's Law model for the diffraction of radiation off of parallel lattice planes 
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where 𝑑  is the d-spacing of the family of lattice planes described a specific set of Miller indices 

and 𝑛 is an integer.  Like with the Laue equations, Bragg’s law shows that diffraction only occurs 

at specific integer multiples of wavelength that depend on the lattice plane spacing in that 

direction.  This can be used to establish relationships between the lattice spacing, diffraction 

angle, and the scattering vector: 

 𝑑 = =
⃗

            (1.27) 

 𝑄 =  sin (𝜃)           (1.28) 

1.5.1.3 – Reciprocal Space 

 For a given lattice in real space, the diffraction conditions result in a series of points that 

correspond to specific wave vectors where constructive diffraction interference has occurred.  

These points make up a lattice in a fictional space with dimensions set by the wave or scattering 

vector rather and, in accordance with equation 1.27, will have units of inverse length.  For this 

reason, this construct is known as the “reciprocal lattice”, which is the Fourier transformation of 

the real space lattice.  The reciprocal lattice is defined by a set of lattice vectors, �⃗� , and a 

translation vector, �⃗�, given by32: 

 �⃗� = 𝑚 �⃗� + 𝑚 �⃗� + 𝑚 �⃗�              (1.29) 

or in two-dimensions as: 

 �⃗� = 𝑚 �⃗� + 𝑚 �⃗�               (1.30) 

The reciprocal lattice vectors, �⃗� , are related to the real space lattice vectors by the following 

relationships58: 

 �⃗� = 2𝜋
⃗ × ⃗

⃗ ∙ ⃗ × ⃗
               (1.31) 

 �⃗� = 2𝜋
⃗ × ⃗

⃗ ∙ ⃗ × ⃗
               (1.32) 

 �⃗� = 2𝜋
⃗ × ⃗

⃗  ∙ ⃗ × ⃗
               (1.33) 

From these definitions, some further relationships between the real and reciprocal space lattices 

can be made.  First, the scalar product of a real space and reciprocal space lattice vector is non-

zero only if the indices of both vectors are the same, meaning they are orthogonal to one another.  

If the indices of the vectors are the same, their magnitudes will be related as: 
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 �⃗� =
‖ ⃗ ‖

                                                                                                                                (1.34) 

Second, the vector �⃗� will be orthogonal to the plane of diffraction in the lattice.  Therefore, this 

derives the reciprocal space definition of the Miller indices.  The integer coefficients of the 

reciprocal lattice vectors in �⃗� are orthogonal to planes in the real space lattice defined by the 

same integers.  Therefore, equation 1.29 can be rewritten as: 

 �⃗� = ℎ�⃗� + 𝑘𝑏 + 𝑙�⃗�           (1.35) 

1.5.1.4 – Diffraction Intensity and Structure Factor 

The diffraction intensity of observed reflections is a complex variable that depends on 

multiple factors.  For the moment, this discussion will ignore the contributions from instrument 

response, thermal displacements, coherence length of long-range order, and a few other factors 

that contribute to what the “peak shape” is and rather focus on the idealized concept of 

diffraction intensity.   

 The diffraction from any particular atom in a lattice depends on the type of atom and the 

type of radiation being diffracted.  X-rays scatter more efficiently from atoms with higher electron 

densities and, therefore, result in more abundant scatter for elements with higher atomic 

numbers.  Neutrons, however, scatter off nuclei and have a more consistent, but random, 

response to not only atomic number, but also to the specific isotopes present.  The intensity to 

which an atom scatters also depends on the direction of scattering and grows less intense as the 

scattering angle increases. The scattering intensity for any reflection from a material depends on 

the type of radiation used, and on the relative positions and orientations of all atoms within the 

unit cell60, 71, 73. 

 The scattering intensity, 𝐼(𝑄) , is described in terms of the scattering amplitude, 𝐹 71: 

 𝐼(𝑄) ∝  |𝐹 |                 (1.36) 

where 𝐹  is the vector sum of the scattering amplitude of all atoms within the unit cell: 

 𝐹 =  ∑ 𝑓 exp [2𝜋𝑖(ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧 )]         (1.37) 

where 𝑓  is the atomic form factor for the nth atom and 𝑥 , 𝑦 , and 𝑧  are the fractional 

coordinates of the nth atom in the unit cell.  The scattering amplitude here is also more 

commonly referred to as the “structure factor” in crystallography. In disordered systems, a 
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similar quantity, 𝑆(𝑄), is similarly referred to by this name78.  In the case of ideal crystals, these 

two functions can be used equivalently to determine diffraction intensities.  However, for the 

purposes of further discussions present in this dissertation, 𝑆(𝑄) will be the more useful form, 

and for  the sake of convenience will be the one referred to by the name “structure factor”, unless 

explicitly stated otherwise.  Instead of being related to the unit cell explicitly, as with 𝐹 , it is 

calculated based on the average of atomic positions within the material.  More explicit functional 

forms of 𝑆(𝑄) will be given in later sections during relevant discussions of the structures of 

molecular dynamics results and of the structures from two-dimensional liquids.   

1.5.2 – Powder Diffraction 

 Most experiments and analyses of adsorbed thin films require materials of high surface 

area for a sufficient amount of film to be present to detect.  This, by nature, means that solid 

substrates will generally be powders or foams.  As a general approximation, the orientation of 

particles within the powder should have no preferred orientation, and all orientations will be 

equally probable79 (note: this is not always the case, but it will serve as a starting point for this 

discussion).  For diffraction experiments, this means that the lattice planes of the sample will be 

randomly oriented with respect to the incoming radiation beam in such a way that a statistically 

significant number of each lattice plane will have the correct orientation relative to the beam to 

satisfy scattering requirements.  The points of the reciprocal lattice in the diffraction pattern are 

smeared out into circles, and only the angular separation, 2𝜃, is conserved.  In other words, it 

simplifies the reciprocal lattice down to a one-dimensional problem dependent on angle, and 

reflections from symmetrically equivalent lattice planes will overlap as a single peak. (Figure 

1.11). 

1.5.3 – Rietveld Refinement 

 The method used to determine structure from powder diffraction is named “Rietveld 

refinement” in honor of the Hugo Rietveld who developed the original process80, 81.  This 

technique uses a least squares approach to refine a structure to fit experimentally measured 

powder diffraction patterns.  The structure factor, 𝐹 , regards the diffraction amplitudes as 

delta functions with precise scattering vectors, i.e. a perfect crystal.  In reality, the diffraction 

intensity profile has width and, furthermore, shape, to which material properties, instrument 
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Figure 1.11: Illustration of powder diffraction and its relationship to reciprocal space 
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configuration, and thermal movements all contribute.  The Rietveld method established the 

formalism for powder diffraction in terms of all of these possible contributing factors.  The basic 

form of this equation looks like81: 

 𝐼(2𝜃 ) = 𝑠 ∑ [𝐿 × 𝑚 × |𝐹 | ×  𝛷(2𝜃 − 2𝜃 ) × 𝑃 × 𝐶 ] + 𝑏         (1.38) 

 where 𝐼(2𝜃 ) is the calculated diffraction intensity as a function of  2𝜃, 𝑠 is a scaling factor to 

match experimental intensities,  𝛷(2𝜃 − 2𝜃 ) is the peak shape function, 𝑏  is the 

background82, and, over the appropriate Miller indices of each reflection, 𝐿 is a Lorentz 

polarization factor, 𝑚 is the peak multiplicity, 𝐹 is the structure factor, 𝑃 is the preferred 

orientation correction, and 𝐶 refers to other fit parameters such as the crystallite size and 

thermal effects.  It is possible to extend this process to refine systems with multiple phases by 

using81: 

 𝐼(2𝜃 ) =  ∑ 𝑠 𝑦 + 𝑏            (1.39) 

where the index 𝑗 corresponds to a given phase, 𝑠  is the scaling factor of the phase, and 𝑦  

follows the form expressed in equation 1.38 excluding the background term, which is treated 

separately from the individual phases if multiple are present.  Though refinement of multiple 

phase systems means the total number of fit parameters increases rapidly and leads to the 

increased likelihood of false solutions, this issue can be mitigated if prior knowledge of both 

phases is already known by focusing the refinement on a narrow subset of fit parameters. 

 More details about specifics of the refinement process that was developed for two 

dimensional systems as part of this dissertation can be found in appendix B 

1.5.5 – Diffraction from Two-Dimensional Systems 

 The formalism covered above described the relationship of structure and diffraction for 

systems of three dimensions.  The basic logical underpinning is the same for diffraction in two-

dimensional systems, however, the simplification of the lattice due to this dimensional reduction 

results in important practical differences that need to be addressed in diffraction analysis.  The 

definition of the real space two-dimensional lattice is given in equation 1.14 and discussed in 

section 1.4.1.  The important detail is that these systems only require two lattice vectors and, as 

a result, two Miller indices (ℎ and 𝑘) need to be defined.  The translation of this reciprocal space 
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lattice is given in equation 1.30, with the vector coefficients 𝑚 being replaced with the Miller 

indices: 

 �⃗� = ℎ�⃗� + 𝑘𝑏                                                                                                                      (1.40) 

The reciprocal lattice vectors, �⃗� , can be related to the real space lattice vectors, �⃗� , via a Fourier 

transformation, just as in three dimensions.  This transformation establishes the following 

relations between the vectors of the two lattices: 

 �⃗� = 2𝜋 ° ⃗

⃗ ∙ ° ⃗
            (1.41) 

 �⃗� = 2𝜋 ° ⃗

⃗ ∙ ° ⃗
           (1.42) 

where 𝑅 ° is a 90° rotation operator.  Similar to three dimensions, it can be seen that these 

relationships in two dimensions establish the same orthogonality. 

 The d-spacings of reflections from lattice planes of the two-dimensional lattice can be 

calculated as: 

 𝑑 =               (1.43) 

In reference to the real space lattice vectors in two dimensions, the d-spacings formulation 

depends on the family of two-dimensional lattice systems61: 

 Square (‖�⃗� ‖ = ‖�⃗� ‖ = 𝑎 , 𝛾 = 90°) 

 =  
                                                                                                                              (1.44) 

 Rectangular (‖�⃗� ‖ ≠ ‖�⃗� ‖ , ‖�⃗� ‖ = 𝑎 , ‖�⃗� ‖ = b , 𝛾 = 90°) 

 =   +                  (1.45) 

 Hexagonal (‖�⃗� ‖ = ‖�⃗� ‖ = 𝑎 , 𝛾 = 120°) 

=  
                                                                                                                    (1.46)                 

 Oblique ((‖�⃗� ‖ ≠ ‖�⃗� ‖ , ‖�⃗� ‖ = 𝑎 , ‖�⃗� ‖ = b , 𝛾 ≠ 90°) 

 =   +   −           (1.47) 

 It is imperative to make some notes regarding symmetry multiplicity for the different 

lattice types.  In the square lattice, ℎ and 𝑘 are interchangeable and planes such as the (0 1) and 

(1 0) are equivalent.  In the rectangular case, the lattice vectors are different magnitudes, the 

symmetry is reduced, and permutations where |ℎ|  ≠ |𝑘|, such as (0 1) and (1 0) or (1 2) and the 



36 
 

(2 1), are no longer equivalent, but when |ℎ| = |𝑘|,  such as (1 1) and (1 1), the symmetry still 

holds and these planes are equivalent.  The oblique lattice breaks the symmetry yet further, such 

that even planes where |ℎ| = |𝑘|, like the (1 1) and (1 1), will not be equivalent.  The symmetry 

of the hexagonal family is different as a result of its rhomboidal Bravais lattice vectors. Reflections 

such as (0 1) and (1 0) are symmetrically equivalent, yet reflections like (1 1) and (1 1) are not. 

 In the case of diffraction studies of systems with two-dimensional ordering, an important 

distinction exists with regards to the scattering requirement.  To consider these requirements 

more closely, it helps to refer to the Laue equations (equations 1.31 to 1.33).  With only two 

lattice vectors, only two of these equations should need to be satisfied in order to meet the 

requirements for diffraction.  But the incoming wave vector, �⃗�, is still a vector existing in three-

dimensional space, and for multiple relative orientations of the wave vector relative to the 

reflection plane, this means that part of this three-dimensional wave vector can be projected into 

two dimensions, with less intensity as the z component perpendicular to this plane becomes 

more dominant.  In other words, the third Laue equation may still be satisfied by a continuum of 

𝑙 values instead of discrete quantities and reciprocal space is comprised of parallel rods instead 

of points32, 83.  

 The phenomena of two-dimensional diffraction was first realized by B.E. Warren in the 

study of randomized planes of graphite32.  The covalent network of the individual layers still held 

long-range order within the plane, but the c-axis of the graphite crystals were no longer ordered.  

The observed diffraction pattern followed a “saw-tooth” like appearance with a sharp rise on the 

low 𝑄, followed by a more exponential-like decay towards higher 𝑄 values after the peak (Figure 

1.12).  He derived a formulation for the structure factor, 𝐹 , that accounted for the angular 

dependence on diffraction of this continuum of 𝑙32:      

 𝐹 =  ∑ 𝑓 exp 2𝜋𝑖(ℎ𝑥 + 𝑘𝑦 + (𝑠𝑖𝑛 2𝜃 − 𝑠𝑖𝑛 2𝜃 ))         (1.48) 

where 𝜃  is the minimum angle required for diffraction (diffraction angle when 𝑙 = 0).  Warren 

assumed long-range order of the two-dimensional lattice in this formulation, and while this form 

has been used to analyze diffraction from adsorbed systems before, the assumption of long-

range order in such two-dimensional systems is not generally valid84.  As a consequence of 

thermodynamic fluctuations, it is not possible under normal circumstances for long-range order 

to develop85.  An exception is for highly synergistic commensurate relationships with a substrate  
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Figure 1.12: Diffraction pattern of butane film on MgO showing lineshapes characteristic of 
two-dimensional systems 

Taken from Structure of an n-butane monolayer adsorbed on magnesium oxide (100)86 
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that can protect the system against these divergent fluctuations.  Alternatively, in some cases, 

the system is better treated as being partially disordered and described using the other definition 

for structure factor, 𝑆(𝑄).  Several line shapes have been used to describe the form of 𝑆(𝑄) in 

adsorbed systems, such as convolutions of Gaussian, Lorentzian, Lorentzian squares, and power-

law distributions83, 84, 87.   

1.6 – Molecular Dynamics 
 While diffraction is a useful tool to probe the structure and dynamics of adsorbed 

systems, there is no experimental technique that can provide an actual, high quality, real space 

picture of a dynamic phyisisorbed film’s behavior at the molecular level.  Computational 

simulations help to fill in this gap with the prospect of providing an intuitive picture to 

complement other experimental data88.  Unfortunately, computations that can accurately 

account for the full quantum mechanical effects and ab initio molecular dynamics are 

computationally demanding and calculation times increase rapidly with the number of atoms in 

the system, quickly becoming unfeasible.  With desktop computers, this scope might be limited 

to less than 100 atoms and 10 picoseconds89   

 A more feasible approach is to employ simpler molecular dynamics computations, which 

have been made possible through the development of generalized, but highly accurate, force 

fields that can describe systems using simple Newtonian mechanics with low computational 

demand7.  This greatly expands the size of systems and the length of time scales that can be 

examined.  Inevitably, though, these force fields are only approximate representations of the 

intermolecular potentials of real systems and are not always an accurate representation.  Despite 

this, the generalized form of most forcefields enable modification of the potentials used and 

allow refinement of force fields to be in better agreement with experimentally observed results. 

1.6.1 – Calculations of Force 

 The basic premise of molecular dynamics is the numerical iteration of the Newtonian 

equations of motion: 

 𝐹 (𝑡) = 𝑚 𝑎 (𝑡)            (1.49) 

In order to calculate the forces present in the system at each time step, the potential energy 

interactions between all objects in the simulation box are calculated using atomic potentials that 
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are usually assigned through the use of generalized force fields, but when more specific accuracy 

is required, custom, system-specific potentials are also used. 

1.6.1.1 – Force Field Parameterization and Intermolecular Potentials 

 The non-bonding energies in molecular dynamics simulations are comprised of van der 

Waals and electrostatic terms.  The classic functional form of the latter case is the 12-6 Lennard-

Jones potential: 

 𝑉 (𝑟) = 4𝜀 −           (1.50) 

where r is the separation distance between the two atoms, 𝜀 is the depth of the potential energy 

well, and 𝜎 is the distance at which the potential energy is zero.  The minimum of this function is 

found at 𝑟 = 2 / 𝜎. Though rarely applied in most force fields due to the extra calculations 

required, a possible extra term can be added to the van der Waals interactions to account for 

higher order relations, such as 3-body interactions.  

 Electrostatic interactions are often calculated by the placement of point charges on 

atoms, and the potential energy is calculated through Coulomb’s Law: 

 𝑉 (𝑟) =  𝜅               (1.51) 

where r is the distance between two atoms,  𝜅 is Coulomb’s constant, and 𝑞  is the charge value 

assigned to the point charge.  Dipoles and higher order multipoles are approximated by the 

placement of point charges that ideally correspond to the charge distributions and various 

multipole moments of the molecule.   

 While not exclusively true, most modern generalized force fields use “atom type” 

assignments90, 91.  An example of how this process works is for water molecules.  The force field 

would assign the hydrogen in the molecules to the atom type of a “polar H”, and sometimes more 

specifically “polar H bonded to O” or “O/F”.  The oxygen molecule might receive the atom type 

assignment of “O sp3 generic”, or if the forcefield has a specific consideration for water, it might 

be “O sp3 water.”  Each atom type characterized by a force field will have specific 

parameterizations for each type of interaction and the atom type of the species the interaction 

takes place with through a combination formula.  The Lennard-Jones parameter, 𝜎, for an 

interaction between a hydrogen of one molecule of water with an oxygen of an adjacent 

molecule of water, for example, might be calculated: 
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 𝜎 =
^  ^

              (1.52) 

The point charge values are usually assigned through a “bond-increment” method, in which each 

bond in the molecule receives a partial charge that relates to the atom types of both atoms that 

comprise the bond90, 92.  The point charge value assigned to each atom is the sum of the partial 

charge values of each bond.  Returning to the example of water, the point charge assigned to 

oxygen would be calculated by examining the H-O bond.  The atom type of each atom would be 

considered as “polar H bonded to O” and “O sp3 water” for a particular force field.  This bond 

type would receive a partial charge value from the forcefield.  For a simple example, -0.2 e-, done 

for each bond in water, results in the total point charge for oxygen being assigned as 0.4 e-.  

 Hydrogen bonding, though primarily an electrostatic force, is an interaction type that is 

not handled well by the electrostatic bond-increment method utilized by some force fields.  As a 

result, some force fields have an explicit hydrogen bond potential function on top of the van der 

Waals and electrostatic functions to account for the effect.  Other force fields use special 

adjustments in their van der Waals parameters to act as a correction to the electrostatic 

potentials instead of using a third intermolecular calculation. 

 The parameterization of a force field is a trade-off between generality and specificity.  It 

is not practical to program an atom type for every specific molecule possible, so the parameters 

need to be minimal enough to keep the design simple and generalized, while still containing 

sufficient specificity to maintain accuracy.  In a well-developed force field, this compromise 

should still result in good accuracy for most systems. However, there will inevitably be some 

molecules or interactions that will not be well-accounted for by such generalization.  In the topic 

of this dissertation, acetylene is an example of one such molecule where standard potentials, and 

even bespoke potentials, have fallen short of matching empirical data.  

 There are not only other potentials that can be used to alter a force field to match a 

specific system’s behavior, but also different functional forms for the potential energy 

calculations.  The van der Waals terms might be described by a 10-4 or a 9-6 or other varients, 

corresponding to different exponent values in the equation to modify the strength of the 

attractive or repulsive forces93.  Other functions include the Buckingham potential62: 

 𝑉 (𝑟) = 𝐴𝑒𝑥𝑝(−𝐵𝑟) −             (1.53) 
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which modifies the repulsive term of the Lennard-Jones potential with an exponential term, 

serving to “soften” the repulsive forces of the potential while keeping the same 𝑟  attractive 

dispersion term. The A, B, and C terms are interaction-specific constants.  Another possibility is a 

damped Morse potential94: 

 𝑉 (𝑟) = 𝐴([1 − 𝑒𝑥𝑝(−𝐵(𝑟 − 𝑟)] − 1) −  𝑓           (1.54)  

where A, B, C, and 𝑟  are the interaction specific constants and 𝑓  is an interaction specific 

damping function.  Morse potentials generally have significant attractive and repulsive terms that 

are much too strong to represent intermolecular van der Waals forces, and so the damping serves 

to correct this imbalance while providing more degrees of freedom in fitting the potential terms 

to empirical data.  

 Electrostatic interactions are also often improved upon by higher-order approximations 

than those of simple point charges95.  Such considerations might include the addition of further 

point charges located throughout the molecule, such as between bonds or at the center of mass.  

Higher-order multipole expansions might also be used at each atom position, replacing the use 

of singular point charges with combinations of point charges, point dipoles, quadrupoles, or other 

n-pole moments.  Expansion of the force field with customized van der Waals functions or the 

addition of large numbers of multipoles is costly, however, as these usually involve a significant 

increase in the computational demands required.  As such, these types of modifications should 

be considered carefully and attempts to keep the model as simple as possible while maintaining 

accuracy should be made. 

1.6.1.2 – Intramolecular Potentials 

 To account for different internal degrees of freedom within molecules, force fields also 

must parameterize these bonding energy terms as well.  These include bond stretching, angle 

bending, torsions, and inversions.  Furthermore, class II forcefields also account for the 

interactions of these internal modes with cross terms, such as a torsion-stretch coupling.   For 

force fields that make use of the atom type assignment method described above, the same 

method is employed for the determination of these intramolecular components.  The functional 

form of such components may vary from one forcefield to another, but a common form of these 
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is a harmonic approximation where the molecular bond is treated as a network of springs 

connecting the different atoms90: 

 𝐸 =  (𝜃 − 𝜃 )                                                                                                                  (1.55) 

where 𝐸  is the energy associated with a bonding type interaction, 𝐾  is the force field 

assigned force constant, and 𝜃 and 𝜃  are the current and equilibrium angle, respectively.  

Inversion motions are more complex as they involve the relative angles of three bonds about a 

central atom; however, these are often approximated the same way by using the average value 

of the three bond angles in what is referred to as the “Mean Wilson approximation”.   

1.6.1.3 – Constraints and Restraints 

 To save computational expense and create a more idealized system to examine for 

interactions, constraints can be placed on parts of the system.  In the case of adsorption studies, 

for example, the internal movements of the substrate material itself do not have a significant 

impact on film behavior but calculating their movements will add significantly to the 

computational expense of the endeavor.  Displacement of the surface in small simulation spaces 

may also cause significant alterations to the overall surface corrugation, limiting the total 

accuracy of the simulations.  By applying constraints, it is possible to “freeze” the surface atoms 

into geometrically optimized positions.  These constraints mean that the forces acting on these 

atoms no longer need to be included in the calculations.  Forces they induce on unconstrained 

particles are still considered, however, so this will not alter the substrate effects on molecules in 

the system. 

 A tool similar to a constraint is a restraint.  This allows for the addition of parameters not 

explicitly included in the force field.  For example, the Compass forcefield lacks a parameter to 

control torsions along the axis of a molecule when more than four atoms are involved in the 

torsion plane.  In the case of allene and its family of cumulene molecules, this means that the 

torsion angle of the two perpendicular bond planes at opposite ends of the molecular axes (refer 

to section 1.9.2 for structure of allene) are not considered in the potential energy calculations, 

and the torsion angle is free to rotate with respect to the force field.  A constraint cannot be used 

as a viable solution here utilizing software like Materials Studio, as only absolute atomic 

coordinates may be constrained, not relative coordinates within a molecule.  If a constraint were 
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applied, it would lock this parameter entirely, creating a situation that may not be any more 

realistic than the system without the constraint.  A restraint is treated like a potential energy 

term within the force field that is assigned directly by the user.  In the case of allene, a harmonic 

torsion restraint may be defined for the axial torsion angle and assigned a force constant that 

can be obtained through empirical data or other computational methods.  This will allow for a 

potentially more accurate representation than that seen in the uncorrected or constrained 

molecule. 

1.6.1.4 – Temperature and Thermostats 

 In thermodynamics, temperature is defined by its association with the average kinetic 

energy of a system96, 97.  Molecular dynamics simulations use this definition to calculate the 

temperature by averaging the kinetic energy of all the particles in the system:97 

 𝑇 =  〈∑ 𝑚 ‖�⃗� ‖ 〉           (1.56) 

where 𝑇 is temperature, 𝑁 is the number of particles,  𝑘  is Boltzmann’s constant, 𝑚  is the mass 

of particle 𝑖, and �⃗�  is the velocity of particle 𝑖.  The simplest thermostat is called the velocity 

scale thermostat. In this method, the velocity of all particles in the system are rescaled in order 

to maintain an exact temperature at each time step: 

 𝑣 = 𝑣               (1.57) 

where 𝑣  and 𝑣  are the rescaled and initially-calculated velocities, respectively, and 𝑇  and 

𝑇  are likewise the set temperature and calculated temperature of the simulation box.  This 

method is incredibly harsh to the dynamics of the system as the abruptness of the temperature 

regulation serves to dampen the thermodynamic fluctuations that should be inherent to a 

system, often resulting in physically unrealistic behaviors.  Thermostats with greater accuracy 

attempt to maintain more realistic thermal dynamics of the system while maintaining 

temperature.  For systems near equilibrium, the Nosé-Hoover-Langevin (NHL) thermostat is a 

reliable algorithm.  This method works by instituting an extra degree of freedom to the system 

that represents contact of the system to a fictious heat-bath. The energy of this new total system 

is held constant, instead of directly regulating only the simulation space, and the expression for 

this constant total energy,  𝐻 , is88 
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 𝐻 =  𝐸 + 𝐸 + 𝜁 + 𝑁𝑘 𝑇 ln(𝑆)         (1.58) 

 where 𝐸  and 𝐸  are the kinetic and potential energy of the system as already defined, 

respectively, 𝑄 is a mass term associated with the heat bath, and 𝜁 and ln(𝑆) are position and 

velocity terms related to the fictious degree associated with the thermostat heat bath, 

respectively.  The new associated equations of motion are: 

 =  𝜁              (1.59) 

 = − 𝛾𝜁 +  �̇�          (1.60) 

where 𝛾 is the decay time constant affiliated with the strength of the stochastic process and �̇�is 

a Wiener process.  This thermostat does not function well for systems far from equilibrium and 

may cause unphysical results in the initialization of a new simulation space as molecules are 

packed too closely.  A method to circumvent this might be to start a simulation for several 

picoseconds with a velocity scale thermostat in order to initiate the system in a more realistic 

position, though a better practice would be to set the initial placement of molecules to avoid this 

problem if possible.   

1.6.1.5 – The Compass Force Field   

 The force field employed in this study is the COMPASS force field, which is a proprietary 

force field that is incorporated into the Materials Studio software.  COMPASS is an empirically 

derived class II force field that has been well-validated for many light molecule and hydrocarbon 

systems90.  The total energy calculation of COMPASS is the sum of individually calculated bonding 

and non-bonding parameters: 

 𝐸 = 𝐸 +  𝐸 + 𝐸 +  𝐸 +

                              … + 𝐸 +  𝐸 +  𝐸                            (1.61) 

The use of the 9-6 Lennard-Jones potential serves to “soften” the short-range repulsive 

interactions but comes with a trade-off of less accuracy for the attractive dispersion forces at 

long range.  

 The forces at each time step are calculated by means of analyzing the gradient of the 

potential energy field: 

 − = 𝑚               (1.62) 



45 
 

The forces acting on each atom in the system are calculated for each step, out to a predetermined 

cut-off distance to limit computational demand, and from that velocities are calculated and the 

system is moved ahead to the new positions at the next time increment, where the process 

repeats. 

 Even with the ability to potentially compute the dynamics of systems with thousands of 

atoms efficiently, there are still upper limits to simulation size.  Furthermore, any finite box will 

suffer from unrealistic conditions at the boundaries of an open system.  To account for the 

comparatively infinite size of real systems compared to a simulated one, and to prevent issues at 

the edges of the simulated space, periodic boundary conditions are used to wrap the edges of 

the simulation space back on itself to create a closed system.  If a particle leaves the edges of the 

simulated environment, it will reenter on the opposite edge of the space97. 

1.6.2 – Trajectory Analysis 

 Trajectory documents are generated as the result of molecular dynamics simulations 

which store the positional and velocity data for all species in the simulation box at some selected 

interval of simulated time.  Generally, storing every calculated time step as a frame in the 

trajectory is not necessary and would require a significant amount of extra storage capacity.  A 

quick analysis of these trajectories can be made by qualitative observations of the animation of 

these trajectories into movies.  These are extremely useful in providing an image of the 

microscopic structural and dynamic behavior of a system.  However, quantitative information 

obtained from these is more practical for understanding the time average, long range, and 

variations in the behavior of the systems over time, as well as in providing a meaningful 

comparison to empirical results.  

1.6.2.1 – Radial Distribution Functions 

 The radial distribution function, 𝑔(𝑟), is a useful tool in examining the structure of a 

system. This paired correlation function gives the probability of finding a second particle at a 

given radius centered on a particle.  Doing this on an atom by atom basis, while including more 

information about the orientational relationships of molecules to one another, is difficult to 

interpret due to the increased number of peaks concomitant with the association of each atom 

in a molecule to each atom in every molecule around it.  In practice, this generates data of such 
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complexity that it is difficult or impossible to interpret.  Alternatively, using the radial distribution 

function of only the centers of mass for each molecule provides a much clearer picture of the 

translational order of the system. In two dimensions, the radial distribution function is defined 

as98: 

 𝑔(𝑟) =  ×                                                                                                                                           (1.63) 

where 𝑟 is the radial distance, 𝜌  is the two-dimensional number density (particles per unit 

area), and  is the rate of change of particle count as a function of radius.  In simulations, 

however, this is calculated by numerically histogramming particle counts as a function of radius: 

 𝑔(𝑟) =  ×
( ∆ ) ( )

∆
                                                                                            (1.64) 

where 𝑁(𝑟) is the number of particles found between zero and radius 𝑟.  In other words, it is the 

expectation value of the number of particles found in a circular shell between radii of 𝑟 and 𝑟 +

∆𝑟.  

 This function provides the ability to examine the time-averaged structural variation and 

extent to which a system is ordered or disordered.  It can also provide a clearer picture of what 

the preferred structure is in a dynamic, disordered system.  As a function of temperature, this 

can help provide an indication of where phase changes might occur within the simulations by the 

observed changes in the amount of disorder present.   

 Since the function represents the probability of finding a particle at a given distance, the 

integral of this function around each peak represents the coordination number at that distance 

from the center. The widths of these peaks are an expression of the variation in position expected 

at each site as it relates to radial axis.  Additionally, since this is an average over all particle centers 

in the system, it provides information about the degree of isotropic translational disorder of the 

system within the two-dimensional plane.  Its relation to the structural elements of the system 

means it can also be related to the structure factor as78:  

 𝑆(𝑄) =  1 +  𝜌 ∫ 𝑒 𝑔(𝑟)𝑑𝑟                                                                                          (1.65) 

Furthermore, the combined variation in the potential energy variation molecules can be related 

to 𝑔(𝑟) at low surface coverages and film densities (i.e. adsorbed gas phases).  As an 

approximation, this relationship is given by78: 

 𝑉(𝑟) = −
[ ( )]

            (1.66) 
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1.6.2.2 – Concentration Profiles 

 The radial distribution function is a useful tool for analyzing the translation structure and 

order of a simulated film; however, since it only focuses on the centers of mass, and only looks 

at radial distances within the two-dimensional plane,  it does not provide information about the 

orientation of the molecules perpendicular to the surface plane, nor any information about the 

distance between the film and substrate surface.  To better quantify this information, 

concentration profiles can be used.  Similar to radial distribution function, concentration profiles 

are linear probability distributions of particles along a pre-defined axis of the simulation box.  

Performed along an axis that is perpendicular to the film and substrate surface for all atoms of 

the system, this provides information about the vertical ordering and orientation of molecules in 

the simulations.  

1.6.2 – Geometry Optimization and Energy Minimization 

 While not themselves molecular dynamics simulations in the truest sense, the force fields 

applied in dynamics studies can also be used to determine the minimum energy configurations 

of a system.  For a single molecule on a substate, they can be used to examine possible preferred 

adsorption sites and their associated binding energies, as well as yield some information about 

the corrugation of the surface potential.   

 Several efficient algorithms exist for locating minima that can be utilized in such 

geometric refinement99.  Gradient decent algorithms measure the derivative of the phase space 

around its current location within that space. It will move in the direction of the steepest gradient 

from its current position to define a new position for the next step in the iteration.  This method 

tends to have slow convergence, but high accuracy.  There are modified versions of this algorithm 

that combine the process with line searches to locate optimized starting positions through a one-

dimensional sampling of the phase space.  It is also possible to sample multiple points in the 

direction around the current location to find a mutually shared gradient and move in that 

direction to improve convergence.  Algorithms based on modified forms of the Newton-Raphson 

method are common as well, which incorporates consideration of the local curvature in addition 

to the gradient in order to determine what direction to move in.   

 A difficulty in the process, even with efficient algorithms is the complexity of the potential 

energy function even for just a single molecule, as is demonstrated in equation 1.61.  It is 
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therefore very easy for such calculations to become stuck in localized minima and not locate the 

absolute global minimum for the preferred binding sites.  The process should be repeated 

multiple times with varying initial conditions to examine a realistic portion of the total phase 

space of configuration energies.     

1.7 – Adsorption Isotherms 
 The most recognizable experimental technique in the study of adsorption processes is the 

adsorption isotherm.  The goal of an adsorption isotherm measurement is to determine the 

amount adsorbed as a function of the equilibrium vapor pressure at a constant temperature.  In 

three dimensions, PVT phase diagrams are often created based on the three thermodynamic 

quantities pressure, specific volume, and temperature.  The normal representation of a phase 

diagram as a function of temperature and pressure is the projection of the PVT phase diagram 

along axis of specific volume.  In two dimensions, one can envisage a PAT phase diagram, that is 

a function of pressure, specific area, and temperature. 

 In an adsorbed system, the surface area for adsorption is a fixed quantity of the substrate 

sample, and the specific area is proportional to the number of moles adsorbed to the surface.  

Therefore, a PNT phase diagram of an adsorbed system can also be constructed in terms of 

pressure, moles absorbed, and temperature.  Adsorption Isotherms therefore are measurements 

follow lines of constant temperature along the surface of this phase diagram100. 

 These experiments can use either volumetric or gravimetric techniques to determine the 

amount of adsorbed molecules as a function of equilibrium vapor pressure.  The method used in 

this dissertation is volumetric and will be the method discussed herein.  

1.7.1 – The Volumetric Isotherm Process 

 The process of the volumetric adsorption isotherm begins by introducing a specific 

pressure, 𝑝 , of adsorbate gas into a calibrated manifold volume, 𝑉 .  This aliquot of gas is then 

expanded into a temperature regulated cell containing the substrate sample.  As the sample 

adsorbs onto the surface, the pressure falls until the film reaches equilibrium with the vapor 

pressure of the bulk gas phase.  The equilibrium pressure at this point is recorded as the current 

vapor pressure, 𝑝 , and the quantity of moles adsorbed is tracked through the difference 
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between the initial dosing pressure of the aliquot and the final equilibrium pressure for the dose, 

∆𝑝: 

 ∆𝑝 =  𝑝 − 𝑝                (1.67) 

This process is then repeated by additional introductions of new aliquots of gas and further 

monitoring of the equilibrium and changes in pressure.  The sample cell is not at the same 

temperature as the calibrated manifold and has voids which add additional volume, referred to 

as dead-space volume (𝑉 ).  The changes in pressure are not only a result of molecules leaving 

the bulk gas phase during adsorption but are also the result of the increased volume and 

decreased temperature.  To calculate the moles of gas that adsorbed to the surface, a dead space 

correction is used to account for these other shifts in pressure: 

 ∑ 𝑛 =  
∑ ∆

−            (1.68) 

where j is the index for each isotherm data point in the dosing sequence, 𝑇  is the temperature 

of the calibrated volume (which is safely considered to be room temperature), 𝑇  is the 

temperature of the cell containing the substrate (the isotherm temperature), and R is the gas 

constant.  The first term of this equation calculates the total apparent loss of moles from the gas 

phase using the running total of ∆𝑝 employing the ideal gas law, and the second term acts as a 

correction to this by subtracting the current amount of adsorbate still in the bulk gas phase using 

the current equilibrium pressure and dead-space volume.   

1.7.2 – Isotherm Classification and Models 

 Following adsorption isotherm research in the first decades of the 20th century, Brunauer 

et al. proposed a classification system of isotherms based on the adsorption (or absorption) 

behavior they presented.  This system has been adopted and updated by the IUPAC (International 

Union of Pure and Applied Chemistry.)101 (Figure1.13) 

 Type I isotherms are demonstrated systems that obey the Langmuir model for adsorption 

isotherms.  This model was one of the first serious attempts at explaining the adsorption process.  

It assumes that there are specific binding sites where adsorption occurs, and the amount 

adsorbed depends on the number of these binding sites.  Once full occupancy is reached, 

adsorption no longer occurs.  Adsorption and desorption processes from these sites are viewed  
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Taken from Reporting physisorption data for gas/solid systems with special reference to the 
determination of surface area and porosity (Recommendations 1984)101 

  

 

 

 

 

 

 

 

 

 

Figure 1.13: IUPAC isotherm classification system 
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in terms of the rates of these two processes.  The equilibrium condition is set when these two 

rates are equal, and the fraction of site occupancy, 𝜃 is defined by6: 

 𝜃 =  
 

               (1.69) 

where 𝑝 is the pressure and  𝐾  is the equilibrium constant given by: 

 𝐾 =                                                                                                                       (1.70) 

where 𝑘  is the rate constant of the respective process.  The Langmuir model only considers 

molecule-surface interactions and is not generally quantifiably accurate.  There are systems that 

have or behave like they have discrete binding sites: the first case is in chemisorption, where 

adsorbates chemically bond to surface atoms, and the second involves systems with micropores 

that only have the capacity to hold a few adsorbate molecules.   

 Type II isotherms are demonstrated by adsorption on many non-porous substrates.  

Originally type II would have included isotherms that display distinct multilayer step features; 

however, such isotherms now have their own classification type.  Type II isotherms under the 

current definition demonstrate a distinct monolayer formation, followed by multilayering 

transitions that are not well defined, and the isotherm asymptotically approaches bulk vapor 

pressure.  These isotherm types are often referred to as the BET type after the eponymous model 

developed by Brunauer, Emmett, and Teller102.  This model is an extension of the Langmuir 

model, but suffers from many of the same shortcomings.  It assumes that the molecule-molecule 

interactions of the adsorbate molecules only occur between layers, ignoring lateral interactions 

within the film, and assumes that only the heat of adsorption of the first layer is unique and that 

of the higher layers is the same as the heat of bulk condensation.  The BET equation is generally 

formulated in terms of fractional coverage relative to a monolayer capacity; however, this model 

finds use most often in the determination of surface area through the total capacity of the first 

monolayer.  The equation is then more conveniently constructed in a linear form:16 

 
( )⁄

=  +                                                                                                            (1.71) 

where 𝑝 is pressure, 𝑝  is the saturated vapor pressure of the bulk gas at the isotherm 

temperature, c is the BET constant related to the heat of adsorption of the first layer and bulk 

heat of condensation, 𝑛  is the moles of gas adsorbed, and 𝑛  is the monolayer capacity of the 
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surface.  A linear fit of the isotherm data based on this equation can be used to determine the 

monolayer capacity and, using the specific area of the gas, the surface area of the material.   

 Type III isotherms display a distinctive convex shape that results from systems where the 

molecule-molecule interactions are significantly stronger than the molecule-surface interactions.  

In these systems, no distinct layering transitions can occur, and the pressure will asymptotically 

approach the bulk saturated vapor pressure.   

 Type IV and V isotherms both possess a distinct hysteresis between sorption and 

desorption isotherm branches103.  This is characteristic of systems that contain mesopores104, 105.  

The hysteresis is due to capillary forces within the pores and can be used as a method to 

determine pore size through the use of the Kelvin equation3: 

 𝑙𝑛 =                                                                                                                         (1.72) 

where 𝑝 𝑝⁄ is the reduced vapor pressure, γ is the surface tension, VL is the molar volume of the 

absorbate, and rm is the radius of curvature.  The radius of curvature can be related to the pore 

radius, but the exact relationship between these variables depends on the specific geometry of 

the pore network.  A further subclassification system is defined by IUPAC that relates the 

appearance of the hysteresis loops to the pore geometry.  The distinction between these two 

types of isotherms is the absence of an adsorption monolayer feature in the type V isotherms.  In 

short, type IV isotherms display both adsorption and desorption, while type V only displays 

absorption.   

 Lastly, the type VI isotherms are those that exhibit multiple well-defined layering 

transitions.  These occur on pristine and uniform substate surfaces of non-porous materials.  

Systems displaying this type of isotherm are some of the classic examples of isotherm systems, 

such as xenon adsorbed on graphite and methane adsorbed on MgO.   

 This classification system represents a generalization of the processes that occur during 

adsorption and are not an exhaustive list of all possibilities.  There are systems that may display 

characteristics of more than one type of isotherm and those that will not be easily fit into any of 

these categories.  For example, there are adsorbed systems, one such case of which will be a 

subject of this dissertation, where multiple monolayer sub-steps occur corresponding to 

probable transitions within the film.  Another such example that will also be covered in this 
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dissertation is a system that displays two distinct monolayer formations before becoming 

completely non-wetting prior to accomplishment of the bulk saturated vapor pressure.   

1.7.3 – Thermodynamics 

 Ones of the key utilizations of adsorption isotherms is the determinations of the 

thermodynamics of adsorption.  These involve the comparison of the enthalpy and entropy of 

two-dimensional condensation on the surface over that of condensation to the bulk phases, 

along with other heats of adsorption quantities such as the isosteric heat of adsorption.  These 

are useful in understanding not only the energetics of the adsorption process, but also help to 

provide support for potential phase behaviors and transitions.   

1.7.3.1 – Henry’s Law 

 During the beginning stages of the adsorption process, the density of molecules is 

sufficiently low that molecule-molecule interactions should be sparse.  This region, 

corresponding to a low coverage area ideally before the rise of the first monolayer step, is 

referred to as the Henry’s law region.  For systems where this assumption holds true and the 

region has enough data points available, it is possible to isolate and examine the adsorption 

energy only corresponding to the molecule-surface interactions.  This quantity, 𝑄 , is the heat of 

adsorption in the limit of zero coverage, which is related to the slope (𝑘(𝑇)) of the isotherm plot 

within this region106, 107:   

 𝑘(𝑇) = 𝑘∗exp                                                                                                                  (1.73) 

where 𝑘∗ is a constant of integration.  Therefore, on a plot of ln 𝑘(𝑇)  vs 1/𝑅𝑇, the slope of a 

linear regression will yield 𝑄 .  The interpretation of data obtained from the Henry’s law region 

must be done carefully as it is not always an accurate representation for determining 𝑄 .  The 

major compounding factors are that the assumptions that molecules will not interact at low 

coverages may not be valid, and defect sites may result in surface binding in this region and will 

not reflect the true molecule-substrate interactions. 

1.7.3.2 – Differential Enthalpies, Differential Entropies, and Heats of Adsorption 

 The nature of an adsorbed phase on a surface may be regarded as a condensed phase, 

just as bulk solids and liquids.  These condensed phases exist in equilibrium between the two-
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dimensional condensed phase and the bulk three-dimensional gas phase.  The equilibrium 

pressure of this gas phase will then correspond to the vapor pressure of the condensed phase of 

the adsorbed film.  It follows that the layering transitions of adsorbed systems would be expected 

to obey the Clausius-Clapeyron relationship.  This is the basis of the Larher formalism for 

quantifying the thermodynamics of adsorbed systems9, 10. 

 The pressure of each layering transition is identified using the location of the maxima in 

the numerical derivative of an isotherm that corresponds to each transition. Employing a series 

of isotherms, these data can be plotted using ln (𝑝( )) vs 1 𝑇, where n is an index referring to 

specific layering features observed in the isotherms.  The plots of these data can be fit to linear 

functions using of the following form: 

 ln 𝑝( ) = 𝐴( ) 1
𝑇 + 𝐵( )                                                                                                (1.74) 

In accordance with the Clausius-Clapeyron relationship, the coefficients obtained from this linear 

relationship, 𝐴( ) and 𝐵( ), are related to the enthalpy and entropy of the adsorption processes, 

respectively:   

 ln 𝑝( ) =
( )

1
𝑇 +

( )

                                                                                                  (1.75) 

In order to apply a more relevant basis for interpreting these thermodynamic quantities, a 

comparison with the bulk saturated vapor pressure serves as a useful standard reference point.  

It can be assumed if a layering transition occurs below the bulk vapor pressure, the formation of 

this layer is more thermodynamically favorable than the bulk phase condensation.  Expressed in 

terms of chemical potential 𝜇( ), this comparison of adsorbed favorability over that of the bulk 

condensed phase chemical potential, 𝜇 , is: 

 𝜇( ) − 𝜇 = 𝑅𝑇𝑙𝑛              (1.76) 

Therefore, where can use the Clausius-Clapeyron fit parameters of the bulk vapor pressure as a 

function of temperature, 𝐴  and 𝐵  (the infinity index is used to refer to “infinite adsorbed 

layers” which is the bulk phase): 

 ∆𝐻( ) = −𝑅(𝐴( ) −  𝐴 )          (1.77) 

 ∆𝑆( ) = −𝑅(𝐵( ) − 𝐵 )          (1.78) 

The molar heat of adsorption of each layer can also be quantified as: 
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 𝑄
( )

= 𝑅𝐴( )             (1.79) 

1.7.3.3 – Isosteric Heats of Adsorption 

 The isosteric heat of adsorption, 𝑄 , is defined as the amount of energy required for a 

molecule of the gas phase to adsorb into the surface film at constant coverage, 𝜃.  Since this can 

be applied for the total span of coverages of the isotherm measurements, this quantity is 

expressed as a function of these ranges of coverage, 𝑄 (𝜃).  The isosteric heat of adsorption is 

defined by26: 

 𝑄 (𝜃) =  𝑅𝑇
 ( )            (1.80) 

 As this quantity involves a partial derivative with respect to temperature, this is not 

something that can be obtained directly from an isotherm measurement.  Instead, it is estimated 

by the numerical derivative of two isotherms that are closely spaced in temperature (0.5 K ≤

∆𝑇 ≤ 1 K): 

 𝑄 (𝜃) ≈  𝑅𝑇
∆  ( )

∆
                                                                                                        (1.81) 

Extending from the definition of isosteric heats, changes in behavior of this function at certain 

coverages can be used as indicators for sites of potential phase transitions.  

1.7.3.4 – Two-Dimensional Isothermal Compressibility 

 In the calculations of the differential enthalpies and entropies, along with the heats of 

absorption, the numerical derivative was used to define the locations of layering transitions.  

Strictly speaking, these locations would be more properly defined by changes in the isothermal 

compressibility of the system.  For two dimensions, this can be calculated from adsorption 

isotherm data as67: 

 𝐾 =                                                                                                               (1.82) 

where 𝐾  is the two-dimensional isotherm compressibility,  𝐴 is the surface area of the 

substrate, 𝑝 is pressure, 𝑁  is Avogadro’s number, 𝑘  is Boltzmann’s constant, and 𝑛 is the 

quantity of moles adsorbed.  Though convoluted by a factor of 𝑝 𝑛⁄ , the shape of the isothermal 

compressibility as a function of the equilibrium pressure is defined primarily by the numerical 

derivation of the isotherm, 𝑑𝑛 𝑑𝑝⁄ .  The use of numerical derivatives as a representation of the 
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behavior and location of the compressibility is a reasonable substitution analysis of phase 

transitions from isotherms.   

1.7.4 – Surface Area and Film Density 

 In three dimensions, the consideration of condensed phases at the saturated vapor 

pressure is not usually dependent on the number of molecules present, and a solid could 

theoretically grow indefinitely if more molecules are continually cooled enough for them to 

freeze.   Adsorbed phases, however, are limited by the surface area constraints of the substate.  

For a film of a given density, only a certain number of molecules can be adsorbed onto the surface 

until no additional space is available.  The surface area, 𝐴, areal number density, 𝜌, and 

monolayer capacity, 𝑛 , are linked by the proportional relationship: 

    𝐴 =                                                                                                                                      (1.83) 

 The quantity, 1/𝜌, is the area per molecule of the adsorbate, and is the traditional form 

in which film densities are reported. It would be possible, therefore, with an accurate 

determination of surface area, to calculate and the monolayer capacity in order to further 

calculate the areal density of the film.  This can be done by using a gas adsorbate, for which the 

density is known, on the substrate of study.  The amount adsorbed can be determined through 

an isotherm using this characterization gas, and the surface area can be determined using 

equation 1.83.  This surface area can then be used in conjunction with the monolayer capacity of 

the primary adsorbate molecule to determine the areal densities of the films. 

 A consistent definition to delineate at what point the completion of a monolayer occurs 

and the amount adsorbed at that point is a necessary component for this analysis; however, there 

have been multiple suggestions on how this point should be defined.  The one example already 

discussed above is through use of the BET equation (1.71).  In addition to this model, Brunauer 

and Emmett proposed a series of other methods referred to by points A through E12 (Figure 1.14).  

These all are based on the behavior of the linear region following the monolayer transition.  The 

most favored of these has become the point B method.  If the plateau region is fit with a linear 

function, point B designates the point at the beginning of this linear region, or more 

observationally, the point at which the linear fit of the plateau region and the isotherm start to 

diverge.  This method has one inconsistency in that this point has some dependence on the  
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Figure 1.14: Methods for the determination of the amount adsorbed at monolayer completion 
Point E is not shown for scaling purposes, but is the point at with the monolayer line intersects 
a vertical line positioned at the saturated vapor pressure. 
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qualitative observation of what the linear range is taken to be.  A modification to the point B 

method uses the intersection of a linear fit of the plateau with a linear fit of the vertical region of 

the monolayer step shown as the green point in Figure 1.14.  This modification is what will be 

used for the determinations of surface area in this dissertation.   

 1.7.5 – Determination of Phase Transitions 

 The locations of potential phase transitions can be determined through analysis of the 

isotherm data.  The Clausius-Clapeyron analysis results in a type of pressure-temperature phase 

diagram where some examination of phase behavior and the temperature where some 

transitions may occur can be observed.  The examination of features in the isosteric heat of 

adsorption can also be used to suggest qualitatively where phase transitions may occur; however, 

with this case, the approximations made in the determination of isosteric heats may result in 

artefacts in the interpolation process necessary to enforce the constraint of constant coverage 

and noise in the isotherm measurement and can make these data difficult to interpret 

analytically.   

 The most common method for the locations of potential phase transitions is through the 

examination of the two-dimensional compressibility.  The compressibility of a phase represents 

the change in area (or volume in three dimensions) that results from changes in pressure.  If a 

system undergoes a phase transition, there should be a corresponding change in the behavior of 

the compressibility before and after the transition.  By examining the FWHM of the 

compressibility as a function of the change in chemical potential, temperature of transitions may 

be extrapolated from a plot of these FWHMs versus temperature as points where the slope of 

this data appears to change.  The compressibility as calculated from isotherms has one significant 

draw back, though: since it is proportional to 𝑝 𝑛⁄ , this creates challenges in the limit where 𝑝 

and 𝑛 both tend towards zero, or if the derivative is too steep, as their relationship means the 

proportion becomes extremely sensitive to small fluctuations in one or both of these terms.  This 

may result in that for some system, the shape of the compressibility peaks could be distorted and 

not reliable for use in analysis.  Alternatively, the FWHM of the numerical derivatives may be 

examined since they are a primary component in the definition of the shape of the 

compressibility function.  The derivative function, however, is not convoluted by the ratio 𝑝 𝑛⁄ , 

and is not as sensitive to measurement fluctuations near zero.   
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1.8 – Phase Transitions in Adsorbed Films 
 The concept of adsorbed systems having phase behavior analogous to three-dimensional 

systems has already been referenced to in the previous sections of this chapter.  These two-

dimensional phases bare many analogous relationships to the familiar bulk phases.  There are 

distinct equivalents for solids, liquids, and gases present in monolayer films.  There are also 

unique aspects of these systems that may include phases that have no obvious analog in three 

dimensions.  One peculiar aspect of two-dimensional phases is the melting process, where 

observations have suggested that the loss of translational ordering of the solid, and the loss of 

orientational and bond ordering, do not always occur at the same temperature85, 87, 108-110.   The 

following sections will serve as a guide to some aspects of phases and phase transitions in 

adsorbed systems. 

1.8.1 – Two-Dimensional Phase Diagrams 

 To facilitate better understanding of the behavior of two-dimensional phases, a logical 

introduction is to examine the phase diagram of a well-behaved adsorbed system (Figure 1.15)  

This case is of a type referred to as a classical van der Waals film; well-studied examples of 

systems with this isotherm behavior include noble gases like xenon and krypton.  Diagrams of 

this form are superimposed onto the coverage versus pressure graphs of a series of isotherms, 

and the isotherms themselves, by definition, correspond to lines of constant temperature within 

the PN phase diagram.  Thus, this is a two-dimensional projection of the full PNT phase diagram, 

and one can note the similarities with three-dimensional PVT phase diagrams.   

 The phases are referred to by their analogous behavior to three-dimensional phases. Two-

dimensional solids have highly ordered structures. Whereas two-dimensional liquids have less 

ordered structures and diffusive properties. A two-dimensional vapor or gas phase likewise 

shares similar properties to its bulk counterpart, i.e. higher compressibilities and diffusion.  Also 

marked in Figure 1.15 are the two-dimensional critical and triple points, that are again analogs 

of these bulk phenomena.  The triple point has a more interesting significance in adsorbed films, 

however.  The phase diagram only shows the thermodynamic relationships of the two-

dimensional solid, liquid, and gas, but the system must also be in equilibrium with the three-

dimensional vapor phase.  Therefore, the triple point with regards to the two-dimensional 
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Based on the phase diagram for xenon on graphite67 
 
 

 

 

 

 

 

 

Figure 1.15: Phase diagram of a typical van der Waals adsorbed film 
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phases is actually a quadruple point if all components to the system are considered.  Figure 1.16 

shows a constructure of a Clausius-Clapeyron plot of the system from Figure 1.15. 

 A quality of adsorbed phases that has no analogy in bulk phases are those arising from 

substate effects.  A notable manifestation of this is commensurability that was discussed in 

section 1.4.4.  In these phases, the surface corrugation exerts a strong enough influence that 

directs the interactions of the adsorbed molecules, bringing the overlayer structure of the 

molecules into registry with the surface corrugation.  This would initially seem to suggest that 

commensurate phases are expected to be two-dimensional solids, since the order is being guided 

by the long-range order of the substrate26, 111, 112.  However, if the driving forces of the molecule- 

molecule interactions are incompatible with the surfaces, strain between these forces can result.  

In systems where this is the case, melting would relieve this strain and lead to the possibility of 

the liquid or disordered phase being commensurate.  Likewise, systems may have one or more 

transitions between commensurate and incommensurate solid states.  There are many systems 

that have such properties, but a common one is that of nitrogen on graphite.  This system has an 

example of two fully commensurate phases: one as a herringbone pattern that is highly ordered, 

and an orientationally disordered solid that is still in registry with the surface.  At higher densities, 

there are two more solid phases, one of which is uniaxially commensurate with the surface (only 

has registry along a single lattice vector), and a fully incommensurate solid phase.   

 Lastly, there are two more types of transitions that are noteworthy here.  The first of 

these is wetting transitions, where a system may switch from incomplete to complete wetting 

behavior at some specific temperature45, 113, 114.  Generally, this is accompanied by a melting of 

the adsorbed phase, relieving straining forces between the film and surface structure that are 

preventing complete wetting from occurring.   The second is strong substrate interaction in 

multilayer systems.  In some systems, each of these layers may act thermodynamically discrete 

and show completely different and independent critical points.  This also means that, in these 

systems, different layers of the films may be in different states while at the same temperature. 

1.8.2 – Two-Dimensional Melting 

 Perhaps one of the most unique aspects of two-dimensional phases is the diversity and 

complexity of melting phase transitions; so much so, that it warrants a much further discussion 

than was covered above for other phase transitions.  First, though, is a brief understanding of the  
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Figure 1.16: Clausius-Clapeyron phase diagram of an adsorbed van der Waals film 
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nature of two-dimensional solid phases.  In three dimensions, solids are generally characterized 

by the existence of long-range order at low temperature.  In a hypothetical one-dimensional case, 

the opposite is true, and these systems have their ordering destroyed by long wavelength spin 

wave.  Two dimensions is the intermediate between these two cases and displays properties of 

both the higher and lower dimension.  Though originally hypothesized that, in two dimensions, 

long range ordering would be impossible as phonon’s should cause logarithmic deviations in the 

particle positions, empirical data (e.g. diffraction experiments) have shown that these systems 

do show distinct patterns of some form of long-range or quasi-long-range order.  A caveat to this 

is a commensurate phase under the effect of a strong molecule-surface interaction, where the 

corrugation of the surface may serve to “pin” the molecules in their positions and prevent -range 

order.  Also, the theoretical basis of these models is made for two-dimensional solids that lie in 

a Euclidian plane (i.e. one without any curvature).  Most surfaces are planar, and so this 

assumption makes sense, but it is worth noting that this is not always a reasonable assumption.  

An example might be made for the case of graphene, which is a two-dimensional crystal with 

near perfect long-range ordering.  This is because not only the in-plane, but fluctuations in height, 

must be considered as well, for which these early models did not fully account.  

1.8.2.1 – Ising Model 

   An early model of phase transitions in two dimensions is the Ising model.  This model 

consists of particles that have two discrete states that are fixed to a lattice, such as electron spins 

in a ferromagnetic material.  This may also be represented as a lattice of orientable molecules 

(e.g. molecular dipoles), and thus has a corollary to adsorbed systems.  The Ising model has been 

applied to cases of any dimensionality, however, the square-lattice Ising model in two-

dimensions has been shown to be a simple system with an analytical solution that predicts a 

phase transition.  The model predicts a high degree of long-range ordering and a second order 

phase transition between orientationally ordered and disordered states.  Ising-like transitions 

have been used to describe some transitions observed in adsorbed systems; however, the strict 

requirement of only two configurational states, which is useful in systems of discrete spin states, 

like electrons, limits the application of this theory to few specific cases with adsorbed 

molecules85, 115. 
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1.8.2.2 – XY Model 

  The XY model from statistical mechanics describes a lattice of vectors that each possess 

spin configurations over all 360°.  This is similar to the Ising model, but instead of only two states, 

the system may possibly occupy any possible orientational state.  Long-wavelength spin waves 

can propagate through this system, destroying the long-range order.  At low temperatures, 

moderate long-range order does develop.  The decay in the correlation of position depends on 

the temperature range, where at high temperature, the disorder shows an exponential-like decay 

in correlation.  Around the critical point, this decay becomes algebraic with a decay constant, 𝜂,  

as the system undergoes a type of continuous transition to the solid phase.  A difference in the 

result between this model and the Ising model is that, for the Ising model, such spin waves are 

not possible since each site on the lattice can only be on one of two states.  As a result, long range 

order persists in the Ising model at low temperatures.  However, in the XY model, the extent of 

long-range order is disrupted by spin waves, and is described in terms of a coherence length due 

to the gradual decay of the order with distance85 

1.8.2.3 - Kosterlitz-Thouless Transition 

 The Kosterlitz-Thouless (KT) model has been a more significant development in the 

theoretic framework of phase transitions in two dimensions.  This model is essentially the same 

as the XY model but provides a greater context of real systems in two-dimensional 

superconductors and superfluids.  It looks at the effect of topological defects in the lattice 

structure in the form of spin vortices which can have positive or negative vorticity (vortex and 

anti-vortex).  At low temperatures, formation of isolated vortices is thermodynamically 

unfavorable, and they exist as bound pair that obey a power-law correlation with quasi-long- 

range order.  At the critical temperature, the formation of vortices is thermodynamically 

favorable, allowing for the formation of free vortices.  This leads to the unbinding of the vortex-

antivortex pairs that lead to an exponential decay in the correlation distances85.    

1.8.2.4 – KTHNY Theory  

 Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory is an extension of the KT 

model that was expanded on in a series of papers by Halperin and Nelson, and then further added 

to by Young87, 109, 110, 116, 117. It extends the model beyond its original context of superfluids and 
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superconductors in two dimensions.  It generalizes the idea of topological defects as dislocations 

in the bond ordering of the lattices, which occur in pairs of ± 1 from the normal lattice 

coordination number (figure 1.17).  For a hexagonal system, the dislocations will occur in 5-

coordinate/7-coordinate defect pairs, and for a square lattice, the dislocations will be 3-

coodinate/5-coordinate pairs.  Of these two phases, the hexatic phase is significantly more 

common in the literature, with most studies of tetratic phases confined to simple model 

systems118-125. 

 The melting transitions predicted follow the same logic as the KT transition, where the 

dislocations are bound pairs before the transition and undergo a continuous transition as these 

dislocations unbind, resulting in melting.  One key distinction here, however, is that the liquid 

phase is predicted to be non-isotropic following the unbinding of the dislocation pairs.  The 

translational ordering of the system is lost, leading to a decrease in the coherence length.  Bond-

orientational ordering is still maintained, resulting in a two-dimensional liquid-crystal-like phase. 

Halperin and Nelson proposed names for these new phases based on the coordination of the 

system: in hexagonal systems, it is called a hexatic phase, and for square systems, a tetratic 

phase.   These phases are described in terms of distinct bond-angle correlation functions.  In the 

tetratic phase this correlation function is: 

 𝑔 (|𝑟 − 𝑟′|) =  〈𝑒𝑥𝑝(𝑖4[𝜃(𝑟) − 𝜃(𝑟 )])〉              (1.84) 

and for the hexatic phase: 

 𝑔 (|𝑟 − 𝑟′|) =  〈𝑒𝑥𝑝(𝑖6[𝜃(𝑟) − 𝜃(𝑟 )])〉           (1.85) 

    A second type of defect, called a “disinclination”, is a disruption of the bond-orientational 

relationship of the lattice.  This will similarly propagate in a fashion similar to the dislocations and 

eventually destroy the bond-orientational ordering as well (figure1.17).  Though, crucially, this 

happens at a higher temperature than loss of translational ordering.  This is one of the essential 

aspects of KTHNY theory, where the system melts in two stages: first, the translational ordering 

is lost, and second, orientational ordering is lost, but at a temperature higher than that of the 

translational ordering.  A stark difference occurs within three dimensions, where these two 

phenomena happen simultaneously in a first order transition.  
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Figure 1.17: (Top) Dislocations and (Bottom) Disinclinations of a square lattice 
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 Based on this model, a behavior of the structure factor of both solid and liquid 

tetratic/hexatic phases can also be approximated.  The original formalism of Warren for two-

dimensional lineshapes made assumptions about long-range order that are not valid within the 

context of this theory, which predicts some amount of disorder in all phases.  Instead, the 

derivation works within the context of 𝑆(𝑄) as the structure factor.  For the solid phase, the 

power-law decay of the translational ordering is represented approximately by the same form of 

distortion in the diffraction peaks, leading to a power-law structure factor of84, 87: 

 𝑆(𝑄)  ∝  𝜂(𝑇)
( )

          (1.86) 

where 𝑎 is the lattice constant and 𝜂  is related to the elasticity of the solid and is a function of 

the temperature.  The structure factor of the liquid phase was similarly approximated by Halperin 

and Nelson to be: 

 𝑆(𝑄)  ∝
 ∗

( ) ∗⁄               (1.87) 

Here, 𝜉 is the coherence length and 𝜂∗is the value of 𝜂 for the solid at the beginning of the melting 

region.  This structure factor represents a Lorentzian lineshape raised to the power 1 − 𝜂∗ 2⁄ , 

which of note should always be less than one.  In the limit where 𝜂∗  is small, the lineshape may 

be represented as a further approximation by a Lorentzian-type lineshape.  The coherence 

lengths obtained through structural refinement of diffraction data can be used to analyze the 

melting temperature for a system experiencing this type of melting.  Two different formulations 

exist for this prediction, one using information of the solid phase only, and the other expressing 

properties of the liquid phase from the solid phase data.  The solid phase coherence length at the 

melting temperature can be determined from the coherence lengths of the solid phase during 

the melting transition: 

 𝜉 (𝑇) =  𝜉∗(𝑇 − 𝑇 )             (1.88) 

where 𝜉  is the coherence length in the solid phase during the melting region, 𝜉∗ is the coherence 

length of the solid at the melting point approached from the low temperature side, 𝑇  is the 

melting point or, more correctly, the temperature at which melting starts, and 𝜐 is the power law 

order as a fit parameter (but does not have significant analytical meaning for this type of 

analysis).  The relationship to the liquid is given by the exponential relationship: 
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 𝜉 (𝑇) =  𝜉∗𝑒𝑥𝑝[𝐴(𝑇 − 𝑇 ) . ]         (1.89) 

where  𝜉∗ is the coherence length of the liquid phase as the melting point is approached from the 

high temperature side, and A is a proportionality constant that also does not have a significant 

meaning to the analysis herein.  These equations establish a formal method for determining a 

melting temperature where the melting process begins and also provide a predictive indicator as 

the coherence length of the liquid phase can be derived from the behavior of the coherence 

length of the solid phase.  The ability to analyze data with this method requires performance of 

two-phase refinement on a series of diffraction patterns over a range of temperatures on two-

dimensional lineshapes, that result in consistent high-quality agreement with the data.  In the 

course of writing this dissertation, only a single previous publication demonstrating a proof of 

concept, could be found that attempted such a data treatment process.  Unfortunately, this alone 

would not be conclusive enough to definitively distinguish the existence of a tetratic/hexatic 

phase intermediate melting from that of a continuous solid/liquid coexistence region.  As of yet, 

KTHNY theory’s application in adsorbed systems remains a beautiful and widely accepted, though 

unproven, model. 

1.9 – Systems of Study 
 The study herein involves the investigation of the thermodynamic, structural, and phase 

transition properties of thin films comprised of simple quadrupolar hydrocarbons on surfaces of 

varying symmetry.  The interaction of true linear quadrupoles is primarily a two-dimensional 

interaction itself with a preferential orientation of molecular pairs to adopt a T-shape 

configuration.  Any angular deflection of either molecule out of the optimal plane of interaction 

at best weakens the strength of the interaction.  However, rotations of molecules about the axis 

perpendicular to the interaction plane do lead to less optimal configurations, where there is a 

minimum energy path through a slipped parallel state that can give rise to possible alternative 

structures when considering multiple interacting quadrupoles, like in molecular films.  This makes 

molecular linear quadrupoles an interesting choice of study in adsorbed films. 

1.9.1 Previously Studied Systems 

 There exists in the literature already many such atoms and molecules whose adsorption 

properties have been well-studied.  Some of the simplest of these are the noble gases, such as 
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argon126-130 and xenon126, 131-138.  The hydrocarbon family has received an equal amount of 

attention with the focus mainly being on methane111, 139-151, the other linear and cyclic alkanes36, 

86, 112, 152-158, and the simple alkene ethylene37, 159-161. None of these systems, involve any notable 

quadrupole molecules. There are, however, many examples like N2
38, 51, 162-172 and O2

113, 166, 173-

176
, that are small, light molecules which have weak quadrupole moments.  Other molecules like 

CO2
51, 166, 177, 178, N2O178, CS2

166, 179, CO180, 181, and in particular C2N2
178, 182 and C6H6

112, 183-188
, have 

considerably stronger quadrupole moments, but are larger molecules. N2O and CO, due to their 

asymmetric nature, are not pure linear quadrupoles, as is the case with the other examples, and 

possess non-negligible dipole moments. Benzene is another interesting case, as the primary axis 

of the molecular quadrupole is oriented 90° to the plane of the molecule’s ring structure.    

1.9.1.1 Behavior of Molecular Quadrupoles 

 The idealized structure these molecules will adopt in two dimensions depends not only 

on the strength of their quadrupole and other interactions with one another and the substrate, 

but also on the size and aspect ratio (axial length/width)166, 189.  Figure 1.18 contains a compilation 

of quadrupole values, aspect ratios, and relative sizes for the example molecules listed above, as 

well as for acetylene and allene.  The interaction energy of 2 linear quadrupoles is a function of 

only their separation distance and three terms to describe their relative angles (see eq 1.11 and   

Figure 1.4.  The strength of the interaction depends on the fifth power of distance separating the 

two quadrupoles and an angular function gamma, which will be derived more formally in section 

1.4.  This angular function has a maximum value when one of the molecules is oriented at 0° to 

r⃗, with the other at 90° (θi and θj), and a dihedral angle (φ) of 0°.  

 Since any deviation in φ results in a weakening of the interaction strength, it follows that 

the interaction of two linear quadrupoles is a two-dimensionally optimized interaction.  It is not 

always the case, however, that in a real system the ideal T-shaped configuration between 

molecules is not always the most energetically favorable; competing molecule-surface 

interactions, the van der Waals interactions between the molecules, and, as mentioned before, 

the molecules, all must be considered.  The first two of these are often cooperative in their 

effects.  The packing efficiency in the square-T configuration decreases with increasing aspect 

ratio, and likewise the van der Waals forces, which would favor a parallel or “slipped” parallel 

molecule arrangement, also becoming stronger.   
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Quadrupole moments, Q (D Å), lengths proportional to H2 (ι = Li / LH), and molecular aspect ratio 
relative to the primary axis of the quadrupole moment (κ = Li / Wi ). 
Quadrupole values given are the respective Qzz value from the molecule’s quadrupole tensor, 
adapted from NIST CCCDBD experimental values190.Length and width values are estimates 
based on van der Waals surface calculations in Accelrys’ Materials Studio 6.0. 
†Experimental values not available, value based on average of computa onal results on the 
NIST CCCDBD190 
‡The quadrupole of benzene is oriented perpendicular to the plane of the molecule. The ra os 
of ι and κ were calculated relative to the quadrupole axis, not the molecule plane.   
 

Figure 1.18:Examples of simple quadrupolar molecules organized by symmetry point group 
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 A particularly interesting pattern emerges when adsorbed on graphite for the molecules 

whose film structures have been well studied.  The main structural motif of these systems are 

herringbone patterns, bond (brick-laying) patterns, and occasionally pinwheel structures have 

been observed51, 166.  The minimization of the quadrupole electrostatic potential energy in a 

perpendicular orientation for these films seems not to be strong enough to overcome the 

combination of substrate symmetry and the molecule-molecule van der Waals interactions which 

are stronger when molecules are parallel rather than perpendicular. 

1.9.2 – Adsorbate Molecules 

 The adsorbate molecules examined within this dissertation, acetylene and allene, are the 

simplest examples of an alkyne and cumulene, respectively.  Both of these families of 

hydrocarbons have a propensity towards strong quadrupolar moments in cases of highly 

symmetric molecules.  The two molecules of this study represent a logical starting point for the 

examination of a homologous series of quadrupolar hydrocarbons pulled from these families.  

Though these molecules tend to be much more highly reactive than other hydrocarbons, the 

problems this may present are not insurmountable. 

1.9.2.1 – Acetylene 

 Acetylene (C2H2) is the simplest alkyne molecule that lies in the D∞h point group. Most 

commonly, it is encountered as a fuel for industrial welding and the manufacture of some 

polymers.  As a bulk material, it has a critical point 308 K, a triple point at 192.4 K, and a melting 

point at 191.2 K191, 192.  Below the melting point, acetylene exists in a cubic solid phase in the Pa3 

space group.  A solid-solid phase transition to an orthorhombic structure in the Acam space 

group, which has two reported temperatures in the literature, occurs at either 127 K or 133 K; 

additionally,139 K has been reported for deuterated acetylene193-198. 

 Its highly symmetric structure and basic hydrocarbon nature would lead to the conclusion 

that this molecule is non-polar and has negligible electrostatic interactions.  This assumption is 

inadequate to describe the properties of acetylene, which in fact has a very large quadrupolar 

moment.  The origin of this anomalous quadrupole strength is at least partially a result of the sp-

hybridization of the carbon atoms.  Normally, the difference in electronegativity of carbon and 

hydrogen is small enough to avoid unbalanced charge distributions that would be considered a 
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polar bond.  This assumes the carbon is in its common sp3 hybridized state, for which the electron 

density is distributed uniformly around the carbon atom.  For other hybridizations of carbon (sp2 

and sp), the electrons of the unhybridized p-orbitals are located within π-orbitals.  These bonding 

orbitals move electron density away from the carbon’s bonding axis, serving to reduce the 

electron density from the region of the nucleus.  This in turn reduces the effective shielding of 

the carbon nucleus towards the bonding atom, increasing the ability of carbon to pull electron 

density away from atoms it is bound to. In carbons with sp2 and sp hybridization199, the 

electronegativity tends to be higher - about 0.2 and 0.4 units higher on the Pauling scale, 

respectively.  This means that the effective electronegativity of carbons in acetylene should be 

comparable to that of nitrogen199.  There is further evidence of hydrogen bond-like interactions 

between the carbon and hydrogen of adjacent molecules when in the T-shaped configuration107.   

 In the past, considerable efforts made to create accurate atomic potentials to describe 

the behavior of acetylene in both its bulk and adsorbed phases have been met with varying 

degrees of success52, 95, 107, 200-211. Some of these have been quite successful in matching empirical 

evidence for one phase, but not usually the other212.  At least one forcefield seems to have 

performed well for both solid phases, but, nonetheless, the values used did not accurately 

represent the known quadrupole moment for acetylene.  In one such case, a model was able to 

accurately fit most of the data for the cubic phase, but it used a quadrupole moment 60% less 

than what is generally regarded as its strength, had significant error in the heats of sublimation, 

and failed entirely to describe the orthorhombic phase95.  Thus, estimation of atomic potentials 

is a notoriously difficult proposition to do and is made potentially even more difficult as the 

quadrupole moment could possibly vary in strength between the solid and fluid phases.  While 

attempts will be made later in this dissertation to explore variations to force-field parameters in 

the molecular dynamics simulations, the modifications utilized were based on some of the 

aforementioned works pertaining to the subject and may not be any more accurate than the 

standard force field parameters used. 

 Acetylene’s abnormal behavior extends into its two-dimensional systems as well.  No less 

than eight previous papers regarding the adsorption of acetylene on graphite have been 

previously reported27, 107, 207, 213-217.  These examples have served to underscore the complexity 

of the system and how much remains to be known, resulting in more questions being 
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unanswered rather than answered.  More details on this will be shown in Chapters 3 through 5 

later in this dissertation.  

1.9.2.2 – Allene 

 Just as acetylene is the simplest example of an alkyne, allene (or propadiene, C3H4) is the 

simplest molecule in a different family of linear hydrocarbons of cumulated double bonds.  These 

are often collectively referred to as cumulenes or allenes, though to avoid confusion in this 

context, the latter term will only be used to refer to the specific molecule and not to all such 

molecules with cumulated double bonds.  Allene is not as common as acetylene, but manages to 

find niche applications in polymer production, and is a partial constituent of MAPP gas, which is 

also a type of welding fuel.  

 Allene is less chemically stable than acetylene, and without stabilizing agents, exists in 

equilibrium with its isomer, propyne.  It also readily reacts with many types of metal surfaces, as 

well as some rubbers used in gas handling systems.  As such, some reasonable precautions must 

be taken to avoid these incompatibilities and maintain the purity of the gas during adsorption 

experiments.   

 Allene’s critical point temperature is at 394 K, triple point temperature at 136.6 K, and 

normal boiling point at 240.2 K.  At its triple point, the vapor pressure is only 130 mtorr,  which 

means that, in two dimensions, the typical place where two-dimensional melting might be 

expected to occur (0.8*Ttriple = 108 K, SVP ≈ 1 mtorr) will not be obtainable with the 

instrumentation available, and the examination will be of the liquid and hypercritical phases only. 

 Allene’s quadrupolar moment is of similar order to, but weaker than, acetylene’s, deriving 

the polarity of its bonds from the same phenomenon.  In fact, in terms of not only its quadrupole 

moment, but also its size and mass, it is close to CO2.  A distinguishing feature of allene as 

compared with the previously studied systems mentioned above is the broken rotational 

symmetry about the bond axis of the molecule.  The cumulated nature of double bonds results 

in the dihedral angle between the hydrogen pairs at opposing ends of the molecules being 

orientated 90° to one another, placing it in the lower symmetry point group of D2d.  The 

perpendicular nature of the opposing ends of the molecule make it more difficult to lie flat on a 

surface when adsorbed, resulting in two possibilities: either the molecule will be rotated such 

that both hydrogen pairs are at 45° to the surface, or one hydrogen pair lies parallel and the other 
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perpendicular to the surface.  This second option would mean the molecule would not actually 

lie completely flat but would be tilted slightly with respect to the surface.   

1.9.2 – Surface Substrates 

 The preferential geometry of linear quadrupolar molecules will be examined more closely 

later in this dissertation, but it has already been mentioned that the electrostatically optimized 

structure should have a four-fold geometry.  The two surfaces chosen for this series of studies 

represent two opposing cases.  In the case of MgO (100), the surface geometry and corrugation 

are a very close match to the charge distribution and preferred lattice spacing of acetylene, 

representing a system with potentially synergistic interactions.  In the case of graphite, the 

geometry class of the surface is incompatible with the molecule-molecule interactions, creating 

a system with competing forces. 

1.9.2.1 – MgO (001) 

 Magnesium oxide, MgO, is a common metal oxide with a simple cubic (rock salt) crystal 

structure (a = 4.121 Å).  It finds applications in a wide host of industries, ranging from catalyst 

support materials to food additives. Its largest commercial utility is as a refractory material in 

high temperature devices, such as stove heating elements.  Though it is an electrical insulator 

with a band gap around 7 eV, it possesses high thermal conductivity and stability, making it well-

suited for such applications. 

 Being an electrical insulator also means that it has little or no optical features from the 

infrared into the UV and is one of the “true” white standards in diffuse reflectance calibrations.  

The surface of the material, however, is weakly optically active, with several small absorption and 

emission bands in the upper visible and lower UV range.  These arise from incomplete 

coordination around varying types of surface defect sites (i.e. vacancies, edges, and corners), and 

is a possible method to assess the condition of the surface. 

 The (100) surface of MgO is made of two square sublattices of Mg2+ and O2- that form a 

face-centered square lattice.  The alternating charges form a surface highly corrugated with a 

four-fold symmetric system of charges.  The effective charge of each surface ion for MgO has 

been experimentally measured, being about +/- 1.2 e- for magnesium/oxygen.  This arrangement 

is compatible with preferred T-shape configurations in quadrupole molecules in a 2x2 



75 
 

commensurate lattice, if the molecule size is sufficiently close to the lattice spacing.  In the case 

of acetylene, the preferred intermolecular distance in the T-configuration is around 4.38 Å, 

approximately 6% larger than the lattice constant for MgO, 4.21 Å.  Despite this, the strong 

quadrupole moment and surface charge will still play a large role in guiding the system in this 

direction. 

1.9.2.2 – Graphite (0001) 

 The surface structure of graphite is probably one of the most memetic material structures 

in all of materials science.  It is the most common allotrope of carbon, comprised of stacked two-

dimensional layers of carbon atoms, hexagonally arranged as the classic honey-comb lattice. The 

lattice constant of the surface is 2.46 Å with two atoms per unit cell.  It has a wide range of 

applications itself in industry, but the more everyday uses relevant to most people are its 

inclusion in pencils and as a lubricant.  It is also known for its good conductive properties for both 

heat and electricity, and so it finds uses in batteries and electronics as well.   

 The surface being made of only carbon atoms, graphite is completely electrostatically 

neutral, and adsorption is governed by van der Waals interactions with admolecules.  Hence, the 

surface corrugation is comparatively shallow and would be expected to have a lesser effect on 

film structure than in the case of MgO (100).  Even still, other systems of small quadrupolar 

molecules have been shown to prefer adoption of a herringbone lattice that might even further 

adopt a hexagonal configuration commensurate with the substrate surface.  This is likely the 

effect of several factors that include the surface corrugation, the van der Waals molecule-

molecule interactions being better minimized in a parallel configuration, and the quadrupole 

moment have a saddle point in the molecular orientations in a “slipped-parallel” configuration.  

This effect should lean to be more in favor of the quadrupole strength for stronger quadrupoles 

like acetylene and allene; however, the forces will still be in competition and with different 

preferred symmetries. 
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Chapter 2 – Materials and Methods 
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2.1– Purification of Adsorbate Gases 
 The acetylene used in these studies was atomic absorption grade (99.7% purity) obtained 

from Airgas.  The allene (stabilized) was obtained from SynQuest Labs.  Both gases being 

examined as absorbates required special considerations to obtain and maintain high purity.  

Allene is a reactive and unstable molecule and degrades over time, resulting in cumulative 

impurities. The acetylene gas obtained was dissolved in acetone, which stabilizes it at higher 

pressures, but results in significant amounts of acetone vapor in the acetylene gas.  Careful 

purification and handling of these gases was used to ensure the quality of the adsorbates for 

adsorption studies, described in greater detail to follow. 

2.1.1 – Purification of Acetylene Gas 

 The removal of acetone and other common potential impurities (notably hydrogen, 

oxygen, nitrogen, and phosphine) was performed following the methodology described by 

Hyman et al218.  Their process involves first slowly bubbling the gas through concentrated sulfuric 

acid.  This step is extremely effective in destroying both acetone and phosphine contaminants, 

but in the process, carbon dioxide, sulfur dioxide, and sulfuric acid vapor are introduced to the 

gas.  The gas is then bubbled through a solution of 5 M sodium, which is reported to remove the 

sulfur dioxide and sulfuric acid vapors.  Third, the gas is passed through a column of Drierite and 

soda lime to remove carbon dioxide and water vapor introduced by the two scrubber baths used.  

The gas is then collected in a cryogenic trap, where it is subjected to a freeze-pump-thaw process, 

removing the hydrogen, oxygen, and nitrogen contaminants. 

 The process used herein followed this procedure, with one significant modification.  The 

use of soda lime following the sodium hydroxide bath was eliminated.  Group I metal hydroxides 

are well understood and utilized as carbon dioxide scrubbers.  Furthermore, the quantity and 

flow rate of gas that was purified for these studies was substantially lower than what was 

outlined in the original procedure.  Therefore, the sodium hydroxide would have already 

removed the carbon dioxide before the gas reached the soda lime column, making this 

component redundant.  In place of this, a larger volume of Drierite was used to ensure total 

removal of water vapor from the acetylene. A diagram of the purification manifold can be seen 

in Figure 2.1.   
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Figure 2.1: Manifold for acetylene purification 
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 Before running a purification, the forward-half of the apparatus containing the two liquid 

scrubbing baths was purged overnight with nitrogen to displace any other gases in the system.  

The second-half of the apparatus with the Drierite column and collection vessel was pumped on 

under vacuum with heat applied to the Drierite using heat tape at around 190 °C to remove any 

gases that might have been adsorbed on the manifold walls and Drierite.  The acetylene was then 

used to purge the system at a low flow rate for half an hour to purge most of the nitrogen from 

the system.  It was not necessary for this step to remove all of the nitrogen as freeze-pump-thaw 

cycles on the collected gas could remove this later.  After purging with acetylene for thirty 

minutes, the vent valve for the purge was closed, along with the valves connecting the back-half 

of the apparatus to the vacuum pump.  The valve connecting the front and back halves of the 

apparatus was opened and a needle valve was used to regulate the flow of gas through the 

Drierite column.  To prevent over-pressurization of the front-half of the manifold, after 1 atm of 

acetylene was collected in the manifold, liquid nitrogen was used to contain this in a small 

auxiliary steel volume.  The gas flow was then continued until another 1 atm of gas was collected.  

This would mean 2 atm of gas was collected, which is precisely at the safety limit for acetylene; 

however, the gas still contained a significant amount of nitrogen that, once removed, yielded 

closer to 1.8 atm of pressure.  The gas was then cumulatively collected with liquid nitrogen and 

subjected to several freeze-pump-thaw cycles to remove the remaining volatile gas impurities.   

2.1.2 – Freeze-Pump-Thaw 

 Freeze-pump-thaw cycling is a simple purification to remove other gas impurities that 

may be present in the adsorbate gas, such as nitrogen, oxygen, and hydrogen.  Considerations 

for allene include frequent re-purifications and small volumes of gas.  This process has, for this 

research group, typically been conducted using a separate manifold attached directly to a 

portable turbo-pump unit.  This would have been inefficient with a freeze-pump-thaw cycle for 

every one to two isotherm measurements.  Instead, a stainless-steel volume was kept on the 

isotherm station itself, along with the lecture bottle source of the gas, and the freeze-pump-thaw 

distillation was performed using the manifold and vacuum system present on the system.  

Acetylene was freeze-pump-thawed initially as the final step of the purification procedure 

described in the previous section.  As an added precaution to verify that the gas maintained purity 

over time, it was occasionally resubjected to the freeze-pump-thaw process. Of note, there was 
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never any noticeable release of gas from the acetylene during the pumping stage.  Owing to the 

fact that these products have a tendency to be of a heavier molecular weight, however, if any 

acetylene had undergone a self-induced reaction, this step should not be taken as a verification 

that the gas remained stable, and instead served merely to confirm that atmospheric gases have 

not accidently contaminated the gas over time either through a human error or station leak.   

  A stainless-steel volume was pressurized with a quantity of adsorbate gas with a 

maximum pressure of less than 2 atm (standard safety limit for both gases).  This vessel was then 

submerged in a liquid nitrogen bath, which freezes the gases into a solid phase.  The vapor 

pressures of either gas at 77 K are negligible. The condensed gases were pumped on for 10 to 15 

minutes while submerged in the liquid nitrogen. This was then removed, but the system was kept 

open to vacuum for the first part of the warming process until the vapor pressure reached 0.05 

torr on a 1 torr capacitance manometer (in the case of allene), allowing for any gas molecules 

trapped sub-surface and any potential impurities with marginal vapor pressures of 77 K to be 

removed.  Once at 0.05 torr, the valve to the vacuum pump was closed, and the gas was allowed 

to warm back up to room temperature.  The process was similar for acetylene, but this was done 

on the purification manifold and not directly on the isotherm station.  An ion gauge mounted 

above the turbo pump was monitored and the gas was warmed until the pressure entered the 

10-4 torr range. This process was repeated at least three times total, with more cycles in some 

cases being necessary. Completion was determined when a base pressure in the low 10-6 torr 

range was observed during the pumping stage and if the initial pressure spike when opening the 

frozen system to vacuum did not exceed 1 x 10-5  torr.  It was not unusual in the case of allene for 

five or six cycles to be completed before this requirement was met. 

2.2 – Preparation of Surface Substrates 
 The preparation process of the substates used in these experiments was crucial to ensure 

and protect high quality surfaces for the adsorption studies.  Graphite is a relatively easy 

substrate to work with and does not necessarily require completely perfect conditions during the 

sample preparation steps, though these conditions nonetheless were maintained at the highest 

quality obtainable as a matter of diligence.  MgO surfaces are more difficult to work with, and 

samples were selected based on the best characterized quality from a pool of a large number of 

synthetic batches.  The graphite used for these studies is an exfoliated graphite foam obtained 
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from Union Carbide with specific surface area in excess of 20 m2 g-1.  The MgO was synthesized 

for use following the procedure outlined in the following section.  The specific surface area for 

these samples fell within an average range of 6.5 to 7.5 m2 g-1   

2.2.1 – Synthesis of MgO (100) 

 The magnesium oxide substrate used was a powder of nano-cubes with a typical size of a 

few hundred nanometers along one side.  The synthesis method to be outlined here is a patented 

process known to produce large quantities (≈ 20 g) of high-purity, low-defect magnesium oxide 

nano-particles with a small and tunable distribution of size, predominantly having single faceted 

exposure of the (100) surface219. It has a further benefit of bypassing the creation of a liquid 

magnesium state, resulting in a safer synthetic route to other vapor-based techniques. 

 The process involves the use of pure magnesium chunks that were around 0.5 cm across, 

which were washed in dilute hydrochloric acid to remove already-present surface oxidation and 

any other contaminants on the surface.  These were then placed into a graphite crucible along 

with similarly sized pieces of crushed graphite in alternating layers to ensure an even distribution 

of magnesium and graphite.  The crucible was placed within an induction coil within the quartz 

chimney reaction chamber shown in Figure 2.2.  The system was then slowly purged with argon 

to remove oxygen and other atmospheric gases.  An RF generator tuned to resonate with graphite 

was used to heat the graphite through the surrounding induction coil.  Indirect heating of the 

magnesium metal power was gradually increased over several minutes, during which time, the 

melting magnesium reacted with the graphite to create a magnesium carbide intermediate.  

Upon further heating, the carbide intermediate began to break back down into graphite, 

releasing the magnesium directly as a vapor.  Around the time that vapors were first witnessed, 

the flow of oxygen gas into the chamber was started.  The magnesium vapor quickly ignited in 

the presence of oxygen producing the magnesium oxide powder.   

 Following synthesis, the chamber was allowed to cool, continuing the argon flow in order 

to maintain an inert atmosphere.  Once sufficiently cool to handle safely, the powder was 

collected from the walls of the quartz chimney and transferred into a storage container, which 

was sealed under an argon atmosphere to prevent hydroxylation of the surface from atmospheric 

water vapor.  The samples were then stored in a desiccator previously purged with argon.  A 

sample of each synthesis batch was reserved before packaging, which was used to characterize 
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Figure 2.2:Diagram of the MgO synthesis chamber 
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the quality of the MgO samples using a volumetric adsorption isotherm with methane in a liquid 

nitrogen bath.  The characterization will be further described in section 2.3.3. 

2.2.2 – Vacuum Heat Treatment 

 Before use, samples were prepared using a vacuum heat treatment.  The substrate was 

loaded into a quartz tube with a graded borosilicate transition at the top end to enable coupling 

with vacuum systems.  The tube was placed in a Lindberg/Blue M™ tube furnace, taking care that 

only the quartz section of the tube was directly exposed to the heated furnace interior.  The 

sample was located at the bottom as near to the thermocouple as possible in order to ensure 

that the substrate maintained the desired set temperature during the heat treatment process.  A 

compact electric fan was used on the metal vacuum fittings and the glass/Kovar junctions to cool 

and alleviate stress from radiant heat transferred to these components through the quartz tube. 

   MgO samples were gradually heated over 8 hours to 950 °C, where they were 

maintained for at least 48 hours.  This process anneals the MgO surface and ensures the 

uniformity of the (1 0 0) surface exposure.  Graphite samples were ramped over an 8 hour period 

as with the MgO, but a slower rate was used initially over the first three hours up to 250 °C to 

prevent a rapid release of physically adsorbed contaminants and water vapor, which occurs 

around 200 °C.  The temperature was ramped up over the remaining 5 hours, up to 750 °C, where 

it was maintained for at least 24 hours.  This timeframe is longer than is necessary for the heat 

treatment of graphite, generally only requiring a few hours at max temperature.  The longer time 

frame, however, does not impair the quality of the graphite and ensures a consistent procedural 

method that guarantees surface preparation quality.   

2.2.3 – Sample Loading 

 Samples were loaded into an oxide-free, high-thermal conductivity (OFHC) copper sample 

cell connected to a gas inlet on a mounting ring for the cryostat system of the isotherm stations. 

The transfer process was conducted inside an argon filled glove box to preserve sample quality 

(in the case of MgO in particular), and careful atmospheric control was absolutely crucial as even 

small levels of water vapor or atmospheric gases can degrade the sample.  Graphite is less 

sensitive and was capable of being loaded in a glove bag purged with argon; however, the 

glovebox was used to load all samples into the sample cell.   
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 Before adding the sample into the copper cell, quartz wool was used to add a gas 

permeable plug inside the cell at the open end of the steel capillary gas inlet.  This would prevent 

the fine powders of the samples from being able to exit the sample cell into the capillary, where 

the temperature will not be as maintained, or potentially making its way into the isotherm 

stations’ calibrated volume and damaging components, such as diaphragm valves.  Samples were 

added to the cell and then sealed with a OFHC copper lid using an indium wire gasket to create a 

cryogenically stable airtight seal.  Finally, cells were then removed from the glovebox and leak 

checks were performed before mounting on the isotherm station. 

2.3 – Volumetric Isotherms 
 The isotherm measurements recorded in these studies were made on custom-built 

systems described in Mursic and Larese220. These machines are able to take precise, high-

resolution measurements through assessment of pressure and intricate, stable control of 

temperatures.  An automated LabVIEW program provides the ability to obtain a large number of 

isotherm data points without excessive time of use on the part of the experimenter, and avoids 

large variances used in determining that equilibrium has been achieved for each step.  These 

instruments deliver precision and reproducibility far above what can be obtained from simpler, 

commercially-available units. 

2.3.1 – Instrumentation 

 A diagram of the isotherm gas handling system is shown in Figure 2.3 and the sample cell 

mounting in the displex is shown in Figure 2.4. The manifolds of the isotherm station are 

constructed from quarter-inch steel tubing with sections joined by either brazed joints or valves.  

The systems primarily made use of Swagelok B-4HK brass valves with quarter-inch Swagelok 

fittings, and the four computer-controlled valves for each station were opened and closed by 

Swagelok MS-HK-1C pneumatic actuators using compressed air. Alternatively, stainless steel 

diaphragm valves with pneumatic actuators were also used for controlled valves.  An MKS 248D 

proportional valve was used in the acetylene studies to control gas flow during the pressurization 

of the calibrated volume at the beginning of each step.  The large surface area of rubberized  
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Figure 2.3: Isotherm station diagram 

1) Computer controlled Pneumatic values 
2) Needle Valve 
3) Capacitance manometers 
4) Displex assembly 
5) Proportional Valve 
6) Adsorbate gas source manifold 
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Figure 2.4: Sample cell mounted in displex 
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gaskets and O-rings were incompatible with allene gas, and the proportional valve was replaced 

with a Clippard EVP series proportional valve.  Pressure was read from MKS Baratron capacitance 

manometers with either a 1 torr or 100 torr range.  The cryostat was an ARS DE-202 closed cycle 

cryocooler with an attached helium compressor unit.  Gas evacuation and vacuum pressure of 

the system were maintained with Pffeifer TSH-071 pumping station with a turbomolecular pump. 

 The electronics systems were controlled through the use of National Instruments 

modules, which controlled all electronic valves, digitized pressure readings, communicated with 

the temperature control unit, and monitored the cell temperature.  The pressure was read using 

a 12-bit digitizer which had three modes.  The normal output of the manometers spanned 0 V to 

10 V over their entire range.  In normal mode, the system would digitize the outputs over this 

entire 10 V span.  In high resolution mode, between 5 V and 10 V, the full 10 V range was used, 

between 1 V and 5 V, the signal was digitized over a range the span of 5 volts, doubling the 

resolution, and lastly, between 0 V and 1 V, the signal was digitized spanning only this range, 

giving a factor of 10 better resolution in the low pressure ranges.  The high-resolution mode 

allowed for automatic switching between the different ranges when the signals crossed the 

threshold values.  Temperature controllers were either a Neocera LTC-21 or a Cryocon 32-B, 

which controlled the temperature based on a silicon diode thermometer placed at the top of the 

cold finger, directly underneath the sample cell stage.  A 50 Ω resistive heating element was used 

to maintain the control thermometer at the required temperature with fluctuations of < 5 mK.  

The sample temperature was read from a second diode thermometer located on the top of the 

sample cell.   

 The lab view program interfaced with the controlling electronics and monitored and 

recorded the isotherm process.  The gas pressure for each dose was monitored over time to 

determine when the gas and surface had reached equilibrium, which is determined by monitoring 

the changes in pressure taken at regular intervals until these changes drop below a predefined 

tolerance.  Most isotherms recorded around 150 data points, but the system automation easily 

enabled extremely fine pressure dosing and recording of isotherms with hundreds or even up to 

a thousand data points with no significant intervention required from an operator. 
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2.3.2 – Determination of System Volume 

 The calibrated volume of the manifolds was determined through the use of repeated gas 

expansions using an attached precisely calibrated external glass volume.  From the changes in 

pressure from these expansions, the calibrated volume of the manifold was calculated using the 

ideal gas law.  Similarly, the dead-space volume of the sample cell was measured by gas 

expansions between the calibrated volume and the sample cell.  For accuracy, an ideal gas is 

required for this process.  The adsorbate gases are generally not used for this application as they 

may not be perfectly ideal in nature, may sorb or damage the substrate at room temperature, or 

present other issues.  The best simple options that were available with these systems was 

utilization of methane or helium, and while helium is the best option in terms of ideality, methane 

was used more often as this could be during the preparation of the surface characterization 

isotherms and is also a well behaved gas. 

2.3.3 – Characterization of Substrates 

 The characterization of substrate sample quality and surface area determination were 

fulfilled by conducting initial methane isotherms at 77 K.  For both graphite and MgO, thin film 

systems with methane have been well-studied and characterized.  Both systems are known to 

show film structures commensurate with the surface in this range, with an area per molecule of 

15.72 Å2 on graphite140 and 17.72 Å2 on MgO148.  The surface areas of the substrates were 

calculated from the monolayer capacity determined from the point B method outlined previously 

pertaining to these molecular areas.  The quality of the surface could be assessed based on the 

multilayer behavior of the surface.  This was more significant for MgO, which had a more variable 

and sensitive surface that could easily degrade over time during the isotherm process.  The 

indicators to look for with MgO were the obvious formation of at least five distinct monolayer 

steps, all with similar magnitude to the first step, and sharp, well-defined transitions at the top 

of the monolayer steps.  Poor sample quality or surface degradation over time resulted in loss of 

distinction and capacity in the higher monolayers, making it important to periodically rerun 

methane isotherms to check on the status of the sample quality.  A comparison of methane 

isotherms for both substrates is found in Figure 2.5. 
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Figure 2.5:Comparison of methane isotherms on graphite and MgO 
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2.3.4 – Data Analysis 

 The data was primarily analyzed using Kaleidagraph 4.5 software.  The isotherm data was 

first dead-space corrected and then interpolated to provide both a greater density of data points 

in the horizontal isotherm regions and a smoothing out of small fluctuations in pressure to 

improve the quality of the isotherm data and behavior of their numerical derivatives required for 

peak fitting analysis.  Such a process can introduce inherent bias, particular in the analysis of 

potential subtle features that may be present in the data.  In instances where areas were 

examined in such detail, two separate interpolation algorithms within the software were used 

and compared: Interpolate, which is a variant of a linear interpolation process, and Smooth, 

which combines the interpolation with a smoothing algorithm.  Both interpolation algorithms 

could be applied through a single parameter that adjusted the strength of smoothing processes.  

This parameter was manually adjusted in order to optimize the agreement of the interpolated 

line with the data points.  If a closer inspection of fine details was not warranted with a set of 

isotherms, only the smooth algorithm was utilized.   

 In the peak fitting processes used for the FWHM analysis of derivatives or 

compressibilities, subtle features in one region and shifting peak overlaps in another region of 

one isotherm system created difficulties beyond what the peak fitting processes in Kaleidagraph 

were capable of solving.  To fit these problematic places, and to keep the data processing 

methodology the same for all analysis within this dissertation, the peak fitting process was 

carried out using the multi-peak fitting 2.0 package in Wavemetrics Igor Pro 8.0. 

2.4 – Molecular Dynamics Simulations 
 Molecular dynamics simulations were carried out through the use of Accelrys Materials 

Studio’s Forcite molecular dynamics module.  The procedure that has been typically followed by 

this group in the study of many previous hydrocarbon systems was not perfectly adequate for 

use in either of these systems and required some extra considerations to obtain more realistic 

and relevant results.  However, while molecular dynamics does provide useful insight into the 

microscopic behavior of such molecular systems, they are not always trustworthy and should not 

be interpreted as an absolute reference in this regard.  This is perhaps more so true when 

standardized force fields are edited or modified to try and match the experimental results.  For 

acetylene, where this was heavily explored, simple calculations using other force-fields and 
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atomic potentials obtained from the literature provided a wider picture of the possibilities and 

differences of the various force-fields that have been used to describe this system.  This section 

will only describe the simulations conducted within Materials Studio.  A report on these extra 

calculations can be found in Chapter 4. 

2.4.1 – Preparation of Simulated System 
  The preparation of the simulated materials and simulation box parameters needed to be 

properly and carefully considered in order to construct a realistic size simulation.  The conditions 

must be defined in a way to be the best approximation of reality possible, while remaining simple 

enough for the computational time of the simulation to remain reasonable.  The following 

example illustrates the need for such considerations.   Smaller systems are computationally faster 

but may result in exaggerated effects if there is a significant mismatch between the lattice 

structure of the film and the size of the simulation box dimensions.  A larger box would help to 

alleviate some of the mismatch strain, spreading out any compressive or expansive forces 

created by the boundary mismatch over more molecules, but would take longer to run the 

simulations.  A wise trade-off may be to run simulations with incomplete coverages using smaller 

simulation boxes, while increasing the size as the system approaches a complete monolayer.  An 

extension of this would be in the examination of commensurate film systems, where the 

simulation box needs to be an integer multiple of the commensurate lattice structure.  The 

following outlined procedures were constructed to represent the best imitation of real, infinite 

systems as is reasonably obtainable using molecular dynamics systems on a desktop 

computational cluster. 

 The simulations were conducted using the COMPASS force field to define basic 

parameters of the intermolecular interactions.  This force field has been well-validated for 

accurate representations of the physical properties for many systems, including hydrocarbons.  

Acetylene has a long history of attempts to describe its properties with different force fields and 

custom-tailored atomic potentials with varying degrees of success, but no record has been found 

for a set of potentials that accurately describes acetylene’s behavior is all of its phases.  Even 

attempts to define a set of potentials that are able to describe both solid phases has not been 

entirely successful.  Additionally, the COMPASS force field does not contain accurate parameters 

to control the dihedral angle of the pairs of carbons at opposite ends of the molecular axis, and 



92 
 

in fact allows for free rotation of the cumulated double bonds around the central sp carbon.  How 

these issues were addressed is outlined below. 

2.4.1.1 – Surface Construction 

 The structures for materials utilized in these studies were defined based on the 

experimentally measured lattice constants and atomic positions.  This did not result in significant 

shifts from the force-field assigned values, but as the atoms of the surface substrate were 

constrained, the real values would, in theory, present the best representation of the actual 

surface potential for these simulations.  

 Supercells of the surface were created to the desired dimensions of the substrate surface 

within the simulation box.  The size of the cell depended on the type of calculation being 

performed and, where appropriate, lattice considerations were made as was outlined in this 

section’s introduction.  The surfaces were then “cleaved” along the c lattice vector (z-axis in 

cartesian coordinates) to define the surface faces of the substrate, with a substrate thickness of 

5 atomic layers.  This thickness was set based on the cut-off distances of the intermolecular 

interaction terms in the calculations; hence a thicker surface would involve more atoms in the 

system for calculations, while a thinner surface would not represent surface interactions with full 

accuracy and may allow molecules on opposing surfaces of the substrate to interact with each 

other.   

 Vacuum slabs were created at 100 Å in length with the substrate centered along the 

vertical axis of the simulated volume.  The centering of the substrate was not necessary for the 

accuracy of the simulations, but was used as a reference point in the calculation of the two-

dimensional radial distribution functions.  The software assigns periodic boundary conditions to 

the simulation box such that particles leaving the simulation box re-enter along the opposite 

symmetric edge of the system.   When the supercell and simulation space were fully constructed, 

the constraints were used to fix the cartesian coordinates of the surface atoms. 

2.4.1.2 – Preparation of Molecules 

 Neither molecule was included amongst the preconstructed molecules found within the 

software’s library of structures.  The molecules were built using the Materials Studio visualizer, 

and geometry optimizations were performed with the standard parameters of the COMPASS 
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force-fields to obtain the proper structure for the molecules.  The molecular geometries were 

compared with those from the NIST CCCBDB values to confirm that the obtained structures 

agreed with the proper values.  This worked well for acetylene; however, allene required an 

additional restraint to be defined before an accurate molecular structure was obtained.  For the 

calculations of radial distribution functions, the molecules must actually bare the identification 

of a “molecule” object within the Accelrys hierarchy, which sometimes is not generated 

automatically when molecules are built.  Lack of this classification system would not have any 

effect on the simulations themselves, but was a needed requirement when individually counting 

objects for use in the custom radial distribution script.  If the molecule tag was not automatically 

created by the software, this was assigned manually in the Morphology Tools module’s crystal 

graph menu. 

2.4.1.3 – Special Considerations for Allene 

 To obtain a realistic optimization of the structure for allene, a dihedral object was created 

on the molecule within the visualizer.  This object was then used to define a restraint on the 

molecule, setting the minimum energy orientation to 90° and the force constant was set to 

102.09 kJ mol-1 rad-1. which was derived from the rotational barrier for allene found in the 

literature.  The restraint used the same harmonic potential form as the normal dihedral 

interactions of the COMPASS force-field.    

2.4.1.4 – Force-Field Variations for Acetylene 

 The COMPASS force-field is a proprietary development of BIOVIA (formerly Accelrys when 

the version of the software utilized was released).  Most of the potentials used in the software 

are not accessible except for a small fraction released by the company in publications on the 

force-fields validation.  This means that direct editing of this force-fields’ parameters was not 

possible within the software.  Not unexpectedly, simulations of acetylene on graphite ran using 

the standard force-field parameters produced results with clear evidence of an underestimation 

of the quadrupole interactions.   

 Within the context of correcting and balancing the quadrupole interactions, the system 

did allow for two potential types of modifications that did not involve the need to edit force-field 

defined potentials.  The first was the editing of the point charge values assigned to the individual 
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atoms to increase the quadrupole strength.  The second possibility allowed for the modification 

of the atom type assignments to other alternatives defined within the force-field.  The list of 

atom type equivalencies has been published by the company and was used as a guideline for 

alternative atom type assignments that might result in subtle changes to the van der Waals 

energy calculations.   

 In order to alter these parameters, the force field had to first make the assigned atom 

types and point charges for the entire simulated system.  Therefore, after the simulated system 

was created and molecules for the desired film density were in place, a simulation of at least one 

frame had to be performed to allow the force-field to initialize it assignments.  To the resulting 

output, desired adjustments were made, and in the simulation set up, the automatic force field 

assignments were turned off, preventing the force field from reassigning the current values.   

2.4.2 – Energy Minimization Calculations 

 Energy minimization calculations for a single molecule on the surface were performed 

using a small supercell approximately 8 to 10 angstroms across.  A single molecule was placed 

onto the surface at one of the high symmetry locations defined earlier.  The calculation was then 

proceeded to optimize the configurational energy of the molecule to the surface using the Forcite 

module’s geometry optimization routine, employing the Smart algorithm.  The outputs were 

examined for the optimized position on the surface and the non-bonding energies were used to 

assess the binding energy for the molecule-surface interactions of the molecule in the optimized 

position.  This process was repeated by rotating the molecule by several degrees and performing 

the calculation for each unique high symmetry position of the surface. 

 Acetylene’s symmetry did not require any need for consideration of different molecular 

orientations about its molecular axis. Conversely, the lower symmetry of allene presented two 

likely orientations of this axis relative to the surface. To explore both possibilities, the series of 

calculations were run with the molecule oriented with the planes of the hydrogens each oriented 

at 45° from the surface, and with the hydrogen planes oriented with one set horizontal to the 

surface and the other vertically oriented from the surface.   

 Acetylene did, however, present an issue when analyzing the simulations due to the close 

proximity of the large point charges assigned to the molecule to simulate its quadrupole 

interactions.  The force-field did not have any settings that allowed for the exclusion of 1-4 atom-
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atom intramolecular interactions, resulting in a large repulsive energy being calculated between 

the positive charges on the molecules’ opposing hydrogens.  This repulsive energy, being 

intramolecular in nature, should not have impacted the refined surface configuration, as it did 

not seem to result in any unphysical distortion of the molecule itself.  However, even with the 

default force field settings that under-represented the quadrupole strength, the magnitude of 

the repulsive energy was nearly exactly the same magnitude as the surface interactions in the 

case of graphite, resulting in an apparent non-bond energy that was nearly zero.  To remove the 

artifact of this interaction from the reported energies, the surface was deleted from the 

calculation output’s atomistic document, and an energy calculation was performed using the 

Forcite module to determine the energy of just the intramolecular interactions of the molecule, 

which were further subtracted from the non-bond energies of the original optimizations.   

2.4.3 – Dynamics Simulations 

 The dynamics simulations were conducted using a supercell of sufficient size to contain 

approximately 120 molecules to create a complete monolayer for both surfaces of the substrate 

used.  Considerations for lattice mismatches were made by basing the surface density of a 

monolayer on the areas per molecule obtained from isotherm measurements.  The sizes were 

also set within this context to ensure there were no issues in commensurate structures, while 

simultaneously tailoring the supercell size to be an integer multiple of any suspected 

commensurate relationships.   

2.4.3.1 – Simulation Process 

 The simulations were conducted by placing a predefined number of molecules within the 

supercell space to achieve a nominal desired coverage to examine.  The simulations were run 

using the Forcite dynamics routine with the Canonical (NVT) ensemble.  The calculations were 

performed with a minimum time span of 100 ps with a 1 fs time step.  Temperature was 

controlled using the NHL thermostat and associated default values for the thermostat constants.  

The energy calculations were performed using the modules “medium” quality settings, which set 

the non-bond energy cut-off distance to 15.5 Å. 

 To remove any bias in the initial placement of molecules within the supercell and simulate 

the film behavior across a large range of temperatures, the simulations needed to be initiated at 
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a temperature that was two to three times the bulk triple point.  This ensured the thermal 

randomization of the molecules and that the simulations were conducted from a realistic frame 

of reference.  The triple point for both molecules is such that 400 K was picked as the starting 

temperature for both molecules.  The simulations were then conducted as a series exposed to 

decreasing temperature with the coordinates and velocities from the last frame of the previous 

simulation being used to define the starting point of the next simulation at the next lower 

temperature, most often moving in increments of 10 K.  The normal simulation timeframe was 

100 ps; however, following the completion of each simulation, the trajectory outputs were 

examined to determine if the system had reached the equilibrium point for that temperature 

step.  The temperature generally reached equilibrium within the first few picoseconds, with the 

energy analyses of the trajectories serving as good indicators that the system may have reached 

the equilibrium configuration at that temperature.  In particular, the trends in the non-bond and 

potential energies were assessed and, if they were seen to still be decreasing by the end of the 

simulation or seemed to have leveled off in the last 10% of the simulation, the simulation would 

be continued for a longer timeframe until these energies remained constant with time.   

2.4.3.2 – Analysis of Simulation Trajectories 

 The most heavily utilized methods employed by this research group for examining the 

trajectories in similarstudies are visualization, radial distribution function analysis, and 

concentration profile analysis.  The first and simplest, though the most subjective, involves one 

of the important and unique aspects that molecular dynamics and other computational methods 

afford chemists: the visual inspection of the trajectories, both as a stationary frame and an 

animated movie, provide a visual representation of the molecule’s structure and dynamics that 

is unique.  While this step is certainly subjective, it allows for a contextualization of both 

quantitative analyses of the simulation trajectories and empirical data.  It can also highlight 

certain aspects of the film dynamics that are not as immediately clear in the data from the other 

methods.  A review of the visualization of the dynamics calculations, for example, might reveal a 

correlation of the direction of motion of the molecules along one particular direction of the 

surface lattice.  Such information may be quantifiable from a vectorized mean squared 

displacement analysis, but without visualization, would not be obvious in the data.  Furthermore, 

distance or angle measurements could be defined within the system between any objects of 
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interest, and Forcite analysis calculations allowed for length or angle distributions to be 

determined on this feature.   

 The second method used here is the calculation of the radial distribution function of the 

simulated films.  This function provides important time-averaged structural information about 

the trajectory’s structures and the disorder thereof.  The default calculation algorithm included 

in the Forcite analysis package was intended for analysis of three-dimensional systems, and so 

application to two-dimensional systems resulted in an artifact that drove the intensities towards 

zero at increasing distances.  Though reasonable information about the first coordination shell 

could be obtained, the errors in intensities of each subsequent shell grew rapidly in magnitude.  

It was assumed at first that this was the result of the normalization of molecules in a two-

dimensional plane over the volume of a spherical shell element for each radius bin in the 

generated histogram.  Such an artifact would be easily corrected for, however, applying such a 

correction did not remove the artifact and only marginally improved the results.  The exact reason 

for this issue was not determined, but it was suspected that it was the result of a combination of 

the volume element problem and the way the algorithm dealt with periodic boundary conditions 

in three dimensions versus two dimensions.  While this latter issue should not seem to make a 

difference in theory, it is noted that the calculations typically resulted in an extra odd feature at 

a distance correlated with the lengths of the simulation box along in the surface plane, indicating 

a boundary artifact.  A component of the dissertation research contained herein was the 

development of a script that would run in the Materials Studio platform, capable of calculating 

the correct two-dimensional radial distribution function from trajectory outputs, which can be 

found in appendix A. 

 Concentration profiles were also examined for the axis perpendicular to the surface.  This 

yielded information in regards to the orientation and disorder of molecules away from the 

surface plane of the film, which is not obtainable within the radial distribution functions and is 

hard to quantify from visual inspections. 

 Further analyses were examined in some cases where the information they provided 

would help elucidate aspects of the simulations not obtainable with the previously mentioned 

methods, and also for their potential usefulness in the analysis of molecular dynamics within 

Materials Studio in future studies.  The previous two methods described provide useful 
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information about structure, but do not contain any direct information about the dynamics of 

the system.  Mean squared displacement calculations are a common tool for examining 

simulation dynamics and diffusion.  Forcite can calculate these quantities vectorized for each 

direction (xx, yy, zz), as coupled crossterms of two directions (xy, xz, yz) and as the total.  Spatial 

orientation correlation functions in Materials Studio are an expression of the orientational order 

in the system.  This is similar to the bond angle correlation function discussed in the previous 

chapter, and can be used to examine the orientational ordering of the molecules, or of the lattice, 

but does not have the specificity of the bond angle correlation functions to specific bond 

ordering.  Rotational time correlation functions were also examined as a means to assess 

potential aspects of hindered or free rotations within the system for analysis of potential aspects 

of different phases in the films.   

 The analyses contained within the proceeding results chapters focus primarily on the 

three primary methods: visualization analysis, radial distribution functions, and concentration 

profiles.  A summary of the potential uses of these other methods is discussed in chapter 1. 

2.5 – Neutron Diffraction 
 This dissertation includes the analysis of data that was previously collected for the 

systems of acetylene on graphite and MgO collected at the High Flux Beam Reactor (HFBR) at 

Brookhaven National Laboratory before its decommissioning that had hitherto gone 

unpublished.  These data were also supplemented with recently collected, though more limited, 

measurements conducted at the High Flux Isotope Reactor (HFIR) at Oak Ridge National 

Laboratory.   

 The majority of this data focused on the acetylene on graphite system and was collected 

in two separate sets of experiments that each examined the system over a wide range of 

temperatures utilizing the H5 beam line at the HRBR facility in the late 80s to early 90s, set to a 

wavelength of 2.865 Å.  The first set was performed preceding an upgrade to the beamline, 

consisting of the installment of an improved multidetector.  Following this upgrade, a second set 

of experiments mirrored the first set, but with significantly improved data quality.  These 

experiments were conducted at a 0.7 monolayer coverage relative to a commensurate √3 x 

√3R30° lattice.  They spanned a temperature range from 4 K to 165 K, with the second set of 

experiments focusing more on the region around the melting transition for this system.  Both 
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experiments were collected as difference measurements to remove the higher intensity signals 

of the substrate and sample container from the obtained spectra.  This process collects 

backgrounds of the bare substrate system that could then be subtracted from scans of the 

adsorbed system in order to isolate the diffraction pattern of the film itself.  Films were annealed 

at 165 K for two hours and then slowly cooled at 1K/min to the data collection temperature.  The 

data consisted of the averaging of six scans taken at each temperature point and were corrected 

for detector efficiency.  

 Two diffraction profile measurements of acetylene on MgO were also performed for 

coverages of 0.7 and 1.0 monolayers on the same beam line following the detector upgrade.  

These measurements were only performed at 10 K.  The shutdown of the HFBR facility in the mid 

90s prevented further measurements to be taken for this system. 

 Follow-up measurements were also made using the HFIR HB-2C beamline employing the 

Wide Angle Neutron Diffractometer (WAND).  These measurements were conducted as 

difference scans for acetylene adsorbed on both graphite and MgO at 10 K and a wavelength of 

1.487 Å. WAND covered a much larger range of Q-space than the previously measured data and 

was useful in adding verification of previous results and confirming the absence of any other 

significant diffraction peaks outside of the original data’s scan window.   

 The primary contribution of this dissertation towards the elucidation of neutron 

diffraction results for these systems was not in the collection of data, but in the analysis of the 

data.  Heretofore, a Fortran program called 2dim that generates calculated diffraction profiles 

for two-dimensional systems for both neutron and x-ray diffraction experiments, has been used 

for the analysis of diffraction studies amongst this research group.  The program was originally 

developed by James C. Newton as part of his dissertation work at the University of Missouri and 

was modified by John Z. Larese and his research team at Brookhaven National Laboratory, which 

included the addition of two non-Warren,  Lorentzian and Lorentzian-squared lineshape 

possibilities.  This program generated lineshapes that accounted for lattice parameters, 

molecular positions and orientations, fixed or free molecular rotations, three possible lineshape 

functions (mentioned above), disorder terms (coherence length and mean squared 

displacements), multilayering corrections and background corrections, substrate preferred 

orientations, and instrument-specific parameters. 
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 A drawback of this program, in the absence of further refinement, is that it requires 

manual input for specific potential lattices and other settings, one value at a time, and then 

further manual analysis of each resulting output.  Though this limitation has not prevented the 

use of the program in the structural refinement of many systems in the past with very good 

agreement, it lacked the elegance of the Rietveld refinement process used for the analysis of 

powder diffraction data in three dimensions.  To establish similar abilities for the analysis of two-

dimensional systems, a Matlab application was developed to add a GUI and more functionality 

to the original program.  This program allows the user to specify all the initial input settings 

required by the 2dim program, as well as particular parameters and ranges for a refinement 

process.  Following this, the program initiates a loop over the permutations of all the selected 

parameters, from which it generates the input files for 2dim, runs the program, then uploads the 

resulting calculated diffraction profile.  It then uses a least-squares fitting process to scale the 

calculated intensities to the diffraction profile, along with a selected baseline function, and, 

selectably, a disordered background function.  The process then repeats the loop for the next 

iteration, tracking the goodness-of-fit for each structure tested.  While this method is a “blunt 

force” method of approaching a least-squares fitting, the program in its current form functions 

primarily as the interface of the 2dim program that has already been established and worked 

within the confines of the current functionality of that program.  One modification to the original 

source code was made by the author of this dissertation that allowed for the source code to be 

compiled using the Intel’s Ifort compiler instead of the opensource gfortran compiler previously 

utilized.  The new compiler has inbuilt features that allow for the optimization of vector algebra 

and the automatic parallelization of processes within the program.  This resulted in a 

benchmarked speed increase in the program efficiency by a factor of 20 for a comparatively small 

system.    A more optimized and direct approach for Rietveld refinement is possible for two-

dimensional systems, but if implemented in the future, will require a significant overhaul or 

replacement of the 2dim program source code.   

 In the process of fitting the experimental data, one additional aspect required further 

functionalities of the program.  In the refinement of the acetylene on graphite data, diffraction 

profiles at multiple temperatures showed an evolving, two-phase coexistence region with 

overlapping diffraction features.  First attempts to use the developed refinement program to fit 
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the data in this region employed a pre-fit disordered background of the liquid diffraction profile 

after the complete melting of the system.  This, however, resulted in poor quality fitting, which 

grew worse as the temperatures approached the pure solid phase, and did very poorly at 

describing the diffuse disorder background present in the solid phase.  The functionality of the 

refinement application was extended to include a simultaneous two-phase refinement that 

enabled fitting of both phases simultaneously.  Further description on how this was able to be 

used effectively while avoiding false solutions inherent to optimizations of systems with too 

many degrees of freedom is described in Chapter 3. 
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Chapter 3 – Adsorption of Acetylene on Graphite: A 
Thermodynamic, Neutron Diffraction, and Modeling 
Study 
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3.1 – Abstract 
 A detailed investigation of the phase behavior of acetylene films adsorbed on graphite’s 

basal plane between 119 K and 141 K is presented. Volumetric adsorption isotherms show four 

distinct features in the monolayer regime. A potential fifth feature appears in the first step.  A 

notable change in the isotherm behavior takes place between 132.5 K and 134.5 K, where the 

system undergoes a 2D melting transition.  At temperatures above 134.5K, the adsorption traces 

exhibit three features, with a second melting transition at 140.5 K.  Neutron diffraction data at 

sub-monolayer coverage has been used to analyze the structure of one of the previously 

observed solid phases.  The neutron diffraction data confirms that the transition at 133 K 

recorded in the isotherm data is associated with the melting of the monolayer solid. Companion 

molecular dynamics simulations were performed over a temperature and coverage range 

consistent with the adsorption and neutron diffraction measurements.  At low coverages, the 

quadrupole-quadrupole molecular interactions are comparable in magnitude to the molecule-

surface interactions, leading to a solid with significant rotational disorder. These simulations find 

that as the film density is increased, the solid film becomes more rotationally ordered, leading to 

a hexagonal solid structure, symmetric with the graphite surface. 

3.2 – Introduction 
 Understanding the behavior of molecules adsorbed on a solid surface plays an important 

role in current basic scientific and technological issues. Examples where these investigations are 

most relevant include catalysis11, gas separation11, gas storage14, and optoelectronics16. By 

expanding the fundamental knowledge base on how molecules interact with (and perhaps 

modify) a material’s surface, an ideal platform is established with which to probe and test 

theories of intermolecular interactions and in principle subsequently lead to technological 

advancements. One interesting area involves examination of the interplay of molecule-molecule 

and molecule-surface symmetries, especially in cases where the two symmetries are 

incompatible.  Archetypal surface substrates like MgO (100) and graphite basal plane have 
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recently been undertaken to probe how the relative size of these two interactions influence the 

properties of adsorbed molecular films. Graphite is one of the most widely studied surfaces due 

to its chemical stability, the availability of uniform, single facet high surface area materials (i.e.  

predominantly basal plane exposure), and relative ease of preparation and maintenance of clean 

surfaces.   

 For this study, the focus was an examination of the adsorption of acetylene films on the 

surface of graphite.  As such, it is one component of an ongoing series of investigations which 

examine the behavioral trends of a homologous family of molecules adsorbed onto surfaces of 

varying symmetry154, 156-158. This study represents the first step in an examination of the 

adsorption properties of linear, quadrupolar hydrocarbons, of which acetylene may be 

considered the prototypical molecule. It is a small, highly symmetric molecule similar to other 

molecules that have previously been studied, such as N2
164, 165, C2N2

178, and CO2
177, 178.  Linear 

molecules of these types all belong to the same point group (D∞h), the common symmetry which 

prevents the formation of any type of static dipole moment. These small molecules can, however, 

display charge distributions with higher order electrostatic moments (e.g. a quadrupole 

moment), and in cases where this electrostatic property is substantial, a notable influence on 

their intermolecular interactions and resulting condensed state properties. Acetylene 

distinguishes itself from these other molecules as a result of its small size and large quadrupole 

moment, which is approximately 5 times greater than that of nitrogen95, 209, 211, 221-223. This means 

that the quadrupolar interaction between molecules should be a key factor in the resulting 

surface structure and behavior of adsorbed acetylene films.  Notably, acetylene is considerably 

smaller and lighter than CO2, which also has a sizable quadrupole moment.  It is nearly small 

enough to adopt a √3 x √3 R30° commensurate lattice on graphite while lying flat214, suggesting 

that the six-fold symmetry of the surface will influence the physical properties of the film as well.     

 The minimum energy configuration for two interacting linear quadrupoles is such that 

they adopt a T-shaped arrangement.  Extending this effect in two dimensions would result in the 

formation of a stable, ordered square lattice containing two molecules per unit cell in the T-

shaped configuration, with four-fold symmetry224. It is well known that graphite forms a 

hexagonal or “honeycomb” lattice, with a weakly corrugated, nonpolar surface plane. Thus, the 

6-fold surface symmetry would naturally “steer” molecules towards structures which would favor 
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a similar arrangement. The juxtaposition of these two different structurally favorable symmetries 

underscores one of the underlying purposes for investigating acetylene film adsorption on the 

graphite basal plane (i.e. 4-fold versus 6-fold symmetry, respectively). Depending on the relative 

size of the molecule-molecule and molecule-surface interactions and the surface density, a “tug 

of war” between the preferred molecular orientations can result, producing a solid film that is 

structurally frustrated51. For example, nitrogen, which has a weaker quadrupole moment 

compared to other molecules of similar size, readily forms a monolayer solid that is 

commensurate with the graphite (hexagonal) surface51.  In the current study, acetylene, with its 

larger quadruple moment, has a phase diagram with fascinating structural and physical 

properties. 

 Earlier, less comprehensive thermodynamic and microscopic studies suggested that this 

is a system that is poorly understood and complex27, 107, 213-217, 225. The thermodynamic 

investigations revealed several adsorption features that may be related to phase transitions 

within the monolayer phase.  Preliminary neutron data identified two solid phases (referred to 

as S1 and S2), as well as one liquid phase216.  A more recent neutron study broadened this picture, 

by introducing phase transitions and mixed solid phases213.  Although these studies have revealed 

the complexity of this system, they have not represented a detailed enough paralleled 

thermodynamic, microscopic, and modeling investigation in order to provide a more complete 

picture of the structural, thermodynamic, and phase behavior for this system. 

 The present investigation presents a comprehensive examination of the adsorption of 

acetylene films on graphite using thermodynamic, neutron scattering, and molecular dynamic 

modeling techniques aimed at the monolayer (and beyond) behavior. Thermodynamic 

measurements were made using high resolution volumetric isotherms in a temperature range of 

119 K to 141 K.  From these data, potential phase transitions, surface densities, and differential 

enthalpies and entropies were obtained.  Molecular dynamics simulations were performed over 

a range of coverages above and below monolayer completion to illuminate the structure and 

subtleties of the film behavior. Single molecule geometry optimizations on graphite were also 

performed to identify preferred binding sites and energies.  Lastly, neutron diffraction data at 

low coverages were obtained to provide structural information and additional evidence 

concerning 2D melting. 
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3.3 – Experimental 
3.3.1 – Acetylene Purification 

 Most commercially available acetylene gas (pressurized over 2 atm) is dissolved in 

acetone to stabilize it and allow for safe storage at higher pressures. For this study, atomic 

absorption grade (99.7 % purity, Airgas) was used.  Before use, the gas was purified following a 

procedure described by Hyman et al.218, shown to effectively remove the contaminating acetone 

vapor as well as several other contaminants common to acetylene production. The resulting gas 

was then subjected to several freeze-pump-thaw cycles to remove any remaining volatile gases.  

3.3.2 – Volumetric Isotherms 

 The graphite sample used was an exfoliated foam provided by Union Carbide with a 

surface area around 20 m2 g-1.  The graphite sample was heat-treated in vacuo inside a quartz 

tube at 750 °C for 24 hours.  The sample was then transferred into an argon filled glove box, 

where it was loaded into a OFHC copper sample cell and subsequently sealed with an indium 

gasket.  The sample cell was then mounted on a cold finger inside an ARS™ 4K based closed-cycle 

helium cryostat.  A Neocera™ LTC-21 controller was used to regulate temperature to a stability 

of less than ± 5 mK using a silicon diode thermometer mounted at the top of the cold finger. The 

sample temperature was monitored with a second silicon diode attached to the top of the sample 

cell. 

 As in the past, adsorption experiments were performed using an automated, high-

resolution isotherm apparatus controlled by a custom LabVIEW program to regulate and record 

gas dosing, pressures, and temperature220.  Pressure readings were made using either a 1 or 100 

torr MKS baratron capacitance monometer.  This system has been shown to produce highly 

stable and precise measurements, across a wide range of temperatures and pressures. A 

methane isotherm at 77K was initially performed to characterize the quality and surface area of 

the heat-treated sample after mounting the sample in the cryostat. In order to monitor if surface 

degradation took place, methane isotherms were performed periodically. Greater than twenty 

isotherms were recorded within the temperature range of 119 K > T(K) > 141 K. Sample 

temperatures were established using saturated vapor pressures (SVP) for each isotherm 

employing parameters determined for acetylene by Menaucourt et al214. 
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3.3.3 – Computational Modeling 

 Molecular modeling studies were performed using the Forcite Module in Accelrys’ 

Materials Studio 6.0 software. As performed similarly in our previous studies, the COMPASS 

forcefield was used to define the intermolecular and molecule-surface interactions in the 

simulations known to realistically describe the interactions of many hydrocarbons and small 

molecules90. Two types of computations were performed in this study: geometry optimization of 

a single molecule on a graphite surface was used to identify favorable surface binding sites and 

energies, and molecular dynamics (MD) simulations were conducted at various temperatures and 

for several fixed numbers of molecules to gain insight regarding possible film structure and 

attendant molecular dynamic behavior. 

 For both types of simulations, the initial preparation of the graphite surfaces and 

acetylene molecules was the same.  An optimized graphite unit cell (2.46 x 2.46 x 6.80 Å) 

consistent with crystallographic data was used to create a larger supercell of the graphite 

substrate, within which the atomic positions of the C atoms were constrained to remain fixed in 

their optimized positions. A vacuum slab was created above the surface with periodic boundary 

conditions to create an infinite xy-plane of the graphite surfaces, with the z direction connecting 

the vacuum space of the top and bottom surfaces of the simulation box. Likewise, individual 

acetylene molecules were constructed and optimized and then transferred onto the graphite 

surface within the simulation box. 

 For the geometry optimization calculations, acetylene molecules were placed onto the 

surface of a 9.84 x 9.84 x 17.00 Å graphite supercell with a 20 Å vacuum slab having the molecular 

center of mass positioned over high symmetry points of the graphite surface, those being the 

center hollow of the hexagonal unit, the mid-point of a carbon-carbon bond, and directly on top 

of a carbon atom.  Calculations were run for various initial molecular orientations over these fixed 

points using the Forcite module’s Smart algorithm.   

 MD simulations were performed using a 36.90 x 36.90 x 17.00 Å supercell with a 100 Å 

vacuum slab. To investigate the density dependence of a single layer of adsorbed molecules on 

the graphite surface, five different groups of acetylene molecules (over an approximate range of 

0.3 to 1.2 monolayers) were placed randomly within the simulation box. Simulations were 

performed using the NVT (canonical) ensemble with a Nose-Hoover-Langevin (NHL) thermostat 
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for temperature regulation.  Simulation times ranged from 50 to 250 ps depending on 

equilibration times, with a 1 fs time step. Equilibrium was determined to be reached when the 

non-bonded and potential energy terms remain constant with time.   In order to eliminate any 

unintended bias of the starting position of any molecule within the ensemble, each MD 

simulation was initially performed at 400 K. The system was incrementally cooled by using the 

final velocities and positions from the end of each simulation as the start point of the next 

simulation at lower temperature.  This process ensured that the simulations were conducted 

from a suitably random arrangement of molecules that then incrementally approached 

equilibrium with the surface as the temperature was lowered. 

3.3.4 – Neutron Diffraction 

 Elastic neutron diffraction data was collected using the powder diffractometers TAMPA 

located at the High Flux Beam Reactor (Brookhaven National Laboratory) and WAND2 at the High 

Flux Isotope Reactor (Oak Ridge National Laboratory), which were operated at fixed wavelengths 

of 1.63 Å and 1.5 Å, respectively. The sample cells were loaded in a glove box and mounted on a 

custom cryostat insert226.  The adsorbed films were prepared in situ as in the past, using a custom-

built gas handling system24. All quantities of C2D2 gas are quoted in fractional coverages where 

one monolayer refers to the quantity of gas needed to form a √3 x √3 R30° commensurate lattice 

(as determined using a N2 isotherm at 77.4K). Films were annealed for ~ 2 hours at (165 K) and 

then slowly cooled at 1K/min to the data collection temperature. Diffraction profiles were 

recorded within a temperature range between 160 K to 4 K.  The diffraction data was evaluated 

by subtracting off the signal from the sample cell containing the bare graphite. 

3.4 – Results and Discussion 
3.4.1 – Thermodynamics 

 As noted above, twenty-seven volumetric isotherms were recorded between 119.69 K < 

T(K) < 141.62 K. Once the raw data was corrected for molecules that occupied the dead space, 

these data were reduced using the interpolation routine described in our earlier work142 to obtain 

smooth curves that accurately represent the experimental data.  The inset to Figure 3.1 shows 

four different isotherms to illustrate how the interpolated curves match the behavior of the 
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Interpolated fits (lines) with matching raw data points (circles) at four selected temperatures 
within the analyzed range.   Transition features of the first monolayer are labeled here as A 
through D. 

 
 
 
 
 
 
 

Figure 3.1:Selected isotherms for acetylene on graphite 
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experimental data (solid circles).  Figure 3.1 also indicates that at temperatures < 132.63 K, four 

prominent features (labeled A through D) are recorded. Between 132.63 K and 134.52 K, these 

features exhibit noticeable changes: feature B broadens and disappears while feature C splits 

into two sub-steps (C1 and C2). Furthermore, above 134.52 K, feature C undergoes another 

change in behavior as a function of coverage for the lower step (labelled C1’).  Lastly, the substep 

identified as C2 disappears between 140.61 K and 141. 62 K. 

 When the isotherm temperature is > 132.63 K, the slope of initial step A appears to be 

less vertical and becomes progressively less steep as the temperature is decreased. This behavior 

can be associated with a decrease in film density as well (see example in Figure 3.2). Previous 

investigations have led to uncertainty in the critical temperature, Tc1, associated with the first 

acetylene layer.  Recent investigations14,20 indicate that Tc1 is at 155 K. The study by Peters et 

al.107, who reported Tc1 to be at 120 K, based their conclusion on an apparent splitting and 

reduction in slope of the initial riser (labeled feature A in Figure 1, found at ~120 K). In the high-

resolution measurements reported here, a similar (albeit subtle) feature associated with step A 

appears in all traces < 132.5 K. It is important to note that this feature is barely visible in the raw 

data; however, by taking the numerical derivative of the interpolated fits, this feature is readily 

observable (see example found in bottom trace of Figure 3.2). The heat capacity study by 

Alkhafaji and Migone27 provides additional information in terms of the order of the monolayer 

melting behavior of acetylene. Similar behavior may have been observed in the study of sub-

monolayer ethylene on graphite160, 161, 227.  

 Surface coverages corresponding to the various monolayer substep features were 

identified using the point B method. The area per molecule (APM) was determined by comparing 

the substep locations to the initial 77K methane calibration isotherm where the √3 x √3 R30° 

commensurate structure and 15.72 Å2 APM is well-established. All coverages are reported as a 

fraction, where 1.00 monolayer is the coverage when the √3 x √3 commensurate phase is 

completed, consistent with earlier published measurements27, 214, 217. These values are 

summarized in Table 3.1. Notably, the coverage/APM value for phase A has a lower surface 

density in the low temperature regime than in the high temperature region. The C and C2 phases 

have similar densities (i.e. ~ 5 % lower than the √3 x √3 R30° phase and where C2 is slightly more  
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(top) plot of isotherms over the full temperature range examined plotted as a function of 
chemical potential. (bottom) First monolayer step of isotherm at 124.64 K with numerical 
derivative.  Peak fitting results showing two distinct peaks are in blue showing two distinct 
sub-features.  FWHMs for two peak fit solution: 5.2274E-4 and 7.4087E-4. FWHM for one 
peak fit solution: 1.0176E-3 

 
 

Figure 3.2:Acetylene on graphite isotherms plotted vs chemical potential 



112 
 

 
Table 3.1::Thermodynamic quantities for acetylene on graphite 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phase  Coverage 
(Relative to CH4) 

APM 
Å2 

A(n) B(n) ΔH 
kJ mol-1 

ΔS 
J mol-1 K-1 

Qads 

kJ mol-1 
Temperature 

Range 
Observable 

K 
A 0.790 ± 0.007 19.92 ± 0.15 2673.0 17.532 1.247 35.484 22.223 ≥ 133.53  
A1 ≈0.57† ≈28† 2810.0 17.795 0.108 33.298 23.362 ≤ 132.14 
A2 0.762 ± 0.007 20.66 ± 0.22 2723.8 17.170 0.825 38.494 22.646  ≤ 132.14 
B 0.824 ± 0.004 19.1 ± 0.10 2384.8 15.199 3.643 54.881 19.827 ≤ 132.14 
B’ ‡ ‡ 5219.0 36.670 -19.920  -123.63 43.391 132.63 – 

133.70 
C 0.950 ± 0.002 16.56 ± 0.04 2496.8 17.035 2.712 39.616 20.758 ≤ 132.14 
C1 0.896 ± 0.005 17.57 ± 0.11 2764.9 19.016 0.483 23.146 22.987 132.52 – 

133.77 
C’1 0.923 ± 0.006 17.06 ± 0.12 3788.2 26.644 -8.025 -40.439 31.495 ≥ 136.54 
C2 0.959 ± 0.008 16.42 ± 0.15 4051.2 28.789 -10.21 -58.107 33.682 ≥ 136.54 
D 1.202 ± 0.019 13.10 ± 0.25 2821.7 21.550 0.0108 2.079 23.460 ≤ 133.01 

Layer 2 - - 2804.0 21.453 0.158 2.885 23.313 Full range 
Layer 3 - - 2827.1 21.742 -0.034 0.482 23.505 Full range 
Layer 4 - - 2859.5 22.015 -0.304 -1.788 23.774 Full range 

Bulk - - 2823.0 21.800 - - 23.470 - 

Coverage and thermodynamic data for observed phases. Coverages for multilayers are 
excluded due to overlap with capillary condensation within the vermicular graphite structure. 
(† es mate based on best fi ng isotherms data, ‡ feature is visible in only two isotherms 
weakly, coverage and thermodynamic values are should be regarded as estimations). 
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dense). The density associated with feature D is significantly higher than in the other monolayer 

films and may signal that the molecules are tilted away from the graphite surface or that feature 

D corresponds to the onset of molecules being promoted to a second layer. 

 While earlier adsorption studies26, 213 reported substeps in the monolayer regime, the 

results presented here track the evolution of these features as a function of temperature and 

coverage through monolayer completion and beyond. This includes evidence that these substep 

features are present at the onset and within the second acetylene layer. However, the present 

study is focused on developing a more detailed understanding of the monolayer regime and a 

discussion of these bilayer features will be left to a future publication.  

  The data plotted in Figure 3.3 correspond to the location of the peak in the numerical 

derivatives associated with each of the adsorption features (A-D) discussed above. These data 

are analyzed following the formalism introduced by Larher9, which employs a Clausius-Clapeyron 

analysis utilizing linear fits of the natural logarithm of the pressure values plotted against the 

inverse isotherm temperature (found in Figure 3.3), :  

ln 𝑝
( )

= 𝐵( ) −
( )

                        (3.1)  

 The thermodynamic values summarized in Table 3.1 and depicted in equation (1) include 

both the differential enthalpy, ∆𝐻( ), and entropy, ∆𝑆( ), and the heat of adsorption, 𝑄
( ) , 

where the slope, A(n), and y-intercept, B(n), represent fits determined for each of the nth adsorbed 

layers. The differential enthalpy (∆𝐻( )) and entropy (∆𝑆( )) are calculated relative to the bulk 

acetylene (n = ∞) values.  These relationships are given in equations (2) through (4) below: 

 ∆𝐻( ) = −𝑅(𝐴( ) − 𝐴( ))                          (3.2) 

 ∆𝑆( ) = −𝑅(𝐵( ) − 𝐵( ))                        (3.3) 

 𝑄
( )

= 𝑅𝐴( )                                                                                                    (3.4) 

 The values summarized in Table 3.1 illustrate that film thermodynamics primarily are 

characterized by positive values of the differential enthalpy and entropy, indicating the processes 

are entropically driven and likely partially disordered. Some notable exceptions to this trend are 

associated with the B’, C’1, and C2 features. It appears that these transformations evolve from 

high energy and disordered structures at lower temperature, to a lower energy, more ordered 

phase at higher temperature. Interestingly, bulk acetylene undergoes a solid-solid phase  
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Clausius-Clapeyron plot of different phases whose positions were obtained from the maxima 
present in the numerical derivative.  Numerical results are found in Table 1.  Note, the phase 
demarcated as B’ was only fully resolvable at two temperatures, and the dashed line is a 
projection based on other empirical data. 

 

 

Figure 3.3: Clausius-Clapeyron plot for acetylene on graphite 
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transition at 133 K from a low energy, disordered orthorhombic phase at low temperature, to a 

high energy, disordered cubic phase at high temperature196-198, 208. Interaction of the film with 

the substrate is known to modify the bulk behavior and is likely related to the behavior recorded 

here, especially when one considers that the solid-solid transition in the bulk occurs at 

approximately the same temperature as the transitions observed in these isotherm 

measurements. Hence, the magnitude of the intermolecular quadrupole-quadrupole 

interactions relative to molecule-surface interactions is the most likely explanation of this 

behavior.  

 The isosteric heat of adsorption is defined as the amount of energy required to move a 

molecule from the gas phase into the surface film at constant coverage: 

 𝑄 = 𝑅𝑇
 ( )

≅ 𝑅𝑇
∆  ( )

∆
                                                                                               (3.6) 

 The numerical derivative versus temperature between two isotherms closely spaced in T 

can be used to approximate the value for Qst(Tavg), where  Tavg is the average of the two isotherm 

temperatures used to calculate Qst. Figure 3.4 displays the isosteric heats for several 

temperatures between 122K and 142K.  The NIST Webbook192 lists both 22.1 and 23.5 kJ/mole 

for bulk molar heat of acetylene at 130 K. The isosteres shown in Figure 3.4 converge towards 

the bulk values at higher coverage.  Peaks in the isosteric heats indicate that adsorption is 

energetically favorable at those points. One prominent feature in the isosteric heat traces is the 

large, broad peak located near θ ~1 at temperatures < 132.5 K. This is the region where the 

isotherm plateaus between steps C and D, corresponding to a surface coverage where a 

commensurate √3 x √3 R30° phase would form. The behavior of isotherm feature C suggests that 

the film may undergo a continuous transition to a commensurate hexagonal structure if the 

molecular axes are no longer parallel to the graphite basal plane. 

 In the Henry’s law (low coverage) regime, the molecule interaction with the surface plays 

a dominant role. The binding energy of an isolated molecule to the graphite surface is Q0 , i.e. the 

heat of adsorption in the zero coverage limit. The Henry’s law constant K(T) is given by: 

 𝐾(𝑇) = 𝐾∗exp ( )                                         (3.6) 
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Isosteric heats of adsorption over the monolayer range.  The plots are offset vertically by 10 
units for clarity. Vertical lines mark upper and lower bounds of each adsorption step  

 

Figure 3.4: Isosteres of acetylene on graphite 
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where K* is a constant of integration, R is the gas constant, T the isotherm temperature and, as 

noted above, Q0 is the heat of adsorption in the zero-coverage limit. See supplementary 

information for results of this analysis. 

 The 2D isotherm compressibility (K2D) given in equation (3.7) can be used to better 

understand the nature of the phase behavior and transitions of the adsorbed film:  

 𝐾 =
∙

∙ ∙ ∙
∙

∆

∆
                                                                                                  (3.7) 

where A is the surface area of the substrate, pf is the vapor pressure, NA is Avogadro’s number, 

kB is Boltzmann’s constant, T is the temperature in Kelvin, nads is the moles adsorbed, and 

Δnads/Δpf is the numerical derivative of the isotherm.  Figure 3.5 shows a plot of the K2D for each 

of the observed monolayer features (steps and substeps) as a function of temperature.  

Remarkably, the K2D-associated step A exhibits a sharp increase in intensity at 132.63 K. Such 

behavior would be consistent with being at or near a first order transition phase where 

compressibility should theoretically be infinite. 

 Additional analysis of K2D was performed by examining the functional form and changes 

in the width of the compressibility peaks as a function of temperature. The comprehensive results 

are summarized in the supplementary data, however, Figure 3.6 shows the behavior of the 

widths of the numeric derivative peak of Step A as a function of temperature.  The derivative was 

used instead of the K2D function in this case because it enabled better fitting of the subtle 

features and K2D is proportional to the slope of the isotherms 

 In earlier studies, we have used the temperature dependence of K2D peak widths to 

identify where possible phase transitions occur. For the A step, for example, both A1 and A2 

exhibit abrupt changes in slope at 133 K, while A1 also shows a change in slope at 126 K.  The 

supplementary data displays the temperature dependence of features B, C, and D. Step B exhibits 

both a discontinuity at 126 K and a change of slope at 132 K.  The C step and its corresponding 

substeps show a much greater deal of complexity.  With increasing temperature, the first change 

occurs at 132.5 K, where C2 shows a discontinuity with an increase in the FWHM, and where C1 

continues along the same line as before.  Then at 134.5 K, both C1 and C2 go through another 

discontinuity point, where the value for C1 increases and C2 simultaneously decreases.  From 

there, the C1 FWHM decreases with temperature while C2 stays relatively constant.  Then at 

140.7, the FWHM of C2 sharply increases, joining with the C1 line into a single peak.  For step D,  
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The K2D peaks corresponding to steps A through D with C sub-step and the second layer peak 
(L2).  D and L2 are shown at 124.65 K only due to overlap of different temperatures 

Figure 3.5:Two-dimensional compressibilities for acetylene on graphite 
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Plots of FWHM values for the first monolayer step (A) with secondary features. 
Temperatures of possible phase changes are labeled 

Figure 3.6:Plot of FWHM analysis for first isotherm step for acetylene on graphite 
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the peaks were the most challenging to fit and have the largest degree of error, but a change 

seems to occur there as well, with notable features at 126 K and 130 K.  To attach meaning to 

these observations and put them into a greater context, a proposed phase diagram will be 

discussed later in this report.  

3.4.2 – Computational Modeling 

3.4.2.1 – Single Molecule Energy Minimizations 

 To examine how the graphite surface influences the behavior of an isolated adsorbed 

acetylene molecule, a geometry optimization was performed using Accelrys Materials Studio 6.0. 

Acetylene is a challenge to simulate accurately, in large part due to limitations in computational 

models that appropriately reflect its large quadrupole moment 107, 210, 211, 228. This is primarily due 

to the difficulty of accurately describing the quadrupole interaction of a small molecule using 

only 4-point charges located at the centers of the atomic nuclei. The addition of a fifth point 

charge located at the center of mass of the molecule improves these models, but the 

functionality of the version of Forcite used here can only place point charges on atomic centers. 

In these simulations, the values of the point charges assigned by the COMPASS forcefield were ± 

0.223 e-, with the positive poles placed on the hydrogen atoms. These point charge values are 

considerably lower than the more accurate point charge models in the literature, with charges 

around ± 0.3 e-.   

 One complication that arose in these calculations is in treating the electrostatic 

interaction energies.  The Accelrys software does not allow for the exclusion of intramolecular 1-

4 atom-atom interactions. Hence, the positive charges located at the hydrogen atom positions 

lead to a large, positive electrostatic energy term. Although this does not affect the minimized 

positions of the molecule relative to the graphite surface, the effect on the energy values had to 

be subtracted for meaningful interpretation of the binding energies.  This was addressed by 

removing the surface from the simulated space after optimization and performing an energy 

calculation on the molecule that remained in the absence of the surface binding interactions.  

The binding energies could then be calculated: 

𝐸 = 𝐸 −  𝐸                                                                                         (3.8) 

where En is the energy of the corresponding interaction term. 
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 These results (see Figure 3.7) show a remarkable agreement with the Henry’s law analysis 

value of 21 kJ mol-1.  Furthermore, the difference between the lowest and highest binding 

energies from these calculations is 0.213 kJ mol-1, consistent with the expectation of the strength 

of the intermolecular interactions and the molecule-surface interactions. 

3.4.2.2 – Molecular Dynamics 

 Using the Accelrys Materials Studio Forcite package, MDs were used to model the 

microscopic behavior of the acetylene films on graphite as a function of temperature and surface 

densities. In terms of fractional surface coverage, θ, between 0.25 ≤ θ < 1.25, θ = 1.0 corresponds 

to a commensurate √3 x √3R30° monolayer. While quantitatively precise descriptions of the 

energetics and thermodynamic quantities require additional microscopic data, the MD 

simulations presented serve as a guide for understanding the trends in the adsorption properties 

and in the analysis of neutron scattering investigations of the microscopic structure and dynamics 

of the films.  

 First, to elucidate the microscopic behavior, creating a movie composed from a set of 

sequential MD time snapshots of the molecular trajectories as a function of temperature and 

fixed surface coverage is a good starting point. Next, using the molecular centers of mass (CoM), 

the 2D radial distribution functions (2D RDF) can be evaluated. In contrast to the 3D RDF, the 2D 

RDF is normalized over a circular surface element such that: 

𝑔(𝑟) =  ×                                                              (3.9) 

where ρ2D is the areal number density of the molecules and dnr is the number of molecules in a 

circular shell between radii of r and r + dr. Additionally, molecular concentration profiles normal 

to the surface plane, labelled C(z), are used to quantify the orientation and vertical distribution 

of molecules within the film. C(z) is particularly useful for determining if increases in surface 

density drive changes in the molecular orientation relative to the surface plane or the vertical 

displacement of molecules (i.e. layer promotion or film roughening). These analyses are also used 

to identify solid and liquid structural features and/or the location of phase changes such as 

commensurate and incommensurate, order-disorder transitions, melting, etc.  

 The identification of the long-range ordered solid and local structures the molecules are 

likely to adopt is another important piece of information that can be obtained from the MD 

simulations.  In the absence of a substrate, the acetylene quadrupole-quadrupole interaction 
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C   -20.995 kJ/mol 

  (-0.26550 kJ/mol) 

A   -20.849 kJ/mol 

  (-0.15481 kJ/mol) 

     

 

B   -20.995 kJ/mol 

  (-0.25589 kJ/mol) 

 

D   - 0.912 kJ/mol 

    (+ 9.008 kJ/mol) 

     

 

The most optimized energy configuration angle and binding energies for each high 
symmetry site A) on carbon atom, B) on hollow, and C) on C=C bond. and also D) The 
optimized angle for two interacting acetylene molecules and their interaction energy.  
(original, unsubtracted binding energies are in parenthesis for comparison) 

Figure 3.7: minimum energy configurations for acetylene on graphite 
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would favor the formation of a square-T lattice structure for a 2D film. However, as in the case 

of monolayer nitrogen films on graphite, the six-fold graphite surface potential would tend to 

favor the formation of a hexagonal herringbone arrangement.  It is reasonable to assume that 

there will be situations where, depending on the surface density and temperature, some 

expression of both of these lattice structures will be present.  Figure 3.8 shows a centered 

rectangular unit-cell along with calculated RDF for the centered rectangular lattice having theta 

values between 90° (square lattice) and 120° (hexagonal). This simple model offers a more 

rigorous method of using RDFs to analyze the structure from numerous simulation trajectories 

quickly.  RDFs have an advantage over visual analysis in regards to analyzing structure and order 

in that they provide the time average of all the molecules in the simulation over the entire time 

window.  To further improve the quality of the analysis, the structures can be analyzed at 5K to 

limit thermal disorder contributions. 

 Using the standard parameters assigned by the COMPASS forcefield, only a herringbone 

ordered phase was observed, regardless of coverage. To enhance the accuracy of these 

simulations, point charges corresponding to stronger quadrupole moments were examined.  

Shown here is the set with point charges of ± 0.298 e-, which best match observed experimental 

behavior. A comparison of the forcefield assigned charges versus the modified charges is located 

in the supplementary information. 

 The first set of these simulations span coverages within the range of the A and B steps 

from the isotherms (0 < Θ < 0.85), the range of the S1 phase in previous neutron experiments213, 

216, 225. RDF and concentration profile results at 5 K are shown in Figure 3.9. The supplementary 

information contains further RDF and C(z) results at multiple temperatures for each coverage, 

along with accompanying simulation snapshots.  These results show a tendency for the film to 

form the square-T configuration. For all coverages examined in this range, structural defects are 

a prominent part of film structures. In addition to the quadrupole’s optimal square-T 

configuration, 3, 5, and 6 molecule pinwheel structures are also observable. In the latter case 

having a molecule in its center that is highly tilted relative to the surface plane.  This can be seen 

in the simulation snapshots, the effect of which is further demonstrated in the nearest-neighbor 

coordination numbers from the RDFs, which fall between 2.8 and 3.5.  For the simulations 

corresponding to the lower half of the A step (Θ = 0.26, 0.33), formation of triangular pinwheel  
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 (Top) generic face-centered lattice template assumed as a starting point model for 
structural analysis. (Bottom) Calculated radial distribution functions for the centers of mass 
for different possible lattices based on this model, and the nearest neighbor peak position 
based on simulation result. 

Figure 3.8:Radial distribution functions for various types of rectangular lattices. 
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(top) COM 2D RDF and (bottom let) concentration profiles for simulated coverage ranges 
of the S1 phase at 5 K, vertically spaced for clarity. 

Figure 3.9: Low coverage RDFs and concentration profiles 



126 
 

structures is the dominant structural motifs. Furthermore, trajectories show molecules in this 

regime are orientationally dynamic even at low temperatures, with local structure in constant 

rearrangement.  Corresponding to the region at the top of the first monolayer step are Θ = 0.67, 

0.76. Here a definite favoritism for the square-T arrangement emerges.  The transition to solid 

behavior and the emergence of long-range order also begins is 30 degrees warmer than at lower 

coverages.  At Θ = 0.84, the square lattice is still present, however, the molecules have adopted 

a twisted-T shape, several degrees off from the ideal right angle.  Following this, at Θ = 0.85, 

though marginally different in coverage, falls with the lowest portion of substep C. Here, the 

preferred square symmetry of the lattice is broken, becoming a face-centered rectangular lattice, 

with a herringbone molecular configuration, and the molecules tilted away from the surface. 

 Results for four higher coverages are shown in figure 3.10 that cover from the completion 

of substep C up through substep D.  The overall pattern here is in favor of a FCR herringbone 

lattice.  For Θ = 0.95, 1.01, and 1.38, the film lattice has a √3 x √3 R30° commensurability with the 

surface. Concentration profiles demonstrate that the molecules are tilted away from the surface.  

The sharpness of the second peak relative to the others indicates that during libration of 

molecules relative to the surface, the pivot point of the molecule lies at or near the carbon atom 

closest to the surface, and not at the molecule center of mass. Interestingly, however, Θ = 1.05, 

does not form a perfect FCR lattice, most easily observable in the splitting of the primary 

coordination peak in the RDF.  This splitting is the result of a distortion to the FCR structure, which 

has become an oblique lattice with an angle of 88°. The symmetry breaking in the lattice structure 

would explain previously observed diffraction patterns at this coverage for the so called S12 state, 

previously believed to be a mixture of the other two observed solid phases S1 and S2
215, 216.  This 

distorted phase is likely the result of increased strain in the film structure because of increasing 

density.  Furthermore, the reentrant behavior of the FCR phase occurs as a second monolayer 

begins to form (as seen in C(z)), indicating a stabilizing effect caused by this second layer.   

 While these simulations do elicit behaviors that would explain other observed 

experimental phenomena, they do fall short in a few key points.  Firstly, the diffraction pattern 

for a twisted-T shaped lattice seen at Θ = 0.84 is not currently seen in the diffraction experiments 

around this coverage.  It might be in this case that if the angle of the twist is small enough, it 

would be difficult to distinguish from the square-T case213.  Secondly, the commensurate  
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Figure 3.10: High coverage RDF and concentration profiles 
(top) COM 2D RDF and (bottom left) concentration profiles for simulated coverage ranges of 
the S2 phase at 5 K, vertically spaced for clarity. 
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structures seen at higher coverages are not fully in agreement with diffraction experiments 

either213, 216; however, this also could be due to the limited scope of previous experiments not 

covering those temperature ranges.  Increasing the quadrupole strength did elicit very similar 

behavior, with two notable distinctions. The films were all much more disordered, the oblique 

phase occurs at 5% less coverage.  Additionally, it is likely that a simple point charge system for 

describing acetylene’s quadrupole distribution is insufficient for accurate simulations52, 95, 107. 

3.4.3 – Neutron Diffraction 

 Neutron diffraction data were recorded at  θ = 0.7, over the temperature range of  10K  

to 165K.  A more closely spaced set of traces were recorded between 124K to 138K.  

 As in the past, analysis of these diffraction profiles was performed using a 2D line-shape 

formalism, but modified to employ an iterative least-squares algorithm similar to the Rietveld 

refinement process. This includes the simultaneous fitting of both liquid and solid phases. While 

the refinement of two phases simultaneously can be problematic, the pure solid and liquid phase 

structures were refined first.  It was found that a Lorentzian squared function provided the best 

description of the lineshapes. We note that Halperin and Nelson84, 87 suggested utilizing a 

Lorentzian lineshape.  Warren’s original lineshape formulation32 has been used on adsorbed 

systems in previous works229. Lorentzian line shapes have also been used in the past with 

excellent agreement to observed data86 

 The diffraction results can be divided into three sections. Below 124 K, the diffraction data 

shows a mixture of a solid phase with a diffuse, weakly disordered background. Above 135 K, only 

a liquid-like diffraction profile is recorded.  Between 127 K and 132 K, a coexistence of both liquid 

and solid phases is observed (see figure 3.11).  

 Figure 3.12 shows the fit to the diffraction pattern at 10 K. The lineshape results from a 

“square T“ configuration with two molecules per unit cell and a lattice constant of 6.1339 Å.  We 

note that the quality of the lineshape fit to the solid phase at 10K is excellent. A compilation of 

the fit parameters used to describe the diffraction data can be found in Table 3.2. A more detailed 

description of the liquid phase region can be found in the supplementary information. It is worth 

noting that the diffraction patterns associated with the liquid phase indicate that the d-spacing 

is 4.26 Å in the (11) direction, suggesting that the molecules form a lattice-like liquid (i.e. a 

partially commensurate structure in that direction). Furthermore, the molecule orientations  
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Figure 3.11: Two phase neutron diffraction fits for the solid-liquid coexistance region for 
acetylene on graphite 

(left) Neutron diffraction data and fits for spanning the melting transition range; (right) 
selected temperatures showing the evolution of the melting process at 127 K (top), 129 K 
(middle) and 130 K (bottom).  The solid line represents the diffraction fit results and the dotted  
and dot-dashed lines are the individual solid and liquid structural components, respectively.  
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Figure 3.12: Neutron diffraction data and fit profile at 10 K for 0.7 MLE coverage 
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Table 3.2:Summary of diffraction fitting for solid phase (10 K to 124 K) and liquid phase (> 135 
K). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temp 
(K) Qhk (Å-1) ||𝒂 || (Å) ||𝒃 || (Å) γ (°) Molecules 

Per Unit Cell 
Area Per  

Molecule (Å2) 
Molecule 
Positions 

X            Y             Z             ϕ 
10 K 

(11): 1.4594 
(21): 2.3033 
(22): 2.9054 

6.1339 6.1339 90 2 18.8124 0 
3.067 

0 
3.067 

0 
0 

45° 
-45° 

99 K 
(11): 1.442 

(21): 2.2716 
(22): 2.8746* 

6.2070 6.2070 90 2 19.2634 0 
3.104 

0 
3.104 

0 
0 

45° 
-45° 

124 K 
(11): 1.4387 
(21): 2755 

(22): 2.8746 
6.2127 6.2127   

90 2 19.2988 0 
3.106 

0 
3.106 

0 
0 

45° 
-45° 

135 K 
  

(11): 1.539 
(21): 2.2573 

(20): 3.0598* 
5.2381 6.7195 90 2 17.599 0 

2.619 
0 

3.360 
0 
0 

51° 
-34° 

Reflection not visible in diffraction data due to graphite scattering background 
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result in a nearly perpendicular T configuration, similar to the solid phase, but only along the 

diagonal axis of the unit cell.  This recommends that the melting is approximately uniaxial, as the 

intermolecular quadrupolar interaction attempts to maintain the preferred “T” orientation while 

the surface corrugation influences the intermolecular separation (i.e. 4.26Å). The liquid phase is 

nearly 10% more dense than the solid phase, a density consistent with the C1 substep in the 

isotherm data.  

 Between 99 K and 124 K, the lattice constant of the solid phase change is only 0.1%. There 

is no discernable change in the lattice constant for the disordered phase between 135 K and 165 

K. To simplify the refinement process, between 127 K and 132 K, the diffraction patterns were fit 

using structures where the lattice parameters were fixed at constant values from the refinement 

of the solid and liquid phases.  At 135 K, no evidence of a solid phase was present.  Figure 3.11 

shows the results of these refinements.   

 The temperature dependence of coherence length and mean squared displacement as a 

function of temperature is available in the supplementary information.  The coherence length 

values used to fit the diffraction lineshapes were analyzed using the formalism described 

elsewhere84, 87. The temperature dependence of the coherence length agrees well with the model 

where the melting point is ~ 126 K, further in agreement with the 126 K isotherm results.  The 

mean squared displacement (MSD) for the solid phase component of the fits remains relatively 

constant below 129.4 K, above which it sharply increases.  As expected, the mean squared 

displacement for the liquid phase remains constant over the entire range, and at > 129.4 K, 

distinctly less than the solid phase component fits.   

 The temperature dependence of the coherence length and the MSD suggests that spatial 

order is lost first, followed by an increase in the translational diffusion. If it is assumed that the 

increased mobility would correlate to a weakening of orientational ordering as well, then this 

trend aligns with predictions made by KTHNY theory indicating a possibility of tetratic phase-like 

behavior87, also hinted at in the simulation results. However, the applicability of KTHNY remains 

questionable because of the first order transition to the liquid state occurring at 132.5 K. It seems 

plausible that the disruption of the solid phase may occur following a defect propagation process 

as described by KTHNY theory, as suggested by the neutron data and simulation results.  

However, this disruption does not lead to the growth of an isotropic liquid phase as predicted by 
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this theory, but a bond-ordered rectangular liquid phase.  The structure of this liquid phase 

suggests two possible contributing factors to this preservation of order.  First, the molecules 

along one diagonal axis retain a nearly perpendicular T-configuration.  Second, the intermolecular 

spacing along this same diagonal suggests a uniaxially commensurate relationship with the 

surface.  It seems likely that the retention of local organized local structure in the liquid phase is 

mediated both by the strong molecule-molecule interactions along with influences of the 

molecule-surface interactions.  That being said, the dynamics of this melting process are clearly 

complex and warrant a more exhaustive investigation which is beyond the scope of the current 

study. 

 Finally, Figure 3.13 illustrates the correlation of the diffraction data and isotherm substep 

region at 0.67 MLE between ~ 120 K and 160 K. The curve shows how the integrated diffraction 

intensity between Q = 1.31 and 1.63 Å-1 behaves as a function of temperature. A large decrease 

in intensity occurs around 133 K, matching the observed sharp transition in the isotherm data. 

The smaller drop in intensity at ~ 126 K correlates with the secondary feature within the first step 

described previously.   

3.4.4 – Phase Diagram 

 Based upon the adsorption isotherm results discussed above, a tentative phase diagram 

is shown in Figure 3.14.  This diagram is consistent with the results reported in this work and 

those of previous investigations27, 107, 207, 213-217, 225. Because no microscopic experimental data 

exists primarily in the region between the B and C substeps of the isotherm, the diagram remains 

incomplete.   

 A description of the various color-coded regions of Figure 3.14 follows. Region A is best 

described as a square-T phase (blue) with moderate long-range order, but a density based on the 

isotherms lower than that obtained from the diffraction fits.  The diffuse background included in 

the diffraction fits for the solid phase at 124.4 K indicates that there is a reasonable amount of 

disorder, a fact that most likely explains the density difference.  This phase undergoes a transition 

between 126 K and 133 K (blue-purple) as observed in diffraction measurements (see Figure 

3.13). A first order transition occurs at ~132.5 K, above which a liquid phase with substantial bond 

ordering is observed (purple), most likely uniaxially commensurate with the graphite surface. 

These bond correlations in the liquid phase result from the strong quadrupole interactions, a  
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Figure 3.13: Integrated neutron intensity of most intense diffraction peak as a function of 
temperature 

Neutron diffraction intensity versus temperature at 0.67 coverage showing two melting 
transitions: a continuous transition at 126 K and first order transition at 133 K. 
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B 
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Figure 3.14: Proposed phase diagram for the acetylene on graphite system 

Regions are labeled by corresponding isotherm step feature.  Dashed line represents the 
beginning of continuous melting region, Solid lines are probable first order transitions, and dot-
dashed are probably continuous transition.  See text for color coded phase descriptions 



136 
 

finding consistent with the investigation by Bruch who indicated that total orientational disorder 

is not possible in a 2D system of quadrupoles51.  The lighter shaded areas of each subsection of 

region A correspond to the 2D vapor-condensed phase coexistence areas of the first monolayer 

step.   

 Region B (turquoise) correlates well with the density of the solid structure observed in 

the diffraction data (Figure 12). Trabelsi et al. also record a diffraction pattern that indicates this 

phase (S1) forms in this region as well; hence, the substep signals the formation of the completed 

“square-T” lattice. This phase may not undergo the same microscopic behavior at melting (i.e. 

near ~ 126 K) based on the isotherm behavior, but exhibits instead a (melting?) transition 

between 132.5 K and 134.5 K.   

 Below 132.5 K, Region C correlates with the S12 phase of the earlier neutron studies215, 216  

Trabelsi et al. and Thorel et al. both attributed this to be a mixture of both the S1 and S2 phases 

from their studies.  Their suggestion is inconsistent with the density of the` phases reported in 

our isotherm data. Within 1%, S12 is nearly the same density as the S2 phase; however, the square-

T phase of S1 is 15% less dense.  An explanation consistent with the earlier neutron studies and 

the current isotherm and MD study is that the S12 phase is an oblique distortion of the S2 structure 

with a 1 to 2 degree tilt of the lattice vectors (orange).  S1 and S12 are in coexistence during the 

corresponding isotherm step (light green). 

 Above 132 K, the phase diagram is less certain and more speculative. The lower sections 

(fractional coverage on phase diagram between 0.85 and 0.9) correspond to isotherm steps C1 

and C1’.  Their completion corresponds to observed densities that are a close match for the bond 

ordered liquid phase from diffraction data (Figure 3.11).  The completion of the C1 and C1’ 

substeps (magenta) may be associated with the bond order in the liquid phase. The B substep in 

the isotherms following the 132.5 K transition curves upwards and merges with the C1 features 

at 134.5 K.  The C1 subsection (teal) is tentatively assumed to be the melting transition of the S1 

solid and the high-density bond ordered liquid phase. 

 Completion of the C2 substep (red) appears to correspond to the S2 solid phase region 

observed by Trabelsi et al. where melting was observed at 141 K at  lower coverages (but not 

observed at higher coverage).  The 141 K transition is observed in our isotherm data.  Neutron 

diffraction data of Thorel et al. and Trabelsi et al. is consistent with a slightly incommensurate, 
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or uniaxially commensurate, rectangular herringbone structure which would also be consistent 

with S12 phase structure being an oblique distortion of the S2 phase. The C2 step itself (light red) 

is the coexistence between the S2 and high-density bond ordered liquid phases.   

 Region D cannot be correlated to any features in the first layer with a density that is 

physically realistic.  Thorel et al. and Trabelsi et al. both observed a reentrant appearance of the 

S2 phase diffraction signal below 132.5 K.  The D substep (red with gray stripes) likely corresponds 

to promotion of some molecules to the second layer that stabilize the S2 structure at the expense 

of the S12 phase.  The second layer region is identified using the striped gray coloration. 

3.5 – Conclusions 
 The adsorption behavior of acetylene films on the graphite basal plane was examined 

between 119 K to 141 K using volumetric isotherms, MD modeling, and neutron diffraction. 

Detailed thermodynamic analysis of these isotherms provided quantitative values for the heat of 

adsorption and differential entropy and enthalpy for the monolayer and bilayer regime, including 

the locations and likely nature of several phase transitions.  The isotherm investigation reveals 

multiple sub-steps within the monolayer regime that evolve with temperature. A prominent 

melting transition occurs at 132.5 K.  A third substep in the monolayer region illustrates that the 

thin film properties of acetylene on graphite are complex. Here, several distinct phase transitions 

occur (as signaled by the substep feature behavior) over a fairly narrow temperature range. 

 Careful microscopic studies in the future would be required to understand this regime.  

Binding energy calculations and molecular dynamics simulations were performed using the 

COMPASS force field within the Accelrys Materials Studio software package. While this force field 

is known to be highly accurate in simulating the behavior of hydrocarbon molecules, acetylene is 

known to be difficult to model effectively. The simplicity of the 4 point-charge method for 

modeling a quadrupole interaction used by the Accelrys software may have limited the 

quantitative accuracy of the MD results; however, the MD results broadly matched most of the 

observed empirical data collected.   

 Detailed neutron diffraction data at ~ θ = 0.7 MLE was recorded and analyzed over a 

temperature range in the neighborhood of the observed melting transitions investigated in the 

isotherm studies.  These data showed three distinct regions: a purely solid phase at T < 124.4 K, 

a purely liquid region at T > 135 K, and solid-liquid coexistence between 127 K and 132 K.  A   
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Rietveld-like modification of our previously employed 2D diffraction lineshape algorithm enabled 

a simultaneous two-phase refinement of the diffraction data. These results show a well-defined 

set of transitions whose onset occurs at 126 K and completes near 132 K. In this temperature 

range, our analysis indicates that spatial ordering is lost at a lower temperature than where 

orientational ordering decays, reminiscent in some way of the KTHNY model for 2D melting and 

the suggestions of Bruch. The first order transition at 133 K signals the end of this region. 

 The combination of high-resolution adsorption isotherms, MD modeling, and the neutron 

diffraction investigations reported here have added to the understanding of the adsorbed 

properties of acetylene on graphite, including a further illustration of the complexity and 

uniqueness of this system. The need for further microscopic studies of the structure and 

dynamics of the monolayer phase transitions, along with robust molecular modeling, are 

necessary to more fully understand the details of the acetylene on graphite system. 

3.6 – Supplementary Information 
 Henry’s Law results: results and shows a discontinuity at 133 K. This suggests that a 

fundamental change in the molecule-surface interaction at that point, and the molecules become 

more weakly bound to the surface above this temperature.  These values are both higher than a 

previously reported value of 19.4 kJ/mol.  While these values are quite different, the ones 

reported here were obtained at a much lower temperature range, and with significantly more 

data points. 
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Figure 3.15:Henry's Law fit for acetylene on graphite 
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Figure 3.16: Plots of FWHM values for the secondary monolayer features (B through D).   
Temperatures of possible phase changes are labeled 
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±0.223 e- ±0.312 e- 

0.25 MLE 

0.85 MLE 

1.0 MLE 

Figure 3.17: Comparison of simulation results at 5K for selected coverages of forcefield assigned 
point charges (0.233 e-) vs stronger quadrupole value (0.312 e-) 

Molecular Dynamics: Given previous studies difficulties in attempts at the accurate modeling 
of acetylene and the peculiar behavior in the repulsive electrostatic non-bond energies, the 
results herein should be analyzed with some skepticism.  With that being said, some 
interesting parallels between the thermodynamic data and these simulations can be seen. 
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Figure 3.18: RDF profiles of 0.26 MLE as a function of temperature. 
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Figure 3.19: RDF profiles of 0.33 MLE as a function of temperature. 
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Figure 3.20: RDF profiles of 0.67 MLE as a function of temperature. 
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Figure 3.21: RDF profiles of 0.76 MLE as a function of temperature. 
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Figure 3.22: RDF profiles of 0.84 MLE as a function of temperature. 
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Figure 3.23: RDF profiles of 0.85 MLE as a function of temperature. 
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Figure 3.24: RDF profiles of 0.95 MLE as a function of temperature. 
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Figure 3.25: RDF profiles of 1.01 MLE as a function of temperature. 
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Figure 3.26: RDF profiles of 1.05 MLE as a function of temperature. 
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Figure 3.27: RDF profiles of 1.38 MLE as a function of temperature. 
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Figure 3.28: Structures and Diffraction profiles for solid and liquid phases of acetylene on 
graphite 

(top) unit cell and (bottom) diffraction results and 124.4 K (left) and 135 K (right) for the solid 
and liquid phases respectively 
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Figure 3.29: Behavior of coherence length of the solid phase as a function of temperature 
during the melting process. 



154 
 

 

 

 

 

 

 

 

 

Figure 3.30: Behavior of the mean squared displacement of the solid phase as a function of 
temperature during the melting process. 
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Chapter 4 – Simulations and Force Field Trials of 
Acetylene on Graphite 
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4.1 – Introduction 
 This chapter discusses the attempts to modify the intermolecular interactions of 

acetylene in the molecular dynamics studies of its adsorption on graphite.  It has already been 

mentioned in previous chapters of this dissertation that the creation of accurate force fields to 

describe the behavior of acetylene has been notoriously difficult.  Most of the work on molecule-

specific parameters for acetylene was done in an effort to describe the bulk thermodynamics and 

phases of acetylene and not the interaction of the molecule with other systems, such as a surface.  

Many of these efforts have succeeded in producing accurate results for the liquid phase of 

acetylene and/or one of the two solid phases.   

 Difficulty has come in achieving accurate force field results for both solid phases of 

acetylene with parameters that are physically reasonable and in keeping with the known 

attributes of acetylene molecules, such as its quadrupole moment.  This latter property also 

presents issues in the description of acetylene.  While one thing these studies have in common 

is that acetylene indeed has a large quadrupole moment, the exact value of this moment is not 

agreed upon.  Disagreements in this value may not be entirely surprising, as the quadrupole 

moments for gas and condensed phases will not always be equivalent in calculations.  

Additionally, the values range over a multitude of conditions, and the available quadrupole 

moments used to develop potentials do not present a clear trend on the range of the values cited 

as to whether they refer to the condensed phase or not.  Furthermore, the cited values vary in 

magnitude by approximately 30%.  For the efforts of the simulations presented later in this 

chapter, the value of the quadrupole moment was not assumed to be any specific value, but was 

instead the focus of the parameter adjustments.   

 The trustworthiness of results in terms of the molecule-molecule interactions should 

already be treated with some reticence, and the difficulties lying therein should further cast 

doubt on the molecule-surface interactions as well.  The hope of this exploration was not to 

produce a set of force field parameters that was perfectly refined to fit the experimental data 

but to work within the restrictions of the COMPASS force field to survey possibilities of behaviors 

as a function of these parameters.  The results explicated in the previous chapter did display the 

series that was the best apparent fit to the other available experimental data; however, 
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insufficient data is available for the higher density regions of the monolayer for even those results 

to be anything more than a possible, though imperfect, representation of the system. 

4.2 – The Solid-Solid Transition of Bulk Acetylene 
 Empirical studies on the solid phases of acetylene themselves have been a challenge to 

fully understand.  For simplicity of the following discussion, the higher temperature solid phase 

will be referred to as “solid I” and the lower temperature phase as “solid II.”  The solid-solid 

transition of bulk acetylene has been studied extensively over the past 100 years.  One of the first 

direct observations of this transition was made in 1913 using polarized light, where a transition 

from an optically isotropic solid I phase to an optically anisotropic solid II phase occurring at 88 K 

was noted.  Follow-up X-ray powder diffraction experiments in the 1930s were not conclusive 

but suggested that the solid II phase belonged to a lower-symmetry lattice structure193.   

 A study in the 1950s by Sugawara et al.193 using single crystal diffraction determined the 

structure of solid I to have a cubic lattice, with solid II possibly being orthorhombic.  The difficulty 

in the diffraction from the solid II phase involved problems maintaining a single crystal as the 

acetylene crossed the transition point.  They reported that as the acetylene underwent the 

transition, the transparent single crystals would shatter into an opaque powder.   Powder 

diffraction was run on the resultant materials, but the authors were not able to make any 

definitive structural determinations from the data.  The temperature reported in this study for 

the transition was 133 K.  Though this value is 45 K higher than the value originally reported in 

1913, the accuracy of their temperature measurements was much better and likely the source of 

discrepancy between these measurements.  Follow-up spectroscopic studies in the subsequent 

two decades supported the determinations regarding the orthorhombic lattice for solid II and 

were able to conclude a probable space group for the structure as Cmca. 

 A highly detailed neutron powder diffraction study was conducted in the mid-1970s by 

Koski et al195-198. to examine the structure of both phases.  Their findings for solid I agreed with 

the findings of Sugawara el al.  For solid II, neutron diffraction measurements were made at 4.2 

K.  Despite the improved quality of their measurements, they too encountered difficulties in the 

structural refinement, concluding that the lattice was orthorhombic in the Acam space group, 

but with a less likely second possibility of it belonging to the Aba2 space group.  The difficulty in 

the structural refinement resulted in a follow-up publication where the authors attempted 
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further refinements to their neutron data.   This process included a retreatment of anisotropic 

thermal terms and addition of an asymmetry peak factor to the refinement.  Ultimately, they 

were able to achieve a significant agreement between the refined structure and the observed 

data with the orthorhombic Acam lattice.  Disadvantageously, this study did not take readings 

near the reported transitions temperature and made no contribution to settling the discrepancy 

in the two previously reported values. Another study was made in 1979 that, despite very high-

quality measurements, was not able to refine a structure for phase I cubic acetylene that was 

without any major discrepancies. 

 The most recent work on these two solid phases was published in 1992 by McMullan and 

Kvick194.  This study was able to improve upon the previous studies as the authors successfully 

solved the issues of single crystal measurements of phase II and used single crystal neutron 

diffraction to study both phases, including structural data of the transition process itself, for both 

C2H2 and C2D2.  The quality of data obtained was also much higher and found a slight 

disagreement with the 133 K transition point, with their value reported at 127 K for regular 

acetylene and 139 K for deuterated acetylene.  The only significant differences that would be 

expected between the two forms of acetylene are changes in lattice frequencies as a result of 

the mass change.  The 12 K discrepancy between deuterated versus non-deuterated acetylene 

suggests that the solid-solid transition may be coupled to a phonon in the crystal lattice.   

4.3 – Previous Computational Efforts 
 The past efforts of researchers to develop accurate potentials for acetylene that pertain 

to the work of this dissertation are delineated into three types of systems, the most extensive of 

such being the modeling of the bulk properties of acetylene52, 95, 201, 206, 209.  This, of course, 

represents the most common and easiest system of acetylene to study empirically. The second, 

and next most common, are studies on the formation and stability of acetylene clusters ranging 

from two molecules to tens of molecules200, 202, 204, 206.  This has received a lot of interesting 

attention in computational studies, and some, although limited, empirical data does exist.  The 

third is the most directly relevant here, being the study of the adsorption of acetylene.  Despite 

this, only two studies have ever dealt with the system of acetylene on graphite107, 216, and only a 

single study could be found for acetylene adsorbed on MgO211. 
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 It is not practical here to summarize all of the past works in these areas, but some of the 

more significant efforts will be discussed.  For the simulations of bulk acetylene, probably the 

first major study was conducted by Hirshfeld and Mirsky52.  Multiple representations of the 

electrostatic distribution were tested, including a single point quadrupole, atomic point charges, 

and a distribution of point charges, dipoles, and quadrupoles placed on each atom, all fit to a 

quadrupole strength of 7.188 D Å.  Van der Waals forces were described using a Buckingham 

potential.  Their model failed to accurately describe the orthorhombic phase but performed well 

in the description of the cubic phase.  Next, Filippini et al95. performed a large-scale study 

exploring the use and adaptation of many general sets of parameters to fit to the acetylene 

system.  Despite examining various electrostatic and van der Waals treatments, similar issues 

arose in their systems as occurred with previous study and the quadrupole strength that was 

used in their final models was one-third of the values used by Hirschfeld and Mirsky.  Klein and 

McDonald201 furthered previous studies in an attempt to include a description of the liquid phase 

by extending potentials already studied in the previous two studies.  Their results were significant 

for their inclusion of the liquid phase in their studies, but because they were exploring potentials 

already studied, their work added nothing new to the description of the orthorhombic phase.  

Gamba and Bonadeo203 used a double dipole arrangement that was fit to the quadrupole and 

hexadecapole of acetylene obtained from ab initio calculations and a Buckingham van der Waals 

potential.  Their model encountered similar problems to these others, but in the end, they were 

able to describe properties of both phases, with a discrepancy in the sublimation energy of the 

orthorhombic phase.   

 A more recent investigation by Garrison and Sandler94 attempted to solve the same issues 

with a completely new approach from the older methods.  Using a combination of Monte Carlo 

simulations and refinement of potentials from experimental data, they derived a set of potentials 

of a completely different form from the previous studies.  This used the damped Morse oscillator 

potential described in equation 1.54 along with a similar damping modification of the 

electrostatic interactions.  The van der Waals potentials also included a dummy atom potential 

at the molecule’s center of mass and atomic point charges fit to a quadrupole strength of 6.17 D 

Å.  Despite this attempt being more recent than the others, and with the benefit of more 
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powerful and accurate computation, they only refined their potentials based on the liquid phase 

data and did not make any attempts to model their model to the solid phase at all. 

 The development and form of potentials for dimers and clusters of acetylene have 

proceeded along the same general lines as those for the bulk acetylene.  The main difference is 

that more specific attention was focused on the interactions of very few molecules, and these 

investigations were aimed at parameter development from direct inquiries into the 

intermolecular interactions and not structure and thermodynamics of bulk condensed phases.  

With less data available for comparison in regards to small clusters, and no validation against the 

bulk phase properties, the accuracy of these methods are more difficult to assess.  One important 

piece of evidence is the energy barrier associated with the transposition of molecular 

orientations in acetylene dimers200.  Some experimental evidence has measured this transition 

to be very close to 1 cm-1.  This number is suspiciously low based on intuitive understanding of 

the preferred orientations of quadrupoles.  It is not a surprise that there should be a saddle point 

in between the two equivalent T-shaped orientations of a dimer pair.  Furthermore, it would be 

unlikely that this saddle point should pass through a completely parallel configuration, as this is 

electrostatically unfavorable. The surprise is that this reorientational barrier should be so small 

for such a strong quadrupole.  If accurate, it would suggest that the van der Waals forces are of 

similar strength to the quadrupole moment.   Under this assumption, the development of these 

refinement models based on the molecule’s microscopic behavior, rather than bulk behavior, 

represent an alternative methodology, though less validated, that could, potentially provide a 

better description of the intermolecular interactions in two-dimensional films.   

 Two studies have been aimed at the determination of atomic potentials that directly 

describe the observed film behavior of acetylene on graphite.  The first of these was performed 

by Thorel et al.216  in an attempt to describe powder neutron data collected for these films.  While 

they were able to refine potentials that capable of describing the observed diffraction pattern, 

the actual results were not in keeping with the intuitive results expected of a two-dimensional 

system of quadrupoles.  A second study was conducted by Peters and Klein 107that brought in 

thermodynamic results obtained from isotherm measurements.  They were able to produce 

physically reasonable results that describe thermodynamic data and the two reported solid 

phases.  Their data is close, though not perfectly in keeping with the finding more recently 
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obtained and reported in the previous chapter of this dissertation.  The main issue based on this 

new data is that the structure corresponding to the S1 solid phase is a square lattice, but the T-

shape of the molecules is skewed by several degrees.  Furthermore, a major part of the 

thermodynamics analysis, the Henry’s law constant, was 7% lower than those obtained in the 

new data, though this may in fact not be an issue as their value was based on isotherms in a 

significantly higher temperature range and the assumption of no molecule-molecule interactions 

may have more validity under such conditions.  Indeed, the shift in the Henry’s law adsorption 

energy observed at 133 K corresponds to a transition in the first monolayer, and may indicate 

that even before the first monolayer step, the molecules exist as a cluster gas rather than 

individual molecules.   

The third major aspect lacking from their data is the so called S12 phase, reported by 

Thorel et al. to be a coexistence of both other solid phases, and more recently assigned by 

Trabelsi et al215. to the same identification.  The possibility of an approximately equal two-phase 

coexistence region is not physically consistent with the available isotherm data.  The alternative 

proposed in the previous chapter is a third solid phase, related the S2 solid phase, but with an 

oblique, rather than rectangular, lattice.  For consistency in comparison with the previous work, 

however, this phase will still be referred to as the S12 phase even though it would not seem to be 

an accurate description of the phase. 

4.4 – Significant Experimental Results 
 The primary aspect which the force field adjustments were refined against were the 

observed densities of sub-step features that may correspond to transitions in the isotherm data.  

Furthermore, perhaps the most important requirement, was to produce results that were 

consistent with the observed T-shaped phase at coverages corresponded to the A-step of the 

isotherm data, as well as the disordered rectangular phase, while providing details consistent 

with the continuous melting transition that was observed. 

 Consideration was also given to the results of the previous neutron works at higher 

coverages not covered by this new study.  This includes the results obtained by Thorel et al216. 

and Trabelsi et al215.  The second of these publications provided significantly more data to work 

from than the first; however, there were significant discrepancies in the comparison of their data 

to the finding of Thorel et al., as well as the data presented in this work.  A telling example of this 
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regards a disagreement in the peak positions and their spacings from one another for the low 

density square-T phase.  The data reported herein involved the collection of diffraction data from 

three different experiments at two different facilities over a time space of decades that were all 

in agreement with each other and the findings reported by Thorel et al.  The data reported by 

Trabelsi et al. in the locations of the diffraction peaks were shifted to higher Q values, and the 

spacing between the peaks was also different.  Their data could not be fit to a square-T lattice, 

but rather fit best to a rectangular lattice, which is a substantially higher density.  This casts doubt 

on the assumptions that might be made from their diffraction peaks as a similar inconsistency 

was identified in the S2 phase in comparison to the work of Thorel et al.   

 If assumed that the distortion of the higher density phases is identical to the distortion 

present in the diffraction from the S1 phase, it is possible to make some further assumptions of 

the structure of the two higher density phases.  Though precise accuracy is not possible from the 

considerations being made, a reasonable proposal for the S2 phase is that it represents a 

rectangular herringbone structure with two molecules per unit cell that is 4.45 Å by 7.38 Å, the 

molecules being rotated with respect to the shorter lattice vector by 40° and -55° and an out of 

plane tilt of between 20° and 25°, and an area per molecule of 16.43 Å2, consistent with the 

observed isotherm density.  Noting that the proposed structure is uniaxially commensurate with 

the √3 x √3R30° surface registry, this creates an interesting possibility, but this is only an 

approximation of the structure from the data available and may or may not be the case.  

Furthermore, this structure brings to light a unique relation to the quadrupole interaction and 

the low density bond-ordered liquid phase.  The orientation of the molecules along the diagonal 

of the unit cell matches the preferred T-shaped dimer spacing between 4.3 Å and 4.4 Å, and the 

molecular angles place the molecules in a nearly T-shaped configuration along one of the 

diagonal directions, but not in the other.  If accurate, this would suggest that the molecules will 

attempt to maintain the quadrupole alignment even as the unit cell must distort under higher 

densities.   The uncertainty of describing the S12 phase is more substantial due to the coupling of 

the lattice vectors, cell angle, and molecular orientations in their effects on the structure factor.  

Despite this, the lattice can be assigned approximately as an oblique herringbone lattice with 1 

to 2 degree skew away from rectangular, approximate cell dimensions of 4.5 Å x 7.5 Å with the 

molecules rotated away from the short axis of the unit cell by 35° to 40° and -55° to -60°, and out 
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of plane tilting of approximately 20°.  Structures with this range also bare similar properties to 

the liquid and S2 phase in the approximate T-shaped alignment of the molecules along only one 

axis.  Based on the reported data available, it is not clear, however, if the S12 phase occurs 

immediately after the completion of the C substep below 133 K, or if the film transitions 

continuously towards this structure from a rectangular phase first. 

4.5 – Results from Standard COMPASS Parameters 
 In the initial study of the acetylene on graphite system, simulations were run using the 

default assignments made by the COMPASS force field in Materials Studio (Figure 4.1).  

Unfortunately, these results were clearly not consistent with the data available.  The films only 

practically demonstrated a single incommensurate rectangular herringbone lattice that was 

independent of surface coverage.   These results indicated a clear deviation from the 

experimental results and were the driving force behind further exploration of alternative force 

field variations to describe the system.   

4.6 – Examination of Alternative Potentials 
 The creation of a new force field files for use in Materials Studio, and subsequent 

simulations series, at a range of coverages for the many options available in the literature is a 

computationally inefficient task when there is no certainty of their being any more accurate than 

COMPASS. In fact, there are reasons to doubt the accuracy of all of the available alternatives. 

Instead, simple models were constructed to create a comparison of the force fields within certain 

identical constraints. 

 The first model was a simple determination of the surface corrugation by calculating the 

interactions between a single molecule and the surface as a function of position, height, and 

molecular orientation.  Only one investigation in the literature evaluated reasonable parameters  

to define the molecule-surface interaction, that being the work of Peters and Klein107, whose set 

of potentials yielded results closest in nature to those being used here to describe the system 

and were utilized to generate these maps of the surface potential.  These results were within the 

range of those that have been calculated for other small linear molecules like oxygen and carbon 

dioxide and are shown in Figure 4.2. One discrepancy, however, is that the optimized height from 

the surface obtained in this model was different from that reported by Peters and Klein, but only 
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Figure 4.1: Simulation results for acetylene on graphite using default compass parameters 
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Figure 4.2: Calculated surface corrugations for acetylene and graphite 
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marginally.  The reason for this discrepancy is not clear, but it is possible that further 

considerations were made in their work that were not specifically mentioned in the publication. 

 The second round of investigations into the applications of other literature-derived 

potentials for acetylene to two-dimensional films consisted of two forms of calculations being 

made using codes programmed in Wavemetric’s Igor Pro 8.0 in order to analyze two important 

aspects of the two-dimensional system for several permutations of alternative force fields.  The 

first of these were simple potential energy calculations based on the orientation of molecules 

within a two-molecule unit cell that was specified as an input.  These calculations determined the 

potential energy for all orientations of each of the two unique molecules and created a contour 

plot of these data.  These calculations only considered the molecule-molecule interactions and 

did not include any effect of surface corrugation.  Insufficient information was available to include 

any anisotropic effects of surface images from substrate induction effects. 

 In general, the van der Waals potentials behaved similarly for all models attempted 

except in the case of the damped, which resulted in significantly higher attractive energies and a 

flatter potential energy surface.  The first effect of note can be seen by looking at the angular 

energy dependence of the dimers.  Figure 4.3 shows contour maps of these dimers as a function 

of the two molecular angles, which are representative of the cases examined.  The angles are 

rotated by -45° to match angle convention that will be used for calculations of the whole unit 

cell.  All use a 10-4 Lennard Jones potential “WL2107” and examine several different quadrupole 

approximations for the same quadrupole moment (7.2 D Å). The 5-point charge distribution 

represents the inclusion of the hexadecapole moment calculated from SCF calculations.  The 

most striking feature of these calculations was that none of them place a minimum exactly at 

perpendicular angles for the free dimers, which is not in keeping with experimental observations.  

As this represents the upper limit of reported quadrupole values for the molecule, this 

demonstrates a potential weakness in these models.   

 Tests were also done to examine the molecular angles when confined in the expected 

unit cells.  For these trials, the electrostatic moment was treated using 4 point charges in all cases, 

since this the only possibility that could be employed for use in Materials Studio.  The results for 

the square-T cell using the WL2 van der Waals parameters are shown in figure 4.4.  When using  
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Figure 4.3:Potential Energy of dimer pair in a square-T lattice 

A) Point quadrupole 
B) Four point charges 
C) Five Point charges 
D) Damped Morse oscillator 
Middle:  Lattice considered for these calculations, specifying molecule numbers.  Angles were 
defined by rotation away from the direction of the horizontal lattice vector 
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Figure 4.4: Orientational potential energy calculations for (left) square-T and (right) 
rectangular liquid phase 
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the default point charges assigned by COMPASS, instead of a single minimum at perpendicular 

angles along the diagonal to the unit cell, two minima occur for angle pairing on either side with 

a saddle point where the minimum should occur.  This feature persisted with increased point 

charges until finally merging into the T-shaped minimum at a charge of 0.280 e-.  For the bond-

ordered liquid unit cell, and the tentative assignments of the other unit cells, further difficulties 

arose.  With point charges used of 0.298 e- and 0.312 e-, results were produced for the minima 

within a few degrees of each other.  Unfortunately, the molecular angles were predicted between 

30° and 40° and were symmetric (i.e. the same magnitude but opposite sign for the two distinct 

molecule types) for all rectangular and oblique unit cells (Figure 4.4).  These angles did not 

produce fits that were in agreement with the neutron diffraction data available, which predicted 

asymmetric molecule angles, having magnitudes of ~30° for one molecule and ~60° for the other.  

The asymmetry of angles is a surprising result that could be attributable to the competition of 

the molecule-molecule and molecule-surface interactions which were not taken into account 

with these calculations.  It is important to note that the angles suggested from the neutron data 

do show attempts to maintain the perpendicular orientations of the quadrupoles, indicating that 

it may be the molecule-molecule interactions themselves are the ailment of these calculations.   

4.7 – Modifications to COMPASS Parameters 
 The results from the simple modeling studies all showed similar results based on the van 

der Waals potentials, but despite variations in quadrupole approximation and strength used, 

results proved inconsistent with the experimental data.  These simple models were incomplete, 

however, and testing of force field variations in true molecular dynamics simulations was 

required.  It was decided that COMPASS force field would continue to be used since the 

quadrupole behavior was the primary concern and, in general, the COMPASS potentials are good 

representations of hydrocarbon interactions.  Three modifications were examined in these 

simulation trials: the first two were to increase the point charge assignments from their default 

setting of 0.223 e- to 0.298 e- and 0.312 e-, and the third was based on the similarity of sp 

hybridized carbon’s electronegativities to that of nitrogen’s, and experimental evidence for weak 

hydrogen bonding present in condensed acetylene.  For this modification, the atom type for the 

hydrogens was changed from “h1” (non-polar hydrogen) to “h1n” (polar hydrogen bonding to 

nitrogen/chlorine) and the partial charges were kept at the default 0.223 e-.  COMPASS does not 
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use an explicit hydrogen bond potential, however, and hydrogen bond effects were made by 

adjustments to the Lennard-Jones parameters.  All bonding parameters for these two atom types 

are identical in the force field, and only the non-bond interactions were different.   

 The first trials were run for each variant at approximately 0.7 MLE coverage.  Following 

completion of the temperature series for each pair, the structural results were compared. All 

three variants successfully produced the square-T unit cell at low temperatures, demonstrating 

immediate improvement over the force field default settings.  However, the “h1n” type 

simulations produced a nearest neighbor distance of 4.21 Å, representing a significant error 

compared to the experimental range, 4.35 Å to 4.40 Å.  The two modified quadrupole simulations 

were more consistent with this molecule spacing and were used moving forward with simulations 

at other coverages, while the “h1n” type modification was abandoned from further study. 

 From these two remaining modified systems, the results were not in either case a 

completely perfect fit for the experimental data.  Regardless, when these results were examined 

holistically in combination with the default force field results, clear patterns emerged as a 

function of the quadrupole strength.  The increase in quadrupole strength leads to the formation 

of a square-T solid phase at lower coverages and a herringbone phase at higher coverages.  An 

oblique phase was observable as well, but the coverage this occurred with amplified with 

increasing quadrupole strength.  For analogous coverages between the completion of C-step and 

the oblique coverage level, the system showed the rectangular herringbone phase.  After islands 

began to form in the second layer, the oblique lattice was destroyed, and a reentrant rectangular 

phase was observed.  The RDF analysis showed a nearest neighbor distance of 4.26 Å for high 

coverage solids and, in fact, a commensurate lattice for the rectangular phase.  For low 

coverages, the square-T lattice had significant disorder that increased with quadrupole strength.  

The primary disordered components were bound 3-5 dislocations that would be consistent with 

KTHNY predictions for lattices with four coordinate bond orders, though the relative 

concentration at both quadrupole strengths was too high such that the ordered phase coherence 

length only extended a distance of several unit cells (even at 5 K).  At higher temperatures, the 

films became floating and mobile while retaining the square bond order and coherence length, 

which eventually faded at another 30 to 40 K higher.  The system maintained its ordered 

coherence length until the 100 K to 130 K range, where it transitioned into a disordered phase.  
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This phase did not show signs of the uniaxial commensurability of the experimental data; 

however, RDFs showed that while most ordered features were lost, the higher-order peaks 

corresponding to multiples of the square-T nearest neighbor distances were more pronounced 

at longer distances than any others. Transitory examples of one or two unit cells of a rectangular 

structure very close to the dimensions of the liquid phase structure from the neutron diffraction 

data were occasionally visible in the trajectories as well.  A square-T phase with twisted molecule 

orientations and a low-density rectangular phase were also observed in coverage ranges near the 

lower half of the C-step, though this region contains no available experimental data for 

comparison.  For relevant figures pertaining to these results, see the supplementals of the 

previous chapter.       

4.8 – Conclusions 
 Though these simulations did not individually perform well to describe the experimental 

data, the corollaries that can be drawn from the trends discussed help provide some possible 

microscopic explanations of the film behaviors.    

 First, a low coverage square-T was observed that contained bound dislocation pairs.  This 

phase melted within a 10 K window, and retention of the higher-order peaks of the square-T 

spacing and trajectories visualization demonstrate a tendency for quadrupolar ordering even in 

a disordered phase.   

 Oblique and rectangular structures were observed in ranges that were approximately in 

keeping with experimental ranges.  Though the observed commensurability may not be in 

keeping with the  available neutron data for such ranges, given the concerns of the quality of 

these data, it is possible that this is real, but equally possible to be an artifact of the simulations 

which also have quality issues.  The formation of second layer islands and reentrance of the 

rectangular phases is consistent with the S2 phase observation above the D sub-step coverages 

in the isotherms.  

 The full commensurability of the rectangular phase allows speculation of the mechanism 

driving the conversion to the oblique phase, which is uniaxially commensurate in the simulations.  

The lost surface registry and the quadrupole dependence on the observed coverage of this 

feature suggest that it is driven by the quadrupole interactions of the molecules, and would, 

therefore, demonstrate the frustration between the surface and the adfilm that persists in the 
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higher density phases.  The formation of the rectangular phase before the oblique phase is 

uncertain due to the narrow coverage span between these two points and the lack of specific 

enough experimental data.  Despite this, its commensurability and reentrant behavior with a 

second monolayer growth may suggest that the breakdown of the two-dimensionality of the 

quadrupole-quadrupole interactions brought about by the second layer result in less competitive 

molecule-molecule to molecule-surface interactions. 

 While it has not been possible to make any significant improvements in the correction of 

force fields to describe acetylene than any past attempts, the simple models employed did show 

the possibility for the failure in the approximations of the quadrupole moments.  More 

sophisticated multipole expansion methods have been in some of the potential models found in 

the literature using distributions of point charges, dipoles, quadrupoles, and octupoles.  Since the 

main focus was on a 4-point charge system that could be imported into Materials Studio, many 

of these were not tested except a single-point quadrupole and a 5-point charge distribution. Of 

note, these more complicated models have, in the past, encountered the same difficulties with 

bulk acetylene as many simple models.  Therefore, it would have likely been no more reliable to 

use these models on the two-dimensional phases.  It is hoped that in the future, an accurate and 

simple set of potentials may be developed that can be used to more accurately describe 

acetylene.  The findings of this chapter showed that, while the force fields may not be perfect, 

looking at the behavior of the systems in the series of modified potentials still allows for 

connections to be drawn towards experimentally observed behavior. 
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Chapter 5 Chapter 5: Adsorption of Acetylene on 
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5.1 – Introduction 
 This chapter concerns the adsorption behavior for acetylene on the (100) surface of 

magnesium oxide powders.  In contrast to the six-fold symmetry of the previous substrate, this 

surface is an archetype of a four-fold symmetric surface.  Furthermore, the ionic nature of the 

substrate leads to a strong modulation of the surface potential.  These symmetry and 

electrostatic effects lead to a surface that is well-suited for the quadrupole interactions of small 

molecules.  In particular, the 2x2 is comprised of square lattices of alternating charges with lattice 

spacing of 5.96 Å.  In the acetylene on graphite study, it was shown that the preferred spacing 

between molecular centers of mass had a spacing of 4.39 Å between nearest neighbors, 

consistent also with computational studies of acetylene dimers.  Therefore, on MgO, the surface 

corrugation would create a spacing about 4% too small for the perfect square- T configuration to 

develop without strain.  Two options would alleviate this strain: either the molecules being 

rotated somewhat relative to the molecular plane, or being rotated out of the plane.  An 

incommensurate film would also be a possibility, but would not be reasonable to expect with the 

high electrostatic corrugation of the surface and the strong and similarly dimensioned 

quadrupole of acetylene. 

 Two previous studies in the literature examined this system.  The first comprises LEED 

studies performed on films up to monolayer coverage below 90 K.  This study identified a 

diffraction pattern consistent with a 2x2 commensurate film structure, but the data obtained 

could not be used to determine the molecular orientations.  This same study also reported 

potential energy calculations for the adsorption behavior and reported a herringbone structure 

with the molecules rotated by approximately 20 degrees away from their perpendicular 

configuration.  A separate study reported on neutron diffraction data taken from both monolayer 

and bilayer coverages.  The investigators identified two diffraction peaks consistent with a 

square-T lattice for the monolayer film.  The bilayer films showed similar diffraction behavior, 

with large diffraction peak broadening being indicative of an increase in disorder with second 

layer formation.  This study only included two imprecise isotherm measurements, and leaves a 

large gap in the study of this system in the literature.  The thermodynamics and phase behavior 

of the system have not been properly characterized outside of the LEED study, which were limited 

to temperature ranges too low for melting or critical transitions to be observable.   
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5.2 – Experimental  
 Isotherms were collected following the basic instrumentation and procedure outlined in 

Chapter 2.  Isotherms were collected in a nominal range from 120 K to 200 K based on the 

pressure limitations of the instrument with acetylene.  A 100 torr manometer was used for nearly 

all isotherms, which limited the upper reach in temperature obtainable. Below 128 K, a 1 torr 

manometer was used.   

 Computational studies were conducted on this system using the standard parameters of 

the COMPASS force field following the procedure outlined in Chapter 2.  Force field variations 

were examined as well, in response to the poor performance with graphite.  In this case, a 

magnification of the quadrupole-surface interactions resulted that were not physically realistic 

in nature.  The single molecule energy minimizations were conducted using a 12.63 Å x 12.36 Å 

surface that was five atoms thick, with a vertical simulation space of 58.42 Å.   Molecular 

dynamics simulations were run in three coverage regimes check.  The simulated surface was 

42.11 Å x 42.11 Å with a five-atom thickness and a vertical height of 108.42 Å. 

 Previously collected neutron diffraction data for use in this study were collected at both 

the HFBR and HFIR facilities.  Unfortunately, quality of data for both sets was poor due to 

subtraction issues of the substrate backgrounds.  A proper analysis of these diffraction data was 

discontinued for this system. 

5.3 – Results and Discussion 
 The following results track the thermodynamic and computational studies for acetylene 

on MgO.  The behavior is, as expected, starkly different to that of the graphite substrate and, in 

appearance, seems far simpler.  Nonetheless, these data do show adsorption characteristics that 

are interesting, if not entirely unusual for adsorbed systems.  Recorded isotherms show all three 

types of wetting present across a wide range of temperatures and a complete lack of asymptotic 

behavior before reaching the saturated vapor pressure.  Molecular dynamics simulations support 

the 2x2 commensurate square-T structure on the first layer, with a more disordered film 

structure in the second monolayer.  A comparison to the system of acetylene on graphite will 

be discussed and a tentative phase diagram is suggested shortly to follow. 
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5.3.1- Thermodynamics Results 

 A total of 45 Isotherms were analyzed in a range of 121.26 K < T(K) < 201.58 K.  Raw 

isotherm data were collected and adjusted for dead space volume , which were then interpolated 

to obtain smooth fits of the isotherm profiles.  The general appearance of the isotherms 

remained constant over the entire temperature range and consisted of a sharp, well-defined first 

monolayer step at low pressures, a broad second-layer step occurring around 85% of saturated 

vapor pressure, followed with the isotherm reaching a plateau and remaining nearly flat until the 

saturated vapor pressure was achieved, and further where the isotherm displayed a sharp 

verticality (Figure 5.1).  Within the data resolution of the instrument, this last transition was not 

preceded by any asymptotic behavior or upward curvature.  The transition between the two-

dimensional and three-dimensional phases appears to happen all at once, rather than in a 

discrete step-wise fashion or gradual convergence typically seen in isotherms.   In a single 

isotherm, therefore, there is generally complete wetting of the first layer, incomplete wetting of 

the second layer, and non-wetting bulk condensation.   

 This unusual behavior of the system at the saturated vapor pressure warranted further 

investigation to eliminate the possibility of this being an artifact of instrument configuration.  If 

indeed this were a false behavior, the most likely culprit would be a cold spot in the sample cell 

or capillary.  This would cause abrupt condensation of gas on the metal wall and lead to bulk 

condensation before the completion of the isotherm.  The isotherms were conducted on two 

different isotherm stations, using three different displexes with more than one heater 

configuration for one of these, employing multiple MgO samples, and including the replacement 

of a steel inlet capillary.  While some of these changes were made due to instrument breakdowns, 

and not directly as part of investigating cold spots, the sheer number of these variations would 

seem to rule out the possibility of the isotherm profile being an artifact of the configuration.     

 A more detailed image of the full range of isotherm behavior can be seen in Figure 5.2.  

At 127 K and below, the first monolayer step is noticeably broader than at higher temperatures, 

with less definition at both the bottom and top of the isotherm step.  The plateau region that 

follows is also notably less level, demonstrating that some degree of incomplete wetting occurs 

below this temperature. The characteristics of the second layer step are not distinguishably 

different from those at higher temperature, however, it is important to note that for the  
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Figure 5.1: Selected Isotherms for acetylene on MgO 
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Figure 5.2: Full range of isotherms for acetylene on MgO 
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measurement process, the equilibrium of the second layering transition was very unstable, and 

in most instances prematurely converted to bulk condensation before the monolayer step was 

completed.  The entirety of the feature could only be obtained if very small gas doses were 

applied and very strict convergence tolerances were used to determine equilibrium.  At these 

temperatures, equilibration times were distinctly longer than those at higher temperatures. 

 At 128 K and above, the upper limits of the first step are much more distinctly defined 

and the levelness that follows indicates a noticeable change in the wetting behavior.  The lower 

half of the first monolayer still lacks clear definition.   The second layer appears the same as 

before, but the kinetics of its equilibration are significantly more stable.  A change in the isotherm 

behavior occurs at 147 K, where the definition of the phase boundary at the lower-half of the 

first layer becomes much clearer.  The trend that these phase boundaries follow from this  

point onward are suggestive of a liquid phase present in this range. 

 The thermodynamics of the adsorption process were obtained using the Clausius-

Clapeyron analysis shown in Figure 5.3 and which are compiled in table 5.1.  This table also 

contains the average areas per molecule for each phase and distinct region obtained using a point 

B analysis in comparison to methane isotherms conducted at 77 K.  In the figure, the slopes of 

the data points in the first monolayer are distinctly divided into two regions.  The intersection 

point of these lines occurs at 140 K.  The positive sign of the differential enthalpy and small heat 

of adsorption in the low temperature region indicate that the formation of the monolayer is not 

enthalpically favorable and is instead driven by the large associated entropy.  This suggests the 

film may have a high degree of disorder structure.  For higher temperatures, this inverts, and the 

differential enthalpy becomes highly favorable, with a significant decrease in the differential 

entropy.  This would lead one to the conclusion that the system undergoes a transition from a 

low temperature phase of disorder to a higher temperature, more ordered phase.  Such a 

conclusion is against expectations, but without more detailed structural data than is available, it 

is not possible to draw any definitive answers as to the exact origins of these observations.  The 

second phase is noteworthy in its thermodynamic similarities to the bulk condensed phase.  This 

may provide part of the explanation for the difficulties in equilibration of the second layering step 

at low temperatures. 
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Figure 5.3: Clausius-Clapeyron plot for acetylene on MgO 
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layer APM 

Å2 

A(n) B(n) ΔH 

kJ mol-1 

ΔS 

J mol-1 K-1 

Qads 

J mol-1 K-1 

1 (low Temp) 17.96 2433.4 14.136 3.239134 63.7185 20.23129 

1 (high Temp 18.54 3442.8 21.382 -5.15302 3.475252 28.62344 

2 9.59 2801.2 21.488 0.181245 2.593968 23.28918 

bulk 
 

2823 21.8 
  

23.47042 

Table 5.1:Thermodynamic results for acetylene on MgO 
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 Figure 5.4 shows selected isotherms plotted as a function of the chemical potential.  There 

is a noticeable evolution in the free energy of the adsorption process that occurs at low 

temperature up to approximately 140 K, following which the process halts and the chemical 

potential remains relatively constant as the temperature further increases.  This reflects the 

behavior witnessed in the Clausius-Clapeyron analysis.  The free energy becomes more negative 

with increasing temperature, showing that for the low temperature region, the monolayer 

formation becomes gradually more favorable until it reaches the transition temperature. 

 The Isosteric heats of adsorption were calculated from the isotherms for two 

temperatures, 134.39 K and 146.25 K (Figure 5.5).  These calculated isosteres are an 

approximation of the true quantity, and calculated by two isotherms closely spaced in 

temperature.  This thermodynamic relationship is an expression of the energy requirement for a 

molecule to move into the adsorbed phase from the vapor phase at constant coverage, 

convention however has it defined in such a way that the heats of adsorption are positive values, 

even though adsorption is exothermic.  In another sense it might be alternatively defined as the 

isosteric heat of desorption, as from this reversed frame of reference, the sign convention is more 

consistent with the name.  Through interpolation, isotherms can used to calculate this quantity 

function of the amount adsorbed, rather than simply for the single fixed point that defines the 

layer transition used to calculate the previous energies.  This provides indications of the 

thermodynamic evolution of a layering process as it progresses.  It also is useful as a gauge to 

identify completed layering transitions and possible points of phase transitions in the film.  The 

focus of the analysis was around the possible transition points noted earlier.  It was not possible 

to obtain meaningful data from isosteres below 128 K however, the low pressures of the first 

layer step, and the instability of the second layer in this region introduced too much variance in 

closely spaced isotherms for viable analysis.  The temperatures obtained however do fall on 

either side of the thermodynamic discontinuity observed in the first layer in the Clausius-

Clapeyron.  Of note in the behavior of the isosteres presented is the divergent behavior 

approaching zero coverage, and for the 146.25 K isostere, the strange drop and jump between 

the two layers.  These are artifacts of the interpolation process required to enforce the constant 

coverage criteria.  The former issue is caused by the sensitivity of the approximation in the so 
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Figure 5.4: Isotherms plotted vs chemical potential for acetylene on MgO 
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Figure 5.5: Isoteric heats of adsorption for selected temperatures of acetylene on MgO 
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called Henry’s law regime to relatively small errors in measurement.  The Henry’s law constant 

discussed below is in effect the isoteric heat in the limit of zero coverage, so information in this 

region is still obtained.  The latter case however was the result of small deviations in two 

consecutive isotherm points at the beginning of the first layering plateau.  The regions 

corresponding to the formations of the first and second layers was reliably fit for both isosteres.  

The fist layer shows the most significant differences in behavior, with an average value of 

approximately 20 kJ mol-1 at 136 K and 27.5 kJ mol-1 at 146 K. This is consistent with the changes 

in heats of adsorption observed in the Clausius-Clapeyron analysis.  While both of these show a 

stark different from the bulk heat of condensation of ~23 kJ mol-1, the second layer shows 

consistency at both temperatures and is consistent with the bulk value. 

 The Henry’s law heat of adsorption was determined to be 26.367 kJ mol-1 from the slopes 

of the isotherm data in the linear (horizontal) region preceding the first step (Figure 5.6). This 

analysis assumes both a lack of molecule-molecule interactions and that only normal physical 

adsorption forces are present in the limit of low pressure.  The first of these assumptions is 

generally valid, though clustering is possible even at low coverages, but the second assumption 

precludes the possibility of binding to defect sites on the surface.  The MgO used in this study is 

known for its high surface quality, and samples from more than one synthesis batch were used.  

The variance in the data reported is the result of the few number of data points recordable in the 

Henry’s law region and showed no dependence on substrate sample.  No discernable difference 

was evident in the trends between substrate samples.  It is therefore likely that surface defects 

were not a major component of this data, though the possibility cannot be eliminated.  

Furthermore, clustering would not be expected with the influence of such a strong and heavily 

corrugated surface potential.   

 To probe and quantify the apparent transitions of the system more thoroughly, the 

evolution of derivative peak widths was used as a function of temperature.  The widths of the 

two-dimensional compressibility is generally the more proper choice to use; however, for this 

system, the monolayer step occurred at very low pressure, making the compressibility very 

sensitive to the noise in the pressure and the amount adsorbed at very low coverages (𝐾 ∝

(𝑝 𝑛⁄ )(𝑑𝑛 𝑑𝑝)⁄ ).  A well-behaved, representative temperature selection of two-dimensional 

compressibilities as a function of chemical potential is given in Figure 5.7.  The trend clearly shows  
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Figure 5.6: Henry's Law plot for acetylene on MgO 
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Figure 5.7: Isothermal compressibilities for selected temperatures of acetylene on MgO 
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a gradual narrowing of width and rise of intensity up until 142 K, followed by a mostly static 

behavior thereafter.   Of the 45 isotherms analyzed, unfortunately, most of the ones below 147 

K were unusable for analysis.  Instead, the peak widths of the derivatives as a function of the 

equilibrium pressure were associated with the shape of the compressibility function given by the 

mentioned proportionality.  The derivatives for the same temperature series of isotherms as 

depicted in Figure 5.7 (for consistency) is given in Figure 5.8.  Here, the derivatives are plotted 

versus the reduced pressure so the trend is more easily followed.  The last point to highlight on 

both of the previous two figures is the behavior of the second monolayer at 125 K.  Its shift in 

position compared with the rest was generally observable below 130 K, but is more likely owing 

to the previously mentioned instability in this transition and cannot be considered as significant 

 Figure 5.9 show the peak widths of the derivatives as a function of temperature for layers 

one and two, respectively.    The trendlines isolate two points where these data suggest changes 

occur for the first layer, being at 133 K and 147 K.  The second of these points aligns very well to 

the observations made earlier regarding the shapes of the isotherms’ steps.  The point at 133 K, 

though, does not align with the very obvious change in wetting behavior at 128 K.  It is likely that 

analysis of the isotherms below this point were limited by the instrument resolution, and 

detectable changes below 133 K would not be possible. The clarity of the wetting transition in 

the isotherm data, however, justifies the temperature of 127 K as the transition point, and not 

133 K.  For the second layer, only one point, at 135 K, can be determined from the data. 

5.3.2 – Computational Studies 

 The computational analysis of this system utilized the standard COMPASS force field 

parameters.  Though the previous chapter showed that, for the system of graphite, these 

parameters were insufficient to correctly describe the observations of the molecular quadrupole-

quadrupole interactions, trials were conducted with the same modifications that were more 

successful with graphite, but on MgO, these resulted in the molecules becoming bound and 

locked by the surface charges into solid phase at 300 K (~1.5 times the bulk triple point).  While 

the modifications to the quadrupoles are most likely more accurate to describe the molecule-

molecule interactions, as was seen on the smoothly corrugated surface of graphite, it seems in 

the case of MgO that they over-estimate the electrostatic molecule-surface interactions.  This 

seems to be supported based on the assigned charges to the surface ions by COMPASS being 
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Figure 5.8: Figure 0.8: Plots of isotherm derivatives vs reduced pressure for selected 
temperature of acetylene on MgO 
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left: FWHM for first layer step (note: the insert shows that lines fit to match the 140 K point 
observered in other data that may be possible, is not supported by the limits of these data) 
right: FWHM for second layer step. 

 

Figure 5.9: FWHM analysis for acetylene on MgO 
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1.876 e-.  Previous theoretical work has estimated the effective ionic surface charge to be closer 

to 1.2 e-.  Time constraints prevented trials of adjusted quadrupole and surface charge 

parameters within this study.  However, the standard force field assignments did produce 

reasonable behavior in the simulations conducted.  It seems that the higher surface charge 

largely balanced out the weaker quadrupole interactions.  The molecule-molecule interactions 

would still be an issue, however, as the molecule-molecule and molecule-surface interactions 

were cooperative for this system and the surface effect was significantly dominant, this would 

be less important than it was in the case with graphite.   

5.3.2.1 – Energy Minimizations    

 The energy minimizations for single acetylene molecules were conducted in 5° rotation 

increments for all four high-symmetry sites of the surface.  In all cases, the minimized 

configuration result was the same.  The molecules displaced such that the centers of mass were 

positioned directly atop a magnesium atom center, with the molecules oriented to place the 

hydrogens over adjacent oxygen atoms (Figure 5.10). As was done with graphite, the substrate 

was removed and energy calculations were performed subsequently on solely the molecule in 

the absence of substrate.  The resulting energy artifact from the 1-4 intramolecular interactions 

was then subtracted from the total non-bond energy from the original optimization output.   The 

minimized binding energy was found to be -28.833 kJ mol-1.  This is 2 kJ mol-1 larger than the 

results from the Henry’s law analysis, and could be the result of the force field already discussed.  

The difficulty in determining intermolecular potentials accurately for any system though is always 

difficult, and these results are close the experimental values. The fact that all optimizations, 

irrespective of the original placement or relative orientations, converged to the same solution is 

not an unexpected outcome, but does serve to illustrate the strong potential gradient around 

this site and the depth of the surface corrugation. 

5.3.2.2 – Molecular Dynamics Simulations 

 Molecular dynamics simulations were run at three different coverages corresponding to 

a sub monolayer film, monolayer film, and partial bilayer film.  The monolayer structure for all 

three of these ranges was found to be the same regardless of the amount of molecules present,  
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Figure 5.10: Minimum energy configuration for acetylene on MgO 
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which ultimately proved to be a 2x2 commensurate lattice in the square-T configuration. Figure 

5.11 show trajectory snapshots for the three simulated coverages, each revealing the square-T 

arrangement.  A fourth simulation result is also shown with the same number of molecules as 

the partial bilayer, but with the development of a striped phase instead.  It is uncertain if this 

phase is the result of a false minimum from not allowing the simulations a long enough 

equilibration time at each temperature or if this is perhaps a real possibility for the system.   

 For all other simulations regardless of coverage, the 2x2 square-T phase with no 

significant in plane disorder was favored.  The most significant aspect of the square-T phase is 

the out of plane disorder.  In order to match the 2x2 registry with the surface, the molecules 

were required to tilt out of the plane approximately 10 to 15 degrees.  This is most evident in the  

snapshots for the completed monolayer, it can be seen that along the vertical axis relative to the 

page, the tilt of the molecules are all aligned in the same direction, however along the 

perpendicular axis to this, the molecules in the same row tilt generally in the same direction, but 

there is not complete correlation of the tilt between rows.  

 The snapshot from the bilayer shows that the second layer of molecules contains a 

noticeably larger degree of disorder than the monolayer.  The molecules in the second layer try 

to position themselves over the magnesium center that occupies the hollow site in the monolayer 

lattice.  However, from this position there is not a way for the quadrupoles of molecules in the 

second layer to ever be fully optimized with those of the first.  This leads to frustration of the 

lattice in the second layer, which is more weakly held in place by the surface, while the lattice of 

the first layer remains mostly unaffected.   

 Figures 5.12 and 5.13 show the temperature dependent radial distribution function and 

concentration profile normal to the surface.  The radial distribution shows quite clearly that the 

long-range order of the system is maintained until the system is higher than 150 degrees.  

However, the disorder of the out of plane orientation decays much more rapidly with 

temperature, as seen in the concentration profiles.  Furthermore, the most disordered of these 

peaks correspond to the atoms located farthest from the surface.  The simulation results suggest 

that these is a stronger binding effect between the hydrogen atom proximal to the surface and 

the surface oxygen over which it sits.  This atom therefore remains relatively fixed and acts as a 

pivot point for the out of plane libration.  If the molecules reorient far enough, they will pivot  
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Figure 5.11: Simulation results for acetylene on MgO at varying coverages 
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Figure 5.12: Radial distribution function for completed monolayer of acetylene on MgO 
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Figure 5.13: Concentration profiles for the completed monolayer of acetylene on MgO 
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around the center of mass, and the opposite hydrogen will quickly snap to the surface oxygen, 

rapidly reversing the molecular orientation.   

 Visual inspection of the snap shots over a range of temperatures show considerable in 

plane motion as well (Figure 5.14).  This is a harmonic motion between the molecules of the 

lattice, and the molecules oscillated around their centers of mass, which remain relatively 

stationary.  This motion is reminiscent of the those observed in model comprised of quadrupolar 

magnets fixed into a square lattice224.  The fact the centers of mass remain stationary during this 

process demonstrates how strong the strong surface effect experienced by the molecules in 

these simulations 

5.4 – Conclusions on the Adsorption of Acetylene on MgO 
 The (100) surface of MgO should be a nearly-perfect archetype for the optimization of a 

small, strong quadrupole, like acetylene.  The simulation results support the relative ease with 

which the system rapidly and nearly universally adopts this arrangement.  The out-of-plane 

“wagging” of the molecules around the hydrogen proximal to the surface show that out-of-plane 

disorder is more significant than the translational order of the monolayer lattice.  Strong 

harmonic motions occur in the in-plane molecular orientations of the molecules, while the 

centers of mass remain stationary, as seen in the radial distribution functions for the centers of 

mass.  The combination and amplitude of these motions do eventually overwhelm the lattice 

order with high enough temperatures, but the translational order can still be described as quasi-

long range for a further 40° to 50° higher.   

 The behavior of the isotherms is even more surprising, with two potential continuous 

transitions identified for the first layer.   Most surprisingly is that, in the low temperature 

isotherms where the surface corrugation and registry would be expected to bring about a highly 

ordered system, there seems to be highly enthalpically unfavorability and the behavior is driven 

by a large increase in entropy.   The suggestion of significant disorder in the system at this point 

would seem to go against intuition.  The lower of these two transitions appears to occur between 

127 K to 128 K, placing it within one or two degrees of the observed lowest melting transition of 

acetylene on graphite, though if this is either a coincidence or implies a similar mechanism 

remains unclear.  The higher temperature phase behaves much more as one would have 

expected, with a favorable enthalpy and a comparatively low entropy. Isotherms for the first  
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Figure 5.14: Simulation results for completed monolayer over a range of temperature 
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monolayer transition were run to approximately 10 degrees higher than the bulk triple point 

before reaching the pressure limits of the instrument, but qualitative inspection of the phase 

boundaries in the isotherm suggest the system had yet to reach its hypercritical point.  This last 

aspect may not be too surprising with the presence of such a strong surface corrugation effect 

protecting the order of the system.  

 The neutron data collected for this study was, unfortunately, unusable for analysis.  

Previous LEED and neutron data support the 2x2 surface registry.  The neutron data has, 

however, been unfortunately misquoted by other sources in the literature to indicate that the 

molecules adopt a square herringbone conformation, with molecules twisted 20° from the T-

configuration.  The lower pgg symmetry of such a herringbone structure would allow for three 

distinct diffraction peaks: Q11 = 1.431, Q12 = 2.262, and Q22 = 2.862.  The diffraction data in this 

report contained only the (11) and (22) peaks.  The (12) reflection is nearly extinct for the square-

T symmetry, but is allowed for the square herringbone symmetry.  The absence of this peak 

would clearly indicate that the system does indeed adopt the square-T lattice.  Furthermore, it is 

easy to see that if the molecules were to be twisted in the plane by such a significant amount, 

this would push the hydrogen atoms to be situated over the oxygen-magnesium bond of the 

surface below, and such a structure optimizes neither the molecule-molecule, nor molecule 

surface, interactions.    

 This system seems to have defied the simplicity one might have expected for a molecule-

substrate system that, on paper, would have seemed to be highly compatible. The data on this 

system at this moment is insufficient to support the proposal of a phase diagram, though several 

transitions are apparent in the isotherms.  It is possible that these transitions relate to the out-

of-plane molecular wagging in the film, and the in-plane harmonic motions may also play a role, 

but without more evidence this is merely speculative.  A much more thorough structural and 

dynamic investigation will have to be conducted before any meaningful conclusions about the 

nature these transitions can be understood. 
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Chapter 6 – Adsorption of Allene on Graphite and 
MgO 
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6.1 – Introduction 
 This chapter outlines the experimentation and results of adsorption of allene on both 

graphite and MgO .  Allene belongs to a symmetry point group not possessed by many small 

molecules, and as such presents a new opportunity to study the relationship between symmetry 

and adsorption.  Not only do these systems afford a shift from the previous studies with acetylene 

in regards to both size and symmetry, but allene has a slightly weaker, though still substantial, 

quadrupole moment, a larger aspect ratio, and stronger van der Waal’s interactions.  This would 

lower the likelihood of its ability to adopt a pure square-T phase.    

 Allene has not received much interest in published research outside of catalytic studies 

and polymer chemistry.  The physical properties of the molecule in the temperatures covered in 

the measurements of this chapter are not even well-studied.  This issue added to the large 

number of difficulties encountered in handling this gas during experimentation.  Fortunately, this 

also means that the data and properties reported will be novel.    

6.2 – Experimental 
 Studying the adsorption of allene presented significant challenges due to the inherent 

instability of the molecule.  Allene spontaneously converts to methylacetylene over time if not 

stabilized, is very reactive with many types of metals and rubbers, and will even undergo 

reactions with other allene molecules under the right conditions.  The monolayer transition on 

graphite occurred at very low pressures, near the limits of the capacitance manometers, which 

meant it was especially susceptible to any slight gas impurity.  The station had to be partially 

redesigned, and strict protocols had to be devised to generate stable and repeatable isotherms. 

 In addition to the normal process of isotherm measurements that have been defined and 

utilized in the previous chapters of this dissertation, some particular considerations that were 

touched on in Chapter 2 are also applicable in the handling of allene gas.  The overall extra effort 

to control the isotherms warrants full clarity of the procedures followed.  The largest issue that 

compromised the quality of the gas was the large number and high surface area of the rubber 

seals in the station’s proportional valve.  The exact nature of the incompatibility of allene and 

rubber could not be elucidated and, in fact, it was not listed as an incompatible material in most 

MSDS documents examined.  Despite this, the relation of gas instability and the proportional 

valve was evident during the experimentation process.  When the manifold was opened to the 
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vacuum pump and evacuated of all gas, if the valve connecting it to the proportional valve was 

opened, small but significant increases in pressure were observed.  This occurred when both the 

gas intake manifold and the calibrated volume were completely evacuated of gas and continued 

for up to a week before off-gassing ceased. A helium leak checker determined the gas pressure 

was not the result of any leak from the air-tight seals of the valve.  The behavior suggests that 

allene is able to permeate and adsorb into the rubber seals and was very slowly doing so during 

pumping.   

 The valve was exchanged for a new proportional valve that was considerably more 

compact, with far less surface area of rubber available.  The two main rubber seals were O-rings, 

however, they were Viton instead of Buna, and the valve performance overall was significantly 

more stable. 

 The quality of the allene also seemed to degrade over the course of a week after being 

distilled with freeze-pump-thaw cycling, after which noticeable changes would appear during 

isotherm measurements.  Only small aliquots were purified at a time, roughly enough to run one 

or two isotherms, and any remaining gas was discarded.  During the isotherm measurements 

themselves, an excess of gas pressure was introduced during each gas dosing cycle, 10 to 20 times 

the target pressure.  This means that most of the gas had to be evacuated by the vacuum pump 

in order to bring the pressure to the target range.  This was not intentionally done as a 

precautionary measure; it was an effect of poorer dosing control with the new proportional valve.  

It did mean, however, that if there were any volatile impurities developing in the gas, they were 

purged from the calibrated volume with each cycle.  It was never determined if this in any way 

helped, as controlled dosing was never obtained with the new system.  It is mentioned here, 

though, as this may have helped to contribute to the enhanced stability of the new proportional 

valve system.  Figure 6.1 shows the isotherm stability for the monolayer step of allene on graphite 

before and after implementation of the above considerations. 

 For computational studies of the allene systems, there is scant data in the literature.  Only 

reactive force field investigations could be found from literature searches, and even the structure 

of solid allene is still unknown, with the only structural data based on IR measurements.  

Therefore, it is not possible to speculate on the accuracy of these simulations.  In these studies, 

only the standard force field parameters were utilized in the calculations.  The only exception  
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Figure 6.1: Isotherm results for allene on graphite with old proportional valve (top) and new 
proportional valve (bottom) 
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was the addition of a dihedral restraint on the orientations of the opposing hydrogen pairs of the 

molecule.   

6.3 – Results and Discussion 
 The physical properties of allene prevent the ability to study the thermodynamics of any 

solid phase transitions. The bulk triple point for allene is 136 K, at which the saturated vapor 

pressure is less than 0.1 torr.  Normal expectations of two-dimensional systems would see a 

melting point at around 70% of the triple point temperature (~95 K).  Limitations on pressure 

measurements make this temperature range inaccessible to volumetric isotherm measurements.  

The critical point for allene occurs at 394 K.  The rule-of-thumb for two-dimensional critical points 

is that they are expected in a range of 30-50% of the bulk critical temperature, being 120 K to 

200 K for allene, therefore, any indications of phase transitions within the isotherm 

measurements presented here likely correspond to a hypercritical transition. 

6.3.1 – Thermodynamics Results 
 A total of 38 and 24 isotherms were analyzed for allene on graphite and allene on MgO, 

respectively, over a nominal range of 140 K < T(K) < 201.58 K.  As with the previously discussed 

systems, isotherms were dead space-corrected and interpolated to obtain smooth data for the 

following analyses.  The appearance of isotherms for both surfaces are similar in their general 

appearance, each possessing only two visible layering transitions and visible incomplete wetting 

(Figure 6.2).  The step transitions on graphite occur at distinctly lower pressures than on MgO, 

indicating that film formation is more favorable on graphite.  Also, on graphite a possible sub-

step feature was noticed in some isotherms at lower temperatures (Figure 6.3).  Sub-step 

features like this are common in isotherms and could correspond to the formation of a solid 

phase as the density of adsorbed molecules is increased.  The feature, however, is subtle, 

inconsistent in coverage and behavior, and similar in magnitude to the uncertainty in 

measurement.  Normally, such a small anomaly in the data would have been discarded, and was 

noted only for its quasi-consistent appearance in seven of the isotherms measured at low 

temperature.  However, these isotherms all took place before system modifications were made 

to improve gas purity and the behavior was no longer observed afterwards.  It was assumed that 

this feature, if it was not simply a coincidental pattern in the noise of several scans, was likely an 

artifact of gas purity issues. 
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Figure 6.2:Example Isotherms of allene on graphite (top) and MgO (bottom) 
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Figure 6.3: Possible feature on some isotherms for allene on graphite 
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 Figure 6.4 shows selected isotherms for both systems over the temperature ranges 

measured.  The similarity is even more apparent in these plots, but it is also worth noting that 

the much lower pressures of the first layer on graphite as compared with MgO.  The loss of step 

verticality at higher temperatures is indicative of hypercritical behavior as well. 

 The thermodynamics were analyzed in the same manner as they were in the previous 

chapters using the Clausius-Clapeyron analysis.  These results are shown in Figures 6.4 and 6.5 

and are tabulated in Table 6.1.  The results for MgO show only a single thermodynamic trend for 

all temperatures examined in both layering transitions.  The monolayer formation is mildly 

enthalpically favored with a low but favorable entropy.  The second layer is only marginally more 

favorable than the condensation of bulk allene.  The case on graphite is more interesting.  The 

first monolayer shows a distinct change in slope at 152 K.  Below this point the monolayer 

formation is extremely enthalpically disfavored, with a heat of adsorption that is only 42% of the 

heat of condensation in the bulk phase.  This is offset, however, by the even larger proportional 

entropy gain of the adsorption process.   

 Such a thermodynamic balance of entropy over enthalpy would not continue indefinitely.  

This can be seen in the isotherm plots of chemical potential in figures 6.7 and 6.8.  The monolayer 

step is moving rapidly towards zero free energy as the isotherms go lower in temperature.  The 

absolute limit for which this process would become unfavorable if no other phase transitions 

change the behavior before that point is 96 K.  In contrast, the free energy for MgO for the first 

layering transition is comparatively constant with temperature. 

 The isosteric heats of adsorption are shown for two temperatures for each system 

(Figures 6.9 and 6.10). The isosteres for allene on graphite were subject to the limitations of the 

gas and the pressure limitations of the instrument that made reasonably reproducible results for 

this analysis difficult.  Fifteen isotherm pairs were actually run in the hopes of measuring the 

isosteric heats for allene on graphite, and none of them were able to produce good isoteric heat 

measurements of the monolayer.  Neither of the isosteres for that system are close to the bulk 

enthalpy of condensation following the second layering step; however, the isotherms very slowly 

asymptotically approach the saturated vapor pressure following this point, and it is likely that if 

the isosteric heats were calculated for coverages far beyond the second monolayer, they would 

eventually converge on the bulk phase.  MgO continued to be the more behaved of these two  
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Figure 6.4: Range of isotherms for allene on graphite (top) and MgO (bottom) 
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Figure 6.5: Clausius-Clapeyron analysis for allene on graphite 
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Figure 6.6: Clausius-Clapeyron analysis for allene on MgO 
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Surface Feature APM 
(Å2) 

A B ΔH 
kJ mol-1 

ΔS 
J  mol-1 K-1 

Qads 
kJ mol-1 

Graphite Layer 1 (T < 152 K) 26.10 1217 2.0487 13.116 136.87 10.118 
Layer 1 T > 152 K)  3274.7 15.594 -3.992 24.259 27.226 
Layer 2 11.02 2861.2 18.183 -0.554 2.7336 23.788 

MgO Layer 1 25.03 3191.4 17.39 -3.300 9.3782 26.533 
Layer 2 11.18 2823.3 18.222 -0.239 2.4609 23.473  
Bulk  2794.6 18.518 

  
23.234 

Table 6.1: Thermodynamic results for the adsorption of allene on graphite and MgO 
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Figure 6.7: Isotherms plotted vs chemical potential for allene on graphite 
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Figure 6.8: Isotherms plotted vs chemical potential for allene on MgO 
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Figure 6.9: Isosteric heats of adsorption for allene on graphite 
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Figure 6.10: Isosteric heats of adsorption for allene on MgO 
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systems with well-defined and stable isosteric heats of adsorption in both monolayers.  The 

average value for the monolayer is around 26-27 kJmol-1 and the second layer values are 

converging around 23 kJ mol-1. These are consistent with the Clausius-Clapeyron analysis and the 

bulk enthalpy of vaporization. 

 The Henry’s law heats of adsorption were calculated from the linear region before the 

monolayer riser and are shown in Figure 6.11.  This region in the graphite system did not produce 

reliable results for all but the highest temperatures.  The region generally only corresponded to 

two or three recorded data points before the monolayer step began and reliable consistent fitting 

of the slopes of these isotherms was not possible.  The analysis was only performed using the 

data taken from isotherms at and above 170 K.  The value at  30.8 kJ mol-1 is much higher than 

the bulk heat of condensation and would indicate the interaction between allene molecules and 

the surface is highly favorable, however, the overall difficulties for this system should limit the 

significance placed on this value.  The data for the MgO system continued to be the easier of the 

two to analyze, with reasonable quality of fits across the entire temperature range and a Henry’s 

law region very similar to the bulk phase.  If both of these values are trusted, it would indicate a 

strong interaction of allene with graphite’s surface, but a more average interaction with MgO.  

Contrasting this with acetylene, where the interactions were stronger with MgO, it could indicate 

that the van der Waals interactions are a much more significant part of this adsorption behavior 

than its large quadrupole moment.  Alternatively, it could represent an issue with size 

compatibility between the size of the molecular quadrupole and the corrugation of the surface 

that prevents molecules from finding effective binding sites and lowering the adsorption energy 

through electrostatic repulsive forces.  Of note, it must always be considered that the 

assumptions made with Henry’s law will not work with all surfaces or gases, and may even feature 

differences between surface samples if the defect concentration is high enough.   

 The two-dimensional isothermal compressibility was used to locate possible phase 

transitions in these adsorbed systems.  It should be noted that, despite the many difficulties the 

graphite surface presented in these studies, when it came to this analysis, the data was 

remarkably well-fit and consistent across temperatures.  On graphite, these analyses show  
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Note: light blue open circles for graphite show data points from regions were pressures 
were too low for good statistics, these were disregarded from the line fit 

Figure 6.11: Henry's law plots for the adsorption of allene on graphite (left) and MgO (right) 
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potential transitions occurring at 150.5 K and 151.5 K for the first and second layer, respectively.  

For MgO, the same type of transition features were observed at marginally higher temperature: 

155 K for the first layer, and 156 K for the second layer (Figure 6.12).  Within the error margin of 

the analysis, the temperatures for both layers of both systems may actually be coincident.  Based 

on where these fall relative to the bulk triple point would indicate that these features correspond 

to critical transitions in the film, a conclusion supported by the evolution of the isotherm steps 

before and after these points. 

6.3.2 – Computational Studies 
 Computational analyses were made on these systems with molecular dynamics 

calculations using the standard COMPASS parameters.  The validation of this force field for 

cumulated double bond systems is unclear, but the lack of any force field parameters to prevent 

the free rotation of the molecular bond around the central axis demonstrates the lack of 

development in this area.  This issue was resolved by defining a restriction of this motion using a 

system restraint, but this is no guarantee of physically realistic behavior.  Despite this, there does 

not seem to be any other force fields more tailored to the behavior of allene, and COMPASS has 

a significant library of validated results on other hydrocarbons and a long and successful 

utilization in the study of adsorbed systems. 

6.3.2.1 - Energy Minimizations.   

 Following those same procedures already prescribed, the binding sites and associated 

energies for allene on these surfaces was examined through geometry optimization calculations 

for single molecules adsorbed on the surface (figure 6.13).  On graphite, the molecules did not 

show preference for any particular surface location or orientation with respect to the surface, 

and the calculated binding energies were 28.76 kj mol-1, varying by 0.01 kj mol-1 across the 

surface sites tested.  One preference the molecules did seem to show is in the orientation of the 

opposing hydrogen pairs, with one pair level with the surface and the other perpendicular.  On 

MgO, all starting points would converge on surface magnesium atoms with the molecule twisted 

at an angle relative to the surface lattice.  The molecules on this surface oriented with the 

hydrogen pairs at 45° to the surface.  The hydrogen proximal to the surface was situated over 

surface oxygen atoms.  The interaction energy was calculated to be 34.52 kJ mol-1, which is 

distinctly in disagreement with the observed Henry’s law heat of adsorption.  While this may  
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Figure 6.12: FWHM half max analysis for allene on graphite and MgO 

Left: layer 1 
Right: layer 2 
Top: graphite 
Bottom: MgO 
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Note: for graphite, no significant favorable position was observed, instead, this shows the 
preferring axial orientation of opposing hydrogen groups relative to the surface 

Figure 6.13: Energy minimization results for allene on graphite and MgO 
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indicate descriptive issues for this molecule in the force field, it may also be a failure of one or 

more of the Henry’s law assumptions. 

6.3.2.2 – Molecular Dynamics Simulations 

 As was done with the simulations of acetylene on MgO, simulations of these systems with 

allene were run with densities corresponding to sub-monolayer, completed monolayer, and 

bilayer coverages.  During the course of these simulations, observations of the equilibration of 

the non-bond energies lead to a distinct point in both systems.  When the systems reach 80 to 

90 K, the equilibration time to reach minimum energy and the total change in energy from 

beginning to end of the simulations took considerably longer, up to 500 ps at the highest 

coverages.  A similar point was also noticed only for the MgO surface at 130 K.  A significant 

change in the non-bond energies of the molecules would be indicative of a structural relaxation 

in the film, and therefore signal a phase transition.  The lower of these two temperatures 

observed for both surfaces did show signs of more ordering following this point, as seen in the 

radial distribution functions (Figure 6.16).  This is also the region where the triple point would 

suggest that a possible melting/freezing point occurs. Identification of exactly what occurs at the 

130 K shift was not as immediately apparent in the data, but may signal changes to the liquid 

state or the critical point in the simulated system. 

  A comparison of snap shots for the completed monolayers on both surfaces is shown in 

Figure 6.14.  Most notably, a difference with allene compared to acetylene is the high degree of 

orientational disorder of the molecules.  This was observed for all coverages examined and does 

not seem to be a result of insufficient simulation times to allow for equilibrium based on the 

energy outputs from the simulation results.   The optimized structure of the single molecules with 

the surface shown in the previous subsection, and the regions of short-range ordering in the 

simulations may suggest an explanation for the disorder (Figure 6.15).  Based on the size and 

orientation of the single molecule shown in its preferred binding site in the previous section, the 

steric constraints would only allow one configuration of surrounding molecules that is also 

similarly optimized.  The molecules would have to stack in a “slipped” parallel arrangement along 

the diagonal lines of magnesium surface atoms with their centers over these atoms.  This leads 

to regions with a commensurate 1x3 herringbone structure in parts of the simulated film.  

Configured in this way, the positive ends of the molecular quadrupoles are in close proximity,  
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Figure 6.14: Simulation snap shots for allene on graphite and monolayer and sub monolayer 
coverages 
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Figure 6.15: Simulation snap shots of bilayers of allene on graphite and MgO and 5K 
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Figure 6.16: Radial distribution function and concentration profile analysis for allene monolayer 
on graphite (left)  and MgO (right) 
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meaning there is optimization of the molecule-surface interactions with simultaneous frustration 

in the molecule-molecule interactions.   Also observable is a region of a square bond pattern 

structure that appears to be incommensurate with the surface, and is an somewhat efficient way 

of minimizing the quadrupole-quadrupole energies in longer quadrupolar molecules alternatively 

to square-T and herringbone lattices. Though not quite as efficient as the square-T lattice, this 

orientation does optimize the van der Waals forces between molecules as well and is a 

reasonable structure for allene in two dimensions.  In the bilayer regime, there are a considerable 

number of molecule perpendicular to the surface that act as members of both layers (Figure 

6.15).  In contrast with acetylene where the quadrupoles and surface corrugation are 

cooperative, these simulations suggest the possibility that there is competition between two 

differently orientation configurations that might be similarly optimized.  It may also be possible 

that the hindered rotation of molecules by surrounding molecules and the strong modulation of 

the surface potential in competition with one another means the equilibration processes are too 

slow to be reached in these simulations. 

 Allene on graphite shows a much higher degree of ordering in its structure, adopting an 

incommensurate, centered rectangular herringbone lattice with the molecular orientations no 

more than 15 degrees from the perpendicular T-configuration.  Small amounts of the slipped-

parallel unit cell are observable, but the population of these occurrences is small and the 

boundaries of these two structures show very little signs of lattice strain.  There are no signs of 

the bound dislocation pairs that were seen in the acetylene on graphite simulations with 

increased quadrupole strength.  These simulations suggest that on graphite, the molecule-

molecule interactions of allene dominate.  Above 100 K, the films show a fair degree of isotropic 

disorder.  It has been postulated that linear quadrupole interactions in two-dimensional systems 

can never become fully isotropic or disordered.  The corollary to this is that they can become very 

close this point, but some bond and orientational ordering will survive.  This does seem to be 

what is occurring in these higher temperature simulations.  The ordering is very weak, and the 

disorder is very dynamic.  The molecule-molecule interactions are extremely poorly optimized in 

such a phase.  It would seem logical that the strong surface attraction of these molecules and the 

effect of thermal energy on their two-dimensional behavior create a system of high entropy, but 

low enthalpy, due to the way the molecules are forced to interact.  Though not conclusive, such 
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a scenario would describe anomalously low enthalpy, extremely high entropy adsorption 

behavior as witnessed in the isotherms.   

6.4 – Conclusions on the Adsorption of Allene 
 The adsorption isotherms and simulation studies of this current chapter represent novel 

work done on the study of the physical interactions of the smallest cumulene molecule, allene.  

Despite its unique differences from other molecules as a result of its stacked double bonds, and 

it being a rare example of a small, light, simple molecule with D∞h symmetry, studies on the 

physical properties and behavior of this molecule are very limited.  Most work is focused on 

catalysis and polymer applications. 

 The data presented in this chapter shows that allene was able to act against expectations 

and displayed some interesting adsorption properties.  Though allene is a close cousin to 

acetylene in terms of its constituents, its size, and its quadrupole strength, small differences can 

lead to significant changes in the adsorption behavior.  This is plainly evident in the isotherm and 

simulation studies presented in this chapter.   

 The thermodynamics of allene were studied on surfaces of graphite and MgO in a 

temperature range from 140 K to 200 K which correspond to a range above the triple point for 

the bulk phase.  Two layering transitions were seen for each system, along with distinct 

incomplete wetting present following completion of the monolayers.  The differential heats and 

entropies of adsorption displayed interesting and unexpected results for both systems. On 

graphite, the first monolayer displayed two thermodynamically distinct regions, with the divide 

at 152 K.  The higher temperature region was one of moderate and favorable enthalpy and 

entropy.  The lower region however possessed an massive, positive enthalpy value; the 

corresponding heat of adsorption was only 42 % of the bulk heat of condensation.  Despite this 

decidedly thermodynamically unfavorable situation, the free energy for this transition is highly 

favorable, driven, against the enthalpy, by an even more startlingly large entropy On MgO, the 

adsorption processes were moderately enthalpically favored, with a very small, but favorable 

entropy as well.  Analysis showed each layering transition to be thermodynamically constant of 

the entire temperature range.  Temperatures corresponding to potential phase transitions were 

identified using the two-dimensional compressibilities.  On graphite, a determination of 150.5 K 

was made, with the second layer’s point was to within a degree the same.  Similarly, on MgO, 
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155 K was observed as a potential phase transition with the second layers corresponding value 

measured to be only 1 K higher in temperature and quite possibly occur at the same temperature 

as each other 

 Molecular dynamics simulations were conducted for a range of coverage densities with 

both substrates.  On graphite, the films adopted an incommensurate centered rectangular 

structure of fairly high order.  At warmer temperature though, the molecules become high 

disordered while trapped to the two-dimensional plane, leading to very poorly optimized 

molecule-molecule interactions, but pinned by a large but smooth molecule-surface interaction.  

 The physical properties of allene prevent the isotherm measurements from reaching a 

temperature were solid adsorbed phases might be observable.  The molecular dynamics highlight 

some potentially interesting aspects of the system, but the extra restraints required by the force 

field indicate a lack of consideration for cumulenes in molecular dynamics.  While comparisons 

were drawn between these simulations, the isotherm behaviors, and the interactions of 

quadrupolar molecule, these connections were speculative in nature.  It is hoped that these 

studies will lead to structural and dynamic studies of allenes adsorption prosesses.  In the regions 

outside of the isotherms reach.  Empirical experimental data would also serve a test case to 

validate or invalidate the simulations results, and by extension, the quality of the forcefields 

abilities to model cumulene systems. 
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Chapter 7 – Conclusions 
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7.1 – Review of Objectives and Studies 
 The goal of this dissertation was to examine the adsorption behavior of two simple linear 

hydrocarbons that possess anomalously strong quadrupole interactions compared to similarly 

sized molecules.  One of these, acetylene, has been well-studied in the literature and, despite a 

colossal effort, has resisted accurate computational modeling.  The other, allene, represents the 

opposite side of the spectrum, as it has received very little attention from researchers and very 

little effort in the explorations of its properties outside of very specific applications.  In short, 

neither molecule is well-understood, and each provides the test bed for exploration of unique 

and interesting behaviors in adsorbed systems. 

 Acetylene and allene present several different cases for the examination of ways systems 

of varying symmetries may interact.  For example, the molecular size and quadrupole strength of 

acetylene creates a large preference towards a square-T lattice.  The size and orientation of 

molecules within this lattice matches closely with the 2x2 commensurate registry of the MgO 

(100) surface.  The preferred molecular spacing is only marginally larger than that of this surface 

registry, but the corrugation of the surface potential creates strong molecule-surface 

interactions.  Conversely, graphite, with its hexagonal surface configuration, is incompatible with 

the square-T lattice preferred by the molecules.  Other similarly sized but weaker quadrupolar 

molecules, such as nitrogen, tend to adopt hexagonally configured herringbone lattices that are 

a compromise between the molecule-molecule and molecule-surface interactions.  Alternatively, 

the stronger quadrupole of acetylene allows for more frustration of forces to occur, and a 

complex phase behavior during adsorption results.  

 Physisorption studies provide an ideal method to refine and validate the development of 

intermolecular potentials.  Simulations conducted using such potentials are invaluable in the 

microscopic picture they can provide to match the abstract quantities of empirical data.  These 

potentials, when possible, are typically validated by their ability to describe bulk behavior.  For 

example, in the instance of acetylene, it is clear that despite accurate information now available 

on three distinct condensed phases (two solids and a liquid), the ability to describe all three 

collectively with a single set of potentials, or even just for the two solid phases, has not been met 

with complete success.  The adsorption of acetylene on graphite, with its many subtle transitions 

and interacting continuous and first order melting transitions, provides a much larger range of 
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behaviors that could help lead to the development of more accurate modeling for this molecule.  

Similarly, it appears that allene has hardly, if at all, been the subject of targeted modeling studies. 

7.1.1 – Acetylene on Graphite Summary 

 Adsorption isotherms were examined between 119 K and 141 K. Computational studies 

were performed that included comparisons of previous force fields utilized in the literature, as 

well as energy minimizations to examine molecule-surface interactions and molecular dynamics 

simulations that were conducted for several forcefield variations for a wide range of coverages.  

Elastic neutron diffraction data was collected over a temperature range from 10 K to 165 K within 

the primary monolayer step with a primary focus on the melting region observed in the isotherms 

from 124 K to 138 K.  Major highlights are succinctly summarized as follows: 

 Adsorption Isotherms 

o Four distinct features were observable before the beginning of the second 

layering transition (labeled A through D). 

o A prominent transition present in all features, A through D, was observed at 132.5 

K, and a much more subtle transition observed at 126 K for substeps A, B, and D. 

o The C substeps displayed a second possible transition around 134.5 K that is 

seemingly unique to this substep alone. 

o Clausius-Clapeyron analysis showed a general trend in mild or moderate enthalpic 

unfavourability in adsorption, with large and favorable differential enthalpies. The 

exceptions to this are the C’1 and C2 substeps, for which this trend is completely 

reversed. 

 Computational Studies 

o Initial studies using the default COMPASS force-field parameters only showed a 

single ordered phase that was a commensurate herringbone structure 

inconsistent with other experimental results. 

o Examination of other published force fields suggested more accurate behavior 

may be obtained with stronger quadrupole strengths than the default COMPASS 

values. 

o Studies of several variations to the quadrupole interactions were conducted 

showing data more consistent with experimental results 
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o Three ordered phases consistent with previous studies, as well as this study, were 

observed: a low-coverage square-T structure, a high-coverage rectangular 

herringbone structure, and a high-coverage, obliquely distorted herringbone 

structure. 

o In the square-T phase, dislocations and melting behavior nominally consistent 

with KTHNY theory for melting were observed. 

 Neutron Diffraction 

o Diffraction profiles for the ordered low-coverage phase were fit to a square-T 

lattice with a diffuse disordered background present. 

o Diffraction profiles for a disordered phase occurring above 133 K were fit to a 

uniaxially commensurate centered rectangular structure. 

o Diffraction profiles from 127 K to 132 K showed distinct coexistence of the two 

aforementioned phases. 

o Two-phase refinement of diffraction profiles in the coexistence region showed 

melting behavior of the solid phase consistent with some predictions made by the 

KTHNY model: 

 Melting process began at 126 K  

 Melting was continuous until after 132 K, where it became first order 

 Notable deviations from this model: 

  the liquid phase was not isotropic 

  the melting ends in a first order transition 

o Data seems to describe a nearly uniaxial melting process that suggests strong 

influence of both the molecule-molecule and molecule-surface interactions 

7.1.2 – Acetylene on MgO Summary 

 Adsorption isotherms were collected in a temperature range from 119 K to 201 K.  

Computational studies examined the adsorption behavior using the default COMPASS force-field 

parameters.  Preliminary neutron data was also collected for the monolayer film at low 

coverages, however, issues with background subtraction data quality prevented meaningful 

analysis of film structure. 
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 Adsorption Isotherms 

o Isotherms consisted of two, well-defined layering transitions with non-wetting 

behavior after each. 

o Isotherms transitioned instantaneously between non-wetting to bulk condensation at 

the saturated vapor pressure. 

o At low temperature, mild incomplete wetting characteristics were observed in the 

first layering step, which evolved into two transitions at 128 K and 140 K, proceeding 

to a complete wetting behavior. 

o Clausius-Clapeyron analysis shows that, below 140 K, the adsorption is enthalpically 

unfavorable and is driven by a large entropy, and above 140 K, adsorption is favorable 

both enthalpically and entropically. 

o Apparent phase boundary behavior of the first layering step suggests that the film has 

not yet reached a critical point at the highest temperatures measured. 

o Monolayer APM values are consistent with a 2x2 commensurate registry. 

 Computational Studies 

o Molecular dynamics show a highly-ordered square-T phase in a 2x2 commensurate 

registry with the surface. 

o Molecules are tilted slightly out of the plain to allow for the mismatch in size between 

the molecule and surface lattice. 

o As temperature increases, disorder in these out-of-plane orientations grows, while 

the in-plane ordering remains constant. 

o Harmonic oscillations within the film structure were observed to be consistent with 

simple models of a two-dimensional lattice of quadrupoles with fixed positions. 

o Simulations of partial second layer coverages still show a relatively high degree of 

positional order of the molecules, but the molecular orientations deviate from the 

ideal T-shaped configuration. 

7.1.3 – Allene on Graphite Summary 

 Isotherms were collected over a temperature range from 140 K to 200 K. These were 

supplemented with computational studies of the molecule-surface interactions and molecular 

dynamics simulations at three coverages. 
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 Adsorption Isotherms 

o Two distinct layering steps were observed with obvious incomplete wetting 

behavior in the isotherm shape. 

o The free energy values of the first layering step show the adsorption to be highly 

favorable. 

o Clausius-Clapeyron analysis shows two thermodynamically distinct regions in the 

first layering step: 

 Below 152 K, the differential enthalpy is significantly unfavorable; 

however, this is offset by an even more significant, favorable entropy 

value. 

 Above 152 K, the adsorption is moderately enthalpically favorable, with 

less, though still substantial, entropic favorability. 

o FWHM analysis suggests a critical point occurs in both layers around 150 K. 

 Computational Studies 

o Molecular dynamics trajectories show single, distinct, ordered structure and 

seems split between two motifs: 

 A bond (brick-laying) pattern 

 A rectangular herringbone structure with the molecules twisted about 15 

degrees from the T-configuration 

o Molecules are oriented with one hydrogen pair parallel to the surface and the 

opposing pair perpendicular to the surface. 

o Quasi-long-range order begins to develop around 90 K. 

o The second layer is much more highly disordered than the first layer. 

7.1.4 – Allene on MgO Summary 

 Isotherms were collected over a temperature range from 140 K to 185 K. These were 

supplemented with computational studies of the molecule-surface interactions and molecular 

dynamics simulations at three coverages. 

 Adsorption Isotherms 

o Two distinct layering steps were observed with obvious incomplete wetting 

behavior in the isotherm shape. 
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o Clausius-Clapeyron analysis shows layering features are moderately enthalpically 

favored with moderately large entropic favorability. 

o FWHM analysis suggests a critical point in both phases that occurs around 155 K. 

 Computational Studies 

o Molecular dynamics trajectories show two distinct motifs with a high degree of 

disorder: 

 A bond (brick-laying) pattern 

 A herringbone lattice with a 3x1 commensurate registry 

o Molecules are oriented with the terminal hydrogen pairs of the molecules 45° 

from the surface. 

o Quasi-long-range order begins at 80 K. 

o Within the second layer, disorder is much higher, having multiple molecules 

perpendicular to the surface that penetrate both layers. 

7.2 – Future Works 
 All systems studied in this dissertation would benefit from neutron diffraction or other 

similar structural measurements.  Any ordering transitions present for allene on both substrates 

are far outside the temperature range obtainable with isotherm measurements.  The extremely 

positive differential enthalpy and entropy below 152 K on graphite is especially unusual and 

warrants further investigation using different experimental probes in more detail in this 

temperature range and at lower temperatures.  Acetylene on MgO presents seemingly 

contradictory behavior between the expected molecule-substrate compatibility.  The region 

around the transitions at 128 K and 140 K will require a much more detailed experimental study, 

including structural analysis in order to understand the nature of these transitions.  Acetylene on 

graphite needs a more detailed structural analysis of the higher coverage phases, including the 

transitions of the C substep in the isotherms, as well as the transitions from the S12 and S2 phases. 

 These studies are meant to represent the two simplest examples in a homologous series 

of linear hydrocarbons with quadrupolar interactions.  These studies can be further expanded in 

the future to include modifications of substrate symmetry, such as with the three-fold honey-

comb lattice of hexagonal boron nitride.  Explorations of other molecules could include  methyl 

acetylene, with its broken axial symmetry,  diacetylene, with a longer aspect ratio and higher 



235 
 

quadrupole moment, and substituted acetylenes or allenes, such as difluoro-acetylene, with a 

very similar size to acetylene but a smaller quadrupole moment. 

7.3 – Closing Remarks 
 The cooperation, competition, and structural frustration observed in the systems of these 

studies, both real or computational, demonstrate just how interesting and complex these 

systems can be.  An example of this is the general trend of enthalpic unfavorability and high 

entropic favorability present across all of these systems.  Furthermore, even in a system where 

the sizes and symmetries of the molecules and surface are highly compatible, such as acetylene 

on MgO, the observed results display high entropies and two distinct transitions as revealed in 

the isotherm data.  The complexity of these interactions drives behaviors that are atypical 

compared with many other adsorbed systems that have been studied in the literature.   
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A – Two-Dimensional Radial Distribution Function Script 
 The default calculation algorithm included in the Forcite analysis package was intended 

for analysis of three-dimensional systems however, and if used on two-dimensional systems 

resulted an artifact that drove the intensities towards zero at increasing distances.  Though 

reasonable information about the first coordination shell could be obtained, the errors in 

intensities of each subsequent shell grew rapidly in magnitude.  It was assumed at first that this 

was the result of the normalization of molecules in a two-dimensional plane over the volume of 

a spherical shell element for each radius bin in the generated histogram.  Such an artifact would 

be easily corrected for, however applying such a correction did not remove the artifact, and only 

marginally improved the results.  The exact reason for this issue was not determined, however it 

was suspected that it was the result of the combination of the volume element problem and the 

way the algorithm dealt with periodic boundary conditions in three dimensions vs two 

dimensions.  While this latter issue should not seem to make a difference in theory, it was noted 

the calculations typically resulted in an extra odd feature at a distance correlated with the lengths 

of simulation box along in the surface plane, indicating a boundary artifact. 

 Materials Studio allows for the use of custom scripts written in Perl to enable additional 

analysis not directly possible with the tools native to the program. This following script enables 

the user to obtain the two-dimensional radial distribution functions from simulation trajectories 

in the form utilized in this dissertation. 

A.1 – Perl Script for Calculation of Two-Dimensional Radial Distribution Function 

 The following text is the Perl code for the determination of two-dimensional radial 

distribution functions from molecular dynamics simulations in Materials Studio 6.0.  Some lines 

of code had to be split over multiple lines to be formatted into this document.  The end of 

individual command lines typically end in a semi-colon or right bracket symbol. It may require 

lines to be reparsed if imported from this document back into a Perl script file.  The code is as 

follows: 
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#!perl 
 
use strict; 
use Getopt::Long; 
use MaterialsScript qw(:all); 
use POSIX; 
use Math::Trig; 
 
#/////////////////////////////////////////////////////////////// 
################################################################ 
#Set Controllable Variables##################################### 
################################################################ 
#/////////////////////////////////////////////////////////////// 
 
my %Args; 
GetOptions(\%Args, "Document_Name=s", "Start_Frame=f", 
"Number_of_Frames=f", "End_Frame=f", "R_max=f", "dr=f"); 
 
        
#///////////////////////////////////////////////////////////////        
################################################################ 
#Dependent Parameters (DO NOT ALTER)############################ 
################################################################ 
#/////////////////////////////////////////////////////////////// 
 
#Import Arguments############################################### 
 
my $docname = $Args{Document_Name}; 
my $start = $Args{Start_Frame};  #first frame of RDF calc 
my $numframe = $Args{Number_of_Frames}; #total frames analyzed 
my $endframe = $Args{End_Frame}; #last frame of RDF calc 
my $rmax = $Args{R_max}; #maximum radius for rdf calculation 
my $dr = $Args{dr}; #histrogram resolution 
 #requires more frames for good statistics but takes longer 
 #too many frames and system will run out of memory 
 
#Set Files###################################################### 
 
my $trajectory = Documents -> ActiveDocument; 
my $frame = Documents -> New("frame.xsd"); 
my $progress = Documents->New("progress.txt"); 
 
#Set Frame Intervals############################################ 
 
$trajectory -> CurrentFrame = $trajectory -> EndFrame; 
my $numframes = $trajectory -> NumFrames; 
my $framestep = ceil(($endframe - $start)/$numframe); 
my $startframe = $endframe - $framestep * $numframe; 
 if ($startframe < 1){ 
  
  my $p = 1; 
  
  until($startframe >= 1){ 
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   $startframe = $endframe - $framestep * ($numframe 
- $p); 
    
   $p++ 
    
  } 
   
 } 
  
 
      
my $numstep = ($endframe - $startframe)/$framestep; 
 
 
#Cell Parameters and Indices#################################### 
 
my $cell = $trajectory -> SymmetryDefinition; 
my $lengthA = $cell -> LengthA; 
my $lengthB = $cell -> LengthB; 
my $lengthC = $cell -> LengthC; 
my $thetadeg = $cell -> AngleGamma; 
my $theta = $thetadeg * pi / 180; 
 
my $xmax = $lengthA; 
my $ymax = $lengthB * sin($theta); 
my $zmax = $lengthC; 
my $cellarea = $xmax * $ymax; 
my $topmolenum; 
my $botmolenum; 
 
my $megaindex = int($rmax / $ymax + 0.5); 
my $megashift = 2 * $megaindex + 1; 
 
#Prepare Output Table########################################### 
 
my $rdf = Documents -> New("$docname rdf.std"); 
 
$rdf -> ColumnHeading("A") = "r"; 
$rdf -> ColumnHeading("B") = "rdf top"; 
$rdf -> ColumnHeading("C") = "rdf bottom"; 
$rdf -> ColumnHeading("D") = "rdf combined"; 
 
my @radius; 
my @Rrtop; 
my @Rrbot; 
my @Rrcombined; 
 
for (my $w = 0; $w < $rmax/$dr ; $w++){ 
 
 my $radius = $dr * ($w + 1); 
 my $Rr = 0; 
 
 $rdf -> Cell($w , 0) = $radius; 
 $rdf -> Cell($w , 1) = 0; 
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 $rdf -> Cell($w , 2) = 0; 
 $rdf -> Cell($w , 3) = 0; 
  
 push (@radius, $radius); 
 push (@Rrtop , $Rr); 
 push (@Rrbot , $Rr); 
 push (@Rrcombined , $Rr); 
  
# $Documents{"progress.txt"}-> Append(sprintf "w = $w"); 
# $progress -> UpdateViews; 
  
} 
 
#/////////////////////////////////////////////////////////////// 
################################################################ 
#Start RDF Calculation########################################## 
################################################################ 
#/////////////////////////////////////////////////////////////// 
 
 
#Select Frame################################################### 
 
for (my $h = 0 ; $h < $numstep ; $h++){ 
 
 my $percent = 100 * $h / $numstep; 
 
 print "h = $h"; 
  
 $Documents{"progress.txt"}-> Append(sprintf "$percent 
%\n"); 
 $progress -> UpdateViews; 
 
 my $framenum = $startframe + $h * $framestep; 
  
 
 $trajectory -> Trajectory -> CurrentFrame = $framenum; 
 $frame -> ClearContent; 
 $frame -> Copyfrom($trajectory); 
  
 $frame -> SymmetryDefinition -> LatticeOrigin = Point(X => 
0, Y => 0, Z => 0); 
 $frame -> SymmetryDefinition -> OrientationConvention = "A 
along X, B in XY plane"; 
 $frame -> ReorientToStandard; 
  
#Initialize Arrays and Scalars################################## 
 
 my @xtop; 
 my @xmegatop; 
 my @ytop; 
 my @ymegatop; 
 my @ztop; 
 my @zmegatop; 
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 my @xbot; 
 my @xmegabot; 
 my @ybot; 
 my @ymegabot; 
 my @zbot; 
 my @zmegabot; 
  
  
  
#Get Centroids################################################## 
 
 my $moleculestop = $frame -> UnitCell -> Sets("top") -> 
Molecules; 
  
 foreach my $molecule (@$moleculestop){ 
  
  my $centroidtemp = $frame -> CreateCentroid($molecule 
-> Atoms); 
   
  my $coordinate = $centroidtemp -> CentroidXYZ; 
   
  my $x = $coordinate -> X; 
  my $y = $coordinate -> Y; 
  my $z = $coordinate -> Z; 
   
  until ($y >= 0){ 
   
   $y += $ymax; 
   $x += $lengthB * cos($theta); 
    
  } 
   
  until ($y <= $ymax){ 
   
   $y -= $ymax; 
   $x -= $lengthB * cos($theta); 
  } 
   
   
  until ($x >= $y * cos($theta) / sin($theta)){ 
   
   $x += $xmax; 
    
  } 
   
  until ($x <= $y * cos($theta) / sin($theta) + $xmax){ 
   
   $x -= $xmax; 
    
  } 
   
  until ($z >= 0){ 
   
   $z += $zmax; 



259 
 

    
  } 
   
  until ($z <= $zmax){ 
   
   $z -= $zmax; 
    
  } 
   
  push (@xtop, $x); 
  push (@ytop, $y); 
  push (@ztop, $z); 
   
 } 
 
 my $moleculesbot = $frame -> UnitCell -> Sets("bottom") -> 
Molecules; 
  
 foreach my $molecule (@$moleculesbot){ 
  
  my $centroidtemp = $frame -> CreateCentroid($molecule 
-> Atoms); 
   
  my $coordinate = $centroidtemp -> CentroidXYZ; 
     
  my $x = $coordinate -> X; 
  my $y = $coordinate -> Y; 
  my $z = $coordinate -> Z; 
   
  until ($y >= 0){ 
   
   $y += $ymax; 
   $x += $lengthB * cos($theta); 
    
  } 
   
  until ($y <= $ymax){ 
   
   $y -= $ymax; 
   $x -= $lengthB * cos($theta); 
  } 
   
   
  until ($x >= $y * cos($theta) / sin($theta)){ 
   
   $x += $xmax; 
    
  } 
   
  until ($x <= $y * cos($theta) / sin($theta) + $xmax){ 
   
   $x -= $xmax; 
    
  } 
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  until ($z >= 0){ 
   
   $z += $zmax; 
    
  } 
   
  until ($z <= $zmax){ 
   
   $z -= $zmax; 
    
  } 
   
  push (@xbot, $x); 
  push (@ybot, $y); 
  push (@zbot, $z);  
   
 } 
  
 if ($h == 0){ 
  $topmolenum = scalar(@xtop); 
  $botmolenum = scalar(@xbot); 
 } 
  
#Create Megacell################################################ 
  
 my $scalar = scalar(@xtop); 
  
 for (my $j = 1; $j <= $scalar; $j++){ 
   
  my $xtemptop = $xtop[$j]; 
  my $ytemptop = $ytop[$j]; 
  my $ztemptop = $ztop[$j]; 
 
  
  for (my $k = -$megaindex; $k <= $megaindex ; $k++){ 
  
   for ( my $l = -$megaindex; $l <= $megaindex ; 
$l++){ 
  
    my $xtemptop2 = $xtemptop + $l * $xmax; 
    my $ytemptop2 = $ytemptop + $k * $ymax; 
    my $ztemptop2 = $ztemptop; 
     
    push (@xmegatop, $xtemptop2); 
    push (@ymegatop, $ytemptop2); 
    push (@zmegatop, $ztemptop2); 
 
     
   } 
    
  } 
   
 }  
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 my $scalar = scalar(@xbot); 
  
 for (my $j = 1; $j <= $scalar; $j++){ 
   
 
  my $xtempbot = $xbot[$j]; 
  my $ytempbot = $ybot[$j]; 
  my $ztempbot = $zbot[$j]; 
  
  for (my $k = -$megaindex; $k <= $megaindex ; $k++){ 
  
   for ( my $l = -$megaindex; $l <= $megaindex ; 
$l++){ 
  
 
    my $xtempbot2 = $xtempbot + $l * $xmax; 
    my $ytempbot2 = $ytempbot + $k * $ymax;  
    my $ztempbot2 = $ztempbot; 
     
    push (@xmegabot, $xtempbot2); 
    push (@ymegabot, $ytempbot2); 
    push (@zmegabot, $ztempbot2); 
 
     
   } 
    
  } 
   
 } 
  
#Calculate Distances############################################ 
 
 $scalar = scalar(@xtop); 
 my $scalarmega = scalar(@xmegatop); 
  
  
 for (my $n = 1 ; $n <= $scalar ; $n++){ 
  
   
  my @radiustemp = (); 
  
   
  for (my $o = 1 ; $o <= $scalarmega ; $o++){ 
   
    
   my $radiustemp = sqrt(($xtop[$n] - $xmegatop[$o]) 
* ($xtop[$n] - $xmegatop[$o]) + ($ytop[$n] - 
$ymegatop[$o])*($ytop[$n] - $ymegatop[$o]) + ($ztop[$n] - 
$zmegatop[$o])*($ztop[$n] - $zmegatop[$o])); 
    
   if ($radiustemp > 0 && $radiustemp <= $rmax){ 
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    push (@radiustemp, $radiustemp); 
     
   } 
    
  } 
   
  
  for(my $q = 0 ; $q < $rmax / $dr ; $q++){ 
  
   my $radius = $radius[$q]; 
  
   foreach my $radiustemp (@radiustemp) { 
    
    if ($radiustemp >= $radius && $radiustemp < 
$radius +$dr){ 
   
     $rdf -> Cell($q , 1) += 1; 
      
    } 
   } 
   
  } 
   
 } 
  
 $scalar = scalar(@xbot); 
 
 my $scalarmega = scalar(@xmegabot); 
  
 for (my $n = 1 ; $n <= $scalar ; $n++){ 
  
   
  my @radiustemp = (); 
  
   
  for (my $o = 1 ; $o <= $scalarmega ; $o++){ 
   
    
   my $radiustemp = sqrt(($xbot[$n] - 
$xmegabot[$o])*($xbot[$n] - $xmegabot[$o]) + ($ybot[$n] - 
$ymegabot[$o])*($ybot[$n] - $ymegabot[$o]) + ($zbot[$n] - 
$zmegabot[$o])*($zbot[$n] - $zmegabot[$o])); 
    
   if ($radiustemp > 0 && $radiustemp <= $rmax){ 
    
    push (@radiustemp, $radiustemp); 
     
   } 
    
  } 
   
  
  for(my $q = 0 ; $q < $rmax / $dr ; $q++){ 
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   my $radius = $radius[$q]; 
  
   foreach my $radiustemp (@radiustemp) { 
    
    if ($radiustemp >= $radius && $radiustemp < 
$radius +$dr){ 
   
     $rdf -> Cell($q , 2) += 1; 
      
    } 
   } 
   
  } 
   
 } 
  
   
} 
 
#Convert to RDF Values######################################### 
 
for (my $u = 0; $u < $rmax/$dr ; $u++){ 
 
 my $radius = $dr * ($u + 1); 
 my $Rrtop = $rdf -> Cell($u , 1); 
 my $Rrbot = $rdf -> Cell($u , 2); 
 my $Rrcombined = $Rrtop + $Rrbot; 
 
 $rdf -> Cell($u , 1) = $Rrtop / ($numstep * $topmolenum * 2 
* pi * $radius * $dr * $topmolenum / $cellarea); 
 $rdf -> Cell($u , 2) = $Rrbot / ($numstep * $botmolenum * 2 
* pi * $radius * $dr * $botmolenum / $cellarea); 
 $rdf -> Cell($u , 3) = $Rrcombined / ($numstep * 
($topmolenum + $botmolenum) * 2 * pi * $radius * $dr * 
($topmolenum + $botmolenum) / (2 * $cellarea)); 
  
} 

A.2 – Utilization of the Program 

 This script was designed to be operated through a custom user menu within material 

studio.  The details on how to set up such a menu can be found in the programs support files.  To 

set up the menu, the input arguments required are: 
 “Document_Name” 

o Data type -> string 

o Default Value -> leave blank 

 “Start_Frame” 

o Data type -> floating point 
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o Default Value -> 100 

 
 “Number_of_Frames” 

o Data type -> floating point 

o Default Value -> 50 

 “End_Frame” 

o Data type -> floating point 

o Default Value -> 1000 

 “R_max” 

o Data type -> floating point 

o Default Value -> 50 

 “dr” 

o Data type -> floating point 

o Default Value -> 100 

 The version of the script listed will run automatically on the active trajectory document 

open in the visualizer.  It requires no special set of the trajectory file to operate and produces 

three RDF profiles from the simulations, one for each surface, and a combined average of the 

two.  Note the third option is useful for good statistics, however it is not wise to use on some 

systems if the two surfaces are in different structural arrangements.  The restrictions places on 

how information can be manually called from the trajectory files means that the program 

unfortunately must store each frame analyzed as its own document, making this script rapidly 

run out of memory dependent on the size of the system.  For a 100 molecule system, it was 

determined that 50 frames was sufficient for good statistic.  For a 240 molecule system, the 

calculations would run out of memory after around 20 analyzed frames, however the statistics 

were generally still sufficient with this number.  If better statistics are required than is achievable 

in the memory limit, the analysis should be run in smaller fragments and combined. 

 The program distinguishes the two surfaces from one another by assuming that the 

substrate lies at the mid-point of the simulation box.  There are three known scenarios where 

this fully automated version will not work as intended.  The first is if a separate analysis needs to 

be run on separate layers of a multilayer system.  The second is if the “molecule” identifier used 
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by the software was never added to the adsorbate, as this identifier is needed for analysis.  The 

third is if the substrate slab is not centered vertically in the cell.  In these instances a second 

version of the script was created, with one difference, the molecules for each layer to be 

analyzed, two at a time, are added to “set” within the visualizer, these sets must be labeled “top” 

and “bottom” in order to function properly.  The code variant simply requires the omission of 

lines 85 through 136 from the script (the “create sets” section). 

A.3 – Future development 

 The largest issue that remains with the script in its current form is its slow rate of speed 

and high memory usage.  These issues are the result of the limitations of the scripting commands 

allowed within Materials Studio.  It is possible there is a work around for one or both these issues, 

and would be an objective for further potential improvements. 

 A second improvement may be to automate the multilayer system.  It should be possible 

to add further arguments to script with can allow a user to the z coordinate for each layer as an 

input argument, and have select molecules within some tolerance of that value to below to a 

certain layer. 

 Other small improvements may be made in the identification of molecule self-correlation 

as a result of periodic boundary conditions.  Currently large spikes occur in specific bins 

corresponding to the distances to the same coordinates as the molecule centers in adjacent 

supercells due to the periodic boundary conditions.  Lastly, the same process may be used to 

calculate the structure factors at the same time as the RDFs in the algorithm. 

B - Automated Program for Two-Dimensional Diffraction 
Refinement 

 An important work of this dissertation was the analysis and refinement of a liquid-solid 

coexistence (or possible tetratic phase) for acetylene on graphite.  The method that has been 

used quite successfully in the past by this group utilizes a Fortran program that generates 

diffraction lineshapes for a specified structure   This system required manual creation of input  in 

a properly formatted text file, with a separate file required for each structure to test, and they 

can only be run one at a time.  This method has been reliable, but it is most definitely not high 

throughput, has no form of user interface to interpret data, and requires a significant amount of  
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Figure B1: The Refinement GUI window 
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user involvement.  High quality analysis of diffraction data from multiple temperatures of a two 

phase coexistence region was something that was not practical following a manual analysis 

method.  A Matlab app was designed that acts as an automatic controller and GUI for the 

lineshape generation program.  Through the use of an interactive process one or many of the 

possible input parameters (structural, instrumental, disorder, etc.) it is able to perform a crude 

but effective version of Rietveld refinement on two-dimensional diffraction data. 

B.1-Program Outline 

 The program is not incomplete in terms of finer details that will be needed in the future, 

but in its current form its code is 330 pages of text in length, and for considerations of content it 

will not be possible to fully describe here.  Instead the basic form of the program will be 

described.  The first main improvement this system brings to the lineshape fitting process is the 

addition of a GUI to remove much of the need for manual data processing (figure B1) 

 On the left of the interface is where the inputs may be specified.  The user may also select 

one or more variable for refinement here, for each variable to be refined, and minimum and 

maximum range as well as iteration increment must be specified.  When executed, the program 

will initiate a process that uses a large series of nested loops to iterate over all the permutations 

of the variables selected for refinement.  For each loop, the program will gather all the required 

parameters and use them to generate the input file for the Fortran program.  When this program 

finishes its calculation, the interface program reads the output file for the lineshape.  It then 

performs a least squares optimization of the calculated lineshape with a scaling factor and a user 

selected background function against the raw diffraction data.  The results least squares value 

for the best first for this iteraction is recorded, and the loop is repeated and the fit quality is 

tracked using the goodness of fit from each iteration. 

B.2 – Goodness of Fit metric 

 An important detail that was realized during development is that the standard measure 

for goodness of fit in Rietveld analysis is not viable in two dimensions for two noted reasons.  This 

value takes the simple sum of squares formula and normalizes it by multiplying the residuals by 
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the inverse of the experimental diffraction intensity at each point.  This statistical consideration 

is valid in normal counting experiments (i.e. negative values are not permissible).  As the two-

dimensional diffraction data is a difference counting experiment, negative values are possible in 

the data.  The second issues had to due with a problem in two-dimensional diffraction that 

couples the correlation length and the peak height.  The Rietveld godness of fit metric puts less 

weight on higher intensity values.  When used as part of this refinement process, it developed an 

issue of run-away fitting in peak height where it would indefinitely make peaks narrow and taller 

to improve the fitting of the baseline, at the expense of the rest of the data. Alternative metrics 

used for three-dimensional refinement such as the Durbin-Watson statistic performed equally 

poorly.  The best statistic examined turned out to be a simple least squares method.  Such a 

statistic has a draw back in that it is not normalized to the data being fit, and will take different 

minimum values for systems of different noise for otherwise equally good fits. However, it 

provided the most stable and consistent metric for obtaining good agreement between 

calculated and experimental diffraction. 

B.3 – Fitting Algorithm 

 The following section is an outline of the fitting process and algorithm used in the 

refinement process.  The algorithm uses a series of nested loops to iterate over the all value 

combinations based on the refinement selection: 
1) Lattice constants 

2) Lattice angle 

3) Euler angles 

a) Psi 

b) Alpha 

c) Beta 

4) Coherence length 

5) Mean squared displacement 

6) Preferred orientation fwhm 

7) Preferred orientation mosaicity 

8) Instrument parameters (Caglioti parameters) 



269 
 

When the program starts, the following is the operational sequence of the program: 
1) Retreive non-refined parameters 

2) Check for refinement selections and retrieve refinement boundaries and intervals 

3) Retrieve values for non-refined parameters 

4) Refinement loops 

a) Print lineshape input file  

b) Execute lineshape generation 

c) Retrieve output data 

d) If dual phase refinement is selected 

i) Second refinement loop 

(1) Print lineshape input 

(2) Execute lineshape generation 

(3) Retrieve output data 

(4) Go to (e) 

e) Run baseline and scaling fit 

f) Check goodness of fit 

i) Check if best fit and save if best 

g) Display current progress 

h) Repeat loop 

9) Save progress to spreadsheet 
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