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Abstract

Finite element model updating has been an area of active research for the past

thirty years. The goal is to provide a model that is more representative of the structure.

This updated model can then be used for additional analysis to evaluate the design or

provide the designer with insight on how to improve the design, if necessary. Despite the

extensive amount of research, no one method has emerged that can be applied to all

circumstances. The diversity in methods applied can be traced to the inverse nature of

the problem. Typically, the amount of information available from modal testing of a

structure is limited. The finite element model of the structures can be quite large with

hundreds or thousands of degrees of freedom. This leaves the analyst with little choice

but to select a region of the finite element model by choosing elements or groups of

elements for corrections. The selected elements are parameterized by extracting design

parameters directly or by sensitivity methods. The parameter corrections are obtained

using the method of least squares. This process usually results in an ill conditioned

problem that can be sensitive to small variation or noise in the test data.

An alternate view of the updating problem is that the errors are distributed rather

than localized to a specific region of the model. This is the case when variations in

geometry can influence the response characteristics of a structure. This research effort

proposes a new approach for updating the geometry of a finite element model using a set

of models to form a basis for a perturbation space. The method is demonstrated by

numerical simulations and by experiment using a series of perturbed flat plates. The

numerical simulations indicate that the updating technique produces an updated model
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that improves the agreement between the simulated test plate and the model. The

application of the method to the experimental data demonstrated that the updated model

provided a slight improvement of the nominal model. A new metric for comparing the

error between the model and the test data based on the matrix 2-norm is presented.
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1. Introduction

Efforts to reduce the development time for new and increasingly complex

engineering systems have resulted in the convergence of the design and experimental

processes. The reduction in development time is being achieved by relying on advances

in computing power and in analysis tools including finite element analysis while reducing

the amount of testing to verify the ability of the design models to predict system

performance. As a result of the emphasis on shorter design cycles, new tools to integrate

the two processes are being developed and refined. One area where design tools and

experimental tools are being integrated is structural dynamics. Dynamic testing is

expensive and time consuming. At the very least, special test equipment including

shakers, test fixtures, instrumentation, and expensive analyzers are all needed to conduct

the test and analyze the results to determine what, if any, design modifications are

required to shift or dampen any undesirable vibratory resonance. In some cases,

particularly in complex machinery such as turbine engines there is limited access to the

parts being evaluated and only response data is available. The limited information

available forces additional reliance on the analysis tools to predict the response

characteristics away from the measurement locations. Understanding or reducing the

discrepancy between the experimental data and the design model is important to ensure

the validity of the design model and its ability to accurately predict system performance.



Current methods for predicting the dynamic response of turbo machinery airfoils

are based primarily on models that use the nominal blade geometry. These models

provide the natural frequencies and mode shapes for the modes of interest that could

occur in or near the rotor speed range or a multiple of the speed. Blade-to-blade

variations can result in deviations from the nominal blade model in the measured

deflections and stress amplitudes for a blade row. These variations can be significant,

resulting in a reduction in the high cycle fatigue life [1] of the blades or related structure.

There have been several studies directed at predicting the response characteristics of rotor

disks and blades. Different approaches to the problem include investigations of the

effects of mistuned rotors on blades vibration and studies of the response characteristics

of individual blades. The differences in the response characteristics can be caused by

several factors including variations in the blade attachment stiffness (boundary

conditions), material properties, and blade geometry. The differences in response are

most often attributed to blade-to-blade variations in material properties and in geometry

[2], [3], [4], [5], [6]. These studies do not address how or to what extent the variations in

the material properties and geometry affect the response characteristics.

The objective of aeromechanical testing is to ensure that all excited modes within

the operating range of the machine do not have a response that exceeds a predetermined

design criterion. A commonly used design criterion is a predetermined margin of safety

below the Goodman line [7] for any excited resonant mode. Identifying the modes that

exceed the design criteria provides the designer with a starting point for redesign.

However, a difficultly in the analysis of the test results can occur when one or more

blades on the test article fails to meet the design criteria. The challenge then is to
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determine which characteristics or properties of the blades that fail the design criteria are

the primary causes for the differences between the design model and the structure being

tested. This is the juncture where the design and experimental processes converge.

One means of resolving the discrepancies between the model and the

experimental results is to adjust or correct the design model to reduce the error. A careful

assessment of the quality of the experimental results must be accomplished to ensure that

the adjustment of the model is justified. In the area of modal analysis, there are several

tools available to assess the quality of the test modes using the modes determined from

the baseline model. Once confidence in the test data has been established, it is valid to

consider determining the appropriate adjustments to the model to reduce the error

between the model modes and the measured modes. The intent of finite element model

updating is to determine physically meaningful model corrections to reduce the modeling

discrepancies so that the designer can use the model to obtain more accurate vibratory

displacements and stresses. The updated model can then be used to assess whether the

design should be modified in cases where the structure under test has failed to meet any

design criteria specified by the designer.

During the past thirty years of research several methods for updating finite

element models have emerged. No one method is best in all circumstances. Model

updating algorithms are designed to solve an inverse problem where the necessary

adjustments to the model parameters are calculated reducing the error between the model

predictions and the experimental results. The nature of the inverse problem requires that

the analyst constrain the problem so that the updating analysis can be structured as a

forward matrix perturbation problem providing a unique solution. The imposed



constraints or assumptions utilized are problem specific with regard to identifying the

regions of the model that are considered to be the largest contributors to the discrepancy

between the model predictions and the test results. Global assumptions that also apply to

all updating problems include a requirement that the finite element model be suitably

structured to avoid numerical errors and that proper test techniques are employed to

ensure that noise and experimental setup do not introduce errors into the measured

characteristics such as mode shapes and natural frequencies.

The objective of the present study is to develop a finite element updating

approach using isoparametric elements that produces an updated model minimizing the

error between the model and the experimental results by accounting for variation in

geometry. Geometric variations have been identified as having a larger influence on the

modal response characteristic of turbo machinery airfoils than variation in material

properties [8]. There are no methods currently available using isoparametric elements

that either directly or indirectly address variations in geometry. This dissertation presents

a non-iterative updating method that uses a nominal model with a set of geometrically

perturbed models. The modes for the entire set of models form a set of basis vectors for a

modal perturbation space that can approximate the test article modes. An over

determined system of equations is generated and prepared in order to solve for the

coefficients of the modal basis vectors. These coefficients are then used to determine the

contribution of each model’s geometry to provide an updated geometry for the test article

model. Modal analysis is performed on the updated model using the predicted geometry.

A 2-norm for the error matrix formed by taking the difference between the test article

modes and the updated model modes at the measurement points is calculated and
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compared with the 2-norm of the error matrix between the initial model and the test

article to verify the improved performance of the updated model. The model updating

method is demonstrated by numerical simulation and a test conducted with four perturbed

test plates and one unperturbed plate.



2. Literature Survey

Scope ofSurvey

A literature survey related to the proposed topic was accomplished for two broad

areas. The areas covered by the literature survey included research on the vibratory

response characteristics of turbo machinery blades including flat and twisted plate

representations and research on finite element model updating algorithms. The survey of

literature on the vibratory characteristics of turbo machinery focused on modeling and

experimental methods to characterize the response of blades. The intent of this review

was to make an assessment of the areas where model updating could provide some

benefit. The review of the model updating literature was conducted to evaluate different

methods for applications where large regions or potentially the entire model may require

adjustment.

Mistuned Rotor Dynamic Analysis

There has been a substantial amount of research directed at understanding the

response characteristics of axial flow turbo machinery rotors. Srinivasan [9] presented a

comprehensive study of blade vibration in 1997 covering a wide range of parameters both

aerodynamic and structural that influence the response characteristics of blades. One of

the parameters identified was blade geometry during a review of mistuning.

Mistuning refers to the loss of symmetry of a rotor, which can result in large

variations in blade response for a rotor stage. The studies reviewed on mistuning can be

divided into two categories. The first category developed lumped parameter models of



the blades and the disk allowing for the investigation of blade-to-blade and blade-to-disk

stiffness parameters and in some cases damping parameter variations [3]. These studies

provide the ability to assess the rotor response characteristics for varying degrees of

mistuning by adjusting the mass and stiffness parameters. The second category applies

finite element models of a rotor stage to investigate the response characteristic of

mistuned rotors [4], [6]. Efforts have been directed at providing reduced order models

that allow for the detailed study of the effects of mistuning. These studies have indicated

that variations in blade characteristics can result in significant increases in response

amplitude and stresses.

The variation of blade characteristics is central to mistuning studies. In one study,

inducing a random variation in Young’s modulus for each blade was used to represent the

degree of mistuning [10]. Here a reduced—order model was solved one thousand times

using a Monte Carlo simulation to estimate the statistical properties of the response. This

approach does not provide a convenient method for determining how to manipulate the

blade design to produce a set of blades with intentionally mistuned characteristics to limit

response caused by mistuning.

Several approaches have been attempted to characterize the response

characteristics of turbo machinery blades. Varying lumped parameters or material

properties, depending on the modeling approach, has resulted in simulations

representative of the variations in blade response seen during testing. These methods

provide insight into mistuning but they do not provide the designer with a means for

placing bounds on geometric tolerances to limit the response levels and control

mistuning.



Aeromechanical Test and Analysis Methods

During development testing for turbo machinery, blades are often instrumented

with strain gages to measure the resonant strains for comparison with the modal strains

and stresses of a nominal finite element model of the blades. In addition to using strain

gages, a non-intrusive stress measurement system can be used to measure the blade

deflections during component rig testing or engine testing [11]. There are several

advantages to using a non-intrusive stress measurement system. Some of these

advantages include: 1.) All blades in the blade row can be assessed; 2.) The disk and

blades are not influenced by the application of strain gages with the associated wiring and

slip ring; and 3.) The system is more durable than strain gages, which can fail during

testing. The testing can range from laboratory test of individual blades through full up

sea level and altitude engine tests to evaluate the durability of the design against one of

many established criterions. Bench testing and finite element models are used to identify

vibration modes and selecting strain gage locations. They also provide a means for

determining stress and strain ratios from the gage locations to the maximum stress and

strain for the blade.

Development of analysis tools for aeromechanical testing continues to be an

active area of research. The work reviewed included testing and analysis for various test

techniques ranging from shaker table tests of individual blades and component tests

through methods used for engine testing. There are several sources of uncertainty in the

measurement and modeling process. Finite element models are a necessary component in

the process from experiment design through the monitoring and analysis of test data.

The use of finite element models as part of experiment design includes the

prediction of the blade’s modal strain and stress distributions to determining the optimum

locations and orientations for strain gages. Yang and Griffin [5] present a method for

selecting the optimum gage locations for closely spaced modes of vibrations. They point
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out that the actual mode shapes for closely spaced modes are highly sensitive to small

variations in geometry. Small variations in geometry make the true mode shape

unknown. This method seeks to determine the participation factors of the modes from a

nominal model to represent the unknown mode. The error sources compensated for are

gage placement errors and gage measurement errors. Here the “nominal” model is error

free and a least-squares method is used to determine the participation factors for the

participating modes. The gage errors are propagated to the mode participation factor

using the strains predicted by the model at the gage locations. The optimization routine

minimizes the error in the mode participation factor vector for the gage locations.

Sensmeier and Nichol [12], [13] use a genetic algorithm that defines the optimum

location of the gages based on a set of constraints or metrics. One metric is mode

identification. The gages can be used to represent reduced mode shape vectors that do

not retain their orthogonality. The method maximizes the angle between a mode and all

other modes of interest to improve or increase the visibility of the modes. Additional

metrics are used to ensure mode visibility (gage output), minimize the influence of gage

placement errors, and to ensure that gage spacing exceeds a minimum distance to

minimize the influence of the gage on the response of the blade. This method has the

advantage that the model need be solved only once for the mode shapes. It also provides

an effective method for maximizing the angle between two closely spaced modes for the

model geometry.

The numerical representation of strain gages is critical to the effective use of

finite element models in the analysis of aeromechanical data. Nichol [14] presented a

method for modeling a strain gage that accounts for the averaging effects of the gage.

Averaging effects are especially important in areas of high strain gradients. Variations in

gage placement in high strain gradients can result in large variations in the strain gage

output [15]. Comparing strain gage data with the nodal strains or the element strains of a
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finite element model is not practical. Comparison with nodal strains ignores the

averaging effects of the gage and comparison with an element strain would require that

the gage be aligned with the model mesh. Nichol’s method provides the capability to

investigate gage placement effects as well as allow for the relocation of gages without

having to re-mesh the model. Being able to model the averaging effects of strain gages

improves the efficiency of analyzing test data by eliminating the need to rerun the finite

element model.

The use of finite element models in the analysis of aeromechanical test results has

been used to assess aerodynamic effects on the response characteristics of blades.

Kenyon et al [1] presented a study on the effects of aerodynamic damping on variations

in the response characteristics for an integrally bladed disk. Their assessment is that the

disk was tuned and that mechanical coupling between the blades and the rotor are not

responsible for the variation in response. The assumption is made that the small

variations in geometry such as blade untwist and airfoil shape influences the aerodynamic

damping but not the measured stresses. Gage measurement errors and placement errors

are accounted for in their analysis. However, the assumption that the blade-to-blade

variations in geometry do not influence the strain gradients at the gage locations ignores

the influence of variations in local geometry on the measured response.

Flat and Twisted Plate Testing and Analysis

A review of the past work on testing and analysis of flat and twisted plates was

conducted in support of the experimental phase of the proposed research topic. Flat and

twisted plates have been used to approximate the characteristics of real turbo machinery

blades [16]. The National Aeronautics and Space Administration sponsored a joint

research effort on twisted plates [17]. This effort compared several different analytical
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methods, most being finite element methods, to the results of twenty precision-machined

twisted plates for two different aspect ratios and thickness ratios tested at two

laboratories. Generally, the analytical methods predicted higher mode frequencies at four

twist angles that ranged from zero degrees to sixty degrees in fifteen degrees increments.

The resonant frequencies were experimentally repeatable to within 0.5%. The test mode

shapes were identified by holographic interferometry. Mode shapes were matched with

the analytical mode shapes on a qualitative basis. This was a comprehensive study aimed

at validating analytical methods including convergence studies for the various finite

element models and at providing an extensive database for the vibration characteristics of

twisted plates. The NASA study demonstrated that different finite element methods could

be used to predict the dynamic structural performance of flat and twisted plates.

Finite Element Model Updating

Model updating has been an area of active research for the past 30 years. Several

methods based on least squares and minimum variance estimators have been developed

[18]. It is often assumed that the discrepancy between the test results and the results

predicted by the model can be attributed to specific areas of the model. This is a key

assumption necessary for the formulation of the problem as a forward perturbation

problem. Forward perturbation models retain the nodal connectivity of the original

model. Papers on representative updating methods that do not preserve the model

structure were not considered. Updating methods that do not preserve the connectivity of

the finite element model cannot be used for additional analysis such as fatigue life

assessments or forced response. Most research is geared toward improving the model for

additional analysis.
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There are two major branches of model updating techniques that maintain the

nodal connectivity of the baseline finite element model. They are methods based on

eigensensitivity analysis and methods based on the error localization equation for

perturbed mass and stiffness matrices of the eigenvalue problem. The updated models

from these methods maintain the structure of the finite element model allowing for

additional analysis. Friswell and Mottershead [18] published a text on finite element

model updating that presented an overview of the several different methods. The text

placed a great amount of emphasis on sensitivity-based methods. Sensitivity methods are

based on taking the derivative of the eigenvalues and/or eigenvectors with respect to the

material parameters or when feasible the geometric parameters of the stiffness and mass

matrices. These methods are usually iterative, requiring extensive computation at each

step to provide the updated model for the next iteration. Most of the sensitivity—based

methods reviewed did not use eigenvector derivatives. This is more than likely

associated with the computation cost associated with producing these derivatives for

several modes iteratively [19].

Finite element updating methods have been applied to all types of elements.

Simple elements including bar, beam and plate elements can have either material or

geometric parameters that are targeted for updating. Solid model elements are restricted

to material properties. Generally, the analyst must determine which elements and

parameters should be adjusted regardless of the updating approach used. In one example,

Ahmadian [20], et a1, recommended the updating of a rigid offset parameter for joints in a

truss. The rationale was that the modeling of the truss members away from the joint was

more accurate than the modeling of the joints. The offset parameter was preferred over

using joint stiffness parameters because it is more sensitive to the errors in the

eigenvalues. However, attempts to use the joint parameter updating approach on a

welded space outside of the laboratory environment were unsuccessful [21]. The authors
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noted that either the approach used to update the joints was inadequate or that the

assumption that the joints were the primary cause of the difference between the model

and the test was in error.

Farhat and Hemez [22], [23] presented an updating method referred to as the

Sensitivity-Based Element-by-Element method (SB-EBE) and an extension of the SB-

EBE to compensate for the ill conditioning related to the difference magnitude in the

residual force error for the mass and stiffness matrices. The residual force R( [3) is an n x

1 vector found by solving the eigenvalue equation using the test eigenvalues and

eigenvectors with the original model mass and stiffness matrices. The residual force is

R(fi)=(K(13)—w,2M(13)) 30’ (1)
6X

where p is a m X 1 vector for m<<n of generic element parameters targeted for updating,

(0,2 is the test eigenvalue, K(p) is the n X n stiffness matrix, M(p) is the n X n mass

matrix, (pt is a m X 1vector of the measured components of the eigenvector, and (pex is a

(n—m) x 1 vector of the unknown components of the mode vector found by using a mode

vector expansion method [18] to create a test eigenvector of order n X 1. Equation (1)

gives the residual force when using the original model parameters with (0,2 , (pt, and (pex.

The residual force vector is a result of the error between the test mode and the original

model mode. After an updating method is applied, R(p) is made close to zero by

substituting the updated parameters p and the remaining (n-m) X 1 original model

parameters, that were not targeted for updating. The SB-EBE method uses a two-step

process that first identifies the elements with dofs where the residual forces are highest.

The elements that have the highest sensitivity to the residuals are then targeted for

updating. Usually, the residuals associated with the stiffness matrix are several orders of
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magnitude larger than the residuals associated with the mass matrix. This tends to result

in corrections for stiffness parameters even when the error is associated with a local

change in a density parameter. Farhat and Hemez [23] presented a normalization process

that gave equal weighting to the mass and stiffness parameters to reduce the disparity in

the sensitivity of stiffness and mass parameters resulting in the correct identification of

the local errors in density.

The process of selecting design variables for updating is not intuitive. It requires

an assessment by the analyst constructing the updating problem [24]. There are several

possible design variables that can be selected to solve a particular problem. A criterion

has to be selected to pick the best set. Different criteria that range from allowing several

design variables to vary within manufacturing tolerance to iterative methods based on

sensitivity for a subset of design parameters have been tried. The elastic modulus,

Poisson’s ratio, and density are usually selected. These are the only parameters that are

easily extracted from the finite element equations for isoparametric elements. Blelloch

and Freymiller [24] suggest that automated methods that limit the involvement of the

engineer are less effective in delivering a reliable solution. The criterion to select the best

set of parameters in one instance was the set that produced the best results on average

[25]. In reference [25], model updating experiments were conducted on a three-story

space frame using five different sets of parameters. The parameters were: scalar

multipliers of substructure stiffness and mass matrices for three different element groups;

the mass of the connecting nodes; a joint offset parameter; and the tube thickness.

Different combinations of these parameters were used all producing reasonable results.

The set that produce the best results on average was also considered the set that best

preserved the physical meaning of the model after updating.

Ill conditioning is a problem common to all updating formulations. The updating

problem usually results in an over determined set of equations that are solved by using
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the method of least squares. Ill conditioning manifests itself in numerical simulations by

producing large changes in the updated parameters vector p for changes in the quantity

represented by the b vector and a large condition number for the A matrix in the least

square equation

AP = b (2)

where A is an k x m coefficient matrix obtained by transforming the mass and stiffness

matrices from the global coordinate space to the parameter space of the targeted

parameters with k>m and the p vector is the m x 1 vector of parameters to be corrected.

The dimension k of equation (2) obtained by multiplying the size of the finite element

model, n by the number of test modes available for use in equation (2). The k x 1 b

vector can represent the residual force defined in equations (1) above of the available test

modes or for sensitivity based methods the difference between the measured eigenvalue

and the model eigenvalue. Farhat and Hemez [23] suggest that the ill conditioning is

caused by the small singular values of A (typically, <10'6) and their associated left

singular vectors. They point out that these components of the singular value

decomposition are responsible for large parameter changes (100% and higher) that are

not physically real. There have been several methods proposed for dealing with ill

conditioning of the updating problem. Friswell, Mottershead, and Ahmadian [26] present

several methods to address the ill conditioning of the least squares problem. They also

attribute the errors to the small singular values.

One aspect of the problem that has not been addressed are cases where some b

vectors produce acceptable solutions for the parameters, and others where a small change

in one component of the eigenvector can produce large changes in the residual force

vector of equation (1), that result in unrealistic parameter corrections [27]. The
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calculated updated parameters, pi in equation (2) can be correctly estimated within the

simulated noise bounds place on the eigenvectors despite the small singular values of the

A matrix. The cases where changes in the parameters pi are large for small changes in an

eigenvector component (<.01%) results in the rotation of the b vector away for the range

of A. The relative condition number for perturbations in pi that arise for certain

perturbations in the b vector provides a basis for explaining why certain b vectors from a

set with the same noise level can cause large perturbations in pi and others produce

reasonable perturbations within the simulated noise levels. The relative condition

number is given by [28]

_ K(A)

r _ ncos(0t) (3)

where K(A) is the condition number for the A matrix, (1 represents the angle between the

b vector and the range of A and

= My" ‘4)

where H II represents the 2-norm for the matrix A and the Euclidian norm for the vectors

p and y. The vector y is the projection of b onto the range of A. The number n is a

measure of how much the magnitude of y falls short of its maximum given the 2—norm

magnitude of A and p. The relative condition number, K, is exact for specific

perturbations rather than a bounding value as is the cases for the relative condition

number between perturbations in the A matrix and the update parameter vector, p.
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3. Conclusion from Literature Survey

The papers reviewed on the response characteristics of turbo machinery airfoils

indicate that variations in the geometry of the blades influence the response

characteristics of the airfoils. Current modeling techniques for representing variations in

response vary material properties, which do not provide a practical method for correcting

a design deficiency, should one occur. Locally controlling the elastic modulus for a rotor

disk is not practical. Geometric parameters are available to the designer for controlling

the stiffness of individual blades. Determining the specific cause for variations in stress

amplitude during testing of a rotor stage is a complicated task. There are several

variables that can influence the response. Simplifying assumptions can be made to

develop a tractable problem. One assumption that can be made is that all blades

experience the same forcing. Applying this assumption permits the investigation of the

influence of blade geometry variations on the response characteristics.

Model updating provides one means of investigating the effects of variations in

geometry on the response characteristics of turbo machinery airfoils. All of the model

updating techniques that have been reviewed are applicable to local variations in material

properties or geometry properties for elements that have local coordinate systems in one

or two dimensions. The inverse character of the updating problem has prevented any

single method for updating to be applicable in all circumstances. A key assumption of all

the finite element model updating methods reviewed is that the error between the model
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and the test can be attributed to a few elements or a few groups of elements. This

assumption is necessary because the structure of the updating problem is constrained by

the limited amount of information available from experimental modal testing. The

limited amount of information constrains the number of parameters that can be updated

for most methods. There have been no research efforts conducted on methods that

correct for global variations in geometry. Extending methods based on error localization

to account for global variations in geometry is not practical. This suggests that a different

approach should be taken to obtain an updated model that reduces the discrepancy

between the modal test data and the model.
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4. Development of Geometric Updating Method

Existing finite element model updating methods for isoparametric elements target

material properties of a small subset of the elements or groups of elements. The material

parameters are easily extracted from the element equations. In contrast, extracting the

element coordinates for modifications is not practical. The difficultly is related to the

element formulation. The isoparametric formulation permits the use of nonrectangular

elements that can have curved surfaces depending on the number of nodes and shape

functions [29]. The nodal coordinates in the global coordinate system define the element

geometry. An auxiliary coordinate system is introduced that has its origin defined as the

average of the nodal coordinates in the global system. The auxiliary coordinate system is

a function of the global coordinate system. The global coordinates of the nodes are used

to define the coefficient of the strain displacement matrix and for defining the

determinant of the Jacobian matrix. Both of these quantities are needed for the

integration of the stiffness matrix. The determinant of the Jacobian is needed for the

integration of the mass matrix. The difficultly in extracting nodal coordinates from the

element formulation suggest that an alternative approach needs to be considered when

changes in geometry are being considered.

Assumptions

All model-updating problems are inverse problems with the possibility of many

feasible solutions. In order to obtain a unique solution constraints are applied to the
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system of equations. These constraints are necessary in that there is a limited amount of

information available from the test that can be used for updating. The amount of

information available from the test is limited by the number of measurement locations

and the number of modes that can be identified from the test. The frequency range of the

test limits the number of modes that can be defined. Given the constraints on the

information available from testing, the updating problem must be structured so that the

number of parameters does not exceed the number of measured quantities. Most

updating methods constrain the problem by selecting a number of elements or a number

of element groups that is less than or equal to the number of measured parameters (e.g.

natural frequencies). This process usually results in an over determined problem that can

be solved by applying the least—squares method.

In the least squares solution the parameters are free to take on any value that

satisfies the minimum norm solution. This can result in parameter corrections that are

not physically realizable or unrealistic for the given the problem. Methods that rely on

adjusting material properties must define a priori the location or elements that are

suspected to be in error. Typically, the number of groups of elements or the number of

elements that are targeted for updating is much smaller than the total number of elements

in the model. This subset of elements and the selected parameters for these elements

translates into changes in a subset of matrix coefficients in the mass and stiffness

matrices. Under ideal conditions the elements that are in error are correctly identified,

measurement noise is low, and the resulting parameter corrections are physically

realizable.

Compensating for errors in geometry is not amenable to updating methods that are

formulated based on the ability to localize the error. Engels presented [27] a non-

iterative method based on error localization for updating models provided the following

three assumptions are met.
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1. All obvious testing and modeling errors have been eliminated.

2. The structure’s geometry is known.

3. All parameters needing change have been identified.

Assumption 2) eliminates geometric variations as an influence on the modal

response. Assumption 3) implies that the source of the error can be localized to specific

regions of the model. With the error localized the material parameters can be extracted

from the mass and stiffness matrices for updating. The influence of variation in geometry

on the response characteristic for turbo machinery airfoils implies that a method is

needed that relaxes or removes the requirement for assumption 2). The inability to

localize the error for arbitrary variations in geometry implies a modification of

assumption 3). Assumption 1) is still valid.

The assumptions needed for developing an updating method that corrects for

errors based on adjusting the geometry are:

I. The material properties do not vary from point to point in a structure

made of one material.

11. Clamped boundary conditions apply. Small variation in the boundary

stiffness do not appreciable influence the mode shapes of the structure

111. Bounds or tolerances can be placed on the variation in geometry.

IV. Geometric variability can be characterized

Assumption I is consistent with the isotropic material assumption generally

applied for modeling structures made of a single material. Assumption II is demonstrated
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by an example. One of the models used to demonstrate the validity of Assumption II is

shown in Figure 1. The boundary stiffness in this model is reduced linearly from middle

of the plate to the edge by reducing Young’s modulus in three steps. The outer most

elements have a Young’s modulus that has been reduced by approximately 2.2%. The

second model, which is not shown, has the same plate dimensions and the same number

of elements with a taper from the center of the plate to one edge in the widthwise

direction. The percent change in thickness in the widthwise direction is the same as the

percentage change in Young’s modulus. Using the same relative change in the Young’s

modulus and in the thickness of the plate allows for a direct comparison of these

modifications with the unperturbed model. The error in percent relative to the nominal

model modes for the tapered plate and the change in Young’s modulus are shown in

Figure 2 for the first bending mode (Errgeolb and Errstif1b) and the second stripe mode

(Errgeo2s and Errstif2s). The bars represent the error in percent for each node point of

the top surface of the plate excluding the nodes connected to the clamping block

elements. This comparison shows that the young’s modulus of the boundary blocks

results in a much smaller error in the mode shapes for both modes. It also indicates that

variations in geometry of the blade have an increasing impact as the frequency of the

mode increases. Assumption III is based on the fact that all parts will have

manufacturing tolerances to meet form, fit, and function requirements of the item. The

tolerance bounds provide the definition of the variation for an acceptable part.

Assumption IV implies that the variations in part geometry are not totally random in

nature. These variations are related to the manufacturing process [8]. Manufacturing

variations can be related to part positioning errors, tool sharpness changes, and
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other factors. These assumptions provide the framework for developing an updating

method that produces an updated geometry that improves the agreement between the test

data and the model.

Rationalefor Geometric Updating Method

The updating method must be able to compensate for arbitrary variations in the

geometry. As noted in the discussion on Assumption IV, the geometry of parts will

typically vary as a result of the manufacturing process within certain tolerances

established a priori. The variations are independent of the nominal model, making

sensitivity-based analysis of the model impractical for determining the characteristics of

the geometry correction. The modal models generated by the finite element method

produce positive definite system matrices with real eigenvalues and eigenvectors for the

undamped case. The eigenvectors are uniquely determined up to a scalar multiple. The

eigenvalues are not necessarily unique. The system matrices can be multiplied by a

similarity transform resulting in the same set of eigenvalues with a new set of

eigenvectors representing a completely different structure [30]. Based on these

characteristics of the eigenvalue problem, an updating method should be based on the

eigenvectors rather than the eigenvalues of the structure being evaluated. The

eigenvectors are uniquely related up to a scalar multiple to the model matrices in physical

space representing the structure being tested. Invoking Assumptions I and II and

Assumption 1) used in the Engels method above, the discrepancy between the nominal

model and test data can be attributed to variation of the test articles’ geometry relative to

the nominal model. Assumptions HI and IV provide the additional constraints for the

formulation of an updating method to adjust the geometry of the nominal model to reduce

the error between the modes of the model and the modes of test article.
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Formulation ofMethod

The proposed method uses a set of perturbed models with the nominal model as

an n-dimensional perturbation space for estimating the geometric corrections. This

approach was outlined by Dr. Kurt Nichol in meetings during May of 2001 [31]. This

approach uses the set of models as a set of basis vectors. With the appropriate

coefficients, the basis vectors can approximate the modes of the test article to any degree

of accuracy with an increasing number of models or perhaps a set of perturbed models

that is based on a priori knowledge of the expected geometric variations. The basic

equation of the method is

(0th.) = Z Wigpmodf‘j) (5)

i=1

where the superscriptj is for the jth mode for the test and the models, (0,“) is an m X 1

(1')
vector of the jth measured modal displacements, (0mm,- is an m x 1 vector of the jth

mode vector of model at the measurement locations, and w, are the scalar weight

coefficients for the participation of the n models for the jth mode. A unique solution for

the weights w, is obtained for cases when ngm. In cases where m>n, a unique solution

can still be obtained by stacking the j test and model modes to form a least squares

solution of the form

    

(Dinod (02]

W = < > (6)

(Driod _ fotp J
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where p is the total number of test modes, w is an n x 1 vector of the weighting

coefficients, (Drlfiod is an m x 11 matrix of the pth mode components at the m measurement

locations for the 11 models, and (pf is the pth measured mode. Stacking the p modes

allows for cases where there are fewer measurement locations than models m<n while

still providing a unique solution provided that p*m in. This formulation permits the use

of all of the test modes that can be matched to the model. At this point, the coefficients

represent the participation of all of the matched modes for each of the models in

representing the test modes. As noted above, the eigenvectors are uniquely determined

up to a constant for a specific system of mass and stiffness matrices. This property can

be used to apply the coefficients wi found using Equation (6) to determine the

contribution of each model’s geometry providing the updated model geometry that best

approximates the test modes. The geometry updating equation is given by

n

Xu 2 Z Wixmi (7)

i=1

where x“ is the vector of the updated dofs for the model surfaces that were selected for

updating, and xml. are vectors of the dofs for the same surfaces of the basis models that

have been selected for correcting the geometry of the nominal model. The updated dofs

of the surfaces targeted for updating are combined with the unmodified dofs of the

nominal model to produce the updated model geometry. The updated model can then be

used for additional analysis as required.



An important benefit of this method, which should not be over looked, is that it

does not require the expansion of the mode shapes to obtain mode vectors that are of the

same order as the model. One method of expanding the test mode data to the full order

model modes is accomplish using the following equations [18]

Km,m Km,n—m (off _ (I) 2 Mm,m Mm,n—m ¢U

. (8)

Kn—m,m Kn—m,n—m medj ‘1 Mn—m,m Mn—m,n-m (DmOdj

O
I

0
1

where (0,21. is the measured eigenvalue for the jth mode, (pH. is an m x 1 vector of the

measured eigenvector components for jth mode, (pmj is an (n-m) x 1 vector of the

unmeasured eigenvector vector component, M and K are the n x n mass and stiffness

matrices that are partitioned into the measured coordinates m and the unmeasured

coordinate n-m. The full mode vector is obtained by joining the test mode vector

components with the unknown mode components that are found by rearranging the lower

portion of this equation to yield

(omodj : _(_a)t2j . Mn—m,n—m + Kn—m,n-m )4 . (_a)t2j . Mn—m,m + Kn—m,m) . (0t j (9)

Updating methods based on error localization requires the full mode vector

computed by this method or any other method. The process of expanding the modes

using the original model is done as a convenience. One concern with this approach is

how the measurement noise affects the calculated components. Another concern is that

the measurement points may not be coincident with the regions of the model that are

suspected to be in error. In this case, the mode vector dofs found using equation (9) in

the region where the model is suspected to be in error are in some way influenced by the
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model that is being updated. An updating approach that does not rely on the expansion of

the modes has the potential to avoid ill conditioning, which is a common problem.

Demonstration ofthe Method

In order to implement the method, several steps must be accomplished which will

be outline as the method is demonstrated. All of the algorithms necessary to implement

the method were programmed in Mathcad Professional 2000® worksheets. The method is

first demonstrated by numerical simulation.

The simulated test articles are representative of three of the test articles used

during the experimental validation of the method. The test articles are flat plates with

nominal dimensions of 8.5 X 4.0 X 0.094 in inches. The simulated test plates have

geometric variations of up to 0.003 inch depth below the top surface of the nominal

model the point or the points of maximum deviation. The nodes for the perturbed top

surface for the three simulated cases are shown in Figure 3. The first thirteen modes of

the solution of the eigenvalue problem for the simulated test plates were used to simulate

the test data. The test modes were determined using a modified finite element code from

a Mathsoft® electronic book [32] that was extended to solve models with three dofs per

node using an eight noded brick element with extra shape functions [29] (see Appendix

A). The code was verified by solving the nominal plate and the simulated test plate P2 in

ANSYS-ED® and the code shown in Appendix A. The same mesh density and material

properties were used in both codes. Both codes produced the same mode frequencies and

mode vectors. This validation was done to ensure that the element aspect ratios were

acceptable. No error messages or warning were observed during the solve process in

ANSYS-ED®. The finite element code worksheet also separates out the model dofs of
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Figure 3. Surface node plots of the perturbed surface for the three test cases
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the perturbed surface for the specified modes. Two modes of the simulated test plate P2

top surface nodes are plotted in Figure 4.

The next step in the process was to develop a set of perturbed models. By

definition the nominal model or design model already exists. The nominal model has the

plate geometry defined above. The set of perturbed models must be able to approximate

symmetric, antisymmetric, and asymmetric plate geometric variations. To do this, the set

of models that form the perturbation space must include linear, non-linear, and

trigonometric variations in geometry. A total of twenty-five models were used in this

demonstration (See Figures 5 and B-l). Plots for the widthwise asymmetric functions are

shown in Figure 5 and are not repeated in Figure B-1. All twenty-five models were

solved using the worksheet shown in Appendix A. The nodes of top surface for the first

thirteen mode vectors were saved to data files for use in the updating worksheet (See

Appendix C). The coordinates normal to the surface are extracted from the mode vector

and the normal coordinate at the fifteen simulated measurement points where found using

spline interpolation.

The next step is to match the test and model modes for use in Equation (2). The

modes are matched using the modal assurance criterion (MAC) [18]. The MAC is not an

orthogonality check between the test modes and model modes since the mass matrix is

not used. The MAC is given by

2

  
\MAC — , (pap-"3"

j’k _ ((0.3, (pm, Xe: raj) (10>

where {pt}. is an m x 1 vector of the measured components of the jth test mode, to; is an m

x 1 vector of the kth mode of the model at the measurement locations, and MACj.k is the
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the width direction
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(j,k) coefficient of the MAC matrix. When the modes are strongly correlated, the MAC“,

coefficient will be close to unity and the other components in the corresponding jth row

and kth column will be near zero. Typically, MAC values above 0.85 for a pair of modes

are considered as well correlated modes. There is no need to scale the test modes to the

model modes. The ease of application of this method makes it a popular tool in matching

test and analytical modes for further analysis. The MAC is a 13 X 13 matrix for the

numerical simulations. All twenty-five models were matched with the simulated test

plates. The modes for the simulated test plates and the model set were placed in order

from the first mode through the thirteenth mode.

With the test and model modes paired, the model modes are ready to be scaled to

the test modes for use in Equation (1). The scaling is accomplished using the modal scale

factor [18] given by

T

(Pm. (0m. (11)

where q)”. is the ith test mode vector and (0,”. is the ith model mode vector. The modal

scale factor does not require that the test and model modes to have the same phase.

However, the test and model modes must be in phase to determine the weighting

coefficients, wi. An additional check is required to ensure that the modes are in phase.

This is accomplish by using the following logic

If|(0,,- —(0m,- |>| (0,,- | Then (PCP, = —(0m,- (12)

wcpl- = (0m; OthCI'WISC
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where (pm. is ith component of the test mode vector whose phase is being matched, (am. is

the ith component of the model mode whose phase is being adjusted based on the

condition, and (0% is the ith component of the phase corrected model mode vectors to be

used in Equation (6).

The next step is to solve for the weighting coefficients, wi, for the modal basis

vectors of Equation (6). Then these coefficients are used to estimate the updated model

geometry using the model geometry basis vectors in Equation (7). The vectors of

Equation (7) are the normal dof of the surface nodes targeted for modification. The

Mathcad program for the procedure outlined above is shown in Appendix C. The

updated geometry and the simulated test plate geometry for the demonstration using

simulated test plate P2 are shown in Figure 6. The solid surface is the simulated test plate

P2 and the transparent surface is the updated geometry. A direct comparison between the

simulated test plate geometry and the updated geometry can be accomplished. Three

cases are presented showing the effects of increasing noise on the accuracy of the

estimated geometry. As the noise increases, the approximation of the geometry degrades.

An assessment of the error caused by adding noise to the test eigenvectors is

accomplished by comparing the error between the updated surface and the simulated test

plate at each node for plate P2. In all cases, the total percent error in the geometry was

within the bounds of the noise added to the eigenvectors. The results for P2 are shown in

Table 1. This summary shows the maximum and minimum within the bounds of the

simulated noise. Several trials were conducted at each noise level to observe the

characteristics of the solution under the influence of noise. The noise can result in a plate
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Table 1. Summary of geometric error for Plate P2 showing the influence of

increasing noise

 

 

 

 

Eigenvector Minimum Maximum Relative Total

Case Uniform Relative Error Error Band

noise Error Percent Percent

Percent Percent

1 Noise free -0.051 0.549 0.60

2 +/- 2 -0.38 1.49 1.87

3 +/- 5 -1.493 3.299 4.792

      
 

that is biased either thicker or thinner or ones where the transcendental basis functions

cause oscillations about the simulated plate geometry. These effects are amplified with

increasing noise levels. This highlights the importance of having instrumentation that has

high measurement accuracy and excellent signal-to-noise performance.

Additional comparisons were made for plates P1 and P3. The results are similar

to the result for P2. The plots comparing the updated geometry to the simulated test plate

geometry are shown in Figure 7 and in Figure 8, respectively. Table 2 shows a

comparison of the node-by-node relative error for plates P1 and P3, respectively. The

relative error slightly exceeds the noise bounds for these cases. In both cases several

trials were conducted. The results were bounded. However, noise levels at or above 5

percent resulted in errors that would not be acceptable. This is true especially when the

noise caused the updated nodes to be either all above or all below the simulated test plate

surface.
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Table 2. Summary of geometric errors for plates P1 and P3 showing the influence

of increasing noise

 

 

 

 

 

 

 

Eigenvector Minimum Maximum Total

Case Uniform Relative Relative Error Band

noise Error Error Percent

Percent Percent Percent

P1-1 Noise free -1.39 0.85 2.24

P1-2 +/- 2 -1.28 1.49 2.77

P1-3 +/- 5 -1.43 4.29 5.72

P3-l Noise free -0.79 1.1 1 1.48

P3-2 +/- 2 -2.04 2.56 4.60

P3-3 +/- 5 -1.92 6.43 8.35      
 

In general, the geometry of the structure or structures may not be readily available

for measurement. A performance measure is needed that assess whether the updated

model improves the prediction of the test results over the original model. The number of

test modes available is far fewer than the number of modes predicted by the finite

element model. The test modes form an orthogonal subspace for the structure under test.

This subspace can be compared to the model subspace for the paired modes.

Eigenvectors of the order of the finite element model are available for comparison with

the test modes. This represents an approximation of the true structure. A metric that can

be used to evaluate the performance is given by the 2-norm of the difference between the

test eigenvector components and the model predictions at the test measurement locations

given by
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ERu,” = ||<I>, 4b,," (13)

where (Dt is a 15 x 13 matrix of the simulated test modes for all three cases above and

(Dm is a 15 x 13 matrix of the model mode vectors at the simulated measurement points.

This formulation represents an absolute error between the test modal subspace and the

modal subspace of the updated model. A relative error can be obtained by

re: = [WED—“fl (14)

An assessment of the updated model in comparison with the nominal or design model can

ER

 

be made by comparing the improvement of the relative error. These are shown in Table 3

for the simulated test cases of plates P1, P2 and P3. The noise free cases have the best

performance using this metric. The metric also indicates the degradation in performance

with increasing noise. The performance of test plate P1 indicates that the set of models is

not adequate for reducing the error in the model geometry. This is also true for case (1),

which is noise free. This metric provides a consistent method for assessing the degree of

improvement of the updated model in representing the test article. The performance

summarized in Table 3 also indicates that the metric will identify situations where no

improvement is possible or that the test data needs additional analysis for errors.

An assessment of the participation of the models for the simulation cases is

needed to evaluate adequacy of the model set used for this study. This check is necessary

to determine if the updated model is represented by or can be represented by a smaller

number of models. The evaluation is accomplished using the noise free simulation cases

for all three test plates. The participation of the weighting coefficients for the model set
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Table 3. Summary of 2-norm relative error metric for simulated test plates

 

 

 

 

 

 

     

Error metric P1 P2 P3

Relative error Relative error Relative error

Percent Percent P2 Percent

Error - nominal model 1.56 2.77 2.74

Error - noise free updated 1.51 0.21 0.31

model

Error - +/-2% uniform noise 1.59 1.29 1.53

updated model

Error - +/—5% uniform noise 2.58 8.54 4.68

updated model

Error - +/-5% uniform noise 2.58 8.54 4.68

updated model
 

is shown in Figure 9. The weight category names in Figure 9 are taken from the

nomenclature used in Figures 5 and B-1. For example, the first plot in Figure B-1 is the

top surface of the nominal model, xyznom, which corresponds with weight, wnom in

Figure 9. The plot shows the relative contribution of all twenty-five perturbed models. A

larger number of models show significant participation for plate P1 relative the model

with the maximum weight, wglxy. This is due in part to the fact that this plate is not

symmetric with respect to the either axis. Also there is no model in the set that

approximates this shape. The performance of this model with respect to the relative error

for the geometry and the 2-norm error metric suggest that additional models are needed to

estimate the perturbed geometry of the top surface of P1. Plate P2 is very close in shape

to the first surface perturbation function shown in Figure 5. This results in a high

weighting of this model with the value of the weight coefficient, wplaw of approximately

0.91. However, the participation of the other models is important in improving the

prediction of the surface even though the magnitudes of the weights are small. Models
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that represent lengthwise geometric perturbations dominate the weighting coefficient

participation of the model set for plate P3. This is expected given the shape of the top

surface of P3. The participation of the nominal model does not dominate the response for

any of the simulated cases.

Next the sensitivity of the updating method to the number of measurement points

is considered. The effect of using fewer measurement points is evaluated using the total

error band on the geometry. The influence of noise was not considered in the sensitivity

analysis. The simulation trials carried out above used fifteen simulated measurements

points shown in Figure 10. Different combinations of points in the lengthwise and

widthwise direction where used to assess the sensitivity of the method to the number of

measurement points. The first case shown in Table 4 is the baseline case that includes all

fifteen points. The remaining cases include: 1.) Twelve points closest to the free end; 2)

nine points closest to the free end; 3.) Six points closest to the free end; 4.) Four edge and

four centerline points closest to the free end; 5.) Three edge and three centerline points

closest to the free end; and 6.) Two edge and two centerline points closest to the free end.

The total error increased for all three plates as the number of points decreased. Plate P1

is the worst performing plate of the three. It showed the largest increase in the error with

the decreasing number of measurement points. The total error increase as the number of

points decreased can be attributed to the influence of the geometry on the higher order

modes in the data set. The influence of geometry on the higher modes was documented

by Yang and Griffin [5] and can also be observed in comparing the plots of the first

bending mode and the second stripe mode of the error for the tapered plate shown in

Figure 2. The method is less sensitive to a reduction in the number of measurement point
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in the lengthwise direction. This can be attributed to the fact that the higher mode shapes

can be better approximated using the lengthwise points. Increasing the number of

lengthwise points can compensate for errors in curvature associated with the higher

modes. The better performance of lengthwise measurement points can be seen by

comparing cases (4) and (6) from Table 4. Next the method will be evaluated with test

data from four perturbed plates and one nominal plate.
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5. Experimental Validation of Geometric Updating Using

Multiple Perturbed Models

Test Plates

The test plates used to validate the updating method presented in Chapter 4 were

based on a plate designed and reported by Nichol [l6], denoted as plate number 4. This

plate was selected because it has vibratory model characteristics similar to turbo

machinery airfoils and up to ten modes of vibration in the frequency range used for the

experimental phase of this research. Figure 11 shows the nominal plate used in the

present study, which shall be referred to as R2. The intersections of scribe lines put on

the plates were used to identify the measurement locations on all five plates. The scribe

lines were placed on the opposite side of the perturbed surfaces for plates P1 through P4.

The four perturbed plates P1 through P4 are shown in Figure 12. The plates were

machined and then hand blended to produce the final perturbations. Limitations in time

and financial resources prevented detailed measurements of the plates after machining.

All plates were fabricated from a single sheet of Aluminum 6061-T6, ASTM B209. The

material properties used for all calculations can be found in the material properties library

of ANSYS-ED®. The material properties are; Young’s Modulus, E: 10587920 psi

(7.3X104 Mpa); Poisson’s ratio v=0.33; and density, p=2.526768x10'4 lbm/in3 (2700

kg/m). the nominal plate thickness is 0.94 in (2.388mm).

Test Apparatus

The test apparatus included a Ling Electronics Shaker (model no. B335), a Data

Physics Corporation Vibration controller (model no. DPSSOwin), and a Polytec Laser
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Vibrometer (model no. OFV303). Figure 13 shows a diagram of the test setup. The Ling

shaker is capable of producing up to 150 G maximum acceleration, a maximum peak-to-

peak velocity of 70 in/sec, a maximum peak—to-peak displacement of 1 inch, and has a

frequency range of 10 to 3000 Hz. The shaker has a resonant frequency of 2350 Hz. The

vibration controller is a PC based system that was configured with a channel for closed

loop control of the shaker and two measurement channels. The closed loop control of the

shaker ensures that the same acceleration profile was applied during each test run. The

controller data acquisition channels included the table accelerometer for control, an

accelerometer on the fixture, and the velocity signal from the laser Vibrometer. The Data

Physics system stored the data in engineering units for the velocity and the displacement

data. The data was stored in text files as peak values at the corresponding frequency.

The frequency resolution was approximately 1 Hz from 10 Hz to 2000 Hz. The laser

Vibrometer has an excellent signal to noise ratio. Measurement resolution is 1 uni/sec or

3.94*10'5 in/sec for the measurement range 125mm/sec/Volt or 4.92 in/sec/Volt. The

signal output voltage was limited to +/- 2.5 Volts to accommodate the data system used

for the follow on test. Using the following formula, the displacement resolution, (1, is

approximately 8* 10'14 m or approximately 3.0*10'9 in, where

_ V

v is the velocity, and f is the frequency. The displacement resolution increases with

frequency.

Test Methodology

The test program for this research effort was accomplished with the shaker table

described above. The initial testing was conducted using reference plate R1, which is
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identical to R2, with the exception that R1 had three holes drilled for the mounting of an

accelerometer. The accelerometer was mounted in the center position during testing with

test plate R1 (See Figure 14). Testing with R1 was done to assess the adapter plate that

mounts the test plate to the shaker, to ensure that it did not have any resonance in the

frequency range for the test. Ensuring that the adapter plate did not have a resonance in

the operating range was essential since the adapter plate and test fixture are not part of the

model. The test plate and fixture are bolted to the adapter plate. The plates were

modeled with clamped boundary conditions at the fixture. The plate tests were conducted

by sweeping the shaker table through a frequency range of 10 Hz to 2000 Hz with an

acceleration profile shown in Figure 15 for all five of the test plates. A different

acceleration profile was used for test plate R1 shown installed in Figure 14. The profile

for R1 required substantially higher accelerations because of the damping caused the

attachment of an accelerometer and its cabling (see Figure 14). The damping was high

enough that no vibratory modes were observed over 1000 Hz. In contrast, the test plates

R2 and P1 through P4 had five modes above 1000 Hz. Measurements were made at the

fifteen points where the scribe lines intersected on all of the test plates (see Figure 11).

The Laser Vibrometer was aimed at each of these points. The frequency was swept

through the measure range fifteen times for each plate to obtain the test mode shape data.

The data was saved to test file for post processing and plotting.
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Figure 14. Reference plate R1 mounted in test fixture with accelerometer
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Experimental Results

A total of 75 frequency sweeps were conducted on the five test plates. Each

frequency sweep was saved by run number. The text files saved by the Data Physics

system include the real and imaginary components of the peak response listed by

frequency from 10 Hz to 2000 Hz. There were fifteen runs for each plate. These files

were combined into an EXCEL® workbook for each plate. The mode frequencies were

identified by plotting the peak magnitude against the frequency. The peaks in this plot

identified the mode frequencies. The data sheet for the plot was then analyzed around the

peaks to extract the mode frequency and peak displacements at that frequency for all

fifteen-measurement locations. The mode frequencies identified for each plate and the

corresponding model frequencies for the nominal model are shown in Table 5. The plots

for the displacements are shown in Figures D-l through D-5, where the last to characters

of the data trace label refer to the measurement locations shown in Figure 10. These

plots include all fifteen measurement points. As can be seen from the plots, the location

of the mode frequencies is reasonable well defined. The peak displacements at these

frequencies for each plate were used to plot the mode shapes. Since the data saved is

peak values only, a new absolute value based modal assurance criterion would be

required to match the modes to the model. The absolute value modal assurance criterion

is given by

2

  
 

AMAC H [wi,-I (a)

"j _ (wi,-<0...-M(0,)

where the IQ: l is absolute value of the components of the ith model mode vector of
i

(15)

dimension 18 x 1 (see Table D-l), (pt). is the test mode vector (18 X 1)of peak response

recorded by the data system. These vectors include zeros at the three boundary points for

plotting the modes in Figures D-6 through D-10.
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A qualitative assessment of the AMAC was carried out by plotting the absolute

value of the mode shapes for a few modes from a finite element analysis of the reference

plate. A comparison of the absolute value plot of the fourth bending mode for the model

and the peak value data for test plate R2 is shown in Figure 16. The second strip mode

comparison is shown in Figure 17. These plots were done to provide a comparison of the

result of the AMAC. The difference in resolution between the model and the test data

makes a visual comparison difficult. The only points compared for the test data using the

AMAC criterion are the measure points along the centerline and near the lengthwise free

edges of the plates. Looking at these points on the figures verifies that the criterion will

work based on the similarity of the surfaces at these points. Normally, the off diagonal

elements of the MAC are small. The generally accepted criterion for the MAC with the

modes paired by increasing frequency specifies that the diagonal element of the MAC

matrix should be greater than 0.85 for the matching of the test and model modes [18].

However, when the AMAC is used the off-diagonal components can be large. This limits

the use of this criterion to modes that are highly correlated where the diagonal elements

of the AMAC must be equal to or exceed 0.95.

The AMAC is implemented in the Mathcad® worksheet for updating the geometry

(see Appendix C) by taking the absolute value of the model mode vectors prior to

implement the MAC function. The modes vectors obtained from the finite element code

in Appendix A are not sorted in ascending order prior to calculating the AMAC. This

requires the use of a permutation matrix, which is obtained by setting all of the matrix

coefficients in the AMAC that are greater than or equal to 0.95 equal to l and all
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Absolute value for the 4th bending mode of

the model

 
igure 16. Comparison of 4th bending modes between absolute value of model and

est data for R2



Absolute value for 2-strip mode

for the model

 

 
Figure 17. Comparison 2nd strip mode between absolute value of model and test

data for R2

63



other entries equal to 0. The appearance of a column of zeroes in the permutation matrix

identifies the occurrence of an incorrectly identified test mode, which should not be used

in used in Equation 2.

Validation of Geometric Updating Method

The initial reduction of the data provided the set of test modes to be matched with

the model models using the AMAC. The next step is to convert the test modes from peak

displacements (absolute value) of the mode at the measurement point to modes with the

proper sign. This is accomplished using the following formula

tpij _

’ (I)
min]-

.1
 (I)

(16)

  

where (1),” is the (i,j) component of matrix of test modes for the test plate (see Tables D-2

through D-6), (pm-,- is the (i,j) component of the matrix of model modes (see Table D-l),

(I)
"1" j

  

is the absolute value of the (i,j) component of the model matrix, and (Dtp is matrix

of the phase corrected test mode shapes. The phase corrected test mode shape matrix is

then used to adjust the phase of the perturbed models mode shaped matrices. This is

necessary to ensure that the test mode shapes and all of the model mode shapes have the

same phase prior to determining the basis coefficients for the model modes.

The updating algorithm was applied to all five of the test plates. The results are

shown in Figure 18. The two plates where the method performed the best for correcting

the geometry of the model are plates R2 and P2. The updated geometry for R2 shows

variations of less than .002 inch. The dimensions of the R2 plate were checked using a

micrometer. The micrometer measurements where taken at the points R1 through R5 and
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Figure 18. Updated nodes for the top surface of the test plates
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Figure 18. Updated nodes for the top surface of the test plates (continued)
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Ll through L5 shown in Figure 10. The micrometer measurements by coordinate

location of the test measurement points for plate R2 and the updated geometry at the test

measurement points are shown for comparison in Table 6. Both ShOW a change in

thickness in the widthwise direction. However, the updated geometry also shows a

thickness change in the lengthwise directions. In general, the updated plate geometry is

consistent with the measured plate geometry.

The comparison between the measured geometry and the updated geometry for

plate P2 shows that the method predicted the general characteristics of the test plate

geometry (see Table 7). The amount of variation in the change in thickness is

underestimated in this case, since the updated model underestimates the thickness change

in the lengthwise direction for the measurement locations L2 through L5 in the widthwise

direction. The updated geometries of the remaining plates P1, P3, and P4 deviate from

actual geometries depicted in Figure 12 in that the updated geometry for plate P1 showed

an inverse characteristic (see Table 8) where as the updated geometry is thinner at the

clamped end and increases in thickness where the test plate decreases in thickness. The

updated geometries of plates P3 and P4 bOth taper in thickness from the clamped end out

to the free end and also in the widthwise direction. Both of these test plates have a

variation in thickness in the lengthwise direction. However, plate P3 first decreases in

thickness and then increases in thickness towards the free end of the actual plate. Plate

P4 maintains a uniform thickness for half of the plate closest to the clamped end and then

reduces in thickness to the free end. The thickness changes for plates P3 and P4 are

shown in Table 9 and Table 10, respectively. These measurement checks were made to

provide an assessment of the updating method. The method produced bounded results.

In all of the cases above, the updated model geometries were reasonable there were no

geometry changes that were excessive.
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Table 6. Comparison of measured and updated plate thickness for plate R2

 

 

 

 

 

 

 

       

Widthwise

Measurement Experimental Plate R2 (in) Updated model R2 (in)

Locations L R L R

S 1 .0955 .0945 .0943 .0939

0% 2 .0950 .0948 .0940 .0936

g 3 .0950 .0948 .0939 .0936

4 .0955 .0945 .0938 .0935

5 .0955 .0945 .0938 .0935
 

Table 7. Comparison of measured and updated plate thickness for plate P2

 

 

 

 

 

 

 

 

       

Widthwise

Measurement Experimental Plate P2 (in) Updated model P2 (in)

Locations L R L R

1 .0910 .0945 .0928 .0955

E 2 .0895 .0940 .0922 .0953

0% 3 .0890 .0940 .0921 .0953

g. 4 .0890 .0944 .0920 .0952

5 .0885 .0945 .0920 .0952
 

68

 



Table 8. Comparison of measured and updated thickness for plate P1

 

 

 

 

 

 

 

  

Widthwise

Measurement Experimental Plate P1 (in) Updated model P1 (in)

Locations L R L R

1 .095 .0945 .0929 .0941

E 2 .095 .0948 .0935 .0947

0% 3 .092 .093 .0937 .0950

g. 4 .091 .093 .0940 .0952

5 .0885 .090 .0940 .0952      
 

Table 9 Comparison of measured and updated thickness for plate P3

 

 

 

 

 

 

 

  

Widthwise

Measurement Experimental Plate P3 (in) ' Updated model P3 (in)

Locations L R ' L R

1 .0945 .0955 .0941 .0955

«S 2 .091 .092 .0926 .0941

0% 3 .0955 .0945 .0921 .0936

“a”. 4 .0960 .0945 .0917 .0930

5 .096 .095 .0916 .0931      
 



Table 10. Comparison of measured and updated thickness for plate P4

 

 

 

 

 

 

 

 

Widthwise

Measurement Experimental Plate P4 (in) Updated model P4 (in)

Locations L R L R

1 .096 .096 .0949 .0954

S 2 .0958 .0958 .0930 .0935

E" 3 .092 .0930 .0923 .0929

g. 4 .0905 .0910 .0916 .0921

5 .0898 .0900 .0917 .0923       
 

A plot of the model set weights for all of the test plates is shown in Figure 19.

The participation or weights for the models shows a higher relative participation for more

of the models than the simulation trials shown in Figure 9. The weights for the

simulation cases (see Figure 9) are obtained using noise free modes from a model that has

the same number of dofs as the model set. Where as the actual test modes may be

influenced by test technique.

An evaluation of the 2-norm metric is needed to see if it produces results

consistent with the updated geometry shown in Figure 18. The 2-norm relative error

metric provides a means for gauging the improvement of the updated model relative to

the nominal model. This step is important to determine whether this metric can be used

in cases where it is not feasible to obtain measurements of the structure under test. It is

important to note that the metric indicates the size of the error between the model

(updated or nominal) and the test modes at the measurement points. A perfect match

would result in a value of zero.
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The results for all five plates are shown in Table 11. The metric indicates that the

updated models for the five plates offer minimal improvement in reducing the error

between the measured test mode vectors and the mode vectors predicted by the nominal

model. Plates P3 and P4 showed the best performance even though the updated geometry

is not fully consistent with the measured geometry. There are three factors that could

account for the marginal performance of the method with the test data. They are: 1.) Test

methodology, 2.) Instrumentation noise, and 3.) Resolution of the finite element models.

Test methodology is the most likely source of error. A review of the test results

conducted by Nichol [16] and Gwinn [33] indicate that the sweep rate was too high in the

lower frequencies. The first two modes (M1 and M3, see Table 6) used for this research

were not correctly identified. The frequencies reported separately by Nichol and Gwinn

were lower than the frequencies obtained in this effort for both of the modes identified

above. The primary concern with the test method used here is the frequency sweep rate

used during testing. A low sweep rate is needed to approximate steady state

measurement conditions. The comparison of the frequencies measured for the first two

modes and those reported by Nichol and Gwinn indicates that the rate was too high.

Sweeping through a speed range is common practice in structural survey testing for turbo

machinery [1]. This is similar to sweeping through a frequency range on a shaker as was

done here. The effect is the same.

However, the accuracy of the mode shape may not be reliable obtained during

frequency sweep testing. A sweep and dwell test approach should have been used. In all

cases, eight of the ten modes in the frequency range of the test were identified. The two

modes that were not matched were the 1St torsion and 2nd torsion modes. It should be

noted that in theory the antisymmetric modes could not be excited using the type of

shaker used. Plate P2 showed small peaks near the model frequencies for these modes.

Plate P3 exhibited a response near the 1St torsion mode only. In both cases the AMAC
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Table 11. Summary of relative error metric for the nominal and the updated models

 

 

 

 

Relative Error Test Plates

Metric

R2 P1 P2 P3 P4

Nominal Model 1.18 1.03 0.61 0.91 1.09

Updated Model 1.17 1.00 0.58 0.70 0.86

       
 

criterion indicated that these peaks were not modes. A review of the test mode shapes

plotted for all identified responses shows that these are not modes (see Appendix D). The

criterion indicated that these peaks were not modes. The asymmetry of the plates was

enough to excite the higher antisymmetric modes (e.g. 3rd and 4th torsion modes). A

sweep and dwell test may have been able to excite the 1St and 2nd torsional modes. Even

though the eight of the ten modes were correctly identified and the response

characteristics were qualitatively consistent with expectations of the author, the response

levels measured during testing may not have representative of the true mode shapes for

the plates. This is the mostly likely cause for the marginal performance of the method

using the test data.

Instrumentation errors were not considered to have an effect on the performance

of the method. The instrumentation was closely monitored using the diagnostic features

available. The Polytec laser Vibrometer has excellent diagnostic capabilities and the

signal quality was also monitored using an oscilloscope.

The resolution of the model may also contribute to the error. A higher resolution

model using more degrees of freedom would provide more accurate predictions of the

mode frequencies. However, the mode frequencies are not used in this updating

approach. The maximum modal displacement will also change with increased mesh

density, but not to the degree that the mode frequency of the higher order modes will
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change for the mode frequencies. A comparison for the first bending mode between the

measure deflections at the free end of plate R2 with the deflections of the nominal model

at the measurement points indicates that the test plates are more flexible in the widthwise

direction than the model. A high—resolution model (26,000 dof) using ten node

tetrahedron elements did not result in an increase in widthwise flexibility over the model

used in this study (588 (101) that would suggest that the model resolution is a significant

source of error.
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6. Conclusions

Discussion ofResults

This research effort presented a method for correcting or updating the geometry of

the nominal model of a test article using a set of models that represented a perturbation

space necessary for finding the model geometry to reduce the error between the test

modes and an updated model. The numerical simulation indicated that the method was

capable of producing an updated model geometry that approximated the simulated test

article geometry. The simulations carried out indicated that the geometry perturbations

can be approximated with a combination of linear, nonlinear, and transcendental

functions that describe the perturbed geometries. The simulations carried out also

indicated that minimizing measurement noise is critical to the success of this method for

systems experiencing small perturbations. A sensitivity analysis for the use of the

method with a reduced number of test points for the noise free case was also conducted.

The analysis showed that the method is sensitive to the number and location of

measurement points. The method was less sensitive to a reduction in measurement points

in the lengthwise direction for two of the simulated test plates.

A new absolute value modal assurance criterion was introduced and applied

effectively to the test data. This criterion can be used to match modes when only the

peak displacement data is available. Limits for the use of the absolute value modal

assurance criterion were identified. An efficient metric for comparing modes obtained

from finite element models with modes acquired during testing was also introduced. This

metric gauges the closeness of the model modes to the test modes without requiring

expansion of the modes or the mass matrix. The metric is based on the matrix 2-norm
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formed by taking the difference between the model predictions at the test locations and

the test measurements.

The performance of geometric updating method under experimental validation

showed marginal improvement of the updated model over the nominal model for all of

the test plates. Comparison of the measured thickness of the test plates with the thickness

predicted by the updated model using the 2-norm metric indicated that the improvement

was marginal. Deficiencies in the test methodology were identified that contributed to

the marginal performance of the method when applying it to experimental data.

Additionally, issues with the model resolution were raised that could also improve the

performance of the updating technique presented. The numerical simulations did

demonstrate that the method was robust and numerically stable providing bounded

results.

Recommendationsfor Additional Research

0 Investigate the apparent higher flexibility of the test plates in the widthwise

direction when compare with the finite element model predictions.

0 Conduct experiments with increased number of measurement locations using a

scanning laser Vibrometer.

0 Investigate the feasibility of using strain gage and displacement measurements.

0 Developing geometric updating approaches including parametric methods for

more complex structures such as turbo machinery airfoils.

0 Investigating the influence of the geometric tolerance for perturbed models.

0 Implementing the method using the programming features of a commercial finite

element package.
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Consider methods that would incorporate frequency to compensate for bias in the

result (e. g. in this case either thicker or thinner than expected).

Investigate the possibility of using an iterative method with a small set of

perturbed models.
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Appendix A

Finite Element Model Code



Ingut Rggion for eight node isoparametric model:
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111-011 +0.(1+0

3 1

7%{0—0-(1-0}

1

3111-0-00

-1--[(1+t)-(l-r)l
8

_—l-[tl+t)-(1-r)]
8

"—l-iu-ti-(lmi
8

é-[U-tl-(lfill

é-[(1+t)-(l+r)]

 :81-[(1+t)-(1+r)]-j

 

 

clNdr(s,t,r) :=

det(s,t ,r) :=

detesfisJJ)

deIestJJ)

desesfisJJ}

l- —

—1

g-(l-si-(l-t)

——1-(1+s)-(l-t)

8

-—l-(l+s)-(l+t)

8

-—l-(l—s)-(l+t)

8

1

E-(l—s).(l-t)

—-(l +s)-(1 -t)

O
O
H
D
O
I
—
fi

—-(l +s)-(l +1)

p
—
s

—-(1-s)-(l +0

- J
T-l

g-(l-SHI-r)

0
0

—l

?-(1+s)-(l—r)

-l—-(l+s)-(1—r)

8

i-(l-SJ-(l-r)
8

——l--(1 —s)-(l +r)

8

-—1-(1+s)-(l+r)

8

é-(l +s).(l +r) é-(l -s)-(l +r)  
t’ 0 ‘1

:= -2-t

\0)

(0“

0

\‘2-17

f—Z-s

0

(0
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desEF(s,t,r) ;= stack(des(s,t,r) ,desesi-(s,t,r))

’ {ah
N-Xn

xyz(N ,ie) := N-Ynfi'}

  
{i2}

ksz )

detEF(s,t,r) ;= stack(det(s,t,r) 0140855000)

deIEF(s,t,r) := stack(de1(s,t,r) ,deresf(5,t,r))

J(s,t,r,ie) := augmentim(deS(s,t,r) .ie) ,xyz{det(S.t,r) ,ie) .XYZ(deI(S.t.1’) .ieDT

detJ(s,t,r,ie) := IJ(s,t,r,ie)I

Jcak(J,vl ,v2,v3) := augment Jlll.vl+11'2~v2 + 11'3-v3),[J2.1-v1 + 12202 +12'3-v3),J3II-v1

3 3-v3+J -v2+J
3.2

DNdxyz(s,t,r,ie) := Jcak(1(s,t,r,ie)_l ,desEF(s,t,r) ,detEF(s,t,r) ,derEF(s,t,I))

N100N200N3UUN4UUN500N60UN

NM[N);=UN100N200NDUNUONDUN

UDNUU
3‘

DUN

8

700N80

500N600NUON

3

DUN

4 5

DUN4UON

6

UUNIDUN

Nm(s ,t ,r) := NM( N(s,t ,r))

2 3 7 8

  

1.1

o NL2 o

0 0 N13

MBN1(N):=

N1.2: N1,1 0

N1,3 U N1,1

K 0 N1 3 1.2 ,
,

N24 0 W

0 N22 0

o 0 N23

MBN2(N):=

N2,2 N24 0

N23 0 N2,1

\ 0 N23 N22;
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(N11 0 0

0 N32 0

MBN36( N) ;= 0 N33

3.2 N3.1 D

N3.3 0 3.1

1 0 N3.3 N3.2

“N.“ 0 0

0 N72 0

MBN?8( N) := N0 N N?

7.2 2.1

N2.3 U “2.1

1. U ”7.3 N“1.2

"Ng'1 0 o

0 N92 0

MBNesg N) := N0 N N33

9.2 9.1

N9.3 U N9.1

1 U N9.3 N9.2 

 

N4'1 o o N5.1 o 0

N42 0 0 N52 0

o 0 N43 0 N53

N4.2 N4.1 U N5.2 N5.1 0

N4.3 U N4.1 N5.3 0 N54

0 N4.3 N4.2 U N5.3 N5.2

NS'I U o “

0 N82 0

0 N3.3

N8.2 N8.1

N$3.3 U N8.l

N3.3 8.2,.

N10.1 0 U N11.1 U

U N10.2 U U N11.2

o o N103 o o

N111.2 N10.1 D N11.2 N11.1

N103 D N10.1 N11.3 '3

U N103 N102 0 N11.3
N  11.2,.

MAKEBM N) := augment[MBN1( N) ,MBN2( N) ,MBN36( N) ,MBN78( N) ,MBNesg N))

BN(s,t,r,ie) := MAKEBN(DNdxyz(s,t,r,ie))

“10000

01000

0 o 1
Cl(pkl) := pkl-

000

000

1000

D

.5

U

0

l

1

—1

0

U

.
5

v
.

0
:
3
0
0

CKpk2) := pk2-

O
O
H

I
p
—
-

 \U 0

021.10) := C2[Properties(

01pm) ;= Cl[Properties[

 

0\

n

o

0

n

.5,

o

o

o

o
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“II—v v v

v l-v v

v v 1- v D U

1- .

E o o o 2 V 0
0113.1) := . 2

(l+v)-(l-2-v) 1 2

0 o o n ’ ""

2

0 o 0 o 11

1

C111) := C[Pmperties . .11]

(91811.32

M(s,t,r,ie) := p-xyz{N(s,t.r) 1%)Tm(N(s,t1r),ieJ-detJ(s,t,r,ie)

MakeK(BN.C) := BNT-C-BN

Ml(s,t.r,ie) ;= p-Nm(s,t,r)T-Nm(s,t,r)-detJ(s.t.r,ie)

K(s,t,r,ie) := MakeK(BN(s,t,r,ie) ,C(ie))-detJ(s,t,r,ie)

[—.5?7350269189626]

510 '=
.5?7350269189626

K111)= ZJZZW-w,w1-K(01.9110011e)

M81111) :=ZiZW1-W~-W1-(Mlgm8Pj+8P11J°18)

K8810).= submatm<Ke(ie) ,1 ,24,1.24)

Keg 1'1) := submatmc( Ken: 11) .25 .33 .25 .33)

Kfem) := 1111111111114 K3111) .25 .33 ,1 .24)

K8110) := Keelfiie) — Kfe(ie)T.Kef(ie)‘l.Kfe1ie)

111111114) ;= 111—111(1)

for ie 2..cols(M) if COMM) > 1

V <— stack(V ,Mm)

V

Pack(V,p,q) := for jel..q

for ie l..p

 

Mij<—Vi+pj if i+pj<mws{V)

Mi.j(_0 otherwise

 M
ndepe := nclof'lm-rm.pe

9O

 

  



“K := 1"11131105'ndofrm

KnK.nK I= 0

MM.“ 2= 0

KTfie} := Vect(Ke1( 11))

MTG”) := 1111011181110)

i:=1..m:.pe

j:=1..rmpe

p := 1.111210%n

q ;= 1111110an

row(i.j,n) :=(j—1)-n+i

K[(T0pi.'1'1) 'M°‘pm+p] . (Tupi,e .j'1)'“d‘°‘pm+q := K[(Topit .1. 1) .ndofpmp] . (Toph'j_1)_%+q

M[

1111111111: M(bandelj-ndofpn

1111111111 = 582

J:= 1..n1:11:1f'pn

run, := ZZRestrajmshz}

J

J

 

 

 

L
U
N
A
"

   

nn,= 42

map(i,j) :=(i—1)-ndofpn+j

BC4'nK:=U

i:= 1.. mws(R1estraints)

j := 1.. 11130an

j =

1

2

3

 

 

 

   

(Tupi! .1“ I) -ndnfpm+p] . (Topit 'j-l) mama :

mw[(i—1)-ndn1m+p.(j-l)-ndofm+q.ndn1p. .11

(T0131,
31) ~1'1dm'lm

+p].(‘1'1
zrpilt .j

-l) _%
+q ...

+ MT

111111191“ 3= mmflTOPTfM] - mirflTOPTfid] + 1

mw[(i—1)-ndo1p..+p.(j-l)-ndotpm+q.nddp.].ie
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'I 11131111111111.1203) \‘

Bc{m(mmi 1'1.» Restraintsi .j-2+1

if[I-"LmzstrajntsiJ Restraints.1 .0)
-2’

K fiIRestrajntsi.j_2,j,U)

Our boundary condition bookkeeping table....

  
2‘

 

 

 

 

 

            
 

12345373910

1 1 1 1 1 1 1 1 1 1 1

BC= 2 o o o 0 U o o o o 0

3 1 1 1 2 2 2 3 3 3 4

4 1 2 3 1 2 3 1 2 3 1

Kmod.=K

And,

Mmdz=M

1-=1..111<

j:=1..111<

Kmdi'j 1111101..0,K0011“)

Kde.. -= 11'[BCJ,0.Kmo11J-.

Kmod1.1 1111-101.. 1.1011011.)

1111111111“ 1111301.,.UMmod.)J)

1,111.0de._iI{BCJIJ,0 ,MmodJ-Ji]

M . .11061.1 11ch1. 1.1401011...)

no:=rows(Rsstmints)- ndof'pn+1

n1: = 43

Tlam := gemals(Kmod.Mmod)

TLStm := csort(Tlam,l)

m

2-11

TLStest := submatdeLStm,nc,14+ no.1,1)

Fr := csort(Freq.1)

FR := submtrixfiFrch}: +11,1,1)

 

Freq :=

 

0:1..‘1Kmodcobct

Kmod

Modfr := submtn'JiTlamxowflKmd) — 11 .mws(Kmod) ,1 ,1)

mdevecs := gemcs(Kmod,Mmd)

 

j .1

C:\..\modelfrqueomup.txt

Modfr
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c1111m1111111
Mmod

m := mdewcsT-Mmod-modwecs

i := 1 .. rows(m)

1

0‘ “11.1

ModVecMn := modevecs-djagmn)

ModVec := submatn'fiModVecMnJ ,rows(Mmod) ,co]s(Mmod) - l2,cols(Mmod))

Mode vectors for comparison with expanded modes.

Modelfreq := submtriJiTlam,rows(Mmod) — 12,ro1frs(Mmod) ,l .1)

1'1

C:\..\lamdas 4elem.xls

Modequ

11'

0:1..‘1mode 119010154 elemtxt

 
mniz=

ModVec

——>

FR... 3: 11Modrelfreq

2-1:

81.111111111111111

mm
 

1

45.46241

20?.4'1’648

285.13044

695.49389

822.02806

1399,0915?r

1432.25412

16124334?

170619266

2023.84015

244149824

296823238

 

 

 

 

 

 

FR

 

 

 

 

 

3
3
‘
“

0
0
‘
4
W
m

0
.
1

a
s
m
N

-
=
~

 

1
.
;

H   
 



 

 

 

 

 

 

 

 

 

 

 

 

 

    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
 

1

1 3.028103

2 2968-103

3 2.44'1'-103

4 2024-103

5 1.612103

FRm= 6 1.?06-103

3' 1.432103

'3 1399-103

9 822.028

10 695.494

'11 20?.4'1'6

12' 285.13

13' 45.462

111* := rows(ModVec)

m=588

n1: := co]s(ModVec)

nc=13

LamFR := augment( Modelfreq,FRm)

1 2

1 3241-103 3028-103

2“ 3.4?8-103 2958-103

3 2365-108 2.44'1'103

4- 1.611408 2.024103

.5 1.026108 1.612103

LamFR= 6 1.149108 1.206103

I 8.098107 1.432103

8 T228107 1.399103

9 2668107 822.028

10. 191107 695.494

11 1699106 207.4?6

12 321-105 285.13

13, 8.16104 45.462

XYZ(cb,nr,nc):= cc<—-1

rc<——0

for iel..nr

rte-n+1

Mcc.rt(_¢’i

if 1112111:

cc<—-cc+l

11211—0

M
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This section of the work sheet is for calculating the permutation matrix for reordering the model

dof for expanding the test dof.

1’
Modes( c1: ,geom) := m (- rows( CID) )

m: <— cols( db)

MV <— qjl}

MMl (— XYZ(MV,m.3)

for je2..nc

M1 1— 419}

MM 1— XYZ(M1,nr,3)

MMode +— augment(MM1 .MM)

1 MM1 1— MMode )

MM1

MWN (— augment( Nodes .MMode)

M1 := Modes(ModVec,Nodes)

3M1 := csort(M1,5)

    

 
5M1

SM := s1115111101111(3le1,r—ujflg—l + 1 .mws(SMl) ,1 .cols(SMl))

C:\..‘tsim p1 n05 nwxl modexls

SM

C:1..\sim p1 n05 wlereqxls

LamFR
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Appendix B

Plots of the Perturbations Functions for the Model Set
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Figure B-l. Nominal and perturbed model top surface nodes for basis set
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Figure B-l. Nominal and perturbed model top surface nodes for basis set

(continued)
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(continued)
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(continued)
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(continued)

102



 

  

 

   

 

 

 

 

 

 

om- '\\\\\\\\\\\\

\\ \\\
0&1111111/ /m

  

 

 

 

 

 

 a
t
?

i: @\\\\\\\\\\\1
» ,////////////j

   
XYZ(xyz low-”{2} 518,14)

Figure 1

Figure B-l. Nominal and perturbed model top surface nodes for

(continued)

basis set

103



Appendix C

Model Updating Code for Geometric Updating
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Programs:

This program filters out the ux and uz components for comparsion with the test vector.

UYMode(A) := nc (— cols(A)

j <— 2

for iel..£

3

n<—j

B<i> <_ A<n>

j<——j+3

B 
Preapares a mode vector for either graphing or analysis

XY21¢,nr,nc):= cc<——1

rc<—0

for ie 1..nr

rc<—rc+1

M (—(Di
cc,rc

if rc ch

cc (— cc + 1

rc<—0 
M 

This program extracts the test points for the model and simulated test data

TP(A,c) := n (— cols(A)

m <— rows(c)

for je 1..n

for ie 1..m

Bis ‘— A(cm
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This program restacks the model into a vector after the interpolation has been compeleted.

Vec(A) := nr (— rows(A)

nc (— cols(A)

nv <— nc-nr

k<— 1

j<—— 1

for ie 1..nv

Vi (— AkJ

j <— j + 1

if j> nc

k<—k+ 1

j<—1

 k<—1 if k>nr V
Modal Assurance Criteria for matching model and test modes.

MAC(A,B) ;= ma (_ r0ws(A) Create a permutation matrix to

reorder the modes that have

beenmatched by the modal

nrb <— rOWS(B) assurance criterion.

nca (— cols(A)

ncb (— cols(B)

zMACIA) := nc (— cols(A)

nr (— rows(A)

for je 1..ncb

for ie 1..nca

' 1..nc<l> <9 fOI‘ JE

MNi,j(_A B for ie 1..nr

 

  

AL .(_A<i>.A<i> Bi’j<—1 1f Ai,j2.948

1,] .

<9 <9 Bi,j(_0 otherw1se

BL <—B -B

Li B

(MNi 1|)2 EzeroMAQV): i<—1

MCi,j(_ AL UBL . for je 1..cols(V)

1,] 1,1 .

MC if (max(V<}>) 7': 0)

U<i> <— V<j>

i<——i+ 1

U 
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This program completes the interpolation of the model at the test points

InterpTest(M,xm,zm,xtC,th) := nmc (— cols(M)

nmr (— rows(M)

nxt <— rows(xtc)

nxm(— rows(xm)

nzt <— rows(ztc)

for kE 1..nmc

MV (— XYZ(M<k> ,nmr,nxrr)

for je 1..nxt

for ie 1..nzt

Mmi,j (— pol1n2(zm,Xm,Mv ,Ztci,Xth)1

 Mtp<k> <— Vect(Min)

Mtp 
Unwrap(M) := V (— M<1>

for ie 2..cols(M) if cols(M) > 1

V (— stack(V,M<i>)

V 

This program determine the appropriate sign the test mode shape at the measurement points

based on the sign of the model mode shhape at the test point loaction. The rationale for this is

that the mode shapes are simalar.

TestM (A,M) := nc (— cols(M)

nr <— rows(M)

for je 1..nc

for ie 1..nr

i,'
J -M. .

1,]

Lil

 

Mti,j <— IA

Mt 
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This program scales the test vector point for point by the ratio of the maximum Uy of the model

mode to the test Uy at the loaction of the model maximum

ScaleTest (M,T) 2: nc (— cols(M)

  TS

for ie 1..nc

maxM (— max(M<i>) if (max(M<i>) ¢ 0) A (mum) 2 lmin(M<i>)|)

maxM (— min(M<l>) otherwise

Tm (— T<i>

j (— match(maxM,M<i>)

maxM

sf (—
 

m.

J101

TS<i> (— sf ~T<i>

This program ensures that the test and model eigenvectors have the same phase angle

Phase (M , N) := n (— cols(M)

m<— rows(M)

for je 1..n

for ie 1..m

,j ‘ NM

Did. (- (—1-N)i,j if |a| > lNi jl
’

a<~—Mi

D. .(— N. . otherwise

1 .l 1,], 

This program determine the appropriate sign the test mode shape at the measurement points

based on the sign of the model mode shape at the test point loaction. The rationale for this is that

the mode shapes are simalar.

TestM (A,M) := nc (— cols(M)

108

nr (— rows(M)

for je 1..nc

for iel..nr

Mt. .<——

 Mt



Phase(M,N):= n(—cols(M)

m<—rows(M)

for je 1..n

for iel..m

ae—MLj—Nm-

Di’j<—(-1-N)i,j if '3' > |Mi,j|

Di,j (— NM otherwise

 

This program scales the test vector point for point by the ratio of the maximum Uy of the model

mode to the test Uy at the loaction of the model maximum

ScaleTest ( M , T) :=

 

nc (— cols(M)

for ie 1.. nc

TS

 

maxM (— max(M<i>) if (max(M<i>) ¢ 0) A(max(M<i>) 2 |min(M<i>)|)

maxM (— min(M<i>) otherwise

Tm (— T<i>

(1))
j <— match(maxM , M

maxM
 

msf <—

(i). <1)

TSG) (— msf-T<Il>

Builds simulation cases for noisy eigenvectors:

Noise(EV, nL,nf,nl) := n <— rows(EV)

<1)

Unwrap (M) := V (— M

m (— cols(EV)

for je 1.. m

for ie 1.. n

NVi’jeEVi’j if (j< nf)v(j> nl)

nL

NVM- (— EVi’j + EVi’j-(T — md(nL)) otherwise

 NV

for ie 2.. cols(M) if cols(M) > 1

V (— stack(V. M

V

(1))
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Separate the Geometry fromthe modes:

Xyznom := submatrix(MNOM, 1 , rows(MNOM), 1,3)

xy7pl w := submatrix(PlWMODE, 1 ,rows(P1WMODE), 1 , 3)

xyzpzw := submatrix(PZWMODE, 1 , rows(PlWMODE), 1 , 3)

xyzp3w := submatrix(P3WMODE, 1 , rows(P3WMODE), 1 , 3)

xyzp4w := submatrix(P4WMODE, 1 ,rows(P4WMODE), 1, 3)

xyzpll := submatrix(PlLMODE 1, rows(PlLMODE) , 1, 3)

xyzp21 :2 submatrix(PZLMODE 1 , rows(PZLMODE) , 1, 3)

xyzp3l := submatrix(P3LMODE 1 , rows(P3LMODB, 1 , 3)

xyzp4l := submatrix(P4LMODE l, rows(P4LMODE), 1 ,3)

xyzstp := submatrix(TPMODES , 1,rows(TPMODES ), 1,3)

xyzpl3s := submatrix(pl35, 1,rows(pa4w), l, 3) xylplZc := submatrix(plZc, l, rows(palw), 1, 3)

xyzpmS := submatrix( pl4s, 1, rows(pa3w), 1,3) xyzpl3c := submatrix(pl3c, 1, rows(paZw), l, 3)

3: ' ,1, 1 ,1,3

xyzpwéS := submatrix(pw6s,1
,rows(pa4w),1’3) xyzpw3c submatrlx(pw3c rows(pa w) )

== ' ,1, 2 , ,

xyzpw7s : sllbmatrix(I3W7S.1,r0w
s(pa3w),1,3) xyzprs Smeamx(PW53 rows(pa W) 1 3)

:= . 2 , 1, 2 7 1,

xyzpalw := submatrix(palw,1,rows(pa1w),1,3) xyZPaZW submatrix(pa w rows(pa w) 3)

xyzpa?’W := submatrix(pa3w, 1,rows(pa3w), 1,3) xyzpa4W := submatrix(pa4w , 1,rows(pa4w), 1, 3)

xyzglxy := submatrix(glxy, 1,rows(g1xy) , 1,3) xyzg2xy := submatrix(g2xy, 1,rows(g2xy) , 1,3)

xyzg3xy := submatrix(g3xy, 1, rows(g3xy), 1,3) xyzg4xy := submatrix(g4xy, 1, rows(g4xy) , 1,3)
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Extract y-coordinate moge components:

First extract the modes from the input files

Mnom := submatrix(MNOM , 1,rows(MNOM ),6,cols(MNOM ))

M w := submatrix(PlWMODE ,1,rows(P1WMODE),6,cols(P1WMODE))
p1

Mp2w := submatrix(P2WMODE , 1, rows(PIWMODE) , 6, cols(P2WMODE ))

M p3w := submatrix(P3WMODE , 1, rows(P3WMODE) , 6, cols(P3WMODE))

M p4w 2: submatrix(P4WMODE , 1, rows(P4WMODE) , 6, cols( P4WMODE))

M l := submatrix(PlLMODE, l, rows(PlLMODE) , 6,cols(P1LMODE))
p1

M p21 2: submatrix(P2LMODE , 1 , rows(P2LMODE) , 6, cols(P2LMODE ))

M l := submatrix[P3LMODE, 1, rows(P3LMODE) , 6, (cols(P3LMODE))]
p3

M p41 := submatrix(P4LMODE , l , rows(P4LMODE) , 6, cols(P4LMODE ))

Mtp := submatrix(TPMODES , 1,rows(TPMODES),6,cols(TPMODES ))

Mpalw := submatrix(palw,1,rows(palw),6,cols(palw))

Mpa2w := submatrix(paZw, 1,rows(paZw),6,cols(pa2w))

M pa3w := submatrix( pa3w, 1,rows(pa3w) ,6, cols( pa3w))

Mpa4w := submatrix(pa4w, 1,rows(pa4w) ,6,cols(pa4w))

Mtp := submatrix(TPMODES , 1, rows(TPMODES ) , 6,cols(TPMODES ))

M '= submatrix(palw, 1,rows(palw),6,cols(palw)) M = submatrix(plZc,1,rows(palw),6,cols(palw))
palw '

p12c :

Mpa2w := submatrix(pa2w, 1,rows(pa2w) ,6,cols(pa2w)) Mpl3c := submatrix(pl3c, 1,rows(pa2w) , 6,cols(pa2w))

Mpa3w := submatrix(pa3w, 1,rows(pa3w),6,cols(pa3w)) Mpl3s := submatrix(pl3s, 1,rows(pa3w) ,6,cols(pa3w))

Mpa4w := submatrix(pa4w , 1,rows(pa4w) , 6, cols(pa4w)) Mpl4s := submatrix(pl4s, 1,rows(pa4w) , 6,cols(pa4w))

M pw3c := submatrix(pw3c , 1,rows(palw) ,6, cols(palw))

Mglxy := submatrix(glxy, 1, rows(glxy) ,6,cols(g1xy)) Mprs := submatrix(prs , 1,rows(paZw) , 6,cols(pa2w))

Mg2xy := submatrix(g2xy, 1, rows(g2xy) , 6,cols(g2xy)) Mpw6s := submatrix(pw6s , l, rows(pa3w) , 6,cols(pa3w))
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M g3xy : submatrix (g3xy , 1, rows (g3xy) , 6, cols(g3xy)) M pw7s := submatrix (pw7s , 1, rows (pa4w ) , 6, cols(pa4w ))

M g4xy := submatrix (g4xy, 1, rows (g4xy) , 6, cols(g4xy))

Separate the y-components from the modes

MY Dom := UYMode (Mnom) MYplw := UYMode (Mplw) MY pm := 1-UYMode(Mp12C)

MY p2w := UYMode (Mpzw) MY p3w := UYMode (Mp3w) MY p138 := l-UYMode (Mpl3s)

MY p4w := UYMode (Mp4w) MY
p“ 3: UY1"k’d‘:(l\’1pll) MYpl3c := l-UYMode (Mpl3c)

MY p21 := UYMode (M p2l) MYW := UYMode (M p31)

MYp148 := 1-UYMode(Mpl4S)

MY p4] := UYMode (Mp41)
MY tpnf := UYMode (M tp)

MYmm := 1.0 UYMode (M pw3c ) MY prS := 1.0 UYMode (M prS )

MY pw6s := 1.0 UYMode (M pw6s ) MYmm := 1.0 UYMode (M pw7s )

This equation adds noise to the test modes:-> My tp ;= Noise (My tpnf ,,0, 1, 13)

MY := UYMode M
palw ( palw) MY pa2w := UYMode (Mpazw)

MY p33“, := UYMode (M pa3w) MY pa4w := UYMode (M paw)

MY glxy := l-UYMode (M glxy) MY g2xy := UYMode (M g2xy)

MY g3xy := l-UYMode (M g3xy) MY g4xy := UYMode (M g4xy)

Next provide the simulated test measurement polnts for the test plates and the

coordlnates for the Model

  

  

25 ( 0 \' zm := submatrix(MNOM ,1,14,3,3)

' 2.165
xt := 2 nr := rows (xyz nom) nc := 14

4.29

3.75 Zt ;= . nr

6.417 11: —

nc

7.48

xm. == MNOM no; 1 (2.165)
(8.268) 0 '

4.29

2 coordlnates without z=0 at the boundary:--> zt = 6.417

7.48

me = (0 0.667 1.333 2 2.667 3.333 4) 18268)

T —

zm —

 

O 0.654 1.308 1.962 2.615 3.269 3.923 4.577 5.231 5.8850
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xt := submatrix(xt,1,3, l, 1)

2t 2: submatrix(zt,1,5, l, 1)

(2.165)

0.25 4.29

xt = 2 zt = 6.417

3.75 7.48

(8.268)  

Determine the interpolated model modal displacements at the test points using spline

interpolation

MYmom := InterpTest (MYnoms’Zm’ xm, zt,xt) MYtpll := InterpTest (MYpll’zm’ xm, zt,xt)

MYtplw := InterpTest (MYplw’Zm’bn’zt’xt) MYtp2l := InterpTest(MYP21,zm,xm,zt,xt)

._
MY :=InterpTest MY l,z ,xm,z ,xt

MYtp2w .—InterpTest(Mszw,zm,xm,zt,xt)
tp3l ( p3 m t )

MY := InterpTest MY z z

'— 41 41’ ’Xm’ t’xtMYtp3w .— InterpTest (MYp3w , zm, )gn, zt , XI) tP ( P m )

MYtp4w := InterpTest (MYp4w , zm, xm, zt , XI) MYTP := InterpTest (MYtp , zm, xm, zt , xt)

MYtpalw := InterpTest (MYpalw’Zm’xm’zt’xt) MYtpaZw := InterpTest (MYpa2w’zm’ xm,zt, xt)

MYtpa3w := InterpTest (MYpa3w , zm, xm, zt , xt) MYtpa4W := InterpTest (MYpa4w , zm, xm, zt, xt)

MYtglxy := InterpTest (MYglxy’ zm, xm, zt , xt) MYthxy := InterpTest (MYg2xy’ zm, xm, zt, XI)

MYtg3xy := InterpTest (MYg3xy, zm, xm, zt , xt) MYtg4xy ;= InterpTest (MYg4xy, zm, Xm’ zt , xt)

MYtpw3c := InterpTest (Mpr3c’Zm’xm’zt’xt) MYtplZc := InterpTest (MYpIZC’Zm’ xm, zt, x1)

MYtprs := InterpTest (MYpWSS’Zm’xm’Zt’xt) MYthC := InterpTest (MYpl3c’Zm’xm’zt’xt)

MYtpw6s := InterpTest (Mpr6s ’Zm’xm’zt’xt) MYtpl3s := InterpTest (MYpl3s’zm’xm’Zt’ xt)

MYtpw7s := InterpTest (Mpr7s , zm, xm, zt , xt) MYtpl4s := InterpTest (MYpl4s , zm, xm, Zt’ xt)
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Use the sorted nominal modes to reorder the test plate data.

Test modes ready for testing method

MACYnYt : MAC(MYtnom’ MYTP) P2 := zMAC(MACYnYt)

T

MYt S := MYTP-Pz MYtstP := Phase(MYmom, MYtpS)
P

P1W modes ready for testinq method (correct phaseL

MCYtle := MAC(MY MY le := zMAC(MCYtle)
tstP ’ tplw)

T

MY1w := MYtplw-le MYlwp := Phase(MYtstP,MYlw)

P2W modes ready for testinq method

 

 

 

MCYtYw2 := MAC1MYtstP’ MYtpzw) P2w := zMAC(MCYtYw2)

T

MY2w := MY -P2w

tplw MY2wp := Phase( MYtstP , MY2w)

P3W modes ready for testinq method

MCYtYw3 := MAC1MYtstP’MYtp3w) P3w := zMAC(MCYtYw3)

Y -—M P T MY -— h MY MY3M 3w .— Ytp3w' 3w 3wp .— P ase( tstP’ w)

P4W modes ready for testinq method

MCYtYw4 := MAC(MYtstP ,MYtp4w) P4W := zMAC(MCYtYw4)

T

MY4w := MYtp4w-P4w MY4wp := Phase(MYtstP , MY4w)

P1 L modes ready for testinq method (correct phase).

MCYtYll := MAC(MYtpS , MYtp“) P1L:= zMAC(MCYtYl 1)

Y11-— MY T MY11 -— Ph MY MY11
M " tpll'PlL p “ 3561 tstP’ )
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T

MY11:= MYtpn-PIL MY1lp:= Phase(MYtstP , MY11)

P2L modes ready for testinq method

MCYtYlZ := MAC(MYtstP,MYtp21) P21 ;= zMAC(MCYtY12)

T

MY21 ;= MYtpzl-PZI MY2lp := Phase(MYtstP ,MY21)

P3L modes ready for testing method

MCYtYl3 := MAC(MYtstP ,MYtp3l) P31 := zMAC (MCYtYl3)

T

MY31 := MYtp3l-P3l MY3lp := Phase(MYtstP , MY31)

P4L modes ready for testinq method

MCYtYl4 := MAC(MYtstP ,MYtp4l) P41 := zMAC (MCYtYl4)

T

MY41 := MYtp4l-P4l MY41p := Phase(MYtstP , MY41)

Asymmetric modes for comparison

MCYtYlaw := MAC(MYtstP,MYtpa1w) Pa] := zMAC(MCYtY1aw)

T

MYal := MYtpalw-Pal MYlaw := Phase(MYtstP , MYal)

MCYtY2aw := MAC(MYtstP ,MYtpazw) Pa2 := zMAC (MCYtY2aw)

T

MYa2 := MYtpazw-PaZ MY2aw := Phase(MYtstP , MYa2)

MCYtY3aw := MAC1MYtstP’MYtpa3w) Pa3 := zMAC (MCYtY3aw)

T

MYa3 := MYtpa3w-Pa3 MY3aw := Phase(MYtstP , MYa3)

MCYtY4aw := MAC(MYtstP , MYtpa4w) Pa4 := zMAC (MCYtY4aw)

T

MYa4 := MYtpa4w-Pa4 MY4aw := Phase(MYtstP ,MYa4) 115



MCYthlxy:= MAC1MYtstP’MYtglxy) Pgl := zMAC(MCYth1x>)

T

MYgl := MY -Pg1
tglxy MYglxy:= Phase(MYtstP,MYg1)

MCYth2z= MAC1MYtstP’MYtg2xy) Pg2 := zMAC(MCYth2

MY 2-— T MY 2 -— MY M 2g ._ MYthXy- Pg2 g xy.— Phase( tstP, Yg )

MCYth3xy:= MAC(MYtstP, MYtg3xy) Pg3 := zMAC(MCYth3x>)

MY 3-— MY 3T MY 3 -— Ph MY MY 3
g ‘_ tg3xy' Pg g xy.— 3861 tstP’ g )

MCYth4xy:= MAC(MYtstp, MYtg4xy) Pg4 := zMAC(MCYth4X))

T

MYg4:= MYtg4xy- Pg4 MYg4xy:= Phase(MYtstP , MYg4)

MACpw3c := MAC1MYtpw3c’MYtstP) zpw3c := zMAC(MApr3C)

UY := MY ~zpw3c .

pw3c tpw3c Upw3c .= Phase(MYtstP , Upr3C)

MACprS := MAC1MYtpw5s’MYtstP) zprs := zMAC(MApr58)

UprSs := MYtpwss-szSS UpWSS := Phase(MYtstP,Upr58)

MApr6S := MAC1MYtpw63’MYtstP) zpw6s := zMAC(MApr6S)

Upr6s := MYtpw6s'ZPW6S Upw6s := Phase(MYtstP , Upr6s)

MApr7S := MAC1MYtpw7s’MYtstP) zpw7s := zMAC(MApr7S)

Upr7S := MYtpw7S-zpw7s Upw7s := Phase(MYtstP , Upr7S)

MACPIZC := MAC1MYtp12c’MYtstP) zpl2c := zMAC(MACp12C)

UY := MY ~z 12c
12 12 P ._p c tp c Upl2c ._ Phase(MYtstP , UYPIZC)

MACp13C := MAC1MYtpl3c’MYtstP) zpl3c := zMAC(MACp13C)

UYpl3c := MYtpl3C-zpl3c Upl3c := Phase(MYtstP , UYpBC)
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MACp138 := MAC(MYtpl3S,MYtstP) zpl3s := zMAC(MACpl3S)

UY 138 I: MYtpl3S'Zpl3S

P
UP13S 3: P113561 MYtstP ’ UYpl3s)

MACpl4S :2 MAC(MYtpl48 , MYtstP) zpl4s ;= zMAC(MACpl4S)

UYpl4s ;= MYtpl4S.zp14s Upl4s :2 Phase(MYtstP , UYpl4s)

Stack modes for runnign test case and strip out unmatched modes

M 3 := U U 3

Mt := Unwrap(MYtstP)
Mn ;= Unwrap(MYmom)

W C nwrap( pw c)

Mw53 :2 Unwrap(Uprs)

le := Unwrap(MYlwp) MIL :2 Unwrap(MYilp)

Mw6s z: Unwrap(Upw6s)

M2w .— Unwrap(MY2wp) M2L .— Unwrap(MY2lp) Mw7s :2 Unwrap( Upw7s)

M3w :2 Unwrap(MY3wp) M3L := Unwrap(MY3lp)

M12c := Unwrap(Upl2c)

M4w 2: Unwrap(MY4wp) M4L :2 Unwrap(MY41p)

Mla := Unwrap(MYlaw) M2a :2 Unwrap(MY2aw) Ml3c := Unwrap( Upl3c)

M3a :2 Unwrap(MY3aw) M4a :2 Unwrap(MY4aw) Ml3s := Unwrap(Upl3s)

M14 := 14

Mgl I: Unwrap(MYglxy) Mg2 I: Unwrap(MYgzxy)
S unwrap(Up S)

Mg3 := Unwrap(MYg3xy)

Mg4 2: Unwrap(MYg4xy)

Set up A matrix for the Least squares solution and strpping out unmatched mod«

A := augmen(Mn ,le ,M2w ,M3w,M4w ,MlL,M2L,M3L,M4L, Mla, M2a,M3a,M4a)

rank(A) = 13

The Test modes are put into the b vector:

b:= Mt
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Solve for the basis vector coefficents

x := geninv(A)- b

 

 

Ag := augment(Mgl ,Mg2 , Mg3 , Mg4)

<2) <2) < <2)
Geol := augment xyz plw , xyz p2w , xyz p3w , xyz p4w

<2) <2) <2) <

Ge02 := augment xyzp“ , xyz p21 ,xyz p31 , xyz p4l

<2) <2) <2) <2)
Geo3 := augment xyz palw ,xyz pa2w ,xyz pa3w ,xyz pa4w

<2) (2) < (2)

G604 := augment(xyz , xyz g2xy , xyz g3xy , xyz g4xy )

glxy

<

Gal] 2: augment(xyz » ,Geol ,Geo2 ,Geo3 ,Geo4)
nom

Aall := augment( A , Ag)

cols(Aall) = 17 rank(Aall) = 17

xall := geninv(Aall)- b

Aexw := augment(Mw3c ,MWSS ,Mw6s ,Mw7s ) Ami := augment ( A, Aexw)

rank(Aexw) = 4 AExall := augment(Aall,Aexw) rank(Aml) = 17

rank(AExall) = 21 xex := geninv(AExall)-b

xml := geninv(Aml )-b

rank(Aall) = 17

rank( AExall) = 21

Aexl := augment(MlZc , Ml3c ,Ml3s ,Ml4S) Amf ._ augment(Aml Aexl)

rank(Aexl) = 4 rank(Amf) = 21

xmf := eninv(Amf)- b
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A matrix for updating solution including all 25 models:

A 1;: t AB 11 A 1KW augmen( xa ’ ex) rows(Axwl) = 195 cols(AXWl) = 25

rank(Axwl) = 25 __ .

xewl .— gen1nv(Axw1)- b svds(Axwl)1 = 3.283X 103

Condition number for Axwl is approximately 68400 SVdS<AXW925 = 0-043

<2)
Gexw := augmen xylpw3c 0(xyzpw53

<2) <2) <2)

) ’ xyz pw6s ’ xyzpw7s

<2)
any := augment(xyz ,Geol ,Ge02,Geo3)

nom

Gml := augment(any ,Gexw)

:= llGexall augment(Ga ,Gexw) upml :=Gml-xm1

upall := Gall- xall

<2) <2)
Cox] 2: augmen xyzplzC ,(xyzpBC)

< <2)

’ xyz pl3s ’ xyz pl4s

Gmf := augment(Gml ,Gexl) Gawl := augment(G Gexl)
exall’

f := f -

upm Gm xmf upexwl := Gawl-xewl

Save weighting coefficients for plotting:

B := submatrix(MNOM , 1,rows(MNOM ),4,5)

(1) <3) )

Nodeup := augment(MNOM , upall , MNOM , B

up ex :: Gexall xex

sgeo := csort( geonom, 5)

botpl := submatr1x(sgeo, 1,98, 1, 5) Ung .= stack( botpl , Nodeup)

UPGEO := csort(Ung ,4) 119



Gwl := XYZ(upexwl , 98, 14)

  

 

0.0942 0.0942 0.0942 0.0942 0.0942 0.0942 0.0942 0.0942

 

0.0941 0.0941 0.0941 0.0941 0.0941 0.0941 0.0941 0.0941
 

0.0943 0.0943 0.0943 0.0943 0.0943 0.0943 0.0943 0.0943
 

0.0939 0.0939 0.0939 0.0939 0.0939 0.0939 0.0939 0.0939
 

0.0929 0.0929 0.0929 0.0929 0.0929 0.0929 0.0929 0.0929
 

0.0909 0.0909 0.0909 0.0909 0.0909      0.0909  0.0909  0.0909

 

upnodall := XYZ(upexwl , 98, 14)

 ———>

upnodall — tpnode
 

ERa := 100

tpnode

 

     
 

 

 

 

 

 

0.112 0.115 0.12

0.191 0.186 0.189 0.194 0.196

ERa = 0.098 0.093 0.096 0.101 0.103

0.308 0.303 0.306 0.312 0.313

-0.105 -0.11 -0.107 -0.102 -0.1

0.458 0.453 0.456 0.461 0.463

-0.071 -0.076 -0.073 -0.068 -0.066        
<1) <3) )

Nodeupxl := augment(MNOM , upmf ,MNOM , B

Ungxl := stack( botpl , Nodeupxl)

UPGEO := csort(Ungxl , 4)

min(ERa) = —0.1 19 max(ERa) = 0.477

( ‘2) )tpnode := XYZ TPMODES ,98,14

 

plate p2 +/- 5% noise

 

   
( <2) )Gwl , XYZ TPMODES , 98, 14
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Appendix D

Nominal Model and Test Data
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PLATE R2 18 MODE PLATE R2 28 MODE

  
PLATE R2 33 MODE

PLATE R2 48 MODE

  
PLATE R2 3T MODE

PLATE R2 43 MODE

  
PLATE R21C2B MODE

PLATE R2 4T MODE

  
Figure D-6. Absolute value plots of R2 modes
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PLATE P128 MODE

PLATE P118 MODE

 

PLATE P1 2T MODE PLATE P1 38 MODE

“
U

  
PLATEP1“ MODE PLATE P1 3T MODE

  
PLATE P1 1028

PLATE P11C1B MODE

  
PLATE P147 MODE

 

Figure D-7. Absolute Value plots for P1 modes
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Figure D-8. Absolute value plots for P2 modes
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Figure D-9. Absolute value plots for P3 modes

136



PLATE P418 MODE

PLATE P4 28 MODE

9
“
“

  
PLATE P4 33 MODE PLATE P4 3T MODE

  
PLATE P4 1C1B MODE

PLATE P4 48 MODE

 

PLATE P4 4T MODE

PLATE P4 1028 MODE

9
“
“

  
Figure D-10. Absolute value for P4 modes
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