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ABSTRACT

A numerical simulation of freezing shear driven rivulets is presented herein. The

physics of the freezing process is captured in the simulation through application of the

“enthalpy method”; a formulation well suited for the Stefan class of problems. The

associated system of fully implicit finite difference equations was solved using the

Gauss-Seidel iterative technique. The enthalpy method formulation is first applied to the

case of a “stationary” freezing rivulet, but with a convective boundary at the free surface.

The “stationary” simulation is utilized as a subset of the more complex “traveling”, or

shear driven, simulation. The freezing process of shear driven rivulets was divided into

three distinct modes based upon macro-scale observations of freezing rivulet flow on a

NACA 0012 airfoil. From such observations, a non-dimensional empirical parameter

was developed which establishes the bulk rivulet halt criterion for a freezing rivulet

during runback.

An experimental simulation of freezing shear driven rivulet flow was conducted,

and the results compared to their numerical counterparts to facilitate a validation of the

numerical simulation with its accompanying physical models. The experimental effort

simulated freezing shear driven rivulet runback on a flat plate. The experiment was

conducted in the Icing Research Tunnel (IRT) at NASA Glenn Research Center; a facility

wherein environmental parameters can be effectively changed and monitored with

exceptional accuracy.
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The key features of bulk rivulet halt distance, the distance at which the frozen

portion of the rivulet front halts during runback, and the extension of the rivulet

downstream until the bulk rivulet is completely frozen were studied and compared. The

comparative results reveal reasonably good agreement between the numerical and

experimental simulations. Herein, the numerical halt distance predictions vary from the

experimental results by an average of 27%, where the range of variation is 0.9% to 45%.

Given the complexities associated with the simulation of shear driven freezing rivulet

runback, and the necessity to apply simplifying assumptions to render the problem

manageable, agreement within 50 % between predicted and measured results is

considered reasonable. In addition to the reasonable correlation between numerical

predictions and experimental results for the rivulet front halt distances, other phenomena

included in the numerical models were experimentally observed.

A study revealed the primary effect that the wall temperature and the freestream

velocity have on the extent of the bulk rivulet travel. The wall temperature affects the

freezing potential (Stefan number), while the freestream velocity affects the shear force

driving the rivulets.
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NOMENCLATURE

Ar - rivulet cross-sectional area

a - capillary constant

BiR - rivulet Biot number

Br - Brinkman number

cl - liquid phase specific heat

cS - solid phase specific heat

Fr - ice/wall interfacial friction force

g - gravitational constant

h - enthalpy

hlv - latent heat of vaporization

his - latent heat of fusion

hph - latent heat variable (see equation 4.18)

hsv - latent heat of sublimation

hoe - average heat transfer coefficient at the rivulet/air free shear interface

_m - average mass transfer coefficient at the rivulet/air free shear interface

hw - average heat transfer coefficient at wall/rivulet interface

Kt - Kutateladze number

k - thermal conductivity

L - characteristic length

Le - Lewis number
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LE - equivalent rivulet length

LH - bulk rivulet length at halt

Ma - Mach number

Mw - molecular weight

m" - mass flux

Nu - Nusselt number

Nun - non-freezing Nusselt number

Nup - phase-change Nusselt number

Pe - Peclet number

Pr - Prandtl number

R - rivulet radius of curvature

Re - Reynolds number

rh - relative humidity of the freestream air

StS - Stefan number

T - temperature

t - time

Wi - non-dimensional rivulet halt parameter

x - dimensional coordinate in the physical domain

X - non-dimensional coordinate in the physical and computational domains

Y - non-dimensional coordinate in the physical domain

[3 - contact or wetting angle

7 - ratio of specific heats

5 - rivulet thickness at zenith
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n - non-dimensional/normalized coordinate in the computational domain

)V - recovery factor

14 - dynamic viscosity

é - normalizing variable in coordinate transformation

p - density

0 - interfacial surface tension

”Ci - shear stress at the rivulet free surface

(p - non-dimensional temperature

w - non-dimensional enthalpy

Subscripts

a - air

e - edge of gaseous medium boundary layer

fs - free surface

g ' gas

66')?

- 1 direction (or interface)

inf - freestream

j - “j” direction

1 - liquid

ls - liquid/solid

lv - liquid/vapor

sv - solid/vapor

mp - melting point

r - rivulet
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rec - recovery

3 - solid

sat - saturation

sv - solid/vapor

v - vapor

oo - freestream

Superscripts

n - computational time step

p - Gauss-Seidel iteration number
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CHAPTER I

INTRODUCTION AND BACKGROUND

Ice accretion on airframe and propulsion system surfaces has long been a

fundamental problem within the aerospace industry. Flight in an adverse weather

environment results in both safety and performance concerns for civilian, as well as,

military aircraft. The growth of ice deposits, from the freezing of atmospheric

supercooled water droplets, on lifting surfaces can significantly degrade the aerodynamic

performance of an aircraft. In addition, the performance of an aircraft’s propulsion

system can be significantly reduced due to ice accretion and ingestion. For example,

ingested snow, hail and sleet can cause fan and compressor blade erosion, and can

accumulate on both spinning and stationary component surfaces, resulting in a severe

Foreign Object Damage (FOD) potential, if shed as ice chunks. Ingestion of large

volumes of water can affect the propulsion system’s combustion stoichiometry even

resulting in combustor flame out [1].

Since adverse weather conditions provide such a threat, it is critical that the

operational limitations of aircraft are well known so that dangerous situations can be

avoided. Prediction of the resultant accreted ice shapes and sizes, as well as their

location on aircraft surfaces, is paramount to the understanding of an aircraft’s

operational limits in adverse weather conditions. Operational limits are often extended

by employing de-icing or anti-icing mechanisms. For efficient and effective use of such

mechanisms, the operational limits of individual aircraft systems must be known. Both

ground and flight testing are used to determine system performance under adverse



conditions, and the specific limitations of the system. However, ground testing can not

always reproduce in-flight conditions without lengthy, expensive and often numerous

alterations in test parameters. Additionally, flight testing is dangerous and depends on

being able to find, or produce with tanker aircraft, appropriate atmospheric icing

conditions. Therefore, much effort has and continues to be focused on the development

of computational tools for simulation and analysis of ice accretion phenomena. Ice

accretion simulators coupled with Computational Fluid Dynamics (CFD) codes for

flowfield resolution, play an increasingly major role in the design of ground and flight

tests and the analysis and evaluation of the subsequent test data. To assist in the

prediction surface loading due to ice accretion on lifting surfaces, the LEWICE [2] code

has been developed by NASA Glenn Research Center and associated contractors.

LEWICE is a two-dimensional multiphase computer code for the analysis of ice accretion

on aircraft wings due to the impingement, runback and freezing of supercooled water

droplets. However, LEWICE lacks the generality to compute ice accretion in turbine

engines due to certain simplifying assumptions made in its development. LEWICE has

found its greatest application to wing and stationary blade ice accretion prediction.

Elsewhere, at the US. Air Force Arnold Engineering Development Center (AEDC), a

preliminary suite of codes for implementing engine icing computations is in

development, and includes a three-dimensional viscous flow solver for computing the

flowfield through rotating machinery, and a code for computing particle/droplet fluxes to

the surfaces. These are the ADPAC [3,4] (Advanced Ducted Propfan Analysis Code) and

K-ICE [5] codes, respectively. A three-dimensional ice accretion code, denoted the

PATRICE code, applicable to turbine engine icing is being developed by Dr. Dennis
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Lankford and others at AEDC [1,6]. The PATRICE (Particle Accretion and Tracking for

Rain and ICE) code utilizes the surface fluxes obtained from K-ICE to calculate the ice

accumulation on three-dimensional surfaces. Incorporated in the PATRICE code are such

physical phenomena as surface water run back, convection and conduction heat transfer

and the heat and mass transfer associated with the phase change modes of evaporation,

condensation and sublimation. These codes are representative of the significant progress

that has been made in the accuracy of ice accretion predictions, however, several

enhancements, including better physical models of surface phenomena, must be

implemented.

Of significant concern to the ice accretion modeling community is the capability

of accurately modeling accretion during glaze icing conditions (an explanation of glaze

and rime icing will be presented shortly). Under such conditions, heat transfer

mechanisms and rates, and surface flow with subsequent freezing play a major role in the

resultant accreted ice sizes and shapes. Realistic predictions of accretion shapes and sizes

cannot be overemphasized, since these features have a direct impact on the functionality

of the substrate body (i.e. airfoils, inlets, etc.). The physical behavior of impinging

supercooled water droplets on an accretion surface and subsequent surface flow in glaze

conditions can be very complex. One such phenomenon, in glaze conditions, is the break

up of thin liquid films into rivulets that runback and then subsequently freeze. Modeling

the freezing of liquid water runback in the form of rivulets is the substance of this

research.



Research Objective

The fundamental objective of the subject research is to provide a significant

enhancement to current ice accretion modeling methodologies for handling surface

“runback”. Specifically, the numerical simulation of the freezing of shear driven surface

runback in the form of rivulets was undertaken. Runback water in the form of rivulets is

a common phenomenon in several icing, anti-icing and de-icing scenarios of aircraft

surfaces. An understanding of where and to what spatial extent and rate runback water

will freeze is critical to the aircraft manufacturer and anti-icing/de-icing system

designers. Such a numerical simulation provides valuable physical insights and makes a

significant contribution to the ice accretion modeling community. For example, the

developments resulting from this research could be integrated into the PATRICE

(Particle Accretion and Tracking for Rain and ICE) code being developed at AEDC.

Approach

The approach followed to achieve the stated overall objective is divided into three

stages, namely:

1. Numerically simulate the freezing of a stationary rivulet by application of an

“enthalpy method” formulation (see Chapter II). The enthalpy method is a robust

physics based approach for solving solidification or melting (Stefan) type

problems, and is tested on this simplified model while retaining the inherent

characteristics of the rivulet geometry. This simplified model includes all the

applicable modes of energy transport except for those convective modes

associated with a flowing rivulet (i.e., convected enthalpy and convection heat

4
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transfer at the liquid-solid interface). This model provides considerable insight

into the freezing process of rivulet geometry while validating the integrity of the

enthalpy method. Many key physical elements of the stationary rivulet model

find utility in the freezing runback model.

Investigate the hydrodynamic behavior of rivulet flow driven by shear loads at the

free surface. Incorporate the applicable hydrodynamic behavior into the

traveling rivulet model and apply the enthalpy method formulation to

numerically simulate the freezing thereof. The insights gained from the above

step and the energy transport mechanisms associated with the rivulet flow are

incorporated.

Validate a model of freezing shear driven rivulet runback with experimental data

obtained from freezing rivulet tests on a flat plate conducted in the Icing Research

Tunnel (IRT) at NASA Glenn Research Center. Measure the length of rivulet

runback and closely examine, via video recorder, the subsequent ice accretion on

the rivulet after the rivulet front has halted. Give careful attention to finding out

the conditions associated with halted rivulet flow. Conduct test cases involving

various rivulet sizes, ambient and substrate temperatures and initial (uniform)

rivulet temperatures.

Parametrically investigate those parameters that affect the runback length and the

complete solidification of freezing runback rivulets. Such an analysis provides

insight as to which parameters have the greatest impact on rivulet runback and the

solidification thereof.



Ice Accretion Background

A familiarity with the fundamental principles and physical phenomena associated.

with the ice accretion process is necessary to an understanding of the genesis of rivulet

formation in glaze icing conditions. This section provides background information

related to the ice accretion process, accretion phases and the formation of a “runback”

zone, of which rivulet flow is an offspring.

Ice Accretion Process and Phases

The source of the accreted material, namely ice, is supercooled water droplets

contained in a gaseous medium (air) that impinge on a surface moving through the

medium. Upon impingement, nucleation of the drops begins, thus initiating the freezing

and accretion process. Droplet sizes that range from approximately 15 pm to 40 pm in

diameter are found in cloud systems that typically constitute “adverse weather

conditions” for aircraft. FAA publication FAR 25, Part C defines the generally accepted

envelope of icing conditions for transport aircraft. This document covers both

intermittent and continuous icing conditions.

The temperature of the accretion surface has a dominant effect on both the

freezing and cooling processes of impinging supercooled droplets. The temperature

attained by the accretion surface is determined by the balance between the rate at which

energy is supplied to the surface and the rate of energy loss to the environment. Energy

is supplied predominately by the liberation of latent heat as the impinging drops freeze.

Energy is also supplied to the accretion surface from the kinetic energy of impinging



droplets and aerodynamic heating. Energy is removed from the surface by forced

convection, by evaporation at the water/air interface (or sublimation as in rime icing

conditions) and by sensible cooling of the newly formed ice deposit. Since the accretion

surface temperature cannot exceed 0 0C (273.15 K), a critical Liquid Water Content

(LWCcr) [7], where all of impinging drops will be just frozen, can be determined locally

based on parameters affecting the local surface energy balance. If the actual LWC is

lower than the critical value, all of the droplets will freeze and the accretion surface

temperature will be below 0°C. If, on the other hand, the actual LWC is greater than the

critical value, the excess water, which cannot be frozen in the region of impingement, can

coalesce into beads, run back downstream, shed or even be incorporated into the ice

structure producing a spongy accretion. Thus, these two conditions are'referred to as the

dry and wet growth regimes, or more commonly as, the rime and glaze regimes,

respectively. The wet, or glaze regime, is of interest in the subject research since this

environment is conducive to surface runback and rivulet formation.

In a dry (or rime) accretion process, when the LWC is below the critical value, the

freezing and cooling of the droplets takes place in three distinct phases; the initial

freezing, the subsequent freezing and the cooling phase [7]. A newly arrived droplet is

nucleated, ice is formed, and latent heat transferred into sensible heat within the drop,

which in turn, drives the droplet temperature rapidly toward 0°C. This is the initial

freezing phase, and results in a droplet that is now a mixture of water and ice. As the

freezing process continues within the subsequent freezing phase, the complete phase

transition from water to ice is accomplished by removal of the excess latent heat of fusion



at a constant temperature at or near 0 °C. In the cooling phase, with the droplet

completely frozen, the drop begins to cool by forced convection at the free surface

interface and conduction into the underlying substrate. In a steady state condition the

accretion cools until, on the average, the initial accretion temperature is regained before

the arrival of the next droplet. However, a local wet (or glaze) accretion is a condition

where, because of insufficient heat dissipation to the environment, the subsequent

freezing phase cannot be completed locally. This is equivalent to a LWC above the

critical value.

The degree of subsequent cooling of impinging droplets under glaze accretion

conditions is determined by the rate at which latent heat can be dissipated to the

environment. As more droplets impinge, they too are unable to completely freeze, thus a

liquid film is formed. At the same time, however, the ice accretion deposit thickens as

heat dissipation continues to chip away at the latent heat of the water mass, but at a rate

insufficient to freeze all the water. This unfrozen water cannot be ignored, for it is

influenced by external forces and microphysical phenomena which can cause it to bead,

coalesce or move along the surface to a region where the heat transfer coefficient is

higher or the local collection efficiency is lower, and subsequently freeze there. This can

have a dramatic impact on the resulting accretion size and shape. Ice accretion rates can

vary significantly over the body due to microphysical phenomena resulting in the

development of various surface flow mechanisms. Local variances in ice accretion rates

along a body can be categorized into zones [8-12].



Glaze Ice Accretion Zones

The great challenge of glaze ice accretion modeling is incorporating into the

model the temporal and spatial variations of the accretion surface characteristics and their

effect on the accretion rate. The local heat transfer coefficient (he) is a critical parameter

that can vary significantly from one location to another on the accretion surface and vary

locally with time as accretion proceeds. This variation in upstream ice accretion rates

gives impetus to, and determines the extent of, the downstream surface water runback.

Variations in the local heat transfer rates in rime icing conditions are essentially of little

concern, since all the impinging water freezes locally on impact. Thus, the local accretion

rates correspond directly to the mass flux of the impinging liquid. This is the reason rime

accretion modeling tends to be a simpler and more straightforward problem. If one can

accurately model the impingement of supercooled droplets and subsequent phase change

thermodynamics, the accretion configuration follows a priori. Rime accretions layers.

therefore, thicken as they follow the contour of the substrate. In the glaze (or wet) case,

surface roughness elements may result initially from surface tension effects causing small

roughness beads that then grow due to a locally favorable heat and mass transfer [13].

These beads of water may be formed from water that has coalesced in a region different

from where it originally impacted.

In an effort to find a more physical based way of determining realistic heat

transfer coefficients, Hansman and Yamaguchi [9] discovered from experiments of glaze

icing on cylinders, that distinct zones of surface roughness, with identifiable boundaries,

were formed. These roughness zones give great insight into glaze icing phenomena and



the extent of improvements necessary for ice accretion heat transfer and runback models.

The surface roughness zones are summarized below.

a The smooth zone is a uniformly wet region close to the stagnation point consisting

of a thin film of water at warm temperatures. There is no distinctly visible

roughness, hence a smooth region. What water is able to freeze out in this zone

forms a translucent ice layer below the surface water.

0 The rough zone is characterized by a sudden transition to a significantly rougher

surface with insufficient water to maintain a film. The initial transition from the

smooth zone to the rough zone is controlled by the natural pre-accretion boundary

layer transition. In cases where there is no runback from this zone, surface

tension forces dominate causing runback water from the upstream smooth zone

and impinging droplets to coalesce into beads. This is associated with a marked

increase in the heat transfer coefficient, and subsequently, an increase in the

accretion rate. The increased roughness due to the beads causes the boundary

layer to “trip” and subsequently undergo transition to turbulent flow at the

upstream edge of the beads. With the boundary layer now turbulent in the region

of the beads, the enhanced heat transfer causes the beads to freeze forming rough

ice. Now this area becomes dry and beads form on the upstream side of this new

ice, thus moving the smooth/rough transition farther upstream [10]. As this

process continues, the transition interface propagates toward the stagnation

region. Observations indicate that the above transition propagation rate increases

with increasing surface water flow. This phenomenon is shown beautifully in the

grazing angle photograph of Figure 1 [12].
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Figure 1. Glaze Ice Accretion Smooth/Rough Zone Transition Front
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o Contained within the rough zone during times of particularly high water

content is the horn zone. Some or all of the roughness elements in the

rough zone can grow into protrusions, which themselves become

macroscopic ice accretions. The result is increased heat transfer along

with increased collection efficiency, wherein the protrusions begin

catching droplets that otherwise would be swept by the body. These

accretions then rapidly grow into the familiar horns common to many

glaze icing accretions.

0 At warm temperatures, or sufficiently high LWCs, when not all of the water in the

rough zone is able to freeze, there can be runback aft of the rough zone. This

constitutes the runback zone where water can move downstream in rivulets then

stagnate at a point of flow separation or when a critical frozen fraction is reached.

The latter is addressed in the subject research. As the water moves downstream it

will typically freeze where the surface is cooler or has a higher heat transfer

coefficient. Oft times it will freeze as rivulets or large coalesced water cells.

A segregation of the three distinct accretion zones described above is shown

superimposed on a typical glaze accretion for a cylinder in Figure 2. The cylinder, at a

temperature of —4.5 °C, was exposed to an atmosphere traveling at 150 knots with a LWC

of 1.0 g/m3 and containing droplets with a mean volumetric diameter of 30pm.
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Surface Water Behavior Considerations

Surface water behavior provides significant concerns in accretion modeling

because the water can move and change shape. It affects both heat and mass transfer

mechanisms, which directly influence the ice accretion rate. For water bead growth there

are two main scenarios: first, bead growth at the smooth/rough transition interface

continues until the heat transfer is increased sufficient enough to freeze all the water from

impingement and upstream runback; and second, bead growth by liquid mass

impingement and coalescence until external dynamic forces cause droplets to slide along

or be shed from the surface [12].

The ability of water to spread, or wet the surface, decreases as the surface

temperature decreases and increases as surface temperature increases. As the ice surface

becomes less wettable, there is increased resistance to motion, and it requires greater

forces to move the water along. Thermal gradients along the surface can be very

important to the development of accreted surface roughness. Small variations in the

surface temperature can restrict the motion of water and cause bead formation. Dry ice in

the area around the beads can be cooled below 0 °C, increasing the barrier to water flow.

Water impinging or running onto a cold dry surface will freeze quicker, and droplets that

strike beads will be trapped within the bead while icing occurs at the lower surface of the

bead.

Individual freezing of droplets is also noteworthy, since as a drop freezes before

the impingement of another in the same place, a hummock with a shadowing effect is

14



formed [14]. This shadowing effect influences the local microscopic collection

efficiency, which is a function of the local impingement angle and contact angle

Finally, in that region of the runback zone that is near the impingement limit of

the supercooled droplets, a thin liquid film that once wetted the whole surface can

become unstable due to surface tension forces and cause the film to breakdown. The film

breakdown is manifest as individual streams or rivulets separated by dry regions. This

phenomenon is clearly illustrated in Figure 3 [15] below, wherein rivulets have formed

on a Bl-B inlet vane and are driven back by free surface shear. Included in these

observations is the subsequent formation of water beads and their travel downstream

beyond the leading edge of the rivulets. Shear driven surface water runback in the form

of rivulets, and the subsequent freezing thereof, is an important common phenomenon in

glaze icing conditions, for which the development of a model and associated numerical

simulation is detailed herein.

15
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CHAPTER II

FUNDAMENTALS OF THE FREEZING RIVULET MODEL

The flow of surface runback as rivulets, and their subsequent freezing

downstream, is a common glaze ice accretion phenomenon on critical airframe and

propulsion system surfaces. Knowledge of the amount and spatial extent of frozen

surface runback is critical for aircraft designers. Many analytical and experimental

investigations and simulations of freezing flow have been successfully undertaken,

however, a review of the literature has revealed nothing with regards to the numerical

simulation of freezing rivulet flow. A very nice treatment of rivulet runback on aircraft

surfaces in glazing icing conditions was conducted by Al-Khalil [l6]. Al-Khalil’s work

embodied the incorporation of rivulet flow into the simulation of an aircraft anti-icing

system, wherein the temperature of the rivulets is maintained above the freezing point

due to the application of a thermal energy load. Thus, the rivulets would continue to “run

wet” downstream of their formation and not freeze. Several insights related to the

characteristics of rivulet flow were gleaned from the work of Al-Khalil and applied to the

subject analysis and simulation of freezing shear driven rivulet flow.

Freezing Rivulet Geometry

The fundamental geometry and associated parameters, including simplifying

assumptions, of the freezing rivulet model are described in this section. The specific

conditions, governing equations and modeling methodologies related to the stationary
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and traveling freezing rivulet cases are addressed in detail in Chapters III and IV,

respectively.

Rivulet Formation and Resultant Geometry '

In adverse weather conditions conducive to glaze ice accretion, where not all of

the suspended supercooled water droplets freeze on impingement with a surface, a thin,

water film forms on the surface. Such a thin liquid film forms in the direct impingement

region near the surface stagnation point. The impingement region is bounded by upper

surface and lower surface limits, which are the last points on these surfaces aft of the

stagnation point which are hit by water droplets [2]. In this region, water wets the entire

surface by direct impingement of supercooled water droplets and the addition of water

running back from upstream regions closer to the stagnation point [17]. The thin liquid

film initially forms in the “smooth zone” as described in Chapter I. and illustrated in

Figures 1 and 2. The subsequent behavior of this liquid film is controlled by the

interaction of surface tension, the shear force at the free surface and surface roughness.

The starting point in the numerical simulation of freezing rivulet flow is that point

on the surface where the rivulets have first formed from the breakup of a shear driven,

thin liquid film. Mikielewicz and Moszynski [l8] apply conservation principles at the

instant of film breakup, and show that for newly formed rivulets to be stable, the energy

of the system should be a minimum. Therefore, the breakup of the water film into

rivulets is considered to take place downstream of the impingement limits, wherein there

is no surface flux due to droplet impingement. The size of individual rivulets is

determined from the coupling of the upstream mass flow rate, minimum energy

18



principles and surface tension effects. Although the breakup of a thin liquid film is a

primary source of rivulet flow, rivulets can also be formed from the coalescence of water

beads in certain regions of the accretion surface, i.e. aft of the rough zone shown in

Figure 2. Fundamentally, the freezing rivulet model herein considers the rivulet flow to

be downstream of the droplet impingement limits, fully developed, driven by viscous

shear at the free surface interface and free from the effects of surface waves and other

aerodynamic distortions of the rivulet free surface. Thus, as the rivulet runs back and

freezes, it is assumed to maintain a circular cross section as shown in Figure 4. Any

reduction in rivulet mass due to evaporation or sublimation, or increase in rivulet mass

due to condensation is modeled as a reduction or increase, respectively, in the rivulet

radius of curvature (“R” in Figure 4.). Thus, mass subtraction or addition is applied

uniformly over the rivulet surface, and the circular cross section is maintained. These

key features of the model of rivu1et flow provide simplification to the freezing rivulet

model while maintaining a robust and physically realistic geometry. Clearly, in most

runback situations, numerous rivulets run back, parallel to each other, separated by non-

wetted surface; however only a single rivulet stream is of interest here. Thus, the

analysis and results presented herein are applicable to each rivulet within a community of

non-interacting, parallel rivulets on the substrate of interest.

Physical Conditions and Assumptions

The following conditions and assumptions apply to the subject simulation of

freezing rivulet runback and form the basis upon which the geometry and associated
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parameters are established. The resultant rivulet model cross sectional geometry with

associated key parameters is illustrated in Figure 4.

The rivulet forms and subsequently runs back downstream of the direct water

droplet impingement region.

The effect of gravity on the shape of the rivulet surface is negligible. This

assumption is validated by the fact that the capillary constant (a) is significantly

larger than the characteristic dimension (8) of the rivulet. The capillary constant

is defined as [19]: a = (2 o / g p)”2 , where o , g and p are the liquid/gas interface

surface tension, gravitational constant and density, respectively. The capillary

constant for water at the melting point temperature of 273.15 K is approximately

4.0 mm. For the type of rivulet under investigation, the rivulet height (5) ranges

from 0.2 mm to 0.9 mm. Given that the capillary constant is considerably greater

than this characteristic length, surface tension dominates and gravitational effects

on the surface geometry can be neglected.

The rivulet “wets” the surface of the substrate of interest. This implies that the

contact angle [3, the angle formed by the rivulet free surface as it intersects the

substrate, is less than 90°.

The flow inside the rivulet is fully developed and laminar. Surface waves are

neglected.

The effects of neighboring rivulets on the free shear layer of the subject rivulet are

neglected, i.e., an individual rivulet can be analyzed independently.
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Figure 4. Rivulet Cross-section and Fundamental Geometric Parameters
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0 Any reduction or addition to the mass of the rivulet during the freezing process is

manifest through a change in the rivulet radius of curvature. Thus, the rivulet

maintains a circular cross section.

Given the circular cross section driven by the liquid/gas interface surface tension,

the rivulet surface is defined by

ax): (R2 — x2)”2 — Rcos(,8), for OSxS Rsin(,B), (2.1)

where R is the radius of curvature and B is the contact angle. From equation (2.1) and

referring to Figure 4, one can see that at x = 0, 5(0): R — Rcos(,B)= 6, and at x =

R sin (p), the rivulet half width, 5(R sin (13)) = 0.

The Stefan Problem

In its most basic form, the freezing rivulet problem is identified with a class of

problems defined as Stefan-type. Stefan problems are simply a class of heat transfer

problems involving solidification from a melt or melting of a solid, and include the

hallmark “Stefan Condition” at the phase-change interface. The Stefan Condition simply

states that the latent thermal energy release due to the displacement of the phase interface

is equal to the amount of heat transferred to (or from) the interface. Thus, the Stefan

Condition defines the energy balance across the phase interface and forms a moving

boundary condition as defined below in equation (2.2), and illustrated in Figure 5, for a

simple l-D problem.
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Consider a material initially in the liquid phase (t S 0) at a uniform temperature T] > Tmp,

where Tmp is the phase-change temperature. The liquid is then instantaneously (t = 0)

subjected to a cold substrate maintained at a constant temperature T2 < Tmp. Such

conditions will cause a layer of solid to form on the substrate. If conditions exist such

that the heat transfer and subsequent phase front propagation (s(t)) are l-dimensional, this

Stefan problem can be described by the following pair of equations; one for the solid

phase,

a];6 0T

— k. "' = .——, 03' < t 2.3ax[..ax] me, x s() ( )
 

and the other for the liquid phase,
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6 0T 6T

5x—( ngZPCI—aTI, XZSU). (2.4)

At the solid-liquid boundary, the following condition applies:

an

ks _a—x_ x=s(l) — kl

6T a's t

Exi x=s(t) = phls —§ 9 x = S(t) 9 (2'5)

which is the classical Stefan Condition, and where

T. =7] = T at x=s(t).
.8 mp

The l-dimensional Stefan Problem, governed by equations (2.3) — (2.5) above, is

challenging to solve by analytical closed-form techniques due to the non-linearity

introduced at the moving phase front boundary. This non-linearity, geometric in nature,

rests in the fact that the regions, solid and liquid, in which the linear partial differential

equations are to hold are unknown functions of time and must be found as part of the

solution. Thus, not only is there a discontinuity in thermophysical properties at the

interface, but also the solution becomes a function of the unknown phase front

propagation speed.

The Enthalpy Method

The class of Stefan problems for which analytical, closed-form solutions can be

found are few [20], and the solutions obtained only apply to very restrictive conditions.

Such restrictive conditions include: one dimensional, semi-infinite geometry, uniform

initial temperature, constant imposed temperature at the boundary, and constant

thermophysical properties in each phase [20]. Analytical techniques, such as the
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Goodman Integral Method [21] and the Biot Variational Method [22] provide reasonable

results for the solution of simple Stefan problems with certain restrictive conditions

applied. Numerical techniques that are employed to solve the above governing equations

require that the phase interface boundary, x = X(t), be explicitly tracked. The capability

of “front tracking” is an artifice that is difficult for the vast majority of available

numerical solvers to implement.

However, there is one numerical method that is formulated in such a way as to

avoid the necessity of tracking the phase-change interface. The enthalpy (or weak)

solution approach to Stefan problems is based on the fact that the energy conservation

law, expressed in terms of enthalpy (energy) and temperature, coupled with the

appropriate equation of state, contains all the necessary information needed to determine

the evolution of the phases [20]. The enthalpy method is sometimes referred to as the

“weak” solution on the grounds that it is an approximation to the weak solution of the

governing differential equations. The power of weak solutions, wherein “weak

derivatives” are invoked, is found in the solution to problems that have inherent jump

discontinuities. Inherent in Stefan problems is the jump discontinuity of thermophysical

properties at the phase front; namely enthalpy and thermal conductivity. Therefore, the

basic energy conservation law holds throughout the material, and the phases are

subsequently distinguished by the application of the equation of state relating enthalpy

and temperature. Thus, the enthalpy method is a “volume tracking” scheme rather than a

“front tracking” scheme. In reality this method may be best characterized. as a “front

capturing” scheme, wherein the phase interface is not brought out explicitly but is
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captured within a local volume or computational cell. The interface location may be

obtained from the cell enthalpy as described below.

The enthalpy method is implemented by applying energy conservation to each

control volume to obtain a discrete heat balance. From the heat balance, one can update

the enthalpy of each cell. From the enthalpy equation of state, and knowing the latent

heat of fusion, the state of the control volume can be determined (i.e., all solid, all liquid

or part liquid and part solid...slushy). A “slushy” cell contains the phase interface, and

the portion of the cell that is liquid (the liquid saturation quality) can be derived from the

liquid mass fraction. That is, once the enthalpy method has solved for the enthalpy of a

slushy cell, the liquid mass fraction of the cell can be ascertained and the phase interface

predicted. Since a “slushy” volume or cell separates the two distinct phases, the accuracy

of the enthalpy method in tracking the phase front is limited by the grid resolution, or size

of a single computational cell. However, grid resolution becomes less of an issue since

one can further define the location of the phase-change front within the slushy cell by

utilizing the liquid (or frozen) mass fraction of the cell. In the vast majority of Stefan

problems, such accuracy is sufficient and certainly acceptable within the scope of the

subject problem. After application of the enthalpy formulation, the Stefan problem above

is now described by

a 67" ah
— k— = —, 20 2.6
axi axl pat x ( )
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where h is the enthalpy and k and p are functions of temperature. Through application of

the appropriate equation of state, the relationship between enthalpy and temperature is

 

shown to be

C, u , u < 0

h = , where u = (T - T”), (2.7)

c,u+h,_‘., u>0

and

I h - .
— , h S 0 (solid)

c,

u = l 0 , 0 < h < h“ (interface or "mushy" cell). (2.8)

(h — 11,.) . .
“ , h 2 h“ (liquid)

c, 

Advantages of the Enthalpy Method

According to Voller and Cross [23], significant advantages of the enthalpy

method are:

0 there are no conditions to be satisfied at the phase interface boundary, x = X(t);

0 there is no need to accurately track the phase interface boundary;



0 there is no need to consider the phase regions on either side of the phase front

separately, and

o if necessar , one can easil introduce a “slush ” re ion, wherein the hase-
y

change occurs over a range of temperature rather than a single point.

The above advantages coupled with the fact that the enthalpy method is robust and has a

direct physical interpretation to the solution of Stefan problems, render this method an

excellent approach to the modeling of freezing rivulet runback. A Stefan problem

formulated using the enthalpy method is amenable to solution by both explicit and

implicit numerical methods. Herein, a robust implicit scheme is employed in the solution

of the freezing rivulet runback problem.

This study examines rivulet solidification for cases where the liquid rivulet

temperature is at or very near the freezing temperature, as would be typical for runback in

glaze icing conditions. Under such conditions, only latent heat is removed from the

liquid phase, whereas, in the solid phase, sensible thermal energy is removed via heat

transfer. Because only latent heat is removed from the liquid phase, the problem is

identified as a “One-Phase Stefan Problem” in which the solid phase is the only active

(sensible) phase wherein a temperature gradient exists [20]. The “one-phase” Stefan

problem can be nicely characterized by an insightful parameter called the Stefan number.

For the “one-phase” freezing process, which is of greatest interest here, the Stefan

number is defined by
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st, = iii/32:). (2.9)
h“

The Stefan number represents the ratio of sensible heat that must be removed, per unit

mass, during the freezing process to the latent heat removed per unit mass. From such a

ratio, one can readily get an indication of whether the process will be dominated by

phase-change or by sensible heat conduction. The process of freezing rivulet runback is

clearly dominated by phase-change, where the Stefan number ranges from 0.01 to 0.03

for the cases under consideration herein. Certainly, the Stefan number varies in relation

to the AT imposed. However, problems involving the freezing of water are generally

dominated by phase-change

A few select cases where the liquid phase temperature is elevated above the

melting point are treated in this study in an effort to validate the model through

correlation with experimental data. Such cases are identified as “Two-PhaSe Stefan

Problems”, wherein both phases are active with sensible heat removal. Freezing runback

downstream of a de-icing or anti-icing region is an example of a scenario where the

Stefan problem must account for two active phases. Herein, the rivulet temperature

would be non-uniform with the potential for initiating a phase-change front at the rivulet

free surface and propagating inward, toward the substrate. Such a scenario could

conceivably invoke considerable complexity to the rivulet flow model by establishing an

ice crust at the free surface. The runback rivulets examined in the subject study that are

inherently “two-phase” Stefan problems are assumed to have an initial uniform

temperature distribution, T, > Tmp. The uniform temperature distribution reduces the
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concern of phase front propagation from the free surface during the runback process, but

does reveal some other interesting features to be discussed in Chapter V. However,

during the freezing process of a “two-phase” stationary rivulet, phase fronts can

propagate inward from both the cold substrate and the free surface boundary. This

phenomenon will be clearly illustrated in Chapter IV, wherein the “stationary” freezing

rivulet problem is discussed.
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CHAPTER III

EXPERIMENTAL SIMULATION OF FREEZING

SHEAR DRIVEN RIVULETS

The experimental simulation of shear driven freezing rivulets provided qualitative

and quantitative data used in the validation of the numerical simulation of freezing rivulet

runback. The experimental simulation was conducted in the NASA Glenn Icing

Research Tunnel (IRT), Cleveland, Ohio; a facility wherein the environmental parameters

could be controlled with a high degree of fidelity. The experimental data from selected

test cases were used to benchmark the numerical simulation in order to establish its

validity and accuracy. In pursuit of this objective, answers to the following questions

were desired.

0 What are the distances rivulets of various sizes and various initial

temperatures runback, under icing conditions, before the rivulet front halts?

0 Does the halting of the rivulet front coincide with the commencement of

freezing or does some freezing take place before the rivulet front completely

stops?

0 Once the initial rivulet front has halted, what is the behavior of subsequent

runback water as it continues to flow from upstream?
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Experimental Simulation Configuration

The test configuration focused on a test article that would generate well-

developed rivulet flow that would runback and freeze. A necessary requirement was to

have a substrate upon which the macro physical phenomena of freezing rivulet runback

could be observed. Furthermore, obtaining the distance the rivulet front traveled before

the frozen portion halted was a primary test objective. The rivulets were introduced via

small diameter tubes rather than employing the Icing Research Tunnel spay bar system.

Since the focus was not on the mechanisms rivulet formation, but to experimentally

simulate the freezing of fully developed rivulet runback, the means by which the rivulet

flow was initiated was not critical.

Test Apparatus

The appropriate freestream environment for the subject experiment was provided

by the NASA Glenn IRT. The IRT is a closed-loop atmospheric tunnel that is uniquely

equipped to support the low-speed testing of icing related models [24]. The test section is

6 ft. high, 9 ft. wide and 20 ft. long, wherein the velocity of air can be controlled from 50

mph to 430 mph. Although not employed with the subject test, the IRT has a unique

spray bar system capable of delivering various liquid water contents (LWCs) and mean

volumetric droplet (MVD) sizes. The reader interested in the scope of capabilities of the

IRT is referred to Soeder, et al. [24] for details.

The test article designed to carry the rivulets was a simple “flat plate”

configuration 12 in. wide, 48 in. long and 0.5 in. thick. The plate was constructed from
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aluminum stock with a black anodized finish introduced for the purpose of enhancing the

optical contrast. Also, a 1/8 in. leading edge radius was employed to provide a

reasonably sharp leading edge and reduce blunt edge effects. Three liquid water supply

tubes were introduced to the top surface from beneath on an angle pitched in the direction

of the freestream airflow as shown in Figures 6 and 7. The tube openings were milled

flat consistent with the plate to make a smooth transition for the water to the plate. Three

tube sizes were selected; namely 0.050 inch O.D., 0.188 inch OD. and 0.375 inch 0D.

in an effort to facilitate the formation of rivulets of varying size. A close-up of the

interface between the rivulet water supply tubes and the flat plate test article is shown in

Figure 8. The supply tube openings intercept the flat plate surface 10 inches downstream

of the leading edge at an approximate angle of 45 degrees. The lO-inch offset from the

leading edge was deemed necessary to allow the airflow to sufficiently develop over the

plate and reduce edge effects on the downstream rivulet runback. As shown in Figures 6-

8, three rivulet paths were established with distance divisions marked adjacent to each

path. The white distance markers made it possible to note the length of rivulet travel and

subsequent halt via optical means.

A unique valve set was employed in the supply lines to make possible the

introduction of the rivulet water, while at the same time supplying heated air to an

annular jacket around the supply tubes. The heated air jacket was an added design

feature that could be employed to regulate the water temperature and/or keep the portion

of the supply lines that were exposed to the cold environment from freezing. Three

independent JoucomaticTM solenoid type valves were fitted with modified atomizer heads
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Figure 6. Flat Plate Test Article in the IRT Test Section

 
Figure 7. Flat Plate Test Article in the IRT Test Section— Close-up of Supply Tubes
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Figure 8. Interface Between the Rivulet Water Supply Tubes and the Flat Plate
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Figure 9. Schematic of Valve System with Modified Atomizer Head

to provide the rivulet water and an annular heated air jacket through a single valve

system. A schematic of the valve system with the modified atomizer head is shown

above in Figure 9. The valve systems were configured together in a manifold layout,

with each being controlled independently from the IRT control room. The control valve

systems were attached to the rivulet water and heated air supply lines, shown in Figures 6

and 7, immediately below the IRT test section.

The rivulet water was supplied from a pressurized reservoir located beneath the

IRT test section, shown in Figure 10. Immediately downstream of the water reservoir,

several feet of the main supply line were coiled for potential immersion in an ice bath, so

as to form a heat exchanger to pre-chill the rivulet water.
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Figure 10. Rivulet Water Reservoir, Ice Bath and Associated Plumbing
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Although shown in Figure 10, this pre-chill feature was found to be unnecessary

during the conduct of the subject tests. The capacity to introduce shop air into the water

supply line after a rivulet run, in order to purge the line of water and mitigate line-freeze,

was also included.

Instrumentation

The span of time between receipt of permission from NASA Glenn to perform

this experiment and the actual conduct of the test was reasonably short. Given this

contracted window of opportunity, the experiment was designed to garner as much

qualitative data as possible via human observations and video recording. In addition, a

necessary requirement was to measure certain key parameters for post-test evaluation and

analysis. The circumstances noted above were the motivation to employ a relatively

simple suite of instrumentation, primarily consisting of video recording equipment.

A suite of high and low speed video imaging equipment, on site at the IRT, was

employed to capture, as well as possible, the physical phenomena associated with the

freezing of rivulet runback. Three imaging, or camera, orientations were used; namely an

overhead “pan”, an overhead “fixed” and a “graze” angle in the plane of the flat plate test

article.

To capture the initial temperature of the rivulets before running back and freezing,

type “T” Copper—Constantan thermocouples were inserted in the rivulet water supply

tubes near the their opening onto the flat plate. The attempt was made to allow slight

penetration of the tube wall by the miniature bead of the thermocouple junction. In
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addition, a series of type “T” thermocouples were stationed along the flat plate test article

to measure the temperature of the freezing surface. This temperature is equivalent to the

wall temperature used in the numerical simulations discussed in the previous chapter.

Finally, three calibrated flowmeters were installed upstream of the solenoid valve

systems. Pre-test calculations, based upon analytical formulations previously discussed,

were used to determine the mass flow rate values that would produces the desired

resultant rivulet size. At times, during the initial onset of rivulet flow, fine-tuning of the

mass flow rate was necessary to achieve the appropriate continuous flow. Each

flowmeter was selected to handle a different range of flows with an associated resolution.

The flowmeter panel of the subject experiment is shown in Figure 11.

Test Parameters

A test matrix was developed to examine the effect of the following test variables

on freezing rivulet runback.

Freestream air speed, and therefore the rivulet free surface interface shear

stress and I'CCOVCl‘y temperature.

0 Substrate surface finish, and therefore rivulet contact (wetting) angle

0 The initial rivulet temperature (considered uniform) at the onset of runback.

o Freestream air temperature, and therefore the recovery temperature at the

rivulet free surface.
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Figure 11. Flowmeter Panel — Flowmeter in each Rivulet Water Supply Line

40



o Rivulet size, i.e., radius of curvature and width.

0 Substrate,'or freezing surface, temperature.

The relative humidity of the air stream was not a parameter of the test matrix, and

therefore was not specifically controlled. However, for this experimental work the

relative humidity of the air stream was maintained within a band from 80 and 88 %.

Test Procedure

The overall test procedure first consisted of a preliminary calibration of steady

state rivulet formation, thermocouple signal outputs and camera placement and lighting in

a running wet (no freezing) mode. The air speeds during this phase matched those of the

actual test cases, however the air temperature was elevated to above the freezing point.

Finally, a series of freezing rivulet runback test cases was run under the conditions

outlined below. For each test case there were three rivulet sizes run, and the initial rivulet

temperatures, in parentheses, are for rivulets A, B and C respectively.

0 Test Case #1:

- Tw= 272.7 K, Tin: (285.7 K, 286.9 K, 276.6 K), Tinfz 271.0 K, B = 38°,

and Uinf: 44.7 m/s (100 mph)

0 Test Case #2:

I Tw= 271.7 K, Tin: (284.1 K, 286.6 K, 274.9 K), Tinf= 270.8 K, B = 38°,

and Uinfz 44.9 m/s (100.5 mph)
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0 Test Case #3:

I Tw=270.4K, Tm: (283.,3K 282.3 K, 2732K), T,,,f= 269.,7K B=38°,

and Uinf: 45.2 m/s (101.0 mph)

0 Test Case #4:

I TW— 270.9 K, Tm= (284.6 K, 283.4 K, 273.2K), T,,,f= 270.8 K, [3: 38°,

and U,,,,~= 67.2 m/s (150.4 mph)

0 Test Case #6: (Note, contact angle change.)

I TW:27].5 K, T,,,= (287.4K, 287.6K, 277.8 K), Tmf:270.8 K [3 60°,

and Uinf = 44.8 m/s (100.2 mph)

0 Test Case #7:

I Tw=270.6 K, Tm: (280.4K, 285.6 K, 276.2 K), Tmf: 269.8 K [3 60°,

and U,,,f= 44.7 m/s (100.0 mph)

0 Test Case #8:

I Tw=27l.1 K, Tm: (283.,7K 283.2K, 275.7K), T.,.f=270.8,—KB 60°,

and Uinf: 67.1 m/s (150.1 mph)

0 Test Case #9:

I Tw=270.1 K, T,,,= (280.,6K 283.1 K, 277.1 K), Tmf—2708K [3 60°,

and Uinf: 67.0 m/s (149.9 mph)

After the air speed and ambient temperature were set, sufficient time was allowed

for the flat plate to thermally equilibrate. Once again, supercooled droplet impingement,
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or cloud, conditions were not required since rivulet formation is considered to initiate

downstream of the particle impingement zone.

Rivulets A, B and C of Test Cases 1-4 were each run sequentially on the polished

anodized surface ([3 = 38°) by opening and closing the respective solenoid valves.

Sufficient upstream water was allowed to run after the initial rivulet front had halted to

gain insight into subsequent flow behavior and accretion surface growth. After each

rivulet run, its associated supply line was air purged to remove all water and mitigate

line-freeze. The IRT facility steam supply was used to quickly remove the accreted ice

from the test article between test cases.

Roughing-up, or dulling, the surface of the rivulet lanes on the flat plate using a

small piece of steel wool increased the rivulet contact angle ([3 = 60°) for Test Cases 6-9.

Test Cases 6-9 were run in similar sequential fashion to Test Cases 1-4.

Rivulet Contact Angle Determinfation

Prior to the conduct of the experimental simulations, representative contact angles

were measured in a laboratory at the University of Tennessee Space Institute. The

Wilhelmy Slide Technique [25] was employed to measure the contact angles on a black

anodized aluminum coupon for both smooth and rough conditions. The formulation that

relates the meniscus height to the wetting (contact) angle is given by

2

sin(,B) = 1— L211, (3.1)
20",,
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where h is the meniscus height and 01.», is the liquid-air surface tension. The values

recorded in the laboratory, and subsequently used in the post-test evaluations and

numerical simulations, were B = 38° and 60° for the smooth and rough surfaces,

respectively.

Experimental Results

Validation of key physics-based models in the numerical simulation of [freezing

shear driven rivulet runback was the primary objective of the subject experimental

simulation. The prediction of the “bulk rivulet” halt distance, or the distance at which a

deposition of ice from the rivulet front onto the wall begins, is a major element of the

numerical simulation. The “bulk rivulet” halt distance is explained in detail in Chapter

V, wherein the numerical simulation of freezing rivulet runback is examined in detail.

Accordingly, the experimental determination of the rivulet front halt distance is crucial to

the validation effort. Figures 12-16 provide “snapshot” images of the Case l-C, 3-C, 4-

C, 7-A and 7-C rivulets at their respective bulk rivulet front halt distances. Although

many experimental test cases were run, these five cases form a representative subset of

well-formed runback rivulets, and for which the data extraction was considered most

accurate. Shown in Figure 17, is a capture of the bulk rivulet halting phenomena from a

NACA 0012 airfoil rivulet runback test conducted in the NASA Glenn IRT by other

investigators studying rivulet runback phenomena [26]. The NACA 0012 rivulet test

case is used hereafter as a baseline case in the numerical simulation effort.
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Figure 13. Rivulet 3-C at Rivulet Front Halt Distance
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Figure 15. Rivulet 7-A at Rivulet Front Halt Distance
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Figure 17. NACA 0012 Rivulets Running Back — Halt and Extension Phenomena
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Conclggms and Remark_s

The results of Table 1 show the experimental, or measured, “bulk rivulet” halt

length, LH. The “bulk rivulet” halt distance is a parameter that quantifies a condition

observed in previous experimental work [15,26], and is modeled as one of the freezing

rivulet runback modes in the rivulet runback simulation that follows. One of the primary

objectives of this experimental effort was to quantify the “bulk rivulet” halt distance

parameter under varying initial and environmental conditions. The “bulk rivulet” halt

distance is described in detail in Chapter V (see Figure 46a), however, summarily the halt

distance refers to that distance traveled by the freezing rivulet before the frozen portion

halts and the remaining liquid continues on downstream. Thus, the rivulet does not lose

mass due to solid deposition during runback, but remains intact until an empirically

determined halt distance is reached. In another light, the “bulk rivulet” halt distance

corresponds to the length of the continuous rivulet structure as seen in Figures 3 and 17

for the BI-B inlet and NACA 0012 airfoil, respectively.

The experimental results were extracted via observation from video recordings of

the freezing rivulet runback process. Thus, inherent in these results is a qualitative

subjectivism not found in, otherwise, precise measurements. In Figures 12-13 and 15-16,

one readily notes that there is frozen rivulet upstream of the indicated “bulk rivulet” halt

distance. The author was using a panning camera, and by the time the rivulet front halt

region was located, deposition of the frozen fraction of the rivulet front had begun and

subsequent freezing in the upstream direction was already underway. The “bulk rivulet”
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Table 1. Experimental Bulk Rivulet Halt Distances

 

 

 

 

 

 

 

  

Rivulet Parameters Measured LH

B= 38°, Tin: 276.6 K, ' ' '

Case l-C Tm: 271.9 K, Tw= 272.7 K, :18993‘Tg

Ste = 0.00158 '

B = 38°, Tin: 273.2 K, 127 mm

Case 3-C Tinf= 269.7 K, Tw= 270.4 K, (5 0 in)

Ste = 0.0155 '

[3: 38°, Tin: 273.2 K 140 mm

Case 4-C Tmf= 270.8 K, Tw= 270.9 K, (5 5 in)

Ste = 0.0125 '

B = 60°, Tin= 280.4 K, 127 mm

Case 7-A Tinf= 269.8 K, Tw= 270.6 K, (5 0 in)

Ste = 0.0125 '

[3 = 60°, Tin: 276.2 K, 185 mm

Case 7-C Tinfz 269.8 K, Tw= 270.6 K, . (7 3 in)

Ste = 0.0147 '  
 

halt distances were ascertained by locating that point farthest downstream where the flow

began to stagnate against the stationary ice. This stagnation zone was manifest through a

subsequent widening of the rivulet in the region. After the “bulk rivulet” halt distance

was reached, the rivulet continued to freeze in the upstream direction toward the point

where freezing was first initiated.

The experimental tabular data were obtained from the distance values recorded

using the flat plate length markings adjacent to each rivulet path. These data, as well as,

other phenomena were captured on copious video footage. Considerable effort was made

to capture the physics of the most fundamental of these observed phenomena in the

subsequent numerical models. The nature of the experimental measurements precludes
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an error analysis to be obtained for the experimental data. More research of this kind is

needed to assemble an adequate statistical database.

Observations suggested that rivulet runback does travel downstream to a point

where the frozen portion of the rivulet front halts, or ice deposition begins. The rivulet

front at this juncture appeared to be partially frozen, with the liquid portion continuing to

flow downstream. This physical phenomenon is a fundamental element in the numerical

simulation of freezing rivulet runback. From observation,'one could not ascertain the

distance in the travel that coincided with the onset of phase-change. However, numerical

simulation predicts initialization of phase-change at a distance well before where ice

deposits were observed experimentally. Although this micro-scale phenomenon. could

not be observed, there was experimental evidence .pointing to the fact. that ice is not

immediately deposited (halts) at the initiation of phase-change, but travels a distance

downstream before coming to rest; In' several of the rivulet cases, once the bulk rivulet

front was observed to come to a halt, the rivulet would continue to freeze forward, or

upstream. The upstream propagation of the phase-change front reveals that phase-change

was initiated before ice was deposited from the original bulk rivulet and a subsequent

stagnation point formed. This same upstream propagation was observed to continue until

the freeze, or phase-change initiation point was reached. At this point, further upstream

freezing of the rivulet has stopped due to equilibrium in the thermal energy transport,

wherein the condition is said to be “freeze choked”. Water continues to enter the freezing

rivulet domain at this station, and is only limited by the capacity of the upstream source.
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When the solenoid valves were opened to initiate rivulet flow, the immediate

result was not always a uniform continuous stream. Trapped air in the supply tubes

mixed with water, at times, caused a short burst of spray. Thus, a few seconds were

required to allow the rivulet flow to become established and stabilize. Care was taken to

distinguish between frozen residue from this initial spray and the subsequent freezing

phenomena of the rivulet runback.

Finally, the subject experimental simulation provided qualitative insights that

substantiated several physics-based elements of the numerical simulation. Comparative

data were obtained for the halt distances of the bulk rivulet runback. Upstream phase-

change propagation from the first ice deposit (front halt) was observed to continue until a

freeze choke condition was reached. In addition, the frozen rivulet was observed to

provide a preferred path for subsequent upstream flow to 'follow while traveling

downstream.
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CHAPTER IV

STATIONARY FREEZING RIVULET NUMERICAL SIMULATION

The stationary freezing rivulet simulation provides valuable insight into the

freezing process of rivulet geometry with specified boundary conditions. Many key

physical features of the stationary model are integral to the freezing rivulet runback

model detailed in Chapter V. The effectiveness and robustness of the enthalpy method

for solution of the Stefan problem are validated through this model. As the name implies,

the subject rivulet remains stationary relative to the adjacent substrate while submerged

in a convective flow field. Although the rivulet would, in reality, be driven under the

influence of shear at the free surface, the convective boundary is included in an effort to

understand the impact of such a condition on the freezing process. Thus, the stationary

model is simplified by eliminating the rivulet velocity field, but retains its utility by

capturing many key physical features insightful to the subsequent, more complex,

runback model.

Computational Formulation

The details of casting the problem within an appropriate computational

framework are the substance of the present section. Such a framework consists of an

appropriate computational domain, governing equations and boundary conditions.
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Computational Domain

Establishing an effective computational domain is fundamental to reducing

numerical complexities. Although, semi-circular in nature, the rivulet geometry shown in

Figure 4 reveals that a polar coordinate system would be fraught with difficulty given that

the domain does not originate from the center of curvature. The physical domain of the

rivulet in the non-dimensional coordinates defined by

Xzi and Y=l, (4-1)

5 5

and where 5 is the rivulet height, is shown in Figure 18. If the contact angle (B) were

90°, the physical and computational domains would naturally be the same, i.e. a polar

domain. As clearly seen in Figure 4, there exits a natural symmetry in the rivulet

geometry. Thus, the computational domain is derived from a physical domain bounded

by a plane of symmetry. The computational formulation and associated discretization of

the rivulet domain is simplified through the transformation of the physical domain to a

rectilinear computational domain. Such a domain transformation is consistent with the

work of Al-Khalil [16] for rivulets running wet. In an effort to maintain consistency for

possible comparison, the author employs the same transformation variables used by Al-

Khalil [16]. The grid density (10 x 20) applied by Al-Khalil was used as the baseline grid

resolution for the subject numerical simulation. This grid resolution was found to

provide sufficient accuracy, especially when used with a method wherein the phase-

change front is captured, as is the case with the enthalpy method. Furthermore, the
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Figure 18. Rivulet - Physical Domain (Contact Angle, B = 38°)
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location of the phase-change front can be further resolved by applying the slushy cell

liquid mass fraction, another output obtained from the subject numerical simulation. The

results of doubling the grid density to 20 x 40 had negligible impact on the solution, and

therefore the author retained the 10 x 20 grid density. The transformation variables

employed are

X = g, F = %x) and the normalizing variable; 77 = L. (4.2)

:(x)

The resultant computational domain, shown in Figure 19, is a rectangular domain defined

by the Cartesian coordinate pair (X, n). At the contact line, where the rivulet, substrate

and ambient fluid converge, one notices a singularity in the normalized coordinate, n.

This concern arises because at x = R sin(B) both the numerator and denominator of n

vanish. However, l’Hopital’s rule shows that as x —> R sin(B), n —> 1. Therefore, a limit

is defined at x = R sin([3), which validates the existence of the coordinate transformation

at the contact line.

Primary Model Assumptions

Recognizing that a model can only be as good, at best, as the underlying

assumptions upon which it rests, the list of assumptions below is intended to provide a

clear picture of which physical phenomena are included in the simulation and which are

not.

0 Thermal energy is transferred via isotropic heat conduction and convection. The

effects of thermal radiation are considered negligible.
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Mass is transferred to the environment via evaporation and sublimation at the free

surface. Condensation, resulting in mass addition to the computational domain is

also allowed.

Gravitational effects were previously shown to be insignificant. Also, chemical

and electromagnetic phenomena are deemed negligible.

The latent heat of fusion, hls, for water is considered constant, and its release

during the freezing process takes place at a constant phase-change temperature.

The latent heats of vaporization and sublimation, employed in the mass transfer

calculations at the free surface, are also constant.

Nucleation and supercooling effects are considered unnecessary complexities in

relation to the objectives of the subject research.

As stated previously in the discussion of the “enthalpy method formulation”, the

phase change takes place over a cell width rather than at a sharp surface.

However, a natural result output from the “enthalpy method” is the liquid mass

fraction within the “slushy” cell.

Although, surface tension is a primary parameter of the rivulet geometry, its

effects are only considered at the free surface interface between the liquid rivulet

and the surrounding air. Thus, surface tension effects are not considered at the

phase-change interface.
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All thermophysical properties are considered constant within their respective

phases, while recognizing the important feature associated with the jump in

properties across the phase-change cell, i.e. c1¢ cS and hi kg.

The density of the liquid phase is constant and equal to the density of the solid

phase. The constancy of the phase densities is a very reasonable assumption given

the relatively small temperature range over which the freezing rivulet process

takes place. The equality of phase densities is a more gross assumption in that it

does not allow for the movement of one phase relative to the other. This volume

change, or in words, the ability of the. ice to grow relative to the liquid upon

freezing, adds a complexity to the model that is unnecessary for the scope of this

study.

Heat transfer in the “z” direction, or the streamwise direction, is negligible. In the

case of the stationary rivulet, this assumption suggests that the temperature field is

the same from one location to the next in the z-direction. Thus, each rivulet

cross-sectional slice has an identical temperature distribution. Therefore, the

solution need only be found for one rivulet slice, wherein heat is transferred in

two dimensions, namely, the x-y plane. For the traveling rivulet, the same

assumption is made based upon the Peclet number (Pe = RePr). Given that for

water Fe is large, heat conduction in the streamwise direction becomes negligible

when compared to the other transport terms in the governing equations.
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o The freestream atmosphere is considered to be at some specified relative

humidity, up to 100% relative humidity.

o In the absence of an applicable value, a thermal contact resistance is not applied at

the rivulet/wall interface, and perfect thermal contact is assumed. Although, the

effects of contact resistance on the solution can be studied parametrically.

Governing Eguations

Physical Domain

The governing energy transport equation for the stationary rivulet Stefan problem,

when formulated using enthalpy as a dependent variable, becomes

  

2 2

pfi=k a€+ar9 (43)
6t 6x ay‘

where k = kS or k = k1 depending upon the associated phase.

The associated boundary conditions are as follows:

At x = 0, the plane of symmetry;

QI- = 0 . (4.4)

6x

II CI

At the free surface, liquid/gas interface, the boundary condition is defined by equation

(4.5), and the associated mass flux rate from the rivulet free surface is expressed by

equations (4.9) and (4.10).
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469: = EAT. — T + fiI"-.h
1 rec ft 9

where

71' is the component normal to the free surface

i1; is the average convective heat transfer coefficient (45)

I. is the liquid/gas interface temperature

. is the recovery temperature

m], is the mass flux at the free surface (evaporation or sublimation)

hf, is the latent heat (vaporization or sublimation) at the free suface.

At the contact line, x = R sin(B), and at the rivulet/substrate interface, y = 0;

T = Tw , where TW is the constant substrate temperature. (4.6)

At the free surface, the convective heat transfer coefficient is based upon flat plate

boundary layer theory, and is defined as [27],

 

— N” *k , — l/2 m -
hm = t ,where Nu=0.664 Re, Pr ‘ (Lamlnar Flow)

L ' ‘ (4-7)

1Vu=0.037Re‘,l/5 Pr”3 (Turbulent Flow)

The recovery temperature is defined as [28].

T,_=T 1. + gy—_l Ma2 , where g=Pr”2 (LaminarFlow)
I‘LL (D 2 00 (4.8)

g: Pr”3 (Turbulent Flow)

The mass flux at the free surface is given, fundamentally, by

m}: : iz-m [pv,sat (Tl) — lane] 9 (4'9)
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where if," is the average mass transfer coefficient, pm, is the saturated vapor density at

the rivulet free surface interface and pm is the water vapor density at the edge of the

gaseous medium boundary layer. Employing the ideal gas equation of sate and the

applicable Chilton-Colburn analogy [29], the relationship for the mass transfer rate at the

free surface becomes

_ P. . P .
mI/y's- = —w MW 2/3 m”, _ v,¢ 9 Where (4°10)

" p“ R (cm Le j T, T,

  

Psat,i is the saturation vapor pressure of water (or ice) at Ti, the local temperature at the

free surface, and PW is the water vapor pressure at the edge of the boundary layer of the

adjacent gas stream.

The saturation vapor pressure of pure liquid water within the representative range

of temperature is given by Al-Khalil [16] as

  
1 1. T. . .

P. . P =2337. 6789. ° — — — 5.0311 ' 11 u1d. 4.11ml a) eXP{ [293.15 I] 11(29315» (, q ) ( )

The saturation vapor pressure for ice, presented by Willbanks and Schulz [30], is

employed in this study. This relationship was converted to 8.1. units for consistency and

is given by
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l (_ g 3 V

2'445'T646XI0 + 0.4343*8.23121n(7,)

110,,,(Pa)=2.7845exp<2.3 — 1.677006x10-27; + 1.20514x10'5 7,2 )*47.88 (ice).

— 6.757169

1 k 7.  

(4.12)

The fluid stream (or cloud) adjacent to the rivulet is populated with supercooled water

droplets. The saturated vapor pressure of supercooled water, P3,“,00 ; a relationship also

found in the work of Willbanks and Schulz [30], is detailed below following unit

conversion. Thus, the relationship for Psalm. is:

1 F 3 “
5.4266514 — —————2'005”10 +

L’

 

2_ 5

Ram (Pa)=2117.*exp<2.3 [1.3869x10’4*[T" 2.:37x10 “*A 1, where

’ JL’

— 4.4x10'3 *3

    L g 42

2

[1.1965x10'” *(7‘3 —2.937x105):l

A=10 — 1.0 (4.13)

B _10[—5.7l48
x10'3 4(374_1 l _ 7", )125]

Finally, the water vapor pressure at the boundary layer edge is related to the saturation

vapor pressure of the freestream by:

P 2P rh, (4.14)
v,e 501,00
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where rh is the relative humidity of the freestream air.

Computational Domain

The transformation of the above governing equation and associated boundary

conditions to the computational domain is presented. The independent spatial variables,

x and y, were previously mapped to the non-dimensional coordinates, X and n, as part of

the domain transformation. Frequently, however, in transient thermal analyses the

temporal variable (or time) is non-dimensionalized using the Fourier number. The

Fourier number defined as

_ tk

,ocpé2

 
, (4.15)

()

is not practical for use in the subject Stefan problem since the thermal conductivity and

specific heat can vary from one side of a cell to the other. Therefore, the dependent

variables and the independent spatial variables are non-dimensionalized, but the temporal

variable remains dimensional. The non-dimensional dependent variables are:

h — h .
W=(ij, non - dimensional enthalpy

ls

, (4.16)

¢=(c,,, (T - Tm)
, non - dimensional temperature

Sts his

where hmp,S , h.s and StS are the enthalpy of the solid (ice) at the phase-change

temperature, the latent heat of fusion and Stefan number respectively.
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Upon transformation from the physical domain to the computational domain, the

governing equation (4.3), becomes:

2 2 2 2

6_w=_kz_CW 64152 +1—°2 1.+ flé 772 2‘? + 'l—Jié) 77% ,where
a: 6 8X F dx 677 F \dx 677

 

(4.17)

AT .

CW =——l’— and subsequently, ATM. =St“'—h" = (Tmp — Tw).

ph/s - 6,2,5

The constants Cw, ATM and F(see equation 4.2) were defined by the author to

consolidate several of the coefficients that resulted as part of the transformation of the

governing equations, thus simplifying the expressions. At the symmetry boundary, the

boundary condition becomes:

i=0, at x :0. (4.18)
6X

At the free surface (rivulet/gas interface), the boundary condition becomes:

 

an dx ' AT k
rcrf

"'.h R

ng—i + fiat—XE] — F {—3147, —T )— M},atn=l.0,

where BiR =h‘TR and kph =h,v if surface is liquid, or kph =h_w if surface is ice.

(4.19)

In the two dimensional space, the “contact point” of the physical domain becomes a

“contact line” in the computational domain. Accordingly, the contact line forms a

boundary at X = Xmax of the computational domain. The boundary condition at the
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contact line is simply the wall (substrate) temperature. Therefore, the boundary condition

at the contact line is equivalent to the boundary condition at the substrate surface, and is

shown to be:

(Tw-Tm)
¢=—TT—”=—1.0 ,atX=Xmaxand77=0. (4.20)

rcif

With the governing equations properly defined in the coordinates of the

computational domain, the problem now is to obtain a solution. The details of equation

discretization and the numerical method applied are presented next.

Discretization and Numerical Solurtion Technique

The inherent non-linearity and discontinuities at the phase-change interface of the

freezing rivulet Stefan problem provide the impetus for employing the enthalpy method

in the solution phase. Therefore, the governing equation, and associated boundary

conditions have been formulated with enthalpy as a dependent variable. The solution set-

up, including the discretization of the governing equation and boundary conditions is now

discussed in detail. The reader is referred to Figure 20 wherein the computational

domain is presented in discretized cell index notation. The solution is found over a

computational domain with a dimension of MxN cells. The governing equation is solved

at each cell node, which resides in the center of the cell. Cells that are adjacent to one or

more boundaries are termed “boundary cells” and contain a central node, as well as, a

boundary node(s). Boundary nodes lie strictly on the boundary itself, i.e. along i = 0, i =

21,j=0andj=11.
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Figure 20. Computational Domain with Discretized Cell Index Notation
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Discretization

The discretization below represents a fully implicit form resulting in the necessity

to solve a resultant system of equations. The desire for robustness and stability in the

numerical solution is the motivation behind selecting a fully implicit numerical

formulation. A convenient and physically consistent approach is to combine appropriate

terms to form thermal resistances that manifest themselves in the denominator of the

discretized equations. Utilizing the previously defined non-dimensional temperature, ¢ ,

and applying an approach similar to the “Kirchoff transfomiation” [20], the functional

relationship for the “Kirchoff temperature”, (15k , becomes

 

 

1k T — T ‘
“6"“ mp), if T<Tm

Stshls p

(4. = < 0 , if T=T,,,,, ). (4.21)

k . T — T
’6'“ ( m”) , if T >Tmp

i Sts his J  

The utility of the “Kirchoff temperature” is that it allows the thermal flux between

neighboring cells to be nicely split, and each cell to have its own thermal resistance

value. This concept is illustrated below for heat conduction between two neighboring

cells. The heat flux across the interface of two cells is given by Fourier’s Law as
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( 1.1-1 ”(é/m) ¢i—l (’5,-
. =—— = ———,where

ql—1/2 Ax R.

1,23
k!

(15,", = k (15,. is the Kirchoff temperature, and

(4.22)

65 is the non - dimensional temperature

Herein, each cell has its own thermal resistance, which is conveniently determined from

the following relationship that employs the liquid mass fraction, mf:

R,- = MEL + kill} , (4.23)

Clearly, if an adjacent cell is slushy, then accordingly, Ti = Tmp and the slushy cell does

not contribute to the conduction. However, thermal energy is still transferred from the

slushy cell to its neighbors via conduction, where the temperature potential and thermal

resistance are defined in the heat flux equation of the neighboring cells. This is a natural

artifice of the “Kirchoff temperature”, which is inherently referenced to the phase-change

temperature Tmp. Additionally, this fact is consistent with the enthalpy method

formulation, which considers a slushy cell to be isothermal at the phase-change

temperature, but still exchanges thermal energy with its surroundings.

The fully implicit discretization of the governing equation for all cells within the

computational domain except the symmetry boundary cells (i=1) becomes
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l

n+1 $¢lnj+ = WK] +

  

  [ (El?1 [4:13. + 75,113.] + dx [47:1, 9,171.] +

 

 

  

AX R1211} R7111} 2 r2 L R1311 R131]

21th < (

(6")? 2 ’
9’6 2

1 + — 7]

dx ¢.":‘ ¢."1“'

. 1.11 + —:’-::.‘ (424)
L Anr Ri,j—l RI',./'+l J

for 2 S i S M and 1 S j S N , and where IT”. is the thermal resistance in the X direction and

A

R. . is the thermal resistance in the 7; direction. The discretization employs a “five” cell
’,./

stencil.

For the symmetry boundary cells (i=1), the backward difference is zero due to the zero

gradient at the symmetry boundary (i=0) nodes. Thus, for the symmetry boundary cells,

equation (4.24) becomes
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r i

11512_1_[¢1:i,l; ] + dx 77 [€151,711 _ will ] +

A C M R7111)- Zrz R1311 R2711

t W <
t, (4.25)

(an) .12
[1+ {—J 772] n+1 n+1

dx ¢i,_/'—l + ¢i,j+l

[ A77 F2 12:71] R1311 J  
fori=1and1SjSN.

A “middle” three-point formula [31] was used in the representation of the single

derivative terms. Therefore, in the evaluation of the single derivatives, the function (15

need only be evaluated at the nodes on either side and adjacent to the node of interest.

In accordance with equation (4.23), the directional thermal resistances at each

node are of the form

 137;] =M{mf; + (1- 7:1 W}

S

, lSiSMandlSjSN. (4.26)

11:? =Mimfii’fl + (1' _ m 51)}k, k

 

.8‘

When the a solution is being computed at the nodes residing within the boundary cells at

i=1, i=M, j=1 and j=N, the functional relationship for the node resistances become
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 IT'S] = AX{mf1:TJ+
I

1_ 4+1 .

+( 'Zf"! )},i=1and1SjSN

S

 

 

4+1 1 "fl

mfm ( me )},i=1and1<j<N

k, k..-

1 n+1

, ( mM”)},i=Mandl<j<N

k, k.

+(1—mfi3+l)}, 1<i<Mandj=1

+(1_mf'7171)}, 1<i<Mandj=N

  +(1—mM’j)}, i=MandlSjSN

 

' 3 k,

181‘: 297 m
’ 3 k,

117:9“? "“331
’ 3 k,

+(1_m':l+l)}, 1SiSMandj=l,
k

S

k
S

+(l—mf’7“1)},lSiSMandj=N

(4.27)

otherwise, they are defined according to equation (4.26). The nodal thermal resistances

associated with the boundaries at i=M+1, j=0 and j=N+1, likewise are uniquely defined

 

 

by

_ m n+1 1_m n+1

125ng 14,) +( “1!) ,i=M+1and1SjSN

’ 2 k, ks

A .n+1 1_ .n+l

ng'z A77 m”' +( m””' ) ,1SiSMandj=0

’ 2 k, k.

 

2 k,

+1

Rn+l _ A77 m i,nN

i,N+l — +

k
S

71

(l—mf7§l)}, 1SiSMandj=N+1

(4.28)



A unique thermal resistance definition for the symmetry boundary is not necessary since

physical nodes along this boundary are not required in the solution, wherein the condition

is invoked mathematically.

The discretized boundary condition equations, beginning with the symmetry

boundary, are

n+1 _ n+1

0,] _ Lj ’

i = 0 and 1 S j S N (Symmetry Boundary)

n+1 _ n+1

1—~X ¢I+l,N+l ¢1,N+l + ”(F—Xfij

AX dx

 

#1:/1+1 _ 1&1"?fill

0.5 A 77

  

AT I rec h

“if C

. ‘ ”h

‘FBIR [(ijn _ T ')+ m [#1:] ’

1 Si S M and j = N + 1 (Rivulet Free Surface) . (4.29)

131111,) :10 a

i = M +1 and 1 S j S N +1 (Rivulet Contact Line)

(2%“ =1.0 ,

1 S i S M and j = 0 (Substrate Wall)

Numerical Solution Technique

The solution to the freezing rivulet Stefan problem requires solving a system of

equations at each computational time step. The Gauss-Seidel iterative method was

chosen as the numerical method for solving the subject finite difference equations. This

method solves the (i,j)-th equation for the (i,j)-th unknown dependent variable utilizing

the latest values available for all other variables. In the equations to follow, the (i,j)-th
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dependent variable is updated with the new value just obtained from the solution of the

(i,j)-th equation, which results in a point-by-point successive substitution technique. As

shown above in the discretized equation, “n+1” as the superscript denotes the

computational time increment for which a solution is desired. Given that the Gauss-

Seidel method employs an iterative process within each “n+1” computational time step,

“p+1” is used as the variable superscript to denote the Gauss-Seidel iteration number. A

given Gauss-Seidel iteration sequence proceeds until a user specified convergence

tolerance is achieved. For illustrative purposes, the goveming equation (4.24) is shown

below cast in Gauss-Seidel iteration notation. Figure 21 shows the five-cell stencil

configuration employed in the discretization of the governing equations. Gauss-Seidel

iterative superscripts are also attached to the nodal temperatures.

 

 

   

¢P

I',j+l

j p+| [HI {7

fix I—Lj '9] I+l,j

p+l

1',j-l

   
 

Figure 21. Five-Cell Computational Stencil With Gauss-Seidel Iterative Notation
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Equation (4.24) becomes

1 2 ‘

2[1+[£] 772]

71th 2 dx (
  

  

  

Pf] + < _ + A .pfl = .p +

W“) ( p)2 AX Rip]- Aflrz Rip] I,J Wu!

1

i (£171 (fit/:11) + 121,) + dx (3+1 __ ¢iT—li +

AX 17" 17" 2F2 RP f?”
AtC i-l,j i+l,j i,j+l i,j—l

 
W < j , (4.30)

1116171 [7+1 17

\ i,j—1 + ¢i,j+l

[ Anr Ri,j-l Ri,j+l

for 2Sz'SM and lSjSN.

 

  

Note that the variables I.’_’ ['1 and (25:17:11 from the right hand side of equation (4.30) are

known values because they were evaluated when the (i-1,j)-th and (i,j-1)-th equations

were solved. Thus, the only unknowns are 1143' and (bff' on the left hand side of equation

p+l

(4.30). However, the enthalpy, w].
l,

, is a function of the temperature, (1),.”j.“ , wherein

again the non-linearity of the system is exhibited.

Introducing the variables “Z” and “C”, and setting them equal to the right hand

side of equation (4.30) and the coefficient of (15,?!“ , respectively, then equation (4.30) can

be written as
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W3,” + Cf, f.“ — Z”. . (4.31)
,J _ 1,1

The power of the enthalpy method formulation is manifest by applying the equation of

state that relates enthalpy and temperature and solving for the unknown nodal

temperature. Thus, employing equation (4.31), the enthalpy equation of state and the

criteria pertaining to the physical phases of liquid, slushy and solid, the phase of a given

cell is determined by the parameter ij . The functional relationship for the nodal (cell)

non-dimensional temperature now becomes

 

 

[ Zip} ' I)
St C” , 1f ZUSO

‘ s 7,]

0, if0SZ$<1

if)!“ = <
(4'32)

2?. —1

c "J , if Zif’j 21

—”—’[Sts + Cf].

cp,s

l 
Once the convergence criterion is met, the newly obtained nodal temperatures are used to

solve for the up-dated cell enthalpies according to

WIT] : Zi,j — Cf} ¢infl ° (4'33)
,1

In the actual mechanics of the computations, the author employed a mathematical

functional representation of equation (4.32) that allows a single continuous function to be
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p+l

i,j ‘
solved for By accurately representing the three-component relationship for

(15?“ with one continuous function, computational efficiency1s enhanced. Thus, the need

to query to determine a priori if Zif’1S0, 0 S 21,34: or Zif’j. 21 is eliminated. The

. ‘ . +1 .

relatlonshlp between 61):]. and Zif’j Is now expressed by [32]

  ¢r+._ 2:3,- 2:3,, 1- . 1 2:3.- . 1. .
I I StS + C5]. —_St. + Cf] (l. +e—DlZ/L '01) c_,_ (1.+ e—I)(z/f. —’b))

s 1,}

(4.34)

where a—— 0.0, b= 1.0 and D= 5000. The constants “a” and “b” represent the bounds on

p+l

ZiJ when the cell is slushy, or 1.7 equals zero. The constant “D” is simply a weighting

factor, the value of which was obtained by trial and error. A graphical representation of

equation (4.34) is shown in Figure 22. Once the new enthalpy is obtained from equation

(4.33), the new liquid mass fraction of the cell is obtained in a similar manner to equation

(4.34) for 62”.“. The liquid mass fraction, mf”+1,is found from

  

[7+] [7+] 1 1' \ p+l 1 1' \

mf =14, ill-“Le—DW—fll ‘ (V44 '1°)[(1.+entw-a)]’ “'35)

where again a = 0.0, b= 1.0 and D = 5000.

A top-level flow chart illustrating the solution process is shown in Figure 23, with

the shaded areas depicting the primary computational blocks. The convergence criterion
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Figure 22. Graphical Representation of Equation (4.34)
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Figure 23. Freezing Stationary Rivulet Solution Flow Chart
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is based upon a user specified error tolerance that defines the maximum tolerance over all

(15,, 7' The convergence criterion takes the form of

Max.|¢,.f’j+1 — 7512-] < Error Tolerance, for all 75,-,j. (4.36)

After each (12fj“ has met the above criterion, the Gauss-Seidel iteration sequence is

considered converged and the solution marches on to the next n+1 time step. The exit

criterion requirement shown in Figure 23 is, at a minimum, the time corresponding to a

completely frozen rivulet. The user may, however, desire to forego exiting the program

until further cooling of the rivulet has taken place, or when a steady state condition is

met.

Thermo-thsical Properties

The thermo-physical properties of the stationary rivulets were held constant with

values corresponding to the phase-change temperature of 273.15 K [33]. Several of the

key properties are listed below for reference purposes.

0 Density (Liquid/Ice): 0.999 g/cm3

0 Specific Heat (Liquid): 4.218 J/g-K

0 Specific Heat (Ice): 2.028 J/g-K

. Thermal Conductivity (Liquid): 5.54x10'3 W/cm-K

0 Thermal Conductivity (Ice): 22.4 x 10'3 W/cm-K

0 Heat of Vaporization: 2.5 x 103 J/g

- Heat of Fusion: 3.336 x 102 J/g
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0 Heat of Sublimation: 2.833 x 103 J/g

Other pertinent thenno-physical property values will be highlighted, as necessary, in the

next chapter that addresses the “running rivulet” model.

Freezing Stationary Rivulet Results

Six experimental rivulet cases were showcased as part of the experimental

investigation results of Chapter III, namely cases l-C, 3-C, 4-C, 7-A, 7-C andNASAIR.

Four of these six cases, specifically l-C, 3-C, 4-C and 7-C were used here in the

simulation of the freezing of stationary rivulets. Case 9-C was added to the stationary

freezing rivulet simulation results to provide a second rivulet case with a 60°.contact

angle, but with different initial and environmental conditions. Additionally, two cases

having the same initial and environmental conditions as Case 3-C, but with different

boundary conditions were added. These two cases, namely 3-C_a and 3-C_b, highlight

the effects of an adiabatic boundary condition at the wall, and a non-evaporative

condition at the rivulet free surface, respectively.

Phase-Change Front Propagation

The phase-change front propagation results for the seven cases are plotted in

Figures 24-30. The results are shown in the physical domain, again, with symmetry

invoked. The rivulet physical properties, initial temperature and environmental

parameters are summarized in Table 2 below. In Table 2, the following definitions are

applicable.
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Table 2. Rivulet Conditions and Parameters for the Stationary Rivulet Cases

 

 

 

 

 

 

 

 

 

Case tf Tw Tin Tinf Ste rh B Wr Uinf

(sec.) (K) (K) (K) - % (deg.) (mm) (m/s)

1-C 3.0 272.9 276.7 271.1 0.00158 80.8 38 1.0 44.7

3-C 0.74 270.6 273.4 268.9 0.0155 82.7 38 1.0 45.1

4-C 0.76 271.1 273.2 268.7 0.0125 87.2 38 1.0 67.2

7-C 4.07 270.7 276.3 269.0 0.0147 83.3 60 1.5 44.7

9-C 5.51 270.2 277.2 267.7 0.0179 86.1 60 2.0 67.0

3-Cga >> 1.0 Ti): 273.4 268.9 0.0155 82.7 38 1.0 45.1

3-C_b 0.84 270.6 273.4 268.9 0.0155 82.7 38 1.0 45.1           
* Adiabatic wall boundary: Tw equal to the cell temperature one node off the wall, Ti]
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o tf: The time for a complete freeze of the rivulet (seconds). A

computational time step, At, ranging from 0.0001 seconds to 0.0002

seconds was used.

0 beta: The rivulet/substrate contact angle (degrees).

- Ste: The associated Stefan number (non-dimensional).

o Tin: The uniform initial temperature of the rivulet (Kelvins).

o Tinf: The freestream air temperature (Kelvins).

o Tw: The constant wall or substrate temperature (Kelvins).

o rh: The relative humidity of the gas medium (non-dimensional).

o w,: The rivulet full width (mm).

o Uinf: The freestream velocity of the gaseous medium (m/s)

The stationary rivulet widths in Table 2 were obtained from the experimental

simulation video footage by employing a scaling methodology. The phase-change front

propagation results shown in Figures 24-30 are physically reasonable and show some

interesting trends. There exists some jaggedness to the phase front line due to the volume

tracking effect spoken of previously. The propagation line is obtained by connecting the

nodes of each slushy cell to the next. Thus, the phase front is captured within a cell

width. One should note that the contact angle for Cases 7-C and 9-C is 60°, and their

measured widths are 1.5 mm and 2.0 mm, respectively. This results in an increased

rivulet height, 6, for these two cases. Cases 3-C, 7-C and 9-C reveal the effect of a cooler

wall temperature relative to the phase change temperature, TmlD = 273.15 K. In cases 3-C,

7-C and 9-C, the phase-change propagation is dominated by travel from the cold wall
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inward and upward toward the free surface. However, the front propagation from the free

surface advanced only slightly. Case l-C shows considerable front propagation from the

free surface inward due to a wall temperature closer to the phase change temperature.

Case 4-C reveals some front propagation from the free surface; however, propagation

from the wall still dominates due to a colder wall and an initial rivulet temperature

slightly above the freezing temperature.

Finally, cases 3-C_a and 3-C_b reveal the resultant effect of thermal energy

removal at either the rivulet free surface only or the wall only, when compared with their

parent rivulet, namely 3-C. Case 3-C_a shows the effect of an adiabatic wall boundary

condition, wherein only one phase-change front exists and propagates inward from the

free surface towards the wall. Case 3-C_b shows the effect of eliminating mass transfer

by evaporation, and its associated thermal energy. The result is a phase-change front

propagation profile very similar to that shown in Figure 13 for case 3-C. These two

cases serve to demonstrate that thermal energy removal at the wall boundary by

conduction dominates the rivulet freezing process.

Jrface Heat Transfer Rate Reillfis

Of interest in the stationary freezing rivulet problem are the rates of thermal

energy removal via convective transfer at the rivulet/air interface (free surface) and via

conduction at the wall boundary. Therefore, the heat transfer rates at these boundaries

are plotted in Figures 31-40. The values were obtained by evaluating the line integrals

along the respective surfaces given by
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Figure 34. Case 3-C Wall Heat Flux
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6’1

q'(W/m) = h, [(T), — T )R d9, FreeSurfaceHeatFlux
rCC

0.

and (4.37)

Rsin(fl) T _ T

'(I—Jrl—'W) dx Wall Heat Flux

0 Rf:

(ii. (W/ m) =

In equation (4.37), Tfs is the temperature at the free surface, and TM is the temperature

one node off the wall in the “y” direction. The Simpson rule was employed for the

numerical integration. Note, that because the rivulet properties are uniform in the axial

(z) direction, the heat transfer results are in terms of the rate of heat transfer per unit axial

length (W/m).

The slight up-turn in the heat transfer rate at the free surface in Figures 31, 33, 37 and 39

and at the wall boundary in Figure 32, at tz 0.25 seconds, is likely the artifice of

numerical overshoot. However, a contributor to the more pronounced up-turn at the

rivulet free surface could be the result of the boundary cell becoming totally frozen and

contributing to the thermal energy transfer via sublimation rather than evaporation.

Immediately following this slight up-tum, the heat transfer rate plateaus briefly while the

latent heat of fusion is removed from the boundary cell followed by sensible heat removal

and an associated temperature drop. This phenomenon is evident in each case except 4-C

(Figure 35), wherein the temperature of the rivulet is initially at the phase-change

temperature.

An additional, and interesting, heat transfer rate comparison is obtained through

comparing the free surface heat transfer to the wall heat transfer after each has been
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normalized using the their respective transfer rates at time t=0.0. These comparisons are

found in Figures 41-45. The rate of heat conduction at the wall is shown to drop rapidly

due to the temperature of the node just inward from the wall boundary quickly

approaching the wall temperature. Thus, this effect is an artifice of the sudden

application of the constant cold wall temperature, and then normalizing the heat transfer

rates that follow by the initial heat transfer rate.

Remarks

The results presented above for the stationary freezing rivulet simulation speak clearly

of the utility of the enthalpy method formulation for the subject Stefan problem. Based

upon this strong evidence and the effectiveness of the associated Gauss-Seidel numerical

solution technique, the enthalpy method was applied to the freezing rivulet runback

problem. The details of the freezing rivulet runback simulation are discussed in Chapter

V.
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CHAPTER V

FREEZING RIVULET RUNBACK NUMERICAL SIMULATION

The stationary rivulet model detailed in Chapter IV provides the physical and

numerical foundation upon which the more complicated runback simulation is built.

The desired result of the subject simulation of freezing shear driven rivulets is the

prediction of the extent of rivulet travel and associated freezing profile during the

process. The details of the freezing runback model are discussed below, including

appropriate simplifying assumptions. A copy of the computer code containing the

numerical simulation of the freezing of shear driven rivulet runback can be obtained from

the author upon request.

Freezing Rivulet Runback Modes

The freezing rivulet runback model is comprised of three distinct modes. In the

aggregate, these modes constitute the runback model, but are distinct in the physical

phenomena that each attempts to capture. The basis for such a demarcation by modes

comes from the physical observation of freezing shear driven rivulet runback on a

NACA0012 airfoil [26]. These data obtained from freezing rivulet runback on the

NACA0012 airfoil served as a baseline for the runback model development. The

freezing of shear driven rivulets is a complicated interaction between the driving

flowfield, fluid and solid interfacial phenomena and the microphysical dynamics of

phase-change. The formulation of the problem into distinct modes allows the observed
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physical phenomena to be simulated in a simplified manner. The established runback

modes are discussed below.

Mode #1 — Freezing Rivulet Runback without Frozen Deposition

The initial stage of the freezing runback process is characterized by a fully

developed shear driven rivulet that suddenly comes in contact with a cold surface, where

Ts < Tmp. A portion of the rivulet freezes as it runs back, however this frozen fraction

does not adhere to the surface but is carried along downstream with the traveling rivulet.

Thus, the rivulet does not lose mass due to solid deposition during runback, but remains

intact until an empirically specified halt distance is reached. The Mode #1 condition is

illustrated in Figure 46(a) below. The distance the rivulet front travels before coming to a

halt is established by an empirical non-dimensional parameter, Wi, which characterizes

the rivulet front (leading edge) at halt. This parameter is defined by

 Wi= " f , (5.1)

where T, is the shear stress at the free surface, n—zfis the average rivulet liquid mass

fraction and His the ice/substrate interface sliding friction force per area of interface.

Employing the observed bulk rivulet halt length from [26] as the solution constraint, the

runback model presented herein was used to evaluate the resultant conditions of the

rivulet front at halt. Based upon this result, the traveling rivulet front is said to halt when

Wi 2 2.25 . This empiricism consists of a weighted ratio between the free surface driving

shear force and the resistive sliding friction force at the solid wall. The weighting factor,

as depicted above, is the liquid mass fraction at the rivulet front.
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The liquid rivulet is driven downstream by the shear loading at the free surface

generated in the high-speed gas flow environment. Accordingly, a velocity field is

developed within the rivulet, resulting in an associated shear stress manifest at the

rivulet/wall interface. However, as the rivulet begins to freeze at the wall boundary, a

portion of the liquid/solid interfacial shear now acts upon the resultant ice layer at the

phase-change interface. The resistance to motion beneath the ice layer is now one of

sliding friction between the ice and wall. Soon after freezing is initiated at the wall

boundary, an ice layer is formed between the wall and the remaining liquid portion of the

rivulet. The author proposes that at the phase-change interface the liquid shear. force is

sufficient to overcome the opposing sliding friction force at the ice/wall interface until

the halt criterion, Wi 2 2.25 is met.

The friction force at the wall boundary essentially remains constant, while the

phase-change interface shear force decreases due to a reduction in interface area as the

rivulet freezes. The said reduction in phase-[change interface area, as the rivulet freezes

from the wall outward, is a natural by-product of the circular rivulet shape. As the rivulet

runs back, the bulk structure remains intact, albeit partially frozen, until the halt distance

is reached and the frozen portion stays fixed spatially. The varying liquid mass fraction

in equation (5.1) represents the effect of the varying interfacial area. The temperature of

the wall remains constant as in the stationary rivulet model discussed in Chapter IV,

however, the thermal resistance at the wall boundary employs a convective heat transfer

coefficient based on laminar flat plate theory. Summarily, the halt distance refers to that

distance traveled by the freezing rivulet before the frozen portion halts and the remaining
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liquid continues on downstream. The freezing rivulet between the upstream (trailing

edge) starting point and the downstream (leading edge) halt point is hereafter referred to

as the “bulk rivulet”. The downstream travel of the remaining liquid after halt is the

substance of Mode #2.

Mode #2r— Extension of Liquid Mass Beyond Halted Frozen Mass t_1n_til RiLul_et

Leading Edge Completely Freezes

Once the frozen portion of the rivulet has come to a halt, Mode #2 attempts to

capture the extension of the rivulet as liquid mass is ejected downstream beyond the

halted frozen portion of the rivulet. Liquid is ejected until the rivulet front, or leading

edge, at the halt distance has completely frozen, 77f= 0. The quantity of liquid mass that

flows downstream of the halt distance is based upon a mass balance. The density of the

liquid, average liquid rivulet velocity and the liquid cross-sectional area at the halt

distance combine to establish the rate of liquid mass ejection downstream... Once the

cross-sectional area is reduced to zero due to a completely frozen front, the ejection of

liquid mass downstream in this mode stops. The condition at the conclusion of Mode #2

is illustrated in Figure 46(b). The complexities and uncertainties associated with the

interaction of the ejected liquid mass with the surrounding flowfield make the application

of simplifying assumptions prudent. Therefore, the magnitude of the rivulet extension

downstream is quantified by assuming the total ejected mass maintains a continuum and

has the same cross-sectional area as the original rivulet. Knowing the density of the

liquid, the mass ejected and the proposed cross-sectional area, the axial length of the

extended rivulet is easily determined. Clearly, these assumptions do not account for the
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dynamics of the freezing liquid and its associated travel as in Mode #1. Thus, the model

simply attempts to capture the amount of liquid mass that flows beyond the halted frozen

mass of the bulk rivulet and then subsequently freezes. The spatial parameter attached to

this downstream flow is a rivulet extension length of equivalent mass.

An additional complexity inherent to Mode #2 is formulating an appropriate

convective heat transfer coefficient at the phase-change interface of the bulk rivulet,

wherein now there exists a convective boundary. The complexity is manifest by the fact

that the boundary is moving and has an associated impact on the boundary layer at the

interface. The thermal resistance of a “slushy” cell, wherein this phenomenon is

addressed, is discussed hereafter. The thermal resistance at the wall, however, now

consists of a simple conduction boundary since the bulk rivulet is halted.

Mode #3: Liquid Mass Extension Beyond Halted Frozen Mass until Choke

Condition is Achieved

Since at the conclusion of Mode #2 the bulk rivulet trailing edge (upstream

starting point) is still not completely frozen, there continues to be further liquid flow

downstream. Mode #3 is very similar to Mode #2 from a modeling standpoint, however

the computations now take place at the rivulet inlet plane, or trailing edge, rather than at

the rivulet halt plane, or leading edge. However, the author chose to distinguish this

mode because it represents the liquid runback during the time between when the leading

edge completely freezes and when the trailing edge completely freezes and chokes off

further flow. The condition at the conclusion of Mode #3 is illustrated in Figure 46(0). A

main distinction associated with Mode #3 is that the runback is likely in the form of
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liquid beads that “ride” atop the frozen downstream portion of the rivulet and

subsequently flow off the end of the rivulet. This phenomenon is clearly shown in Figure

3 of Chapter I for the Bl-B engine inlet, wherein beaded deposits are shown on the

surface downstream of the continuous, or bulk rivulet. In Mode #3, again a mass balance

is employed to determine the quantity of mass that runs back. A reasonable constraint

levied in this mode is that the cross-sectional area of the bulk rivulet does not grow.

Therefore, all the liquid mass that runs back during Mode #3 is deposited downstream of

the bulk rivulet front face. Also, this implies that the amount of liquid mass entering the

bulk rivulet at the upstream face is the same amount that must be ejected downstream to

satisfy continuity. During this process the bulk rivulet continues to completely freeze;

complete freeze being the result manifest by a liquid mass fraction equal to zero at the

upstream face. At this point, the Mode #3 runback condition is deemed choked and no

additional liquid runback along the established rivulet path is considered. The additional

rivulet extension length resulting from the Mode #3 process is determined in the same

way as for Mode #2. In reality, the Mode #3 rivulet extension would most likely be in

the form of frozen beads separated by dry patches. However, herein the rivulet is

extended in a continuum consisting of the amount of mass equivalent to that which runs

back beyond the rivulet halt distance.

A worthy note is that as the upstream face freezes, the mass flow rate of liquid

entering the domain of the bulk rivulet is reduced according to the available liquid cross-

sectional area. Thus, any liquid running back that impinges on the solid part of the

upstream face of the bulk rivulet is diverted and follows a path separate from that
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provided by the bulk rivulet. The freezing run back simulation, therefore, models the

freezing of only that flow associated with the bulk rivulet path.

The final rivulet extension length is determined from the sum of the Mode #2 and

Mode #3 length extensions. The extension length forms a rivulet continuum with the

same cross-sectional area as the original bulk rivulet. The simulation of the behavior of

the bulk rivulet is the focus of the runback rivulet model. The behavior of the bulk

rivulet during the freezing runback process determines the bulk rivulet halt length and the

subsequent downstream extension.

Finally, a clarification of terms associated with Mode #3 is in order. In Mode #3,

when the trailing edge (upstream station where the rivulet begins to freeze) is completely

frozen the rivulet flow is considered “flow” choked and no further flow is found within

the bulk rivulet domain, as shown in Figure 46(c). Additional upstream flow could

potentially use the frozen rivulet as a path to a downstream destination; however, this

type of “piggy back” flow is not simulated herein. Another type of choking mechanism

is associated with the freezing itself. Cases are shown hereafter where, under certain

conditions, the rivulet trailing edge cross-section does not completely freeze, but an

equilibrium condition is attained in the energy balance at the phase-change interface.

That is, a point is reached where the rate at which energy is convected into the control

volume, via the liquid flow, equals the rate at which latent heat is removed from the

liquid. Thus, the freezing process is defined as choked under the circumstances

described. Therefore a “freeze” choke exists at the upstream station. Under such a
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condition, the rivulet will continue to extend downstream until the upstream water supply

is depleted.

Governing Equations

A formulation of the thermal energy transport equation that includes the spatial

rate of enthalpy change coupled with the convective velocity of the rivulet flow is

appropriate for freezing rivulet runback. That is, as the bulk rivulet runs back the heat

transfer is steady state as the system enthalpy changes with respect to the streamline

spatial coordinate. Equation (4.1) now becomes

  

2 2

Wah _ k[6 T a T], (5.2)

E —3 6x2 + ayz

where, w is the velocity in the z-direction, or streamline direction of the rivulet flow. As

expressed previously, the Peclet number is large enough to suggest that heat conduction

in the streamwise direction is negligible. From an Eulerian viewpoint, equation (5.2)

represents a steady state formulation. For Mode #1, however, one desires to monitor the

thermal energy transport of the rivulet front (leading edge) while traveling downstream.

Thus, when one hops on board and rides the rivulet front, the problem becomes

Lagrangian in nature and equation (5.2) still holds. As the rivulet runs back, the enthalpy

of the computational cells that make up the rivulet front are updated at each spatial step,

Az. This local spatial step is defined by A2 = w,, 1. At , where w“. is the local cell velocity

and At is the constant user defined time step.
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The governing equation (5.2) is also applied to the constant volume liquid cells of

Modes #2 and #3 following the halt of the frozen portion of the bulk rivulet. All

computational cells within the rivulet model maintain a constant volume and mass,

except for the free surface boundary cells where mass is ejected via evaporation or

sublimation. An energy balance on the liquid cells of Modes #2 and #3 results in

equation (5.2), where A2 is now the fixed computational cell length in the streamwise

direction (Eulerian) rather than the incremental distance traveled (Lagrangian) in Mode

#1 as the rivulet front is tracked. The halted bulk rivulet volume, and accordingly the

mass, is fixed, except for volume reduction due to mass loss at the free surface. Thus, the

same amount of liquid entering the halted rivulet domain upstream must be ejected

downstream. As the rivulet continues to freeze during Modes #2 and #3, the bulk rivulet

frozen fraction continues to increase until flow into the rivulet domain is choked. The

enthalpy of each liquid cell after rivulet halt is updated with the new enthalpy value at the

. ,, AZ .

local t1me, t + — , whlch corresponds to the enthalpy value at the downstream face of

Wi‘j

the cell. Equation (4.1) is employed in cells that are solid or contain the phase-change

interface. The thermal resistance of the phase-change (or slushy) cells is a modified

formulation of those applied to the stationary rivulet since there is now an internal

convective boundary at the liquid/solid interface. The thermal resistance of the cells

containing the phase-change front is treated in detail hereafter.
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Before the discretization of the above governing equation and associated

boundary equations is presented, the spatial coordinate, z , and the local cell velocity, w ,

are non-dimensionalized according to

(5.3)

respectively, where W, is the average streamwise velocity over the rivulet cross-section.

The derivation for both the local cell velocities and the associated average rivulet velocity

is shown hereafter. Also, equation (5.2) is brought into the computational domain via a

transformation similar to equation (4.17). In the computational domain, equation (5.2)

becomes

2 2 '12 2

62 w“. 6 6X F dx 677 F dx 5977

where w”. is the local cell velocity in the rivulet streamwise direction. Equation (5.4)

 

differs from equation (4.17) only in the leading coefficient on the right hand side, which

now contains the local streamwise velocity and the rivulet height, 6 .

mscretization of Governing Eguations

Similarly to equation (4.24), the discretized form of equation (5.4), for

2SiSMand2SjSN,is
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Equation (5.5) applies to each cell within the rivulet computational domain except for the

symmetry boundary cells and the rivulet/wall interface boundary cells. The discretized

symmetry boundary equation is the same as in equation (4.29) for the stationary freezing

rivulet. That is

¢n+l = n+1 . (5.6)

0,} 1,.I

Now, however, the rivulet/wall interface boundary cell contains a convective thermal

resistance rather than a conduction resistance, and upon discretization, the governing

equation for the boundary cells at j =1 and 2 S i S M becomes
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[ d_§ 2

2. 1. -—77 1.

.nfl +AIC,<—————+ dx A + + A ["5]

W” “ 62 AX RJ'I' :(x) 11"“..12427 ’7 477520)!” W"I,j+l

l

   

  

 

 

  

 

  

f ' n+ 11+ ‘ ‘

d5 2 172 [47.1. + 4.1. J +]
n+ n+ — An+1 Ar1+

1 [id—1,]; ¢i+l,1j ] dx 2A7] Rh!“ R5513

62AX 17,3“. 12:“. £06) .11

= 177,44 Ath< 2L4 ( (5.7)
, Rn+

L l,_}+l __

1 17,-’3};

[ A77 52 16:31] J

,.AA; (T. _ 7,),

6(x)phl,s

Az — . . — .
where At =W , hw 1s the average heat transfer coeffic1ent at the wall boundary, and T, 1s

the average temperature over the rivulet local cross-section. The average heat transfer

coefficient at the wall, 72W , is based on the average Nusselt number for rivulet flow over a

wall held at a constant temperature. This Nusselt number is defined by Al-Khalil [16] as

§
|

IVu = 2.63 + 0.000143Re , where Re = p 6. (5.8)

E

For the comer cell adjacent to both the wall and the symmetry boundary, where i = 1 and

j = 1, the coupling in the 7; direction is negligible. That is, the coupling coefficient in

2

fl

equation (5.7), iii , is negligibly small. Therefore, the govemin e uation for this

41x) g q
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cell, after removing the coupling terms and invoking symmetry, becomes the simplified

expression;

 

n+1 1 1 n+1 n

in. +AtCW ————— + 4 115,-,- =V/1,-+

J {62 AX R1,} A7762(x)Ri,j+l} j J

48, + 4; }+ RA: ( r)

(5.9)

At Cw _—-—2—— ,. q

Ri+l,j 6 AX Ri,j+1 A7761")

  

Riwlet Velocity Profile

A closed form solution for the velocity profile of a traveling rivulet as a function

of contact angle, 8, was developed by Al-Khalil [16] employing a power series

representation. The associated coefficients were determined using a least squares

regression analysis on the data resulting from the analytical solution of the equation

governing velocity. The relationship developed by Al-Khalil for the mass flow rate of a

developed rivulet using this closed form velocity solution is

meflgimm, am)

where T, and ,uare the rivulet free surface shear stress and dynamic viscosity of the

liquid, respectively. The free surface driving shear stress is derived by employing flat

plate correlations, thus

a=§mfi, on)
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0.664

JE’

where cf 2 laminar flow,

01'

cf = 0455 2 , turbulent flow.

(ln(0.06 Re))

 

Also, 171(6) is a functional of the form

Ft(fl)=b.fzo(fl)+bifn(fl)+%b1f30(fl)+%b4[1203), (5.12)

where 130(6), f22(,6), 120(6) and f32(,8) are integral functions of the form

,6

f0: ](cos6’ —cos,B)((sint9)J cost9dt9. (5.13)

0

Using equation (4.9), the author developed the following expression for the average

velocity of a rivulet whose cross-sectional area is R2 (,8 — %sin2,8);

W; ”R j{bit73..(.6')+bb.f..(fl)+§bb3f..(fl)+-§—bb.722(4)}. (5.14) 

,u[,6——12-sin2,6

where the expressions for the coefficients bb, and integral functions f0. are found in

Appendix A. The author also developed expressions for the rivulet mass flow rate and

average velocity based on Bankoff’s [34] work in formulating the minimum thickness

criteria of draining liquid films. These expressions are not discussed herein since they
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were not employed in the subject simulation. However, Bankoff’s work is sited 'as a

valuable study of the criteria associated with the breakdown of liquid films into rivulets.

The local rivulet cell velocity was derived from Al-Khalil’s power series

expansion relationship for the local velocity. In terms of the non-dimensional

coordinates defined in Chapter III, the dimensional local cell velocity becomes

w,” =%{blY+b2X2Y+b3Y2 +5,er2 }, (5.15)

where the b, coefficients are found in Appendix A.

Phase-Change Cell Thermal Resisitnces

At the initialization of Mode #2, after the frozen fraction of the bulk rivulet has

halted, a boundary is established with relative motion between the stationary solid and the

moving liquid at the phase-change interface. ConsiStent with the enthalpy method

formulation employed herein, the application of the non-linear Stefan condition at this

boundary is avoided. Remember, the phase-change front is tracked to within a cell

volume. Previously, for the stationary rivulet, a cell containing the phase front

communicated with its neighbors via thermal conduction. Accordingly, in the runback

problem, the effect of the convective interface on the neighboring cells must be included

in the connecting thermal resistances. The fact that the convective interface boundary is

moving as the phase front propagates, introduces an additional complexity.

The classical convective mechanism associated with the relative motion between

a solid stationary surface and a flowing fluid is altered in the case of phase-change. This
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alteration is due to the presence of a finite interfacial velocity present at the phase-change

interface [35]. From the study of boundary layer control and mass transport, the effect of

this interfacial velocity on the thermal transport rate is known to be significant [29,36].

A modified Nusselt number that accounts for the effect of the interfacial boundary

velocity associated with phase-change is defined by Pozvonkov et al. [37] as

N
]
—

Nu ak 1.

Nu, _ if 1.]
1.+——

k

a,=3.[ [1924.119] — 11,]

3.

11,,

cm, (Tmp — Tw)

 
, where

  
(5.16)

k:
!

 (Kutateladze Number)

Also, Nup is the phase-change Nusselt number and Nun is the non-freezing Nusselt

number. The non-freezing Nusselt number at the liquid/solid interface is defined using a

couette flow approximation and introducing the Brinkman number, Br [3 8]. That is

W2

, (5.17)

cm, (Tm, — Tw)

 Nun =1.+—1:—r , whereBr=Pr

From equation (5.16), the new phase-change Nusselt number, Nup is used to define a

characteristic thermal conductance for a cell containing the phase-change front. Thus, for

those cells that contain the phase-change front during Modes #2 and #3, the thermal

resistances are still defined by equations (4.26) and (4.27). However, the author proposes
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that the liquid thermal conductivity, k, , be replaced by a characteristic thermal energy

transport coefficient that embodies the convective mechanism at the phase-change

boundary. Therefore, the author proposes scaling the liquid thermal conductivity by the

phase-change Nusselt number, wherein the characteristic transport coefficient for a

slushy cell becomes

19,; f(Nup)= Nup k,. (5.18)

Freezing Rivulet Runback Results

The results of the freezing shear driven rivulet runback simulation are presented

hereafter. Results from the afore mentioned NACA 0012 airfoil test provided an

experimental halt distance, which was used to develop the empirical freezing rivulet

halting parameter, Wi. This parameter was then employed in the subsequent numerical

simulations. The results of the baseline NACA 0012 airfoil case (hereafter referred to as

the NASAIR case) are included in, and compared to, the simulation results. The five

experimental simulation cases presented in Chapter III were selected as numerical

simulation cases for the runback analysis. They are: cases 1-C, 3-C, 4-C, 7-A and 7-C.

Each case has differing initial and environmental conditions. The results of a parametric

study of the parameters affecting the halt distance and subsequent downstream runback

are also discussed.
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Phase-Change Front Profiles at Halt

The phase-change front profile of the leading edge at the bulk rivulet halt distance

is shown for each rivulet case in Figures 47-52 below. The frozen fraction of the rivulet

front at halt is indicated for each case. The initial and environmental conditions unique to

each case are shown in Table 3 below.

Unlike the stationary rivulet simulation cases, the rivulet widths used in the

runback rivulet simulation cases correspond to rivulet widths derived from the rivulet

mass flow rates used in the experimental study. Scaling rivulet widths of such small

dimension (1 mm-2 mm) from video footage, where the resolution was moderate at best,

lacked consistency. Therefore, the desire for a more uniform approach led to the

calculation of the experimental rivulet widths from the measured mass flow rates. The

rivulet mass flow rate is a dependent function of the rivulet radius of curvature, R, as

expressed in equation (5.10). This correlation requires the evaluation of the analytical

function, F] (,8). Thus, the collaboration between the analytical and experimental was

Table 3. Rivulet Conditions and Parameters for the Runback Rivulet Cases

 

 

 

 

 

 

 

 

  

Case Tw Tin Tinf Ste 1‘11 0 Wr Uinf

(K) (K) (K) - % (deg) (mm) (m/s)

NASAIR 266.5 273.2 266.0 0.0405 100 40 1.7 44.7

l-C 272.9 276.7 271.1 0.00158 80.8 38 1.4 44.7

3-C 270.6 273.4 268.9 0.0155 82.7 38 1.4 45.1

4-C 271.1 273.2 268.7 0.0125 87.2 38 1.0 67.2

7-A 270.7 280.6 269.0 0.0147 83.3 60 1.3 44.7

7-C 270.7 276.3 269.0 0.0147 83.3 60 1.3 44.7         
1.19
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necessary. Once F,(,B) was evaluated, the only unknown in equation (5.10) was the

rivulet radius of curvature. From the calculated radii of curvature, the various rivulet

widths were evaluated using the geometric relationship

w, = 2(R*sin ,8). (5.19)

The rivulet widths derived in this fashion were used as inputs in the numerical

simulations for the subject test cases.

In each case, there is the primary phase front that propagates from the wall

boundary inward toward the free surface. However, as observed in the previous figures,

there exists also a secondary phase front that initiates at the free surface boundary. The

secondary phase-change front, in each case, lies within the free surface boundary cells.

Thus, there is not a completely frozen layer (cell width), or ice crust, at the free surface.

The subject simulation assumes that this free surface slushy layer does not alter the

momentum transport from the free surface to the primary phase-change front boundary.

That is, it is assumed that this slushy layer does not impact the driving shear stress that is

transmitted to the primary phase-change interface causing the frozen portion to

essentially slide to the halt distance.

The development of an outer frozen shell would add complexities to the rivulet

flow dynamics that are beyond the scope of the subject study. The assumption, however,

that the bulk rivulet has reached the halt distance prior to any significant ice crust, or

shell, being formed at the free surface is a valid one. Generally, the rivulets associated
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with the ice accretion on airfoils and engine inlets have an initial temperature near the

melting point, Tmp, and the thermal energy conduction into the wall dominates the

process of latent heat removal. This phenomenon is seen in the more advanced

propagation of the primary phase-change front relative to the secondary phase-change

front propagation in Figures 47-52.

Rivulet Runback Length

The results of each simulation case, including the case specific parameters,

are summarized in Table 4. The predicted bulk rivulet halt distance (LH), the frozen

fraction of the rivulet front at halt and the equivalent-mass rivulet extension (LE), are

presented. Note that for cases l-C, 3-C and 7-A, the conditions are such as to cause a

“freeze choke” condition at the rivulet trailing edge (upstream freezing initiation station).

Thus, equilibrium in the transport rate of thermal energy exists in the slushy cells and

phase-change propagation halts. Thus, the equivalent-mass rivulet runback extensions

presented for these cases are the rivulet extensions at the time corresponding to the onset

of the “freeze choke” condition. In reality, liquid flow could continue downstream,

limited only by the capacity of the upstream source. For cases 4-C, 7-C and NASAIR.

the trailing edge completely freezes creating a “flow choke” condition. Herein, a

completely frozen rivulet entrance chokes off further liquid flow that would otherwise

follow the rivulet path downstream. Additional upstream liquid flow could, however, be

deflected around the rivulet by the solid rivulet entrance and take an alternate path

downstream, thus widening the wetted area of the original rivulet.
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Table 4: Halt Length, Frozen Fraction and Equivalent Mass Length of Freezing Rivulet

Runback for Simulation Cases

 

 

 

 

 

 

 

 

Rivulet Parameters Predicted LH Frozen Predicted LE

Mass

Fraction at

Halt

(3 = 40°, Tm: 273.15 2)

K, 11,1: 266.0 K, 32.1 mm 77.7 mm(

NASAIR T“: 266.5 K, Ste = (1.26 in) 0'63 (3.1 in)

0.0405 '

(3: 38°, Tm= 276.7 K,

Tm: 271.1 K, 472.5 mm 1571.5 mm“)

case 1": Tw= 272.9 K, Ste = (18.6 in) 0'70 (61.9 in)

0.00158

(3: 38°, Tm: 273.4 K, (I

"1...: 268.9 K, 69.4 mm 253.1 mm ’

case 3": Tw= 270.6 K, Ste = (2.7 in) 0'71 (10.0 in)

0.0155

(3 = 38°, Tin: 273.2 K, 2

Tint: 268.7 K, 197.0 mm 249.8 mm( )

case 4": Tw= 271.1 K, Ste = (7.8 in) 0‘90 (9.8 in)

0.0125

0: 60°, Tm: 280.6 K,

11,1: 268.7 K, 125.8 mm 759.4 mm“)

case 7"" 1w: 271.1 K, Ste = (5.0 in) 0'53 (29.9 in)

0.0125

0 = 60°, Tm: 276.3 K, (2)

11...: 269.0 K, 106.2 mm 729.9 mm

case 7'C Tw= 270.7 K, Ste = (4.2 in) 0'53 (28.7 in)

0.0147      
 

1. Equivalent length at Freeze Choke.

2. Equivalent length at Flow Choke.
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Cormaarison of Predicted and Experimental Results

In Table 5 below, the bulk rivulet halt distances for the five experimental rivulets

are compared to the halt distances evaluated using the “runback” numerical simulation

for the same governing parameters. The comparative results of Table 5 show reasonably

good agreement between the numerical and experimental Simulations. Herein, the

numerical halt distance predictions vary from the experimental results by an average of

27%, where the range of variation is 0.9% to 45%. Given the complexities associated

with the Simulation of shear driven freezing rivulet runback, and the necessity to apply

simplifying assumptions to render the problem manageable, agreement within 50 %

between predicted and measured results is considered reasonable.

Table 5. Comparison of Numerical and Experimental Bulk Rivulet Halt Distances

 

 

 

 

 

 

 

      

Rivulet Parameters Predicted LH Measured L" 0/o A Ln

[3 = 38°, Tm: 276.6 K,

Case 1-C 11...: 271.9 K, 1w: 272.7 K, 4312356??? 21189933; 3.4

Ste = 0.00158 ' '

B= 38°, 11,: 273.2 K, 7

Case 34C 11,1: 269.7 K, 1w: 270.4 K, 631:]? 870111011 45.3

Ste = 0.0155 ° - '

(3 = 38°, Tm= 273.2 K

Case 4-C 11...: 270.8 K, 1w: 270.9 K, 12°31?“ 1205231 40.7

Ste = 0.0125 ' '

0 = 60°, Tin: 280.4 K,

Case 7-A 11,1: 269.8 K, 1w: 270.6 K, . 13550811? E7081“; 0.94

Ste = 0.0125 ° ' m

0 = 60°, T1,: 276.2 K,

Case 7-C Tm: 269.8 K, 1w: 270.6 K, “()222 £3“ 3538‘”; 42.6

Ste = 0.0147 ° ° 1“
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Parametric Studv Resifl

A parametric study was performed to determine which case specific

environmental parameters have the greatest impact on the runback halt length and

equivalent runback length. The study was constrained by four rivulet sizes, wherein the

rivulet cross-sectional areas were determined by the rivulet widths and contact angles

shown in Table 6 below. Thus, the parametric cases were denoted as A,_1, A,_2, A,_3

and A,_4 according to their cross-sectional area. The parameters varied were threefold,

namely; Tw, Tinf and Uinf. Certainly this selection of parameters is not exhaustive,

however, it does represent a subset that has a marked impact on the runback halt length.

The baseline values, when two of these parameters are held constant while the third

varies, are Tw = 268.15 K, Tinf = 268.0 K and Uinf = 44.7 m/s (100 mph). The initial

uniform temperature of each rivulet was Tin = Tmp = 273.15 K, which is physically

reasonable for rivulet runback in glaze ice accretion conditions. Thus, the freezing

proceeds as a “One-Phase Stefan Problem”, wherein thermal energy is transported only

through the solid phase as discussed in Chapter II. The parametric range of these

parameters and their associated results are presented in Tables 6-8.

The parametric trends distinguishable from the tabular data are captured

pictorially in Figures 53-55. Not all of the parametric data sets were amenable to plotting

on the same axis set. However, the trends are well established, and one can easily make a

mental link from the tabular data to an associated curve and its position relative to the

plotted curves.
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Conclusions

Figures 53 and 54 and Tables 6 and 7 reveal a local maximum in halt distance

associated with the A_2 rivulet cross-section. This trend is reasonable, given that the halt

criterion is based on the ratio of the shear force at the phase-change interface and the

sliding friction force at the wall boundary. The surface area over which the interfacial

shear force acts varies as the phase front propagates, while the surface area over which

the sliding friction force acts is constant for a given rivulet size. The resultant effect of

the interplay between these forces from one rivulet size to another, and during the

freezing process is the substance of the tabular data. For a given rivulet, the variation in

halt distance is slight when Tinf is the parametric parameter. Conversely, the halt distance

varies significantly as TW varies. Note, that in Tables 6 and 7, for a given rivulet, the

frozen fraction does not change with the changing parametric parameter. This is because

the frozen fraction is related to the liquid mass fraction, which is used to define the

halting criterion (see equation 5.1). When either the wall or freestream temperature is the

parametric variable, the frozen fraction of the rivulet leading edge at halt decreases

monotonically with increasing rivulet cross-sectional area. Accordingly, the equivalent

runback length increases monotonically as the rivulet cross-sectional area increases.

Clearly, the wall temperature is a major player in the resultant halt and equivalent rivulet

runback distances in freezing shear driven rivulet flow.

The effect of variation in freestream velocity on the halt length and runback

equivalent length is best captured in Table 8. Figure 55 shows the curvature differences

for the halt length as a function of rivulet cross-sectional area for two freestream
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velocities. An evident trend is the monotonically increasing halt and equivalent lengths

for a given rivulet size with variation of freestream velocity. AS the rivulet size

increases, the effect of variations in freestream velocity on the bulk rivulet halt distance is

more significant.

Summag

A summary of the primary features of the parametric study is presented below.

0 A, — constant

I As Tw increases — LH increases monotonically (Significantly)

I As Tjnf increases - LH increases monotonically (slightly)

. As Umfincreases - LH increases monotonically (markedly)

. As Umf increases - F, increases

0 '1‘w or Tm, - constant

. As A, increases - LH obtains a maximum

. As A, increases —— LE increases

. As A, increases — F, decreases

o anf - constant

. As A, increases - LH obtains local maxima and minima (difficult to

resolve with few data points)

. As A, increases — LE increases

. As A, increases — F, decreases
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CHAPTER VI

CONCLUDING REMARKS

The development and validation of a numerical simulation of freezing shear

driven rivulets was the substance of this work. A discussion of the icing environment,

including fundamental phenomena associated with ice accretion was presented.

Conditions associated with the establishment of a “runback” zone, wherein thin liquid

films are want to breakdown and rivulet flow emerges, were highlighted. The utility of

the enthalpy method formulation of the Stefan Problem was presented as a robust and

physically sound means of capturing the phase-change front propagation.

The development of the freezing rivulet runback simulation incorporated two

primary models; namely, the “stationary” freezing rivulet model and the “runback”

freezing rivulet model. The former provided a simpler methodology by which the

modeling of the fundamental physics of the Stefan problem was benchmarked.

Additionally, the utility of the enthalpy method formulation coupled with the Gauss-

Seidel numerical technique was established using the “stationary” simulation. The

“stationary” model was modified by addition of a convective enthalpy term to simulate

the thermal energy transport associated with the motion of a traveling rivulet front. From

this modified “stationary” freezing rivulet model; the “runback” model was developed.

The “runback” model attempted to capture the physics of freezing Shear driven rivulet

runback by dividing the observed phenomena into freezing runback modes. These modes

encompass the freezing runback problem, including the initialization of phase-change,

subsequent runback with a frozen fraction to the point of halt, complete freeze of the
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rivulet front and the complete freeze, or freeze choke, of the rivulet trailing edge (station

of phase-change initiation). An equivalent mass rivulet extension length was also

established using conservation of mass and an associated rivulet Size to identify the

continuation of rivulet or coalesced beaded flow downstream of the bulk rivulet. An

empirical based non-dimensional parameter was formulated which established the

criterion for the “bulk rivulet” halt and associated runback distance.

A parametric study revealed that the bulk freezing rivulet halt distance for a given

rivulet Size was markedly affected by the substrate, or wall, temperature. Likewise, the

freestream velocity had a significant impact on runback distance before any frozen

fraction was deposited. Both of these parametric parameters have a primary influence on

the empirical halting parameter, W,. The former impacts the thermal energy transfer

potential at the wall, and the latter impacts the momentum transfer potential at the rivulet

free surface. By holding the environmental parameters constant, and changing the

rivulet Size with the contact angle and the rivulet width, a rivulet size was revealed that

resulted in a maximum bulk rivulet halt distance.

An experimental simulation conducted in the Icing Research Tunnel (IRT) at

NASA Glenn provided a set of test cases from which bulk rivulet halt distances were

ascertained and compared with the numerical simulations. The correlation between

numerical and experimental simulations was reasonably good, suggesting that the

physics-based numerical models are well formulated and applicable. Close observations

of the experimental test behavior were applied to the numerical models to enhance their

utility and improve the overall performance of the freezing shear driven rivulet runback

140



code. Despite the subjectivism inherent in the experimental observations, a solid

collection of freezing rivulet runback phenomena was obtained on video and employed to

guide and validate the subject numerical simulation.

Then subject study culminates in a foundation work from which further

investigations and model enhancements related to the freezing of shear driven rivulet

runback can be motivated. Indeed, parametric studies of rivulet growth can now be

performed to understand the general behavior of rivulets under a wide range of humidity,

freestream velocity and temperature conditions. The “runback” model provides the basis

for a freezing rivulet runback module that could be incorporated into an ice accretion

code. A few recommendations for consideration in further studies of the freezing rivulet

runback problem are detailed below.

Recommendations

The complex phenomena and accompanying short time scales associated with

freezing rivulet runback Speak of a need for further investigations. A more detailed

investigation of the aerodynamic interactions with the rivulet structure is certainly

warranted. This would include gainng further understanding of the role aerodynamic

forces play in the instability and subsequent breakdown of rivulet flow into beads as the

rivulet runs back and freezes, and also on rivulet shapes and geometries. Further

investigations would also include obtaining insights into the rivulet shape as a function of

liquid freezing rates during runback. As the rivulet structure freezes from the wall

toward the free surface during runback, the liquid/solid interface transitions from one of
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liquid/wall substrate to a liquid/ice interface. An important undertaking is to obtain

insight into the interfacial phenomena between the solid and its melt, and to ascertain the

resultant effects on the rivulet shape and associated motion. Therefore, questions such as

whether any Significant alteration in the rivulet shape by a change in surface tension

values at the solid/gas interface and the solid/ liquid interface can be posed and addressed

numerically.

Finally, a deeper understanding of the details of the freezing of rivulet runback

downstream of the bulk rivulet front halt would be desirable. The author recommends a

series of experimental simulations with rivulets at an initial temperature near the phase-

change temperature. Herein, additional data points could be obtained for the bulk rivulet

front halt distance database, as well as, details of the subsequent downstream flow

phenomena and travel extent.
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APPENDIX

COEFFICIENTS AND INTEGRAL FUNCTIONS - ANALYTICAL RIVULET

VELOCITY FIELD

An analytical, closed form, solution for the velocity field of a traveling rivulet

was developed by Al-Khalil [16]. In the subject simulation of the freezing of shear

driven rivulets, this analytical velocity field is employed. Expressions for the average

and local rivulet velocities are contained in this work. Thus, for completeness, the

coefficients and integral functions associated with these velocity relationships are

included below.

a = ,6", (degrees)

b = ,6, (radians)

Coefficients

bl = 0.99444 + 1.3522E-3*a — 1.58975E-4*a2 + 1.1778E-6*a3

b2 = (1.80005 — 6.6927E-3*a + 1.29684E-3*a2 - 4.047837E-5*a3 + 6.442231E-7*a4 -

4.071E-9*a5) * (1. — cos (13))2

b3 = (0.2177 + 1.7861E-3*a + 1.6869E-4*a2 — 2.14556E-6*a3 ) * (1. — cos (b))

b4 = (-11.70748 + 0.0146353E-3*a + 7.02226E-3*a2 - 14474313412213 + 9.29536E-7*a4)*

(1. — cos (b))3
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bbl = b1

ob2 = b2/(1. — cos(b))2

bb3 = b3/(1. — cos(b))

bb4 = b4/(1. — cos(b))3

Integral Functions

fzo = (-1./3.)*sin (b)3 + sin(b) — b*cos(b)

£22 = (1 ./16.)*cos (b)* sin(4b) — (1 ./5.)* sin (b)5 + (1 ./3.)* cos(b)2*sin (b)3 +

(1 ./3.)*sin(b)3 — (1 ./4.)*b*cos(b)

f30 = (-1./4.)*cos (b)3* sin(b) — (3./16.)*sin(2b) - (3./2.)* b*sin(b)2 + (15./8.)*b

132 = (-3./32.)*cos (b)2* sin(4b) — (1./o4.)* sin (4b) + (1./48.)* sin(2b)3 + (3./5.)cos(b)*

sin(b)5 — (1./3.)* cos(b)3*sin(b)3 — cos(b)*sin(b)3 + (3./8.)*b* cos(b)2 + (1 ./16.)*b
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