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ABSTRACT 

This work investigates the nonlinear oscillatory behaviors of multi-machine 

power systems. New model-based and measurement-based approaches are proposed for 

stability analysis and control of nonlinear oscillations. 

For stability analysis, a recently proposed model-based nonlinear oscillation 

analysis method, nonlinear modal decoupling (NMD), is investigated on its ability in 

capturing the stability information of a multi-machine power system. From the 

differential-equation model of the power system, the NMD inversely constructs a set of 

1-degree-of-freedom nonlinear oscillators, referred to as decoupled oscillators or 

subsystems, with each one corresponding to an oscillation mode of the original system. It 

is shown that retaining high order polynomial terms in the differential equation of each 

decoupled oscillator can make it more accurately represent the nonlinear modal dynamics 

and conditions of stability regarding the corresponding oscillation mode. For power 

system analysis, keeping the polynomial terms up to the 3
rd

-order during the decoupling 

is acceptable for the purpose of approximating assessment for transient stability. A 

transient stability analysis approach is proposed to apply the NMD for early warning of 

transient instability caused by inter-area oscillations. This new approach simplifies the 

real-time monitoring of the whole power system to the monitoring of only a few critical 

modes by checking the dynamics of the corresponding decoupled oscillators and their 

stability boundaries. Thus, when a critical oscillation mode is going to evolve into a mode 

of instability, this approach can provide early warning to the power system operator.  
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For stability control, a direct damping feedback control method is proposed to 

control the damping ratio of a target dominant mode to closely follow a pre-set value by 

utilizing power converter-interfaced energy resources, e.g. battery-based energy storage 

devices. The direct damping feedback controller is designed to consist of a proportional-

integral controller, a low-pass filter and a power system module that includes a reduced 

single-oscillator power system equivalent on the target oscillation mode and its 

measurement-based damping estimation algorithm. The parameters of the PI controller 

are optimized by considering the trade-off between the requirements of robustness and 

control performance. The power system module is represented by a transfer function 

based on the “zeroth-order” parametric resonance phenomenon. By identifying a 

nonlinear oscillator to fit dynamics of the target mode under both small and large 

disturbances, the measurement-based real-time damping estimation algorithm provides a 

feedback signal to the direct damping feedback controller. Numerical studies on the 48-

machine Northeast Power Coordinating Council system validate the effectiveness of the 

proposed damping control method.  

 

Keywords: Nonlinear oscillation, nonlinear modal decoupling, damping 

estimation, damping control, power systems. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivation 

Modern power systems are sometime operated close to their stability limits. Care 

must be taken in such operating conditions to avoid driving the system to cross any limit; 

otherwise, equipment failures or protective actions can be triggered to cause power 

outages or even a catastrophic blackout. In fact, a real-life event of power system 

instability is often developed from some critical oscillation modes. For instance, before 

the occurrence of the August 10, 1996 Western Interconnection Blackout, poorly-damped 

sustained oscillations around 0.26Hz were observed, which later triggered system 

protections and islanding of the interconnection and led to interruption of the electricity 

service with more than 7 million customers [1]. Similarly, in the August 14, 2003 

Blackout, a lack of adequate real-time situational awareness resulted in inadequate 

reliability tools and backup capabilities and many oscillation events accelerated the 

spread of the blackout [2].  

To this end, many tools have been proposed to signal an early warning of 

instability and provide mitigation strategies to the system operator. Numerical time-

domain simulation on “what-if” scenarios is a widely-adopted approach by power 

industry for identification of potential transient instabilities, whose results are accurate 

but model- and contingency-dependent. On the other hand, finding an analytical solution, 

even approximately, for a high-dimensional nonlinear multi-oscillator system like a 

multi-machine power system has been a significant challenge [3]. When simulating a 
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large-scale power system having generators coupled through a complex network and 

interacting with each other nonlinearly, numerical methods can be very time-consuming 

in finding a qualitative stable or unstable judgment and may not provide much margin 

information, which is however critical for determining a control action [4].  

Many high-performance computing approaches have been proposed to speed up 

power system transient stability simulation, but currently they are not yet ready for 

control room applications [5]. Hybrid approaches using both PMU measurements and 

system dynamical models to online monitor system dynamics and generate an early 

warning signal based on the information gathered online or prepared offline [6]-[10]. In 

addition, eigenvalues calculated from a linearized dynamical model were used to identify 

the potential cause of instability in real time [11]. Each inter-area oscillation model is 

associated with a cut set that partitions generators of the system into two oscillating 

groups, which can be told from the shape of the mode and might become out of step to 

lose transient stability under a large disturbance [12]. 

The nonlinear modal decoupling (NMD) method, which inherits the basic idea of 

the normal form theory, provides a new paradigm for stability analysis of multi-oscillator 

systems [13]. The traditional normal form methods try to generate a formally linear 

system of the original system by changing the coordinates of the state space [14], [15]. 

Comparatively, the NMD aims at a decoupled nonlinear system consisting of a desired 

number of independent 2
nd

-order nonlinear oscillators, each of which is essentially a 1-

degree-of-freedom (DOF) system, to approximate the dynamics of a given coupled 

complex multi-oscillator system. Each decoupled oscillator is corresponding to a 
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nonlinear oscillation mode about which the system dynamics are retained. Henceforth, 

the analysis on the original system is broken down into the analysis on individual, 

decoupled oscillators or nonlinear modes, which is much easier than the analysis on the 

original system. For instance, for a power grid connecting many generators, the modal 

dynamics with respect to different electromechanical modes may have relatively weak 

couplings or interferences unless significant resonances occur between some modes. 

Thus, the oscillators on modes are naturally decoupled in a certain space, and the NMD is 

applied to find the coordinate transformation from the original state space to such a new 

space, so that modal and stability analyses can be conducted more easily. 

To make such implementation successful, it is necessary to verify the consistency 

between the stability analysis on the original system and on the decoupled system by the 

NMD. Under a small disturbance, i.e. when the system state slightly deviates from its 

stable equilibrium point (SEP) and the system’s dynamic behavior is almost linear, it is 

natural to consider whether the decoupled system after an NMD transformation can 

generate the same trajectory from the given initial state as the original system, and NMD 

has been tested to be more accurate than normal form-based method in terms of 

assessment on transient stability of the original system [13]. However, under a large 

disturbance, especially when the system state is close to its stability boundary, i.e. the 

boundary of the region of attraction (ROA) of its SEP, and nonlinear dynamics become 

significant, the validity of NMD depends on the mathematical expression and its order 

used for the decoupled system. To determine if the state after a large disturbance is still 

within the ROA, it is crucial to accurately approximate its boundary or those unstable 
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equilibrium points (UEPs) on the boundary. Hence, the consistency between the ROAs 

from the original system and from the decoupled system by the NMD needs to be 

investigated to verify the validity of the NMD under large disturbances. Then, for the 

application in power systems, the dynamics of the original system subject to a large 

disturbance can be analyzed and visualized with respect to only a few selected critical 

modes through the NMD (note that only very few oscillation modes, e.g. mostly six or 

fewer, are obviously excited by any single contingency even for large-scale power 

systems [16]). If system operators have some knowledge on which modes the instability 

may be developed from, they can intentionally monitor the system dynamics on those 

critical modes and oscillating generators that participate in the modes and take preventive 

or remedial control actions to avoid instability. 

Besides monitoring and early warning of system instability, an early control 

action can reduce the risk of loss of synchronism among the generators after disturbances. 

Real-time damping control is to improve the damping of a weakly-damped target mode. 

Without any control actions, a weakly-damped mode could easily induce instability under 

an additional disturbance.  

Fast identification of a sustained oscillation from the measurement is a priori for 

the preventive control of oscillation-induced instability. The mainstream small-signal 

analysis methods for measurement-based modal analysis are based on linear system and 

signal processing theories by assuming a small disturbance, such as the widely-used 

Prony’s method [17]. Thus, a measured system response can be decomposed into 

exponentially damped/undamped sinusoids with different phases, or equivalently 
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speaking, the main task is to identify eigenvalues and eigenvector-related properties of 

the target modes. Then, damping estimation is basically the calculation of eigenvalues of 

interests. One type of methods conducts analysis on ambient measurements caused by 

random small variations of the system, e.g. in loads. The main task is to extract 

oscillation modes from ambient noises in measurements. This can be done by 

reconstructing a linear system from the ambient data while mitigates the impact of the 

noise, like the autoregressive (AR) type model in [18], whose coefficients are solved by 

the recursive least square (RLS) type algorithm. Another type of methods, e.g. Prony’s 

method [17], [19], the Eigenvalue realization algorithm [20], and Matrix Pencil method 

[21], can analyze ring-down measurements following a disturbance such as a line or 

generator trip. They find the best fitting into the measurements of a window by a sum of 

sinusoids or by a response from a reconstructed equivalent linear system. Some methods 

perform time-frequency analysis using the Fourier transform or continuous wavelet 

transform for better damping estimation [22], [23].  

However, the assumption of linear system does not always hold true for the 

damping estimation of a dominant inter-area mode using ring-down measurements 

following a fault. A real-life fault can hardly be treated as a small disturbance especially 

for areas not too far from the fault location. If the fault excites any critical oscillation 

mode, nonlinear waveforms often manifest in power system measurements. Thus, in this 

case, damping estimation using the linear analysis based methods like the Prony’s 

method are often unreliable, since during the early transient period the damping 

estimation results can be sensitive to the length and starting point of the time window as 
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illustrated by Figure 1. A measure commonly used by many commercialized modal 

analysis tools is to ignore the first several or several tens of seconds of the ring-down 

portion containing transient measurements until the system response recovers to be close 

enough to a linear system response. This handling may discard important information on 

potential angular instability. Under some conditions, available measurements are too 

limited, e.g. capturing only first few swings for the critical mode, to afford the discarding 

of any data. Thus, there is a need for a robust damping estimation tool that is applicable 

to large-amplitude swings and insensitive to the length and starting point of the 

measuring window. 

Some modal analysis methods have tried to accommodate some nonlinear 

dynamics. One representative is the Hilbert-Huang transformation (HHT) method [24], in 

which each mode is interpreted as a sinusoidal signal with time-varying parameters, i.e. a 

mode with changing frequency and damping. It first extracts so-called intrinsic mode 

functions (IMF) from measurements by empirical mode decomposition. Each IMF is 

expected to represent one oscillation mode and interpreted by HHT to estimate time-

varying modal parameters. However, these methods are still on the basis of linear system 

theory and interpret an oscillation mode as a damped/undamped sinusoidal function with 

time-varying parameters. The resulting damping estimation is still sensitive to the length 

and starting point of the measuring window.  

Recently, some recent studies on understanding and formulation of nonlinear 

electromechanical oscillations discover that the frequency of an oscillation mode decays 

with the amplitude of oscillation [25], [26] according an “F-A curve”. Furthermore,  
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Figure 1. Schematic diagram of sliding time window. 
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according to the NMD method, the nonlinear dynamics of a multi-machine system in an 

extended neighborhood of the equilibrium can be decomposed into dynamics of as many 

fictitious nonlinear oscillators of 1-DOF as its oscillation modes. Thus, the dynamics and 

stability of the original system regarding each mode can be studied using the 

corresponding 1-DOF oscillator. Hence, for more robust estimation of oscillation 

damping, it is worthwhile to incorporate the idea of NMD, i.e. interpreting each mode as 

a nonlinear oscillator, into the estimation method such that the post-disturbance 

measurements can be taken full use of and the result is insensitive to the length and 

starting point of measuring window. 

An advanced design of damping controller relies on not only fast damping 

estimation, but also the ability of fast electrical power control which can directly impact 

the damping torque on the generator rotors. In this sense, the increasing use of power 

converter based devices could enable new ways for fast damping control. Power 

converter interfaces the distributed energy resources (DERs) to the power grid, and thus, 

serves an important role in the increasing penetration of the DERs. Since the dynamics of 

the power electronics devices are much faster than the dynamics of the electromechanical 

oscillations in a conventional synchronous generator based grid, power converters could 

serve as a promising measure for direct and fast power flow control as well as damping 

control. Typical power converter based devices include flexible AC transmission system 

(FACTS) devices [27]-[29], wind generators [30], [31], solar plant [32], [33], battery 

energy storage system (BESS) [34], etc. 
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Many researches activities have investigated the use of power converter based 

devices for damping control due to its flexibility and fastness. [35] and [36] consider 

BESS for controlling damping ratio. The configuration of the BESS is set to bring the 

damping ratio back to an expected value. [37] considers the superconducting magnetic 

energy storage and design a close-loop control system to tune the eigenvalues of the 

target modes. [38] uses a two-machine system to investigates the impact of the voltage-

source-converters in terms of location and real/reactive power modulation. [39] proposed 

a particle swarm optimization based and a heuristic dynamic programming based 

methods to adaptively control the energy storage devices in order to stabilize the 

oscillation between two interconnected power systems. 

Most of the existing methods aim at increasing the damping for a target mode to 

stabilize the oscillation. An off-line model representing a typical scenario is commonly 

used for configuring the structure and the parameters of the controller, and then, the 

designed controller is implemented online without much modification considering the 

model inaccuracy or model change. Consequently, the effectiveness of the controller 

would be subject to the model inaccuracy and model change. The controller could 

perform as expected when a practical scenario is close to the offline model, but the 

effectiveness would be in doubt under a different scenario. For instance, if we set the 

damping ratio of the target mode to be 3% as the expected value, it could be difficult for 

the controller to reach the expected value when the system undergoes a permanent 

change like line trip, and the controller might be less effective if no additional 

modification is taken. On the other hand, with fast and accurate damping estimation 
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method and fast power control ability of power converters, it could be possible to directly 

design a feedback control system to eliminate the damping ratio deviation of a target 

mode by using the measured damping ratio as a feedback and controlling the power 

converters accordingly. Such a feedback control method would be more robust against 

any model change. 

1.2 Contributions of This Work 

This work proposes new stability monitoring approach and new damping control 

method considering the nonlinear electromechanical oscillations in multi-machine power 

systems, including an NMD based power system transient stability analysis (TSA) 

approach and a direct damping feedback control method. A real-time damping estimation 

on nonlinear electromechanical oscillation is also proposed for the purpose of damping 

control. Specifically, the contributions can be categorized into the following several 

aspects: 

 This work analyzes the nonlinear characteristics of electromechanical 

oscillations in power systems, understanding which will be valuable for 

designing a more accurate damping estimation algorithm and more 

effective grid stabilization control methods against both small and large 

disturbances. 

 This work compares the transient stability analysis results on the original 

system and the decoupled system from the NMD. It is shown that 

transient stability analysis on a decoupled system that has higher order 

polynomial terms truncated in its model may introduce errors compared 
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to the analysis on the original system. It is also shown that keeping the 

polynomial terms up to the 3
rd

-order for the decoupled system is 

acceptable for the purpose of approximate or conservative transient 

stability analysis. 

 This work establishes an NMD based power system TSA approach for 

large-scale power system. The analysis of the original high-dimensional 

system can be reduced to individual analyses on decoupled nonlinear 

oscillators about a few selected critical modes. The most critical mode 

that could induce instability can be identified by comparing the state and 

stability boundary of the decoupled oscillator regarding that mode. 

 This work proposes an approach for real-time damping estimation on 

nonlinear electromechanical oscillation energized by a large disturbance. 

By identifying a nonlinear oscillator to fit the measurements on the 

dominant mode of oscillation, the proposed damping estimation approach 

can utilize complete post-disturbance data including the data during the 

transient period. Its robustness is verified from its independence from the 

length and starting point of the measuring window. 

 This work develops a method to approximate the power system model 

together with the damping estimation algorithm by a transfer function. 

This approximation is enabled by a) representing the target mode as a 

single oscillator model, which is obtained from model reduction via the 
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NMD method, and b) considering the parametric resonance of the single 

oscillator model. 

 This work proposes a direct damping feedback control method to 

eliminate the damping ratio deviation for a target mode by controlling the 

power converters based devices in the system. The parameters of the PI 

controller are determined by considering the trade-off between robustness 

and control performance. 
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CHAPTER 2 

STABILITY ANALYSIS ON NONLINEAR OSCILLATIONS 

In this chapter, the NMD method is investigated on its ability in capturing the 

stability information of the power system, and new NMD based power system TSA 

approach is proposed afterwards. It is shown that the decoupled oscillator obtained from 

NMD can retain higher order polynomial terms in the differential equations and can more 

accurately represent the nonlinear modal dynamics and conditions of stability regarding 

the corresponding oscillation mode. Then, it is shown that for power system analysis, 

keeping the polynomial terms up to the 3
rd

-order during the decoupling is acceptable for 

the purpose of approximating assessment for transient stability. Finally, a TSA approach 

is proposed to apply the NMD to the early warning of instability, which reduces the 

monitoring of the whole power systems to only a few critical modes and can indicate the 

most critical one that could induce instability.  

2.1 Introduction of Nonlinear Modal Decoupling  

The basic idea of NMD is described as follows [13]. A multi-oscillator system is 

given by a set of ordinary differential equations (ODEs)  

  , N X f X X  (1-1) 

where X is the state vector and f governs the system dynamics. Without loss of generality, 

assume its SEP at the origin and apply Taylor expansion (TE): 

[ ]

1

2

j

j

j





 X A X + A X  (1-2) 
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The k-jet system of (1-1) is defined as (1-3) that only keeps the terms up to order 

k having higher-order terms truncated. 

[ ]

1

2

k
j

j

j

 X A X + A X  (1-3) 

where X
[j]

 is a Kronecker product form, denoting all the jth-order homogenous 

polynomial components of the vector X. 
1jN

j

A  is the coefficient matrix. k 

determines the accuracy of (1-3) to approximate (1-1). Usually a larger k is preferred if a 

higher accuracy is needed. 

A kth-order NMD transformation (k-NMDT) denoted by H decouples k-jet (1-3) 

into independent oscillators of 1-DOF, and it is essentially a set of polynomial functions 

of the state vector Z on the decoupled system: 

   
1

1

,
k

j N

j

j

   X H Z B Z B Z Z  (1-4) 

where  
1jN

j

B  is the coefficient matrix. 

To obtain decoupled nonlinear oscillators, NMD first substitutes (1-4) into k-jet 

(1-3), and then, re-group the state variables of Z into pairs as below, with each 

representing the two state variables (corresponding to the position and velocity) 

associated with one oscillator. 

 1 2 1 2, ,   where ,
T TT T

i i iz z   Z = z z z  (1-5) 

   

 

 

 

 
1 1 1 1

2 2 2 2

    
    

        
         

z g z r Z

Z G Z R Z z g z r Z  (1-6) 
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   
 

 

 

 
1 1 1 2 1

2 2 1 2 2

,

,

i i i i i

i i i i

i i i i i

z g z z r

z g z z r

    
        

     

Z
z g z r Z

Z
 (1-7) 

Thus, system (1-1) is transformed into (1-6), defined as the transformed system 

(TS) with each oscillator expressed by (1-7), where gi(zi) only includes the polynomial 

terms up to order k and ri(Z) includes all terms higher than order k.  

Remarks 

(a) If a polynomial term in the ith oscillator only consists of zi, it is called an 

intra-modal term, i.e. only depending on the state variables about this mode (oscillator); 

otherwise it is called an inter-modal term, which also involves state variables about other 

modes (oscillators). Note that gi(zi) only contains intra-modal terms, while ri(Z) can 

contain both intra-modal terms and inter-modal terms. 

(b) After substitution, the TS may still be coupled; that is, the inter-modal terms 

greater than order k could exist, i.e. the existence of R(Z). This indicates that a k-NMDT 

can only decouple the terms up to order k while other terms greater than order k could 

still have inter-modal terms.                                                                                                ■ 

By truncating R(Z) in TS, we obtain the k-jet decoupled system (k-DS) (1-8) with 

a set of independent oscillators each having only intra-modal terms as expressed by (1-9): 

 Z g Z  (1-8) 

 
 

 
 1 1 2

22 1 2

,

,

k
ji i i

i i i i i ij i

ji i i

g z z

g z z 

 
  
 

z = g z z D z   (1-9) 

where 
2 2

i

  is a diagonal matrix and 
2 1j

ij

D  is a coefficient matrix. 
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While X is the state vector, we treat Z as the modal vector, since each oscillator 

represents a nonlinear mode that is only related to zi after the decomposition. The NMD 

procedure is illustrated in Figure 2, from which two factors may introduce errors in 

deriving k-DS: a) the truncation between TE and k-jet, and b) the truncation between TS 

and k-DS.  

Remarks 

(a) Ref. [13] suggests inversely constructing the decoupled system by first 

assigning polynomial formation (1-9) to each oscillator with the coefficients 

undetermined, and then deriving the transformation (1-4) and the coefficients in (1-9). 

Note that the polynomial form is not the only choice and other forms may be applied to 

each oscillator.  

(b) After the decomposition, the modal dynamics of the original coupled system 

are decoupled into dynamics of oscillators (9). It provides a possibility to analyze 

stability of the original system based on stabilities of some of crucial oscillators so as to 

reduce the dimension of the system model and simplify angular stability analysis.           ■ 

The two truncations, a) the truncation between TE and k-jet and b) the truncation 

between TS and k-DS, would lead to the difference between the original system and 

decoupled system, like the stability information. For instance, the truncations would lead 

to the difference in their equilibrium points (EPs), which is explained as follows.  

The set of the EPs of the original system is denoted by 

  2 : 0N EX = X f X  (1-10)  

The set of the EPs of the k-jet system is denoted by 
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Figure 2. NMD procedure and the relation of different systems. 
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2 [ ]

1

2

: 0
k

N i

k jet i

i





 
  

 
EX = X A X + A X  (1-11) 

The set of the EPs of the decoupled system, which is obtained by truncating the 

R(Z) of the TS system, is denoted by  

  2 : 0N

DS  EZ = Z g Z  (1-12) 

The set of the EPs of ith oscillator is denoted by 

  2

, : 0Osc i i i EZ = z g z  (1-13) 

EZDS can also be expressed as the Cartesian product of EZOsc,i: 

,1 ,=DS Osc Osc N EZ EZ EZ  (1-14) 

The relation between these EPs sets are listed below. 

i) The EPs in EX can be approximated by the EPs in EXk-jet. The inaccuracy is 

caused by the truncation of the high-order terms in Taylor expansion. 

ii) EXk-jet can be approximated by EXappro = H(EZDS). The inaccuracy is caused 

by the truncation of R(Z) in (1-6). 

iii) The SEP in EX, EXk-jet, and EXappro are identical. 

The relationships between these systems are re-organized in Figure 3 for better 

understanding. The solid line means the two EP sets are identical, while dashed line 

means they approximate each other. It shows that the two truncations lead to the 

inconsistency between EX and H(EZDS). 

2.2 Stability Comparison of the Original System and Decoupled System  

The two truncations of higher order polynomial terms, i.e. a) the truncation 

between TE and k-jet, and b) the truncation between TS and k-DS, would lead to the 
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Figure 3. The relationships between different systems in terms of EPs. 
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inconsistency of the stability information between the original system and the decoupled 

system. In this section, it is first investigated which order of k-jet can be selected for 

power system stability analysis. Then, numerical studies are made on the IEEE 9-bus 

system for the stability comparison of the original system and decoupled system in terms 

of the approximation of the stability boundary and closest UEP. 

Since the IEEE 9-bus system will be frequently used for the numerical studies in 

the following subsection, its information is given here. The rest subsection will use this 

model unless specifically explained. The one-line-diagram of the IEEE 9-bus system is 

shown in Figure 4, and the other parameters can be found in [26].  

The system is modeled as an m-machine power system modeled by (1-15), which 

has generators in the classic model, loads modeled as impedances, and network losses 

considered. 

,                                        

,      1,2, ,

i i

iR
i mi ei i

i R

P P D i m
M

 






  


  
     

 

 (1-15) 

   
1

cos sin
N

ei i j ij ij

j

i j i jP E E G B   


    
   (1-16) 

where δi, ∆ωi, Pmi, Pei, Ei, Mi and Di represent the absolute rotor angle, speed deviation, 

mechanical power, electrical power, electromotive force, the inertias and damping 

coefficients of machine i, respectively. ωR is a constant for synchronous speed [40]. Gij 

and Bij represent the conductance and susceptance, respectively. The system state X is 

organized as: 

 
T

1 1 2 2 m m        x  (1-17) 
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Figure 4. Diagram of IEEE 3-machine 9-bus system [26]. 
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2.2.1 Truncated Taylor Expansion of the Original System 

The k-jet system (k-jet) and k-jet decoupled system (k-DS) can be generalized by 

the definition of the truncated Taylor expansion: given the TE of (1-1) at the SEP, 

keeping only the first n terms gives an approximate system, called the nth order TTE 

system, or the TTE system at order n. k-jet and k-DS are essentially kth order TTE 

systems. 

For the single-machine-infinite-bus (SMIB) system, it has been shown that the 3
rd

, 

4
th

, 7
th

, and 8
th

 orders TTE always give conservative stability analysis results. Moreover, 

the result from the 3
rd

 order TTE is most conservative. The proofs and technical details 

can be found in [41].  

For the case of multi-machine power systems, to explore the capability of 

analytical approaches starting from TTE systems and without involving systematic errors, 

the transient stability is assessed by time domain simulations. A stability boundary 

searching algorithm is proposed to determine the stability boundaries of the original 

system and its TTE systems, whose comparison can show how accurately the TTE 

systems can be used to assess the transient stability of multi-machine power systems. 

The stability boundaries of the original system and its TEE systems are searched 

by the algorithm below. Different parts of the stability boundary are acquired by applying 

sustained disturbances in different directions in the state space. In this paper, the random 

number generation function “rand” in Matlab is used to create a number of unit vectors to 

represents disturbances in different directions. 

 



 
23 

START 

1 Let k = 1 and l = l0, s = s0. 

2 Given a unit vector n in the state space representing the disturbance in a 

specific direction. 

3 Initialize the system at X(t=0) = XSEP + l · n and simulate the system for a 

certain time T. 

4 if |δi(t=T) − δj(t=T)| < Δ for any i and j in {1, 2, …, m} 

  |   if s < ε 

  |    |    (XSEP + lk · n) is on the boundary. Return. 

  |   else 

  |    |    l = l + s. 

  |   end 

else 

  |   s = s/2 and l = l − s. 

end 

5 go to 3 
 

Two systems are selected for numerical studies, IEEE 9-bus power system and 

WECC 179-bus system.  

On the IEEE 9-bus system, the number of all (N-1) line tripping contingencies is 

12, which are shown in Table 1. The critical clearing time (CCT) from the TTE systems 

are searched by a number of simulation runs and their normalized values by the true 

CCTs from Table 1 are shown in Table 2. Then, the generations are re-dispatched by 

increasing Pm2 from 163MW to 200MW, Pm3 from 85MW to 100MW and decreasing Pm1 

from 71.61MW to 22.55MW. Such modification will push the system closer to its steady 

state angle stability limit due to the increase of the power transfer from generators 2 and 3 

to generator 1. It should be mentioned that after the re-dispatch, the CCT of each 

contingency is more or less reduced compared to their counterparts in Table 1. In this 

case, the normalized CCTs of TTE systems are shown in Table 3. The comparison 

between Table 3 and Table 2 indicates that the errors in the CCTs of TTE systems 

decrease if the system is closer to its steady state angle stability limit as expected from 
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Table 1. (N-1) Line Tripping Contingencies and Their CCTs 

Cont. # Fault bus Tripped line CCT /s Cont. # Fault bus Tripped line CCT /s 

1 4 4-6 0.329 7 7 5-7 0.179 

2 4 4-5 0.338 8 7 7-8 0.195 

3 5 4-5 0.441 9 8 7-8 0.297 

4 5 5-7 0.353 10 8 8-9 0.325 

5 6 4-6 0.493 11 9 6-9 0.231 

6 6 6-9 0.430 12 9 8-9 0.249 

 

Table 2. Normalized CCTs of TTE Systems in 9-Bus System 

# TTE2 TTE3 TTE4 TTE5 TTE6 TTE7 TTE8 TTE9 

1 1.817 0.895 0.935 2.446 1.016 0.998 0.999 1.000 

2 1.806 0.885 0.929 2.351 1.287 0.997 0.999 1.000 

3 1.717 0.857 0.911   ∞* ∞ 0.996 0.998 1.000 

4 1.282 0.904 0.973 1.014 1.002 0.999 1.000 1.000 

5 1.623 0.859 0.910 ∞ 1.024 0.996 0.998 1.000 

6 1.373 0.892 0.960 1.020 1.004 0.999 1.000 1.000 

7 1.276 0.908 0.974 1.013 1.002 0.999 1.000 1.000 

8 1.347 0.911 0.969 1.015 1.003 0.999 1.000 1.000 

9 1.380 0.895 0.959 1.023 1.005 0.999 1.000 1.000 

10 1.602 0.870 0.929 2.361 1.016 0.997 0.999 1.000 

11 1.358 0.904 0.964 1.019 1.004 0.999 1.000 1.000 

12 1.776 0.887 0.930 2.345 1.061 0.997 0.999 1.000 

        * In each of these cases, the CCT is larger than 1 second. 

 

Table 3. Normalized CCTs if TTE Systems in 9-Bus System after Generation Re-

Dispatch 

# TTE2 TTE3 TTE4 TTE5 TTE6 TTE7 TTE8 TTE9 

1 1.409 0.907 0.964 1.018 1.004 0.999 1.000 1.000 

2 1.344 0.897 0.963 1.024 1.007 0.999 1.000 1.000 

3 1.388 0.887 0.959 1.025 1.005 0.999 1.000 1.000 

4 1.894 0.592 0.941 1.030 1.001 0.999 0.999 0.999 

5 1.430 0.894 0.958 1.021 1.005 0.999 1.000 1.000 

6 1.173 0.929 0.989 1.004 1.000 1.000 1.000 1.000 

7 1.854 0.577 0.942 1.027 0.999 0.997 0.998 0.998 

8 1.206 0.923 0.985 1.006 1.001 1.000 1.000 1.000 

9 1.222 0.919 0.983 1.007 1.001 1.000 1.000 1.000 

10 1.387 0.894 0.962 1.020 1.004 0.999 1.000 1.000 

11 1.176 0.926 0.989 1.005 1.001 1.000 1.000 1.000 

12 1.521 0.887 0.943 1.151 1.012 0.998 0.999 1.000 

 



 
25 

the observation on SMIB systems. 

Table 2 shows that the CCTs determined by TTE systems at orders 2, 5, 6 and 9 

are larger than the true CCT, while the CCTs from TTE systems at orders 3, 4, 7 and 8 

are always smaller. In addition, the degree of optimism/conservativeness, i.e. the error in 

CCT, decreases when the TE order increases. 

The last test on IEEE 9-bus system summarizes the TTE based TSA using 1000 

randomly generated directions in the state space under the default loading condition 

without any topology changes. The distributions of the normalized stability boundaries of 

TTE systems are shown in Figure 5, which basically verifies the conclusions from SMIB 

power systems. Specifically, 2
nd

, 6
th

 and 9
th

 order TTE systems generally give the 

stability boundaries respectively 0.7-2.5, 0.66-3, 1-1.005 times larger compared to the 

true boundaries, while the 5
th

 order is about 1-5 times larger including a few cases where 

no instability can be detected. The stability boundaries from 3
rd

, 4
th

, 7
th

 and 8
th

 order TTE 

systems are respectively about 0.52-0.88, 0.51-0.96, 0.98-0.999 and 0.99-1 times the true 

boundaries. 

Next, the 179-bus 29-generator simplified WECC power system model is used to 

test the accuracy of TTEs on top-8 most critical line-tripping contingencies near the 

California-Oregon intertie [41]. The results shown in Table 4 also roughly validate the 

conclusions on SMIB systems. According to the comparison between Table 2 and Table 

3, the good accuracy in results Table 4 from the 4th order and above indicates that the 

original system is close to its steady state angle stability limit along the California-

Oregon intertie. 
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Table 4. Normalized CCTs of TTE Systems in 179-Bus System 

# TTE2 TTE3 TTE4 TTE5 TTE6 TTE7 TTE8 TTE9 

1 1.144 0.885 0.996 1.017 1.000 0.999 1.000 1.000 

2 1.144 0.886 0.995 1.017 1.000 0.999 1.000 1.000 

3 1.104 0.895 1.000 1.014 1.000 0.999 1.000 1.000 

4 1.105 0.894 1.000 1.015 1.000 0.999 1.000 1.000 

5 1.085 0.917 0.996 1.009 1.000 1.000 1.000 0.999 

6 1.086 0.916 0.996 1.009 1.000 1.000 1.000 1.000 

7 1.116 0.893 1.040 1.015 1.000 0.999 1.000 1.000 

8 1.119 0.893 1.041 1.015 1.000 0.999 1.000 1.000 

 

 

       

Figure 5. Distributions of normalized stability boundaries of TTE systems of IEEE 9-bus 

power system in 1000 different directions in the state space. 
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Based on all the analysis above, it is concluded that TTE systems at orders 2, 5, 6 

and 9 give optimistic TSA results while those at orders 3, 4, 7 and 8 give conservative 

results.  

Henceforth, we select 3
rd

 order TTE system for the following analysis in this 

chapter for two reasons. First, in terms of stability analysis, it is important to ensure that 

the stability boundary of k-jet system should be consistent with, or conservative when 

compared to, the boundary of the original system. Moreover, a lower order TTE would 

reduce the computation burden.  

2.2.2 Approximation of the Stability Boundary  

This section investigated the stability boundary, which is usually referred to as 

region-of-attraction (ROA) boundary in the field of control, for the original system, k-jet, 

and k-DS. The ROA of interests is assumed to be compact and connected. Time domain 

simulation is used to verify if a given initial state leads to the SEP. The boundary search 

algorithms are proposed to determine the stability boundaries of the original system, k-jet, 

and k-DS, whose comparison can show the consistency between the boundaries from 

those systems. 

The algorithm estimates the stability boundaries of the original system and its k-

jet is the same as one used in the section 2.2.1. The algorithm finding the boundary of k-

DS (8) is given below, which is similar to the previous one but with some modifications. 

To compare the stability boundary of k-DS with that of the original system or k-jet, the 

perturbations in different directions are applied to system state X. The initial state on any 

direction, say X(t=0), is first transformed to the modal vector Z via k-NMDT, i.e., Z = H
-
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1
(X(t=0)), and then simulated using k-DS. There are many ways to solve the NMDT, e.g. 

by applying the Newton-Raphson method to equation H(Z)–X(t=0) = 0.  

START 

1 Let k = 1 and l = l0, s = s0. 

2 Given a unit vector n in the state space representing a specific perturbation 

direction in the state space. 

3 Initialize the system at X(t=0) = XSEP + l · n, and simulate k-DS from Z = H
-

1
(X(t=0)) for certain time T. 

4 if |zi(t=T) − zj(t=T)| < Δ for any i and j in {1, 2, …, m} 

  |   if s < ε 

  |    |    (xep + lk · n) is on the boundary. Return. 

  |   else 

  |    |    l = l + s. 

  |   end 

else 

  |   s = s/2 and l = l − s. 

End 

5 go to 3 
 

The numerical studies of the proposed NMD-based stability boundary estimation 

is applied on the IEEE 3-machine 9-bus system. First, the expression of the original 

system, 3-jet and 3-DS are given, with all the states denoted by: 

X = [δ1, ∆ω1, δ2, ∆ω2, δ3, ∆ω3]
T
 =[x1, x2, x3, x4, x5, x6]

T
 (1-18) 

Each pair [δi, ∆ωi] represents the state variables for machine i. The original power 

system model is (1-19). The corresponding 3-jet is expressed by (1-20). Note that in 

(1-20), the coordinates are transformed to make SEP xSEP = 0. After applying the NMD 

with the small transfer assumption, the 3-DS is derived consisting of two oscillators 

expressed by (1-21). Note that in (1-21), the former two ODEs related to z1 and z2 are 

referred to as mode 1, while the rest two ODEs related to z3 and z4 are referred to as mode 

2. 
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Hyperplane δ21-δ31 is chosen to visualize the stability boundary because for a 

power system, all unstable equilibrium points (UEPs) on the stability boundary are in this 

plane, which are crucial for power system stability analysis. Here, δij = δi - δj denotes the 

relative rotor angle difference between generator i and j and is used as the coordinate 

because angular stability is mainly about the synchronism between the rotors of 

synchronous machines. Also note that the boundary visualized on this hyperplane is 

actually the intersection of the hyperplane and the true ROA of the system, as illustrated 

in Figure 6.  

The stability boundaries from the original system, 3-jet and 3-DS are compared in 

Figure 7. The inconsistency between the original system and 3-DS is analyzed as follows: 

(i) from the original system to the 3-jet, the boundary is shrunk, and (ii) from the 3-jet to 

the 3-DS, their boundaries are consistent well on most parts despite four sharp corners, 

which together take a small portion of the boundary. Hence, if f(X) of the original system 

only consists of polynomial terms, then inconsistency between the boundaries from the 

original system and the k-DS is mainly on the four corners. 

To compare the dynamics of the 3-DS and 3-jet with initial states near stability 

boundaries, three initial states PA, PB and PC are selected: PA and PC are near the “well-

consistent” part and PB is in one of the “corners”. All the three points are very close to 

the 3-DS boundary but are still inside, as shown in Figure 8. For the 3-DS, the phase 

space trajectories starting from PA, PB and PC are shown in Figure 9, Figure 10 and 

Figure 11, respectively about the two decoupled oscillators. The SEP and UEPs of the 3-

DS in (15) is also depicted. Note that each decoupled oscillator has its ROA bounded by  
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Figure 6. Diagram of IEEE 3-machine 9-bus system. 

 

 

Figure 7. Comparison between the original system, 3-jet and 3-DS. 
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Figure 8. Locations of the starting points PA, PB, and PC. 

 

 

 

Figure 9. The dynamics of 3-DS with starting point PA. 
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Figure 10. The dynamic of 3-DS with starting point PB 

 

 

 

Figure 11. The dynamics of 3-DS with starting point PC. 
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two UEPs as a one DOF system. 

For PA and PC, only one mode is severely excited, while the other one is almost 

quiescent as shown by Figure 9 and Figure 11. In this case, if the initial state of one 

decoupled oscillator escapes from its ROA, the corresponding initial states in the original 

system will escape from the ROA as well. For the initial state PB in one of the “corners”, 

which is outside the stability boundary of the original system. However, the initial states 

of both decoupled oscillators are still inside their ROAs. The inconsistency between 

stability boundaries is because both modes are excited as shown by Figure 8. Therefore, 

excitation of multiple modes may increase the coupling among the modes (or in other 

words, the coupling of the corresponding oscillators). When using the 3-DS for stability 

analysis, all the excited modes should be considered. 

The shrinkage of the ROA of the 3-jet compared to that of the original system is a 

main reason causing boundary inconsistency. Note that the boundary of the 3-jet has a 

similar shape to that of the original system but a smaller size. An intuitive idea for a more 

accurate stability boundary is to modify the 3-DS by scaling the coefficients in (1-21), 

such that the new boundary is more consistent with that of the original system. We 

propose to scale the coefficients of (1-21). Without loss of generality, let zi be the state 

variable after modification, and yi be the state variable of the original (1-21). Substitute yi 

into (1-21) to obtain the modified 3-DS system as: 

     1 1 2 2,
T

i i i i isc z sc z

i i i i i i




y
y = g y z = g z  (1-22) 

where sci is the scaling factor, and  i i iz = g z  is the oscillator after modification. 
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Tentatively change the scaling factors and test the consistency of the stability 

boundaries. A modified 3-DS system with sc11=sc21=1 and sc21=sc22=0.86 are shown in 

(1-23) and its boundary of ROA is shown in Figure 12, from which a less conservative 

boundary is obtained by scaling, despite of the “corners” outside of the boundary of the 

original system. 
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

 (1-23) 

In conclusion, the numerical studies show that the boundary inconsistency 

between the original system and decoupled system is caused by (i) the truncation from 

the original system to the k-jet to shrink the ROA, and (ii) the truncation from the k-jet to 

the k-DS to cause mismatches on corners of the ROA. However, with the use of 3-jet and 

3-DS, the main portion of the ROA from NMD basically matches the accurate ROA.  

2.2.4 Approximation of the Closest Unstable Equilibrium Point 

Due to those two truncations, EXappro cannot exactly provide the UEPs in EX. 

However, if (1-3) have a more conservative stability boundary, we can expect that (1-8) 

could be used to approximate the closest UEP, at which the energy is lower than the true 

closest UEP of the original system. This idea motivates the closest UEP approximation 

procedure.  

Based on the analysis on sets of the EPs, a procedure for approximating the 

closest UEP via NMD is proposed as described below. 
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Figure 12. Boundaries of the original system, 3-DS, and modified 3-DS. 
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Step1: For a given original system in (1-1), find the 3-jet system and decouple it 

via NMD.  

Step2: Solve the EPs of the decoupled system, EZDS. Then obtain EXappro by 

EXappro = H(EZDS). EXappro is viewed as an approximation of EX. 

Step3: Find the UEPs among EXappro, and evaluate their energy via a given 

energy function. Select the one with least energy as the approximated closest UEP.  

Remarks 

In Step 2, to obtain EZDS, first solve the UEPs of each oscillator (1-9) to obtain 

EZOsc,i. Then, the Cartesian product of all the EZOsc,i is exactly EZDS. The UEPs of each 

oscillator are much easier to solve since mathematically it is equivalent to solve the roots 

of two equations with two variables.                                                                                  ■ 

The IEEE 9-bus power system is used to test the performance of the closest UEP 

approximation using NMD. Three cases are considered with different settings of dynamic 

parameters, as shown in Table 5. Their differences in inertia and damping may lead to the 

different EPs, and thus different closest UEPs. But they all have the same SEP, 

(radrad.  

 

The distribution of the EPs of the original system, including the type-1 and type-2 

UEPs, are drawn on  plane, as shown in Figure 13, Figure 14 and Figure 15, for 

case 1-3, respectively. Those true EPs can be identified by either exhaustive search, or 

using the holomorphic embedding method [42]. The closest UEPs of each case are 

marked by solid black circles, and listed in Table 6. The energy function to be used is the 

same as the one in [43], in which the path-dependent integral is approximated by using a  
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Figure 13.  UEPs of the original system and approximated UEPs in case 1. 

 

 

 

Figure 14. UEPs of the original system and approximated UEPs in case 2. 

 

 



 
39 

 

Figure 15. EPs of the original system and approximated UEPs in case 3. 

 

 

Table 5. Dynamic Data 

Case H1 (s) H2 (s) H3 (s) D1 (s) D2 (s) D3 (s) 

1 25.640 6.400 3.010 25.640 6.400 3.010 

2 25.640 25.600 3.010 25.640 25.600 3.010 

3 25.640 25.600 10.535 25.640 25.600 10.535 

 

 

Table 6. Closest UEP of each case 

Case # δ21 δ31 Energy 

Case 1 2.8907 2.4931 3.1964 

Case 2 0.6020 3.0512 3.4387 

Case 3 3.2433 0.9515 3.6369 
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linear integral path. In addition, the stability boundary on the  plane is also shown 

for comparison. 

The NMD is implemented in each case, and the closest UEP approximation 

procedure is used to approximate the closest UEP. In each case, within a domain 

surrounding SEP, the approximated UEPs are visualized on the 
21 31   plane in Figure 

13, Figure 14 and Figure 15. Those UEPs are also listed in Table 7, Table 8, and Table 9, 

respectively for cases 1-3. The ones with the lowest energy are identified as the 

approximated closest UEPs, which are marked by dotted circles in figures and shaded in 

grey in tables.  

The results show that the approximated UEPs via NMD is not always 

geometrically close to the UEPs of the original system, which is due to the two 

truncations. However, the approximated closest UEP are always close to the closest UEP 

of the original system. Moreover, the energy of these approximated closest UEP is 

always lower than the energy of the corresponding true closest UEP. Hence, it would be 

worthwhile to investigate how to use the proposed closest UEP approximation procedure 

for the stability analysis purpose.  

In addition, although the rest of the approximated UEPs may not be geometrically 

close to the UEPs of the original system, they are close to the stability boundary of the 

original system. Thus, it would be worthy to investigate the relation of the approximated 

UEPs and the stability boundary. 
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Table 7. Approximated UEPs and Approximated Closest-UEP of 3-Machine System in 

Case 1 

UEP # δ21 δ31 Energy 

1 -3.1229 -2.0052 8.0840 

2 2.4651 1.6408 3.1927 

3 1.3662 -1.7296 5.2159 

4 0.0043 2.2969 3.3399 

 

 

Table 8. Approximated UEPs and Approximated Closest-UEP of 3-Machine System in 

Case 2 

UEP # δ21 δ31 Energy 

1 0.3999 -2.5485 5.9253 

2 0.3969 2.3768 3.0687 

3 -2.9773 -0.5948 7.7325 

4 2.6573 1.6179 3.4200 

 

 

Table 9. Approximated UEPs and Approximated Closest-UEP of 3-Machine System in 

Case 3 

UEP # δ21 δ31 Energy 

1 -2.9372 -1.0152 7.6929 

2 2.6019 1.0492 3.2279 

3 0.0111 -2.6867 5.7882 

4 0.6236 2.5114 3.2686 
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2.2.5 Conclusions on Stability Comparison 

The conclusions on the stability comparison are listed below. 

 TTE systems at orders 2, 5, 6 and 9 give optimistic TSA results while 

those at orders 3, 4, 7 and 8 give conservative results. Since 3
rd

 order TTE 

could be preferable for fast stability analysis since it has the least 

polynomial terms among all the TTEs giving conservative results. 

 Boundary inconsistency is caused by (i) the truncation from the original 

system to the k-jet to shrink the ROA, and (ii) the truncation from the k-jet 

to the k-DS to cause mismatches on corners of the ROA. With the use of 

3-jet and 3-DS, the main portion of the ROA from NMD basically 

matches the accurate ROA. 

 The closest UEP approximated from NMD is geometrically close to the 

closest UEP of the original system. A procedure for the closest UEP 

approximation via NMD is proposed. 

2.3 Nonlinear Modal Decoupling Based Power System Transient Stability 

Analysis 

In this section, NMD is applied on power system model for TSA. First, how to 

apply NMD on power system model is discussed. Then, the first integral and Zubov’s 

method for estimating the stability boundary of each decoupled oscillator are introduced. 

After that, the procedure for applying the NMD on large-scale power system is given. 

Finally, numerical studies on the 48-machine Northeast Power Coordinating Council 

system is analyzed.  
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2.3.1 NMD on Large-Scale Power System Model 

Although NMD can be applied to the power system model (1-15) without any 

limitations in theory, some modifications are needed when dealing with high-dimensional 

model due to the intensive computation burden. In this section, the generic procedure for 

applying NMD on power system model is given. Then, some modifications are proposed 

to reduce the computation burden for large-scale power system model.  

Denote x̂=[δ
T
, 

T
]

T
 as the state vector. The first-order differential equations of 

the system in (1-15) have the form: 

0
ˆ ˆ( )x f x  (1-24) 

Apply a transformation matrix R, whose columns are right eigenvectors of f0’s 

Jacobian matrix, to both sides of (1-24) to obtain its modal space representation as below, 

where y = [y11 y12 … ym1 ym2]
T
 is the new state vector. 

1 1

0
ˆ( ) ( ),    where R R R  y f y g y y x  (1-25) 

Without loss of generality, let y11, y12, ..., ym-1,1, ym-1,2 represent the relative 

motions of the system, and ym1 and ym2 represent the mean motions, which are non-

oscillatory dynamics that all generators are moving together. It has been proved in [44] 

that the relative motions can be represented by an (m-1)-oscillator system consisting of 

different equations about ym1, ym2, ..., ym-1,1, ym-1,2. Thus, the first (2m–2) equations of 

(1-25) are the model in (1-1) with N = (2m–2), to which the NMD will be applied. 

For a large-scale multi-machine power system, the implementation of NMD on 

(1-25) could be computationally expensive. It is often observed that when a power system 

is subject to a disturbance, usually only a few modes are significantly excited while the 
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rest of the modes are either quiescent or less influential in stability of the system. Thus, a 

large-scale system can be reduced to a smaller system only about the dynamics associated 

with those few selected modes. 

Re-write the first (2m–2) equations in (1-25) as (1-26), which partitions (2m–2) 

equations into two groups: one group for the modes of interest (denoted with subscript 

“int”) and the other group for the rest of modes (denoted with subscript “non”). 

int int int non

non non int non

( , )

( , )

   
   

   

y g y y

y g y y
 (1-26) 

Ignore the dynamics with the second group, i.e. admitting (1-27). Then, eq. (1-26) 

is reduced to (1-28) containing only the modes of interest. NMD will be applied to (1-28) 

to obtain the decoupled system. 

non

non






y 0

y 0
 (1-27) 

int int int( , )y g y 0  (1-28) 

For the sake of convenience, the ith decoupled system is represented in the form 

of (1-29), where w2i-1 and w2i are its state variables.  andare coefficients and k denotes 

the highest order of polynomial terms to be kept. In the case studies, k is selected to be 3 

as indicated by section 2.2.1 unless specifically explained.  
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 

  

  


  

 

 


  





 


 



 (1-29) 
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2.3.2 Stability Analysis of Mode-Decoupled Systems: First Integral and Zubov’s 

method 

The numerical search algorithm in section 2.2.1 can give a fairly accurate estimate 

for the mode-decoupled systems. The entire time cost is moderate since each decoupled 

system only has two state variables. With the estimated boundary from numerical search 

algorithm as a reference, the following will present two analytical approaches for 

estimating the stability boundary. 

First integral 

Eq. (1-30) gives a necessary and sufficient condition for (1-1) to have a first-

integral based Lyapunov function. Unfortunately, there are no general methods for 

constructing a first-integral based Lyapunov function for nonlinear dynamical systems 

[45]. 

1

0
N

j

j j

f

x





  (1-30) 

With the help of NMD, after admitting the assumptions in (1-31) and (1-32), the 

system in (1-29) can be transformed to (1-33), and a Lyapunov function V(w2i–1,w2i) for 

(1-29) can be constructed as in (1-34). 

0        for all 1, 1, , ( , ) (1,0)

0        for all 0, 0,2

ijl

ijl

j l j l k j l

j l j l k





     


     
 (1-31) 

10 0i   (1-32) 
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 (1-34) 

Note that the assumption in (1-31) changes the nonlinear characteristics of the 

system, while the assumption (1-32) forces the oscillation damping to zero, which does 

not have a significant influence on the stability analysis result. Validated by the 

numerical studies presented later in section 2.3.3, the coefficients ignored by (1-31) are 

always found to be small and ignoring positive damping can keep the stability analysis 

based on (1-29) to be conservative. 

For each decoupled system in (1-29), the closest UEPs denoted by w2i, UEP can 

be obtained by letting the right hand side be zero and solving the resulting algebraic 

equations for the roots with the smallest magnitude. Note that there may be one or two (a 

positive one and a negative one) closest UEPs depending on the order k. Then, the critical 

energy is defined as V(0, w
*
2i), where w

*
2i is selected as the UEP having a smaller energy. 

When the systems in (1-29) has an initial state (w2i-1(0), w2i(0)), it is stable if and only if 

V(0, w
*
2i)V(w2i-1(0), w2i(0)). Therefore, the stability boundary of (1-29) can be 

approximated by an equipotential curve of (1-29) with the potential of V(0, w
*
2i), i.e.: 

2

*

22 1( , ) (0, )ii iV w w V w   (1-35) 

Zubov’s method 

A Lyapunov function V(X) for determining the exact stability boundary of the 

ordinary differential equations in (1-1) can be constructed by solving the partial 
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differential equation in (1-36), called the Zubov’s equation [46], [47]. Note that the 

mode-decoupled system in (1-29) is a special case of the general system in (1-1). Thus, 

this subsection only applies the Zubov’s method to (1-1). All conclusions drawn are 

automatically applicable to (1-29). 

 
1

( )
( ) ( ) 1 ( )

N

j

j j

V
f V

x





   




x
x x x  (1-36) 

where φ(X) is a positive definite or semidefinite function of X. Note that φ(X) must be 

chosen before solving the above equation, and its selection will not influence the 

resulting stability boundary.  

Several necessary theorems (see proofs in [46]) and definitions are briefly 

reviewed below due to their importance for understanding the Zubov’s method based 

stability analysis.  

Theorem III-C1. The function V(X) solved from (1-36) is a Lyapunov function 

establishing the asymptotic stability of the unperturbed motion at the SEP of the system . 

Definition III-C1. Let Ω be the set of the initial values X0 which make up the 

domain of asymptotic stability of the unperturbed motion at the SEP of the system in 

(1-1). Thus, Ω is the ROA of the system (1-1). 

Theorem III-C2. If X is in Ω, then 

0 ( ) 1V x  (1-37) 

Theorem III-C3. The stability boundary of the system in (1-1), i.e. the boundary 

of Ω, is the surface defined by V(X) = 1. 

Eq. (1-1) has a closed-form solution only for very special cases, while whose 

solution can always be represented in a power series form (1-38), where Vj(X) represents 
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all homogeneous terms of order j in X. Truncating the terms above order L, an 

approximate of V(X) is given in (1-39). 

2

( ) ( )j

j

V V




x x  (1-38) 

( )

2

( ) ( ) ( )
L

L

j

j

V V V


 x x x  (1-39) 

Definition III-C2. Given V
(L)

(X) in (1-39), define the set Φ and the constant 

scalar v
(L)

 respectively b (1-40) and (1-41). 

( ){ | ( ) 0}LV  x x  (1-40) 

( ) ( )min{ ( ) | }L Lv V x x  (1-41) 

Theorem III-C4. The surface V
(L)

(X) = v
(L)

 is completely contained in Ω. 

Remarks 

Note that even though there is no theoretical difficulty in estimate the stability 

boundary from (1-40) and (1-41), there could be a huge computational burden for 

systems with high dimensions [48]. Thus, the above analysis is applied to each of the 

mode-decoupled systems in (1-29) rather than the original N-dimensional system in (1-1). 

In theory, the Lyapunov function with infinite terms in (1-38) is independent of the 

choice of the function φ used in the Zubov’s equation (1-38). However, when a finite 

number of terms are kept in (1-38), the choice of the function φ influences the rate of 

convergence. In addition, the intuition that keeping more terms will always give better 

accuracy is unnecessarily true even for an SMIB system [49]. The optimal selection of 

the function and the order L is not a focus here but deserves further investigations [50]. In 
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the case studies, we choose φ and L based on our experience on extensive case studies 

and use them for all test cases.                                                                                            ■ 

2.3.3 Procedure for Large-scale Power Systems 

For a power system with not many generators, the NMD can be applied directly to 

the entire system to determine (m–1) independent second-order systems in the form of 

(1-29) with polynomial nonlinearities up to a desired order k, as shown by the following 

procedure (named “NMD-TSA 1”): 

Step 1: Given an m-machine system represented by (1-24), derive the modal 

space representation (1-25).  

Step 2: Assume uniform damping and obtain a unique (m–1)-oscillator system by 

the first (2m–2) equations in (1-25). 

Step 3: Apply NMD to this (m–1)-oscillator system to obtain (m–1) decoupled 

second-order systems in the form of (1-29) that respectively correspond to (m–1) 

oscillation modes. 

Step 4: Apply a stability analysis by either first integral or Zubov’s method to 

estimate the stability boundary of each of these (m–1) nonlinear oscillators. 

Step 5: For the original system, i.e. (1-24), given any trajectory subjected to a 

disturbance of interest, transform it to the decoupled coordinates using NMD 

transformations, and visualize the transformed trajectory. If the trajectory does not 

exceed the stability boundary obtained in step 4 for any mode, the system subject to that 

disturbance is assessed to be stable; otherwise, it is considered unstable. 
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The stability boundary of each mode-decoupled system actually represents a 

portion of the stability boundary of the original system that is projected to the decoupled 

coordinates about one mode. 

For large-scale power system, NMD is applied to (1-28) instead of (1-25), and 

perform a stability analysis on each of the resulting mode-decoupled systems to obtain 

TSA results. The above enhanced TSA procedure for large-scale multi-machine systems 

is named “NMD-TSA 2a”. 

Remarks 

(a) We called a multi-machine power system small or large mainly depending on 

computational requirement of the proposed approach. Currently, the derivation of NMD 

is implemented using Symbolic Math Toolbox in Matlab, which is not highly efficient. 

Thus, power systems with 2-6 machines are thereby called small systems, while those 

with more machines are called large systems. Since NMD has similar computation 

procedures to normal form [51]-[53], a more efficient implementation is also achievable, 

with which power systems with up to 50 machines may be considered as small [54]. 

(b) In addition, The NMD-TSA 2a procedure may introduce errors of TSA in two 

aspects. First, to reduce the large-scale system, dynamics with most modes that having 

little impact on stability are neglected, and hence the stability boundary estimated with 

respect to the modes of interest may not exactly match the true boundary. Second, inter-

modal terms of orders >k are not considered in the decoupled systems but they may 

become unneglectable when the system state is far from the SEP, especially when 

approaching the transient stability boundary. Therefore, even if NMD-TSA 2a judges a 
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post-disturbance trajectory to be stable, there is still a possibility that the original system 

may exit the true stability boundary due to influences from the ignored modes and high 

order inter-modal terms.                                                                                                      ■ 

To address the issue in the second remark, a shrinking ratio r defined in (1-42) is 

adopted to shrink the stability boundary about the ith mode in (1-28) based on estimates 

of modal energies by (1-43)-(1-45). Here, we assume that the speed deviation of any 

generator rotor can be represented by a sum of sinusoids as shown in (1-45) about excited 

modes in (1-28). The representation (1-45) can be estimated by modal analysis tools, e.g. 

Prony and Matrix pencil methods, on stable trajectories. 

alli ir E E


  (1-42) 

2

1

m

i j jij
E a H A




   (1-43) 

all ii
E E



  (1-44) 

( ) cos( ) cos( )i kt t

j ji i ji jk k jkk i
t A e t A e t

   


        (1-45) 

where Ei and Eall respectively represent the transient energies of mode i and all modes; Hj 

is the inertia constant of machine j; a is a certain constant, whose value does not affect 

the shrinking ratio ri at all; Δωj(t) represents the trajectory of speed deviation of machine 

j, with Ajk, ϕjk, σjk and Ωk as the amplitude, phase, damping and frequency of mode k. 

The procedure that additionally applies the shrinking ratio to the stability 

boundary about each mode is named “NMD-TSA 2b” for comparison purposes. For 

instance, the estimated stability boundaries by the aforementioned first integral method 

and the Zubov’s method become V(w2i-1, w2i) = riV(0, w
*
2i) and V

(L)
(X) = riv

(L)
, 
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respectively. Note that calculation of the shrinking ratio requires a stable trajectory and is 

contingency-dependent, while NMD-TSA 1 and 2a are contingency-independent. 

To summarize, NMD-based TSA for general power systems may contain three 

types of error: (i) truncation errors due to ignoring high-order Taylor expansion terms of 

(1-1), (ii) model decoupling errors due to ignoring inter-modal terms of orders >k of (1-6), 

and (iii) the estimation errors of the stability boundary. In section 2.2.1, the first type of 

errors is investigated and it is suggested that a third order polynomial truncation be used 

for both conservative stability assessment and moderate computational burden, which 

will be adopted in case studies. 

2.3.4 Case Studies on NPCC 140-bus System with Classical Model 

A simplified NPCC system is adopted to demonstrate a potential application of 

NMD based TSA for early warning of the oscillation mode that may most likely develop 

into a transient instability in large power systems. It contains 48 generators and 140 buses, 

[55], [56]. A temporary three-phase fault is added at bus 13 and cleared after a certain 

time without disconnecting any line. The critical clearing time of this contingency is 0.16 

second and the resulting post-contingency response is shown in Figure 16. By calculating 

the modal energies according to the definition in (1-43)-(1-45), it is found that this fault 

only largely excites a few modes, as indicated by Table 10. When the fault duration 

increases to 0.17s, the system will lose its stability as shown in, where all rotor angles are 

divided into two clusters. The diagram of NPCC 140-bus system and the two clusters are 

shown in Figure 17. The polynomial terms in the decoupled system is kept up to the 3
rd

 

order. 
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Figure 16. Marginally stable relative rotor angles w.r.t. generator 78. 

 

 

 

Figure 17. One-line diagram of the 140-bus NPCC power system (right) and the 

marginally unstable relative rotor angles w.r.t. generator 78 (left). 
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Table 10. Modal Energy Under the Studied Contingency 

fi(Hz) Ei
*
 fi(Hz) Ei fi(Hz) Ei fi(Hz) Ei 

0.38 1 1.28 <10-3 1.57 <10-4 1.69 <10-6 

0.26 0.51 1.56 <10-3 1.58 <10-5 1.99 <10-6 

0.53 0.17 0.96 <10-3 1.40 <10-5 1.45 <10-6 

0.60 0.12 1.04 <10-3 1.68 <10-5 2.51 <10-6 

0.47 0.02 0.83 <10-3 1.28 <10-5 1.70 <10-7 

2.44 0.01 0.95 <10-3 1.20 <10-5 1.41 <10-7 

1.27 <10-2 0.91 <10-3 1.63 <10-5 1.51 <10-8 

1.14 <10-2 1.55 <10-3 2.14 <10-5 1.87 <10-8 

1.41 <10-2 1.38 <10-4 2.09 <10-5 1.85 <10-9 

0.72 <10-2 1.78 <10-4 1.33 <10-6 1.69 <10-10 

0.70 <10-3 1.72 <10-4 2.06 <10-6 1.35 <10-33 

1.08 <10-3 1.17 <10-4 1.78 <10-6   

* All the model energies are normalized by the energy of the 0.38Hz mode 
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The NMD-TSA 2b is applied to the top-five largely excited modes. The stability 

boundaries estimated by NMD-TSA 2b with first integral and Zubov’s method about five 

modes are shown in Figure 18, respectively. On one hand, it should be noted that the 

complex behaviors of generators shown in Figure 17 become much simpler to understand 

in Figure 18, which clearly shows whether the system is going back to the SEP or not 

upon the fault clearance. When the marginally stable contingency occurs, the 0.6Hz mode 

in Figure 18(d) is more likely to transit to instability modes because the post-contingency 

state of the system is close to the boundary. Thus, an early warning signal should be 

generated to request for preventive control actions. On the other hand, the four modes in 

Figure 18(a)(b)(c)(e) are quite stable even though they are excited to exhibit noticeable 

dynamics. In addition, note that the two split clusters of generators under the marginally 

unstable contingency match the mode shape of the 0.6 Hz mode, which further validates 

the correctness of the early warning produced by the proposed method. 

Therefore, mode-by-mode stability information can be assessed by the NMD 

based TSA to signal an early warning of the oscillation mode that may most likely 

develop into a transient instability in a large power system. This information would be 

valuable for identification of the most vulnerable grid interface(s) for preventive/remedial 

control actions. However, by no means the proposed approach can replace the 

conventional simulation-based TSA tools since the results from NMD based TSA are still 

approximate, as illustrated in Figure 18(d), where the marginally stable trajectory has a 

small portion located outside the ROA while the marginally unstable trajectory has a 

small portion inside. 
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(a) 0.38Hz           (b) 0.26Hz 

   

(c) 0.53Hz           (d) 0.60Hz 

      

(e) 0.47Hz           (f) Legend 

Figure 18. Shrunk stability boundaries of mode-decoupled system by NMD-TSA 2b. 

Trajectories are obtained using classical model. 
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The early warning provided by the NMD methodology is promising to be used in 

an out-of-step (OOS) protection system. The following strategy is one idea but will need 

further investigation. A nonlinear oscillator about the 0.6Hz mode as shown in Figure 

18(d), from the proposed approach can be embedded in a properly selected OOS relay, 

e.g. on the two interties connecting the regions of ISO New England and New York ISO. 

Multiple variations of the oscillator can be prepared offline representing different 

operating conditions. In the online environment, measured system trajectory (assuming 

the availability of wide-area measurement data) can be transformed into the coordinates 

regarding the 0.6Hz oscillator for prediction of OOS between the two regions. Such a 

strategy may coordinate with traditional OOS logics to enable a more adaptive special 

protection system. 

2.3.5 Case Studies on NPCC 140-bus System with Detailed Model 

The detailed NPCC 140-bus power system with excitation and governor controls 

[55] is used to show to what extent the NMD based TSA result based on the classical 

model can work for the stability analysis with the associated detailed model. It is 

simulated with the same contingency in Section 2.3.3. 

The projection of the marginally stable and unstable trajectories to each mode are 

shown in Figure 19. Comparing Figure 19 to Figure 18, it is observed that the difference 

compared to the trajectories from the associated classical model seems not significant in 

the decoupled coordinates. Therefore, the modeling details of the generator do not affect 

the overall accuracy, which implies that the major error in the entire process of NMD is 

from the two truncations, i.e. truncating Taylor expansion and truncating high-order 
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(a) 0.38Hz     (b) 0.26Hz 

   

(c) 0.53Hz     (d) 0.60Hz 

       

(e) 0.47Hz     (f) Legend 

Figure 19. Shrunk stability boundaries of mode-decoupled system by NMD-TSA 2b 

using classical model. Trajectories are obtained using detailed model. 
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nonlinear terms in the decoupled system, such that the modeling error seems to be buried 

by the truncation errors and would be difficult to be distinguished from the overall error. 

2.4 Conclusions 

For general multi-oscillator systems including multi-machine power systems in 

the classical model, the NMD approach provides an approximate representation for 

stability analysis, i.e. a number of decoupled nonlinear one-degree-of-freedom oscillators. 

It is shown that the use of 3
rd

 order TTE induces much conservative stability boundary 

compared to the original power system model. Moreover, using the decoupled system 

from 3
rd

 order TTE, an even more conservative approximation of the stability boundary 

can be identified and the closest UEP can be approximated. This validates the use of 

NMD on power system TSA. Then, an NMD based TSA approach is proposed to analyze 

the transient stability of the multi-machine power systems. Each of the decoupled 

nonlinear oscillators can infer the transient stability of the original multi-machine power 

systems by using the Lyapunov function theory. Moreover, the most critical mode that 

could induce the instability can be identified. The proposed approach is validated on the 

simplified and detailed NPCC 140-bus power system. Test results show that the NMD 

based analysis has a potential to assess the transient stability and visualize the modal 

dynamics of multi-machine power systems.  

The potential significant benefits from NMD include: (i) a rough estimation of 

transient stability boundary; (ii) an early warning of the oscillation mode that may most 

likely develop into a transient instability; (iii) visualization of the dynamics of a high-

dimensional dynamical system in many low-dimensional coordinates for stability 
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monitoring purpose. Future works will investigate in detail the online applications of the 

proposed NMD methodology, early warning of transient instability and out-of-step 

protection, using a more efficient implementation and also the design of preventive and 

remedial control actions. 
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CHAPTER 3 

DIRECT DAMPING FEEDBACK CONTROL FOR OSCILLATION 

In this chapter, a direct damping feedback control method is proposed to eliminate 

the damping ratio deviation for a target mode by controlling the power converters based 

devices in the system. To reach the goal of measuring the damping ratio in real-time, a 

damping estimation approach is proposed, which is more accurate and robust for 

nonlinear oscillation and is insensitive to the length and starting point of the measuring 

time window. Using the proposed damping estimation approach and the power converter 

based devices in the system, a direct damping feedback control method is proposed using 

PI (proportional-integral) controller. The power system model together with the damping 

estimation algorithm is approximated by a transfer function in the control system. This 

approximation is enabled by a) representing the target mode as a single oscillator model 

which is obtained from model reduction via the NMD method, and b) considering the 

“zeroth-order” parametric resonance of the single oscillator model. Then, the parameters 

of the PI controller are determined by considering the trade-off between the requirements 

of robustness and control performance. Numerical studies on the 48-machine Northeast 

Power Coordinating Council system validate the effectiveness of the proposed damping 

control method.  

3.1 Methodology 

The proposed direct feedback control system is illustrated in Figure 20, including 

three modules: 1) a PI controller, 2) a low-pass filter, and 3) a power system module, 

where are described as follows: 
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Figure 20. Diagram of Feedback Control System 
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1) PI controller is the core of the proposed control system, whose goal is to 

eliminate the error e between the real-time estimated damping ratio ζest, and the desired 

value ζexp for a target mode. Its parameters αp and αi are to be optimized considering both 

robustness and accuracy of damping control. 

2) Low-pass filter provides a control signal kg to the power converter of the 

energy storage device, which removes high frequency components in the PI controller 

output. As being shown later, the filter is to avoid exciting the nonlinear response of the 

power system module, such that the power system module could be approximated by a 

transfer function. 

3) The power system module consists of two parts, the power system model and 

damping ratio estimation algorithm. The input is a control signal kg and the output is the 

measured damping ratio ζest. This module will be approximated by a linear transfer 

function, say G(s), considering the “zeroth-order” parametric resonance. How to identify 

G(s) will be shown later. 

In addition, the damping ratio cannot be estimated continuously, but discretely, in 

the practical application, e.g. estimated for every one second. Consequently, the control 

signal kg is also changed discretely. Hence, two signals do and di are added in Figure 20 to 

represent such discontinuity. They act like disturbances for the system and might be a 

cause of instability. Two additional conditions are considered to cope with do and di. On 

one hand, impact of do and di should be reduced to avoid instability. On the other hand, it 

is expected to quickly stabilize the system. A procedure for designing a robust PI 

damping controller will be proposed to consider those two conditions and a unique  
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selection of αp and αi can be determined. 

After the parameter αp and αi being determined, the whole control system will 

continuously operate in real time with the power system. The damping ratio can be 

measured using the ambient data from the load change or the ring down data from 

disturbances. When the damping ratio deviates from the expected value, the control 

system will change kg to eliminate the deviations, and the control parameters of the 

converters k will also be changed accordingly.  

3.2 Robust Damping Estimation Approach 

For the purpose of direct damping feedback control, an accurate and robust 

feedback signal of estimated damping ratio is necessary. The measuring time window to 

meet the real-time performance needs to be short, e.g. 3-5 seconds, to reflect the variation 

of damping ratio in real-time. The estimation should be accurate when the response 

exhibits nonlinearity and when a differently short window length is used. The details of 

this approach will be given. The performance of this approach and other analysis are 

given in the Appendix A for the sake of brevity. 

3.2.1 Methodology 

The proposed damping estimation approach inherits the idea of NMD and fits 

post-disturbance measurements into a nonlinear oscillator for more robust estimation of 

oscillation damping, which is insensitive to the length and starting point of time window 

of measurements. It is assumed that rotor angles of all main generation units can be 

directly measured or estimated in a real-time and synchronous manner [57], [58]. The 

approach performs three steps: 1) linearly transforming rotor angle measurements into a 
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modal space for approximate modal decomposition; 2) fitting a nonlinear oscillator for 

the mode of interest, e.g. the dominant mode; 3) calculating the damping ratio from the 

oscillator. The methodology of the approach is, when a window of data is selected, those 

aforementioned three steps are implemented as follows: 

Step 1 (modal decomposition): Use the decomposition transformation to extract 

the response of each mode from the state space response, especially the response of the 

target mode. 

Step 2 (nonlinear oscillator fitting): Identify a 1-DOF nonlinear oscillator for 

the target mode from the mode response.  

Step 3 (damping ratio estimation): Calculate the damping ratio from the 

identified coefficients of the nonlinear oscillator. 

Those steps will be repeated when the next window of data is selected. This 

process can be automated for on-line and real-time application. The details of those steps 

will be given in the subsequent sections. 

3.2.2 Modal Decomposition 

The linear transformation for decomposing electromechanical modes can be 

obtained from linearization of the power grid model in the form of ordinary differential 

equations (2-1), which can consider detailed generator models with exciters and 

governors and equivalent impedance loads. The model parameters should be online 

updated to reflect the current topology and system condition of the grid. 

= ( )X f X  (2-1) 
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where X=[δ, Δω, … ]
T
 is a N×1 vector of system state variables, including rotor angles δ, 

speed deviations Δω, etc.. f governs the system dynamics.  

Linearize f(X) at the stable equilibrium (SEP) to obtain  

= X A X  (2-2) 

where A is the Jacobian matrix. 

Let Δδ be the difference between rotor angles δ and the SEP. The desired linear 

transformation to decouple the dynamics of rotor angles Δδ, say T, can be obtained by 

the two steps a) and b) below. 

a) Let A=LΛL
-1

, where Λ is a diagonal matrix of all eigenvalues and L is the 

corresponding modal matrix, whose rows are left eigenvectors. Then, define Y=LX, 

which includes linearly transformed, decomposed state variables. Amongst Λ, each 

conjugate complex pair of eigenvalues, say λi and λi
*
, define one oscillation mode. If λi = 

σi + jwi, the oscillation frequency fosc,i equals wi/2π and damping ratio ϛi is computed by 

(2-3). Assume that Nosc modes, i.e. Nosc pairs of eigenvalues, have fosc,i in 0.1-2 Hz. They 

are the modes of electromechanical oscillation (EO) of interests. Re-organize and divide 

the rows of L into Losc and Lrest respectively corresponding to Nosc selected EO modes 

and the other modes as shown in (2-4). 

2 2
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Here, we assume that only rotor angles δ are directly measured by PMUs for online 

modal analysis. The proposed approach extracts the columns of Losc that correspond to 

Δδ to make matrix L

osc. Thus, define  

osc osc

  Y L   (2-5) 

b) Real-valued decomposed state variables are preferred in terms of fitting, but 

Y

osc is complexed-valued due to the complex-valued L


osc. Hence, instead of directly 

using Y

osc, another transformation P is adopted [13] to obtain a set of real-valued 

decomposed state variables, say Z, as in (2-6). 

osc osc

    Z PY PL T   (2-6) 
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  
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   

   
   

Z z z

P
 (2-7) 

where T is the desired linear transformation to decouple the dynamics of the oscillation 

modes from Δδ. Z contains real-valued linearly decomposed state pairs zi. Note that 𝛿̇zi = 

ωzi, which makes zi behaves like an oscillator, i.e. δzi behaves like an oscillator “angle” 

and ωzi behaves like “speed”.  

Henceforth, T is used to decouple the time series measurements of Δδ to obtain a 

mode of interest, e.g. a dominant mode. One may note that if the SEP cannot be 

accurately obtained, the time series of Δδ and Z would contain some constant bias. This 

will be coped with by the mean centering technique and by assuming a fitting model with 

constant term as shown later in the nonlinear oscillator fitting approach. 
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3.2.3 Nonlinear Oscillator Fitting 

Let {z[1],…, z[K]}, where z[k] = [δz[k], ωz[k]]
T
, be the time series of a dominant 

mode, which oscillates around zero (if not, use techniques like mean centering to meet 

this requirement [59]). Since each pair zi behaves like an oscillator as aforementioned, it 

is assumed that the time series can be fitted by the nonlinear fitting model (2-8), which is 

essentially a nonlinear oscillator of 1-DOF. The high-order polynomial term δzi represents 

the nonlinearity in the waveform of the dominant mode. 

1 02
0

L i

z d z z i zi
c c c c   


      (2-8) 

where cd and ci (i=0, …, L) are the unknowns to be estimated. The constant term c0 is to 

allow the existence of constant bias in the time series of Δδ and Z. L is the highest 

polynomial order to be selected. A large L can usually give a better fitting since the 

model (2-8) has more freedom to accommodate the nonlinearity in system response, and 

it is recommended to be L = 30 based on the experimental results in this paper. 𝛿̇z = ωz, 

and the time series of 𝛿̈z can be numerically computed via that of 𝛿̇z, as in [60] and [61]. 

This oscillator has a stable equilibrium point (SEP), δz,SEP. 

Let C= [cd, c0, …, cL], i.e. all the unknowns, Ψk = [ 𝛿̇z [k], 1, δz[k], (δz[k])
2
,…, 

(δz[k])
L
]

T
, and ξk = 𝛿̈z[k]. Then, the estimation of C based on least square can be obtained 

by solving 

 
2

1
min     k

K

kk
Obj


  

C
C   (2-9) 

The minimum of (2-9) is obtained when the derivative vector ∂Obj/∂C is equal to 

zero, from which the optimal solution Copt of (2-9) can be obtained by (2-10) and (2-11). 
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1=opt

C vu  (2-10) 

1 1
= ,      =

K KT T

k k k kk k 
    u v  (2-11) 

The derivation of (2-10) and (2-11) is given as follows. 

The global optimal solution to reach the minimum of the least square problem 

(2-9) must satisfy a necessary condition as shown by (2-12).  
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 (2-12) 

Note that Ci denotes the ith entry in C = [cd, c0, …, cL]. Each entry in (2-12) is 

calculated by: 
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where Ψk,i is the ith entry in Ψk.  

Since (CΨk + ξk) is a scalar, (2-12) can be rewritten as a compact form as (2-14). 
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 (2-14) 

where u and v are defined in (2-11). Since (2-14) has a unique solution, i.e. (2-15), it is 

also the global optimal solution that can reach the minimum of (2-9). 

1

opt

 C vu  (2-15) 
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3.2.4 Calculation of Damping Ratio 

Shift the SEP of the oscillator (2-8) to the origin by replacing δz by ,
ˆ
z z z SEP    . 

The resulting system is represented by (2-16).  

1 2
0

L i

z d z z i zi
c c c   


     (2-16) 
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1

1 2

4
,

2 2

dd
z z z z

c cc
jw j  


     (2-17) 

The first three terms actually constitute the linear counterpart of (2-16). The two 

eigenvalues of the characteristic equation of the linear counterpart can be solved by 

(2-17), say λz1 and λz2. Here, assume 
2

14 0dc c  so that λz1 and λz2 are a conjugate pair. 

The damping ratio ϛz and the oscillation frequency fz are calculated by (2-18). 
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


 


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
 (2-18) 

3.3 Transfer Function of Power System Module 

In this section, a single oscillator model representing the target mode is obtained 

by model reduction via the NMD method or alternatively normal form theory. The impact 

of the converters on the single oscillator model is considered via the eigenvalue 

sensitivity. Then, together with the damping ratio estimation algorithm, a transfer 

function is identified for the power system module using the parametric resonance. 

3.3.1 Model Reduction: Single Oscillator Model 

Without loss of generality, only the active power outputs of converters are 

considered here. The same derivation process can be immediately applied if the reactive 

power outputs are considered. 
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Consider the active power output variation of the power converters ΔPC follows 

the control rule below.  

( )C Cdiag P k ω  (2-19) 

where diag(•) is the operator to convert the vector inside to a diagonal matrix. k is the 

control parameter of the converters, and ΔωC is the bus frequency of the converters. This 

control rule is based on the fact that the dynamics of the converters are much faster than 

that of the electromechanical dynamics.  

The impact of ΔPC on the electrical power of the generators, ΔPe, is mainly 

considered. The part of ODEs that is directly related to ΔPe is expressed by (2-20) in the 

linearized form. 

2 ( )( ) m ediag diag     H ω P P D ω  (2-20) 

where H, D, Pm, and Pe are the vectors of inertia, damping coefficient, mechanical power, 

and electrical power of the generators, respectively. 

By linearization and Kron reduction techniques [62], ΔPe can be expressed by: 

2 31e d q C       P E E P  (2-21) 

where E’d and E’q are the transient voltage along the d and q axis, respectively. κi is the 

resulting coefficient matrix. Substitute (2-19) and (2-21) into (2-20): 

1 2 3(2 ) ( ) ( )x ym Cd d d giag ia iag          H ω P E E k ω D ω  (2-22) 

The bus frequency deviation ΔωC could be approximated by a linear function of 

Δω, which could simplify the analysis. By Kron reduction techniques, the network 

equations could be obtained which only consider the generator buses and converter buses: 
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G GGG GC

CG CCC C

    
    
    

I VY Y

Y YI V
 (2-23) 

where I, V, and Y are the current injection phasor, node voltage phasor, and the network 

impedance.  The subscript “G” denotes the generator terminal buses, and “C” denotes the 

buses with controllable converters. Each Vi can be expressed in the polar coordinates 

| | ij

i iV V e


 . For the generator buses,  (2-24) holds, where δj is the rotor angle and θGdqj is 

the phase angle in the rotating d-q coordinates. 

–
2

Gj j Gdqj


     (2-24) 

The active power balance equations at the converter buses are computed by (2-25), 

where Re(∙) is the operator to extract the real part. 

  * * * *Re ( )C C CC G G C Cdiag P V Y V Y V  (2-25) 

Considering (2-24) and the assumptions listed below, eq. (2-26) can be derived 

from (2-25). 

a) All the conductances are  omitted, i.e. GCG = 0 and GCC = 0; 

b) sin(θCi – θGj) ≈ θCi – θGj and sin(θCi – θCj) ≈ θCi – θCj; 

c) |VCi| = |VGi| ≈ 1; 

d)  Gdqi = 0. 

C CC C CG

C CC C CG

 

 



 

P B θ B δ

P B ω B ω

 (2-26)  

where BCC and BCG are susceptance matrices. 

If further assume CP  is negligible, (2-26) becomes (2-27). 
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1

C CC CG

  ω B B ω  (2-27) 

An alternative way to derive the function between Δω and ΔωC is introduced in 

[63], named as frequency divider, which is similar to (2-27) but the local load changes 

are not considered during the derivation. 

Substitute (2-27) into (2-22) : 

 1

1 2 3(2 ) ) ( )(m x CCy CGdiag diag diag            H ω P E E k B B D ω  (2-28) 

Let the complete linearized power system ODE be (2-29) with (2-28) being 

included. X is the vector of the system states. 

  X A X  (2-29) 

The NMD method could be viewed as a model reduction technique that can 

decouple (2-29) and obtain a set of independent 1-DOF oscillators, with each one 

representing an oscillation mode. Normal form theory could also be used to reach this 

goal since it is essentially equivalent to the NMD method when facing linear ODEs. Let 

δzi and ωzi be a pair of states corresponding to an oscillation mode and Z includes all the 

δzi and ωzi. Note that δzi and ωzi are analogous to the “angle” and “speed”, respectively. 

The NMD transformation can be expressed by  

hZ T X  (2-30) 

Note that it is a linear transformation since (2-29) is linear ODEs. Th is a square 

matrix. The form of the independent 1-DOF oscillator of each mode can be generalized 

by: 

2 2

0 1

2

zizi

i i i zizi
w



  

    
    

     
 (2-31) 
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or equivalently: 

22 0zi i ni zi ni zi         (2-32) 

where λi1,2 = σi ± jwi are a conjugate pair of eigenvalues of (2-32) and are also part of the 

eigenvalues of A. ζi is the damping ratio and ωni is the natural frequency. 

2 2,    i
i ni i i

ni

w


  


     (2-33) 

If (2-32) corresponds to the target mode, it is a single oscillator model of the 

power system regarding the target mode. The change of λi1,2 = σi ± jwi regarding the 

parameter k can be approximated by: 

j j

j jj j

i i
i i

w
kj w k

k k
j




 
 





    (2-34) 

The sensitivity ∂σi/∂kj and ∂wi/∂kj can be calculated by (2-35) [62]. 

mn
ni

m n m nj j mn m

i i i i
im

n j

w w a
j j L R

k k a a k

      
    

     
   (2-35) 

where Lim is the entry of the left eigenvector at row i and column m, and Rni is the entry of 

the right eigenvector at row n and column i. ∂amn/∂kj is the sensitivity of each entry amn in 

A regarding each kj in k. 

Two assumptions are taken before considering ∆σi and ∆wi in (2-32). First, 

assume ∂wi/∂ks ≈ 0 and ∆wi ≈ 0 since usually ∂wi/∂kj << ∂σi/∂kj and ∆wi << wi. Second, 

ωni is assumed to remain unchanged since ∆σi << ωni. Hence, (2-32)  becomes: 

  22 0gzi i ni zi ni zik          (2-36) 

2 2g j

j j

i
ik k

k


   





  (2-37) 
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Eq. (2-36) is the reduced-order model representing the target mode with the 

parameter k being considered. Note that kg is considered as a control signal.  When the 

control signal is given, k only needs to be changed to meet (2-37). The sensitivity ∂σi/∂kj 

can be used as a criterion to rank the effectiveness of each converter. Only the converter 

with the largest ∂σi/∂kj is the best candidate for damping control service unless it reaches 

its limit and then a second candidate converter has to be used. 

3.3.2 Transfer function  

Using the single oscillator model and the previously proposed damping estimation 

approach, the diagram of the power system module is shown in Figure 21. This module is 

essentially nonlinear. Moreover, a certain type of the signal kg will excite parametric 

resonance in the response of δzi as shown in the Appendix A and B, which makes it even 

more complicated to control.  

If kg is a sinusoidal signal, say kg = Kcos(Ωt) where K is the amplitude and Ω is 

the frequency, the conclusions of the parametric resonance can be stated as follows. The 

principal parametric resonance in Appendix A states that if Ω ≈ 2wi, the waveform of δzi 

exhibits either a periodic changed damping of which the frequency of that periodicity is 

close to 2 2( ) 42w K  , or simply a time-variant damping. On the other hand, the 

“zeroth-order” parametric resonance in Appendix B states that if Ω ≈ 0, the waveform of 

δzi shows a periodic varied damping and the frequency of that periodicity is close to Ω. 

To approximate the power system module by a transfer function, the “zeroth-

order” parametric resonance is utilized. Since the frequency of output signal ζest will be 

very close to the frequency of the input signal kg under “zeroth-order” parametric  
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Figure 21. Diagram of the power system module 
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resonance, it makes the module behaves like a linear transfer function. 

To obtain the transfer function G(s), one modification is the use of a low-pass 

filter to reduce the high frequency components in kg. Let the cut-off frequency of the 

filter be wcut. Then, the frequency-response characteristics of the power system module 

within a small frequency domain surrounding 0 rad/s is measured, through which G(s) 

can be estimated. The frequency-response characteristics can be obtained as follows. 

Given a frequency domain, say [0, ωcut], densely select a set of frequencies within the 

domain. At each frequency ωp, feed a harmonic signal of single frequency ωp and 

amplitude one into a system and measure the output. The relative variation in the 

magnitude and phase angle of the output relative to the input can be viewed as an 

approximation of |G(jωp)|∠G(jωp). When the relative variations at all the frequencies are 

known, G(s) can be identified via transfer function estimate from experimental data, like 

the function tfest() in MATLAB. 

3.4 Robust PI Controller 

There are many different ways to tune the PI controller. Following the principles 

in [64], the all stabilizing parameter domain is defined as a domain within which any 

selection of the parameters αp and αi can stabilize the system. Following the PI 

stabilization method in [64], when do and di are assumed to be zero, the all stabilizing 

parameter domain can be analytically determined within which there exist infinitely 

many selections of αp and αi.  
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More conditions need to be considered to obtain a unique selection. Here, the 

methodology of [65] is followed to uniquely determine αp and αi by considering the 

robustness and control performance of the PI controller. 

The robustness considers the impact of do and di on the estimated damping ratio 

ζest. The following relationship can be derived: 

0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )est exp c is T s s S s G s d s T s d s     (2-38) 

,             

( ) ( )1

(

( )
( ) ( )

1

,     
1

( ) ( )
( ) ) 1 ( ) ( )

i
c p

LP

c

c c

G s
G

G s C s

G s C s G s C

s C s
T s s

S s T s
s





   


  
  

 (2-39) 

where S(s) and T(s) are the sensitivity function and complementary sensitivity function, 

respectively. S(s) should be minimized over the frequency domain to reduce the impact of 

di, while T(s) should be minimized over the frequency domain to minimize the impact of 

do. Hence, set the robustness measure as (2-40). As indicated in [65], the reasonable 

values Mst are in a range between 1.2 and 2. A smaller Mst indicates better robustness. 

max(| ( ) |,| ( ) |),        stM S j T j


      (2-40) 

The control performance is characterized by the integrated absolute error (IAE) 

defined in (2-41). A smaller IAE indicates faster stabilization of a perturbed system. 

0
| ( ) |IAE e t dt



   (2-41) 

where e is the control error after a disturbance like a step change in the reference ζexp. 

Based on the conclusion of [65], it is not always possible to find a selection that 

can both minimize Mst and IAE. By depicting the contours of Mst and IAE within the all 

stabilizing parameter domain, there exists a trade-off curve between the optimums of Mst 
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and IAE along which every point is Pareto optimal. The trade-off curve can be 

numerically obtained by minimizing IAE for a set of fixed Mst. One way to uniquely 

determine αp and αi is to first determine a target Mst, and then, find the optimal value 

minimizing IAE. The problem is formulated as: 

,

, ][
min      

     . .      

p i

st st tar

IAE

s t M M

  


 (2-42) 

where Θ denotes the all stabilizing parameter domain, and Mst,tar is the target value. 

3.5 Case Studies on NPCC system 

The NPCC system is used to illustrate the design procedure of the proposed 

method, and validate the effectiveness in a practical scenario. 

3.5.1 Control System Design 

The proposed design procedure is investigated in detail through the 

implementation on an NPCC 140-bus system. The system is changed a little for the case 

studies. A line is added between buses 7 and 13, with the impedance to be j0.0028 (pu). 

The damping coefficients are set to be 1.21 times the original value. 

The 0.62 Hz inter-area mode is selected for designing the damping control. The 

diagram is the same as in Figure 17 except that one line is added between bus 13 and bus 

7. The information related to this target mode from linearized model based small signal 

analysis is given in Table 11. The expected damping ratio is ζexp = 3%. The buses 1 and 

23 are assumed to have power converter based devices that can provide damping control 

service. For each bus, 0 ≤ kj ≤ 200. According to the sensitivity ∂σi/∂kj, bus 23 is the 

better one for damping control.  
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Table 11. Target Mode for Control System Design 

Frequency (Hz) Eigenvalue Damping ratio (%) 

0.62 -0.1175 ± 3.8872i 3.02 
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The single oscillator model for the target mode is given in (2-43). 

 0.2348 15.1243 0z zi zg ik       (2-43) 

The transfer function G(s) is given in (2-44). Note that ωcut = 2π×0.3 rad/s is 

selected to meet the assumption of “zeroth-order” parametric resonance. 

2

3 2

0.665 0.140 3.602
( )

3.338 5.788 3.975

s s
G s

s s s

 


  
 (2-44) 

The cut-off frequency of the low-pass filter is also set as ωcut = 2π×0.3 rad/s, i.e. 

TLP = 1/ωcut = 0.53. Gc(s), S(s) and T(s) are determined as follows. 

2

2

3 2

3 2

4

4 3
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( )
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   
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     

 (2-45) 

Now, only the parameters of the PI controller need to be determined. Using the 

method in [64], the all stabilizing parameter domain is depicted in Figure 22, marked by 

the white area. The contours of Mst and the optimum M
*
st are depicted in Figure 23. The 

contours of IAE and the optimum IAE
*
 are depicted in Figure 24. Trade-off between Mst 

and IAE can be easily observed by comparing their contours, as shown in Figure 25. The 

trade-off curve corresponds to 1 ≤ Mst ≤ 1.75 and 2.15 ≤ IAE ≤ 82.71. 

To show if the control model in Figure 20 could properly reflect the control 

performance exhibited in the power system simulation, consider a step function as the 

input to the control model and the power system simulation and the responses of the 
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Figure 22. All stabilizing parameter domain. 

 

 

Figure 23. Contours and optimum of Mst. 
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Figure 24. Contours and optimum of IAE. 

 

 

Figure 25. Trade-off curve. 
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damping ratio are compared. The specific configuration of control model and power 

system simulation is set as below. 

1) Control model: the initial value of ζexp is set to be 0.92%. Then, after one 

second, ζexp is immediately changed to 3%. 

2) Power system model: first deactivate the damping control. The rotor angle 

oscillation in the power system simulation is excited by a permanent three-phase fault  

added at bus 13 and cleared after 0.125s by disconnecting the line 13-7. Note that the 

damping ratio of the target mode drops to 0.92% in the post-fault system. Then, the 

damping control is reactivated after the first several seconds and ζexp is set as 3%.  

For the power system model case, the first several seconds are skipped to avoid 

including the response from the fault-on system, which could hardly be handled by any 

damping ratio estimation methods. Another reason is that, the control model is based on a 

linearized power system model. For the purpose of test, the data of the first several 

seconds that exhibits nonlinearity are skipped and the subsequent data is used which is 

close to sinusoidal response. How to handle the data in first several seconds is discussed 

in the next section. 

Three points on the trade-off curve, [0.3251, 0.3172], [0.6518, 0.4742] and 

[1.0557, 0.5623], are selected for [αp, αi], which are corresponding to [Mst, IAE] = [1.3, 

3.479], [1.5, 2.333], and [1.75, 2.149], respectively. The comparison results are given in 

Figure 26, Figure 27 and Figure 28, respectively. For the sake of convenience, the 

responses of the damping ratio are realigned such that t = 0 s corresponds to the time 

instant of the step change.  
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Figure 26. Comparison: [αp, αi] = [0.3251, 0.3172]. 

 

 

Figure 27. Comparison: [αp, αi] = [0.6518, 0.4742]. 

 

 

Figure 28. Comparison: [αp, αi] = [1.0557, 0.5623]. 
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The results from the control model and the power system simulation agree well 

when Mst is small, and become less consistent when Mst becomes larger. Hence, it is 

recommended to set Mst to be a small value, such that the control model could properly 

reflect the practical scenario. 

Finally, the case of [αp, αi] = [1.0557, 0.5623] is used to show the accuracy of the 

approximation (2-27). The true ΔωC and the approximated ΔωC are compared for bus 1 

and 23, and the results are shown in Figure 29. Note that there exists observable 

difference between the true ΔωC and the approximated ΔωC for bus 23, which might be 

caused by neglecting CP  in (2-26). How to compensate such difference will be 

investigated in the future works. 

3.5.2 Practical Scenario 

In this section, a practical scenario is considered. Before t = 30 s, there is only 

ambient data caused by load change. At t = 30 s, a permanent three-phase fault is added 

at bus 13 and cleared at the critical clearing time (CCT), 0.125 s, or 0.5 CCT, 0.0625 s, 

by disconnecting the line 13-7. Three groups of parameters are selected for [αp, αi], 

[0.3251, 0.3172], [0.6518, 0.4742] and [1.0557, 0.5623], which corresponds to [Mst, IAE] 

= [1.3, 3.479], [1.5, 2.333], and [1.75, 2.149], respectively. Note that in this study the 

damping control is activated all the time. 

As mentioned in the previous section, the data in the first several seconds after a 

large disturbance should be handled. On one hand, the response of fault-on system would 

be included in those data. Based on the experimental experience, damping ratio 

estimation on such data usually cannot identify an oscillation mode; actually, most of the 
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Figure 29. Comparison of true and approximated ΔωC. 
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estimation algorithms would give a result of non-oscillation mode, i.e. a real eigenvalue. 

On the other hand, the response of the post-fault system could exhibit severe nonlinearity 

at the early stage, and a robust estimation method should be used to identify the accurate 

damping ratio. Two remedies are used to deal with those two issues. 

1) When a real eigenvalue mode is identified, the current damping ratio result is 

set to be equal to the previous result. By doing this, the response of the fault-on system 

could be skipped. 

2) The recently proposed nonlinear oscillator fitting based damping ratio 

estimation method are used to handle the nonlinearity at the early stage, which is shown 

to be more robust than the existing methods, and is insensitive to selection of the length 

of the measuring time window.  

Note that the length of the measuring time window is selected as 3 seconds. The 

damping ratio is estimated and updated for every 0.5 second. 

The comparisons of those three groups of parameters are given in Figure 30 when 

the fault is cleared at the CCT, and in Figure 31 when the fault is clear at 0.5 CCT. The 

results show that all the three groups of [αp, αi] can eliminate the damping ratio deviation. 

The comparison between 35 seconds and 50 seconds shows that a group of [αp, αi] with 

smaller IAE can eliminate the deviation much faster. For instance, in Figure 31, [αp, αi] = 

[1.0557, 0.5623] can be around 5 seconds ahead than [αp, αi] = [0.3251, 0.3172] to tune 

the damping ratio back to 3%.  

Use Figure 30 to illustrate the variation of the measured damping ratio. At around 

34 seconds, the measured damping ratio increases to over 5%. This increase is mainly 
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Figure 30. Damping control performance: fault cleared at CCT. 

 

 

Figure 31. Damping control performance: fault cleared at 0.5CCT. 
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caused by the system nonlinear response. As investigated by the proposed damping 

estimation method in Appendix A, when fault is cleared at CCT, the modal response of 

the target mode could exhibit a large damping ratio at the early stage, and the measured 

damping ratio will also increase. It could also be observed that at around 39 seconds, 

there is an increase from less than 2% to almost 3%. This increase might be caused by the 

fact that, if the control signal kg exhibits more complex dynamics than a sine wave, the 

system response would also be more complex and could exhibit unusual damping ratio. If 

such increase is viewed as part of disturbance di in Figure 20, one may want to enhance 

the robustness against such disturbance by selecting a small Mst when optimizing [αp, αi]. 

3.6 Conclusion 

A feedback control method is proposed for direct damping control. The feedback 

control system is designed using PI controller. A single oscillator model representing the 

target mode is derived based on which the power system together with the damping 

estimation algorithm is approximated by a transfer function. The identification of this 

transfer function utilizes the parametric resonance. The optimal parameters of the PI 

controller are determined by considering the robustness and control performance. 

Simulation results on the 48-machine Northeast Power Coordinating Council system 

validate the effectiveness of the proposed damping controller.  

Future works may include but not limited to: a) how to find a better 

approximation of ∆ωC considering the derivative of ΔPC, b) more advanced control 

techniques to model the control system and more effective control algorithm, and c) how 



 
91 

to better handle the response data of the large disturbance at the early stage such that the 

damping controller could contribute to transient stability.  

  



 
92 

CHAPTER 4 

CONCLUSION AND RECOMMENDATIONS 

4.1 Summary of Contributions  

This work proposed an NMD based power system TSA (transient stability 

analysis) approach, a real-time damping estimation method on nonlinear 

electromechanical oscillation, and a new real-time damping controller to eliminate the 

damping ratio deviation of a target mode. Specifically, the contributions of this work can 

be briefly summarized into the following aspects. 

 This works showed the necessity to consider nonlinear oscillations for 

more accurate stability assessment and more advanced stability control. 

 It was shown that keeping the polynomial terms up to the 3
rd

-order for the 

decoupled system from NMD is acceptable for the purpose of 

approximate or conservative transient stability analysis. 

 An NMD based power system TSA approach was proposed that can 

reduce the analysis of the original high-dimensional system to individual 

analyses on decoupled nonlinear oscillators about a few selected critical 

modes. The most critical mode that could induce instability can also be 

identified. 

 A robust and accurate real-time damping estimation approach on 

nonlinear electromechanical oscillation was proposed, which can utilize 
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complete post-disturbance data and is insensitive to the length and 

starting point of the measuring window.  

 The power system module consists of power system model and damping 

estimation algorithm could be approximated by a transfer function via the 

“zeroth-order” parametric resonance. 

 A PI controller based direct damping feedback control method was 

proposed that utilizes the power converters based devices to control the 

damping ratio of a target mode to a desired value, with the requirements 

of both robustness and control performance being considered. 

4.2 Future Works 

Investigations on nonlinear power system oscillations could provide more insight 

on the connection between the oscillation modes and instability, e.g. reveal the 

mechanism of how a poorly-damped oscillation mode induces the out-of-synchronism 

among the generators. More effective assessment tools and more complex control 

methods can be developed to benefit the system operation and protection.  

As a continuation of the NMD based power system TSA approach, the application 

of NMD or other methods for power system stability control would be investigated in the 

future. It is worthwhile to develop advanced control measures regarding the most critical 

mode to avoid the instability.  

In the proposed damping controller, the measurement data around the fault 

clearing time cannot contribute to the damping control since it is difficult to extract useful 

features of a target mode from those data. How to effective recognize the information of 
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the target mode deserves more studies such that those data could be utilized for the 

damping controller, and even for the control methods of transient stability. Besides, more 

complex controller could be considered for designing the direct damping feedback 

control, where the nonlinear nature of the power system module is fully considered. 
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APPENDIX A – Performance of Damping Estimation Approach 

At the beginning, three factors that could affect the accuracy of damping 

estimation are introduced, i.e. measurement noises, limited coverage of PMU 

measurements, and existence of multiple dominant modes, and the corresponding 

suggestions to reduce their influences and ensure the estimation accuracy are also 

proposed. Then, the performance of the damping estimation approach is shown via case 

studies, with those three factors also investigated. 

A.1 Influencing Factors on Damping Estimation 

In the real-world application, some factors could influence the damping 

estimation and even worsen the accuracy of the result. Three factors are considered 

including measurement noises, limited coverage of measurements, and the existence of 

multiple dominant modes. For each factor, the corresponding suggestions is proposed and 

illustrated to reduce its impact and ensure the accuracy of damping estimation.  

Measurement Noises 

The noises in measurements can influence estimation accuracy, and thus data 

preprocessing is needed to screen out the noises in measurements before the estimation. 

The filter deployed in this paper is similar to the one used in [66], i.e. a low-pass (LP) 

filter plus a moving average (MA) filter as shown in Figure 32. In the LP filter, the high 

frequency noises are extracted by the HP filter, and then, they are removed out of the 

original measurements by subtraction. MA filter is used to make the filtered data 

smoother. The proposed approach will be applied to the filtered data afterwards. 
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Figure 32. Schematic diagram of filter for preprocessing measurements. 
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Compared to an ordinary LP filter, the LP filter in Figure 32 can keep the low-

frequency components less affected than a conventional LP filter when screening out 

high frequency noises [66]. The requirements for designing the inside HP filter can be 

found in [67]. The cut-off frequency of the HP filter is recommended to be 2.5Hz in this 

paper according to the frequency range of electromechanical modes. 

Limited Coverage of PMU Measurements 

For calculating the damping ratio of a dominant mode, the ideal situation is that 

all rotor angles of generators are available by either direct PMU measurements or 

dynamic state estimation. However, in reality, it could happen that not all rotor angles of 

generators are measurable by PMUs if either there are no PMUs installed on those 

generators, or some PMU measurements are not available temporarily due to 

communication interruption or PMU malfunctions. Thus, the influence of limited 

coverage of PMU measurements on the accuracy of damping estimation needs to be 

investigated.  

In the case studies, the impact of missing PMU measurements on the estimation 

accuracy is investigated by assuming the measurements to be available for down to 85% 

of generators, e.g. 41 generators for the NPCC system. As later shown in the case studies, 

if a dominant mode is specified to be monitored during system oscillation, in order to 

ensure estimation accuracy on oscillation damping, it is recommended to guarantee the 

accessibility of the PMU measurements of the generators which have high observability 

of dominant mode. 
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Multiple Dominant Modes 

Real-life oscillation events usually involve one dominant mode while the other 

modes are either insignificant in terms of amplitudes or the impacts on system stability, 

or do not sustain long. In some specific cases, however, there could be more than one 

mode that sustain together for a long time before one of them becomes dominant while 

the rest are damped out, of which the impact on estimation accuracy needs to be studied. 

Later in the case studies, the scenario with two dominant modes are created and studied 

on the NPCC 140-bus system, by an excitation technique based on the concept of normal 

mode [68] which is proposed to specifically excite some modes for power system by 

initializing the system with linearly scaled mode shape of interest (for short, LSMS): the 

system is initialized with zero angular velocities and the rotor angles are initialized at the 

linearly scaled mode shape about the modes of interests.  

An index for modal energy is defined to evaluate the modal energy over a sliding 

time window, such that the energy variation of each mode can be investigated. Similarly 

define another linear transformation Y
ω

osc = L
ω

osc Δω like in (2-5). Then, it is real-valued 

as in (A-1). Note that the matrix P here is the same as the one in (2-7). Thus, zi and 𝑧̃i 

correspond to the same pair λi and λi
*
 of mode i. 

osc osc

 

    Z PY PL T   (A-1) 

 
1
,   ,

T

ii iNosc zi z 


    Z z z  (A-2) 

Then, the index of modal energy Ei of an oscillation mode i can be computed over 

a sliding time window on the corresponding pair 𝑧̃ i, as (A-3) and (A-4). The modal 
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energy ratio of one mode to the entire modes is defined by (A-5) to evaluate the 

dominance of a mode. 

1

iz ii 



  z   (A-3) 

0

0

1 slt T

ii
t

sl

zE
T



  H  (A-4) 

i
i

i

E
ER

E



 (A-5) 

where Tω-i contains the columns in Tω that correspond to 𝑧̃i, and the superscript “-1” 

denotes the pseudoinverse. H is the row vector of the generator inertia. t0 is the initial 

time of the sliding time window, and Tsl is the length of the window. A sustained 

oscillation mode with high amplitude would have a relatively large value of ERi 

compared to the fast damped-out or low amplitude modes. Such a mode will be a 

candidate for a dominant mode to be considered. 

A.2 Case Study: IEEE 9-Bus System 

The performance of the proposed approach is tested on the IEEE 9-bus system 

and compared with the Prony’s method and the RLS method. The measurements are 

obtained from time-domain simulations under both small and large disturbances. The true 

value of damping ratio from the linearized model based eigen-analysis is computed by 

(2-3) and denoted by “True DR” in the figures. The Prony’s method is implemented by 

the Prony tool with the TSAT software by Powertech Labs. The RLS method is 

implemented via the MATLAB function recursiveAR(), setting a 101st-order 

autoregressive (AR) model and a forgetting factor of 0.999. The model of IEEE 9-bus 

system is from [57], with classical generator model and constant impedance load 
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considered. The system diagram is the same as in chapter 2. The sampling rate is 30 

samples per second. 

A temporary three-phase fault is added at bus 5 and cleared at the CCT with the 

line 5-7 being disconnected. The 0.97 Hz oscillation mode is largely excited and hence 

selected for damping estimation. The dominance of the 0.97 Hz mode can also be verified 

by the spectrums from the response of two relative rotor angle differences, as shown in 

Figure 33. The information related to this dominant mode from linearized model based 

small signal analysis is given in Table 12.  

Different lengths of sliding time windows are selected, i.e. 2 s, 2.5 s, 3 s, 3.5 s, 4 s. 

Order L = 10 is selected for the nonlinear oscillator model since its result is close to that 

of L = 30. The results are compared with that from the Prony’s and RLS methods as 

shown in Figure 34, which validates the proposed approach for providing accurate and 

robust damping estimation. Note that the initial time instant of each sliding time window 

is used as the timestamp for the corresponding estimation. The damping ratio of the 

dominant mode estimated from the proposed approach is much less sensitive to the length 

of the sliding time window, which indicates the true damping of the mode in the sense of 

both small and large disturbances. Hence, compared with the Prony’s method and RLS 

method, the proposed approach is more reliable for the first several large-amplitude 

swings following the large disturbance. Moreover, it has a high accuracy even with short 

time windows. Thus, the proposed approach has obvious advantages for real-time 

applications.  

 



 
110 

 

 

 

 

 

Table 12. Dominant Mode of IEEE 9-bus System 

Frequency (Hz) Eigenvalue Damping ratio (%) 

0.97 -0.100 - 6.089i 1.642 

 

 

 

Figure 33. IEEE 9-bus system: spectrums when the fault cleared at CCT. 
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Figure 34. Comparison of different methods on the IEEE 9-bus system. 
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A.3 Case Study: NPCC 140-Bus System 

The NPCC system has 27 of 48 generators modeled by detailed 4th order 

generator models with exciters [55] and is used as a more realistic scenario to illustrate 

the validity of the proposed approach. The sampling rate is 30 samples per second.  

A temporary three-phase fault is added at bus 13 and cleared after a duration of (a) 

CCT, (b) 0.5 CCT, and (c) 0.25 CCT, respectively, without disconnecting any line. An 

oscillation mode at around 0.60 Hz is selected for damping estimation, which is a critical 

inter-area mode as shown in Figure 17.  

Its mode shape indicates the partition of generators into two groups [69]. The 

dominance of the 0.60 Hz mode can also be verified by the spectrums from the responses 

of five rotor angles relative to generator 1, as in Figure 35. The information related to this 

dominant mode from linearized model based small signal analysis is given in Table 13. 

Different lengths of the sliding time window as 3 s, 3.5 s, 4 s, 4.5 s, and 5 s are 

selected. L=30 is selected for the nonlinear oscillator model. The Prony’s and RLS 

methods are performed on the rotor angle difference between generators 29 and 5, since 

the 0.60Hz mode is highly observable from the measurements of δ29 and δ5, and δ29 and 

δ5 are nearly out-of-phase. The results with fault durations of (a) CCT, (b) 0.5 CCT, and 

(c) 0.25 CCT are shown in Figure 36, Figure 37 and Figure 38, respectively. The length 

of the sliding time window. Therefore, the proposed approach can also be applied to a 

large power system if its model is provided. 

Note that when the fault is cleared at CCT, the system nonlinearity is significantly 

excited and the result of the proposed approach in Figure 36 deviates away from the true 
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Figure 35. NPCC 140-bus system: Spectrums when the fault is cleared at CCT. 

 

 

Table 13. Dominant Mode of NPCC 140-bus System 

Frequency (Hz) Eigenvalue Damping ratio (%) 

0.60 -0.037 ± 3.807i 0.983 
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Figure 36. Comparison of different methods on the NPCC system with a fault cleared at 

CCT. 
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Figure 37. Comparison of different methods on the NPCC system with a fault cleared at 

0.5CCT. 
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Figure 38. Comparison of different methods on the NPCC system with a fault cleared at 

0.25CCT. 
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proposed approach is much more robust than the Prony’s and RLS methods. Moreover, 

the proposed approach can give more consistent damping estimation regardless of the 

damping ratio during the first 7 seconds. This phenomenon indicates that the proposed 

approach can obtain the “True DR” with the system nonlinearity manifested up to some 

extent. Therefore, there exists an accuracy region for the proposed approach in the state 

space, within which the proposed approach can provide a high-accuracy estimation. 

However, investigating the accuracy region is difficult and computationally intensive due 

to the high-dimensionality nature of the original state space. Instead, an indicator is 

defined in this paper to evaluate how close the estimation result is to the “True DR”. 

The experimental result shows that, when the estimation from the proposed 

approach is not close to the ‘True DR’, the coefficient of the 4th order term, c4 in (2-8), is 

usually ten times larger than the coefficient of the 3rd order terms, c3; otherwise, c4 

usually stays small. This indicates that the proposed approach might encounter 

considerable errors when the 4th or higher order monomials become unneglectable. 

Moreover, the post-fault trajectory shows more nonlinearity when the initial value is 

close to the stability boundary. Hence, an indicator is defined as (A-6) via the rotor 

angles and the type-1 UEP (unstable equilibrium point) whose unstable manifold would 

be intersected by the fault-on trajectory if the fault sustains. The type-1 controlling UEP 

is used since it characterizes the portion of the stability boundary near the fault-on 

trajectory [70]. It could be obtained by using the BCU method [71]. For the sake of 

convenience, in this paper, it is alternatively approximated by the point in the first swing 
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of the post-fault trajectory where the generators have the least rotor speed difference, 

since at the UEP the rotor speed difference among the generators should be zero. 

4

uep

Ind
d





 (A-6) 

where duep is the distance between the type-1 UEP and SEP; || ∙ || is the operator to solve 

the 2-norm.  

When Ind is smaller than a certain threshold, the nonlinearity caused by 4th and 

higher order terms are considered ignorable or limited. Based on the experimental results, 

it is suggested to set the threshold as 0.02, or equivalently ||Δδ/dUEP || < 0.376, to obtain a 

good estimation of the accuracy region of the proposed approach. As shown Figure 39, 

the variation of ||Δδ/dUEP|| is less than the threshold 0.376 after 7 seconds, after which the 

estimation become more close to the “True DR” as shown in Figure 36.  

To investigate the phenomenon that the estimated damping ratio deviates from the 

‘True DR’ during the first 7 seconds in , i.e. CCT case, the mode ‘angle’ Δδzi of the 0.60 

Hz mode is investigated, of which the time series is shown in Figure 40. The two 

envelopes (in red) of the time series (in blue) tend to converge in a fast pace before the 7 

seconds, while in a low pace afterwards.  This shows that the 0.60 Hz mode undergoes a 

fast damped out process during the early transient stage where system nonlinearity is 

largely excited. This property could motivate a new type of stabilization control methods 

which not only consider the linear system responses, but also consider the nonlinear 

system responses to some extent. This will be investigated in the future works. 
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Figure 39. Variation of ||Δδ/duep ||. 

 

 

Figure 40. Mode ‘angle’ curve Δδzi of the 0.60 Hz mode. 
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A.4 Case Study: Three Factors 

Influences of the aforementioned three factors on damping estimation are 

investigated on the NPCC 140-bus system. 

Measurement Noises 

Assume that the time series of rotor angle δ of the previous case contain a 

Gaussian noise with a variance of 0.005. Without screening out the noise, the proposed 

approach even cannot give an acceptable result. Then, the designed filter is applied to 

screen out the noise, and the proposed approach is applied to the filtered time series of 

rotor angles over a 5 seconds sliding time window. The estimation result is compared 

with that of “No noise” scenario, as illustrated in Figure 41. The comparison shows that 

with the designed filter, the damping estimation result is close to that with no noise.  

Limited Coverage of PMU Measurements 

The limited coverage of PMU measurements could influence the accuracy of 

damping estimation. Moreover, if the unavailable PMU measurements are from those 

generators with high observability of the dominant mode, it could have more severe 

influence on the accuracy of damping estimation. For the NPCC system, the 0.60 Hz 

mode is highly observable from generators 5, 28, and 29 based on their mode shapes. The 

accessibility of their PMU measurements is of great interests. 

Consider three scenarios:  

Scenario 1: the PMU measurements from 41 generators are available (85% coverage), 

and the PMU measurements for generators 5, 28 and 29 are not available;  

Scenario 2: the PMU measurements from 41 generators are available, (85% coverage), 

and the PMU measurements for generators 5, 28 and 29 are available;  
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Figure 41. Damping ratio estimation with noise in time series. 
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Scenario 3: the PMU measurements for all the 48 generators are available (100% 

coverage). 

The estimation results for the above three scenarios are compared in Figure 42. 

The results in Figure 42 shows that, if the measurements on those generators with high 

observability of the dominant mode are not available, the estimation accuracy will be 

worsen, as the comparison between Scenario 1 and Scenario 3; otherwise, the estimation 

result would still remain accurate, as the comparison between Scenario 2 and Scenario 3. 

Therefore, if a dominant mode is specified to be monitored during system oscillation, it is 

strongly recommended to guarantee the accessibility of PMU measurements on the 

generators which have high observability of that dominant mode in order to ensure the 

accuracy of damping estimation.  

Scenario with Two Dominant Modes 

In this subsection, a scenario with two dominant modes, the 0.46 Hz and 0.60 Hz 

modes, co-existing are studied. The two modes are intentionally excited using the linearly 

scaled mode shape (LSMS) technique introduced in [25]. The response of the relative 

rotor angles is given in Figure 43. The proposed approach is applied using a 5 seconds 

sliding time window. The modal energy ratio defined in (A-5) are calculated for both 

modes. 

The estimated damping ratios and modal energy ratios of two modes are shown in 

Figure 44. During the early transient period of the first few seconds, the 0.46 Hz mode is 

more dominant since it has the highest energy ratio among all oscillation modes. The 

damping ratio estimation is more accurate for the 0.46 Hz mode than for the 0.60 Hz 

mode. Then, at 5.6 seconds, the 0.60 Hz mode raises its modal energy ratio to be the 
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Figure 42. Damping ratio estimation with limited coverage of PMU measurements. 

 

 

 

Figure 43. Rotor angle response. 
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Figure 44. Damping ratio estimation and modal energy ratio variation. 
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same as the 0.46 Hz mode, and then becomes more dominant. Thereafter, the damping 

ratio of the 0.60Hz mode becomes more accurate while the 0.46 Hz is quickly damped 

with its modal energy ratio decreasing to <10% after t = 11 s, at which its damping 

estimation is terminated as in Figure 44.  

From the analysis above, it shows that the proposed approach can give more 

accurate damping estimation for a more dominant mode in terms of the defined modal 

energy ratio, which could be used to determine the most dominant mode in online 

applications and as an indicator on if the damping estimation using the proposed 

approach is accurate. The energy ratio could also be utilized for designing TSA and 

control methods, which would be investigated in the future. 
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APPENDIX B – The Response of A Linear One-Degree-of-Freedom 

System to Principal Parametric Resonance 

B.1 Problem Formulation and Method of Multiple Scales 

Consider a linear 1-degree-of-freedom (1DOF) oscillator (B-1). 

2(2 cos( )) 0n nx K x xt     (B-1) 

where x is the state. ζ and ωn are the damping ratio and natural frequency of the oscillator, 

respectively. K and Ω are the amplitude and frequency of a periodic parameter Kcos(Ωt). 

Without the periodic parameter, the eigenvalue λ and the oscillation frequency f of the 

oscillator is calculated by: 

2

1,2 ,             1
2

n n f
w

jw j    


      (B-2) 

When Ω ≈ 2w, the principal parametric resonance can be observed in the response 

of x. For instance, let ζ = 0.0098, ωn = 3.8072 rad/s, K = 0.5, and consequently, w = 

3.8070 rad/s and f = 0.6059 Hz. Then, if let Ω = 6.9115 rad/s and let the initial value be [x, 

𝑥̇] = [1, 0], the response of x is shown in Figure 45 with the envelop being marked and 

the measured damping ratio is given in Figure 46. The periodic change in the measured 

damping ratio shows the parametric resonance due to Ω ≈ 2w. 

The resonance can be investigated by finding an asymptotic solution via the 

method of multiple scales (MMS) for (B-1), through which some properties could be 

revealed. The basic idea of MMS is to find an asymptotic solution of a perturbed system 

considering different time scales. The use of MMS follows the methodology in [72]-[74].  
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Figure 45. Principal parameter resonance: response of x 

 

 

 

Figure 46. Principal parameter resonance: measured damping ratio  
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First, the periodic parameter Kcos(Ωt) is treated as a perturbation by inserting a small 

dimensionless parameter ε > 0 like in (B-3), where Kε= K/ε. 

2(2 cos( )) 0n nx K x xt       (B-3) 

Then, a first order uniform solution of (B-3) is sought in the form of (B-4): 

0 1 0 0 1 1 0 1( , ) ( , ) ( , ) . ., .x T x T x TT T T     (B-4) 

0 1,         T t T t   (B-5) 

where T1 is introduced as a slow-scale time variable, such that (B-4) could consider the 

evolution of the solution over long time-scales of the order ε
-1

. Note that x0 is exactly the 

solution of (B-1) when ε = 0, and x1 is the part caused by the perturbation. Substitute (B-4) 

into (B-3) and equate the coefficients of like powers of ε: 

2

0 0 0

2

0 02 0n nD x D x x     (B-6) 

2 2

0 0 1 0 0 0 0 0 1 01 1 12 2 cos( ) 2n n nD x D x x D D x K D xT D x        (B-7) 

where Dn = ∂/∂Tn. 

The solution of (B-6) can be expressed in a complex form: 

0 0( ) ( )

0 0 11 1( , ) ( ) ( )
jw T jw T

x T T A T e A T e
  

   (B-8) 

where the bar symbol denotes the conjugate. Substitute (B-8) into (B-7):  

0 0

0 0

2 2

0 0

(

1

1 1 1

(

()

1

( ( )) ( ))

)

2

     2( ) 2

     ( ) ( ) . .
2

n n

jw T jw

n

j w T

T

T j w

D x

jw

K
j

x D x

e D A e D A

e A e A Cj Cw w

 

 

 

 

 

 

   

  

 

   



  

 (B-9) 

where C.C. denotes the complex conjugate of the former. If introduce a detuning 

parameter ξ such that Ω = 2w + εξ, (B-9) can be converted to: 



 
129 

0 0

0

2 2

0 0

( )

1 1

( )

1

( )

1 12

     2( ) 2 ( )

     ( .

2

2
) .

n n

j T jw T

n

j w T

D

e
K

jw jw

x D x x

D A D A

C
K

j

A e

e Aw C

 



 

  





 

  

 




  
 



  (B-10) 

It can be verified that the condition (B-11) should be met to avoid generating 

secular terms in the solution of x. The explanation of secular term can be found in [74]. In 

this problem it will be a term grows linearly in t, such that the identified solution will be 

unbounded, while in fact the true solution is bounded. 

0

1 12( ) 2 ( ) 0
2

j T

n

K
jw jwD A D A e A

      (B-11) 

With the condition (B-11), the solution of (B-10) is given below.  

0 0 0( ) ( )( )

0 1

( )

1 . .
( 2 ) 2 ( 2 ) 2

( )
( , )

2

j w jw jwT T Tjw e e

w

K
x

e
C C

w w

A
T T

w

  

 
    

   
    




 (B-12) 

x1 could be ignored compared to x0, since usually it is numerically small. Hence, 

assume x(t) ≈ x0(t). A(T1) can be determined by solving (B-11). In the weakly-damped 

case, σ can be assumed to be zero and (B-11) can be converted to: 

1

1 4

j TdA
A

K
e

dT

  (B-13) 

The analytical solutions of A(T1) and x(t) can be found for three cases, a) (Ω–

2w)
2
–K

2
/4 > 0, b) (Ω–2w)

2
–K

2
/4 < 0, and c) (Ω–2w)

2
–K

2
/4 = 0. For the sake of 

convenience, define 2 2 2 24 ) 42(Kw K Kw     , and let A0 = Are0 + jAim0 be the 

given initial value of A(T1). 

B.2 (Ω–2w)
2
–K

2
/4 > 0 

The solution of A(T1) is: 



 
130 

111 2 2

1 1

( )

2( ) ( )
wK

K
j Tj r w T jr

A T C e C e e



   (B-14) 

2 2
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
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
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

 
    

  
  













 



 (B-15) 

The solution of x(t) is obtained by substituting (B-14) and (B-5) into (B-4): 

21 21( ) 2 cos( ) 2 cos( )t

C

t

K Cx t C e w t r w t C e w t r       (B-16) 

2

K

Cw w
w




   (B-17) 

The resulting x(t) consists of two components. The magnitude of the first 

component is 2C1 and the frequency is wC - εwK. The magnitude of the second component 

is 2C2 and the frequency is wC. The validity of the approximated solution can be 

visualized by the case when Ω = 6.9115 rad/s. The comparison of the true response of x(t) 

and the approximated x(t) from MMS is shown in Figure 47. The approximated x(t) is 

almost the same at the true response. 

The principal parametric resonance in this case can be interpreted as follows. 

Without loss of generality, only consider the case when C2 is larger than C1. The second 

component can be more dominant than the first component. Since εwK is much smaller 

than wC, the term εwKt can be viewed as a slow change of phase of the first component. 

Then, the change of damping of x(t) can be interpreted as the periodically phase shift 

between the two components. When r1 –εwKt ≈ r2 + 2mπ, m = 0, ±1, ±2, …, the two 
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Figure 47. Comparison of true response and approximated solution: (Ω–2w)
2
–K

2
/4 > 0. 
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components are in-phase and the magnitude of x(t) is amplified. When r1 –εwKt ≈ r2 + 

2mπ + π, m = 0, ±1, ±2, …, the two components are out-of-phase and the magnitude of 

x(t) is reduced. This change is periodic and the frequency of such periodicity is εwK = 

2 2( ) 42w K  , and it makes the response of x(t) to exhibit a periodically changed 

damping.   

B.3 (Ω–2w)
2
–K

2
/4 < 0 

The solution of A(T1) is: 

13 4 1 2( )

1 3 4( ) ( )
wK

K
j Tjr j r w T

A T C e C e e



   (B-18) 
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 
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  
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


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

 

 (B-19) 

The solution of x(t) is obtained by substituting (B-18) and (B-5) into (B-4): 

   2 2

3 3 4 4( ) 2 cos ( ) 2 cos ( )
2 2

w wK Kt t

x t C e w t r C e w t r
        

   
  

    


  (B-20) 

The resulting x(t) consists of two components. The magnitude of the first 

component is 2C3 and the magnitude of the second component is 2C4. The frequency of 

both components is w + Ω/2. The two components of x(t) have damping coefficient 

different from σ. This validity of the approximated solution can be verified by the case 

when Ω is changed to 7.5524 rad/s. The comparison of the true response of x(t) and the 

approximated x(t) from MMS is shown in Figure 48. The approximated x(t) is almost the  
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Figure 48. Comparison of true response and approximated solution: (Ω–2w)
2
–K

2
/4 < 0. 
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same at the true response. Note that the response diverges since the damping part of the 

first component becomes positive. 

In this case, the response of x(t) will not exhibit a periodically changed damping, 

but might exhibit a time-variant damping. If C3 is much larger than C4, the first 

component will be dominant at the early stage and the response of x(t) will be damped in 

a fast pace. Then, the first component will take the dominance after the second 

component is damped out, and the response of x(t) will be damped in a slow pace.  

B.4 (Ω–2w)
2
–K

2
/4 = 0 

The solution of A(T1) is: 

1 1

1 0 0 0 1( ) ( )
K T jK Tj

A T A e K A jA T e 

    (B-21) 

The solution of x(t) is obtained by substituting (B-21) and (B-5) into (B-4): 

5 5 6 6( ) 2 cos ( ) 2 cos ( )
2 2

t tx t C e w t r C te w t r     
   
  

    


  (B-22) 

5

0

5

6

0

6 0( )

jr

jr

C e A

C e K A jA

 


 
 (B-23) 

The resulting x(t) consists of two components. The magnitude of the first 

component is 2C5 and the magnitude of the second component is 2C6. The frequency of 

both components is w +Ω/2. Note the second component also depends on t, which may 

cause a time-variant damping.  

This validity of the approximated solution can be verified by the case when Ω is 

changed to 7.3639 rad/s. The comparison of the true response of x(t) and the 

approximated x(t) from MMS is shown in Figure 49. The approximated x(t) is almost the 

same at the true response. 
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Figure 49. Comparison of true response and approximated solution: (Ω–2w)
2
–K

2
/4 = 0. 
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Since the condition (Ω–2w)
2
–K

2
/4 = 0 can hardly be met, this case is usually 

ignored for the industrial applications. 

B.5 Summary 

The principal parametric resonance in (B-1) can be classified into three cases 

depending on (Ω–2w)
2
–K

2
/4. When (Ω–2w)

2
–K

2
/4 > 0, periodically changed damping 

could appear in the response of x(t), and the frequency of this periodicity is close to 

2 2( ) 42w K  . When (Ω–2w)
2
–K

2
/4 ≤ 0, it is a time-variant damping.  
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APPENDIX C – The Response of A Linear One-Degree-of-Freedom 

System to “Zeroth-Order” Parametric Resonance 

Consider the same system as in (B-1). When Ω ≈ 0, parametric resonance can be 

observed in the response of x, which is named as “zeroth-order” parametric resonance 

here. For instance, let ζ = 0.0098, ωn = 3.8072 rad/s, K = 0.5, and consequently, w = 

3.8070 rad/s and f = 0.6059 Hz. Then, if let Ω = 0.6283 rad/s and let the initial value be [x, 

𝑥̇] = [1, 0], the response is shown in Figure 50 with the envelop being marked and the 

measured damping ratio is shown in Figure 51. The periodic change in the measured 

damping ratio shows the parametric resonance due to Ω ≈ 0. 

Through MMS, some properties of such resonance could also be revealed. Again, 

consider a small dimensionless parameter ε like in (B-3), and take the same derivation as 

from (B-3) to (B-9). By introducing a detuning parameter ξ such that Ω =εξ, (B-9) can be 

converted to (C-1). 
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 
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 
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 

 




 (C-1) 

It can be verified that the condition (C-2) should be met to avoid generating 

secular terms in the solution of x.  

0

1 12( ) 2 ( ) 0
2

j T

n

K
jw jwD A D A e A

      (C-2) 

Then, the solution of (C-1) is given below.  
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Figure 50. “Zeroth-order” parametric resonance: response of x 

 

 

 

Figure 51. “Zeroth-order” parametric resonance: measured damping ratio 
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x1 could be ignored compared to x0, since usually it is numerically small. Hence, 

assume x(t) ≈ x0(t). A(T1) can be determined by solving (C-2). In the weakly-damped case, 

σ can be assumed to be zero and (C-2) can be converted to (C-4). The analytical solutions 

of A(T1) shown in (C-5), where A0 = Are0 + jAim0 is the initial value of A(T1). 

1

1

(

4

) j TdA
A

w

K w

d
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e
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  (C-4) 
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 

 

    (C-5) 

Substitute (C-5) and (B-5) into (B-4) to obtain x(t): 
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arctan( )
w




  (B-7) 

The solution includes two components. Note that the first component has a 

periodically changed parameter cos(Ωt+θ) being added to the original damping part σt, 

which could lead to a periodically changed damping in the response of x(t). The sin(Ωt+θ) 

term in the first component can be viewed as a periodically changed phase of frequency 

Ω that leads to a periodic phase shift relative to the second component. Hence, the 

solution x(t) will exhibit periodically changed damping ratio, and the frequency of such 

periodicity is close to Ω. 

This validity of the approximated solution can be verified by the case when Ω is 

changed to 0.6283 rad/s. The comparison of the true response of x(t) and the 
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approximated x(t) from MMS is shown in Figure 52. The approximated x(t) is almost the 

same at the true response. 
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Figure 52. Comparison of true response and approximated solution: “zeroth-order” 

parameter resonance. 
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