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ABSTRACT 

 

 The emergence of zoonotic pathogens through contact with animal reservoirs is a well-

documented phenomenon and growing concern for public health. Particularly in light of the 

ongoing Ebola epidemic in the Democratic Republic of the Congo and the coronavirus pandemic, 

the need to understand mechanisms of contact and disease transmission at the human-wildlife 

interface and to understand which infectious agents may reside within wildlife reservoirs crucial. 

In this project, we investigated the potential introduction of zoonotic cestode Echinococcus 

canadensis to public lands in Tennessee subsequent to elk translocation effort and aimed to identify 

whether a transmission cycle was established in this area. We further aimed to elucidate drivers of 

zoonotic infections in the bushmeat trade in northern Uganda by assessing the phenomenon of 

‘species deception’, evaluate social factors influencing participation in the bushmeat trade and risk 

for zoonosis exposure, and describe bacterial microbial diversity in market bushmeat in the area. 

We confirmed the presence of E. canadensis, with histological confirmation in 75% of elk included 

in our study and PCR confirmation in 50% of elk. Our findings in bushmeat in northern Uganda 

demonstrate nearly 30% mismatch between what bushmeat species are sold as in market and the 

true identity of these species based on PCR and Sanger sequencing. Surveys of hunters and cooks 

in communities adjacent to Murchison Falls National Park revealed that both hunters and cooks 

have the highest awareness of monkeypox and gastrointestinal illness as diseases that wildlife can 

carry. Self-reported injuries while cooking or butchering bushmeat were reported to be infrequent 

among both hunters and cooks. While cooks believed that hunters and dealers never described 

primate meat as another kind of animal, hunters reported usually doing this. Microbial diversity 

among wildlife samples was found to be high, regardless of tissue condition or wildlife species. 

Furthermore, 16s rRNA signatures of numerous Select Agent bacterial genera associated with 

significant human illness were detected in these samples. Microbial composition suggests that 

bushmeat microbiota is comprised of a combination of endogenous infections, environmental 

contamination, and spoilage associated bacteria. Regardless, the potential health consequences of 

unmitigated exposure to these microbes presents a clear risk to individual and global health. The 

findings of this project underscore the need for practical and culturally appropriate educational 

strategies to help hunters both in the United States and Uganda enact proper handling and 

butchering techniques to minimize contact with bodily tissues of wild animals.   
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CHAPTER I 

Introduction 

Bushmeat and Zoonoses Risk in a Global Context 

 The term ‘bushmeat’ is a blanket term that refers to any non-domesticated animal species, 

or wildlife, including terrestrial mammals, reptiles, amphibians, and avian species (also commonly 

referred to as “game meat” or “wild-meat”). ‘Bushmeat harvest’ or ‘bushmeat hunting’ describes 

the intentional extraction of wildlife from its natural habitat, regardless of means or purpose. A 

key point of this is that these bushmeat species are frequently harvested at an unsustainable rate 

and often through illicit measures. Bushmeat is hunted for several reasons, including food and 

income, traditional and medicinal use, trophy hunting, and exotic pet trade, and plays an important 

role in many local economies, cultural identities, international trade, and in community nutrition 

[1-3]. Most commonly in the literature, and hereafter for the purposes of this dissertation, the term 

bushmeat will refer to the hunting of wildlife for consumption or sale at local markets to improve 

livelihood; however, increases in migration of rural populations into metropolitan areas has 

amplified commercial demand for bushmeat and given rise to transboundary movement of 

bushmeat [4, 5]. 

Bushmeat hunting is practiced worldwide, although the term is more frequently associated 

with the harvest of wildlife in tropical and subtropical ecosystems. A 2018 estimate of households 

dependent on bushmeat as a meat source surpasses 150 million households in developing countries 

[6]. Nielson et al. report that 39% of households in 24 countries across Asia, Africa, and Latin 

America reported engaging in bushmeat harvest in the past one year, with 89% of that harvest 

directly applied to dietary needs of the household [6, 7]. Globally, the bushmeat trade is a 

multibillion-dollar market, with trade values for the Republic of Côte d'Ivoire alone estimated at 

US $150 million in the year 2000 [1, 8]. In other, non-tropical regions, bushmeat is still hunted; 

however, in these areas hunting is not so often a necessity for financial or nutritional security, but 

largely recreational or for sport and is subject to stricter regulation.   

 

Bushmeat in North America  

 In the United States and Canada, hunting of wildlife is largely a recreational activity in 

which wildlife is harvested for sport, trophy and meat [25]. In 2016, the U.S. Fish and Wildlife 
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Service reported 11.5 million individuals (>16 years of age) hunted over 184 million days with 

hunting expenditures estimated at US$26.2 billion [26]. Hunters targeting big game species 

including deer, wild turkey, elk, and bear totaled 9.2 million hunters and were the most populous 

group among US hunters [26]. Small game species hunters totaled 3.5 million hunters, targeting 

squirrel, rabbit/hare, quail, ptarmigan, and grouse/prairie chicken. Nearly 2.4 million hunters 

pursued migratory birds, including ducks, doves, and geese. Over 1.3 million hunters pursued 

“other animals”, including groundhogs, feral pigs, raccoons, foxes, and coyotes [26]. Although 

exact harvest numbers are not reported for all states, Flahter et al. reported in general, harvest rates 

of big game species are increasing nationally for elk, wild turkey, deer and black bear, but 

decreasing for pronghorn [27]. No data on harvest rates for small game were readily available. 

First Nations people and Native Americans are currently able to hunt unrestricted on public lands 

and case-by-case on privately owned land under the threatened statute of food sovereignty [28, 

29]; outside of this, hunting is a permitted sport and most species have bag limits per season 

determined by state. There are exceptions to bag limits in certain areas where species are overrun 

and year-round open seasons exist, as is the case on a state-by-state basis for feral hogs. 

 

Bushmeat in sub-Saharan Africa  

The harvest and consumption of bushmeat in sub-Saharan Africa has long been 

acknowledged as necessary for food security and nutrition, and income security, particularly in 

rural communities [9-12]. The magnitude of bushmeat harvest is difficult to quantify because 

studies are sporadic and not uniform in metrics. The magnitude of bushmeat harvest varies 

substantially among ecological habitats and assemblages, among socioeconomic and cultural 

gradients, in response to agricultural harvest, and among political boundaries. Commonly cited 

estimates for Nigeria and Cameroon [13], Ghana [14], Republic of Côte d'Ivoire [15], and the 

Congo Basin [8, 16] range from 12,000 tons to 4.9 million tons annually. Barnett et al. reported 

that in Tanzania, over 2000 tons of bushmeat valued at more than 50 million USD are confiscated 

by the government annually; nearly 60,000 tons of bushmeat are sold in market in the Central 

African Republic annually; and up to 365,000 tons are consumed annually in Mozambique [3, 5]. 

Estimates for annual bushmeat harvest are predicted to continue to rise in sub-Saharan Africa with 

increased demand and increased access into protected areas with the construction of roadways 
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despite attempts by many governments to limit and regulate hunting through restrictions, quotas 

and permitting systems [5, 17-19].  

Data informing hunting methods, temporality, and prey preference are similarly erratic, 

incomplete, and vary widely among and within countries. Lindsey et al. 2007 report that snares, a 

non-specific hunting method, are mostly used, and that decreases in hunting are noted during 

agricultural seasons, presumably when the labor of hunters is required for farming [20]. Market 

differences also vary widely among countries. Although open markets with bushmeat carcasses on 

display to consumers are more common in forested areas in West and Central Africa, this is not 

the case in our study area, northern Uganda.  

In Uganda, hunting, possession, and sale of bushmeat are illegal and are punishable by 

penalties from fines to imprisonment [21]. Bushmeat is still frequently hunted and sold in local 

markets; however, the transactions are necessarily more secretive and occur person-to-person. 

With the exception of baboons, vervet monkeys, and bush pigs on a land owners’ property, wildlife 

is legally protected against hunting [22-24]; still, according to Nielson et al., 71% of Ugandan 

households have hunted wildlife at one point in the past one year [6]. Additionally, in the course 

of preliminary logistical work for this project, the concept of ‘species deception’ in the bushmeat 

market emerged, in which meat of one species is sold as the meat of another species. The 

motivation behind this misrepresentation may be related to market price, market demand, (or 

escape from the legal arm) or simply lack of knowledge of the true species which the seller 

possesses; regardless, this aspect of the bushmeat chain imposes an additional level of exposure, 

and potentially inadvertent exposure, and risk of zoonoses to consumers. 

 

Conservation 

 One of the major concerns surrounding bushmeat trade is the impact that unregulated and 

unsustainable harvest has on the survivability of wildlife populations. The bushmeat trade is 

widely indicted as one of the major and most immediate threats to wildlife biodiversity.  

Megafauna are considered especially susceptible to overhunting due to low fecundity, slower 

movement, more obvious tracking, and greater payoff for effort [30]. Over-exploitation of wildlife 

is implicated in the endangerment and extirpation of numerous wildlife populations [30, 31]. This 

trend is notable in Ghana, where a 76% decrease in the biomass of 41 mammalian species was 

observed over a 30-year period resulting in the local extinction of up to 45% of these species, and 
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has been similarly demonstrated in both savanna and tropical forest ecosystems across central 

Africa [32, 33]. Several regional ecosystems that are similar in assemblage to Murchison Falls 

National Park, the study site for this dissertation, have experienced over-hunting that has locally 

decimated wildlife species, such as the local extinction of red hartebeest in the Serengeti ecosystem 

in Tanzania and severe endangerment of zebras, wildebeest, and rhinoceros in South Africa’s 

Dwea and Cwebe reserves [34-37]. These examples are only a few of this widespread, but poorly 

documented occurrence, across sub-Saharan Africa. The impacts of decreased wildlife populations 

further pose a challenge to sustainable ecotourism, one of the most often proposed avenues for 

alleviating poverty in communities that border protected areas, as these operations rely on high 

wildlife density for tourist satisfaction [16]. Beyond impacts to the ecosystem health, the 

unsustainable hunting of wildlife will have severe negative consequences on the human 

populations that depend on bushmeat for protein and livelihood as threatened species are unable 

to recruit quickly enough to maintain a healthy population [38].    

 

Zoonoses and Public Health  

Beyond ecological impacts, the threat of emerging zoonotic diseases has been thrust into 

the public eye over the past few decades. More than 60% of emerging infectious diseases affecting 

human populations are zoonotic and over 71% of those zoonoses resulted from contact with 

wildlife [39]. Epidemic outbreaks of viral diseases like Ebola virus, Marburg virus, and 

henipaviruses have garnered international attention and illuminated the devastating medical and 

financial consequences of pathogen spillover [40, 41]. Reports of hunters contracting primate T-

lymphotropic viruses in Cameroon underscore the dynamic nature of viral cross-species 

transmission events and make clear the need for surveillance and detection efforts [42]. 

Furthermore, endemic diseases such as anthrax, brucellosis, rabies, yellow fever, and enteric 

diarrheal illnesses pose a constant burden on at-risk populations [41, 43]. Infections contracted 

through ingestion can have high consequences, are largely underdiagnosed and undertreated, and 

are being demonstrated to be more prevalent than previously believed [44]. Katani et al. 2019 

confirmed the presence of bacterial DNA signatures of Brucella, Coxiella, and Bacillus on 

bushmeat samples procured from the Serengeti [44].  

The nature of bushmeat trade presents ample routes of opportunity for transmission of 

zoonotic pathogens. There are airborne and bloodborne hazards during the hunting process and 
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butchering of carcasses, as well as foodborne hazards present with improper food handling and 

poorly cooked meat. In many bushmeat markets, there is poor refrigeration capacity in the 

consumer chain, promoting proliferation of common foodborne diarrheal pathogens. Limited 

infrastructure for disease reporting and healthcare access remains common in the areas most 

dependent on bushmeat, further increasing risk.  

For North America, the American Veterinary Medical Association has compiled a set of 

resources targeting hunters specifically to prevent specific zoonotic diseases associated with 

hunting. This disease list includes anaplasmosis, avian influenza, babesiosis, brucellosis, 

campylobacteriosis, chronic wasting disease (to be monitored for zoonotic potential), deer 

parapoxvirus, hydatid disease, ehrlichiosis, equine encephalitis virus, E. coli, hantavirus, 

leptospirosis, Lyme disease, rabies, plague, Q fever, Baylisascaris procyonis infection, Rocky 

Mountain Spotted Fever, salmonellosis, Sarcoptes, toxoplasmosis, trichinellosis, tuberculosis, 

tularemia, and West Nile Virus as potential exposures (https://www.avma.org/resources/public-

health/disease-precautions-hunters). Through aggressive educational efforts that are tied to the 

permitting process, many of these diseases have decreased and are maintained at manageable 

incidences. Still, changes in spatial distribution or host range may occur and present opportunity 

for sporadic cases of these infections among hunters.  

 

Research Significance 

In this project, we examined the presence and risk of emergence of zoonotic diseases from 

hunted wildlife in both North America and East Africa. First, we aimed investigate the introduction 

of the zoonotic cestode, Echinococcus granulosus, into a region with no previous documentation 

of this disease in the United States. Second, we aimed to investigate factors that may contribute to 

exposure to zoonotic pathogens in bushmeat in northern Uganda, such as preference and 

knowledge in hunters and cooks, and factors in market such as ‘species deception.’ Lastly, we 

aimed to assess bacterial pathogen diversity in bushmeat species in market, with the goal to 

establish baseline data for this region, filling crucial gaps in the literature and laying groundwork 

for future investigations. .  

 For the North America data, results of this study will be used in public health and 

conservation initiatives to inform key high-risk groups of handling precautions and provide insight 

in further wildlife translocation efforts. Determination of baseline prevalence and ecology data for 

https://www.avma.org/resources/public-health/disease-precautions-hunters
https://www.avma.org/resources/public-health/disease-precautions-hunters
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this pathogen will begin to establish an understanding of E. granulosus and its changing 

distribution.  This data is vital to informing wildlife management policy and public health efforts 

because of zoonotic potential of this pathogen. Similarly, for our East Africa data, we aim to clarify 

drivers of participation of local community members in the bushmeat trade as well as determine 

the degree of awareness of zoonotic disease risk associated with bushmeat handling. We also 

determined estimates of the rate of deception of bushmeat species at the point of sale.  These data 

will serve as a resource to better understand bushmeat trade in our study area, which will hopefully 

inform development of local policies and interventions. Furthermore, insights gained from this 

data should be used to empower local community members, district leaders and public health stake 

holders to take action to increase safety measures to prevent zoonotic and foodborne infections in 

their own communities through increased food hygiene.  

 

Hypotheses & Objectives 

1. We hypothesize that Echinococcus granulosus has been introduced to east Tennessee 

through elk translocations in the early 2000’s and that a sylvatic transmission cycle has 

been established in wildlife; 

a. Collect and evaluate tissue samples from elk and intestinal contents from coyotes 

for Echinococcus granulosus using histology, fecal examination, and PCR with 

Sanger sequencing    

2. We hypothesize that a notable proportion of bushmeat samples collected in northern 

Uganda are being misrepresented in market by hunters and dealers unbeknownst to most 

consumers; 

a. Sample market bushmeat intended for human consumption to and perform PCR 

and Sanger sequencing identify the most common species hunted and sold at market 

in communities in northern Uganda,  

b. And perform PCR and Sanger sequencing on bushmeat tissue to compare reported 

species to identify rate of species deception in market. 

3. We hypothesize that there are opportunities for improvement in hygiene and safety in the 

handling of bushmeat tissue from hunting to preparation within communities in northern 

Uganda and that preference as well as opportunity influence participation in the bushmeat 

trade; 
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a. Deploy questionnaires to self-identified hunters in communities in northern Uganda 

to assess disease knowledge and elucidate common hunting and dealing practices, 

including deception of bushmeat species. 

b. Objective: Deploy questionnaires to female cooks in communities in northern 

Uganda to assess disease knowledge and factors influencing choice and risk in 

handling bushmeat. 

4. And we hypothesize that there is considerable detectable bacterial microbial diversity in 

market-acquired bushmeat samples in northern Uganda. 

a. Apply next generation sequencing to evaluate microbial communities present in 

market bushmeat intended for human consumption and compare these 

communities across wildlife species and bushmeat tissue condition.  
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CHAPTER II 

Retrospective investigation of Echinococcus canadensis emergence in translocated elk 

(Cervus canadensis) in Tennessee and examination of definitive canid hosts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



13 

 

Disclosure 

 

This chapter has been accepted for publication in Parasites and Vectors. This chapter appears 

within this text as published with minor modifications to formatting. Co-authors include Shelley 

J. Newman, Kathryn Purple, Brad Miller, Edward Ramsay, Robert Donnell and Richard W. 

Gerhold, all of whom provided substantial contributions to conceptualization, sample acquisition, 

analysis, and manuscript revision. 

 

Abstract 

 

Background: Few reports of Echinococcus spp. have been described in the Unites States; however, 

the geographical distribution of Echinococcus spp. in wild hosts is increasing consequent to human 

activities. In the early 2000’s, 253 elk (Cervus canadensis) originating from Alberta, Canada were 

released into the Great Smoky Mountains National Park and North Cumberland Wildlife 

Management Area in an effort to re-establish their historical range. 

Methods: We investigated the prevalence of Echinococcus spp. in re-established elk populations 

in the North Cumberland Wildlife Management Area and the Great Smoky Mountains National 

Park via a retrospective analysis of banked elk tissues and helminth examinations on intestinal 

contents from coyotes (Canis latrans) from the North Cumberland Wildlife Management Area.  

Results: Four elk were PCR and sequence positive for E. canadensis. Each sequence had 98% or 

greater coverage and identity to multiple E. canadensis genotypes in Genbank. Adult 

Echinococcus spp. were not detected in any of the coyotes examined in this study.  

Conclusions: Continued surveillance of this disease in susceptible species in these areas is 

warranted, and these data further underscore the risk of zoonotic pathogen introduction secondary 

to wildlife translocation. 
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Background 

Echinococcus spp. are zoonotic cestode parasites responsible for cystic Echinococcosis 

(CE), one of the designated neglected tropical diseases by the World Health Organization [1]. The 

parasite cycles between intermediate ungulate hosts and canid definitive hosts as hydatid cysts in 

various organs and adult worms in the small intestines, respectively. Humans become incidentally 

infected with the parasite following ingestion of infective eggs shed in the feces of definitive canid 

hosts. The resulting pulmonary and hepatic cysts, termed hydatid cysts, are difficult to diagnose 

and treat in intermediate animal hosts and aberrant human hosts, cause substantial economic loss, 

and can be fatal as cysts compress host tissues or rupture within the host [2].  

There are currently 10 recognized genotypes (G1-G10) which correspond to distinct 

species within the Echinococcus granulosus sensu lato (s.l.) complex. Each species differs in its 

host specificity, phenotypic and genetic characteristics, and pathogenicity patterns. The E. 

granulosus sensu stricto complex (G1-G3) includes the sheep strain, the Tasmanian sheep strain, 

and the buffalo strain, respectively and typically involves domestic livestock and domestic canines 

in its lifecycle. E. equinus (G4) is the horse stain and is specific to equids and E. ortleppi (G5) is 

the cattle strain, and typically cycles between cattle and dogs. E. intermedius (G6-G7), which are 

grouped with E. canadensis under some classification schemes, includes the camel and pig strains. 

E. canadensis (G8-G10) encompasses the American cervid strain and the Fennoscandian cervid 

strain, and cycles between cervids including moose, elk, and reindeer and canids. [4, 5, 6]. 

Members of E. granulosus sensu stricto are most frequently implicated as the causative agents of 

CE; however, E. ortleppi (G5), E. intermedius (G6-7), and E. canadensis (G8, G10) are also known 

contribute to the global burden of human disease [4,7,8]. 

In 2000, the Tennessee Wildlife Resources Agency (TWRA) implemented a re-

establishment plan for elk (Cervus canadensis) into the Sundquist Wildlife Management and Royal 

Blue Wildlife Management Area (WMA) public lands in Campbell, Scott, Morgan, Claiborne, and 

Anderson Counties of Tennessee [9,10,11]. Royal Blue WMA has since been absorbed into the 

North Cumberland Wildlife Management Area (NCWMA). Additionally, in 2001, the National 

Parks Service reintroduced elk into the Cataloochee Valley area of the Great Smoky Mountains 

National Park (GSMNP). In both locations, elk had been extirpated since the mid-1800s [12]. From 

2000 to 2008, a total of 201 elk were released into the NCWMA, and from 2001 to 2002, 52 elk 

were released into the GSMNP [9,10,13]. A 2016 TWRA survey documented 349 elk within 
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NCWMA, suggesting that the reintroduction was successful to date, and populations have 

remained steady in subsequent years [13]. In both locations, re-introduced elk were originally 

sourced from Elk Island National Park (EINP) in Alberta, Canada due to the park’s history of 

testing animals for disease and having the Manitoban subspecies (C. c. manitobensis), which is 

considered the closest genetic stock to the extinct eastern elk (C. c. canadensis). A portion of the 

imported elk came from Land Between the Lakes (LBL) National Recreation Area, Kentucky; 

however, all LBL elk were originally sourced from EINP. Prior to translocation, elk were screened 

for major pathogens, including brucellosis, bovine tuberculosis, Johne’s disease, anaplasmosis, 

vesicular stomatitis, bluetongue, epizootic hemorrhagic disease, infectious bovine 

rhinotracheitis/bovine viral diarrhea, and several strains of leptospirosis [10]. However, 

antemortem testing for Echinococcus was not available.  Echinococcus granulosus s.l. is not 

currently considered endemic in GSMNP or NCWMA, but since the reintroduction of elk, the E. 

granulosus s.l. strain G10 (i.e. E. canadensis) has been presumptively diagnosed in one elk at 

necropsy. Moreover, an E. granulosus s.l. infection has been suspected in several other elk [14]. 

No previous reports of echinococcosis in wildlife in this region exist, although it is well 

documented in wildlife in Canada [15,16]. 

With the reintroduction of elk into the NCWMA and GSMNP ecosystems, a pathway for 

the maturation and spread of Echinococcus was newly recreated. It is an emerging concern that 

the transmission of Echinococcus from the translocated animals into wild or domestic canine 

populations and other sympatric cervids has occurred, thereby establishing a sustainable 

transmission cycle and reservoir for the disease. This creates a public health risk, as the GSMNP 

hosted 12.5 million recreational visitors in 2019 [17]. Similarly, NCWMA is a multi-purpose 

public land that hosts large numbers of visitors and issues 15 elk harvest permits annually [18]. 

Due to the high tourist load in these recreational areas and the presence of wild canids (coyotes, 

foxes) and free-roaming domestic dogs, both of which can serve as definitive hosts, there is 

increased opportunity for wildlife and domestic animal contact, as well as zoonotic transmission 

[19].  

This study describes E. granulosus s.l. lesions and molecular characterization from 

necropsied elk from NCWMA and GSMNP and investigates parasite transmission in the NCWMA 

by examining coyote intestinal samples for eggs or protoscoleces. The establishment of a baseline 

prevalence and ecology data of this pathogen will help fill a critical void in the current awareness 
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of the parasite. Due to the zoonotic potential of this pathogen, this information is vital to informing 

wildlife management policy, clinical medical and veterinary medical practice, and public health 

efforts [20].  

   

Methods 

A retrospective search of the University of Tennessee College of Veterinary Medicine 

(Knoxville, Tennessee) pathology archive spanning 17 years (2000-2017) was conducted to find 

all necropsy cases of suspected E. granulosus s.l. in elk. Archived histology slides of all selected 

cases were reviewed by a board-certified pathologist (S.J. Newman) to confirm the presence of E. 

granulosus s.l. organisms or characteristic hydatid cysts and brood capsules within archived tissue.  

Tissue samples were cut from paraffin blocks from all identified cases with lesions 

consistent with E. granulosus s.l. for DNA extraction and subsequent PCR testing to confirm 

presence of E. granulosus s.l.  An additional histology slide was cut after the 10 µm tissue PCR 

slices and then stained to determine if organisms had been uncovered at the depth of the 

corresponding PCR sample.  Separate microtome blades were used for each block, and microtomes 

were cleaned thoroughly with DNA AWAY (Fisher Scientific) between blocks.  Extraction of 

DNA was performed using QIAGEN DNeasy Blood & Tissue® extraction kit, according to 

manufacturer instructions. PCR was completed using COX-1 primers targeting the parasite 

mitochondrial cytochrome c oxidase subunit 1 gene with sequences as follows: COI-F: 5′- 

TTTTTTGGGCATCCTGAGGTTTAT-3′ and COI-R: 5'TAAAGAAAGAACATAA 

TGAAAATG-3' [21]. Cycling conditions for PCR were performed in an automatic thermocycler 

under the following conditions: after an initial denaturation for 1 minute at 95°C there were 40 

cycles consisting of 1 minute at 95°C, 1 minute at 50°C, and 1 minute at 72°C, with a final 

extension step for 10 minutes at 72°C. Both DNA extraction and PCR negative controls were used 

in PCR reactions to detect contamination. The PCR products were examined using gel 

electrophoresis in 1.5% agarose gel. Bidirectional sequencing of amplicons was performed at the 

University of Tennessee sequencing facility (Knoxville, TN). The obtained sequences were 

compared in GenBank using Basic Local Alignment Search Tool (BLAST). One sample was 

obtained from the pluck of a freshly killed elk on the same day it was admitted to the University 

of Tennessee necropsy service (SP 17-465; Fig 1A). For this specimen, hydatid cysts were 

observed grossly in the elk lung. Tissue from the cyst wall and fluid from within the cyst were 
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sampled with a sterile scalpel and syringe, respectively, and used for the PCR reaction as described 

above. In addition, the fluid from the cyst was examined by light microscopy for characteristic 

findings of Echinococcus spp. protoscoleces (Fig 1B).  

Coyote carcasses from within NCWMA were provided by TWRA for examination. 

Restricted necropsies limited to the gastrointestinal tract were performed. Fecal samples were 

collected directly from the large intestine of the animals. Fecal flotations using Sheather’s sugar 

solution with a water step were performed on ~1 gram of feces to identify any helminth eggs and 

coccidian-type oocysts. The gastrointestinal tract from the pylorus of the stomach to the cecum 

was removed and sieved using Grainger mesh sieves down to the 400 µm mesh. Sieved intestinal 

contents were preserved in 70% ethanol and examined under a dissecting scope to morphologically 

identify helminths. Any Taeniidae eggs or protoscoleces were subject to PCR using COX-1 gene 

for molecular identification [21,22]. 

 

Results 

Of 103 elk necropsy records examined, 14 (13.6%) reports matched selected search criteria 

based on gross examination. Of these, seven of the 14 cases (50%) that were examined by the 

pathologist showed histologic findings consistent with or suggestive of Echinococcus infection 

(Fig. 2). The other 7 cases were excluded from further study based on a lack of histologic evidence 

of Echinococcus infection. Of the seven archived necropsy cases, only four cases demonstrated 

identifiable brood capsules or protoscoleces. All seven cases showed evidence of non-specific cyst 

wall present within lung tissue. Cause of death was not attributed to Echinococcus infection in any 

of the seven cases.  

Three of the seven (42.9%) paraffin-embedded tissue sections were PCR positive using the 

COX-1 gene target (Table 1). The single sample obtained from elk SP 17-465 at necropsy was 

PCR positive. Of these four PCR positive samples, three had histologic evidence of E. granulosus 

s.l. parasites. Two of the four archived cases with histologic evidence of infection were PCR 

negative. Sequence analysis of the four consensus sequences via NCBI Genbank disclosed at least 

98% coverage and 98% identity to multiple E. canadensis genotypes. Nucleotide sequences were 

submitted to NCBI Genbank for each of our four samples. Accession numbers and BLAST result 

metadata are described in Table 1. Phylogenetic alignment of the COX-1 region resulted in a 324-

bp alignment with 305 bp being invariant, resulting in a 94.1% conserved identity among the 4 
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samples. Elk NE 03-2586 and elk SP 17-465 were the most closely related with a p-distance of 

0.0062, while elk 04-420 and elk and 05-331 had the furthest relationship with a p-distance of 

0.059. Three of the four samples (SP 17-465, NE 04-420, NE 03-2586) clustered with E. 

canadensis G10 isolates on construction of a phylogenetic tree using the neighbor-joining method. 

Weak neighbor-joining bootstrap values (47%) support this conservation. Elk NE 05-331 grouped 

with E. canadensis G8 isolates, supported by a strong neighbor-joining bootstrap value of 100% 

[23,24]. Phylogenetic relationships among the four Echinococcus samples can be seen in Figure 

3.  

Eleven adult coyotes were necropsied and examined. Adult E. granulosus s.l. parasites 

were not detected on gross inspection of intestinal content in any of the coyotes included in this 

study on complete helminth examination. No Taeniidae-like eggs were identified on fecal 

floatation from any coyotes included in this study. Sediment of fecal floatation material that was 

recovered and then centrifuged in water was also PCR-negative for E. granulosus s.l. DNA.  

 

Discussion 

The findings in this study demonstrate a public health concern for potential zoonotic 

transmission of Echinococcus granulosus s.l. (i.e. E. canadensis) for the areas in and surrounding 

GSMNP and NCWMA. Introduction of this parasite into a region with no previous documentation 

of a sylvatic transmission cycle and no public education or prevention strategies creates abundant 

opportunity for wildlife, domestic animals, and humans to become exposed with little to no 

recognition of the risks. Furthermore, private agricultural land abuts much of the park, allowing 

for contact with domestic canids and livestock and the humans that frequent these areas. Concern 

should be high for the overlap of sylvatic and domestic transmission cycles, as alternative viable 

intermediate and definitive hosts exist in proximity to reintroduction areas. Echinococcus 

granulosus s.l. has been previously documented in the southeastern United States in hogs, cattle, 

and domesticated dogs, although there have previously been no sylvatic cycles documented in the 

region [6,25,26].  

The genetic distance between samples in this study suggest that there is some heterogeneity 

among sequences in Tennessee. For at least three of these samples (SP 17-465, NE 04-420, NE 

03-2586) the differences are minor with no genotype differences, which suggests they may be 

similar or the same strain of E. canadensis G10. Elk NE 05-331 exhibited greater genetic distance 
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from other samples and its phylogeny suggested closer relation to E. canadensis G8 strains. This 

may suggest multiple introduction events or introduction of distinct strains of Echinococcus in 

individuals from different geographic sourcing. Further research in translocated elk is warranted 

to investigate these differences among Tennessee isolates to clarify which strains have been 

introduced and to establish their origin. Continued surveillance of viable canid hosts for 

Echinococcus may provide insight into which strains are present. Although COX-1 is a well-

established target for looking at interspecies variation, future studies may benefit from multi-locus 

or whole genome analysis to provide better resolution of Echinococcus isolates. 

Four of the samples were PCR negative for Echinococcus /cestode DNA despite two of 

these samples having characteristic histologic evidence of Echinococcus infection. There are 

several possible explanations for these negative PCR results in the samples with demonstrable 

protoscoleces and brood capsules, including possible cross-linked DNA secondary to prolonged 

formalin fixation, which has been previously shown to inhibit DNA amplification [27,28]. It is 

also possible that the cestodes were too mineralized and degraded within the cysts to allow DNA 

extraction, particularly if there was a protracted latency between the death of the animals and the 

submission to necropsy. Alternatively, samples taken from the archived paraffin blocks did not 

capture sections of cyst or parasite DNA.  

No canids included in this investigation were positive for Taeniidae eggs or protoscoleces 

on intestinal or fecal examination or PCR from intestinal content for Echinococcus spp.  Positive 

canids would support the hypothesis of sustained Echinococcus transmission in the reintroduction 

areas in addition to being present in elk imported from Canada.  Coyotes were opportunistically 

sampled by TWRA from areas adjacent to and within the elks’ range. All coyotes necropsied were 

either killed on private property or found dead. Our sample size for surveillance of definitive canid 

hosts was small and only included coyotes. Future surveillance should include other canids active 

in both areas, including red foxes (Vulpes vulpes), gray foxes (Urocyon cinereoargenteus) and 

potentially domesticated dogs. There are no thriving populations of red wolves (Canis rufus) in 

GSMNP, following a failed reintroduction program [29]. Although the canid sample size was small 

in this study, if the negative fecal results are truly representative of the canid population, the lack 

of a large canid predator in GSMNP may be protective against the establishment of an efficient 

transmission cycle. However, further intensive canid helminth research in the areas is needed to 

determine if this association is accurate. An active sampling strategy and recruitment of multiple 
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stakeholders (e.g. landowners, resource agencies, wildlife biologists, etc.) to provide specimens 

may prove useful in the future to more concretely rule out the establishment of an ongoing 

transmission cycle. In future studies, PCR on fecal homogenate, even in the absence of taeniid 

eggs on floatation, may be considered as an adjunct diagnostic tool [30].  

Three of the four Echinococcus positive elk (NE 03-2586, NE 04-420, NE 05-331) were 

confirmed to have been part of the stock imported to the region by ear tag number. We suspect 

that one of the Echinococcus positive elk (SP 17-465) was the offspring of one of the originally 

translocated elk, but we were unable to definitively confirm this. This individual was potentially 

born in Tennessee, as the last elk was imported to the region in 2008. This suspicion warrants 

further examination of various intermediate and definitive hosts for this parasite in the region. If 

this elk were to be a confirmed offspring, this would provide compelling evidence for the 

establishment of a sylvatic transmission cycle in an area with no previous documentation of the 

disease, even in the absence of Echinococcus positive canid definitive hosts in this study, as this 

parasite is not vertically transmitted.  

 

Conclusions 
 Wildlife translocations have remained a popular and often successful conservation tool to 

re-establish or augment declining or extirpated populations; however, relatively little emphasis has 

been placed on disease risk until recently. This neglect is in spite of many documented cases of 

introduction of novel diseases secondary to translocation efforts, such as with parvoviral enteritis 

in raccoons (Procyon lotor) in West Virginia, rabies from translocated raccoons to local skunks 

(Mephitis mephitis) in West Virginia, brucellosis and tuberculosis in translocated plains bison 

(Bison bison) in Montana, and Echinococcus multilocularis in European beavers (Castor fiber) in 

the United Kingdom [29-35]. Furthermore, translocation of animals inherently includes numerous 

stressors, including transport, handling, capture, confinement, diagnostic screening, and release 

into unfamiliar environments; it is well documented that increases in these stressors are associated 

with diminished immune function [36]. Potential alterations in immune function during the 

translocation process may increase the opportunity for infectious diseases to establish in the hosts 

and allow the introduction of novel pathogens into immunologically naïve populations with 

potentially serious consequences to the native wildlife, domestic animals and humans. The 

findings of this study underscore the need for thoughtful, evidence-based best practices in 
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weighing the benefits of reintroduction efforts against the risk of novel pathogen introduction, and 

a robust process to identify and appropriately mitigate potential disease risks in the translocation 

of wildlife species.  
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Appendix II 

 

Tables and Figures for Chapter II 

 

 



 

 

Table 2-1. Summary of histological presence of protoscolex or brood capsule in lung tissue or liver tissue and PCR results of elk 

specimens with Echinococcus lesions from Tennessee 2002-2017. Assigned GenBank accession numbers for submitted sequences are 

provided. Closest match queried from GenBank and metadata for the respective sequences are provided. 

Specimen 

ID 

Accession 

Year 

Histologic 

Evidence 

PCR GenBank 

Accession 

First BLAST Result Host Species Reference 

NE 02-3628 2002 - - --- --- --- --- 

NE 03 2586 2003 + + MN833319 Echinococcus 

canadensis 

mitochondrion 

G10 (AB777927.1) 

Alces alces 

 

Konyaev et al. 

2013 [39] 

NE 04-420 2004 - + MN833320 Echinococcus 

canadensis 

mitochondrion G10 

(MG597240.1) 

Bos grunniens 

 

Wu et al. 2018 

[40] 

NE 04-800 2004 + - --- --- --- --- 

NE 05-331 2005 + + MN833321 Echinococcus 

canadensis 

mitochondrion G8 

(MG574827.1) 

Canis latrans Schurer et al. 

2018 [41] 

NE 07-1 2007 + - --- --- --- --- 

NE 08-46 2008 - - --- --- --- --- 

SP 17-465 2017 + + MN833322 Echinococcus 

canadensis 

mitochondrion G10 

(MG597240.1) 

Bos grunniens Wu et al. 2018 

[40] 



 

 

 

Figure 2-1. A) Photograph of a hydatid cyst within the lung tissue of elk SP 17-465 at gross 

necropsy at the University of Tennessee, 2017. Ruler with inches and centimeters for scale 

included in photograph. B) Microscopic image of invaginated protoscoleces isolated from within 

aspirate taken from a hydatid cyst of elk SP 17-465 at gross necropsy. Image provided by Heidi 

Wyrosdick. 
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Figure 2-2. Histologic section of a hydatid cyst from elk 07-1. The brood capsule (>) containing 

three characteristic protoscoleces (*) and mineralized concretions [calcareous corpuscles] (^) can 

be seen.  
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Figure 2-3. Evolutionary relationship of four Echinococcus canadensis isolates from elk (NE 04-

420, NE 05-331, NE 03-2586, and SP 17-465) based on COX-1 sequences. Evolutionary history 

was inferred by the Neighbor-joining method using the program MEGA. Percentage of replicate 

trees in which associated taxa cluster together >50% of times in the bootstrap test displayed at 

nodes (1000 replications). Taenia solium serves as the outgroup. 
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CHAPTER III 

Market Deception: Molecular Identification of Bushmeat Species in Northern Uganda 
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Abstract 

 

 Spillover of zoonotic diseases from wildlife to humans is believed to occur most often from 

contact with ‘high risk’ wildlife, such as primates, rodents, and bats in regions where bushmeat is 

commonly hunted, such as Asia and sub-Saharan Africa. In Northern Uganda, consumption of bats 

and primates is not widely culturally accepted. However, preliminary reports from hunters indicate 

that baboons are often hunted and sold as culturally desirable species by dealers and  hunters. This 

deception in the market subverts the ability of community members to make informed choices 

about the risks involved in consuming bushmeat. We collected 229 bushmeat samples from 23 

communities adjacent to Murchison Falls National Park. Reported species was recorded at point 

of sale for each sample. PCR targeting mammalian cyt b and 12s rRNA genes and sequencing were 

performed to identify samples to the lowest taxonomic unit using NCBI BLAST. Overall, 27.9% 

(61/219) of samples had disparate results between species reported and BLAST analysis. Thirty-

four species were identified, with the most frequent wildlife being waterbuck (31.5%), warthog 

(13.7%), black rat (5.9%). These data indicate a public health risk for bushmeat consumers in 

Northern Uganda as they cannot assess species-related risk when purchasing bushmeat, thereby 

increasing potential exposure to zoonotic pathogens. This data also provides insight into regional 

hunter prey preference and market preference of local community members. 
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Background 

Bushmeat harvest and consumption is a well-described practice in sub-Saharan Africa and 

has long been acknowledged as important in food security and nutrition, income security, and crop 

protection, particularly in rural communities (Fa et al. 2003; Starkey 2004; Davies et al. 2007). 

However, even within the framework of economic provision, the issue of bushmeat harvest 

presents two major concerns: the public health risk to communities through contact with zoonotic 

pathogens and the controversy surrounding the conservation of protected species. Since the 1970’s, 

over 60% of emerging infectious diseases affecting human populations have been zoonotic in 

nature, with 71.8% of those zoonotic events resulting from contact with wildlife species (Jones et 

al. 2008). Within the last several decades, Uganda has been home to numerous zoonotic disease 

events resulting from contact with wildlife species, including anthrax, Ebola virus, Marburg 

disease virus, rabies virus, yellow fever, and HTLV/STLV-1 (Adjemian et al. 2011; Nabukenya et 

al. 2014; Kurpiers et al. 2016). Certain wildlife species have been identified as having higher 

inherent risk of zoonotic disease emergence, particularly bats, non-human primates (NHPs), 

ungulates, and rodents (Cleaveland et al. 2007). 

Quantification of bushmeat harvest has been described for some sub-Saharan African 

countries, particularly those in West and Central Africa. Estimates for Nigeria and Cameroon (Fa 

et al. 2006), Ghana (Ntiamoa-Baidu 1998), Cote d’Ivoire (Caspary 1999), and the Congo Basin 

(Wilkie and Carpenter 1999; Fa et al. 2002) range from 12,000 tons to 4.9 million tons annually; 

however, few reports are available for Uganda (Olupot et al. 2009). Murchison Falls National Park 

in northern Uganda is the oldest and largest protected area in Uganda and is recognized for its 

biodiversity. Wildlife species within the park are highly susceptible to hunting since many of the 

park’s borders are directly adjacent to local communities, increasing potential for human conflict 

with wildlife, as well as increasing opportunity and incentive to hunt.  

In Uganda, all hunting of wildlife species is illegal except for vervet monkeys (Chlorocebus 

pygerythrus), olive baboons (Papio anubis), and bushpigs (Potamochoerus larvatus) (Kato and 

Okumu 2008; Travers et al. 2017). Hunting of these species is permitted without penalty when 

they are found to depredate crops on farmers’ property (Lamprey 2002). Despite the legal 

restrictions on hunting, bushmeat harvesting is a common and an accepted practice, with meat 

being used for both food and as an additional source of income. During preliminary 

communications, hunters claimed to conduct ‘species deception’ at market, where species that 
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were culturally unacceptable to consume (like NHPs) were opportunistically hunted and disguised 

as culturally desirable/acceptable species, such as antelopes, warthogs, and bushrats (Willcox, 

Personal Communications). Due to the clandestine nature of bushmeat hunting in Uganda, there 

are not open markets where carcasses are displayed for purchase, but rather person-to-person 

transactions take place.   

We hypothesized that species deception exists and occurs most frequently when baboons 

and vervet monkeys are legally hunted and disguised as other species. This study aimed to describe 

the most frequently hunted species and quantified the rates of species deception in markets to 

identify potential opportunities for transmission of food borne zoonoses.  

 

Methods 

Study Area 

Samples were collected from 23 villages within the Nwoya district in northern Uganda 

(Figure 1). The Nwoya district is composed of 4 sub-counties, Purongo, Anaka, Alero, and Koch 

Goma, and it forms the northern border of the Murchison Falls Conservation Area (MFCA). The 

MFCA is Uganda’s largest continuous protected area, consisting of the 3,893 km2 Murchison Falls 

National Park (MNFP) to the north, the 748 km2 Bugungu Wildlife Reserve (BWR) to the 

southwest, and the 720 km2 Karuma Falls Wildlife Reserve (KFWR) to the southeast. Villages 

where bushmeat samples were collected are shown in Figure 1.  

 

Sampling 

Initial contact with hunters and dealers in the communities were made through Ugandan 

community liaisons and research associates. Bushmeat samples were purchased from hunters, 

dealers, and women within study communities from July to August 2016 and from June to July 

2017 for the price of 10,000 Ugandan shillings (equivalent of approximately $3 USD) per sample. 

Species reported, condition of meat (fresh, smoked, hard-smoked), and village where purchased 

were recorded for each sample. Tissue was considered fresh when harvested from bushmeat and 

no treatment of meat was applied other than storage. Tissue was considered smoked if the meat 

was harvested and noted to be smoked but was soft and the internal portion was differently textured 

and colored. Tissue was considered hard smoked if the meat was smoked, hard to the touch, and 

homogenous in texture and color. Once collected, an interior section of each bushmeat tissue was 
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excised using a sterile scalpel blade. Samples 91 through 226 were placed immediately into 

RNAlater™ Stabilization Solution (Thermo Fisher Scientific) in sterile Eppendorf conical tubes 

to preserve the genomic DNA and RNA due to additional funding that allowed for viral 

sequencing. Samples were transported to storage facilities in Gulu, Uganda and placed in a freezer 

(-18 °C) until transported to Makerere University, Kampala for long-term storage at -80 °C.  

 

Molecular Techniques 

DNA extraction was performed on all samples using the DNeasy® Blood & Tissue 

Extraction Kit (QIAGEN) according to manufacturer’s instructions. The success of DNA 

extraction was confirmed by gel electrophoresis on 2% agarose stained with ethidium bromide. A 

polymerase chain reaction was performed on extracted DNA using two universal mammalian 

primers and cycling conditions summarized in Table 1. MTCB-F/MTCB-R universal mammalian 

primers targeting the mitochondrial cytochrome b gene were used first (Naidu et al. 2012). If this 

procedure was unable to provide clean sequences, L1085/H1259 universal vertebrate primers 

targeting the 12s rRNA gene were used (Kitano et al. 2007) instead. Gel electrophoresis was 

performed on all PCR products on a 2% agarose gel stained with ethidium bromide. PCR products 

were purified using QIAquick® PCR Purification Kit (QIAGEN) according to manufacturer’s 

instructions. Purified PCR products were sent to Macrogen, Inc. for Sanger dideoxy chain 

termination sequencing. The forward and reverse chromatogram strands were aligned in 

Sequencher 5.46 software (GeneCodes Corporation) and the overhanging strands trimmed to 

create a consensus nucleotide sequence. Resultant consensus sequences were queried against the 

National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool 

(BLAST) to identify mammalian species to the lowest possible taxonomic unit and the highest 

percentage identity.  

 

Analysis 

BLAST results were compared to species reported by bushmeat providers at point of sale 

to calculate the crude rate of mismatch within our samples. Deception was coded as 0 (no 

mismatch) if the molecular results matched to species level or if reported species and molecular 

result were within the same clade. For example, if “kob” was reported but the molecular result was 

waterbuck, both are antelope species and no deception was recorded. Species were coded as 1 
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(mismatch) if reported species results did not match to species level and were not within the same 

clade.  

Comparison of proportions of deception among bushmeat source groups was performed in 

SPSS® using the Bonferroni method. These results were confirmed with a two-sided test of 

proportions (prtest function) using STATA®. Logistic regression was performed with Deception 

as the binary outcome variable and sample source, village, and molecularly identified species as 

predictor variables using IBM SPSS version 25. 

 

Results 

Sample Collection 

Bushmeat samples (n = 229) were collected from 22 communities. Eighty-nine samples 

were collected in 2016 and 140 in 2017. Samples were obtained from villages within Anaka, Koch 

Goma, and Purongo sub-counties. One hundred twenty-seven (58%) samples were provided by 

hunters compared to dealers (n = 37; 16.9%) or cooks (n = 55; 25.1%). These data are shown in 

Table 2. Data on species reported by sample source are shown in Table 3. Thirty-eight different 

species were reported by bushmeat providers, with two samples reported as “unknown bushmeat 

species.” Kob was the most frequently reported species (n = 63; 28.8%). Only seven samples were 

reported as vermin species, including baboon (n = 5), bushpig (n = 1), and vervet monkey (n = 1). 

The condition of bushmeat samples ranged from fresh to hard-smoked, with 112 (48.9%) fresh, 

104 (45.4%) smoked, and 13 (5.7%) hard-smoked.  

 

Molecular Results 

Ten samples were omitted from the final analysis due to degraded tissue from excessive 

meat smoking, resulting in 219 viable samples. Consensus sequences ranged from 85-918 bp in 

length, and the results are summarized in Table 4. Thirty-four different species were identified 

using NCBI BLAST. One sample could only be identified to genus level. Identity of samples to 

first BLAST result ranged from 90% to 100%. The most frequently identified species by molecular 

methods was waterbuck (Kobus ellipsiprymnus), with 69 samples (31.5%). In total, 108 (49.3%) 

samples were antelope species. Only 3 samples were found to be one of the three legal species to 

hunt: 2 olive baboons and one bushpig. Twenty-three (10.5%) of the samples were found to be 

domestic species (cow, goat, and sheep).  
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Statistical Analysis Results 

The overall rate of species deception/misrepresentation among samples was 27.9%, with 

61/219 samples not matching what was reported based on sequencing. Samples acquired from 

hunters had the highest rate of deception among the three sources of bushmeat with 36.2% being 

misreported. Women and dealers did not significantly differ from each other in proportions of 

deception, but hunters differed significantly from both women and dealers in proportions of 

misrepresented samples (p = 0.002) (Table 2.) No predictor variables were found to be significant 

in the logistic regression model.  

 

Discussion 

Incorrect identification of bushmeat species intended for human consumption presents a 

potential public health issue because it subverts the ability of bushmeat consumers to know what 

they are handling and consuming. For example, most bushmeat consumers living in our study area 

should have little contact with primates or bats, as it is culturally unacceptable to eat these animals. 

However, when deception occurs, these animals may infiltrate the food supply chain. Additionally, 

accurate knowledge of the species purchased may lead to differences in the precautions used to 

prepare different meats, and, therefore, could potentially lead to increased exposure to zoonotic 

pathogens.  

Certain species are considered to be at an inherently higher risk for cross-species 

transmission of zoonotic pathogens, including bats, rodents, ungulates, and non-human primates 

(Cleaveland et al. 2007). Unpublished research (Dell et al.) indicates that community members in 

Nwoya district are aware that certain species carry zoonotic pathogens and present greater risk of 

zoonotic disease than others; therefore, the phenomenon of species deception at market may hinder 

the effectiveness of targeted educational efforts of safe handling and cooking of wild meats if 

consumers are misled about the species they are handling. Hunting, butchering, cleaning, and 

cooking of meat places handlers in direct contact with tissue and fluids from wildlife where they 

may be exposed to zoonotic organisms. In 2017, the government of Uganda collaborated with the 

Global Health Security Agenda to identify seven priority zoonotic diseases: anthrax, influenza 

viruses, brucellosis, viral hemorrhagic fevers, plague, and rabies; each of these can be transmitted 

through contact with wildlife hosts (Sekamatte et al. 2018). 
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Over a quarter of bushmeat samples included in this study were being sold as a species that 

was not the true harvested species. There are several potential explanations for this trend. One 

explanation is that hunters and dealers may not know or remember which species was harvested 

at the point of sale. Increased efforts by the Uganda Wildlife Authority (UWA) to patrol for and 

prevent hunting activity has forced the harvest and sale of bushmeat to become increasingly 

clandestine (Lamprey 2002). Anecdotal evidence collected from hunters in the field suggests that 

some of the misrepresentation observed in this study may not be intentional deception to 

consumers, but rather the result of efforts to hide hunting activity while in the field. Several hunters 

reported that when wildlife is successfully captured, the carcasses are quickly butchered in the 

field in such a way that the bones may be discarded and left behind (Dell et al, unpublished). This 

practice is performed so that hunters are less likely to be incriminated if caught and questioned by 

UWA officers.  

An alternative explanation for this rate of species misrepresentation is the intentional 

disguise of meat to match market demand and increase profit. Although guns were a prominent 

tool used in hunting during a report in 1984 (Oneka 1990), the domestic conflict and insurgency 

in Northern Uganda from the mid-1990s to 2000s fortified the ban on civilian owned fire-arms, 

forcing a greater dependence of hunters on non-specific hunting methods, like snares or pitfall 

traps. These hunting methods likely result in the capture of non-target bushmeat species for which 

there is poor market demand. This would in turn increase the motivation to misrepresent the species 

of bushmeat. There has been previous documentation of bushmeat hunters and dealers 

misrepresenting the type of meat to increase profit at sale (Adeyoju et al. 2010).  

Our finding that bushmeat hunters have a lower proportion of correct sample identity than 

cooks and dealers (who had statistically similar proportions) are contrary to the findings in Bityani 

et al. 2012 in bushmeat from the Serengeti, which reported that samples collected from hunters 

had the greatest identification accuracy. This may be due to the differences in butchering practices 

between sites, the variation in law enforcement, and the perceived severity of consequences if 

caught. For example, in Tanzania, a game cropping strategy was introduced to the Serengeti that 

provided legal bushmeat to villages bordering the park, attempting to decrease illegal hunting 

activity and to allow for increased transparency in the bushmeat market (Rentsch and Damon 

2013). 
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In addition to public health and emerging zoonoses concerns, conservation concerns 

surrounding the practice of unregulated bushmeat harvest include the decline or extirpation of 

wildlife species, which has been documented in several countries (Fa et al. 2015; Lindsey et al. 

2015; Rogan et al. 2015). In northern Uganda, the illegality of firearms has also led to increased 

use of opportunistic harvest practices and non-specific capture methods. While this may decrease 

the frequency of hunting large-bodied wildlife, which are most vulnerable and often present in the 

fewest numbers, and documented to be preferred as prey by hunters, it presents difficulty in 

predicting which species may be most at risk from bushmeat-related activities (Bodmer 1995). 

Although bushmeat harvest may be locally sustainable in some areas, extra-local demand for 

bushmeat and unregulated harvest increase pressures on the wildlife populations in protected areas 

(Bitanyi et al. 2012). The over-exploitation of species geographically confined to protected areas 

not only threaten the survival of the species, but may also increase the density of infectious diseases 

in wildlife populations, including endemic zoonotic diseases, facilitating their emergence in human 

populations who come in contact with these wildlife populations (Smith et al. 2015).   

Our findings are consistent with previous reports of the most commonly poached species 

within MFCA (Oneka 1990; Olupot et al. 2009). All but one of the species identified in this study 

are currently listed with the International Union for Conservation of Nature as “Not Threatened” 

(NT) or “Least Concern” (LC). Only one species (hippopotamus) is currently listed as vulnerable, 

and no species are listed as endangered or critically endangered. Molecular identification of animal 

tissue confiscated from apprehended poachers may serve as a useful tool to identify which species 

are most commonly hunted and which need the greatest investment in conservation.  

There are limitations to the results found in this study. Two hundred and twenty-nine 

samples were obtained in the field, but ten of these samples were unable to yield readable DNA 

sequences. Each of these 10 samples were either “smoked” or “hard smoked” and likely had DNA 

of compromised and degraded quality. Additionally, the collection of bushmeat samples was not 

performed year-round. There may be differences among the most commonly hunted species based 

on seasonality. Due to restricting the sampling periods to late summer for both years, any potential 

differences were not identified in this study.   

  Four samples indicated blue wildebeest (Connochates taurinus) as the first sequence match 

through BLAST; this species does not have a geographic range in Uganda. Identity of these 

matches ranged from 92% to 100%. All samples whose first BLAST result was wildebeest were 
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analyzed using the L1085/H1259 primer set. This primer set uses a shorter target sequence than 

the MTCB primers, which yielded higher success during PCR with samples that were more heavily 

smoked. However, the shorter target sequence may result in a less specific BLAST result and 

capture of closely related species. In each of the 4 cases of wildebeest BLAST result, hartebeest 

(Alcelaphus spp.) was a match result with a lower identity and cover. It is likely that these samples 

were hartebeest, which have a natural range in Uganda, and these four samples were not excluded 

from analysis.  

Molecular analysis showed that 25 of our bushmeat samples were actually from 

domesticated animals commonly found on subsistence farms in the area. It is likely that locals 

provided samples of already-butchered domestic meat to community liaisons after learning 

through word of mouth that researchers were offering compensation for bushmeat samples. 

Although it is possible these samples were sold deceptively to obtain the compensation offered, 

we cannot exclude the possibility that the domesticated species found in this study were also being 

sold to community members as bushmeat. Bushmeat has been documented to be more expensive 

than domestic meats in market, a finding that was confirmed to be true in our study area as well 

(Dell et al. in preparation; Moore 2001; Loibooki et al. 2002; Rentsch and Damon 2013). 

 

Conclusions 

The findings in this paper underscore the potential risks for unknown exposure to potential 

zoonotic pathogens. Not only do our findings confirm the widespread bushmeat trade within 

sampled communities, but they also demonstrate the grossly under recognized issue of market 

deception to consumers of hunted wildlife. The findings in this paper may establish the need for 

further surveillance of bushmeat trade in areas with similar regulations and social norms. Targeted 

educational programs focused on safe handling and food safety practices with wild animal tissues 

may be indicated to reduce exposure to infected tissue and to increase the appropriate precautions 

taken during food handling and preparation. 
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Appendix III 

Tables and Figures for Chapter III 



 

 

Table 3-1. Primers, PCR cycling conditions, and literature sources used for DNA extraction and PCR of bushmeat samples collected 

from Nwoya district, Uganda, 2016-2017.  

Primer 

PCR 

product  

size  (bp) 

Primer Sequence 5' to 3' DNA Target Cycling Conditions Reference 

MTCB-F ~1420 CCHCCATAAATAGGNGAAGG cyt b 95°C/45 sec, 55°C/60 

sec, 72°C/2 min, 35 

cycles 

Naidu et al. 2012 

MTCB-R ~1420 WAGAAYTTCAGCTTTGG cyt b 95°C/45 sec, 55°C/60 

sec, 72°C/2 min, 35 

cycles 

Naidu et al. 2012 

L1085 215 CCCAAACTGGGATTAGATACCC 12S rRNA 94°C/30 sec, 55°C/30 

sec, 72°C/30 sec, 35 

cycles 

Kitano et al. 2007 

H1259 215 GTTTGCTGAAGATGGCGGTA 12S rRNA 94°C/30 sec, 55°C/30 

sec, 72°C/30 sec, 35 

cycles 

Kitano et al. 2007 

 

  



 

 

Table 3-2. Sample source and accuracy of species identification given by providers of bushmeat 

samples obtained from Nwoya district north of Murchison Falls National Park, Uganda, 2016-

2017. Subscripts denote proportions of accurately identified samples by source that do not differ 

significantly from each other at a 0.05 significance level using the Bonferroni method. P = 0.002.   

  Number and percentage of 

samples provided 

Number and percentage of correctly 

identified samples using molecular 

typing 

Source Hunter 127 (58%) 81 (63.8%) a 

 Women 55 (25.1%) 45 (81.8%) b 

 Dealer 37  (16.9%) 33 (89.2%) b 

Total  219 (100%) 159 (72.6%) 
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Table 3-3. Bushmeat species reported by hunters at time of sampling, including frequency (n), 

percentage (%), and accuracy of reporting of identified species among bushmeat samples 

obtained from Nwoya district, Uganda, 2016-2017. 

 

Species Reported 

 

Number (n) and Percentage 

(%) of Reported Species  

Number (n) and Percentage 

(%) of Reported Species 

Identified Correctly by 

Molecular Testing 

Kob 63 (28.8%) 60 (95.2%) 

Warthog 32 (14.6%) 22 (68.8%) 

Waterbuck 22 (10%) 17 (77.3%) 

Bush rat 14 (6.4%) 10 (71.4%) 

Dik dik 10 (4.6%) 7 (70.0%) 

Buffalo 7 (3.2%) 2 (28.6%) 

Impala 7 (3.2%) 7 (100%) 

Antelope 6 (2.7%) 5 (83.3%) 

Squirrel 6 (2.7%) 5 (83.3%) 

Hippopotamus 6 (2.7%) 6 (100%) 

Baboon 5 (2.3%) 2 (40.0%) 

Bushbuck 5 (2.3%) 3 (60.0%) 

Bat 4 (1.8%) 3 (75.0%) 

Oribi 3 (1.4%) 0 (0%) 

Wild rabbit 3 (1.4%) 1 (33.3%) 

Monkey 2 (0.9%) 1 (50%) 

Rat 2 (0.9%) 2 (100%) 

Unknown 2 (0.9%) 0 (0%) 

Cane rat 2 (0.9%) 2 (100%) 

Aardvark 1 (0.5%) 1 (100%) 

Acholi rat 1 (0.5%) 0 (0%) 

Black & white colobus 

monkey 

1 (0.5%) 0 (0%) 

Black & white okello 1 (0.5%) 0 (0%) 

Bushpig 1 (0.5%) 0 (0%) 

Civet 1 (0.5%) 0 (0%) 

Crested porcupine 1 (0.5%) 0 (0%) 

Greater pangolin 1 (0.5%) 0 (0%) 

Hartebeest 1 (0.5%) 0 (0%) 

Ober rat 1 (0.5%) 1 (100%) 

Patas monkey 1 (0.5%) 0 (0%) 

Porcupine 1 (0.5%) 1 (100%) 

Rhinoceros 1 (0.5%) 0 (0%) 

Rodent 1 (0.5%) 0 (0%) 

Serval 1 (0.5%) 0 (0%) 

Spotted hyena 1 (0.5%) 0 (0%) 
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Table 3-3 Continued. 

 

Species Reported 

 

Number (n) and Percentage 

(%) of Reported Species  

Number (n) and Percentage 

(%) of Reported Species 

Identified Correctly by 

Molecular Testing 

Striped hyena 1 (0.5%) 0 (0%) 

Vervet monkey 1 (0.5%) 1 (100%) 

Total 219 (100.0%)  
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Table 3-4. Number and percentage of total bushmeat samples that were molecularly identified to 

correct species compared to bushmeat species reported by hunter obtained from Nwoya district, 

Uganda, 2016-2017. 

Scientific Name Common Name 

Number (n) and Percentage 

(%) of Total Bushmeat 

Samples Molecularly 

Identified to Correct Species  

Number (n) and 

Percentage (%) of 

Identified Samples 

Correctly Reported  

Kobus ellipsiprymnus Waterbuck 69 (31.5%) 61 (88.4%) 

Phacochoerus 

africanus 

Common warthog 30 (13.7%) 24 (80.0%) 

Capra hircus Domestic goat 14 (6.4%) 0 (0%) 

Rattus rattus Black rat 13 (5.9%) 8 (61.5%) 

Kobus leche Lechwe 11 (5.0%) 11 (100.0%) 

Kobus kob Kob 9 (4.1%) 9 (100.0%) 

Hippopotamus 

amphibius 

Hippopotamus 8 (3.7%) 6 (75.0%) 

Bos taurus Domestic cow 7 (3.2%) 0 (0%) 

Cricetomys gambianus Gambian pouched rat 5 (2.3%) 5 (100.0%) 

Xerus erythropus Striped ground squirrel 5 (2.3%) 3 (60.0%) 

Connochaetes taurinus Blue wildebeest 4 (1.8%) 2 (50.0%) 

Lepus microtis African savanna hare 4 (1.8%) 1 (25.0%) 

Ourebia ourebi Oribi 4 (1.8%) 4 (100.0%) 

Pelea capreolus Grey rhebok 4 (1.8%) 4 (100%) 

Chlorocebus tantalus Tantalus monkey 3 (1.4%) 2 (66.7%) 

Sylvicapra grimmia Common duiker 3 (1.4%) 2 (66.7%) 

Syncerus caffer African buffalo 3 (1.4%) 2 (66.7%) 

Arvichernanthis 

niloticus 

African grass rat 2 (0.9%) 2 (100.0%) 

Epomophorus minor 

Minor epauletted fruit 

bat 

2 (0.9%) 1 (50.0%) 

Ovis aries Domestic sheep 2 (0.9%) 0 (0%) 

Papio anubis Olive baboon 2 (0.9%) 2 (100.0%) 

Tatera guinea Guinea gerbil 2 (0.9%) 1 (50.0%) 

Alcelaphus buselaphus Hartebeest 1 (0.5%) 1 (100.0%) 

Cephalophus silvicultor Yellow-backed duiker 1 (0.5%) 1 (100.0%) 

Chaerephon pumilus Little free-tailed bat 1 (0.5%) 1 (1000%) 

Epomophorus 

gambianus 

Gambian epauletted 

fruit bat 

1 (0.5%) 0 (0%) 

Felis sylvestris Wildcat 1 (0.5%) 0 (0%) 

Hystrix cristata Crested porcupine 1 (0.5%) 1 (100.0%) 

Madoqua kirkii Kirk's dik dik 1 (0.5%) 1 (100.0%) 

Mastomys spp. Multimammate mouse 1 (0.5%) 1 (100.0%) 

Megaderma lyra 

Greater false vampire 

bat 

1 (0.5%) 1 (100.0%) 

Orycteropus afer Aardvark 1 (0.5%)  1 (100.0%) 
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Table 3-4 Continued. 

 
 

  

Scientific Name Common Name 

Number (n) and Percentage 

(%) of Total Bushmeat 

Samples Molecularly 

Identified to Correct Species  

Number (n) and 

Percentage (%) of 

Identified Samples 

Correctly Reported  

Redunca arundinium Southern reedbuck 1 (0.5%) 1 (100.0%) 

Sus scrofa Bushpig 1 (0.5%) 0 (0%) 

Tatera leucogaster Bushveld gerbil 1 (0.5%) 0 (0%) 

Total  219 (100%) 158 
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Supplementary Table 3-5. NCBI BLAST first results, including cover, identity, and accession of 

bushmeat samples collected from Nwoya district, 2016 and 2017. 

Sample 

Number 

Query 

Length 

Query 

Cover 

 

Identity  

Accession 

Number 

 

First Match 

 

Scientific Name 

1 529 99% 98% AJ314548.1 Phacochoerus africanus mitochondrial 

cyt-B gene for cytochrome b, isolate 

Pafr3 

Phacochoerus 

africanus 

2 472 100% 100% AJ314548.1 Phacochoerus africanus mitochondrial 

cyt-B gene for cytochrome b, isolate 

Pafr3 

Phacochoerus 

africanus 

3 851 100% 98% JN632593.1 Alcelaphus buselaphus isolate CYTO 

mitochondrion, complete genome 

Alcelaphus 

buselaphus 

4 438 100% 100% AJ314548.1 Phacochoerus africanus mitochondrial 

cyt-B gene for cytochrome b, isolate 

Pafr3 

Phacochoerus 

africanus 

5 155 100% 97% KU682700.1 Chlorocebus tantalus isolate C10 

mitochondrion, complete genome 

Chlorocebus 

tantalus 

6 570 100% 96% AF052939.1 Kobus kob cytochrome b (cytb) gene, 

mitochondrial gene encoding 

mitochondrial protein, complete cds 

Kobus kob 

7 557 100% 100% AJ314548.1 Phacochoerus africanus mitochondrial 

cyt-B gene for cytochrome b, isolate 

Pafr3 

Phacochoerus 

africanus 

8 142 98% 99% KJ192730.1 Xerus erythropus isolate XeryT891 

12S ribosomal RNA gene, partial 

sequence; mitochondrial 

Xerus erythropus 

9 148 100% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

10 156 100% 97% JX446401.1 Kobus leche mitochondrion, complete 

genome 

Kobus leche 

11 142 100% 99% KU682700.1 Chlorocebus tantalus isolate C10 

mitochondrion, complete genome 

Chlorocebus 

tantalus 

12 427 100% 98% JF728771.1 Kobus ellipsiprymnus isolate TS011 

cytochrome b (cytb) gene, complete 

cds; mitochondrial 

Kobus 

ellipsiprymnus 

13 143 100% 98% JN632684.1 Pelea capreolus isolate South 

mitochondrion, complete genome 

Pelea capreolus 

14 172 98% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

15 788 100% 97% AF052939.1 Kobus kob cytochrome b (cytb) gene, 

mitochondrial gene encoding 

mitochondrial protein, complete cds 

Kobus kob 

16 140 100% 99% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

17 139 100% 98% JN632651.2 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

18 141 95% 98% JN632651.3 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

19 138 98% 100% JN632701.1 Sylvicapra grimmia isolate SUN 

mitochondrion, complete genome 

Sylvicapra grimmia 

20 757 99% 97% AF052939.1 Kobus kob cytochrome b (cytb) gene, 

mitochondrial gene encoding 

mitochondrial protein, complete cds 

Kobus kob 
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Supplementary Table 3-5 Continued. 

Sample 

Number 

Query 

Length 

Query 

Cover 

 

Identity 

Accession 

Number 

 

First Match 

 

Scientific Name 

21 136 100% 99% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

22 137 100% 100% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

23 918 100% 99% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

24 823 100% 97% AF052939.1 Kobus kob cytochrome b (cytb) gene, 

mitochondrial gene encoding 

mitochondrial protein, complete cds 

Kobus kob 

25 674 100% 96% AF052939.1 Kobus kob cytochrome b (cytb) gene, 

mitochondrial gene encoding 

mitochondrial protein, complete cds 

Kobus kob 

26 137 100% 100% AP003425.1 Hippopotamus amphibius 

mitochondrial DNA, complete 

genome 

Hippopotamus 

amphibius 

27 730 99% 97% AP003425.1 Hippopotamus amphibius 

mitochondrial DNA, complete 

genome 

Hippopotamus 

amphibius 

28 834 100% 99% JN632701.1 Sylvicapra grimmia isolate SUN 

mitochondrion, complete genome 

Sylvicapra grimmia 

29 139 98% 99% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

30 142 100% 100% KP681245.1 Sus scrofa breed wild boar 

mitochondrion, complete genome 

Sus scrofa 

31 590 99% 96% JN632701.1 Sylvicapra grimmia isolate SUN 

mitochondrion, complete genome 

Sylvicapra grimmia 

32 135 100% 99% AP003425.1 Hippopotamus amphibius 

mitochondrial DNA, complete 

genome 

Hippopotamus 

amphibius 

33 859 99% 97% AF052939.1 Kobus kob cytochrome b (cytb) gene, 

mitochondrial gene encoding 

mitochondrial protein, complete cds 

Kobus kob 

34 697 100% 99% JQ235527.1 Syncerus caffer isolate 9083 

mitochondrion, complete genome 

Syncerus caffer 

36 734 99% 99% JQ235527.1 Syncerus caffer isolate 9083 

mitochondrion, complete genome 

Syncerus caffer 

38 143 100% 100% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

39 868 100% 100% AJ314548.1 Phacochoerus africanus mitochondrial 

cyt-B gene for cytochrome b, isolate 

Pafr3 

Phacochoerus 

africanus 

40 784 100% 97% AF052939.1 Kobus kob cytochrome b (cytb) gene, 

mitochondrial gene encoding 

mitochondrial protein, complete cds 

Kobus kob 

41 159 100% 100% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

42 140 100% 100% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 
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Supplementary Table 3-5 Continued. 

Sample 

Number 

Query 

Length 

Query 

Cover 

 

Identity 

Accession 

Number 

 

First Match 

 

Scientific Name 

43 911 100% 99% JF728771.1 Kobus ellipsiprymnus isolate TS011 

cytochrome b (cytb) gene, complete 

cds; mitochondrial 

Kobus 

ellipsiprymnus  

44 807 100% 100% AP003425.1 Hippopotamus amphibius 

mitochondrial DNA, complete 

genome 

Hippopotamus 

amphibius 

45 871 100% 99% AP003425.1 Hippopotamus amphibius 

mitochondrial DNA, complete 

genome 

Hippopotamus 

amphibius 

46 381 100% 92% JF728771.1 Kobus ellipsiprymnus isolate TS011 

cytochrome b (cytb) gene, complete 

cds; mitochondrial 

Kobus 

ellipsiprymnus 

47 145 100% 99% JQ235547.1 Syncerus caffer isolate 655 

mitochondrion, complete genome 

Syncerus caffer 

48 853 99% 99% AJ314548.1 Phacochoerus africanus mitochondrial 

cyt-B gene for cytochrome b, isolate 

Pafr3 

Phacochoerus 

africanus 

49 860 100% 99% JF728771.1 Kobus ellipsiprymnus isolate TS011 

cytochrome b (cytb) gene, complete 

cds; mitochondrial 

Kobus 

ellipsiprymnus 

50 138 100% 100% KU682699.1 Chlorocebus tantalus isolate C9 

mitochondrion, complete genome 

Chlorocebus 

tantalus 

52 626 100% 99% AP003425.1 Hippopotamus amphibius 

mitochondrial DNA, complete 

genome 

Hippopotamus 

amphibius 

53 827 95% 93% JN675528.1 Rattus rattus isolate 21RrI_15 

cytochrome b (cytb) gene, partial cds; 

mitochondrial 

Rattus rattus 

55 353 99% 95% KT221828.1 Rattus rattus isolate Rr17 cytochrome 

b (cytb) gene, partial cds; 

mitochondrial 

Rattus rattus 

56 148 100% 95% KJ192730.1 Xerus erythropus isolate XeryT891 

12S ribosomal RNA gene, partial 

sequence; mitochondrial 

Xerus erythropus 

58 138 100% 100% MF004246.1 Ovis aries isolate KarM breed Karadi 

mitochondrion, complete genome 

Ovis aries 

59 145 100% 99% AJ851241.1 Tatera leucogaster mitochondrial 12S 

rRNA gene 

Tatera leucogaster 

61 685 100% 98% KP229147.1 Ovis aries isolate QL27 cytochrome b 

(CytB) gene, complete cds; 

mitochondrial 

Ovis aries 

64 164 98% 99% MF663794.1 Bos taurus voucher CDM20170726 

mitochondrion, complete genome 

Bos taurus 

65 440 90% 98% JQ410201.1 Cricetomys gambianus isolate 

OGBCRIC1 cytochrome b gene, 

partial cds; mitochondrial 

Cricetomys 

gambianus 

66 830 100% 99% KY366506.1 Capra hircus cretica isolate 96Chc 

cytochrome b gene, partial cds; 

mitochondrial 

Capra hircus 
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Supplementary Table 3-5 Continued. 

Sample 

Number 

Query 

Length 

Query 

Cover 

 

Identity 

Accession 

Number 

 

First Match 

 

Scientific Name 

67 178 97% 98% AJ430551.1 Tatera guinea mitochondrial 12S 

rRNA gene 

Tatera guinea  

69 142 100% 100% MF573068.1 Capra hircus mitochondrion, complete 

genome 

Capra hircus 

70 140 99% 100% MF573068.2 Capra hircus mitochondrion, complete 

genome 

Capra hircus 

71 121 100% 100% AJ430551.1 Tatera guinea mitochondrial 12S 

rRNA gene 

Tatera guinea 

72 140 100% 99% KJ192475.1 Cricetomys gambianus isolate 

CspT1320 12S ribosomal RNA gene, 

partial sequence; mitochondrial 

Cricetomys 

gambianus 

73 176 98% 99% MF573068.1 Capra hircus mitochondrion, complete 

genome 

Capra hircus 

74 761 100% 100% KR059156.1 Capra hircus isolate 11_Ch44 

haplogroup A2a mitochondrion, 

complete genome 

Capra hircus   

75 140 100% 98% KJ192730.1 Xerus erythropus isolate XeryT891 

12S ribosomal RNA gene, partial 

sequence; mitochondrial 

Xerus erythropus 

76 142 100% 98% KJ192475.1 Cricetomys gambianus isolate 

CspT1320 12S ribosomal RNA gene, 

partial sequence; mitochondrial 

Cricetomys 

gambianus 

77 136 100% 98% KJ192475.1 Cricetomys gambianus isolate 

CspT1320 12S ribosomal RNA gene, 

partial sequence; mitochondrial 

Cricetomys 

gambianus 

78 746 100% 100% KY366506.1 Capra hircus cretica isolate 96Chc 

cytochrome b gene, partial cds; 

mitochondrial 

Capra hircus 

79 742 100% 95% KF282339.1 Rattus rattus haplotype 47 cytochrome 

b gene, partial cds; tRNA-Thr and 

tRNA-Pro genes, complete sequence; 

and D-loop, partial sequence; 

mitochondrial 

Rattus rattus 

80 133 100% 99% KX381445.1 Rattus rattus isolate M1358 12S 

ribosomal RNA gene, partial 

sequence; mitochondrial 

Rattus rattus 

81 142 100% 100% MF573068.1 Capra hircus mitochondrion, complete 

genome 

Capra hircus 

82 140 100% 100% MF573068.2 Capra hircus mitochondrion, complete 

genome 

Capra hircus 

83 621 99% 99% KF282339.1 Rattus rattus haplotype 47 cytochrome 

b gene, partial cds; tRNA-Thr and 

tRNA-Pro genes, complete sequence; 

and D-loop, partial sequence; 

mitochondrial 

Rattus rattus 

84 664 100% 100% KR059156.1 Capra hircus isolate 11_Ch44 

haplogroup A2a mitochondrion, 

complete genome 

Capra hircus 
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Supplementary Table 3-5 Continued.  

Sample 

Number 

Query 

Length 

Query 

Cover 

 

Identity 

Accession 

Number 

 

First Match 

 

Scientific Name 

85 573 100% 99% KR059156.1 Capra hircus isolate 11_Ch44 

haplogroup A2a mitochondrion, 

complete genome 

Capra hircus  

86 130 100% 100% KX381445.1 Rattus rattus isolate M1358 12S 

ribosomal RNA gene, partial 

sequence; mitochondrial 

Rattus rattus 

87 677 100% 100% KR059156.1 Capra hircus isolate 11_Ch44 

haplogroup A2a mitochondrion, 

complete genome 

Capra hircus 

88 667 100% 99% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

89 164 100% 100% MF573068.1 Capra hircus mitochondrion, complete 

genome 

Capra hircus 

90 151 94% 90% KT963027.1 Epomophorus gambianus 

mitochondrion, complete genome 

Epomophorus 

gambianus 

91 138 97% 99% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

92 144 100% 99% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

93 135 100% 95% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

94 137 100% 92% Y08810.1 H.amphibius mitochondrial 12S 

rRNA gene 

Hippopotamus 

amphibius 

95 143 100% 99% JN632628.1 Connochaetes taurinus isolate SUN70 

mitochondrion, complete genome 

Connochaetes 

taurinus 

96 131 100% 100% JN632628.1 Connochaetes taurinus isolate SUN70 

mitochondrion, complete genome 

Connochaetes 

taurinus 

97 138 98% 99% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

98 168 98% 91% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

99 139 100% 99% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

100 144 100% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

101 154 100% 97% AP003425.1 Hippopotamus amphibius 

mitochondrial DNA, complete 

genome 

Hippopotamus 

amphibius 

102 144 100% 99% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

103 152 100% 100% AY495454.1 Chaerephon pumila 12S ribosomal 

RNA, tRNA-Val, and 16S ribosomal 

RNA genes, complete sequence; 

mitochondrial 

Chaerephon pumilus 

104 172 100% 100% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

105 150 100% 100% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

106 143 100% 99% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 
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Supplementary Table 3-5 Continued. 

Sample 

Number 

Query 

Length 

Query 

Cover 

 

Identity 

Accession 

Number 

 

First Match 

 

Scientific Name 

107 147 98% 99% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

108 147 100% 100% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

109 141 100% 98% KJ192475.1 Cricetomys gambianus isolate 

CspT1320 12S ribosomal RNA gene, 

partial sequence; mitochondrial 

Cricetomys 

gambianus 

111 183 97% 99% AF141282.2 Mastomys huberti 12S ribosomal 

RNA gene, partial sequence; 

mitochondrial gene for mitochondrial 

product 

Mastomys spp. 

112 149 100% 99% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

113 140 96% 100% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

114 148 100% 100% KT875880.1 Epomophorus minor isolate 

Epomino51 12S ribosomal RNA 

gene, partial sequence; tRNA-Val 

gene, complete sequence; and 16S 

ribosomal RNA gene, partial 

sequence; mitochondrial 

Epomophorus minor 

115 141 100% 100% KX381445.1 Rattus rattus isolate M1358 12S 

ribosomal RNA gene, partial 

sequence; mitochondrial 

Rattus rattus 

116 144 99% 97% JX446401.1 Kobus leche mitochondrion, complete 

genome 

Kobus leche 

117 142 100% 100% KX381445.1 Rattus rattus isolate M1358 12S 

ribosomal RNA gene, partial 

sequence; mitochondrial 

Rattus rattus 

118 161 96% 95% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

119 137 99% 97% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

120 145 100% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

121 139 100% 96% JX446401.1 Kobus leche mitochondrion, complete 

genome 

Kobus leche 

122 147 99% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

123 175 96% 96% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

124 143 100% 99% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

125 144 94% 100% U87000.1 Kobus kob 12S ribosomal RNA gene, 

mitochondrial gene for mitochondrial 

RNA, partial sequence 

Kobus kob 

126 166 96% 92% JN632628.1 Connochaetes taurinus isolate SUN70 

mitochondrion, complete genome 

Connochaetes 

taurinus 

127 134 100% 100% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 
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128 144 99% 99% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

129 173 100% 97% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

130 141 95% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

131 140 100% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

132 128 100% 97% JX446401.1 Kobus leche mitochondrion, complete 

genome 

Kobus 

ellipsiprymnus 

133 141 93% 97% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

134 129 100% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

135 168 95% 93% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

136 147 100% 100% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

137 144 100% 98% JN632684.1 Pelea capreolus isolate South 

mitochondrion, complete genome 

Pelea capreolus 

138 148 100% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

139 175 99% 95% JN632651.2 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

140 174 100% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Epomophorus minor 

141 192 65% 96% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

142 143 100% 97% JX446401.1 Kobus leche mitochondrion, complete 

genome 

Kobus leche 

143 178 96% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

144 172 98% 94% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

145 178 97% 97% JN632651.2 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

146 127 98% 92% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

147 147 99% 99% KJ192730.1 Xerus erythropus isolate XeryT891 

12S ribosomal RNA gene, partial 

sequence; mitochondrial 

Xerus erythropus 

148 136 100% 98% JX446401.1 Kobus leche mitochondrion, complete 

genome 

Kobus leche 

149 135 100% 100% MF663794.1 Bos taurus voucher CDM20170726 

mitochondrion, complete genome 

Bos taurus 
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150 140 100% 91% AF069538.1 Megaderma lyra 12S ribosomal RNA 

gene, complete sequence; tRNA-Val 

gene, complete sequence; and 16S 

ribosomal RNA gene, complete 

sequence; mitochondrial genes for 

mitochondrial RNAs 

Megaderma lyra  

151 144 100% 99% MF663794.1 Bos taurus voucher CDM20170726 

mitochondrion, complete genome 

Bos taurus 

152 146 100% 100% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

153 138 100% 98% JN632684.1 Pelea capreolus isolate South 

mitochondrion, complete genome 

Pelea capreolus 

154 141 100% 98% JN632684.2 Pelea capreolus isolate South 

mitochondrion, complete genome 

Pelea capreolus 

155 165 99% 96% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

156 135 99% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

157 137 100% 100% JN632651.2 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

158 169 100% 97% KJ192608.1 Orycteropus afer isolate OafeT1350 

12S ribosomal RNA gene, partial 

sequence; mitochondrial 

Orycteropus afer 

159 175 99% 99% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

160 123 100% 100% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

161 142 100% 100% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

162 140 100% 100% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

163 132 99% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

164 168 99% 96% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

165 149 100% 95% KX002032.1 Felis silvestris 12S ribosomal RNA 

gene, partial sequence; mitochondrial 

Felis sylvestris 

166 127 100% 100% MF573068.1 Capra hircus mitochondrion, complete 

genome 

Capra hircus 

167 143 100% 99% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

168 135 97% 96% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

169 138 98% 99% JN632651.2 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

170 127 98% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

171 166 96% 96% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 
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172 179 95% 97% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus  
173 134 100% 100% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

174 109 100% 100% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

175 162 99% 94% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

176 137 99% 99% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

177 145 100% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

178 175 97% 97% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

179 386 45% 99% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

180 93 98% 98% JX446401.1 Kobus leche mitochondrion, complete 

genome 

Kobus leche 

181 146 100% 100% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

182 177 96% 96% AY093659.1 Hystrix cristata 12S ribosomal RNA 

gene, partial sequence; mitochondrial 

gene for mitochondrial product 

Hystrix cristata 

183 124 100% 100% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

184 149 100% 97% JX446401.1 Kobus leche mitochondrion, complete 

genome 

Kobus leche 

185 141 100% 100% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

186 145 100% 97% JX446401.1 Kobus leche mitochondrion, complete 

genome 

Kobus leche 

187 139 99% 100% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

188 137 100% 98% JN632680.1 Ourebia ourebi isolate South 

mitochondrion, complete genome 

Ourebia ourebi  

189 147 100% 99% JN632680.2 Ourebia ourebi isolate South 

mitochondrion, complete genome 

Ourebia ourebi  

190 143 100% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

191 139 100% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

192 139 100% 97% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

193 175 98% 96% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

194 142 99% 99% JN632680.1 Ourebia ourebi isolate South 

mitochondrion, complete genome 

Ourebia ourebi  
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195 134 95% 98% JN632654.1 Madoqua kirkii isolate SUN 

mitochondrion, complete genome 

Madoqua kirkii  

196 144 100% 99% KJ192554.1 Lepus microtis isolate LvicT1295 12S 

ribosomal RNA gene, partial 

sequence; mitochondrial 

Lepus microtis 

197 139 100% 99% KJ192554.1 Lepus microtis isolate LvicT1295 12S 

ribosomal RNA gene, partial 

sequence; mitochondrial 

Lepus microtis 

198 146 99% 96% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

199 128 100% 97% JN632680.1 Ourebia ourebi isolate South 

mitochondrion, complete genome 

Ourebia ourebi  

200 152 100% 100% DQ409327.1 Phacochoerus africanus 

mitochondrion, complete genome 

Phacochoerus 

africanus 

201 146 100% 99% KJ192554.1 Lepus microtis isolate LvicT1295 12S 

ribosomal RNA gene, partial 

sequence; mitochondrial 

Lepus microtis 

202 153 100% 99% KJ192554.1 Lepus microtis isolate LvicT1295 12S 

ribosomal RNA gene, partial 

sequence; mitochondrial 

Lepus microtis 

203 165 95% 97% AF141259.2 Arvicanthis niloticus 12S ribosomal 

RNA gene, partial sequence; 

mitochondrial gene for mitochondrial 

product 

Arvivanthis niloticus 

204 173 98% 96% AF141259.2 Arvicanthis niloticus 12S ribosomal 

RNA gene, partial sequence; 

mitochondrial gene for mitochondrial 

product 

Arvivanthis niloticus 

205 178 97% 99% MF573068.1 Capra hircus mitochondrion, complete 

genome 

Capra hircus 

206 182 96% 99% EU273707.1 Rattus rattus isolate RNZRrTit01 

mitochondrion, complete genome 

Rattus rattus 

208 180 100% 96% EU273707.1 Rattus rattus isolate RNZRrTit01 

mitochondrion, complete genome 

Rattus rattus 

209 180 97% 99% EU273707.1 Rattus rattus isolate RNZRrTit01 

mitochondrion, complete genome 

Rattus rattus 

210 141 98% 99% KJ192730.1 Xerus erythropus isolate XeryT891 

12S ribosomal RNA gene, partial 

sequence; mitochondrial 

Xerus erythropus 

211 180 99% 97% EU273707.1 Rattus rattus isolate RNZRrTit01 

mitochondrion, complete genome 

Rattus rattus 

212 146 100% 98% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

213 148 100% 98% KX381445.1 Rattus rattus isolate M1358 12S 

ribosomal RNA gene, partial 

sequence; mitochondrial 

Rattus rattus 

214 139 98% 97% JX446401.1 Kobus leche mitochondrion, complete 

genome 

Kobus leche 
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215 136 99% 99% U87000.1 Kobus kob 12S ribosomal RNA gene, 

mitochondrial gene for mitochondrial 

RNA, partial sequence 

Kobus kob 

216 162 100% 92% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

217 138 100% 96% JX446401.1 Kobus leche mitochondrion, complete 

genome 

Kobus leche 

218 143 100% 98% JN632694.1 Redunca arundinum isolate MBP12 

mitochondrion, complete genome 

Redunca arundinium 

219 149 100% 99% JX946196.2 Papio anubis isolate east 

mitochondrion, complete genome 

Papio anubis 

220 143 92% 96% AF154262.1 Cephalophus silvicultor 12S 

ribosomal RNA gene, partial 

sequence; mitochondrial gene for 

mitochondrial product 

Cephalophus 

silvicultor 

221 135 95% 95% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

222 173 100% 96% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

223 149 100% 95% JN632628.1 Connochaetes taurinus isolate SUN70 

mitochondrion, complete genome 

Connochaetes 

taurinus 

224 104 100% 97% JX946196.2 Papio anubis isolate east 

mitochondrion, complete genome 

Papio anubis 

225 132 94% 94% JX446401.1 Kobus leche mitochondrion, complete 

genome 

Kobus leche 

226 172 98% 96% JN632651.1 Kobus ellipsiprymnus isolate Niger 

mitochondrion, complete genome 

Kobus 

ellipsiprymnus 

227 180 98% 99% MF663794.1 Bos taurus voucher CDM20170726 

mitochondrion, complete genome 

Bos taurus 

228 173 98% 100% MF663794.1 Bos taurus voucher CDM20170726 

mitochondrion, complete genome 

Bos taurus 

229 174 99% 98% MF663794.1 Bos taurus voucher CDM20170726 

mitochondrion, complete genome 

Bos taurus 

230 181 97% 96% MF663794.1 Bos taurus voucher CDM20170726 

mitochondrion, complete genome 

Bos taurus 
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Figure 1. (A) Map of Africa showing the location of Uganda and Murchison Falls Conservation  

Area (MFCA), and (B) Nwoya District and its sub-counties (black hatched area) and the MFCA 

protected area (dark green area) Murchison Falls National Park (MFNP), Bugungu Wildlife 

Reserve (BWR) and Karuma Falls Wildlife Reserve (KFWR) with the major highways (red line) 

and sub-counties. Blue dots represent villages where samples were collected. 
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CHAPTER IV 

Attitudes, practices and awareness of zoonoses in community members involved in the 

bushmeat trade near Murchison Falls National Park, northern Uganda 
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Abstract 

 

 The harvest and consumption of bushmeat is a widespread practice in the tropics and sub-

tropics. Often in these communities, there is a dependence on bushmeat for both food security and 

basic income needs. Despite the importance of bushmeat for many households worldwide, the 

practice raises concern for transmission of zoonotic pathogens through hunting, food preparation, 

and consumption. In Uganda, harvest of wildlife is illegal, but bushmeat hunting, especially in 

communities bordering protected areas, is commonplace. We interviewed 292 women who cook 

for their households and 180 self-identified hunters from 21 villages bordering Murchison Falls 

National Park in northern Uganda to gain insights into bushmeat preferences, opportunity for 

zoonotic pathogen transmission through injury or consumption, and awareness of common 

wildlife-associated zoonoses. We found that both hunters and cooks considered primates to be the 

most likely wildlife species to carry diseases humans can catch. Among common zoonotic 

pathogens, the greatest proportions of cooks and hunters believed that gastrointestinal pathogens, 

followed by monkeypox, can be transmitted by wildlife. Neither cooks nor hunters report frequent 

injury during cooking, butchering, or hunting, and few report taking precautions while handling 

bushmeat. Three of the five most preferred meat choices reported by cooks were domestic meats, 

while four of five for hunters were wildlife species. The majority of cooks believe that hunters and 

dealers never to rarely disguise primate meat as another kind of meat in market, while the majority 

of hunters report that they usually disguise primate meat as another kind of meat. These data play 

a crucial role in our understanding of potential for exposure to and infection with zoonotic 

pathogens in the bushmeat trade. Expanding our knowledge of awareness, perceptions and risks 

enables us to identify opportunities to mitigate infections and injury risk and promote safe handling 

practices. 
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Background 

The hunting and consumption of bushmeat is a widespread practice in tropical and 

subtropical ecosystems, often to provide food security and supplement basic income for 

participating households. Estimates for households dependent on bushmeat as a meat source 

surpass 150 million in the Global South (Nielsen, Meilby et al. 2018). In recent studies, 39% of 

surveyed households in 24 countries reported hunting bushmeat and 89% of that harvest was 

directly applied to dietary needs (Nielsen, Pouliot et al. 2017, Nielsen, Meilby et al. 2018). 

Additionally, bushmeat hunting tends to be most prevalent in areas with greater biodiversity 

indices, which frequently align with regions experiencing higher poverty and food insecurity 

(Adams, Aveling et al. 2004, Fisher and Christopher 2007, Cawthorn and Hoffman 2015). In 

Uganda alone, over 71% of households reported having participated at some point in bushmeat 

harvest and/or consumption (Nielsen, Pouliot et al. 2017). The widespread dependence of 

populations on bushmeat for nutritional and financial security raises concern for the sustainability 

of hunting practices for wildlife populations where bushmeat harvest is prevalent and for the risk 

of exposure of hunters and consumers to emerging, reemerging, and endemic zoonotic diseases 

during hunting, preparation, and consumption (Brashares, Arcese et al. 2004, Wolfe, Daszak et al. 

2005, Kurpiers, Schulte-Herbrüggen et al. 2016). 

Human contact with wildlife is a major pathway for emerging and endemic infectious 

diseases, with 62% of all newly emerging infectious diseases being zoonotic and over 70% of those 

zoonoses implicating wildlife reservoirs (Jones, Patel et al. 2008). The bushmeat trade presents 

numerous routes of opportunity for transmission of zoonotic pathogens, including airborne and 

blood-borne during hunting and the butchering of carcasses, as well as foodborne risks associated 

with preparation and consumption. Consumption-related risks are especially relevant in areas 

where there is suboptimal storage of meat in the consumer chain, allowing proliferation of bacterial 

pathogens (Paulsen, Nagy et al. 2008, Bachand, Ravel et al. 2012, Kuukyi, Amfo-Otu et al. 2014). 

Moreover, information about the effects of hunting and associated diseases remain limited largely 

due to poor healthcare access and reporting in many regions where bushmeat hunting and 

consumption is common. Recent epidemics have instilled zoonotic diseases into the global 

consciousness following large-scale and highly publicized outbreaks such as the 2015 and ongoing 

Ebola virus epidemics and the recent COVID-19 pandemic; each of these infectious agents 

originated from contact with wildlife species (Pigott, Golding et al. 2014, Saéz, Weiss et al. 2015, 
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Ahmad, Khan et al. 2020, Kannan, Ali et al. 2020, Rothan and Byrareddy 2020). Less highly 

publicized, but arguably more pervasive in many local communities is the presence of endemic 

zoonotic bacterial pathogens in hunted wildlife such as Shigella, Campylobacter, Listeria, 

Pseudomonas, Staphylococcus, Salmonella, Shigella, E. coli, and Brucella among others (Kayode 

and Kolawole 2008, Alexander, Blackburn et al. 2012, Bachand, Ravel et al. 2012, Kagambèga, 

Lienemann et al. 2013, Awaiwanont, Pongsopawijit et al. 2014, Chaber and Cunningham 2016, 

Kurpiers, Schulte-Herbrüggen et al. 2016).  Diarrheal and other foodborne illnesses are still a 

significant cause of mortality, disability, and economic loss in many countries (Käferstein, 

Motarjemi et al. 1997, Donovan, Bailey et al. 2003, von Witzke, Kirschke et al. 2005). 

An additional concern is that pathogens from hunted wildlife may also be brought into 

contact with domestic animal species. African swine fever, avian influenza, rabies, anthrax, 

tuberculosis, brucellosis, and Rift Valley Fever are among some of the most well-studied diseases 

that can be transmitted from wildlife to livestock with contact. These infections result in poor 

animal health outcomes, resulting in negative impacts to farmer livelihoods, and may continue to 

circulate between livestock and wildlife through these animals’ contact networks (Craft 2015, 

Wiethoelter, Beltrán-Alcrudo et al. 2015, Kukielka, Jori et al. 2016).  Many of these multi-host 

animal pathogens may also spillover from livestock to cause sporadic cases or outbreaks of disease 

in humans (Alexander, Blackburn et al. 2012, Kanouté, Gragnon et al. 2017, Muturi, Gachohi et 

al. 2018, Mwakapeje, Høgset et al. 2018). Risk for human cases of these diseases may increase 

substantially in subsistence farm settings, where extensive contact with domestic animals and 

handling of animal products occurs daily.  

Despite increasing interest in wildlife-acquired zoonoses, much of the information we have 

on the prevalence and practice of bushmeat in communities comes from geographically-limited 

surveys of hunters and small-scale studies reporting market observations, which give limited 

insight to the bushmeat markets in other communities, even within the same region or country 

(Taylor, Scharlemann et al. 2015). Bushmeat serves as a vital resource in many rural lower-income 

regions of sub-Saharan Africa, but more research on the prevalence and drivers of the bushmeat 

trade has been conducted in West Africa and Central Africa than in East Africa. Estimates attribute 

nearly 90% of consumed animal protein in West and Central Africa to bushmeat, with daily wild 

meat consumption ranging from 0.008kg/day in Libreville, Gabon to up to 0.22kg/day in Campo, 

Cameroon (Ntiamoa-Baidu 1997, Pearce 2005, Nasi, Brown et al. 2008). The widespread 
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dependence of households on bushmeat is generally accepted as fact but only sporadically 

documented, with data particularly lacking in East Africa. Because the cultural, legal, and 

sociopolitical differences among communities engaged in bushmeat trade are distinct, there are 

gaps in our understanding of what drives the bushmeat trade. This limitation reduces our ability to 

understand how to effectively mitigate the associated risks of bushmeat hunting and consumption.  

In Uganda, hunting of all wildlife species by citizens is illegal and a punishable offence 

under the Uganda Wildlife Act of 2000 (Uganda 2000). There is exception to this if a vermin 

species depredates crops on private land, in which case the animal can be disposed under the 

permission and supervision of the Uganda Wildlife Authority (UWA) (Naughton‐Treves 1999, 

Saj, Sicotte et al. 2001, Schroth, Fonseca et al. 2004, Tweheyo, Hill et al. 2005, Olupot, McNeilage 

et al. 2009, Hill, Webber et al. 2017). There are currently three recognized vermin species: 

bushpigs (Potamochoerus larvatus), vervet monkeys (Chlorocebus pygerythrus), and olive 

baboons (Papio anubis) (Uganda 2000). Despite legal restrictions on hunting wildlife, bushmeat 

harvest is widespread and culturally accepted (Moreto and Lemieux 2015, Pomeroy, Tushabe et 

al. 2017). The illegal nature of the practice has resulted in a covert market with person-to-person 

exchanges rather than open markets supporting consumer choice. Furthermore, in initial 

communications with Ugandan collaborators on this project, the concept of “species deception” in 

market emerged, in which bushmeat is sold to consumers by either hunters or dealers as a different 

species than the true species. Dell et al. (in review) demonstrated nearly 30% of bushmeat sold in 

these same communities are misrepresented as another species of bushmeat. This practice adds an 

additional degree of risk to the bushmeat chain, as certain species of wildlife, such as primates, 

bats, and rodents, are more often implicated as reservoirs for zoonotic diseases of consequence 

than species like warthog or antelope, which are more culturally desirable to consume and lower 

risk animals for zoonotic spillover events (Han, Kramer et al. 2016, Olival, Hosseini et al. 2017).  

In this paper, we present bushmeat hunting and handling survey data collected from hunters 

and cooks in 21 communities adjacent to protected areas in northern Uganda.  Cooks and hunters 

were chosen as they represent the population subsets in greatest contact with bushmeat and most 

in control of implementing practices that might minimize exposure to zoonotic pathogens. Our 

research objectives for this study were to elucidate drivers of participation in the bushmeat trade 

by hunters and cooks, gain insight into hunting practices in our study area, and to establish an 

understanding of the level of local knowledge of zoonotic disease risk from participation in these 
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activities. These data serve as an important resource to begin to understand this ubiquitous, but 

clandestine, practice and to inform policy and community engagement to prevent both emerging 

and endemic zoonotic illnesses in these communities. Furthermore, insights gained from these data 

should be used to empower local community members, district leaders and public health 

stakeholders to increase safety measures that prevent and reduce the incidence of zoonotic 

infections resulting from contact with bushmeat.  

 

Methods 

Study area 

The Murchison Falls Conservation Area (MFCA) is Uganda’s largest and oldest 

continuous protected area and its most visited national park, comprised of the 3,893 km² 

Murchison Falls National Park (MNFP) to the north, the 748 km² Bugungu Wildlife Reserve to 

the southwest, and the 720 km² Karuma Falls Wildlife Reserve to the southeast. The park was 

initially founded in 1926 as a game reserve to preserve the savannah, forests, and Murchison Falls, 

a major tourist attraction for its high flow rate and beauty, and then gazetted as a national park in 

1952 following the National Parks Act (Authority 2020). The existing protected area sits at the 

northern terminus of the Albertine Rift and is notable for its high biodiversity of both mammalian 

and avian species (Plumptre, Davenport et al. 2007). The MFCA is managed and operated by the 

Uganda Wildlife Authority and is used primarily for conservation and ecotourism. MFNP is the 

second most visited national park in the country with 75,360 visitors (30.7% of all national park 

visits) reported by the Ministry of Tourism, Wildlife, and Antiquities in 2016. Of these visitors, 

29,868 are non-residents and foreigners. Estimated revenue from entrance to all Ugandan protected 

areas and related recreational activities for UWA is UGX 92,628,231,456 (Antiquities 2018). 

Revenue sharing at 20% of tourism to MFNP resulted in disbursement of UGX 8,421,310,000 

(USD 2,285,945.79) to the surrounding communities for livelihood projects “geared towards 

management of human wildlife conflicts, livelihood improvement, and common good in the 

frontline parishes” from 2012-2018 and UGX 10,290,101,500 (USD 2,793,225.07) total since 

2005 (Antiquities 2018). Projects funded by revenue sharing in bordering MFNP have included 

classroom block construction and school staff accommodation, health unit construction, sanitation 

projects, and livestock-based income-generating activities (such as goat, poultry, and rabbit rearing 

and bee-keeping) (Manyindo and Makumbi 2005). 
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Human population density in the areas surrounding MFNP has increased from an estimated 

18 individuals/km² in 1959 to 111 individuals/km² reported on the 2014 census (Hartter, 

Dowhaniuk et al. 2016). Our study was conducted in villages in Nwoya district in northern Uganda. 

Nwoya district is composed of 4 sub-counties, Purongo, Anaka, Alero, and Koch Goma, and forms 

the northernmost border of Murchison Falls Conservation Area (MFCA) The population of Nwoya 

district in the 2014 census was 133,506, with a projected population in 2019 of 214,200 (Statistics 

2016).  Nwoya district reports a population density of 23 individuals/km² and an average household 

size of 5 individuals (Statistics 2016). A map of the study area can be seen in Figure 4-1.  

 

Survey design 

Our survey was constructed in cooperation with our partners at Makerere University and 

our governmental partner, the private secretary in charge of veterinary affairs in the State House 

of Uganda. The survey instrument was designed to gain insight to the attitudes, practices, perceived 

risk, and preferences surrounding the bushmeat trade in the greater MFNP region so that 

appropriate educational and disease prevention measures could be implemented with increased 

efficacy. The survey contained questions about meat preference, perceived risk of injury and 

disease during activities involving bushmeat, knowledge of zoonotic diseases, availability of 

species in market, and demographic information. Questions were presented in a variety of formats, 

including multiple choice, ordered response, free response, and battery-type statements with 

Likert-type response choices.  

We constructed the survey in English and translated it into Acholi. The Acholi survey was 

then back-translated to ensure clarity and understanding of survey items. We pilot tested the hunter 

survey instrument using cognitive interviews with three Acholi-speaking hunters and two Ugandan 

veterinary professionals (Dillman, Smyth et al. 2014).  We pilot tested the female cook survey 

instrument using a group cognitive interview of seven female Acholi-speaking community 

members and separate cognitive interviews with three Ugandan academic colleagues to ensure 

questions were appropriate and easily understood. If a question contained language that was not 

easily understood or conveyed a meaning that was not intended, the question was rewritten and 

rechecked with pilot group members before being deployed in the field. All survey materials and 

research procedures were approved by the University of Tennessee’s Office of Research and 

Engagement’s Institutional Review Board (protocol number UTK IRB-16-03109-XM & UTK IRB 
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16-3158-XM) and the Uganda National Council for Science and Technology (research registration 

number HS 3013). Site-specific permissions were secured through oral consent by local leaders. 

Local field staff obtained oral informed consent for voluntary individual participation. The iSurvey 

iPad application (Harvestyourdata 2016 & 2017) was used to administer the questionnaire in the 

field and store response data locally on the tablets and then uploaded to the program’s data cloud 

each evening. 

 

On-site interviews 

Hunter interviews were conducted over a two-week period in July 2016 in 10 villages in 

Nwoya district with individuals who self-identified as having hunted wildlife in MFNP. We 

selected villages based on their proximity and accessibility to MFNP and expected participation in 

the bushmeat trade as identified by our local collaborators. Initial hunter respondents in each 

village were identified by our community liaisons. The liaisons for this research period were two 

men who were local community members with a demonstrated history of involvement in scientific 

research with collaborators at Makerere University, fluency in Acholi, and knowledge and 

familiarity with local hunters and bushmeat markets. We obtained subsequent interviews through 

word-of-mouth among hunters and through a snowball sampling technique in which initial 

respondents recruited other hunters (Sadler, Lee et al. 2010). This method was utilized since illegal 

hunting is a sensitive topic with potential to carry penalties to those involved if participants were 

implicated. Moreover, this method is used routinely in studies focused on populations that may be 

difficult to identify (Bernard and Bernard 2013). Respondents were assured anonymity and all 

respondents participated voluntarily and were not incentivized to participate in this study with gifts 

or monetary payment. 

Interviews with female cooks were conducted over a 3-week period in July 2017 in 21 

villages and communities in Nwoya district. The same 10 villages as in 2016, as well as additional 

sub-communities of the original villages in which women worked, were sampled. We attempted 

to interview every woman involved in household food preparation in each village included in the 

study area. One to four days before interviewing in a village, our community liaison traveled to 

that village to describe our study to women living in the community and arrange a time at which 

interested cooks could gather for interviews. Interviews were conducted one-on-one in Acholi, 

except in instances when participants were uncomfortable responding to questionnaires alone. In 
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these cases, groups of two to three women would be asked questionnaire items in proximity and 

each individual participant’s response would be recorded separately. In this case, printed paper 

questionnaires were used to record responses from each respondent and later entered into iSurvey 

by researchers. All paper survey results were entered manually the same day interviews were 

conducted and checked for data entry errors.  As with hunter surveys, all participants participated 

voluntarily and were not incentivized to participate in the study with gifts or monetary payment.  

 

Statistical analysis 

All statistical analyses were performed using IBM SPSS Statistics 25. We used descriptive 

statistics to summarize survey data. Comparisons of proportions between hunters and cooks were 

assessed with z-tests (Bonferroni correction). Statistical significance was concluded at P ≤ 0.05 

for all tests.  Constructs of hunters’ and cooks’ perceived risk of zoonotic diseases through contact 

with bushmeat were assessed using principal components factor analysis with a Varimax rotation 

(Hartel, Carlton et al. 2015). Factors were extracted based on Eigenvalues greater than 1 and 

confirmed via Monte-Carlo parallel analysis (Kaiser 1991, Hayton, Allen et al. 2004, Watkins 

2006, Matsunaga 2010). Threshold for retention of variables in final analysis was 0.5. Variables 

below this were removed and the factor analysis was re-run. Cronbach’s α was used to assess the 

final extracted factor reliability (Santos 1999).  

 

Results 

Descriptive statistics and socio-demographics 

Demographic information for cooks and hunters is summarized in Table 4-1. We 

interviewed 180 self-identified hunters in 10 communities adjacent to MFNP. Hunters were 

generally younger adults (x̄ ± SD; 33 years±10.9), ranging from 18 years to 74 years old. The 

majority of hunters reported having lived in the community since birth (n=110; 60.8%). Most 

hunters reported primary school as their highest level of education (n=137; 76.1%), and most were 

married (n=158; 87.8%). An overwhelming majority of hunters reported their primacy occupation 

as farmer (n=167; 92.8%), while only three respondents (1.7%) identified their primary occupation 

as hunter.   

We interviewed 292 women who cook for their households from 21 communities. The 

mean age of cooks was 37 (±14.2) years, ranging from 18 years to 81 years old. Unlike hunters, 
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most cooks did not live in the community since birth, with only 22 (7.5%) of respondents being 

born in the respective study villages.  Cooks’ mean length of time spent living in the community 

was 13 (±14.1) years, ranging from one year to 70 years. The majority of cooks reported primary 

school as their highest level of education (n=175; 59.9%), and most were married (n=193; 66.1%). 

The most common primary occupation among cooks was farmer (n=222; 76.0%); however, more 

than one primary occupation was reported by twenty-six respondents (8.9%).   

 

Hunting techniques and practices 

Hunters indicated that the African buffalo (Syncerus caffer caffer) is the most dangerous 

wild animal to hunt (44.2%, n=80) and the most dangerous to trap (48.6%, n=88).  Hunters used 

spears to hunt more than once per week (1.40 ±1.06), and dogs (2.0±1.5), wire snares (3.1±2.7), 

and sticks/clubs (2.4±1.9) less frequently, where 1=nearly every day, 2= at least 3 times per week, 

3=once a week, 4=several times per month, 5=several times per year, and 6=never. When asked 

about the safety of hunting techniques, hunters perceived bow hunting as the most dangerous 

hunting technique (3.4±1.0), followed by trapping (2.6±1.0), spear hunting (2.5±0.9), and hunting 

with dogs (2.5±0.8), where 1= very safe, 2=safe, 3=neither safe nor dangerous, 4= dangerous and 

5=very dangerous. Hunters reported being wounded most frequently during butchering (3.1±1.1), 

followed by trapping (2.2±1.1), spear hunting (1.9±1.0), then hunting with dogs (1.8±1.1), 

where1= never, 2= rarely, 3=sometimes, 4=frequently, 5= every time.  Fifty-eight percent (n=105) 

of hunters reported having harvested, hunted, or trapped baboons or monkeys (69.1%, n=125) and 

bats (63.5%, n=115). Only 5% (n=9) of hunters reported taking any kind of safety precaution when 

hunting, trapping, or handling bushmeat. The most frequently reported precaution taken was to 

“leave bones in bush” (n=4). One respondent described wearing plastic bags on his hands as 

gloves.  

 

Food preparation practices 

A greater proportion of cooks reported taking precautions when preparing domestic meats 

(n=79; 27.1%) compared to when preparing bushmeat (n=68; 23.3%). Most cooks reported 

sometimes being wounded while preparing or cooking meat (n=163; 55.8%), then rarely (n=67; 

22.6%), never (n=45; 15.4%), frequently (n=16; 5.5%), and usually (n=1; 0.3%).  The mean 

number of adults cooked for on a daily basis was 3.6 (SD ±2.2), ranging from one to 16 adults per 
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single respondent; mean number of children cooked for on a daily basis was 4.9 (SD ±3.3), ranging 

from one to 40 children per single respondent. 

 

Meat preference and market value 

Meat preference data are displayed in Figure 4-3. Overall, hunters preferred the taste of 

bushmeat over domestic meats.  However, on an animal-by-animal basis, hunters reported that the 

most delicious animal was domestic chicken (n=31, 17.2%), followed by antelope and warthog 

(each n=28, 15.6%), hippopotamus (n=22, 12.2%), and goat and edible bush rat (each n=21, 

11.7%).  Antelope was the most frequently reported most delicious wild meat when only wild meat 

options were listed (n=49, 27.2%,). Most (n=95, 52.8%) hunters preferred to eat meat from either 

wildlife or domestic species overall compared to either fish (n=27, 15.0%) or beans/vegetables 

(n=58, 32.2%).  

Generally, cooks preferred the taste of domestic meats to bushmeat. Chicken (n=116; 

38.5%) was ranked the most delicious meat, followed by goat (n=89; 29.6 %), beef (n=53; 17.6%), 

warthog (n=9; 3.3%), and pork (n=9; 3.3%). Cooks also selected domestic meat choices as the 

most nutritious, indicating chicken (n=146; 48.5%), goat (n=77; 25.6%), and beef (n=33; 11%) as 

the most nutritious meats. Cooks identified bushmeat (4.05±0.9) as being more expensive in 

market than domestic meat choices (3.0±1.006), where 1= very cheap, 2= cheap, 3=neither cheap 

nor expensive, 4 expensive, and 5=very expensive.  The majority of cooks reported that they 

“never” knowingly consumed baboons (n=270; 90%), monkey species (n=271; 90%), 

chimpanzees (n=279; 92.7%), or bats (n=279; 92.7%).  

 

Disease knowledge/food safety 

 When queried about knowledge of major diseases being carried and spread to humans by 

wildlife, hunter responses were varied. Stomachache and other diarrheal illnesses were most 

acknowledged for their zoonotic potential at 74.6% (n=135) followed by 62.2% (n=112) for 

monkeypox. Marburg virus (35.9%; n=65) and brucellosis (40.3%; n=73) had the least zoonotic 

potential awareness. Cook responses to this question were similar to hunters’, with the most 

awareness for stomachache and diarrheal illness (69.5%; n=203) and monkeypox (67.1%; n=196) 

and the least for Marburg virus (26.4%; n=77). Cook and hunter response proportions differed 

significantly from each other for Marburg virus, monkeypox, brucellosis, and scabies, but not for 
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Ebola virus or stomachache and diarrheal illness. These data are summarized in Figure 4-2. 

Furthermore, hunters indicated that they believed wildlife were most likely to carry diseases 

livestock could catch (3.6±1.2), followed by people (3.5±1.2), and least likely to carry disease that 

hunting dogs could catch (3.4±1.3), where 1=very unlikely, 2= unlikely, 3=neither unlikely nor 

likely, 4= likely, and 5=very likely.  

 Cooks considered domestic meat consumption (cow, pig, chicken, goat) overall safer 

(3.1±0.8) than bushmeat species (2.6±0.1), where 1=very dangerous, 2= dangerous, 3=neither safe 

nor dangerous, 4= safe, 5= very safe. Baboons (3.5±0.9), chimpanzees (3.5±0.9), goat (3.4±0.9), 

monkeys (3.4±0.9), pigs (3.3±0.9), and bats (3.3±0.9) were perceived by cooks to be the most 

likely to make a person sick when consumed, where 1=very unlikely, 2=unlikely, 3=neither 

unlikely nor likely, 4= likely, and 5= very likely. Cooks identified edible bush rats as the least 

likely meat to make people sick when consumed (2.3±1.0), followed by beans and vegetables 

(2.3±1.0 and chicken (2.5±1.0). The perceived likelihoods that wildlife carried diseases that 

hunting dogs (3.5±0.9) or domestic livestock (3.5±0.9) could catch were comparable. Cutting and 

butchering meat during food preparation and active hunting were considered to carry the greatest 

risk of disease from wildlife (3.4±0.9) and (3.3±0.9) respectively, compared to trapping methods 

(3.1±1,0). Cooking was perceived to carry notably less risk of disease than these activities 

(2.5±1.0). All above questions were scaled 1=very unlikely, 2=likely, 3=neither unlikely nor 

likely, 4=likely, 5=very likely.  

 

Species deception in market 

Species deception data for hunter and cooks are summarized in Figure 4-4. A notable 

majority of hunters (n=156; 86.2%) report that they “usually” disguise primate meat as some other 

kind of meat in market. Furthermore, 95% (n=172) of hunters report that dealers “usually” disguise 

primate meat as some other kind of meat in market. Cooks responded most frequently that they 

believed bushmeat hunters disguised primate (baboon, monkey, chimpanzee) as some other kind 

of meat to sell to never occur (n=151; 50.2%), with virtually no cooks (n=2; 0.7%) believing that 

it usually occurs. When asked how often market sellers or dealers disguise primate meat as some 

other kind of meat to sell, the majority of cooks again reported that this never happened (n=255; 

84.7%) and only one cook reported that they believed it usually occurs (n=1; 0.3%); moreover, 

most cooks believe that baboons (n=24l; 79.7%), monkeys (n=250; 83.1%), chimpanzees (n=264; 
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97.7%), and bats (n=278: 92.4%) are “never” available in market to purchase. Independent t-tests 

confirm a significant difference in mean responses between cooks and hunters for both questions 

about hunters (t437.8 = -35.3, p < 0.001) and dealers (t392.0 = -63.3) disguising primate meat as 

another kind. 

 

Perceived disease risk from bushmeat taxa 

Principal components factor analysis results for the question “how likely it is that each 

wildlife species carry disease that humans can catch?” are summarized in Table 4-2. Both cooks’ 

and hunters’ responses grouped into 3 variables for these. Each animal was rated on a scale of 1-5 

according to 1= very unlikely, 2=unlikely, 3=neither unlikely nor likely, 4= likely, and 5= very 

likely; a lower number represents a perception of lower risk of contracting a zoonoses from that 

species/group. For cooks, primates (monkeys, baboons, chimpanzees) grouped together with the 

highest means (group x̄ = 3.7), all domesticated animals eaten for meat grouped with the next 

highest means (group x̄ =3.4), and non-bat, non-primate wildlife grouped together for the lowest 

means (group x̄ =3.1). Bats did not fit into any of the factor reduction groupings for cooks (x̄ = 

3.4). For hunters, primates and bats grouped together (group x̄ = 3.80), non-bat, non-primate 

wildlife species grouped together (x̄ =2.1), all domesticated animals (group x̄ = 2.4), and edible 

bush rat did not group into any other factor (x̄ =1.6). Based on our threshold value of 0.5, porcupine 

was removed from the variable list for both hunters and cooks in the final analysis. Edible bush 

rats also fell below our threshold value for hunters and was removed from the final analysis.  

 

Discussion 

The findings of this study emphasize important areas of concern for public health and 

conservation measures from the bushmeat trade in northern Uganda. Most of our respondents in 

both hunter and cook surveys reported their primary occupation as farming, which is consistent 

with other studies in sub-Saharan Africa where hunting is seen as supplemental to agricultural 

activities rather than a primary occupation  (Wilkie, Curran et al. 1998, Marfo, Anchirinah et al. 

2002, Odonkor, Gbogbo et al. 2007, Subramanian 2012, Alexander, McNamara et al. 2015). 

Bushmeat hunting is thought to be primarily done as a source of supplemental income or to ensure 

household food security. Interviews of UWA law enforcement officers in Queen Elizabeth 

National Park corroborate the need for bushmeat for both personal consumption and generation of 
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basic income, citing poverty and lack of economic opportunity as the main reasons for poaching 

(Moreto and Lemieux 2015). Still, our findings indicate that preference for wild animal meat may 

play a role in bushmeat utilization, as four of the five top preferred meats by hunters were wild 

animals rather than domestic choices (Wilkie, Starkey et al. 2005, Schenck, Effa et al. 2006, 

Mwakatobe, Røskaft et al. 2012). This finding is not mirrored by the reported preferences of cooks, 

who generally preferred domestic meat options and believed domestic meat choices to be more 

nutritious than bushmeat, which may indicate that male household members may have more 

influence over household food choices. 

 Based on responses to our questions about diseases that wildlife carry, almost all 

respondents were aware that there is a real and present risk of disease spillover from wildlife to 

people. Epidemics in recent years may contribute to this knowledge, but for hunters this awareness 

does not appear to influence or motivate any precautionary behaviors during the harvest of wildlife 

as virtually no respondents reported taking precautions. Rather, the precautions that were reported 

were related to the potential for legal or financial repercussions if caught by authorities for 

poaching.  The most reported precaution was “butchering in the field” and “leaving the bones 

behind” to minimize evidence of poaching. Similar to studies in Central Africa, these responses 

suggest that risk of illness or injury from bushmeat hunting does not outweigh the incentive of 

financial profit from the sale or use value of the harvested bushmeat (Monroe and Willcox 2006). 

Previous research has shown that there is nearly a 30% discrepancy between what species 

bushmeat is being sold as by hunters and dealers and what species are actually being sold in 

Uganda (Dell, in review). The data in this paper substantiate that this deception may be intentional 

by hunters in many cases. Most hunters interviewed reported that they usually disguised primate 

meat as another species and that they knew dealers of bushmeat would often do the same; however, 

cooks’ responses to the same question indicate they do not believe that this deception occurs. 

Although only disguising primates was asked about in our surveys, data form Dell et al. reveal that 

this intentional deception is not restricted to species that are taboo to consume and includes the 

disguise of species that were most preferred in this study as other kinds of bushmeat. This 

incongruity is potentially harmful because it subverts the ability of bushmeat consumers to make 

informed choices about their diets. Moreover, the way that cooks responded to the question about 

diseases humans can catch from wildlife indicates that there is awareness that certain species carry 

more inherent risk for zoonoses transmission than others. If we assume that this translates to 
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differences in precautionary practices in food preparation and handling, then consumers may be 

inadvertently exposing themselves and others consuming the meals to zoonotic pathogens due to 

this misrepresentation. Most cooks we interviewed noted that they did not eat bats and primates; 

this should thereby confer a degree of ‘cultural immunity’. The phenomenon of market deception 

and hunters admitting to eating bats and primates in the bush may challenge the degree that 

preference and choice protect community members from exposure to zoonotic pathogens carried 

by species with a high risk of spillover.  

Hunters have arguably the greatest amount of contact with animal tissue through the 

process of hunting itself. Even with snares and traps, the risk of injury during these events is high, 

particularly if the animals are not found dead when the traps are checked, and the wounded animal 

must be killed at close range. Inhalation of aerosolized particles on fur or urine of wildlife, 

inadvertent fecal-oral transmission when handling the carcass, bloodborne transmission during the 

killing and butchering process, as well as the potential for transmission through saliva via a bite 

during the kill all pose serious threats to the health of hunters (LeBreton, Prosser et al. 2006). 

Although the majority of hunters did not report frequently being injured during hunting, trapping, 

and butchering, multiple hunters did admit to butchering wildlife carcasses hastily in the field to 

leave behind the bones which may reasonably lead to increased incidence of injury. Injury remains 

a common experience as part of bushmeat harvest, with incidence of injury to bushmeat hunters 

in a community in western Uganda at over 13% and nearly 60% of those injured seeking medical 

care for their injuries (Paige, Frost et al. 2014). Hunting using firearms may reduce contact with 

live animals if hunters are accurate shots, however, civilian-owned firearms in Uganda are strictly 

regulated through fire-arm certificates and stringently enforced. We did not ask about hunting with 

firearms on the advice of our colleagues in Uganda. The sensitive nature of this subject led us to 

believe that self-reporting of use would be inaccurate or discourage study participation. Although 

it is not reported in our study, hunting with firearms is common in other areas of sub-Saharan 

Africa (Batumike, Imani et al. , Holmern, Mkama et al. 2006, Alexander, McNamara et al. 2015, 

Ávila, Tagg et al. 2019).  

Hunters most reported trapping using wire neck- or leg-hold snares. This and the other non-

selective hunting measures most frequently reported in our study are consistent with commonly 

used methods across the tropics and subtropics for their relative ease of use, but pose a particular 

threat to wildlife (Noss 1998, Noss 1998). Non-selective hunting methods result in substantial 
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bycatch of non-target species which leads to decomposition or scavenging, may disproportionately 

impact threatened species, and may result in intentional wasting if traps are inconveniently located 

to hunters or if less profitable species are snared (Noss 1998, Newing 2001, Ripple, Abernethy et 

al. 2016). This practice poses a threat to the sustainability of wildlife populations, particularly 

wildlife populations in border zones of these protected areas where human populations are dense 

and access to protected areas is convenient (ref). In our study, wasting due to capture of non-target 

species may be less an of issue since hunters reported bringing back meat that was already 

butchered in the field and is presumably more likely to be passed off as more in-demand meats or 

meats that will fetch a higher market price (Dell, in review). 

 In both hunter and cook groups, primates were considered to present a higher risk of 

zoonotic disease transmission than other species. For hunters, bats grouped with primates as the 

highest-risk species. Cooks responses grouped primates together as the highest-risk species, but 

bats did not group with them and had a lower mean response. This difference may be explained by 

the fact that many women married into the community and may have come from nearby 

mountainous regions where bats are more often consumed and are not considered a high-risk 

animal for disease spillover (Dell and Willcox Personal Communications).  During interviews, 

both cooks and hunters indicated that in the more mountainous regions nearby, larger bat species 

are commonly consumed, whereas in Nwoya district, most did not report that they considered bats 

edible or a preferred species (Dell and Willcox Personal Communications). Cooks considered 

domesticated animals, rather than wildlife, to have the next greatest zoonotic risk, where hunters 

considered what broadly grouped as other wildlife to have the next greatest zoonotic risk. 

Veterinary outreach efforts to promote vaccination and domestic animal health in Nwoya district 

historically tended to target the women in the household, as livestock rearing and farming is 

typically their responsibility (Dell Personal Communications). This increased awareness of 

domestic animal health and disease may contribute to cooks’ responses, indicating that educational 

campaigns may be an effective strategy for mitigating food-related infections.   

Few cooks reported taking special precautions when preparing either bushmeat or domestic 

meat. Moreover, a greater proportion of cooks reported taking precautions when handling domestic 

meat than bushmeat. This is consistent with the belief that domestic species are more likely to 

cause disease in people than most wildlife. Cooks responses indicated that although most of them 

have a level of concern about diseases from bushmeat at the time of purchase, that concern 
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decreases during cooking/preparation, and decreases even further at the time of consumption. This 

finding either speaks to confidence in appropriate food safety technique or is an example of 

awareness of an abstract issue, like emerging zoonotic diseases, that has little relevance to them 

on a practical and day to day level. 

The complexity of the issue of bushmeat presents challenges to efforts to adapt data about 

the practice into useful and practical intervention strategies. Engaging our target population 

involves communicating that the risk of zoonotic disease spillover and threats to conservation are 

both relevant and of consequence to them specifically. Even if this is achieved, evidence to support 

awareness and concern as adequate motivation to elicit behavioral changes, especially when these 

changes are impractical or costly, is not well supported (McCaffrey 2004, Monroe and Willcox 

2006). Further data suggest that intervention strategies that depend on informal societal mores and 

local-level institutions may have greater buy-in than governmental level regulations (Ostrom, 

Burger et al. 1999, Colding and Folke 2001).  

It is important to consider that hunting in our study area remains an illicit activity and the 

threat of discovery or implication of participation in poaching may have deterred participation of 

both hunters and cooks.  The illegality of hunting may have also biased responses of those who 

participated in the study, leading to underestimations of participation. Additionally, questions 

about disguising meat as another kind may have bias in responses, as cooks acknowledging that 

this occurs directly implicates members or their communities in deceptive behavior. Similarly, 

responses by cooks about preferred meat choices may underrepresent a preference for bushmeat, 

due to issues surrounding its legality.  

 

Conclusions 

We have provided important insights into awareness of zoonoses and occupational injury 

for community members involved in the bushmeat commodity chain, as well as patterns of meat 

preference and market availability of bushmeat in villages bordering MFCA. These data clarify 

points in the bushmeat commodity chain, namely butchering, trapping, and contact with incorrectly 

specified bushmeat tissue, where cooks and hunters are most susceptible to injury and exposure to 

infectious agents. More detailed evaluations of subjective cultural characteristics of this 

community, such as beliefs, attitudes, and social norms of the community as a whole rather than 

hunters and cooks alone, will help in understanding determinants, practices, and preferences in the 
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bushmeat trade. This will ultimately lead to the development of more successful and appropriate 

conservation tactics for wildlife species in MFNP.  Furthermore, increasing community 

engagement and advancing community understanding of the interplay between wildlife species 

and their own health may inform approaches by public health entities that ultimately increase the 

communities perceived control of mitigating their own disease risk.   
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Table 4-1.  Demographic information of interviewed cooks and hunters from communities in 

Nwoya District, Uganda 2016-2017. 

Hunters (n=180) Cooks (n=292) 

Age (x̄±SD) 33.0 ± 11.0 Age (x̄±SD) 37.3 ± 14.4 

    

Marital Status  Marital Status  

Married 158 (87.3%) Married 199 (66.1%) 

Divorced 7 (3.9%) Divorced 23 (7.6%) 

Widowed 2 (1.1%) Widowed 58 (19.3%) 

Never married 14 (7.7%) Never married 21 (7%) 

 

Education Level  Education Level  

Technical/trade 

school 

1 (0.6%) Technical/trade 

school 

4 (1.3%) 

Secondary school 38 (21.0%) Secondary school 36 (12.0%) 

Primary school 138 (76.2%) Primary school 183 (60.8%) 

College or university 4 (2.2%) Informal/no 

schooling 

78 (25.9%) 

 

Years Lived in 

Community 

 Years Lived 

Community  

 

1-5 years 37 (20.6%) 1-5 years 103 (35.3%) 

6-10 years 20 (11.1%) 6-10 years 85 (29.1%) 

11-20 years 13 (7.2%) 11-20 years 42 (14.4%) 

21+ years 109 (60.6%) 21+ years 62 (21.2%) 

    

Primary 

Occupation 

 Primary 

Occupation 

 

Farmer 167 (92.8%) Farmer 220 (75.3%) 

Businessman 3 (1.7%) Vendor 28 (9.6%) 

Hunter 3 (1.7%) Businesswoman 14 (4.8%) 

Motorcycle taxi 3 (1.7%) Food service 

worker 

8 (2.7%) 

Quarry worker 1 (0.6%) No occupation 7 (2.4%) 

Mechanic 1 (0.6%) Tailor 5 (1.7%) 

Teacher 1 (0.6%) Hairdresser 5 (1.7%) 

Surveyor 1 (0.6%) Hotel owner 2 (0.7%) 

  Childcare giver 1 (0.3%) 

  Teacher  1 (0.3%) 

  Savings group chair 1 (0.3%) 

 

  



 

 

Table 4-2. Principal components analysis with Varimax rotation of cook and hunter perceptions of zoonotic disease risk from various 

wildlife species, Uganda 2016-2017. Bolded figures represent the highest factor loadings and the meaningful groups created from 

these loadings. 

 

Hunters (n=180)  
Cooks (n=292) 

Animal type x̄ SE 

Primates 

& Bats 

Other 

wildlife 

Domestic 

animals Animal type x̄ SE Primates 

Other 

wildlife 

Domestic 

animals 

Baboon or 

monkey 

3.99 0.092 0.819 0.139 0.063 Monkey 3.59 0.050 0.778 0.167 0.099 

Bat 3.61 0.094 0.732 0.056 0.003 Baboon 3.75 0.042 0.876 0.100 0.156 

Antelopes 1.68 0.081 -0.095 0.732 0.237 Chimpanzee 3.79 0.040 0.909 0.106 0.093 

Buffaloes 2.33 0.105 0.076 0.781 0.076 Antelope 2.86 0.054 -0.010 0.613 0.295 

Warthog or 

bushpig 

2.54 0.105 0.291 0.683 0.068 Buffalo 3.17 0.053 0.162 0.712 0.160 

Hippo 1.80 0.088 0.095 0.769 0.101 Bushpig 3.27 0.054 0.152 0.865 0.107 

Cow 2.87 0.102 0.142 0.136 0.773 Warthog 3.17 0.055 0.178 0.845 0.0646 

Chicken 2.12 0.102 0.003 -0.006 0.716 Edible bushrat 2.82 0.055 0.045 0.586 0.317 

Goat 2.31 0.103 -0.056 0.288 0.689 Cow 3.62 0.050 0.328 0.129 0.598 

      Chicken 3.32 0.059 -0.030 0.142 0.734 

      Pig 3.63 0.045 0.119 0.184 0.760 

      Goat 3.16 0.056 0.133 0.257 0.751 

      
      

Eigenvalues   1.136 2.896 1.338 Eigenvalues 
  

1.823 4.414 1.369 

Variance 

explained (%)   12.62 32.17 14.87 

Variance 

explained (%) 

  

15.19 36.78 11.41 

Cronbach's α   0.444 0.749 0.583 Cronbach's α   0.842 0.816 0.739 

 

  



 

 

 

Figure 4-1. Map of the Murchison Falls Conservation Area (Bugungu Wildlife Preserve, Karuma 

Falls Wildlife Preserve, and Murchison Falls National Park) and the northern adjacent district, 

Nwoya. Nwoya district boundaries are delineated by the green borders and divided into its four 

subdistricts (Koch Goma, Anaka, Alero, and Purongo). Black circles indicate general 

undisclosed locations where interviews were conducted with hunters and cooks, 2016-2017. 
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a. Proportions of cooks and hunter participants sharing for response categories denoted by *  differ significantly 

from each other at P ≤ 0.05. Likelihood ratio  

Figure 4-2. Cook and hunter responses to whether they believe wildlife species can carry select 

zoonotic diseases, Nwoya district, Uganda, 2016-2017.  
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Figure 4-3. Cook and hunter responses to which type of meat they most prefer to eat from among 

wild and domestic choices in Nwoya district, Uganda, 2016-2017. 
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Figure 4-4. Cook and hunter responses to how often hunters and dealers disguise primate meat as 

another kind of meat to sell in Nwoya district, Uganda, 2016- 2017. Independent t-tests show a 

significant difference in mean responses between cooks and hunters for both questions about 

how frequently hunters disguise primate meat (t437.8 = -35.3, p < 0.001) and how frequently 

dealers disguise primate meat (t392.0 = -63.3).  
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CHAPTER V 

Bacterial Microbial Diversity in Bushmeat from Murchison Falls Conservation Area 
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Abstract 

 The reliance of many rural communities bordering protected areas on bushmeat for 

nutrition and income is widespread, but bushmeat hunting, handling, and consumption carries high 

risk for zoonotic pathogen exposures. Emerging infectious disease epidemics resulting from 

contact with wildlife are increasing in frequency and pose a notable public health threat to 

individuals and the greater global population. In this study, we examined the microbiological 

composition of 137 bushmeat samples obtained from communities adjacent to Murchison Falls 

Conservation Area in Uganda. These samples represented 25 mammalian species in variable tissue 

conditions. Seventy-nine samples were analyzed using Sanger dideoxy chain termination 

sequencing targeting the conserved 16s rRNA gene. Fifty-eight samples were analyzed by 16s 

rRNA amplicon sequencing to evaluate the bushmeat microbiome composition. Sanger 

sequencing identified 22 genera representing 5 phyla and 14 families. Proteus, Clostridium, and 

Macrococcus were most frequently identified. The 16s rRNA amplicon sequencing identified over 

35,000 unique operational taxonomic units (OTUs) within our samples, with dominant phyla 

including Firmicutes, Proteobacteria, and Bacteroidetes. No significant differences in alpha or beta 

diversity were noted for tissue condition or wildlife species group and both alpha and beta diversity 

were high among groups. Bacterial signatures of multiple USA Select Agents and human 

pathogens of consequence were detected within the samples. Our findings suggest that a 

combination of environmental contamination, endogenous infection, and meat spoilage contribute 

to bacterial microbiome composition of bushmeat and underscore the need to better understand 

factors influencing both bacterial composition of bushmeat and opportunities for exposure to these 

microbes. These findings provide useful data to inform food safety and injury prevention tactics 

needed to reduce bushmeat-associated disease emergence, both on the local and global scale. 
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Introduction 

The term bushmeat refers to the tissues, typically muscle meat and organs, harvested from 

wildlife and represents a substantial source of protein in many countries.  In Uganda, hunting and 

harvest of wildlife species is illegal except in select cases of species designated vermin species and 

carried out under the supervision of the Uganda Wildlife Authority [1]. Designated vermin species 

include bush pigs (Potamochoerus larvatus), vervet monkeys (Chlorocebus pygerythrus), and 

baboons (Papio anubis). Despite legal restrictions on hunting, it is a commonplace activity in many 

communities and especially in communities bordering protected areas where access to wildlife is 

readily accessible [2]. For many areas, including communities around Murchison Falls 

Conservation Area (MFCA) in northern Uganda, bushmeat represents a significant source of 

nutrition and household income [3]. Estimates for bushmeat utilization in Uganda are sparse 

compared to estimates from nearby regions, but over 71% of surveyed households reported 

consuming bushmeat at some point in time [4-7]. Quantification of bushmeat harvest for 

consumption is upwards of 2,200,000,000 total kg/yr, and 64.3kg/yr per person in the Congo 

Basin; in the Serengeti ecosystem of Tanzania, consumption of 2-5 bushmeat meals per household 

each week is estimated [8].  

Due to the illicit nature of bushmeat harvest, bushmeat around MFCA is primarily obtained 

and sold on a person-to-person basis, either through middleman dealers to consumers or directly 

from hunter to consumer, rather than in open markets that are more common in western and central 

Africa. Bushmeat is either sold as fresh tissue or has been processed by smoking to preserve the 

meat. Although many bushmeat transactions occur locally and consumers should be familiar with 

the nature of bushmeat products, discrepancies exist between what bushmeat is being sold as to 

consumers and what the actual species of meat being is sold (Chapter III). Moreover, many self-

identified hunters in the region report intentionally disguising less desirable species (like primates 

or bats) as other species during these transactions (Chapter IV).  

Over 60% of newly emerging infectious diseases are zoonotic, and of those nearly 75% 

originated from human contact with wildlife [9]. Concern for zoonotic spillover events for novel 

and documented human pathogens should be high, particularly in the wake of the Ebola epidemics 

of the past decade and the 2019-2020 coronavirus pandemic, both of which emerged contact with 

wildlife [10-14]. Research suggests that most of the bushmeat harvested in the northern Uganda 

region remains locally consumed and for immediate dietary needs [15]; however, with increasing 
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population shifts to cities, extra-local demand for bushmeat has risen in urban centers [16]. Lack 

of precautions taken during the hunting, butchering, and food preparation put those involved in the 

bushmeat commodity chain at great risk of exposure to bacterial and viral pathogens through 

multiple exposure routes [17]. Furthermore, as the bushmeat commodity chain expands its 

geographic reach, concerns for transboundary spread of zoonotic pathogens raises concern for 

local and global public health risk. The social, economic, and public health impacts of unmitigated 

spread of zoonotic pathogens have been made evident with the increasing frequency of both 

bacterial and viral contemporary zoonotic epidemics [18-21]. 

The handling and consumption of bushmeat poses both individual and global health risks.  In this 

study, we analyzed the bacterial microbial diversity of bushmeat samples acquired from markets 

in communities bordering the Murchison Falls Conservation Area, Uganda. These data serve to 

better understand the distribution of bacterial communities in bushmeat and gain insight into what 

factors contribute to the presence of high consequence bacterial exposure. These findings will help 

to predict patterns by which pathogens may infect people and under which conditions they are 

likely to emerge, as well as inform effective and practical preventive health measures. 

Methods 

Bushmeat Tissue Acquisition 

Bushmeat tissue samples were obtained from 23 villages and trading centers within the 

Nwoya district in northern Uganda (Fig. 5-1). The Nwoya district is composed of 4 sub-counties, 

Purongo, Anaka, Alero, and Koch Goma, and forms the northern border of the Murchison Falls 

Conservation Area (MFCA). The MFCA is Uganda’s largest continuous protected area, comprised 

of the 3,893 km2 Murchison Falls National Park (MNFP) in the north, the 720 km2 Karuma Falls 

Wildlife Reserve (KFWR) in the southeast, and the 748 km2 Bugungu Wildlife Reserve (BWR) in 

the southwest. 

Initial contact with hunters and dealers at sampling sites was facilitated through Ugandan 

community liaisons and research associates. Bushmeat samples were purchased from hunters, 

dealers, and women who cook within study sites from July to August 2016 and from June to July 

2017 for the price of UGX 10,000 per sample. Species reported and condition of meat (fresh or 

smoked) were recorded at time of acquisition. Tissue was considered fresh when still raw, uncured, 

and no treatment was applied other than storage. Tissue was considered smoked if the meat was 

dried and processed by smoking. No other methods of preservation were observed.  Once collected, 
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approximately 25-50 grams of the sample were placed in sterile Eppendorf conical tubes and 

placed on ice packs. Samples were transported to a temporary storage freezer (-18˚C) for the 

duration of fieldwork then transported to Makerere University for long-term storage in a -80˚C 

freezer. A subset of samples (n = 136) were immediately submerged into RNAlater™ Stabilization 

Solution (Thermo Fisher Scientific) in sterile Eppendorf conical tubes at the time of acquisition to 

preserve the genomic DNA and RNA due to additional funding that allowed for 16s amplicon 

sequencing.  

This study and all methods were approved by the University of Tennessee’s Office of 

Research and Engagement’s Institutional Review Board (protocol number UTK IRB-16-03109-

XM & UTK IRB 16-3158-XM) and the Uganda National Council for Science and Technology 

(research registration number HS 3013). Oral consent and approval was obtained from all local 

leaders and decision-makers in communities included in this study. 

 

Nucleic Acid Extraction  

Two small internal sections of tissue weighing approximately 100 mg each were removed 

with a sterile disposable scalpel blade for each bushmeat sample. Nucleic acid extraction for 

bacterial sequencing was performed on all samples using the DNeasy® Blood & Tissue Extraction 

Kit (QIAGEN) according to manufacturer’s instructions with minor modifications. For 136 

samples obtained in 2017, homogenization was performed with the Omni International Bead 

Ruptor 12 bead mill homogenizer for 45 seconds at 6m/s in 2ml Hard Tissue Homogenizing Mix 

Nuclease & Microbial DNA Free pre-filled bead tubes. Adequacy of extracted DNA was 

confirmed with the Thermofisher Qubit 3 bioanalyzer. 

 

Sanger Sequencing 

PCR was performed on extracted DNA using the universal 16s rRNA primers Bact 16SF 

(5’ CTACGGGGGGCAGCAG) and Bact 16SR (3’ GGACTACCGGGGTATTT). PCR cycling 

conditions consisted of a single cycle of 95˚C for 30s, followed by 25 cycles of 95˚C for 30s, 55˚C 

for 30s, and 72˚C for 15s, followed by a final extension step at 72˚C for 7 min [22]. PCR was 

confirmed by gel electrophoresis of all PCR products on a 2% agarose gel stained with ethidium 

bromide. PCR products were purified using QIAquick® PCR Purification Kit (QIAGEN) 

according to manufacturer’s instructions. Purified PCR products were sent to Macrogen, Inc. 
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(Seoul, South Korea) for Sanger sequencing. Raw sequencing data were returned in .fasta format. 

The forward and reverse strands were aligned using Sequencher 5.46 software (GeneCodes 

Corporation) to create a consensus nucleotide sequence. Overhanging ends of the forward and 

reverse strands were trimmed from the consensus sequence. Resultant consensus nucleotide 

sequences were queried against the National Center for Biotechnology Information (NCBI) Basic 

Local Alignment Search Tool (BLAST) to identify bacterial species to the lowest possible 

taxonomic unit (genus). Proportions of taxa present were evaluated by sample condition and 

wildlife species group by z-tests with Bonferroni correction. Statistical significance was assumed 

at p<0.05. 

 

Microbiome 16S rRNA Amplicon Sequencing 

For samples for which an alignment was not possible or that, once aligned, chromatograms 

did not contain clear nucleotide peaks, purified gDNA was sent to Macrogen, Inc. (Seoul, South 

Korea) for 16s V3-V4 hypervariable region amplicon library construction. Samples were shipped 

on dry ice. The V3-V4 hypervariable region of the 16s rRNA gene was amplified using the 

universal 16s rRNA paired primers 341F-V3 (5’CCTACGGGNGGCWGCAG) and 805R-V4 

(3’GACTACHVGGGTATCTAATCC). Sequencing was run on the Illumina MiSeq platform with 

the Herculase II Fusion DNA Plymerase Nextera XT Index Kit v2 according to the Macrogen 

MiSeq protocol, with no modifications to the protocol noted. Adapter sequences were removed 

using programs Scythe (v0.994) and sequence reads shorter in length than 36bp were filtered to 

produce clean data output [23]. The accuracy of each nucleotide was reported by Phred Quality 

Score in final report. Resulting 16s microbiome libraries were delivered in .fastq format.  

 

16s Microbiota Composition Bioinformatics and Statistical Analysis 

Resultant bacterial microbiome libraries were processed using the open-source platform 

mothur following the MiSeq protocol and queried against a curated subset of the SILVA V138 

database [24]. An oligo file was created to locate our specific primer set within the V3-V4 region 

and to trim the SILVA database to our region [25, 26]. Contigs were formed for all sequences and 

resultant sequences were screened to remove chimeras, excessively long homopolymers, and 

fragments overhanging the alignment. Operational taxonomic units (OTUs) were assigned to 

consensus sequences for each sample based on the trimmed SILVA reference database. OTUS 
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comprising less than 0.0001% relative abundance among samples were removed from subsequent 

analysis. 

Alpha diversity was compared among samples using R packages “vegan” and “phyloseq” 

in R Studio [27-29]. Shannon, Simpson and Inverse Simpson diversity indices were calculated 

based on an average bootstrap at 1000 iterations. An average bootstrap of at 1000 iterations was 

also used to calculate beta-diversity matrices of Bray-Curtis dissimilarity. 

 Statistical analyses were performed in R Studio using the package vegan [28]. Kruskal-

Wallis rank sums were performed based on Shapiro-Wilks tests of normality to test differences in 

Shannon diversity indices and Simpson diversity indices for the following comparisons: bushmeat 

condition (fresh or smoked) and bushmeat sample species (primate, rodent, antelope, warthog, or 

other wildlife). Adonis tests with 999 permutations were performed to test for effects of the same 

groups on beta diversity based on Bray-Curtis dissimilarity values. Beta dispersion was quantified 

by calculating multidimensional areas of minimum convex polygons fit to clusters of sample 

condition and wildlife species group using the ‘betadisper’ function in vegan. These areas were 

based on distances created from NMDS of previously calculated Bray-Curtis dissimilarity values. 

PERMANOVAs were used to test statistical differences in beta dispersion between sample 

condition and among wildlife species groups.  

 Percent OTU relative abundance by phylum was calculated and graphed between sample 

condition and among wildlife species group using “phyloseq” [27]. Significant indicator taxa, taxa 

representative of other taxa and environmental conditions of the microbial community for samples 

or groups, were identified for sample condition and wildlife species group using the “indicspecies” 

package in R [30]. All tests performed in this study for statistical analysis were performed with 

statistical significance at p<0.05.  

 

Community visualization 

 Differences in alpha diversity of microbiomes were visualized through violin plots of the 

Shannon diversity index by sample condition and wildlife species group and through violin plots 

with inset boxplots using package “ggplot2” [31]. Beta diversity was visualized using NMDS plots 

based on Bray-Curtis distance matrices using packages “ggplot2” and “vegan”. Beta dispersion 

calculations were represented as boxplots with the packages “vegan” and “ggplot2”. Stacked bar 

charts used to display relative phyla abundance were calculated and created in package “phlyoseq”. 
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Results 

Bushmeat samples included in analysis 

226 bushmeat samples were obtained during June to July of 2016 (n=90 samples) and July 

of 2017 (n=136 samples). 209 samples yielded quality DNA for sequencing. Of these 209, bacterial 

DNA was successfully extracted from 161 samples and sent for Sanger sequencing. Twenty 

samples (12.4%) were excluded from further analysis due to being from non-target species 

(domestic farm animals). An additional 4 samples (2.5%) were excluded on the basis of poor DNA 

quality (< 50% quality score for at least one of the strands.) Fifty-eight of the remaining 137 

samples contained high quality data with multiple chromatograms peaks at multiple positions or 

had more than 25% base pair ambiguities at alignment or would not align. These 58 samples were 

sent for 16s rRNA amplicon sequencing.   

Twenty-five mammalian species were represented in the bushmeat samples, confirmed via 

PCR and Sanger sequencing (Chapter III). The most abundant species were waterbuck (Kobus 

ellipsiprymnus), warthog (Phacocoerus africanus), and lechwe (Kobus leche), although other 

wildlife species such as hippopotamus (Hippopotamus amphibius), black rat (Rattus rattus), 

Uganda kob (Kobus kob) and others were present in lower proportions. For downstream 16s rRNA 

amplicon analysis, wildlife species were condensed into 5 broad groups: antelope (which includes 

all antelope species), warthog, rodent (all rodents), primate (olive baboon), and other wildlife 

(including hippopotami, hares, buffalo and others). 25.5% of samples were collected in 2016 and 

74.5% in 2017. Most (58.4%) samples included in this study were smoked and 41.6% were 

obtained fresh (not processed other than butchering and/or storage). Characteristics of all bushmeat 

samples included in this study are summarized in Table 1. 

  

Sanger sequencing results 

Seventy-nine Sanger sequencing results were queried against GenBank. Twenty-two 

bacterial genera representing 5 phyla and 14 families were detected among our samples. Proteus 

(22.8%), Clostridium (11.4%), Macrococcus (10.1%), and Enterobacter (7.6%) were the most 

frequently identified genera. Most bacterial species belonged to the Morganelleaceae (26.5%) and 

Clostridiaceae (17.7%) families. Over 85% of bacterial OTUs belonged to the phyla Proteobacteria 

(50.6%) or Firmicutes (36.7%).  Bacterial taxa frequencies are shown in Fig. 5-2. No genera 
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included in the Select Agents list were detected by Sanger sequencing in our samples. Select 

Agents are agents determined by the Centers for Disease Control and Prevention and the United 

States Department of Agriculture to hold the potential to pose a “severe threat to both human and 

animal health, to plant health, or to animal and plant products.” No statistically significant 

differences in proportions of genera, family, or  phyla were detected by sample condition or by 

wildlife species group. 

 

16s rRNA amplicon sequencing results 

Fifty-eight samples were sent for 16s rRNA amplicon sequencing. Raw sequencing data 

recovered 13,305,715 sequences among the 58 samples. Following processing in mothur, 

3,435,592 unique sequences were identified which were assigned to 34,566 OTUs. Sequence 

counts per individual sample ranged from 1,937 to 160,624 sequences. 613 OTUs remained when 

OTUs comprising less than 0.0001 relative abundance mean among samples were removed from 

analysis. Fifty-eight samples containing 613 OTUs were included in downstream visualization and 

analysis, containing 18 bacterial phyla and 171 genera. The most abundant phyla included 

Firmicutes (38.2%), Proteobacteria (30.0%), and Bacteroidetes (16.5%) (Fig. 5-3, Table 5-2).  

The rodent group (x̄ ±SD; 2.28±1.42) had greatest evenness and lowest diversity based on 

Shannon diversity index overall among wildlife species groups while the “other wildlife group” 

(1.62 ± 0.84) had the lowest evenness and greatest diversity among species; however, there were 

no statistically significant differences in alpha diversity among wildlife species groups (p=0.193) 

(Table 5-3).  Fresh samples (2.38 ± 0.74) had greater average evenness and greater diversity overall 

than smoked samples (1.89 ± 0.76).  This difference in alpha diversity was statistically significant 

(p=0.022) (Fig 5-4, 5-5, Table 5-4.)  

Beta diversity was statistically different between bushmeat sample condition based on 

adonis analysis of Bray-Curtis dissimilarity values (p= 0.001) but was not statistically different 

among wildlife species groups with a p-value (p= 0.07.) Beta dispersion was significantly different 

among wildlife species groups (p=0.001); however, the group that demonstrated a difference was 

the primate group (Fig. 5-6). When the primate group was removed and the beta dispersion test 

was re-run, there was no statistical difference among the remaining groups of antelope, rodent, 

warthog, and other wildlife (p=0.379). Smoked samples had a greater beta dispersion than did 

fresh samples, but this difference was not statistically significant with a p value (p= 0.068). NMDS 
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ordination plots of Bray-Curtis dissimilarity values did not reveal any discernible patterns of 

clustering between fresh and smoked samples. Likewise, no distinct patterns were observed among 

wildlife species groups (Fig. 5-7).  

Indicator species analysis produced 90 OTUs from nine phyla significantly distinguishing 

microbial communities of fresh bushmeat samples and eight OTUs from three phyla for smoked 

bushmeat samples (Table 5-5).  Among wildlife species groups, indicator species were identified 

for rodents and primates, but none were statistically significant for warthogs, antelope, or other 

wildlife. Twelve OTUs representing four phyla were indicative of the primate group and thirteen 

OTUs representing three phyla were indicative of rodents (Table 5-6).  

Of the bacterial Select Agents, five genera included in the list were identified. 248 OTUs 

characterized by Clostridium, 570 OTUs characterized by Staphylococcus, and 193 OTUs 

characterized by Bacillus were identified. Mycoplasma and Burkholderia represented 5 OTUs and 1 OTU 

each, respectively.  

Discussion 

 Despite restrictions on hunting and removal of wildlife species in Uganda, bushmeat 

hunting is a common practice in and around protected areas, including Murchison Falls 

Conservation Area. Contact with wildlife has been associated with increased opportunity for 

zoonotic pathogen transmission and spillover events. Participation in the bushmeat trade presents 

multiple exposure routes to bloodborne, respiratory, and foodborne pathogens that have important 

health and economic impacts. Furthermore, hunting, trapping and butchering of wildlife carcasses 

carry notable inherent risk for injury to hunters and butchers and close proximity to pelts, blood, 

and salivary secretions, and thus increased opportunity for direct contact with these pathogens. 

This study aimed to fill a pressing knowledge gap and assess the microbiome of bushmeat samples 

from a variety of species and stages of processing in order to better understand risk of exposure to 

bacterial zoonoses during hunting, butchering, and consuming bushmeat for those living around 

MFCA. 

 Our Sanger sequencing data revealed the dominant presence of several genera of concern 

in our bushmeat samples, including Clostridium, Escherichia, and Staphylococcus. Several 

members of the genus Clostridium are human pathogens responsible for severe disease syndromes 

through oral exposure, including C. botulinum, C. difficile, and C. perfringens, and C. tetani 

though contact or wounding in addition to other Clostridium species emerging as pathogens. The 
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presence of this genus is particularly worrisome due to fact that butchering and consumption of 

bushmeat creates direct exposures for consumers and hunters; additionally, the increasing 

antimicrobial resistance of Clostridium species and sparser medical facilities in rural regions 

constitute significant barriers to treatment of clostridial infections [32]. Staphylococcus, although 

a ubiquitous genus and common commensal bacterium on human skin, is responsible for life-

threatening and debilitating infections that are exacerbated by increasing antimicrobial resistance 

within this bacterial group [33, 34]. No significant associations between genera and condition or 

species group were found. Although this may be related to a relatively small sample size and 

uneven wildlife species groups, this finding is consistent with our 16s rRNA data, which also 

revealed limited statistical associations between taxa and these factors. 

 Results of 16s rRNA analysis indicated that Firmicutes, Proteobacteria, Bacteroidetes were 

the most abundant phyla, consistent across all samples included in this study. These phyla contain 

many common commensal and pathogenic bacteria and are often major contributors to 

microbiomes in many biotic systems.  Findings in this study are consistent with other microbiome 

studies of bushmeat, demonstrating similar relative abundances of phyla [35]. Similar abundances 

were observed among 56 of 58 of our samples, even between fresh and smoked tissues with two 

samples demonstrating a lower total abundance of sequencing reads. Lower overall bacterial 

abundances were expected for smoked samples as this is used as a method of preserving bushmeat, 

but this was not observed in this study. It is possible that endogenous bacteria were inactivated or 

reduced by the smoking process, but that subsequent handling and transportation of bushmeat 

reintroduced environmental or commensal human bacteria. Additionally, it is important to consider 

that the presence of bacterial genetic material does not necessarily confirm infective capability and 

no culturing was performed as a part of this study. We did not inquire about approximate latency 

from hunting and harvest to time of collection for our samples. Neither did we gather information 

about how bushmeat was transported or by how many persons it was handled, so we were unable 

to control for these variables in this analysis. Assessing such variables may provide insight into 

factors influencing bacterial taxa abundance and microbial diversity. 

 All samples demonstrated high diversity regardless of species or sample condition. 

Samples were obtained from hunters, dealers, and consumers of bushmeat at different points in the  

commodity chain. This introduces some uncertainty about whether the bacterial microbiome 

composition seen in these samples represent microbiota endogenous to the wildlife hosts or 
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represent environmental contamination or food spoilage. We attempted to mitigate the effects of 

environmental contamination by sampling internal tissue from the samples; however, for those 

samples that had been removed from the host for a substantial amount of time, bacterial taxa 

associated with environmental contamination may still be present. Many activities in the bushmeat 

chain are carried out under non-hygienic conditions and with suboptimal to no cold-chain storage. 

Common meat spoilage bacteria include Lactobacillus curvatus, Lactobacillus 

sake, Pseudomonas fiuorescens, Serratia liquefaciens, Brochothrix thermosphacta, 

and Carnobacterium piscicola, while bacterial genera found in raw meat under variable 

refrigeration temperatures include countless bacteria, from Escherichia  to Klebsiella to 

Wiesella [36, 37].  Nearly 40 of our OTUs were characterized by Serratia with fewer OTUs 

characterized by Pseudomonas and Lactobacillus identified. Long transit under variable 

conditions, both temporally and spatially, may increase the likelihood that environmental- and 

spoilage-associated bacterial taxa will be present on bushmeat. Environmental contamination 

encompasses a broad range of potential sources of contamination and bacterial taxa; however, the 

most abundant soil microbiome taxa include Acidobacteria, Verrucomicrobia, and Bacteroides 

[38]. Although each of these phyla were present within our samples, they were low in abundance 

relative to other phyla, such as Proteobacteria and Firmicutes. Only few hunters that we surveyed 

from the same area our bushmeat samples were collected reported using gloves when hunting or 

butchering (Chapter IV). It is possible that the microbiota of our bushmeat samples may be affected 

by the predominant commensal and pathogenic human skin bacteria. Cyanobacteria, Firmicutes, 

Bacteroidetes, and Proteobacteria are major phyla contributors to the human skin microbiome 

composition and are likewise dominant in our bushmeat samples [39-41].  

 Both the Shannon Diversity Index and Simpson Diversity Index were used to compare 

alpha diversity between sample conditions and among wildlife species groups. This analysis was 

performed at the phylum level and no statistically significant differences in alpha were detected at 

this taxon level for either alpha diversity metric. Nearly all wildlife species included in this study 

were herbivores that feed on similar plant sources and inhabit the same ecosystem, which is 

predominantly savannah in MFCA near our study sites. It is reasonable to suppose that animals 

had similar environmental exposures and may support similar microbial communities in their 

coats, skin, and gut. Several wildlife species in this study (baboons, hippopotamus, bats) have 

notably different feeding patterns and range in differing habitats than the grazing savanna-based 
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species that comprise most of our samples, but this did not appear to significantly influence alpha 

diversity. Beta diversity was similarly high overall among all samples. Ordination of sample 

groups by condition and wildlife species did not indicate any clustering patterns for either variable 

and was confirmed to have no statistical differences. Beta dispersion was found to be greater for 

the primate group; however, this should be interpreted cautiously as the primate group only 

contained one sample. It is interesting that there was no significant difference  between fresh and 

smoked samples, and this may indicate that spoilage and environmental contamination of samples 

may play a larger role in bacterial exposure and food safety than endogenous bacterial infections. 

Smoking was used as a method of tissue preservation and perceived by many cooks to be a 

processing step that improves the safety of bushmeat by eliminating or decreasing the presence of 

harmful pathogens (Chapter IV). 

Two of the top five indicator species for fresh samples were enteric bacteria, while several 

indicator species for smoked samples were Corynebacterium, the genera of the causative agent of 

diptheria. Although the primate group returned indicator taxa, this should be cautiously interpreted 

due to low sample size of this group. Indicator species are more conventionally used for traditional 

microbial community assessment (ie. skin or gut microbiomes) to assess a living, changing 

microbiome. Still, consideration of indicator species may prove useful in elucidating bacterial taxa 

associated with particular wildlife species, which may translate to practical recommendations such 

as identifying which wildlife should be avoided due to greater risk or increasing precautions taken 

when handling certain species.  

 Due to concern for zoonotic transmission during handling and consumption of bushmeat, 

samples were examined at the genus level for the presence of pathogens of particular interest to 

human health. Bacterial genera included in the Select Agents List that were present in our samples 

included Clostridium, Staphylococcus, Mycoplasma, Burkholderia, Brucella, and Bacillus 

(https://www.selectagents.gov/SelectAgentsandToxinsList.html). Additional bacterial pathogens 

of human consequence present in our samples included Legionella, Escherichia, Streptococcus, 

Klebsiella, Vibrio and Bartonella. Although we were able to confirm the presence of these genera, 

sequencing the 16s rRNA gene does not provide adequate resolution to identify bacteria to the 

species level. Many of the above genera are diverse and include species which are pathogenic to 

humans as well as species not known to cause human disease. For example, we confirmed the 

presence of Bacillus, but we cannot confirm whether this is Bacillus anthracis, a select agent, or 

https://www.selectagents.gov/SelectAgentsandToxinsList.html
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Bacillus cereus, a pathogenic foodborne agent, or one of the many benign species found 

ubiquitously in soil [42, 43]. Despite the lack of resolution, the presence of signatures for these 

genera of interest are sufficient to raise concerns regarding the safety of bushmeat and warrant 

more targeted sequencing efforts to identify pathogenic species.  

 Bushmeat hunting and consumption is a socially ingrained and often essential practice to 

many communities, but the risk of exposure and infection by zoonotic bacterial pathogens is clear. 

These data highlight the staggering quantity and diversity of bacteria present in bushmeat tissue 

intended for consumption. Our findings are suggestive of the presence of numerous known 

pathogens of human consequence and validate the need for further study of the diverse and elusive 

factors that shape bushmeat microbiomes. Findings in this study suggest that a combination of 

environmental contaminants, spoilage, and endogenous bacteria may contribute to microbial 

profiles of bushmeat and suggest that distinct bacterial taxa and bacterial loads are present at 

different stages in the bushmeat commodity chain. This has important implications for adopting 

food preparation safety strategies compared to handling and butchering safety recommendations 

to prevent infections. Improved understanding of these microbiomes is essential to providing 

effectual and accurate tactics to reduce zoonotic infections associated with the bushmeat trade and 

mitigating opportunities for epidemic events. 
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Tables and Figures for Chapter V 
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Table 5-1. Summary of characteristics of bushmeat samples obtained from communities outside 

of Murchison Falls Conservation Area, Uganda, 2016-2017. Characteristics groupings include 

year collected, wildlife species, and sample condition (fresh or smoked).  

Variable  Sanger 16s Amplicon 

Wildlife 

Species 

Waterbucka 27 20 

Warthogb 12 10 

Hippopotamuse 2 5 

Lechwea 7 4 

Grey rheboka 0 3 

African buffaloe 0 2 

African grass ratd 0 2 

Common duikera 1 2 

Koba 4 2 

Striped ground squirreld 1 2 

African savanna haree 3 1 

Black ratd 5 1 

Wildebeesta 3 1 

Gambian pouched ratd 0 1 

Guinea gerbild 0 1 

Olive baboonc 1 1 

Aardvarke 1 0 

Kirk’s dik dika 1 0 

Little free-tailed batf 1 0 

Minor epauletted fruit batf 1 0 

Multimammate moused 1 0 

Oribia 4 0 

Tantalus monkeyc 2 0 

Wild cate 1 0 

Yellow-backed duikera 1 0 

    

Condition 
Fresh 35 22 

Smoked 44 36 

    

Year 
2016 11 24 

2017 68 34 
aAntelope group 
bWarthog group  
cPrimate group  
dRodent group  
eOther Widllife group  
fBat group 
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Table 5-2. Average % phylum abundance listed by wildlife species group (antelope, warthog, rodent, primate, other wildlife) and by 

bushmeat sample condition (fresh, smoked) in bushmeat samples obtained from northern Uganda, 2016-2017. 

Phylum All Fresh Smoked Antelope Warthog Primate Rodent Other 

Acidobacteria 0.02 0.06 0.0 0.0 0.0 0.0 0.27 0.0 

Actinobacteria 0.59 1.00 0.33 0.34 0.45 4.0E-03 2.97 0.37 

Bacteria_unclassified 0.07 0.10 0.06 0.04 0.01 0.56 0.30 0.09 

Bacteroidetes 9.37 7.03 10.79 9.46 18.56 3.20 3.10 1.78 

Candidate_division_

BRC1 0.02 0.04 0.0 0.0 0.0 0.0 0.18 0.0 

Candidate_division_

OP10 4.0E-3 0.01 0.0 0.0 0.0 0.0 0.05 0.0 

Candidate_division_

SR1 0.03 1.0E-3 0.05 0.06 0.0 0.0 0.0 0.0 

Candidate_division_

TM7 0.02 0.04 1.0E-3 2.0E-03 2.0E-03 0.0 0.15 3.0E-04 

Chlamydiae 1.0E-3 3.0E-3 0.0 0.0 0.0 0.0 0.01 0.0 

Chloroflexi 0.01 0.02 0.0 2.26E-05 0.0 0.0 0.09 0.0 

Deinococcus-

Thermus 0.01 0.03 4.0E-03 0.0 0.0 0.0 0.14 0.02 

Firmicutes 54.59 47.18 59.12 55.65 40.53 43.04 47.68 72.90 

Fusobacteria 0.03 0.04 0.02 0.05 0.0 2.0E-03 0.0 0.0 

Gemmatimonadetes 0.01 0.03 2.80E-03 3.37E-04 0.0 0.0 0.14 0.0 

Lentisphaerae 0.01 7.4e-05 0.01 0.01 0.0 0.0 0.0 0.0 

Planctomycetes 0.04 0.09 2.0e-03 0.0 0.0 0.0 0.41 0.01 

Proteobacteria 35.18 44.30 29.61 34.39 40.45 53.19 44.41 24.84 

Verrucomicrobia 0.01 0.03 5.1e-5 8.9e-05 0.0 0.0 0.12 0.0 

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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Table 5-3. Alpha diversity results based on Shannon Diversity index and Simpson/Inverse Simpson diversity index for bushmeat samples 

by wildlife species group. P-values were calculated using Kruskal-Wallis based on Shapiro-Wilk test of normality. 

Alpha Diversity 

Measure Statistical Test 

p-

value 

Antelope 

(x̄ ± SD) 

Warthog 

(x̄ ± SD) 

Rodent 

(x̄ ± SD) 

Primate 

(x̄ ± SD) 

Other Wildlife 

(x̄ ± SD) 

Shannon Diversity Index Kruskal-Wallis 0.193 2.24 ± 0.70 1.94 ± 0.53 2.28 ± 1.42 2.16 1.62 ± 0.84 

Simpson/Inverse 

Simpson Diversity Index Kruskal-Wallis 0.332 0.78 ± 0.18 0.76 ± 0.10 0.74 ± 0.16 0.84 0.63 ± 0.27 
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Table 5-4. Alpha diversity results based on Shannon Diversity index and Simpson diversity index for bushmeat samples by bushmeat 

sample condition. P-values were calculated using Kruskal-Wallis based on Shapiro-Wilk test of normality. 

Alpha Diversity Measure Statistical Test 

p-

value 

Fresh 

(x̄ ± SD) 

Smoked 

(x̄ ± SD) 

Shannon Diversity Index Kruskal-Wallis 0.022 2.38 ± 0.74  1.89 ± 0.76 

Simpson/Inverse Simpson 

Diversity Index Kruskal-Wallis 0.017 0.82 ± 0.10 0.70 ± 0.21 
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Table 5-5. List of top five indictor taxa significantly associated with each sample condition at time 

of acquisition in bushmeat samples collected in northern Uganda, 2016-2017 based on indicator 

species analysis. Ninety OTUs were significantly associated with fresh samples and eight with 

smoked. 

Condition Statistic p-value Phylum Genus 

Fresh 0.500 0.000 Proteobacteria Escherichia 

Fresh 0.417 0.000 Proteobacteria Enteric_bacteria_cluster 

Fresh 0.361 0.003 Firmicutes Vagococcus 

Fresh 0.351 0.001 Proteobacteria Stenotrophomonas 

Fresh 0.335 0.001 Bacteroidetes Empedobacter  

Smoked 0.332 0.006 Bacteroidetes Myroides 

Smoked 0.278 0.039 Actinobacteria Corynebacterium 

Smoked 0.268 0.030 Bacteroidetes Myroides 

Smoked 0.260 0.036 Proteobacteria Ignatzschineria 

Smoked 0.240 0.035 Actinobacteria Corynebacterium 
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Table 5-6. List of top five indictor taxa significantly associated with each wildlife species group 

in bushmeat samples collected in northern Uganda, 2016-2017 based on indicator species analysis. 

Twelve OTUs were significantly associated with the primate group, thirteen with the rodent group. 

The antelope, warthog, and other wildlife groups were not found to have any statistically 

significant associated OTUs. 

Species Group Statistic p-value Phylum Genus 

Primate 0.999 0.012 Bacteria_unclassified Bacteria unclassified 

Primate 0.993 0.005 Proteobacteria Enterobacteriaceae_unclassified 

Primate 0.990 0.018 Firmicutes Clostridium 

Primate 0.985 0.001 Proteobacteria Plesiomonas 

Primate 0.993 0.005 Proteobacteria Enterobacteriaceae_unclassified 

Rodent 0.413 0.301 Actinobacteria Ornithinimicrobium 

Rodent 0.412 0.024 Proteobacteria Pantoea 

Rodent 0.412 0.035 Actinobacteria Proprionibacterium 

Rodent 0.411 0.042 Actinobacteria Corynebacterium 

Rodent 0.409 0.047 Proteobacteria Acinetobacter 
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Figure 5-1. Map of Murchison Falls Conservation Area 

Map of Murchison Falls Conservation Area in Uganda and Nwoya district at the northern border 

where samples in this study were collected between 2016-2017.  
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Fig 5-2. Sanger Sequencing Results by Genera 

Bacterial genera identified by Sanger sequencing of the 16s rRNA gene and queried against NCBI Genbank in bushmeat samples from 

Murchison Falls Conservation Area, Uganda, 2016-2017. 
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Fig 5-3. Relativized Phylum Abundance by Sample the reader cannot know what animal species BD_116 is. Or? 

Relativized phylum abundance by individual bushmeat sample collected from northern Uganda, 2016-2017. 
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Figure 5-4. Alpha Diversity by Major Diversity Indices 

Alpha diversity plots for Shannon Diversity index, Simpson index, and inverse Simpson index. A) 

illustrates differences between smoked and fresh samples, and B) illustrates differences among 

wildlife species groups. 

  



127 

 

 

Figure 5-5. Alpha Diversity based on Shannon Index 

Violin plots with inset box-and-whisker plots comparing the Shannon diversity index of bushmeat 

microbial diversity A) between sample condition of fresh (red) or smoked (blue) and B) among 

wildlife species groups of antelope (red), other wildlife (orange), primate (yellow), rodent (green), 

and warthog (blue) from bushmeat samples collected in northern Uganda, 2016-2017.  
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Figure 5-6. Beta Dispersion  

Box plot illustrating beta dispersion of bushmeat biodiversity between A) sample condition (fresh 

or smoked) and B) among wildlife species groups from bushmeat samples collected in northern 

Uganda, 2016-2017. 
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Figure 5-7. NMDS Ordination Plots Using Bray-Curtis Dissimilarity 

NMDS ordination plots of bushmeat microbial diversity based on Bray-Curtis dissimilarity. Each 

point represents a single bushmeat sample. Ordination points in panel A are grouped by bushmeat 

sample condition of fresh (red) or smoked (blue). Ordination points in panel B are grouped by 

wildlife species group of antelope (red), other wildlife (orange), primate (yellow), rodent (green) 

or warthog (blue).  
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CHAPTER VI  
 

Conclusion 

 The epidemiology of zoonotic infectious diseases is a topic of increasing importance as 

globalization and increased contact with infectious disease reservoirs allow for epidemic spread of 

emerging infectious diseases. As the factors that facilitate disease emergence become increasingly 

complex, non-traditional partnerships and approaches to describing and predicting these emerging 

disease events are necessary. In this dissertation, we have utilized multi-modal traditional and 

advanced diagnostic modalities to describe emerging infectious diseases from wildlife reservoirs 

in the United States on public lands and in protected areas in northern Uganda. We utilized social 

science and molecular diagnostics to create a more complete picture of factors contributing to 

disease emergence and individual risk of exposure so that effective, appropriate, and practical 

strategies can be implemented to reduce disease burden in people in close contact with wildlife 

and their tissues.  

 We documented the first molecular confirmation of zoonotic cestode parasite 

Echinococcus canadensis in translocated elk in the southeastern United States and lay the 

groundwork for future prevalence studies and continued surveillance of this pathogen within elk 

populations. This project also addresses the potential for establishment of a sylvatic transmission 

cycle, which has notable implications for recreationalists, both hunters and otherwise, who utilize 

these public lands. Although we could not definitively confirm infection of definitive canid hosts 

within the context of this study, we have emphasized the importance of an active surveillance 

strategy in viable definitive hosts. The establishment E. canadensis in this area is of notable public 

health consideration as a neglected tropical disease with chronic, potentially fatal health 

consequences in infected humans. Data from this study may serve to support the development of 

educational strategies for recreationalists to these areas to prevent fecal-oral infection with 

infective eggs.  

 This project also documents the phenomenon of species deception in market in northern 

Uganda, describe demographic and social drivers of bushmeat utilization and zoonoses awareness 

in communities in northern Uganda, and analyze the microbial diversity of bushmeat samples 

outside of Murchison Falls Conservation Area. Our findings demonstrate that within the bushmeat 

commodity chain there is deception to consumers about which species they handle and consume 
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and we confirm that at least some of this deception is intentional. The findings from this chapter 

present alarming findings, as this deception subverts the ability of consumers of bushmeat to make 

informed choices about their exposures. These data furthermore provide useful insight into the 

which wildlife species are most often harvested and provide valuable baseline data with 

implications for conservation and management strategies of wildlife in Murchison Falls National 

Park. Our social science findings demonstrated a degree of awareness of some common zoonotic 

pathogens in the area, although women tended to have higher awareness than hunters. Hunters are 

more involved in handling of more types wildlife tissues and involved in greater risk activities for 

injury than cooks, which presents an important opportunity for food handling and safety 

educational efforts. The microbial diversity findings reiterate the importance of good food 

handling practice, as they suggest that post-mortem contamination of bushmeat tissue, in addition 

to endogenous infections, play a significant role in the bacterial community ecology of bushmeat, 

and therefore present a much broader range of microbes to which hunters and consumers are 

exposed.  

 The findings of this project underscore the need for integrative and multidisciplinary 

approaches addressing the public heath priority of preventing and mitigating the potentially 

devastating effects of emerging zoonoses. Our findings further emphasize the knowledge gaps 

present among the diverse geographies and cultures in which hunting of wildlife is widespread and 

highlight the need for continued surveillance of pathogens in wildlife reservoirs. Appropriately 

adapted and practical efforts to improve food safety, reduce injury risk during these activities, and 

increase awareness of environmental contamination with zoonotic pathogens is warranted to 

continue to mitigate the emergence of viral, bacterial, and parasitic zoonotic infections. 
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