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Abstract  

 

 Friction stir welding (FSW) has found increased applications in automotive and 

aerospace industries due to its advantages of solid-state bonding, no fusion and melting, 

and versatility in various working conditions and material combinations. The extent and 

quality of the solid-state bonding between workpieces in FSW is the ultimate outcome of 

their industrial applications. However, the relationship among processing parameters, 

material properties, and bonding extent and fidelity remains largely empirical, primarily 

because of the lack of the mechanistic understanding of (1) tool-workpiece frictional 

behavior, and (2) bonding formation and evolution.  

 In this dissertation, to study the underlying mechanism of tool-workpiece frictional 

behavior and bonding evolution at workpiece-workpiece interface during solid-state 

bonding process, firstly, a numerical model that take advantage of Coupled Eulerian 

Lagrangian (CEL) method is implemented to investigate the stick-slip behavior at tool-

workpiece interface. An analytical model is also developed to correlate the stick-slip 

fraction to processing parameters such as the tool spin rate, and further to derive 

dimensionless functions for torque and heat generation rate predictions. These analyses 

provide the critical strain rate and temperature fields that are needed for the bonding 

analysis. Then, we note that the interfacial solid state bonding process under applied 

thermomechanical loading histories is a reverse process of the high temperature creep 

fracture of polycrystalline materials by grain boundary cavities, in this regard, a general 

modeling framework of bonding fraction evolution was derived, which directly depends 

on the stress, strain rate, and temperature fields near the interface. Finally, Based on the 

stick-slip contact analysis and the understanding of solid-state bonding mechanism, an 

approximate yet analytical solution has been developed to derive the bonding fraction field 

from the given processing, geometric, and material constitutive parameters, and the 

predicted ultimate bonding extent with respect to these parameters becomes a figure of 

merit for the study of processing window for industrial applications and design of the FSW 

process.  
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1 Introduction  

1.1 Background and motivation 

1.1.1 Friction stir welding 

Welding, a long history metalworking technique has been developed rapidly since 

19th century. Currently arc welding, gas welding and resistance welding are popular 

applied in industry[1]. The basic principle for these welding processes is melting the 

workpiece or solder to joint parts together, but during these processes high residual stress 

due to melting will highly decrease the mechanical property of workpiece. Along with 

higher quality requirement in aerospace, automobile and some other industries, more 

welding method were exploited. Friction stir welding (FSW) is one of these newly 

developed methods. As firstly invented by The Welding Institute (TWI) of UK in 1991, 

FSW bonds the two workpieces in butt configuration under significant heat generated from 

tool-workpiece frictional sliding and plastic deformation in the workpieces [2-4]. As no 

melting is involved, the inherent advantage of the FSW process is its immunity from 

solidification-induced cracking and porosity generation, Furthermore, severe 

thermomechanical deformation in the weldment zone is capable of refining the material 

microstructure and resulting into enhanced mechanical properties such as tensile strength 

and toughness [2, 5, 6]. Figure 1.1(a) and (b) schematically shows the FSW process and 

three stage of this welding technique. Along with lightweight, high-strength alloys become 

more and more popular used by manufacturers and the unique advantages of FSW that 

mentioned above, FSW found its potential applications in industry[3], at the same time, a 

mature FSW technique will be highly demanded in related field. 

Currently, as illustrated in Figure 1.1, a critical assessment of the FSW process 

needs to focus on the following three issues: 

1) The tool and workpiece surfaces in contact will develop into stick and slip regimes 

due to the finite friction condition. The sliding zone generates heat by frictional 

process, while additional heating is generated everywhere in the workpieces by  
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(a) 

 

(b) 

Figure 1.1 Schematic of FSW. 

 



3 

 

plastic deformation. How and to what extent the stick-slip behavior is developed 

dictates the heat generation rate, material flow, and mechanical responses such as 

the torque applied on the tool. This is the focus of Chapter 2.  

2) The extent and quality of the solid-state bonding between workpieces in friction 

stir welding remains as the ultimate outcome of their industrial applications. Solid-

state bonding models can be summarized as primarily inter-diffusional bonding and 

asperity crushing model [7]. Our preliminary analysis takes a different viewpoint 

by considering the closure of interfacial cavities, driven by the synergy of lateral 

diffusional flow and triaxial creep deformation [8], which opposes to almost all the 

conventional models reviewed by Cai et al [7]. A detailed analysis of the bonding 

analysis requires inputs of the strain-rate and temperature fields, both of which rely 

on the stick-slip analysis. Results from Chapter 2 thus provide the foundation for 

the bonding model in Chapter 4. 

3) Any quantitative numerical prediction needs well calibration constitutive models 

for the workpiece material, of which the difficulties lie on the microstructural 

evolution associated with the severe plastic deformation. This issue will not be 

elaborated here, and we restrict our studies to the hyperbolic-sine creep law and the 

Johnson-Cook model.  

1.1.2 Numerical simulation method  

Currently, the whole friction stir welding process is more like an art instead of 

science as the underlying mechanisms are still not very clear. The researches on FSW are 

highly depend on experiments which take long schedule time but with low success rates.  

Compared to experimental method, numerical simulation is normally less expensive, more 

efficient and has fewer limitations which make it a promising approach to understand the 

mechanism of whole FSW process. 

Depends on different mechanisms, numerical model for FSW process simulation 

could be classified into two main categories: (1) Computational fluid dynamics (CFD) 

based model and (2) Computational solid mechanics (CSM) based model. Both of these 

two kinds of numerical models are widely used by researchers in FSW study, due to the 
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advantages and drawbacks associated with CFD and CSM method, different models will 

be selected based on different requirement during investigation.  

For CFD based model, as material is regarded as Non-Newtonian viscous fluid, so 

it could deal with complex material flow. For example, Bendzsak et al developed a 3D 

CFD simulation program STIR3D  for FSW [5] process. In their work, material flow was 

successfully analyzed through this software and three quite distinct flow regimes were 

founded below the tool shoulder which correspond with the actual weld micrographs 

observation. Nandan et al derived a mathematical model for FSW process to investigate 

the 3D viscoplastic flow and temperature field [9], they also modeled the torque and power 

requirement during FSW of AA2524 [10]. By using the commercial CFD package, 

FLUENT, Colegrove build up both 2D and 3D CFD models to investigate the material and 

heat flow during FSW process[11-13], simulation results also help to assist the design of 

welding tool. Recently Liu implemented a coupled thermal-mechanical model into the 

FLUENT for dissimilar FSW process simulation, in her work, the feature of embedded 

steel strip in aluminum side was captured[14]. Seidel and Reynolds adopted 2D CFD based 

model to investigate the material flow around the tool[15]. Ulysse conducted 3D 

simulations through a commercial CFD software, FIDAP, the effect of tool speeds on 

welding temperature and reaction force [16] were studied in his work. Colegrove and 

Shercliff used FLUENT to study the temperature distribution and 3D material flow pattern 

around the tool with complex geometry, whereas the role of tool rake angle and tool speed 

in affecting the flow pattern were also investigated [11, 13].  

 For CSM based model, behavior of workpiece material is described by elastic-

plastic constitutive laws. Schmitdt and Hattel developed a 3D fully coupled 

thermomechanical model through arbitrary Lagrangian-Eulerian (ALE) method in 

ABAQUS/Explicit[17], in their work the primary condition to fill cavity behind the tool is 

analyzed. CSM based model is also used by Zhang et al to investigate the effect of axial 

pressure in FSW, they found that axial pressure plays a key role in FSW by affecting the 

material flow, temperature distribution and influence region under shoulder[18]. Zhu 

developed a finite element analysis code WELDSIM for welding simulation, in this work 



5 

 

he studied the residual stress and transient temperature of 304L stainless steel in FSW and 

these simulation results show well consistent with experimental data[19]. 

1.1.3 Tool-workpiece stick-slip conditions and heat generation rate 

In the FSW process modeling, one of the critical parts is the contact condition as 

the material flow at the tool-workpiece correlated with the tool velocity through the contact 

condition. Typically three kinds of contact states may exist at the interface, which are: 

sliding, sticking and partial sliding/sticking[20].    

For sliding condition, it happens when the contact shear stress is smaller than the 

matrix material’s yield stress. On contrary, when the friction shear stress at the interface 

exceeds the matrix’s yield shear stress, the material underneath the tool surface will stick 

to the moving tool. In this case, matrix will initially accelerate with moving tool (finally 

achieve same velocity with tool) until the contact shear stress and matrix yield shear stress 

reach to an equilibrium state, then a fully sticking condition is fulfilled. Apart from the 

above conditions, there is partial sliding/sticking condition that will occur when the contact 

shear stress equal to the material yield stress at low strain rate, for this case, the matrix 

material underneath the tool will accelerate to a velocity that is lower than the tool velocity. 

Schmidt, Hattel and Wert defined a contact state variable which could relates the 

matrix velocity at contact surface to tool velocity as follows[21]: 

1matrix relative

tool tool

v v

v v
 = = −  (1.1) 

in which relative tool matrixv v v= − . As show in Table 1.1. 

 For heat generation, the most widely used analytical model was based on Schmidt 

and Hattel’s works [20, 21], in which a dimensionless parameter   is introduced to 

measure the extent of slip. When   varies from 0 to 1, the interface transitions from fully 

sticking to fully sliding. Based on these works and numerous follow-up studies, Nandan 
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Table 1.1 Three contact conditions. 

Contact 

condition 

Matrix 

velocity 

Tool 

velocity 

Contact shear 

stress 

State 

variable 

Sticking vmatrix=vtool vtool=ωr ( )contact yield  =   1 =  

Sticking/Sliding vmatrix<vtool vtool=ωr ( )contact yield  =   0 1   

Sliding vmatrix=0 vtool=ωr contact yield   0 =  
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et al. [3] and Yu et al. [22] concluded that the differential heating rate is given by  

( )1f yielddq p rdA    = + −   (1.2) 

where r  is the radius from the tool center,   is the tool angular velocity (in the unit of 

radian per second), yield  is the shear yield strength of the workpiece material, f  is the 

friction coefficient, and p  is the normal contact pressure. The common statement in all the 

above works is that all the heat is generated by friction at the tool-workpiece contact 

interface when  =1, and due to shear plastic deformation when 0 = . Nandan et al. added 

another term as the heating from plastic deformation away from the tool-workpiece 

interface[3]. The former interpretation is problematic, and the latter is incorrect. A detailed 

explanation of the heat generation rate and the critical issues in boundary conditions 

(especially p  and  ) in CFD simulations will be presented in Chapter 2.  

1.1.4 Solid-state bonding  

 Welding and joining various components into a strong, durable and cost-effective 

engineering structure is a critical process in many industrial applications. The conventional 

fusion welding may not have the stress concentration and common fatigue intolerance 

problem as fastening and riveting, but the related high temperature could dramatically 

change the microstructure of the base material and therefore lead to the weakest links for 

premature failure. In order to overcome these drawbacks in fusion welding, there exists a 

wide range of solid-state bonding techniques, such as diffusion bonding where workpieces 

are held by compressive force at elevated temperature [23, 24], frictional bonding where 

two abutting workpieces spin against each other for heat generation [7], ultrasonic welding 

[25, 26], impact or explosive welding [27, 28], and friction stir welding (FSW) where a 

spinning and traversing tool onto two workpieces in butt configuration generates 

significant heat and deformation field [2, 3]. Impact welding is motivated from the 

accidental finding during World War I that pieces of shrapnel were found to weld to the 

target armor plates, when these two metallic materials collided under high strain rate. In 

friction-based welding techniques, heat is generated from both mechanical friction and 

severe plastic deformation. Diffusion bonding derives its name from the belief that 



8 

 

interdiffusion across the two workpieces will promote the formation of atomic bonding. 

Because of no melting and solidification processes involved in the above solid-state 

bonding techniques, the resulting products could be immune from defect generation and 

property deterioration such as solidification cracking and unwanted microstructural 

evolution.   

 When brought into contact, any two metallic materials will not immediately bond 

together unless they are atomically smooth and contamination free, i.e., “crack healing” 

does not happen in realistic conditions. In the cold welding experiment by Lu et al.[29], 

two ultrathin gold nanowires were brought to contact in their ends, but the mating surfaces 

are at most atomistically faceted/ledged and thus essentially flat. Such successes hardly 

exist for large objects. Adhesive forces of the long-range nature, such as van der Waals 

interaction or capillary force, cannot deform roughness asperities sufficiently for contact 

conformity because of the high stiffness of metallic materials. Naturally, it is anticipated 

that the solid-state bonding will be achieved at high compressive loads and high 

temperatures. It is therefore often believed that the bonding mechanisms include two stages 

[7, 23, 30]: (1) plastic crushing of rough surface asperities under an applied load which 

establishes an initial contact with a high fraction of true contact area, and (2) atomic 

interdiffusion by which atoms transport across the workpiece interface and promote the 

gap closure. In Hamilton [31] and Chen et al. [32]’s works, surface roughness is regarded 

as a succession of extended ridges or asperities, which are deemed to be flattened by the 

plastic deformation under pressure. However, rough surface contacts, as schematically 

illustrated in Figure 1.2(a), are usually manifested microscopically by a small number of 

widely separated asperities per unit area. Even if a multi-affine or fractal roughness is 

considered (simply speaking, fine asperities on top of coarse asperities), the full plastic 

solutions in Gao and Bower’s work [33] suggest that the lateral interactions of neighboring 

asperities and the additional compliance onto fine asperity contacts from the coarse asperity 

scale make it extremely difficult to realize a high fraction of true contact area. Besides, any 

theoretical model along this line suffers the same problem of illposedness of roughness  
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Figure 1.2 Schematic illustration of various solid-state-bonding models. (a) Rough 

surface contact between two workpieces is usually supported by isolated and widely 

separated asperities. (b) Bonding two workpieces is equivalent to the shrinkage and 

closure of interfacial cavities. 
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characterization due to the fractal nature, so the connection between the rough surface 

contact analysis and the bonding evolution remains largely qualitative [34]. As will be 

shown later in this work, we believe that it is futile to dwell on the rough surface contact, 

because the majority time spent in the bonding evolution is on the creep-dominated cavity 

closure while different degrees of surface roughness play a negligible role. Creep solutions 

are typically very different from fully plastic deformation fields.  

 The bonding evolution at a slightly later stage can be regarded as the closure of 

interfacial cavities, which might be long, serpentine and connected, or isolated, as 

schematically illustrated in Figure 1.2(b). Earlier works in the solid-state bonding suggest 

the removal of these cavities by volumetric inter-diffusion between the two workpieces, so 

that Fick’s solutions for diffusion couple can be adopted. However, this cannot be the 

dominant mechanism unless at extremely high temperature, because the activation energy 

for diffusion ranks from high to low for volumetric, interface, and surface diffusion. At the 

moderate temperature range in most solid-state bonding techniques, cavity surface 

diffusion is essentially infinite and bulk diffusion is essentially zero when compared to 

interface diffusion. Derby and Wallach [35, 36] proposed the interface energy reduction as 

in the sintering process and the applied joining pressure as the driving forces for the cavity 

closure, and later Hill and Wallach [37] added plastic deformation in the cavity junctions 

to these sintering-like analyses. It should be noted that these solutions are from powder 

sintering, so that cavities are assumed to be closely spaced and the cavity junctions are 

treated as necks in their plastic deformation analysis. The actual creep deformation field in 

widely separated cavities will be otherwise different. Additionally, many solid-state 

bonding techniques are very fast, so that the contribution of diffusional processes might be 

limited. A new view is needed to interpret the solid-state-bonding behavior during FSW 

process. 

1.2 Outline 

 This dissertation work is organized as follows. In Chapter 2, we will first conduct 

FSW process simulations through two CFD-based methodologies and the Coupled 

Eulerian Lagrangian (CEL) model to investigate the stick-slip condition at too-workpiece 
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interface. The dependence of interfacial stick-slip behavior on the processing, geometric, 

and material constitutive parameters and how stick-slip behavior will affect the torque and 

total heat generation ratio will be studied through both numerical and analytical method. 

In Chapter 3, we aim to get a quantitative understanding of the solid-state bonding in FSW. 

A novel view on the solid-state bonding by treating the bonding process as a reverse one 

to the intergranular fracture in ploycrystalline materials is developed and a quantitative 

prediction of the bonding fraction will be presented. In Chapter 4, based on the stick-slip 

contact analysis and the understanding of solid-state bonding, an approximate yet 

analytical solution has been developed to derive the bonding fraction field from the given 

processing, geometric, and material constitutive parameters. The predicted ultimate 

bonding extent with respect to these parameters becomes a figure of merit for the study of 

processing window for industrial applications and design of the FSW process. In Chapter 

5. A thermo-mechanical finite element method based on the free volume model and 

plasticity-induced heating is developed to investigate the ductility improvement in bulk 

metallic glass composites (BMGCs). Numerical simulations have been conducted to 

investigate the role of microstructure and property mismatches on the effectiveness of the 

second phase in resisting the strain localization in the BMG shear bands. 
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2 Friction stir welding modeling and tool-workpiece stick-slip 

conditions 

2.1 Introduction 

 Since the FSW technique involves highly coupled thermomechanical processes, 

only medium- and far-range temperature and deformation fields can be routinely measured, 

but short-range stick-slip properties underneath the tool are not easily amenable to 

experimental investigations. Clearly, numerical simulations have advantages in evaluating 

frictional behavior, contact condition, material flow patterns, and others during such severe 

thermomechanical processes. The most widely used approach is computational fluid 

dynamics (CFD), in which workpieces are oftentimes modeled as non-Newtonian fluids 

and their elastic response is neglected. For example, Seidel and Reynolds adopted two-

dimensional (2D) CFD to investigate the material flow around the tool[15]. Ulysse 

conducted three-dimensional (3D) simulations using a commercial CFD software, FIDAP, 

and studied the effect of tool speeds on welding temperature and reaction force [16]. 

Colegrove and Shercliff used FLUENT (another commercial CFD software) to study the 

temperature distribution and 3D material flow pattern around the tool with complex 

geometry, whereas the roles of tool rake angle and tool speed in affecting the flow pattern 

were also investigated [11, 13]. The primary advantage of CFD simulations lies on their 

superior capability of dealing with complex material flow, which is otherwise difficult to 

handle by Computational Solid Mechanics (CSM) based simulations. However, one critical 

issue for these CFD simulations is their ad hoc treatments of contact boundary conditions 

on the tool-workpiece interface. As will be clear from this chapter, the interfacial stick-slip 

condition not only affects the heat generation rate during welding process, but also dictates 

the material flow and thus the bonding formation and evolution. It is the full coupling of 

interfacial frictional stick-slip, material flow, and heat transfer that governs the entire FSW 

process.   

 One difficulty in CFD simulations is the shear-stress interface condition [38-40]. 

Again, as opposed to CSM based models that can naturally calculate the interfacial stress 

fields from Coulomb friction, ad hoc models have to be introduced in CFD. For example, 
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Chen et al.  introduced a critical relative speed [40], 
CV , below which the interface is 

considered to be in a pseudo-sticking state and the shear stress takes the value of  yield . 

Liu et al. implemented an empirical friction-stress model on tool-workpiece interface to 

study FSW process for dissimilar materials, which led to improved predictions than 

simulations based on velocity boundary conditions[39]. However, the development of 

stick-slip conditions was not reported in this work.  

 Finite element analysis (FEA) can readily solve the frictional contact problem, but 

Lagrangian-based FEA cannot handle the severe deformation in FSW. To this end, 

arbitrary Lagrangian-Eulerian (ALE) formulation in ABAQUS was adopted by Xu et al. 

through re-meshing methodology[41, 42], which modeled the FSW process as a 2D steady 

state problem and predicted material flow patterns in good agreement with experimental 

observations. Schmidt and Hattel developed a 3D ALE model through ABAQUS/Explicit 

and predicted the defect formation during the welding process[17]. But it had reported that 

ALE method cannot handle excessive mesh distortion and may lead to premature failure in 

these simulations [43]. Some other works have recently employed the Coupled Eulerian-

Lagrangian (CEL) method to simulate the FSW process [44, 45]. In this method, the tool 

is modeled in Lagrangian formulation and the workpiece in Eulerian formulation. Apart 

from the material flow pattern, the CEL approach is able to predict volumetric defects and 

mechanical responses during FSW process. In Section 2.3, we will employ the two ad hoc 

CFD methodologies as discussed in the preceding paragraph as benchmark examples to 

compare to our CEL simulation results in Section 2.4 [39, 40], with the focus on comparing 

the predicted interfacial stick-slip ratios from these different frictional boundary 

conditions.  

 Even with all the above simulation works, an analytical interpretation of stick-slip 

conditions on the tool-workpiece interface, together with their effects on torque and heat 

generation rate, has never been attempted. It is not even clear whether a steady state ever 

exists, for which the separation of stick and slip zones has a fixed ratio and is independent 

of time. In Section 2.5, based on the Hill-Bower model on the similarity relationship in 

contact analysis, we can now correlate the steady-state stick-slip ratio to processing 
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parameters, such as tool spinning rate and applied torque. These theoretical predictions can 

now provide a useful guidance and revisit to experimentally measured data of torque and 

heat generation rate.   

2.2 Heat generation rate 

 In this section, we first derive the total heat generation rate from both frictional 

heating and plastic deformation, and then discuss the limitations of ad hoc boundary 

conditions oftentimes used in CFD simulations. The following theoretical analysis will 

pave the foundation for comparing CFD and FEA simulations in Sections 2.3 and 2.4.  

 There are only two sets of field equations in the FSW problem, one being the 

momentum transfer (or stress balance when inertia force is small) equation in the 

workpiece, and the other being the bulk energy transport equation, given by   

2 p

P TQ ij ij

T
C T k T

t
   

 
+  =  +  

v

 

 (2.1) 

where   is the material density, 
PC  is the heat capacity, T  is the temperature, t  is time, 

v  is the material velocity vector, k  is the thermal conductivity, ij  is the stress tensor, 

p

ij  is the plastic strain rate, and TQ  is the Taylor-Quinney ratio that measures the fraction 

of plastic work converted to heat (e.g., 0.7~0.9 for most metals). Latin subscripts run from 

1 to 3. Summation convention is implied for repeated indices. The heat generation rate due 

to plastic deformation is the integral, 

p

plastic TQ ij ijQ dV  


= 
 

(2.2) 

over the volume occupied by the two workpieces. Neglecting elastic deformation leads to 

the approximation of 
,

p

ij ij ij ij ij i jdV dV u dV    
  

 =   , where the last step is based on 

the symmetric nature of stress tensor. Using Gauss theorem, we can convert the bulk 

integral to a surface one,   
, ,ij i j ij i j ij j i

S

u dV u n dA u dV  
 

= −   , and the last term vanishes 

due to stress balance equations, , 0ij j = . Consequently, the plastic heating rate becomes 
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3plastic TQ ij i j TQ

S S

Q u n dA u dA      
 

(2.3) 

where the subscript   is the polar coordinate on the tool-workpiece interface, and u v =  

is the  -component of the velocity vector in the workpiece. We also note that the frictional 

heating only occurs in the sliding zone, given by  

( )friction f

slip

Q p r u dA = −
 

(2.4) 

Consequently, the total heat generation rate is  

( )
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stick slip slip
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  
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  

 
 

(2.5) 

Referring back to Eq.(2.1) and assuming TQ =1, it can be clearly seen that all the heat 

generation due to plastic deformation can be written as a surface integral inside the stick 

zone, and all the frictional heating as another surface integral inside the slip zone. Adding 

another bulk integral for plastic heating is thus not needed.  

 Most CFD simulations assume a given contact pressure of p  and/or prescribe a 

value of   a priori as the boundary/interface condition, instead of computing such pressure 

and stick-slip distributions as CSM can do for the Coulomb friction. Therefore, some of 

the CFD simulation results need ad hoc adjustments of p  and   when comparing to 

experimental measurements such as medium- and far-field temperature distribution [22], 

while some works predict dubious behavior. For example, a fully stick condition was 

assumed in Colegrove and Shercliff’s work [13], which clearly over predicted temperature 

and material deformation zone size.  Atharifar et al. modified the velocity boundary 

conditions that applied on the tool-workpiece interface to achieve a sliding state, in which 

the velocity of interface material was assumed to be 65% of the tool velocity [46]. 

However, they also stated that in order to obtain accurate computational results in various 
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FSW conditions, velocity boundary needs to be adjusted for different welding parameters. 

Nandan et al. and Arora et al. introduced an empirical parameter to describe the slipping 

state at tool-workpiece interface through applying velocity boundary condition at interface, 

which again needs to be adjusted to achieve a good agreement of temperature and 

deformation zone in the weld [10, 47]. 

2.3 Computational fluid dynamics simulation 

2.3.1 CFD simulation by FLUENT 

 In CFD simulations, the workpiece can be assumed to be an incompressible non-

Newtonian fluid, with the viscosity given by  

3

e

e





=  (2.6) 

where 
e  the Mises effective stress and 

e  is the effective strain rate. The temperature and 

strain-rate dependent model, as suggested by Sheppard and Wright [48], takes the 

following form, 

1 2
1 2

1
ln 1

n n

e

Z Z

A A




      
= + +     

       

 (2.7) 

where A , n , and   are material constants, Z  is the Zener-Holloman parameter,  

exp
def

e

Q
Z

RT


 
=  

 
 (2.8) 

R  is the gas constant, and defQ  is the activation energy. Representative values for these 

parameters are given in Table 2.1 for aluminum alloy AA2024 [49].  

 Our CFD simulations were performed using the commercial software FLUENT, in 

which two metal sheets occupy the space beneath the tool, with a total dimension of 100 

mm× 55 mm × 3mm. The radius of tool shoulder is 6.5 mm, and the radii of the tapered 

tool pin are 2 mm at the root and 1.75 mm at the tip with a height of 2.4 mm. The entire 

workpiece space is discretized by 337,620 cells. FLUENT provides a user defined function 

to implement the viscosity function in Eq.(2.6), based on the constitutive law in Eq.(2.7).  
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Table 2.1 Constitutive parameters used in our simulations for AA2024 aluminum alloy 

[49] 

Density 

(kg/m3) 
A (s-1) n Qdef (kJ/mol) β (Pa-1) 

2.7 ×103   2.29×1011   5.46 178 2.09×10-8   
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 As the Coulomb friction cannot be prescribed in FLUENT, ad hoc boundary 

conditions have to be prescribed by the user defined functions. Following Mostaghel et al. 

and Chen et al. [40, 50], the interface shear stress is determined from the relative velocity 

of the tool and workpiece surfaces, i.e., ( )rel r u = −v e  in Eq.(2.4) with 
e  being the 

basis vector in   coordinate. As shown in Figure 2.1(a), whether any given location falls 

into sticking or sliding state depends on comparing the magnitude of this relative speed to 

a critical value, 
cv , 

0

1,

sgn
tanh ,

rel c

rel
f f rel

rel rel c

v

p
v

v

 

 
 

=       
 

v
v

v
v v

 (2.9) 

where 
0v  is a reference velocity (taken as 0.02 m/s in this work). In contrast to FEA 

simulations based on the Coulomb friction law, the predicted stick-slip ratio from this 

model depends on the choice of 
cv . Nevertheless, it provides a way to simulate the 

development of stick-slip in CFD, as opposed to the rather unphysical choice of fixed   

in many other CFD works. To this end, the condition of rel cvv  is denoted as the pseudo-

sticking state.  

 The other type of boundary conditions in FLUENT used in this study follows the 

work by Liu et al.[39]. Noting that the interfacial shear stress is always limited by the yield 

strength of the substrate material, the following fitting equation can be used to represent 

the transient behavior in Figure 2.1(b) [51],  

1

1 exp

f
f

n
n

f

f yield

yield

p
m

m


 



     = − −        

 (2.10) 

where m  is called friction factor (taken as 0.95) and fn  is a fitting parameter (taken as 1.7 

here). In this model, when f yieldp m  , the interfacial shear stress takes the value of 

yieldm  which corresponds to the sticking state. That is, the stick-slip ratio is determined 

from the stress condition, which apparently fails to capture the reality if the materials are  
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(a) 

 

(b) 

 

(c) 

Figure 2.1 Three types of friction models: (a) pseudo-sticking-state model in CFD 

simulations[40]; (b) empirical frictional boundary condition in CFD simulations[39]; 

(c) Coulomb friction used in finite element simulations. 
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hard. For example, an extremely hard material will never develops the sticking state if 

taken from Eq.(2.10), which however is known to be untrue.  

 The above two models have been implemented via user defined functions in 

FLUENT. For comparison purpose, we also conduct simulations with fully sticking 

condition, i.e., the workpiece surface follows the motion of the tool surface for the entire 

simulation history. In all these CFD simulations, the rotational speed ranges from 600 to 

1600 rpm, but the tool traveling speed is kept as 20 mm/min.  

2.3.2 CFD simulation results 

 Temperature, velocity, strain rate, and flow stress fields are presented in Figure 2.2 

for CFD simulations with the pseudo-sticking-state model in Figure 2.1(a), the empirical 

friction stress model in Figure 2.1(b), and no-slip boundary condition. Four rotational 

speeds were specified in these simulations for comparison purpose. It is noted that different 

interface conditions give rise to different peak temperature values, and thus clearly 

different heat generation rates. For the infinite friction condition in Figure 2.2(c), 

temperature is much higher than that from other two models, indicating the significant 

contributions from plastic heating. The interface stick-slip condition can be obtained by 

inspecting the radial distribution the velocity of workpiece material right underneath the 

tool shoulder. This distribution is clearly linear in radial direction in Figure 2.2(c) as it 

follows the tool rotation, i.e., r . It can be seen from the deviation from linearity in Figure 

2.2(a) and Figure 2.2(b) that the sticking condition is found in an inner zone (size of c), 

while an annular sliding zone ( c r a  as will be illustrated in Figure 2.10) exists in which 

the workpiece velocity lags behind that of the tool. Although both Figure 2.2(a) and Figure 

2.2(b) show the same trend of increasing c a  with the increase of  , the exact stick-slip 

ratio predicted under the same welding parameters is sensitive to the particular interface 

condition used in these CFD simulations. The strain rate field, being the velocity gradient, 

shows similar radial distribution. This line of information is critical in predicting the 

bonding evolution in the Chapter 4. The flow stress relates to temperature and strain rate 

from the constitutive law in Eq.(2.7), so that it is comparably lower underneath the sticking 

regime than under the sliding regime.  
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(a) 

 

(b) 

Figure 2.2 Temperature, velocity, strain rate, and flow stress fields as predicted by 

CFD simulations using different frictional boundary conditions: (a) pseudo-sticking-

state model in Figure 2.1(a); (b) empirical frictional boundary condition in Figure 2.1 

(b); (c) no slip boundary condition (equivalent to infinite  f ). 
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(c) 

Figure 2.2 continued 
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 From these results in Figure 2.2, several limitations of CFD simulations can now 

be seen. First, while all the trends with respect to varying   are the same, different 

interfacial conditions give different values of stick-slip ratio, which therefore affects the 

highest temperature and total heat generation rate. Second, axial force and resulting torque 

on the tool cannot be directly obtained from CFD simulations; one has to conduct tedious 

post-processing from the calculated flow stress field. But again the mechanical responses 

computed in such a way are dubious as all these CFD simulations in Figure 2.2 predict very 

different thermomechanical fields, albeit the processing and constitutive parameters are the 

same. Third, when comparing these predictions to experimental measurements that are 

usually limited to medium- and/or far-range temperature fields, one can arbitrarily change 

the associated parameters in these ad hoc interface models, such as 
cv  in Eq.(2.9), to attain 

a good agreement, which however reduces the confidence in other predicted fields.  Fourth, 

all results in Figure 2.2 are computed from a given pressure (e.g., 50 MPa as adopted here) 

uniformly distributed from the tool to the workpiece. This is rather a restriction in CFD 

than a convenient consideration. All these concerns cast challenges to the development of 

predictive CFD models for FSW.  

 We now attempt to see whether the strong assumption of a constant and uniform 

pressure distribution can be relaxed from an iterative process. As shown in the flowchart 

in Figure 2.3, if the input and computed pressure are not the same, the computed pressure 

distribution is then taken as the input for the next round of simulations. This procedure will 

be repeated until two pressures converge. Applying this iteration to the results in Figure 

2.2(a), we find out that the area-weighted average pressure converges quickly and 

decreases from 50 MPa to 39 MPa. As illustrated by the pressure distribution at interface 

at each iteration in Figure 2.4(a), the final computed pressure distribution shows a clear 

deviation from the initial applied pressure. Except for several points with extremely high 

values, for most areas, pressure under the tool is far less than 50 MPa and localized between 

30-40 MPa during iteration. Results in Figure 2.4 are for the pseudo-sticking-state model 

in Figure 2.3(a) and Figure 2.2(a) at a given rotational speed. Although changing   will 

also change the final converged pressure value and thus iterations are needed for every set 

of processing and property parameters, the calculations are very tedious and become  
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Figure 2.3 Flow chart for the pressure iteration process, where p  is the pre-specified 

pressure value in CFD simulations. 
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(a) 

 

(b) 

Figure 2.4 (a) Probability distribution of the computed pressure value (actually the 

normal stress of the workpiece at contact). (b) The average pressure at each iteration. 

These results correspond to the CFD simulation results in Figure 2.2(a). 
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impractical since it oftentimes takes days for individual simulation job to reach the steady 

state. The final stick-slip ratio after iteration shows some improvement, but it does not 

change the fact that this pseudo-sticking-state model in Figure 2.1(a) is not a true outcome 

of frictional contact analysis.  

2.4 Coupled-Eulerian-Lagrangian finite element simulation 

2.4.1 CEL simulation by ABAQUS 

 For CEL finite element simulations, we adopt the Johnson-Cook constitutive law 

[52], which is a strain rate and temperature dependent viscoplastic model, given by 

( )
0

1 ln 1

JKm

refN e
e JK JK e JK

melt ref

T T
A B C

T T


 



  − 
 = + + −    −     

 (2.11) 

where 
e  is the effective strain, 

0  is a characteristic strain rate (taken as 1.0 s-1 here), and 

meltT  and refT  are material solidus temperature and reference temperature, respectively. 

Representative values for the constitutive parameters, 
JKA , 

JKB , 
JKC , N  and JKm  are 

given in Table 2.2 for aluminum alloy AA6061-T6. Density of AA6061-T6 is taken as 

2690 kgm-3. A 90% fraction of plastic work is assumed to be converted to heat, i.e., TQ

=0.9. The relevant thermomechanical properties, including thermal conductivity, specific 

heat, friction coefficients, and elastic constants, are taken from several literature works [44, 

53-56], as summarized in Table 2.3.  

 Conventional finite element simulations are based on the Lagrangian view, so 

needing to solve the Navier-Cauchy equation for momentum transfer. In CEL simulations 

using the commercial software ABAQUS, the entire control volume is divided into 

Eulerian and Lagrangian domains, which helps overcome the difficulty in ad hoc frictional 

modeling in CFD-based models and the difficulty in large deformation in FEA simulations. 

As shown in Figure 2.5, the tool is modeled as a rigid isothermal Lagrangian body and its 

movement is controlled by a reference point attached to the bottom surface of the pin. The 

tool shape and size are the same as in CFD simulations. The entire Eulerian domain is  
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(a) 

 

(b) 

Figure 2.5 Problem setup in the Coupled-Eulerian-Lagrangian (CEL) finite element 

simulation for the FSW process: (a) initial configuration, (b) during the welding 

process. 
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Table 2.2 Constitutive parameters used in the Johnson-Cook model for AA6061-T6 

[44]. 

AJK (MPa) BJK (MPa) CJK mJK N Tmelt (K) Tref (K) 

324 114 0.002 1.34 0.42 297 856 

Table 2.3 Thermomechanical properties for AA6061-T6 [44, 56]. 

Temperature 

(K) 

Specific 

heat (Jkg-

1K-1) 

Young’s 

modulus 

(GPa) 

Poisson’s 

ratio 

Thermal 

conductivity 

(Wm-1K-1) 

Thermal 

expansion 

(10-6 K-1) 

298 945 66.94 0.33 162 23.5 

373 978 63.21 0.334 177 24.6 

422 1000 61.32 0.335 184 25.7 

477 1030 56.8 0.336 192 26.6 

533 1052 51.15 0.338 201 27.6 

589 1080 47.17 0.36 207 28.5 

644 1100 43.51 0.4 217 29.6 

700 1130 28.77 0.41 229 30.7 

755 1276 20.2 0.42 243 - 
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meshed with 128,089 EC3D8RT elements, in which the red part represents two workpieces 

(each with the dimension of 50 mm× 20 mm × 3mm) and the blue part is empty. 

 The Lagrangian body is coupled to the Eulerian domain through the contact 

interaction, using the Coulomb friction law as shown in Figure 2.1 (c). It should be 

mentioned that Figure 2.1 (c) and (b) are very different; CFD simulations based on Figure 

2.1 (b) start with a pre-defined pressure, while finite element simulations based on Figure 

2.1 (c) need to determine pressure and stick-slip condition by solving the boundary/initial 

value problem. In our CEL simulations, three different friction coefficients ( f =0.3, 0.5, 

0.8) would be used to investigate their effects on thermomechanical field distributions and 

stick-slip conditions on tool-workpiece interface. Velocity constraints are applied on side 

surfaces and bottom surface of the Eulerian domain to avoid material escaping Figure 2.5. 

The whole simulation process includes three stages: plunging stage (0.2s), dwelling stage 

(0.2s) and welding stage (2.5s). The tool rotational speed is kept at 1000 rpm, and the 

welding speed is 3 mm/s.  

2.4.2 CEL simulation results 

 Simulated temperature and velocity fields in the workpiece #2 during each FSW 

state with three different friction coefficients are illustrated in Figure 2.6 and Figure 2.7, 

respectively. Since the view cut is based on a fixed height in the initial configuration, one 

can actually see some part of workpiece #1 over that original height; these are 

morphological features not captured in CFD simulations. As these results show, 

temperature distributions at each stage are very similar in three cases. The highest 

temperature occurs near the shoulder-pin junction, and a larger friction coefficient will lead 

to a higher peak temperature. From the velocity contours at different welding stages, one 

can see that at plunging stage, most of the workpiece material underneath the tool follows 

the movement of the tool. When reaching to the dwelling stage, material near the outer 

edge of tool shoulder and pin lags behind, and the size of “sticking” zone shrinks. In 

comparison, simulations with a higher friction coefficient obtains a larger “sticking” zone 

size on the interface.  
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Figure 2.6 CEL simulation results showing the temperature fields in workpiece #2 during 

each FSW stage with three different friction coefficients. Refer to Figure  for model 

setup. 

 

 

Figure 2.7 CEL simulation results showing the velocity field in workpiece #2 during each 

FSW stage with three different friction coefficients. Refer to  Figure  for model setup. 
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 Now switching the view cut along the tool traveling direction in Figure 2.6 and 

Figure 2.7 (i.e., xz plane in Figure 2.5) to the lateral cross-sectional direction (i.e., yz plane 

in Figure 2.5), we plot the distributions of shear stress, pressure, velocity, and material flow 

stress for the workpiece materials right underneath the tool shoulder in Figure 2.8 and 

Figure 2.9. For f =0.5 in Figure 2.8, the top row compares several stress measures. While 

the stick zone can be determined when the shear stress is less than f p , this method turns 

out to be inaccurate due to the mesh size limitation. Instead, the velocity differences in the 

bottom row in Figure 2.8 shows the inner stick zone and the outer annular sliding zone. 

The stick zone is the largest at the plunging state, and correspondingly, the shear stress at 

the tool-workpiece interface is larger than the workpiece flow stress. At the dwelling and 

welding stages, flow stress underneath the outer edge of shoulder becomes larger than the 

shear stress at interface, which narrows down in the sticking zone. Velocity distributions 

for three friction coefficients are compared in Figure 2.9, which clearly shows that a higher 

friction coefficient helps obtain a lager sticking zone.  

2.5 Analytical stick-slip model based on Hill-Bower similarity 

analysis 

 CFD and CEL simulations in Sections 2.2 and 2.3 give rather very different 

predictions of thermomechanical responses. While the stick-slip ratio is more trustworthy 

in Section 2.3 than in Section 2.2, these results need to be validated from analytical and 

experimental results.   

2.5.1 Hill-Bower similarity analysis for contact problems 

 In typical processing conditions, the traveling speed of the tool is much less than 

a , so that only pure torsion needs to be analyzed as in Figure 2.10(a). All simulation 

results in previous sections found the generated heat is transferred over a much larger size 

than the tool, so the deformation behavior of the workpiece underneath is effectively creep-

dominated and elastic contributions can be neglected. Consequently, we are dealing with a 

circular torsional contact of a pure creeping solid in Figure 2.10(a).  
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Figure 2.8 CEL simulation results showing the material flow stress (top row) and velocity 

(bottom row) of the workpieces right underneath the tool for f =0.5. Positive location 

corresponds to the advancing side (workpiece #1), and negative location to the retreating 

side (workpiece #2). 

 

 

Figure 2.9 Steady-state distribution of workpiece velocity right underneath the tool, as 

calculated from CEL simulations in Figure , for three different friction coefficients. 
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(a)                                                   (b) 

Figure 2.10 (a) Schematic illustration of the stick-slip condition at the tool-workpiece 

interface. The boundary is circular when the lateral moving speed is much less than a . 

(b) Solutions of the interfacial shear stress. 
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 Our contact analysis is based on the Hill-Bower similarity relationship [57-59]. At 

any particular instant, the strain rates and stresses in a pure creeping solid under contact 

are independent of the history of loading and depend only on the instantaneous velocities 

and contact radius prescribed on the surface. In terms of mathematical representation, 

consider a power-law creeping solid with  

1

0 0

n

 

 

 
=  
 

 (2.12) 

where 
0  and 

0  are reference stress and reference strain rate, respectively, and n  is the 

stress exponent as in Eq.(2.7). Regardless of the indenter shape (spherical, conical, or 

punch with a circular end), the effective strain rate is given by  

eff

h

a
 =  (2.13) 

with a  being the contact radius and h  being the rate of indentation depth. Therefore, the 

contact force P  can be written as the following relationship,  

( )
1

2

0 0

,

n

a f

P h
F n

a a


  

 
=  
 

 (2.14) 

with the dimensionless function 
aF , and the strain rate fields are 

( ), ,ij eff ij k fE x a n  =  (2.15) 

where ijE  are dimensionless functions as the characteristic fields. 

 Bower et al. made a further step by noting the analogy between the initial value 

problem of a pure creeping solid under punch contact and the boundary value problem of 

a nonlinear elastic solid under punch contact[58]. If replacing all the rate measures in the 

former by the non-rate ones (e.g., ij  by ij ), the governing equations for the former are 

identical to those for the latter. Therefore, the above dimensionless functions in Eqs.(2.15) 

and (2.16) can be numerically calculated by just finite element simulations with the 

nonlinear elastic law of ( )
1

0 0

n
   = .   
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 We now use the above Hill-Bower similarity to attempt an analytical solution for 

our torsional contact problem in Figure 2.10 (a). Because the nonlinear elastic contact 

problem does not permit analytical solutions unless 1n =  (i.e., linear elastic), we make the 

analogy between a Newtonian viscous fluid and a linear elastic solid. The former is 

governed by  

1

2
ij ijs


=  (2.16) 

with ijs  being the deviatoric stress tensor. This is merely a multiaxial generalization of 

Eq.(2.6). The latter is given by the generalized Hooke’s law,  

1

1
ij ij kk ij

E

 
   



+  
= − 

+ 
 (2.17) 

with E  and   being the Young’s modulus and Poisson’s ratio respectively, and ij  being 

the Kronecker delta. The contact solution of a Newtonian viscous material can be taken 

from the elastic contact solution, by replacing strain in the elastic solution by strain rate 

and by taking 1 2 =  due to incompressibility.  

2.5.2 Analytical solution for the torsional contact problem 

 From the above subsection, it is now established that the torsional contact solution 

for a Newtonian viscous solid is analogous to the linear elastic problem. Due to rotational 

symmetry, the stick-slip boundary is circular, and the exact ratio of c a  can be derived 

below.  

 The contact pressure distribution is independent of frictional condition[60], 

( )
2 2

1

2 1
zz

P

a r a



=

−

 (2.18) 

so that Coulomb friction stress that sets the upper bound of interface shear stress is  

( )
2 2

1

2 1

f

z

P

a r a






 =

−
 (2.19) 
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 For infinite friction ( f =  ), the shear stress distribution that generates a 

rotational displacement field of u r =  is given by 

( )

*

3 2

3

4 1
z

M r a

a r a
 


=
=

−
 (2.20) 

where the torque parameter 
*M  remains to be determined.  

 As shown in Figure 2.10(b), both Eqs. (2.20) and (2.21) have the same inverse 

square root singularity when r a−→ , as the same singularity near a crack tip. The purple 

curve for Eq. (2.20) and the blue curve for Eq. (2.19) naturally intercepts at a location of 

r c=  by equating these two equations, so that 
* 22 3fM a P c= . Taking the lower bound 

of these two solutions, the red dashed curve becomes the approximate solution of the shear 

stress, 
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 (2.21) 

In other words, the twist stress needed to maintain a perfect bonding (as in infinite friction) 

is much larger than the upper bound value dictated by the Coulomb friction stress. 

Therefore, as the rotational angle increases, the slip zone emerges from the contact edge 

and progresses inward until the entire contacting surface is in sliding condition. Such an 

elastic solution mimics the stick-slip of a laterally sliding contact, in which the increase of 

lateral motion will lead to the emergence of annular slip zone and then the propagation 

towards the center of the contact corresponds to the onset of macroscopic sliding. This is 

well studied by the Mindlin-Cattaneo solution for Coulomb friction [60], or by some other 

variant solutions for different friction models [61, 62].   

 The solution analogy between the Newtonian viscous material and the Hookean 

solid can now lead to the following understanding. For elastic contacts, the rotation angle 

dictates the degree of stick-slip ratio of c a . Due to the analogy, the rotation angle is now 

replaced by its rate, i.e., the rotation speed of  . Therefore, for our creeping solid under 
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contact, it is   that dictates the stick-slip behavior. In other words, given a set of 

processing parameters, there will be a steady state with a fixed c a  ratio.  

 The resulting torque on the tool can be calculated from 
0

2
a

z zM rdr 
 


=  , 

which can be written as the following dimensionless function,  

( )z
M

M
c a

Pa
=   (2.22) 

As given in Figure 2.11 (a), ( )M c a  decreases from about 0.78 (from numerical 

quadrature) to 2/3 (analytical result) when c a  varies from 0 to 1.  

 The total heat generation rate can be computed from the above result and Eq.(2.5). 

For the simplified case of neglecting elasticity and assuming 1TQ = , we have 
total zQ M=

. It should be noted that c a  depends on  , so we need to introduce a characteristic 

rotation speed 
0  for the following dimensionless function, 

( )
0 0

total
M

Q
c a

Pa



  
=   (2.23) 

More details on the dependence of c a  on   will be provided in Chapter 4.  

2.5.3 Comparisons to numerical simulations 

 As pointed out in Bower et al. [58], dimensionless functions such as 
aF  in Eq. (2.14) 

and ijE  in Eq. (2.15) are not so sensitive to n , unless n→ . Therefore, it is anticipated 

that our approximate yet analytical solution may be used to validate the numerical 

simulation results.  

 Comparisons to CFD simulations are presented in Figure 2.11, for which we take 

the results by the empirical friction stress model in Figure 2.3(b) and Figure 2.4(b). In 

Figure 2.11(a), the blue dashed curve represents our analytical result in Eq.(2.22), plotted 

against the contact state (i.e., 1 c a− ). The left and right ends of the abscissa thus 

correspond to fully stick and fully slip conditions, respectively. Data processed from CFD 

simulations are represented by pink rhombus markers labeled with the corresponding   

value. As shown previously in Figure 2.3, increasing   increases the stick-slip ratio of 
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c a , and at the same time, both numerical simulations and our analytical model show the 

decrease of the resulting torque in Figure 2.11(a). Although the normalized torque, 

z fM Pa , does not vary significantly, its weak dependence on c a  is well captured here. 

The corresponding normalized heat generation rate is obtained through analytical solution 

and post-processing of CFD simulation results, as plotted in Figure 2.11(b). As the pink 

rhombus markers show, a higher rotation speed in numerical simulations results into a 

larger stick-slip ratio and a higher total heat generation rate, in almost perfect agreement 

with the predictions by our analytical model.   

 Comparisons to CEL simulation results in Figure 2.6-Figure 2.9 are presented in 

Figure 2.12. The tool rotation speed was fixed in these simulations, but three friction 

coefficients were adopted. For the normalized torque in Figure 2.12 (a), it can be seen that 

the increase of friction coefficient will increase the sticking zone size (clearly 1c a →  as 

f → ), and at the same time, the normalized torque decreases as the analytical solution 

has predicted. For the normalized total heat generation rate in Figure 2.12 (b), a higher 

friction coefficient on the contact surface will lead to a larger stick-slip ratio of c a  and a 

much higher total heat generation rate, again in almost perfect agreement with our 

analytical predictions.  

 The above comparisons in Figure 2.11 and Figure 2.12 suggest that the two 

analytical results in Eqs. (2.23)and (2.24) provide successful rational analyses that relate 

z fM Pa  and 0total fQ Pa   to the interfacial stick-slip ratio of c a . CFD simulations 

are always based on ad hoc interface conditions (such as those in Figure 2.3(a) and (b)), 

and therefore they may not predict the same c a  (and thus the same corresponding torque 

and heat generation rate) as CEL simulations. Nevertheless, all simulation results collapse 

onto the same master curves of z fM Pa ~ c a  and 0total fQ Pa  ~ c a , which provides 

an alternative way to tuning these simulation methodologies in addition to the common 

practice of fitting to medium- and far-range temperature fields.  
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(a) 

 

(b) 

Figure 2.11 Analytical prediction of the normalized torque in (a) and the normalized heat 

generate rate in (b) as a function of the contact state (i.e., 1 c a− ), together with the CFD 

simulation results based on the empirical friction boundary condition in Figure 2.2(b). 

The parameter 0  is 600 rpm. 
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(a) 

 

(b) 

Figure 2.12 Analytical prediction of the normalized torque in (a) and the normalized heat 

generate rate in (b) as a function of the contact state (i.e., 1 c a− ), together with the CEL 

simulation results that correspond to results in Figure 2.6-Figure 2.9. The parameter 0  

is 1000 rpm. 
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2.5.4 Comparisons to experimental measurements 

 As no experimental data have been reported on the stick-slip ratio, we can only 

attempt to compare to macroscopic thermomechanical responses, including the torque, 

total heat generation rate, peak temperature, and others.  

 Peel et al. have conducted extensive FSW tests on a number of aluminum alloys 

with a wide range of processing parameters [63]. Their torque and axial force data are 

compiled and processed to generate the normalized torque values, which are then compared 

to our analytical model and numerical simulations in Figure 2.13(a). Although their 

aluminum alloys are different from our AA2024, the dependence of z fM Pa  on 0   

shows the same trend, and the same range of variation, as our analytical solution and 

numerical data (from Figure 2.11(a)). Sato et al. obtained the relationship between tool 

rotational speed and peak temperature in FSW process for 6000 series aluminum alloy 

through experiments [64]. A rudimentary heat transfer analysis (to be presented in Chapter 

4) shows that the temperature rise, peak initialT T T = − , is proportional to 2totalQ ka . The 

experimental finding of increasing peak temperature with the increase of rotation speed 

agrees with our results in Figure 2.11(b). Roy et al. and Nandan et al complied literature 

experimental data according to two dimensionless parameters [3, 65], 
*

p initialT T T=  with 

pT  being the final temperature, 
* 2

8 shoulder PQ f A C kU = , where f  is the heat transfer 

ratio between tool and workpiece, 
8  is the yield stress, 

shoulderA  is the cross-sectional area 

of tool shoulder, and U  is the tool traveling speed. They have found a good curve fitting 

to the following representation,  

* *0.131ln 0.196T Q= +  (2.24) 

 In Figure 2.13 (b), selected complied data in Roy et al. are plotted [65], overlaid 

with our results of the dependence of 0total fQ Pa   on 
0  . Because of different ways 

of normalizing the total heat generation rate, this plot should only be understood as showing 

the same qualitative trend, i.e., a significant increase of the heat generation rate with the 

increase of tool rotation speed.  
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(a) 

 

(b) 

Figure 2.13 Comparisons among our analytical model, numerical simulations, and 

literature experimental data on: (a) the normalized torque (with experimental data 

compiled from Peel et al.[63]), and (b) the normalized total heat generation rate (with 

experimental data compiled from Roy et al.[65]). Numerical simulations are from 

Figure 2.12, so that 0  is 600 rpm. 
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2.6 Conclusions 

 This chapter shows that the FSW thermomechanical responses relate to the 

processing, geometric, and material constitutive parameters through the interfacial stick-

slip ratio of c a .  Main findings are summarized below.  

(1) For CFD-based models for FSW process simulation, we have implemented the 

pseudo-sticking-state model in Figure 2.1(a) and the empirical friction stress model 

in Figure 2.1 (b) for the interfacial condition into FLUENT. Although the stick-slip 

behavior can be produced in these models, their predicted c a  values are different 

and sensitive to their chosen parameters. Consequently, the resulting temperature 

and strain rate fields in workpiece materials are found to be sensitive to these ad 

hoc interface models, and correspondingly tedious parameter-fitting and iterative 

steps (particularly for avoiding predefining a uniform contact pressure) may be 

required for these CFD results to be predictive.  

(2) CEL-based finite element simulations solve the contact problem under Coulomb 

friction, so that the computed thermomechanical fields are more reliable although 

computational cost and convergence issue are still the bottleneck concern.  

(3) Based on the Hill-Bower similarity analysis for contact problem and the solution 

analogy between Newtonian viscous material and linear elastic solid, we have 

derived an approximate yet analytical solution, from which two dimensionless 

functions can be determined for z fM Pa ~ c a  and 0total fQ Pa  ~ c a . These 

analytical predictions agree very well with the CFD and CEL simulations, and also 

show the same trends as in many experimental works.  

(4) Our numerical and theoretical investigations of temperature and strain-rate fields 

provide the critical inputs for the bonding analysis. Particularly, the dimensional 

analysis for torque and total heat generation rate allows us to derive the dependence 

of bonding extent and fidelity on the processing, geometric, and material 

constitutive parameters, as will be detailed in Chapter 4.   



44 

 

3 Solid-state-bonding mechanism in friction stir welding 

3.1 Introduction 

From the viewpoint of materials processing, it has been found that strain rate, 

temperature, and stress fields are affected both by thermomechanical processing 

parameters in FSW such as the tool geometry, traveling speed, and rotation speed and by 

the properties of the joining materials. A multitude of experimental and numerical studies, 

including computational fluid dynamics (CFD) and finite element method (FEM), have 

been conducted to understand the characteristics of the thermomechanical fields [39, 66, 

67]. A mechanistic understanding of the dependence of bonding evolution on processing 

parameters and materials behavior is of critical importance, which will eventually affect 

the structural integrity of the weldments. Studies along this line, however, remains elusive 

as explained below.  

 Even though both FSW and conventional diffusion bonding technologies are solid-

state bonding in nature, it takes much shorter time in FSW to form the bonding at the 

interface. In conventional solid-state diffusion bonding processes, it is often understood 

that the interface free energy reduction as in the sintering process and the applied joining 

pressure drive the closure of gaps (e.g., from isolated adjourning domains, to meandering 

tunnels, and to discrete cavities with the increase of the degree of bonding), while the 

kinetics is governed by the interfacial mass transport at elevated temperatures[35, 68]. Thus 

it is found that pressure, temperature and bonding time are key factors that could affect the 

bonding fraction. On the other hand, time elapses rapidly in FSW processes so that the 

contribution of diffusional processes might be limited (as will be proved so in this chapter). 

Previous experimental studies conclude empirically that the degree of bonding tends to 

increase when the applied force/torque and the resulting temperature field are high, but 

does not change much with respect to the increase of the abutting force (i.e., the lateral 

force that holds the two workpieces together), which suggest the critical role of creep rather 

than diffusion on the bonding evolution. In the criterion developed in[69], a parameter that 

controls the final solid-state bonding was defined to depend on the pressure and the 

effective stress on the interface. A sound bonding is believed to be attached when this 
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parameter reaches a critical value. However, no clear mechanisms that control the bonding 

evolution are clarified in regard to the evolution of this parameter. Chen et al. [32] 

suggested that the interfacial bonding depends on the viscoplastic crushing of the surface 

asperities of the two workpieces. Such a model shines key insights on the bonding 

evolution, but it requires a knowledge of surface roughness, its applicable parametric space 

has not been given, and the stress triaxiality (i.e., the relative contribution of pressure and 

shear) is not included.      

 The unique view in this chapter is motivated by the deformation and failure 

mechanism maps in polycrystalline materials [70, 71]. Grain boundary diffusional 

processes are only important at low stress and high temperature, in contrast to the 

dislocation creep at high stress. The closure of the workpiece-workpiece gap field is a 

reverse process of intergranular fracture due to cavity growth; the latter may be determined 

by the interfacial diffusion in the classic Hull-Rimmer model [72], or by the creep-driven 

growth, or by their competition as governed by the Needleman-Rice length scale [73]. 

Consequently, a quantitative understanding of the solid-state bonding in FSW relies on a 

quantitative assessment of the temporal evolution of the stress, strain rate, and temperature 

fields on the workpiece-workpiece interface, and thus the rigorous determination of the 

competing roles of interfacial diffusion and creep in the surrounding workpieces. In this 

chapter, we will first report our simulated transient temperature, stress, and strain rate fields 

in FSW by using the Coupled Eulerian-Lagrangian (CEL) finite element method in the 

commercial software, ABAQUS. The thermomechanical histories of four representative 

reference points on the interface are compared to both the deformation mechanism map 

and the contour plots of the Needleman-Rice length, which upholds that creep-dominated 

cavity closure be the solid-state bonding mechanism. A quantitative prediction of the 

bonding fraction will be presented for these four reference points, and implications on FSW 

processing parameters and materials parameters will be discussed.    



46 

 

3.2 Friction stir welding processing modeling  

3.2.1 Friction stir welding simulation through CEL 

As shown in Figure 3.1, the finite element setup using the CEL method includes 

the sample domain (only the workpiece on the retreating side of the tool is shown here) 

and the “empty” domain (not shown for clarity; for heat transfer analysis only). It should 

be noted that the commonly used CFD simulations for FSW face difficulties in modeling 

the tool-workpiece frictional behavior since pressure has to be specified a priori (such as 

through the user-defined function in a commercial CFD software, FLUENT). How and 

what kind of interface boundary condition is applied will significantly change the final 

simulation results. FEM simulations avoid this problem by directly simulating the 

Coulomb friction, but the severe plastic deformation cannot be handled in the standard 

Lagrangian approach, which can be resolved by the CEL approach. The CEL approach 

divides the entire control volume into Eulerian and Lagrangian domains, thus overcoming 

the difficulty in frictional modeling in CFD and the difficulty in large deformation in 

computational solid mechanics. In Figure 3.1, since our objective is devoted to the bonding 

analysis, for the sake of simplicity, the rotating tool is modeled without pin. The entire 

FSW process includes plunging, dwelling, and welding, for which the spin rate and welding 

speed are 1000 rpm and 2 mm/s, respectively. We choose four reference points (A-D in 

Figure 3.1) on the workpiece-workpiece interface, with the corresponding times when the 

tool reaches them correspondingly. A steady state obviously is reached upon arriving at 

Point C. 

 Considering the extremely high stress and temperature, the power-law creep breaks 

down, and the hyperbolic sine law is used [11],  

 

sinh exp
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e
creep n
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Q

RTA





    
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 (3.1) 
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Figure 3.1 Finite element setup using the coupled Eulerian-Lagrangian (CEL) approach 

in the friction stir welding (FSW) process. 
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where 𝜎𝑒 is the effective Mises stress, 𝜎𝑟𝑒𝑓 is the reference stress, 𝐴𝑛 is a pre-factor, 𝑛 is 

the stress exponent, 𝑄 is the activation energy for dislocation creep, 𝑅 is the gas constant, 

and 𝑇  is the absolute temperature. The material of interest is precipitate-strengthened 

aluminum alloy, Al6061-T6, and the corresponding material parameters include: 𝐴𝑛 =

2.41 × 108𝑠−1, n=3.55, 𝜎𝑟𝑒𝑓=22.22 MPa, Q=145 kJ/mol, and 𝑇𝑚=856 K [16,17].   

3.2.2 Thermal and mechanical variables distribution 

Representative results given in Figure 3.2 are for strain rate, temperature, and Mises 

stress fields when the tool arrives Points A, B, and D, respectively. The temperature field 

extends to a much wider regime than the strain rate and stress fields.  

The thermomechanical histories of these four traced positions are given in the 

deformation mechanism map in Figure 3.3 (a). The background contours are for the strain 

rate by the dislocation creep law in Eq. (3.1). The trajectories for all four points, except the 

early stage of that of Point A, almost collapse onto one another. The stress rises up to high 

flow strength at low temperature, and then heating from both tool-workpiece friction and 

plastic deformation leads to the increase of temperature and the corresponding stress 

decrease due to thermal softening. Even after the tool passes these reference points, the 

temperature still remains high (as can be seen from the second row in Figure 3.2, but the 

stress drops rapidly due to the departure of the spinning tool. The boundaries between 

dislocation creep in Eq. (3.1) and Coble creep that arises from grain boundary diffusion are 

also shown in Figure 3.3 (a) for grain sizes of 10 and 100 µm. Can we now conclude that 

diffusional processes do not contribute noticeably to the bonding process? This answer is 

no, since the interfacial cavity closure is governed by the competition by interfacial 

diffusion and creep in the surrounding materials, which can only be determined from the 

Needleman-Rice length scale in Figure 3.3 (b).   

 We should also point out that these trajectories are universal for other materials as 

well, because the thermal softening will eventually slow down the heat generation rate by 

plastic flow, and thus these trajectories plummet at the final stage.  
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Figure 3.2 Representative results of the strain rate, temperature, and Mises stress fields 

are given with their corresponding tool locations, where the graininess on the 

workpiece surface results from plastic flow. 
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Figure 3.3 (a) Thermomechanical histories of the four reference points are plotted on 

top of the deformation mechanism map of Al6061-T6 alloy. These histories are located 

in the dislocation creep regime. (b) Contour plot of the Needleman-Rice length scale, 

LNR, with respect to the normalized stress and the homologous temperature. The 

thermomechanical histories are schematically overlaid on this plot. The discrete 

squares indicate the occurrence of full bonding for the four reference points. 
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3.3 Cavity closure as the bonding process 

A unit process during the interfacial bonding is the shrinkage of the interfacial 

cavities in Figure 3.4, which is the reverse process of the cavity growth in high temperature 

fracture. These cavities are lens-like because of the surface tension balance at the high 

temperature. The bonding fraction is given by 1b hf f= − , where ( )
2

/hf a b=  is the area 

fraction of these cavities/holes, and 𝑎 and 𝑏 are cavity size and cavity spacing, respectively. 

Based on a modification by Cocks and Ashby [18] to the classic Hull-Rimmer model, the 

evolution of interfacial cavity is 

 ( )

( )
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(3.2) 

where BD  is the interfacial diffusion coefficient, 
B is the interface boundary thickness 

(usually several atomic sizes),   is atomic volume, and bk  is the Boltzmann’s constant. 

The combination of diffusivity and bk T  arises from the Nernst-Einstein relationship. 

When the applied normal stress is tensile/compressive, the bonding fraction 

decreases/increases accordingly. The conversion to the use of the effective creep rate, 
eff

creep , 

and the Needleman-Rice length, NRL , will be discussed shortly.  

 The cavity can growth or shrink when there is a creep deformation in the 

surrounding material. Under the multiaxial stress state, extensive numerical simulation 

results by Sham and Needleman [74] can be fitted to 
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Figure 3.4 Schematic illustrations of bonded and unbonded regimes on the workpiece-

workpiece interface. Cavities tend to be lens like because of the balance of surface 

tensions, but they may coalescence into meandering stripes at a low degree of bonding. 
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where dimensional parameters are 
3

2
n

n
 = and 

( )( )
2

1 0.4319
n

n n

n


− +
= , sgn() is the sign 

function, and 𝜎𝑚 is the mean stress. We have added a multiplicative factor of 
1

bf
 to the left 

hand side of Eq. (3.3), without which the original Sham-Needleman equation only works 

when bf  is larger than a critical value (e.g., 0.4). The comparison between the diffusional 

and creep processes in Eqs. (3.2) and (3.3) defines the Needleman-Rice length scale,  
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3

eB B
NR eff

B creep

D
L
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=  
  

 (3.4) 

This can also be viewed as a kinematic constraint, that is, if the interfacial diffusion is not 

divergence free, the surrounding materials must creep to ensure continuity.  

 Contours of NRL  are given in Figure 3.3(b) for our aluminum alloy. When NRL  is 

larger than cavity size, the cavity closure is governed by interfacial diffusion. A small NRL  

corresponds to the creep dominant closure of cavities, as shown by the term of 

3

NRL

a

 
 
 

 in 

Eq. (3.2). The stress-temperature trajectories in Figure 3.3(a), if plotted on top of Figure 

3.3(b), will indicate that our reference point will only enter the large-𝐿𝑁𝑅 regime when the 

tool passes it (i.e., temperature still remaining high but stress decreasing dramatically).   

 Thermomechanical history data for these four reference points are used as inputs to 

Eq. (3.3), which is then integrated implicitly to predict the evolution of bf . Two initial 

values are chosen, with 
0| 0.8b tf = =  representing finely polished workpieces and 0.01 for 

rough surfaces. Such a choice helps avoid the need to conduct experimental 

characterization of interface morphology. As shown in Figure 3.5, along with the 

movement of the tool, the area fraction of cavities, hf , remains almost unchanged until the 

reference point falls into the thermomechanical process zone. Referring back to Figure 3.2, 

one can see that although the temperature field extends to a much larger zone, the strain  
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Figure 3.5 The evolution of fb (i.e., the area fraction of bonding and no cavities) for the 

four reference points, with two initial values representing smooth and rough 

workpiece-workpiece interface. 
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rate field is rather narrowly localized near the tool. The evolution of bf  is directly governed 

by 
eff

creep , but not by T. Before the tool moves right to the top of the reference point, bf  

rapidly increases to unity even with a very small 
0|b tf =
, indicating that a full degree of 

bonding can be achieved mainly by creep before the reference point falls into the wake of 

the tool. An additional calculation is presented by the dashed line in which Eq. (3.2) is 

added onto the evolution of bf . Before a full bonding is reached, both the temperature and 

stress at this reference point D are high, corresponding to the regime in Figure 3.3 (b) with 

NRL  being around several microns. Even with the choice of a=1 µm, the diffusion-driven 

reduction of bf  has little contribution to the overall evolution.  

 The generality of our model can also be confirmed from the discrete squares in 

Figure 3.3(b), which indicate the occurrence of full bonding for these four reference points. 

The Needleman-Rice contour plots are quite universal with respect to the normalized stress 

and temperature, as this length in Eq. (3.4) is primarily dictated by the stress exponent and 

the difference between the creep activation energy in Eq. (3.1) and the diffusion activation 

energy of BD  in Eq. (3.2). During the friction stir welding, the temperature rise softens the 

material and thus decreases the heat generation rate by plastic flow, and then the 

temperature rise slows down, which naturally leads to the universal trajectory in Figure 

3.3(b). Full bonding occurs at locations with very low Needleman-Rice length values, so 

that diffusional bonding plays a secondary role as compared to creep-induced cavity 

closure.  

3.4 Conclusions 

In summary, from the simulated thermomechanical histories of a number of 

reference points on the workpiece-workpiece interface, we find out the interface traverses 

in regimes with very low NRL , thus indicating the dominance of creep-controlled cavity 

closure. The evolution rate of the interfacial bonding depends primarily on the creep strain 

rate in the surrounding workpieces abutting at the interface, but not on the far-reaching 

temperature field. This study helps reveal design strategies in promoting the solid-state 
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bonding in FSW by entering and staying in the creep-dominant interfacial cavity closure 

through tuning materials constitutive parameters, thermomechanical processing parameters, 

and geometric shape factors.   

 

 
 
 
 
 

  



57 

 

4 Analytical and computational mechanics modeling of the solid-

state bonding 

4.1 Introduction 

 In this chapter, we propose a novel view on the solid-state bonding by treating the 

bonding process as a reverse one to the intergranular fracture in polycrystalline materials. 

The latter has been well understood in a vast number of literature [70, 71, 75-78]. At 

moderate temperature and stress, the dominant mechanisms include diffusive and creep-

driven growth of grain boundary cavities, and these solutions can be used with some 

modifications for our cavity shrinkage problem. This viewpoint has many noteworthy 

differences from the conventional solid-state-bonding models. First, the mere 

consideration of interface energy reduction for the diffusive shrinkage of cavities is 

insufficient. The applied stress field biases the chemical potential [72], and thus drives the 

self-diffusion as described onto the third cavity in Figure 4.1(c). Compression increases 

chemical potential while tension decreases it, and the resulting diffusion is along the 

bonded interface, as opposed to the widely accepted model of volumetric inter-diffusion in 

the direction normal to the interface. Second, creep deformation of the surrounding 

workpiece materials also contributes to the volume change of the cavity, as shown 

schematically by the first cavity in Figure 4.1 (c). The competition between interface 

diffusion and bulk creep determines a length scale [73]. If this Needleman-Rice length is 

larger than the cavity size, then the cavity growth/shrinkage is governed by diffusive 

process; the opposite limit corresponds to the creep dominant behavior. Consequently, a 

complete understanding of bonding mechanisms requires a thorough knowledge of the 

applied thermomechanical trajectories for this Needleman-Rice-type analysis. For our 

FSW process, this has been accomplished in Chapter 3. Third, as individual cavities are 

subjected to different thermomechanical loading histories, it is not amenable to track all 

these cavities in a discrete manner. As shown in Figure 4.1 (c), we can homogenize these 

cavities and design an order parameter field as proposed by Tvergaard [76]. All the above 

details needed for the establishment of our bonding model will be elaborated in Section 

4.2.  
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Figure 4.1 Schematic illustration of various solid-state-bonding models. (a) Rough 

surface contact between two workpieces is usually supported by isolated and widely 

separated asperities. (b) Bonding two workpieces is equivalent to the shrinkage and 

closure of interfacial cavities. (c) A discrete array of cavities, which can be closed by 

creep-controlled or diffusive processes, is homogenized into a field of bonding 

fraction, ( ),bf x t . 
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 For the FSW process, most literature studies on the effects of operation parameters 

on final bonding quality of the end products are mainly experimental and empirical. The 

most widely investigated parameters include the tool rotational speed, welding speed, and 

axial force. It has been found that the increase in rotational speed is favorable for enhancing 

joint strength [79-81]. Shen et al. [82] found that a higher penetration depth over a wide 

range of traveling speeds helps increase the weld strength. For the tool geometry, Boz and 

Kurt [83] and Zhao et al.[84] found that an improved bonding performance could be 

obtained using screw-pitched and tapered sir pin. However, numerical and analytical 

investigations on how these operation parameters affect the final bonding condition at 

interface is still limited. In Chapter 2, the relationship between these fields and the 

processing, geometric, material constitutive parameters has been thoroughly investigated, 

and an analytical solution based on the interfacial stick-slip behavior has been proposed 

and the predicted torque and total heat generation rate agree well with the numerical 

simulations. Because our bonding model in Section 4.2 depends directly on the 

temperature, strain rate, and stress fields and their histories, numerical simulation results 

of the FSW process will be directly used to predict the evolution of workpiece-workpiece 

bonding fraction with respect to varying input parameters, as will be presented in Section 

4.3.  

 With so many controlling parameters involved in the FSW process, a better strategy 

that can find great applications in realistic problems will be the development of an 

analytical solution to predict the ultimate bonding extent. In Chapter 2, an analytical 

solution has been derived to determine the dependence of torque and total heat generation 

rate on the interfacial stick-slip condition, which can be further extended to find the full 

strain-rate and temperature fields. Combining these results with our findings in Sections 

4.2 and 4.3, a flow chart of successive steps is proposed to first use the input processing, 

geometric, and material constitutive parameters to determine the peak temperature and the 

stick-slip ratio, and then to use the resulting strain-rate field to determine the extent of full 

bonding, as will be explained in details in Section 4.4. When comparing the prediction 

from this analytical approach to the numerical simulation results in Section 4.3, we can 

identify the most critical input parameters, together with their ranges to which the final 
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bonding extent is sensitive. These comparisons will be made for both FSW and friction stir 

cladding problem. A process window can be established from the finding that the bonding 

extent changes rapidly when traversing in the map of major processing parameters, as will 

be discussed in Section 4.5.  

4.2 The solid-state bonding model 

 Referring to the processes in Figure 4.1(c), we will first discuss the behavior of 

individual cavities under various closure mechanisms (top figure), and then formulate the 

homogenized model that can be readily used with finite element simulations (bottom 

figure).  

 The interfacial cavities are of the lenticular shape, and the half dihedral angle is 

determined from the Young-Dupré equation,  

cos 1
2

interface

cavity





=   (4.1) 

where interface  is the workpiece-workpiece interface energy per unit area, and cavity  is the 

cavity surface energy per unit area. The Laplace pressure inside the cavity modifies its 

chemical potential by 

2 cavity interface

cavity sintering
R

 
 

−
 = − = −  (4.2) 

where   is the atomic volume of the (self) diffusing species, sintering  (positive according 

to Eq. (4.1) is the sintering stress, and R  is the radius of the spherical cap which relates to 

the cavity half size of cavitya  by sincavitya R = . Now, as interface 0 = , we have 

cavity interface   =  − <0, and thus self-diffusion will be directed from the bonded 

interface to the cavity surface and close the cavity accordingly.  

  When an arbitrary stress field is applied from faraway, the bonded segment is now 

stressed, so that the chemical potential change is therefore interface n  = − . If neglecting 

the Laplace pressure in Eq. (4.2), an applied tensile stress will reduce the chemical potential  
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at the bonded interface, thus leading to the self-diffusion from cavity to the interface and 

to the cavity growth. This is the classic Hull-Rimmer model [72]. Combining the Laplace 

pressure and the applied stress, we have  

( )cavity interface n sintering     =  − =  −  (4.3) 

If the applied tensile stress is larger (or lower) than the sintering stress, cavity grows (or 

shrinks). A more rigorous analysis for the Hull-Rimmer model should consider the 

chemomechanical equilibrium over the entire interface/surface, as solved by Chuang and 

Rice [85] and Chuang et al. [86], which will be used later in this section for our bonding 

fraction evolution equation. In our solid-state-bonding problem, n  is negative, so that the 

diffusion flux is always directed towards the cavity as depicted in Figure 4.1(c). This is the 

diffusive process for cavity closure.  

 The other process for cavity growth/shrinkage is the creep deformation in Figure 

4.1 (c). No analytical solution can be found in general, except for the Newtonian viscous 

solid for it is analogous to the elasticity problem when making the replacement of strain 

rates by strains. Just from a simple dimensional argument, one can see that the magnitude 

of the volume growth rate will be proportional to the effective creep strain rate in the 

surrounding material, with its sign governed by the mean stress. But the detailed 

dependence on the creep stress exponent and stress multiaxiality has to be determined from 

finite element simulations, as performed extensively by Needleman and Rice [73] and 

Sham and Needleman [74]. Their solutions can be used to establish curve-fitting equations 

for our bonding fraction evolution equation, as will be shown shortly below.   

 In the homogenization model by Tvergaard [76], a square array of cavities with size 

cavitya  and spacing cavityb  extends over the entire interface, so that we can define the degree 

of bonding by 
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2

2
1

cavity

b

cavity

a
f

b
= −  (4.4) 

Therefore, our bonding model will be based on the spatiotemporal evolution of the bonding 

fraction field, ( ),bf x t , where x  are the two coordinates spanning the interface.  

 For the diffusive process, we take a slight modification from the solutions presented 

earlier [75, 76, 85, 86], given by 
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where BD  is the interfacial diffusion coefficient, B  is the interface boundary thickness of 

several atomic sizes, Bk  is the Boltzmann constant, and T  is the absolute temperature. 

The factor of 1 bf−  in the numerator at the right hand side is introduced merely to 

regularize the divergence problem at 1bf → .  

 For the creep-controlled process, the solution of Sham and Needleman [74] is 

modified slightly to  
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 (4.6) 

where two dimensionless parameters are introduced for curve fitting to finite element 

simulations, 
3

2n n
 =  and 

( )( )
2

1 0.4319n n

n n


− +
= , n  is the stress exponent in a power-law creep 

constitutive law, ( )sgn  is the sign function, 
eff

creep  is the effective creep rate (J2 

component, positive definite), m  is the mean stress, and e  is the Mises stress. Whether 

the cavity grows or shrinks depends on if 0m   or 0m  . We have added a 



63 

 

multiplicative factor of 1 bf  to the left hand side of Eq.(4.6), without which the original 

Sham-Needleman equation only works when bf  is larger than a critical value (e.g., 0.4).  

 In realistic FSW conditions, the sintering stress can be neglected as it is usually too 

low (e.g., a few MPa) as compared to the applied stress. We can now rewrite Eq. (4.5) in a 

similar way to Eq.(4.6), given by 
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where NRL  is the Needleman-Rice length scale, 
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Neglecting a weak dependence on bf  and stress triaxiality, we have the following  
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from the comparison between the diffusive and creep-controlled processes. It should be 

noted that BD  has an Arrhenius dependence on temperature, and so is the creep rate. But 

their corresponding activation energies are very different, leading to a representative NRL  

contour plot in Figure 4.2(a) for AA6061-T6, with the constitutive parameters given in 

Table 4.1 and the diffusion parameters from Frost and Ashby [87]. Overlaid on Figure 4.2 

are the thermomechanical histories of several representative points on the workpiece-

workpiece interface during FSW, as will be discussed later in the next section. Moving 

towards higher stress and temperature, NRL  decreases dramatically, so that the relative 

significance from diffusive process drops sharply according to Eq.(4.9). Our preliminary 

calculations in Chapter 3 [8] uses a small cavitya  of 1 µm, which already finds little 

difference between the creep-controlled bonding evolution and the one governed by both  
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                                   (a)                                                           (b) 

Figure 4.2 (a) The contour plot of the Needleman-Rice length scale, NRL , with respect 

to the homologous temperature and normalized stress, which dictates the relative 

significance of diffusive and creep-controlled processes for cavity closure. (b) The 

corresponding contour plot of strain rates for AA6061-T6 aluminum alloy. Overlaid on 

these plots are the thermomechanical histories of three reference points (B, D, and E) 

from Figure 4.3(b). The orange markers denote the instant of tool front reaching these 

points, and the purple ones denote the condition of reaching full bonding for B and D 

and the condition of tool leaving point E. 
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Table 4.1 Constitutive parameters used in our CEL simulations of AA6061-T6 [88, 89]. 

An (s
-1) σref (MPa) n Q (kJ/mol) 

2.41×108   22.22 3.55 145 
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processes.  

4.3 Bonding prediction from CEL-based numerical simulations 

4.3.1 Model setup 

 The coupled-Eulerian-Lagrangian (CEL) finite element simulations were 

performed to compute the strain rate and temperature fields under the FSW process. 

Essential details on this approach, and its comparison to Computational-Fluid-Dynamics 

(CFD) simulations, have been presented in Chapter 2. As shown by the three-dimensional 

(3D) CEL model using Abaqus Explicit in Figure 4.3, the Eulerian part has a dimension of 

40 mm×30 mm×14.5 mm, including the workpiece domain (thickness of 13 mm) and the 

“void” domain (thickness of 1.5 mm), with a total of 85,760 EC3D8RT elements. The tool 

is modeled as a Lagrangian body with a circular bottom of radius a =6.5 mm and without 

the pin for the sake of simplicity. Velocity constraints are applied at model boundaries to 

avoid material escaping, while the connection between Lagrangian and Eulerian domains 

is through the Coulomb friction with a fixed friction coefficient of f =0.5 throughout this 

study.   

 The workpiece material can be divided into two parts in butt configuration for 

modeling the FSW process in Figure 4.3 (b), or into a cladding layer on top of a substrate 

in Figure 4.3 (c). The cladding thickness can also be varied systematically, and the example 

in Figure 4.3 (c) corresponds to a thickness of 1 mm. All three stages of FSW process were 

modeled, including plunging of the tool, dwelling, and welding (i.e., laterally moving the 

tool). The processing parameters are varied in the range of the rotational speed of   from 

600 to 1400 rpm, the welding speed of tV  from 1 to 3 mm/s, and the plunging depth of ph  

from 0.065 to 0.075 mm. The axial force, P , can be calculated afterwards. Additional 

simulations were also performed without the lateral motion, in order to validate an 

analytical solution (in Section 4.4) for the relationship between   and torque.  
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Figure 4.3 Finite element setup using the Coupled Eulerian-Lagrangian (CEL) approach 

for the FSW process. (a) Delineation of various Eulerian and Lagrangian domains in the 

model. (b) Cross-sectional view of the two workpieces with the dashed box being the 

tracking area. (c) The cladding-substrate interface with the dashed box being the tracing 

area. 
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 The material is modeled by the hyperbolic-sine creep law, given by: 

sinh exp

n

creep

creep n

ref

Q
A

RT






    
= −     

     

 (4.10) 

where nA  is a pre-factor, ref  is the reference stress, n  is the stress exponent, creepQ  is the 

activation energy, and R  is the gas constant. The test material of interest is a precipitation-

strengthened aluminum alloy, AA6061-T6, with the corresponding parameters given in 

Table 4.1 [88, 89]. Density of AA6061-T6 is taken as 2690 kg·m-3. Other 

thermomechanical properties used in the simulation are listed in Table 4.2 [44, 56]. The 

Taylor-Quinney factor that describes the fraction of plastic work to be converted to heat is 

taken as 0.6.  

4.3.2  Predicted bonding evolution in abutting workpieces 

 The computed strain rate, stress, and temperature fields from CEL finite element 

simulations can be used as inputs for the bonding evolution equations in Eqs. (4.5) and 

(4.6). As has already been shown in Chapter 2, the temperature field over the contact zone 

varies very slowly, but the strain rate and stress fields concentrate near the tool edge and 

are very sensitive to the interface stick-slip behavior. Therefore, a fine time step (practically 

found to be less than 1/100 of 2 ta V ) needs to be adopted when integrating Eqs. (4.5) and 

(4.6) explicitly.  

  For the five reference points marked in the rectangular tracking regime on the 

workpiece-workpiece interface in Figure 4.3 (b), the evolution of their bonding fractions is 

presented in Figure 4.4, with  =1000 rpm, ph =0.07 mm, tV =2 mm/s, and two initial 

bonding-fraction values of 
0

bf =0.01 and 0.2 (qualitatively representing a rough surface and 

a well-polished one). As reference points A-C are on the same height but at different x 

location, their responses are essentially the same except for the corresponding delay in 

time. As reference points B-E are at different depths, the deepest point E never reaches a 

meaningful bonding fraction, primarily due to the rapid decay of the strain field with 

respect to the depth. The final bonding fraction distributions in the tracking area under  
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Table 4.2 Thermomechanical properties for AA6061-T6 [44, 56] 

Temperature 

(K) 

Specific 

heat (Jkg-

1K-1) 

Young’s 

modulus 

(GPa) 

Poisson’s 

ratio 

Thermal 

conductivity 

(Wm-1K-1) 

Thermal 

expansion 

(10-6 K-1) 

298 945 66.94 0.33 162 23.5 

373 978 63.21 0.334 177 24.6 

422 1000 61.32 0.335 184 25.7 

477 1030 56.8 0.336 192 26.6 

533 1052 51.15 0.338 201 27.6 

589 1080 47.17 0.36 207 28.5 

644 1100 43.51 0.4 217 29.6 

700 1130 28.77 0.41 229 30.7 

755 1276 20.2 0.42 243 - 
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different rotational speeds are shown in Figure 4.5 with the same processing parameters as 

in  Figure 4.4 and 
0

bf =0.2.  

 The first critical observation from the bonding fraction evolution in Figure 4.4 and 

the final distribution in Figure 4.5 lies on the effects of 
0

bf . The bonding fraction does not 

change until the material points enters into the severe thermomechanical process zone. 

From Figure 4.4 (a), if a full bonding can be reached, not only the transition from 
0

bf  to 

unity is fast, but also the time for its occurrence is insensitive to 
0

bf . From the depth profile 

in Figure 4.5 (b), there exists a Heaviside-like behavior of “on” and “off” bonding. 

Correspondingly in Figure 4.5 (a), the transition from full bonding (yellow) to no bonding 

(blue with the initial value 
0

bf ) is sharp. The location of this on/off interface is insensitive 

to 
0

bf , but a lower value of 
0

bf  tends to lead to a long tail that extends far from the on/off 

interface. As mentioned in Section 4.2, our model does not have an explicit treatment of 

surface roughness. Although this appears to be a limitation of our model, various degrees 

of surface roughness only affects 
0

bf , and 
0

bf  has negligible effect on the predicted 

bonding extent. Consequently, these results conclude that the rate-determining process in 

bonding analysis should be the cavity closure step, but not the rough surface contact 

analysis (which is otherwise sensitive to 
0

bf ).  

 The second critical observation from these results pertains to the competition 

between diffusive and creep-controlled cavity closure processes. All these calculations in 

Figure 4.4 and Figure 4.5 are based on integrating Eq. (4.6). Under realistic processing, 

geometric, and material constitutive parameters used in this FSW analysis, the 

corresponding results by summing the integrations of Eqs. (4.5) and (4.6) have 

indistinguishable differences from Figure 4.4 and Figure 4.5 when using cavitya >1 µm. 

Cavities smaller than this size actually fall into the sintering behavior. A mechanistic 

understanding of such insignificant contribution from diffusive process can be derived 

from Figure 4.2, in which the thermomechanical histories experienced by reference points  
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(a)                                                            (b) 

Figure 4.4 The evolution of bonding fraction, bf , for the five reference points in Figure 

4.3 (b), based on the calculated strain-rate and temperature fields from CEL 

simulations. Two initial values, 
0

bf =0.01 and 0.2, represent initially smooth and rough 

workpiece-workpiece interface.(a) Reference points A, B, and C, moving away in x  

direction. (b) Reference points B, C, and E, moving away in the depth direction. 
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(a) 

 

(b)                                                                       (c) 

Figure 4.5 (a) Contour plots of the final bonding fraction with respect to varying   for 

the FSW process in Figure 4.3 (b), with tV =2 mm/s and ph =0.07 mm. (b) The 

corresponding bonding fraction distribution in the depth direction. (c) The bonding 

extent with respect to varying   when taking the critical bonding fraction for full 

bonding as 0.8. 
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B, D, and E (different depths) are plotted on top of NRL . The corresponding bf  evolution 

of these three points is given in Figure 4.4 (b). Reference point B is the first one to reach 

the full bonding state, followed by reference point D. On the three trajectories, orange 

markers indicate when the tool front reaches the x coordinate of these three reference 

points, and purple markers indicate when the full bonding is reached for B and D and when 

the tool end leaves E. If a material point experiences a long period of time in high 

temperature and high strain rate like B and D in Figure 4.2 (b), it rapidly reaches the full 

bonding. But reference point E never reaches the full bonding, essentially because the 

corresponding strain rate field experience by this point is too low. Also the entire 

thermomechanical trajectory is needed; knowing the start and end points is certainly 

insufficient as bonding is predicated from integrating Eqs.(4.5) and (4.6). For the 

successful bonding in referent points B and D, the corresponding NRL  is extremely low. As 

the relative significance of diffusive and creep-controlled cavity closure processes is 

dictated by ( )
3

NR cavityL a  in Eq. (4.9), it now becomes obvious that diffusive process has 

almost no contribution to the chosen FSW processing parameters. In other words, 

“diffusion bonding” as suggested by almost all solid-state-bonding studies is actually 

creep-controlled, but not governed by diffusive process.  

 For the sake of practical consideration and also noting the mesh size limitation, the 

critical value for the full bonding to take place is adopted as 0.8, as shown by the example 

in Figure 4.5 (b). From results in Figure 4.5 (c) and Figure 4.6, it is found that the bonding 

extent in the depth direction increases with the increase of tool rotational speed   (mainly 

because of the corresponding increase of the strain-rate level), with the decrease of tool 

traveling speed tV  (for a longer time in the severe thermomechanical process zone), and 

with the increase of plunging depth ph  (due to the increased stress level). These trends 

agree qualitatively with the experimental discussions in the introduction section. A 

question that naturally arises is the maximum bonding depth, as these predicted values are 

still less than half of the tool radius (6.5 mm here). The answer will be addressed from our 

analytical solution in Section 4.4.   
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(a)                                                               (b) 

Figure 4.6 The final bonding extent for the FSW process in Figure 4.3 (b). (a) Varying tV  

with  =1000 rpm and ph =0.07 mm. (b) Varying ph  with  =1000 rpm and tV =2 mm/s. 
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4.3.3 Predicted bonding evolution in cladding configuration 

A variant form of FSW that also finds widespread applications is the bonding for 

the cladding-substrate configuration in Figure 4.3 (c). The calculation procedure is the 

same as the above subsection, with the results given in Figure 4.7 and Figure 4.8 for a 

cladding thickness of d =1 mm. Results in Figure 4.7(a) correspond to the instant when 

the tool center arrives the right boundary of the rectangular tracking zone in Figure 4.3 (c), 

so that the adjacent area has not reached the full bonding because of insufficient time in 

the high strain-rate state. The bonding distribution along the y direction again shows a 

Heaviside-type transition with long tails extending to faraway whereas the sensitivity to 

0

bf  is found. With the increase of   or ph , or with the decrease of tV , the bonding extent 

in lateral direction increases, but all these results are close to the tool radius of 6.5mm for 

the range of processing parameters used in these studies. Increasing the cladding thickness 

will reduce the bonding extent dramatically, which will be elaborated later in Section 4.5. 

4.4 An analytical model for the prediction of bonding extent in FSW 

 In Chapter 2, based on the Hill-Bower similarity analysis [57-59] and the solution 

analogy between Newtonian viscous material and Hookean solid, we have developed an 

approximate yet analytical solution to relate the resulting torque and total heat generation 

rate to the stick-slip ratio of c a , as shown by the problem setup in Figure 4.9. In this 

chapter, based on the analytical solution in Chapter 2 and the bonding model in Section 

4.2, we now attempt to derive another approximate yet analytical solution to relate the final 

bonding extent to the processing parameters (such as the axial load and the tool rotational 

speed).  

 As shown in Figure 4.9, the interface shear stress is limited by the Coulomb friction 

stress,  
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(a) 

 

            (b)                                                                      (c) 

Figure 4.7 (a) Contour plots of the final bonding fraction with respect to varying   for 

the cladding problem in Figure 4.3 (c), with tV =2 mm/s and ph =0.07 mm. (b) The 

corresponding bonding fraction distribution along the dashed line in Figure 4.3 (c). (c) 

The bonding extent with respect to varying   when taking the critical bonding fraction 

for full bonding as 0.8. In these calculations, the cladding thickness is d =1 mm. 
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(a)                                                              (b) 

Figure 4.8 The final bonding extent for the FSW cladding process in Figure 4.3 (c). (a) 

Varying tV  with  =1000 rpm and ph =0.07 mm. (b) Varying ph  with  =1000 rpm 

and tV =2 mm/s. 

 

 

 

Figure 4.9 Our analytical model of the interface stick-slip behavior and the shear stress 

distribution. There exists an annular sliding zone ( c r a  ) in which the theoretical 

shear stress at infinite friction is larger than the Coulomb friction as determined from 

the normal pressure distribution. The red dashed curve represents our approximate yet 

analytical solution. The resulting strain rate field in the substrate provides the critical 

input for bonding analysis. 
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( )
2 2

1

2 1

f

z

P

a r a






 =

−
 (4.11) 

where f  is the friction coefficient. For infinite friction ( f =  ), the shear stress 

distribution that generates a rotational displacement field of the form of u r =  (i.e., 

exactly following the spinning rigid indenter) is given by 

( )

*

3 2

3

4 1
z

M r a

a r a
 


=
=

−
 (4.12) 

where the torque parameter 
*M  remains to be determined. Under finite friction, the shear 

stress distribution can be taken as the lower one of the above two solutions, as shown by 

the dashed red curve in Figure 4.9. Equating these two solutions at r c=  determines the 

value of 
*M . Therefore, the shear stress solution is approximately,  

( )

( )

2

2

2

, : stick
1

12
, :slip

1

f

z

a r a
r c

c r aP

a
c r a

r a

 









−
= 

  
 −

 (4.13) 

The resulting torque on the tool, as given by 
0

2
a

z zM rdr 
 


=  , can be written in a 

dimensionless function, 

( )
0

1

2
0.78

3

z
M c a

c a

M
c a

Pa =
=

 =    (4.14) 

as has been studied extensively in Chapter 2.  

 Now because the main processing parameters are  , ph , and tV , we need to find 

the dependence of the normalized torque, zM Pa , on   (which certainly needs an 

appropriate way to normalize). As tV a , we conduct additional numerical simulations 
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in Figure 4.3 with the removal of the lateral moving of the tool. The resulting relationship 

of zM Pa ~  is given in Figure 4.10, showing a reduction of torque with the increase 

of tool rotational speed, but the ordinate range falls within predictions in Eq.(4.14).   

 The elastic twisting contact solution for infinite friction is of the form in Eq.(4.12), 

leading to the following relationship between the rotation angle   and the torque [60]: 

3

3

16f

zM

Ga =
 =  (4.15) 

where G is the shear modulus. This solution works for 
f =   and thus 1c a → . In 

general, we need to multiply Eq. (4.15) by a dimensionless function ( )c a , 

( )3

3

16f

zM
c a

Ga 
 =   (4.16) 

 The friction coefficient does not explicitly enter into this dimensionless function 

due to the dependence of c a  on 
f . From the solution analogy between Newtonian 

viscous material and Hookean solid, strains in elastic solution will be replaced by strain 

rates, and shear modulus by viscosity, so that the corresponding solution for our problem 

is 

( )3

3

16

zM
c a

a



=   (4.17) 

where the shear viscosity is 1
2

ij

ij

ds

d
 =  as evaluated from the material constitutive law in Eq. 

(4.10).  

 Results from CEL simulations are given in Figure 4.11 for five different values of 

 . In the elastic solution of Eq. (4.16), when 0c a → , the rotation angle approaches 

infinity. Therefore, from the two limits: ( )1 1c a = =  and ( )0c a → → , Figure 

4.11 can be fitted to a tangent function of the form of 
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Figure 4.10 From CEL finite element simulations Figure 4.3 (but with the lateral 

motion turned off), the normalized torque, z fM Pa , is plotted against the tool 

rotational speed,  . 
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Figure 4.11 A dimensionless parametric group, combining  , a , zM , and workpiece 

material viscosity of  , is plotted against the stick-slip ratio of c a . Blue diamonds are 

CEL simulation results with five different values of  . Blue asterisk is the analytical 

solution at c a =1. The red dashed curve represents a fitting equation, to be used to 

construct our flowchart in Figure 4.13. 
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6.98 tan 1 1
2

c c

a a

    
 = − +    
    

 (4.18) 

Substituting Eq. (4.18) into Eq.(4.17), we now make a connection between c a  and  .   

 In Section 4.3, we have already shown that the diffusive process in Eq. (4.5) 

contributes insignificantly as compared to the creep-controlled process in Eq.(4.6). As the 

mean stress is negative in our FSW process, we rewrite Eq. (4.6) into a simplified form, 

( ) 01 ,effb m
b b creep

e

df
f f C n

dt






 
= −   

 

 (4.19) 

with 
0C  being a dimensionless function. Rearranging and integrating this equation gives 

( )

*

0 0
0

1

1

final
b

b

f t t
eff

b creep
f t

b b

df C dt
f f


=

=
=

−   (4.20) 

As shown by the strain rate and temperature fields in Chapter 2, the right-hand-side 

integrant is only large when the material point enters below the tool (or into the 

thermomechanical process zone). Thus the elapsed time can be approximated by 2 ta V , 

and ( ),eff

creep ix t  can take the highest value, ( ),max

eff

creep ix , over this entire elapsed time, 

leading to  

0

0 ,max

2
ln

1

final
b

b

f

effb
creep

b tf

f a
C

f V


  
  

−  

 (4.21) 

 For the FSW process, one primary interest is the prediction of bonding depth. For 

the steady state problem in Figure 4.12 (a), we only need to find ( ),max

eff

creep z . Contact 

problems have an inverse square root decay of the deformation fields, so that we introduce 

the following  
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 

   
   
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(4.22) 

where the dimensionless function ( )E c a  is introduced to consider the dependence on 

interface stick-slip condition (which does not permit analytical solution, thus requiring 

curve fitting for this dimensionless function). Combining all the above equations, we now 

have the final bonding fraction at a given depth of z by 

( )

( ) ( ) ( )

0

0 20

2
ln ln

1 1

final

b b

final

b b t

f z f a
C

f z f Vz c E c a

   
 +   

− −  
 (4.23) 

 Similarly, for the FSW cladding problem in Figure 4.12(b), the bonding extent in 

the lateral direction is derived as 

( )

( )

0

0 2 20

2

2
ln ln

1 1
,

final

b b

final

b b t

f y f a
C

y d c df y f V
E

c a a

   
 +   

+− −    
 
 

 
(4.24) 

in which the dimensionless function ( ),E c a d a  again needs to be curve fitted by 

comparing this equation to the bonding fraction calculations based on the actual strain-rate 

and temperature fields in CEL numerical simulations.  

 The key steps for the bonding fraction prediction are now summarized into the 

flowchart in Figure 4.13, as discussed below. 

(1) Given all the processing parameters ( , tV , and 
ph  or P ), material constitutive 

parameters in Eq.(4.10), and geometric parameters (a and tool shape). The most 

important ones are   and P , as they are easily and practically accessible in the 

FSW technique.  

(2) As the stick-slip ratio is not known a priori, an iterative procedure in the shaded 

box is needed.  
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Figure 4.12 Schematic illustrations of the coordinates, stick-slip behavior, and 

interfaces in our bonding analysis, in which (a) corresponds to Figure 4.3 (b), and 

(b) corresponds to Figure 4.3 (c). 
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Figure 4.13 A flowchart representing our approximate yet analytical solution from 

the processing, geometric, and material constitutive parameters to the bonding 

fraction evolution. 

 



86 

 

a. At the beginning of the ( )1K + -th iteration, we know ( )
K

c a .  

b. Determine the normalized torque from  ( )z
M

M
c a

Pa
=  , and the total heat 

generation rate from total zQ M=  (true only when the Taylor-Quinney 

factor is 
TQ =1).  

c. Our prior numerical simulations in Chapter 2 show the large thermally 

affected zone, so that the temperature near the tool can be calculated from 

max 0
2

totalQ
T T

ka
= + , where k  is the thermal conductivity, based on the 

Rosenthal solution for a circular zone of heat source on a half space [90]. 

d. Based on the mean contact pressure (because P is given) and the above 

temperature, we determine the corresponding material viscosity from the 

material constitutive law in Eq. (4.10).  

e. Using the normalized function ( )c a  in Eqs. (4.17) and (4.18) to obtain 

a new stick-slip ratio of ( )
1K

c a
+

.  

f. Check the convergence of ( ) ( )
1K K

c a c a
+
−  and determine if next 

iteration is needed.  

(3) Upon the determination of c a , we can use Eq. (4.23) or Eq. (4.24) to calculate the 

final bonding fraction of a given material point. The fitting equation for ( )E c a  

will be given later in Figure 4.15.  

4.5 Comparisons between numerical and analytical models 

 This section aims to validate the bonding extent prediction from comparing the 

analytical solution (using the flowchart in Figure 4.13) to the detailed calculations in 

Section 4.3 (using the CEL-simulated fields as inputs to the bonding fraction evolution 

equations in Section 4.2).  

 For the FSW process in Figure 4.13 (b) and the results in Figure 4.4 Figure 4.6, 

plotted in Figure 4.14 are the final bonding fraction distributions in the depth direction with 
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a wide range of   values. The numerical results are the same as in Figure 4.5(b). As 

explained in the previous section, the strain rate fields have a dependence on c a  that does 

not permit analytical solution. To this end, for each of these five   values, we can read 

their corresponding c a  values from CEL simulations, adjust the E value in Eq. (4.23) to 

find agreements between the solid and dashed curves in Figure 4.14, and thus obtain a 

relationship between E and c a , as presented in Figure 4.15. Also noting the form of 

( )c a , we can curve the discrete diamond markers in Figure 4.15 by  

2250 tan 1 3070
2

c c
E

a a

    
= − − +    

    
 (4.25) 

This fitting equation completes the flowchart in Figure 4.13.  

 For the FSW cladding process in Figure 4.3(c) and the results in Figure 4.7 and 

Figure 4.8, plotted in Figure 4.16 are the final bonding fraction along the lateral direction 

for different cladding thickness values. In Eq.(4.24) , the particular form of  ( )2 2 2y d c+  

is assumed because of the inverse square decay of the deformation fields upon contact. In 

spite of tuning the dimensionless function of ( ),E c a d a , predictions from our flowchart 

in Figure 4.13 show the same trends as the numerical results, especially for the thickness 

dependence. We choose a total of six different thickness values, and keep other processing 

parameters as  =1000 rpm, tV =2 mm/s, and 
ph =0.07 mm. It can be seen that there is a 

sudden “on/off” transition when d increases from 2 to 3 mm, exactly in the same manner 

as the z-axis distributions of bonding fraction in Figure 4.5 and Figure 4.6. Consequently, 

we can directly use the bonding extent in the FSW process as the critical cladding thickness 

in the FSW cladding process.  

 Upon the fitting and validation of our analytical solution and the flowchart in Figure 

4.13, we now aim to construct a bonding map with respect to the processing parameters. 

That is, with varying   and P  like in the actual applications, what is the corresponding  
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Figure 4.14 Comparisons between the CEL numerical simulation results in Figure 

4.5(b) and our analytical model for the bonding fraction distribution along the depth 

direction in the FSW setup in Figure 4.3(b). 

 

 

 

Figure 4.15 The dimensionless function, ( )E c a , in the flowchart of Figure 4.13. 
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Figure 4.16 The final bonding fraction distribution on the cladding-substrate interface 

along the dashed line in Figure 4.3 (c), with respect to various choice of cladding 

thickness of d . 
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bonding extent in FSW? Do we also see a sudden “on/off” transition between full bonding 

and no bonding? Can a process window be determined with respect to these input 

parameters? Answers to these questions are given in Figure 4.17 and Figure 4.18. In our 

CEL simulations, the tool plunging depth is prescribed, but the axial pressure can be 

calculated as a result. The predicted c a  and bonding extent for the FSW process with 

respect to   and P  is given in Figure 4.17 and Figure 4.18, respectively, where surfaces 

are from our flowchart in Figure 4.13 and discrete triangles correspond to five different   

values from CEL simulations in Figure 4.3 (b). The collapse of discrete triangles onto the 

surfaces validates the success of our analytical solution and flowchart analysis. These 3D 

plots resemble cliffs on a terrain map, indicating the sharp “on/off” transition as exactly 

have been seen in Figure 4.3 and Figure 4.7. With the increase of   and P , the bonding 

extent sees a rapid jump from zero to almost half of the tool radius. This upper bound is 

essentially due to the rapid decay of strain rate fields in the depth direction.  

 The bonding map in Figure 4.18 can be used to find the process window for the 

design and improvement of FSW processes. As a rule of thumb, the bonding extent sees a 

binary “on/off” transition, and the maximum bonding extent lies within the 

thermomechanical process zone, or simply half of the tool radius. Further validation of this 

bonding map requires additional FSW experiments as most of them in literature do not 

have direct bonding measurements. 

4.6 Conclusions 

 A mechanistic understanding of bonding behavior under various operation 

conditions of the FSW process is critical in its successful engineering applications. There 

are three main contributions in this work as shown below.  

(1) Bonding Model: Most solid-state-bonding models rely on rough surface contact and 

volumetric inter-diffusion for interfacial gap closure. Here we propose a completely 

different viewpoint, based on the well-established knowledge in grain boundary 

creep fracture of high temperature polycrystalline materials. The interfacial cavities 

will shrink under the combined action of sintering and applied compressive stresses 

via the Hull-Rimmer diffusive process, or under the creep-controlled deformation  
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Figure 4.17 The stick-slip ratio with respect to two processing parameters (axial 

pressure and tool rotational speed), obtained from the CEL numerical simulations 

of the FSW setup in Figure 4.3 (b) and our analytical solution based on Figure 4.13. 
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Figure 4.18 The final bonding extent on the workpiece-workpiece interface with 

respect to two processing parameters (axial pressure and tool rotational speed), 

obtained from the CEL numerical simulations of the FSW setup in Figure 4.3 (b) 

and our analytical solution based on Figure 4.13. 
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process. The competition between these two processes is dictated by the 

Needleman-Rice length scale, NRL . When plotting the thermomechanical histories 

of materials under FSW tool, one can thus immediately tell that diffusive process 

plays a negligible role in the bonding evolution. Thus, the solid state bonding under 

FSW relies mainly on the creep strain rate in the adjourning workpieces, weakly on 

stress triaxiality, and negligibly on interfacial diffusion.  

(2) Predicting bonding evolution from CEL simulation results: Using the calculated 

strain rate and temperature fields from CEL finite element simulations, we can 

predict the evolution of the bonding fraction. These results are insensitive to the 

initial bonding fraction, suggesting that a rough surface contact analysis be not 

needed. The bonding extent increases with the increase of tool rotational speed and 

plunging depth, or with the decrease of tool welding speed. The maximum bonding 

extent in the FSW process, as well as the maximum cladding thickness that can be 

made full-bonded in the FSW cladding process, is found to be about half of the tool 

radius.  

(3) Bonding Map and Process Window: Based on the Hill-Bower similarity analysis 

and the solution analogy between Newtonian viscous material and Hookean solid, 

we can derive an approximate yet analytical solution to predict the bonding extent. 

The resulting bonding map shows that the dependence of bonding extent on 

processing parameters (mainly   and P ) shows a sharp transition between no 

bonding and full bonding. The analytical prediction agrees well with numerical 

simulations, thus providing a process window for future design and applications of 

this FSW technique.  
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5 Micromechanical investigation of the role of percolation on 

ductility enhancement in metallic glass composites 

5.1 Introduction 

It is well known that the poor ductility of monolithic bulk metallic glasses (BMGs) 

arises from the sudden initiation of strain localization into shear bands and the catastrophic 

propagation of these unconstrained shear bands [91]. Bulk metallic glass composites 

(BMGCs) have been developed to overcome this ductility limitation by introducing a 

second phase, either ex situ or in situ, to the glassy matrix. Processing, characterization, 

and mechanistic studies have been extensively reported and reviewed in the past two 

decades [92-102]. For example, a microstructure comprised of the 

Zr58.5Ti14.3Nb5.2Cu6.1Ni4.9Be11.0 (at.%) BMG matrix and the dendritic-like crystalline 

second-phase is found to be effective in blocking the shear bands with the volume fraction 

of the crystalline phase of about 55% [92]. Mismatches in the thermal and mechanical 

properties of the BMG and second phases could facilitate the occurrence of multiple shear 

bands, and the propagation of these shear bands can be arrested by these second phase 

particles [93-95]. Following the processing-microstructure-property relationship in 

materials science, a multitude of BMGC studies aim at the correlation between the ductility 

improvement and the microstructural design (including phase selection, property 

mismatches, and topological information). Detailed shear band arrangements for BMGCs 

were obtained during tensile tests by using both scanning electron microscopy (SEM) and 

finite element simulations [96], which found that the mechanical property mismatches 

between the matrix and second phases could change the relative degree of deviatoric and 

hydrostatic stress fields near the second phases. Thus the shear stress concentration caused 

by the shear bands could be mitigated. When the volume fraction of the second phase can 

be systematically varied, a number of studies [97-102] found a nonlinear relationship 

between the ductility improvement and this volume fraction, which was further interpreted 

by the percolation theory.  

 In a two-phase heterogenous structure, a physical property that has opposite 

dependence on these constituent phases will show a sharp change when a percolation limit 
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is reached. For example, consider an electrically insulating matrix with a conducting 

second phase. With the increase of the volume fraction of the second phase, above the 

percolation limit, it is always possible to find out a connected path, albeit serpentine, of the 

second phase that shorts the circuit. The percolation limit, as schematically illustrated in 

Figure 5.1, depends on the dimensionality (2D or 3D) and morphology of the second phase. 

Such a view on the connectivity has motivated many BMG studies to correlate the 

effectiveness of ductility improvement to the percolation limit, since it is the blocking of 

shear bands that delays the failure.  

 Here we would like to point out three shortcomings of the percolation-limit-based 

explanation for BMGCs:  

(1) The shear bands in the BMG matrix are not randomly arranged, as mostly governed by 

the generally multiaxial stress state (e.g., mostly along 45º direction off the loading 

axis). The geometric way to block them effectively does not exactly correspond to the 

random connecting path in percolation analysis.  

(2) The local interaction between shear bands and the second phase critically depends on 

property mismatches between BMG and second phases (e.g., rigid particles leading to 

nucleation of shear bands tangent to the particle surface, but soft particles giving shear 

bands in radial direction). As notches and holes have been found to be beneficial in 

some metallic glasses, near the curved surface of the second phase, a large ratio of 

mean to Mises stresses can be achieved that delays the shear failure. This is again not 

in the percolation analysis.  

(3) Even with the second phase already in the percolation regime, the effectiveness of 

ductility improvement depends on the resistance to the impinging shear bands by the 

second phase. This will be elaborated below based on the results in Figure 5.2 and 

Figure 5.3.  

 Prior studies [97-102] are mostly focused on particles or dendrites as the second 

phase. In our recent experiment (details on processing and testing will be reported 

elsewhere), a Zr-based BMG phase was prepared by suction casting into a pure Ni foam, 

as shown in Figure 5.2. The volume fraction of Ni phase is about 11%, which is far less  
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Figure 5.1 Schematic illustration of the dependence of tensile ductility on the volume 

fraction of the second phase, together with the percolation limits in which the 

divergence corresponds to some physical properties that rely on the connectivity of the 

two constituent phases. 

 

 

Figure 5.2 (a) Pure Ni foam was used to prepare a BMG composite, in which the 

Zr-based BMG phase infiltrated into the open space in the foam. (b) SEM image 

shows some detailed features of the open-cell structure in the Ni foam. (c) The as-

cast rod of BMG-Ni composite. Note the same scale bar applies to both (a) and (c). 
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Figure 5.3 The engineering stress versus engineering strain curves for a Zr-based 

monolithic BMG and the BMG-Ni composite. 
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than the percolation limit for particulate composite. Nevertheless, the Ni foam is 

completely percolated. The engineering stress-strain curves are presented in Figure 5.3 for 

this BMG composite and the corresponding monolithic BMG. A ductility improvement of 

about 4% can be found. Although this is less than the ductility enhancement in dendritic 

BMGCs at about 50% volume fraction, it should be noted that the particle/dendrite BMG 

composites with similar volume fractions do not even exhibit noticeable ductility 

enhancement. We also note that the monolithic BMG has a yield strength of about 1.8 GPa 

and the pure Ni here yields at about 300 MPa, so that the strength of the foam-based 

composite agrees with a volume-fraction-weighted average of these two constituent 

phases. The moderate ductility enhancement in this fully percolated foam-based BMGC 

clearly depends on the resistance of the foam walls to the shear band propagation, which 

will be investigated in this work by a micromechanical finite element simulation.  

 The objective of this chapter is to investigate the role of percolation, as well as the 

mismatch in mechanical properties of the BMG matrix and the second phase, on the 

effectiveness of two types of second phases (i.e., particle and honeycomb) in blocking the 

shear bands through a thermo-mechanical finite element method. As will be discussed in 

Section 5.2, our method is based on a free-volume-based viscoplasticity model [91, 103], 

supplemented with the thermal transport analysis which provides a length scale and 

resolves the mesh dependence problem. Our simulation results in Section 5.3 will focus on 

the probability distribution of the effective shear strain in the BMG phase. We develop 

simple mechanistic models based on shear-force dipoles in bi-material and beam bending 

to understand these numerical findings. These results illustrate how factors other than 

percolation affect the ductility improvement in BMGCs. Finally, concluding remarks will 

be given in Section 5.4.  

5.2 Constitutive model for BMGs 

Among many constitutive laws for the deformation behavior of BMGs, a common 

feature is the introduction of a local structural measure, as well as the evolution of this 

order parameter in relationship to the inelastic deformation [91, 103]. The shear band will 

initiate if there is a certain softening mechanism with respect to this order parameter. 
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Different constitutive laws will not affect the simulation results of strain partitioning 

between the BMG and the second phases, and among the shear bands, provided the model 

has a physically meaning length scale. Along this line, we choose the multiaxial 

generalization of Spaepen’s free volume model [91, 103].  The total strain rates are 

decomposed into elastic and plastic parts by 

elastic plastic

ij ij ij  = +   (5.1) 

Where 
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and 
ij  is Kronecker delta function, E the Young’s modulus,   Poisson’s ratio,   the 

frequency of atomic vibration, 
fv  the average free volume per atom, 

*v  the critical volume, 

  a geometric factor of unity,   the atomic volume, 
mG  the activation energy for 

atomic jumps, 
ij  the stress tensor, 

e  the Mises stress, 
ijs  the deviatoric stress tensor, 

Bk  the Boltzmann constant, and T  the absolute temperature. The second exponential term 

in Eq. (5.3) is the Arrhenius dependence, the first exponential term provides additional 

volume for atomic jumps, the hyperbolic sine function describes the bias to the activation 

energy by the shear stress, and the last term assumes the flow directions are proportional 

to the deviatoric stress tensor.  The free volume is a dynamic order parameter and evolves 

by the competition between a stress-driven creation process and a diffusional annihilation 

process, given by 

*
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 (5.4) 

where 
Dn  is the number of atomic jumps (usually taken to be 3~10) that are needed to 

annihilate a free volume of 
*v , and an effective modulus is 
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The shear-stress-driven process for the free volume creation in Eq.(5.4) will reduce 

the viscosity in Eq.(5.3), thus providing a strain softening mechanism. Consequently, strain 

localization into narrow shear bands can be understood as a constitutive instability. Since 

our objective is on a quantitative prediction of shear band strain, we note that predictions 

of the above model depend on the mesh size since it does not have a length scale. We can 

relate the rate of the plastic work to the heat transfer by 

2

p
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P TQ ij

T
C k T

t dt


  


=  +


 (5.6) 

where   is the material density, PC  is the specific heat, k  is the thermal conductivity, 

and 
TQ  is the Taylor-Quinney coefficient that describes the fraction of the plastic work 

that is converted to heat. The free volume model in Eqs. (5.3) and (5.4) has been 

implemented into a commercial finite element software, ABAQUS, by the user-defined 

material (UMAT) subroutine. The integration scheme is based on a fully implicit 

formulation. With the addition of Eq. (5.6), since the thermal transport analysis is already 

integrated in ABAQUS, we can merely adopt an explicit scheme for the last term in Eq. 

(5.6), which allows us to easily modify the UMAT code in [103] for the thermomechanical 

model in this work.  

 Our finite element simulations have a length scale,  

m
BG k T

H

P

k
L e

C 


=  

(5.7) 

that governs the shear band width. Using 
mG ~10-19 J and the parameters in Table 5.2, 

this length is found to be about 10 μm. Individual phase sizes in BMGCs are typically much 

larger than this, so that a fine mesh that is needed to resolve the length scale in Eq. (5.7) 

gives rise to significant computational costs. It is found that, through our numerical 

simulations, adjusting 
mG  and the mesh size proportionally to HL  will not change the 

predicted shear-band strain if averaged through the shear band thickness direction. 
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Consequently, our simulations presented in Section 5.3 are all based on a mesh resolution 

of 0.1 mm.  

5.3 Numerical simulation results 

The free-volume-based thermomechanical finite element framework allows us to 

systematically study various aspects of the microstructural information. The schematic 

illustrations in Figure 5.4 (a) and Figure 5.4 (b) will be used to investigate the effect of 

property mismatches between the BMG matrix and the second phase on the shear band 

arrangements. The setups in Figure 5.4 (c) and Figure 5.4 (d) will help us test the synergy 

between percolation and shear resistance on the shear bands. The volume fraction can be 

changed by adjusting the geometrical parameters on these plots. The following results 

adopt the constitutive parameters for a Zr-based BMG (Table 5.1) and Mises plasticity for 

Ni (Table 5.2). Other parameters not included in Table 5.1 and 5.2 include the heat 

conduction length, as has been discussed in the preceding section, and the initial free 

volume, taken as  

*

0
0.05f t

v v
=
=  (5.8) 

It should be noted that a quantitative experimental calibration of the parameters in 

the Spaepen model still remains elusive. On one hand, the unit events in this model, being 

atomistic jumps into nearby vacancies, could be generalized to cooperative motion of shear 

transition zones (STZs). However, the STZ model has quite complicated kinetic processes 

that are not feasible to deal with in a constitutive modeling framework (e.g., stochastic 

processes must be incorporated). On the other hand, regardless of the debates on the 

atomistic mechanisms, most available models lead to the strain localization via the 

constitutive instability (softening being a quintessential one). To this end, the generalized 

Spaepen model in the previous section can be regarded as a phenomenological approach.  

 The shear-band initiation site is found to depend on the stiffness of the second 

phase, as shown by the Ni and the rigid second phases in Figure 5.5. Contours of SDV1, 

corresponding to ( )*

fv v , together with the displacement field (with a magnification  
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Table 5.1 Representative values for material parameters in the free volume model 

of the BMG phase. 

Parameters Value 

Reference stress (GPa), 0 2 Bk T =   0.32  

Young’s modulus 290.6 0  

Yield stress 5.8 0  

Poisson’s ratio 0.333 

Density (kg·m-3) 6834  

Specific heat (J·kg-1K-1) 320  

Thermal conductivity(W·m-1K-1) 4.8 

Thermal expansion coefficient(K-1) 10.1×10-6  

Reference temperature (K) 298  

Table 5.2 Representative values for material parameters in the conventional Mises 

plasticity model of the Ni phase. 

Parameters Value 

Reference stress (GPa), 0 2 Bk T =   0.32  

Young’s modulus 503 0  

Yield stress 1 0  

Poisson’s ratio 0.3 

Density (kg·m-3) 8908  

Specific heat (J·kg-1K-1) 440  

Thermal conductivity(W·m-1K-1) 90.7 

Thermal expansion coefficient (K-1) 13×10-6  

Reference temperature (K) 298  
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                                                   (a)                                              (b) 

 

 

  

                                    (c)                                                             (d) 

Figure 5.4 Schematic illustration of the BMG-composite model with various 

microstructural features, in which the red regime represents the BMG phase and the 

gray regime represents the crystalline second-phase. (a) One inclusion model with 

H=2.5mm and R=0.4mm. (b) Five inclusion model with H=2.5mm and R=0.3mm. 

These two models will be used to investigate the shear-band nucleation behavior. (c) 

Particulate composite model with L=19mm and B=10mm. The volume fraction of the 

second phase can be tuned by varying both l and r. (d) Honeycomb composite model 

with L=19mm and B=10mm, to mimic the foam-based composite in Figure 5.2. The 

thickness t can be varied to change the volume fraction. 
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factor of unity) exhibit the geometrical arrangements of these shear bands. For the Ni 

second phase, shear bands take place from the interface and emanant outwards, so that their 

blockage needs to be realized by arranging other second-phase particles in these 45º 

directions. When the second phase is rigid, shear bands are found to be tangent to the 

interface, so that arranging other rigid particles in 45º directions is futile; they need to be 

translated upward or downward by one radius distance. Following the results in Figure 5.5 

(a), we now align a few soft particles in the two 45º directions and also vary the elastic 

constants of these particles from 1ENi to 5ENi, as shown in Figure 5.6. Comparing Figure 

5.5 (a) to Figure 5.6 (a), it is found that, instead of having a major shear band running along 

the centers of these particles, multiple shear bands appear and eventually the most strain-

localized shear band will be selected as the one off from the centerline of these particles. 

Comparing Figure 5.5 (b) to Figure 5.6 (c), it is found that the increase of the stiffness of 

the second phase significantly reduces the strain localization and simultaneously facilitates 

the initiation of multiple shear bands. A convenient way to illustrate the degree of shear 

band blockage is given in Figure 5.7, by plotting the volumetric probability of the Mises 

strain in the BMG matrix. These three cases correspond to those in Figure 5.6. Note the 

logarithmic scale in the ordinate. The vast majority in the BMG matrix has the strain 

magnitude around the applied macroscopic strain (being 0.1 in Figure 5.7), while a low 

volumetric fraction in the BMG matrix has extremely large shear strain in the shear bands. 

Because the BMGC ductility is governed by these extreme cases, we see that the stiffness 

increase of the second phase, i.e., from Figure 5.7 (a) to Figure 5.7 (c), reduces the tails at 

the large strain limit and thus delays the potential failure in these shear bands. From the 

above simulation results in Figure 5.5-Figure 5.7, we can conclude that, to effectively block 

shear bands, any possible shear-band line or plane (e.g., two 45º directions off the loading 

axis in uniaxial tests) should strike through the second phase. Also the shear-band 

resistance in the second phase depends synergistically on the stiffness, shape, and density 

of the second phase. A simple mechanistic analysis is given next in Figure 5.8.  

When a propagating shear band is impinged at the interface between the BMG 

matrix and the second phase, the resulting stress field can be approximated by that caused  
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                                               (a)                                                          (b) 

Figure 5.5 From the geometric setup in Figure 5.4 (a), the shear-band nucleation site 

and the subsequent propagation are sensitive to the mechanical properties of the second 

phase: (a) with Ni being the second phase, and (b) with the second phase being rigid. In 

these contour plots, SDV1 represents the normalized free volume. 

 

 
 

                          (a)                                                  (b)                                            (c) 

Figure 5.6 From the geometric setup in Figure 5.4 (b), the initiation and propagation of 

shear bands exhibit a strong dependence on the mechanical properties of the second 

phase: (a) with Ni being the second phase, (b) the same as Ni but with a three-times 

increase of the Young’s modulus, (c) with a five-times increase of the Young’s 

modulus. All these figures are plotted when the macroscopic applied strain equals to 

0.1. 
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                                      (a)                                                               (b) 

      

                                      (c) 

Figure 5.7 Corresponding to the simulation results in Figure 5.6, the probability 

distribution of Mises strain in the BMG phase is plotted when the macroscopic applied 

strain equals to 0.1. With the increase of the Young’s modulus of the second from that 

of Ni to three-times and five times, it becomes less likely to find out the location in 

BMG phase with large shear strain, meaning that the stiff second-phase suppresses the 

extent of shear localization in the BMG phase. 
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(a) 

 

  

(b) 

Figure 5.8 Schematic illustration of the BMG-composite models and the mechanical 

response on the second phase. (a) For a shear force dipole applied on the circular 

second phase, the deformation resistance (see text for the mathematical representation) 

scales as 1/R2. Thus the lower the volume fraction of the second phase, the smaller its 

deformation resistance and the higher the effective shear strain of the neighboring shear 

band that applies this shear force dipole to the second phase. (b) In the honeycomb 

configuration, the bending resistance scales as 1/t3, so that a low volume fraction has a 

reduced resistance to the neighboring shear band propagation. 
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by an interfacial shear-force dipole in Figure 5.8 (a). In the plane strain condition, subjected 

to a pair of line forces at a spacing of  , the resulting shear strain field scales as [104], 

2

2 *

2
sinR

F

R bG



 


=  (5.9) 

where R is the distance to the location of the applied dipole, b is the out-of-plane thickness, 

and 
*G  is the effective shear modulus. The product of F  is proportional to SB

BMG H eE L  , 

so that the shear resistance scales as 21 R , or equivalently speaking, inversely to the 

volume fraction of the second phase. Note 
*G  also depends on the size of the second 

phase. For a bimaterial, ignoring the difference in Poisson’s ratios, we can write  
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Borrowing the solution from the indentation response on a film/substrate system [105], we 

can write,  
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which includes an exponential dependence on the ratio of shear-band-induced offset to 

second-phase size. The dimensionless factor   of order unity needs to be determined 

numerically. As R decreases, the contribution from the second phase stiffness reduces 

rapidly. The joint result of 
2R  and 

*G  in Eq. (5.9) leads to a schematic drawing of the 

maximum shear band strain versus the second phase volume fraction 
spV  (

partcileV  here 

denoting the particulate second-phase) in Figure 5.8 (a), roughly scaling as 
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(5.12) 

 For the honeycomb composite in Figure 5.4 (d), the resistance to the shear band can 

be estimated from a cantilever beam subjected to a torque [104],  

max

3

6
bending

F l

Ebt


 =  (5.13) 

which relates the maximum bending strain to the beam length l, thickness t, and out-of-

plane width b. When the cell size of the honeycomb remains unchanged, the volume 
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fraction of the second phase will be proportional to the wall thickness t. Consequently, the 

maximum shear-band strain will scale with respect to the second phase volume fraction by,  

max

, 3

1
~e BMG

honeycombV
  

(5.14) 

as schematically shown in Figure 5.8 (b).   

 In addition to the percolation analysis, the two relationships in Eq. (5.12) and Eq. 

(5.14) provides the ductility dependence on the volume fraction, as will be validated by our 

simulation results in Figure 5.9-Figure 5.14. In these simulations, the BMG matrix and the 

Ni second phase adopt the material parameters in Table 5.1 and 5.2, respectively. For the 

particulate BMGC, we keep l as a constant in Figure 5.4 (c) and change the volume fraction 

by adjusting the particle size. The corresponding strain and temperature contours with 

different volume fractions are given in Figure 5.9 and Figure 5.10, respectively. As the 

trend predicted in Eq. (5.12), the increase of the volume fraction leads to an increased 

effectiveness of blocking the shear bands, as well as an increased trend of shear band 

multiplication. Accordingly, the temperature field becomes less localized and its 

magnitude also reduces. The volume probability of the shear-strain distribution in the BMG 

matrix is given in Figure 5.11. The tail at the highest shear-band strain reduces both in 

height of probability and in extent of shear strain, indicating an increased effectiveness of 

ductility improvement.    

 Similar trends have been found for the honeycomb case in Figure 5.12-Figure 5.14. 

In this case, the volume fraction of the second phase is varied by changing the wall 

thickness while the cell size remains a constant in Figure 5.4 (d). With the increase of 
spV

, more shear bands will form, meaning that thicker walls are more effective in reducing the 

shear localization. Compared to the particle BMGC in Figure 5.9-Figure 5.11, above a 

certain volume fraction (roughly 20% here), the honeycomb BMGC is more effective in 

resisting shear bands than the particle BMGC. As shown in Figure 5.14, the highest shear-

band strain reduces from 3.0 to 0.5 when 
honeycombV  increases from 10% to 60%. This 

comparison can also be seen in Figure 5.15, which plots the maximum shear-band strain  
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Figure 5.9 Contour plots of the maximum in-plane principal strain in BMG-composite 

model of Figure 5.4 (c), when the applied macroscopic strain equals to 0.13. The volume 

fraction of the Ni phase ranges from 10% to 90% as labeled. 

 

 
Figure 5.10 Contour plots of the temperature field in BMG-composite model of Figure 

5.4(c). The volume fraction of the Ni phase ranges from 10% to 90% as labeled. It should 

be noted that these snapshots were taken at different applied strains than those in Figure 

5.9. 
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Figure 5.11 Corresponding to the simulation results in Figure 5.9, the probability 

distribution of Mises strain in the BMG phase is plotted when the macroscopic applied 

strain equals to 0.04. Only the portion of the BMG phase with the Mises strain larger than 

0.04 is included in these probability plots. The probability at high Mises strain reduces as 

the volume fraction increases, meaning the shear bands are more effectively blocked and 

thus have reduced shear-strain magnitude. Red-dotted curves provide a logarithmic fitting 

and thus gives the extent of the maximum shear-band strain. 
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Figure 5.12 Contour plots of the maximum in-plane principal strain in the honeycomb 

BMG-composite model of Figure 5.4 (d), when the applied macroscopic strain equals to 

0.13. The volume fraction of the Ni phase ranges from 10% to 90% as labeled. 

 

 

 
Figure 5.13 Contour plots of the temperature field in the honeycomb BMG-composite 

model of  Figure 5.4 (d). The volume fraction of the Ni phase ranges from 10% to 90% as 

labeled. Note that these plots use different legend bounds. As the ductility is enhanced, 

the temperature “localization” becomes more “diffused”. 
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Figure 5.14 Corresponding to the simulation results in Figure 5.12, the probability 

distribution of Mises strain in the BMG phase is plotted when the macroscopic applied 

strain equals to 0.04. The probability at high Mises strain reduces significantly as the 

volume fraction increases. Comparing these results to Figure 5.11, it can be concluded 

that the honeycomb composite is more effectively in reducing shear band strains than the 

particulate composite. Again red-dotted curves provide a logarithmic fitting and thus 

gives the extent of the maximum shear-band strain. 
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Figure 5.15 The maximum shear-band strain in the BMG phase as a function of the 

volume fraction of the second phase for the particulate and honeycomb composites when 

the macroscopic applied strain equals to 0.04. These datapoints are essentially the 

rightmost limits in Figure 5.11 and Figure 5.14, as obtained from the red-dotted 

logarithmic fitting curves. Again it can be concluded that the honeycomb composite is 

more effectively in blocking the shear-band propagation. 
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 (i.e., tails in Figure 5.11 and Figure 5.14) for these two types of BMGCs. The tails in 

Figure 5.11 and Figure 5.14 can be fitted to a logarithmic decay, which resembles the 

weakest-link-type failure analysis in brittle solids. The maximum shear-band strain is 

obtained from the dashed fitting curves. Trends in Figure 5.15 are in good agreement with 

the comparison of the two trends in Eqs. (5.12) and (5.14). 

5.4 Conclusions 

 A free-volume-based thermomechanical model has been implemented into a 

nonlinear finite element framework through a user-defined material subroutine in 

ABAQUS. Numerical simulations have been conducted to investigate the role of 

microstructure and property mismatches on the effectiveness of the second phase in 

resisting the strain localization in the BMG shear bands. Main observations and 

conclusions are as follows: 

1) Shear-band initiation locations and their propagation directions in BMGCs under 

uniaxial tension are significant influenced by the stiffness of the second phase 

particles. With a low second-phase stiffness, the shear band would like to emanant 

from the interface and then has to be blocked by other second phases lying in 45º 

directions from the center one. For BMGCs with an extremely high second-phase 

stiffness, the initiated shear bands are tangent to the interface.  

2) The resistance to the impinging shear band relies on both the second phase stiffness 

and some geometric parameters such as the particle size and the cell wall thickness. 

For our 2D cases, closed-form estimates are derived to correlate the dependence of 

the maximum shear-band strain to the volume fraction.  

3) Through numerical simulations on two types of BMGCs, it can be concluded that 

along with the increase of the second-phase volume fraction, the BMG strain field 

will localize in more bands during tension, and at the same time temperature bands 

become thicker and finally turn into almost uniform distribution. Also, under the 

same volume fraction, the honeycomb BMGC is much more efficient in promoting 

the ductility than the particle BMGC.  
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4) Numerical simulations and approximate relationships in Eqs. (5.12) and (5.14) 

show the same trends in Figure 5.15, which also agrees with our recent BMGC 

made from a Ni foam (in which percolation limit is clearly reached despite the low 

volume fraction of about 11%). Consequently, the percolation analysis in Figure 

5.1, the shear-band resistance study in Figure 5.15, and foam-based BMGCs in 

Figure 5.2 should synergistically be investigated so as to determine the ductility 

enhancement.  
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6 Conclusions and perspectives 

 As concluding remarks, the main objective of this dissertation work is to understand 

the mechanics of friction stir welding by using both computational and analytical methods. 

To achieve this goal, a series of thermo-mechanical finite element models and analytical 

models have been developed to investigate the tool-workpiece stick-slip conditions and 

workpiece-workpiece bonding formation. The summary is as follows: 

(1) Tool-workpiece stick-slip conditions are investigated through both numerical 

simulation and analytical interpretation. We have employed the Coupled Eulerian-

Lagrangian (CEL) method to simulate the FSW process and predict the interfacial 

stick-slip ratio, torque and heat generation rate, comparison is made between CEL 

simulation results and outcomes obtain through CFD methodologies with different 

frictional boundary conditions. Based on the Hill-Bower similarity relationship in 

the contact analysis, an analytical model is developed to prove why a constant stick-

slip fraction will be developed in the steady state, to correlate the stick-slip fraction 

to processing parameters such as the tool spin rate, and further to derive 

dimensionless functions for torque and heat-generation-rate predictions. Pros and 

cons of various numerical approaches in predicting stick-slip are discussed, and our 

analytical model has been found to agree well with our numerical simulation and 

literature experimental results. These analyses provide the critical strain-rate and 

temperature fields that are needed for the bonding analysis. 

(2) A critical assessment of various solid-state-bonding mechanisms is established for 

friction stir welding (FSW) processes of engineering alloys. For the wide spectrum 

of material constitutive laws and FSW processing conditions examined and 

employed in realistic applications, the thermomechanical history on the workpiece-

workpiece interface traverses in the creep-dominated regime for the 

growth/shrinkage of interfacial cavities. The evolution of the bonding fraction 

relies mainly on the creep strain rate in the adjourning workpieces, weakly on stress 

triaxiality, and negligibly on interfacial diffusion. 
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(3) Based on the solid-state bonding mechanism in friction stir welding that has been 

investigated, we derive a general modeling framework of bonding fraction 

evolution, which directly depends on the stress, strain rate, and temperature fields 

near the interface. The full field information computed by finite element 

simulations is used as inputs to assess the evolution and extent of bonding fraction 

at the workpiece-workpiece interface. Based on the stick-slip contact analysis, an 

approximate but analytical solution has been developed to derive the bonding 

fraction field from the given processing, geometric, and material constitutive 

parameters, and the predicted ultimate bonding extent with respect to these 

parameters becomes a figure of merit for the study of processing window for 

industrial applications and design of the FSW process.  

 Apart from investigations on friction stir welding, ductility enhancement in metallic 

glass composites has also been studied in the thesis. A thermo-mechanical finite element 

method based on the free volume model and plasticity-induced heating is proposed to 

investigate the inhomogeneous deformation behaviors of bulk metallic glass. We 

demonstrate that an enhanced ductility can be realized in a BMGC made from crystalline 

Ni foam (completely percolated even with a volume fraction of about 11%), suggesting the 

resistance in the second phase to the impinging shear-force dipole from neighboring shear 

bands be the dominant factor for such a ductility improvement. The shortcomings of 

percolation approach, as well as the synergistic effects of microstructure and mismatches 

in mechanical properties, are investigated. The effectiveness of ductility improvement is 

demonstrated by calculating the probability distributions of the shear-band effective strain. 

 This dissertation presents a couple of original works on mechanics of the friction 

stir welding investigation, although many insightful results are obtained, these works can 

be further extended along following lines: 

(1) Experimental validation of bonding map. As mentioned above, predictions on 

bonding condition at workpiece-workpiece interface with respect to vary operation 

parameters was established and process window could be found for the design and 

improvement of solid-state welding technique. Corresponding experiments should 

be conducted to validate the bonding map under different operation parameters. 
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(2) Workpiece-workpiece interface interaction investigation for dissimilar materials. 

Friction stir welding are widely used to joint dissimilar materials, such as steel and 

aluminum, current procedure for solid-state-bonding mechanism determination 

could be extended to study the bonding formation mechanism for dissimilar 

materials.  

(3) Predictive modeling of ductile fracture in metal joining parts. Physical and 

mechanical drawbacks such as voids, flaws and residual stresses that are introduced 

during joining procedures are key factors that will finally lead to structural failure 

in practical application, a microstructure based finite element simulation that utilize 

the CPFEM and the constitutive model which could describe the behavior of 

progressively cavitating solids will be applied to investigate the ductile fracture 

resistance of weld part.  
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