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ABSTRACT 

Biological materials often employ hybrid architectures, such as the core-shell 

motif present in porcupine quills and plant stems, to achieve unique properties and 

performance. Drawing inspiration from these natural materials, a new method to fabricate 

lightweight and stiff core-shell architected filaments is reported. Specifically, a core-shell 

printhead conducive to printing highly loaded fiber-filled inks, as well as a new low-

density syntactic foam ink, are utilized to 3D-print core-shell architectures consisting of a 

syntactic epoxy foam core surrounded by a stiff carbon fiber-reinforced epoxy composite 

shell. Effective printing of test specimens and structures with controlled geometry, 

composition, and architecture is demonstrated with printed core-shell samples exhibiting 

up to a 25 percent increase in specific stiffness over constituent materials.   

 A detrimental increase in foam density was observed during initial core-shell 

printing due to failure of glass microballoons (GMBs) during extrusion. To solve this, the 

second part of the dissertation investigates the relationships between GMB loading, 

extrusion pressure, nozzle diameter, and flowrate on printed density. These parameters 

are investigated to gain understanding of the conditions leading to GMB failure, 

informing selection of process parameters to minimize it. A new syntactic foam ink is 

formulated with GMBs that exhibit a lower average diameter and higher crush strength, 

ultimately enabling printing without prominent GMB failure and the ability to achieve 

near theoretical printed density. The new foam samples are stronger and stiffer than 

conventional syntactic foams and current DIW-printed foams. Further implementation of 

the new foam in the C-S architecture enabled a 5 percent increase in specific stiffness 

over previous values.  
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In the last section, work is done to further expand the capability of C-S printing 

by demonstrating multimaterial 3D printing using the core-shell nozzle. This approach 

enables “on-the-fly” switching between materials during fabrication, without the need for 

two nozzles. Material transition behavior is analyzed, multimaterial components are 

successfully printed, and flexural testing is conducted. Overall, the new approach enables 

material switching with a continuous print path, providing greater design flexibility and 

compositional control, opening new routes to DIW print multimaterial architectures. 
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1. INTRODUCTION  
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1.1 Motivation  

Additive manufacturing, widely known as three-dimensional (3D) printing, has 

grown since its conception three decades ago into a billion dollar industry where it is 

currently being used in manufacturing sectors such as aerospace, automotive, and 

biomedical [1]. AM technologies, wherein components are built up layer-by-layer in an 

“additive” fashion, have revolutionized all areas of manufacturing by affording the ability 

to significantly reduce many of the design constraints present in conventional 

“subtractive” manufacturing techniques and allowing fabrication of novel complex 

geometries that cannot be readily molded, machined, or extruded [2]. Continued 

expansion and the ever increasing interest in AM capabilities has titled it as a new 

paradigm for material manufacturing [3], leading experts to claim it will be the enabling 

technology for a third Industrial Revolution [4, 5].  

Despite advancements, progress is still needed to drive 3D printing beyond its 

established role as a rapid prototyping technology and expand its application in 

manufacturing. Growth in application space will be assisted by: (1) the development of 

new high-performance composite feedstock materials and (2) the engineering of new 

printing methods and hardware to enable fabrication of hybrid materials, described as “a 

combination of materials or material and space in configurations and connectivities that 

offer enhanced performance”[6]. Development of these new hybrid materials and 

methods, such as co-deposition via core-shell printing detailed in this work, will support 

expansion of the range of printed materials, to include functional and structural high-

performance hybrid materials. These new materials will not only help overcome current 

challenges and advance AM as a whole but can benefit various areas of life such as 
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improved health with patient specific implants or drug delivery, energy conservation 

through use of efficient lightweight components, and economy through cost savings when 

manufacturing complex geometries.  

Of the existing AM technologies, polymer extrusion additive manufacturing 

remains undoubtedly the most common, making it the cornerstone of AM [5]. Polymer 

extrusion AM can be divided into two types based on feedstock material and processing 

conditions: (1) fused filament fabrication (FFF) of thermoplastics and (2) direct ink write 

(DIW) of thermosets. While both have showed promise in producing high mechanical 

and functional properties in components, DIW, an extrusion-based technology consisting 

of the direct deposition of viscoelastic feedstock materials at ambient temperatures, is 

more adept for efficiently printing multimaterial hybrid architectures.  

Although numerous hybrid architectures exist, by drawing inspiration and 

motivation from nature, the core-shell architecture, which is not only functionally 

advantageous but also enables realization of composites with high stiffness-to-weight 

ratios, was chosen as the hybrid architecture of emphasis. Thus, the aim of this work is to 

leverage the capabilities of direct write (DIW), to investigate printing of the core-shell 

(C-S) architecture and multimaterial hybrid architectures for lightweight applications.  

In this work, fundamental knowledge pertaining to hybrid core-shell printing of 

highly loaded, reinforced epoxy inks is gained by investigation into feedstock 

formulation, print behavior, processing effects, and mechanical properties. This 

knowledge will help guide future development of C-S materials and printing methods, 

that can ultimately help expand the use of direct ink write through production of high-

performance, multimaterial, hybrid components.  
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1.2 Direct Ink Write (DIW) Additive Manufacturing of Polymer Composites 

Two main forms of extrusion-based polymer AM exist- fused filament fabrication 

(FFF) and direct ink write- that are differentiated by the type of feedstock material and 

processing conditions used. FFF consists of liquefying a thermoplastic at elevated 

temperatures, allowing extrusion through a print nozzle which then solidifies after 

deposition by cooling. Upscaling of FFF technology has led to systems such as big area 

additive manufacturing (BAAM), that have demonstrated the capability to print large 

scale, high-performance components for a variety of applications [7, 8]. However, 

application obstacles such as thermally induced distortion and insufficient inter-layer 

adhesion [9], makes DIW more conducive to printing of hybrid architectures.   

Direct ink write (DIW) polymer AM utilizes the direct material deposition of 

viscoelastic thermoset feedstocks at ambient temperatures, that are latently cured after 

printing. High feedstock versatility allows fabrication of a broad range of materials such 

as polymers [10-12], ceramics [13-15], metals [16-18], and composites. Critical to the 

DIW process, ink formulations must exhibit certain favorable rheological properties such 

as shear thinning and viscoelastic behavior. Shear thinning permits ink extrusion through 

fine diameter nozzles under ambient conditions without requiring prohibitively high 

pressures. During deposition, inks must behave viscously to allow flow but once 

deposited, must behave elastically, possessing a high shear storage modulus, G’, and 

shear yield strength, τy, for shape retention [19]. 



5 

 

1.3 Direct Ink Write (DIW) Thermoset Feedstock Materials 

 Feedstocks have been specifically created for DIW by addition of rheological 

modifiers (nano-clay platelets), viscosifying agents, and reinforcement fillers such as 

silicon carbide whiskers [20, 21] , graphene [11], and short carbon fibers [19, 22, 23] into 

a thermoset epoxy matrix. Recent efforts to improve mechanical properties of printed 

materials have focused on the addition of fiber reinforcements, notably carbon fibers 

(CFs), that provide increased strength and stiffness but in turn, introduces challenges in 

printing such as increased viscosity and fiber clogging [8].  DIW CF reinforced 

composites have shown significant progress, exhibited by recent work in fabrication of 

lightweight cellular structures with high stiffness [19, 22], making it a fitting option for 

use as the main structural shell material in this work.  

For low-density applications, syntactic foams, consisting of hollow spheres 

dispersed in a binder phase, are utilized for their high specific and compressive strength. 

The hollow spheres, which are used to introduce void area, can vary in size from 

nanometer to millimeter and are commonly referred to as microballoons (MBs) when 

sub-millimeter in size. Although several types of MBs have been used, such as carbon 

MBs [24] and cenospheres (ceramic) [25], glass MBs (GMBs) in an epoxy matrix 

remains the predominant combination in research and applications [26]. Syntactic foams 

have been applied mainly in marine sectors for buoyancy and compressive strength, yet 

continued research has expanded application to core materials in sandwich structures and 

aerospace applications [27]. Although formulation is necessary to provide the needed 

rheological properties, utilization of a syntactic foam provides a route to introduce 
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engineered porosity during printing, especially during co-deposition with a CF reinforced 

composite, making it an ideal candidate for use as the core material in DIW printing. 

1.4 Core-shell Fabrication and DIW Printing 

 Fabrication of the core-shell architecture has been studied in extrusion processes 

such as electrospinning and polymer extrusion additive manufacturing to provide both 

functional and structural benefit.  On the nano scale, electrospinning provides a route to 

fabricate composite and hollow core-shell fibers with diameters in the nanometer range 

through utilization of coaxial nozzles. During spinning, C-S nanofibers are collected on a 

plate to produce a non-woven mat or spooled to create a continuous fiber. Nanofiber mats 

are of interest to applications such as filters (oil filters, molecular filters) and protective 

clothing while nanofibers themselves show potential in applications such as 

microelectronics (batteries, energy capture), optics, and biomedical components (drug 

delivery) [28-30].  While utilization of the C-S architecture in electrospun fibers has 

afforded improvement in nanomaterials, application of the C-S architecture on micro- and 

milli-meter size scales will also enable new advancements.   

 Implementation of the core-shell architecture via material extrusion additive 

manufacturing processes has been investigated in previous research through various 

approaches with different material systems. Core-shell bioprinting or 3D plotting, 

consisting of printed C-S filaments with diameters of a few hundred microns, has gained 

interest recently by enabling fabrication of novel tissue scaffolds and drug delivery 

vessels.  These processes utilize low viscosity feedstocks, mainly hydrogels, extruded out 

of concentric nozzles or microfluidic devices, to enable construction of components such 
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as hollow filament scaffolds that enable nutrient delivery through the core and C-S 

microfibers that can be loaded with drugs or other bioactive molecules to give tunable 

release profiles [31-33]. Even though these C-S components are advantageous to bio 

applications, low mechanical properties from biocompatible hydrogels limit application 

where structural integrity is needed. Providing the ability to print filaments ranging in 

diameter from a few hundred microns up to a few millimeters with filler reinforced inks, 

core-shell printing via DIW has been studied and shown successful in producing a variety 

of C-S architectures that afford improvement both functionally and structurally. Ceramics 

with a hollow core were fabricated by extruding a cast feedrod composed of a camphene 

core-camphene/alumina shell and then post treating with a drying, heating, and sintering 

process to remove the camphene and densify the alumina framework [34]. Carbon core 

and alumina shell filaments were printed in a truss structure utilizing a piston co-

extrusion unit to coextrude alumina and carbon aqueous colloidal gels [35].  Aiming to 

produce lightweight ceramic architectures with high specific stiffness, hollow C-S struts 

in a lattice structure were printed using a coaxial printhead where an aqueous particle-

stabilized foam ink was coextruded with a fugitive wax core [36]. Extending into 

functional applications, a fugitive viscoelastic hydrogel shell was utilized to encapsulate 

and support a liquid photocurable core to allow printing of optical waveguides with a 

custom coaxial printhead [37]. Finally, polymer multicore-shell filaments have been 

fabricated with a flexible epoxy core, elastomeric silicone interface, and brittle epoxy 

shell resulting in both high stiffness and toughness properties [38]. Despite 

advancements, there exist no examples to date of utilizing DIW to print fiber-reinforced 

C-S structures, leaving vast potential that has yet to be fully realized.  This work aims to 
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mimic the high-performance capability of core-shell architectures exemplified in natural 

materials such as, plant stems, animal quills, and bird feathers [39] through utilization of 

C-S DIW printing. Similar to sandwich panels, C-S composites are mechanically efficient 

hybrid structures that combine two materials in a specified geometry, configured such 

that a dense stiff material surrounds a lightweight foam core, to produce properties of 

high bending stiffness and resistance to buckling at a low weight [40]. This work reports 

efforts to further advance core-shell printing by developing a process to print C-S 

architected filaments, along with a new low-density syntactic foam feedstock that 

provides further improvement to C-S architectures and also enables printing of high- 

performance foams, and finally, a new method to utilize a C-S nozzle to fabricate 

multimaterial components.  

1.5 Research Outline 

 With the overarching goal of advancing DIW application space by fabricating and 

characterizing a syntactic foam core - CF reinforced shell architected composite and 

multimaterial composite via DIW, this work focuses on the following objectives: 

(i) Development of core-shell hardware and printing process: In order to study 

core-shell printed structures, it was necessary to engineer printing hardware, 

mainly a new custom, co-axial, co-deposition core-shell nozzle, and develop 

printing procedures. Epoxy based carbon fiber reinforced and glass micro-

balloon foam feedstocks are formulated, and their rheological properties 

characterized. Flexural tests are used to investigate specific stiffness and 

strength properties and an analytical model is developed to predict the 
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mechanical improvement afforded by the C-S architecture provides. This 

work on the development of core-shell printing is discussed in Chapter 2.  

(ii) Optimization of foam core processing: Syntactic foams are plagued by 

microballoon fracture, as seen during core-shell printing in Chapter 2, 

increasing the foam core density and decreasing the lightweight performance 

of the printed C-S samples. To achieve an optimal printed foam and fully 

leverage C-S application, investigation into relationships between flowrate, 

pressure in the nozzle, GMB loading, GMB type, and printed properties is 

discussed, along with development of high-performance monolithic foam 

components. Application of an improved foam in printed C-S components is 

also briefly examined. This work on investigation of syntactic foam 

processing is discussed in Chapter 3. 

(iii) Investigation of multimaterial printing utilizing the core-shell nozzle: The 

final objective builds upon the previous two by developing a C-S printing 

route to enable fabrication of multimaterial components.  The C-S nozzle 

provides the unique ability to transition between different compositions while 

maintaining a continuous filament, resulting in graded transition regions that 

are more robust compared to printing with two separate nozzles. This 

transition behavior, dependent upon material and nozzle type, and the 

measured flexural properties are investigated. This work on multimaterial 

printing utilizing the core-shell nozzle is discussed in Chapter 4.  
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2. CARBON FIBER AND SYNTACTIC FOAM HYBRID 

MATERIALS VIA CORE-SHELL MATERIAL EXTRUSION 

ADDITIVE MANUFACTURING 

 

 

  



11 

 

 This chapter was adapted from a published version [41] by Robert C. Pack, Stian 

K. Romberg, Aly A. Badran, Nadim S. Hmeidat, Trenton Yount, and Brett G. Compton: 

 

R. C. Pack, S. K. Romberg, A.A. Badran, N. S. Hmeidat, T. Yount, and B.G. Compton. 

“Carbon Fiber and Syntactic Foam Hybrid Materials via Core-Shell Material Extrusion 

Additive Manufacturing.” Advanced Materials Technologies, (2020).  

 

 Changes to the text include addition of the supplemental figures and tables to the 

main body text, relabeling of all figures and tables accordingly, and reorganization into 

distinct sections. R.C. Pack performed the ink formulation, core-shell printing, sample 

characterization, mechanical testing, and writing of the article. S.K. Romberg derived the 

analytical model and assisted with writing, A.A. Badran performed the X-ray computed 

tomography characterization, N.S. Hmeidat assisted with rheological measurements, T. 

Yount assisted in ink formulation, and B.G. Compton assisted with data analyzation and 

oversaw article writing.   

2.1 Abstract 

Biological materials often employ hybrid architectures, such as the core-shell 

motif present in porcupine quills and plant stems, to achieve unique specific properties 

and performance. Drawing inspiration from these natural materials, a new method to 

fabricate lightweight and stiff core-shell architected filaments is reported. Specifically, a 

core-shell printhead conducive to printing highly loaded fiber-filled inks, as well as a new 

low-density syntactic foam ink, are utilized to 3D-print core-shell architectures consisting 
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of a syntactic epoxy foam core surrounded by a stiff carbon fiber-reinforced epoxy 

composite shell. Effective printing of test specimens and structures with controlled 

geometry, composition, and architecture is demonstrated. The new foam ink exhibits 

density as low as 0.68 g cm-3 and core-shell structures exhibit up to 25% higher specific 

flexural stiffness (𝐸𝐸1 3⁄ 𝜌𝜌⁄ ) than either constituent alone. Finally, a new mechanical model 

is presented to predict this performance improvement while accounting for potential 

eccentricity of the core.  

2.2 Introduction 

 Many biological materials utilize hybrid structures, in which constituents with 

dissimilar mechanical or functional properties are cleverly arranged to produce improved 

specific properties, unique combinations of strength, stiffness, and toughness, and overall 

performance unattainable from a single material [42]. The core-shell (C-S) architecture is 

an excellent example of this approach manifest in nature by plant stems [42, 43], 

hedgehog spines [39, 44], and porcupine quills [45, 46], (Figure 2.1) which employ a 

low-density foam core surrounded by a dense, stiff outer shell. This approach results in a 

larger diameter structure when compared to an equivalent mass structure made of shell 

material alone [44], thereby enabling significantly higher bending stiffness and buckling 

resistance in the natural hybrid architecture, and enabling optimal structural and 

functional performance to the organism at minimal metabolic cost. 

Additive manufacturing, which offers novel capabilities absent in traditional 

manufacturing [3], enables fabrication of bioinspired architectures such as the C-S motif 

described above. In particular, direct ink writing (DIW), a type of material extrusion  
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Figure 2. 1.  North American porcupine quill cross-sections. Scale bar = 500 µm 



14 

 

additive manufacturing, allows precise patterning of viscoelastic feedstock materials at 

ambient temperatures to build structural and/or functional components in a layer-by-layer 

fashion [47]. A wide variety of feedstock inks have been formulated for DIW, allowing 

fabrication of a broad range of materials including polymers [10-12, 48], ceramics [13-

15], metals [16-18], and composites. For example, epoxy-based composite feedstocks 

reinforced with silicon carbide whiskers [20, 21, 49], nanoclay [10], graphene [11], and 

carbon fibers [12, 19, 23, 50] have been explored recently to improve strength and 

stiffness in printed materials. Further mechanical improvement can be realized by 

applying the C-S architecture to high stiffness carbon fiber (CF) inks coupled with low-

density foam inks for the shell and core materials, respectively.  

Implementation of the core-shell architecture via DIW has been investigated for 

both functional and structural applications with polymers and other material systems. For 

example,  Moon et al. fabricated hollow-core ceramics by extruding a fugitive camphene 

core surrounded by a camphene/alumina shell, followed by sintering to densify the 

alumina framework [34]. Fu et al. printed carbon core-alumina shell filaments in a truss 

structure utilizing a piston-driven co-extrusion unit with alumina- and carbon-filled 

aqueous colloidal gels [35].  For lightweight hierarchical ceramic architectures, Muth et 

al. printed hollow C-S struts using an aqueous particle-stabilized foam ink coextruded 

with a fugitive wax core [36]. Extending into functional applications, Lorang et al. 

utilized a fugitive viscoelastic hydrogel shell to encapsulate and support a liquid 

photocurable core to print optical waveguides [37]. Recently, Mueller et al. utilized a 3D-

printed core-shell printhead to create multicore-shell filaments with a flexible epoxy core, 

elastomeric silicone interface, and brittle epoxy shell. Lattice materials printed in this 
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motif showed considerable increase in energy absorption during crushing with minimal 

reduction in elastic stiffness [51]. This approach, when combined with high-performance 

carbon fiber-reinforced inks and low-density syntactic foam inks, could enable an entirely 

new class of ultra-low-density hybrid cellular materials with superior specific stiffness 

and buckling resistance combined with the potential to dramatically improve toughness 

[51] and damping [52] over traditional cellular materials. 

Here, we report for the first time a new core-shell printhead (Figure 2.2) 

specifically designed to print highly loaded, fiber-filled inks, as well as a new low-

density syntactic epoxy foam ink for use as a low-density core material in hybrid core-

shell architectures. Composite-foam C-S architectures exhibit up to 25% higher specific 

flexural stiffness (𝐸𝐸1 3⁄ 𝜌𝜌⁄ ) than either of the constituents alone, while the printable foam 

is ~40% less dense than existing printed polymers with comparable mechanical 

properties. 

2.3 Experimental Methods 

2.3.1 Epoxy-based Ink Formulation 

Inks were prepared by mixing Epon 826 epoxy resin (Momentive Specialty 

Chemicals, Inc. Columbus, OH) with 5 parts per hundred (pph) by weight resin 1-Ethyl-

3-methylimidazolium dicyanamide (BASF Basionics VS03, Sigma-Aldrich, Inc., St.  

Louis, MO), dimethyl methylphosphonate (DMMP, Sigma Aldrich, St. Louis, MO), 

nanoclay (Garamite 7305, BYK-Chemie GmbH, Wesel, Germany), and chopped, unsized 

carbon fibers (Dialead K223HE, Mitsubishi Plastics Inc, Tokyo, Japan) or glass 

microballoons (S32, 3M Materials, St. Paul, MN) using a planetary mixer (FlackTek, 
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Figure 2.2. Schematic cross-sectional view of the C-S nozzle. The nozzle enables co-
extrusion of a syntactic foam core and CF-reinforced shell. 
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 Inc., Landrum, SC). Ink constituents are shown in Table 2.1. For both inks, Epon 826, 

DMMP, and VS03 were added together and mixed for 1.5 minutes at 1500 rpm. All 

mixing stages were conducted under vacuum at 0.1 atm. Garamite was then added and 

mixed for 2 min at 1700 rpm. Next, carbon fibers or GMBs were added in ½, ¼, ¼, 

increments and mixed for 2 min at 1800 rpm between each addition. Finally, inks were 

remixed for 1.5 min at 1800 rpm prior to loading the syringe barrel. 

2.3.2 Core-shell Nozzle 

 The core-shell nozzle was fabricated from parts obtained from McMaster-Carr, 

Inc. The upper core hub was fabricated from a male-female hex thread adapter milled out 

to encase luer lock quick turn sockets that hold the straight core tip (2.54-cm length, 660-

µm ID). The shell injection hub consists of stainless-steel tubing (1.8-mm ID) inserted 

into a modified tube plug and secured with adhesive. Luer lock couplings were attached 

to the core and shell hubs for connection to pumps. 

2.3.3 Ink Rheology 

The rheological properties of each ink were characterized at ~22°C using a 

Discovery HR-2 Rheometer (TA Instruments, New Castle, DE) with 25-mm parallel 

plate geometry for both core and shell inks, and 40-mm parallel platens for the epoxy 

resin. A gap of 500 µm and 1 mm was used for the epoxy resin and core/shell inks, 

respectively. The apparent viscosity was characterized using continuous flow sweeps 

under controlled shear rate, and viscoelastic properties were measured using oscillatory 

amplitude sweeps at 1 Hz under stress control. Measurements were preceded by a 120- 
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Table 2.1 Core and shell ink constituents 

 

Ink 
constituent 

Carbon 
fiber ink 

(g) 

Carbon 
fiber ink 
(vol %) 

Glass micro-
balloon ink 

(g) 

Glass micro-
balloon ink 

(vol. %) 
Epoxy resin 
(Epon 826) 33 69.4 30 35.3 

Nanoclay 2.2 3.4 2 1.7 
DMMP 2.3 4.9 3 3.6 
Curing agent 1.7 3.9 1.5 1.9 
Carbon fibers 16.7 18.5 0 0 
Glass 
microballoons 0 0 13.5 57.5 
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second conditioning step at 0.01 s-1, followed by zero-stress equilibration for 120 

seconds. 

2.3.4 Direct Ink Write Printing  

Inks were loaded into 10 mL syringe barrels (Nordson EFD, Westlake, OH) and 

centrifuged at 3600 rpm for 3.5 minutes using a SorvallTM ST-8 Centrifuge 

(ThermoFisher Scientific, Waltham, MA) to degas. Syringe barrels were then loaded into 

high-pressure adapters (HP3, Nordson EFD, Westlake, OH), where ink is extruded 

pneumatically, that were mounted on the z-axis of the printer (Shoptbot Tools Inc., 

Durham, NC). For core-shell printing, pressure adapters were used to feed ink into 

volumetric dispensing pumps (Eco-pen, ViscoTec America Inc., Kennesaw, GA) 

connected to the C-S nozzle via luer lock couplings.  Single-layer flexural samples (35 

mm L x 12.75mm W x filament diameter H) and rectangular compression samples (13.5 

mm x 13.5 mm x 10-25mm) were printed on PTFE-coated aluminum substrates (Bytac, 

Saint-Gobain Performance Plastics, Worcester, MA), directed by G-code generated from 

scripts written in Scilab software (Scilab Enterprises, France). Tapered tips of 1.6-mm- 

and 1.2-mm-diameter are used for printing. To determine flowrate, the volume of ink 

extruded per unit of time was calculated using the tip inner diameter and print speed, and 

then the prescribed flowrate was set to match in a 1:1 ratio.  Printed samples were cured 

at 100°C for 24 hours followed by 2 hours at 220°C. 

2.3.5 Printed Sample Characterization 

Density measurements on cured samples utilized Archimedes method and sample 

dimensions were measured with digital calipers. Optical micrographs were taken using a 
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VHX-5000 digital microscope (Keyence Corporation of America, Itasca, IL) and 

scanning electron micrographs were taken using a Phenom Desktop SEM (Nanoscience 

Instruments, Inc, Phoenix, AZ). Core volumes were determined using the rule of mixtures 

and the measured density of printed monolithic samples. Measurements were verified by 

area analysis on optical micrographs. Eccentricity measurements were conducted on 

micrographs utilizing ImageJ software [53]. Three-point flexural tests were conducted at 

ambient temperature on as-printed samples with an electromechanical load frame (Model 

45, MTS Systems Corporation, Eden Prairie, MN, USA) using a 1 KN load cell, span of 

25 mm, and a crosshead speed of 0.01 mm s-1. Compression testing was performed on the 

MTS utilizing spherically seated platens, a 100 KN load cell, and a crosshead speed of 

0.01 mm s-1.  Reported average properties consist of 5 samples.  

The 3D X-ray microscopy was conducted using a Zeiss Xradia 520 Versa CT 

microscope (Zeiss, Pleasanton, CA USA) at the University of Colorado, Boulder 

Materials Instrumentation and Multimodal Imaging Core Facility. Samples were scanned 

with no source filter at 50keV voltage, 4W power, 2.5-s exposure time for each 1600 

projection on a 4x objective lens (total scan time=2.5 h), and a pixel binning mode of 2. 

Reconstruction utilized a Filtered Back Projection algorithm to generate 995 cross-

sectional images, with a resolution of 1.6 µm per voxel. Image processing and 

visualization was conducted using Dragonfly software (Object Research Systems, 

Montreal, Canada). 
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2.4 Results and Discussion 

2.4.1 Ink Formulation 

 Epoxy-based inks were formulated following previous approaches for fiber 

reinforced inks [12, 19].  An epoxy resin (Epon 826), latent curing agent, diluent, 

nanoclay, and carbon fibers (CFs) (18% by volume, 6 mm initial length) were utilized. 

While nanoclay has been shown to increase the strength and stiffness of printed epoxy 

composites [10, 49], it primarily serves as the rheological modifier, imparting the shear 

thinning and yield stress behavior required for DIW printing. Additionally, a diluent 

reduces initial viscosity in the epoxy resin allowing higher solids loading and a latent 

curing agent provides an extended printing window [19]. To provide compatibility during 

co-deposition and eliminate curing complications between dissimilar materials, identical 

matrix constituents were used to develop a new printable syntactic foam ink filled with 

glass microballoons (GMBs) (S32, 58% by volume, 20-80 𝜇𝜇m diameter). Aiming to 

achieve the stiffest shell and lowest density core possible utilizing the chosen ink 

constituents, both shell and core inks were formulated (Table 2.1) to attain the highest 

practical volume loading of CF or GMB while still resulting in consistent extrusion and 

printing. 18 vol.% CF loading in epoxy is comparable to, or higher than most examples of 

3D-printed epoxy composites in the literature [12, 19, 49, 50, 54, 55], with the notable 

exception of Nawafleh and Celik [56], who achieved up to 46 vol% CF in printed epoxy 

composites by utilizing a novel vibration-assisted print head. 
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2.4.2 Core-shell Printhead Development and Printing 

Various C-S nozzle designs have been described in existing literature, yet most 

possess specific disadvantages for fiber-filled inks, including: i.) complex flow paths 

prone to clogging when fibers are present, ii.) integral construction preventing facile 

disassembly and cleanout in the event of clogging, and iii.) a fixed outlet diameter 

reducing the design flexibility and printhead versatility. Addressing these challenges, our 

printhead utilizes a modular C-S design consisting of an upper core housing attached to a 

shell injection hub (Figure 2.3) with straight core and tapered shell nozzles attached to 

the hubs via Leur lock fittings.  Key design features include a recessed Luer lock core 

nozzle, creating a co-flow region that enables continuous variation of core-to-shell ratio, 

as demonstrated by Mueller et al. [51], and a replaceable Leur lock shell nozzle that 

enables printing of different filament diameters without the need for major hardware 

change (Figure 2.4a). Initial test prints with silicone display the ability to easily prescribe 

both core fraction and filament diameter (Figure 2.4a), as well as fabricate sparse lattice 

structures that can benefit from the C-S architecture (Figure 2.4b). 

2.4.3 Rheological Characterization 

Rheological behavior (Figure 2.5) reveals both inks display prominent shear 

thinning and similar viscosities of ~103 Pa∙s at a 1 s-1 shear rate.  

This behavior is advantageous, because similar viscosities decrease the likelihood 

of core movement during co-flow and increase probability of the core remaining centered 

and encapsulated [57-59]. Core and shell inks exhibit a high plateau storage modulus 
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Figure 2.3. Optical image of C-S nozzle components.  Moving left to right, a recessed 
core nozzle and co-flow region, complete nozzle assembly, and modular breakdown 

is displayed.  

Figure 2.4. Initial core-shell prints with silicone. a) Cross-sectional images of printed 
silicone core-shell filaments demonstrating the ability to change core volume 

fraction and filament diameter. b) Cross-sectional view of a printed silicone C-S 
lattice structure. All scale bars = 500 µm 
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Figure 2.5 Rheological behavior of formulated inks. Log-log plots of (a) apparent 
viscosity vs shear rate and (b) storage and loss moduli vs oscillatory shear stress for 

neat epoxy and epoxy-based foam (core) and CF composite (shell) inks 
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(G’ ~2 x 105 Pa) and shear yield stress (τγ, ~2x102 Pa) enabling them to maintain shape 

during printing and curing steps (24 hrs at 100℃). 

2.4.4 Initial Foam Mechanical Properties 

At first, the mechanical properties of the newly formulated syntactic foam were 

quantified by printing single layer flexural bars, compression blocks (Figure 2.6a), and 

honeycombs (Figure 2.6b), where extrusion was accomplished utilizing pneumatic 

pumps. The printed foam displayed a low density of 0.68 g cm-3, matching the theoretical 

density, based on the density and volume fraction of constituents. Three-point flexure 

specimens exhibited a flexural modulus (Eflex) of 2.8 GPa and flexural strength of 36 

MPa. In compression, a modulus of 3.4 GPa and strength of 71.3 MPa were observed, 

comparable to conventional syntactic foams of similar density [27, 60].  

2.4.5 Characterization of Printed Core-shell Structure 

To investigate fabrication of the core-shell architecture, single layer C-S samples 

(Figure 2.7a) were initially printed with a large 1.6-mm-diameter shell nozzle to 

decrease probability of clogging, subsequently followed by use of a smaller 1.2-mm-

diameter nozzle for printing of finer features. Here, printing utilized continuous cavity 

volumetric pumps to control flowrate and vary the core volume fractions (𝑉𝑉𝑓𝑓) . To 

demonstrate printing of more complex structures, C-S triangular honeycombs were also 

fabricated (Figure 2.7b). Optical microscopy of the surface of printed structures (Figure 

2.7c), along with x-ray computed tomography (xCT) renderings (Figure 2.7d) reveal 

carbon fibers 200-400 µm in length, strongly aligned with the print direction along with 

GMBs forming the foam core. Optical micrographs of single-layer cross-sections 
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Figure 2.6. Syntactic foam printing. a) Syntactic foam compression testing of 
nominally 15 mm (W) x 15 mm (T) x 20 mm (H) blocks printed utilizing air 

pressure for extrusion. b) Printed triangular honeycomb foam sample (40 mm (W) 
x 20 mm (T) x 20 mm (H)). 
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Figure 2.7. Printed C-S specimens. a) Single layer CF composite, C-S, and foam 
flexural samples. b) C-S printing of a lightweight triangular honeycomb structure. 

c) Micrographs of the top filament surface showing aligned CFs (100-400 µm 
length) and dispersed GMBs (20-80 µm diameter) in printed filaments. [Scale bar = 

200 µm] d) X-ray CT 3D renderings of printed C-S samples.  e) Cross-sectional 
micrographs of 1.2 mm C-S flexure samples. [Scale bar = 1 mm] 
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 (Figure 2.7e) show successful fabrication of C-S structured filaments with no apparent 

printing induced porosity and minimal defects in the 1.2-mm samples. In contrast, 1.6-

mm samples show notable eccentricity (Figure 2.8), defined as the distance from the 

center of the core to the center of the sample, along with irregular core geometry and 

insufficient filament overlap. Samples comprised of 100% CF composite (𝑉𝑉𝑓𝑓 = 0) 

exhibited a density of 1.41 g cm-3 while the 100% foam samples (𝑉𝑉𝑓𝑓 =1) displayed 

densities of 0.87 g cm-3 when using a 1.6-mm-diameter nozzle, and 0.84 g cm-3 when 

using a 1.2-mm-diameter nozzle, notably higher than previous samples printed using only 

air pressure to drive extrusion.  The higher density and discrepancy between prescribed 

and printed core volume fraction (Figure 2.9a) are attributed to fracture of GMBs during 

the pumping process. Interactions between GMBs within the ink, and between GMBs and 

the rotor and stator of the continuous cavity pump led to high pressure and shear stresses 

that can cause GMBs to rupture. Fracturing of GMBs, particularly larger, weaker ones, 

leads to increased density in the extruded ink and lower core volume than prescribed. 

Printing filaments with higher core volume fractions requires higher core flowrates, 

which, in turn, increases pressure and shear stresses in the pumps, leading to higher rates 

of GMB attrition. This phenomenon can be seen in the comparison between the 

prescribed flow rate and the measured core volume fraction (Figure 2.9b). A direct 

relation is apparent, with the largest difference arising at the highest flowrate (1200 𝜇𝜇L 

min-1, 1.6-mm-nozzle). Volumetric pumps provide the necessary control over flowrate 

and filament composition (𝑉𝑉𝑓𝑓) but further investigation into optimal composition and 

print parameters is needed to minimize rupture of GMBs and obtain lower as-printed 

density.  
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Figure 2.9. Printed versus prescribed core volume and relationship with flowrate. a) 
Comparison between the measured printed core volume and the prescribed core 

volume during printing. b) The difference in prescribed and printed core volumes 
increases with increasing core flowrate due to increased attrition of the GMBs and 

resulting increase in density. 

Figure 2.8. Core-shell cross-sections and core eccentricity. a) Cross-sections of 1.6-
mm samples show existence of print defects from insufficient filament overlap and 

flowrate, attributed to GMB fracture at the high required flowrates. b). Core 
eccentricity, e, and sandwich idealization schematic (bottom) of the C-S samples 

used for the model. 
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To further investigate printed C-S structure, xCT scans (Figure 2.10) and optical 

microscopy were conducted on the 1.2-mm samples with a 𝑉𝑉𝑓𝑓 of 0.65. End-on images 

(Figure 2.10a) reveal the GMB-filled foam core, comprised of GMBs with diameters up 

to ~60 µm, surrounded by highly aligned CFs in the shell, indicated by near circular fiber 

cross-sections. CFs align during extrusion, producing an advantageous increase in 

stiffness along the print direction [61-63]. An orthogonal view (Figure 2.10b) further 

reveals the high degree of CF alignment in the shell.  

The core-shell interface is pore-free and distinct (Figure 2.10c), with a few small 

regions where GMBs and CFs are mixed, seen in Figure 2.10a, and small regions where 

adjacent cores bridge one another (Figure 2.10c). Crescent-shaped glass remnants are 

visible in the core (Figure 2.10d), supporting the hypothesis that some GMBs rupture in 

transit through the pumps. 

2.4.6 Flexural Testing of Core-shell Samples 

To quantify the potential mechanical benefits of the C-S architecture, single-layer 

samples were tested under three-point bending. Flexural modulus (Eflex) and strength are 

plotted against density in Figure 2.11a and 2.11b, including a baseline data set 

comprising the core and shell materials simply mixed together at prescribed volume 

fractions. Measured properties are summarized in Table 2.2. Samples comprised of 100% 

CF composite display the highest mechanical properties, with the samples printed using 

1.6-mm-diameter nozzle exhibiting the largest average Eflex of 23 GPa with a density of 

1.41 g cm-3. A noteworthy phenomenon was observed in the 1.2-mm samples, where 

introduction of a foam core up to 0.41 𝑉𝑉𝑓𝑓, produced statistically similar Eflex values  
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Figure 2.10. X-ray CT micrographs.  a) end-on, b) side-on, c) and top-down views. 
C-S filament architecture consists of a highly aligned CFs in the shell surrounding 
the syntactic GMB foam core. d) Hemispherical glass fragments indicate fractured 

GMBs. All Scale bars = 100 µm. 
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Figure 2.11. Mechanical properties and analytical model predictions. a) Flexural 
modulus vs density measurements with material design guidelines. b) Flexural 

strength vs density measurements with material design guidelines. 
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1.2-mm-diameter tapered nozzle 

Core 
vol. % 

Core 
flowrate 
(µl.min-

1) 

Eflex 
(GPa

) 

Flexural 
Strength

, σ 
(MPa) 

Density 
(g.cm-3) 

Eflex 1/3 / 𝝆𝝆 
(GPa1/3g-

1cm3) 

Standard 
deviation Average 𝒆𝒆� 

0 0 20.72 110.46 1.41 1.94 0.04 - 
33 312 21.82 105.71 1.23 2.28 0.04 0.29 
41 402 21.55 104.65 1.18 2.37 0.02 0.31 
50 491 19.24 93.43 1.13 2.38 0.04 0.35 
56 580 17.37 92.11 1.09 2.38 0.07 0.33 
69 670 11.67 72.49 1.02 2.22 0.17 0.39 

100 690 4.81 56.66 0.84 2.01 0.04 - 

1.6-mm-diameter tapered nozzle 

0 0 23.29 108.97 1.41 2.02 0.15 - 
37 706 19.32 91.34 1.21 2.22 0.10 0.46 
44 863 18.45 87.07 1.17 2.25 0.06 0.42 
53 1020 15.46 82.99 1.13 2.21 0.15 0.42 
54 1177 14.28 79.91 1.12 2.16 0.03 0.35 

100 1045 4.44 59.76 0.87 1.88 0.04 - 

Mixed samples (1.2-mm-diameter tapered nozzle) 

0 - - - 1.41 - - - 
29 - 18.46 89.95 1.22 2.16 0.06 - 
40 - 16.02 83.79 1.15 2.19 0.08 - 
47 - 14.37 74.96 1.10 2.21 0.05 - 
63 - 11.39 65.33 1.00 2.25 0.04 - 
84 - 6.35 55.84 0.86 2.15 0.06 - 
1 - - - 0.75 - - - 

Table 2.2. Core flowrate, mechanical properties, density, and average normalized 
eccentricity for printed samples 
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(21.8±1.1 and 21.5±0.5 GPa) compared to the monolithic CF composite (20.7±1.4 GPa), 

while reducing the density by 16% from 1.41 g cm-3 to 1.18 g cm-3. We hypothesize that 

the presence of the foam core in the co-flow region increases the fiber alignment in the 

shell compared to printing the composite material alone. The resulting increased stiffness 

offsets the loss of CF composite in the core and results higher flexural moduli. Support 

for this hypothesis will be discussed with the mechanics model shortly. Foam samples 

displayed the lowest average Eflex of 4.8 and 4.4 GPa at 0.84 and 0.87 g cm-3 for samples 

printed with the 1.2- and 1.6-mm nozzles, respectively. The CF composite displayed the 

highest average flexural strength, 𝜎𝜎flex, of 110 MPa, whereas the foam showed the lowest 

at ~60 MPa.  

The C-S samples printed with the 1.2-mm-diameter nozzle exhibit superior 

strength throughout the density range, with approximately 25% higher flexural strength 

than the mixed baseline samples (Figure 2.12). This may be attributed to the C-S 

architecture positioning the higher-strength CF composite furthest from the neutral axis 

of bending, where it is used most efficiently.  

Investigation into polished cross-sections (Figure 2.13a-b) and the flexural 

fracture surfaces (Figure 2.13c-f) supports evidence of a strong, pore free interface 

between the core and shell region, showing no distinctive interface line, other than 

indicated by different filler material (CF or GMB) in the optical and SEM micrographs 

(Figure 2.13b-d). The shell fracture surfaces (Figure S4e) reveal a weak bond between 

matrix and CF, indicated by minute fracture induced voids around the fibers and fiber 

pullout. However, fractured CF’s indicate the load was adequately transferred from the 

matrix, enabling the fibers to provide effective reinforcement. In comparison, the core  
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Figure 2.12. Mixed sample micrographs. a) and b) Optical micrographs of cross-
section of mixed sample and c) filament surface. 

Figure 2.13. Optical and scanning electron microscopy of 1.2-mm-diameter core-
shell samples. a) and b) Optical micrographs of polished core-shell cross-sections c) 

Optical micrograph of fracture surface. d-f) SEM micrographs showing flexural 
fracture surfaces. d) and e) Carbon fiber pullout and f) micro balloon failure is 

visible. 
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fracture surface (Figure S4f) reveals a stronger bond between GMB and epoxy matrix, 

indicated by absence of fracture induced voids around the GMB and minimal GMB 

pullout. Failure in the core region is seen to occur mainly by GMB fracture. In both 

regions, matrix deformation is prominently seen.   

2.4.7 Selection of Material Index and Comparison 

 Structural members that seek to maximize elastic stiffness with minimal weight 

can be evaluated and compared using three different figures of merit. For those loaded 

axially, the specific stiffness (E/ρ) is the appropriate material index, while for beams with 

fixed span and cross-sectional shape, but variable size, the relevant performance metric is 

E1/2/ρ, and for panels in flexure with fixed span and depth but variable thickness, as well 

as panels subject to elastic buckling, E1/3/ρ is the relevant metric. Included in Figure 

2.11a and 2.11b are these design guidelines for lightweight axial members (E/ρ and σ/ρ), 

beams (E1/2/ρ and σ2/3/ρ), and panels (E1/3/ρ and σ1/2/ρ) [64]. Based on these material 

indices, we can see that our core-shell hybrids outperform the base constituents for all 

weight sensitive applications. However, in the context of 3D printing, our primary goal is 

to enable low-density cellular structures with enhanced mechanical properties. In this 

case, the cell walls are best approximated as panels, and E1/3/ρ is the most meaningful 

material index for comparison. In Figure 2.14a, modulus data is plotted using the 

material index for a lightweight, stiff panel (E1/3/ρ) as a function of 𝑉𝑉𝑓𝑓. 1.2-mm samples 

are superior in comparison to other tested samples, exhibiting up to a 25% increase in 

performance over that of either constituent alone, solely due to the C-S architecture. As 

𝑉𝑉𝑓𝑓 increases up to ~0.6, 𝐸𝐸1 3⁄ 𝜌𝜌⁄  also increases, reaching a maximum average value of  
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(a) 

(b) 

Figure 2.14. Material indices and core eccentricity. a) 𝑬𝑬𝟏𝟏 𝟑𝟑⁄ 𝝆𝝆⁄  vs. measured core 
volume fraction. Solid lines are model predictions for various levels of eccentricity. 
The long-dashed line represents the rule-of-mixtures prediction for homogenously 
mixed constituents, and the short-dashed line represents the model prediction for a 
shell with flexural modulus of 25 GPa. d) Eccentricity measurements. Data points 

labeled (i), (ii), and (iii) are indicated in both c) and d) showing that higher 
eccentricity correlates with lower performance 
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2.38 GPa1/3g-1cm3 and a maximum single measured value of 2.47 GPa1/3g-1cm3, for the 

1.2-mm samples. A similar trend is observed for both the 1.6-mm C-S samples and the 

mixed baseline samples, albeit at lower performance values. 

2.4.8 Core Eccentricity Measurements and Model Analysis 

Defining normalized eccentricity, �̅�𝑒, as the average distance from the center of the 

core to the center of the filament, normalized by the theoretical thickness of the shell, 

enables quantification of the mechanical impact of core eccentricity. Measurements 

(Figure 2.14b) indicate greater eccentricity in the 1.6-mm samples than in the 1.2-mm 

samples, qualitatively seen by comparing cross-sections from Figure 2.7e and Figure 

2.8a. Although the scatter in data is significant, inspection of corresponding data points in 

Figure 4c and 4d supports the hypothesis that �̅�𝑒 is an indicator of mechanical 

performance: point (i) exhibits the smallest �̅�𝑒 =0.3 and corresponds to the highest 

performance index (2.36 GPa1/3g-1cm3) while point (iii) exhibits the largest �̅�𝑒 =0.5 and 

corresponds to the lowest performance index (1.99 GPa1/3g-1cm3). This behavior holds 

true for most printed samples, but clearly a more in-depth study of this complex 

phenomenon is warranted.  

To estimate effects of �̅�𝑒 on performance, a model is proposed that considers the 

printed specimens as a sandwich structure (Figure 2.8b). Model derivation is reported in 

the Appendix section “Eccentric sandwich composite model”.  The model follows the 

derivation of the effective modulus of composites in bending [65] and results in the 

following expression: 

𝐸𝐸𝑓𝑓,𝑒𝑒𝑓𝑓𝑓𝑓 = 𝛼𝛼[𝐸𝐸𝑠𝑠 + (𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑠𝑠)𝑉𝑉𝑓𝑓2] (Eq.2.1) 
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where 𝐸𝐸𝑐𝑐 is the flexural modulus of the foam core, 𝐸𝐸𝑠𝑠 is the flexural modulus of the 

composite shell, and 𝛼𝛼 is the knockdown factor for eccentricity, which is a function of �̅�𝑒, 

𝐸𝐸𝑐𝑐, 𝐸𝐸𝑠𝑠, and 𝑉𝑉𝑓𝑓 (S1.35). Using the average properties from the monolithic samples printed 

with the 1.2-mm nozzle to define 𝐸𝐸𝑐𝑐, 𝜌𝜌𝑐𝑐, 𝐸𝐸𝑠𝑠, and 𝜌𝜌𝑠𝑠, model predictions are plotted in 

Figure 2.14a for varying levels of eccentricity.  

The mechanical model predicts the correct trends, but lower performance than is 

actually observed. However, comparing fiber alignment in the C-S (Figure 2.7 c and d, 

and 2.10 a-d) and CF composites (Figure 2.15) suggests that the average fiber 

orientation may be higher in the C-S samples than in the monolithic CF samples that 

were used as input to the model. This hypothesis is consistent with the fact that extrusion 

processes generally result in higher orientation of fibers, whiskers, or polymer chains 

near the wall of an extrusion die or nozzle than in the middle of the flow[66-70]. This 

feature has been observed experimentally in thermoplastic/CF printed composites [67, 

69] and extruded glass fiber-reinforced polypropylene [66], and has been predicted 

numerically for both small and large deposition nozzles [68, 70]. In our specific case, we 

have the added fact that the presence of the core nozzle in center of the flow path further 

disrupts fiber orientation as the material flows around the core nozzle to fill the void 

space that the core material would normally occupy. When the core is present, a higher 

proportion of the shell material experiences higher shear rate and shear stress near the 

wall, potentially leading to higher average orientation of fibers when printing C-S 

samples.  In fact, using a shell modulus of 25 GPa results in better matching between 

model predictions and experimental data (Figure 2.14a). This suggests a potential  
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Figure 2.15. X-ray CT tomographs of CF samples. a) end-on and b) side-on views of 
CF composite samples. c) 3D rendering of CF composite. 
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synergistic effect: C-S printing more efficiently utilizes each constituent and improves 

the absolute properties of the shell composite. 

2.5 Conclusion 

In summary, we have demonstrated a method to 3D-print lightweight architected 

filaments, consisting of a new syntactic foam ink surrounded by a stiff carbon fiber-

reinforced shell, that exhibit superior mechanical properties. Our modular coaxial nozzle 

has the capability to print highly loaded, fiber-reinforced epoxy feedstocks to effectively 

fabricate components with controlled geometry, composition, and architecture. A new 

mechanics model successfully predicts mechanical properties of the C-S architecture and 

accounts for potential eccentricity of the core. This approach can be readily applied to 

complex geometries, such as cellular structures, to produce structural components that 

extend the combined boundaries of low-density and high mechanical performance.  
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3. 3D PRINTING OF GLASS MICROBALLOON SYNTACTIC 

FOAMS VIA MATERIAL EXTRUSION ADDITIVE 

MANUFACTURING 
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3.1 Abstract 

 Syntactic foams exhibit high specific properties and are widely utilized in weight 

sensitive structural applications. Syntactic foams are amendable to fabrication via direct 

ink write (DIW) additive manufacturing (AM), by incorporation of glass microballoons 

(GMB) into an epoxy feedstock ink. AM of syntactic foams offers benefits over 

conventional routes, such as increased design flexibility, and the ability to print foam 

hybrid materials. However, GMBs are prone to failure during extrusion, as shown 

previously in Chapter 2, and result in a detrimental increase in density. In this work, the 

relation between GMB loading, extrusion pressure, nozzle diameter, and flowrate on 

printed density are investigated to understand the conditions leading to GMB failure and 

optimize those process parameters. GMB failure was determined to predominantly occur 

during extrusion through the volumetric pumps, but noticeable density increase, 

especially at high flowrates, indicates GMB failure also occurs in the nozzle tip. 

Parameter optimization led to noticeable improvement; however, a new ink was 

formulated with GMBs (S32HS) that exhibit a lower average diameter and higher crush 

strength, which ultimately enabled printing of foams without prominent GMB failure. 

S32HS foam samples displayed a near theoretical printed density (0.69 g/cc) with a high 

compressive modulus (4.94 GPa) and strength (100 MPa). Implementation of the higher 

strength GMBs into the C-S architecture enabled further improvement, with a 5% 

increase over previous material index values (E1/3/ρ) of the C-S hybrid. Successful 

development and printing of a new S32HS foam shows potential for application in high-

performance, lightweight structures.  
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3.2 Introduction 

 Polymer foams, materials which have engineered voids or porosity, have attracted 

attention for their low density and high specific properties. Multiple types of foams exist, 

ranging from conventional single-phase foams made by expanding a single polymer, to 

composite foams, constituted of a polymer foam with additional solid phases such as 

particles or fibers. This study focuses on polymer syntactic foams (SFs) , a special type of 

particle reinforced, closed cell, composite foam consisting of hollow spheres dispersed in 

a polymer matrix [26]. These hollow spheres can range in size from nanometers to a few 

millimeters in diameter and can be made from a variety of materials such as glass [71, 

72], carbon [24, 73], or ceramic (cenospheres) [25, 74]. While various options are 

available for matrix polymer and microsphere material, glass microballoons (GMBs) (20-

200 µm diameter) are the most prevalent SF constituent. GMBs are advantageous for use 

in structural applications due to displaying a spherical morphology, less defects and 

irregularities, greater control over microsphere size, better predictability in properties, 

and overall higher quality when compared to other microballoons [72, 73, 75]. Due to 

their closed-cell nature, low density, high buoyancy, low coefficient of thermal 

expansion, and high specific properties, SFs have found wide use in marine, automotive, 

and aerospace sectors. Examples include use in buoys, rudders and bodies of submarines, 

construction of deep sea exploration vehicles, hollow areas in aircraft, propeller fillers, 

wing-mounted antennae, and the core in sandwich panel structures [27, 75].   

 Syntactic foams are commonly fabricated through conventional processing 

methods of injection and compression molding, which imposes constraints on design 

freedom and requires expensive tooling in order to fabricate complex parts [25, 72, 75]. 
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Alternatively, material extrusion additive manufacturing (AM), a process in which 

components are constructed in a layer-by-layer fashion via direct material deposition, 

allows fabrication of custom, tailored, complex geometries that would be otherwise be 

costly or unattainable through conventional routes. AM of polymer SFs is still in its 

infancy but recent work utilizing fused filament fabrication (FFF) has demonstrated the 

feasibility of utilizing material extrusion AM processes. For example,  Bharath et al. 

blended up to 60 volume percent (vol.%) GMBs into a high density polyethylene (HDPE) 

thermoplastic matrix to produce a lightweight foam feedstock material which enabled 

printing via FFF [75]. Similarly, Singh et al. utilized 40 vol % GMBs in HDPE to print 

three-phase foams, consisting of a microstructure with matrix, GMBs, and air voids [76]. 

Utilizing fly ash cenospheres (up to 60 vol. %) instead of GMBs in an HDPE matrix, 

Patil et al. also successfully printed a three-phase foam geared toward lightweight 

buoyant structures [77]. While these works have produced quality foam parts, they 

experience challenges such as component warpage from heating and cooling steps, 

insufficient adherence to the substrate, weak adhesion between layers, large porosity 

between layers and filaments, and a high degree of difficulty in manufacturing quality SF 

filaments that are inherent to the FFF process [75, 76, 78, 79]. To overcome these 

limitations, we utilize direct ink write (DIW), another type of material extrusion additive 

manufacturing which consists of the direct deposition of viscoelastic thermoset feedstock 

materials (inks) at ambient temperatures. DIW is conducive to SF printing, eliminating 

the need for filament feedstock and thermal cycles during printing, and employing a post 

print thermal cure which provides thorough crosslinking and adhesion between layers. In 

Chapter 2, the significant potential of DIW printing of SFs was demonstrated by 



46 

 

successfully formulating a new GMB SF ink that was used to print complex foam 

structures in addition to being utilized as a low-density core material in hybrid core-shell 

architectures printed via DIW which exhibited superior specific properties [41].  

Although research on DIW printing of SFs is scarce, Nawafleh et. al followed a similar 

approach by using epoxy/GMB inks to print SF samples that displayed high specific 

properties but also exhibited higher printed densities than theoretical, indicating the 

occurrence of detrimental GMB fracture [80].    

 In order to optimize the performance of DIW printed, lightweight foam structures, 

as well as maximize the benefit of the C-S architecture, it is crucial to obtain a low 

density in the final printed foam. Density reduction through GMB incorporation is 

dictated by two factors: i) the volume fraction of GMBs in the feedstock ink and ii) the 

number of intact GMBs after printing [72].  Following the ink formulation presented in 

Chapter 2, the maximum limit of GMB volume fraction which still allowed consistent 

printing was determined and set at 58 vol.%, comparable to loadings (~ 60 vol.%) 

attained in FFF [75] and DIW feedstocks [80]. However, prominent GMB fracture 

occurred during extrusion, resulting in a detrimental density increase. Thus, this work 

addresses the need to investigate and optimize print parameters, mainly nozzle size and 

flowrate, in order to minimize GMB failure, decrease printed foam density, and largely 

advance development of printed lightweight foam structures.  

 In this study, two types of GMBs (S32 and S32HS) of the same density are 

incorporated in foam inks at volume loadings of 45, 50, and 58 percent and printed with 

three different nozzle diameters. Pressure measurements are taken with a pressure sensor 

placed between the pump exit and nozzle tip at varied flowrates (200-1400 µL min-1) and 
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compared with printed density. Decreased density is achieved utilizing S32HS GMBs and 

subsequently used to print flexural bars, compression blocks, and honeycomb samples for 

mechanical testing. Finally, flexural core-shell samples are printed with the new S32HS 

ink, exhibiting up to a 5% increase in specific flexural stiffness (E1/3/ρ) over values 

reported in previous C-S work [41].  

3.3 Materials and Methods 

3.3.1 Epoxy-based Syntactic Foam Ink and Glass Microballoons 

 Epoxy-based syntactic foam inks were prepared following the same formulation 

and mixing protocols presented in previous work (Chapter 2). Identical constituents 

(Table 2.2) of Epon 826 epoxy resin, VSO3 latent curing agent, DMMP diluent, and 

nanoclay rheological modifier were used. Two types of commercially available GMBs, 

S32 and S32HS (3M Materials, St. Paul, MN), were utilized as fillers.  These GMBs 

exhibit matching morphology and composition, consisting of hollow spheres with thin 

walls made of soda-lime-borosilicate glass, and densities of 0.32 g cc-1. They differ in 

strength, with S32HS exhibiting triple the crush strength (6,000 psi, 41.4 MPa) compared 

to S32 GMBs (2,000 psi, 13.8 MPa). The difference in strength is driven by the diameter 

of the particles, where S32HS and S32 GMBs display 25 µm and 40 µm average particle 

diameters, respectively. Physical properties of GMBs reported by the manufacturer are 

displayed in Table 3.1 [81-83]. Scanning electron micrographs of GMBs in Figure 3.1 

reveal spherical morphology and a noticeable size difference. Ink constituents were kept 

at constant proportions with respect to the epoxy matrix, while GMB loading was varied 

to produce inks with 45 vol.%, 50 vol.%, and 58 vol.% S32 GMBs, hereby referred to as 
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Property S32 S32HS  
Composition  Soda-lime-borosilicate glass 
Shape Hollow spheres with thin walls 
True density (g/cc) 0.32 0.32 
Crush strength (MPa) 13.8  (80% 

survival) 
41.4  (90% 

survival) 

Particle 
Size 

Distribution  
(µm) 

10th% 20 -- 
50th% 

(average) 40 25 

90th% 70 -- 
Top size 
(95th%) 80 47 

Figure 3.1. Scanning electron micrographs of GMBs. a) S32 and b) S32HS glass 
microballoons.  A spherical morphology is seen with S32 GMBs displaying larger 

diameters, up to 80 µm. 

Table 3.1. Glass microballoon properties 
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 S32-45, S32-50, and S32-58, respectively, and an additional ink with 58 vol.% S32HS 

GMBs (S32HS-58). All mixing was conducted using a planetary mixer under vacuum at 

0.1 atm following the procedures outlined in Chapter 2.   

3.3.2 Parallel Plate Rheology 

 The rheological properties of the inks were measured under laboratory ambient 

temperature (~21 °C) using a Discovery HR-2 Rheometer (TA Instruments, New Castle, 

DE) with a 25 mm parallel plate geometry and a gap distance of 1 mm for all foam-based 

inks. The apparent viscosity was characterized using continuous flow sweeps, carried out 

at controlled shear rates (from 0.01 up to 50 s-1), and the viscoelastic properties were 

measured using oscillatory sweeps conducted at a frequency of 1 Hz under controlled 

shear stresses (from 10 up to 5000 Pa). All measurements were preceded by a 120 

seconds conditioning step at a constant shear rate of 0.01 s-1, followed by an equilibration 

period for 120 seconds to allow the ink structure to recover. 

3.3.3 Direct Ink Write Platform, Extrusion Pressure Measurements, and Sample 

Printing  

 After mixing, inks were loaded into 10 ml syringe barrels and centrifuged for 3.5 

min at 3600 rpm to remove entrapped air. Syringes were then loaded into pneumatic 

pressure adapters (HP3, Nordson EFD, Westlake, OH) to feed ink into volumetric 

dispensing pumps (Eco-pen, ViscoTec America Inc., Kennesaw, GA) utilized for 

extrusion. Pumps are mounted on the Z-axis of a custom 3-axis DIW platform (ShopBot 

Tools Inc., Durham, NC) directed by G-code generated from scripts written in Scilab 

software (Scilab Enterprises, France) to enable printing. All samples were printed on 
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PTFE-coated aluminum substrates and thermally cured in two steps: 24 hours at 100°C 

followed by 2 hours at 220°C.  

 To investigate the extrusion pressure experienced during printing, foam 

rectangular samples (nominally 35 mm L x 12.5 mm W x 1.75 mm H) were printed with 

S32-45, S32-50, S32-58, and S32HS-58 inks at flowrates ranging from 200-1400 µl min-

1.  To enable pressure measurement, a pressure sensor (flowplus16, ViscoTec America 

Inc., Kennesaw, GA) was connected inline via Luer lock between the volumetric pump 

exit and the nozzle tip inlet as shown in (Figure 3.2). Data was recorded at a frequency 

of 10 Hz to produce a pressure profile. Samples were printed utilizing straight Luer lock 

nozzle tips (2.54 cm length, McMaster-Carr, Atlanta, GA) with inner diameters of 966 

µm and 660 µm, along with printing directly out of the pressure sensor (1.8 mm ID) to 

provide a baseline. Print speed was set to match in a 1:1 ratio with the flowrates 

investigated.  

 The S32HS-58 ink was used to print flexural samples (35 mm L x 12.5 mm W x 

1.75 mm H), compression blocks (15 mm x 15mmx 20mm), and hexagonal honeycombs 

(7 mm and 14 mm cell size) with the 966 µm nozzle tip and a flowrate of 400 µl min-1 for 

mechanical testing.  Flexural samples were tested as printed. Compression blocks were 

machined on all sides while honeycombs were only machined on the top and bottom to 

obtain flat, parallel faces prior to compression testing.  

  



51 

 

  

Figure 3.2. DIW hardware for foam printing and pressure measurements. 
Left, complete pump setup with a pneumatic pump feeding the volumetric 
pump for extrusion. Right, pressure sensor, inline between the volumetric 

pump outlet and nozzle tip inlet, during printing. 
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 Finally, to determine the improvement S32HS foam affords to the C-S 

architecture, single layer C-S samples with prescribed core volume fractions (Vf) of 0.45, 

0.55, 0.65, and 0.75 were printed with the new C-S nozzle, following the same printing 

 protocols as described in Chapter 2.  A 600-µm-diameter straight nozzle tip and 1.2-mm-

diameter tapered nozzle was utilized for the inner core and outer shell nozzles, 

respectively.  

3.3.4 Characterization 

 Density measurements on all samples were performed via Archimedes method 

and sample dimensions measured using handheld digital calipers. Optical microscopy 

was conducted using a VHX-5000 digital microscope (Keyence Corporation of America, 

Itasca, IL) and scanning electron microcopy was performed with a Phenom Desktop SEM 

(Nanoscience Instruments, Inc., Phoenix, AZ) to investigate sample geometry, fracture 

surface, GMB state, and foam structure. Flexural testing was conducted in 3-pt bend 

configuration on an electromechanical load frame (model 45, MTS Systems Corporation, 

Eden Prairie, MN) with a 1-kN load cell, span of 25 mm, and a crosshead speed of 0.01 

mm s-1. Compression testing was performed on the MTS utilizing spherically seated 

platens, a 100 kN load cell, and a crosshead speed of 0.01 mm s−1. Honeycombs were 

only compression tested in the through-thickness orientation. All reported mean values  

consist of five sample measurements. 
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3.4 Results and Discussion 

3.4.1 Direct Ink Write and Syntactic Foam Processing- Constraints and Considerations 

 DIW is exploited in this study due to the ability it affords to not only print 

complex foam structures but also effectively deposit multiple materials, specifically via 

co-extrusion through the C-S nozzle. Certain inherent characteristics of the DIW process 

pose challenges in ensuring GMB survival and obtaining low densities in printed GMB 

foams. GMBs are prone to breakage by compression and shear forces experienced in 

constraining points and tight clearances and also by impacts between GMBs and GMBs 

or GMBs and pump components [84]. Minimizing the shear stress and extrusion pressure 

by minimizing pump speed (flowrate) and maximizing outlet diameter can aid to 

minimize breakage [85]. Practically, however, some conditions are inherent or necessary 

for DIW printing and cannot be avoided. Extrusion out of sub-millimeter nozzle tips 

enables printing of foam structures with fine features and the ability to utilize SFs as a 

core material in C-S structures. Additionally, volumetric pumps, which impose harsh 

processing conditions, are necessary to provide a constant flowrate when printing filled 

epoxy inks and allow the control of composition in printed C-S filaments. Also, time 

efficiency must also be considered as flowrate can be decreased but at the cost of 

increased print time and decreased sample output.  

 To increase probability of GMB survival, progressive cavity pumps, a type of 

volumetric pump that provides a lower shear environment than an auger-type pump, 

capable of extruding high viscosity materials, are utilized in this study [86, 87]. It is 

worth acknowledging that a plethora of options exist for constituent materials of SFs, 
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making it difficult to find previous studies that utilize the same GMB type and extrusion 

currently used. To the author’s knowledge this is the first study specifically utilizing 

epoxy-based SF inks with S32 and S32HS GMBs, printed using progressive cavity 

volumetric pumps via DIW.  As such, pilot studies consisting of parameter optimization 

trials were conducted to gain understanding into the relationship between processing 

conditions, ink composition, ink rheology, and final printed density which subsequently 

enables fabrication of high-performance SF and C-S architectures.  

3.4.2 Parallel Plate Rheology 

 For successful DIW printing, foam inks must be viscoelastic, exhibiting the 

following rheological properties: (i) shear thinning behavior to allow extrusion out of 

sub-millimeter diameter nozzles under ambient conditions and (ii) once deposited on the 

substrate, inks must possess a high shear storage modulus, G’, and shear yield strength, 

τy, for shape retention [10, 19, 88].  Rheological behavior of all foam inks investigated 

are displayed in Figure 3.3.  In Figure 3.3a, GMB volume loading increases the apparent 

viscosity. The S32HS-58 ink displays the highest viscosity over the probed shear rate 

range, showing a viscosity of 605 Pa.s at a shear rate of 10 s-1 compared to 240 Pa.s for 

the S32-58 ink.  This is attributed to decreased particle size and particle size distribution.  

All inks exhibit shear thinning behavior, indicated by a decrease in viscosity with 

increasing shear rate.  
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Figure 3.3. Rheological behavior of formulated foam inks. Log-log plots of (a) 
apparent viscosity vs shear rate and (b) storage and loss moduli vs oscillatory 
shear stress for foam inks with varied volume fractions of GMBs (45,50, and 

58vol. %). 
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  Quantification of shear thinning behavior is determined by fitting curves (Figure 

3.3a) to the power law model: 

 𝜂𝜂 = 𝐾𝐾�̇�𝛾𝑛𝑛−1 (3.1) 

where  𝜂𝜂  is the viscosity, 𝐾𝐾 is the consistency index, and �̇�𝛾 is the shear rate. The shear-

thinning index, 𝑛𝑛, describes the degree of shear thinning, with a higher degree of shear 

thinning corresponding to smaller 𝑛𝑛; for shear thinning fluids, 𝑛𝑛 <1, for shear thickening 

fluids, 𝑛𝑛 >1, and for Newtonian fluids, where viscosity is independent of shear rate, 𝑛𝑛 

=1 [59, 89].  Values for 𝑛𝑛 and K  were computed by linear regression over the measured 

shear rate range (0.01 to 50 s-1) and shown in Table 3.2.  K  values show a direct 

relationship 𝑛𝑛 an indirect relationship with GMB loading. All formulations exhibit shear 

thinning index values less than 0.16, reaching similar minimum values of 0.06 and 0.08 

for S32-58 and S32HS-58 inks, respectively. These low n values indicate significant 

shear thinning behavior which is advantageous in reducing the pressure required for 

material extrusion 

 Plots of the storage (G’) and loss moduli (G”) versus shear stress are shown in 

Figure 3.3b. An increase in GMB volume loading increases both G’ and G”, with 

S32HS-58 ink exhibiting the largest G’ of ~6 x 105 Pa.  For all inks, G’ dominates at low 

shear stresses, resulting in elastic behavior but as the applied stress increases, G’ 

decreases to values below G”, indicating the ink has yielded and flowed, exhibiting 

viscous behavior. The yield stress (τy), the point of transition from elastic to viscous 

behavior, is determined by the intersection of G’ and G” [90].  
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Ink 
(GMB-vol.%) 𝑛𝑛  K (Pa.sn) 𝜏𝜏y (Pa) 

S32-45 0.16 1340 110 

S32-50 0.11 1600 134 

S32-58 0.06 2030 196 

S32HS-58 0.08 4140 501 

Table 3.2. Rheological properties of foam inks. 
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 Reported in Table 3.2, τy values increase with increasing GMB loading, from a 

minimum of 100 Pa for S32-45 to a maximum of 500 Pa for S32HS-58. Foam inks 

exhibit adequate G’ values and high yield stress values, needed to enable extrusion and 

shape retention in the printed part. Overall, all foam inks display prominent shear 

thinning and viscoelastic behavior needed for successful DIW printing.  

3.4.3 Foam Sample Printing 

 In-line pressure measurements were taken as rectangular foam samples were 

successfully printed with all foam inks, utilizing straight nozzles with diameters of 660 

and 966 µm.  Volumetric pumps enabled all inks to be consistently extruded out of all 

nozzles, including inks with maximum loading (S32-58 and S32HS-58) out of the 

smallest nozzle (660 µm) (Figure 3.4a). In Figure 3.4b, a slight visual difference is seen, 

in which samples become lighter in color with larger volume fractions of GMBs.  

Sufficient print quality was achieved with all inks but as GMB loading and yield stress 

decreased, shape and feature retention also decreased. The S32-45 sample displays a 

smooth and shiny surface, in which filaments prominently coalesce, compared to the S32-

58 sample where surface filament features are well defined.   

3.4.4 Extrusion Pressure Measurements  

 In the current DIW setup (Figure 3.2), inks pass through two separate zones 

where GMB fracture can occur: i) the volumetric pump, in which inks fill submillimeter 

diameter cavities formed by a rotor and stator, that translate along as the rotor rotates and 

ii) the deposition nozzle, where inks, driven by flow from the pump outlet, are extruded  
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Figure 3.4. Printed foam samples for density and pressure measurements. a) S32-
58 samples printed out of the pressure sensor alone (1.8 mm) and with 966- and 
660µm-diameter-nozzle tips. b) Samples with 45,50, and 58 vol. % S32 GMBs 

printed out of a 966 µm-diameter-nozzle. Note: S32HS-58 samples are not 
pictured but exhibit similar print characteristics as S32-58 samples. 
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through a circular orifice of small diameter (<1mm) [91]. Pressure within the pump 

cannot be measured in the current setup, however, placement of the inline pressure sensor 

between the pump outlet and nozzle inlet allows measurement of the required extrusion 

pressure and GMB fracture behavior in the nozzle tip.  

 Experimentally measured pressure profiles (Figure 3.5a) reveal two characteristic 

pressure regions: i) a peak start pressure required to initiate flow and ii) a steady state 

pressure (SSP) when steady flow is achieved. The latter is used for further comparison. 

All inks permitted consistent extrusion, indicated by a level SSP plateau, but on rare 

occasion (3 occurrences out of 100 samples), a jamming or clogging event occurred in 

the nozzle, resulting in an abrupt pressure jump as seen in Figure 3.5b. If flow through 

the nozzle ceases, ink continues to flow out of the pump, increasing nozzle pressure until 

the jam is broken and flow resumes. In contrast, a drop in pressure indicates ceasing of 

ink flow out of the pump but this was not observed during any prints. Aside from 

providing insight into process mechanisms, real-time in-line pressure measuring is 

beneficial for monitoring extrusion/print status and process control [92]. 

 All foam inks exhibit similar behavior, where an increase in GMB loading and 

viscosity increases SSP. For example, pressure profiles of inks printed with the largest 

966 µm-diameter-nozzle at a flowrate of 400 µL/min are shown in Figure 3.6a, revealing 

an increase in average SSP from 0.5, 0.68, 1.17, and 1.28 MPa for S32-45, S32-50, S32-

58, and S32HS-58 samples, respectively. Additionally, increasing flowrate also increases 

SSP, as seen in Figure 3.6b, where doubling of the flowrate increases SSP by 30% for 

S32-58 inks (966 µm nozzle). Pressure undulations are noticeable and attributed to pulses  
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Figure 3.5. Example of characteristic extrusion pressure profiles. a) A normal 
pressure profile, exhibiting a peak start pressure followed by a steady-state 

pressure during steady flow. b) A pressure spike from a jamming event in the 
nozzle. Jamming events were rarely seen but demonstrates how inline pressure 

measurements are beneficial for on-the-fly monitoring of extrusion status. 
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Figure 3.6. Varied GMB loading and flowrate pressure profiles. a) Pressure 
measurements displaying an increase in pressure with increased GMB vol 

loading b) Increased flowrates lead to increased pressure values. 
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in flow caused by rotations of the rotor. Faster rotor rotation needed for higher flowrates 

results in more tightly packed undulations.  

 For complete assessment of loading and flowrate effects, measured SSP values 

are plotted over the entire flowrate range in Figure 3.7.  Samples printed with no nozzle 

tip, directly out of the pressure sensor (1.8 mm diameter), exhibited low SSP values 

(0.08-0.2 MPa) and a weak, direct relationship with flowrate. Only a few data points 

could be obtained for samples printed with the 660 µm nozzle (data not shown) due to 

measured pressures exceeding the ~1.65 MPa pressure limit of the sensor. S32-45 and 

S32-50 samples displayed SSPs of 0.95 and 1.4 MPa, and 1.1 and 1.5 MPa at 200 and 

400 µL/mm, respectively. 966 µm nozzle SSPs values all exhibited a strong linear 

relationship with flowrate where S32HS-58 displayed the largest slope (0.0016), followed 

by S32-58 (0.0009), and similar values for S32-50 and S32-45 (0.0005). The observed 

linear trends enable simple prediction of SSP for each GMB loading, guiding 

optimization of flowrate when extrusion equipment limitations are present [8].  

 Utilizing pressure-driven flow models, extrusion pressure in the nozzle can be 

estimated with the Hagen-Poiseuille (HP) equation, given by: 

 𝑃𝑃 =
8 𝜂𝜂 𝑄𝑄 𝐿𝐿
𝜋𝜋𝑅𝑅4

 (3.2) 

where P  is the extrusion pressure, Q is the volumetric flowrate, R is the nozzle radius, L 

is the nozzle length, and 𝜂𝜂 is the viscosity [8, 59, 89]. Viscosity is calculated with the 

power law model (Equation 3.1), utilizing 𝐾𝐾 and 𝑛𝑛 values measured with parallel plate 

rheology. 
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Figure 3.7. Average steady-state pressure measurements versus flowrate.  
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  Shear thinning behavior of the inks is accounted for with the Rabinowitsch 

correction, allowing calculation of the true shear rate ( �̇�𝛾 ) at various flowrates following: 

 �̇�𝛾 =
4 Q
𝜋𝜋 𝑅𝑅3

�
3𝑛𝑛 + 1

4𝑛𝑛
� (3.3) 

Model values, reported in the Appendix section “Pressure-driven flow model for foam 

inks” (Table A3.1 and Figure A3.1), were substantially lower than experimental values, 

with the difference increasing as GMB loading and flowrate increased. Variance is 

attributed to factors such as nozzle geometry and effects of the large volume loading of 

GMB fillers, displaying limitations in application to loaded (fillers) polymers that exhibit 

low shear thinning index values (<0.2), but further investigation in model correction or 

adaptation is beyond the scope of this work.  

3.4.5 Density Characterization 

 In order to determine optimized extrusion parameters that minimize GMB 

breakage, a density evaluation was conducted. Baseline samples that were collected and 

cured from as-mixed inks, prior to extrusion, and cured displayed measured densities that 

matched calculated theoretical densities of 0.79, 0.76, and 0.69 g/cc for inks loaded with 

0.45, 0.50, and 0.58 volume fraction GMBs respectively, indicating GMB failure does 

not occur during the mixing process. To decouple pump and nozzle effects, samples were 

printed with no nozzle tip (Figure 3.8a). In all S32 GMB samples, GMB failure 

consistently occurs during passage through the pumps, shown as densities increased from 

baseline to printed samples, with S32-58 samples displaying the largest increase (0.69 to 

0.74 g/cc, +9%). Across the flowrate range, S32-45 and S32-50 densities were similar (< 

1% density increase) whereas increasing S32 GMB loading to 58 vol.% (S32-58)  
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Figure 3.8. Density versus flowrate plots. a) Samples printed with no tip, directly 
out of pressure sensor and b) samples printed with a 960 µm-diameter-nozzle.  
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produced a slight increase (0.74-0.77 g/cc) with increasing flowrate. In contrast, 

utilization of S32HS GMBs, even at a 58 vol.% loading, facilitates near complete GMB 

survival, displaying flowrate independent densities of 0.69 g/cc matching baseline values.   

 Initially, printing with the largest nozzle (966 µm-diameter) was explored (Figure 

3.8b). At low loadings, S32-45 and S32-50 samples exhibited no significant flowrate 

dependence (<3% increase), whereas S32-58 foam displayed a direct trend, revealing 

density increase (0.75-0.82 g/cc) over the flowrate range, and a density spike from 800-

1400 µL/min. When specifically utilizing the large nozzle and S32 GMBs, the maximum 

loading of 58 vol. % remains the best candidate for achieving the lowest density, 

especially prior to the density spike, at flowrates normally employed during printing 

(<1000 µL/min).  S32HS samples remain superior however, exhibiting no significant 

GMB failure from passage through the nozzle tip, indicated by densities that remain 

similar to theoretical over the entire flowrate range.  

 Extrusion through 660 µm-diameter nozzle was also studied as it comprises the 

core nozzle in the core-shell nozzle. The decrease in nozzle size had a noticeable effect 

(Figure 3.9a), as S32 samples exhibited an increase in density with increasing flowrate, 

all approaching similar density at high flowrates of 1200-1400 µL/min. S32-45 and S32-

50 densities displayed linear trends, compared to S32-58 which displayed a similar 

density spike as observed with the large nozzle, albeit at a lower flowrate (200 µL/min). 

It is hypothesized the observed density spike indicates the onset of jamming events in the 

nozzle, occurring at lower flowrates as nozzle area is decreased. Also noteworthy, when 

utilizing the smaller nozzle with S32 GMBs, S32-50 foams display lower densities than 

S32-58, illustrating lower density can be achieved by lowering GMB loading.  



68 

 

  

Figure 3.9. Density versus flowrate and density versus steady-state pressure 
plots. a) Density versus flowrate for 660 µm-diameter-nozzle samples. b) Density 

vs steady-state pressure for all nozzles. 
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Improved performance with decreased consumption of GMBs is of significance when 

material cost, usage, and availability are important factors. Nonetheless, S32HS foam 

remains superior overall, maintaining near theoretical density across all flowrates.     

 Density versus measured SSP is plotted in Figure 3.9b, allowing for further 

comparison. S32 inks printed absent of a nozzle tip, at low pressures (0.1-0.2 MPa), 

exhibit prominent density increase. Further, S32 GMBs exhibit substantially higher crush 

strengths (13.8 MPa) than measured SSP, indicating S32 GMB failure is unlikely a result 

of SSP experienced in the nozzle. S32HS foam density is independent of SSP, 

experiencing the highest pressure while maintaining a constant low density. 

 To summarize, fracture of S32 GMBs predominantly occurs during passage 

through the volumetric pumps and is dependent upon flowrate. At higher flowrates and 

higher volume loadings, further fracture occurs from GMB impacts and shear within in 

the nozzle. Pertinent to C-S printing, if S32 GMBs are used in future work, decreasing 

loading to 50 vol.% provides a foam with the lowest density after printing.  Extrusion 

pressure required for polymer flow through the nozzle was successfully measured but is 

not a direct indicator of S32 GMB survival. In situations where extrusion route and GMB 

type cannot be changed, optimizing the processing parameters of flowrate, GMB loading, 

and nozzle diameter can provide noticeable improvement. However, altering of GMB 

type, specifically to S32HS GMBs, proved considerably more effective in eliminating 

GMB fracture and achieving near theoretical printed density. This is attributed to a 

decreased average size, smaller size distribution, and increased strength, enabling S32HS 

GMBS to remain unaffected by small nozzle diameters and flowrates used in this study. 
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Proving superior to S32 foams by negating detrimental processing effects and displaying 

the lowest printed density, S32HS foam was utilized for further foam printing and study.  

3.4.6 S32HS Mechanical Performance 

 With the ability to print foam structures at near theoretical density, S32HS-58 ink 

was utilized to successfully print flexural and compression samples (Figure 3.10) for 

mechanical characterization. Measured mechanical properties are summarized in Table 

3.3. Printed foam 3-pt flexure samples displayed a density of 0.69 g/cc, modulus of 3.54 

GPa, and strength of 60.8 MPa. Similar properties were observed in S32-58 foam 

samples printed through the C-S nozzle in previous work (Chapter 2) but C-S samples 

also displayed a 21% higher density (0.84 g/cc), demonstrating the weight saving 

improvement the S32HS-58 foam affords. Flexural stress-strain curves are plotted in 

(Figure 3.11a) revealing brittle fracture, characteristic of highly loaded SF foams[75]. 

During flexure, samples experience both tension and compression. SEM micrographs of 

the top compression side (top, Figure 3.11b) reveal noticeable GMB failure, with 

minimal pullout, indicating a strong interface between GMB and matrix. On the bottom 

tensile side (Figure 3.11b), GMB failure is still present but a larger number of GMBs 

remain intact, with visible matrix deformation, and a couple occurrences of GMB pullout 

visible.  

 To further investigate foam performance, compression blocks (Figure 3.12a) and 

honeycombs with 7- and 14-mm cell sizes were successfully printed and tested, 

demonstrating the ability to fabricate complex foam geometries utilizing DIW and 

increase weight reduction (Figure 3.10b). Compression blocks were machined on all  
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Sample Test Modulus 
(GPa) 

Strength 
(MPa) 

Density 
(g/cc) 

Relative 
Density 

Rectangular Flexural  3.54 
±0.08 

60.80 
±3.07 0.69 --- 

Blocks Compression 4.94 
±1.24 

100.1 
±5.81 0.69 --- 

7mm 
honeycomb Compression 2.04 

±0.19 
41.59 
±2.12 0.37 0.53 

14mm 
honeycomb Compression 1.25 

±0.21 
23.86 
±2.40 0.21 0.36 

Figure 3.10. Printed S32HS foam samples for mechanical testing. a) 
Rectangular flexural samples, compression blocks, and honeycombs both as-

printed and machined for testing. b) DIW printing of honeycombs 
demonstrating ability to fabricate complex foam geometries. 

Table 3.3. Mechanical properties of S32HS foams 
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Figure 3.11. Flexural stress-stain curve a) and fracture surfaces. SEM 
micrographs of b) compression and c) tension side of sample. 
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Figure 3.12. S32HS foam compression testing. a) Compression blocks during 
testing and b) SEM micrograph of failure surface showing complete GMB 

crushing.  
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sides prior to testing while honeycombs were only machined on the top and bottom 

surface to provide parallel faces (Figure 3.10a).  Foam honeycombs are commonly used 

as core materials in sandwich panels, thus honeycomb samples were tested in a flatwise 

orientation to measure out of plane compression properties [93].  SEM micrographs of 

compression block failure surfaces reveal complete crushing of GMBs (Figure 3.12b). 

Modulus and strength values are plotted in Figure 3.13a and 3.13b, with bulk samples 

displaying the highest modulus (4.94 GPa) and strength (23.9 MPa) at a density of 0.69 

g/cc. Honeycomb samples display a linear decrease in modulus and strength with relative 

density. These properties follow established scaling laws for out of plane properties of 

honeycombs undergoing fracture, given by:  

 𝐸𝐸
𝐸𝐸𝑠𝑠

=
𝜌𝜌
𝜌𝜌𝑠𝑠

 (3.4) 

 and  

 𝜎𝜎
𝜎𝜎𝑠𝑠

=
𝜌𝜌
𝜌𝜌𝑠𝑠

 (3.5) 

where 𝐸𝐸𝑠𝑠, 𝜎𝜎𝑠𝑠, and 𝜌𝜌𝑠𝑠 are the compressive modulus, compressive strength, and density of 

the solid foam material, respectively, and 𝐸𝐸, 𝜎𝜎, and 𝜌𝜌 are the measured properties of the 

honeycomb samples [93, 94]. Utilizing properties from compression blocks for 

calculation, predicted modulus values Figure 3.14a are in good agreement with 

experimental data. In contrast, predicted strength values Figure 3.14b are slightly higher 

than experimental, attributed to possible print defects such as inadequate filament 

stacking and wavy walls.  Data for honeycomb samples displayed small scatter, 

indicating S32HS foam enabled consistent printing of honeycomb geometries.  
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Figure 3.13. Compression modulus and strength of S32HS foam. a) Modulus and 
b) strength with representative sample geometries of 100, 53, and 36% relative 

density. 
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Figure 3.14. Property space map of compression properties. a) Modulus versus 
density and b) Strength versus density. Analytical predictions are displayed as 

dashed lines calculated using properties of the S32HS foam blocks. Labels 
indicate foam geometry, whether solid foam (F) or lattice structure (L), matrix 
polymer, whether thermoset (TS) or thermoplastic (TP), and processing route. 
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 To compare the mechanical performance of the printed foam structures, 

experimental data is plotted along with literature and previous S32 foam sample values 

(Chapter 2) in Figure 3.14a and 3.14b.  Labels indicate foam geometry, whether solid 

foam (F) or lattice structure (L), type of polymer matrix, either thermoset (TS) or 

thermoplastic (TP), and process type (DIW, FFF, or molding). S32HS printed foam 

(F,TS-S32HS-DIW) exhibits modulus and strength values ~2x times higher than previous 

printed S32 foam (F,TS-S32-DIW) and molded two-phase GMB thermoset foams (F,TS-

molded, [60]), 2-5x higher than current DIW printed foams (F,TS-DIW, [80]), and up to 

5x times higher than GMB thermoplastic FFF printed foams (F, TP-FFF, [76, 77]). 

S32HS honeycomb structures, enabling achievement of lower densities by tailor the 

geometry, also showed 2-5x higher strength and modulus values over molded 3-phase 

thermoset foams (F,TS-molded, [24]) and current DIW printed lattices in literature 

(L,TS-DIW, [80]). Overall, DIW printing of S32HS foam enables fabrication of high-

performance foam structures that exhibit superior properties to other current foams.  

3.4.7 Application of S32HS-58 Foam to Core-shell Architecture 

 Previous core-shell prints were hindered by the inability to achieve an optimal 

low-density foam core. To investigate improvement afforded by the new S32HS foam, 

flexural samples were printed with 0.40,0.44, 0.53, and 0.61 core volume fractions and 

tested under 3-pt bending. Optical micrographs of C-S cross-sections (Figure 3.15) show 

minimal defects and low core eccentricity, indicating the S32HS foam enables successful 

C-S printing. Flexural properties of C-S samples are reported in Table 3.4 while Figure 

3.16 displays E1/3/ρ, the material index utilized for quantification of performance for  
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Core 
Volume 
Fraction 

Density 
(g/cc) 

Modulus, 
E (GPa) 

Strength, 
σ (MPa) 

Index,         
E 1/3/ρ 

0.40 1.13 16.4±1.6 90.5±11.9 2.25±0.07 

0.44 1.10 18.7±0.5 99.2±3.0 2.41±0.03 

0.53 1.04 17.2±1.1 94.6±2.6 2.49±0.05 

0.61 0.98 14.6±0.6 86.3±3.4 2.50±0.05 

Table 3.4. Flexural properties of core-shell samples with S32HS foam. 

Figure 3.15.  Optical micrographs of C-S cross-sections printed with S32HS 
foam. 
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Figure 3.16.  E1/3/ρ versus measured core volume fraction. Core-shell samples 
printed with the new S32HS foam exhibit significantly higher index values that 

previous samples. 
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light, stiff panels, plotted versus core volume fraction.  Implementation of the S32HS 

foam C-S samples produces similar modulus and strength values as previous S32 C-S 

samples, however at 20% lower densities.  The decrease in density enables an index 

increase up to 5% over S32 foam samples, and ~30% compared to constituent CF 

samples. As Vf increases up to ~0.6, E1/3/ρ also increases, reaching a maximum average 

value of 2.50 GPa1/3 g−1 cm3 and a maximum single measured value of 2.56 GPa1/3 g−1 

cm3. Analytical predictions (�̅�𝑒 = 0) are also plotted, showing good agreement with 

experimental values for the S32HS foam. 

3.5 Conclusions 

 The initial part of this study explored multiple aspects of syntactic foam DIW 

printing, beginning with initial investigation into ink rheology, extrusion pressure, nozzle 

diameter, and GMB loading to gain understanding of the mechanisms involved in GMB 

failure during extrusion and attempt to optimize processing parameters to achieve a lower 

density foam than printed in previous work. In the second half of the work, a new S32HS 

foam, proven effective in resisting GMB failure during printing, is used to fabricate 

flexural and compression samples that were stronger and stiffer than conventional SFs 

and current DIW printed foams. Honeycomb samples were also successfully printed, 

exploiting AM’s unique ability to produce complex geometries. A summary of findings is 

presented below: 

• In-line nozzle pressure measurements provided real-time monitoring of extrusion 

status.  
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• S32 GMB failure was determined to predominantly occur during passage through 

volumetric pumps.  

•  Maximum loading of 58% S32 GMB, resulted in the presence of a density spike, 

which moves to higher flowrates with decreased nozzle diameter, thought to be 

caused by the onset of sphere jamming.  

• Specifically related to C-S nozzle application, decreasing S32 GMB loading to 50 

vol.% results in the lowest printed density at moderate flowrates (300-1000 

µL/min).   

• Utilization of S32HS GMBs, which exhibit decreased average diameter and 

increased strength compared to S32 GMBs, produced a foam unaffected by DIW 

processing, resulting in a 18% decrease in printed density (0.69 g/cc). 

• Superior specific flexural and compressive properties were displayed in structures 

fabricated with the new S32HS foam. Printed structures showed up to 5x higher 

compressive strength and modulus values compared to foams produced through 

conventional routes, fused filament fabrication, and DIW printing.  

• Implementation of the S32HS into the C-S architecture resulted in a 5% increase 

in index value over previous samples, and even larger 30% increase over 

constituent CF index values. 
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 4. MULTIMATERIAL HYBRID ADDITIVE MANUFACTURING 

ENABLED BY CORE-SHELL NOZZLE 
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4.1 Abstract 

 Multimaterial components often exhibit enhanced properties over single material 

systems, yet, processing of such structures can be challenging. Material extrusion 

additive manufacturing offers a potential route to fabricate complex multimaterial 

structures but is limited by the need to use to two nozzles. In the first two chapters, the 

capability to print both core-shell architectures and hybrid lattice structures with our new 

C-S nozzle was demonstrated. In this work we further expand the capability of C-S 

printing, by demonstrating multimaterial 3D printing using the core-shell nozzle which 

enables “on-the-fly” switching between materials during fabrication, without the need for 

two nozzles. Material transition behavior is analyzed, enabling accurate determination of 

transition lengths, which are needed for print path and component design. Multimaterial 

components are successfully fabricated with both silicone and filled epoxy inks (CF and 

foam). Finally, flexural tests reveal increased properties in C-S printed samples compared 

to those printed with two nozzles, attributed to benefits of a continuous print path, more 

efficient use of CFs, and a gradual, graded transition between materials. Overall, our new 

approach enables material switching with a continuous print path, providing greater 

design flexibility and compositional control, opening new routes to DIW print 

multimaterial architectures.  

4.2 Introduction 

 As current research continues to push the boundary of material performance, 

properties attainable with single materials become limited. One approach to achieve 

further improvement involves the incorporation of multiple materials and manipulation of 
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architecture to produce hybrid materials, described as “a combination of materials or 

material and space in configurations and connectivities that offer enhanced 

performance”[6]. As multiple materials are added to fabrication, the complexity of 

manufacturing increases, eclipsing the capability of some traditional processes. In order 

to fabricate components with multiple materials via traditional routes, various component 

parts are commonly fabricated and joined to each other, whether it be by adhesive, 

welding, fastening,  etc., introducing unwanted additional weight, material, 

manufacturing steps, and weak points [75]. 

  Material extrusion additive manufacturing, specifically direct ink write (DIW), 

provides a promising route to fabricate hybrid multimaterial architectures, where 

components are built in a layer-by-layer fashion by the direct deposition of viscoelastic 

feedstock materials[19, 47, 95]. DIW affords a large material selection, as feedstock inks 

can be formulated for metal[16, 18, 96] and ceramic printing [14, 15], along with a 

variety of filled thermoset composites [10, 19, 22].  Conducive to multimaterial 

fabrication, DIW printing is commonly performed at ambient temperatures, employing a 

curing step post printing which provides stronger bonding between filaments compared to 

routes such as fused filament fabrication (FFF). Currently, DIW has been utilized to 

successfully fabricate multimaterial architectures, both on a filament scale with core-shell 

printing [37, 41, 51],  and larger component scale by depositing two separate 

materials[97, 98].  

 Mulitimaterial 3D printing is commonly achieved by extruding each individual 

material out of separate nozzles. The deposition of one material at time utilizing multiple 

nozzles imposes multiple challenges and limitations, including: i)  the offset between 
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nozzles must be correctly calculated and accounted for in the print path to enable correct 

alignment between deposited filaments, ii) starting and stopping of ink flow produces 

print defects if flow is initiated/halted too soon or too late, iii) nozzle clearance can limit 

the ability to deposit material in tight regions of a part, and iv) the abrupt material 

transition at the filament interface limits compositional and property control.  

 In the first two chapters, the capability to print both core-shell architectures and 

hybrid lattice structures with our new C-S nozzle was demonstrated. To further expand 

the capability of C-S printing, we demonstrate multimaterial 3D printing using the core-

shell nozzle which enables “on-the-fly” switching between materials during fabrication, 

without the need for two nozzles. This approach enables material switching with a 

continuous print path, providing greater design flexibility and compositional control, 

opening up new routes to DIW print multimaterial architectures.  

4.3 Materials and Methods 

4.3.1 Silicone and Epoxy-based Inks 

 Silicone inks were initially used to study transition behavior with an unfilled ink. 

SE1700 (polydimethylsiloxane, DOW Corning) was combined with SE 1700 catalyst in a 

10:1 ratio by weight. Transparent silicone was utilized for the shell and blue silicone 

pigment (Smooth-On) was added to the core ink to modify color and enable 

differentiation between core and shell inks, allowing optical measurements. Mixing was 

conducted in a planetary mixer (FlackTek) under vacuum at 1500 rpm for a total of 6 

minutes.  
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 To investigate material switching with filled epoxy inks, S32HS and CF 

reinforced inks were formulated following identical protocols reported in Chapter 2 and 

3.  Note: loadings of CF and S32HS GMBs were kept at 18 and 58 vol. %, respectively, 

producing shear thinning inks that exhibit viscosities higher than silicone inks [98].  

4.3.2 Core-shell Multimaterial Printing 

 After mixing, inks were loaded into 10 cc syringes and centrifuged at 3600 RPM 

for 3.5 minutes. Syringes were then loaded into air pressure adapters (Nordson) to feed 

progressive cavity volumetric pumps (ViscoTec).  The core-shell nozzle presented in 

Chapter 1 was utilized to print multimaterial samples out of one nozzle. The C-S nozzle 

utilizes a 660-µm-diameter, 2.54 cm long straight tip for the core.  Initial silicone prints 

were conducted with 1.6-mm and 1.2-mm plastic tapered tips (McMasterCarr) and an 

additional 1-mm-diamter metal taper tip (Global Precision Dispensing Systems, GPD).  

All silicone prints were cured at 150°C for 30 minutes and filled epoxy ink prints at 

100°C for 24 h, followed by 220°C for 2 h. 

 All print paths were directed by custom g-code, where transition was induced by 

turning off and on respective pumps. Due to a delay in flow ceasing and initiation, a 0.1-s 

pause in machine motion was implemented at the time of material switching. 

Investigation of transition length was accomplished by printing single filament transition 

lines with each nozzle and a demonstration “T” joint part (60 mm x35 mm x 15 mm) was 

printed with the 1-mm-diameter GPD tip. Flexural samples (nominally 2.2 mm H x 12.5 

mm T x 75 mm L) were printed with filled epoxy inks, utilizing both the C-S nozzle and 

a two-nozzle approach with the GPD nozzle.   
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4.3.3 Characterization 

 Optical microscopy (Keyence) was utilized to image transition lines, cross-

sections, and printed samples. Measurements were conducted on micrographs to 

determine the transition length, transition region, and volume of each material. 

Archimedes density was performed on CF/foam samples to quantify volume of each 

material in the printed part. Prior to flexural tests, samples were machined to eliminate 

print defects inherent with two nozzle printing and provide flat faces. 3-pt bend testing 

was conducted on an electromechanical load frame (MTS) utilizing a 1-kN load cell, span 

of 33 mm, and crosshead speed of 0.01 mm/s.  

4.4 Results and Discussion. 

4.4.1 Nozzle Characterization and Transition Length Prediction  

 To print two materials simultaneously out of a single nozzle, the C-S nozzle was 

utilized in conjunction with volumetric pumps. The C-S nozzle consists of a recessed 

inner core tip (660 µm-diameter), coaxially aligned with a removable tapered shell tip, 

that enables co-deposition of material. For initial extrusion, core or shell ink flow is 

initiated, filling the shell tip, providing deposition of chosen material. To switch 

materials, flow of separate inks is ceased and initiated by turning the pumps off or on. 

The newly-flowing ink must then force out the remaining material from the nozzle end 

before deposition of new material occurs, and material transition is achieved.  

 Transition length is dependent on the ink volume below the core tip, hereafter 

referred to as nozzle volume VN , which must be cleared before material switch. This was 

measured by extruding silicone (blue core, clear shell), removing the shell tip (plastic 
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tapered tips 1.6 and 1.2-mm-diameter), and curing ink in the tip. Once cured, tips were 

cut open and silicone plugs evaluated. A representative sample could not be adequately 

removed from the 1 mm GPD tip and thus measurements were taken directly from a 

dissected tip. Plastic tapered shell tip dissection (1.6 mm), silicone plug for nozzle 

volume measurements, and GPD nozzle dissection are shown in Figure 4.1.   

 Tapered nozzles exhibit two characteristic cavity geometries, a truncated cone 

beginning at the bottom of the core tip, with radius r1, tapering down to a radius r2 at a 

height of h1. A cylindrical cavity exists just prior to the tip end, with radius r2 and height 

h2. Volume of each section is calculated following: 

 𝑉𝑉𝑡𝑡𝑐𝑐 =
1
3
𝜋𝜋(𝑟𝑟12 + 𝑟𝑟1𝑟𝑟2 + 𝑟𝑟22)ℎ1 (4.1) 

 And  

 𝑉𝑉𝑐𝑐 = 𝜋𝜋𝑟𝑟2ℎ2 (4.2) 

 

where 𝑉𝑉𝑡𝑡𝑐𝑐 is the volume of the truncated cone cavity and 𝑉𝑉𝑐𝑐 is the volume of the 

cylindrical section. Summation gives total nozzle volume VN , subsequently utilized to 

calculate an estimated transition length TLest based on the assumption that the deposited 

filament diameter (radius, 𝑟𝑟𝑓𝑓) matches the nozzle tip diameter where: 

 𝑇𝑇𝐿𝐿𝑒𝑒𝑠𝑠𝑡𝑡 =
𝑉𝑉𝑁𝑁
𝜋𝜋𝑟𝑟𝑓𝑓2

 (4.3) 

 

𝑇𝑇𝐿𝐿𝑒𝑒𝑠𝑠𝑡𝑡 values of 27 mm, 41 mm, and 6.6 mm were determined for the 1.6-mm, 1.2-mm, 

and 1-mm tapered tips, respectively. 
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Figure 4.1. Nozzle tip dissection and nozzle volume. a) 1.6-mm-diameter plastic 
tapered tip. Silicone mold allows direct measurement of nozzle volume. b) 1 mm-

diameter GPD nozzle. Estimated nozzle volume shown in blue. Note the GPD 
exhibits a sharper taper, allowing the core tip to be closer to the tip outlet, 

producing a smaller nozzle volume of material that must be cleared. 
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4.4.2 Transition Length Measurements, Gradient Characterization, and Printing 

 To experimentally investigate transition behavior, single filament silicone lines, 

where material is switched from core (blue) to shell (clear) and vice-versa, is printed and 

analyzed with optical microscopy. It is worth noting that utilization of the C-S nozzle 

allows three different filament compositions to be printed consisting of complete shell 

material (S), complete core material (C), or core-shell (C-S) architected filament. 

However, only the transition from complete core to complete shell (C to S) and vice-

versa (S to C) is currently studied, as it provides definitive differentiation between the 

two materials. In Figure 4.2, transition lines for the 1.6-mm and 1-mm nozzle are shown, 

where the beginning of the filament represents the point at which pump flow of material 

was switched. Three distinct regions Figure 4.2a within the filament can be seen: 1) an 

initial region consisting of the previous material being evacuated from the nozzle, 2) a 

graded transition region where materials switch, and 3) a region only displayed in C to S 

switching, where a small core region remains over an extended length, attributed to the 

remaining core material being drawn out as shell material is extruded around it. 

 Following the approach in Figure 4.2a, lengths of the three regions were 

experimentally measured, allowing for comparison to 𝑇𝑇𝐿𝐿𝑒𝑒𝑠𝑠𝑡𝑡 values. Calculated values are 

reported in Table 4.1. By plotting experimentally measured values versus estimated 

values in Figure 4.3, it is seen that 𝑇𝑇𝐿𝐿𝑒𝑒𝑠𝑠𝑡𝑡 values correlate well with the length required to 

clear previous material, Lmc as compared to the total transition length, TLtot, the sum of 

Lmc and the length of the graded transition zone Lgt. Slight variation can be seen but is 

attributed to error when manually calculating nozzle volume.  Nozzle geometry also has 

an impact on the transition behavior, indicated by differences in Lgt.   
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Tip 
diameter 

(mm) 

Nozzle 
type 

Nozzle 
volume 
(mm3) 

TLest 
(mm) 

Lmc 
(mm) 

Lgt 
(mm) 

TLtot 
(mm) 

Lcd 
(mm) 

1.6 Plastic 
tapered 51 27 29 6 35 45 

1.2 Plastic 
tapered 46 41 47 10 57 60 

1 Metal 
tapered 12 7 7 3 9 11 

Figure 4.2. Silicone transition behavior. a) Schematic view of transition 
behavior showing three characteristic regions and lengths. Printed single 

filaments for transition length measurements in the b) 1.6 mm plastic tapered 
and c) 1 mm metal tapered tips. Note filaments diameter matches nozzle tip 

diameter. 

Table 4.1. Experimentally measured values for characteristic transitional 
lengths. 
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Figure 4.3. Experimentally measured transition lengths versus estimated lengths. 
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 For plastic tapered tips, which have a more gradual taper and greater lengths, Lgt 

is short in relation to Lmc, presenting as ~20% the value of Lmc. In contrast, the metal tip 

exhibits a sharper taper and shorter length, displaying Lgt values 40% of the measured 

Lmc. Additionally, when moving from C to S, lengths of the core draw zone, Lcd, are 

roughly equal to the length of TLtot.  These relationships are advantageous to print path 

design and determination of material switching points, providing a route to easily 

calculate characteristic transition lengths from nozzle volumes and estimated values.  

 To demonstrate printing of two materials out of one nozzle, simple T-joints were 

printed with the 1-mm-diamter GPD tip, as it provided the shortest TLtot. Printing was 

achieved with a continuous print path across the joint as seen in Figure 4.4a, where X’s 

represent the point at which pump flow was switched. To achieve ideal switching, pumps 

must turn off and on instantaneously and simultaneously with each other in conjunction 

with printhead movement. In practical application however, hardware challenges exist 

such as signal lag between CNC and pump controllers, limitations in pump accuracy, and 

stoppage and starting time required to initiate and cease pump rotor rotation. To account 

for these, printhead movement was paused (0.1s) when pump switching occurred. 

Excessive pause time, likely caused by CNC controller imprecision, produced an over 

extrusion of material, forming bulges in filaments seen in Figure 4.4b.  Further 

demonstrating compositional control, samples were printed where C material was carried 

across the joint Figure 4.4c and transitioned at the joint Figure 4.4d. This ability to 

control filament composition and properties within a part by defining of the print path can 

provide new possibilities to create improved functional and structural components.  
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Figure 4.4. Printed silicone T-joint (60x35x15 H mm). a) Continuous print path 
to fabricate samples. b) Bulges can be seen where over extrusion occurred due 
to printhead pause. T-joint samples displaying material transition c) directly 

past and d) at the joint. 
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4.4.3 Multimaterial Printing with Carbon Fiber and Syntactic Foam Inks  

 To investigate application of core-shell multimaterial printing with filler loaded 

inks, transition lines were printed with CF shell and foam core inks. As samples are not 

translucent, filament cross-sections provide insight into transition behavior (Figure 4.5). 

Single filaments were sectioned at lengths of 5,10,15, and 20 mm, corresponding to the 

measured Lmc, TLtot, and Lcd values from previous silicone prints.  Loaded material 

transition displays similar general behavior (Figure 4.2a) as non-loaded silicone. At 5 

mm, prior to gradient transition, filaments consist completely of material that is being 

cleared. At 10 mm (~TLtot,), material has neared final transition, exhibiting a composition 

with ~80 vol.% of the switched final material. At 20 mm, near the end of the estimated 

Lcd, material has predominantly switched over, with remnant 1-5 vol.% of previous 

material still present. Introduction of fillers does produce varied effects. When moving 

from S to C, after bulk transition, remanent fibers cling to the nozzle wall and are slowly 

drawn out as foam ink flows out, with minimal fibers still being present a substantial 

length after transition (5-10x TLtot). When switching from C to S, the extended core 

drawn region is still present, with minimal core being observed up to 30 mm. A 

noteworthy feature exists in which the gradient transition region creates a core-shell motif 

within the filament, which could prove beneficial depending on the application. Pristine 

switching of material is challenging with fillers, especially high aspect ratio fillers (CF) 

that cling to surfaces and each other and could limit application where mixing or 

contamination is detrimental.  
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Figure 4.5. Cross-sectional analysis of transition behavior with CF and foam 
inks. Sections were taken at 5, 10, 15, and 20 mm. a) Shell (CF) to core (foam) 

and b) core to shell transition. 
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 Mechanical performance of C-S printed multimaterials was investigated by 

printing 3-pt bend samples with the C-S nozzle (M-C/S) and via the two nozzle (2N) 

method (Figure 4.6), where material transition was prescribed to occur at the sample 

midpoint (1/2 L).  Inherent to printing with multiple nozzles, gaps commonly occur at the 

material interface from the abrupt reverse/change in direction of the print head. Although 

printing with a continuous filament can alleviate this, samples were machined on all faces 

to ensure failure was not significantly affected by print defects induced by two nozzles. 

Initially, material transition in the C-S samples appeared incomplete, however, after 

machining removed a portion of the outer layer with remnant CFs, a definitive transition 

can be seen. Density measurements on as-printed samples revealed similar densities of 

1.05 g/cc, matching the theoretical density for 50/50 CF/foam.  

 Flexural failure occurred at the transition line in C-S samples, however, 2N 

samples exhibited two failure locations; one where fracture occurred entirely in the foam 

(2N-F) and another occurring at the material interface (2N-I). It is worth noting the load 

point (fixture pin) was placed at the sample mid-point, directly above the transition line 

in all samples. 2N sample measurements clustered into two populations, with lower 

strengths (59 MPa) corresponding to failure in the foam and higher strengths (84 MPa) 

corresponding to failure at the interface. The increase in properties is attributed to the 

foam resisting failure away from the load point, allowing a portion of the CF material to 

contribute to load bearing. Sample misalignment in the test fixture or defects introduced 

during machining are possible causes of 2N-F failure location. M-C/S samples displayed 

a 60% increase in stiffness (12.3 GPa) and 16% increase in strength (97 MPa) over 2N-I 

samples. Investigation into the fracture surfaces (Figure 4.6), reveals aligned fibers, 
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Figure 4.6. Multimaterial CF/foam flexural samples. Left, samples printed with 
the C-S nozzle and right, samples printed utilizing the conventional two nozzle 

approach. 
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 induced by the continuous print path in M-C/S samples, and presence of fiber pull-out. 

In contrast, fibers are randomly aligned in 2N-I samples, as fracture occurs in a region 

where print path is reversed. With the ability to maintain a continuous print path yet still 

switch materials, components can be designed to not only benefit from a combination of 

two materials but also more effectively utilize reinforcement fillers such as CFs in those 

materials.  

4.4.4 Mechanical Improvement and Design Analysis of Graded Transition  

 To provide guidance in the design of printed C-S multimaterial transitions, a 

mechanics analysis is conducted to rationalize the enhancement in flexural strength 

provided by a graded transition.  As mentioned in the previous section, increased flexural 

strength can be attributed to aligned CFs enabled by a continuous print path; however, the 

following analysis will only focus on the contribution of the graded architecture itself to 

increased strength. Construction of free body diagrams for beams under bending, with a 

span length of L, with a sharp interface (Figure 4.7a), printed with two nozzles, and a 

graded transition interface (Figure 4.7 b), printed with the C-S nozzle, with a 

concentrated load (P) at the center, describes the bending moments (M) experienced 

during flexure where M = PL/4. An initial assumption is made that failure is caused by 

bending and not by shearing. This is supported by qualitative observations made during 

testing that failure initiates on the tension side and propagates upward through the 

sample.  The flexural stress, σ, is given by the flexure formula: 

 𝜎𝜎 =
𝑀𝑀𝑀𝑀
𝐼𝐼

 (4.4) 

 



100 

 

  

Figure 4.7. Schematics of multimaterial beams in bending. Prescence of graded 
transition between materials produces an increase in flexural strength.  
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where I is the second moment of area of a rectangle given by: 

 
𝐼𝐼 =

𝑏𝑏ℎ3

12
 (4.5) 

where h is the thickness of the beam and y is the distance from the neutral axis. The 

maximum stress occurs at either surface of the beam, y= h/2.  Plugging in y and I gives a 

failure strength, σf , of: 

 𝜎𝜎𝑓𝑓 =
6𝑀𝑀
𝑏𝑏ℎ2

 (4.6) 

Rearrangement produces the equation for the bending moment required to cause failure 

Mf: 

 
𝑀𝑀𝑓𝑓 =

𝑏𝑏ℎ2 𝜎𝜎𝑓𝑓
6

 (4.7) 

Mf differs with material, denoted by Mf1 for the higher strength CF composite and Mf2 for 

the lower strength foam. A sharp interface will produce a corresponding discrete drop in 

Mf at the interface. Thus, as load is increased (Figure 4.7c), Mmax increases until it 

eclipses Mf2 of the foam and failure occurs. In contrast, a graded transition (Figure 4.7b) 

with length l produces a graded change in Mf , with slope ∆𝑀𝑀𝑓𝑓 𝑙𝑙⁄ . As load is increased, 

Mmax reaches a value greater than Mf2 (Figure 4.7d) but does not fail until Mmax eclipses 

the composite Mf value in the transition region. This results in an increase in Mmax in 

graded transition samples and an increased flexural strength (Figure 4.7e).  

 For optimized design, it can be seen that maximum strength is achieved when: 

 ∆𝑀𝑀𝑓𝑓

𝑙𝑙
<
𝑃𝑃
2

 (4.8) 

If ∆𝑀𝑀𝑓𝑓 𝑙𝑙⁄  increases above P/2, it moves toward resembling a sharp interface, and Mmax 

will eclipse Mf at a lower load, leading to decreased flexural strength. P can be eliminated 
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from equation 4.8 by utilizing the relationship M=PL/4 and then taking M to be the 

average of Mf1 and Mf2. After rearrangement, the following optimized relationships are 

produced: 

 𝑙𝑙
𝐿𝐿
≥
𝑀𝑀𝑓𝑓1 − 𝑀𝑀𝑓𝑓2

𝑀𝑀𝑓𝑓1 + 𝑀𝑀𝑓𝑓2
 (4.9) 

 and  

 𝑙𝑙
𝐿𝐿
≥
𝜎𝜎𝑓𝑓1 − 𝜎𝜎𝑓𝑓2
𝜎𝜎𝑓𝑓1 + 𝜎𝜎𝑓𝑓2

 (4.10) 

where l is the length of the graded transition and L is the span length. These relationships 

provide useful guidance when designing an appropriate transition length and component 

geometry to achieve optimal strength.  

4.5 Conclusions 

 In summary, we have expanded the capabilities of C-S printing by developing a 

route to fabricate mulitimaterial components utilizing the previously developed C-S 

nozzle. Our route affords the ability to transition between materials, control filament 

composition, and maintain a continuous filament path, all while printing filled epoxy inks 

out of one nozzle. The C-S approach can be leveraged to further expand multimaterial 

AM, enabling fabrication of new hybrid structures with enhanced properties. A summary 

of findings is listed below: 

• The length of material transition is directly related to nozzle volume and 

geometry and can be accurately estimated by simple nozzle volume calculations. 
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• Successful printing of a mulitmaterial T-joint, where continuous print path was 

maintained across the joint, was demonstrated. Further compositional control was 

displayed by varying the location of material transition within the sample. 

• Filled epoxy inks display similar characteristic transition behavior, allowing 

transition lengths to be determined from nozzle volume calculations and 

geometry relationships.  

• Multimaterial flexural samples printed with the C-S nozzle displayed increased 

properties at the location of load, compared to samples printed with two separate 

nozzles, attributed to aligned fibers enabled by a continuous print path. 
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5. FUTURE WORK 
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 In this work, the development, capabilities, and benefits of core-shell DIW 

printing have been demonstrated. C-S printing is still in its infancy, with numerous 

advances and applications yet to be made and studied. Thus, future study into C-S 

printing displays promise, warranting continued study. Core-shell architected filaments 

are advantageous for weight sensitive applications such as cellular structures.  Initial 

investigation was conducted by printing triangular honeycomb structures for compression 

testing but results were indecisive, exhibiting minimal benefit of C-S samples over 

monolithic CF. The absence of improvement was attributed to noticeable waviness of the 

cell walls from stacking faults (Figure 5.1a) between filaments in each layer. Thus, an 

increase in C-S properties over monolithic samples is expected if print quality can be 

improved. To do so, further study into optimized print parameters, mainly shell nozzle 

type, layer spacing and filament spacing, and print speed is warranted. Additionally, layer 

spacing will determine the degree of filament deformation upon deposition, potentially 

altering the C-S structure and properties, and consequently is worth further investigation. 

CF-reinforced and syntactic foam inks were the only filler loaded feedstock materials for 

C-S printing reported in this work. However, one of the of advantages of the C-S nozzle 

is its ability to print epoxy filled inks with a variety of fillers. Structures consisting of a 

syntactic foam core/SiC whisker-reinforced shell have been successfully printed, 

demonstrating this versatility (Figure 5.1b).  Feedstock inks have already been 

formulated to enable printing of metals, ceramics, and numerous composites, providing a 

vast selection of materials that could be utilized.  Thus, the door is wide open for study 

into implementation of different material systems that will broaden the application space 

of C-S printing and advance material extrusion AM as a whole.  
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Figure 5.1. Carbon fiber and silicon carbide shelled C-S structures. a) CF- foam 
triangular honeycombs exhibited stacking faults and wall bowing in single walls. 

b) SiC C-S single wall demonstrating ability to print with various filled epoxy 
inks.  
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 6. CONCLUSION 
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 The motivation and goal of this work was to develop a novel core-shell printing 

approach to achieve improved properties, specifically increased stiffness at low densities. 

Initially, a novel core-shell nozzle was designed and printing process developed, to 

enabled printing of architected filaments, consisting of a new syntactic foam ink 

surrounded by a stiff carbon fiber-reinforced shell.  Core-shell architected samples 

displayed significant improvement, up to 25%, in specific properties over constituent 

materials. Additionally, a new mechanical model was presented to predict the 

performance improvement afforded by the C-S architecture while accounting for 

potential eccentricity of the core model was developed.  

 After initial success with C-S printing, a challenge arose in obtaining an optimal 

low-density foam. Previous foam printing resulted in a detrimental increase in density, 

resultant of GMB fracture during processing. The second study addressed this challenge 

by investigating the relationship between processing parameters and printed density. It 

was discovered that GMB failure predominantly occurs during passage through the 

volumetric pumps. Optimization of GMB loading and flowrate proved effective in 

lowering density however, switching to GMBs of smaller diameter and higher strength 

proved much more effective, enabling printing of foams near theoretical density (0.69 

g/cc), 18% lower than previous foam. Utilizing the new GMBs, printed foams displayed 

up to 5x higher compressive strength and modulus values compared to foams produced 

through conventional routes, fused filament fabrication, and DIW printing. Implementing 

the new foam in the C-S architecture resulted in a 5% increase in specific stiffness over 

previous values.  
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 To conclude the work, the capability of C-S printing was expanded by 

demonstrating multimaterial 3D printing using the core-shell nozzle. This approach 

enabled “on-the-fly” switching between materials during fabrication, without the need for 

two nozzles. Material transition behavior was investigated, enabling accurate estimating 

of transition length. CF and foam multimaterial samples were successfully fabricated 

with a continuous print path, which exhibited increased stiffness and strength, 

demonstrating the design flexibility and compositional control afforded by C-S printing.  
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Eccentric Sandwich Composite Model 

Ideal Flexural Modulus 

 Effective core-shell flexural modulus (𝐸𝐸𝑓𝑓,𝑒𝑒𝑓𝑓𝑓𝑓) predictions are made using the 

Equation A1.1, which considers a single filament of the printed core-shell architecture. 

𝐸𝐸𝑓𝑓,𝑒𝑒𝑓𝑓𝑓𝑓 =
𝐷𝐷𝑐𝑐𝑠𝑠
𝐼𝐼0

 (A1.1) 

where 𝐷𝐷𝑐𝑐𝑠𝑠 is the bending stiffness (or flexural rigidity) of the core-shell architecture and 

𝐼𝐼0 is the second moment of area of the outer envelope of the C-S geometry. The effective 

density, 𝜌𝜌𝑒𝑒𝑓𝑓𝑓𝑓, is also required to determine the material index. 

𝜌𝜌𝑒𝑒𝑓𝑓𝑓𝑓 =  𝑉𝑉𝑓𝑓𝜌𝜌𝑐𝑐 + (1 − 𝑉𝑉𝑓𝑓)𝜌𝜌𝑠𝑠 (A1.2) 

where 𝑉𝑉𝑓𝑓 is the volume fraction of the core material, 𝜌𝜌𝑐𝑐 is the density of the core material, 

and 𝜌𝜌𝑠𝑠 is the density of the shell material. The various geometries and idealizations 

utilized in the analytical C-S model development are displayed in Figure A1. Two 

geometric idealizations are assumed to quantify 𝐷𝐷𝑐𝑐𝑠𝑠, 𝐼𝐼0, and 𝜌𝜌𝑒𝑒𝑓𝑓𝑓𝑓 and generate two 

separate predictions. Two deposited shapes bound the potential behavior. First, a 

perfectly circular filament (denoted by subscript ", 𝑐𝑐") is analyzed. This corresponds to a 

deposited filament which experiences no compression during deposition. Second, a 

rectangular bead is analyzed. This corresponds to a bead which is compressed to fill any 

voids between itself and its neighbors. 
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  Figure A1. Geometries and idealizations for analytical C-S model development. a) 
Circular and b) rectangular filament geometry. c) Geometric idealization of the 

single layer C-S specimens showing concentricity (left) and eccentricity (right). d) 
Conceptual diagram used to determine the location of the neutral axis 
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 Figure A1a shows the assumed circular geometry. 𝐷𝐷𝑐𝑐𝑠𝑠,𝑐𝑐 is calculated using 

Equation A1.3, which was presented by Gibson et al. [43].  

𝐷𝐷𝑐𝑐𝑠𝑠,𝑐𝑐  =  
1
2
� 𝐸𝐸(𝑟𝑟)2𝜋𝜋𝑟𝑟3𝑑𝑑𝑟𝑟
𝑟𝑟𝑠𝑠

𝑜𝑜
 (A1.3) 

where 𝑟𝑟𝑠𝑠 is the outer radius of the shell and 𝐸𝐸(𝑟𝑟) is the radially-dependent elastic 

modulus. Although the X-ray CT micrograph in Figure 3e shows some GMBs migrating 

into the shell and some CFs drifting into the core, the transition between foam and CF 

composite material appears fairly distinct. Therefore, throughout the following derivation 

we assume that the material instantaneously shifts from foam to CF composite at the 

interface between the core and the shell, and we assume a perfect bond between core and 

shell regions. Consequently, this equation splits into two simple integrals for the 

geometry shown in Figure A1a. 

𝐷𝐷𝑐𝑐𝑠𝑠,𝑐𝑐 =
1
2
� 𝐸𝐸𝑐𝑐2𝜋𝜋𝑟𝑟3𝑑𝑑𝑟𝑟
𝑟𝑟𝑐𝑐

𝑜𝑜
+

1
2
� 𝐸𝐸𝑠𝑠2𝜋𝜋𝑟𝑟3𝑑𝑑𝑟𝑟
𝑟𝑟𝑠𝑠

𝑟𝑟𝑐𝑐
 (A1.4) 

where 𝐸𝐸𝑐𝑐 is the elastic modulus of the core, 𝑟𝑟𝑐𝑐 is the outer radius of the core, and 𝐸𝐸𝑠𝑠 is the 

elastic modulus of the shell. Assuming 𝐸𝐸𝑐𝑐 and 𝐸𝐸𝑠𝑠 are homogenous (i.e. not dependent 

upon 𝑟𝑟), the bending stiffness equation simplifies to: 

𝐷𝐷𝑐𝑐𝑠𝑠,𝑐𝑐 = 𝐸𝐸𝑐𝑐𝜋𝜋� 𝑟𝑟3𝑑𝑑𝑟𝑟
𝑟𝑟𝑐𝑐

𝑜𝑜
+ 𝐸𝐸𝑠𝑠𝜋𝜋� 𝑟𝑟3𝑑𝑑𝑟𝑟

𝑟𝑟𝑠𝑠

𝑟𝑟𝑐𝑐
= 𝐸𝐸𝑐𝑐𝜋𝜋

𝑟𝑟𝑐𝑐4

4
+ 𝐸𝐸𝑠𝑠𝜋𝜋 �

𝑟𝑟𝑠𝑠4

4
−
𝑟𝑟𝑐𝑐4

4
�

= 𝐸𝐸𝑐𝑐𝐼𝐼𝑐𝑐,𝑐𝑐 + 𝐸𝐸𝑠𝑠𝐼𝐼𝑠𝑠,𝑐𝑐 

(A1.5) 
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where 𝐼𝐼𝑐𝑐,𝑐𝑐 is the second moment of area of the circular core and 𝐼𝐼𝑠𝑠,𝑐𝑐 is the second moment 

of area of the circular shell. The second moment of area provided by the outer envelope 

of the C-S geometry is: 

𝐼𝐼0,𝑐𝑐  =  𝜋𝜋
𝑟𝑟𝑠𝑠4

4
 (A1.6) 

Dividing 𝐷𝐷𝑐𝑐𝑠𝑠,𝑐𝑐 by 𝐼𝐼0,𝑐𝑐 gives 

𝐸𝐸𝑓𝑓,𝑒𝑒𝑓𝑓𝑓𝑓,𝑐𝑐 = 𝐸𝐸𝑠𝑠 + (𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑠𝑠)
𝑟𝑟𝑐𝑐4

𝑟𝑟𝑠𝑠4
 (A1.7) 

Volume fraction is calculated by dividing the cross-sectional area of the core by the 

cross-sectional area of the entire filament. 

𝑉𝑉𝑓𝑓,𝑐𝑐  =  
𝜋𝜋𝑟𝑟𝑐𝑐2

𝜋𝜋𝑟𝑟𝑠𝑠2
  =  

𝑟𝑟𝑐𝑐2

𝑟𝑟𝑠𝑠2
 (A1.8) 

Substituting using the volume fraction relation, the effective flexural modulus simplifies 

to: 

𝐸𝐸𝑓𝑓,𝑒𝑒𝑓𝑓𝑓𝑓,𝑐𝑐 = 𝐸𝐸𝑠𝑠 + (𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑠𝑠)𝑉𝑉𝑓𝑓,𝑐𝑐
2  (A1.9) 

To calculate the material index over the range of possible volume fractions, only material 

properties require assignment of values. No geometric values are required. The properties 

(𝐸𝐸𝑐𝑐, 𝜌𝜌𝑐𝑐, 𝐸𝐸𝑠𝑠, and 𝜌𝜌𝑠𝑠) from the monolithic trials with the 1.2-mm nozzle provide 

comparison between experimental results and analytical predictions. Figure A1b shows 

the assumed rectangular geometry. As in the case of the circular filament, this model 

assumes the material instantaneously shifts from foam to CF composite at the interface 



128 

 

between the core and the shell and there is a perfect bond between the two regions. The 

equation for 𝐷𝐷𝑐𝑐𝑠𝑠,𝑟𝑟 is shown below. 

𝐷𝐷𝑐𝑐𝑠𝑠,𝑟𝑟 = 𝐸𝐸𝑐𝑐𝐼𝐼𝑐𝑐,𝑟𝑟 + 𝐸𝐸𝑠𝑠𝐼𝐼𝑠𝑠,𝑟𝑟 = 𝐸𝐸𝑐𝑐
𝑤𝑤𝑐𝑐ℎ𝑐𝑐3

12
+ 𝐸𝐸𝑠𝑠 �

𝑤𝑤𝑠𝑠ℎ𝑠𝑠3

12
−
𝑤𝑤𝑐𝑐ℎ𝑐𝑐3

12
� (A1.10) 

where 𝐼𝐼𝑐𝑐,𝑟𝑟 is the second moment of area of the rectangular core, 𝐼𝐼𝑠𝑠,𝑟𝑟 is the second moment 

of area of the rectangular shell, 𝑤𝑤𝑐𝑐 is the width of the core, ℎ𝑐𝑐 is the height of the core, 𝑤𝑤𝑠𝑠 

is the width of the shell, and ℎ𝑠𝑠 is the height of the shell. 𝑤𝑤𝑐𝑐 and 𝑤𝑤𝑠𝑠 are both idealized as 

functions of ℎ𝑐𝑐 and ℎ𝑠𝑠, respectively. 

𝑤𝑤𝑐𝑐  =  𝐶𝐶1ℎ𝑐𝑐 (A1.11) 

 

𝑤𝑤𝑠𝑠  =  𝐶𝐶1ℎ𝑠𝑠 (A1.12) 

where 𝐶𝐶1 is a constant describing the ratio of measured width to measured height. This 

constant is idealized to be identical for the core and the shell, because both regions of the 

filament are expected to compress in approximately the same proportion upon deposition. 

The second moment of area provided by the outer envelope of the C-S geometry is 

𝐼𝐼0,𝑟𝑟  =  
𝑤𝑤𝑠𝑠ℎ𝑠𝑠3

12
 (A1.13) 

Dividing 𝐷𝐷𝑐𝑐𝑠𝑠,𝑟𝑟 by 𝐼𝐼0,𝑟𝑟 simplifies to 

𝐸𝐸𝑓𝑓,𝑒𝑒𝑓𝑓𝑓𝑓,𝑟𝑟 = 𝐸𝐸𝑠𝑠 + (𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑠𝑠)
𝑤𝑤𝑐𝑐ℎ𝑐𝑐3

𝑤𝑤𝑠𝑠ℎ𝑠𝑠3
 =  𝐸𝐸𝑠𝑠 + (𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑠𝑠) �

ℎ𝑐𝑐
ℎ𝑠𝑠
�
4

 (A1.14) 

The volume fraction is calculated by dividing the cross-sectional area of the core by the 

cross-sectional area of the entire filament, resulting in 
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𝑉𝑉𝑓𝑓,𝑟𝑟  =  
𝑤𝑤𝑐𝑐ℎ𝑐𝑐
𝑤𝑤𝑠𝑠ℎ𝑠𝑠

 =  �
ℎ𝑐𝑐
ℎ𝑠𝑠
�
2

 (A1.15) 

Substituting using the volume fraction relation, the effective flexural modulus simplifies 

to: 

𝐸𝐸𝑓𝑓,𝑒𝑒𝑓𝑓𝑓𝑓,𝑟𝑟 = 𝐸𝐸𝑠𝑠 + (𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑠𝑠)𝑉𝑉𝑓𝑓,𝑟𝑟
2  (A1.16) 

The equation for the rectangular effective flexural modulus (A1.9) collapses to the same 

equation as in the circular case (A1.16). Again, to numerically calculate the material 

index, values must be assigned to several parameters. The material properties are 

assigned in the same way as the circular case. 

Correction for Eccentricity 

 Cross-sectional micrographs of the three-point bend specimens show notable 

eccentricity. To predict the effects of off-center foam placement, a simple conceptual 

model is proposed. Although the shell separates adjacent foam cores, as shown in Figure 

2e, this model assumes that the foam cores are not separated and the entire bend 

specimen acts as a sandwich panel that could exhibit eccentricity as shown in Figure 

A1c. The definition of volume fraction for a sandwich panel differs from that shown 

before, as described below. 

𝑉𝑉𝑓𝑓  =  
𝑐𝑐
ℎ

  (A1.17) 



130 

 

Eccentricity, 𝑒𝑒, is defined as the distance from the center of the core to the geometric 

center of the sandwich. The following equation uses the Parallel Axis Theorem to predict 

the flexural rigidity, 𝐷𝐷, of eccentric sandwich panels. 

𝐷𝐷 = 𝐸𝐸𝑠𝑠�𝐼𝐼𝑡𝑡1,𝑙𝑙𝑜𝑜𝑐𝑐𝑙𝑙𝑙𝑙 + 𝐼𝐼𝑡𝑡2,𝑙𝑙𝑜𝑜𝑐𝑐𝑙𝑙𝑙𝑙 + 𝐼𝐼𝑡𝑡1,𝑔𝑔𝑙𝑙𝑜𝑜𝑔𝑔𝑙𝑙𝑙𝑙 + 𝐼𝐼𝑡𝑡2,𝑔𝑔𝑙𝑙𝑜𝑜𝑔𝑔𝑙𝑙𝑙𝑙� + 𝐸𝐸𝑐𝑐�𝐼𝐼𝑐𝑐,𝑙𝑙𝑜𝑜𝑐𝑐𝑙𝑙𝑙𝑙 + 𝐼𝐼𝑐𝑐,𝑔𝑔𝑙𝑙𝑜𝑜𝑔𝑔𝑙𝑙𝑙𝑙� (A1.18) 

where 𝐼𝐼 refers to the second moment of area, the subscript 𝑡𝑡1 refers to the top faceplate, 

the subscript 𝑡𝑡2 refers to the bottom faceplate, the subscript 𝑐𝑐 refers to the core, the 

subscript “𝑙𝑙𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙” refers to the second moment of area of the given shape with respect to 

its own center, and the subscript “𝑔𝑔𝑙𝑙𝑙𝑙𝑏𝑏𝑙𝑙𝑙𝑙” refers to the second moment of area with 

respect to the neutral axis of the entire geometry.  

𝐼𝐼𝑙𝑙𝑜𝑜𝑐𝑐𝑙𝑙𝑙𝑙 =
𝑏𝑏𝑙𝑙𝑦𝑦3

12
 (A1.19) 

where 𝑏𝑏 is the width of the constituent geometry and 𝑙𝑙𝑦𝑦 is the thickness of the constituent 

geometry in the y-direction. 

𝐼𝐼𝑔𝑔𝑙𝑙𝑜𝑜𝑔𝑔𝑙𝑙𝑙𝑙 = 𝑏𝑏𝑙𝑙𝑦𝑦 ∗ 𝑑𝑑𝑁𝑁𝑁𝑁2  (A1.20) 

where 𝑑𝑑𝑁𝑁𝑁𝑁 is the distance between the neutral axis and the centroid of the constituent 

geometry. The neutral axis moves away from the geometrical center of the sandwich as 

the eccentricity increases. To determine the location of the neutral axis for composite 

beams in bending, Parnes [65] lays out a method to account for differences in material 

stiffness by changing the dimensions of the constituent materials such that uniform 

stiffness throughout the beam can be assumed. This approach is applied in the following 

derivation to define the neutral axis. A ratio, 𝑛𝑛 =  𝐸𝐸𝑠𝑠
𝐸𝐸𝑐𝑐

, is used to increase the area of the 
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shell with respect to the core as shown in Figure A1d. The following equation 

determines the location of the neutral axis from the bottom of the panel. 

𝑀𝑀𝑁𝑁𝑁𝑁 =
(𝑛𝑛𝑏𝑏𝑡𝑡1) �ℎ − 𝑡𝑡1

2� + (𝑏𝑏𝑐𝑐) �𝑡𝑡2 + 𝑐𝑐
2� + (𝑛𝑛𝑏𝑏𝑡𝑡2) �𝑡𝑡22�

(𝑛𝑛𝑏𝑏𝑡𝑡1) + (𝑏𝑏𝑐𝑐) + (𝑛𝑛𝑏𝑏𝑡𝑡2)  (A1.21) 

where  

𝑡𝑡1 =
ℎ − 𝑐𝑐

2
− 𝑒𝑒 (A1.22) 

𝑡𝑡2 =
ℎ − 𝑐𝑐

2
+ 𝑒𝑒 (A1.23) 

With this information, 𝑑𝑑𝑁𝑁𝑁𝑁 for each constituent can be determined. 

𝑑𝑑𝑁𝑁𝑁𝑁,𝑡𝑡1 = ℎ −
𝑡𝑡1
2
− 𝑀𝑀𝑁𝑁𝑁𝑁 (A1.24) 

𝑑𝑑𝑁𝑁𝑁𝑁,𝑡𝑡2 = 𝑀𝑀𝑁𝑁𝑁𝑁 −
𝑡𝑡2
2

 (A1.25) 

𝑑𝑑𝑁𝑁𝑁𝑁,𝑐𝑐 = 𝑡𝑡2 +
𝑐𝑐
2
− 𝑀𝑀𝑁𝑁𝑁𝑁 (A1.26) 

And finally, all 𝐼𝐼 values can be determined 

𝐼𝐼𝑡𝑡1,𝑙𝑙𝑜𝑜𝑐𝑐𝑙𝑙𝑙𝑙 =
𝑏𝑏𝑡𝑡13

12
 (A1.27) 

𝐼𝐼𝑡𝑡2,𝑙𝑙𝑜𝑜𝑐𝑐𝑙𝑙𝑙𝑙 =
𝑏𝑏𝑡𝑡23

12
 (A1.28) 

𝐼𝐼𝑐𝑐,𝑙𝑙𝑜𝑜𝑐𝑐𝑙𝑙𝑙𝑙 =
𝑏𝑏𝑐𝑐3

12
 (A1.29) 

𝐼𝐼𝑡𝑡1,𝑔𝑔𝑙𝑙𝑜𝑜𝑔𝑔𝑙𝑙𝑙𝑙 = 𝑏𝑏𝑡𝑡1𝑑𝑑𝑁𝑁𝑁𝑁,𝑡𝑡1
2 (A1.30) 

𝐼𝐼𝑡𝑡2,𝑔𝑔𝑙𝑙𝑜𝑜𝑔𝑔𝑙𝑙𝑙𝑙 = 𝑏𝑏𝑡𝑡2𝑑𝑑𝑁𝑁𝑁𝑁,𝑡𝑡2
2 (A1.31) 
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𝐼𝐼𝑐𝑐,𝑔𝑔𝑙𝑙𝑜𝑜𝑔𝑔𝑙𝑙𝑙𝑙 = 𝑏𝑏𝑐𝑐𝑑𝑑𝑁𝑁𝑁𝑁,𝑐𝑐 
2 (A1.32) 

Plugging A1.27-A1.32 into A1.18, predictions can be made for the resultant flexural 

rigidity with any magnitude of eccentricity. Normalizing these equations will help to 

make this analysis more generally applicable. If 𝐷𝐷 is normalized by 𝐷𝐷(𝑒𝑒 = 0), a 

“knockdown factor,” 𝛼𝛼, is formed which allows for correction of eccentric cores simply 

by multiplying the ideal modulus by the corresponding knockdown factor. 

𝛼𝛼 ≡  
𝐷𝐷

𝐷𝐷(𝑒𝑒 = 0)
 (A1.33) 

Normalizing 𝑒𝑒 by its maximum value, 𝑒𝑒 =  (ℎ−𝑐𝑐)
2

, we can generalize the knockdown 

factor for different geometries. 

�̅�𝑒  =  
2𝑒𝑒
ℎ − 𝑐𝑐

 (A1.34) 

This substitution leads to the following expression for the knockdown factor. 

𝛼𝛼 =
𝐸𝐸𝑐𝑐2𝑉𝑉𝑓𝑓4 + 𝐸𝐸𝑠𝑠2�𝑉𝑉𝑓𝑓 − 1�

2
�𝑉𝑉𝑓𝑓2 + 𝑉𝑉𝑓𝑓 − 3𝑉𝑉𝑓𝑓�̅�𝑒2 + 1�

�𝐸𝐸𝑠𝑠 + 𝑉𝑉𝑓𝑓(𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑠𝑠)��𝐸𝐸𝑠𝑠 + 𝑉𝑉𝑓𝑓3(𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑠𝑠)�
 

−
𝐸𝐸𝑐𝑐𝐸𝐸𝑠𝑠𝑉𝑉𝑓𝑓�𝑉𝑉𝑓𝑓 − 1�(2𝑉𝑉𝑓𝑓2 + 𝑉𝑉𝑓𝑓 − 3�̅�𝑒2𝑉𝑉𝑓𝑓 + 3�̅�𝑒2 + 1)

�𝐸𝐸𝑠𝑠 + 𝑉𝑉𝑓𝑓(𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑠𝑠)��𝐸𝐸𝑠𝑠 + 𝑉𝑉𝑓𝑓3(𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑠𝑠)�
 

(A1.35) 

Thus, the effective flexural modulus of a core-shell architecture with some level of 

eccentricity is: 

𝐸𝐸𝑓𝑓,𝑒𝑒𝑓𝑓𝑓𝑓 = 𝛼𝛼�𝐸𝐸𝑠𝑠 + (𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑠𝑠)𝑉𝑉𝑓𝑓2�    (Eq. 2.1) 

which corresponds to Equation 2.1 in the main text.  
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 Pressure-driven Flow Model for Foam Inks  

 

     

Foam 
Calculated 

Model 
Properties 

Flowrate (µL/min) 
200 400 600 800 1000 1200 1400 

S32-45 
Shear rate (1/s) 87 173 260 346 433 519 606 

Pressure (MPa) 0.23 0.26 0.27 0.29 0.30 0.31 0.31 

S32-50 
Shear rate (1/s) 111 221 332 443 553 664 775 

Pressure (MPa) 0.18 0.19 0.20 0.21 0.21 0.22 0.22 

S32-58 
Shear rate (1/s) 195 389 584 778 973 1168 1362 

Pressure (MPa) 0.10 0.10 0.11 0.11 0.11 0.11 0.11 

S32HS-
58 

Shear rate (1/s) 144 287 431 574 718 861 1005 

Pressure (MPa) 0.31 0.33 0.34 0.35 0.35 0.36 0.36 

Figure A3.1. Pressure-driven flow model predictions and experimental SSP 
values. 

Table A3.1. Pressure-driven flow model predictions versus experimental SSP values.  
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