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Abstract

Finite element model updating has been an area of active research for the past
thirty years. The goal is to provide a model that is more representative of the structure.
This updated model can then be used for additional analysis to evaluate the design or
provide the designer with insight on how to improve the design, if necessary. Despite the
extensive amount of research, no one method has emerged that can be applied to all
circumstances. The diversity in methods applied can be traced to the inverse nature of
the problem. Typically, the amount of information available from modal testing of a
structure is limited. The finite element model of the structures can be quite large with
hundreds or thousands of degrees of freedom. This leaves the analyst with little choice
but to select a region of the finite element model by choosing elements or groups of
elements for corrections. The selected elements are parameterized by extracting design
parameters directly or by sensitivity methods. The parameter corrections are obtained
using the method of least squares. This process usually results in an ill conditioned
problem that can be sensitive to small variation or noise in the test data.

An alternate view of the updating problem is that the errors are distributed rather
than localized to a specific region of the model. This is the case when variations in
geometry can influence the response characteristics of a structure. This research effort
proposes a new approach for updating the geometry of a finite element model using a set
of models to form a basis for a perturbation space. The method is demonstrated by
numerical simulations and by experiment using a series of perturbed flat plates. The

numerical simulations indicate that the updating technique produces an updated model
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that improves the agreement between the simulated test plate and the model. The
application of the method to the experimental data demonstrated that the updated model
provided a slight improvement of the nominal model. A new metric for comparing the

error between the model and the test data based on the matrix 2-norm is presented.
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1. Introduction

Efforts to reduce the development time for new and increasingly complex
engineering systems have resulted in the convergence of the design and experimental
processes. The reduction in development time is being achieved by relying on advances
in computing power and in analysis tools including finite element analysis while reducing
the amount of testing to verify the ability of the design models to predict system
performance. As a result of the emphasis on shorter design cycles, new tools to integrate
the two processes are being developed and refined. One area where design tools and
experimental tools are being integrated is structural dynamics. Dynamic testing is
expensive and time consuming. At the very least, special test equipment including
shakers, test fixtures, instrumentation, and expensive analyzers are all needed to conduct
the test and analyze the results to determine what, if any, design modifications are
required to shift or dampen any undesirable vibratory resonance. In some cases,
particularly in complex machinery such as turbine engines there is limited access to the
parts being evaluated and only response data is available. The limited information
available forces additional reliance on the analysis tools to predict the response
characteristics away from the measurement locations. Understanding or reducing the
discrepancy between the experimental data and the design model is important to ensure

the validity of the design model and its ability to accurately predict system performance.



Current methods for predicting the dynamic response of turbo machinery airfoils
are based primarily on models that use the nominal blade geometry. These models
provide the natural frequencies and mode shapes for the modes of interest that could
occur in or near the rotor speed range or a multiple of the speed. Blade-to-blade
variations can result in deviations from the nominal blade model in the measured
deflections and stress amplitudes for a blade row. These variations can be significant,
resulting in a reduction in the high cycle fatigue life [1] of the blades or related structure.
There have been several studies directed at predicting the response characteristics of rotor
disks and blades. Different approaches to the problem include investigations of the
effects of mistuned rotors on blades vibration and studies of the response characteristics
of individual blades. The differences in the response characteristics can be caused by
several factors including variations in the blade attachment stiffness (boundary
conditions), material properties, and blade geometry. The differences in response are
most often attributed to blade-to-blade variations in material properties and in geometry
[21, [3], [4]1, [5], [6]. These studies do not address how or to what extent the variations in
the material properties and geometry affect the response characteristics.

The objective of aeromechanical testing is to ensure that all excited modes within
the operating range of the machine do not have a response that exceeds a predetermined
design criterion. A commonly used design criterion is a predetermined margin of safety
below the Goodman line [7] for any excited resonant mode. Identifying the modes that
exceed the design criteria provides the designer with a starting point for redesign.
However, a difficultly in the analysis of the test results can occur when one or more

blades on the test article fails to meet the design criteria. The challenge then is to
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determine which characteristics or properties of the blades that fail the design criteria are
the primary causes for the differences between the design model and the structure being
tested. This is the juncture where the design and experimental processes converge.

One means of resolving the discrepancies between the model and the
experimental results is to adjust or correct the design model to reduce the error. A careful
assessment of the quality of the experimental results must be accomplished to ensure that
the adjustment of the model is justified. In the area of modal analysis, there are several
tools available to assess the quality of the test modes using the modes determined from
the baseline model. Once confidence in the test data has been established, it is valid to
consider determining the appropriate adjustments to the model to reduce the error
between the model modes and the measured modes. The intent of finite element model
updating is to determine physically meaningful model corrections to reduce the modeling
discrepancies so that the designer can use the model to obtain more accurate vibratory
displacements and stresses. The updated model can then be used to assess whether the
design should be modified in cases where the structure under test has failed to meet any
design criteria specified by the designer.

During the past thirty years of research several methods for updating {inite
element models have emerged. No one method is best in all circumstances. Model
updating algorithms are designed to solve an inverse problem where the necessary
adjustments to the model parameters are calculated reducing the error between the model
predictions and the experimental results. The nature of the inverse problem requires that
the analyst constrain the problem so that the updating analysis can be structured as a

forward matrix perturbation problem providing a unique solution. The imposed



constraints or assumptions utilized are problem specific with regard to identifying the
regions of the model that are considered to be the largest contributors to the discrepancy
between the model predictions and the test results. Global assumptions that also apply to
all updating problems include a requirement that the finite element model be suitably
structured to avoid numerical errors and that proper test techniques are employed to
ensure that noise and experimental setup do not introduce errors into the measured
characteristics such as mode shapes and natural frequencies.

The objective of the present study is to develop a finite element updating
approach using isoparametric elements that produces an updated model minimizing the
error between the model and the experimental results by accounting for variation in
geometry. Geometric variations have been identified as having a larger influence on the
modal response characteristic of turbo machinery airfoils than variation in material
properties [8]. There are no methods currently available using isoparametric elements
that either directly or indirectly address variations in geometry. This dissertation presents
a non-iterative updating method that uses a nominal model with a set of geometrically
perturbed models. The modes for the entire set of models form a set of basis vectors for a
modal perturbation space that can approximate the test article modes. An over
determined system of equations is generated and prepared in order to solve for the
coefficients of the modal basis vectors. These coefficients are then used to determine the
contribution of each model’s geometry to provide an updated geometry for the test article
model. Modal analysis is performed on the updated model using the predicted geometry.
A 2-norm for the error matrix formed by taking the difference between the test article

modes and the updated model modes at the measurement points is calculated and
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compared with the 2-norm of the error matrix between the initial model and the test
article to verify the improved performance of the updated model. The model updating
method is demonstrated by numerical simulation and a test conducted with four perturbed

test plates and one unperturbed plate.



2. Literature Survey

Scope of Survey

A literature survey related to the proposed topic was accomplished for two broad
areas. The areas covered by the literature survey included research on the vibratory
response characteristics of turbo machinery blades including flat and twisted plate
representations and research on finite element model updating algorithms. The survey of
literature on the vibratory characteristics of turbo machinery focused on modeling and
experimental methods to characterize the response of blades. The intent of this review
was to make an assessment of the areas where model updating could provide some
benefit. The review of the model updating literature was conducted to evaluate different
methods for applications where large regions or potentially the entire model may require

adjustment.

Mistuned Rotor Dynamic Analysis

There has been a substantial amount of research directed at understanding the
response characteristics of axial flow turbo machinery rotors. Srinivasan [9] presented a
comprehensive study of blade vibration in 1997 covering a wide range of parameters both
aerodynamic and structural that influence the response characteristics of blades. One of
the parameters identified was blade geometry during a review of mistuning.

Mistuning refers to the loss of symmetry of a rotor, which can result in large
variations in blade response for a rotor stage. The studies reviewed on mistuning can be

divided into two categories. The first category developed lumped parameter models of



the blades and the disk allowing for the investigation of blade-to-blade and blade-to-disk
stiffness parameters and in some cases damping parameter variations [3]. These studies
provide the ability to assess the rotor response characteristics for varying degrees of
mistuning by adjusting the mass and stiffness parameters. The second category applies
finite element models of a rotor stage to investigate the response characteristic of
mistuned rotors [4], [6]. Efforts have been directed at providing reduced order models
that allow for the detailed study of the effects of mistuning. These studies have indicated
that variations in blade characteristics can result in significant increases in response
amplitude and stresses.

The variation of blade characteristics is central to mistuning studies. In one study,
inducing a random variation in Young’s modulus for each blade was used to represent the
degree of mistuning [10]. Here a reduced-order model was solved one thousand times
using a Monte Carlo simulation to estimate the statistical properties of the response. This
approach does not provide a convenient method for determining how to manipulate the
blade design to produce a set of blades with intentionally mistuned characteristics to limit
response caused by mistuning.

Several approaches have been attempted to characterize the response
characteristics of turbo machinery blades. Varying lumped parameters or material
properties, depending on the modeling approach, has resulted in simulations
representative of the variations in blade response seen during testing. These methods
provide insight into mistuning but they do not provide the designer with a means for
placing bounds on geometric tolerances to limit the response levels and control

mistuning.



Aeromechanical Test and Analysis Methods

During development testing for turbo machinery, blades are often instrumented
with strain gages to measure the resonant strains for comparison with the modal strains
and stresses of a nominal finite element model of the blades. In addition to using strain
gages, a non-intrusive stress measurement system can be used to measure the blade
deflections during component rig testing or engine testing [11]. There are several
advantages to using a non-intrusive stress measurement system. Some of these
advantages include: 1.) All blades in the blade row can be assessed; 2.) The disk and
blades are not influenced by the application of strain gages with the associated wiring and
slip ring; and 3.) The system is more durable than strain gages, which can fail during
testing. The testing can range from laboratory test of individual blades through full up
sea level and altitude engine tests to evaluate the durability of the design against one of
many established criterions. Bench testing and finite element models are used to identify
vibration modes and selecting strain gage locations. They also provide a means for
determining stress and strain ratios from the gage locations to the maximum stress and
strain for the blade.

Development of analysis tools for aeromechanical testing continues to be an
active area of research. The work reviewed included testing and analysis for various test
techniques ranging from shaker table tests of individual blades and component tests
through methods used for engine testing. There are several sources of uncertainty in the
measurement and modeling process. Finite element models are a necessary component in
the process from experiment design through the monitoring and analysis of test data.

The use of finite element models as part of experiment design includes the
prediction of the blade’s modal strain and stress distributions to determining the optimum
locations and orientations for strain gages. Yang and Griffin [5] present a method for

selecting the optimum gage locations for closely spaced modes of vibrations. They point
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out that the actual mode shapes for closely spaced modes are highly sensitive to small
variations in geometry. Small variations in geometry make the true mode shape
unknown. This method seeks to determine the participation factors of the modes from a
nominal model to represent the unknown mode. The error sources compensated for are
gage placement errors and gage measurement errors. Here the “nominal” model is error
free and a least-squares method is used to determine the participation factors for the
participating modes. The gage errors are propagated to the mode participation factor
using the strains predicted by the model at the gage locations. The optimization routine
minimizes the error in the mode participation factor vector for the gage locations.

Sensmeier and Nichol [12], [13] use a genetic algorithm that defines the optimum
location of the gages based on a set of constraints or metrics. One metric is mode
identification. The gages can be used to represent reduced mode shape vectors that do
not retain their orthogonality. The method maximizes the angle between a mode and all
other modes of interest to improve or increase the visibility of the modes. Additional
metrics are used to ensure mode visibility (gage output), minimize the influence of gage
placement errors, and to ensure that gage spacing exceeds a minimum distance to
minimize the influence of the gage on the response of the blade. This method has the
advantage that the model need be solved only once for the mode shapes. It also provides
an effective method for maximizing the angle between two closely spaced modes for the
model geometry.

The numerical representation of strain gages is critical to the effective use of
finite element models in the analysis of aeromechanical data. Nichol [14] presented a
method for modeling a strain gage that accounts for the averaging effects of the gage.
Averaging effects are especially important in areas of high strain gradients. Variations in
gage placement in high strain gradients can result in large variations in the strain gage
output [15]. Comparing strain gage data with the nodal strains or the element strains of a

9



finite element model is not practical. Comparison with nodal strains ignores the
averaging effects of the gage and comparison with an element strain would require that
the gage be aligned with the model mesh. Nichol’s method provides the capability to
investigate gage placement effects as well as allow for the relocation of gages without
having to re-mesh the model. Being able to model the averaging effects of strain gages
improves the efficiency of analyzing test data by eliminating the need to rerun the finite
element model.

The use of finite element models in the analysis of aeromechanical test results has
been used to assess aecrodynamic effects on the response characteristics of blades.
Kenyon et al [1] presented a study on the effects of aerodynamic damping on variations
in the response characteristics for an integrally bladed disk. Their assessment is that the
disk was tuned and that mechanical coupling between the blades and the rotor are not
responsible for the variation in response. The assumption is made that the small
variations in geometry such as blade untwist and airfoil shape influences the aerodynamic
damping but not the measured stresses. Gage measurement errors and placement errors
are accounted for in their analysis. However, the assumption that the blade-to-blade
variations in geometry do not influence the strain gradients at the gage locations ignores

the influence of variations in local geometry on the measured response.

Flat and Twisted Plate Testing and Analysis

A review of the past work on testing and analysis of flat and twisted plates was
conducted in support of the experimental phase of the proposed research topic. Flat and
twisted plates have been used to approximate the characteristics of real turbo machinery
blades [16]. The National Aeronautics and Space Administration sponsored a joint

research effort on twisted plates [17]. This effort compared several different analytical
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methods, most being finite element methods, to the results of twenty precision-machined
twisted plates for two different aspect ratios and thickness ratios tested at two
laboratories. Generally, the analytical methods predicted higher mode frequencies at four
twist angles that ranged from zero degrees to sixty degrees in fifteen degrees increments.
The resonant frequencies were experimentally repeatable to within 0.5%. The test mode
shapes were identified by holographic interferometry. Mode shapes were matched with
the analytical mode shapes on a qualitative basis. This was a comprehensive study aimed
at validating analytical methods including convergence studies for the various finite
element models and at providing an extensive database for the vibration characteristics of
twisted plates. The NASA study demonstrated that different finite element methods could

be used to predict the dynamic structural performance of flat and twisted plates.

Finite Element Model Updating

Model updating has been an area of active research for the past 30 years. Several
methods based on least squares and minimum variance estimators have been developed
[18]. It is often assumed that the discrepancy between the test results and the results
predicted by the model can be attributed to specific areas of the model. This is a key
assumption necessary for the formulation of the problem as a forward perturbation
problem. Forward perturbation models retain the nodal connectivity of the original
model. Papers on representative updating methods that do not preserve the model
structure were not considered. Updating methods that do not preserve the connectivity of
the finite element model cannot be used for additional analysis such as fatigue life
assessments or forced response. Most research is geared toward improving the model for

additional analysis.
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There are two major branches of model updating techniques that maintain the
nodal connectivity of the baseline finite element model. They are methods based on
eigensensitivity analysis and methods based on the error localization equation for
perturbed mass and stiffness matrices of the eigenvalue problem. The updated models
from these methods maintain the structure of the finite element model allowing for
additional analysis. Friswell and Mottershead [18] published a text on finite element
model updating that presented an overview of the several different methods. The text
placed a great amount of emphasis on sensitivity-based methods. Sensitivity methods are
based on taking the derivative of the eigenvalues and/or eigenvectors with respect to the
material parameters or when feasible the geometric parameters of the stiffness and mass
matrices. These methods are usually iterative, requiring extensive computation at each
step to provide the updated model for the next iteration. Most of the sensitivity-based
methods reviewed did not use eigenvector derivatives. This is more than likely
associated with the computation cost associated with producing these derivatives for
several modes iteratively [19].

Finite element updating methods have been applied to all types of elements.
Simple elements including bar, beam and plate elements can have either material or
geometric parameters that are targeted for updating. Solid model elements are restricted
to material properties. Generally, the analyst must determine which elements and
parameters should be adjusted regardless of the updating approach used. In one example,
Ahmadian [20], et al, recommended the updating of a rigid offset parameter for joints in a
truss. The rationale was that the modeling of the truss members away from the joint was
more accurate than the modeling of the joints. The offset parameter was preferred over
using joint stiffness parameters because it is more sensitive to the errors in the
eigenvalues. However, attempts to use the joint parameter updating approach on a

welded space outside of the laboratory environment were unsuccessful [21]. The authors
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noted that either the approach used to update the joints was inadequate or that the
assumption that the joints were the primary cause of the difference between the model
and the test was in error.

Farhat and Hemez [22], [23] presented an updating method referred to as the
Sensitivity-Based Element-by-Element method (SB-EBE) and an extension of the SB-
EBE to compensate for the ill conditioning related to the difference magnitude in the
residual force error for the mass and stiffness matrices. The residual force R(p) is an n X
1 vector found by solving the eigenvalue equation using the test eigenvalues and
eigenvectors with the original model mass and stiffness matrices. The residual force is

_ SIS X
R(P)=(K(p)-0?M(p)) | (1)

ex

where p is am X | vector for m<<n of generic element parameters targeted for updating,

a),2 1s the test eigenvalue, K(p) is the n X n stiffness matrix, M(p) is the n X n mass

matrix, @, is a m X lvector of the measured components of the eigenvector, and @ is a
(n-m) X 1 vector of the unknown components of the mode vector found by using a mode
vector expansion method [ 18] to create a test eigenvector of order n X 1. Equation (1)
gives the residual force when using the original model parameters with a),2 , O, and Q.
The residual force vector is a result of the error between the test mode and the original
model mode. After an updating method is applied, R(p) is made close to zero by
substituting the updated parameters p and the remaining (n-m) X | original model
parameters, that were not targeted for updating. The SB-EBE method uses a two-step
process that first identifies the elements with dofs where the residual forces are highest.
The elements that have the highest sensitivity to the residuals are then targeted for

updating. Usually, the residuals associated with the stiffness matrix are several orders of
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magnitude larger than the residuals associated with the mass matrix. This tends to result
in corrections for stiffness parameters even when the error is associated with a local
change in a density parameter. Farhat and Hemez [23] presented a normalization process
that gave equal weighting to the mass and stiffness parameters to reduce the disparity in
the sensitivity of stiffness and mass parameters resulting in the correct identification of
the local errors in density.

The process of selecting design variables for updating is not intuitive. It requires
an assessment by the analyst constructing the updating problem [24]. There are several
possible design variables that can be selected to solve a particular problem. A criterion
has to be selected to pick the best set. Different criteria that range from allowing several
design variables to vary within manufacturing tolerance to iterative methods based on
sensitivity for a subset of design parameters have been tried. The elastic modulus,
Poisson’s ratio, and density are usually selected. These are the only parameters that are
easily extracted from the finite element equations for isoparametric elements. Blelloch
and Freymiller [24] suggest that automated methods that limit the involvement of the
engineer are less effective in delivering a reliable solution. The criterion to select the best
set of parameters in one instance was the set that produced the best results on average
[25]. In reference [25], model updating experiments were conducted on a three-story
space frame using five different sets of parameters. The parameters were: scalar
multipliers of substructure stiffness and mass matrices for three different element groups;
the mass of the connecting nodes; a joint offset parameter; and the tube thickness.
Different combinations of these parameters were used all producing reasonable results.
The set that produce the best results on average was also considered the set that best
preserved the physical meaning of the model after updating.

Il conditioning is a problem common to all updating formulations. The updating
problem usually results in an over determined set of equations that are solved by using
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the method of least squares. Ill conditioning manifests itself in numerical simulations by
producing large changes in the updated parameters vector p for changes in the quantity
represented by the b vector and a large condition number for the A matrix in the least

square equation

Ap=b @
where A is an k X m coefficient matrix obtained by transforming the mass and stiffness
matrices from the global coordinate space to the parameter space of the targeted
parameters with k>m and the p vector is the m X 1 vector of parameters to be corrected.
The dimension k of equation (2) obtained by multiplying the size of the finite element
model, n by the number of test modes available for use in equation (2). Thekx 1b
vector can represent the residual force defined in equations (1) above of the available test
modes or for sensitivity based methods the difference between the measured eigenvalue
and the model eigenvalue. Farhat and Hemez [23] suggest that the ill conditioning is
caused by the small singular values of A (typically, <10°®) and their associated left
singular vectors. They point out that these components of the singular value
decomposition are responsible for large parameter changes (100% and higher) that are
not physically real. There have been several methods proposed for dealing with ill
conditioning of the updating problem. Friswell, Mottershead, and Ahmadian [26] present
several methods to address the ill conditioning of the least squares problem. They also
attribute the errors to the small singular values.

One aspect of the problem that has not been addressed are cases where some b
vectors produce acceptable solutions for the parameters, and others where a small change
in one component of the eigenvector can produce large changes in the residual force

vector of equation (1), that result in unrealistic parameter corrections [27]. The
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calculated updated parameters, p; in equation (2) can be correctly estimated within the
simulated noise bounds place on the eigenvectors despite the small singular values of the
A matrix. The cases where changes in the parameters p; are large for small changes in an
eigenvector component (<.01%) results in the rotation of the b vector away for the range
of A. The relative condition number for perturbations in p; that arise for certain
perturbations in the b vector provides a basis for explaining why certain b vectors from a
set with the same noise level can cause large perturbations in p; and others produce
reasonable perturbations within the simulated noise levels. The relative condition

number is given by [28]

_ k(4
" ncos() )
where k(A) is the condition number for the A matrix, a represents the angle between the

b vector and the range of A and

E @

where || || represents the 2-norm for the matrix A and the Euclidian norm for the vectors
p and y. The vector y is the projection of b onto the range of A. The number 1 is a
measure of how much the magnitude of y falls short of its maximum given the 2-norm
magnitude of A and p. The relative condition number, k; is exact for specific
perturbations rather than a bounding value as is the cases for the relative condition

number between perturbations in the A matrix and the update parameter vector, p.
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3. Conclusion from Literature Survey

The papers reviewed on the response characteristics of turbo machinery airfoils
indicate that variations in the geometry of the blades influence the response
characteristics of the airfoils. Current modeling techniques for representing variations in
response vary material properties, which do not provide a practical method for correcting
a design deficiency, should one occur. Locally controlling the elastic modulus for a rotor
disk is not practical. Geometric parameters are available to the designer for controlling
the stiffness of individual blades. Determining the specific cause for variations in stress
amplitude during testing of a rotor stage is a complicated task. There are several
variables that can influence the response. Simplifying assumptions can be made to
develop a tractable problem. One assumption that can be made is that all blades
experience the same forcing. Applying this assumption permits the investigation of the
influence of blade geometry variations on the response characteristics.

Model updating provides one means of investigating the effects of variations in
geometry on the response characteristics of turbo machinery airfoils. All of the model
updating techniques that have been reviewed are applicable to local variations in material
properties or geometry properties for elements that have local coordinate systems in one
or two dimensions. The inverse character of the updating problem has prevented any
single method for updating to be applicable in all circumstances. A key assumption of all

the finite element model updating methods reviewed is that the error between the model
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and the test can be attributed to a few elements or a few groups of elements. This
assumption is necessary because the structure of the updating problem is constrained by
the limited amount of information available from experimental modal testing. The
limited amount of information constrains the number of parameters that can be updated
for most methods. There have been no research efforts conducted on methods that
correct for global variations in geometry. Extending methods based on error localization
to account for global variations in geometry is not practical. This suggests that a different
approach should be taken to obtain an updated model that reduces the discrepancy

between the modal test data and the model.
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4. Development of Geometric Updating Method

Existing finite element model updating methods for isoparametric elements target
material properties of a small subset of the elements or groups of elements. The material
parameters are easily extracted from the element equations. In contrast, extracting the
element coordinates for modifications is not practical. The difficultly is related to the
element formulation. The isoparametric formulation permits the use of nonrectangular
elements that can have curved surfaces depending on the number of nodes and shape
functions [29]. The nodal coordinates in the global coordinate system define the element
geometry. An auxiliary coordinate system is introduced that has its origin defined as the
average of the nodal coordinates in the global system. The auxiliary coordinate system is
a function of the global coordinate system. The global coordinates of the nodes are used
to define the coefficient of the strain displacement matrix and for defining the
determinant of the Jacobian matrix. Both of these quantities are needed for the
integration of the stiffness matrix. The determinant of the Jacobian is needed for the
integration of the mass matrix. The difficultly in extracting nodal coordinates from the
element formulation suggest that an alternative approach needs to be considered when

changes in geometry are being considered.

Assumptions

All model-updating problems are inverse problems with the possibility of many

feasible solutions. In order to obtain a unique solution constraints are applied to the
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system of equations. These constraints are necessary in that there is a limited amount of
information available from the test that can be used for updating. The amount of
information available from the test is limited by the number of measurement locations
and the number of modes that can be identified from the test. The frequency range of the
test limits the number of modes that can be defined. Given the constraints on the
information available from testing, the updating problem must be structured so that the
number of parameters does not exceed the number of measured quantities. Most
updating methods constrain the problem by selecting a number of elements or a number
of element groups that is less than or equal to the number of measured parameters (e.g.
natural frequencies). This process usually results in an over determined problem that can
be solved by applying the least-squares method.

In the least squares solution the parameters are free to take on any value that
satisfies the minimum norm solution. This can result in parameter corrections that are
not physically realizable or unrealistic for the given the problem. Methods that rely on
adjusting material properties must define a priori the location or elements that are
suspected to be in error. Typically, the number of groups of elements or the number of
elements that are targeted for updating is much smaller than the total number of elements
in the model. This subset of elements and the selected parameters for these elements
translates into changes in a subset of matrix coefficients in the mass and stiffness
matrices. Under ideal conditions the elements that are in error are correctly identified,
measurement noise is low, and the resulting parameter corrections are physically
realizable.

Compensating for errors in geometry is not amenable to updating methods that are
formulated based on the ability to localize the error. Engels presented [27] a non-
iterative method based on error localization for updating models provided the following
three assumptions are met.
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1. All obvious testing and modeling errors have been eliminated.
2. The structure’s geometry is known.
3. All parameters needing change have been identified.

Assumption 2) eliminates geometric variations as an influence on the modal
response. Assumption 3) implies that the source of the error can be localized to specific
regions of the model. With the error localized the material parameters can be extracted
from the mass and stiffness matrices for updating. The influence of variation in geometry
on the response characteristic for turbo machinery airfoils implies that a method is
needed that relaxes or removes the requirement for assumption 2). The inability to
localize the error for arbitrary variations in geometry implies a modification of
assumption 3). Assumption 1) is still valid.

The assumptions needed for developing an updating method that corrects for
errors based on adjusting the geometry are:

I. The material properties do not vary from point to point in a structure
made of one material.
II. Clamped boundary conditions apply. Small variation in the boundary
stiffness do not appreciable influence the mode shapes of the structure
III. Bounds or tolerances can be placed on the variation in geometry.
IV. Geometric variability can be characterized
Assumption I is consistent with the isotropic material assumption generally

applied for modeling structures made of a single material. Assumption II is demonstrated
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by an example. One of the models used to demonstrate the validity of Assumption II is
shown in Figure 1. The boundary stiffness in this model is reduced linearly from middle
of the plate to the edge by reducing Young’s modulus in three steps. The outer most
elements have a Young’s modulus that has been reduced by approximately 2.2%. The
second model, which is not shown, has the same plate dimensions and the same number
of elements with a taper from the center of the plate to one edge in the widthwise
direction. The percent change in thickness in the widthwise direction is the same as the
percentage change in Young’s modulus. Using the same relative change in the Young’s
modulus and in the thickness of the plate allows for a direct comparison of these
modifications with the unperturbed model. The error in percent relative to the nominal
model modes for the tapered plate and the change in Young’s modulus are shown in
Figure 2 for the first bending mode (Errgeolb and Errstif1b) and the second stripe mode
(Errgeo2s and Errstif2s). The bars represent the error in percent for each node point of
the top surface of the plate excluding the nodes connected to the clamping block
elements. This comparison shows that the young’s modulus of the boundary blocks
results in a much smaller error in the mode shapes for both modes. It also indicates that
variations in geometry of the blade have an increasing impact as the frequency of the
mode increases. Assumption III is based on the fact that all parts will have
manufacturing tolerances to meet form, fit, and function requirements of the item. The
tolerance bounds provide the definition of the variation for an acceptable part.
Assumption IV implies that the variations in part geometry are not totally random in
nature. These variations are related to the manufacturing process [8]. Manufacturing

variations can be related to part positioning errors, tool sharpness changes, and
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other factors. These assumptions provide the framework for developing an updating
method that produces an updated geometry that improves the agreement between the test

data and the model.

Rationale for Geometric Updating Method

The updating method must be able to compensate for arbitrary variations in the
geometry. As noted in the discussion on Assumption IV, the geometry of parts will
typically vary as a result of the manufacturing process within certain tolerances
established a priori. The variations are independent of the nominal model, making
sensitivity-based analysis of the model impractical for determining the characteristics of
the geometry correction. The modal models generated by the finite element method
produce positive definite system matrices with real eigenvalues and eigenvectors for the
undamped case. The eigenvectors are uniquely determined up to a scalar multiple. The
eigenvalues are not necessarily unique. The system matrices can be multiplied by a
similarity transform resulting in the same set of eigenvalues with a new set of
eigenvectors representing a completely different structure [30]. Based on these
characteristics of the eigenvalue problem, an updating method should be based on the
eigenvectors rather than the eigenvalues of the structure being evaluated. The
eigenvectors are uniquely related up to a scalar multiple to the model matrices in physical
space representing the structure being tested. Invoking Assumptions I and II and
Assumption 1) used in the Engels method above, the discrepancy between the nominal
model and test data can be attributed to variation of the test articles’ geometry relative to
the nominal model. Assumptions III and IV provide the additional constraints for the
formulation of an updating method to adjust the geometry of the nominal model to reduce

the error between the modes of the model and the modes of test article.
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Formulation of Method

The proposed method uses a set of perturbed models with the nominal model as
an n-dimensional perturbation space for estimating the geometric corrections. This
approach was outlined by Dr. Kurt Nichol in meetings during May of 2001 [31]. This
approach uses the set of models as a set of basis vectors. With the appropriate
coefficients, the basis vectors can approximate the modes of the test article to any degree
of accuracy with an increasing number of models or perhaps a set of perturbed models
that is based on a priori knowledge of the expected geometric variations. The basic

equation of the method is

¢t<j> = Z Wi¢modz<‘j> (5)
i=1

where the superscript j is for the jth mode for the test and the models, (p,m isanm X 1

{4)

vector of the jth measured modal displacements, @, ,4;"" is an m X 1 vector of the i

mode vector of model at the measurement locations, and w, are the scalar weight
coefficients for the participation of the n models for the jth mode. A unique solution for
the weights w;, is obtained for cases when n<m. In cases where m>n, a unique solution

can still be obtained by stacking the j test and model modes to form a least squares

solution of the form

(Dinod ¢tl
N LR I 6)
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where p is the total number of test modes, w is an n X 1 vector of the weighting

coefficients, ®7 , is an m X n matrix of the p™ mode components at the m measurement

locations for the n models, and ¢ is the p™ measured mode. Stacking the p modes

allows for cases where there are fewer measurement locations than models m<n while
still providing a unique solution provided that p*m > n. This formulation permits the use
of all of the test modes that can be matched to the model. At this point, the coefficients
represent the participation of all of the matched modes for each of the models in
representing the test modes. As noted above, the eigenvectors are uniquely determined
up to a constant for a specific system of mass and stiffness matrices. This property can
be used to apply the coefficients w; found using Equation (6) to determine the
contribution of each model’s geometry providing the updated model geometry that best

approximates the test modes. The geometry updating equation is given by

n
'xu = Z wixmi )
i=1

where X, is the vector of the updated dofs for the model surfaces that were selected for
updating, and x,,; are vectors of the dofs for the same surfaces of the basis models that

have been selected for correcting the geometry of the nominal model. The updated dofs
of the surfaces targeted for updating are combined with the unmodified dofs of the
nominal model to produce the updated model geometry. The updated model can then be

used for additional analysis as required.



An important benefit of this method, which should not be over looked, is that it
does not require the expansion of the mode shapes to obtain mode vectors that are of the
same order as the model. One method of expanding the test mode data to the full order

model modes is accomplish using the following equations [18]

Km,m Km,n—m (ol‘j —w 2 Mm.m Mm.n—m ¢’j
Kn—m,m Kn—m,n—m ¢m°dj K Mn—m‘m Mn—m,n-m ¢modj

®)

(=N ]])

where a)fj is the measured eigenvalue for the i™ mode, @, is an m X 1 vector of the
measured eigenvector components for j* mode, Proa ;18 an (n-m) X 1 vector of the

unmeasured eigenvector vector component, M and K are the n X n mass and stiffness
matrices that are partitioned into the measured coordinates m and the unmeasured
coordinate n-m. The full mode vector is obtained by joining the test mode vector
components with the unknown mode components that are found by rearranging the lower

portion of this equation to yield

¢modj = _(-a)tzj ’ Mn—m,n—m + Kn—m,n—m )—1 ’ (—(otzj ’ Mn—m,m + Kn—m,m) ) ¢tj (9)

Updating methods based on error localization requires the full mode vector
computed by this method or any other method. The process of expanding the modes
using the original model is done as a convenience. One concern with this approach is
how the measurement noise affects the calculated components. Another concern is that
the measurement points may not be coincident with the regions of the model that are
suspected to be in error. In this case, the mode vector dofs found using equation (9) in

the region where the model is suspected to be in error are in some way influenced by the
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model that is being updated. An updating approach that does not rely on the expansion of

the modes has the potential to avoid ill conditioning, which is a common problem.

Demonstration of the Method

In order to implement the method, several steps must be accomplished which will
be outline as the method is demonstrated. All of the algorithms necessary to implement
the method were programmed in Mathcad Professional 2000® worksheets. The method is
first demonstrated by numerical simulation.

The simulated test articles are representative of three of the test articles used
during the experimental validation of the method. The test articles are flat plates with
nominal dimensions of 8.5 X 4.0 X 0.094 in inches. The simulated test plates have
geometric variations of up to 0.003 inch depth below the top surface of the nominal
model the point or the points of maximum deviation. The nodes for the perturbed top
surface for the three simulated cases are shown in Figure 3. The first thirteen modes of
the solution of the eigenvalue problem for the simulated test plates were used to simulate
the test data. The test modes were determined using a modified finite element code from
a Mathsoft® electronic book [32] that was extended to solve models with three dofs per
node using an eight noded brick element with extra shape functions [29] (see Appendix
A). The code was verified by solving the nominal plate and the simulated test plate P2 in
ANSYS-ED® and the code shown in Appendix A. The same mesh density and material
properties were used in both codes. Both codes produced the same mode frequencies and
mode vectors. This validation was done to ensure that the element aspect ratios were
acceptable. No error messages or warning were observed during the solve process in

ANSYS-ED®. The finite element code worksheet also separates out the model dofs of
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Figure 3. Surface node plots of the perturbed surface for the three test cases
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the perturbed surface for the specified modes. Two modes of the simulated test plate P2
top surface nodes are plotted in Figure 4.

The next step in the process was to develop a set of perturbed models. By
definition the nominal model or design model already exists. The nominal model has the
plate geometry defined above. The set of perturbed models must be able to approximate
symmetric, antisymmetric, and asymmetric plate geometric variations. To do this, the set
of models that form the perturbation space must include linear, non-linear, and
trigonometric variations in geometry. A total of twenty-five models were used in this
demonstration (See Figures 5 and B-1). Plots for the widthwise asymmetric functions are
shown in Figure 5 and are not repeated in Figure B-1. All twenty-five models were
solved using the worksheet shown in Appendix A. The nodes of top surface for the first
thirteen mode vectors were saved to data files for use in the updating worksheet (See
Appendix C). The coordinates normal to the surface are extracted from the mode vector
and the normal coordinate at the fifteen simulated measurement points where found using
spline interpolation.

The next step is to match the test and model modes for use in Equation (2). The
modes are matched using the modal assurance criterion (MAC) [18]. The MAC is not an
orthogonality check between the test modes and model modes since the mass matrix is
not used. The MAC is given by
2

AN

O, P,
MAC;, = ((Dzk o )((PIT, (Ptj) (10)

where ¢, is an m x 1 vector of the measured components of the ™ test mode, @, isanm

x 1 vector of the k™ mode of the model at the measurement locations, and MAC; is the
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Figure 4. First bending and second stripe modes shown for the top surface nodes of
the simulated plate P2
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(J,k) coefficient of the MAC matrix. When the modes are strongly correlated, the MAC; x
coefficient will be close to unity and the other components in the corresponding j" row
and k™ column will be near zero. Typically, MAC values above 0.85 for a pair of modes
are considered as well correlated modes. There is no need to scale the test modes to the
model modes. The ease of application of this method makes it a popular tool in matching
test and analytical modes for further analysis. The MAC is a 13 X 13 matrix for the
numerical simulations. All twenty-five models were matched with the simulated test
plates. The modes for the simulated test plates and the model set were placed in order
from the first mode through the thirteenth mode.

With the test and model modes paired, the model modes are ready to be scaled to
the test modes for use in Equation (1). The scaling is accomplished using the modal scale

factor [18] given by

T
O, P,
T
D P an

msf =

where @, is the i"™ test mode vector and @, is the i" model mode vector. The modal

scale factor does not require that the test and model modes to have the same phase.
However, the test and model modes must be in phase to determine the weighting
coefficients, w;. An additional check is required to ensure that the modes are in phase.

This is accomplish by using the following logic

If | ¢ti - ¢mi I>| ¢ti | Then ¢Cpi = —q)m,' (12)
¢cpi = ¢m[ Otherwise
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where ¢, is i component of the test mode vector whose phase is being matched, ¢, is

the i™ component of the model mode whose phase is being adjusted based on the

condition, and P, is the i™ component of the phase corrected model mode vectors to be

used in Equation (6).

The next step is to solve for the weighting coefficients, wi, for the modal basis
vectors of Equation (6). Then these coefficients are used to estimate the updated model
geometry using the model geometry basis vectors in Equation (7). The vectors of
Equation (7) are the normal dof of the surface nodes targeted for modification. The
Mathcad program for the procedure outlined above is shown in Appendix C. The
updated geometry and the simulated test plate geometry for the demonstration using
simulated test plate P2 are shown in Figure 6. The solid surface is the simulated test plate
P2 and the transparent surface is the updated geometry. A direct comparison between the
simulated test plate geometry and the updated geometry can be accomplished. Three
cases are presented showing the effects of increasing noise on the accuracy of the
estimated geometry. As the noise increases, the approximation of the geometry degrades.
An assessment of the error caused by adding noise to the test eigenvectors is
accomplished by comparing the error between the updated surface and the simulated test
plate at each node for plate P2. In all cases, the total percent error in the geometry was
within the bounds of the noise added to the eigenvectors. The results for P2 are shown in
Table 1. This summary shows the maximum and minimum within the bounds of the
simulated noise. Several trials were conducted at each noise level to observe the

characteristics of the solution under the influence of noise. The noise can result in a plate

35



Simulated noise free eigenvectors

{2>

XY= (nfx »

og.14) , xxvzlstp'? 08, 14)

rlate p2 +/- 2956 noise

Simulated plate top surface (typical all plots)

Updated top surface
(typical all plots)
G, xvzl TPrvoDEs 2 o1 a)

plate p2 +i- 5%% noise

Gwl, XYZ( TPMODES{z} .98, 14)

Figure 6. Comparison of updated surface nodes for P2 showing the effects of noise
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Table 1. Summary of geometric error for Plate P2 showing the influence of
increasing noise

Eigenvector Minimum Maximum Relative Total
Case Uniform Relative Error Error Band
noise Error Percent Percent
Percent Percent
1 Noise free -0.051 0.549 0.60
2 +/-2 -0.38 1.49 1.87
3 +/-5 -1.493 3.299 4.792

that is biased either thicker or thinner or ones where the transcendental basis functions
cause oscillations about the simulated plate geometry. These effects are amplified with
increasing noise levels. This highlights the importance of having instrumentation that has
high measurement accuracy and excellent signal-to-noise performance.

Additional comparisons were made for plates P1 and P3. The results are similar
to the result for P2. The plots comparing the updated geometry to the simulated test plate
geometry are shown in Figure 7 and in Figure 8, respectively. Table 2 shows a
comparison of the node-by-node relative error for plates P1 and P3, respectively. The
relative error slightly exceeds the noise bounds for these cases. In both cases several
trials were conducted. The results were bounded. However, noise levels at or above 5
percent resulted in errors that would not be acceptable. This is true especially when the
noise caused the updated nodes to be either all above or all below the simulated test plate

surface.
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Figure 7. Comparison of updated geometry for P1 showing the effects of noise
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Figure 8. Comparison of Updated geometry for P3 showing the effects of noise
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Table 2. Summary of geometric errors for plates P1 and P3 showing the influence

of increasing noise

Eigenvector Minimum Maximum Total

Case Uniform Relative Relative Error Band
noise Error Error Percent
Percent Percent Percent

P1-1 Noise free -1.39 0.85 2.24
P1-2 +/-2 -1.28 1.49 2.77
P1-3 +/-5 -1.43 4.29 5.72
P3-1 Noise free -0.79 1.11 1.48
P3-2 +/-2 -2.04 2.56 4.60
P3-3 +/-5 -1.92 6.43 8.35

In general, the geometry of the structure or structures may not be readily available
for measurement. A performance measure is needed that assess whether the updated
model improves the prediction of the test results over the original model. The number of
test modes available is far fewer than the number of modes predicted by the finite
element model. The test modes form an orthogonal subspace for the structure under test.

This subspace can be compared to the model subspace for the paired modes.
Eigenvectors of the order of the finite element model are available for comparison with
the test modes. This represents an approximation of the true structure. A metric that can
be used to evaluate the performance is given by the 2-norm of the difference between the
test eigenvector components and the model predictions at the test measurement locations

given by
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ER,, =|®, -, (13)
where @, is a 15 X 13 matrix of the simulated test modes for all three cases above and
@, is a 15 X 13 matrix of the model mode vectors at the simulated measurement points.
This formulation represents an absolute error between the test modal subspace and the

modal subspace of the updated model. A relative error can be obtained by

ER

ER , = ——%_
e

(14)

An assessment of the updated model in comparison with the nominal or design model can
be made by comparing the improvement of the relative error. These are shown in Table 3
for the simulated test cases of plates P1, P2 and P3. The noise free cases have the best
performance using this metric. The metric also indicates the degradation in performance
with increasing noise. The performance of test plate P1 indicates that the set of models is
not adequate for reducing the error in the model geometry. This is also true for case (1),
which is noise free. This metric provides a consistent method for assessing the degree of
improvement of the updated model in representing the test article. The performance
summarized in Table 3 also indicates that the metric will identify situations where no
improvement is possible or that the test data needs additional analysis for errors.

An assessment of the participation of the models for the simulation cases is
needed to evaluate adequacy of the model set used for this study. This check is necessary
to determine if the updated model is represented by or can be represented by a smaller
number of models. The evaluation is accomplished using the noise free simulation cases

for all three test plates. The participation of the weighting coefficients for the model set
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Table 3. Summary of 2-norm relative error metric for simulated test plates

Error metric Pl P2 P3
Relative error | Relative error | Relative error
Percent Percent P2 Percent

Error - nominal model 1.56 2.77 2.74
Error - noise free updated 1.51 0.21 0.31
model

Error - +/-2% uniform noise 1.59 1.29 1.53
updated model

Error - +/-5% uniform noise 2.58 8.54 4.68
updated model

Error - +/-5% uniform noise 2.58 8.54 4.68
updated model

is shown in Figure 9. The weight category names in Figure 9 are taken from the
nomenclature used in Figures 5 and B-1. For example, the first plot in Figure B-1 is the
top surface of the nominal model, Xyz,om, Which corresponds with weight, wnom in
Figure 9. The plot shows the relative contribution of all twenty-five perturbed models. A
larger number of models show significant participation for plate P1 relative the model
with the maximum weight, wglxy. This is due in part to the fact that this plate is not
symmetric with respect to the either axis. Also there is no model in the set that
approximates this shape. The performance of this model with respect to the relative error
for the geometry and the 2-norm error metric suggest that additional models are needed to
estimate the perturbed geometry of the top surface of P1. Plate P2 is very close in shape
to the first surface perturbation function shown in Figure 5. This results in a high
weighting of this model with the value of the weight coefficient, wplaw of approximately
0.91. However, the participation of the other models is important in improving the

prediction of the surface even though the magnitudes of the weights are small. Models
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that represent lengthwise geometric perturbations dominate the weighting coefficient
participation of the model set for plate P3. This is expected given the shape of the top
surface of P3. The participation of the nominal model does not dominate the response for
any of the simulated cases.

Next the sensitivity of the updating method to the number of measurement points
is considered. The effect of using fewer measurement points is evaluated using the total
error band on the geometry. The influence of noise was not considered in the sensitivity
analysis. The simulation trials carried out above used fifteen simulated measurements
points shown in Figure 10. Different combinations of points in the lengthwise and
widthwise direction where used to assess the sensitivity of the method to the number of
measurement points. The first case shown in Table 4 is the baseline case that includes all
fifteen points. The remaining cases include: 1.) Twelve points closest to the free end; 2)
nine points closest to the free end; 3.) Six points closest to the free end; 4.) Four edge and
four centerline points closest to the free end; 5.) Three edge and three centerline points
closest to the free end; and 6.) Two edge and two centerline points closest to the free end.
The total error increased for all three plates as the number of points decreased. Plate P1
is the worst performing plate of the three. It showed the largest increase in the error with
the decreasing number of measurement points. The total error increase as the number of
points decreased can be attributed to the influence of the geometry on the higher order
modes in the data set. The influence of geometry on the higher modes was documented
by Yang and Griffin [5] and can also be observed in comparing the plots of the first
bending mode and the second stripe mode of the error for the tapered plate shown in

Figure 2. The method is less sensitive to a reduction in the number of measurement point
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in the lengthwise direction. This can be attributed to the fact that the higher mode shapes
can be better approximated using the lengthwise points. Increasing the number of
lengthwise points can compensate for errors in curvature associated with the higher
modes. The better performance of lengthwise measurement points can be seen by
comparing cases (4) and (6) from Table 4. Next the method will be evaluated with test

data from four perturbed plates and one nominal plate.
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5. Experimental Validation of Geometric Updating Using
Multiple Perturbed Models

Test Plates

The test plates used to validate the updating method presented in Chapter 4 were
based on a plate designed and reported by Nichol [16], denoted as plate number 4. This
plate was selected because it has vibratory model characteristics similar to turbo
machinery airfoils and up to ten modes of vibration in the frequency range used for the
experimental phase of this research. Figure 11 shows the nominal plate used in the
present study, which shall be referred to as R2. The intersections of scribe lines put on
the plates were used to identify the measurement locations on all five plates. The scribe
lines were placed on the opposite side of the perturbed surfaces for plates P1 through P4.
The four perturbed plates P1 through P4 are shown in Figure 12. The plates were
machined and then hand blended to produce the final perturbations. Limitations in time
and financial resources prevented detailed measurements of the plates after machining.
All plates were fabricated from a single sheet of Aluminum 6061-T6, ASTM B209. The
material properties used for all calculations can be found in the material properties library
of ANSYS-ED®. The material properties are; Young’s Modulus, E= 10587920 psi
(7.3X10* Mpa); Poisson’s ratio v=0.33; and density, p=2.526768x10’4 Ibm/in3 (2700

kg/m). the nominal plate thickness is 0.94 in (2.388mm).

Test Apparatus

The test apparatus included a Ling Electronics Shaker (model no. B335), a Data

Physics Corporation Vibration controller (model no. DP550win), and a Polytec Laser
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Vibrometer (model no. OFV303). Figure 13 shows a diagram of the test setup. The Ling
shaker is capable of producing up to 150 G maximum acceleration, a maximum peak-to-
peak velocity of 70 in/sec, a maximum peak-to-peak displacement of 1 inch, and has a
frequency range of 10 to 3000 Hz. The shaker has a resonant frequency of 2350 Hz. The
vibration controller is a PC based system that was configured with a channel for closed
loop control of the shaker and two measurement channels. The closed loop control of the
shaker ensures that the same acceleration profile was applied during each test run. The
controller data acquisition channels included the table accelerometer for control, an
accelerometer on the fixture, and the velocity signal from the laser vibrometer. The Data
Physics system stored the data in engineering units for the velocity and the displacement
data. The data was stored in text files as peak values at the corresponding frequency.

The frequency resolution was approximately 1 Hz from 10 Hz to 2000 Hz. The laser
vibrometer has an excellent signal to noise ratio. Measurement resolution is 1 pm/sec or
3.94*10” in/sec for the measurement range 125mm/sec/Volt or 4.92 in/sec/Volt. The
signal output voltage was limited to +/- 2.5 Volts to accommodate the data system used
for the follow on test. Using the following formula, the displacement resolution, d, is

approximately 8* 10" mor approximately 3.0* 10" in, where

v

) a (14)
v is the velocity, and f is the frequency. The displacement resolution increases with
frequency.
Test Methodology

The test program for this research effort was accomplished with the shaker table

described above. The initial testing was conducted using reference plate R1, which is
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identical to R2, with the exception that R1 had three holes drilled for the mounting of an
accelerometer. The accelerometer was mounted in the center position during testing with
test plate R1 (See Figure 14). Testing with R1 was done to assess the adapter plate that
mounts the test plate to the shaker, to ensure that it did not have any resonance in the
frequency range for the test. Ensuring that the adapter plate did not have a resonance in
the operating range was essential since the adapter plate and test fixture are not part of the
model. The test plate and fixture are bolted to the adapter plate. The plates were
modeled with clamped boundary conditions at the fixture. The plate tests were conducted
by sweeping the shaker table through a frequency range of 10 Hz to 2000 Hz with an
acceleration profile shown in Figure 15 for all five of the test plates. A different
acceleration profile was used for test plate R1 shown installed in Figure 14. The profile
for R1 required substantially higher accelerations because of the damping caused the
attachment of an accelerometer and its cabling (see Figure 14). The damping was high
enough that no vibratory modes were observed over 1000 Hz. In contrast, the test plates
R2 and P1 through P4 had five modes above 1000 Hz. Measurements were made at the
fifteen points where the scribe lines intersected on all of the test plates (see Figure 11).
The Laser Vibrometer was aimed at each of these points. The frequency was swept
through the measure range fifteen times for each plate to obtain the test mode shape data.

The data was saved to test file for post processing and plotting.
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Accelerometer

Figure 14. Reference plate R1 mounted in test fixture with accelerometer
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Experimental Results

A total of 75 frequency sweeps were conducted on the five test plates. Each
frequency sweep was saved by run number. The text files saved by the Data Physics
system include the real and imaginary components of the peak response listed by
frequency from 10 Hz to 2000 Hz. There were fifteen runs for each plate. These files
were combined into an EXCEL® workbook for each plate. The mode frequencies were
identified by plotting the peak magnitude against the frequency. The peaks in this plot
identified the mode frequencies. The data sheet for the plot was then analyzed around the
peaks to extract the mode frequency and peak displacements at that frequency for all
fifteen-measurement locations. The mode frequencies identified for each plate and the
corresponding model frequencies for the nominal model are shown in Table 5. The plots
for the displacements are shown in Figures D-1 through D-5, where the last to characters
of the data trace label refer to the measurement locations shown in Figure 10. These
plots include all fifteen measurement points. As can be seen from the plots, the location
of the mode frequencies is reasonable well defined. The peak displacements at these
frequencies for each plate were used to plot the mode shapes. Since the data saved is
peak values only, a new absolute value based modal assurance criterion would be
required to match the modes to the model. The absolute value modal assurance criterion

is given by
2

H o] @,
AMAC, =1 ‘ 1)

T T )
¢mi¢mix¢tj (otj )
where the |(p:“.| is absolute value of the components of the i"™ model mode vector of

dimension 18 x 1 (see Table D-1), @, is the test mode vector (18 X 1)of peak response

recorded by the data system. These vectors include zeros at the three boundary points for
plotting the modes in Figures D-6 through D-10.
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A qualitative assessment of the AMAC was carried out by plotting the absolute
value of the mode shapes for a few modes from a finite element analysis of the reference
plate. A comparison of the absolute value plot of the fourth bending mode for the model
and the peak value data for test plate R2 is shown in Figure 16. The second strip mode
comparison is shown in Figure 17. These plots were done to provide a comparison of the
result of the AMAC. The difference in resolution between the model and the test data
makes a visual comparison difficult. The only points compared for the test data using the
AMAC criterion are the measure points along the centerline and near the lengthwise free
edges of the plates. Looking at these points on the figures verifies that the criterion will
work based on the similarity of the surfaces at these points. Normally, the off diagonal
elements of the MAC are small. The generally accepted criterion for the MAC with the
modes paired by increasing frequency specifies that the diagonal element of the MAC
matrix should be greater than 0.85 for the matching of the test and model modes [18].
However, when the AMAC is used the off-diagonal components can be large. This limits
the use of this criterion to modes that are highly correlated where the diagonal elements
of the AMAC must be equal to or exceed 0.95.

The AMAC is implemented in the Mathcad® worksheet for updating the geometry
(see Appendix C) by taking the absolute value of the model mode vectors prior to
implement the MAC function. The modes vectors obtained from the finite element code
in Appendix A are not sorted in ascending order prior to calculating the AMAC. This
requires the use of a permutation matrix, which is obtained by setting all of the matrix

coefficients in the AMAC that are greater than or equal to 0.95 equal to 1 and all
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Absolute value for the 4™ bending mode of
the model

Test data for 4™ bending mode

Figure 16. Comparison of 4™ bending modes between absolute value of model and
test data for R2
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Absolute value for 2-strip mode
for the model

Test data for 2-strip mode

Figure 17. Comparison 2" strip mode between absolute value of model and test
data for R2
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other entries equal to 0. The appearance of a column of zeroes in the permutation matrix
identifies the occurrence of an incorrectly identified test mode, which should not be used

in used in Equation 2.

Validation of Geometric Updating Method

The initial reduction of the data provided the set of test modes to be matched with
the model models using the AMAC. The next step is to convert the test modes from peak
displacements (absolute value) of the mode at the measurement point to modes with the

proper sign. This is accomplished using the following formula

Ip; (I)

mi‘j

(0
(16)

where @, ) is the (i,j) component of matrix of test modes for the test plate (see Tables D-2

through D-6), d)m‘_ ) is the (i,j) component of the matrix of model modes (see Table D-1),
L]

m;

is the absolute value of the (i,j) component of the model matrix, and @y, is matrix

of the phase corrected test mode shapes. The phase corrected test mode shape matrix is
then used to adjust the phase of the perturbed models mode shaped matrices. This is
necessary to ensure that the test mode shapes and all of the model mode shapes have the
same phase prior to determining the basis coefficients for the model modes.

The updating algorithm was applied to all five of the test plates. The results are
shown in Figure 18. The two plates where the method performed the best for correcting
the geometry of the model are plates R2 and P2. The updated geometry for R2 shows
variations of less than .002 inch. The dimensions of the R2 plate were checked using a

micrometer. The micrometer measurements where taken at the points R1 through RS and
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Figure 18. Updated nodes for the top surface of the test plates

65



Updated geometry for P3
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Updated geometry for P4
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Figure 18. Updated nodes for the top surface of the test plates (continued)
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L1 through L5 shown in Figure 10. The micrometer measurements by coordinate
location of the test measurement points for plate R2 and the updated geometry at the test
measurement points are shown for comparison in Table 6. Both show a change in
thickness in the widthwise direction. However, the updated geometry also shows a
thickness change in the lengthwise directions. In general, the updated plate geometry is
consistent with the measured plate geometry.

The comparison between the measured geometry and the updated geometry for
plate P2 shows that the method predicted the general characteristics of the test plate
geometry (see Table 7). The amount of variation in the change in thickness is
underestimated in this case, since the updated model underestimates the thickness change
in the lengthwise direction for the measurement locations L2 through LS5 in the widthwise
direction. The updated geometries of the remaining plates P1, P3, and P4 deviate from
actual geometries depicted in Figure 12 in that the updated geometry for plate P1 showed
an inverse characteristic (see Table 8) where as the updated geometry is thinner at the
clamped end and increases in thickness where the test plate decreases in thickness. The
updated geometrics of plates P3 and P4 both taper in thickness from the clamped end out
to the free end and also in the widthwise direction. Both of these test plates have a
variation in thickness in the lengthwise direction. However, plate P3 first decreases in
thickness and then increases in thickness towards the free end of the actual plate. Plate
P4 maintains a uniform thickness for half of the plate closest to the clamped end and then
reduces in thickness to the free end. The thickness changes for plates P3 and P4 are
shown in Table 9 and Table 10, respectively. These measurement checks were made to
provide an assessment of the updating method. The method produced bounded results.
In all of the cases above, the updated model geometries were reasonable there were no

geometry changes that were excessive.
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Table 6. Comparison of measured and updated plate thickness for plate R2

Widthwise
Measurement Experimental Plate R2 (in) Updated model R2 (in)
Locations L R L R
5 1 .0955 0945 .0943 .0939
C'g_ 2 .0950 0948 .0940 .0936
¢ 3 .0950 0948 .0939 .0936
4 0955 0945 .0938 .0935
5 0955 0945 .0938 .0935

Table 7. Comparison of measured and updated plate thickness for plate P2

Widthwise
Measurement Experimental Plate P2 (in) Updated model P2 (in)
Locations L R L R

1 .0910 0945 .0928 .0955

E 2 .0895 .0940 .0922 .0953
a% 3 .0890 .0940 0921 .0953
3 4 .0890 .0944 .0920 .0952
5 .0885 .0945 .0920 .0952
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Table 8. Comparison of measured and updated thickness for plate P1

Widthwise
Measurement | Experimental Plate P1 (in) Updated model P1 (in)
Locations L R L R
1 095 0945 .0929 0941
5 2 .095 0948 0935 .0947
% 3 092 .093 .0937 .0950
g 4 091 .093 .0940 .0952
5 .0885 .090 .0940 .0952

Table 9 Comparison of measured and updated thickness for plate P3

Widthwise
Measurement | Experimental Plate P3 (in) Updated model P3 (in)

Locations L R L R

1 0945 .0955 .0941 .0955
& 2 091 092 0926 0941
% 3 .0955 .0945 0921 .0936
& 4 .0960 .0945 .0917 .0930

5 .096 .095 0916 .0931
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Table 10. Comparison of measured and updated thickness for plate P4

Widthwise
Measurement | Experimental Plate P4 (in) Updated model P4 (in)

Locations L R L R

1 .096 096 .0949 0954
& 2 0958 0958 0930 0935
0% 3 092 0930 0923 .0929
8 4 .0905 0910 0916 .0921

5 .0898 0900 0917 0923

A plot of the model set weights for all of the test plates is shown in Figure 19.
The participation or weights for the models shows a higher relative participation for more
of the models than the simulation trials shown in Figure 9. The weights for the
simulation cases (see Figure 9) are obtained using noise free modes from a model that has
the same number of dofs as the model set. Where as the actual test modes may be
influenced by test technique.

An evaluation of the 2-norm metric is needed to see if it produces results
consistent with the updated geometry shown in Figure 18. The 2-norm relative error
metric provides a means for gauging the improvement of the updated model relative to
the nominal model. This step is important to determine whether this metric can be used
in cases where it is not feasible to obtain measurements of the structure under test. It is
important to note that the metric indicates the size of the error between the model
(updated or nominal) and the test modes at the measurement points. A perfect match

would result in a value of zero.
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The results for all five plates are shown in Table 11. The metric indicates that the
updated models for the five plates offer minimal improvement in reducing the error
between the measured test mode vectors and the mode vectors predicted by the nominal
model. Plates P3 and P4 showed the best performance even though the updated geometry
is not fully consistent with the measured geometry. There are three factors that could
account for the marginal performance of the method with the test data. They are: 1.) Test
methodology, 2.) Instrumentation noise, and 3.) Resolution of the finite element models.

Test methodology is the most likely source of error. A review of the test results
conducted by Nichol [16] and Gwinn [33] indicate that the sweep rate was too high in the
lower frequencies. The first two modes (M1 and M3, see Table 6) used for this research
were not correctly identified. The frequencies reported separately by Nichol and Gwinn
were lower than the frequencies obtained in this effort for both of the modes identified
above. The primary concern with the test method used here is the frequency sweep rate
used during testing. A low sweep rate is needed to approximate steady state
measurement conditions. The comparison of the frequencies measured for the first two
modes and those reported by Nichol and Gwinn indicates that the rate was too high.
Sweeping through a speed range is common practice in structural survey testing for turbo
machinery [1]. This is similar to sweeping through a frequency range on a shaker as was
done here. The effect is the same.

However, the accuracy of the mode shape may not be reliable obtained during
frequency sweep testing. A sweep and dwell test approach should have been used. In all
cases, eight of the ten modes in the frequency range of the test were identified. The two
modes that were not matched were the 1% torsion and 2™ torsion modes. It should be
noted that in theory the antisymmetric modes could not be excited using the type of
shaker used. Plate P2 showed small peaks near the model frequencies for these modes.
Plate P3 exhibited a response near the 1* torsion mode only. In both cases the AMAC
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Table 11. Summary of relative error metric for the nominal and the updated models

Relative Error Test Plates
Metric
R2 P1 P2 P3 P4
Nominal Model 1.18 1.03 0.61 0.91 1.09
Updated Model 1.17 1.00 0.58 0.70 0.86

criterion indicated that these peaks were not modes. A review of the test mode shapes
plotted for all identified responses shows that these are not modes (see Appendix D). The
criterion indicated that these peaks were not modes. The asymmetry of the plates was
enough to excite the higher antisymmetric modes (e.g. 3" and 4™ torsion modes). A
sweep and dwell test may have been able to excite the 1* and 2" torsional modes. Even
though the eight of the ten modes were correctly identified and the response
characteristics were qualitatively consistent with expectations of the author, the response
levels measured during testing may not have representative of the true mode shapes for
the plates. This is the mostly likely cause for the marginal performance of the method
using the test data.

Instrumentation errors were not considered to have an effect on the performance
of the method. The instrumentation was closely monitored using the diagnostic features
available. The Polytec laser vibrometer has excellent diagnostic capabilities and the
signal quality was also monitored using an oscilloscope.

The resolution of the model may also contribute to the error. A higher resolution
model using more degrees of freedom would provide more accurate predictions of the
mode frequencies. However, the mode frequencies are not used in this updating
approach. The maximum modal displacement will also change with increased mesh

density, but not to the degree that the mode frequency of the higher order modes will
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change for the mode frequencies. A comparison for the first bending mode between the
measure deflections at the free end of plate R2 with the deflections of the nominal model
at the measurement points indicates that the test plates are more flexible in the widthwise
direction than the model. A high-resolution model (26,000 dof) using ten node
tetrahedron elements did not result in an increase in widthwise flexibility over the model
used in this study (588 dof) that would suggest that the model resolution is a significant

source of error.
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6. Conclusions

Discussion of Results

This research effort presented a method for correcting or updating the geometry of
the nominal model of a test article using a set of models that represented a perturbation
space necessary for finding the model geometry to reduce the error between the test
modes and an updated model. The numerical simulation indicated that the method was
capable of producing an updated model geometry that approximated the simulated test
article geometry. The simulations carried out indicated that the geometry perturbations
can be approximated with a combination of linear, nonlinear, and transcendental
functions that describe the perturbed geometries. The simulations carried out also
indicated that minimizing measurement noise is critical to the success of this method for
systems experiencing small perturbations. A sensitivity analysis for the use of the
method with a reduced number of test points for the noise free case was also conducted.
The analysis showed that the method is sensitive to the number and location of
measurement points. The method was less sensitive to a reduction in measurement points
in the lengthwise direction for two of the simulated test plates.

A new absolute value modal assurance criterion was introduced and applied
effectively to the test data. This criterion can be used to match modes when only the
peak displacement data is available. Limits for the use of the absolute value modal
assurance criterion were identified. An efficient metric for comparing modes obtained
from finite element models with modes acquired during testing was also introduced. This
metric gauges the closeness of the model modes to the test modes without requiring

expansion of the modes or the mass matrix. The metric is based on the matrix 2-norm
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formed by taking the difference between the model predictions at the test locations and
the test measurements.

The performance of geometric updating method under experimental validation
showed marginal improvement of the updated model over the nominal model for all of
the test plates. Comparison of the measured thickness of the test plates with the thickness
predicted by the updated model using the 2-norm metric indicated that the improvement
was marginal. Deficiencies in the test methodology were identified that contributed to
the marginal performance of the method when applying it to experimental data.
Additionally, issues with the model resolution were raised that could also improve the
performance of the updating technique presented. The numerical simulations did
demonstrate that the method was robust and numerically stable providing bounded

results.

Recommendations for Additional Research

¢ Investigate the apparent higher flexibility of the test plates in the widthwise
direction when compare with the finite element model predictions.

e Conduct experiments with increased number of measurement locations using a
scanning laser vibrometer.

e Investigate the feasibility of using strain gage and displacement measurements.

e Developing geometric updating approaches including parametric methods for
more complex structures such as turbo machinery airfoils.

e Investigating the influence of the geometric tolerance for perturbed models.

¢ Implementing the method using the programming features of a commercial finite

element package.
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Consider methods that would incorporate frequency to compensate for bias in the
result (e.g. in this case either thicker or thinner than expected).
Investigate the possibility of using an iterative method with a small set of

perturbed models.
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Appendix A
Finite Element Model Code



Input Region for eight node isoparametric model:

Top =
1 2
1 2 10
2 10 11
3 11 12
4 12 13
5 13 14
6 14 9
C:\nodes upated geometry sm w5 s
pd =
1
1 1
2 2
3
Mat =
1
1 1.06-107
2 0.33
3 0
Restraints =
1
1 1
2 2
Tnodes = NodesT

Process Initialization

Total number of nodes --->

Total number of elements->
Degrees of freedom per node
Number of nodes per element

Byodes

Tl

ndofy

Mpe

cols(Top)

rows( Nodes)
rows(Top)

3
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Mat

E 1
v |= Mat2
P Mat

3
Define two range variables which will be used at all times:
ie=1.ny
m=1.. nmdes

Tl 78

ndofpn
rmpe

Loop for elements
Loop for nodes
j=1.8
/ \
Xn. .
Jln
Y,

e = dees((rapi‘ 'j))
zn. .
Jlu
| NodeLabels; ;, |
Properties =

1 1

E 10587920
v 033

P 0.0002526768
{1
(deesr]

X :
2
Yom = [TnodesT)
{3}
Zym = (deesT)
Shape Functions:
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Nis,t,n) =

dNds(s,t,1) =

%-(1 —9(1-9(1-1)
1
S+9-041-9
1
E-(l +s)(1+t)-(1-1
1
~(1-8)-(1+1)(1-1)
b4
1
g'(l =) (1-1(1+1)
1
S+ (1= (14

%-(l+s)-(l+t)-(l+r)

l-(l -s)(1+t)-(1+1)
8 i

-1
K- 0a-0)
Lt-n-9
8
Lt+n-n
8
L ten-n
8
L t-nen
8
Lit-na+n
8

—;[{1 +1)-(1+1)]

-?1-[(1 +1)-(1 +r)]J

dNdr(s,t,r) =

dNdt(s,t,1) =

detesf(s,t,r) =] -2t

deresf(s,t,r) :

%-(I—S)-(l-t)
_—1(1+s)(l—t)
2 .
-——1-(1+s)(1+t)
2 .

-1
—(1-s)(1+1)
{1-s)(1-1)
{1+s)(1-1)
{1+s)(1+1)

(1-8)(1+1)

[ -1
?-(I—SJ-(I—I)

-1

—8—-(1 +s5)-(1-1
i.(l +s5)(1-1
8

l-(1 -8)(1-1
8

_—1~(1 -5)(l+1)
8

:1—-(1 +s)(l+1)
8

é(l +s)(1+1)

%(1 -8)(1+1)
£ 0\

\ 0 /
/0\

0

\~2-1/
(—2~s

desesf(s Sg. 0= 0

\ 0
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dNdsg(s,t,1) = stack{ dNds(s, t,1) ,dNds,ee(s,1,1))
N-Xn<i‘}
xyz(N i) = | N,

1Y
N.Z,
dNdtgg(s,t,1) = stack{dNdt(s,t,1) ,dNdtycf(s,t,1))
dNdrgg(s,t,1) = stack{dNdx(s,t,1) ,dNdr,c((s,t,1))
I(s,t,1,1e) = augment(xyz(dNds(s,t,1) ,ie) ,xyz(dNdt(s,t,1) ,ie} ,xyz(dNdx(s,t,1) ,ife))T
detl(s,t,r,ie) = |J(s,t,r,ie) |
Joapo(J¥1,v2,v3) = augment[[]l VLT V2] 3.v3],[12 (ViDL V24, 3-v3),13 vl j'
-¥3

+J3.2'V2+J3.3

DNdxyz(s,t,r,ie) = Jcalc(.l(s,t,r,ie)_l ,desEF(s,t,r) ,detEF(s,t,r),derEF(s,t,r))

N, O 0N, O ON, 0 ON, 0 0N O ON_ 0O ON, 0 O N, 0 0

1 2 3
NM(N)=|0 N, 0 0 N, 0 0 N

4
0 0N

5
0 0 N

6
0 0 N

2
0 0 N

8

0 0 N, O

3 4 5
00N100N200N300N400N

Nm(s 1,1 = NM(N(s,t,1)

6
0 0 N

1
0 0 N

8

0 0 N

5 6 7 8

MBNI(N) =

MBN2(N) =
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/N3.1 0 0 N, 0 0 Ny, 0 0
0 Ny, 0 0 N, 0 0 Ny, 0
MBN36(HD) = NU N 2 NU NU N:j NEl N N;j
32 N3 42 Nay 52 Nsp
Nz3 0 N3  Ny3 0 Nyy Ns5 0 Ny
N33 Nyy; 0 Nyg Ny 0 Ng3 Ny
’N?ll 0 0 Mgy, 0 O 3
0 N;, 0 0 Ny, O
MBN78(N) := NU N N;'3 NO . NE'B
72 Y11 82 N3
N,z 0 Npy Ngg 2.1
(0 N33 Mg, Ng3 Ng o)
(Ngy 0 0 Ngy 0 0 Ny, 0
0 Ny, 0 0 Ny, 0 0 N,
MBNest(1D) = NCI N NEIB NU NU NIUU.3 NU NO
9.2 N9 1 102 Mo, 1.2 N
Ng3 0 Ngy Nz 0 Ny Nys O
0 Mgy Ny, 0 N, N 0 Ny,

\
MAKEBN(N) := augment{ MBN1(N) , MBN2( N), MBN36(N),MBN72(N),MBN . (( I}

BN(s,t,r,ie) .= MAKEBN(DNdxyz(s,t,r,ie))

(1000 0 0)
0100 0 O
. 0010 0 O
Cl(pkl).=pk1~000 S0 o
0000050
\ 0000 0 5,
(-1 1 1 0 0 0)
1 -11 0 00
. 1 1 -10 00
CAPD =P\ 0 5 5 L1 o o
0 0 0 0 -10
\0 0 0 0 0 -1

C2p(ie) = cz[Pmpenies(

Clie) = Cl[Properties[

pid

pid,,

ie,2

)3]

2]

10,3

10,2

N

N

111

11,2
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(1-v v v 0
v l-v v 0
v v 1-v 0 0
E o o o 1Z2¥
CE,vy=——M————. 2
(1+v)(1-2.v)
o 0 o o 1=2v
2
0 0 0 0 0
\
C(ie) = C[Properties . ,v]
pﬁn?)z

M(s’tirﬁ.m) = p'xyz(N(S,t.r) ,iﬁ)Txyz(N(s,t,r) ,m)dﬂt](s,t,r,iﬂ)
MakeK(BN,C) = BN'.C.BN
Mi(s,t,1,ie) = p- Ny (s,t,07 Ny (s,1,0)-detd(s 1,1, i)

K(s,t,r,ie) = MakeK(BN(s,t,r,ie) ,C(ie))-det](s,t,r,ie)
(—.5??350269189626)
gp =

577350269189626

10
W=

10
1i=1.2
j=1.2
k=1.2
K (

= ZZZWR w;-w; K(gp;. 295, 8Py i)
M\(ie) = ZZZWI‘ wj w; M1(gp;.8p;, 8Py, i)

K p(ie) = submatm{Ke(le) ,1,24,1 ,24)
Koglie) = submatrix{ K (ie) ,25,33,25,33)
Kg(ie) = submatri:( K, (ie),25,33,1 ,24)
K (ie) = K (ie) - Kfe(ie)rKef(ie)—l-Kfe(ie)
Vect(M) = |V &« M{l)
for ie2..cols(M) if cols(M) >1
Ve stack(V ,M(i))

v
Pack(V,p,q) = |for jel. g

for iel..p
M; j ¢ Viypj if i+p-j < rows(V)

M; j < 0 otherwise

M
ndof' n mpe
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1K = rlncides‘“’j':'fpn

KnK,nK =0

MnK,nK =0

KT = Vect(K (ie))
MT® = Vect( M, (ie))

i:=l..1'|rnl:Je
j:=1..1'mpe
p:=1..ndofpn

q=1. r'dofpn

row(i,j,n) =(j—-1).n+i

K[(“"ie 1) maotep] (Top, 1) ndagra ™ K[(T"Pu L) wotrp]. (Tomy -1) mdotyea

"

halfoan = roax{ bandyy)-ndofy,,
halfban = 582

=1.. m:lo:f'prl

ny, = Z Z Restrajnts{JQ}
J

J

Wwlrl=] N

n, =42
map(i,j) = (i- 1)~ndofpn+j

BC4.nK:= 0

1:= 1.. rows(Restraints)

j= l..ndofpn

j=
1
2
3

+KT

(T°pia A 1) "‘d“‘pnﬂ’] : (Topi‘ i l) ‘nddty +q :

NW[(i—l)-ndnfm+p.(j—l)-ndnfm+q.ndﬁp. e

(T”ia kY 1) ‘ndepmp] . (‘l‘crpil . 1) otgr
+MT

vy = ol rep") ) - fres?)

row](i- 1) ndot g +p (1-1) oy +q mdet, ] e
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£ i \
R.estra.mtsilj_2 .1 ,0]

BC{M(R' . 1 .j)} sttmjmsilj.%_l
if[lhes’(rajntsilj.2 ,R.estraintsil 1 ,0]

i.([Restmintsi'jiz, 3.0}

Our boundary conditior: bookkeeping table.... ’
112134 |5]|6|7|81}]9]10

L T T T T T I I O O B O

BC=(2|1 0/ 0| 0|l 0] 0| 0] 0Of[0]O|oO
J| 111 21 21 21 3] 3| 3| 4
41 1) 21 31 1] 2] 3] 1] 2} 3|1

Kmod =K

And,

Mmod = M

i=1.nK

j=1.nK

(Kmod; | [ BC, ,,0,Kmod; )

Kmd‘,i = i({BClli,U,Kmodjli]
\Kmod; ; if[Bcl i,l,Kmodi.i]
Mo, ) [H[BC) 0, Mumods ;)
Mmod, ; | = ii{BClli,U,Mmodjli]

\Mmod; ; if[BCl ol ,Mmodili]
nc = rows( Restraints)mdofpn +1
nc =43
Tlam = genvals{ Kmod ,Mmod)
TLStm = csort(Tlam, 1)
JThm
2.z
TLStest = submatrix{ TLStm ,nc, 14+ nc,1,1)
Fr := csort(Freq,1)
FR = submatrix(Fr,nc,gc +11,1,1)

)
C\. \Kmodco bt

Kmod
Modft ;= submatrix( Tlam, rows(Kmod) — 11, rows(Kmod),1,1)
modevecs = genvecs(Kmod ,Mmod)
x
C:\.\modelfreqgeomup izt

Modfr

Freq =
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C\. \WMmodco bt

Mmod

m= mdewcsT-Mrmd-mdzvecs
1:= 1. rows(m)
1

\} LB
ModVecMn = modevecs-diag{ mn)

ModVec = submatrix{ ModVecMn, 1 ,rows(Mmod) ,cols{ Mmod) - 12,cols{ Mmod))
Mode vectors for comparison with expanded modes.
Modelfreq := submatrix{ Tlam , rows(Mmod) - 12,rows(Mmod) ,1,1)

=

C:\. Nlamdas 4elem xls
Modelfreq
]

C:\.\mode vectors 4 elem bt

ModVec
_—

Modelfreq

2.n

g
C g | Een bzt

mn; =

FR, =

FRp
1

1 4546241
2 207.47648
3 285.13044
4 6985.49389
5 822.02806

FR=|86 1399.09157
7 1432.25412
8 1612.43347
9 1706.19266
10 2023.84015
11 2447.49824
12 2968.23238
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1
113.078103
22968103
312447103
412024103
511612103
FR = 6(1.706-103
711.432103
811.398103
9| 822028
10| ©695.494
11| 207.476
12 28513
13 45.462
nr = rows({ModVec)
nr = 588
nc = cols(ModVec)
nc =13
LamFR = augment(Modelfreq,FPg,n)
1 2
13.741-108 | 3.078103
23478108 | 2.968-103
312365108 | 2.447103
411617108 2024103
511.026-108 | 1.612-103
LamFR = 61.149-108 | 1.706-103
718.098107 | 1.432:103
87.728107 | 1.399-103
92668107 | 822028
10| 1.91107 | ©695.494
1111.699-106 | 207.476
12| 3.21106 28513
13| 8.1610% 45.462
XYZ(® ,nr,nc) = |ece1
rxe0
for iel. . nr
rerw+l
Mcc,rc « cbi
if ¢2ne
ccécc+ 1
0
M
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This section of the work sheet is for calculating the permutation matrix for reordering the model

dof for expanding th
Modes( P ,geom) =

SM1 = csort(M1,5)
SM = submatrix(SMl s

L] MM « MMode )
MM

MWN < augment( Nodes ,MMode)
M1 = Modes(ModVec,

rows(SM1)

e test dof.
4

nr < rows(P) 3
ne < cols(®)

My e oV

MMI « XYZ(MV ,nr,3)
for je2. nc
Ml s
MM « XYZ{M1 ,nr,3)
MMode ¢ augment(MM1 ,MM)

Nodes)

+ 1,rows(SM1),1 ,cols(SMl)\

/

C:A Asim p1 n0S nwxl mode xls

SM

C:A\sim p1 n05 wix freq.xls

LamFR
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Appendix B
Plots of the Perturbations Functions for the Model Set
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Figure B-1. Nominal and perturbed model top surface nodes for basis set
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Figure B-1. Nominal and perturbed model top surface nodes for basis set

(continued)
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Figure B-1. Nominal and perturbed model top surface nodes for basis set
(continued)
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Figure B-1. Nominal and perturbed model top surface nodes for basis set
(continued)
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Figure B-1. Nominal and perturbed model top surface nodes for basis set
(continued)
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Appendix C
Model Updating Code for Geometric Updating
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Programs:

This program filters out the ux and uz components for comparsion with the test vector.

UYMode(A) =

Preapares a mode vector for either graphing or analysis

nc « cols(A)
je2

for iel..ﬁ
3

né« j

gV Al

jej+3
B

XYZ(‘I),nr,nc) = |lcc« 1

This program extracts the test points for the model and simulated test data

rc <0
for ie l..nr
rce—rc+ 1

M «— D,

cc, Ic

if rc 2 nc

rc« 0

M

ccecc+ 1

TP(A,c) :=

n < cols(A)

m < rows(c)

for je l..n
for ie 1..m

Bl’.l < A(Ci) ’j
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This program restacks the model into a vector after the interpolation has been compeleted.

Vec(A) := |nr « rows(A)

nc < cols(A)

nv ¢« nc-nr

ke1

je 1

for ie l..nv

Vi «— Ak,j

je—j+1

if j>nc
ke—k+1

je1

ke1 if k>nr

\%
Modal Assurance Criteria for matching model and test modes.

MAC(A,B) := |nra « rows(A) Create a permutation matrix to
reorder the modes that have
beenmatched by the modal
nrb < rows(B) assurance criterion.

nca < cols(A)

ncb « cols(B)
ZzMA(A) := | nc « cols(A)

nr < rows(A)

for je 1..ncb

for ie l..nca
for je 1..nc

MN. .<—A<i>-B<j> .
1) for ie l..nr
AL .<_A<i>.A<i> B, ;e 1if A ;2948
1,_]
B. . «< 0 otherwise
G O i j
B «<B”B
i,j B
(MNi j|)2 EzeroMAQV) := |i « 1
MCi,j AL BL for je 1..cols(V)
5 i (mul?) +
MC if \maxV-”/#0
U<i> « V<j>
ie—i+1
U
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This program completes the interpolation of the model at the test points

InterpTest(M,xm, A xtc'ztc) = ] nmc « cols(M)
nmr <« rows(M)

nxt « rows(x,)

nxm ¢ rows(x)

nzt « rows(z,)

for ke 1..nmc

My « XYZ(M<k> ,nmr,nxm)

for je l..nxt

for ie 1..nzt

Mini i « polin2(7m, XMV, 2 X _)1
, i j

Mtp<k> « Vect(Min)
Mtp

Unwrap(M) := |V « M<1)

for ie 2..cols(M) if cols(M) > 1
V « stack(V, M<i>)
\%

This program determine the appropriate sign the test mode shape at the measurement points
based on the sign of the model mode shhape at the test point loaction. The rationale for this is
that the mode shapes are simalar.

TestM (A,M) = |nc « cols(M)

nr < rows(M)

for je 1..nc
for ie l..nr

A, .

Mt. . « JM.

ij |A. | L]
l,_|

Mt

107



This program scales the test vector point for point by the ratio of the maximum Uy of the model
mode to the test Uy at the loaction of the model maximum

ScaleTest (M, T) := |nc « cols(M)

for ie 1..nc
maxM « max(M<i>) if (max(M<i>) # 0) A (max(M<i>) > |min(M<i>)|)

maxM « min(M<i>) otherwise

Tm « T<i>
je match(maxM, M<i>)

maxM
sf «

m.
!

W

TS~ « sf'T<i>

TS

This program ensures that the test and model eigenvectors have the same phase angle

Phase (M, N) := |n « cols(M)

m < rows(M)

for je 1..n
for ie 1..m

ae— M. .- N. .
1,] 1,]
D, ;& (1N, if |a] > |Ni’j|
D. . « N. . otherwise
1] 1]

’

This program determine the appropriate sign the test mode shape at the measurement points
based on the sign of the model mode shape at the test point loaction. The rationale for this is that
the mode shapes are simalar.

TestM (A,M) := |nc « cols(M)
nr < rows(M)
for je l..nc

for ie l..nr

Mt  « ——

Mt
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Phase (M, N) := | n « cols(M)
m « rows (M)
for jel..n
for iel. m
aeM; - N
Dj j ¢ (=1-N), . if ] > |M; |

D; j« Nj j otherwise

This program scales the test vector point for point by the ratio of the maximum Uy of the model
mode to the test Uy at the loaction of the model maximum

ScaleTest(M,T) :=

nc « cols(M)

for ie l..nc

TS

maxM « max(M(i)) if (max(M@) # 0) A(max(M<i>) 2 Imin(M<i>)|)

maxM « min(MG)) otherwise

Tm « T<i)

je ma(ch(maxM M @ )

maxM

msf «

® ®

TS@ « msf-T<.l>

Builds simulation cases for noisy eigenvectors:

Noise (EV, nL,nf,nl) := | n « rows(EV)

[V
Unwrap (M) := [V M

m « cols(EV)
for jel.m
for ie l..n

NVi_j<— EVi_j if (j<nf)v(j>nl)

nL
NVi_j «— EVi_j + Evl_](7 - md(ﬂL)) otherwise

NV

for ie 2..cols(M) if cols(M) > 1

Ve stack(V,M

v

<i))
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Separate the Geometry from the modes:

XYZnom = submatrixXMNOM, 1,rows(MNOM), 1, 3)

xy7pl W= submatrix(P1WMODE, 1,rows(P1IWMODE), 1, 3)
Xy7p2w := submatrix(P2WMODE, 1,rows(PIWMODE), 1, 3)
XYZp3w = submatrix(P3WMODE, 1,rows(P3WMODE), 1, 3)
XYZp4w = submatrix(P4AWMODE, 1, rows(P4AWMODE), 1, 3)
XyZp1) = submatrix(P1ILMODE, 1, rows(P1ILMODB), 1, 3)
xszZl = submatrix(P2LMODE, 1, rows(P2LMODB), 1, 3)
xyzp3l = submatrix(P3LMODE, 1, rows(P3LMODB), 1, 3)

xyzp4| := submatrix(P4LMODE, 1, rows(P4LMODB), 1, 3)

XyZ .. := submatrix(TPMODES, 1, rows(TPMODES), 1, 3)

stp *
XYZp|3s = submatrix(pl3s, 1, rows(padw), 1, 3) XYZpioe !
XYZplgs = submatrix(pl4s, 1, rows(pa3w), 1, 3) XYZp3c -

XYZowés = submatrix(pw6s , 1, rows(padw), 1, 3)

XYZpwTs = submatrix(pw7s, 1, rows(pa3w), 1, 3)

XYZpalw = submatrix(palw, 1, rows(palw), 1,3) XYZpagw

XYZpa3w = submatrix(pa3w, 1, rows(pa3w), 1, 3) XYZpadw

XYZgixy = submatrix(glxy, 1, rows(glxy), 1, 3) XYZgoxy'
XYZg3yy = submatrix(g3xy, 1, rows(g3xy), 1, 3) X¥Zgaxy
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= submatrix(pl2c, 1, rows(palw), 1, 3)

= submatrix(pl3c, 1, rows(pa2w), 1, 3)

XYZpwic = submatrix(pw3c, 1, rows(palw), 1,3)

XYZpwss = submatrix(pw5s, 1, rows(pa2w), 1, 3)

:= submatrix(pa2w, 1, rows(pa2w), 1, 3)

= submatrix(padw, 1, rows(padw), 1, 3)

= submatrix(g2xy, 1, rows(g2xy), 1, 3)

= submatrix(g4xy, 1, rows(géxy), 1, 3)



Extract y-coordinate mode components:
First extract the modes from the input files

Mnom := submatrix(MNOM , |, rows(MNOM ), 6, colst MNOM ))

Mplw := submatrix(P1WMODE, 1, rows(PIWMODE), 6, cols(tP1WMODE))

M p2w := submatrix(P2WMODE, 1, rows(PIWMODE), 6, cols(P2WMODE))

M p3w = submatrix(P3WMODE, 1, rows(P3WMODE), 6, cols(tP3WMODE))
Mp4w := submatrix(P4WMODE, 1, rows(P4WMODE), 6, cols(tP4WMODE ))

M ;| := submatrix(PILMODE, 1, rows(P1ILMODE), 6, cols(PILMODE))

pl
M p21 = submatrix(P2LMODE, 1, rows(P2LMODE), 6, cols(P2LMODE))
M p3l = submatrix{ P3LMODE, 1, rows(P3LMODE), 6, (cols(P3LMODE))]

Mp4l := submatrix(P4LMODE, 1, rows(P4LMODE), 6, cols(PALMODE))

Mtp := submatrix(TPMODES, 1, rows(TPMODES ), 6, cols(TPMODES ))

M submatrix(palw, 1, rows(palw), 6, cols(palw))

palw *
Mpa2w := submatrix(pa2w, 1, rows(pa2w), 6, cols(pa2w))
Mpa3w := submatrix(pa3w, 1, rows(pa3w), 6, cols(pa3w))
Mpa4w := submatrix(padw, 1, rows(padw), 6, cols(padw))

Mtp := submatrix(TPMODES , 1, rows(TPMODES ), 6, cols(TPMODES ))

Mpalw := submatrix(palw, 1,rows(palw), 6, cols(palw)) Mp12c := submatrix(pl2c, 1,rows(palw), 6, cols(palw))

Mpa2w := submatrix(pa2w, 1,rows(pa2w), 6, cols(pa2w)) Mch := submatrix(pl3c, 1,rows(pa2w), 6, cols(pa2w))

Mpa3w := submatrix(pa3w, 1,rows(pa3w), 6, cols(pa3w)) Msz := submatrix(pl3s, 1, rows(pa3w), 6, cols(pa3w))
Mpa4w := submatrix(padw, 1, rows(padw), 6, cols(padw)) Mpl4s := submatrix(pl4s, 1, rows(padw), 6, cols(padw))

Mpw3c := submatrix(pw3c, 1, rows(palw), 6, cols(palw))
M := submatrix(glxy, 1, rows(glxy), 6, cols(glxy)) M := submatrix(pw5s , 1, rows(pa2w), 6, cols(pa2w))
glxy pwWS5s p

M g2xy = submatrix(g2xy, 1, rows(g2xy), 6, cols(g2xy)) Mpw6s := submatrix(pw6s , 1, rows(pa3w), 6, cols(pa3w))
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M g3xy := submatrix (g3xy, 1, rows (g3xy), 6, cols(g3xy)) Mpw7s := submatrix (pw7s , 1, rows (padw ), 6, cols(padw ))
Mg4xy := submatrix (g4xy, 1, rows (gdxy), 6, cols(g4xy))
Separate the y-components from the modes
MY [ = UYMode (Mo ) MY 1y, = UYMode (M, ) MYy i= 1-UYMode (M 5 )
MY oy, = UYMode (M ., ) MY 3, = UYMode (M3 ) vo | UvMode (M)
pl3s pl3s
MY := UYMode (M
pAw ( p4w) MY _; := UYMode (M
pll (Mpu) MY 3 := 1-UYMode (M 3. )
MY ) := UYMode (M ) MY 3 == UYMode (M 3
MY i = 1-UYMode (M 4, )
MY 4 = UYMode (M
p4l (Mpa) MY ¢ = UYMode (M, )
MY pu3c = 1L.OUYMode (M. ) MY 56 = 1LOUYMode (M s )
MY 65 = 1.0UYMode (M 60 ) MY 76 = LOUYMode (M 5y7¢ )
This equation adds noise to the test modes:-> MY p = Noise (MY tpnf - 0,1, 13)
MY = UYMode (M
palw (Mparw) MY Loy = UYMode (M 00, )
MY 3, = UYMode (M 53, ) MY 14, = UYMode (M 4., )
MY 51 = 1-UYMode (M5, ) MY 5, = UYMode (M 4, )
MY 53, = 1-UYMode (M 53, ) MY 4y, = UYMode (M g, )

Next provide the simulated test measurement points for the test plates and the

coordinates for the Model

s o\ 2, == submatrix (MNOM |, 1,14,3,3)
' 2.165
x={ 2 nr := rows (xyz nom) nc := 14
4.29
3.75 z,:= ) nr
6.417 i=1.—
nc
7.48
Xm = MNOM ) 2.165
8.268 ! ’
429
Z coordinates without z=0 at the boundary:--> z,:=| 6.417
7.48
X = (0 0.667 1333 2 2667 3333 4) 8.268
T

1.308 | 1.962

2.615| 3.269 | 3.923
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X = submatrix(xt, 1,3,1, 1)

z, = submatrix(zt, 1,5,1, 1)

2.165

0.25 429
x=| 2 z,=| 6417
3.75 7.48
8.268

Determine the interpolated model modal displacements at the test points using spline
interpolation

MY, om = InterpTest (MYnoms’Zm'xm’Zt’xt) MYtpll := InterpTest (MYp“,zm,xm,z[,xl)

MYtplw = InterpTest (MYplw,zm,xm,zt,xt) MYtp2l := InterpTest (MYp2l’Zm”%n’Zt’xt)

: MY := InterpTest (MY 51,2 ,x .z,
MY oy = InterpTest(MYp2w,zm,xm,z[,xt) tp3l ( p31° Zm> *m> Zt "t)

. MY := InterpTest (MY 4,2 _,x_,Z,
MY 3y, = lnterpTest(MYp3w,zm,xm,zt,x[) tp4l ( p4l Zme Xme %t xt)

MYtp4w := InterpTest (MYp4w’zm’xm’Zt’xt) MYTP = lnterpTc:st(MYtp ’Zm’xm’zt'xt)

MYtpalw = lnterpTest(MYpalw,zm,xm,zt,x[) MYtpa2w := InterpTest (MYpa2w’Zm’ xm,zt,xt)
MYtpa3w := InterpTest (MYpa3w’Zm’xm'Zt"‘t) MYtpa4w := InterpTest (MYpa4w'Zm’xm’ Zt”‘t)

MY g5y = InterpTest (MY gy 020 %024, %) MY oo,y i= InterpTest (MY goy 02 Xy, 2401

MYtg3xy := InterpTest (MYg3xy’ Z 0 X Zg o "t) MYtg4xy := InterpTest (MYg4xy’ Z X 2o xt)
MYtpw3c := InterpTest (Mpr3c’zm’xm’zt’xt) MYtplZc := InterpTest (MYplzc’Zm’xm*Zt”‘t)
MYtprs := InterpTest (MYpWSS 2 Zm Xmp 2o xt) MYthc := InterpTest (MYpl3c’ Zn X Zp> "t)
MYtpw6s = InterpTest (Mpr6s yZy xm,zt,xt) MYths := InterpTest (MYsz,zm, X Z¢> xt)
MYtpw7s := InterpTest (Mpr7s 2 Zimo X Zg» "1) MYtpMs = InterpTest (MYpl4s’ Zo Xme Zp x‘)
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Use the sorted nominal modes to reorder the test plate data.

Test modes ready for testing method

MACYnYt:= MAC(MYmom, MYTP) P2 = ZMAC(MACYnY?

T
MY, = MYp-Pz MY,p = Phase{ MY, . MY

tps * tnom’ tps)

P1W modes ready for testing method (correct phase).

MCYtYwl = MAC(MYtstP’ MY Plw := zMAC(MCYtYw])

tplw)

T
MYlw := MY -Plw MYlwp = Phase(MYtstP, MYlw)

tplw

P2W_modes ready for testing method

MCYtYw2:= MAC(MYtstp , MYtpzw) P2w := ZMAC(MCYtYw2)
T
MY2w := MY, . -P2w
tp2w MY2wp := Phase{ MY g p, MY2w)
P3W _modesready for testing method
MCYtYw3 := MAC(MYtstP, MYtp3w) P3w := ZMAC(MCYtYw3)
T
MY3w := MY, 3, -P3w MY3wp := Phase{ MY gp, MY3w)
P4W modesready for testing method
MCYtYw4 := MAC(MYtstP ,MYtp4w) P4w := zZMAC(MCYtY w4)
T
MY4w = MY,y -Pdw MY4wp := Phase( MY, p- MY4w)
P1L modes ready for testing method (correct phase).
MCYtY1l := MAC(MYtps MYy l) PIL:= zZMAC(MCYtYl1l)
Y1l:= MY, -PIL MY llp := Phase MY 1
MYIl:= MYy p:= ase( tstp> MY )
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MYl = MY, -PIL’ MY 1ip

tpl
P2L modes ready for testing method
MCY(YI2 := MAC(MY p . MY )

MY2l := MY, -P2I"

tp2l

P3L modes ready for testing method

MCYLY13 := MAC(MY p , MY, 3))

T
MY3l := MYtp3l'P3l MY3lp

P4L modes ready for testing method

MCYtYl4 := MAC(MYmP ,MYtpM)

= Phase( MY p - MYII)

P21 := zZMAC (MCYtYI2)

MY2lp := Phase(MY gp , MY2l)

P31 := zMAC (MCYtY13)

= Phase(MY ,p . MY3l)

P41 := ZMAC (MCYtY14)

T
MY4l:= MY, - P4l MY4lp := Phase(MY p , MY41)
Asymmetric modes for comparison
MCY(Y law := MAC (MY gp , MY 1,1, ) Pal := ZMAC (MCYtY law)
T
MYal = MY, -Pal MY law := Phase(MY p , MYal)
MCYtY2aw := MAC (MY p MY 0 ) Pa2 := zZMAC (MCYtY2aw)
T
MYa2 := MY, -Pa2 MY2aw := Phase(MY gp , MYa2)
MCY(Y3aw := MAC (MY gp , MY 13, ) Pa3 := ZMAC (MCYtY3aw)
T
MYa3 := MY, 3, -Pa3 MY3aw := Phase(MY gp , MYa3)

MCY(Y4aw := MAC(MY yp . MY a4y, )

MYa4 := MY, . -Pad"

tpadw

Pa4 := zMAC (MCYtY4aw)

MYdaw := Phase(MY MYa4)
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MCYtYglxy:= MAC(MYgp, MYtglxy) Pgl:= zMAC(MCYtYglxy

T
MYgl:= MY, Pgl .
tglxy MYglxy:= Phasq MY p, MYgl)
MCYtYg2:= MAC(MY,p, MYthXy) Pg2:= ZMAC(MCYtYg2
= 3 = Phas MY, ,p, MYg2
MYg2:= MY, Pg2 MYg2xy:= Phasd MY p, MYg2)
MCYtYg3xy:= MAC(MY p, MYtg3xy) Pg3:= ZMAC(MCYtYg3xy
Yg3:= MY g = Phasd MY, _p, MYg3
MYg3:=M tg3xy'Pg3 MYg3xy:= hase( tstP> g )
MCYtYgdxy:= MAC(MY¢p, MY,, 4Xy) Pgd:= ZMAC(MCYtYgdxy
. T Pp—
MYgd:i= MY,gq,, Pet MYgdxy:= Phas{ MY ;p, MYg4)
MAC 3¢ = MAC(MY 30 MY p)  zpwic:= ZMAC(MAC,,3)

Uy, =MY -zpw3c
pw3c ™ " Ttpw3c Upw3c = Phasq MY, p, UYp3.)

MAC 55 = MAC(MY 50, MYp)  zpwSs = ZMAC(MAC 5]
UYpyss = MYy 55 2pwSs UpwSs := Phas MY gp, Uprss)
MAC .65 = MAC(MYtpw6S, MY p) zpws := zMAC(MApr6S)
UYp s = MYypys ZPWES Upwbs := Phase{ MY gp. Upr6S)
MAC 7 = MAC(MYtpw.,S, MY,p) zpwTs:= zMAC(MApr7S)
UYpy 75 = MY 70 2PWTs Upws := Phas{ MY gp. UYPW7S)
MAC . = MAC(MYtplzc, MYyp)  zpl2c:= zMAC(MACpl2C)

UY, =MY -zpl2c )
pl2c tpl2c Upl2c := Phase MY gp, UYplzc)

MAC 3. i= MAC(MY, 30, MY p) zpl3c := 2MAC(MAC3.)

pl3c*

UY,y3c = MYpp302pl3c Upl3c:=Phase MY gp., UY,3 J
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MAC

UYp13S .

MAC

UY 4 = MY

p

pl3s-

=MY

= MAC(MYthS'MYtStP)

tp]3SZpl3s

tplds’ zplds

plds = MAC(MYtpMs ’ MYtstP)

2pl3s := 2MAC(MAC ;3

Upl3s := Phas MY gp UY,3 J
zplds := ZMAC(MAC 4 )

Uplds = Phase MY p . Uy, 45)

Stack modes for runnign test case and strip out unmatched modes

Mt = Unwrap(MYtstP)
MIlw = Unwrap(MY lwp)
M2w := Unwrap(MY2wp)

M3w = Unwrap(MY3wp)

M4w = Unwrap(MY4wp)
Mla := Unwrap(MY law)

M3a := Unwrap(MY3aw)

Mgl := Unwrap(MYglxy)

Mn := Unwrap(MYmom)
MIL := Unwrap(MY llp)
M2L := Unwrap(MY2lp)

M3L := Unwrap(MY3lp)

MA4L := Unwrap(MY4lp)
M2a := Unwrap(MY2aw)

M4a := Unwrap(MY4aw)

Mg2 := Unwrap(MYg2xy)

Mg4 := Unwrap(MYg4xy)

Set up A matrix for the Least squares solution and strpping out unmatched mod

A = augmen(Mn,Mlw,M2w ,M3w,M4w ,MIL,M2L,M3L,M4L,Mla,M2a,M3a, M4a)

rank(A) = 13

The Test modes are put into the b vector:

b =Mt

Mw3c := Unwrap(Upw3c)
MwSs := Unwrap(UpwS5s)
Mwé6s := Unwrap(Upwb6s)
Mw7s := Unwrap(Upw7s)

MI2c := Unwrap(Upl2c)

Ml3c := Unwrap(Upl3c)
M13s := Unwrap(Upl3s)

Ml4s := Unwrap(Upl4s)

Mg3 := Unwrap(MYg3xy)
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Solve for the basis vector coefficents

x = geninv(A)-b

0.076 | 5.077-10 -3 -0.335 | 4.352-10 -3

Ag = augment(Mgl ,Mg2 ,Mg3 ,Mg4)

€
Geol : 2

0 V) @
augment{ XyZpjy, S XYZpoy S XYZp3w 5 XVZpay

Geo2 :

% % 19, 0,
augment| xyz pl 1 , XyzZ p2| » XyzZ p3l » Xyz P4]

@ @ @ @
Geo3 := augment XYZpalw  XZpadw  XVZpadw  »XYZpadw

% 9,

( 0]
Geod = augment(xyz XYZgoxy o X¥Zgixy 2 XYZgaxy )

glxy

(
Gall = augment(xyz ? , Geol , Geo2 , Geo3 ,Geo4)

nom
Aall := augment(A, Ag)

cols(Aall) = 17 rank(Aall) = 17

xall := geninv(Aall)-b
Aexw := augment(Mw3c , Mw5s ,Mwés , Mw7s ) Aml := augment(A, Aexw)

rank(Aexw) = 4 AExall := augment (Aall, Aexw) rank(Aml) = 17

rank (AExall) = 21 Xex = geninv(AExall)- b

xml := geninv(Aml)-b
rank(Aall) = 17

rank( AExall) = 21

Aexl := augment(MI2c , MlI3c ,MI13s ,Ml4s ) Amf := augment(AmI , Aexl)

rank(Aexl) = 4 rank(Amf) = 21

xmf := geninv(Amf)-b
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A matrix for updating solution including all 25 models:

Axwl := augment( AExall, Aexl) rows (Axwl) = 195 cols(Axwl) = 25

rank( Axwl) = 25 _ .
Xewl = geninv(Axwl)-b svds (Axwl) | = 3.283x 10°

Condition number for Axwl is approximately 68400 svds(Axwl),; = 0.048

@

@
Gexw := augmen XYZpw3c ’(xyzpw5s)

% ()
X¥Zpowes XYZpwTs

9
Gnxy := augmem(xyz nom ,Geol ,GeoZ,Geo})

Gml := augment(Gnxy , Gexw)

G oxaj) := augment(Gall, Gexw) upml := Gml-xml

upall := Gall-xall

@

9
Gexl := augmen xyzp|2c ,(xyzch)

€ 0))
X¥Zp13s 2 XYZpl4s
Gmf := augment(Gml , Gexl) Gawl = augment(Gexa", Gexl)

upmf := Gmf-xmf

upexwl = Gawl-x, |

Save weighting coefficients for plotting:

B := submatrix(MNOM , 1,rows(MNOM ), 4,5)
( W 3 )
Nodeup := augment\ MNOM ,upall, MNOM ~ |B
Upex = Gexall Xex
sgeo := csort( geonom, 5)

botpl := submatrix(sgeo, 1,98, 1,5) UPgp := stack(botpl , Nodeup )

UPGEO := csort(UPgp ,4) 119



Gwl := XYZ (upexwl , 98, 14)

(p
upnodall := XYZ(upexwl, 98, 14) tpnode := XYZ(TPMODES 2 ,98, 14)

ERa :=

upnodall — tpnode
tpnode

—

-100

. 0.112 0.12
0.21] 0.191| 0.186| 0.189| 0.194| 0.196
ERa = §A§ 0.117| 0.098| 0.093| 0.096| 0.101| 0.103
gé 0.327| 0.308( 0.303| 0.306| 0.312]| 0.313
§ -0.086| -0.105| -0.11] -0.107| -0.102 -0.1
%@é 0.477| 0.458| 0.453| 0.456| 0.461| 0.463
-0.051| -0.071 | -0.076 | -0.073 | -0.068 | -0.066

[€))
Nodeupxl := augment(MNOM

min(ERa) = -0.119

UPgpxl := stack ( botpl , Nodeupxl )

(3 )
,upmf , MNOM ,B

UPGEO := csort (UPgpxl, 4)

max(ERa) = 0.477

plate p2 +/- 5% noise

( @ 98,14)
Gwl , XYZ\TPMODES ,98, 14,
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Appendix D
Nominal Model and Test Data
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PLATE R2 1B MODE PLATE R2 2B MODE

PLATE R2 3B MODE
PLATE R2 4B MODE

PLATE R2 3T MODE
PLATE R2 4B MODE

PLATE R2 1C2B MODE
PLATE R2 4T MODE

Figure D-6. Absolute value plots of R2 modes
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PLATE P1 2B MODE

PLATE P1 1B MODE

PLATE P1 2T MODE PLATE P13B MODE

1}

PLATE P1 4B MODE PLATE P1 3T MODE

PLATE P1 1C2B

PLATE P11C1B MODE

PLATE P14T MODE

Figure D-7. Absolute Value plots for P1 modes
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PLATE P2 1B MODE PLATE P2 1T MODE

PLATE P2 2T MODE

PLATE P2 2B MODE

PLATE P2 3B MODE
PLATE P2 3T MODE

PLATE P2 1C18B PLATE P2 4B MODE

PLATE P2 1C2B MODE PLATE P2 4T MODE

Figure D-8. Absolute value plots for P2 modes
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PLATE P3 1B MODE PLATE P3 1T MODE

PLATE P3 3B MODE
PLATE P3 28 MODE

PLATE P3 3T MODE

PLATE P31C1B MODE

PLATE P3 1C2B MODE

PLATE P3 4T MODE

Figure D-9. Absolute value plots for P3 modes
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PLATE P4 1B MODE

PLATE P4 2B MODE

A

PLATE P4 3B MODE PLATE P4 3T MODE

PLATE P4 1C1B MODE
PLATE P4 4B MODE

PLATE P4 4T MODE
PLATE P4 1C2B MODE

PANNO

Figure D-10. Absolute value for P4 modes
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