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ABSTRACT 

Recent inventions in the ability of additive manufacturing (AM) to use carbon fiber (CF) 

reinforced pellets as a feedstock material to manufacture components has complemented its 

purpose from prototypes to structural load-bearing parts. In the first part of this research, we 

investigated the processability, microstructure, and mechanical performance of twin-screw 

compounded short CF reinforced polyphenylene sulfide (PPS) pellets as a feedstock material for 

extrusion deposition fabrication-additive manufacturing (EDF-AM) using big area AM (BAAM). 

The performance of the BAAM components was compared to that of traditional processing 

methods, namely injection molding (IM) and extrusion-compression molding (ECM). It was found 

that the AM composites exhibited 118% lower tensile strength and 55% lower tensile modulus 

when compared to traditional injection molding composite specimens; however, AM composites 

exhibited comparable properties to ECM composites. 

In BAAM, CFs are usually aligned along the deposition direction, which result in anisotropic 

thermal properties as heat transfer and warpage. In this study, three male molds with different infill 

patterns were produced via the EDF-AM process. These include (a) 0°: infill pattern along the 

printing direction; (b) 90°: infill pattern perpendicular to the printing direction; (c) 0°/90°: alternate 

layers along and perpendicular directions. It was observed that the thermal conductivity had a 

direct relationship with the CF orientation, as the average top surface temperature for 0° > 0°/90° 

> 90° and inverse relation with warpage.  

The third part of this work focuses on improvement of durability of AM composite molds. A new 

material system called hybrid tooling was developed, such that a thin layer of Invar working 

surface and composite supporting structure. The high cost and density of Invar makes it a 

challenging material for tooling applications. Therefore, in this research, a mold substrate of CF-
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PPS was prepared using AM, and a 0.1 mm layer of CF-BMI prepreg was attached as a skin layer. 

Durability of the mold was demonstrated from manufacturing seven (7) carbon fiber- epoxy hand 

lay-up parts using the mold. Also, it was observed that the mold held vacuum very precisely and 

no air leakage was observed. 

Keywords: Extrusion deposition fabrication-additive manufacturing (EDF-AM), big area additive 

manufacturing (BAAM), X-ray photoelectron spectroscopy (XPS), porosity, mechanical 

characterization, tooling, extrusion compression molding (ECM), finite element analysis (FEA), 

3D scanning, Geomagic control-X software.  
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1.1 MOTIVATION 

Additive manufacturing (AM) is a process capable of creating a wide range of complex geometries 

from a 3-dimensional (3D) computer-aided design (CAD) model. The technology was developed 

in the 1980s and mainly used by designers and architects for prototyping due to its rapid and cost-

effective capability. However, recent developments have contributed to increasing the mechanical 

performance of printed components. Therefore, it has been utilized to fabricate finished load 

bearing and/or functional parts. Wohler et al. predicted that about 50% of commercial products 

would involve AM by 2020 [1].  

In the last decade alone, more than one-third of the tool and die companies have gone out of 

business as the US manufacturers have started producing molds overseas [2]. AM provides 

potential advantages over traditional tool manufacturing [3] because of several factors, such as  (i) 

Lead time reduction: fabrication of tooling by AM can lead to 40-90 percent time saving due to 

fewer labor inputs, machining steps, use of digital design files, rather than 2D drawings and in-

house tooling; (ii) Cost reduction: AM for tooling helps cost reduction due to decrease in material 

lost during fabrication, improving product yield and reducing labor inputs. (iii) Improved 

functionality: AM allows the manufacturing of previously unobtainable and/or unaffordable tool 

designs (due to complex shapes). (iv) Increased ability to customize.  

The key reason to consider composite tooling is the similarity in coefficient of thermal expansion 

(CTE) between the composite part and the composite tool. The difference in thermal expansion 

has significant effect on the formation and distribution of the thermal skin-core residual stresses 

[4]. The CTE for composites is lower compared to CTE of metals, as shown in Table 1.1. The 

composite material witnesses’ thermal strains while processing under temperature and pressure in  
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Table 1.1: CTE and density of various materials [5, 6] 

Sr. No. Material CTE (10-6 K-1) Density (g/cc) 

1 Steel 12 7.80 

2 Aluminum 23 2.70 

3 
Unidirectional CF-PPS in the 

longitudinal fiber direction 
0.56 1.44 

4 Invar 1.6 8.10 
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metal tool(s). Therefore, it can be concluded that the mismatch of CTE between the part and tool 

can lead to thermal stresses, part distortion, and spring-back behavior. Only Invar metal alloy has 

CTE (1.6 × 10-6 K-1) similar to CF composites; however, Invar is very expensive and difficult to 

handle due to its heavy weight (Invar density: 8.10 g/cc) [5]. 

1.2 DISCONTINUOUS FIBER COMPOSITES (DFCs) 

The need for strong, lightweight materials for aerospace, automobile, marine, and military 

applications has shown considerable growth in fiber-reinforced composites (FRCs) [7, 8]. 

Thermoplastic reinforced composites (TRCs) offer numerous advantages such as specific strength 

and modulus, rapid cycle times, and longer shelf life [9]. The TRC market is proliferating and 

expected to reach USD 36  billion by 2024, at a 5.2% compound annual growth rate (CAGR) [10]. 

The overall properties of TRCs are influenced by resin system, fiber type, fiber percentage, fiber 

orientation, and fiber aspect ratio (i.e., length/diameter). TRCs are mainly classified as continuous 

reinforcement and discontinuous reinforcement based on fiber length. Fibers are the primary load-

carrying constituent in the composite. Figure 1.1 shows the classification of various types of 

composite forms in TRC. The continuous fiber composites offer excellent mechanical 

performance; however, they are anisotropic in nature, expensive to produce, and hard to mold into 

complex-shaped parts. Discontinuous fiber composites (DFCs) can be processed using traditional 

plastic molding equipment and can obtain up to 90% properties of continuous counterparts [11].  

The FRC material consists of high strength and modulus fibers embedded in a matrix with a distinct 

interface. FRCs are microscopically inhomogeneous and orthotropic [12]. Therefore, the 

mechanics of FRC is more complicated than conventional materials. When a tensile load is applied 

to the composite material, the applied stress on the matrix transfers to the fiber through an interface, 
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Figure 1.1: Classification of TRC based on the fiber length – continuous and chopped, 

intermediate forms and techniques for fabrication of finished products. 
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assuming perfect bonding between the fiber and polymer. Figure 1.2 illustrates the tensile and 

shear stress distribution along the length of a single fiber. For DFCs, the tensile stress in the fiber 

and shear stress at the interface is not consistent in all regions due to different elastic properties of 

fibers and polymers [12, 13]. Tensile stress is zero at the fiber ends and increases along the fiber 

length and ultimately reaches a maximum at the center, while shear stress is maximum at the fiber 

ends and reduces along the fiber length to almost zero at the center [12].  The strength and stiffness 

properties of DFCs depend on the critical length of the fiber [14]. Critical fiber length is the 

minimum fiber length required for the maximum fiber stress to be equal to the ultimate tensile 

strength of the fiber at mid-length. For a given fiber diameter, tensile stress on fiber, and fiber-

matrix interfacial shear strength, a critical fiber length is calculated based on Equation 1 [15].   

 

                                                             𝑙𝑐 =
𝜎𝑓𝑢

2𝜏𝑖
𝑑𝑓                                                        Equation 1 

 

where, 

𝜎𝑓𝑢 – ultimate tensile strength of fiber 

𝜏𝑖 – interfacial shear strength 

𝑑𝑓 – fiber diameter 
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(a) 

 

(b) 

Figure 1.2: (a) The change of tensile stress and interfacial shear stress with respect to fiber aspect 

ratio (𝑙 𝑑⁄ ) (b) Dependence of composite mechanical properties and processability based on its 

fiber length. The composite materials having length less than 12.7 mm (0.5”) are considered as 

DFCs. (adapted from [13]) 
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DFCs can be divided into two groups, long fiber thermoplastics (LFTs) and short fiber 

thermoplastics (SFTs) based on the fiber length. LFTs are a group of composite materials that 

include fibers of 12.7 mm – 38.1 mm (0.5” to 1.5”) length reinforced into a variety of crystalline 

and amorphous thermoplastic polymers. The fiber aspect ratio (l/d) distinguishes long fibers from 

short fibers (i.e. 0.2 mm – 10.16 mm (0.008” -0.4”)). Short fiber reinforced polymers (SFRP) are 

attractive because of easy fabrication and moderately improved mechanical properties over 

unreinforced polymers at a negligible incremental cost [16-19]. Furthermore, short fibers are more 

effective to improve friction and wear resistance than their continuous fiber counterparts [20]. The 

mechanical properties of SFRPs critically depend on the combination of fiber length distribution 

(FLD) and fiber orientation distribution (FOD) in composite parts [16, 17]. During any 

manufacturing process, fiber breakage takes place because of the interactions between fiber-

polymer, fiber-fiber, fiber-equipment surface resulting in reducing fiber aspect ratio [21, 22]. 

Therefore, final fiber length, fiber orientation, void content of a final composite part varies 

according to the processing conditions, type of matrix, and/or fiber and volume fraction, which 

collectively influence the mechanical (and other) properties. 

1.3 PROCESSING METHODOLOGY FOR DFCs 

There are various techniques available to manufacture parts using chopped thermoplastic 

composites, i.e., extrusion compression molding, injection molding, and additive manufacturing.  

Injection Molding (IM)   is generally used for the processing of unreinforced polymers and SFTs, 

as longer fibers (> 0.5”) can clog the nozzle [19]. Manufacturing of parts using IM consist of five 

steps- (i) softening/melting of the material, (ii) injecting the molten material under pressure into 

the closed mold, (iii) maintain pressure in the mold to prevent the backflow of material, (iv) cooling  



9 

 

 

Figure 1.3: Schematic of the IM process. Pellets inserted through feed section are melted along 

the progress in the screw and injected in the closed mold through nozzle under high pressure. 
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of the molded part until it is rigid/solidified, and (v) remove the part from mold by ejection pins 

[23]. More details about the IM method can be found in [24-27]. The IM process is shown in 

Figure 1.3.  

Extrusion Compression Molding (ECM) process is used for manufacturing of materials in pellet 

form (unreinforced, SFTs, LFTs). ECM process is a combination of two basic operations, namely 

extrusion and compression molding. The pellets are fed into the low shear extruder (plasticator) 

where the temperature of the plasticator is maintained above the melting point of the polymer, and 

a ‘charge’ is produced. The hot, molten charge is then transferred to the mold mounted in a fast-

acting compression press. The closing of the press results in the flow of the charge within the mold 

cavity, to obtain the desired shape. The part is then removed from the mold after the material is 

subjected to determined ‘dwell time’ under pressure prior to its removal. Figure 1.4 illustrates the 

ECM process cycle. It is to be noted that the extruder used in this process is a low shear, which 

helps to retain maximum fiber length, ultimately resulting in maximum mechanical properties in 

the finished product [28]. 

Additive Manufacturing (AM) is a process of creating objects from the 3D model by depositing 

polymer-composite extrudate layer-by-layer [29], as shown in Figure 1.5. The main advantages of 

AM over traditional manufacturing are the shorter lead time, reduction in cost, ability to customize 

complex parts without expensive tooling, and localized production [30]. AM uses a wide variety 

of materials such as metals, ceramics, polymers (neat and fiber reinforced). The use of polymers 

in AM has been widely investigated for a variety of applications due to its ease of processing, and 

relatively low manufacturing cost [31]. 
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Figure 1.4: Schematic of the ECM process. Pellets inserted in the extruder to obtain a charge. 

Charge then transferred to the mold and part is created under pressure. 
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Figure 1.5: Schematic of AM process. Pellets undergoes through extrusion screw and nozzle to 

create bead and parts are fabricated by depositing layers/beads in Z-direction. 
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Extrusion Deposition Fabrication-Additive Manufacturing (EDF-AM), also referred to as 

fused deposition modeling (FDM) or fused filament fabrication (FFF), is the most widely used 

AM process for engineering plastics and composites [32-34].  

The growth in AM over the last two decades has made great strides in the development of 

composite tooling; however, there are barriers such as low print speed and less developed materials 

for AM in terms of mechanical and thermal properties. Recent developments in polymer extrusion 

deposition have helped expand the use of composites in mold production. Cincinnati Incorporated 

(CI) and Oak Ridge National Laboratory (ORNL) have created a large-scale big area additive 

manufacturing (BAAM) system (6 m × 2.4 m × 1.8 m) (Figure 1.6) to manufacture AM parts 

which can deposit material at a rate of 50 kg/hr. The BAAM uses a single screw extruder mounted 

on a gantry system. The schematic of the BAAM screw design is given in Figure 1.7 [35]. The 

feedstock materials for BAAM are pellets (instead of wires/filaments), similar to that used in 

injection molding [36, 37]. This broadens the supply chain of available materials for BAAM and 

significantly reduces the cost of feed material in comparison to filaments. The pellets are dried 

before they are fed to the extruder. The BAAM extruder rotates in a barrel, which has four heating 

zones to melt the polymer. The resulting physical states of the pellets migrate through different 

sections of the screw, i.e. from the feed section to transition section. The molten material is then 

transferred to the metering section and is forced out of the screw through the deposition nozzle 

under pressure. The large-scale parts are fabricated by depositing material on a heated bed. The 

components made from BAAM find applications in aerospace, automotive, energy, and tooling. 
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Figure 1.6: BAAM set up (working area: 6 m × 2.4 m × 1.8 m), Manufacturing Demonstration 

Facility, ORNL. The extrusion screw is mounted on a gantry system. (a) extruder screw (b) 

nozzle. Photo Courtesy of ORNL, US Department of Energy. 
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Figure 1.7: Single screw polymer extrusion deposition head of BAAM [35]. Screw has four 

heating zones to melt the pellets. Pellets undergoes from different sections as feed, transition and 

metering before coming out from extruder. 
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1.4 RESEARCH OBJECTIVES 

The work has been divided in three objectives.  

OBJECTIVE 1: INVESTIGATE THE EDF-AM PROCESS TO COMPARE TO 

TRADITIONAL ECM AND IM PROCESS 

Recent inventions in the ability of AM to use carbon fiber (CF) reinforced pellets as a feedstock 

to manufacture components has changed its purpose from prototypes to structural load-bearing 

parts. However, compared to traditional manufacturing techniques, the mechanical properties of 

AM materials and their resulting components are not well understood. This work characterized the 

twin-screw compounded short CF-PPS pellets as feedstock material for EDF-AM.  Spectroscopic 

and thermal characterization were performed on these pellets to understand the bonding and 

thermal properties. The mechanical behavior of CF-PPS for extrusion deposition BAAM was 

compared with traditional processing methods, namely- IM and ECM. 

OBJECTIVE 2: OPTIMIZING THE INFILL PATTERN OF ADDITIVELY 

MANUFACTURED COMPRESSION MOLDS 

In this objective, attention of the research progress towards structural application (tooling) of EDF-

AM process. AM offers potential advantages over traditional tool manufacturing processes 

because of lead time and cost reduction, improved functionality, and increased ability to customize 

parts. The work investigates the anisotropic thermal behavior of CF for additively manufactured 

molds for high-temperature applications (heating up to 100 °C). Fabricated molds with different 

infill patterns using the EDF-AM process to understand the effect of CF orientation on thermal 

conductivity and deflection (warpage) of the mold. A FEA model was used to generate the toolpath 

(deposition path) with various print orientations, and the orientation of local material properties 

were imported directly to a thermal simulation powered by Abaqus 2018. 
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OBJECTIVE 3: IMPROVE DURABILITY AND SURFACE QUALITY OF ADDITIVELY 

MANUFACTURED MOLDS USING CARBON FIBER-BISMALEIMIDE (CF-BMI) 

PREPREG 

A hybrid tool features a skin which provide desired surface quality, durability and a low-density 

substrate to reduce weight of the mold. This work focusses on the alternate hybrid tool system for 

the autoclave process. Manufactured a hybrid mold as CF-PPS substrate using the EDF-AM 

process and a thin layer of CF-BMI prepreg as a skin. Investigated, optimized, and evaluated 

various techniques to improve the bonding and compatibility between AM surface and prepreg 

skin. Studied the surface degradation of hybrid mold (CF-BMI molding surface) by fabricating 

parts using hand lay-up process. 
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ABSTRACT 

Additive manufacturing (AM) is evolving from rapid prototyping to production of structural 

components. The widespread application of AM demands a high level of mechanical performance 

from these components, and it is therefore essential to improve feedstock material in order to meet 

these mechanical expectations. However, compared to traditional manufacturing techniques, the 

mechanical properties of AM materials and their resulting components are not well understood. In 

this study, we investigated the processability, microstructure, and mechanical performance of 

twin-screw compounded short carbon fiber reinforced polyphenylene sulfide (PPS) pellets as a 

feedstock material for AM.  The performance of the AM components was compared to that of 

traditional processing methods, namely injection molding (IM) and extrusion-compression 

molding (ECM). It was found that the AM composites exhibited 118% lower tensile strength and 

55% lower tensile modulus when compared to traditional injection molding composite specimens; 

however, AM composites exhibited comparable properties to ECM composites. This response was 

attributed to highly aligned fibers in IM and AM samples. However, the AM composites contained 

porosity (15.5% volume), which reduced their mechanical properties in comparison to ECM 

composites. The IM process showed the maximum amount of fiber attrition with minimum 

porosity (0.007% volume), while the ECM process exhibited the least fiber attrition with 4.3% 

volume porosity.     

Keywords: Extrusion Deposition Modeling, Additive Manufacturing, Extrusion Compression 

Molding, Injection Molding, Mechanical characterization 
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2.1 INTRODUCTION 

Fused Filament Fabrication (FFF) is a modern polymer additive manufacturing (AM) technique, 

in which a part can be manufactured based on a computer-aided design (CAD) [1]. Traditionally, 

the primary use for polymer AM has been in prototyping; however, a transition to functional load-

bearing parts is possible if the mechanical properties of the parts can be improved [2]. In general, 

polymers have poor mechanical properties, but reinforcing polymers with carbon fiber (CF) 

provides strength and stiffness [3, 4]. For example, Love et al. [5] showed that AM parts using CF 

composites have less distortion than those produced with neat polymers because CF reduces the 

coefficient of thermal expansion and increases thermal conductivity. The high specific modulus 

and self-lubricating nature of CF help to lower the coefficient of friction and improve wear 

resistance [6].  

There are several studies on the fabrication of fiber-reinforced composite parts using FFF. Zhong 

et al. [7] studied the processability of acrylonitrile butadiene styrene (ABS) composites reinforced 

with different contents of glass fiber and observed that glass fibers significantly improved the 

tensile strength, but compromised the flexibility of the ABS filament. Ning et al. [8] added CF 

(different lengths and contents) to ABS and investigated the effect on parts fabricated with FFF. 

They noted that 5% by weight (wt.) addition of CF increased tensile and flexure strength by 22.5% 

and 11.82%, respectively. Ning et al. also observed that the 150 µm length samples of CF resulted 

in higher strength and modulus as compared to the 100 µm CF samples. Shofner et al. [9] presented 

ABS reinforced with single-walled carbon nanotubes as an FFF feedstock and noted that, when 

neat ABS was loaded with 10% wt carbon nanotubes, an improvement of 40% tensile strength and 

60% tensile modulus was realized. Tekinalp et al. [1] compared the tensile properties of 

composites manufactured by FFF and compression molding using CF-reinforced ABS. Their 
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results showed that, although fibers were highly oriented in the FFF specimens, tensile properties 

were lower compared to the compression-molded samples, due to a higher porosity in the FFF 

specimens. 

The above investigations employed ABS as a matrix material. However, there is another material, 

polyphenylene sulfide (PPS), that has also been used in AM specifically when elevated 

temperature applications are needed. PPS is an engineering high-temperature thermoplastic 

polymer with a backbone of alternating aromatic rings and sulphur atoms, as shown in Figure 2.1. 

PPS represents an excellent combination of properties such as thermal stability, chemical, flame, 

and wear resistance, processability, low coefficient of thermal expansion, and superior mechanical 

characteristics [10]. The semi-crystallinity of PPS offers advantages such as the ability to use 

above-glass transition temperature without compromising modulus and creep deformation 

resistance [11]. To the best of our knowledge, FFF processing of CF-reinforced PPS composites 

has been studied only to a limited extent  

Although studies on PPS in FFF are limited, there have been some previous investigations. Kishore 

et al. studied the rheological, thermal properties of PPS and their correlation to the FFF process, 

where authors successfully able to make prints [12]. Liu examined the structure-property 

relationships of additively manufactured CF-PPS composites based on small amplitude rheology, 

morphology, crystal structure, and dynamic mechanical behavior tried to find the correlation 

between intrinsic material properties to macroscopic AM structural properties [13]. Since PPS is 

a semi-crystalline polymer, Kenny et al. [14] studied the crystallization kinetics using an Avrami 

equation and observed increased crystallization due to the presence of CFs. Vieille et al. [15] 

conducted a tensile test on quasi-isotropic CF-PPS composites at room temperature and elevated 

temperature (120 °C). The authors observed a modest 3% and 8% reduction in tensile strength and  
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Figure 2.1: Chemical structure of PPS [16] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 

 

modulus, respectively, at 120 °C, although the glass transition temperature of PPS is 85°C. At 

lower temperatures (285 °C), PPS resin converts to a low melt flow polymer that can be used in 

injection molding, compression molding, powder spraying, free sintering, etc. [17]. Due to these 

excellent properties, CF-PPS finds use as a composite material in aerospace, automobile, and other 

high-temperature applications. Kunc et al. investigated CF-PPS composites for application in 

autoclave AM composite molds and observed that the mold deformed less than 0.1 mm at the 

composite layup area [18].  

Extrusion deposition fabrication (EDF) is an AM process similar to FFF in that it uses a single 

screw extruder to melt pellets of a wide variety of thermoplastic materials [19]. Oak Ridge National 

Laboratory (ORNL), in collaboration with Cincinnati Incorporated, developed the first EDF-AM 

system, Big Area Additive Manufacturing (BAAM). The system is equipped with a single screw 

extruder that can deposit material at a rate >200× faster (up to 50 kg/h) than conventional FFF 

units [20, 21]. 

This study aimed to utilize CF-PPS 50 wt.% (50CF-PPS) pellets as a feedstock material in EDF, 

to further investigate the use CF-reinforced polymers as viable materials for the AM production of 

functional load-bearing components, and to further the understanding of the performance of CF-

PPS in AM in general. X-ray photoelectron spectroscopy (XPS) was conducted to analyze the 

bonding characteristics between CF and PPS. The pellets were processed using EDF-AM, injection 

molding (IM), and extrusion compression molding (ECM) to manufacture composite plaques. The 

processing conditions were guided by the results from differential scanning calorimetry (DSC) and 

thermo-gravimetric analysis (TGA) of the CF-PPS pellets. After the samples were manufactured, 

detailed mechanical and microscopic investigations were carried out to study the strengths and 

weaknesses of the EDF-AM process, compared to the more traditional methods. Fiber length 
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distribution characterization was performed to understand the effect of manufacturing technique 

on the fiber attrition.  

2.2 EXPERIMENTAL 

 Materials and Processing 

The 50CF-PPS pellets, procured from Techmer PM., were dried at 100°C for 8 hours before further 

processing via EDF-AM, ECM, and IM, each of which was used to obtain test coupons for 

mechanical evaluation. The EDF-AM and ECM setup equipment were located at Manufacturing 

Demonstration Facility (MDF), ORNL, while IM equipment at Techmer PM, TN, USA.  

For the EDF-AM sample, a BAAM system was used to print a hexagon measuring 304.8 mm × 

304.8 mm × 22 mm, from which coupons were extracted. In the EDF-AM process, the CF-PPS 

pellets were fed into the extruder with five heating zones that were set at 305°C, 321°C, 327°C, 

332°C, 338°C, while the bed temperature was 110°C. The nozzle diameter was 10.16 mm (0.4″), 

105 seconds layer time and layer height were set to 2.54 mm (0.01″). 

The ECM process involved a low shear extruder and a fast-acting compression press [22]. For 

ECM plaques, a single screw, low shear extruder (Impco B20 plasticator) and a Beckwood 100-

ton hydraulic compression press were used. To prepare a hot, molten charge, the plasticator zones 

were set at 300 °C, 305 °C, 310 °C, 310 °C temperature and 50.8 mm (2″) diameter × 53.34 mm 

(2.1″) long charge size was maintained. The molten charge was placed in the mold mounted on 

the hydraulic press, and 152.4 mm × 152.4 mm flat plates were prepared. The mold was set at 110 

°C with 12.7 MPa pressure for 120 seconds.  

According to ASTM D638, dog bone-shaped samples were prepared using a 110-ton Arburg 

injection molding machine. The pellets were melted inside the barrel by maintaining the 

temperature at different zones to 343-370 °C with a back pressure of 4-8.1 MPa (580-1175 psi). 
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The dog bone shaped samples were prepared using a mold that was set at 177-210 °C temperature 

and 40-75 MPa (5800-11000 psi) pressure was applied.  

 Testing and Analysis 

Using a Thermo Scientific Model Kα XPS instrument, X-ray Photoelectron Spectroscopy (XPS) 

was conducted on the CF, neat PPS, and compounded CF-PPS pellets to understand the interfacial 

bonding. The instrument used micro-focused, monochromatic Al Kα X-rays (1486.6 eV). The 

samples were mounted on clean glass slides, and because the glass slides were insulated, a charge 

compensation system was used. The system consisted of low energy Ar-ions and low energy 

electrons in an analysis chamber with a 2×10-7 mbar pressure. Qualitative and quantitative analyses 

were conducted using a broad energy range spectra (0-1350 eV). A narrow energy spectra was 

used to assess the chemical bonding of carbon, oxygen, sulphur (pass energy: 50eV, step size: 0.1 

eV). Thermo Scientific Avantage XPS software (v4.61) was used to collect and analyze data.  

Thermo-gravimetric analysis (TGA) was conducted on the neat PPS and 50CF-PPS pellets under 

oxidative environments to understand thermal stability and degradation behavior. Mettler 840 

TGA was used to identify the thermal degradation from room temperature to 800°C, at a heating 

rate of 10 °C/min. Differential scanning calorimetry (DSC) was used to characterize the melting 

behavior of the 50CF-PPS pellets. The heat/cool/heat procedure was performed using a Mettler 

DSC821e instrument. The samples were heated from 25 °C to 350 °C at a rate of 10 °C/min to 

remove thermal history. The samples then cooled down to room temperature and were reheated at 

10°C/min to obtain a peak melting point. DSC and TGA data helped to identify the lower and 

upper limit of the processing temperature.   

The X-ray Computed Tomography (X-CT) scan was performed to compare the porosity content 

after each fabrication technique (EDF-AM, ECM, and IM). A Zeiss Xradia Versa 520 XCT 
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instrument with 40 kV acceleration voltage (low voltage was selected to increase contrast) at 3 W 

power was used. The samples were rotated along the vertical axis for 360 degrees to collect images 

1601 times at equal rotational intervals. A 20X scintillator objective with attached CCD camera 

was used to capture a 615 µm diameter field of view. A 2×2 camera binning was used, yielding a 

pixel size of 0.66 µm.      

Mechanical characterization included tensile, flex and interlaminar shear strength (ILSS) tests. For 

the EDF-AM samples, mechanical tests were done on the X-direction (aligned with printing tool 

path) and Z-direction (orthogonal to the bead axis). For the ECM samples, mechanical tests were 

done on the X-direction (along the placement of the charge) and Y-direction (transverse to charge). 

The direction of the test coupons for EDF-AM and ECM are schematically shown in Figure 2.2.  

For each manufacturing process, a set of five tensile specimens were prepared according to the 

ASTM D638. EDF-AM tensile samples were milled flat to 8.03 mm thick. The average width and 

thickness of the ECM samples was 11.3 mm × 4.4 mm, while the average of the IM samples was 

12.8 mm × 3.2 mm. The tensile tests were performed on a 100 KN load cell MTS frame and pulled 

at a 1 mm/min loading rate. An extensometer was attached to monitor strain.  

Flexure and ILSS tests were conducted on a Test Resources, Minneapolis, MN frame with a 50 

KN load cell according to ASTM D790 and ASTM D2344, respectively. The thickness of the 

EDF-AM samples was reduced to 11 mm for the flexure and ILSS tests. A set of five samples from  
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Figure 2.2: Schematic for testing coupons directions; (a) EDF-AM hexagon edge (304.8 × 304.8 

mm²). Bead: Each successive layer deposited by the extruder, and (b) ECM plaque (152.4 × 

152.4 mm²). Charge: Location of the charge placed in the mold 
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 Table 2.1: Number of test specimens and dimensions 

Test 
ASTM 

Standard 
Process 

Average Dimensions (mm) Number of Test 

Specimens Thickness Width 

Tensile D638 

EDF-AM 8.03 19.16 5 

ECM 4.40 11.32 5 

IM 3.20 12.81 5 

Flexure D790 

EDF-AM 11.09 12.80 5 

ECM 4.43 12.64 5 

IM 3.17 12.82 5 

ILSS D2344 

EDF-AM 11.13 22.08 5 

ECM 4.26 8.41 5 

IM 3.15 6.75 5 
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each process was subjected to flexure tests. The EDF-AM, ECM, and IM samples were loaded at 

4.7 mm/min, 1.9 mm/min and 1.4 mm/min, respectively. ILSS testing was performed at a 1 

mm/min loading rate for each of a set of 5 test pieces from the EDF-AM, ECM and IM techniques. 

Specimen dimensions and the number of test pieces for each set of samples are summarized in 

Table 2.1. 

The manufacturing process of EDF-AM involved the extrusion of material through a nozzle and 

thus created a part layer-by-layer. The process did not involve any material flow/injection. 

Therefore, it can be assumed that all the possible fiber length variation distribution was observed 

inside the extruded material only, and so the FLD calculations of EDF-AM samples were measured 

from a single representative location. In the ECM process, a charge was produced from a 

plasticator and then transferred to a hydraulic compression press which, due to the application of 

tonnage charge flows, filled the mold cavity. This process involved the flow of the molten material, 

which represents the distribution of fibers in all directions. Therefore, 5 locations were considered 

for FLD measurements, as shown in Figure 2.3. The manufacturing technique of IM consisted of 

an injection of molten material into the mold cavity through a small nozzle. Material flow also 

occurred in this process; therefore, FLD was analyzed at three different locations (Figure 2.3). The 

FLD measurement for each manufacturing technique was calculated by the code developed by 

Kunc et al. at ORNL [23]. 

2.3 RESULTS AND DISCUSSION 

 Spectroscopic Analysis 

XPS analysis was conducted to evaluate the chemical composition of the fiber and polymer, as 

well as the chemical reaction at the fiber/matrix interface. The intensity peak at approximately 284 

eV binding energy was observed in the overall XPS spectra of fiber (Figure 2.4-1a) and polymer 
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surfaces (Figure 2.4-2a), indicating a high content of carbon. The fiber surface exhibited a 

considerable amount of oxygen and a small quantity of nitrogen, as indicated by the existence of 

peaks at nearly 535 eV and 400 eV binding energy, respectively. The presence of nitrogen was 

due to residual nitrogen during the conversion of the precursor into carbon fiber [24]. High-

resolution spectrums of carbon (C1s) (Figure 2.4-1b) and oxygen (O1s) (Figure 2.4-1c) were 

examined to identify surface composition. The C1s spectrum consisted of several overlapping 

peaks identified as C-sp2, C-sp3, C-N bonds, C-O bonds, and O=C-O bonds, while the O1s 

spectrum showed the presence of O-C and O=C features, as well as some adsorbed –OH (or H2O).  

It is important to note that, during compounding, significant fiber breakage takes place due to 

interaction with (i) screw, barrel and wall surface, (ii) other fibers, (iii) polymer type (amorphous/ 

semicrystalline) [4]. However, a fiber length distribution (FLD) measurement of 50CF-PPS 

samples was not possible (explained in section 3.2). Therefore, to understand the effect of the fiber 

attrition during the different manufacturing techniques, 20% reinforced CF-ABS (20CF-ABS) 

pellets, procured from Techmer PM, were processed using EDF-AM, ECM and IM to prepare 

panels using the same procedures as described above for the CF-PPS pellets. ABS is an amorphous 

polymer which means it has no exact melting point. Therefore, for extrusion purposes, 230 °C was 

considered as a standard melting temperature [25]. 

The CF and PPS were compounded using a co-rotating twin-screw compounder, in which the 

polymer was first introduced in the heated twin screw and then, approximately halfway down the 

extruder, the CF was added through a side feeder. The compounded CF-PPS strands were cooled 

and chopped into pellets in a rotating knife pelletizer. Figure 2.5a illustrates a low-resolution  
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(a) 

 

(b) 

Figure 2.3: Samples locations for FLD calculations; (a) ECM, and (b) IM 
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Figure 2.4: XPS Spectra of; (1) Fiber Surface: (a) Overall Spectra, (b) C1s, (c) O1s; and 

(2) Matrix Surface: (a) Overall Spectra, (b) C1s, (c) S2p 
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spectrum obtained from CF-PPS compounded pellets representing C, O, and S as the main 

elements. The high-resolution spectra of C1s showed a peak at 284.5 eV binding energy, which 

corresponded to the carbon atoms in the phenyl rings [26]. Carbon has a tendency to bond Sulphur; 

however, a high-resolution spectra of C1s did not show any evidence of chemical reaction 

formation, as shown in Figure 2.5b. 

The high-resolution spectrums of C1s and O1s from CF and CF-PPS are compared in Figure 2.6. 

Note that the high-resolution spectra of C1s and O1s from each material were different, indicating 

adhesion at the fiber and polymer interface. Figure 2.6 also indicates that there was no chemical 

reaction (only physical bonding) contributing to the adhesion at the CF and PPS interface. 

Weitzsacker et al. also observed similar results, finding no significant chemical reaction between 

CF and PPS interface bonding [27]. 

 Thermal Analysis 

Figure 2.7 a and b show the TGA and DSC results, respectively, for the 50CF-PPS pellets. Heat-

cool-heat cycle was used for the DSC. Initial heat cycle was used to remove the presence of thermal 

history on the PPS resin. During cooling it was noted that PPS starts recrystallization at 250°C. It 

can be observed from the last heating cycle of DSC curve that the glass transition temperature and 

melting point of 50CF-PPS was in the range of 85-90°C and 280-285°C respectively. Melting point 

determines the lower processing temperature limit. The TGA curve showed less than 1% weight 

loss up to 400°C, indicating PPS stability and the upper processing temperature limit. Therefore, 

the processing temperature for each manufacturing technique was maintained in the range of 285 

to 400°C. 
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Figure 2.5: XPS Spectra CF-PPS Composite; (a) Overall spectra, and (b) C1s 
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Figure 2.6: Overlapping spectra for CF and CF-PPS; (a) C 1s, and (b) O 1s 
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Figure 2.7b indicates the degradation behavior of neat PPS resin and 50CF-PPS at 10°C/min 

heating rate in air. The degradation for neat PPS was completed at 700°C. However, at that 

temperature, the composite material maintained 74% wt, indicating that the presence of CF leads 

to an increase in carbonaceous residue [28, 29]. Oxidation of CF started at 500°C, and complete 

degradation of 50CF-PPS was observed at 800°C.  Oxidation resulted in the reduction of cross-

section and weight loss of CF, as can be observed in Figure 2.7b [30, 31]. Therefore, it was 

impossible to burn-off/get rid of PPS without damaging the aspect ratio of CF. Also, to the best of 

our knowledge, no chemical is available to dissolve PPS without affecting the CF surface. 

Therefore, we were not able to study the effect of the different manufacturing processes (i.e. EDF-

AM, ECM, IM) on the fiber length attrition for the 50CF-PPS system. As previously mentioned, 

an alternative material system (20CF-ABS) was used to understand the effect of different 

manufacturing techniques on fiber attrition.  

There were more than 1500 fibers measured for each individual position within a process. The 

FLD of the pellets and all of the processing methods are given in Table 2.2. The average fiber 

length of the pellets was 0.372 mm, and it can be observed from Table 2.2 that fiber attrition took 

place during each manufacturing technique. On average, fiber length distribution from ECM 

(0.348 mm) > EDF-AM (0.330 mm) > IM (0.321 mm). In the ECM process, a molten charge was 

produced using a low shear extruder, which helped to retain maximum fiber length as compared 

to the other manufacturing processes. The IM injection molding screw design affected the fibers, 

resulting in a small fiber aspect ratio. The EDF-AM extrusion screw had less impact on fiber 

geometry compared to IM. 
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(a) 

 

(b) 

Figure 2.7: Thermal analysis results; (a) DSC of 50CF-PPS pellets: heat-cool-heat cycle from 

room temperature to 350 °C, and (b) TGA analysis of PPS matrix and 50CF-PPS pellets in 

oxidative conditions from room temperature to 800 °C 
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The probability function of FLD is given in Figure 2.8. From Table 2.2 and Figure 2.8 it can also 

be observed that local fiber length distribution for ECM and IM was different at various locations, 

which were due to the freezing of a skin layer. There is always a temperature gradient between the 

skin layer and the core material of any molten charge material. Therefore, when the charge flows, 

fibers get sheared and ultimately broke at the intersection between frozen skin and melt core. The 

chopped/short fibers stay in the skin area; however, longer fibers were transported towards the end 

of the flow path [33]. During the ECM process, the charge was kept at location 2, due to the way 

in which the force was applied and the resulting flow of material. Thus, the FLD at location 2 was 

the lowest, as compared to the other positions. The FLD at ECM location 5 (0.377 mm) was 

slightly higher than the average length distribution in the pellets (0.372 mm). The feed fiber length 

(pellets) was very small due to the short fibers and the low shear nature of ECM operation allowed 

the entire fiber length from some pellet fibers to pass unhindered. According to freeze skin layer 

principle all long fibers may have transferred to location 5. This was also obseved in mechanical 

testing as properties of ECM samples were higher in Y-direction than X-direction.  

 Porosity Measurement 

The presence of porosity is detrimental to the composite structural performance. In the EDF-AM 

process, the structure is formed by depositing a bead on top of the next bead. When the bead is 

deposited, it is still soft, which causes the bottom of the bead to flatten under pressure while the 

top part cools down to form rounded edges. Therefore, the bead becomes elliptical even though 

the nozzle extrudes a circular bead. This elliptical bead formation occurred at each successive layer 

and caused the formation of voids aligned downwards along the printing direction, as shown in 

Figure 2.9. Additionally, the presence of CFs in the polymer caused the formation of inner bead 

voids, due to the fiber ends. Figure 2.10 (a) represent the 2D slice of EDF-AM sample obtained  
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Table 2.2: FLD of Pellets, EDF-AM, ECM, and IM 

Sr. No. Process/Material Position 
FLD 

mm Average, mm 

1 Pellets NA 0.372 0.372 

2 EDF-AM NA 0.330 0.330 

3 ECM 

1 0.348 

0.348 

2 0.333 

3 0.332 

4 0.352 

5 0.377 

4 IM 

1 0.321 

0.321 2 0.317 

3 0.326 
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Figure 2.8: Probability distribution of CF length (a) Pellets (b) AM (c) ECM (d) IM 
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Figure 2.9: Illustration of macro-void formation during the AM process. 
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(a) 

 

(b) 

Figure 2.10: (a) X-CT image of FDE-AM specimen (b) Relative frequency distribution as a 

function of equivalent diameter of void. EFD-AM contain a total of 15.5 volume % voids. 
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from top-down views of 3D reconstruction during X-CT scanning while Figure 2.10 (b) represent 

the relative frequencies of the pores as a function of equivalent pore diameter (assuming pores has 

spherical geometry). A total porosity of 15.5% volume was observed in EDF-AM samples. 

The ECM sample showed very inhomogeneous distribution of pores with a high concentration on 

the surfaces, as shown in Figure 2.11 (a). In ECM samples, the hot molten charge from the 

plasticator was placed on the relatively colder mold. Therefore, temperature of the charge which 

is in contact with the mold surface, dropped significantly; however, the inside material temperature 

was still above melting point and flowed smoothly after the application of pressure. This represents 

the porosity concentration mainly at the top and bottom surfaces of the ECM sample. A total of 

4.3 % volume porosity was observed. A meaningfully representative size distribution could not be 

obtained as most of the observed pores were connected to larger single entities.  

It can be observed from Figure 2.11 (b), the IM samples contain minimal porosity (0.007% by 

volume) as compared to other processes. This was due to the high pressure applied while injecting 

the material. The total number of segmented pores were not statistically significant enough for 

quantitative analysis.        

 Mechanical and Microscopic Analysis 

The mechanical properties of EDF-AM, ECM, and IM are summarized in Table 2.3. The tensile 

properties of the composite are dominated by fiber orientation, void content, fiber/matrix interface 

[34, 35]. As noted in Table 2.3 and Figure 2.12, IM samples exhibited more tensile, flexure, and 

ILSS properties as compared to the EDF-AM and ECM samples, even though IM has the least 

average fiber length. During the IM process, fibers mainly orient in flow direction, and fiber 

orientation plays a vital role in mechanical characteristics [36]. This can be observed from the  
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(a)                                                                                         (b) 

Figure 2.11: (a) X-CT image of ECM specimen. All pores in ECM are present in the top and 

bottom surface only and contain a total of 4.30 volume % voids. (b) X-CT image of IM 

specimen. IM contain a total of 0.007 volume % voids 
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Table 2.3: Mechanical properties of EDF-AM, ECM, and IM 

Sample 

Tensile Test Flexure Test ILSS 

Strength 

MPa 

Modulus 

GPa 

Strength 

MPa 

Modulus 

GPa 

Strength 

MPa 

Mean STD Mean STD Mean STD Mean STD Mean STD 

EDF-

AM 

X-dir 56.02 3.13 21.56 0.56 63.23 4.51 14.35 0.92 8.34 1.04 

Z-dir 12.06 1.44 4.25 0.16 18.46 0.06 3.90 0.07 2.63 0.13 

ECM 

X-dir 49.61 14.6 16.35 5.55 77.33 9.55 10.77 0.91 10.29 0.38 

Y-dir 53.83 20.5 16.94 4.30 92.66 17.1 13.02 3.18 11.84 1.41 

IM Flow-dir 122.54 3.14 33.46 2.88 195.9 2.32 34.82 0.97 18.48 2.96 
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(a) 

 

(b) 

Figure 2.12: Mechanical properties for EDF-AM, ECM and IM; (a) Tensile strength versus 

tensile modulus, and (b) Flexure strength versus flexure modulus 
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(a) 

 

(b) 

Figure 2.13: SEM micrographs of a fracture surface of tensile specimen; (a) EDF-AM: Most of 

the fibers are aligned in printing direction, also contain voids; (b) ECM: Fibers are well 

distributed in all directions  
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(c) 

Figure 2.14: SEM micrographs of a fracture surface of tensile specimen; (c) IM: Fibers are well 

aligned in flow directions. All samples showed fiber pullout. 
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SEM image given in Figure 2.14c, in which IM fibers are mainly oriented in the flow direction. 

As explained in previous section the IM sample exhibit much less porosity as compared to EDF-

AM and ECM samples. This collectively results in higher properties for the IM manufacturing 

process.  

When a layer is deposited, the previous layer is already in an advanced stage of cooling, which 

causes weak layer-by-layer bonding. If the temperature of the substrate (previous layer) drops 

below the glass transition temperature (𝑇𝑔) of the printing material, it causes the least amount of 

layer-to-layer adhesion with the next successive layer [37]. This leads to weaker Z-direction 

properties. Tekinalp et al. [1] explained that, during printing, fibers are aligned in the load-bearing 

direction, which compensates for the negative effect of voids. This can be observed from Figure 

2.14 (a) where most of the fibers are oriented in one direction. Therefore, as can be observed from 

Table 2.3, the tensile, flexure, and ILSS strength of EDF-AM samples in the X-direction are 78%, 

71%, and 68% higher, respectively, than in the Z-direction. It can also be noted that the standard 

deviation is not significant between the five tested samples for each set of tests in both directions.  

ECM parts generally prefer planar flow patterns that distribute fibers randomly in all directions, 

as seen in Figure 2.14 (b). An average 20% variation is typically observed between the flow 

direction and transverse to the flow direction in ECM samples [36]. The random distribution of 

fibers leads to a high standard deviation. As explained earlier (section 3.3), the ECM 

manufacturing process has the most forgiving nature in terms of fiber retention as compared to 

other manufacturing techniques.  

The tensile strength of the EDF-AM samples in the X-direction (56 MPA) was very similar to that 

of the ECM samples (X-direction: 50 MPa and Y-direction: 54 MPa) due to the high alignment of 

fibers (in EDF-AM). However, the flexure and ILSS strength of the ECM (both directions) samples 
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were more than 20% higher than EDF-AM (X-direction) samples. This increase in strength was 

due to the random distribution of longer fibers, which created cross-linking and produced more 

bending resistance. SEM images (See Figure 2.14) of fracture samples from all three 

manufacturing processes showed fiber pullout, which is consistent with the XPS results and 

indicates a need for improvement of the interface bonding between CFs and PPS resin. 

2.4 CONCLUSIONS 

Twin-screw compounded 50CF-PPS pellets were successfully used as a feedstock material to 

fabricate composite plaques by EDF-AM, ECM, and IM. The processing temperature for each 

process was maintained between 285 – 400°C, which were the melting point and degradation point 

temperatures, respectively, for the PPS matrix. XPS analysis showed that no chemical reaction 

between the fiber and matrix occurred during compounding, which was further confirmed in SEM 

micrographs, as the fibers were pulled out during tensile testing. The IM samples had better 

mechanical properties due to the aligned fibers along the injection direction. A high standard 

deviation in the ECM samples indicated the planar flow pattern with a random distribution of 

fibers. In EDF-AM printed samples, fiber orientation along the printing direction minimized voids 

and improved properties, compared to the ECM specimens. Measurement of the fiber length 

distribution in 50CF-PPS was not possible because of the oxidative nature of CF and carbonaceous 

residue formation at high temperatures. An alternate system of 20CF-ABS was used to observe 

the effect of different manufacturing techniques on the fiber attrition, which showed that IM 

produced the maximum reduction in the fiber aspect ratio. 

In summary, this study shows that 50CF-PPS pellets are an excellent feedstock material option for 

additive manufacturing. The controlled orientation and excellent dispersion capabilities of the 

EDF-AM process has great potential for manufacturing load-bearing components. Furthermore, 
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there is an excellent potential to improve AM structure properties in both the X and Z directions. 

IM and ECM composites did not much porosity; however, their performance can be improved by 

increasing fiber-polymer adhesion. 
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ABSTRACT 

Carbon fiber (CF) reinforced polymer composites have been used in additive manufacturing (AM) 

to increase the stiffness of the parts. CF AM is being considered for tooling applications. In AM, 

CFs are usually aligned along the deposition direction; however, it results in anisotropic thermal 

properties which affect the heat transfer and warpage of the final part. In this study, three male 

molds with different infill patterns were produced via the extrusion deposition fabrication-additive 

manufacturing (EDF-AM) process. These include (a) 0°: infill pattern along the printing direction; 

(b) 90°: infill pattern perpendicular to the printing direction; (c) 0°/90°: alternate layers along and 

perpendicular directions. The effect of the infill pattern on thermal conductivity was analyzed and 

observed that 0° infill had the highest conductivity; however, 90° infill had the least. A multi-step 

approach is followed in to develop FEA model as (1) anisotropic thermal conductivity of the 

extruded bead (2) toolpath based on the infill pattern of the molds (determined by slicing 

software). FEA results showed the mechanism to increase mold surface temperature for the same 

infill structure. The results of this work are establishing the optimal configuration of AM tool 

designs for the compression molding of composites. 

Keywords: thermal conductivity, infill pattern, extrusion deposition fabrication – additive 

manufacturing, finite element analysis 
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3.1 Introduction 

CNC machining is the most commonly used and highly reliable manufacturing technique to 

produce dies and tools. However, it is time-consuming and expensive. Also, CNC machining 

requires highly skilled labor [1]. In the last decade alone, more than one-third of the tool and die 

companies have gone out of business because the US manufacturers have started to produce molds 

overseas due to cost considerations [2]. Additive manufacturing (AM) enables creating final parts 

through layer wise printing. AM offers potential advantages over traditional tool manufacturing 

[3] process because of the following factors- (i) Lead time reduction: Fabrication of tooling by 

AM can lead to 40-90 percent time saving due to fewer labor inputs, machining steps, use of digital 

design files rather than 2D paper drawings and in-house tooling; (ii) Cost reduction: AM for 

tooling helps cost reduction due to decrease in material lost during fabrication, improving product 

yield and reducing labor inputs. (iii) Improved functionality: AM allows the manufacturing of 

previously unobtainable and/or unaffordable (due to complex shapes) tool designs. (iv) Increased 

ability to customize parts.  

The growth in AM over the last two decades has made significant changes in composite tooling; 

however, has limitations such as print speed, cost, material properties. Recent developments in 

polymer extrusion deposition created a lot of attention for composite mold production. Printing 

outside an oven is possible due to the introduction of low thermal expansion coefficient carbon 

fiber (CF) in polymer AM, which provides not only stiff structures but also high dimensional 

stability [4-6]. Cincinnati Incorporated and Oak Ridge National Laboratory (ORNL) have created 

a large-scale big area additive manufacturing (BAAM) system (6 m × 2.5 m × 1.5 m) to 

manufacture AM parts which can deposit material at a rate of 45 kg/hr. The feedstock materials 
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for BAAM are pellets, rather than wires, which significantly reduces cost and also broadens the 

supply chain of materials [7, 8].  

Conventional manufacturing technique for CF includes melt spinning, oxidation, carbonization 

and graphitization, which helped to create an ordered structure similar to single crystal graphite 

[9]. Therefore, at elevated temperature, CF possesses a wide range of elastic modulus, thermal 

expansion, and thermal conductivity [10]. High-temperature thermoplastic polymers 

(polyphenylene sulfide (PPS), polyethersulfone (PES), polyetheretherketone (PEEK), polyimide 

(TPI)) retain physical properties at high temperatures and offer thermal stability when used for 

longer time [11-14]. Thermal conductivity and coefficient of thermal expansion (CTE) are 

essential material properties of CF composites when used at elevated temperature environments 

[9, 15-18]. CF is a highly anisotropic material with different mechanical and thermal properties 

along and transverse directions [19]. Pradere et al. [9] explained that the CTE of CFs along the 

transverse direction varies from 5×10-6 K-1 – 10×10-6 K-1; however, along the longitudinal direction 

offers lower expansion as 1.6×10-6 K-1 – 2.1×10-6 K-1 based on the fiber properties. Therefore, 

thermal conductivity and expansion characteristics of chopped/short composites are highly 

influenced by the fiber orientation [20].  

The extrusion deposition fabrication - additive manufacturing (EDF-AM) system consists of a 

single screw extruder where the screw rotates inside a heated barrel. The screw forces the material 

inside the barrel feed section to the transition section where it is melted and transferred to a 

metering section of the screw. Finally, material is squeezed out from the deposition nozzle under 

high pressure [21]. The flow kinematics of the fibers in the extruded bead are given in Figure 3.1. 

Studies by Brenken et al. [22] has shown that fibers are highly aligned along the deposition 

direction at the wall of the nozzle due to high shear forces; however, randomly oriented at the 
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center of the bead [4]. Properties of fiber reinforced polymers (FRPs) are depend on the orientation 

of fiber [23]; therefore, the mechanical and thermal properties of the composite material depend 

on the orientation of the deposited layer.  

This research focuses on different infill patterns within the 3D printed substrate and the effect of 

fill pattern on the thermal conductivity and thermal expansion (warpage) of a composite mold 

manufactured by the EDF-AM process. The molds were heated through conductive mechanism.  

The thermal effect (warpage of the mold) was monitored by comparing non-contact 3D digital 

imaging of the molds before and after heating. Finite element analysis (FEA) was performed to 

find the effect of number of perimeters (explained in section 3.2) on the heat conduction of the 

mold. 

3.2 Materials and Sample Preparation 

50% by weight CF reinforced polyphenylene sulfide (50CF-PPS) was procured from Techmer 

PM. The melting point of PPS is 285 °C, it is a semi-crystalline thermoplastic polymer with a high 

heat deflection temperature [7]. The BAAM extrusion system with 10.16 mm (0.4 in) nozzle 

orifice diameter was used to print dome-shaped molds, as shown in Figure 3.2. The surface of the 

printed structure is beaded due to the nature of the BAAM print, which leads to an extra post-

processing step to obtain good quality surface. The mold was printed slightly bigger (2.54 mm) 

than the target geometry using BAAM; then, machining was performed to remove excess material 

and achieved the exact target surface finish. The BAAM screw extruder has five heating zones, 

and these were set as; zone 1: 305 °C, zone 2: 321 °C, zone 3: 326 °C, zone 4: 337 °C, zone 5 (tip): 

337 °C. The bead width: 13.97 mm (0.55”), and bead height: 5.08 mm (0.2”) was kept constant 

for all prints. 
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Figure 3.1: Schematic of AM extruder with fiber orientation profile inside the deposited bead. 

Fibers are aligned along the edge while randomly oriented inside the bead [22]. 
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The 3D printing was conducted by using an acrylonitrile butadiene styrene (ABS) sheet to begin 

the print, and the bed temperature was maintained at 110 °C to adhere to the initial layer. A thermal 

camera (FLIR A35) was positioned to monitor the deposition temperature such that the interface 

temperature between the layers was always higher than the glass transition temperature (Tg) of PPS 

(85 °C) [24]. Printing of 50CF-PPS was performed under inert environment (argon or nitrogen) 

because extrusion under ambient temperature leads to significant accumulation of viscous material 

inside the extruder, which can degrade the polymer [7].  

Perimeter also known as shell in 3D printing is an external boundary added during part building 

as shown in Figure 3.3. The perimeter is an essential parameter for the uniform distribution of 

stresses to avoid premature failure [25]. For every printed part should have at least one perimeter. 

Additional perimeters provide strength the part; however, also adds weight and increase print time. 

The infill pattern is the interior structure/geometry of the printed cross-section (inside the 

perimeter). Infill density and geometric patterns have a significant effect on the mechanical 

performance of the printed structure [26, 27]. As explained earlier (section 1), in BAAM printing, 

fibers are aligned along the deposition direction. Therefore, the structure of the infill pattern is 

hypothized to have significant influence on the fiber orientation. The fiber orientation would 

therefore have an effect on the thermal conductivity and the warpage of the final part [28]. Three 

male molds as shown in Figure 3.2 (a) were manufactured with three perimeters and different infill 

patterns. The three molds feature an infill pattern of 0° (along the deposition direction), 90° 

(transverse to the deposition direction) and 0°/90° (one layer along the deposition direction while 

the second transverse). The schematic of various infill patterns is shown in Figure 3.3. 
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(a)                                                 (b) 

Figure 3.2: Design of 50CF-PPS printed dome-shaped mold (a) Male mold (b) Female mold. The 

molds were printed using BAAM with bead width 13.97 mm (0.55”), and bead height: 5.08 mm 

(0.2”) 
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Figure 3.3: Infill pattern (a) 0° (b) 90° (c) 0°/90°. The bead width: 13.97 mm (0.55”) and bead 

height: 5.08 mm (0.2”) 
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A 304.8 mm × 304.8 mm × 22 mm width, length and thickness hexagon was prepared by EDF-

AM process with 1 minute and 45 seconds layer time as shown in Figure 3.4. Test specimens were 

prepared to perform high-temperature tensile tests (room temperature, 100 °C, and 180 °C) 

according to ASTM D638. A set of 15 dog bone tensile samples of 8.03 mm thickness and 19.16 

mm width (5 for each temperature) in X-direction (aligned with printing tool path) and Z-direction 

(orthogonal to the bead axis) respectively were prepared. MTS frame - 100 KN load cell was used 

to performed tensile test at a 1 mm/min loading rate. 

3.3 Experimental Setup 

Each male mold was placed on the platen of the hydraulic compression press (Beckwood – 100 

tons) and subjected to conductive heating. Nine (9) thermocouples were placed on the mold surface 

and one on the platen to measure the temperature at various locations. The temperature of the 

platen was maintained at 200 °C (390 °F), and the temperature profile for the mold surface was 

continuously monitored for 5 hours. After 5 hours, the temperature reached equilibrium. A baseline 

scan was performed at room temperature, and the second scan was conducted at elevated 

temperature (after 5 hours) using high precision 3D measurement FARO arm. The arm consists of 

a FARO Laser Line Probe (LLP), which provides non-contact 3D scanning capabilities. The scans 

were compared and analyzed using Geomagic Control-X 2018 software for dimensional variation. 

The experimental setup is shown in Figure 3.5. 
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Figure 3.4: Hexagon with 304.8 mm x 304.8 mm x 22 mm dimension. X-direction: along the 

bead deposition, Z-direction: transverse to the bead deposition 
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Figure 3.5: Mold placed on the platen (200 °C) and heated through conduction for 5 hours. 

Position of thermocouples (position 1 to 10) represent the locations where the temperature was 

recorded. 
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3.4 Results and Discussion 

 Mechanical Tests:  

The tensile test data is shown in Figure 3.6 and summarized in Table 3.1. The tensile test was 

performed at room temperature (27 °C) and elevated temperatures (100 °C and 180 °C). These 

temperatures were selected because the maximum temperature noted by a thermocouple on platen 

was around 180 °C, and the maximum temperature recorded on the mold surface was around 100 

°C (explained in section 3.4.2). These samples showed 42.4 % and 69.0 % reduction in modulus 

for X-direction after heating from room temperature to 100 °C and 180 °C, respectively. PPS is a 

semi-crystalline material i.e. contains both amorphous and crystalline structure with a Tg of 85 °C. 

At temperatures above Tg, the amorphous phase starts to soften causing reduction in strength. 

Further increase in temperature softens the crystalline structure and affects tensile properties [29].  

 Heat conduction and warpage:  

In this experiment, 9 thermocouples were attached to the top surface of the mold to monitor/record 

temperature profile. The temperature difference between the three molds was attributed to the infill 

directions. An extruded material has highly aligned fibers along the deposition direction, and 

therefore, the conductivity along the deposition direction is expected to be higher than in other 

directions [30]. Heat transfer in the mold was mainly in the direction from the bottom surface of 

the mold to the top surface of the mold. When the infill direction was parallel to the heat transfer 

direction (0° infill), then due to the high conductivity along the heat transfer direction, the top 

surface held high temperature (i.e., 79.2 °C). When the infill direction was perpendicular to the 

heat transfer direction (i.e., 90° infill), then due to the low conductivity along the heat transfer  



73 

 

 

(a) 

 

(b) 

Figure 3.6: Tensile behavior of 50CF-PPS samples with increase in temperature (a) tensile 

modulus (b) tensile strength 
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Table 3.1: Tensile properties of 50CF-PPS at room temperature and high-temperature (100 

°C and 180 °C)  

Tensile Test 

Temperature (°C) 

Room Temperature (27) 100 180 

X Z X Z X Z 

Strength, MPa 52.3 ± 2.97 9.1 ± 0.30 34.8 ± 0.99 6.7 ± 0.32 21.5 ± 0.80 4.8 ± 0.22 

Modulus, GPa 20.3 ± 0.32 3.5 ± 0.06 11.7 ± 0.72 1.3 ± 0.08 6.3 ± 0.18 0.7 ± 0.01 
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Table 3.2: Average top mold surface temperature and total average deflection for different 

infill patterns. 

Sr. No. Infill Pattern 
Avg. Top Surface 

Temperature (°C) 

Total Average 

Deflection (mm) 

1 0° 79.21 ± 6.48 0.314 ± 0.42 

2 90° 66.45 ± 5.76 0.363 ± 0.46 

3 0°/90° 73.60 ± 4.06 0.329 ± 0.42 
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direction, the top surface held low temperature (i.e., 66.5 °C).  The average surface temperature of 

the 0°/90° infill pattern mold was recorded as 73.6 °C, in between 0° and 90° infill pattern molds. 

The reinforcing fibers aligned along the deposition direction leads to non-uniform expansion of 

the printed structures [31]. Brenken et al. studied the CTE variation of 50CF-PPS samples for large 

scale BAAM structures in three principle directions and observed 2×10-6 m/(mK), 26.75×10-6 

m/(mK) and 43.00×10-6 m/(mK) in X-, Y-, and Z-directions (representation of each direction is 

explained later in this section) respectively [32]. To understand the deflection/warpage of the mold 

due to heating, a 3D digital impression of the mold at room temperature and the elevated 

temperature was captured using a FARO arm. The scans were then accurately aligned and 

compared using Geomagic Control-X 2018 software.  

The first layer for each mold was printed in the X-Y plane (0° infill in X-direction; 90° infill in Y-

direction), and the three-dimensional mold was fabricated by depositing successive layers in Z-

direction. The infill pattern in the X-Y plane holds the structure steady irrespective of the infill 

lines. Therefore, it was observed from Figure 3.7 that all molds were warped in Z-direction only 

(positive deflection at the edges: green color, and negative deflection at the center: red color).  

Figure 3.9 and Table 3.2 shows the 3D deviation analysis of 0°, 90°, and 0°/90° infill pattern molds 

for high-temperature scan compared to room temperature scan. It was observed that average 

deflection was +0.385 / -0.244 mm representing total 0.314 mm for 0°, +0.445 / -0.280 mm 

representing overall 0.363 mm for 90° and +0.397 / -0.262 mm representing total 0.329 mm for 

0°/90° molds. Since the deflection (due to heat) in all molds was carried out in Z-direction, and 

the different infill patterns were presented in the X-Y plane, temperature gradient (the temperature 

difference between the top and bottom surface of the mold) was the main driving factor for the 

deviation. 
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Figure 3.7: Aligned image of mold at room temperature and elevated temperature. All three 

molds showed similar pattern as warped along the Z-direction. Amount of warpage was different 

for each mold. 
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(a) 

 

(b) 

Figure 3.8: 3D deviation analysis of molds at room temperature and after keeping on heated (200 

°C) platen for 5 hours. Total average deflection for (a) 0°: 0.314 mm; (b) 90°: 0.363 mm; 
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(c) 

Figure 3.9: 3D deviation analysis of molds at room temperature and after keeping on heated (200 

°C) platen for 5 hours. Total average deflection for (c) 0°/90°: 0.329 mm 
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The average temperature recorded at the mold top surface for 0°, 0°/90°, and 90°infill pattern mold 

was 79.2 °C, 73.6 °C, and 66.5 °C respectively. For each experiment, the platen temperature was 

kept constant (200 °C). Therefore, the temperature gradient between the bottom and top surface of 

the mold was highest in 90° infill followed by 0°/90° infill and least in 0° infill which correlate 

with the similar trend of deflection as 0° < 0°/90° < 90°. 

Bagsik et al. [33] studied the compression behavior of FDM samples build in vertical (0°) and 

horizontal (90°) direction. The authors observed that the samples fabricated in vertical direction 

failed in bucking mode while horizontal direction samples failed due to interlayer shear. Similar 

results were observed by Motaparti et al. [34]. The failure mechanism of the two orientations is 

shown in Figure 3.10. Therefore, it can be assumed that a 0°/90° infill pattern has a more stable 

structure under compression due to alternate layers. The total deviation of 0°/90° infill mold was 

only 4.8% higher than 0°. Also, 0°/90° infill mold had more uniform heat distribution (standard 

deviation: ± 4.06) as compared to the other molds. The non-uniform distribution of temperature 

may result in the uneven curing of composites [35]. Therefore, further efforts were made to 

characterize the performance of 0°/90° infill mold. A female mold with a 0°/90° infill pattern was 

fabricated with the same processing conditions explained in section 3.2 and prepared for extrusion 

compression molding (ECM) operation.  

3.5 Extrusion Compression Molding (ECM) with the 0°/90° infill mold 

 Mold Mounting:  

The 0°/90° infill mold was used for the ECM process. The details about ECM are given in [36-

38]. The mold was mounted on the compression press, and the platen heating was started. As 

shown previously (section 3.4.2), the mold warped upon heating. 
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(a)                                 (b)       

Figure 3.10: Failure mechanism of AM specimens under compression loading (a) Vertical 

direction (0°); (b) Horizontal direction (90°) (adapted from [33]) 
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We believe that the mounting clamps constrained free motion of the tool, and resulted in a crack 

at the center, as shown in Figure 3.11. To further explore the cracking and ways to eliminate it, a 

high-temperature epoxy 1096 obtained from FiberGlast Development Corporation was used to fill 

the crack. The 1096 epoxy is a thixotropic system. The two-part epoxy (1096) contains aluminum 

particles, and it is designed for high-temperature tooling applications. The mold (after filling crack) 

was mounted back on the press, and heat was applied. After 5 hours, when the temperature reached 

equilibrium the mold was fixed using mounting clamps. The mold did not show any crack after 

mounting.       

 Parts Fabrication:  

The mold with a 0°/90° infill pattern was used to produce parts using 40% by weight CF reinforced 

nylon 6 (40CF-PA6) pellets from Celanese using the ECM process. The molten charge was 

prepared using the Impco B20 plasticator where the heating zones were set to 257 °C, 266 °C, 277 

°C, 277 °C and charge size was maintained at 304.8 mm (12”) length × 50.8 mm (2”) diameter 

(this was the maximum charge size possible with the Impco B20 plasticator). Three layers of 

McLube 841 releasing agents were applied to the mold surface. The platen temperature was 

maintained at 121 °C (250 °F), and the temperature at the mold surface was recorded to be in 

between 66 °C – 71 °C (150 °F – 160 °F).  

The hot charge from the plasticator was then placed on the mold, as shown in Figure 3.12 (a), and 

part was prepared after the application of pressure. Initially, lower pressure was applied as 0.54 

MPa (5 tons) and prepared 10 parts. 
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(a)                                                                     (b) 

Figure 3.11: Failure (crack) in the 50CF-PPS additive manufactured mold due to application of 

pressure on heated warped mold (a) Male mold (b) Female mold 
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The pressure was increased to 0.86 MPa (8 tons), 1.3 MPa (12 tons), and finally 1.6 MPa (15 tons). 

Two panels were fabricated using 0.86 MPa and 1.3 MPa each while 6 panels using 1.6 MPa 

pressure. It can be observed in Figure 3.12 (b) that there were some unfilled regions in the 

consolidated part. This was due to the limitation of the plasticator to generate a bigger size charge. 

Tensile samples were extracted according to ASTM D 3039 standard from the flat region of part; 

average tensile strength of 132.9 ± 11.55 MPa and modulus of 14.3 ± 0.84 GPa was noted. Ning 

et al. showed that 18-35 % weight of CF reinforced nylon 6 samples modulus varies from 6.5 - 

14.7 GPa [39]. From this, it can be concluded that the parts fabricated using AM mold were well 

consolidated.  

 Mold Degradation:  

A total of 20 parts were fabricated using the ECM process to determine the durability of the mold. 

A 3D digital impression of the mold was captured by a laser scanner before and after 20 parts were 

fabricated. The two scans were aligned and compared using Geomagic Control X-2018 software. 

Figure 3.13 shows that the deformation occurred in the mold due to the manufacturing of 20 parts 

using 40CF-PA6. The average degradation of + 0.076 mm / – 0.093 mm was recorded. It can be 

noticed that the maximum degradation was observed along the epoxy region (blue color). This 

degradation was caused due to the flow of the charge (40CF-PA6) at a high temperature, which 

created friction and damaged epoxy region. The rest of the mold surface showed very minimal 

(yellow color) or no degradation (green color). Therefore, it can be concluded that 50CF-PPS 

material can be a good alternative for composite tooling ECM operation. 
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(a)                                                                   (b) 

Figure 3.12: (a) Location of charge placed in the BAAM printed mold (b) the representative 

consolidated part of 40CF-PA6. The unfilled region on the consolidated part due to the limitation 

of the plasticator to generate a bigger charge (Maximum charge length produced by plasticator 

was 304.8 mm). 
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Figure 3.13: Deviation analysis of the two scans before and after 20 parts fabrications. Maximum 

deformation was observed at the 1096 epoxy region (blue area). 
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3.6 FINITE ELEMENT ANALYSIS (FEA) 

FEA was performed on the male molds with three different infill geometries, as shown in Figure 

3.3. A commercial FEA tool, Abaqus 2018, was used for computational thermal analysis. The 

geometric model is discretized into 28.6k elements, including 13.8k tetrahedron elements and 

14.8k hexahedron elements. The element size in the z-direction is 5.08 mm, which is the same as 

the layer height (= slicing thickness) of the 3D-printed mold. The average element size in x- and 

y-direction is 14 mm. A linear interpolation function is used for both types of elements. The 

analysis is for thermal simulation without deformation simulation, and therefore, shear locking is 

not a concern in this study.  

The analysis was performed with two steps: AM process simulation and service loading 

simulation. The purpose of the first step (AM process) is to assign the directionality of the 

anisotropic material properties in every element. The fibers in a printed bead are highly aligned 

along the deposition direction, and therefore, the anisotropic thermal properties and mechanical 

properties of the printed bead have directionality along the deposition direction. The toolpath 

direction varies location by location in the entire printed part, as shown in Figure 3.3. Therefore, 

in the FEA model, the directionality of the anisotropic material properties of each element should 

be assigned based on the local toolpath direction. During the AM process simulation in Abaqus, 

the local toolpath directions are assigned in the FEA elements. The directionality information is 

transferred to the next step simulation. 

The second step is a service loading simulation. The printed mold was placed on a heated platen 

of a hydraulic compression press. The temperature of the mold was gradually increased and reach 

a steady state. The goal of the service loading simulation is to predict the surface temperature of 

the mold at a steady state. The prediction was performed via a thermal FEA simulation with the 
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following three constitutive relations: thermal conduction, thermal convection, and thermal 

radiation. For thermal conduction, the three-dimensional Fourier's law was used with the 

orthotropic conductivity coefficients (𝜅1, 𝜅2, 𝜅3). For thermal convection, Newton's law of cooling 

was used with the convection coefficient (ℎ). For thermal radiation, the Stefan-Boltzmann law was 

used with the emissivity coefficient (𝜖). The coefficients for heat transfer parameters are listed in  

Table 3.3. 

The boundary conditions are shown in Figure 3.14. The environment temperature was set to 30 

°C, and the mold initially had a uniform temperature of 30 °C. During experiment, the temperature 

of the platen was maintained at 200 °C. However, the bottom surface temperature was set to 160 

°C throughout the simulation because heat loss due to open environment and the platen has slots 

for mounting mold which reduces the overall heating contact area. The convection and radiation 

were applied to the surface of the mold except for the bottom surface. As the simulation proceeded, 

the temperature increased from the bottom of the mold, and the heat gradually propagated to the 

top surface of the mold. 

It should be addressed that the current simulations have the following limitations. First, the 

simulation considers only the heat transfer behavior in the mold and ignores a mechanical 

deformation. As explained previously, the warpage of the mold creates a gap between the heated 

platen and the bottom surface of the mold, and the amount of the gap was different among the 

three molds. Due to the gap, the bottom surface of the mold had a non-uniform temperature 

distribution. Second, the simulation assumes an ideal case of infill printing in which the deposited 

beads have a perfect bonding. In actual large-scale printing, the deposited beads with high 

temperature (extrusion temperature of 337°C), which were initially bonded to each other, might  
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Table 3.3: Coefficients used in the thermal simulation [40] 

Constitutive 

Relation 
Coefficient Value Unit 

Conduction 

κ1 1.472 W/(m·K) 

κ2 1.287 W/(m·K) 

κ3 0.4528 W/(m·K) 

Convection h 5.0 W/(m2·K) 

Radiation ϵ 0.9 dimensionless 
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Figure 3.14: Boundary conditions for service load simulation (thermal simulation). Bottom 

temperature: 160 °C and ambient temperature: 30°C. 
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get separated as they shrink during cooling. The shrinkage of the printed beads can create a gap 

between infill lines, which can decrease the conductivity across the infill lines. 

We have performed the thermal simulations for the three molds, as shown in Figure 3.3, and the 

temperature fields of the top surfaces from the three molds are shown in Figure 3.15. The high 

temperature near the interface circular line between the dome surface and top flat surface was 

recorded. The center area had high temperature because of the heat loss on the surfaces at the four 

sides of the mold. However, because the dome surface had longer distance from the bottom surface 

(heat source) (distance varies along the dome surface: 127mm - 152.4 mm) than the top flat surface 

of the mold from the bottom surface (127 mm), the conduction to the dome surface becomes less 

effective as compared to the conduction to the top flat surface. Therefore, a large area near the 

center has a high temperature except for the dome surface.  

At the interface line between the dome surface and the top flat surface, the mold with 0° infill had 

the highest temperature, and the mold with 90° infill had the lowest temperature. The temperature 

of the mold with 0°/90° infill was in between the temperatures of 0° infill mold and 90° infill mold. 

The average temperatures on the surface of the interest (see Figure 3.16) were 79.3 °C, 77.7 °C, 

and 78.4 °C for 0° infill, 90° infill, and 0°/90° infill molds, respectively. Therefore, the overall 

trend for the average surface temperature was 0° > 0°/90° > 90°, was similar to the experimental 

results. The mold with 0°/90° infill lines has a more stable structure due to the alternate layers, as 

explained in section 4.2. Therefore, efforts were made to increase the thermal conductivity of the 

mold with a 0°/90° infill pattern. The above study (experimental as well as simulation) was 

performed based on the 3 perimeters as shown in Figure 3.3. 
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Figure 3.15: Temperature profile of the top surface of the three molds. (a) Mold with 0° infill, (b) 

Mold with 90° infill, (c) Mold with 0°/90° infill 
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Figure 3.16: Surface of interest/part molding area (shaded area) and the location of peak 

temperature (purple circle). Average surface temperature for each mold was measured in the 

shaded area. 
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FEA was conducted to understand the effect of 1 perimeter on the thermal conductivity of the mold 

with a 0°/90° infill pattern. The difference in temperature distribution at the top surface between 

one and three perimeters is shown in Figure 3.17. The average temperatures on the surface of the 

interest (see Figure 3.16) are 78.4 °C and 79.0 °C for 3 perimeters and 1 perimeter respectively, 

for 0°/90° infill molds. The increase of temperature in 1 perimeter mold was due to the increase of 

layers parallel to the heat conduction (0° layers). The effect on the strength of the mold due to the 

change in the number of perimeters was out of scope for this study and will be analyzed later.         

3.7 Conclusions: 

EDF-AM process was used to fabricate dome-shaped male molds with different infill pattern 

namely; 0°, 90°, and 0°/90°. The thermal conductivity had a direct relationship with the carbon 

fiber orientation, which was confirmed as the average top surface temperature for 0° > 0°/90° > 

90°. FEA showed that the average top surface temperature of 0°/90° infill mold could be increased 

by reducing the number of perimeters. The mold showed a high level of durability (average 

degradation: + 0.076 mm / – 0.093 mm) for the ECM process when scanned using a 3D laser 

scanner. The tensile strength and modulus of the 40CF-PA6 part were 132.9 MPa and 14.3 GPa, 

respectively, fabricated using 50CF-PPS EDF-AM mold. 
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(a) 

 

(b) 

Figure 3.17: Temperature profile of the top surface of 50CF-PPS AM mold (a) 3 perimeters (b) 1 

perimeter 

 

 

 

 



96 

 

REFERENCES 

1. Lanz, R.W., S.N. Melkote, and M.A.J.J.o.M.P.T. Kotnis, Machinability of rapid tooling 

composite board. 2002. 127(2): p. 242-245. 

2. Canis, B. The tool and die industry: Contribution to US manufacturing and federal policy 

considerations. in CRS Report for congress. 2012. 

3. Cotteleer, M., M. Neier, and J.J.D.R. Crane, 3D opportunity in tooling: Additive 

manufacturing shapes the future. 2014. 

4. Tekinalp, H.L., et al., Highly oriented carbon fiber–polymer composites via additive 

manufacturing. 2014. 105: p. 144-150. 

5. Love, L.J., et al., The importance of carbon fiber to polymer additive manufacturing. 2014. 

29(17): p. 1893-1898. 

6. Richardson, B.S., et al., Enabling Technologies for Medium Additive Manufacturing 

(MAAM). 2018, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States). 

7. Hassen, A.A., et al. Additive manufacturing of composite tooling using high temperature 

thermoplastic materials. in SAMPE Conference Proceedings, Long Beach, CA, May. 2016. 

8. Duty, C.E., et al., Structure and mechanical behavior of Big Area Additive Manufacturing 

(BAAM) materials. 2017. 23(1): p. 181-189. 

9. Pradere, C. and C.J.C. Sauder, Transverse and longitudinal coefficient of thermal 

expansion of carbon fibers at high temperatures (300–2500 K). 2008. 46(14): p. 1874-

1884. 

10. Savage, G., Applications of Carbon-carbon composites, in Carbon-Carbon Composites. 

1993, Springer. p. 323-359. 



97 

 

11. Gabrion, X., et al., About the thermomechanical behaviour of a carbon fibre reinforced 

high-temperature thermoplastic composite. 2016. 95: p. 386-394. 

12. Vieille, B., L.J.C.S. Taleb, and Technology, About the influence of temperature and matrix 

ductility on the behavior of carbon woven-ply PPS or epoxy laminates: Notched and 

unnotched laminates. 2011. 71(7): p. 998-1007. 

13. Walther, B.M., An investigation of the tensile strength and stiffness of unidirectional 

polymer-matrix, carbon-fiber composites under the influence of elevated temperatures. 

1998, Virginia Tech. 

14. Mahieux, C., C.J.C.P.A.A.S. Scheurer, and Manufacturing, Elevated temperature bending 

stress rupture behavior AS4/APC-2 and comparison with AS4/PPS literature data. 2002. 

33(7): p. 935-938. 

15. Karadeniz, Z.H. and D.J.C.S. Kumlutas, A numerical study on the coefficients of thermal 

expansion of fiber reinforced composite materials. 2007. 78(1): p. 1-10. 

16. Islam, R., S.-G. Sjölind, and A.J.J.o.c.m. Pramila, Finite element analysis of linear thermal 

expansion coefficients of unidirectional cracked composites. 2001. 35(19): p. 1762-1776. 

17. Ran, Z., et al., Determination of thermal expansion coefficients for unidirectional fiber-

reinforced composites. 2014. 27(5): p. 1180-1187. 

18. Kulkarni, R. and O.J.J.o.C.M. Ochoa, Transverse and longitudinal CTE measurements of 

carbon fibers and their impact on interfacial residual stresses in composites. 2006. 40(8): 

p. 733-754. 

19. Kumar, V., et al., Replacing Metal-Based Lightning Strike Protection Layer of CFRPS by 

3D Printed Electronically Conductive Polymer Layer. 2019, Oak Ridge National 

Lab.(ORNL), Oak Ridge, TN (United States). 



98 

 

20. Tezvergil, A., L.V. Lassila, and P.K.J.D.M. Vallittu, The effect of fiber orientation on the 

thermal expansion coefficients of fiber-reinforced composites. 2003. 19(6): p. 471-477. 

21. Chesser, P., et al., Extrusion control for high quality printing on Big Area Additive 

Manufacturing (BAAM) systems. 2019. 28: p. 445-455. 

22. Brenken, B., et al., Fused filament fabrication of fiber-reinforced polymers: A review. 

Additive Manufacturing, 2018. 21: p. 1-16. 

23. Yeole, P., et al., Characterization of textile-grade carbon fiber polypropylene composites. 

Polymers and Polymer Composites, 2020: p. 0967391120930109. 

24. Wang, S., et al., Compressive and flexural behavior of carbon fiber-reinforced PPS 

composites at elevated temperature. Mechanics of Advanced Materials and Structures, 

2020. 27(4): p. 286-294. 

25. Mishra, S.B. and S.S. Mahapatra. Improvement in tensile strength of FDM built parts by 

parametric control. in Applied Mechanics and Materials. 2014. Trans Tech Publ. 

26. Vaezi, M., S.J.V. Yang, and P. Prototyping, Extrusion-based additive manufacturing of 

PEEK for biomedical applications. 2015. 10(3): p. 123-135. 

27. Popescu, D., et al., FDM process parameters influence over the mechanical properties of 

polymer specimens: A review. 2018. 69: p. 157-166. 

28. Zaldivar, R., et al., Influence of processing and orientation print effects on the mechanical 

and thermal behavior of 3D-Printed ULTEM® 9085 Material. 2017. 13: p. 71-80. 

29. Garrell, M.G., et al., Mechanical properties of polyphenylene-sulfide (PPS) bonded Nd–

Fe–B permanent magnets. 2003. 359(1-2): p. 375-383. 

30. Ralph B. Dinwiddie, V.K., John M. Lindahl, Seokpum Kim, Pritesh Yeole, and L.J.L. Chad 

Duty, Ahmed Arabi Hassen, Specific heat capacity and anisotropic thermal conductivity 



99 

 

of additively manufactured carbon-fiber-reinforced thermoplastics; abs + 20% cf, pps + 

50% cf and ppsu + 25% cf. . 2020: Journal of Composite Science and Technology - Under 

Review. 

31. Yeole, P., et al., Mechanical Characterization of High-Temperature Carbon Fiber-

Polyphenylene Sulfide Composites for Large Area Extrusion Deposition Additive 

Manufacturing. Additive Manufacturing, 2020: p. 101255. 

32. Brenken, B., Extrusion Deposition Additive Manufacturing of Fiber Reinforced Semi-

Crystalline Polymers. 2017, Purdue University. 

33. Bagsik, A., V. Schöppner, and E. Klemp. FDM part quality manufactured with Ultem* 

9085. in 14th international scientific conference on polymeric materials. 2010. 

34. Motaparti, K.P., Effect of build parameters on mechanical properties of ultem 9085 parts 

by fused deposition modeling. 2016. 

35. Wang, Q., et al., Design optimization of molds for autoclave process of composite 

manufacturing. 2017. 36(21): p. 1564-1576. 

36. Yeole, P., H. Ning, and A.A.J.J.o.T.C.M. Hassen, Development and characterization of a 

polypropylene matrix composite and aluminum hybrid material. 2019: p. 

0892705719843974. 

37. Vaidya, U., Composites for automotive, truck and mass transit: materials, design, 

manufacturing. 2011: DEStech Publications, Inc. 

38. Yeole, P., Fiber metal laminate with thickness reinforcement. 2015, The University of 

Alabama at Birmingham. 

39. Ning, H., et al., A review of Long fibre thermoplastic (LFT) composites. International 

Materials Reviews, 2020. 65(3): p. 164-188. 



100 

 

40. Seokpum Kim, P.Y., Ahmed Hassen, Vipin Kumar, Vlastimil Kunc, Uday Vaidya, Effect 

of Infill Patterns on Heating for Additively Manufactured Compression Molds, in SAMPE 

Conference Proceeding. 2020: Seattle, WA. 

 



101 

 

 

 

 

 

 

 

4 CHAPTER 

 

IMPROVE DURABILITY AND SURFACE QUALITY OF 

ADDITIVELY MANUFACTURED MOLDS USING CARBON 

FIBER PREPREG 

 

 

 

 

 

 

 



102 

 

ABSTRACT 

Hybrid tooling is an emerging concept introduced in the aerospace industries to reduce weight and 

cost of traditional tools. A hybrid tool features a skin which provide desired surface quality, 

durability and a low-density substrate to reduce weight of the mold. The Big Area Additive 

Manufacturing (BAAM) technology permits rapid production of thermoplastic polymer intensive 

large-scale structures. The present study features a carbon fiber reinforced polyphenylene sulfide 

(CF-PPS) substrate fabricated using Oak Ridge National Laboratory’s (ORNL) BAAM system. 

Carbon fiber-bismaleimide (CF-BMI) prepreg skin was then bonded to the BAAM tool through 

high-pressure autoclave molding. Process optimization was conducted to improve the bonding 

between CF-PPS and CF-BMI (transverse tensile strength increased from 0.54 MPa to 4.8 MPa). 

Durability of the mold was demonstrated from fabricating seven (7) carbon fiber-Huntsman epoxy 

hand lay-up parts off the mold.    

Keywords: hybrid tooling, big area additive manufacturing, autoclave molding, transverse tensile 

strength, mold degradation 
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4.1 INTRODUCTION 

Autoclave processing is the preferred method to consolidate prepreg parts in aerospace 

applications. An autoclave is commonly used for its ability to form composites in complex 

geometries while maintaining low void content. Carbon fiber composites has a low coefficient of 

thermal expansion (CTE) about 2.9 - 3.7 µm/m°C [1, 2]. The CTE of Invar (face-centered cubic 

structure of iron and 36% nickel alloy) is very low, over a wide range of temperatures (0°C - 

100°C: 1.5 µm/m°C [3]) [4]. The austenitic crystal structure of Invar makes it durable to withstand 

repeated autoclave curing cycles without creating cyclic stresses [1]. Therefore, Invar is an ideal 

material for composite tooling due to matched CTE and excellent durability [5]. However, Invar 

has low yield strength, low wear and corrosion resistance at elevated temperatures as well as high 

density (8.1 g/cc) [6].  

Aerospace industries are considering carbon fiber (CF) tooling for autoclave processing, as an 

alternative option to Invar. Some of the requirements for CF tooling include lighter than Invar, 

sustain more than 500 autoclave cycles, and possess glass transition temperature greater than 204 

°C. The tool also should be cost-effective, ultraviolet (UV) resistant, maintain a high level of 

dimensional integrity and stability [7].  

With recent developments in polymer additive technology, it is now possible to create large, 

additively manufactured tools with high dimensional accuracy [8-13]. This is also referred to as 

Big Area Additive Manufacturing (BAAM) [14]. BAAM consists of a single screw extruder 

mounted on a three-axis gantry system. The BAAM system can deposit material at 45 kg/hr rate 

in a working area of 6 m x 2.5 m x 1.8 m [8]. The size of the polymer bead in BAAM is large 

(typically width 13.97 mm × height 5.08 mm [15]) which leads to grooved and/or ribbed surface 

topography. Therefore, the surface finish requirement is always challenging for large-scale AM 
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tools, without additional post-processing. There are two approaches to address this problem- (a) 

manufacture the mold slightly larger (2.54 mm) than the actual dimensions then through 

subtractive manufacturing remove the excess material to the exact part geometry. With this 

approach, Oak Ridge National Laboratory (ORNL), in collaboration with The Boeing Company, 

produced AM autoclave tools from 50 % by weight carbon fiber reinforced polyphenylene sulfide 

(50CF-PPS) and 25 % by weight carbon fiber reinforced polyphenylsulfone (25CF-PPSU) for 

autoclave processing (material: CF reinforced epoxy (CF-epoxy) prepreg, temperature: 176.6 °C, 

pressure: 620 kPa for 2 hours) [8]. It was observed that the deformation of the mold working area 

(i.e. composite lay-up area) was less than 0.1 mm for both tools. There are some drawbacks to this 

approach as (i) the subtractive process leads to material waste, (ii)  AM components possess inter-

layer and intra-layer porosity [16] which result in the possibility of exposing voids during 

machining; (b) alternative approach is to manufacture the mold slightly undersized and add layer(s) 

of coating to achieve the desired mold geometry. This research is focused on the second approach.  

Hybrid tooling is a new concept introduced to reduce the weight of the conventional Invar tool [7]. 

The hybrid tool incorporates a thin layer of Invar as a skin layer over a composite back structure 

(substrate). This provides the desired surface quality, takes advantage of the durability of Invar, 

and reduces weight due to the low-density composite substrate [17]. It was observed that the 

durability of a hybrid tool is better than a composite tool [7]. Janicki Industries (Sedro-Woolley, 

WA, USA), and Hexcel (Dublin, CA, USA)) researched carbon fiber-bismaleimide (CF-BMI) 

composite and observed it to be a suitable replacement for Invar. CF-BMI can withstand autoclave 

cycling up to 177 °C and can survive 500 cycles [18]. CF-BMI composites offer exceptional 

properties like fracture toughness, fatigue life, damage tolerance compared to CF-epoxy [19, 20]. 

CF-BMI composites find applications in space structures, military, and composite tooling where 
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robust and high-temperature performance is required. BMI resin has high glass transition 

temperature (230-380 °C), low flammability and stable electrical properties [20, 21].  

In this research, 50CF-PPS pellets were used to manufacture substrate using the BAAM system, 

located at the Manufacturing Demonstration Facility, Oak Ridge National Laboratory. CF-BMI 

prepreg was procured from Raptor Resin Inc. Contact angle measurement was performed to 

analyze bonding capability between 50CF-PPS and CF-BMI. Various steps were followed to 

improve bonding between substrate and skin. An autoclave (ASC Econoclave™ Model EC2X3-

200P800F) located at University of Dayton Research Institute (UDRI), Dayton, Ohio was used to 

bond CF-BMI prepreg on the 50CF-PPS AM mold surface. The degradation of the mold was 

analyzed and compared using the Faro Arm 3D imaging scanner and Geomagic Control-X 2018 

software after manufacturing 7 CF-epoxy parts using hand lay-up.  

4.2 MATERIALS AND METHODS 

Twin screw compounded 50CF-PPS pellets were received from Techmer PM, Clinton, Tennessee. 

The BAAM system was used to fabricate the mold of 355.6 mm × 355.6 mm × 203.2 mm (14” × 

14” × 8”) dimensions, as shown in Figure 4.1. The BAAM extruder had 5 heating zones to melt 

the polymer. The temperature profile for 50CF-PPS printing was zone 1: 305 °C, zone 2: 321 °C, 

zone 3: 326 °C, zone 4: 337 °C, and zone 5 (tip): 337 °C. The mold was printed on an acrylonitrile 

butadiene styrene (ABS) sheet, which was kept at 110 °C. The beads had dimension 13.97 mm 

width, 5.08 mm height, printed using a 10.16 mm nozzle under an inert environment. CF-BMI 

prepreg was received from Raptor Resins Inc. 
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Figure 4.1: 50CF-PPS: 355.6 mm × 355.6 mm × 203.2 mm (14” × 14” × 8”) mold substrate, 

printed with the BAAM system with 0/90 infill pattern. Printing parameters:- bead width: 13.97 

mm, bead height: 5.08 mm. 
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Flat plaques were prepared to study the bonding characteristic between 50CF-PPS BAAM and CF-

BMI prepreg. Before proceeding to autoclave molding, to save cost and time, a few trials were 

conducted with compression molding the CF-BMI prepreg skin to the 50CF-PPS AM substrate. A 

flat panel was manufactured by BAAM, as shown in Figure 4.2 (a), and three layers of prepreg 

were bonded to it using a Carver hydraulic compression press (Model number: 3895.41E1000) 

with the following processing conditions - compression molding at 190 °C (375 °F) for 2 hours 

with 552 kPa (80 psi) pressure and post cure 210 °C (410 °F) for 4 hours. A representative panel 

is shown in Figure 4.2 (b), from here on these samples will be referred as baseline. 

Mechanical tests were performed to understand the bond strength between the prepreg skin and 

AM substrate. Through-the-thickness transverse tensile test was performed according to ASTM 

D7291 standard. Five specimens with an average diameter of 25.4 mm were mounted in 50 kN 

test resource frame and pulled at 0.1 mm/min loading rate. ASTM D5528 was used to performed 

fracture toughness, using a 50 kN load cell test resource frame. Crack initiation layer was not 

included in fracture toughness because it was assumed that the interface between prepreg and AM 

was the weakest section, and crack would propagate through the intersection [22]. Specimens of 

25.3 mm width and 130 mm length were cut and loaded at 2 mm/min rate to perform fracture 

toughness test. 

4.3 RESULTS AND DISCUSSIONS 

The results and discussion are structured in two sections, called Phase I and Phase II respectively. 

The Phase I results provide preliminary understanding of the bond strength between the skin and 

the substrate. 
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(a) 

 

(b) 

Figure 4.2: (a) Flat 50CF-PPS BAAM plaque, (b) CF-BMI prepreg bonded on the 50CF-PPS 

substrate using hydraulic compression press (model number: 3895.41E1000). Processing 

conditions: temperature – 190 °C, pressure – 552 kPa, dwell time – 2 hours. 
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Based on these, phase 2 focused on optimization and enhancement of the interface. Phase I studies: 

The baseline samples were analyzed for through-thickness transverse tensile, and fracture 

toughness tests. These results are summarized in Table 4.1. These properties directly relate to the 

bond strength of CF-BMI to the AM beaded substrate for the above-mentioned processing 

conditions. The average transverse tensile strength was 0.54 MPa before delamination occurred. It 

was also observed that 0.27 N/mm fracture toughness was required to initiate and propagate crack 

through the bond line between the CF-BMI prepreg and AM substrate. It can be observed from 

Figure 4.3 (b), the crack was initiated at the intersection; however, propagated through the AM 

section due to weak Z-strength (layer-to-layer bonding) in the AM substrate [16]. It can be 

concluded from Figure 4.3 (a) that the BMI resin did not flow inside the groove between the beads. 

Therefore, further means for improvement of the bond strength between the AM substrate and the 

CF-BMI skin was needed. 

4.4 CONTACT ANGLE 

Contact angle measurement was performed to understand the bond compatibility between CF-BMI 

prepreg and 50CF-PPS AM surfaces. The contact angle defines the wettability of solid surfaces 

i.e., hydrophobic or hydrophilic behavior of the material [23]. In this study, the Wilhelmy plate 

method was used to measure the contact angle of the CF-BMI and 50CF-PPS AM surfaces. The 

details about the Wilhemy test are given in [24]. This is a quasi-static angle measurement technique 

because the contact angle is measured by the force required to immerge the specimen into a liquid, 

as shown in Figure 4.4. Equation 1 was used to calculate the contact angle between a liquid and 

specimen 
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(a) 

 

 

(b) 

Figure 4.3: Failed baseline specimen of 50CF-PPS and CF-BMI flat plaque (a) Through 

thickness transverse tensile test - resin did not flow inside the gaps between the beads, (b) 

Fracture toughness - failure started at the intersection between AM and prepreg; however, 

propagated through AM Z-interlayers. 
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Table 4.1: Mechanical test data for baseline specimens 

Test Average Standard Deviation 

Transverse tensile test (Pa) 0.54 0.14 

Fracture Toughness (N/mm) 0.27 0.03 
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                                       𝑐𝑜𝑠 𝜃 =  
(∆𝐹 + 𝑉𝑖𝑚(𝜌𝐿 − 𝜌𝑎𝑖𝑟𝕘)

(𝑃𝑖𝛾𝐿
𝑇𝑜𝑡)⁄                               Equation 2 

Where,  

 ∆𝐹 – Difference between weight measure in air and partially submerged in liquid, g  

  𝑃𝑖 – Perimeter of the specimen, mm 

 𝛾𝐿
𝑇𝑜𝑡 – Surface energy of a liquid, mm J/mm2  

 𝜌𝐿 – Density of liquid, g/mm3 

 𝜌𝑎𝑖𝑟 – Air density, g/mm3 

 𝕘 – Gravitational force, mm/seconds2 

 𝜃 – Contact angle, º 

In principle, the contact angle observed when specimen advances into the liquid (advancing angle) 

should be the same as during its receding (receding angle). However, Kwok et al. [25] showed that 

a hysteresis loop could be possible due to the physical roughness or chemical heterogeneity of the 

sample. Studies by Oss et al. and Volpe et al. [26, 27] suggest that advancing angle is more reliable 

for the surface energy measurement than receding angle.  

In this work, the contact angle of representative samples as 50CF-PPS BAAM printed single bead 

and CF-BMI prepreg was measured. Distilled water was used as a probe liquid. Thermo Cahn 

instrument (WinDCA software) with DCS microbalance was used to conduct the test. The beaker 

containing water was kept on the balance stage, whose up-down movement was controlled using 

a stepper motor. The specimen was attached to the micro-balance then immersed (5 mm of depth) 

in the water at a speed of 20 µm/s, slow speed ensured quasi-equilibrium condition. The weight of 
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the specimen was continuously monitored during the advancing and receding motion of the stage. 

The test was performed at room temperature. 

Figure 4.5 shows the hysteresis loop observed due to the difference between advancing and 

receding contact angle measurement for CF-BMI (blue curve) and 50CF-PPS (red curve). 

Hysteresis is usually considered as a positive sign because it indicates partial or complete wetting 

of the surface [28]. The average advancing and receding contact angles for 50CF-PPS were 80° 

and 42°, and for CF-BMI were 95° and 63°, respectively. As explained earlier, the advancing angle 

is a preferred indicator of surface wettability. The principle of contact angle states that the higher 

the contact angle between the liquid and solid, the lower the wettability between surfaces [29]. In 

the current research, the contact angle CF-BMI prepreg was 95° indicating poor wetting/bonding 

characteristics; however, CF-PPS showed 80° representing mild wetting properties. 

The transverse tensile test confirmed these results, as the bond strength was only 0.54 MPa. 

Morrison et al. [30] studied the strengthening mechanism of bonding between substrate and skin 

for hybrid tooling. Authors observed that the 5.4 MPa bonding strength was observed between 

substrate (ceramic matrix composite) and skin (ceramic coating). Therefore, efforts were made to 

improve the bonding and following section shows the steps implemented to obtain maximum 

delamination strength. 

4.5 Phase II Studies - PROCESS OPTIMZATION TO IMPROVE BONDING BETWEEN 

CF-BMI AND 50CF-PPS 

Epoxy 1096 resin (obtained from FiberGlast Development Corporation) is a low viscosity and 

thixotropic system. 
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Figure 4.4: Dynamic contact angle measurement set up (adapted from [24]). The specimen 

immersed (5 mm) into the liquid (water) with constant speed (20 µm/s). The proceeding and 

receding contact angles were recorded using control system. 
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Figure 4.5: Dynamic contact angle plots of CF-BMI prepreg with respect to immersion depth 

(advancing angle: 95°, receding angle: 63°) and 50CF-PPS (advancing angle: 80°, receding 

angle: 42°). 
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The 1096 epoxy system is designed for intermediate/high temperature applications by adding 

aluminum particles. In this study, a thin layer (0.1 mm) of epoxy 1096 was applied between 50CF-

PPS AM and CF-BMI surfaces. The following trials showed the systematic approach to optimize 

and improve bonding strength between 50CF-PPS and CF-BMI. 

1) Baseline: Processing conditions were given in section 4.2. 

2) Increased Temperature: The compression molding temperature was increased to 218 °C 

(425 °F) from 190 °C (375 °F). The rest of the parameters were kept constant. This trial 

was performed to observe the effect of increased temperature on the bonding 

characteristics.     

3) Dry Epoxy: A 0.1 mm thick layer of 1096 epoxy was applied on the 50CF-PPS AM surface 

and allowed to cure for 24 hours. The surface was mechanically roughened using 1200 

grade sandpaper to increase the surface area. Then, 3 layers of CF-BMI prepreg were 

attached using baseline processing conditions.  

4) Wet Epoxy: A 0.1 mm thick layer of 1096 epoxy was applied on the 50CF-PPS AM 

surface, and before curing, CF-BMI layers were placed over it according to the processing 

conditions given in the section 4.2.  

It can be observed from Figure 4.3 (a) that the BMI resin did not flow inside the gaps between 

beads, which limits the bond strength. To increase the flowability of BMI resin, samples were 

processed at higher temperatures (218 °C) than baseline (190 °C). Higher temperature helped the 

BMI resin to flow, which can be seen from Figure 4.6 (a). The transverse tensile strength improved 

by 285% to 2.08 MPa as compared to baseline. Careful observation of failed surface showed that 

there was no evidence of BMI resin on the surface of beads, representing poor bonding, confirming 

contact angle analysis. 
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Therefore, a layer of epoxy 1096 was applied on the AM surface, to act as an adhesive layer 

between CF-BMI prepreg and 50CF-PPS AM. The process was conducted in two steps: (a) A 0.1 

mm thick of 1096 epoxy layer was applied on 50CF-PPS AM surface and allowed it to cure for 24 

hours. A sand paper (1200 grade) was used to roughen the surface to increase its surface area [31]. 

(b) Processing conditions used in section 2 were followed to bond CF-BMI prepreg. This variable 

is called dry epoxy. In this trial, the bond strength increased (1.71 MPa) in comparison to the 

baseline (0.54 MPa). The failed specimen of the dry epoxy trial is shown in Figure 4.6 (b). In the 

dry epoxy experiment, the epoxy was already cured and hence did not contribute effectively 

increasing the bonding of 50CF-PPS substrate to CF-BMI prepreg. 

The next trial was performed such that a thin layer of 1096 epoxy (0.1 mm) was applied to the 

50CF-PPS AM surface, and before curing, the CF-BMI prepreg was bonded using baseline 

processing conditions. Here, both uncured epoxy and BMI resin exhibited good adhesion and 

resulted in higher bond strength (2.62 MPa) compared to dry epoxy. It can be observed from Figure 

4.6 (c), the wet epoxy stayed in the gaps between beads; however, squeezed out from the bead 

surface after the application of pressure, due to its low viscosity (106,000 cP [32]). 

A micro-balloon is a hollow microsphere filler made of low-density thermoplastic polymer. The 

average size of micro-balloon is less than 70 microns and the ingredients are soda lime borosilicate 

glass (97-100 % by weight) and synthetic amorphous crystalline free silica (0-3 % by weight) [33]. 

When the micro-balloons are homogeneously mixed in epoxy, it create a smooth and creamy 

compound [34]. The creamy compound increase the viscosity of epoxy and improve the debonding 

energy between the two different/dissimilar materials [35]. In this study, 1096 epoxy was mixed 

with 40% by weight micro-balloon uniformly and a layer (0.1 mm) of creamy paste was applied 

on the 50CF-PPS AM surface prior to CF-BMI prepreg bonding. Figure 4.6 (d) showed that a layer  
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Figure 4.6: Optical microscopic images of failed transverse tensile test specimens (a) increased 

temperature: BMI resin flowed inside the beads (b) dry epoxy: 0.1 mm thick layer of 1096 epoxy 

(c) wet epoxy-no filler: 1096 epoxy resin squeezed out from top of the bead due to 552 kPa 

pressure (d) wet epoxy-micro-balloon fillers: 1096 epoxy did not squeezed out due to increased 

viscosity 

 

 

 

 

 



119 

 

Table 4.2: Summary of transverse tensile strength of 50CF-PPS and CF-BMI bonding 

optimization trials 

Sr. No. Sample 
Transverse tensile strength (MPa) 

avg STDEV 

1 Baseline 0.54 0.14 

2 Increased Temp. 2.08 0.37 

3 Dry Epoxy 1.71 0.32 

4 Wet epoxy (no filler) 2.62 0.39 

5 
Wet epoxy (micro-balloon 

fillers) 
4.79 1.84 

avg: average; STDEV: standard deviation 
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of epoxy was present on the entire surface of a failed sample and transverse tensile strength was 

significantly improved (82.8%) as compared to epoxy when fillers were not added. Table 4.2 

shows the summary of transverse tensile strength for all trials.   

4.6 AUTOCLAVE BONDING TRIALS 

A representative 50CF-PPS substrate mold was printed using BAAM as shown in Figure 4.1, and 

used without any surface treatment. This mold was to be used for bonding with the CF-BMI 

prepreg. The autoclave trial was performed according to the processing conditions used for wet 

epoxy and micro-balloon filler since that configuration resulted in the highest bond strength 

between the 50CF-PPS AM substrate and the CF-BMI prepreg skin. First, a layer of 1096 epoxy 

(0.1 mm) and 40% weight micro-balloon filler was applied on the substrate. Three layers of CF-

BMI prepreg were placed on the epoxy layer, and then the mold was vacuum bagged. The mold 

was placed in the autoclave and processed for a two-hour cure cycle at 190 °C (375 °F) temperature 

and 552 KPa (80 psi) pressure. The stepwise processing of the autoclave trial is given in Figure 

4.7. 

Figure 4.8 shows the hybrid mold of 50CF-PPS AM surface covered with CF-BMI prepreg after 

autoclave processing. The CF-BMI prepreg showed good bonding with AM surface and uniform 

draping at the edges and corners was observed, representing excellent formability of the prepreg. 

At some locations, lack of proper bonding and/or porosity was noted through nondestructive 

evaluation - visual and tap testing [36]. This was observed due to non-uniform distribution of the 

epoxy layer on the AM surface, which can be seen from Figure 4.7-step 2. It was also noted that 

the top curvature surface had print through of the AM beads, as shown in Figure 4.8. In the 

autoclave process, the pressure is hydrostatic in nature. This compresses the prepreg layers inside 

the groove between beads, resulting in print through on the finished part. 
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Figure 4.7: Step – 1: 50CF-PPS BAAM substrate; Step – 2: Thin layer (0.1 mm) of 1096 epoxy 

+ 40% micro-balloon applied on substrate; Step – 3: Draping of CF-BMI prepreg on the 

substrate molding area and sides; Step – 4: Hybrid structure (AM substrate and prepreg) vacuum 

bagged; Step – 5: Mold plumbed and placed in the autoclave (processing conditions – 190 °C 

temperature, 552 kPa pressure for 2 hours) 
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Figure 4.8: Hybrid mold with CF-BMI prepreg after the autoclave trial. The CF-BMI prepreg 

showed proper draping without any wrinkles. However, the top curvature surface had print 

through of the beads from the 50CF-PPS BAAM substrate. 
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4.7 MOLD DEGRADATION EVALUATION 

The hybrid mold was used to fabricate woven CF-epoxy parts using hand lay-up. Hand lay-up 

process is commonly used in marine and corrosion industries [37]. The schematic of hand lay-up 

process operation is given in Figure 4.9 (a). The mold was first cleaned using acetone and three 

layers of release agent (Frekote 700-NC) was applied. Three plies of woven CF (ChomaratTM 

Corporate) wet with Araldite LY 1568 and Aradur 3492 epoxy resin (Huntsman Corporation) 

(viscosity: 200-300 cPs at room temperature [38]) (from here on this resin will be referred as 

Huntsman epoxy) were stacked on the mold surface, followed by peel ply, and breather cloth.  The 

assembly was vacuum bagged to remove entrapped air and excess Huntsman epoxy resin. It was 

noticed that the mold held vacuum very precisely as no air leakage. The part was cured for 24 

hours. The representative part is shown in Figure 4.9 (b). The part had glossy surface finish. This 

process was repeated 7 times to produce 7 parts in order to determine the durability of the mold 

surface. 

High-precision 3D digital impression of the mold was captured using portable FARO Arm 

equipped with Laser Line Probe (LLP). LLP provides the capability to accurately measure surface 

structure/form using non-contact 3D scanning. The mold was scanned twice – (1) baseline scan: 

before manufacturing CF-Huntsman epoxy parts (2) final scan: after fabricating 7 CF-Huntsman 

epoxy parts. The two scans were aligned, compared and analyzed using Geomagic Control-X 2018 

software. 
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(a)  

 

(b) 

Figure 4.9: (a) Schematic of the Hand Lay-up process (b) Representative consolidated CF-

huntsman epoxy part 
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There are two main reasons for the degradation of the mold; (a) friction between the material 

(fibers, resin) and mold surface when the excess resin is evacuated toward the vacuum port, and 

(b) exothermic reaction which generates heat during cross-linking (curing). Figure 4.10 shows the 

analysis of the final scan in comparison with baseline scan for dimensional variation. It was 

observed that the average deviation was + 0.14 mm / – 0.25 mm (+ 0.005” / - 0.010”) with standard 

deviation of – 0.18 mm (– 0.007”). Hassen et al. [39] studied effect of the degradation of the 20% 

weight CF reinforced ABS (20CF-ABS) substrate (manufactured using BAAM system) and 

standard tooling gel molding surface. The author produced 10 parts of CF-Elium Grade 150 - 

Arkema composite using vacuum assisted resin transfer molding (VARTM) process and observed 

+ 0.029 mm/ - 0.031 mm degradation. There were several reasons for the higher degradation of 

CF-BMI mold surface as compared to tooling gel surface as (1) Elium is a thermoplastic resin 

system; however, Huntsman epoxy is a thermoset resin system. Thermoset resin undergoes 

crosslinking operation which leads to exothermic heat and viscosity of the Huntsman resin 

advances up to 100000 cP during gel formation [40]. Elium resin undergoes radical polymerization 

reaction from methylmethacrylate (MMA) monomer [41]. (2) CF-BMI surface was exposed for 

longer time (Huntsman epoxy curing time: 24 hours/part) than tooling gel surface (Elium curing 

time: 2 hours/part). (3) 20CF-ABS BAAM substrate was machined and polished before application 

of gel coating. This resulted in uniform distribution of coat and easy flow of Elium resin towards 

vacuum port. CF-BMI prepreg was bonded on the 50CF-PPS BAAM substrate without machining. 

As observed from Figure 4.7 – Step 2, 1096 epoxy layer was not uniform/smooth. These created 

resistance (extra friction) for the flow of Huntsman resin towards vacuum port. There are two 

options to improve the quality of CF-BMI molding surface (i) machining and polishing of 50CF- 

  



126 

 

 

Figure 4.10: Degradation analysis of CF-BMI mold surface after fabrication of 7 hand lay-up 

parts 
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PPS substrate, (ii) increase uniformity and thickness of 1096 epoxy layer such that beads structure 

is completely covered. 

From above experiments it can be concluded that the CF-BMI prepreg completely sealed the mold 

surface without exposing porosity and provided robust surface for composite parts fabrication. 

4.8 COST ANALYSIS 

The high deposition rate and pellets feedstock material of BAAM system significantly reduces the 

cost and time of composite mold production [42]. Also, the capability of BAAM to print outside-

an-oven significantly reduces the energy intensity (manufacturing energy per kg of product) to 1.1 

kW-hr/kg [43]. The mold substrate used in this study weighed 23 kg and the cost of 50CF-PPS 

was $44/kg (as of year 2020). The preprocessing as slicing the model, setting up the machine was 

2 hours and the processing time to print the mold was approximately 2 hours. The post-printing 

activities as application of 1096 epoxy/micro-balloon layer on mold surface took 2 hours with the 

average labor cost of $50/hr; however, autoclave processing was conducted for 8 hours with total 

cost of $1200. The total cost of hybrid mold (CF-BMI skin and 50CF-PPS substrate) fabrication 

was less than $3000 and breakdown is given in the Table 4.3. Total mold weight and manufacturing 

time including 3D printing, application of epoxy/ micro-balloon layer and autoclave process, was 

24 kg and less than 24 hours, respectively.  

The weight of mold would be 210 kg (dimensions: 0.36 m × 0.36 m × 0.20 m and density: 8100 

kg/m3 [6]) if manufactured using Invar. The total cost of the material (Invar) is estimated to be 

$3780 at an average cost of $18/kg (as of year 2020). Traditional tool manufacturing techniques 

usually requires few weeks to several months extra amount of time as compared to BAAM to 

fabricate mold [39]. For a point of comparison, the mold used in this study would require a week  
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Table 4.3: Cost breakdown of hybrid 50CF-PPS and CF-BMI mold (cost is estimated based 

on Year 2020 information) 

 Time/Material Cost/unit Final cost 

Preprocessing of the BAAM system 2 hours $50/hr $100 

50CF-PPS 23 kg $44/kg $1012 

Mold Printing time 2 hours $200/hr $400 

1096 Epoxy 0.45 kg $110/kg $50 

Micro-balloon Fillers 0.2 kg $55/kg $11 

CF-BMI prepreg 0.45 kg $165/kg $74 

Application of epoxy and prepreg 2 hours 50/hr $100 

Autoclave Processing 8 hours $150/hr $1200 

Total ---- ---- $2947 
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(170 hours) to manufacture. The total labor cost would be $8500 at an average rate of $50/hr. 

Therefore, the total cost of the mold would be at least $12,000. 

4.9 SUMMARY 

A new hybrid mold system of 50CF-PPS substrate and CF-BMI prepreg skin was successfully 

fabricated and tested. Process optimization was conducted to improve bonding strength of 50CF-

PPS and CF-BMI from 0.54 MPa to 4.79 MPa. Fabrication of substrate using BAAM significantly 

reduced lead time (< 24 hours) and cost (< $3000) of hybrid mold fabrication. The average 

deviation of + 0.005” / - 0.010” (+ 0.14 mm / – 0.25 mm) was noted after fabricating 7 parts of 

CF-Huntsman epoxy from hand lay-up process. 
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