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Abstract 

This study combines the anthropological focus upon skeletal variation with 

the pathological interest in trauma to reveal the immense variation and complexity 

in laryngeal structures. Further, this study dispels the notion of a causal 

relationship between advancing age and fusion of the hyoid bone. 

Anthropological studies of hyoid anatomy are rare, primarily focusing upon 

correlating fusion with advancing age (see O'Halloran and Lundy, 1987) and 

secondly upon discerning aspects which contribute to hyoid fracture (see Pollanen 

et al., 1995; Pollanen and Chiasson, 1996; Pollanen and Ubelaker, 1997). These 

examinations fail to address the true morphological variability that characterizes 

the hyoid. 

The hyoid structure is traditionally described in anatomical treatises as a 

"U" shaped bone of a consistent form, a form that develops and fuses with 

advancing age. However, a preliminary investigation (Bennett and Marks, 1998) 

demonstrated that often the juncture of the greater horns and the body remain 

unfused throughout adulthood. To date, standard anatomical texts refrain from 

acknowledging this variability, erroneously perpetuating the concept that the 

greater horns are nothing more than epiphyses of the hyoid body. Exploration into 

the range of skeletal variation inherent in the hyoid is crucial for interpretation of 

trauma, given that the fragility and location of the laryngeal structures render them 

especially vulnerable to traumatic injury. 
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Towards this end, the structure of the hyoid, as revealed by the extent of 

fusion and overall size measurements, was compared against recorded age, sex and 

ancestry. Hyoid specimens, (N=1814) maintained at the Department of 

Anthropology at The University of Tennessee, were examined for fusion and 

categorized as unfused, unilaterally fused, or bilaterally fused. Specimens that 

exhibit incomplete or partial fusion were subsequently scored on the pattern and 

degree of bony union between the body and the greater horns. Additionally, a 

series of measurements were performed to quantify overall size and shape. This 

research demonstrates patterns of fusion and will further illustrate the 

morphological variation that characterizes this skeletal structure. 

Osteologists and anatomists must recognize the true variability of this 

structure, specifically by exploring the presumed relationship between advanced 

age and fusion, and further by developing an awareness of the degree of 

morphological variation which characterizes the hyoid bone. This study 

demonstrates the structural nuances that characterize the hyoid bone and 

subsequently generates information to competently and precisely interpret neck 

trauma. 
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Chapter I 

Introduction 

The hyoid is comprised of several distinct skeletal components; the body 

and pairs of greater and lesser horns. However, throughout the scientific literature 

it is most often described and depicted as a single fused element (see for example, 

Jackson, 1914; Schaffer, 1953; Hiatt and Gartner, 2001 ). Commonly presented as 

"horseshoe shaped or U-shaped or sometimes as u-shaped" (Papadopoulos et al. 

1989:249), the hyoid is nearly always described as a symmetrical structure. 

Papadopoulos and coworkers found that asymmetry and anisometry occur in 

approximately half of the population noting that "the classical forms of the 

conventional descriptions are not the most frequent" (1989:256). In addition, they 

recognize that upwards of five shapes characterize human hyoids, noting that this is 

not mentioned in the literature. 

Anatomical treatises perpetuate the hyoid as a single bone of a consistent 

form that develops and fuses with advancing age (see for example, Johnson and 

Moore, 1989; Jackson, 1914). Gray's Anatomy describes the hyoid in this same 

manner. 
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"In early life they (the lateral surfaces) are connected 
to the cornua by cartliagenous surfaces, and held 
together by ligaments and occasionally a synovial 
membrane is found between them" yet after "middle 
life are joined to the greater cornua" (Pick and 
Howden 1977:23). 

Similarly, a standard osteology text claims" the greater horns take a long 

time to fuse to the body and in fact remain separate in rare cases" (Steele and 

Bramblet 1988:52). A recently published clinical anatomy text further supports 

this view, noting that the greater horns are "attached by a cartilagenous connection 

earlier in life. The cartilage ossifies in middle-aged individuals" (Hiatt and 

Gartner, 2001 :82). 

These publications promote the concept that the hyoid's greater horns, in 

effect, function as epiphyses of the body. This interpretation, therefore, biases the 

potential anatomical, pathological, and clinical evidence that can be gleaned 

through examination of the components of the hyoid bone. Although the literature 

produced within these disciplines contains a wide variety of references to hyoid 

conditions, these reports suffer from a failure to recognize the variability that 

characterizes the human hyoid bone. Clearly, a thorough appreciation of the range 

of variation inherent in this structure is crucial for the accurate assessment of the 

hyoid in both antemortem and postmortem situations. 

The fragility and location of the laryngeal structures which constitute the 

anterior neck, render them especially vulnerable to traumatic injury. Fractures of 

the laryngeal structures are frequently associated with manual and ligature 
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strangulation. The external manifestation of such trauma is not always evident 

(Spitz, 1980). Often, assessment of the condition of the hyoid bone components 

may merely involve palpation of the laryngeal structures. Hence the implications 

of an accurate understanding of hyoid morphology at autopsy is great. Postmortem 

examinations must incorporate a thorough awareness of the morphology that 

characterizes the hyoid bone, in particular by reflecting on the presumed 

relationship between advanced age and fusion of the elements. Osteologists and 

anatomists must further consider the true variability of this structure by developing 

an appreciation for the degree of morphological variation that characterizes this 

delicate structure. Unfortunately, such interpretations are plagued by the 

unquestioned acceptance that the skeletal elements of the hyoid bone unite with 

advancing age. Understandably, this erroneous assumption regarding the 

development of the laryngeal skeleton is frequently incorporated into forensic 

interpretations. 

Research has demonstrated that the cartilagenous components of the humaq 

larynges exhibit a high degree of variability (see for example, Maue and Dickson, 

1971 ). Overall size differences have been noted for the laryngeal cartilages of 

males compared to females. Maue and Dickson, ( 1971) do note that a high degree 

of variation characterize structural attributes of specific laryngeal components. 

Further that these structures demonstrate a high degree of within group (i.e., 

gender) variability (Maue and Dickson, 1971). Similarly an appreciation of the 

potential morphological variability which characterizes the hyoid bone must be 
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generated and is crucial in clinical and pathological assessments. It is not the aim 

of this study to suggest that union does not occur. Moreover, it is to propose that 

union should not be unequivocally associated with advancing age synonymous with 

overall skeletal maturation. Nonunion of the components of the hyoid bone in 

individuals of middle and advanced age must be considered during forensic 

examination of the components of the larynx. 

The anthropological value of the human hyoid, as proposed long ago by 

Wortman (1889), continues to be unrealized. Though he suggested the hyoid bone 

holds the potential to distinguish between population groups, he further noted that 

this bone has not received the appropriate investigative attention from 

anthropologists in comparison to anatomists. Particularly insightful, this 

commentary may in part explain the absence of appreciation for morphological 

variation of the structure. Wortman notes that anatomists 

"seem to be pretty well agreed in assigning the 
middle period of life as the time which the greater 
cornua of the hyoid unite or coossify with the median 
piece or body, and a much later period for the bony 
union of the lesser cornua" (1889:81). 

Further, and of particular interest, he states that, 

"no less an authority than Meckel is responsible for 
the statement that the five pieces rarely unite and 
should be considered as so many separate bones" 
(1889:81). 
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He further professes that others accept Meckel's interpretation and subsequently 

proposes that fusion should be considered a pathological condition (YI ortman, 

1889). It has also been suggested that union of components of the hyoid bone may 

have one of two developmental tendencies. Koebke suggests that the occurrence of 

an osseous union between the body and the greater horns or the existence of a joint 

at this location may be determined during fetal development. 

" ... two divergent developmental tendencies can be 
taken into consideration. In some cases a synovial 
joint is formed, other hyoid bones show 
characteristics indicating a possible fusion of the 
body and the greater horns" (1978:286). 

However, absent from this location are structures that would warrant classification 

of the juncture of the hyoid body and the greater horns as a synovial joint. 

Survey of the hyoid bone must delve deeper than merely suggesting that 

advanced age can or cannot not be equated with fusion. The developmental and 

dimorphic attributes of the hyoid bone must be thoroughly explored. In particular, 

consideration must be given to whether there are patterns to fusion and whether 

such patterns can be correlated with age, ancestry and or sex. Further, the 

evolutionary and functional significance of the hyoid bone must be addressed as 

such may illuminate and explain potential morphological features. In addition, a 

thorough exploration must incorporate a substantial sample size which represents 

the population in age range and ancestry. 
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Project Aims 

The goal of this research is to objectively investigate the structure of the 

human hyoid bone. Analysis of the sample will follow the techniques established 

from previous research (see Chapter III). Both metric and visual data will be 

generated to accurately assess the degree of morphological variability which 

characterizes human hyoid bones from birth to maturity. This study will provide 

data that illuminates developmental and degenerative aspects of the hyoid. Such 

will enable more accurate pathological, anthropological, anatomical, and clinical 

examinations of the bone. This data will provide an objective means to interpret 

neck trauma, clinical conditions, and morphological attributes of the hyoid bone 

with greater precision. Specific considerations will address: 

1. Does overall size and shape, as depicted through a suite of measurements, 

correlate with age, sex and/or ancestry? 

2. Are certain structural characters associated with sex or ancestry? 

3. Are there correlations between advancing age and the development of 

morphological features? 

4. Can fusion between components of the hyoid be correlated to age, sex and/or 

ancestry? 

5. Is there a structural pattern to fusion between the body and the greater horns of 

the hyoid bone? 
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6. What are the implications of this study for forensic pathologists, forensic 

anthropologists and clinicians? 
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Chapter II 

Laryngeal Anatomy 

The Laryngeal Complex 

The larynx, essentially a cartilaginous cylinder, surrounds and protects the 

glottis and functions as a chamber for the movement of air between the nasal and 

oral pharynx and the trachea. Situated in the anterior neck between the third and 

seventh cervical vertebrae, the adult laryngeal complex is comprised of several 

cartilaginous components and a skeletal structure; the hyoid bone ( see Figure 2.1 ). 

The superior most component, the hyoid bone, is comprised of a body and paired 

greater and lesser comua, and provides an anchor points for numerous muscles. 

The cricoid cartilage delineates the inferior boundary of the larynx and further 

functions to support the trachea (see for example Hiatt and Gartner, 2001; 

Liebgott, 1986). 

The adult larynx consists of three large cartilages; the epiglottis, the 

thyroid and the cricoid. Three smaller paired cartilages crucial for the production 

of speech sounds, are the arytenoids, the comiculates, and the cuneiforms. In 

addition, a pair of accesory cartilages, the triticeals, complete the laryngeal 

cartilage structures. The thyroid, cricioid and arytenoids are comprised of hyaline 

cartilage whereas the epiglottis, the comiculates, and the cuneiforms are elastic 
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Epiglottis 

Hyoid bone 

---Superior horn of 
Thyroid cartilage 

+-----+--_,Superior Thyroid 
Thyroid;;.._ _____ ~_ notch 
cartilage 

Cricoid ---------cartilage 
Inferior horn of 
Thyroid cartilage 

Figure 2.1 

racheal rings 

Anterior view of the laryngeal complex depicting the hyoid bone 
and cartilages of the larynx with associated membranes. Adapted 
from Netter, 1989. 
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cartilage. A network of ligaments and muscles maintain the functional integrity 

of the laryngeal complex. 

Cartilaginous Laryngeal structures 

The epiglottis, a flat-blade shaped structure that automatically blocks the 

entrance to the trachea during swallowing, is located superior to the thyroid and is 

protected on its posterior surface by the hyoid (see Figure 2.2). The thyrohyoid, 

or hyothyroid, membrane lies between the anterior epiglottis and the posterior 

hyoid surfaces (Schaffer, 1953). Tapered at the inferior border the epiglottis is 

marked by a tubercle, the petiole, which serves as the attachment site for the 

thyroepiglotic ligament. This connects to the inferior aspect of the dorsal surface 

of the thyroid (Jackson, 1914). The shield-shaped and slightly conical thyroid 

cartilage is comprised of two quadrilateral shaped laminae. The anterior surface 

is marked by a vertical ridge, the laryngeal prominence, produced by the inferior 

fusion of the laminae along the midline (Moore, 1992). The angle of union of the 

laminae is more acute ( on average 60°) in males compared to ( approximately 90°) 

in females (Grant, 1972). The anteroposterior dimension is greater in males than 

in females (Maue and Dickson, 1971). The anterior surface is further 

characterized by a pair of laterally located oblique lines, attachment sites for 

infrahyoid muscles. The supero-anterior surface is noticeably marked by a deep 

incisure, the superior thyroid notch. Both the superior and inferior aspects of the 

posteriolateral thyroid are characterized by small tubular projections, greater, or 



Epiglottis 

Corniculate 
cartilage 

Arytenoid 
cartilage 

Inferior horn of __ ____,,,.,.. 
Thyroid cartilage 

•--+ __ Superior horn of 
Thyroid cartilage 

Thyroid cartilage 

·---------Thyroepiglottic 
ligament 

Cricoid cartilage 

Figure 2.2 Posterior view of the laryngeal structures. Adapted from Netter, 
1989. 
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superior, and lesser, or inferior, horns. Though all project slightly posteriorly, the 

greater horns are longer and the distance between the tips of the superior and 

inferior horns is significantly greater for males than for females (Maue and 

Dickson, 1971; Garrison and Hast, 1993). Additionally, among males the 

distance between the span of the superior horns is significantly greater than the 

span of the inferior horns (Maue and Dickson, 1971). 

The thyrohyoid ligament, an extrinsic ligament, attaches the anterior 

aspect of the hyoid bone to the thyroid cartilage. The lateral portions of the hyoid 

bone are bound to the thyroid cartilage by the thyrohyoid membrane. Both 

supero-lateral zones of this membrane are permeated by symmetrical foramina 

through which the internal laryngeal nerve and the superior laryngeal artery and 

vein pass. A pair of accessory cartilages, the triticeals, are located within the 

thyrohyoid membrane, superior to the superior horns of the thyroid cartilage 

(Jackson, 1914 ). Embedded within the membrane, these cartilages are derived 

from the cartilage which connects the hyoid body and the lamina of the thyroid 

cartilage during the embryonic period (Porrath, 1969). 

Located inferior to the thyroid is the ring-shaped cricoid cartilage. Narrow 

on its anterior surface, at the cricoid arch, the cricoid cartilage provides stablility 

for the inferiorly situated tracheal cartilages and gives rise to muscles of 

respiration. The broader posterior aspect, the cricoid lamina, forms the posterior 

border of the laryngeal cavity (Jackson, 1914 ). The lateral aspects of the cricoid 

cartilage are bound to the inferiorly situated trachea by the cricotracheal 
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ligaments. The superior surface of the cricoid is marked by the thyrocricoid 

facets; the site of articulation with the thyroid (Maue and Dickson, 1971 ). 

Accessory bands, the median cricothyroid ligaments, maintain the articulation 

between the inferior horns of the thyroid and the lateral cricoid at the cricothyroid 

articular capsule. Rotary movement and slight forward and backward motion is 

permitted at this joint (Jackson, 1914). Aspects of the cricoid cartilage exhibit 

statistically significant size differences between male and females (Maue and 

Dickson, 1971 ). 

The cartilage components of these laryngeal structures provide attachment 

sites for numerous extrinsic muscles which are involved in the stabilization of the 

larynx and transmission of material through the pharynx. The inferior constrictor, 

a pharyngeal constrictor originates on the lateral aspects of the thyroid and cricoid 

cartilages and functions to propel food particles into the esophagus. Two 

laryngeal elevators, the palatopharyngeus and the salpingopharyngeus, insert on 

the thyroid cartilage. In conjunction with the thyrohyoid, geniohyoid, stylohyoid, 

and hyoglossal muscles (see below) the laryngeal elevators elevate the larynx 

(Dickson and Maue, 1970). 

Located superior to the cricoid within the protective cavity of the thyroid 

cartilage are the three pairs of smaller cartilages. A network of ligaments; 

intrinsic, extrinsic and ventricular and vocal, bind the smaller cartilage 

components together and are involved in sound production. The largest of these 

is the triangular-shaped arytenoid cartilages, from the Greek arytaina, ladle 
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shaped (Garrison and Hast, 1993). The most mobile of all laryngeal cartilages, 

the arytenoids, unite with the superior cricoid lamina at the cricoarytenoid 

articulation, a loose capsular joint (Jackson, 1914). The cricoarytenoid ligaments 

maintain this loose articulation and enable a minimal, though broad range of 

movement (see Netter, 1989). The lateral aspect of each cartilage joins with the 

epiglottis via the aryepiglottic fold. The anterior angle of the arytenoid cartilage, 

the vocal process, serves as the attachment site for bands of elastic tissue, the 

vocal ligaments. Attached to the dorsal surface of the thyroid and the cricoid, the 

vocal ligaments, are enveloped in folds of epithelium called vocal folds. These 

structures are referred to as true vocal cords as the passing of air against the 

vibrating vocal folds produces sound waves. Located superior to the vocal folds 

are the inelastic ventricular folds, or the false vocal cords, which function to 

protect the vocal folds (Hiatt and Gartner, 2001; Liebgott, 1986). Movement of 

the arytenoid cartilages alters the tension within the vocal ligaments which 

subsequently influences the pitch of sound produced. Partially attributable to the 

role of the arytenoid cartilages in sound production, sex differences have been 

noted for these structures. Busuttil et al (1981) suggest the size of the arytenoid 

cartilages is correlated with both the sex of the individual and also standing 

height, with males generally being longer. 

It has been suggested that the arytenoid cartilages are phylogenetically the 

oldest part of the human larynx, likely having evolved from the anterior laryngeal 

cartilage, a fibrocartilaginous plate found in front of the laryngeal eminence in 
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amphibians (Wind, 1970). Curtis and coworkers (1985) found that this structure 

calcifies and ossifies following a radiological assessment of 53-93 year olds of 

which 90% displayed calcification and or ossification. 

The medially projecting apices of the arytenoid cartilage and the small 

conical corniculate cartilages join at the arycorniculate synchondrosis by 

connective tissue. Involved in opening and closing the glottis, the 

posteromedially angled horn shaped corniculate cartilages are occasionally 

continuous with the arytenoids (Jackson, 1914). The small rod like cuneiform 

cartilages are situated anterior to the corniculate cartilages within the aryepiglottic 

fold providing the structural integrity to the larynx. 

The Hyoid Bone 

The hyoid bone, from the Greek "voides" or "ypsiloides" (Papadopoulos 

et al., 1989), is situated high in the anterior neck between the chin and the thyroid 

cartilage, delineating the superior aspect of the larynx. The hyoid bone, os 

hyoideum or os linguae, supports the tongue and provides attachment sites for 

numerous muscles which, in conjunction with the cartilaginous components of the 

larynx, aid in facilitating processes of mastication, deglutition and phonation. 

Suspended from the styloid processes of the temporal bones by the stylohyoid 

ligaments, the hyoid bone is comprised of five segments: a single body, and pairs 

of greater and lesser horns, or comua (Johnson and Moore, 1989, Hiatt and 

Gartner, 2001) (see Figure 2.3). Lacking bony articulations, the components of 
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the hyoid bone are maintained in position by a series of muscles which further 

function to manipulate the tongue, mandible, pharynx and larynx (Lykaki et al., 

1989). A network of muscle pairs, the stylohyoid, geniohyoid, sternohyoid, and 

the digastric muscles radiate in a triangular fashion from the hyoid body and are 

primarily responsible for the integral role the hyoid plays in these system 

functions (Van der Graaff et al., 1984) (see Figure 2.4). 

The body, comprising the central portion of the hyoid bone, is 

quadrilateral in shape, concave posteriorly and convex anteriorly (Johnson and 

Moore, 1989; Parsons, 1909). The anterior surface is prominently marked by a 

horizontal ridge which bisects the body into superior and inferior halves. A 

midline vertical ridge further divides the anterior surface into quarters associated 

with muscle attachment. The superior border is marked by a sagitally oriented 

bony prominence, the glosso-hyal ridge. This landmark, has been noted by some 

as a likely vestige of a highly developed process in non-human species (Jackson, 

1914; Schaffer, 1953). The inferior aspect of the body is thickened, providing for 

attachment of the sternohyoid and mylohyoid muscles anteriorly and the 

thyrohyoid membrane across the inferior margin. 

The prominent posteriosuperiorly oriented projections; the greater horns, 

or greater cornua, articulate with the lateral margins of the body. Slightly 

flattened across the superior aspect, the greater horns, are thickest adjacent to the 

body and terminate in rounded tubercles (Parsons, 1909). The greater horns are 

rough laterally, which Parsons (1909) attributes to muscular attachment and 
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activity, and everted. Scheuer and Black (2000) regard the latter characteristic as 

being more prominent among males. The juncture of the body and the greater 

horns is associated, most frequently on the superior margin, by the presence of the 

lesser horns, or lesser cornua (Johnson and Moore, 1989). These small vertically 

oriented conical projections articulate with the hyoid via a synovial joint and often 

remain cartilaginous in the adult. It has been noted, that the lesser horns connect 

with the body at the inferior border (Jelisiejew et al., 1968). However, it has been 

suggested that the lesser horns rarely ankylose with the body, being more likely to 

fuse with the greater horns (Jackson, 1914). Koebke (1978) attests that a bony 

union between the lesser horns and the hyoid is rare, though occasionally the 

lesser horns will fuse with the greater horns. 

Hyoid Musculature 

A network of muscles permit movement and momentary fixation of the 

components of the hyoid bone. This is critical for normal performance of the 

tongue, mandible, pharynx and larynx (Dubrul, 1977). Eleven pairs of muscles 

support the hyoid apparatus. Four of these, the geniohyoid, mylohyoid, 

stylohyoid and digastric muscle pairs are classified as suprahyoid muscles and act 

to elevate the larynx and manipulate the mandible and the floor of the mouth. 

Infrahyoid muscle pairs include the stemohyoid, thyrohyoid and omohyoid, which 

depress or elevate the hyoid or thyroid cartilages of the larynx (Hiatt and Gartner, 

2001; Moore, 1992). The hyoglossus is paired extrinsic tongue muscle that 
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facilitate gross movements of the tongue. The middle constrictor muscle is a 

pharyngeal constrictor. 

The anterior surface of the hyoid body is most prominently marked by the 

insertion point of the geniohyoid muscle (see Figure 2.3). The geniohyoid muscle 

originates on the inferior mental spine of the dorsal mandibular symphysis , runs 

inferiorly and inserts lateral to the vertical midline of the hyoid body. The 

insertion site comprises approximately half of the anterior surface and provides 

for anterosuperior movement of the hyoid bone, expansion of the pharynx and 

shortening of the floor of the mouth. Situated inferior to the insertion site of the 

geniohyoid muscle is the insertion site of the mylohyoid muscle, a broad flat 

muscle that originates on the mylohyoid line of the mandible. Forming the floor 

of the mouth, contraction of the mylohyoid muscle elevates the hyoid bone and 

the floor of the mouth during swallowing and speaking. 

The stylohyoid muscle, which originates on the styloid process of the 

temporal bone as the stylohyoid ligament, inserts on the inferior aspect of the 

anterior portion of the greater horn. The inferior aspect of the stylohyoid ligament 

attaches on the lesser horns (Scheuer and Black, 2000). In addition to its 

suspensory role, the most superficial of the suprahyoid muscles, the stylohyoid 

muscle elevates and retracts the hyoid generating elongation of the floor of the 

mouth. The stylohyoid muscle overlays the posterior belly of the digastric 

muscle. The flat triangular anterior belly originates on the inferior anterior 

surface of the mandible at the digastric fossa and overlays the oblique course of 
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the mylohyoid muscle. The posterior belly originates at the digastric notch on 

the medial surface of the mastoid process of the temporal bone. The confluence 

of the two bellies occurs at the point of attachment, via a fascia loop, on the 

superodorsal surfaces of the greater horn and the hyoid body. The intermediate 

tendon of the digastric muscle attaches to the lesser horn (Scheuer and Black, 

2000). The digastric muscle functions to depress the mandible and raise and 

steady the hyoid bone during swallowing and speaking. 

The infrahyoid muscles are thin strap-like muscles which originate on 

structures inferior to the hyoid. The sternohyoid muscle inserts on the inferior 

aspect of the anterior surface of the body originating on the oblique line of the 

thyroid cartilage. Situated just lateral to this is the insertion site for the superior 

belly of the omohyoid muscle. The sternohyoid muscle originates on the 

manubrium and the medial portion of the clavicle and acts to depress an elevated 

hyoid. The long thin omohyoid muscle originates on the superior border of the 

scapula at the suprascapular notch and functions to retract and depress the hyoid. 

The short thyrohyoid muscle, which lies deep to the omohyoid, inserts along the 

inferior aspect of the body and the greater horn. Originating on the oblique line of 

the thyroid cartilage this muscle depresses the hyoid bone and elevates the larynx 

(Auger and Lee, 1999). 

The thin broad hyoglossus is an extrinsic tongue muscle that originates 

along the length of the greater horn and the posteriolateral aspect of the hyoid 

body. Under contraction, the hyoglossus, which inserts on the sides of the tongue, 
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depresses the lateral aspects of the tongue. The genioglossus muscle originates at 

the mental spines of the mandible and provides for depression and protraction of 

the tongue. The fibrous components of this muscle constitute the majority of the 

tongue and additionally radiate inferiorly to insert on the superoanterior margin of 

the hyoid body. Lateral to this site, at the base of the lesser horns, is the 

origination point of the small chondroglossus muscle, which joins longitudinal 

muscles of the tongue (Jackson, 1914). 

The middle constrictor muscle is a pharyngeal constrictor that originates 

along the length of the greater horn continuing to the base of the lesser horn 

(Scheuer and Black, 2000). This attachment site is superomedial to the 

origination site of the hyoglossus muscle. The middle constrictor, which lies deep 

to the hyoglossus, constricts the pharynx and in conjunction with the superior and 

inferior constrictors, aids in the downward movement of food through the 

esophagus. 

Laryngeal Development 

A thorough understanding of the intrauterine development and the 

subsequent post-natal maturation of the laryngeal structures are crucial to 

appreciate the function of the laryngeal complex. The earliest embryonic 

recognition of the larynges is evidenced by the separation of the digestive and 

respiratory tracts (Wind, 1970) (see Figure 2.5). This event is recognized by the 

appearance of a median groove, the laryngo-tracheal groove, in the embryo during 
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the third week of intrauterine growth, or the first week of embryonic development 

(Wind, 1970). The remaining period of embryonic growth is characterized by the 

rapid development of all components of the larynx. During the subsequent 

developmental stage, the fetal period, maturation and differentiation of the 

laryngeal elements occur. Ossification of the skeletal structures begins during the 

neonatal period and proceeds throughout childhood. The childhood and juvenile 

periods are characterized by the continuing maturation of all cartilage and skeletal 

components. Maturation associated with puberty influences development of the 

human larynges. Morphological variation and sexual dimorphism are recognized 

in several structures which comprise the adult larynges. 

Embryonic Growth 

The embryonic phase of human growth, the third through the eighth week 

of prenatal development, is often referred to as the period of organogenesis given 

that the rudiments of nearly all major organ systems appear during this stage. At 

this time, the C-shaped embryo is characterized by the existence of a massive 

central neural tube, a notochord and a pharyngeal system (Carlson, 1999). 

Structures and components of the head, face, and neck derive from the pharyngeal 

part of the foregut (Carlson, 1999). The foregut first appears at approximately 19 

days post conception. Formation of the larynx occurs during the following two 

weeks developing into a recognizable structure approximately 33 days following 

conception (O'Rahilly and Tucker, 1973). 
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Adult structures of the head and neck region derive from a series of paired 

swellings, which appear during the fourth week of embryonic development. By 

the fifth week of intrauterine maturation this region is comprised of six lateral, 

mesenchymal elevations that extend ventrally around the developing pharynx 

(Orahilly and Tucker, 1973). Referred to as pharyngeal (or branchial) arches and 

identified by numbers one through six, craniocaudal sequence, each arch consists 

of a precartilaginous mesenchymal core coated with endoderm. The last two are 

rudimentary and often the fifth is absent (Scheuer and Black, 2000). During early 

development, neural crest cells surround the core. These cells migrate into each 

arch and give rise to muscles, skeletal and connective tissues (England, 1990). 

Each arch is innervated by a cranial nerve and supplied by a branch of the aortic 

artery that will continue to supply the mature derivatives (England, 1990). 

The pharyngeal arches are separated by four clefts. These lateral 

expansions of the developing pharyngeal cavity, which intervene between the 

arches, form external and internal grooves, referred to as clefts and pouches, 

respectively (Orahilly and Tucker, 1973; Scheuer and Black, 2000) (see Figure 

2.6). During this phase of embryonic development the physical resemblance to 

the gill respiratory structure of adult fish is often noted (see for example England, 

1990). The arches are analogous to the gills in lower vertebrates while the 

grooves are comparable to the branchial slits ( Jackson, 1914 ). Although these 

structures are in fact similar among reptiles, birds, mammals and fish embryos, it 
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is only the latter that maintain these visceral arch constructs while in other phyla 

they are modified into other structures (Harrison, 1995). Structures of the 

pharynx and larynx, primarily arise from the first four of the pharyngeal arches, 

given that the last two are rudimentary and occasionally the fifth is absent or 

short-lived (Hiatt and Gartner, 2001; Sperber, 2001; Scheuer and Black, 2000). 

Additionally, several features of the head and neck are derived from the 

pharyngeal grooves and pouches (see Figure 2.7). 

The first arch, the mandibular arch, gives rise to the structures of the lower 

face and related muscles of mastication. The cartilaginous component of the first 

branchial arch, Meckel' s cartilage, forms the primary component of the mandible 

and also gives rise to the malleus and incus bones of the middle ear. In addition, 

the anterior belly of the digastric muscle and the mylohyoid muscle are derived 

from the first pharyngeal arch (Sperber, 2001; Carlson, 1999). The mandibular 

branch of the trigeminal nerve innervates these structures (Sadler, 1995). The 

first pharyngeal external groove, caudal to the first arch, deepens to form the 

external auditory meatus ( Jackson, 1914 ). The first internal groove, or pouch, is 

transformed into the tympanic cavity and the eustachian tube (Carlson, 1999). 

Components of the first arch begin to undergo ossification during the late 

embryonic period; at approximately 7 weeks post conception. The mandible 

(lateral portions of first arch cartilage) evidences onset of ossification at 44 days. 

Ossification of the anterior process of the malleus, the lateral most bone of the 

middle ear, begins approximately two days later (O'Rahilly and Gardner, 1972). 
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Embryologically, the hyoid and associated structures arise from the second 

and third branchial arches. The second arch, the hyoid arch, contributes to 

superior aspects of the hyoid bone and related structures (Hiatt and Gartner, 

2001). The dorsal aspect of the second arch cartilage, Reichert's cartilage, gives 

rise to the lesser horns of the hyoid and the upper (superior) portion of the body 

(Sadler, 1995). The styloid processes of the temporal bone and the stapes, the 

third and medial most ear ossicle, are derived from the ventral section of the 

second pharyngeal arch. The adjacent section gives rise to the stylohyoid muscle 

and the posterior belly of the digastric, in addition to muscles of facial expression 

(Hiatt and Gartner, 2001; Carlson, 1999). The facial nerve innervates the 

musculature of the second arch (Sadler, 1995). Alternatively, it has been 

suggested that portions of the malleus and incus bones derive from the dorsal 

aspect of the second arch (Carlson, 1999). 

The ventral portion of the third visceral arch cartilage, the thyroid arch, 

gives rise to inferior aspect of the hyoid body and the lateral aspects give rise to 

the greater horns (Sadler, 1995). Koebke (1978) proposes that in certain cases 

the ventral aspect of the third arch may be solely responsible for the development 

of the hyoid body, whereas in other individuals, the hyoid body may arise from 

the copula of the second and third arches. The musculature of the third arch, the 

stylopharyngeus, is innervated by the glossopharyngeal nerve (Sadler, 1995). 

The grooves and pouches associated with the second and third arches give 

rise to several laryngeal structures. The caudal growth of the second arch 
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envelopes the third and fourth arches and isolates the second, third and fourth 

clefts (Sadler, 1995). This developmental merger results in the formation of a 

depression, the cervical sinus, which appears to be absorbed and eventually 

disappears (Carlson, 1999). The tonsils are derived from the second pharyngeal 

pouch, while the third and fourth internal grooves give rise to the thymus gland 

and parathyroid glands, respectively (Carlson, 1999). 

Primary cartilages and muscles of the larynx, with the exception of the 

epiglottis, are formed from the fusion of the fourth and sixth arches. The 

epiglottis develops from a round swelling located between the third and fourth 

arches, the hypobranchial (hypopharyngeal) eminence (see Figure 2.5). Two 

inferiorally located swellings, the lateral masses or arytenoid swellings, give rise 

to the arytenoid cartilages (Wind, 1970). These features are recognizable at 

approximately 32 days post conception (O'Rahilly and Tucker, 1973). The 

interarytenoid, aryepiglottic, cricoarytenoid, and crycothyroid muscles are the 

first laryngeal muscles to appear, doing so early in the sixth week of embryonic 

development (Hast, 1972). The superior laryngeal and recurrent laryngeal 

branches of the vagus nerve ( cranial nerve X), innervate the musculature 

associated with these structures (Sadler, 1995). 

The structures of the laryngeal skeleton are not recognizable until 

approximately the seventh week of embryonic development at which point the 

thyroid, cricoid, arytenoids and hyoid appear as rudimentary pre-cartilaginous 

tissues (Wind, 1970) (see Figure 2.8). At this level of embryonic development, 
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the thyroid is comprised of two laterally positioned sections. The cricoid 

completely encircles the trachea and is situated cranial to the inferior border of the 

hyoid. The hyoid, at approximately seven weeks, appears as a large body with 

four prominent superodorsal projections emanating from the lateral aspects of the 

body. These relatively large precursors of the greater and lesser horns are the 

original second and third branchial arches (Wind, 1970). All structures of the 

hwnan larynx are well represented by the end of the embryonic period; at eight 

weeks (Tucker and O'Rahilly, 1972). 

Fetal maturation 

The fetal stage beginning in the ninth week of gestational development is 

characterized by a gradual descent of the larynx and an increase in distance 

between the laryngeal components (Wind, 1970). At almost three lunar months of 

age, the larynx is demonstrably longer (see Figure 2.9). At this point in 

development, resulting from the transformation of mesenchyme, the majority of 

the laryngeal muscles are discernible. Elements of vocalization are vaguely 

recognizable as ovoid swellings located caudal to the arytenoids (Frazer, 1910). 

The corniculate and cuneiform cartilage precursors appear. The epiglottis is 

recognizable, though it this time is comprised of mesoderm, and not cartilage. At 

this developmental stage the thyroid cartilage has united along the caudal margin 

and the inferior horns are in articulation with the cricoid cartilage. Both of these 

structures exhibit thick walls. The relatively large hyoid body exists as a pre-
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cartilage tissue with the precursors of the greater horns maintaining a 

cartilaginous articulation with the upper horns of the thyroid cartilage (Wind, 

1970). The derivatives of the lesser horns maintain a connection with the body 

via fibrous tissue (Koebke, 1978). 

Throughout the early fetal stage maturation of the laryngeal structures 

continues. The two halves of the thyroid cartilage continue to fuse in a cranial 

direction resulting in the superior thyroid notch, which characterizes the 

completed form. The superior horns of the thyroid cartilage separate from the 

hyoid. During the fetal period the cricoid cartilage gradually decreases its bulky 

appearance while the cranial incisure which marks the anterior surface increases 

in depth. Relative to these structures, the arytenoid cartilages appear to decrease 

in size with the definitive form attained by 5 lunar months gestational age and 

maximum size by 7 lunar months. Chondrification of the epiglottis occurs at 5 

lunar months, forming from fibroelastic cartilage and not hyaline cartilage, which, 

it has been suggested, signifies a non visceral arch origin for the epiglottis 

(Schaffer, 1907 in Wind, 1970). 

During fetal development, the body of the hyoid bone decreases in 

prominence. The lesser horns of the hyoid no longer demonstrate a direct 

connection with the body, instead they are seen to join to the superior margin of 

the anterior greater horns. Koebke (1978) notes that at this time the juncture 

between the body and the greater horns is comprised of a layer of disc cells. At 

approximately five months of fetal maturation, Koebke ( 1978) proposes that a 
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zone of closely packed blastemal cells exists between the body and the greater 

horn. He further suggests there are two distinct forms of connections between the 

greater horns and the body: a joint cavity and cartilagenous continuity, for fetuses 

at this stage of growth. Koebke (1978) notes evidence for either maintenance of a 

cartilagenous connection between the body and the greater horns, or the fusion of 

these components. The former is evidenced by fibrous tissue uniting the 

cartilagenous components while the latter is characterized by a transverse line of 

cells between the elements. Koebke (1978) theorized this is likely due to visceral 

arch origination, such that the body may develop from either the second and third 

arches or solely from the third arch. 

Post natal development and maturation 

At birth the components of the laryngeal complex generally appear as they 

do in the adult. The skeletal structures of the hyoid apparatus are cartilagenous 

with ossification occurring during childhood and early adolescence. At birth, the 

larynx is located in the anterior compartment between the first and fourth cervical 

vertebrae. Descent of the entire laryngeal complex characterizes the early post

natal period. This inferior elongation has been explained by the evolution of erect 

posture and growth of the splanchnocranium (see Wind, 1970). According to 

Westhorpe (1987), the larynx and hyoid bone descend to encompass the area 

between the second and fifth cervical vertebrae during the first three years of life, 

with further descent at the onset of puberty. 

35 



The growth of the thyroid cartilage at puberty is responsible for the further 

descent of the laryngeal complex to its location in the mature skeleton; the region 

associated with the caudal most five cervical vertebrae. During early childhood 

the lateral portions of the thyroid which earlier had exhibited a rounded ventral 

surface gradually begin to rotate such that the vertical ridge, the laryngeal 

prominence, appears. The remaining cartilage components continue to develop 

towards the structures that characterize the adult larynx, though in early childhood 

the epiglottis is still rather bulky. The cricoid however resembles the adult form 

early in the post-natal years. 

The hyoid ossifies from six centers, two for the body and one for each of 

the greater and lesser cornu (Jackson, 1914). The sequence of the appearance of 

ossific centers throughout the components of the hyoid bone is generally 

accepted. Ossification first occurs in the body followed by the greater horns and 

finally by the lesser horns. Parsons, (1909) however, notes evidence of 

ossification of the greater horns prior to the body. Although the sequence is 

generally accepted, the specific timing of these events is not as well understood. 

Generally, the onset of skeletal mineralization of the hyoid body is commonly 

associated with the late fetal or early neonatal periods (see for example Jackson, 

1914). However, Hill (1939) states that ossification of the body can occur as 

early as the fifth lunar month of fetal development though it occurs "more 

frequently" "usually" and "is present in most" during the sixth, seventh and eighth 

lunar months respectively (1939:270-1 ). Hill (1939) found that ossification of 
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the hyoid body does not follow the general rule promoted by Todd (1937) that 

centers of ossification appear first in females. 

"No sexual differences exists between the incidence 
of the hyoid center in males and females and its 
incidence in any age group can be but hesitantly 
predicted" (Hill, 1939:264). 

Reed ( 1993) found no evidence of ossification of the hyoid body in fetuses less 

than 30 weeks. Similarly Tompsett and Donaldson (1951) noted ossification of 

the body in 7 5% of neonates, as did Wells et al. ( 1986). Reed (1993) found 

evidence of the onset of ossification in all but one subject aged two months. 

During the first year of life, the lateral margins of the body tend to be triangular in 

shape given that ossification of the hyoid body progresses posteriorly along the 

superior margin of the body (Reed, 1993 ). The pattern of ossification extends 

downward and posteriorly resulting in the development of a more square shape 

for the body during childhood (Reed, 1993). 

The appearance of centers of ossification in the greater horns is generally 

ascribed to the first half year of life, with ossification progressing posteriorly 

(Scheuer and Black, 2000). Parsons (1909) describes ossification of the greater 

horns progressing 1 centimeter (cm) during the first year oflife and 1cm during 

childhood and 1cm between puberty and the twenty-fifth year. Complete 

ossification of the greater horns, more commonly ascribed to late childhood or 

early adolescence, results in a slightly bulbous posterior margin of the greater 

horns (Jelisiejew et al., 1968). Parsons (1909) notes a cartilagenous bulb at the 
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posterior most margin in subjects to thirty years of age. The lesser horns exhibit 

tremendous variability with the centers of ossification appearing as early as the 

first or second year of post-natal growth (See for example Schaffer, 1953) 

although ossification generally does not occur until puberty (Parsons, 1909). The 

lesser horns can remain unossified throughout life (Scheuer and Black, 2000). 

The junction of the body and the greater horns is characterized by a 

cartilagenous pad which ranges in thickness. Union of the hyoid body and the 

greater horns and fusion of the lesser horns to the body and or the greater horns is 

not seen during childhood. It is widely assumed that these zones, often referred to 

as synchondroses will, in succeeding years, ossify resulting in fusion between the 

structures (Macdonald-Jankowski, 1990). Schaffer (1953) suggests that the 

greater horns unite with body between the 25th and 30th years. The hyoid 

apparatus is traditionally presented such that, 

"the lateral borders (of the body) are partly in 
relation with the greater cornua, with which they are 
connected. Up to middle life by a synchrondrosis, 
but after this period, usually by bone" (Jackson, 
1914:99). 

Moreover, Johnson and Moore, note the greater horn "is connected with the body 

at first by hyaline cartilage but during adult life the union becomes ossified" 

(1989:123). Parsons concurs, and further suggests that fusion "often does so on 

one side long before the other" (1909:289). It is often suggested that the lesser 

horns fuse with the body and or the greater horns, though the latter is more often 
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noted (Schaffer, 1953). Parsons (1909) notes that the lesser and greater horns are 

most frequently connected via a synovial joint. 

In general, growth and development of the laryngeal complex during the 

childhood and juvenile periods occurs in a manner that is consistent with the 

maturation of other general body structures (See Bogin, 1999). According to 

Furmanik and coworkers (1976), throughout life structures of the human larynx 

vary in size and shape. Among humans, the primary difference between infant 

and adult larynges is apparent in the lateral regions, with the infant larynx 

positioned high in the neck, similar to other mammals, (Harrison, 1995). It has 

been suggested that this is attributable to diet, in that infants ingest a 

predominantly liquid diet which necessitates the existence of specific 

morphological features that function to protect the larynx (Harrison, 1995). 

Descent of the larynx begins during the second year of life. The larynx of 

the child is narrower and shorter with the epiglottis exhibiting a more U-shaped 

form in comparison to the adult structure (Harrison, 1995). Toume (1991) notes 

that the position of the hyoid bone in relation to structures of the craniofacial 

complex varies during life. King (1952) states that after puberty, the hyoid bone 

moves forward ( see for review Bibby and Preston, 1981 ). In older individuals, 

the hyoid descends, likely attributable to an increase in the thickness of the tongue 

(Toume, 1991 ). This lower position has also been noted in individuals who suffer 

from Obstructive Sleep Disorder (OSD) (see Kollias and Krogstad, 1999). 

Kollias and Krogstad (1999), note a significant decrease in vertical positioning 
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with little or no change in the horizontal plane. Such would influence the 

musculature associated with maintaining the suspended position of the hyoid, 

potentially resulting in skeletal modification of the element. This examination of 

the gross morphology and the structural development of the elements of the hyoid 

bone is crucial as it provides a foundation with which to appreciate not only the 

morphology of the structure but the pathological and developmental conditions of 

the components of the hyoid bone. 
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Chapter III 

Literature Review 

Introduction 

The human hyoid bone is described as forming the most prominent part 

of the larynx. Further referred to as the tongue bone, it was so named given its 

resemblance to the Greek letter upsilon v (Garrison and Hast, 1993). The first 

intensive consideration of the hyoid bone in the anatomical literature is credited 

to Andreas Vesalius in the middle sixteenth century. Early notations ofhyoid 

bones, the name it implies unity, describe investigations of non human laryngeal 

structures (see Harrison, 1995 for a review). The accuracy of these early works is 

such that they are considered remarkable references. The following centuries saw 

the gradual incorporation of human specimens into these anatomical studies. 

These comparative examinations are exceedingly beneficial as such necessitate 

moving beyond mere descriptive anatomy to consider the structural, functional 

and adaptive significance of skeletal systems. Further, these investigations 

established a foundation for more thorough examinations of the human laryngeal 

structures, in particular the hyoid bone. 

In addition to anatomical and functional examinations, the twentieth 

century has seen scientific considerations of the hyoid bone expand to include 
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pathological interpretations, clinical assessments, developmental tendencies, 

forensic considerations, and anthropological investigations. To date however, 

the hyoid bone has been the subject of a broad spectrum of research objectives, 

which has generated substantial, though often insular information. 

Unfortunately, with increasing frequency, hyoid bone references in the literature 

involve isolated case studies or unique forensic and clinical situations. A review 

and synthesis of research concerning the hyoid bone will serve to clarify the 

development and functional significance of the structure and to facilitate more 

effective pathological and clinical examinations. In addition, a discussion of the 

laryngeal structures across the animal kingdom will serve to illuminate the 

phylogeny of the human laryngeal complex. Further, this comprehensive review 

will demonstrate the necessity and importance of the present examination. 

Comparative Anatomy and Phylogentic Foundations 

The earliest references in the scientific literature to the hyoid bone and 

associated laryngeal structures focus upon non human mammals. Galen, an 

anatomist from the Roman era (130-201 AD) explored the structures of animals 

conducting numerous non human dissections, while engaging in few human 

examinations. The anatomical structures of various animals, including primates, 

and notably, examinations of various carnivore larynges, were considered by 

DaVinci in the late fifteenth century, though not widely published until several 

centuries later. His anatomical findings were noted by Vesalius, one of the first 
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to rely on human dissection, who incorporated physiological information from 

Galen in his 1543 publication De Humani Corporis Fabrica Libri Septum (See 

Garrison and Hast, 1993 ). Vesalius presents the larynx and the hyoid bone, 

though his references are to the structure in non-humans. Relying heavily upon 

the work of Galen, Fabricus, a Greek scientist, incorporated the findings from 

experiments and numerous dissections on birds and mammals, including apes, to 

draw analogies concerning human anatomy. However, the most detailed 

account of mammalian laryngeal anatomy is credited to Carlo Ruini, a senator of 

Bologna, for his 1598 description of the horse. At the close of the sixteenth 

century, Fabricus, who stressed the importance of comparative research, 

considered the role of the laryngeal structure in sound production and the 

generalized function and positional significance of the hyoid bone. These faunal 

accounts provided the data for early human interpretative examinations of the 

hyoid bone. These non-human anatomical considerations of the hyoid bone not 

only generated a wealth of information but further supported a growing interest 

in the human structure as evidenced by the work of Guiulio Casserius, Fabricus' 

successor (Harrison, 1995). 

Throughout the 1 ?1h and 18th centuries, numerous individuals contributed 

greatly to knowledge of anatomical structures with several focusing upon 

components of the larynges. Casserius compared the larynges of humans, non

human primates and mammals; in total more than twenty species, accurately 

describing the cartilages and intrinsic muscles of the human larynx. In the late 
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16th century, Frisian Volcher Coiter urged comparative anatomy publishing 

results of dissections of various mammals, amphibians and aves; in excess of 

fifty species (Harrison, 1995). In the late seventeenth century, Tyson noted 

special adaptations of the larynx necessary for aquatic and air breathing species, 

furthering knowledge of anatomical structures of mammals (Harrison, 1995). 

The work of Darwin in the 19th century and a focus upon comparative 

anatomy in London medical schools did much to increase understanding of the 

structural significance of non-human skeletal components. This greatly furthered 

the appreciation of human anatomy. 

"no one can acquire a clear insight into the 
physiology of human organs unless he have 
borrowed comparative anatomy ... the powerful 
light which that interesting science can alone shed 
upon his researches" Medical Times, 1844 in 
Harrison, 1995:150. 

The work of Victor Negrus, a surgeon of disease of the throat and nose at Kings 

College hospital in London, in the early twentieth century, led to the proposal 

that the larynx was a valve whose primary function was to protect the airway. 

Presented in the publication The Mechanism of the Larynx (1929), he further 

proposed a secondary role of the larynx was the generation of sound (Harrison, 

1995). In the decades that followed, building on the work of Darwin, it became 

generally accepted that the morphology of an organism incorporates a basic 

structure characteristic of its group and uniquely defined by specific adaptations 
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(Harrison, 1995). Though structural similarities characterize the laryngeal 

complex across the animal kingdom, the human hyoid, in particular, has acquired 

a diverse function in comparison to other species. 

Harrison (1995) theorizes that the laryngeal complex evolved to support 

changes in the respiratory apparatus with development of the lungs from an 

ancestral gill system. The simplest laryngeal structure, as seen in the lung fish, 

consists of a cartilagenous plate suspended from the vertebral column. The 

earliest amphibians possessed a cranium similar to fishes with evolutionary 

progress towards a broad skull with ventral parts of the branchial arches uniting 

with the ventral portion of the hyoid arch. This eventually gave rise to the hyoid 

bone and associated musculature which provides support for the tongue (Walker, 

1987). Evolving from primitive fishes and amphibians, early terrestrial 

vertebrates possessed air-breathing mechanisms in addition to gill and skin 

respiratory capabilities. Improved adaptations to terrestrial life including 

increased activity and varied behavioral responses were reflected in cranial 

changes. This resulted, in part, from increased brain size and complexity and 

varied breathing and feeding mechanisms, in addition to an increased reliance 

upon the auditory and olfactory senses (Walker, 1987). Skeletally, these 

adaptations are related to a strengthened skull and lower jaw (Walker, 1987). 

The movement towards increasing muscular activity necessitated a more 

complex and dynamic system with the ability to sustain a wider airway, which in 

mammals, was achieved through evolution of the ancestral visceral arch 
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derivatives. This brought about the development of laterally positioned 

cartilages and an associated muscular network which provided for the opening 

and closing of the airway. These structures evolved into the cricoid cartilage, 

either articulating with or containing the arytenoid cartilages. Harrison and 

Denny (1985) proposed that the size of the cricoid cartilage is a product of the 

rate of respiration. More developed species evolved a protective structure, the 

thyroid cartilage, which ultimately articulated with the cricoid cartilage 

(Harrison, 1995). Further evolution led to the appearance of the epiglottis and 

the corniculate and cuneiform cartilages, which enable respiration during 

feeding. The generalized mammalian hyoid apparatus consists of several bony or 

cartilagenous components including the basihyal (body), and paired ceratohyals 

(lesser horns) and the thyrohyals (greater horns) ( see Figure 3 .1 ). These 

structures are embedded in tissues associated with the tongue musculature and 

are attached via ligaments, or a network of small bones ( epihyal, stylohyals, and 

tympanohyals) to the styloid processes of the temporal bones (Walker, 1987, 

Weichert, 1970). Although the size and shape of the cartilages vary between 

species, this generalized system characterizes the basic laryngeal form across the 

mammalian class (Negrus, 1949). 

The components of the hyoid bone of non-human mammals have been 

found to exhibit recognizable inter and intra species variation. Saber and 

Hoffman, (1985) in their study of six ruminant species, concluded that sufficient 

variation exists to differentiate between species of roe deer, mouflon, sheep, red 

46 



deer, fallow deer, and goat. A generalized form is attributed to the pronounced 

tongue, with minor variations ascribed to feeding type and functional 

specialization (Saber and Hoffman, 1985). The ungulate hyoid is comprised of 

several skeletal components; a single basiohyoid and paired thyreohyoids and 

ceratohyoids, epihyoids, and stylohyoids (Saber and Hoffman, 1985). The 

osseous components are connected via the cartilagenous tympanohyoids the to 

cranial structures noted as the chain of ossicles in Figure 3 .1. The basiohyoid is 

a short transversely oriented bar; the lateral aspects from which the thyreohyoids 

and ceratohyoids form dorsal and ventral, respectively, projections. The 

thyreohyoids are analogous to the greater horns (Saber and Hoffman, 1985). 

The epihyoids project rostroventrally from the ventral margin of the 

ceratohyoids. The stylohyoids are caudodorsal projections from the dorsal aspect 

of the epihyoids and constitute the largest component of the ungulate hyoid bone. 

The dorsal ends of the stylohyoids are marked by the cartilagenous 

tympanohyoids which project cranially, and the stylohyoid angle, the caudal 

location of muscle attachment (Saber and Hoffman, 1985). 

Nickel, Schummer and Seiferly (1954 in Saber and Hoffman, 1985) state 

that among ruminant species the basiohyoid and the thyreohyoids are united. 

Sission (1975), however, reported that they fuse only among large ruminants and 

primarily with advancing age, further stating that in small ruminants the 

thyreohyoids are not maintained in firm attachment with the basiohyoid. Saber 
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Figure 3.1 Ventral (anterior) view of generalized mammalian hyoid and 
associated structures. (Adapted from Walker, 1987). 
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and Hoffman (1985) define the thyreohyoids as lateral extensions of the 

basiohyoid, though they do ascribe sexual dimorphism to the structure in that the 

ceratohyoids of female ruminants demonstrate a medial angulation. They do not 

attribute any morphological features to specific feeding adaptations, instead 

concluding species differences are more related to overall body size and basic 

skull shape. Hoffman (1972 in Saber and Hoffman, 1985) and Stockman (1979 

in Saber and Hoffman, 1985) suggest that, in fact, differences between species 

are attributable to feeding type and behavior. 

Intraspecies variation for most species of the animal kingdom is based on 

size differences such that adult males possess larger laryngeal structures in 

comparison to females. This variation in size accounts for the differences in 

sound production (Harrison, 1995). Research has suggested that this disparity is 

a manifestation of androgen stimulation. Beckford et al., (1985) found that 

among young rams, variation in the amount of hormones is reflected in variation 

in the dimensions of the laryngeal cartilages. Studies by Audemorte et al., 

(1983) and Holt et al., (1986) suggest that such dimorphism is further attributable 

to the degree of sex steroid receptors in the laryngeal cartilage tissues such that 

varying hormonal levels influences development. 

"Growth of the mammalian larynx therefore 
appears to be controlled by both androgen and 
estrogen, possibly by modulation of genetic 
expression" (Harrison, 199 5: 7 6). 
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Nonetheless, morphological variation in the mammalian adult larynx has 

been primarily attributed to dietary activities (see Harrison, 1995). Hilloowala 

(1975) notes a direct relationship between diet and hyoid body size. Saber and 

Hoffman (1985) attribute morphological variation in the hyoid apparatus of 

ruminants to body size and skull shape. In addition to dietary practices, Wind 

( 1970) suggests that the topography of the larynx is dictated by the need to 

maintain olfactory capabilities during eating given that the sense of smell 

functions as a self-defense mechanism for most animals. Further the structure of 

the larynx enables mammalian young to breathe and suckle simultaneously 

(Harrison, 1995). This practice is facilitated by the action of extrinsic tongue 

muscles which originate on the hyoid apparatus. Nakano and coworkers, (1988), 

following a study of mice, proposed that the mechanical stress of these muscles 

is the causal factor in the onset of ossification of the hyoid body. 

In most vertebrates, the larynx is located just ventral to the base of the 

skull, whereas in higher primates it is displaced caudally, with humans exhibiting 

the most inferior position (Wind, 1970). This has been directly related to the 

existence of an upright posture across the Homo genus (Durzo and Brodie, 1962; 

Negus, 1949). An upright stance, however, alters the relationship between the 

hyoid and other structures. The lower position of the larynx in humans (three 

cervical vertebrate lower than most mammals) is a product of a shortened palate 

and the descent of the entire complex. This affords a greater capacity for nasal 

and/or oral breathing which subsequently enhances opportunities for the 
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production of a wide range of sounds (Harrison, 1995). In humans given that the 

larynx is caudal to the tongue and forms the ventral border of the pharynx, its 

relationship to other organs differs from that of other species (Wind, 1970). 

Falk (1975) examined the laryngeal complex of primates, humans and 

Neandertals as a means of determining the speech capabilities ofNeandertals 

(see Leiberman, 1994; Leiberman and Crelin, 1971; Leiberman et al., 1972; 

Arensburg et al., 1989; Arensburg et al., 1990; Arensburg, 1994). Falk (1975) 

proposes that given the separation of the epiglottis from the soft palate in 

humans, the extrinsic tongue muscles and the arytenoids must function to elevate 

the tongue and close the vocal cords to prevent food particles from entering the 

larynx. He attributes the absence of this system among chimpanzees, who rely 

upon the epiglottis to shield the larynx, to a non-erect stance among non-human 

primates. 

Nakano and coworkers (1988) suggest that the position of the hyoid 

among mammals reveal evolutionary trends within the mammalian class. The 

hyoid in both human and chimpanzee infants lies caudally to the gonial angle. In 

adult humans the hyoid occupies a more anterior position with the ventral most 

part of the body located at the midpoint of the horizontal radius of the mandible. 

In both of these groups, the hyoid planes are parallel. Adult chimpanzees exhibit 

a cranial angulation of the greater horns and a more posterior position such that 

the body is located at the gonial angle (Falk, 1975). Dubrul (1977) states normal 

functioning necessitates positioning of the hyoid plane lower than the mandible. 
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Stepovich (1965) defines the plane as the parallel line connecting the 

anteriormost point of the body along the long axes of the greater horns to the 

posterior tubercles. The length of associated muscles and the action of gravity 

upon the laryngeal complex determine the position of the plane. Further, this 

aspect of the human hyoid has been found to exhibit sex related differences with 

the hyoid positioned closer to the mandible and the base of the skull in females 

(Lykaki et al., 1989). Hilloowala (1975) supposes that the morphology of the 

hyoid is related to its proximity to the cranial base and its roles in both sound 

production and digestion. 

A review of the literature concerning the laryngeal structures among non

humans demonstrates that developmental qualities and sex specific attributes 

characterize aspects of the mammalian larynges, particularly the hyoid bone. 

Further this confirms how functional specializations can account for and 

influence skeletal structures. An awareness of the developmental characters of 

the hyoid among mammals provides an avenue to potentially understand certain 

developmental features of the human hyoid structure. 

Clinical Considerations 

Most frequently, notations of the hyoid bone within the scientific 

literature relate to clinical examinations. The majority of clinical publications do 

not focus solely upon conditions of the hyoid bone, but more accurately consider 

the indirect role of the hyoid bone in body functions. Given the unique attributes 
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of the hyoid bone as a suspended element with numerous muscle attachments, it 

provides structure and support for several functions of the neck region. The 

hyoid bone and its associated musculature is integral in maintaining the airway, 

in swallowing, in preventing regurgitation and in maintaining an upright stance 

(see Bibby and Preston, 1981). 

References to the hyoid bone involve a broad range of syndromes 

(Rechtweg and Wax, 1998), abnormalities (Lykaki and Papadoulos, 1988), 

malformation (Sittel et al., 1998), and treatments (Gossman and Tarsitano, 1977; 

Van der Westhuijzen et al., 1999). Additionally, clinical considerations address 

the position and structure of the hyoid bone in relation to situations involving 

sleep disorders (Jamieson, et al., 1986; Lowe et al., 1997 and Tsuchiya et al., 

1992). Notations regarding the position of the hyoid bone are also prevalent in 

the dental and orthodontic literature (Thurow, 1977 and Stepovich, 1965). 

Studies conducted within maxillofacial and oral surgery have also addressed the 

occurrence of tumors of the hyoid bone (Nakagawa et al., 1999). Although 

encompassing a broad range of topics, a review of clinical examinations of the 

hyoid bone will reveal aspects relevant to an understanding of growth and 

development of the structure. 

Most frequently, abnormal and pathological conditions of the hyoid bone 

with associated pain are classified as Eagle's syndrome. First defined in the 

1930's, the condition is primarily characterized by cervicopharyngeal pain and 

ossification/calcification of elongated styloid processes. Symptoms most often 
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appear following trauma or tonsillectomy (Rechtweg and Wax, 1998). Van der 

Westhuijzen and coworkers propose that the term Eagle's syndrome, in fact, 

refers to three conditions with differing pathologies and symptoms (Van der 

Westhuijzen et al., 1999). They recognize, Eagle's syndrome, styloid syndrome, 

and pseudostylohyoid syndrome (Van der Westhuijzen et al., 1999). According 

to Van der Westhuijzen et al., Eagle's syndrome involves "elongated ossified 

styloid processes or stylohyoid chain ossification that specifically develops post

traumatically" (1999:335). The presentation of similar symptoms in the absence 

of trauma, i.e. a developmental anomaly, is classified as styloid syndrome (Van 

der Westhuijzen et al., 1999). Van der Westhuijzen and colleagues, recognize 

similar symptoms in older patients, whereby "because of ageing, a tendinosis 

develops at the junction of the stylohyoid ligament and the lesser cornua of the 

hyoid" (1999:335). As reported by Gossman and Tarsitano (1977) 

approximately 4% of the population is afflicted with the condition. Incidence of 

such conditions are primarily found in individuals over thirty years of age, 

though the greater number of cases are reported in subjects over forty years of 

age (Van der Westhuijzen et al., 1999). 

Lykaki and Papadopoulos (1988) report on an individual with complete 

ossification of the stylohyoid ligament. This structure formed an osseus 

connection between elongated lesser horns of the hyoid bone and the styloid 

processes of the temporal bone. Therapies have involved several procedures for 

removal of either the styloid process or the lesser horns (Gossman and Tarsitano, 
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1977). The causation of such conditions is poorly understood though researchers 

suggest that improper development ofReichert's cartilage (Rechtweg and Wax, 

1998) or a branchial arch anomaly (Ilankoran, 1987) may explain the osseous 

connector. Spontaneous fractures of ossified stylohyoid ligaments have been 

reported in the literature (Blomgren et al., 1999). 

Clinical references to the hyoid bone commonly involve discussion of the 

position and location of the structure. Pae (1989) found that the hyoid bone 

occupies an inferior position in the larynx among individuals with obstructive 

sleep apnea, resulting from a reduced airway and an extended head posture. 

Similarly, Tsuchiya and coworkers, (1992) recognized an inferior and anterior 

location of the hyoid bone among subjects with severe obstructive sleep apnea, 

further noting, a correlation with body mass index. Although mean differences 

were observed between study groups, the relationship between apneic index, 

incidents of cessation of breathing during sleep longer than ten seconds in 

duration (see Lowe et al., 1997), and hyoid bone measurements was not 

statistically significant (Tsuchiya et al., 1992). Tsuchiya et al., (1992) attribute 

high incidence of obstructive sleep apnea to body mass index and skeletal 

abnormalities. However, Lowe and coworkers (1997) found, among other 

demographic and cephalometric variables, males with severe obstructive sleep 

apnea exhibit lower positioned hyoid bone. Five measurements of the location of 

the hyoid bone relative to the mandible and the third cervical vertebra indicate a 
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lower position of the hyoid bone which impacts the function and mechanics of 

the hyoid musculature (Thurow, 1954) 

A lower location of the hyoid bone influences muscle position and overall 

conditions within the neck region. In a study of 196 individuals ( 41 were 

controls), Jamieson et al. ( 1986) recognized lower displacement of the hyoid 

bone among patients with obstructive sleep apnea. Subjects also displayed retro

position of the mandible, acute anterior cranial base angulation (nasion to sella to 

basion) and elongated soft palates (Jamieson et al., 1986). 

"We hypothesize that the more acute NSBa 
angle ... leads to abnormal development of the 
hypopharyngeal tissues associated with a lower 
position of the hyoid bone .. .In the same manner, 
alteration of the soft tissue may develop secondary 
to the conjoint effect of mandibular retroposition 
and acute cranial base flexure ... " (Jamieson et al 
1986:476). 

Bibby and Preston ( 1981) present a mechanism for determining the 

position and location of the hyoid bone in relation to other elements within the 

neck region. Cephalometric points on the mandible, hyoid bone, and third 

cervical vertebra define the hyoid triangle. This model reflects the horizontal, 

vertical, and angular position of the hyoid bone. Bibby and Preston (1981) 

suggest such an objective and reliable technique is necessary to assess the 

effectiveness of orthodontic treatments and surgical procedures. In their study, 

Bibby and Preston did not recognize variation in the location of the hyoid bone 

between males and females, though they note the need for further examinations 
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to study the effects of "age, race and posture on the position of the hyoid bone" 

(1981 :97). Given that the hyoid bone provides attachment sites numerous for 

muscles, it is a significant variable in assessing and treating disorders. Further, 

an understanding of the developmental conditions, which involve the hyoid bone 

and associated soft tissues, is important to fully appreciate the structure. 

Pathological Examinations 

A substantial portion of published references to the human hyoid bone 

focus upon pathological and traumatic incidents. The position and the fragility of 

the hyoid bone and associated laryngeal structures make them susceptible to 

trauma. Commonly, laryngeal injuries are manifest in one of three types of 

damage: fracture of the hyoid bone, fracture of the thyroid cornua, and fracture of 

the thyroid and cricoid cartilages (Evans and Knight, 1981 ). Of particular 

importance is that external soft tissue trauma is not always associated with such 

injuries (Spitz, 1980). Specific laryngeal and craniocervical injuries have been 

associated with particular traumatic forces (see for example Evans and Knight, 

1981 and Spence et al., 1999). Although the hyoid bone does not articulate with 

any other skeletal structures, it can be affected by a variety of compressive forces 

including ligature and manual strangulation, hanging, and direct blows to the 

neck (see for example Weintraub, 1961 and Evans and Knight, 1981 ). Moreover, 

it has been suggested that additional factors such as age of the subject and 

individual features of the larynges structures, i.e. shape, influence the likelihood 
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and pattern of injury (see for example Evans and Knight, 1981; Pollanen et al., 

1995; Pollanen and Chiasson, 1996; Pollanen and Ubelaker, 1997; Rodriguez, 

1986; Ubelaker, 1992). 

Evans and Knight state that fractures of the hyoid bone are "rare except as 

a result of direct trauma such as manual strangulation, hanging or direct blows to 

the neck" ( 1981 : 123 ). Weintraub ( 1961) noted hyoid fractures in 50% of cases 

of manual strangulation and 27% of hangings. Harm and Raj s ( 1981) found a 

strong association between strangulation and fracture of the hyoid with failure 

seen in 70% of manual strangulations and 42% of ligature strangulation. Paparo 

and Siegel (1984) found hyoid fractures in 16% of self inflicted hangings. 

Hansel recognizing hyoid fractures in 10% of strangulations concluded fracture 

likelihood is related to 

"the degree of ossification of the throat skeleton. 
This ossification starts often already at early age 
and should be considered as a process of aging" 
(1973:143). 

Incidents of hyoid fracture have also been noted in situations involving 

falls (Spitz, 1980), industrial accidents (Dickenson, 1991 ), minimal trauma 

(Bagnoli et al., 1988), vomiting (Gupta et al., 1995), during resuscitative efforts 

(Gregerson and Vesterby, 1980) sports related injuries (Whyte, 1985 and Maran 

and Stell, 1970) ballistic trauma from hand guns (Carroll et al., 1992), and 

vehicular accidents (Graf, 1969; Zachariades and Mezitis, 1987; Khokholov, 
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1997; Szeremeta and Shahrokh, 1991 ). Additionally, several incidences of hyoid 

fracture have been associated with pharyngeal laceration (Eliachar et al., 1980; 

Krekorian, 1964; Olu lbekwe, 1991 ). 

Hyoid bone fractures comprise a mere 0.002% of all skeletal fractures 

and primarily result from direct impact trauma or sudden muscular movement 

(Bagnoli, et al., 1988; Guernsey, 1954). Fractures of the hyoid bone result from 

the application of tension and compression upon the soft tissues that attach to 

them, such that these forces stress the attachment sites and result in skeletal 

failure (Evans and Knight, 1981 ). Such forces can be attributed to direct impact 

upon the laryngeal structures (Bagnoli, et al., 1988), or result from sudden 

hyperextension of the neck (Padgham, 1988). Reports of fracture of the hyoid 

bone resulting from "muscular action alone ( Olmstead, 1949:269) have been 

noted (Ashe, 1916). 

Weintraub ( 1961) classified hyoid fractures in the following manner: 

resulting from inward compression, due to antero-posterior compression, or as 

avulsion fractures. Lakhia and coworkers ( 1991) identify the following clinical 

types of hyoid fractures: fractures through the body resulting from direct trauma, 

fractures of the lesser horn, and fractures of the greater horns. They further 

recognize fractures of the greater horn as closec;l with displacement inwards or 

outwards and compound; externally or into the pharynx (Lakhia et al., 1991). 

Failure, i.e. fracture, of the horns occurs more frequently given they are 

less structurally sound than the body (Spitz, 1980). However, Spitz (1980) 
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correlates failure with the rigidity of the structure (i.e. calcification and fragility) 

and professes that such is more likely to occur in elderly individuals due in part 

to the condition of the bony structures. Theoretically, a hyoid bone with mobility 

at the juncture of the body and the greater horns would be less likely to exhibit 

skeletal failure given that the joint would permit dispersion of a portion of the 

compressive and tensile forces. Porrath (1969) suggests that sudden 

hyperextension of the neck could cause muscle groups to exert forces upon the 

body and the great horn causing separation at the fibrous junction and resulting in 

displacement of the great horn with respect to the body. Spence et al., (1999), in 

an analysis of skeletal material from judicial hangings, noted fracture of the 

greater horn in an unfused specimen. Both Luke et al., ( 1985) and Simonsen 

(1988), however, conclude that fracture to the hyoid is less likely to occur among 

young individuals given that the components are unfused and thus the structure is 

more resilient. 

Examinations of skeletonized hyoids have been conducted to assess 

whether any morphological characteristics increase the likelihood of hyoid 

fractufe (see for example Pollanen et al, 1995; Pollanen and Chiasson, 1996; 

Pollanen and Ubelaker, 1997; Rodriguez, 1986). Pollanen and coworkers (1995) 

recognize several factors that influence the failure of the hyoid during 

strangulation. These include the magnitude and location of the force that is 

applied and the rigidity of the bone, further noting that incidence is low in 

children given incomplete ossification (Pollanen et al, 1995). Following an 
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analysis of 19 fractured hyoids, Pollanen et al (1995) concluded that the overall 

shape in part determines the specific location of hyoid fractures with more 

fractures occurring within the middle and posterior sections of the greater horns. 

Subsequent analysis sought to further identify morphological 

characteristics that are correlated with hyoid fracture (Pollanen and Chiasson, 

1996). In a comparison ofradiographs of twenty hyoid bones from victims of 

strangulation ( 10 with resultant hyoid fractures), Pollanen and Chiasson ( 1996) 

attributed the occurrence of fractures to intrinsic factors including shape and 

rigidity. Of fractured hyoids, 70% were fused where as among unfractured 

hyoids, 30% were fused. Pollanen and Chiasson state "this data indicates that 

age-dependent fusion of the hyoid bone increases the probability of hyoid bone 

fracture" (1996: 111 ). 

In addition, the shape of the hyoid was also determined to be a factor in 

failure of the hyoid bone. Pollanen and Chiasson (1996) state that fractures were 

noted more often in hyoids that were longer in the anteroposterior plane and 

more steeply sloping, i.e., more U-shaped than V-shaped. Pollanen and Ubelaker 

(1997) analyzed 100 skeletonized hyoids to further investigate the relationship 

between shape, as reflected by two measurements, and incidence of fracture. The 

normal shape data generated for the 100 hyoids indicates two categories: 

hyperbolic, or U-shaped, and parabolic, or V-shaped. The ten fractured hyoids 

investigated by Pollanen and Chiasson (1996) were compared to these normal 

specimens and indicated that, contrary to earlier findings, shape is not an 
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important variable in determining likelihood of fracture (Pollanen and Ubelaker, 

1997). 

As suggested by Ubelaker (1992), the detection ofhyoid fractures at 

autopsy can be difficult, particularly in the absence of hemorrhage. The 

medicolegal community primarily relies upon palpation and radiographic 

assessment in the evaluation of conditions of the hyoid bone and laryngeal 

structures (Khokhlov, 1997). In a review of 137 cases, Khokhlov (1997) found 

that these methods revealed less than 60% of injuries and further resulted in false 

diagnoses. He notes palpation can only reliably indicate fractures of the greater 

horns and at the same time this technique may yield incorrect results in 

incidences of "considerable mobility of the cornu" (Khokhlov, 1997: 17 4 ). This 

statement illustrates the need for an accurate awareness of the morphological 

variability of the hyoid bone in pathological analyses. 

Radiographic interpretation of hyoid trauma is difficult given that cervical 

vertebrae obscure the hyoid in anteroposterior oriented films (Pendergrass et al., 

1956). Further, in this plane the greater horns are not fully represented which 

precludes a thorough analysis (Gordon et al., 1976). Although lateral 

projections illustrate the greater horns, Gordon and coworkers (1976) find that 

such obscures the juncture between the body and the greater horns. Accurate 

assessment thus necessitates careful removal of the larynx (Khokholov, 1997; 

Gordon et al., 1976). 
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"Radiological examination may reveal an 
asymmetric ossification of the synchrondroses 
between the great cornu and the body of the hyoid 
bone. There is a great deficiency of data in the 
literature on how sex and ethnic differences may 
influence the time of ossification of the 
synchondroses. The ossification is not only 
asymmetric but sometimes proceeds by the 
formation of several bridges of bone across the 
synchondrosis" (Gordon et al., 1976:167). 

Browne (1973) points out that it is very easy for the clinician to miss a fractured 

hyoid bone. Moreover, a precise investigation of hyoid elements requires 

investigators to maintain an unbiased position regarding the age and sex of the 

individual and further to recognize the morphological variability of the structure. 

Anatomical and Developmental Research 

A basic foundation for the majority of research within skeletal biology is 

that osseous elements exhibit characteristics which reflect stages of development 

and degeneration. The nature of these events is such that they can often be 

correlated with chronological age. Both during growth and with maturation, 

skeletal elements demonstrate morphological variation attributable to both 

structural growth and lifestyle. These developmental and degenerative features 

have demonstrated utility as indicators of age (See Reichs, 1998 and Stewart, 

1979 for a review). Similarly, skeletal attributes vary such that certain 

morphological features have been correlated with sex. Generally this is such that 

male skeletons exhibit greater robusticity while female skeletons demonstrate a 
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tendency towards retention of juvenile features (see Iscan and Helmer, 1988 for a 

review). Further, examinations have demonstrated that specific skeletal traits are 

correlated with ancestry (see Gill and Rhine 1990, for review). These basic 

concepts have enabled skeletal biologists to construct associations between 

skeletal features and age, sex, and ancestry; i.e., to recognize skeletal markers of 

the human biological profile. 

Several anthropologically based studies have been conducted to 

investigate whether components of the laryngeal structures, in particular the 

hyoid bone, demonstrate age, sex or ancestral related differences ( see for 

example Furmanik et al., 1976; Miller et al.,1998; Bennett and Marks, 1998; 

Guilbeau, 1992; Komenda and Cerny, 1990; O'Halloran and Lundy, 1987; 

Parsons 1909; Wortman, 1889). Additionally, research designed to investigate 

more diverse issues has yielded demographic information of the human hyoid 

bone (see for example Papadopoulos et al., 1989 and Pollanen and Chiassen, 

1996; Pollanen et al., 1995). A synthesis of these examinations conducted over 

the last one hundred years will illuminate whether sex and age correlate with 

developmental and degenerative features of the human hyoid bone. 

Ancestry 

Wortman (1889) proposed that differences are evident in the anatomical 

structure of the hyoid bone across populations. He stated that fusion of the body 

and greater horns is rarely seen (12%), among middle age "ancient Pueblo 
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Indians of Arizona" (1889:81) while 66% of Blacks exhibit "early bony union of 

these parts" (1889:82). With the exception of the work of Wortman (1889) few 

references mention differences between populations. Although Wortman states 

that the hyoid has been ignored by anthropologists, it does contains characters 

that are effective "in the matter ofracial distinction" (1889:81). Unfortunately, 

such has not been tested. This is primarily attributable to the limited 

representation of individuals of differing ancestry within experimental 

collections. 

Sex 

Examinations of the human hyoid indicate that differences between male 

and female specimens are predominantly attributable to variation in overall size. 

Jelisiejew and coworkers conclude that "sex dimorphism of the characteristics of 

the hyoid bone is distinct" ( 1968: 181 ). Subsequent researchers have attempted to 

further investigate variation in size (see Miller et al., 1998), and shape (see 

Papadopoulos et al., 1989), and to construct discriminant functions for sex 

estimation (see Guilbeau, 1992). 

Parsons, in a study of 81 adult hyoid bones, found that "it is generally 

possible to tell the sex of a hyoid bone" based on measurements of the hyoid 

body (1909:280). He examined 53 males and 28 females over 20 years of age 

(see Table 3.1). Values of the transverse width of the hyoid body averaged 2.6 

centimeters (cm) and 2.2 cm for males and females respectively. These values 
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Table 3.1 Dimensions related to sex as collected by Parsons (1909). Ages 
are pooled. Specimens are over age 20 years. 

Measurement sex mean minimum maximum 

transverse 
male 2.6* 2.1 3 

body width female 2.2 1.7 2.6 

height of the 
male 1.2 1 1.6 

body 
female 1 0.9 1.2 

* measurements are in centimeters 

exhibit a high degree of overlap between male and female subjects. Heights of 

the body measurement values reflect a similar trend. Parsons' indicates that 

males specimens exhibit longer greater and lesser horns than females. However, 

he states that great variation and overlap is noted for the greater horns. Although 

Parsons' claim that the "normal shape and size of male and female hyoids have 

been established by a series of careful measurements" (1909:290), his 

investigation does not differentiate between the age of individuals, merely 

recognizing specimens as "adults." Although the mean values he records indicate 

there are differences between male and female subjects, there is a high degree of 

overlap which reduces the statistical significance of his findings. 

Jelisiejew and coworkers (1968) analyzed 241 hyoid bones, 154 males 

and 89 females ranging in age from birth to 82 years. Six measurements were 
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performed on skeletal and radiographic material. Length and width of the entire 

element, length and height of the body and length of the greater and lesser horns 

were collected. They found sex related differences appear in the 16-20 year old 

age group with male specimens exhibiting greater dimensions. Among adults 

(21-82 years), the average length (transverse measure) of the body is 26.3 mm for 

males and 22.5 mm for females. The length of the body as measured here is 

synonymous with the width of the body found by others to be sexually 

dimorphic. Mean values for the height of the body are 10.1 mm for males and 

8.9 mm for females. All are statistically significant (Jelisiejew et al., 1968) (see 

Table 3.2). Jelisiejew et al., (1968) found the length of the bone to differ 

significantly between the sexes with mean values of 40.4 mm and 35.4 mm for 

males and females respectively. The distance between the posterior horns 

(defined by Jelisiejew et al., as width of the bone) similarly demonstrates 

significant sexual dimorphism with mean values of 36.2 mm for males and 32 

mm for females. Average measures for length of the greater horns are 32.7 mm 

for males and 29.3 mm for females. This trend reflects a reversal of what is 

noted among sub-adults, where females exhibit longer greater horns. Calculation 

of coefficients of discrimination for the measurements indicates that the greatest 

degree of sexual dimorphism occurs in the length of the bone, followed by the 

length of the greater horn, and the length of the body (Jelisiejew et al., 1968). 

The measures of the length of the bone and the length of the greater horns are 
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Table 3.2 Dimensions related to sex as collected by Jelisiejew et al.(1968). 
Values are pooled by age; ranging between 21 and 82 years. 

Measurement sex mean 
Difference 
ofmeans 

male 40.4 0.29 
Length of bone 

Female 35.4 0.44 

male 36.2 0.55 
Width of bone 

female 32 0.53 

Length of the male 26.3 0.35 

body 
female 22.5 0.26 

Length of the 
male 32.7 0.24 

greater cornua female 29.3 0.29 

Height of the male 10.1 0.18 

body 
female 8.9 0.17 

Length of the male 8.5 0.36 

lesser cornua 
female 7.05 0.4 

* measurements are in millimeters 
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very comparable and in fact overlap as both incorporate the length of the greater 

horns. Jelisiejew and coworkers, (1968) indicate differences do exist in the 

overall dimensions of the hyoid bone between males and females. However, 

they do not separate the data by age (other than sub adult and adult divisions) 

which precludes recognition of the potential influence of development and 

degeneration upon the hyoid. 

Papadopoulos and coworkers (1989) suggest that a normal shape can not 

be ascribed to the hyoid bone and fault the literature for failing to promote the 

true variability which they conclude characterizes the shape of the adult hyoid. 

A series of five measurements were performed on a set of seventy-six hyoids to 

reflect overall shape. These data enabled Papadopoulos et al. ( 1989) to recognize 

five common shapes which further exhibit sexual dimorphism. The two shapes 

most commonly ascribed to the hyoid bone, U and horseshoe shaped were not the 

most frequently observed. Male specimens were most often, 4 7%, classified as 

D ( deviating) such that 

"The anterior part is a half circle ... but posteriorly, 
one or both greater horns deviate to one or to the 
other side" (Papadopoulos et al. 1989:251 ). 

Among female specimens, 32% were classified as H (horseshoe) and also B 

(resembling a transverse section of a boat) characterized as nearly half circle in 

shape (Papadopoulos et al. 1989). They further recognize asymmetry in 

approximately half, (47.4%) of the specimens, noting that it is equally 
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represented among males and females (Papadopoulos et al. 1989). Half of all 

specimens exhibit anisometry such that the greater horns not equal in measure. 

Papadopoulos and coworkers ( 1989) state that the shape of the hyoid bone is 

more varied than is suggested in the published literature. 

Komenda and Cerny (1990) attempted to determine sex from the hyoid 

bone by means of discriminant analysis. A series of six measurements were 

performed on 208 male and 138 female adult (over 20 years in age) hyoid bones. 

Height and width of the body, length of the greater horn and height of the 

anterior end, distance between the posterior ends of the greater horns and length 

of the lesser horns were recorded. Komenda and Cerny suggest that the two 

measures of the greater horns and the width of the body misclassify specimens 

less than five percent of the time and conclude the technique "proved its high 

efficiency comparable with other systems" (1990:49). Panhuysen and Bruintjes 

(n.d. in Reesink et al., 1999) in a study of archaeological specimens concluded 

that the length of the greater horn exhibits sexual dimorphism. 

Similarly, Guilbeau ( 1992) proposes that discriminant analysis is 

effective for determining the sex ofhyoid bones. Applying five measurements, 

body height, width and thickness and length of both left and right greater horns 

he recorded 90% and 100% correct classification for males and females, 

respectively. Sample sizes were 29 and 10 for males and females, respectively. 

When using hyoid body measurements only, Guilbeau (1992) recorded accurate 

classification of 87% for males and 95% for female specimens. Although these 

70 



studies found differing measures to be effective, both researchers incorporated 

dimensions of the width of the body and the length of the greater horns into 

diagnostic discriminant functions. 

Reesink and coworkers (1999) performed thirteen measurements on 

radio graphs of fifty-nine hyoids to assess the reliability of the hyoid bone as an 

indicator of sex. They note that only thirty-nine specimens are subjected to 

statistical analysis. Reesink et al., (1999) found three variables, "maximal medial 

height of the corpus", "anterior posterior thickness of the corpus" and "maximal 

transverse diameter of the corpus" exhibit statistically significant differences 

between sexes. Employing a cross validation model, Reesink and colleagues 

found overall correct classification of 30 of 39 specimens, at 76%; 72% for males 

and 82% for females. 

Miller et al., (1998), however, found that the use of discriminant 

functions were not highly effective in the differentiation of hyoids by sex, with 

an accuracy of only 69.2 % for males and 75.2% for females. Miller and 

coworkers, (1998) analyzed three hundred fifteen digitized hyoid radiographs to 

assess sex and age variation of the structure. Thirty measures were recorded with 

the majority of dimensions reflecting simply that males tend to be larger than 

females. They found this was most true for length measures. Although such 

measures are reflective of overall shape, Miller and coworkers do not recognize 

the existence of defined shapes and note that hyoid shape variation is continuous 

and specimens cannot be typologically classified based on shape. 
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Miller and colleagues, (1998) do not recognize sexual dimorphism for the 

posterior horn distance. This is consistent with the findings of Furmanik et al., 

(1976) who concluded that the dimensions of the middle laryngeal cavity (span 

of greater horns) do not exhibit significant sexual dimorphism. Similarly 

measured by Komenda and Cerny ( 1990), their data do not demonstrate a high 

degree of sexual dimorphism for width measurements of this region. Further, 

Miller et al., (1998) do not ascribe value to the length of the greater horn as a 

predictor of sex; in contrast to findings noted by other researchers. They, do 

however, state that the distal ends of the greater horns are one of the most 

sexually dimorphic aspects of the hyoid, with females recording larger values 

than males. Miller and coworkers suggest, however, that this may be a product 

of age distribution for their sample. Further given that the technique employed 

by Miller et al., (1998) incorporated measurements of radiographs, this reflects 

the hyoid in two dimensions, potentially obscuring sexually dimorphic qualities. 

Overall, this literature review demonstrates that morphological variation 

does in fact characterize the human hyoid. Certain aspects of the human hyoid 

appear to demonstrate greater degrees of sexual dimorphism. In particular these 

include attributes of the body, with males generally larger in size than females. 

Unfortunately, several of these studies do not consider the potential influence of 

age in their interpretations. Moreover, small sample sizes with limited 

representation of certain demographic groups may reduce the significance of 

their findings. 
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Age 

The dominant theme of age related considerations of the hyoid bone 

involve the timing of the union of the body and the greater horns. This is in 

following with the majority of investigations designed to elucidate skeletal age 

markers which focus upon the fusion of skeletal components (see for example 

McKern and Stewart, 1957). Such assessments of union, primarily, between 

diaphyses and epiphyses established the concept that synotoses occur with 

advancing age. This consideration has been applied to examinations of the hyoid 

bone such that investigators have sought to discern the timing of fusion of the 

body and the greater horns (see for example Jelisiejew et al., 1968; Miller et 

al.,1998; Guilbeau, 1992; Komenda and Cerny, 1990; O'Halloran and Lundy, 

1987; Parsons 1909). Of interest is the fact that the majority of standard 

anatomical texts present the hyoid bone as an element that fuses with advanced 

age. A review of the literature concerning age and hyoid development and 

degeneration is not only crucial to the study at hand, but will serve to 

demonstrate the variation which typifies this structure. 

The most commonly cited study concerning age and hyoid bone 

characteristics is the visual assessment of three hundred hyoid bones collected at 

autopsy by O'Halloran and Lundy (1987). They noted a degree of osseous 

fusion, unilateral ( one fused) or bilateral (both fused) , in approximately half of 

the specimens which range in age from 2 months to 92 years (see Table 3.3). 
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Table 3.3 

Age 
N 
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Occurrence of fusion by age and sex as identified by O'Halloran 
and Lundy (1987). 

Males Females 

Not Both One Not Both One 

Fused Fused Fused 
N 

Fused Fused Fused 

3 
0 0 

3 
0 0 

100% 
3 

100% 

22 3 1 
0 0 4 0 

100% 75% 25% 

34 9 6 10 3 4 

69.4% 18.4 % 12.2 % 
17 

58.8 % 17.6% 23.5 % 

20 21 9 3 2 8 

40% 42% 18 % 
13 

23.1 % 15.4 % 61.5 % 

11 17 12 5 2 6 

27.5 % 42.5 % 30% 
13 

38.5 % 15.4 % 46.1 % 

11 17 3 3 4 2 

35.5 % 54.8% 9.7% 
9 

33.3 % 44.4% 22.2% 

2 10 2 2 2 5 

14.3 % 71.4% 14.3 % 
9 

22.4 % 22.2 % 55.6% 

4 10 2 2 4 1 
25 % 62.5 % 12.5 % 

7 
28.7% 57% 14.3 % 

107 84 34 31 17 27 

47.6% 37.3 % 15.1 % 
75 

41.3 % 22.7% 36% 
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Fusion was generally not noted in specimens less than 30 years in age. 

O'Halloran and Lundy (1987) state that the likelihood of fusion increases with 

age up to the sixth or seventh decade. They note bilateral fusion occurs more 

frequently among males, while females exhibit a higher occurrence of unilateral 

fusion. O'Halloran and Lundy (1987) claim that unilateral fusion occurs with 

high frequency following the third decade, however, it is important to note that 

among elderly females the frequency of no fusion and bilateral fusion are 

compatible. They do recognize that "significant numbers of middle-aged and 

elderly people, especially women, have nonunion" (O'Halloran and Lundy, 

1987:1657). O'Halloran and Lundy (1987) recognize a high occurrence of 

unilateral fusion in women, which they note is of great importance to the forensic 

pathologist. However sample size averages less than ten per age group. 

Jelisiejew and coworkers, ( 1968) analyzed the frequency of 

synchondroses or synotoses (fusion) between the body and the greater horns in 

three hundred and four hyoids (see Table 3.4). They conclude that fusion occurs 

earlier in males than in females. However, in advanced age, more females 

exhibit fusion (Jelisiejew et al., 1968). Though Jelisiejew and coworkers (1968) 

state the likelihood of fusion increases with age, the data do not unequivocally 

support this conclusion. Among males aged 61-70, only 39% of specimens 

exhibit fusion, whereas 42% of those aged 21-30 demonstrate fusion. In 

addition, Jelisiejew et al., (1968) did not note any significant differences between 

the sexes regarding unilateral fusion. Further, they did not note any significant 

75 



Table 3.4 Occurrence of fusion by age and sex as identified by Jelisiejew 
et al. (1968). 

Males Females 
Age 

Specimen Fusion Specimen Fusion 
Number (percental(e) Number (percental(e) 

0-20 32 2 (6%) 28 -

21-30 38 16 (42%) 12 1 (9%) 

31-40 40 15 (38%) 18 3 (17%) 

41-50 38 13 (34%) 16 7 (44%) 

51-60 66 37 (56%) 20 14 (70%) 

61-70 52 20 (39%) 48 26 (54%) 

71-80 38 21 (55%) 36 22 (61%) 

Totals 304 124 (41 %) 178 73 (44%) 

age correlation with unilateral fusion. Guilbeau (1992) claims that among males 

the incidence of fusion increases with age and in fact, among both sexes, bilateral 

fusion is more common than unilateral fusion or non-fusion among those over 50 

years of age. 

Parsons (1909), in his study of 108 hyoids, noted an incidence of 

unilateral fusion as early as the second decade (see Table 3.5). He ascribes 

bilateral fusion to the period beginning in the third decade, though rarely before 
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Table 3.5 Incidence of fusion by age as identified by Parsons ( 1909) 

Age 
Specimen Unilateral Fusion Bilateral Fusion 
Number (percentage) (percentage) 

<20 30 1 (3.3%) -

21-30 13 2 (15.4%) -

31-40 16 5 (31 %) 2 (12.1 %) 

41-50 12 1 (8.3%) 6 (50%) 

51-60 22 3 (13.6%) 8 (36.4%) 

61-70 13 2 (15.4%) 5 (38.4%) 

>70 3 - 3 (100%) 

Totals 98 14 (14.3%) 24 (24.5%) 

the fifth decade. Parsons does not present data to differentiate between the sexes 

regarding incidence of fusion. He does, however, note that there is no difference 

between left and right sides in cases of unilateral fusion. Consideration of the 

data presented in Table 3.5 does suggest that no fusion was noted for 11 or 50% 

of his 51-60 aged specimens and for 6 or 46% of his 61-70 aged specimens. 
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"It is however, a common thing to meet with 
people between 60 and 70 in whom the body and 
greater cornu of the Hyoid are quite separate, 
though in earlier decades (up to 35) the bony 
elements are usually separated by a buffer of 
cartilage 3 to 5 mm thick which later becomes a 
mere line" (Parsons, 1909:285). 

Furmanik and coworkers (1976) in a study of 100 laryngeal wax casts, 

concludes that the dimensions of the middle laryngeal cavity increases with age. 

Attempting to develop equations to estimate the size of the laryngeal cavity for 

use in clinical applications they conducted five measurements. They note that 

the size of the middle laryngeal cavity is strongly correlated with the span of the 

greater horns thereby suggesting that this dimension of the hyoid increases with 

advancing age. 

Miller et al., (1998) assessed the level of fusion at the juncture between 

the greater horn and the body on three hundred fifteen hyoid radiographs with 

respect to age and sex (see Table 3.6). They note "considerable age variation in 

fusion of the greater cornua to the hyoid body" (Miller et al., 1998:1138). 

Specifically, among unfused specimens, they recognize a significant decrease in 

the joint space between the great horns and the body, though only up to age 40 

years. Furthermore, their results contradict those of others as Miller and 

coworkers ( 1998) did not note any significant evidence for sex differences 

regarding onset of bilateral fusion. Although they recognize that the proportion 

of bilateral fusion increases with age, Miller et al., note that "bilateral nonfusion 
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Table 3.6 

Age 

0-10 

11-20 

21-30 

31-40 

41-50 

51-60 

61-70 

71-80 

Totals 

Incidence of fusion by age and sex as identified by Miller et al., 
(1998). 

Males Females 

Not Both One Not Both One 

Fused Fused Fused Fused Fused Fused 

2 

100 % 
0 0 

2 

100% 
0 0 

29 
0 0 

6 
0 0 

100 % 100 % 

22 5 4 12 3 2 
71% 16.1 % 12.9 % 70.6% 17.6% 11.8 % 

14 11 11 6 5 5 
38.9% 30.6% 30.6% 37.5 % 31.3 % 31.3 % 

6 13 10 11 4 7 
20.7% 44.8% 34.5 % 50% 18.2 % 31.8 % 

8 11 6 7 10 3 
32% 44% 24% 35 % 50% 15 % 

5 11 5 5 10 5 

23.8 % 52.4% 23.8% 25% 50% 25 % 

5 9 1 6 12 5 
33.3 % 60% 6.7% 26.1 % 52.2 % 21.7 % 

91 60 37 55 44 27 

48.4% 31.9 % 19.7% 43.7% 34.9% 21.4 % 
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persists in a significant proportion of the elderly population" (1998: 1139), 

finding it in 30% of specimens over 70 years of age. Miller and coworkers, 

suggest that this cannot be explained by regarding fusion between the body and 

the greater horns as an ongoing process (1998). Instead they state that "People 

may have a genetic predisposition to fusion or non-fusion" (1998: 1139). 

This review indicates that there is a potential need for a study of the 

correlation between age and fusion. The limited sample sizes and slightly 

contradictory trends in fusion warrant a more thorough examination, 

incorporating a large sample. Furthermore, the data are cross sectional and all 

investigators consider their data such in a longitudinal fashion. Obviously, it is 

not possible to construct a longitudinal sample. However, this must be 

considered in data interpretation. 

Conclusions 

Investigations and evaluations of the laryngeal structures, in particular the 

hyoid bone, address a wide variety of subjects including clinical, pathological 

and developmental aspects. Undeniably, all such interpretations require an 

accurate awareness of the anatomy of the laryngeal components. Although this 

literature review presents substantial information concerning the composition of 

the larynges stemming from a wealth of research, it also demonstrates the lack of 

consensus among investigators regarding the structure and development of the 

skeletal component of the larynges. As discussed herein, researchers have 
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suggested that anatomical aspects and developmental conditions of the hyoid are 

related to sex and age. However, such investigations have yielded controversial 

and occasionally opposing findings. Further, the use of radiographic versus 

skeletal data prohibits a truly comparative assessment of the findings (see Table 

3.7). 

A review of the literature concerning the hyoid bone indicates there are 

several morphological attributes with potential developmental correlates. To 

date, however a large-scale investigation has not been conducted to thoroughly 

assess these viewpoints. Previous researchers have suggested that span of the 

greater horns, i.e. distance between the posterior-most projections of the 

thyrohyals may evidence dynamic qualities during maturation. Reports have also 

attempted to demonstrate that size attributes are correlated with sex. However, 

lacking from such interpretations is to what degree age influences variation in 

size. 

In addition, investigations suggest that the fusion between the body and 

the greater horn may have age related significance. However, absent from such 

assessments is consideration of whether union of the elements occurs in stages or 

follows a pattern. Unfortunately, published investigations addressing the timing 

of fusion employ cross sectional data in a longitudinal manner; i.e. comparing 

evidence of fusion between age groups. Instead, the prevalence of fusion must 

be considered within age groups as the timing of union of the elements may 

reflect natural variation in the human species. 
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Table 3.7 Summary of primary anatomical and developmental studies 

Author(s) Year Sample Study synopsis 

53 males* 
States hyoid body measurements 

Parsons 1909 
28 females* 

reflect sex of specimen. 
Considers age and fusion status 

136 males* 
Conclude sex differences exist in 

Jelisiejew et al. 1968 
75 females* 

overall dimensions of hyoid bone. 
Suggest fusion increases with age 

Komendaand 
1990 

208 males Discriminant analysis for sex by six 
Cerny 138 females measures. 

Guilbeau 1992 
29 males Classification in excess of 90% 

10 females using five measurements of hyoid 

Reesink et al. 1999 
59, 39 used Radiographic examination with 
in analysis 76% correct classification by sex 

Digitized hyoid radiographs. 

Miller et al. 1998 315 
approximately 70% correctly 
classified. Thirty measurements. 
Consider age and fusion. 

O'Halloran and 
1987 

225 males Considered age and fusion status. 
Lundy 75 females State likelihood increases with age 

*Refers to adult specimens only 

The hyoid bone has long been erroneously presented as a single U shaped 

bone that fuses with age. A synthesis of the literature suggests that this has been 

blindly accepted, which further demonstrates the need for a large-scale 

evaluation of the hyoid bone to consider size, shape and fusion with regards to 

sex and age. This study is designed to explore these concerns; to illuminate the 

developmental and degenerative qualities and the morphological variation 

inherent in the human hyoid. 
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Chapter IV 

Materials and Methods 

Introduction 

Hyoid bones were subjected to a twofold examination designed to 

investigate the developmental patterns inherent in this osseous laryngeal 

structure. The extent of union between individual components of each hyoid 

was evaluated with respect to age, sex and ancestry. Additionally, overall 

morphology was assessed to discern the range of morphological variation which 

characterizes the hyoid bone. Further investigation sought to illuminate 

patterns of fusion and to demonstrate the developmental and degenerative 

qualities of the bony component of the larynges. In total, 1,814 hyoid 

specimens, from three collections, were subjected to both metrical and visual 

evaluation to illuminate patterns of development of the hyoid apparatus. The 

visual examination involved determination of the level of fusion of the hyoid, 

i.e. between the greater horns and the body, through a two-phase assessment 

constructed to investigate the existence of any progression or patterns of fusion. 

Additionally, the span of the greater horns was assessed to illuminate any 

correlation between advancing age and structural modification. The metric 

analysis consisted of a suite of five measurements designed to reveal overall 
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size and shape. Subsequently, data were analyzed using standard statistical 

protocol to assess whether any patterns of development were apparent and 

secondly whether such patterns were statistically significant regarding age, sex 

and ancestry. In addition, statistical evaluation was performed to investigate the 

existence of sexual dimorphism and morphological variation of the hyoid bone. 

Sample 

The sample is comprised of skeletonized hyoid specimens from three 

separate osteological collections curated by the Department of Anthropology at 

The University of Tennessee, Knoxville. The study sample includes a total of 

1,814 skeletonized hyoid specimens. A total of 1,722 bones from the 

Osteopathology Evidentiary Collection (OPC) ( collected from 1986-1998), 68 

hyoids from the William M. Bass Donated Skeletal Collection (WMBDSC) 

(collected from 1981-2000), and 24 hyoids from the William M. Bass Forensic 

Osteological Collection (WMBFOC) (from casework conducted from 1962-

2001), were examined. Figure 4.la illustrates the collections used in the study 

sample and further reflects the components of each collection represented by 

males and females. See Appendix A for a listing of all specimens. 
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William M Bass Forensic Osteological Collection N= 24 

■ males 

■ females 
William M Bass Donated Skeletal Collection N= 68 

600 1200 

Number of specimens 

Figure 4.1 Number of each sample used in this study. 

Sex of decedents was assigned a numeric value; females 1 and males 2. 

Age was reported in years. Those specimens with an age at death of less than 

one year were aged in tenths of a year. Specimens were categorized into ten 

year age groups: 0-9, 10-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89 and 90+ 

years. Ancestry, as reported by the medical examiner, was coded using a 

numeric system: Whites 1, Blacks 2, Asians 3, Hispanics 4, and Native 

Americans 5. Individual identities of all of the decedents are unknown. See 

Appendix A. 
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Osteopathology Evidentiary Collection 

The Osteopathology Evidentiary Collection consists of skeletal elements 

dissected during autopsy at the James H. Quillen College of Medicine, East 

Tennessee State University, Johnson City, Tennessee, from 1986 through 1998. 

The collection, presently curated at The University of Tennessee, Knoxville, 

was collected at autopsy by Dr. William F. McCormick. Following necropsy, 

elements were prepared by immersion in a 5.45% solution of sodium 

hypochlorite for two to four hours to facilitate removal of remaining soft tissue. 

Elements were then rinsed, air dryed and placed in labeled bags (personal 

communication, McCormick, 1998). 

Hyoids used in this study were collected from 1986 through 1998, 

though no material is available from the years 1990 and 1991. Specimens 

collected during the period from 1986 to 1993 include both ossified thyroid and 

cricoid cartilages. Age, sex, and ancestry are known for all decedents. Cause 

and manner of death are known in most cases. 

A total of 1,722 hyoids were examined. Males comprise 74% (1278). 

Females comprise 26% or 444. Ninety-five percent (1633) of the specimens are 

White, and 4% (75) are Black. Subjects of Asian, Hispanic, and Native 

American ancestry each represent less than one percent of the collection sample 

(See Figure 4.2). See Appendix A for demographic profile. 
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Hispanic 
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Black 
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Figure 4.2 

II males 
N= 10 

■ females 

N= 1 

600 1200 

Number of Specimens 

Demographics of the Osteopathology Evidentiary Collection 
Hyoid Specimens. 

1800 

Specimens range in age from 2.5 months to 101 years with an average age of 

43.8 years; 43.9 for females and 43.8 for males. The median age is 43 years and 

the mode is 36 years. See Figure 4.3 for an age profile of specimens. 

William M Bass Donated Skeletal Collection 

This collection is comprised of self and familial donated individuals and 

decedents received through the State of Tennessee Medical Examiner system 

dating from 1981 through 2000. Subjects were exposed to the natural 

87 



300 

250 

Vl 

al 200 
E ·o 
(I) 

0.. 150 V) 
c..,.., 
0 
a:; 
.0 100 E 

;:::3 z 
50 

0 

Figure 4.3 

■ males 

■ females 

0\ ~ ~ ~ ~ ~ ~ ~ ~ -,.. 
s s s s s s s s s ~ 
~ 

~ ~ ~ ~ ~ ~ ~ ~ 

Age Groups 

Age Profile of Hyoid Specimens from the Osteopathology 
Evidentiary Collection. 

environment at the Forensic Anthropology Research Facility overseen by the 

Department of Anthropology. Skeletal elements were processed to remove 

residual soft tissue and to facilitate long term curation. Individual skeletons are 

housed at the Forensic Center in the Department of Anthropology at The 

University of Tennessee. While individual identities are unknown, age, sex and 

racial affinity are known for all specimens. Sixty-eight were examined. Of 
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these, 56 or 82% are male, and 12 or 18% are female. Ninety-one (62) of 

decedents are White and 9% (6) are Black (see Table 4.1). Individuals range in 

age from 25 years to 101 years with a mean age of 61.3 years ( 64.3 years for 

females and 60.5 for males). Figure 4.4 illustrates an age profile of specimens 

used from this skeletal collection. Appendix A provides a listing of all 

specimens. 

William M Bass Forensic Osteological Collection 

This component of the sample is derived from actual casework through the 

Forensic Anthropology Center. Included in this portion of the sample are 

specimens collected at autopsy and examined in consultation with pathologists 

Table 4.1 Demographics of the William M. Bass Donated Skeletal 
Collection Hyoid Specimens. 

SEX 
ANCESTRY Totals 

Males Females 

White 51 11 62 

Black 5 1 6 

Totals 56 12 68 
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Age Profile of the William M. Bass Donated Skeletal Collection 
Hyoid Specimens. 

At The University of Tennessee Medical Center's Regional Forensic Center. 

Hyoids were removed enmass by careful dissection of the tongue muscles and 

the inferior musculature following the procedure as described by Wetli et al. 

(1988). Following examination by the pathologist, each hyoid was dissected 

from the other laryngeal structures. Remaining soft tissues were removed. 

Although the William M. Bass Forensic Osteological Collection includes 
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remains recovered over the last thirty years, useable specimens were limited to 

only those individuals for whom age, sex, and ancestry are known. A total of 

24 skeletonized hyoids were examined from the collection of which 16 (67%) 

are males and 8 (33%) females. Twenty-one are White and 3 are Black (see 

Table 4.2). Ages range from 18 to 87 years, with mean ages of 40 and 45 years 

for males and females, respectively. The pooled sample has a mean age of 41 

years. See Figure 4.5 for an age profile of this portion of the sample. See also 

Appendix A for a listing of all specimens. 

Sample summary 

A total of 1814 skeletonized hyoids were examined for this study. 

Seventy-five percent or 1350 are male and 464, or 25%, are female. Whites 

represent 94% (1,716) of the sample. Eighty-four (5%) are Black. One Asian, 

Table 4.2 Demographics of Hyoid Specimens from the William M. Bass 
Forensic Osteological Collection 

SEX 
ANCESTRY Totals 

Males Females 

White 14 7 21 

Black 2 1 3 

Totals 16 8 24 
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10 Hispanic, and 3 Native American specimens combined represent less than 

one percent of the entire sample (see Figure 4.6). Ages for the entire sample 

range from 2.5 months to 101 years, with a mean age of 44.55 years (see Figure 

4.7). 
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Figure 4.6 Demographics of Combined Sample of Hyoids. 

Metric examination 

Five measurements were performed on skeletonized hyoid elements. 

The suite of measurements was designed to reflect the shape and size of the 

element across three dimensions. The set of measurements were designed to 

replicate those utilized by other researchers (see for example Komenda and 

Cerny, 1990; Guilbeau, 1992; Miller et al, 1998). However, given the condition 

of the specimen, it was not always possible to perform all measurements. These 
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Figure 4.7 Age Profile of Combined Sample of Hyo ids 

situations are noted in the measurement descriptions. Specimens were measured 

using Spi digimax 30-440-2 digital calipers. Measurements were recorded in 

millimeters to the nearest hundredth. The measurements are as follows: 
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Body height. (BH) 
This is defined as the height of the body along the 
midline. This measurement is performed by 
elevating the body and placing the blades of the 
calipers on the superior and inferior borders of the 
body. The calipers are held such that the 
longitudinal axis of the tool is parallel to the anterior 
surface of the hyoid body. See Figure 4.8. 

Body width. (BW) 
This value reflects the width along the central axis of 
the body. The element is positioned on a flat 
surface with the superior surface upwards. The tips 
of the caliper blades are placed on the 
posteriosuperior surface, at the midpoint of the left 
and right sides of the body. For isolated body 
elements, the blades are placed on the 
posteriosuperior margin of the lateral articular 
surfaces. If the lateral aspects of the hyoid body are 
not clearly demarcated, the measurement is not 
collected. See Figure 4.9. 

Body thickness. (BT) 
This measurement determines the thickness in the 
anterior posterior plane of the hyoid body taken 
along the inferior margin at the mid line. The 
element is held in a position such that the blades of 
the calipers are on the inferoanterior and 
inferoposterior aspects. The blades are positioned 
such that the thickness of the body is reflected and 
not the concavity of the body. See Figure 4.10. 
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Figure 4.8 Technique for measuring height ofhyoid body (BH). 

Figure 4.9 Technique for measuring width of hyoid body (BW). 
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Figure 4.10 Technique for measuring thickness ofhyoid body (BT). 

Greater horn span. (GHS) 
This measurement records the span of the greater horns 
at their posterior most extension. With the element 
positioned with the superior surface face down on a flat 
surface, the blades of the calipers are placed on the 
lateral aspects of the posterior most projection of the 
greater horns. See Figure 4.11. In instances where 
specimens exhibit no union or unilateral union this 
measurement is not performed. This measurement is 
not performed if the horns·are not intact. 

Greater horn posterior distance. (GHD) 
This measurement records the distance between the 
greater horns at their posterior most extension. With 
the element on a flat surface with the inferior aspect up, 
the blades of the calipers are placed on the medial 
aspects of the posterior most projection of the greater 
horns. See Figure 4.12. In instances where specimens 
exhibit no union or unilateral union this measurement is 
not performed. This measurement is not performed if 
the horns are not intact. 
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Figure 4.11 Technique for measuring greater horn span (GHS). 

Figure 4.12 Technique for measuring greater horn posterior distance (GHD). 
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Given the data collected it will be possible to create measurement indices from 

combinations of measurements to further reflect and investigate hyoid 

morphology, e.g. the average thickness of the greater horn tips can be calculated 

given data contained in the span and distance measures of the greater horns. 

Visual assessment 

The level of union between the body and the greater horn was assessed 

visually. The condition of fusion was scored based upon visual assessment of 

the juncture of the body and the greater horn. Left and right sides were 

evaluated. Initial examination involved determination of the level of union 

between the body and the greater horn as open, closed or active. Both the left 

and right sides were evaluated independently and assigned a numerical code (0, 

1, 2) to correspond to the level of union. See Figure 4.13 for a depiction of the 

fusion levels. 

Open was defined as the absence of any bony union between the body 

and the greater horns (0). A code of (0) was assigned in instances where the 

greater horns were absent. Closed (2) was defined as the complete union 

between the body and the greater horn absent any margin or evidence of a 

separation between the body and the greater horns (2). Active (1) was defined 

as the ongoing process of fusion between the elements as evidenced by some 

level of bony union between the body and greater horns. 
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Figure 4.13 Levels of fusion identified on hyoid specimens. Left: open (0) 
on both left and right sides. Middle: active (1) on left. Right: 
closed (2) on both left and right sides. 

The designation of fusion as active warranted a further evaluation to 

investigate whether patterns of fusion exist. For each side assigned a (1) (active 

fusion) a more intensive investigation was performed. The juncture between the 

lateral margins of the body and the greater horn was assessed as if it were cross

sectioned. This conceptual surface was divided into quadrants numbered 1-4; 

arranged clockwise on the right side and counterclockwise on the left side. (See 

Figure 4.14). The superior posterior quadrant surface is (I), the inferior posterior 

quadrant surface is (2), the inferior anterior quadrant surface is (3) and the superior 

anterior quadrant surface is ( 4). Only the degree of fusion evident on the outer 

surface was assessed. 
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Anterior Posterior 

Figure 4.14 Schematic of quadrant system utilized in estimating degree of 
fusion as applied to the right side. 

The degree of fusion across the surface of each these quadrants was 

assessed as open, trace or complete. Open was defined as the absence of union 

of the body and greater horn across the surface; coded ( 1 ). The visible location 

of union of the two sides indicated by a prominent fusion line across the surface 

was defined as trace and was coded (2). Union of the two elements with no 

visible evidence of two separate structures was defined as complete fusion and 

coded (3). The degree of fusion was assessed for all four quadrant surfaces on 
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each side with active fusion. See Appendix C (LI, L2, L3, L4 and RI, R2, R3, 

R4). 

Statistical Interpretation 

Data were subjected to statistical analysis to facilitate an objective 

assessment of patterns of development. Metric and coded data were analyzed 

separately. Data were assessed using SPSS software version 10.1 (SPSS Inc., 

1996 and SPSS Inc., 1999). Prior to analysis, all data were assessed for 

normalcy. Metric data were examined to discern whether and to what degree, 

age, ancestry and sex influence hyoid dimensions. Descriptive statistics were 

performed on all variables to illuminate any trends with regard to size. Plots 

were produced using Deltagraph. 

To assess whether size or shape differences exist between males and 

females, t-tests were conducted. This test compares the means of two sample 

populations on a particular variable to assess whether the means differ greatly 

from one another. The tests used in this study were based on the assumption of 

unequal variances between the sample populations. These were performed on 

males greater than 19 years of age and females greater than 15 years of age. 

The values, 19 and 15, reflect the ages at which growth ceases for males and 

females, respectively. This was demonstrated by a linear response and plateau 

function constructed on body height values. This non linear function of growth 

models development as beginning at time O (intercept) and progressing at a 
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particular rate (slope) and reaching a level of no further increase in size, i.e., 

cessation of growth (plateau) (see Konigsberg et al., 1990). 

The data were further investigated to determine whether the stage of 

fusion, open, active or closed, is associated with sex and or age. Subsequent 

examination will address whether fusion between the body and the greater horn 

follows a pattern. Data were initially examined using Nphases to determine 

whether the stages of open, active and closed are delineated developmental 

stages. Fusion scores were subjected to examination using NPhases, to 

determine whether the use of three stages of fusion estimation is sound. 

Transitional analysis provides a means to consider whether stages or events are 

identifiable in that they are delineated and that a subject progresses through 

stages in an predictable manner. This transitional analysis program 

demonstrates whether developmental, or degenerative stages, are statistically 

significant (see Konigsberg and Herrmann, 2002; Boldsen et al., 2002). The 

output indicates the average age and standard deviation of transition between 

developmental stages. Three models may be produced for cumulative ages with 

a common standard deviation for log linear values with a common standard 

deviation and cumulative ages with individual standard deviations. 

Descriptive statistics were performed to generate information 

regarding frequency of fusion with respect to both age and sex. Subsequently, 

the potential influence of sex and age on the level of fusion, i.e., open, closed, 
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or active, was assessed using SPSS version 10.1. To further investigate 

aspects of fusion, chi-squared tests of independence were performed to assess 

whether the level of fusion on one side is contingent upon the level of fusion 

on the opposing side of an element. These data were considered in terms of 

sex and age group of specimens. Ancestry was pooled for all aspects of 

fusion analyses. To improve sample sizes for several statistical tests, 

individuals in the upper three age groups (90+, 80-89, and 70-79) were 

combined into a single age group: 70+. 

In order to investigate the relationships between fusion condition and 

age, a loglinear model was employed. Such an analysis enables the 

examination of multiple dimensions of categorical measures including main 

effects and all possible interactions. Associations were tested for all main 

effects (LHF, RHF, and age group), as well as all two way interactions and 

the three way interactions of age group and fusion status for the left and right 

horns. 

Additional chi squared tests of independence were conducted to 

determine whether fusion between the hyoid body and greater horns follows a 

developmental pattern; to assess whether the degree of fusion in a particular 

quadrant is contingent upon the degree of fusion in adjacent quadrants. Two 

way cross tabulation tables were generated. Left and right sides were 

investigated independently. Four hundred thirty-three left sides were assessed 
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and 425 right sides were tested. Sex, age and ancestry were pooled for this 

analysis. 

Both descriptive and multivariate statistical tests were performed to 

thoroughly assess and reflect morphological variation to illuminate 

developmental and degenerative patterns and to investigate the variables which 

are correlated with such conditions. 
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Chapter V 

Results 

Introduction 

Examination of 1,814 hyoids provided data concerning two primary 

aspects of growth and development; 1) overall size and shape dimensions and 2) 

fusion sequence between the body and greater horns. The metric data were 

analyzed to address these parameters. Descriptive statistics and multivariate 

analyses were conducted. The data comprise a representative sample of male 

and females across all ages. However, equal representation across ancestral 

groups is not possible. Prior to detailed statistical analysis, measures of the 

height, width, and thickness of the hyoid body are presented, BH, BW, and BT, 

respectively. Figure 5.1 illustrates the mean values for the three measurements 

of the hyoid body separated by ancestry. Greater horn span (GHS) and greater 

horn distance (GHD) were not evaluated as insufficient data were collected to 

accurately compare these dimensions by ancestry. The condition of the single 

specimen of Asian ancestry did not permit collection of the body width variable. 

Hence, no data is available for this measure. 

Differences between these ancestral groups appear insignificant. 

Although a disparity exists between each group in number of specimens and the 
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age and sex composition, the mean values do not indicate differences exist 

between ancestral groups. Given this, ancestry was combined in all further 

evaluations. 

Size and Shape 

The suite of measurements collected was designed to reflect both size 

and shape of the hyoid bone. Specimens were examined to assess whether 

metric differences exist between sexes and age groups. Table 5.1 provides 
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Table 5.1 

Age 

0-9 

10-19 

20-29 

30-39 

40-49 

50-59 

60-69 

70-79 

80-89 

90+ 

Mean and standard deviation of body and horn measures (in mm) 
by age group. Values are pooled by sex and ancestry. 

Body Body Body 
Greater Greater 

N Horn Horn Height Width Thickness 
Span Distance 

6.74 9.37 1.63 
35 

1.12 2.12 0.33 

9.86 16.25 2.02 
112 

1.48 2.28 0.43 

10.3 19.3 2.13 44.6 38.46 
249 

1.34 2.45 0.48 5.55 5.57 

10.34 20.02 2.16 45.07 38.18 
334 

1.39 2.47 0.46 5.86 5.69 

10.39 20.25 2.17 46.82 39.37 
364 

1.50 2.40 0.49 6.33 6.22 

10.51 20.80 2.25 45.31 37.88 
31 

1.29 2.51 0.51 6.02 5.79 

10.73 20.83 2.27 48.6 40.88 
206 

1.48 2.47 0.522 6.87 6.65 

10.62 20.91 2.23 47.56 39.58 
140 

1.61 2.65 0.48 4.83 4.61 

10.34 19.64 2.06 46.49 39.49 
64 

1.41 3.07 0.42 6.21 5.81 

9.42 19.51 2.35 46.13 39.9 
9 

0.87 4.05 0.23 1.95 2.17 
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group mean values and one standard deviation score for body height (BH), body 

width (BW), body thickness (BT), greater horn span (GHS), and greater horn 

distance (GHD). It was not possible to collect GHS and GHD values for 

specimens in the age groups 0-9 and 10-19 given that no union existed between 

the body and the greater horns. 

Tests of normality were performed to illustrate whether the data are 

normally distributed. Shaprio-Wilk's values indicate all five measures are 

normally distributed. For each measurement of the hyoid body, little difference 

in size is apparent between age groups beyond the second decade of life. 

However, each of these variables was independently, and then collectively, 

subjected to more stringent analysis. Correlations between measures and 

demographic variables were also assessed. Pearson correlations reflect the 

magnitude and direction of a relationship between two variables with scores of 1 

and -1 indicating strong associations between variables. Although a strong 

association occurs between the GHD and GHS variables (r=.937), this is due to 

the fact that the measurements are partially overlapping (see Chapter 4). No 

other strong relationships are evident as other correlation values are less than 

0.3. 

Body Height 

Figure 5 .2 illustrates a scatterplot of body height measures for males and 

females. Individuals in the first decade of life demonstrate a lesser body height 
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Figure 5.2 Body height in millimeters by age group. Ancestry is pooled. 

than all other age groups. A gradual increase in height of the body continues 

from the first through the third decade followed by a plateau throughout the 

middle and latter decades. 

Table 5.2 provides descriptive statistics for body height separated by sex. 

Males older than or equal to 19 years of age and females older than or equal to 

15years of age are represented. Males on average display a slightly larger 

measure for the height of the hyoid body. The largest measure of body height 

(16.22 mm) was recorded on a specimen from the seventh decade oflife, a 67 
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Table 5.2 

Sex 

Male 

Female 

Hyoid body height (in mm) by sex. Mean, minimum, maximum, 
and one standard deviation with pooled ages; males 2: 19 years 
and females 2: 15 years. 

N Mean Maximum Minimum 
Standard 
Deviation 

1,261 10.86 16.22 7.12 1.27 

448 9.18 9.18 6.11 1.09 

year old white male. The smallest measure of body height (4.88 mm) was 

recorded from a specimen in the first year oflife (1 year old white female). 

There are significant differences between the mean value for males and the mean 

value for females as demonstrated by the t-test statistic (t stat=26.69 df=906, 

t=l.96). 

Figure 5.3, a box and whisker plot, illustrates the maximum, minimum, 

and standard deviation for body height measurement by age group. Sexes are 

pooled. This depiction reflects the height of the hyoid body as noticeably shorter 

during the first decade of life. The second through the ninth decade reflect little 

variation in mean body height. A decreased height of the hyoid body 

characterizes specimens from the 90+ years age group. 
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A scatterplot of body width by sex is presented in Figure 5.4. Ancestry 

is pooled. With a few exceptions, individuals in the first two decades of life 

demonstrate a lesser body width than all other age groups. Beyond this time, 

there appears to be less variation in the width of the hyoid body. There is no 
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Figure 5.4 Body width in millimeters by age group. Ancestry is pooled. 

apparent difference in width of the hyoid body between male and female 

specimens. 

Table 5.3 provides mean, maximum, minimum, and standard deviation 

for body width measures on males and females. Ages are pooled; males~ 19 

years and females~ 15 years. On average, females (17.59 mm), exhibit a 

narrower body than do males (21.02 mm). Standard deviation values are 2.2 and 

1.96 for females and males, respectively. The smallest, and also the largest, 
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Table 5.3 

Sex 

Male 

Female 

Hyoid body width (in mm) by sex. Mean, minimum, maximum, 
and one standard deviation with pooled ages; males ~ 19 years 
and females ~ 15 years. 

N Mean Maximum Minimum 
Standard 
Deviation 

936 21.02 28.65 14.32 2.20 

359 17.59 24.71 11.02 1.96 

body width measures were recorded on males. The smallest width (4.98 mm) 

was recorded on an 8 month old white male with the largest width (28.65mm) 

measured on a specimen from the fifth decade of life, a 41 year old white male. 

T-tests on the two samples, assuming unequal variances, indicate that significant 

differences exist between the mean body width for males and the mean body 

width for females (t-stat=27.17, df=724 critical value=l.96). 

Figure 5.5 illustrates a box and whiskers plot of maximum and minimum 

values and standard deviations for hyoid body width by age group. Sexes are 

pooled. Although the mean value is lowest for specimens in the first decade of 

life, an increase in mean width of the hyoid body is apparent during the second 

decade. This trend continues into the third decade. During the middle years 

(age groups 40-49, 50-59, 60-69, and 70-79) there is little apparent variation in 

mean width of the hyoid body. Specimens from the 80-89 age group a lower 
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Maximum, minimum, and standard deviation for Body Width by 
age group. Sex is pooled. 

demonstrate mean value for width of the hyoid body compared to specimens 

from the preceding decade, though the older age group exhibits a wider range 

from maximum to minimum values. The collection of specimens from the 90+ 

age group demonstrate a high standard deviation. 
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Body Thickness 

Values of hyoid body thickness by age and sex are graphically presented 

in Figure 5.6. Ancestry is pooled. The lowest measurement values were 

collected on specimens from age groups beyond the second decade of life. Both 

the low and high values were collected on male specimens. The lowest value 

(0. 72 mm) was recorded on a white male 36 years of age. The highest ( 4.44 

mm) was recorded on a 59 year old white male (see Table 5.4). The range 

between maximum and minimum values for thickness of the hyoid body 

demonstrates a high degree of variation of this variable. T-test results 

demonstrate that significant differences exist between the mean body thickness 

values for males and females. Males, on average, are thicker than females (t

stat=l 4.29, df=959, critical value= 1.96). 

Greater Horn Span 

Figure 5.7 illustrates the relationship between the span of the greater 

horns and age for both males and females. The nature of this measurement 

prohibited collection in the youngest age groups due to the condition of these 

specimens. The scatterplot reflects the general range in values for this measure 

and demonstrates that the hyoid varies less across this dimension within the 

older and younger age groups. Males demonstrate a greater degree of variation 

than do females. The largest (71.22 mm) and the smallest (16.48 mm) values of 

GHS were collected on male specimens (see Table 5.5). Both of these 
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Figure 5.6 

Table 5.4 

Sex 

Male 

5 ~-----------------, 

• • Males • 
4 • X Females 

• • • 
• • • ii-

• • 
3 
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1 
\ . • 

0-+---..-----,----.---..------,-----1 

-10 30 50 70 90 110 

Age 

Body thickness in millimeters by age. Ancestry is pooled. 

Hyoid body thickness (in mm) by sex. Mean, minimum, 
maximum, and one standard deviation with pooled ages; males ~ 
19 years and females ~ 15 years. 

N Mean Maximum Minimum 
Standard 
Deviation 

1258 2.27 4.44 .72 .49 

Female 448 1.94 3.65 1.02 .4 
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Table 5.5 

Sex 

Male 

Female 

• • Males 
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• 
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-10 10 30 50 70 90 110 

Age 

Greater Horn Span in millimeters by age. Ancestry is pooled. 

Greater Horn span (in mm) by sex. Mean, Minimum, Maximum, 
and one standard deviation with pooled ages. 

N Mean Maximum Minimum 
Standard 
Deviation 

330 47.23 71.22 16.48 6.29 

97 43.46 56.97 31.57 4.62 
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measurements were collected on specimens from the fifth decade of life, a 42 

White male and a 43 year old Black male, respectively. Males exhibit on 

average larger values for the span of the greater horns than do females as 

indicated by at-test assuming unequal variances (t-stat=6.46, df=2 l 1, critical 

value= 1.97). 

Greater Horn Distance 

The trends noted for the span of the greater horns are similar to those for 

the measurement of the interior distance between the posterior aspects of the 

greater horns (GHD). Figure 5.8 is a scatterplot of the distance between the 

posterior projections of the greater horns (GHD). Males exhibit a greater 

degree of variation on the measurement than do females. The minimum and 

maximum values were recorded on males. The minimum value (9.8 mm) was 

recorded on a Black male, 43 years of age. The maximum value (63.63 mm) 

was recorded on a 42 year old White male (see Table 5.6). There are significant 

differences in the mean values for this dimension between males and females. 

Males exhibit on average larger values for the distance between the greater 

horns in comparison to females as indicated by at-test assuming unequal 

variances (t-stat=6.18, df=215, critical value= 1.97). 
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Table 5.6 

Sex 

Male 
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60 
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Age 

• 

110 

• Males 
Females 

Greater Horn Distance in millimeters by age. Ancestry is pooled. 

Greater Horn distance (in mm) by sex. Mean, Minimum, 
Maximum, and one standard deviation with pooled ages. 

N Mean Maximum Minimum 
Standard 
Deviation 

334 39.77 63.63 9.8 6.12 

Female 97 36.36 49.25 25.77 4.4 
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Mean Greater Horn Tip thickness 

To further investigate the aspects of the greater horn, the mean thickness 

of the tips of the greater horns were calculated (MTT). This value was 

calculated for specimens with both GHS and GHD measures. It reflects the 

mean thickness of the posterior aspect of the greater horn for each specimen. A 

scatterplot of this calculated variable is provided in Figure 5.9. It was not 

possible to calculate this measure for specimens from the youngest two age 

groups. 

Table 5.7 provides mean, maximum, minimum and one standard 

deviation for specimens by sex. The maximum (5.9 mm) and minimum (0.61 

mm) thickness for the posterior portion of the greater horns were found on white 

males 70 and 80 years of age, respectively. T-tests indicate that there are 

significant differences in the mean values between the sexes. On average, males 

exhibit larger mean tip thickness than do females (t-stat=2.47, df=204, critical 

value=l .97). 

Size and shape descriptive statistics summary 

Descriptive statistics for the five measures BH, BW, BT, GHS, and 

GHD, and the calculated value MTT, indicate that there are several trends for 

these size measurements with regard to age and sex of the specimens. For all 

variables, males on average exhibit larger values in comparison to females. 
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Table 5.7 

Sex 

Males 

Females 

6.5 

• .. • Males 
5.5 • ' • I • X .,. • Females ••• ,c 
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Age 

70 90 110 

Mean greater horn posterior tip thickness in millimeters by age. 
Ancestry is pooled. 

Mean, Minimum, Maximum, and standard deviation in mm for 
Mean Tip Thickness by sex. Ages are pooled; males ::: 19 years 
and females ::: 15 years. 

N Mean Maximum Minimum 
Standard 
Deviation 

329 3.73 5.9 .61 .76 

97 3.55 5.3 1.94 .58 
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Fusion 

The Nphases transitional analytical program indicated that the three 

stages of fusion (open, active, and closed) are verifiable. Using age data for the 

population sample, the mean age of transition from an open to an active stage 

occurred at 53.9 years with a standard deviation of 37.29 and at 55.6 years with 

a standard deviation of 3 7 .17 for left and right sides respectively. The mean age 

of transition from an active stage to a closed stage was calculated as 98.53 years, 

(standard deviation= 50.76) and 93.80 years, (standard deviation= 46.61) for the 

right and left sides respectively. 

Examination of males and females independently using Nphase did not 

demonstrate any significant differences between sexes. The mean age of 

transition for males from an open to an active stage occurred at 52.55 years with 

a standard deviation of 36.91 and at 91.39 years with a standard deviation of 

48.87 from an active to a closed stage. Female specimens, exhibit transition 

from an open to an active stage at 57.95 years with a standard deviation of 37.96 

and at 107.95 years with a standard deviation of 54.91 for transition from active 

to closed. 

Descriptive statistics were generated to demonstrate the frequency of 

fusion conditions with regards to age and sex. Table 5.8 provides counts for the 

incidence of bilateral fusion for both males and females by age groups. 

Percentage values reflect the proportion of fusion against the total sample 

population for that sex and age group. 
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Table 5.8 

Age 

0-9 

10-19 

20-29 

30-39 

40-49 

50-59 

60-69 

70+ 

Total 

Bilateral occurrence of fusion degree by age and sex. 
Percentages are calculated on entire sample population. 

Male Female 

N Open Active Fused N Open Active 

26 26 
0 0 9 9 

0 
100% 100% 100% 100% 

77 77 
0 0 34 34 

0 
99% 99% 100% 100% 

181 165 9 7 59 51 6 

86% 79% 4% 3% 91% 78% 9% 

176 130 26 20 72 52 12 

74% 54% 11% 8% 76% 55% 13% 

178 101 38 39 69 51 11 

67% 38% 14% 15% 71% 53% 11% 

151 83 33 35 39 26 7 

68% 38% 15% 16% 71% 47% 13% 

107 46 30 31 34 17 11 

67% 29% 19% 19% 72% 36% 23% 

110 40 29 41 44 20 12 

73% 27% 19% 27% 71% 32% 8% 

1006 668 165 173 360 260 59 

75% 49% 12% 13% 78% 56% 13% 
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Fused 

0 

0 

2 

3% 

8 

8% 

7 

7% 

6 

11% 

6 

13% 

12 

8% 

41 

8% 



Fusion occurs bilaterally for 75% of the males and 78% of the females. 

Among all males, approximately half ( 49%) of the population exhibits bilateral 

non fusion. More so, among females bilateral non fusion occurs in 56% of the 

sample population. Among females, bilateral complete fusion occurs in less 

than 10% of the age group populations, with the exception of the sixth and 

seventh decades where bilateral fusion occurs for 11 % and 13 % of the age group 

populations. Among male specimens the percentage of bilateral fusion increases 

steadily with age from a low of 3% for specimens in the third decade of life, to a 

high of 27% in the 70+ age group. Bilateral fusion occurs in 13% and 8% of 

the total sample population for males and females, respectively. Among males, 

the rates of active bilateral fusion are compatible with those for bilateral fusion, 

12% and 13%, respectively overall. During the third and fourth 

decades the percentage of active is greater than fused. This trend is reversed in 

the 70+ age group where the number of fused specimens is much greater than 

the number of active specimens. Among females overall incidence of bilateral 

active is greater than bilateral fused for all age groups, 13% and 8%, 

respectively. This trend is apparent for all female age groups. These data 

additionally serve to reflect the incidence of unilateral fusion conditions for the 

sample population. Unilateral fusion occurs in 25% of the male specimens and 

in 22% of the female specimens. 

The fusion condition for each side of the hyoid was assessed for age 

groups. Figure 5 .10 and Figure 5 .11 illustrate the frequency of fusion 
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Figure 5.10 Incidence of fusion at right side by age group. Sex is pooled. 
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Figure 5 .11 Incidence of fusion on left side by age group 
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conditions, i.e. open, active, closed, for the sample populations, right side data 

and left side data, respectively . Sex is pooled. With the exception of a single 

specimen, individuals in the 0-9 and 10-19 age groups do not exhibit fusion 

between the body and greater horns. Figure 5.11 illustrates the single case of 

active fusion occurred on the left side. This is a white male of 19 years. 

Similar frequencies of fusion level both within and between age groups 

are apparent for both the left side and the right side of the hyoid body. A 

decrease in the incidence of non fusion ( open) occurs with increasing age of 

specimens. This trend begins during the third decade of life, and gradually 

continues until the seventh decade. However, the percentage of non fused 

specimens per age group is never less than thirty-five percent. Throughout the 

third through the eighth decade, a steady increase in the frequency of active and 

complete fusion ( closed) occurs, while the frequency of non fusion ( open) 

decreases. A dramatic increase in the incidence of active and closed fusion is 

apparent when comparing the frequencies noted for the 20-29 age group to those 

noted for the 30-39 age group. During this time it appears the frequency of both 

of these fusion conditions nearly double. An increase in the incidence of both 

active fusion and complete fusion continues through the sixth decade. Visual 

inspection of the last two age groups (60-69 and 70+) demonstrates an equitable 

representation of the three levels of fusion. 

Table 5.9 presents counts of incidence of fusion for males and females 

on both left and right sides. Age is pooled. Among females, a total of 260 
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Table 5.9 

Sex 

Males 

Females 

* Observed 
** Expected 

Crosstabulation of LHF and RHF by sex. Age and ancestry is 
Pooled. 

Right Horn Fusion 

Totals 

open active closed 

668 93 13* 
774 open 

454.7 182.3 137** 
Left 

105 165 53 Horn active 189.7 76.1 57.2 323 
Fusion 

closed 
20 60 173 

253 148.6 59.6 44.8 

Totals 793 318 239 1350 

260 28 1 
289 open 

184.4 66.6 38 

Left 
33 59 19 Horn active 111 

Fusion 70.8 25.6 14.6 

closed 
3 20 41 

64 40.8 14.8 8.4 

Totals 296 107 61 464 
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specimens were open on both left and right sides, 59 were active on both left and 

right sides, and 41 were closed on both sides. The females are bilaterally 

symmetric across 77% of the collection. Among males, 668 (50%) were open 

on both left and right sides, 165 (12%) were active on both left and right sides 

and 173 ( 13 % ) were closed on both left and right sides. The male sample 

population is 75 % bilaterally symmetric. 

The chi square test of independence demonstrates that a dependency 

exists between the fusion condition of the left and right sides of the hyoid body 

for both sexes. As exhibited in Table 5.9, right and left horn fusion status are 

identical, much more frequency than would be expected if the two processes 

were independent. Pearson chi-square for females is 317.684 df=4, and for 

males it is 876.489 df=4. The chi square test of independence is significant and 

indicates that there is a relationship between fusion condition on the left side and 

fusion condition on the right side. 

For males who exhibit open fusion on the left horn, they are 7 times as 

more likely to be open on the right than to be active on the right. Further, this 

same group is over fifty times more likely to be open on the right than to be 

closed on the right side. These general patterns are also true for females. 

Females with non fusion on the left demonstrate 9 times greater likelihood of 

being open versus active on right and over 200 times greater likelihood of being 

open on right than being closed. For specimens coded as closed on the left, 

males exhibit a 3 times greater likelihood of being closed on the right than being 
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active and a 9 times greater chance of being closed than being open. Females 

coded as closed on the left, are twice as likely to be closed on the right than to 

be active and are thirteen times more likely of being closed than being open. The 

crosstabulation presented in Table 5.9 indicates that for several conditions, the 

observed frequencies were much lower than the expected values. 

Among female specimens with one side displaying no fusion and the 

other side displaying either active or closed condition, the observed values are 

much less than the expected values. This is most true of specimens that are 

open on one side and closed on the other side. For all specimens which are 

active on one side and closed on the other side, the observed values do not differ 

significantly from the expected values. The observed values are however higher 

than the expected values. For female specimens that are active on one side and 

open on the other side, the observed values are much less than the expected 

values. For all specimens that exhibit bilateral symmetry, the observed values 

are much greater than the expected values. The most likely predictor of fusion 

status on one side of an element, is the condition that exists on the other side. 

To test the association between fusion status and age, a second chi 

square contingency table was generated (see Table 5.10). This table provides 

the observed and the expected values for the three stages of fusion for the left 

side for males and females by age groups. The number of observed incidences 

of non-fusion (open) exceeds the expected number for males and females, in the 

first four decades of life. This trend is reversed in specimens over age fifty 
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Table 5.10 Crosstabulation of fusion condition on left side by age group for 
males and females. 

Age 

Open 

26* 
0-9 

14.9** 

10-19 

20-29 

30-39 

40-49 

50-59 

60-69 

70+ 

Totals 

* Observed 
** Expected 

77 
44.7 

175 
120.4 

151 
137 

126 
153.1 

101 
126.7 

66 
91.2 

52 
86 

774 

Male 

Active 

0 

6.2 

1 

18.7 

21 

50.2 

55 

57.2 

78 

63.9 

67 

52.9 

53 

38 

48 

35.9 

323 

Female 

Left Horn Fusion 

Closed N Open Active Closed 

0 
26 9 0 0 

4.9 5.6 2.2 1.2 

0 
78 34 0 0 

14.6 21.2 8.1 4.7 

14 
210 52 11 2 

39.4 40.5 15.5 9 

33 
239 63 21 11 

44.8 59.2 22.7 13.1 

63 
267 58 25 14 

50 60.4 23.2 13.4 

53 34 14 10 

41.4 
221 

34.3 13.2 7.6 

40 
159 20 17 10 

29.8 29.3 11.2 6.5 

50 
150 22 23 17 

28.1 38.6 14.8 8.6 

253 1350 289 111 64 
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N 

9 

34 

65 

95 

97 

55 

47 

62 

464 



where the number of specimens coded as open on the left side is less than the 

expected number. The disparity is greater for males than for females. 

Specimens coded as closed were observed with much less frequency than 

expected in the youngest three age groups. Whereas specimens from the 50-59, 

60-69 and 70+ age groups were observed as fused more frequently than 

expected. For all fusion conditions there is little discrepancy between the 

observed and expected frequencies for both males and females from the 40-49 

and 50-59 year age groups. The Pearson chi-square values for females (65.956 

df= 14) and males (211.100 df= 14) are significant indicating that a dependency 

exists between observed row and column values. 

Similar trends characterize the degree of fusion between the right greater 

horn and hyoid body (see Table 5.11). Pearson chi-square for females is 53.978 

df=14. Pearson chi-square for males is 222.671 df=14. The chi-square test is 

significant indicating that for the sample population, age and fusion are related. 

Review of the tests of partial associations indicates that the interaction of 

LHF and RHF is significant (partial chi square of 902.967, p<.001), as are the 

interactions of age group and LHF and RHF (partial chi square of 82.212, 

p<.001; partial chi square of86.354, p<.001). 
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Table 5.11 Crosstabulation of fusion condition on right side by age group for 
males and females. 

Age 

Open 

26* 
0-9 15.3** 

10-19 

20-29 

30-39 

40-49 

50-59 

60-69 

70+ 

Totals 

* Observed 
** Expected 

78 
45.8 

177 
123.4 

153 
140.4 

138 
156.8 

111 
129.8 

59 
93.4 

51 
88.1 

793 

Male 

Active 

0 

6.1 

1 

18.4 

23 

49.5 

58 

56.3 

75 

62.9 

61 

52.1 

52 

37.5 

49 

35.3 

318 

Female 

Right Horn Fusion 

Closed N Open Active Closed 

0 
26 9 0 0 

4.6 5.7 2.1 1.2 

0 34 0 0 
78 

13.8 21.7 7.8 4.5 

10 53 7 5 
37.2 

210 
41.5 10.5 8.5 

28 
239 59 26 10* 

42.3 60.6 21.9 12.5** 

54 
267 60 23 14 

47.3 61.9 22.4 12.8 

49 34 14 10 

39.1 
221 

34.3 13.2 7.6 

48 
159 20 17 10 

28.1 29.3 11.2 6.5 

50 
150 22 23 17 

26.6 38.6 14.8 8.6 

239 1350 296 107 61 
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9 

34 

65 

95 

97 

55 

47 

62 
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The counts of the degree of fusion for the left quadrant 1 (LI) and the 

left quadrant 2 (L2) are listed in Table 5.12. Expected count values are 

generated on the assumption that the degree of fusion in quadrant 1 is 

independent of the degree of fusion in quadrant 2. A review of Table 5.12 

demonstrates several features. The condition in quadrant 1 is frequently the 

same as the condition in quadrant 2. In cases where the second quadrant was 

open the first quadrant was coded as open, with no instances where the first 

quadrant was coded as trace (2) or complete (3). In approximately half of the 

cases, (48%) both quadrants were coded as complete, i.e. no active fusion was 

apparent in these quadrants. Nearly one third (28%) of the specimens, a code of 

trace in the first quadrant was associated with a code of complete in the second 

quadrant. 

Observed values were greater than expected for each case where the 

fusion condition in quadrant I was similarly coded in quadrant 2. In addition, 

greater than expected observations were made on specimens which were open 

(1) in quadrant I and trace (2) in quadrant 2. Fewer than expected values were 

noted when quadrant I was coded as complete and quadrant 2 was coded as 

trace and similarly, when L2 was coded as complete and LI was coded as open. 

The Pearson Chi square value is 142.780, which is significant at the p=.010 

level. 
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Table 5.12 

~ ..... 
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~ 
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== Cl 
,;;. 
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.....;i 

* Observed 
** Expected 

Crosstabulation of Quadrant fusion for LI and L2. Age, sex and 
ancestry pooled. 

Left Quadrant 2 

Totals 

open trace complete 

11 * 21 24 
56 open 1.4** 9.2 45.4 

0 44 120 
trace 164 

4.2 26.8 133 

0 6 208 
complete 5.4 35 173.6 

214 

Totals 11 71 352 434 

Table 5.13 demonstrates the comparisons between quadrants 2 and 3 on 

the left side. Seventy-two percent of specimens were coded as complete in L2 

and also complete in L3. Less than 5% of specimens were coded as open in 

both L2 and L3. In situations where L2 was open,(n=l 1) there were no 

instances where L3 was complete. Observed values were much greater than 

expected in situations where both quadrants received the same code. Similarly, 

observed values were greater than expected when one quadrant was coded as 
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Table 5.13 

~ .... 
:i:: 
i:::i 

{i 
i:::i 
== ~ 
~ ~ 
~ 

* Observed 
** Expected 

Crosstabulation of Quadrant fusion for L2 and L3. Age, sex and 
ancestry pooled. 

Left Quadrant 3 

Totals 

open trace complete 

7* 4 0 
11 open 

.5** 1.8 8.7 

11 28 32 
trace 71 3.4 11.5 56.1 

3 38 310 
complete 

17 56.7 277.2 
351 

Totals 21 70 342 433 

trace and the adjacent quadrant was coded as open. Observed values were much 

less than expected for situations where one quadrant was open and the adjacent 

quadrant was closed. The Pearson chi squared value (162.166, df=4 p=.010) is 

significant suggesting that a relationship does exist for the degree of active 

fusion between L2 and L3. 

A comparison of observed versus expected values for the degree of 

fusion for the third and fourth quadrants on the left side is presented in Table 

5.14. Of note is that 79% of all specimens exhibit complete fusion for L3. 
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Table 5.14 

""i .... :: 
':::I 

{i 
':::I 
== ~ 
~ ~ 
~ 

* Observed 
** Expected 

Crosstabulation of Quadrant fusion between L3 and L4. Age, sex 
and ancestry pooled. 

Left Quadrant 4 

Totals 

open trace complete 

19* 1 1 
21 open 8.4** 10.8 1.8 

37 26 7 
trace 70 

28.1 35.9 6 

118 195 29 
complete 

137.4 175.3 29.2 
342 

Totals 174 222 37 433 

Forty-five percent of specimens exhibit complete fusion in the third 

quadrant and exhibit trace fusion in the fourth quadrant. Less than 2% of 

specimens exhibit complete fusion in the fourth quadrant and exhibit trace 

fusion in the third quadrant. Twenty seven percent of all specimens exhibit 

complete fusion in L3, and are open in L4, whereas only one specimen is open 

in L3 and completely fused in L4. Less than five percent of the specimens were 
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coded as open in L3 while 40% were coded as open in L4. Pearson chi square 

value with 4 degrees of freedom is 33.077. 

The observed and expected values for fusion ofL4 and Ll are presented 

in Table 5.15. Within the fourth quadrant, 51% were coded as trace in L4, many 

of these were coded as complete in L 1. Thirty-one percent of all specimens 

exhibited complete fusion in Ll and trace fusion in L4. Less than 10% of 

specimens were coed as complete in L4. Pearson chi square value is 81.715, 

df=4 p=.01, indicating that the condition of active fusion degree of closure in 

one quadrant is related to the degree of closure in an adjacent quadrant. 

Crosstabulations ofRl and R2 demonstrate that 43% of specimens are 

complete for both quadrants ( see Table 5 .16). Twenty-eight percent are 

complete in R2 and trace in Rl. Less than 5% of all specimens were coded as 

open in R2, with a single incidence each of Rl coded as trace and complete. In 

the first quadrant, 21 % of all specimens were coded as open and 34% as trace. 

A comparison of observed versus expected values indicates that much greater 

than expected counts were noted when R2 was coded as trace and Rl as open 

and as trace. The Pearson chi square value for Rl and R2 indicates that the 

conditions of active fusion between these quadrants are not independent 

(117.776, p=.010). 
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Table 5.15 

'°It .... 
::: 
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""= i:::s ::: 
Cl 
~ ~ 
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* Observed 
** Expected 

Crosstabulation of Quadrant fusion for L4 and L 1. Age, sex and 
ancestry pooled. 

Left Quadrant 1 

Totals 

open Trace complete 

49* 51 74 
174 open 

22.5** 65.8 85.8 

3 87 133 
trace 223 

28.8 84.3 110 

4 26 7 
complete 

4.8 14 18.2 
37 

Totals 56 164 214 434 

Table 5.17 presents the observed and expected counts for conditions of 

active fusion for the second and third quadrants on the right side. Observed 

counts exceeded expected counts when both quadrants exhibited the same 

degree of active fusion. For all specimens, 66% were coded as complete in both 

R2 and R3. Observed counts were greater than expected when R3 was coded as 
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Table 5.16 
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* Observed 
** Expected 

Crosstabulation of Quadrant fusion for Rl and R2. Age, sex and 
ancestry pooled. 

Right Quadrant 2 

Totals 

open Trace complete 

18* 32 39 
89 open 

4.2** 17.6 67.2 

1 42 101 
144 trace 

6.8 28.5 108.8 

1 10 181 
complete 192 

9 37.9 145 

Totals 20 84 321 425 

open and R2 was coded as open or trace. Observed counts were much less than 

expected when one quadrant was coded as open and the other was coded as 

complete. For the following three conditions, approximately 8% of specimens 

were coded as trace at both R2 and R3, 8% as trace at R2 and complete in R3, 

and 8% as trace in R3 and complete in R2. Pearson chi square (108.441 df=4 

p=.010) indicates that the degree of fusion in quadrants R2 and R3 are 

associated. 
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Table 5.17 
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* Observed 
** Expected 

Crosstabulation of Quadrant fusion for R2 and R3. Age, sex and 
ancestry pooled. 

Right Quadrant 3 

Totals 

open trace complete 

14* 5 1 
20 open 1.8** 3.3 14.8 

15 36 33 
84 trace 

7.7 14 62.3 

10 281 
complete 

30 
321 

29.5 53.6 237.9 

Totals 39 71 315 425 

The observed and expected counts of active fusion conditions for R3 and 

R4 are provided in Table 5.18. Approximately 40% of all specimens are 

complete in R3 and trace in R4. For all specimens, approximately 30% are 

complete in R3 and open in R4. A single case of trace fusion and two cases of 

complete fusion in R4 were recorded when R3 was coded as open. For R3, 75% 

of specimens were complete, with 9% open and 17% active. In R4, the opposite 
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Table 5.18 
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* Observed 
** Expected 

Crosstabulation of Quadrant fusion for R3 and R4. Age, sex and 
ancestry pooled. 

Right Quadrant 4 

Totals 

open trace complete 

36* 1 2 
39 open 

18** 17.3 3.8 

40 20 11 
71 trace 

32.7 31.4 6.8 

120 167 
complete 

28 
315 145.3 139.3 30.4 

Totals 196 188 41 425 

pattern was noted. R4 was observed as open in 46% of specimens, trace in 44%, 

and complete in approximately 10%. Pearson chi square52.518, df=4 p=.010, 

indicates the dependence of cell fusion between R3 and R4. 

A crosstabulation of observed and expected values for degree of fusion 

in R4 and RI is provided in Table 5.19. Pearson chi square is 122.782, df=4, 

p=.010 demonstrating that degree of fusion in R4 is dependent upon the degree 

of fusion in R 1. In contrast to the other crosstabulations for the right side, the 

highest cell percentage did not occur when both R4 and RI were complete. The 
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Table 5.19 
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* Observed 
** Expected 

Crosstabulation of Quadrant fusion for R4 and RI. Age, sex and 
ancestry pooled. 

Right Quadrant 1 

Totals 

open trace complete 

83* 49 64 
196 open 41** 66.4 88.5 

3 67 118 
188 trace 

39.4 63.7 84.9 

complete 
3 28 10 

41 
8.6 13.9 18.5 

Totals 89 144 192 425 

highest percentage of cell counts (28%) occurred when R4 was coded as closed 

and RI was coded as trace. However, the coding of Rl as closed and R4 as 

trace occurred in less than 7% of specimens. Less than 3% percent of specimens 

were complete in both R4 and Rl; cell values much less than expected. Values 

were much lower than expected for R4 as trace and complete in cases where Rl 

was coded as open. Cell counts were also lower than expected, though not as 

much as noted above, for Rl as trace and complete when R4 was coded as open. 
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Observed cases exceeded expected cases when both quadrants were coded as 

open. 

This series of chi square tests of independence for adjacent quadrants 

indicates that the degree of active fusion in a quadrant is associated with the 

degree of active fusion in a bordering quadrant. This trend is apparent for all 

adjacent quadrants on both the left and right sides. In addition, the cell counts of 

observed values and expected values are similar for adjacent quadrants when the 

left and right sides are compared. The highest frequencies recorded were for 

complete fusion in quadrants L2, L3 and R2 and R3. High values were 

alsonoted for trace fusion in L4 and R4 and also in Ll and RI. However in the 

first quadrants the counts for complete fusion were slightly higher than the 

counts for trace fusion. In the fourth quadrants the counts for complete fusion 

were much lower than the counts for trace fusion. 
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Chapter VI 

Discussion 

Introduction 

This study has yielded information regarding growth and development of 

the human hyoid bone. Results demonstrate associations between the 

demographic attributes of age, sex and the metric aspects of hyoid bone size and 

shape. In addition, results suggest particular parameters influence the condition 

and pattern of union between the greater horns and the body of the hyoid bone. 

Hyoid body size measurements indicate that the hyoid bone does exhibit sexual 

dimorphism. Similarly, dimensions of the posterior greater horns are sexually 

dimorphic. Furthermore, fusion data suggest that age can no longer be considered 

a primary indicator of fusion condition. The implications of these findings will 

have applications upon clinical, developmental, and pathological, treatment and 

procedures. 

Morphological Variation 

Measurement data demonstrates that a high degree of morphological 

variation characterizes the hyoid bone. This variability is primarily apparent 
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among specimens over twenty years of age. The range of variation is illustrated 

in Figure 6.1, which depicts five specimens all of whom are white males 46 and 

4 7 years of age. Little morphological variation is visible among specimens from 

the youngest two age groups (0-9 and 10-19). This may in part be a product of 

the smaller sample sizes for specimens 0 to 19 years of age. With respect to the 

dimensions of the hyoid investigated in this study, height exhibits greater 

variation than other measures of the hyoid body. The mean height measure 

(pooled by sex) is approximately 10.5 mm with values exceeding 17mm and less 

than 7mm (see Figure 5.3). The mean width dimension among specimens is 

approximately 20 mm. with values recorded of greater than 27 mm and less than 

12 mm (see Figure 5.5). Variability in body thickness is apparent for all 

specimens, regardless of age (see Figure 5.6). The mean is approximately 2 mm 

with values in excess of 4 mm and less than 1 mm. 

A high degree of variation characterizes the dimensions of the posterior 

aspects of the greater horns; greater horn span (see Figure 5.7), greater horn 

distance (see Figure 5.8), and mean tip thickness (see Figure 5.9). It is noted that 

these measures are highly redundant. The range of morphological variation in the 

posterior distance between the greater horns, GHS, is great with an approximate 

mean of 46 mm and values ranging between 16 mm and 71 mm. Specimens 

demonstrate a continuous range of values for GHS. This prohibits classification 

into discrete categories based on shape as suggested by Papadoupolous et al. 

(1989). The results of this study demonstrate that the hyoid bone is characterized 
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Figure 6.1 Morphological variation as seen on four hyoids of same 
sex, age and ancestry; white males 46 and 4 7 years of age. 

by significant morphological variation. However these data do not allow for a 

discussion regarding symmetry, or asymmetry, of the hyoid bone. 

Size and Shape 

Analysis of the measurements of the hyoid body demonstrates there are 

significant differences in mean size between males and females. Males exhibit 

taller, wider, and thicker hyoid bodies in comparison to females. This supports 

the findings of the majority of published examinations even though those 

conclusions are based upon studies incorporating limited sample sizes. The 

absence of standardized anatomical landmarks for measuring the hyoid bone 
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prohibits a direct comparison of measurements between researchers. However, 

this does not negate the potential for a comparative assessment of conclusions 

drawn from size data. 

Jelisiejew et al., (1968) state that the hyoid bone demonstrates distinct 

sexual dimorphism. This comment is supported by Parsons (1909), who notes 

that sex can be differentiated by measures of the hyoid bone, particularly 

measurements of the hyoid body. Similarly, Komenda and Cerny (1990) claim 

that sexual dimorphism characterizes the hyoid bone. The mean values collected 

by Parsons are based upon a collection of 81 adult specimens. Jelisiejew and 

coworkers (1968) measured radiographs of211 adult specimens (aged 21-82). 

All studies primarily focused on subjects over 20 years of age. According to their 

examinations, on average, males exhibit slightly larger measures in comparison to 

females (Parsons, 1909; Jelisiejew et al., 1968; Komenda and Cerny, 1990 and 

Miller et al., 1998). 

This study demonstrates that there are significant differences in mean 

dimensions of the hyoid body between males and females. This is also true for 

mean dimensions of the posterior greater horns, span and distance and tip 

thickness, with males larger than females. There are several facets of these 

dimensions that warrant consideration. Both height and width dimensions of the 

hyoid body increase during the first two decades of life. Such is in following with 

distance curves of growth for body systems which promote fairly constant 

increases in size for individuals from birth to 18 years of age (see Bogin, 2000). 

149 



In this study, continuity in body shape is maintained during the middle year age 

groups. The apparent decrease in these dimensions found for specimens over 90 

years of age may be a factor of sample size. 

The relationship between height and width measures, which when 

considered together, reflect shape of the hyoid body provides interesting 

information. Table 6.1 provides a value of squareness for the body derived from 

mean height and width values. A value of 1 would indicate a square shape. 

Specimens from the youngest age group demonstrate the most square shape of all 

age groups (0. 719). Further, it was noted that many of these square shaped hyoid 

bodies appear flat in the anteroposterior dimension. The posterior concavity often 

associated with the body is not apparent among young individuals. During the 

second and third decades a gradual decrease in the square shape is noted. During 

the middle year age groups ( 40-49, 50-59, 60-69, and 70-79) the hyoid body 

exhibits a more rectangular shape, with this trend reversing for specimens from 

the 80-89 year age group (see Figure 6.2). 

Table 6.1 

Age 
Group 

Body Shape derived from mean BH and BW values by age group. 
Sex and ancestry are pooled. Value of 1 is a square. 

0\ 0\ c:,,._ c:,,._ c:,,._ 0\ ~ 0\ 
0\ ~ ~ "'"l l I'°) \Q 00 
~ ~ ~ ~ ~ ~ ~ ~ 

~ ~ "'"l "" I'°) \Q K. 00 

+ 
~ 
0\ 

Body 
.719 .607 .534 .516 .514 .505 .515 .508 .526 .483 

Shape 
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Figure 6.2 Specimens from three decades depicting body shape. Left to 
right, 0-9 age group, 10-19 age group, 30-39 age group. 

The body thickness measurement provides developmental information. 

Most notably, the smallest values are not associated with the youngest 

individuals; the thickness of the body is fairly constant across the sample 

population. Both the largest and the smallest values were collected on individuals 

from the middle decades of life. This aspect of the hyoid bone does not mature in 

a manner that is consistent with published growth curves for other body systems. 

The basic developmental pattern of an increase in size occurring with an increase 

in age is not apparent for the thickness of the hyoid body (see Figure 6.3). 

In this study, the posterior distance between the lateral aspects of the 

greater horns demonstrates differences attributable to sex. This measure was not 
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Figure 6.3 Specimens from different age groups depicting body thickness. 
Left to right, 0-9 age group, 10-19 age group, 30-39 age group. 

recorded on specimens in which the body and the horns were separate. This 

dimension is analogous to the width of the bone as collected by Jelisiejew et al. 

( 1968) who claim great differences exist between males and females for this 

measure. Jelisiejew and coworkers recorded the distance between the posterior 

most projection of the greater horns. As such, asymmetrical horn length would 

influence this measure. Miller et al. (1998) collected this measure, one of five 

incorporated into their discriminant function. Body width was utilized as well. 

However, this function correctly classifies females 69% and males 75% of the 

time. They note that length measures are much more sexually dimorphic than 

width measures. 
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The interior span and the mean thickness of the posterior horn projections 

as measured in the present study are also sexually dimorphic. It was noted that the 

posterior aspects of short unfused greater horns often exhibited a truncated 

appearance (see Figure 6.4). Reconsideration of the demographic components 

indicates that this trait is most often seen on horns of young subjects. This pattern 

was similarly noted by others (Jelisiejew et al., 1968 and Miller et al., 1998). 

Their research further supports another trend noted during the course of this 

study. Greater horns on specimens of advanced age demonstrate a 

Figure 6.4 Comparison of posterior greater horns. Clubbed on left and 
truncated on right. 
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superoinferior flattening. This degenerative feature may be a product of muscular 

forces (see Figure 6.5). 

This study indicates there are significant differences in mean hyoid body 

values between males and females. Although the mean values for males are 

greater than the mean values for females, the noted trends in height and width of 

the hyoid body characterize both male and female specimens. Increases in size 

demonstrate a linear relationship with increases in age which is apparent during 

the first two decades of life. During the middle years continuity in shape is 

maintained. Miller et al., though referring specifically to the posterior horn, 

suggest that age differences between male and female specimens may "have 

contributed to the sexual dimorphism we observed" (1998:1141). 

Figure 6.5 Comparison of greater horns. Flattened on right tubular on left. 
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Fusion 

These results demonstrate that increasing age does not dictate fusion 

between the body and the greater horns. This examination indicates that an 

intermediate stage, herein referred to as active fusion, is a recognizable stage of 

fusion between the body and the greater horns. As continuously promoted in the 

anatomical literature, that an increase in age incurs an increase in the frequency of 

fusion (see for example, Johnson and Moore, 1989; Hiatt and Gartner, 2001); this 

notion is not supported by the data from this study. The earliest incidence of 

complete fusion was noted in a white male, 21 years of age. Incidentally, this is 

the youngest individual with unilateral complete fusion. The oldest male with 

both sides open is a 92 year old white male, while a 101 black female also 

exhibits bilateral non-fusion. 

An absence of complete union between the elements characterizes the first 

two decades of life, with upwards of 80% of specimens from the third decade of 

life also demonstrating no bony union (see Figures 5.10 and 5.11). It is often 

noted that fusion is common during the fourth decade of life. (see for example 

Jackson, 1914). However, the results of the present study indicate that among 

specimens from this decade, the 30 to 39 years age group, the absence of fusion 

occurs in over 60% of specimens. Although a gradual increase in the frequency 

of fusion characterizes specimens from the first five decades of life, (0 to 49 

years), never more than 30% of specimens in an age group exhibit fusion between 

one or both greater horns and the body. As expected the increase in completely 
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fused specimens coincides with a decrease in the numbers of specimens that 

exhibit an absence of fusion. However, the absence of fusion, for one or both 

sides, i.e. open, is noted for at least 35% of specimens in all age groups, with at 

least 50% exhibiting non fusion, of one or both sides, among specimens up to 60 

years of age. Further, specimens over 60 years of age exhibit a moderately even 

distribution between the three stages of fusion, open, active, and closed, further 

contradicting the common assumption that advanced age is equated with fusion. 

These findings clearly contradict the accepted, and continuously perpetuated, 

view that fusion does, and will, occur among individuals of middle and advanced 

age. 

O'Halloran and Lundy promote the view that there is a "trend toward 

greater frequency of bony union with increasing age" (1987: 1657). They 

recorded complete fusion in 71.4% and 62.5% of male specimens aged 60-69 and 

70+, respectively. However, among females, they found complete fusion in 

22.2% and 57% of specimens aged 60-69 and 70+, respectively. Of interest is 

that they note, however, that "significant numbers of middle aged and elderly 

people have nonunion," (O'Halloran and Lundy, 1987: 1657). Notably, 

O'Halloran and Lundy further state that data from an unpublished examination 

demonstrates that a stronger relationship exists between advanced age and fusion 

than they found. The correlation between age and fusion as considered by Miller 

et al ( 1998), is more comparable with the results of the present study. They note 

considerable variation in fusion condition for elderly individuals. Miller and 
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coworkers recognized little difference between the sexes regarding fusion. These 

statements are substantiated by the results of the present study. 

This study demonstrates there is a tendency towards symmetry in the 

fusion condition with never less than 70% of specimens in an age group 

demonstrating bilaterality of fusion conditions, i.e. both sides are open, active or 

fused. Statistical examinations demonstrated that the primary factor in dictating 

the fusion condition on one side of the bone is the condition that exists on the 

opposing side. Among all males, 13% demonstrate bilateral fusion and 49% 

demonstrate bilateral non-fusion. Among female specimens, bilateral fusion was 

noted in 8% of the study sample with 56% exhibiting bilateral non-fusion. Of 

interest is that complete fusion between both left and right greater horns and the 

hyoid body was noted in less than 20% of specimens in any age group. Males 

aged 70+ are the exception as this group exhibits bilateral fusion among 27% of 

specimens. 

In the present study, overall, unilateral fusion was noted among 25% of 

males and 22% of females. There is not a tendency towards unilateral fusion 

conditions for either sex or in particular age groups. Among females, unilateral 

fusion conditions are apparent in less than 30% of specimens for any age group, 

occurring in only 9% of specimens from the third decade and noted in 24% of 

specimens from the fourth decade. Unilateral fusion is recognized in 14% of male 

specimens aged 20-29, in 26% of specimens aged 30-39, and approximately 30% 
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of male specimens in the older age groups. These results differ significantly from 

those of O'Halloran and Lundy, 

"By the third decade the percentages of cases with 
unilateral fusion was significant and remained so 
into old age. In age groups 3 through 8 (age 20 and 
older), 17% of the men and 40% of the women 
demonstrated unilateral nonfusion" (1987: 1656). 

Data from this study demonstrate that fusion conditions are not directly 

determined by the age of an individual. However, the present research does not 

provide information regarding the developmental aspects of fusion, i.e. why it 

occurs. Koebke, however, notes that 

"two divergent developmental tendencies can be 
taken into consideration. In some cases a joint is 
formed, other hyoid bones show characteristics 
indicating a possible fusion of the body and the 
greater horns" (1978:286). 

Miller et al note that "fusion is not a continuous process" stating that individuals 

may have a genetic predisposition to remain open, or to fuse (1998: 1139). These 

statements are supported by data from this study which demonstrate that 

an approximately equal occurrence of fusion, non-fusion and active fusion are 

seen among mature individuals. 

Fusion patterns 

The consideration of whether a pattern exists for fusion between the 

greater horns and the body of the hyoid has not been, to date, addressed. In fact, 
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discussions of hyoid bones exhibiting partial fusion do not appear in 

anthropological or anatomical literature. Emphasis instead has been upon 

determining when fusion occurs, and not whether there is a recognizable pattern 

to the process. Results of the present study suggest that there are discernible 

patterns in the development of an osseous connection between the body and the 

greater horns. 

A review of the crosstabulations of the degree of active fusion between 

adjacent quadrants demonstrates trends do in fact characterize this event. As 

demonstrated statistically, there are no differences between males and females, 

and the same trends characterize both sides of the bone. A comparison of the 

adjacent anterior quadrants, 1 and 2 indicate several trends. The majority of 

specimens, approximately 80%, exhibit complete fusion in quadrant 2. When this 

quadrant was coded as trace or open, quadrant 1 was coded as open or trace. 

Quadrant 1 was open or trace for approximately 30% of specimens. There were 

no instances when quadrant 1 was complete and quadrant 2 exhibited a condition 

other than complete. 

The degree of fusion in quadrant 3 was found to be strongly correlated 

with the condition recorded in quadrant 2. There were very limited instances 

where either of these quadrants were open. A great majority of the specimens that 

exhibit complete fusion in quadrant 3 were coded as trace or open in quadrant 4, 

approximately 55% and 35% of the time, respectively. The open or trace degrees 

of active fusion were frequently noted in quadrant 4 with the adjacent quadrant 1 
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also demonstrating a high occurrence of trace active fusion. Several anomalous 

situations were noted where the fourth quadrant was complete and quadrant 1 was 

open. It is noted that this may be attributable to the presence of the lesser horns in 

this location. 

Results of this study indicate that there is a tendency toward complete 

active fusion in the second and third quadrants coinciding with a high frequency 

of open or trace active fusion in the fourth quadrant and a high incidence of trace 

active fusion in the first quadrant. This commonly noted pattern suggests that 

fusion between the greater horns and the body occurs earliest at the inferior 

margin and progresses in a superior direction. Given that these data are cross 

sectional, and not longitudinal, it cannot be stated unequivocally that this 

describes the pattern of fusion between the greater horns and the body. However, 

given that there were no instances of complete fusion in the inferior quadrants 

with open fusion in the superior quadrants, it is likely that a progressive pattern 

does characterize fusion between these elements (see Figure 6.6). 

The indication of a progressive pattern is comparable to results noted by 

Harrison and Denny (1983) who recognized patterns of ossification for cartilage 

elements of the adult human larynx. Occurring simultaneously in the thyroid and 

cricoid cartilages, ossification of the thyroid begins at the posteroinferior aspect 

and proceeds anteriorly and superiorly. Ossification of the cricoid cartilage 

begins across the posterosuperior border and proceeds anteriorly (Harrison, 

1995). Noting it is rare prior to the third decade of life, Harrison (1995) 
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Figure 6.6 Depiction of common active fusion pattern. Open in 1 and 
4 and complete in 2; progressing superiorly. 

recognizes a direct correlation between advancing age and degree of ossification, 

with the stimulus attributed to both genetic factors and functional aspects of the 

larynx (Vastins and Vastins, 1952). 

Forensic implications 

Rao and Rao (1988) report on a case in which the death of a thirty-five 

year old individual was erroneously diagnosed as asphyxia with fracture of the 

hyoid bone. They noted that no external injuries were visible. Subsequent 
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examination indicated that the mobility of the structures of the hyoid bone was 

due to non union of the body and the greater horn. The results of the present 

study demonstrate that fusion between the body and the greater horns is not 

common among individuals of this age. Of greater concern to the forensic 

pathologist is the high frequency of non-union between the body and the greater 

horns among individuals of advanced age. Undoubtedly, this must be considered 

when assessing a situation with possible laryngeal trauma. It can not be assumed 

that increasing age is reflective of a particular fusion condition. A more thorough 

examination of the skeletal components must be undertaken in cases of suspected 

laryngeal trauma. 

Further, it should not be assumed that skeletal trauma will be evident on 

the hyoid bone as clinical research has indicated that the position of the hyoid 

bone varies in individuals, thereby suggesting that certain individuals may be 

more susceptible to fracture of the hyoid bone. 

Conclusions 

This study demonstrates several important aspects regarding the human 

hyoid bone. The bone does demonstrate sexual dimorphism. Tremendous 

variability is recognizable in the size and shape of the element. In addition, 

substantial disparity is apparent in fusion conditions for individuals. The data 

indicate that although there is an increase in the frequency of fusion between the 

body and greater horns with increasing age, this does not exist to the degree that 
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has been promoted throughout the literature. In the present study, bilateral fusion 

was noted earlier (21 years) and bilateral non fusion was noted later (101 years) 

than in any other published reports. These data indicate that fusion can no longer 

be equated with advanced age, and likely that many individuals will never exhibit 

fusion. Further, such variation must be recognized and incorporated into 

pathological and clinical examinations. 
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Chapter VII 

Conclusions 

With respect to the goals of this project, the results can be summarized as 

follows: 

1. Does overall size and shape, as depicted through a suite of measurements, 
correlate with age, sex and/or ancestry? 

• These results indicate that ancestry is not correlated with size and shape 

dimensions of the hyoid bone. However, small sample sizes for certain 

ancestral groups does not allow for a thorough examination of this parameter. 

• Measurement data indicates that sexual dimorphism characterizes the hyoid 

bone. Males on average are significantly larger than females across each 

measurement in this study. 

• Age influences overall size and shape of the hyoid bone, particularly height 

and width dimensions of the body. As expected dimensions are less among 

specimens from the first and second age groups. These decades are associated 

with growth and development of skeletal and organ systems. Continuity in 

size is maintained during the middle decades of life. This is not as true of the 

thickness of the hyoid body where there is little evidence for age dependent 
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increase in this dimension of the hyoid. This study demonstrates that age 

influences hyoid bone size and shape. 

2. Are certain structural characters associated with sex or ancestry? 

• Ancestry is not correlated with overall size and shape of the hyoid bone. 

• Though sexually dimorphic, there is no evidence to suggest that sex 

influences fusion status of the hyoid bone. 

3. Are there correlations between advancing age and the development of 
morphological features? 

• Age is a factor in the determinant of morphological features of the hyoid 

bone. Young specimens demonstrate that the body is characteristically square 

in shape. Young specimens further exhibit an absence of concavity to the 

posterior body. Further, the thickness of the inferior aspect of the body is 

constant across all age groups. Examination further reflects a trend towards 

supero-inferior flattening of the greater horn with advanced age. 

4. Can fusion between the components of the hyoid be correlated to age, sex 
and/ or ancestry? 

• Fusion between the body and the greater horns of the hyoid bone is not 

dependent upon the sex or ancestry of an individual. Age however, is a factor 
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concerning union of the body and greater horns in that among the young (0-9 

and 10-19) no union occurs. There is minimal evidence for the occurrence of 

fusion between the body and greater horns during the third and fourth decades 

of life. Although an increase in the frequency of union occurs during 

succeeding decades, advanced age cannot be equated with fusion between the 

body and greater horns. The frequency of specimens which exhibit complete 

fusion does not exceed approximately 30% of individuals within any age 

group beyond the sixth decade of life. In fact, the complete absence of any 

union between the body and the greater horns characterizes approximately 

30% of individuals within the most mature age groups. 

• The existence of a stage of fusion previously unmentioned in the scientific 

literature has been demonstrated. Herein referred to as active fusion, this stage 

is characterized by partial union between the body and the greater horns. An 

increase in the frequency of this condition is noted throughout the decades, 

though never accounting for more than 30% of individuals within any age 

group. 

5. Is there a pattern to the fusion between the body and the greater horns of the 
hyoid bone? 

• Fusion between the body and the greater horns follows a recognizable 

pattern. 
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• Union between these elements of the hyoid bone occurs initially at the 

inferior aspect and progresses superiorly. 

6. What are the implications of this study, for pathologists, anthropologists and 
clinicians? 

• The implications of this study upon pathological, anthropological, and 

clinical examinations are great. 

• First, the hyoid bone demonstrates sexual dimorphism. 

• A high degree of variation characterizes the hyoid. 

• The notion that advanced age is directly correlated with fusion between the 

greater horns and the body can no longer be assumed. Examinations of the 

hyoid bone may now be conducted from a more informed perspective given 

the demonstrated variation in overall size and shape and fusion condition 

which characterizes the hyoid bone. 

Finally, morphological considerations of the hyoid bone demonstrate that 

this skeletal element is characterized by a high degree of variation. This diversity 

is apparent in both overall dimensions of the bone and in the fusion between the 

body and the greater horns. The traditional description of the hyoid bone, most 

frequently as a "u shaped" single fused element, is inaccurate. Further, the notion 

of a causal relationship between advancing age and fusion of the body and the 

greater horns is also inaccurate. This increased awareness of the variability that 
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truly characterizes this bone will enable greater pathological, anthropological, 

anatomical, and clinical examinations, with morphological accuracy, of the 

human hyoid bone. 
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Specimen Sex Age Ancestry 

95.001 2 0.1 1 

92.058 2 0.2 1 

93.227 2 0.2 1 

98.011 1 0.25 1 

93.067 2 0.25 1 

93.143 1 0.3 1 

93.150 1 0.3 1 

88.141 2 0.3 1 

88.034 1 0.4 1 

89.012 2 0.5 1 

95.094 2 0.5 1 

97.034 2 0.5 1 

97.232 2 0.5 1 

92.067 2 0.7 1 

93.037 2 0.7 1 

92.060 1 1 1 

87.063 2 1.5 1 

92.056 I 2 I 

93.054 2 2 I 

89.010 2 2.5 2 

96.248 I 3 I 

88.172 2 3 1 

92.037 2 3 1 

93.129 2 3 1 

95.109 2 3.5 1 

94. 105 I 4 2 

89.022 2 4 1 

89.020 2 4.5 1 

97.087 2 6 1 

98.036 2 6 1 

88. 158 2 7 1 

89.082 2 7 1 

97.056 1 8 2 
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Specimen Sex Age Ancestry 

89.080 2 8 1 

94.094 2 8 1 

88.020 2 10 1 

89.048 2 10 1 

92.115 2 10 1 

93.003 2 10 1 

95.040 2 10 1 

96.211 2 10 1 

93.170 2 11 1 

88.156 I 12 1 

89.008 I 12 1 

92.027 I 12 1 

88.122 2 12 1 

96.207 2 12 1 

94.045 I 13 1 

94.147 I 13 1 

93.048 2 13 1 

01.1 l0a 2 13 1 

92.029 I 14 1 

88.009 2 14 1 

88.053 2 14 1 

88.099 2 14 1 

94.064 2 14 1 

92.100 1 15 1 

92.150 1 15 1 

98.095 1 15 1 

87.061 2 15 1 

88.079 2 15 2 

88.155 2 15 1 

92.028 2 15 I 

92.063 2 15 1 

92.141 2 15 1 

92.151 2 15 I 
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Specimen Sex Age Ancestry 

93.195 2 15 1 

96.092 2 15 5 

96.201 2 15 1 

96.221 2 15 1 

93.118 1 16 1 

94.047 1 16 1 

94.077 1 16 1 

95.082 1 16 1 

95. 157 1 16 1 

96.115 1 16 1 

98.012 1 16 1 

87.087 2 16 1 

88.151 2 16 1 

88.154 2 16 1 

89.011 2 16 1 

93.051 2 16 1 

94. 135 2 16 1 

95. 155 2 16 1 

96.156 2 16 1 

98.050 2 16 1 

87. 162 1 17 1 

92.112 1 17 1 

93.175 1 17 1 

93.221 1 17 1 

95.085 1 17 1 

95.217 1 17 1 

87.148 2 17 1 

87.153 2 17 1 

89.065 2 17 1 

93.174 2 17 1 

94.079 2 17 1 

94.095 2 17 1 

94.195 2 17 1 
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Specimen Sex. Age Ancestry 

96.067 2 17 1 

97.096 2 17 1 

97.155 2 17 1 

97.227 2 17 1 

93.068 1 18 1 

93.138 1 18 1 

93.226 1 18 1 

94.141 1 18 1 

94.185 1 18 2 

95.115 1 18 1 

89.024 2 18 1 

89.091 2 18 1 

92.079 2 18 1 

93.049 2 18 1 

93.078 2 18 1 

94.076 2 18 1 

95.080 2 18 1 

96.058 2 18 1 

96.059 2 18 1 

96.116 2 18 1 

96.133 2 18 1 

96.180 2 18 1 

96.250 2 18 1 

97.125 2 18 1 

97.177 2 18 1 

98.058 2 18 1 

87.073 1 19 1 

94.011 1 19 1 

94.162 1 19 1 

94.184 1 19 2 

94.194 1 19 1 

96.136 1 19 1 

87.050 2 19 1 
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Specimen Sex Age Ancestry 

88.008 2 19 1 

92.078 2 19 1 

93.230 2 19 1 

94.072 2 19 1 

94.093 2 19 1 

94.101 2 19 1 

94.110 2 19 1 

95.066 2 19 2 

95.068 2 19 1 

96.030 2 19 1 

96.216 2 19 1 

97.209 2 19 1 

98.025 2 19 1 

98.046 2 19 1 

98.048 2 19 1 

87.018 1 20 1 

87.075 1 20 1 

93.171 1 20 1 

93.205 1 20 1 

95.038 1 20 1 

96.215 1 20 1 

98.068 1 20 1 

87.023 2 20 1 

87.049 2 20 1 

87.117 2 20 1 

87.161 2 20 1 

88.087 2 20 1 

89.069 2 20 1 

92.035 2 20 1 

92.048 2 20 1 

93.147 2 20 1 

94.006 2 20 1 

95.026 2 20 1 

192 



Specimen Sex Age Ancestry 

95.045 2 20 1 

95.091 2 20 1 

95.104 2 20 1 

96.159 2 20 1 

96.171 2 20 1 

96.208 2 20 1 

97.044 2 20 4 

97.046 2 20 1 

97.205 2 20 4 

93.072 1 21 1 

95.147 1 21 1 

95.149 1 21 1 

87.084 2 21 1 

89.006 2 21 1 

89.019 2 21 1 

92.119 2 21 1 

93.041 2 21 1 

93.127 2 21 1 

93.128 2 21 1 

94.035 2 21 1 

95.032 2 21 1 

95.039 2 21 1 

96.038 2 21 1 

96.066 2 21 1 

96.147 2 21 1 

97.088 2 21 1 

98.056 2 21 1 

87.112 1 22 1 

95.090 1 22 1 

87.059 2 22 1 

87.122 2 22 1 

87.149 2 22 1 

88.025 2 22 1 
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Specimen Sex Age Ancestry 

88.074 2 22 1 

88.090 2 22 1 

88.102 2 22 1 

88.166 2 22 1 

92.068 2 22 1 

92.136 2 22 1 

93.140 2 22 1 

93.159 2 22 1 

93.222 2 22 1 

94.062 2 22 1 

94.151 2 22 1 

94.170 2 22 1 

95.151 2 22 1 

96.135 2 22 1 

96.257 2 22 1 

98.038 2 22 1 

87.092 1 23 1 

89.099 1 23 1 

92.066 1 23 1 

92.135 1 23 1 

94.182 1 23 1 

94.202 1 23 1 

97.076 1 23 1 

87.164 2 23 1 

88.017 2 23 1 

92.179 2 23 1 

93.017 2 23 1 

93.066 2 23 1 

94.029 2 23 1 

94.086 2 23 1 

94.122 2 23 1 

95.126 2 23 1 

95.150 2 23 1 
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Specimen Sex Age Ancestry 

95.162 2 23 1 

95.203 2 23 4 

95.210 2 23 1 

96.070 2 23 1 

96.134 2 23 1 

96.160 2 23 5 

97.007 2 23 1 

97.117 2 23 1 

97.194 2 23 1 

95.057 1 24 1 

96.247 1 24 1 

87.021 2 24 1 

87.027 2 24 1 

87.058 2 24 1 

87.146 2 24 1 

88.080 2 24 1 

88.131 2 24 1 

89.044 2 24 1 

92.071 2 24 1 

92.130 2 24 1 

93.075 2 24 1 

93.080 2 24 1 

94.069 2 24 1 

95.154 2 24 4 

95.171 2 24 1 

96.015 2 24 1 

96.132 2 24 1 

97.011 2 24 1 

97.030 2 24 1 

97.037 2 24 1 

98.064 2 24 1 

89.083 1 25 2 

93.219 1 25 1 
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Specimen Sex Age Ancestry 

94.208 1 25 1 

95.213 1 25 1 

96.096 1 25 1 

97.221 1 25 1 

88.029 2 25 1 

88.106 2 25 1 

88.110 2 25 1 

89.059 2 25 1 

89.071 2 25 1 

89.088 2 25 2 

92.073 2 25 2 

93.040 2 25 1 

93.142 2 25 1 

93.168 2 25 1 

94.023 2 25 1 

94.059 2 25 1 

95.106 2 25 1 

95.189 2 25 1 

96.083 2 25 1 

96.101 2 25 1 

97.168 2 25 1 

97.213 2 25 1 

98.008 2 25 1 

98.061 2 25 1 

87.157 1 26 1 

88.036 1 26 1 

88.057 1 26 1 

88.073 1 26 1 

88.108 1 26 1 

93.043 1 26 1 

94.168 1 26 1 

95.071 1 26 1 

96.011 1 26 1 
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Specimen Sex Age Ancestry 

01.105a 1 26 2 

87.120 2 26 1 

88.067 2 26 1 

89.009 2 26 1 

89.033 2 26 1 

89.079 2 26 1 

89.100 2 26 1 

92.064 2 26 1 

92.109 2 26 1 

92.161 2 26 1 

93.053 2 26 1 

94.033 2 26 1 

94.044 2 26 1 

94.078 2 26 1 

94.116 2 26 1 

94.189 2 26 1 

94.200 2 26 1 

95.152 2 26 1 

95.163 2 26 1 

96.142 2 26 1 

96.192 2 26 1 

96.246 2 26 1 

96.261 2 26 1 

97.023 2 26 2 

97.120 2 26 1 

97.192 2 26 1 

98.059 2 26 1 

87.123 1 27 1 

88.174 1 27 1 

92.025 1 27 1 

92.128 1 27 1 

94.042 1 27 1 

94.130 1 27 1 
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!Specimen Sex Age Ancestry 

95.011 1 27 1 

95.052 1 27 1 

98.083 1 27 1 

87.053 2 27 1 

87.088 2 27 1 

87.099 2 27 1 

87. 139 2 27 1 

88.015 2 27 1 

88.086 2 27 1 

88.105 2 27 1 

89.073 2 27 1 

89.096 2 27 1 

92.125 2 27 1 

92.142 2 27 2 

93.036 2 27 1 

93.087 2 27 1 

93.100 2 27 2 

93.113 2 27 1 

93.131 2 27 1 

93.146 2 27 1 

94.038 2 27 1 

94.169 2 27 1 

95.041 2 27 1 

95.076 2 27 1 

95.223 2 27 1 

96.075 2 27 1 

96. 162 2 27 5 

96.249 2 27 1 

97.057 2 27 1 

97.115 2 27 1 

98.091 2 27 1 

87.054 1 28 1 

88.114 1 28 1 
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Specimen Sex Age Ancestry 

92.038 1 28 1 

95.022 1 28 1 

95.131 1 28 1 

95.183 1 28 1 

96.191 1 28 1 

97.051 1 28 1 

87.004 2 28 1 

87.065 2 28 1 

87.134 2 28 1 

88.026 2 28 1 

88.062 2 28 1 

89.087 2 28 2 

92.053 2 28 2 

92.103 2 28 1 

92.131 2 28 1 

92.137 2 28 1 

92.152 2 28 1 

92.155 2 28 1 

93.006 2 28 1 

93.110 2 28 1 

93.126 2 28 1 

93.207 2 28 1 

94.067 2 28 1 

94.104 2 28 1 

95.231 2 28 1 

96.100 2 28 1 

97.134 2 28 1 

98.076 2 28 1 

99.35f 2 28 1 

87.107 1 29 2 

89.007 1 29 1 

92.061 1 29 1 

92.090 1 29 1 
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Specimen Sex Age Ancestry 

95.005 1 29 1 

95.015 1 29 1 

95.137 1 29 1 

95.177 1 29 1 

97.105 1 29 1 

97.222 1 29 1 

96.5[ 1 29 1 

87.026 2 29 1 

87.042 2 29 1 

87.138 2 29 1 

88.161 2 29 1 

92.065 2 29 1 

92.095 2 29 1 

92.096 2 29 1 

92.162 2 29 1 

93.123 2 29 1 

93.215 2 29 1 

93.224 2 29 1 

94.058 2 29 1 

95.158 2 29 1 

95.179 2 29 1 

96.020 2 29 1 

97.082 2 29 1 

97.132 2 29 4 

97.139 2 29 1 

98.049 2 29 1 

87.052 1 30 2 

92.164 I 30 1 

92.181 1 30 1 

96.048 1 30 1 

96.099 1 30 1 

96.152 1 30 1 

87.038 2 30 1 
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Specimen Sex Age Ancestry 

87.079 2 30 1 

88.020 2 30 2 

88.111 2 30 1 

88.118 2 30 1 

92.052 2 30 1 

92.093 2 30 2 

93.038 2 30 1 

93.144 2 30 2 

94.019 2 30 1 

94.121 2 30 1 

95.004 2 30 1 

95.017 2 30 1 

95.019 2 30 1 

95.043 2 30 1 

95.095 2 30 1 

95.108 2 30 1 

95.133 2 30 1 

96.024 2 30 1 

96.031 2 30 1 

96.154 2 30 1 

96.260 2 30 1 

97.131 2 30 1 

88.123 1 31 1 

92.057 I 31 1 

94.136 1 31 1 

94.191 I 31 1 

95.098 I 31 1 

97.167 I 31 1 

87.022 2 31 1 

87.125 2 31 1 

87.141 2 31 1 

87.163 2 31 1 

88.010 2 31 1 
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Specimen Sex Age Ancestry 

88.071 2 31 1 

88.142 2 31 1 

89.023 2 31 1 

89.070 2 31 1 

92.059 2 31 1 

92.172 2 31 1 

93.046 2 31 1 

93.151 2 31 1 

94.160 2 31 1 

94.207 2 31 1 

95.100 2 31 1 

95.112 2 31 1 

95.143 2 31 1 

96.028 2 31 1 

96.175 2 31 1 

96.212 2 31 2 

96.254 2 31 1 

97.036 2 31 1 

97.145 2 31 1 

98.027 2 31 1 

98.060 2 31 1 

98.066 2 31 1 

87.080 1 32 1 

87.152 1 32 1 

89.038 1 32 1 

89.043 1 32 1 

89.085 1 32 1 

93.167 1 32 1 

93.220 1 32 1 

94.166 1 32 1 

96.234 1 32 1 

87.006 2 32 1 

87.144 2 32 1 
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Specimen Sex Age Ancestry 

88.005 2 32 1 

88.097 2 32 1 

88.167 2 32 1 

92.018 2 32 1 

92.091 2 32 1 

92.124 2 32 1 

93.004 2 32 1 

93.071 2 32 1 

93.111 2 32 1 

93.148 2 32 1 

94.040 2 32 1 

94.081 2 32 1 

94.145 2 32 1 

94.161 2 32 1 

94.172 2 32 1 

95.081 2 32 1 

95.084 2 32 1 

96.041 2 32 1 

96.051 2 32 1 

96.064 2 32 1 

96.145 2 32 1 

96.239 2 32 1 

97.010 2 32 1 

97.060 2 32 1 

98.006 2 32 1 

98.065 2 32 1 

14.93 2 32 1 

87.068 1 33 1 

92.084 1 33 1 

93.065 1 33 1 

93.211 1 33 1 

95.087 1 33 1 

95.102 I 33 1 
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Specimen Sex Age Ancestry 

96.138 1 33 1 

96.238 1 33 1 

96.245 1 33 1 

97.150 1 33 1 

87.062 2 33 1 

87.145 2 33 1 

88.007 2 33 1 

89.039 2 33 1 

89.053 2 33 1 

89.055 2 33 1 

93.028 2 33 2 

93.121 2 33 1 

94.061 2 33 1 

94.117 2 33 1 

94. 183 2 33 1 

95.070 2 33 1 

96.027 2 33 1 

96.050 2 33 1 

96.213 2 33 1 

97.013 2 33 1 

98.082 2 33 1 

87.115 1 34 1 

92.022 1 34 2 

94.108 1 34 1 

95.144 1 34 1 

95.156 1 34 1 

96.018 1 34 1 

96.233 1 34 1 

98.041 1 34 1 

87.116 2 34 1 

87.156 2 34 1 

88.041 2 34 1 

88.149 2 34 1 
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Specimen Sex Age Ancestry 

88.162 2 34 1 

89.005 2 34 1 

89.066 2 34 1 

92.099 2 34 1 

92.121 2 34 1 

92.132 2 34 2 

92.176 2 34 1 

93.018 2 34 1 

93.045 2 34 1 

93.157 2 34 1 

94.010 2 34 1 

95.121 2 34 1 

97.052 2 34 1 

97.229 2 34 1 

98.039 2 34 1 

95.12f 2 34 1 

98.3f 2 34 2 

92.101 1 35 1 

93.002 1 35 1 

93.019 1 35 1 

94.089 1 35 1 

94.097 1 35 1 

95.136 1 35 1 

97.004 1 35 1 

97.009 I 35 1 

97.111 I 35 1 

98.026 I 35 1 

87.034 2 35 1 

87.081 2 35 1 

88.013 2 35 1 

88.054 2 35 1 

88.112 2 35 1 

88.144 2 35 1 
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Specimen Sex Age Ancestry 

89.040 2 35 1 

93.163 2 35 1 

93.193 2 35 1 

93.199 2 35 1 

93.209 2 35 1 

94.126 2 35 1 

95.029 2 35 1 

95.063 2 35 1 

96.109 2 35 1 

96.264 2 35 1 

97.095 2 35 1 

97.160 2 35 1 

98.015 2 35 1 

98.052 2 35 1 

98.053 2 35 1 

89.037 1 36 2 

91.040 1 36 1 

92.026 1 36 1 

92.133 1 36 1 

93.088 1 36 1 

93.139 1 36 1 

93.183 1 36 2 

93.187 1 36 1 

95.050 1 36 1 

95.077 1 36 1 

95.138 1 36 1 

96.080 1 36 1 

96.086 1 36 1 

96.163 1 36 2 

96.174 1 36 1 

87.017 2 36 1 

87.090 2 36 1 

87.150 2 36 1 
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Specimen Sex Age Ancestry 

92.045 2 36 1 

92.046 2 36 1 

92.069 2 36 1 

92.116 2 36 1 

93.026 2 36 1 

93.095 2 36 1 

93.194 2 36 1 

93.228 2 36 1 

94.022 2 36 1 

94.050 2 36 1 

95.035 2 36 1 

95.053 2 36 1 

95.140 2 36 1 

96.002 2 36 1 

96.007 2 36 1 

96.146 2 36 1 

96.195 2 36 1 

96.202 2 36 2 

96.225 2 36 2 

97.201 2 36 1 

98.018 2 36 1 

98.035 2 36 1 

98.042 2 36 1 

3.87 2 36 1 

2.89 2 36 1 

94.19f 2 36 1 

87.067 1 37 1 

88.044 1 37 1 

88.095 1 37 1 

92.081 1 37 1 

92.105 1 37 1 

93.050 1 37 1 

94.008 1 37 1 
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Specimen Sex Age Ancestry 

94.013 1 37 1 

95.042 1 37 1 

95.051 1 37 1 

96.179 1 37 2 

97.164 1 37 1 

87.114 2 37 1 

87.128 2 37 2 

88.136 2 37 1 

92.143 2 37 1 

92. 160 2 37 1 

92. 166 2 37 1 

93.039 2 37 1 

93.073 2 37 1 

94.002 2 37 1 

94.052 2 37 1 

94.070 2 37 1 

94.180 2 37 1 

95.073 2 37 1 

95.201 2 37 1 

95.208 2 37 1 

95.232 2 37 1 

96.025 2 37 1 

96.062 2 37 1 

96.072 2 37 1 

96.108 2 37 2 

96.204 2 37 1 

96.218 2 37 1 

96.258 2 37 1 

97.053 2 37 1 

97.107 2 37 1 

97. 138 2 37 1 

98.047 2 37 1 

98.071 2 37 1 
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Specimen Sex Age Ancestry 

95.3f 2 37 1 

88.032 1 38 1 

88.165 1 38 1 

92.042 1 38 1 

93.027 1 38 1 

93.052 1 38 1 

94.112 1 38 1 

94.155 1 38 1 

96.065 1 38 1 

97.021 1 38 1 

97.181 1 38 2 

27.91 1 38 1 

88.033 2 38 1 

88.078 2 38 1 

88.100 2 38 1 

88.127 2 38 1 

93.015 2 38 1 

93.022 2 38 1 

93.102 2 38 1 

93.133 2 38 1 

94.054 2 38 1 

94.205 2 38 1 

95.036 2 38 1 

95.129 2 38 1 

95.160 2 38 1 

95.165 2 38 2 

95.169 2 38 1 

96.196 2 38 1 

96.205 2 38 1 

96.209 2 38 1 

96.229 2 38 1 

96.262 2 38 1 

97.161 2 38 4 
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Specimen Sex Age Ancestry 

97.186 2 38 1 

98.007 2 38 1 

98.073 2 38 1 

5.99 2 38 1 

88.035 1 39 1 

92.030 1 39 1 

92.051 1 39 1 

93.217 1 39 1 

94.066 1 39 1 

95.181 1 39 1 

95.188 1 39 1 

98.019 1 39 1 

88.140 2 39 1 

89.095 2 39 1 

92.145 2 39 2 

93.084 2 39 1 

93.141 2 39 1 

93.165 2 39 1 

93.188 2 39 1 

94.196 2 39 2 

95.047 2 39 1 

95.054 2 39 1 

95.060 2 39 1 

95.190 2 39 1 

95.200 2 39 1 

97.017 2 39 1 

97.073 2 39 1 

97.119 2 39 1 

98.093 2 39 1 

1.87 2 39 1 

87.132 1 40 1 

88.040 1 40 2 

88.045 1 40 1 
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Specimen Sex Age Ancestry 

88.048 I 40 1 

89.032 I 40 2 

93.096 I 40 1 

93. 166 I 40 1 

96.019 I 40 1 

96.023 I 40 1 

96.049 I 40 1 

97.157 I 40 1 

97.172 I 40 1 

97.173 I 40 1 

98. IOf 1 40 I 

87.136 2 40 2 

88.024 2 40 1 

88.137 2 40 1 

91.102 2 40 I 

93.145 2 40 1 

93.208 2 40 1 

94.026 2 40 1 

94.096 2 40 1 

94.102 2 40 1 

96.169 2 40 1 

96.230 2 40 1 

96.263 2 40 2 

97.005 2 40 1 

97.059 2 40 1 

97.067 2 40 1 

97.098 2 40 1 

97.114 2 40 1 

97.144 2 40 1 

97.179 2 40 4 

97.224 2 40 1 

98.013 2 40 1 

98.078 2 40 1 
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Specimen Sex Age Ancestry 

98.089 2 40 1 

87.119 1 41 1 

88.061 1 41 1 

88.076 1 41 1 

92.085 1 41 1 

92.111 1 41 1 

97.025 1 41 1 

98.020 1 41 1 

98.055 1 41 1 

87.077 2 41 1 

87.147 2 41 1 

88.116 2 41 1 

89.050 2 41 1 

92.117 2 41 1 

93.024 2 41 1 

93.034 2 41 1 

93.106 2 41 1 

93.119 2 41 1 

93.190 2 41 1 

94.005 2 41 1 

94.068 2 41 1 

94.132 2 41 1 

94.209 2 41 1 

95.008 2 41 1 

95.067 2 41 1 

95.072 2 41 1 

95.099 2 41 1 

95.207 2 41 1 

96.039 2 41 1 

96.161 2 41 1 

96.173 2 41 1 

97.012 2 41 1 

97.019 2 41 1 
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Specimen Sex Age Ancestry 

97.084 2 41 1 

97.092 2 41 1 

97.152 2 41 1 

97.216 2 41 1 

97.228 2 41 1 

87.103 1 42 1 

88.065 1 42 1 

89.058 1 42 1 

92.153 1 42 1 

93.063 1 42 1 

93.134 1 42 1 

94.046 1 42 1 

95.118 1 42 1 

97.033 1 42 2 

97.123 1 42 1 

88.052 2 42 1 

88.103 2 42 1 

88.138 2 42 1 

89.093 2 42 2 

92.110 2 42 1 

93.164 2 42 1 

93.178 2 42 1 

94.131 2 42 1 

94.148 2 42 1 

94.154 2 42 1 

94.203 2 42 1 

95.028 2 42 1 

95.105 2 42 1 

95.224 2 42 1 

96.057 2 42 4 

96.126 2 42 1 

96.166 2 42 1 

96.172 2 42 1 
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Specimen Sex Age Ancestry 

96.185 2 42 1 

97.075 2 42 1 

97.109 2 42 1 

97.148 2 42 1 

97. 165 2 42 1 

98.016 2 42 1 

98.021 2 42 1 

98.037 2 42 1 

00.4lf 2 42 1 

87.118 1 43 1 

93.083 1 43 1 

94.134 1 43 1 

96.032 1 43 1 

96.060 1 43 1 

97.211 1 43 1 

98.024 1 43 1 

87.008 2 43 1 

87.106 2 43 1 

87.121 2 43 1 

88.124 2 43 1 

92.134 2 43 2 

93.001 2 43 2 

93.042 2 43 1 

93.103 2 43 1 

93.107 2 43 2 

93.115 2 43 1 

93.184 2 43 1 

94.003 2 43 2 

94.139 2 43 1 

94.156 2 43 1 

94.206 2 43 I 
95.064 2 43 1 

95.107 2 43 1 
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Specimen Sex Age Ancestry 

95.170 2 43 1 

95.174 2 43 1 

95.178 2 43 1 

96.033 2 43 1 

96.094 2 43 1 

96.143 2 43 1 

96.167 2 43 1 

96.227 2 43 1 

97.026 2 43 1 

97.048 2 43 1 

97.081 2 43 1 

97.149 2 43 1 

97.196 2 43 1 

9.89 2 43 2 

3.9 2 43 1 

88.129 1 44 2 

94.109 1 44 1 

95.166 1 44 1 

95.197 1 44 1 

96.036 1 44 1 

96.219 1 44 1 

97.028 1 44 1 

96.13f 1 44 1 

87.111 2 44 1 

88.171 2 44 1 

89.014 2 44 1 

92.023 2 44 1 

92.032 2 44 2 

92.033 2 44 1 

92.107 2 44 1 

93.025 2 44 1 

93.120 2 44 1 

93.179 2 44 1 
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Specimen Sex, Age Ancestry 

93.218 2 44 1 

94.048 2 44 1 

94.051 2 44 1 

94.075 2 44 1 

94.106 2 44 2 

94.12 2 44 1 

94.171 2 44 1 

95.023 2 44 1 

96.045 2 44 1 

96.047 2 44 1 

96.068 2 44 1 

96.122 2 44 1 

96.157 2 44 1 

96.232 2 44 1 

96.235 2 44 1 

96.237 2 44 1 

97.008 2 44 1 

97.031 2 44 1 

97.102 2 44 1 

97.189 2 44 1 

97.191 2 44 1 

97.233 2 44 1 

87.004p 1 45 1 

87.033 1 45 1 

87.135 1 45 1 

88.093 1 45 1 

88. 157 1 45 1 

88.173 1 45 1 

94.127 1 45 1 

97.022 1 45 1 

97.058 1 45 1 

97.126 1 45 1 

28.9 1 45 1 
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Specimen Sex Age Ancestry 

86.073 2 45 1 

87.009 2 45 1 

87.024 2 45 1 

87.039 2 45 2 

87.045a 2 45 1 

87.091 2 45 1 

87.095 2 45 1 

87.155 2 45 1 

88.168 2 45 1 

88.170 2 45 1 

92.080 2 45 1 

92.180 2 45 1 

93.005 2 45 1 

93.108 2 45 1 

94.118 2 45 1 

95.065 2 45 1 

95.134 2 45 1 

97.003 2 45 1 

97.038 2 45 1 

97.085 2 45 1 

97.141 2 45 1 

97.147 2 45 2 

97.153 2 45 1 

97.217 2 45 1 

98.063 2 45 1 

98.075 2 45 1 

1.94 2 45 1 

88.004 1 46 1 

88.038 1 46 1 

94.016 1 46 1 

94.039 1 46 1 

94.091 1 46 1 

94.128 1 46 1 
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Specimen Sex Age Ancestry 

94. 152 1 46 1 

96.042 1 46 1 

96.104 1 46 1 

96.217 1 46 1 

96.241 1 46 1 

97.062 1 46 1 

97.195 1 46 1 

88.069 2 46 1 

92.144 2 46 1 

92. 158 2 46 1 

92.163 2 46 1 

92.168 2 46 1 

93.010 2 46 1 

93.064 2 46 1 

93. 132 2 46 1 

93.201 2 46 1 

93.213 2 46 1 

93.216 2 46 1 

94.021 2 46 2 

94.092 2 46 1 

94.146 2 46 1 

95.075 2 46 1 

96.005 2 46 1 

96.016 2 46 1 

96.061 2 46 1 

96.124 2 46 1 

30.93 2 46 1 

12.98 2 46 1 

87.078 1 47 1 

92.020 1 47 1 

93.047 1 47 1 

95.096 1 47 1 

95.122 1 47 1 
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Specimen Sex Age Ancestry 

96.026 1 47 1 

96.168 1 47 1 

87.028 2 47 1 

88.028 2 47 1 

88.039 2 47 1 

89.049 2 47 1 

93.044 2 47 1 

94.012 2 47 1 

94.014 2 47 1 

94.119 2 47 1 

95.175 2 47 1 

95.186 2 47 1 

95.193 2 47 1 

96.012 2 47 1 

96.081 2 47 1 

96.220 2 47 1 

96.253 2 47 1 

97.063 2 47 1 

97.113 2 47 1 

97.137 2 47 1 

97.143 2 47 1 

98.094 2 47 1 

12.88 2 47 1 

01. l00a 2 47 1 

88.021 1 48 1 

88.121 1 48 1 

92.043 I 48 1 

94.190 1 48 1 

95.031 I 48 1 

95.083 I 48 1 

97.230 I 48 1 

87.007 2 48 1 

87.130 2 48 2 

219 



Specimen Sex Age Ancestry 

88.055 2 48 1 

88.126 2 48 1 

89.098 2 48 1 

92.147 2 48 1 

92.174 2 48 1 

93.062 2 48 1 

93.152 2 48 1 

94.032 2 48 1 

94.041 2 48 1 

95.110 2 48 1 

95.119 2 48 1 

95.124 2 48 1 

95.153 2 48 1 

95.204 2 48 1 

95.226 2 48 1 

96.088 2 48 1 

96.128 2 48 2 

96.199 2 48 1 

96.228 2 48 1 

97.002 2 48 1 

97.042 2 48 1 

97. 133 2 48 1 

97.174 2 48 4 

97.226 2 48 1 

87.019 1 49 1 

88.060 1 49 1 

88.064 1 49 1 

89.004 1 49 1 

93.008 1 49 1 

93.137 1 49 1 

94.201 1 49 1 

96.082 1 49 1 

96.084 1 49 1 
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Specimen Sex Age Ancestry 

97.001 1 49 1 

97.068 1 49 1 

97.223 1 49 1 

87.089 2 49 1 

87.126 2 49 1 

87.129 2 49 1 

88.003 2 49 1 

88.019 2 49 1 

88.117 2 49 1 

88.130 2 49 1 

89.036 2 49 1 

92.074 2 49 1 

92.076 2 49 1 

93.136 2 49 1 

94.177 2 49 1 

94.186 2 49 1 

95.037 2 49 1 

95.113 2 49 1 

95. 164 2 49 1 

96.107 2 49 1 

96.226 2 49 1 

96.243 2 49 1 

97.015 2 49 1 

97.027 2 49 1 

97.064 2 49 1 

97.204 2 49 1 

98.043 2 49 1 

98.085 2 49 1 

98.088 2 49 1 

10.88 2 49 1 

96.19f 2 49 1 

88.128 1 50 1 

93.191 1 50 1 
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Specimen Sex Age Ancestry 

96.141 1 50 1 

86.094 2 50 1 

87.020 2 50 1 

88.009a 2 50 2 

88.056 2 50 1 

88.066 2 50 1 

93.023 2 50 1 

93.085 2 50 1 

94.060 2 50 1 

94.199 2 50 1 

95.030 2 50 2 

95.069 2 50 1 

95.139 2 50 1 

95.187 2 50 1 

96.184 2 50 1 

96.214 2 50 1 

96.223 2 50 1 

97.039 2 50 1 

97.151 2 50 1 

97.182 2 50 1 

97.236 2 50 1 

98.077 2 50 1 

01.134a 2 50 2 

93.198 1 51 1 

93.204 1 51 1 

94.065 1 51 1 

96.181 1 51 1 

97.103 1 51 1 

23.88 1 51 1 

87.025 2 51 1 

88.094 2 51 1 

88.148 2 51 1 

88.164 2 51 1 
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Specimen Sex Age Ancestry 

89.034 2 51 1 

92.083 2 51 1 

92.126 2 51 1 

93.093 2 51 1 

93.156 2 51 1 

93.202 2 51 1 

94.099 2 51 1 

94.143 2 51 1 

95.079 2 51 1 

95.092 2 51 1 

95.216 2 51 1 

96.017 2 51 1 

96.052 2 51 1 

97.018 2 51 1 

97.029 2 51 2 

97.035 2 51 1 

97.170 2 51 1 

97.171 2 51 1 

97.178 2 51 1 

97.203 2 51 1 

98.040 2 51 1 

98.090 2 51 1 

4.89 2 51 1 

88.145 1 52 1 

89.028 1 52 1 

95.120 1 52 1 

95.173 1 52 1 

96.123 1 52 1 

97.183 1 52 1 

98.062 1 52 1 

99.29f 1 52 1 

87.01 la 2 52 1 

87.012 2 52 1 
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Specimen Sex Age Ancestry 

87.093 2 52 1 

87.113 2 52 1 

88.104 2 52 1 

93.014 2 52 1 

93.210 2 52 1 

94.025 2 52 1 

94.142 2 52 1 

94.158 2 52 1 

95.048 2 52 1 

95.061 2 52 1 

96.127 2 52 1 

96.265 2 52 1 

97.112 2 52 1 

97.210 2 52 1 

98.023 2 52 1 

98.031 2 52 1 

98.054 2 52 2 

98.070 2 52 1 

12.9 2 52 1 

88.120 1 53 1 

89.101 1 53 1 

92.089 1 53 1 

93.149 1 53 1 

98.029 1 53 1 

87.066 2 53 1 

87.154 2 53 1 

88.006 2 53 1 

92.156 2 53 1 

94.173 2 53 1 

94.197 2 53 1 

95.199 2 53 1 

96.010 2 53 1 

96.090 2 53 1 
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Specimen Sex Age Ancestry 

96.155 2 53 1 

96.240 2 53 1 

97.050 2 53 1 

97.065 2 53 1 

97.108 2 53 1 

97.110 2 53 1 

97.129 2 53 1 

11.89 2 53 1 

5.93 2 53 1 

94.22f 2 53 1 

00.20f 2 53 1 

96.037 1 54 1 

97.128 1 54 1 

87.020a 2 54 1 

87.029a 2 54 1 

87.040 2 54 1 

87.064 2 54 1 

88.001 2 54 1 

88.139 2 54 1 

89.102 2 54 1 

92.039 2 54 1 

92.049 2 54 2 

92.094 2 54 2 

92.097 2 54 1 

93.117 2 54 1 

93.180 2 54 1 

93.186 2 54 1 

94.017 2 54 1 

94.080 2 54 1 

94.090 2 54 1 

94.098 2 54 1 

94.114 2 54 1 

95.020 2 54 1 
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Specimen Sex, Age Ancestry 

95.049 2 54 1 

95.055 2 54 1 

95.215 2 54 1 

96.043 2 54 1 

96.194 2 54 1 

97.071 2 54 1 

97.091 2 54 1 

97.097 2 54 1 

97.214 2 54 1 

97.235 2 54 1 

98.079 2 54 1 

27.9 2 54 1 

87.076 1 55 1 

87.098 1 55 1 

88.042 1 55 1 

88.119 1 55 1 

89.074 1 55 1 

94.084 1 55 1 

96.029 1 55 1 

96.054 1 55 1 

97.188 1 55 1 

87.071 2 55 1 

87. 105 2 55 1 

87.133 2 55 1 

89.064 2 55 1 

92.140 2 55 1 

92.146 2 55 1 

93.060 2 55 1 

93.094 2 55 1 

93.125 2 55 1 

94.053 2 55 1 

95.027 2 55 1 

95.202 2 55 1 
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!Specimen Sex Age Ancestry 

96.053 2 55 1 

96.151 2 55 1 

97.047 2 55 1 

98.074 2 55 1 

1.82 2 55 1 

4.87 2 55 1 

1.92 2 55 2 

36.93 2 55 1 

39.93 2 55 1 

4.96 2 55 1 

87.142 1 56 1 

88.082 1 56 1 

93.013 1 56 1 

93.130 1 56 1 

94.063 1 56 1 

95.025 1 56 1 

87.041 2 56 1 

87.047 2 56 1 

87.083 2 56 1 

88.085 2 56 1 

88.109 2 56 1 

89.052 2 56 1 

92.154 2 56 1 

93.011 2 56 1 

93.029 2 56 1 

93.082 2 56 1 

93.197 2 56 1 

95.046 2 56 1 

95.128 2 56 1 

95.211 2 56 1 

96.022 2 56 1 

96.071 2 56 1 

96.112 2 56 1 
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Specimen Sex Age Ancestry 

96.118 2 56 1 

96.120 2 56 1 

96.183 2 56 1 

96.203 2 56 1 

96.206 2 56 1 

96.242 2 56 1 

97.032 2 56 1 

97.154 2 56 1 

97.197 2 56 1 

98.051 2 56 1 

14.88 2 56 1 

10.95 2 56 1 

88.047 1 57 1 

89.072 1 57 1 

94.138 1 57 1 

95. 184 1 57 1 

87.016a 2 57 1 

87.040a 2 57 1 

87.062b 2 57 1 

92.127 2 57 1 

93.077 2 57 1 

94.107 2 57 1 

94.178 2 57 1 

95.159 2 57 1 

95.185 2 57 1 

96.113 2 57 1 

96.165 2 57 1 

97.083 2 57 1 

97.100 2 57 1 

4.99 2 57 1 

95.227 1 58 1 

97.180 1 58 1 

98.030 1 58 1 
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Specimen Sex Age Ancestry 

88.002 2 58 1 

88.125 2 58 1 

89.001 2 58 1 

89.027 2 58 1 

92.050 2 58 1 

94.055 2 58 1 

95.088 2 58 1 

96.044 2 58 1 

97.140 2 58 1 

98.033 2 58 1 

98.080 2 58 1 

7.87 2 58 1 

18.91 2 58 1 

87.043 1 59 1 

89.025 1 59 1 

95.161 1 59 1 

96.008 1 59 1 

96.177 1 59 1 

96.252 1 59 1 

97.006 1 59 1 

97.142 1 59 1 

97.146 1 59 1 

86.091 2 59 1 

87.012a 2 59 1 

87.074 2 59 1 

87.094 2 59 1 

87.124 2 59 1 

88.083 2 59 1 

89.029 2 59 1 

89.076 2 59 1 

93.035 2 59 1 

93.203 2 59 1 

94.004 2 59 1 
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Specimen Sex Age Ancestry 

94.028 2 59 1 

94.031 2 59 1 

96.149 2 59 1 

96.164 2 59 1 

97.054 2 59 1 

97.061 2 59 1 

97.089 2 59 1 

97.099 2 59 1 

97.212 2 59 1 

01.37f 2 59 1 

87.00lp 1 60 1 

93.185 1 60 1 

95.146 1 60 1 

95.182 1 60 1 

96.009 1 60 1 

98.044 1 60 1 

87.003a 2 60 1 

87.003p 2 60 1 

89.084 2 60 2 

92.082 2 60 1 

92.170 2 60 1 

93.135 2 60 1 

95.093 2 60 1 

95.220 2 60 1 

96.089 2 60 1 

96.153 2 60 1 

96.182 2 60 1 

01.15f 2 60 1 

87.060b 1 61 1 

88.115 1 61 1 

88.153 1 61 1 

94.088 I 61 I 

96.137 1 61 1 
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Specimen Sex Age Ancestry 

96.256 1 61 1 

87.005a 2 61 1 

87.051a 2 61 1 

88.091 2 61 1 

89.054 2 61 1 

92.034 2 61 2 

92.047 2 61 1 

92.167 2 61 1 

92.173 2 61 1 

93.124 2 61 2 

93.181 2 61 1 

94.049 2 61 1 

95.101 2 61 1 

95.194 2 61 1 

96.014 2 61 1 

96.077 2 61 1 

98.010 2 61 1 

29.99 2 61 1 

96.078 1 62 1 

96.106 1 62 1 

96.178 1 62 1 

6.92 I 62 I 

86.087 2 62 1 

87.058 2 62 1 

87.060A 2 62 1 

87.072 2 62 1 

88.059 2 62 I 

89.031 2 62 1 

95.167 2 62 1 

96.013 2 62 1 

97.190 2 62 1 

3.83 2 62 1 

20.95 2 62 1 
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Specimen Sex Age Ancestry 

2.99 2 62 1 
92.092 1 63 1 
86.085 2 63 1 
87.00la 2 63 1 
87.014 2 63 1 

87.034a 2 63 1 

87.041a 2 63 1 

87.057a 2 63 1 

87.159 2 63 1 

88.063 2 63 1 

89.086 2 63 1 

92.086 2 63 1 

93.021 2 63 1 

94.007 2 63 1 

94.034 2 63 1 

94.073 2 63 1 

94.100 2 63 1 

95.214 2 63 1 

96.119 2 63 1 

96.140 2 63 1 

97.016 2 63 1 

97.169 2 63 1 

98.034 2 63 1 

11.94 2 63 1 

87.140 1 64 1 

93.122 1 64 1 

95.209 1 64 1 

95.230 1 64 1 

97.106 1 64 1 

86.079a 2 64 1 

87.019a 2 64 1 
87.032a 2 64 1 

88.169 2 64 1 
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Specimen Sex Age Ancestry 

89.051 2 64 1 

93.009 2 64 1 

93.214 2 64 1 

95.056 2 64 1 

95.191 2 64 2 

97.127 2 64 1 

97.175 2 64 1 

87.110 1 65 1 

88.163 1 65 1 

89.045 1 65 1 

92.138 1 65 1 

86.074a 2 65 1 

87.018a 2 65 1 

87.030 2 65 1 

87.039b 2 65 1 

88.152 2 65 1 

89.003 2 65 1 

92.019 2 65 1 

92.036 2 65 1 

93.089 2 65 1 

93.098 2 65 1 

93.206 2 65 1 

94.043 2 65 1 

95.130 2 65 1 

96.087 2 65 1 

96.111 2 65 1 

96.231 2 65 1 

96.255 2 65 I 

97.094 2 65 1 

97.124 2 65 1 

97.206 2 65 4 

98.092 2 65 1 

6.91 2 65 I 
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Specimen Sex Age Ancestry 

96.085 1 66 1 

97.163 1 66 1 

1.96 1 66 2 

3.99 1 66 1 

87.043a 2 66 1 

87.044a 2 66 1 

92.072 2 66 1 

93.076 2 66 2 

93.081 2 66 1 

93.101 2 66 1 

95.176 2 66 1 

95.222 2 66 1 

97.043 2 66 1 

97.090 2 66 1 

88.002a 1 67 1 

88.075 1 67 1 

88.077 1 67 1 

94.018 1 67 1 

94.124 1 67 2 

87.070 2 67 1 

87. 108 2 67 1 

88.027 2 67 1 

88.043 2 67 1 

89.056 2 67 1 

92.055 2 67 1 

92.075 2 67 1 

93.229 2 67 1 

94.071 2 67 1 

94.129 2 67 1 

94.137 2 67 1 

97.024 2 67 2 

97. 187 2 67 1 

97.220 2 67 1 
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Specimen Sex Age Ancestry 

7.86 2 67 1 

23.94 2 67 1 

86.086 1 68 1 

87.032 1 68 1 

92.070 1 68 1 

93.086 1 68 1 

94.187 1 68 1 

95.044 1 68 1 

96.079 1 68 1 

11.9 1 68 1 

87.024a 2 68 1 

87.064a 2 68 2 

87.082 2 68 1 

89.094 2 68 1 

92.129 2 68 1 

92.157 2 68 1 

94.174 2 68 1 

95.058 2 68 1 

95.196 2 68 1 

96.193 2 68 1 

97.158 2 68 1 

98.028 2 68 1 

98.072 2 68 1 

24.88 2 68 1 

3.91 2 68 1 

31.93 2 68 2 

00.18f 2 68 1 

92.044 1 69 1 

92.114 1 69 1 

95.086 1 69 3 

96.198 1 69 1 

86.076a 2 69 1 

87.051 2 69 1 
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!Specimen Sex Age Ancestry 

88.018 2 69 1 

89.026 2 69 1 

89.035 2 69 1 

89.090 2 69 1 

92.021 2 69 1 

92.054 2 69 1 

92.118 2 69 1 

92.122 2 69 1 

93.012 2 69 1 

94.123 2 69 1 

95.145 2 69 1 

95.192 2 69 1 

96.069 2 69 1 

96.103 2 69 1 

96.105 2 69 1 

97.116 2 69 1 

98.045 2 69 1 

6.87 2 69 2 

96.158 1 70 1 

97.079 1 70 1 

00.28f 1 70 1 

87.016 2 70 1 

88.016 2 70 1 

88.037 2 70 1 

88.072 2 70 1 

89.017 2 70 1 

89.018 2 70 1 

89.046 2 70 1 

93.158 2 70 1 

94.083 2 70 1 

94.153 2 70 1 

95.018 2 70 1 

95.078 2 70 1 
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Specimen Sex Age Ancestry 

96.130 2 70 1 

97.069 2 70 1 

98.032 2 70 1 

8.91 2 70 1 

12.91 2 70 1 

92.041 1 71 1 

92.123 1 71 1 

1.88 1 71 1 

7.95 1 71 1 

87.001 2 71 1 

94.193 2 71 1 

96.139 2 71 1 

96.236 2 71 2 

87.013 1 72 1 

96.200 1 72 1 

87.002a 2 72 1 

87.046 2 72 1 

87.047a 2 72 1 

87.048 2 72 1 

87.096 2 72 1 

87.151 2 72 1 

88.068 2 72 1 

88.084 2 72 1 

88.150 2 72 1 

89.013 2 72 1 

92.113 2 72 1 

93.109 2 72 1 

93.114 2 72 1 

93.154 2 72 1 

94.140 2 72 1 

94.163 2 72 1 

95.168 2 72 1 

96.095 2 72 1 
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Specimen Sex Age Ancestry 

97.202 2 72 1 

89.057 1 73 1 

94.030 1 73 1 

95.002 1 73 1 

96.150 1 73 1 

87.002 2 73 1 

87.097 2 73 1 

87.101 2 73 1 

89.077 2 73 1 

93.031 2 73 1 

93.155 2 73 1 

93.172 2 73 1 

94.074 2 73 1 

95.013 2 73 1 

95.016 2 73 1 

97.066 2 73 1 

1.81 2 73 1 

22.93 2 73 1 

45.93 2 73 1 

19.99 2 73 1 

87.008a 2 74 1 

87.025a 2 74 1 

87.026a 2 74 1 

87.042a 2 74 1 

87. 109 2 74 1 

92.087 2 74 1 

92.178 2 74 1 

94.009 2 74 1 

96.034 2 74 1 

96.035 2 74 1 

96.244 2 74 1 

97.055 2 74 1 

97.198 2 74 1 
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Specimen Sex Age Ancestry 

97.218 2 74 1 

88.012 1 75 1 

94.015 1 75 1 

94.024 1 75 1 

94.157 1 75 1 

92.120 2 75 1 

94.159 2 75 1 

95.034 2 75 1 

95.212 2 75 1 

88.081 1 76 2 

93.069 1 76 1 

94.181 1 76 1 

97.093 1 76 1 

20.91 1 76 1 

93.007 2 76 1 

94.167 2 76 1 

95.003 2 76 1 

95.132 2 76 1 

98.005 2 76 2 

10.87 2 76 1 

23.93 2 76 1 

92.106 1 77 1 

96.055 1 77 1 

96.091 1 77 1 

98.014 1 77 1 

87.036 2 77 1 

93.033 2 77 1 

94.037 2 77 1 

94.082 2 77 1 

96.251 2 77 1 

97.040 2 77 1 

98.009 2 77 1 

25.91 2 77 1 
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Specimen Sex Age Ancestry 

88.046 1 78 1 

93.153 1 78 1 

01.28f 1 78 1 

86.077a 2 78 1 

87.004a 2 78 1 

88.096 2 78 2 

88.147 2 78 1 

89.042 2 78 1 

89.062 2 78 1 

92.062 2 78 1 

92.159 2 78 1 

97.121 2 78 1 

22.9 2 78 1 

18.93 2 78 1 

87.031 1 79 1 

88.143 1 79 1 

96.129 1 79 1 

98.057 1 79 1 

87.0lOa 2 79 1 

87.014a 2 79 1 

87.029 2 79 1 

87.055 2 79 1 

93.173 2 79 1 

97.080 2 79 1 

97.122 2 79 1 

1.97 2 79 1 

87.104 1 80 1 

87.143 1 80 1 

95.006 1 80 1 

6.93 1 80 1 

87.002p 2 80 1 

87.021a 2 80 1 

87.033a 2 80 1 
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Specimen Sex Age Ancestry 

93.070 2 80 1 

94.204 2 80 1 

95.009 2 80 1 

95.010 2 80 1 

95.180 2 80 1 

97.086 2 80 1 

98.069 2 80 1 

87.069 1 81 2 

87.131 1 81 1 

88.031 1 81 1 

95.206 1 81 1 

96.148 1 81 1 

97.045 1 81 1 

97.049 1 81 1 

87.03 la 2 81 1 

93.162 2 81 1 

96.093 2 81 1 

89.068 1 82 1 

87.022a 2 82 1 

87.061A 2 82 1 

88.058 2 82 1 

92.017 1 83 1 

95.007 1 83 2 

95.123 1 83 1 

96.073 1 83 1 

87.158 2 83 1 

96.098 2 83 1 

96.121 2 83 1 

97.020 2 83 1 

17.97 1 84 1 

87.086 2 84 1 

88.023 2 84 1 

93.059 2 84 1 
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Specimen Sex Age Ancestry 

93.223 2 84 1 

97.184 2 84 1 

15.93 2 84 2 

95.127 1 85 1 

96.074 1 85 1 

0l.27f 1 85 1 

93.020 2 85 1 

97.041 2 85 1 

97.156 2 85 1 

88.014 1 86 1 

95.111 2 86 1 

97.199 2 86 1 

00.40f 2 86 1 

96.056 1 87 1 

96.176 1 87 1 

98.022 1 87 1 

89.097 2 87 1 

94.150 2 87 1 

2.85 2 87 1 

87.035 1 89 1 

92.104 1 89 1 

97.193 2 89 1 

98.067 2 89 1 

21.94 2 89 1 

87.017a 2 90 1 

87.045 2 90 1 

94.192 1 91 1 

95.148 1 92 1 

87.006a 2 92 1 

87.055a 2 92 1 

97.215 1 101 2 

4.94 2 101 1 
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AppendixB 

Data by Specimen sorted by age and sex 
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Specimen BH BW BT GHS GHD MTT LHF IRHF LI IL2 L3 IL4 'Bl IR2 R3 R4 

95.001 5.74 7.85 1.6 1 1 

92.058 5.64 8 1.79 1 1 

93.227 5.91 7.41 1.36 1 1 

98.011 5.98 6.59 1.47 1 1 

93.067 6.3 6.7 2.2 1 1 

93.143 7.2 9.68 1.56 1 1 

93.150 5.09 6.68 1.04 1 1 

88.141 6.24 7.13 1.06 1 1 

88.034 5.43 7.55 1.54 1 1 

89.012 6.38 8.77 1.5 1 1 

95.094 6.16 8.91 1.19 1 1 

97.034 7.35 7.7 1.13 1 1 

97.232 6.33 9.25 2.01 1 1 

92.067 4.98 2.16 1 1 

93.037 5.67 8.57 1.1 1 1 

92.060 4.88 7.15 2.02 1 1 

87.063 6.24 11.47 1.15 1 1 

92.056 5.19 8.61 1.58 1 1 

93.054 6.2 8.99 1.99 1 1 

89.010 8.39 11.83 1.63 1 1 

96.248 6.43 9.88 1.6 1 1 

88.172 7.75 12.11 1.54 1 1 

92.037 7.77 10.36 2.14 1 1 

93.129 7.98 11.4 1.51 1 1 

95.109 7.68 9.68 1.68 1 1 

94.105 7.43 9.73 1.84 1 1 

89.022 8 10.54 2 1 1 

89.020 6.19 6.98 1.5 1 1 

97.087 6.63 11.75 1.72 1 1 

98.036 9.38 11.58 2.02 1 1 

88.158 6.69 13.25 1.34 1 1 

89.082 6.22 9.74 1.9 1 1 

97.056 7.89 11.19 1.62 1 1 
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Specimen BH BW BT GHS GHD MTT LHF IRHF LI 'l,2 'l3 L4 1/1.l R2 1/1.3 1/1.4 

89.080 8.25 13 1.9 1 1 

94.094 8.61 12.9 1.51 1 1 

88.020 7.37 12.87 1.66 1 1 

89.048 8.26 10.55 1.78 1 1 

92.115 8.5 12.77 2.05 1 1 

93.003 7.9 11.92 1.92 1 1 

95.040 8.93 14.13 1.39 1 1 

96.211 6.52 13.35 1.51 1 1 

93.170 10.08 15.41 2.03 1 1 

88.156 7.95 14.27 2.13 1 1 

89.008 11.37 16.71 1.9 1 1 

92.027 8.2 16.04 1.37 1 1 

88.122 8.56 13.76 2.22 1 1 

96.207 10.71 14.03 1.86 1 1 

94.045 7.73 13.85 1.04 1 1 

94.147 7.91 16.73 1.52 1 1 

93.048 8.65 12.16 1.3 1 1 

01.1 l0a 7.46 14.69 1.65 1 1 

92.029 8.31 14.72 1.06 1 1 

88.009 9.06 15.33 2.25 1 1 

88.053 9.5 12.85 1.7 1 1 

88.099 11.54 17.74 1.91 1 1 

94.064 10.09 18.32 2.73 1 1 

92.100 8.32 15.6 1.6 1 1 

92.150 9.53 16.26 1.95 1 1 

98.095 10.57 11.12 1.47 1 1 

87.061 9.75 18.52 3.08 1 1 

88.079 11.47 13.3 3.49 1 1 

88.155 8.35 14.29 1.86 1 1 

92.028 10.66 18.27 2.36 1 1 

92.063 10.62 14.99 2.61 1 1 

92.141 9.65 15.05 2.11 1 1 

92.151 9.67 15.75 2.45 1 1 
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!Specimen BH BW BT GHS GHD MTT LHF IRHF Ill IL2 IL3 IL4 IRJ w2 W3 IR4 

93.195 8.98 15.09 1.61 1 1 

96.092 12.23 15.55 1.81 1 1 

96.201 12.36 15.12 2.01 1 1 

96.221 9.65 15.94 1.54 1 1 

93.118 8.34 15.94 1.44 1 1 

94.047 7.45 13.84 1.37 1 1 

94.077 8.78 13.6 1.84 1 1 

95.082 8.05 22.45 2.26 1 1 

95.157 11.21 15.97 2 1 1 

96.115 9.31 13.76 1.95 1 1 

98.012 7.78 15.41 1.74 1 1 

87.087 9 16.3 2.19 1 1 

88.151 10.9 17.46 2.03 1 1 

88.154 10.47 16.79 2.2 1 1 

89.011 11.9 16.29 2.12 1 1 

93.051 9 14.7 3 1 1 

94.135 11.55 19.81 2.31 1 1 

95.155 10.22 17.14 1.82 1 1 

96.156 9.67 14.7 2.36 1 1 

98.050 8.92 18.03 2.15 1 1 

87.162 9.63 16.59 1.69 1 1 

92.112 8.89 13.89 1.99 1 1 

93.175 10.93 15.98 2.38 1 1 

93.221 11.29 16.07 2.23 1 1 

95.085 8.97 13.05 1.88 1 1 

95.217 8.94 16.8 1.77 1 1 

87.148 12.84 21.71 2.07 1 1 

87.153 10.67 19.11 2.33 1 1 

89.065 10.82 16.51 1.98 1 1 

93.174 8.58 18.81 2.47 1 1 

94.079 10.55 14.6 2.9 1 1 

94.095 10.54 18.53 2.04 1 1 

94.195 9.91 16.41 2.11 1 1 
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!Specimen BH BW BT GHS GHD MTT ILHF RHF If,] L2 'l,3 if,4 Rl 1/1.2 R3 R4 

96.067 11.28 16.71 1.94 1 1 

97.096 10.32 14.84 1.58 1 1 

97.155 11.05 17.11 1.8 1 1 

97.227 9.58 14.84 2.57 1 1 

93.068 8.36 15.64 2.38 1 1 

93.138 9.19 16 1.68 1 1 

93.226 9.94 16.05 2 1 1 

94.141 8.81 13.9 1.81 1 1 

94.185 9.34 14.03 1.7 1 1 

95.115 12.11 17.47 2.22 1 1 

89.024 10.31 16.58 2.1 1 1 

89.091 12.2 18.64 2.52 1 1 

92.079 11.68 17.57 2.4 1 1 

93.049 9.3 18.3 2.09 1 1 

93.078 11.23 16.87 2.42 1 1 

94.076 10.19 15.55 2.31 1 1 

95.080 10.62 17.48 2.88 1 1 

96.058 10.41 17.2 1.89 1 1 

96.059 8.11 18.18 1.23 1 1 

96.116 9.61 16.34 2.8 1 1 

96.133 10.82 16.23 1.9 1 1 

96.180 10.81 17.18 1.72 1 1 

96.250 10.75 14.3 2 1 1 

97.125 10.86 18.31 2.05 1 1 

97.177 9.49 16.49 1.91 1 1 

98.058 8.22 19.32 1.9 1 1 

87.073 6.46 18.27 1.26 1 1 

94.011 8.1 14.46 1.37 1 1 

94.162 7.63 17.03 1.71 1 1 

94.184 11.26 15.05 2.4 1 1 

94.194 8.63 14.4 1.9 1 1 

96.136 8.64 13.14 1.59 1 1 

87.050 7.92 17.34 2.11 1 1 
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'Specimen BH BW BT GHS GHD MTT ILHF JUIF 1/.,J L2 1/.,3 11.,4 I/I.I R2 :P.3 1/1.4 

88.008 12.28 20.7 2.31 1 1 

92.078 10.9 16.46 2.9 1 1 

93.230 10 21 2.21 1 1 

94.072 9.59 16.24 2.15 2 1 1 2 1 1 

94.093 10.85 21.2 2 1 1 

94.101 12.35 20.7 2.19 1 1 

94.110 10.74 17.21 2.19 1 1 

95.066 14.07 17.89 2.11 1 1 

95.068 10.91 16.11 2.06 1 1 

96.030 10.9 20.03 1.51 1 1 

96.216 12.32 19.84 2.21 1 1 

97.209 12.27 18.39 2.09 1 1 

98.025 11.02 20.73 2.54 1 1 

98.046 9.93 17.48 1.67 1 1 

98.048 11.29 17.59 1.89 1 1 

87.018 8.95 14.48 1.51 1 1 

87.075 10.32 16.86 2.2 1 1 

93.171 10.02 15.81 1.87 1 1 

93.205 8.53 15.53 1.21 1 1 

95.038 8.85 18.57 1.42 1 1 

96.215 8.2 16.73 1.41 1 1 

98.068 8.64 17.75 2.06 1 1 

87.023 11.36 21.94 3.67 1 1 

87.049 10.27 19.34 2.28 1 1 

87.117 11.84 23.29 2.07 1 1 

87.161 8.77 17.25 2 2 1 1 2 2 1 

88.087 10.38 19.16 2.12 1 1 

89.069 11.34 17.16 3.64 1 1 

92.035 9.74 19.69 2.13 1 1 

92.048 11.5 17.3 1.89 1 1 

93.147 12 18.5 2.39 1 1 

94.006 9.76 17.84 1.96 1 1 

95.026 12.91 20.2 1.81 1 1 
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Specimen BH BW BT GHS GHD MTT LHF IRHF If,] L2 1/3 ll,4 RI lfl.2 lfl.3 R4 

95.045 11 17.79 2.33 2 1 1 2 2 1 

95.091 9.16 19.98 1.8 2 1 1 1 2 1 

95.104 10.11 15.66 2.56 1 1 

96.159 10.72 21.18 2.23 1 1 

96.171 11.03 17.48 2.21 1 1 

96.208 12.68 21.08 2.76 1 1 

97.044 10.08 2.48 2 3 2 3 3 2 

97.046 10.33 17.59 2.08 1 1 

97.205 8.53 18.88 2.26 1 1 

93.072 8.21 13.83 1.19 1 1 

95.147 10.37 1.86 41.09 34.96 3.07 2 3 2 3 3 1 

95.149 9.63 13.48 2.47 1 1 

87.084 10.76 23.41 2.66 1 1 

89.006 11.57 17.59 2.63 1 1 

89.019 12.35 20.62 2.93 1 1 

92.119 12.29 19.38 2.03 1 2 1 3 3 1 

93.041 8.91 19.3 1.68 1 1 

93.127 9.61 17.03 1.97 1 1 

93.128 11.46 20.32 1.93 1 1 

94.035 10.54 2.12 3 3 

95.032 11.03 22.66 2.89 49.65 41.11 4.27 1 2 3 3 2 1 

95.039 11.66 19.58 2.52 1 1 

96.038 12.18 18.85 1.92 1 1 

96.066 10.09 17.54 1.35 1 1 

96.147 10.52 20.14 1.7 1 1 

97.088 8.62 21.14 1.28 1 2 2 2 2 1 

98.056 11.2 18.56 2.73 1 1 

87.112 8.93 15.78 1.65 1 1 

95.090 12 15.64 1.7 • 1 1 

87.059 10.82 21.07 2.34 46.46 40.01 3.23 2 2 3 3 3 2 2 2 1 1 

87.122 10.53 22.96 1.95 1 1 

87.149 12.51 20.15 1.92 1 1 

88.025 11.06 22.34 1.47 1 1 
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Specimen BH BW BT GHS GHD MTT ILHF RHF lf.,J L2 1.£3 L4 1/l.l 1/l.2 R3 1/l.4 

88.074 12.31 2.34 1 1 

88.090 11.24 19.03 1.97 1 1 

88.102 11.88 19.48 2.39 1 1 

88.166 9.55 19.93 2.65 1 1 

92.068 9.21 17.55 2.58 1 1 

92.136 11.73 18.08 2.16 1 1 

93.140 11.58 19.09 2.53 1 1 

93.159 11.07 21.35 2.35 1 1 

93.222 9.86 20.14 2.04 1 1 

94.062 9.12 21.31 1.78 1 1 

94.151 10.2 15.75 1.84 1 1 

94.170 9.98 18.09 2.3 1 1 

95.151 12.17 16.14 2.48 1 2 1 2 2 1 

96.135 10.5 20.98 1.91 1 1 

96.257 11.14 20.11 1.96 1 1 

98.038 10.85 18.02 2.72 1 1 

87.092 9.12 16.45 1.72 1 1 

89.099 9.71 21.32 1.91 44.76 40.11 2.33 2 2 3 3 3 1 3 3 3 1 

92.066 9.44 2.44 44.67 39.31 2.68 3 3 

92.135 8.33 16.76 2.45 1 1 

94.182 8.55 16.25 1.22 1 1 

94.202 8.88 15.39 1.84 1 1 

97.076 8.82 16.44 1.62 1 1 

87.164 11.66 24.68 2.62 1 1 

88.017 10.44 17.27 1.57 1 1 

92.179 11.66 22.7 2 1 1 

93.017 11.74 19.92 2.34 1 1 

93.066 10.29 21.7 2.74 1 1 

94.029 11.76 20.91 1.75 1 1 

94.086 9.65 20.35 1.75 1 1 

94.122 12.23 21.14 2.18 1 1 

95.126 10.88 16.4 2.1 1 1 

95.150 11.04 17.42 2.04 1 1 
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!Specimen BH BW BT GHS GHD MTT ILHF RHF Ll 'l,2 L3 'l,4 RI R2 lfl.3 'll.4 

95.162 12.07 17.76 1.97 1 1 

95.203 9.25 18.86 1.9 1 1 

95.210 10.13 21.12 2.22 1 1 

96.070 10.06 16.21 1.64 1 1 

96.134 9.89 19.76 1.83 2 1 3 3 2 2 

96.160 9.36 18.29 2.23 1 1 

97.007 8.33 19.08 1.95 2 2 3 3 3 1 3 3 3 1 

97.117 10.37 21.87 1.81 1 1 

97.194 9.71 24.18 1.78 1 1 

95.057 7.83 16.08 1.86 1 1 

96.247 9.31 18.48 1.44 1 1 

87.021 12.82 21.33 2.59 1 1 

87.027 13.55 2.7 3 1 

87.058 10.11 21.95 2.38 1 1 

87.146 10.94 25.68 2.77 1 1 

88.080 7.26 21.56 1.1 1 1 

88.131 10.59 18.58 1.86 1 1 

89.044 11.02 21.37 2.57 2 1 3 3 3 1 

92.071 10.11 2.61 38.85 30.65 4.1 3 3 

92.130 10.79 20.4 2.07 1 1 

93.075 10.12 17.45 2.18 1 1 

93.080 11.15 20.32 1.88 1 1 

94.069 10.26 19.03 2.21 1 1 

95.154 11.07 17.11 2.41 1 1 

95.171 10.14 20.31 2.56 1 1 

96.015 12.87 19 1.96 1 1 

96.132 9.95 2.1 1 1 

97.011 9.09 15.67 1.96 1 1 

97.030 9.09 17.81 1.84 1 1 

97.037 10.61 18.7 1.36 1 1 

98.064 10.22 21.21 2.3 1 1 

89.083 9.38 16.7 3 1 1 

93.219 8.25 2.02 40.26 34.68 2.79 2 3 2 3 3 2 
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Specimen BH BW BT GHS GHD MTT ILHF RHF ILi L2 IL3 L4 I/I.I R2 R3 1/1.4 

94.208 8.43 15 1.91 1 1 

95.213 7.75 16.86 1.8 1 1 

96.096 10.8 15.98 2.08 1 1 

97.221 7.6 13.85 1.7 1 1 

88.029 13.52 21.61 1.81 1 2 1 3 3 1 

88.106 11.78 18.25 3.49 1 1 

88.110 11.66 22.09 1.86 1 1 

89.059 9.13 18.99 2.95 1 1 

89.071 10.05 19.77 2.47 1 1 

89.088 12.63 20.6 2.54 1 1 

92.073 11.6 20.33 2.46 1 1 

93.040 12.3 19.08 2.32 1 1 

93.142 8.14 23.74 2.1 41.46 34.78 3.34 2 2 3 3 3 2 2 3 3 2 

93.168 10.24 18.76 2.21 2 1 3 3 3 2 

94.023 10.83 23.26 2.43 1 1 

94.059 11.74 20.72 1.4 1 1 

95.106 11.55 17.06 1.94 1 1 

95.189 8.67 22.65 2.32 55.81 46.98 4.42 1 1 

96.083 10.52 20.28 2.89 1 1 

96.101 9.95 19.57 1.51 1 1 

97.168 9.65 14.81 1.45 1 1 

97.213 11.35 16.76 1.84 1 1 

98.008 11.12 19.71 2.02 1 1 

98.061 9.36 2.01 2 3 3 3 2 2 

87.157 8.16 17.62 2.08 1 1 

88.036 8.71 15.59 1.88 1 1 

88.057 8.22 17.7 1.78 1 1 

88.073 10.79 15.66 2.72 1 1 

88.108 8.84 17.76 2.1 1 1 

93.043 10.05 19.01 2.33 1 1 

94.168 9.69 18.4 1.6 1 1 

95.071 7.2 18.18 2.23 1 1 

96.011 9.06 17.94 1.83 1 1 
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!Specimen BH BW BT GHS GHD MTT ILHF RHF LI 1/,2 L3 £4 'RI R2 ',13 ',14 

01.105a 10.85 15.78 1.85 1 1 

87.120 11.32 19.55 2.31 1 1 

88.067 11.06 25.48 2.92 1 1 

89.009 11.9 22.08 1.12 1 1 

89.033 10.17 18.9 3 1 1 

89.079 9.24 2.34 43.94 39.62 2.16 3 3 

89.100 11.71 16.46 2.8 1 1 

92.064 11.41 15.43 2.19 1 1 

92.109 11.88 20.15 2.36 1 1 

92.161 11.08 2.09 3 1 

93.053 9.8 19.82 1.7 2 2 3 3 3 1 3 3 3 1 

94.033 9.67 21.73 1.83 1 1 

94.044 10.11 18.2 2.18 1 1 

94.078 9.7 19.7 2.81 1 1 

94.116 8.73 2.44 38.42 31.51 3.46 3 3 

94.189 10.54 18.08 2.92 1 1 

94.200 7.12 16.4 1.87 1 1 

95.152 8.62 21.58 1.96 1 1 

95.163 9.31 20.61 2.14 1 1 

96.142 10.94 18.28 2.33 1 1 

96.192 12.32 20.87 1.27 1 1 

96.246 11.09 20.7 2.26 1 1 

96.261 14.71 19.41 1.81 1 1 

97.023 10.04 18.59 2.54 1 1 

97.120 9.82 22.47 1.91 1 1 

97.192 10.77 20.71 1.74 1 1 

98.059 7.98 17.69 1.22 2 2 1 3 2 1 2 3 3 1 

87.123 10.05 16.96 3.03 1 1 

88.174 9 15.92 1.57 1 1 

92.025 8.8 17.71 1.14 2 1 3 3 3 2 

92.128 9.04 18.91 2.27 1 1 

94.042 8.33 17.45 1.71 2 2 2 3 3 3 2 3 3 3 

94.130 9.29 14.97 2.01 1 1 
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Specimen BH BW BT GHS GHD MTT l,J,HF RHF if.I L2 lf.3 L4 1/1.1 1/1.2 R3 R4 

95.011 10.55 16.16 1.05 1 1 

95.052 8.49 1.3 41.99 35.7 3.15 3 3 

98.083 10.04 17.31 2.35 1 1 

87.053 11.11 17.69 2.42 1 1 

87.088 11.39 19.51 1.93 1 1 

87.099 12.11 19.56 2.53 1 1 

87.139 11.77 21.2 2.52 1 1 

88.015 10.43 21.19 2.8 1 1 

88.086 11.68 23.65 2.53 48.8 43.85 2.48 2 2 3 3 3 2 3 3 3 2 

88.105 11.56 22.66 3.1 48.5 1 1 

89.073 9.61 2.65 45.99 40.28 2.86 3 3 

89.096 12.27 20.88 2.3 1 1 

92.125 10.22 18.7 1.69 1 1 

92.142 11.7 20.23 3.08 1 2 1 2 2 1 

93.036 12.51 20.64 2.89 1 1 

93.087 10.67 20.26 2.29 1 1 

93.100 11.91 22.5 2.44 1 1 

93.113 9.42 1.77 3 2 2 3 3 2 

93.131 9.93 18.19 2.78 1 1 

93.146 10.97 1.63 3 2 3 3 3 2 

94.038 9.98 21.35 2.19 1 1 

94.169 10.35 21.93 0.89 1 1 

95.041 9.94 23.54 2.03 56.31 46.79 4.76 1 1 

95.076 8.34 17.15 1.64 36.36 30.4 2.98 2 1 2 2 2 1 

95.223 12.84 24.59 1.59 47.15 39.32 3.92 2 2 2 3 3 2 3 3 3 2 

96.075 10.07 19.97 1.74 1 1 

96.162 9.31 21.07 2.13 2 1 1 1 1 1 

96.249 9.99 21.45 2.71 1 1 

97.057 8.72 23 2.14 1 1 

97.115 10.86 20.19 1.89 2 2 2 2 3 2 2 3 3 2 

98.091 10.65 18.9 1.82 1 1 

87.054 7.51 17.89 1.95 45.17 38 3.59 2 2 2 3 3 2 2 3 3 2 

88.114 9.41 18.41 1.51 1 1 
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'Specimen BH BW BT GHS GHD MTT ILHF RHF 'll L2 L3 'l.,4 Rl 'll.2 'll.3 R4 

92.038 9.66 17.86 1.96 1 1 

95.022 8.3 18.04 2.16 1 1 

95.131 8.46 2.82 36.96 29.38 3.79 2 3 2 2 1 1 

95.183 8.68 16.01 1.86 1 1 

96.191 7.55 19.9 1.48 1 1 

97.051 9.81 17.3 1.28 1 1 

87.004 10.66 2.93 45.67 38.12 3.78 3 3 

87.065 11.34 22.98 2.94 1 1 

87.134 8.89 24.52 2.6 1 1 

88.026 12.74 22.79 2.21 1 1 

88.062 8.95 2 52.76 45.25 3.76 3 2 2 3 3 1 

89.087 10.55 21.37 2.01 1 1 

92.053 10.21 18.58 1.98 2 1 2 3 3 2 

92.103 11.73 18.86 2.89 1 1 

92.131 9.19 19.91 1.82 1 1 

92.137 10.48 2.27 46.84 40.85 3 3 2 3 3 3 2 

92.152 11.08 21.53 2.34 1 1 

92.155 10 21.44 2.13 1 1 

93.006 10.09 20.55 2.09 1 1 

93.110 10.91 25.02 2.08 54.37 47.3 3.54 2 2 3 3 3 2 3 3 3 2 

93.126 9 1.86 3 2 2 3 3 1 

93.207 10.86 19.36 2.5 1 1 

94.067 9.79 19.89 2.41 1 1 

94.104 10.06 25.42 0.8 1 1 

95.231 12.37 19.72 2.58 1 1 

96.100 11.27 20.54 2.7 1 2 1 1 1 1 

97.134 10.05 18.63 2.22 1 1 

98.076 9.73 18.97 2.2 1 1 

99.35f 9.87 19.49 1.84 44.41 38.29 3.06 1 3 

87.107 11.33 2.86 41.06 33.53 3.77 2 2 2 3 3 2 3 3 3 2 

89.007 9.23 17.28 1.79 1 1 

92.061 9.2 20.68 1.47 1 2 3 3 3 2 

92.090 8.53 2.45 37.51 30.82 3.35 2 2 3 3 3 2 3 3 3 2 
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Specimen BH BW BT GHS GHD MTT ILHF RHF l[,J L2 [3 L4 W.l W.2 R3 R4 

95.005 10.4 16.72 1.7 1 1 

95.015 8.11 15.22 1.65 1 1 

95.137 8.72 17.59 1.47 2 1 3 3 3 2 

95.177 8.8 16.59 2.26 1 1 

97.105 10.82 16.52 1.66 37.68 30.11 3.79 2 2 2 3 2 1 1 2 1 1 

97.222 9.03 14.92 1.89 1 1 

96.5f 8.45 17.8 2.04 1 1 

87.026 13.38 21.04 2.07 1 1 

87.042 10.81 24.07 2.36 1 1 

87.138 11.31 24.58 1.9 1 1 

88.161 11.41 21.15 2.2 1 2 3 3 3 1 

92.065 10.91 24.06 2.37 1 1 

92.095 11.64 18.7 2.51 1 1 

92.096 11.24 19.57 2.6 1 1 

92.162 12.17 2.64 1 2 3 3 3 2 

93.123 11.13 24.07 2.93 1 1 

93.215 8.8 20.55 2.02 1 1 

93.224 9.91 1.65 48.12 42.61 2.76 3 3 

94.058 12.11 20.58 1.78 1 1 

95.158 11.38 20.17 1.67 46.89 41.02 2.94 2 1 3 3 3 2 

95.179 10.61 19.49 2.74 1 1 

96.020 10.39 19.77 2.27 1 1 

97.082 12.14 19.03 3.12 1 1 

97.132 9.14 20.43 2.53 1 1 

97.139 8.54 20.23 2.44 1 1 

98.049 10.42 19.46 2.09 1 1 

87.052 8.54 16.85 2.09 1 2 2 3 2 2 

92.164 10.07 17.92 2.06 50.95 43.42 3.77 2 1 1 2 2 1 

92.181 10.17 18.21 2.21 1 1 

96.048 8.37 18.46 1.8 1 1 

96.099 8.75 18.64 1.72 37.39 33.52 1.94 2 2 3 3 3 1 3 3 2 2 

96.152 10.53 19.03 2.16 1 1 

87.038 9.64 18.03 2.08 2 1 2 3 3 2 
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!Specimen BH BW BT GHS GHD MTT LHF IRHF ILI L2 IL3 IL4 RI 'R.2 W3 'iR.4 

87.079 10.82 20.6 2.72 1 1 

88.020 10.72 20.15 2.21 1 1 

88.111 9.86 20.85 1.49 1 1 

88.118 12 20.87 1.29 1 2 3 3 3 2 

92.052 11.3 19.59 2.11 51.06 45.36 2.85 2 2 1 3 3 3 1 1 1 1 

92.093 12.66 2.1 40.36 34.23 3.07 2 3 3 3 3 1 

93.038 10.6 22.15 2.18 1 1 

93.144 12.78 21.56 2.59 56.91 49.94 3.49 1 2 2 3 3 2 

94.019 9.75 2.01 51.34 43.22 4.06 2 3 3 3 3 1 

94.121 9.36 21.72 2.24 1 1 

95.004 10.83 20.21 1.7 2 2 2 3 3 2 2 3 3 1 

95.017 10.98 2.65 48.74 43.32 2.71 3 2 3 3 3 2 

95.019 11.07 2.22 52.25 47 2.63 3 3 

95.043 10.07 22.75 2.42 1 1 

95.095 10.17 17.6 2.9 1 1 

95.108 10.88 2.05 1 2 2 3 3 3 

95.133 10.13 20.35 2.41 1 1 

96.024 11.23 20.43 2 1 1 

96.031 11.51 22.29 1.74 1 1 

96.154 12.12 21.21 1.5 1 1 

96.260 11.11 22.14 2.15 1 1 

97.131 11.34 22.77 2.75 1 1 

88.123 9.93 16.43 1.94 1 1 

92.057 9.94 17.36 1.72 1 1 

94.136 7.94 16.43 1.81 35.13 29 3.07 2 2 3 3 3 2 2 3 3 2 

94.191 11.22 15.24 1.91 1 1 

95.098 9.32 20.52 2.11 49.38 40.85 4.27 2 2 2 2 3 1 2 2 3 1 

97.167 9.13 15.38 1.29 1 1 

87.022 11.48 21.65 2.04 1 1 

87.125 10.94 1.84 2 2 3 3 3 1 3 3 3 1 

87.141 11.27 19.85 2.65 1 1 

87.163 10.77 24.07 2.34 1 1 

88.010 9.76 18.6 2.31 1 2 3 3 3 1 
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!Specimen BH BW BT GHS GHD MTT ILHF IR.HF LI IL2 L3 IL4 RI 1/l.2 R3 R4 

88.071 11.02 1.78 37.33 31.53 2.9 3 3 

88.142 12.08 19.27 1.91 1 1 

89.023 9.21 28.1 2.4 1 1 

89.070 13.51 1.46 45.69 39.28 3.21 3 3 

92.059 9.66 20.51 2.07 2 1 3 3 3 1 

92.172 12.53 18.75 1.66 1 1 

93.046 10.73 2.9 43.63 38.09 2.77 2 3 3 3 3 2 

93.151 8.88 21.13 2.45 1 1 

94.160 10.15 21.29 1.9 1 2 1 2 1 1 

94.207 12.42 20.63 1.86 1 2 1 2 3 1 

95.100 10.39 16.09 1.72 1 1 

95.112 12.72 22.74 2.65 2 1 2 3 2 2 

95.143 8.74 18.53 2.08 1 1 

96.028 10.78 22.07 1.58 48.47 43.26 2.61 2 2 2 3 3 1 2 3 3 2 

96.175 10.14 1.85 39.51 33.54 2.99 3 3 

96.212 8.82 1.92 3 3 

96.254 10.27 2.38 47.63 40.66 3.49 3 3 

97.036 10.85 22.3 2.64 2 2 2 3 3 3 3 3 3 2 

97.145 11.68 21.09 1.77 1 1 

98.027 12.28 21.2 1.79 46.83 38.76 4.04 2 2 2 3 3 2 2 2 2 2 

98.060 10.31 3.05 44.5 33.96 5.27 3 2 3 3 3 2 

98.066 11.44 18.48 2.72 1 1 

87.080 8.71 17.12 2.32 1 1 

87.152 8.64 17.64 1.67 1 2 1 2 1 1 

89.038 9.2 15.92 1.49 1 1 

89.043 9.09 16.14 1.62 1 1 

89.085 9.45 18.01 2.25 2 2 3 3 3 2 3 3 3 2 

93.167 8.43 17.84 2.07 1 2 3 3 3 2 

93.220 6.75 17.16 1.23 1 1 

94.166 7.9 16.67 1.93 1 1 

96.234 7.59 1.65 38.47 31.74 3.37 3 3 

87.006 11.9 21.17 2.44 1 1 

87.144 9.65 22.16 2.41 2 1 3 3 3 2 
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Specimen BH BW BT GHS GHD MTT IJ,HF RHF LI IL2 IL3 L4 IR.l R2 'll.3 'll.4 

88.005 11.4 2.08 48.9 41.6 3.65 3 3 

88.097 10.44 22.98 3.15 1 2 3 3 3 2 

88.167 11.06 20.35 2.26 1 1 

92.018 12.01 17.17 2.11 1 2 2 3 3 1 

92.091 7.96 18.45 2 37.91 31.29 3.31 2 2 3 3 3 1 1 3 2 1 

92.124 10.6 21.14 1.54 1 1 

93.004 10.56 20.27 2.6 2 1 1 1 1 1 

93.071 9.08 18.96 2.01 1 1 

93.111 8.3 17.44 2.3 1 1 

93.148 11.98 23.68 2 2 1 1 3 3 1 

94.040 12.86 1.6 45.01 38.54 3.24 3 2 3 3 3 1 

94.081 10.68 19.03 2.68 2 1 1 3 3 1 

94.145 11.01 18.81 2.63 1 1 

94.161 11.31 16.82 1.48 1 1 

94.172 9.41 20.64 1.7 1 1 

95.081 9.03 15.2 2.4 1 1 

95.084 9.54 22.38 2.24 1 1 

96.041 9.73 18.85 2.26 1 1 

96.051 10.42 18.2 2.42 1 1 

96.064 14.47 23.91 1.31 1 1 

96.145 11.39 18.01 2.15 1 2 1 3 3 1 

96.239 11.07 19.95 2.53 2 1 1 2 1 1 

97.010 10.49 20.3 1.92 1 1 

97.060 11.9 2.06 43.45 34.45 4.5 3 2 3 3 3 2 

98.006 10.53 20.22 2.05 1 1 

98.065 7.98 24.88 1.53 2 1 2 3 3 1 

14.93 11.49 20.72 2.79 1 1 

87.068 8.66 18.21 2.29 1 1 

92.084 9.65 16.74 2.61 2 1 3 2 2 2 

93.065 9.05 15.51 1.77 1 1 

93.211 11.23 18.48 2.29 1 1 

95.087 10.26 17.64 2.8 1 2 3 3 3 2 

95.102 9.34 18.88 1.73 40.25 33.73 3.26 2 2 2 3 3 2 2 3 3 3 
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!Specimen BH BW BT GHS GHD MTT ILHF IRHF ILi IL2 IL3 IL4 IR1 IR2 IR3 IR4 

96.138 10.37 1.54 43.97 34.91 4.53 3 3 

96.238 8.51 20.48 1.77 1 1 

96.245 9.19 15.34 2.07 1 2 2 3 1 1 

97.150 8.58 19 1.88 1 1 

87.062 11.12 26.16 2.52 1 1 

87.145 9.91 23 2.32 1 1 

88.007 9.52 19.83 1.6 1 1 

89.039 12.1 22.81 4.21 1 1 

89.053 11.43 20.51 2.57 1 1 

89.055 11.68 20.82 2.42 1 1 

93.028 10.71 1.62 43.25 38.78 2.24 2 2 2 2 3 3 2 3 3 1 

93.121 11.62 21.22 3.03 1 1 

94.061 9.61 18.09 2.23 1 1 

94.117 9.99 20.08 2.54 48.63 42.96 2.84 2 2 3 3 3 2 3 3 3 2 

94.183 10.83 25.07 2.39 2 2 2 3 3 1 3 3 3 1 

95.070 10.98 1.82 41.96 34.76 3.6 3 2 3 3 3 2 

96.027 10.22 20.27 2.11 1 1 

96.050 12 21.45 2.64 1 1 

96.213 11.32 19.39 2.34 1 1 

97.013 12.9 19.21 2.12 1 1 

98.082 10.09 19.81 2.39 2 1 2 3 2 

87.115 8.61 1.45 45.12 40 2.56 3 3 

92.022 7.3 16.59 2.15 1 1 

94.108 11.1 18.23 2.67 1 1 

95.144 9.81 20.49 2.05 1 1 

95.156 8.64 19.21 1.78 2 2 2 3 3 2 2 2 3 3 

96.018 9.02 2.02 55.16 48.32 3.42 2 3 2 3 3 3 

96.233 9.4 17.34 1.59 1 1 

98.041 10.38 16.27 2.67 1 1 

87.116 10.68 20.38 1.27 1 1 

87.156 12.65 21.37 2.37 1 1 

88.041 8.8 17.81 1.91 1 1 

88.149 10.93 19.54 2.24 1 1 
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!Specimen BH BW BT GHS GHD MTT LHF IRHF 'l,J L2 L3 ITA RJ R2 1/1.3 R4 

88.162 9.3 2.42 3 1 

89.005 11.73 19.73 2.88 1 1 

89.066 9.2 25.41 1.68 2 2 3 3 3 2 3 3 3 2 

92.099 13.02 21.1 3.2 38.85 30.62 4.12 2 1 2 2 3 1 

92.121 12.8 2.4 51.18 43.82 3.68 3 2 3 3 3 1 

92.132 12.6 2.85 38.33 29.69 4.32 3 3 

92.176 11.05 1.71 42.46 36.79 2.84 3 2 3 3 3 1 

93.018 8.75 22.62 2.13 1 1 

93.045 9.66 22.68 2.55 2 2 3 3 3 2 3 3 3 2 

93.157 8.33 20.36 1.38 2 1 1 1 2 1 

94.010 11.16 18.33 2.11 1 1 

95.121 10.92 20.92 1.43 1 1 

97.052 8.71 22.15 2.07 1 1 

97.229 9.58 19.5 2.27 2 1 3 3 3 1 

98.039 10.98 2.36 3 3 

95.12f 9.8 17.81 3.72 1 1 

98.3f 9.68 17.01 2.33 44.16 34.55 4.81 1 2 1 1 1 1 

92.101 7.63 2.17 3 2 3 3 3 1 

93.002 10.32 15.62 1.84 1 1 

93.019 11 2.39 52.51 42.61 4.95 2 2 2 2 3 3 2 2 2 2 

94.089 10.93 18.04 2.89 39.08 31.41 3.84 1 2 2 3 3 1 

94.097 8.46 17.18 1.52 2 1 3 3 3 2 

95.136 11.57 14.45 2.33 1 1 

97.004 9.3 19.84 2.65 2 1 2 3 3 2 

97.009 10.32 19.81 2.19 39.28 31.79 3.75 2 2 2 3 3 2 3 1 1 2 

97.111 9.01 1.67 42.52 34.71 3.91 3 2 3 3 3 2 

98.026 10.08 20.14 2.21 1 1 

87.034 10.15 20.67 2.41 1 1 

87.081 11.27 22.92 2.51 1 2 1 3 1 3 

88.013 10.53 2.44 49.11 43.09 3.01 3 3 

88.054 10 19.49 1.72 1 1 

88.112 10.31 20.22 2.25 1 1 

88.144 11.75 20.2 2.48 1 1 
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Specimen BH BW BT GHS GHD MTT ILHF RHF If,] L2 lf,,3 L4 1/1.1 R2 R3 1/1.4 

89.040 11.09 2.76 41.02 36.43 2.3 3 3 

93.163 10.13 2.16 2 3 3 3 3 2 

93.193 10.26 19.7 2.37 1 1 

93.199 13.49 23.27 1.92 1 1 

93.209 10.41 21.35 1.97 1 1 

94.126 12.13 27.83 2.37 1 1 

95.029 7.74 23.47 1.92 52.3 43.73 4.29 2 2 2 3 3 1 2 2 2 2 

95.063 11.64 18.35 2.14 1 1 

96.109 12.12 23.06 2.56 1 1 

96.264 11.95 2.3 43.98 36.42 3.78 3 3 

97.095 12.1 19.95 2.37 1 1 

97.160 8.6 16.51 2.21 1 2 2 3 3 2 

98.015 10.6 19.45 2.13 1 1 

98.052 11.98 19.43 1.96 2 1 2 2 3 2 

98.053 12.71 21.79 2.7 1 2 1 2 1 1 

89.037 7.26 16.94 1.52 41.66 35.26 3.2 2 2 1 3 3 1 1 3 3 1 

91.040 8.93 20.72 1.95 1 1 

92.026 8.31 19.29 1.9 1 2 2 3 1 1 

92.133 10.65 2.44 40.77 35.63 2.57 3 3 

93.088 9.74 15.46 2.15 1 1 

93.139 8.7 19.76 1.93 2 1 1 2 1 1 

93.183 7.25 16.93 2.04 1 1 

93.187 8.1 15.55 2.35 1 1 

95.050 7.28 14.33 2.63 1 1 

95.077 10.52 24.65 1.62 1 1 

95.138 7.01 1.54 2 3 3 3 2 2 

96.080 9.07 17.41 1.74 1 1 

96.086 10.81 21.09 2.54 2 1 1 1 2 1 

96.163 9.01 17.53 1.74 1 1 

96.174 10.41 18.14 2.31 45.87 37.48 4.2 2 2 3 3 3 2 3 3 3 2 

87.017 10.03 23.77 2.83 2 1 3 3 3 1 

87.090 9.31 22.55 2.2 1 1 

87.150 12.21 20.92 2.43 1 1 
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Specimen BH BW BT GHS GHD MTT LHF IJlHF If.I L2 'l-3 L4 RI l/l2 R3 R4 

92.045 11.4 20.16 1.98 1 1 

92.046 10.47 20.9 2.06 1 1 

92.069 10.21 24.24 2.11 50.35 41.47 4.44 2 2 1 2 1 1 1 1 1 1 

92.116 8.43 18.19 1.89 1 2 1 2 1 1 

93.026 10.51 22.94 0.72 1 2 1 1 1 1 

93.095 13.94 20.73 2.64 1 2 3 3 3 2 

93.194 10 21.28 2.12 1 1 

93.228 9.37 22.65 1.3 1 1 

94.022 11.71 1.7 42.01 35.99 3.01 2 2 2 3 3 3 2 3 3 3 

94.050 12.1 23.5 2.85 1 1 

95.035 8.15 19.12 2.94 1 1 

95.053 11.59 19.12 2.33 1 2 2 2 3 1 

95.140 9.57 2.55 43.84 37.66 3.09 3 3 

96.002 9.13 20.18 1.31 1 1 

96.007 10.14 19.38 2.1 2 1 1 2 3 1 

96.146 12.29 22.14 1.61 1 1 

96.195 12.63 21.65 2.35 1 1 

96.202 9.49 18.39 2.08 1 1 

96.225 12.02 1.88 54.1 48.01 3.05 3 3 

97.201 12.18 20.14 2.44 1 1 

98.018 10.17 22.05 2.82 1 1 

98.035 12.18 24.03 2.59 2 1 3 2 2 2 

98.042 12.6 20.82 2.61 1 1 

3.87 8.9 22.87 1.54 2 2 2 3 3 2 2 3 3 2 

2.89 9.29 23.43 3.42 1 1 

94.19f 9.84 19.79 1.92 1 1 

87.067 8.04 2.05 40.95 35.12 2.92 3 3 

88.044 11.4 18.55 2.01 1 1 

88.095 10.23 2.15 43.51 37.05 3.23 3 3 

92.081 10.06 16.41 2.18 1 1 

92.105 10.82 2.43 41.68 35.16 3.26 3 3 

93.050 8.16 1.78 43.35 35.68 3.84 3 2 2 2 3 3 

94.008 7.95 19.01 1.5 1 2 3 3 3 2 
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!Specimen BH BW BT GHS GHD MTT ILHF IRHF ILi 1L2 IL3 IL4 WI IR2 IR3 IR4 

94.013 10.96 17.63 2.28 1 1 

95.042 8.96 18.93 2.37 1 1 

95.051 7.29 15.15 1.85 1 1 

96.179 10.4 16.7 1.96 1 1 

97.164 10.23 22.76 1.5 42.92 35.83 3.55 2 2 1 1 1 1 1 3 3 1 

87.114 10.57 25.04 2.56 1 1 

87.128 11.42 19.02 2.79 44.45 34.51 4.97 2 2 3 3 3 2 1 2 2 1 

88.136 10.52 17.76 1.68 1 1 

92.143 12.21 2.49 49.25 42.06 3.6 3 3 

92.160 10.94 21.77 2.03 1 1 

92.166 10.75 22.61 2.53 1 1 

93.039 11.45 21.06 2.4 1 1 

93.073 9.81 20.59 1.92 1 1 

94.002 9.14 20.37 1.97 1 1 

94.052 11.42 21.49 2.15 1 1 

94.070 9.89 20.92 1.97 1 1 

94.180 9.57 20.25 2.1 1 2 3 3 2 1 

95.073 10.85 22.8 2.16 49.13 41.45 3.84 2 2 3 3 2 3 3 3 2 3 

95.201 10.08 17.71 2.45 1 1 

95.208 10.49 25.54 2.94 65.83 55.98 4.93 2 2 3 2 3 3 3 3 3 2 

95.232 12.81 25.44 2.44 1 1 

96.025 11.26 22.68 1.97 1 1 

96.062 11.04 20.12 1.89 1 1 

96.072 8.12 14.32 1.24 1 1 

96.108 10.99 2.19 3 2 2 2 3 1 

96.204 10.02 20.97 1.67 2 2 1 2 2 1 3 2 3 3 

96.218 10.33 18.07 2.28 1 1 

96.258 9.95 20.95 1.7 1 1 

97.053 12.02 21.23 2.07 1 1 

97.107 11.49 18.43 2.25 1 1 

97.138 11.27 2.09 3 2 3 3 3 2 

98.047 9.99 20.9 2.01 1 1 

98.071 11.01 16.29 2.66 1 1 
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!Specimen BH BW BT GHS GHD MTT LHF RHF 'LI ~2 L3 'l4 RI R2 "13 "14 

95.3f 11.03 2.31 41.46 35.67 2.9 3 3 

88.032 7.88 18.89 1.67 1 1 

88.165 8.91 19.22 2.05 2 1 1 2 2 1 

92.042 9.19 17.79 2.26 31.57 25.79 2.89 2 2 3 3 3 2 2 3 3 2 

93.027 9.09 18.07 1.78 1 1 

93.052 9.35 16.07 2.01 1 1 

94.112 9.54 19.13 1.39 1 1 

94.155 8.7 19.5 1.33 1 1 

96.065 9.49 20.09 1.54 1 1 

97.021 10.29 22.7 1.39 1 2 1 3 2 1 

97.181 10.96 18.94 2.34 1 1 

27.91 9.1 16.44 2.08 1 1 

88.033 14.18 19.72 2.41 2 1 2 3 3 2 

88.078 11.14 23.36 2.31 47.49 42.36 2.57 2 2 3 3 3 2 3 3 3 2 

88.100 11.39 21.24 2.06 1 1 

88.127 12.46 20.68 2.19 1 1 

93.015 11.23 23.15 2.67 1 1 

93.022 10.92 20.6 2.51 1 1 

93.102 10.57 22.55 1.87 2 1 2 3 3 3 

93.133 10.4 2.85 49.44 44.87 2.29 3 3 

94.054 11.62 2.95 40.58 33.82 3.38 2 3 2 2 1 1 

94.205 11.81 20.05 1.75 45.21 36.97 4.12 2 2 2 3 3 1 3 3 3 2 

95.036 10.62 21.81 2.13 2 1 2 3 3 1 

95.129 10.74 26.07 2.31 1 1 

95.160 10.61 1.92 36.23 27.96 4.14 3 2 3 3 3 2 

95.165 10.55 16.25 3.24 1 2 3 2 3 2 

95.169 9.62 1.46 49.35 42.08 3.64 2 3 2 3 2 3 

96.196 12.17 20.05 2.36 1 1 

96.205 8.99 21.78 2.74 1 1 

96.209 10.68 22.24 2.6 1 1 

96.229 11.08 19.63 1.16 1 1 

96.262 11.53 22.22 2.64 1 1 

97.161 9.61 21.2 1.98 1 1 
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!Specimen BH BW BT GHS GHD MTT ILHF IRHF IL1 IL2 IL3 IL4 w1 w2 W3 W4 

97.186 9.94 21.75 1.82 34.19 27.86 3.17 2 2 1 1 1 1 2 3 3 2 

98.007 10.56 18.18 3.23 1 1 

98.073 10.09 2.64 2 3 3 3 2 2 

5.99 9.32 22.5 2.43 44.59 37.31 3.64 2 2 2 2 3 2 1 2 3 1 

88.035 10.7 22.87 2.06 1 2 3 3 3 2 

92.030 10.92 18.31 2.64 1 1 

92.051 10.28 17.6 2.71 1 1 

93.217 8.27 17.69 2.12 1 1 

94.066 10.43 20.53 2.81 1 1 

95.181 7.55 1.25 45.02 38.84 3.09 3 3 

95.188 6.86 19.96 2.16 1 2 1 2 3 1 

98.019 7.09 15.94 1.36 1 1 

88.140 8.93 21.04 2.21 1 1 

89.095 11.38 20.03 2.58 1 1 

92.145 11.16 2.8 1 3 

93.084 11.87 19.61 1.87 1 1 

93.141 9.57 20.82 2.41 2 1 2 3 2 2 

93.165 9.53 2.13 51.94 44.04 3.95 3 3 

93.188 11.54 20.74 1.94 1 1 

94.196 10.11 18.73 2.53 41.29 32.64 4.33 2 2 3 3 1 2 2 3 1 1 

95.047 13.29 21.73 3.01 1 1 

95.054 8.86 21.06 2.51 1 1 

95.060 10.59 1.98 49.69 43.39 3.15 3 2 3 3 3 2 

95.190 10.27 21.4 2.62 1 2 1 2 1 1 

95.200 11.28 22.02 2.62 2 1 2 2 3 1 

97.017 11.11 20.32 2.35 1 1 

97.073 12.59 2.48 3 2 2 3 3 2 

97.119 8.94 1.53 3 3 

98.093 10.51 1.5 53.56 44.65 4.46 3 3 

1.87 9.36 23.74 2.28 45 2 2 3 3 3 2 3 3 3 2 

87.132 9.93 19.21 1.85 1 1 

88.040 9.89 2.11 2 1 3 3 3 2 

88.045 11.6 18.28 1.88 1 2 2 3 3 2 
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',Specimen BH BW BT GHS GHD MTT LHF RHF i/,J IL2 L3 I/A Rl 1/l.2 1/l.3 R4 

88.048 10.55 2.08 42.34 35.46 3.44 3 3 

89.032 8.84 16.16 1.97 1 1 

93.096 9.47 19.71 1.78 52.2 45.96 3.12 2 2 2 3 3 2 1 2 1 1 

93.166 9.56 16.94 2.6 1 1 

96.019 9.36 18.3 1.54 1 1 

96.023 9.7 15.08 2.11 1 1 

96.049 9.27 16.94 1.37 1 1 

97.157 9 17.16 1.97 1 1 

97.172 8.76 17.02 2.3 2 3 3 3 3 2 

97.173 10.8 20.26 1.77 1 1 

98.l0f 8.48 16.37 2.23 42.3 33.24 4.53 1 1 

87.136 11.02 20.99 3.03 2 1 3 3 3 2 

88.024 11.11 20.42 2.87 1 2 1 3 3 1 

88.137 11.67 21.52 2.72 1 1 

91.102 8.55 2.33 1 3 

93.145 12.48 18.49 3.73 1 1 

93.208 11.1 2.03 48.97 39.13 4.92 2 3 3 3 2 2 

94.026 7.96 1.86 46.96 40.73 3.12 3 3 

94.096 9.36 2.6 3 3 

94.102 9.46 22.44 2.08 2 1 3 3 3 1 

96.169 9.87 20.35 1.12 1 2 3 3 3 2 

96.230 11.45 18.95 2.3 1 1 

96.263 11.02 1.39 47.57 42.21 2.68 3 3 

97.005 8.93 20.41 2.14 41.32 33.81 3.76 2 2 3 3 3 2 3 3 3 2 

97.059 12.15 24.08 1.61 2 2 3 3 3 2 1 1 1 1 

97.067 11.08 23.33 1.99 2 2 2 3 3 2 2 3 3 1 

97.098 10.01 19.89 1.9 1 1 

97.114 9.03 20.97 3.5 1 1 

97.144 12.32 20.26 2.14 1 1 

97.179 10.27 21.22 2.05 1 1 

97.224 10.16 2.33 3 1 

98.013 12.78 18.23 2.3 1 1 

98.078 12.07 3.2 46.5 39.53 3.49 2 3 2 2 3 2 
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!Specimen BH BW BT GHS GHD MTT ILHF IRHF ILi IL2 IL3 IL4 WI 'w.2 IR3 'w.4 

98.089 12.28 20.53 2.28 38.87 31.51 3.68 2 2 3 3 3 1 3 3 3 1 

87.119 10.92 20.03 2.07 1 1 

88.061 7.88 17.27 1.95 1 1 

88.076 9.03 15.77 2.25 1 1 

92.085 10.61 20.51 2.14 1 1 

92.111 8.79 17.26 1.83 1 1 

97.025 9.78 17.27 2.33 1 1 

98.020 9.26 19.42 1.78 37.23 29.93 3.65 2 2 3 3 3 1 3 3 3 2 

98.055 8.07 2.03 2 3 2 2 3 2 

87.077 10.08 28.65 2.65 53.28 46.98 3.15 2 3 3 3 3 2 

87.147 9.62 2.3 3 1 

88.116 9.6 1.83 47.92 39.9 4.01 3 3 

89.050 11.4 18.23 3.25 1 1 

92.117 8.2 1.85 3 3 

93.024 12.35 19.86 1.61 1 2 2 3 3 2 

93.034 11.09 19.48 3.12 1 1 

93.106 13.9 25.67 2.85 1 1 

93.119 9.86 23.04 1.47 2 1 2 3 3 3 

93.190 10.86 21.29 2.6 1 1 

94.005 12.3 21.81 1.99 1 1 

94.068 9.45 17.73 1.89 1 1 

94.132 10.19 19 2.08 1 1 

94.209 9.61 18.21 2.31 1 2 3 3 3 2 

95.008 11.15 2.08 1 3 

95.067 10.22 20.36 2.18 1 1 

95.072 10.84 24.15 3.88 55.66 48.4 3.63 2 1 2 3 2 2 

95.099 9.47 21.66 2.59 2 1 3 3 2 1 

95.207 10.65 20.59 1.88 1 1 

96.039 8.54 17.63 2.19 1 1 

96.161 10.19 23.69 2.04 1 1 

96.173 10.27 23.7 1.86 1 1 

97.012 13.51 22.49 2.09 2 2 3 3 3 1 2 2 3 2 

97.019 11.28 25.78 2.58 2 1 2 3 3 3 
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!Specimen BH BW BT GHS GHD MTT LHF RHF If.,] lf_.2 L3 lf_.4 RI R2 IR3 R4 

97.084 11.24 24.13 2.61 1 1 

97.092 13.97 22.54 1.92 1 1 

97.152 9.2 18.76 2.32 1 1 

97.216 10.89 23.43 2.22 51.49 44.22 3.64 2 2 3 3 3 2 2 3 3 2 

97.228 13.09 21.88 1.97 1 1 

87.103 9.69 19.86 1.7 44.39 37.24 3.58 2 2 2 3 3 2 2 3 3 2 

88.065 7.2 18.26 2.34 42.45 35.24 3.61 2 2 3 3 3 2 3 3 3 2 

89.058 8.48 18.58 1.97 1 1 

92.153 8.34 1.9 42.91 34.26 4.33 3 3 

93.063 8.72 2.04 47.59 40.19 3.7 3 2 2 2 3 3 

93.134 7.95 18.05 1.95 1 1 

94.046 6.24 14.39 1.28 1 1 

95.118 9.04 1.6 44.72 36 4.36 3 2 3 3 3 2 

97.033 10.07 17.52 1.55 1 1 

97.123 8.49 2.01 47.18 39.33 3.93 3 3 

88.052 12.54 20.3 2.51 1 2 3 3 3 2 

88.103 10.08 23.52 1.99 2 1 3 3 3 2 

88.138 10.82 3.27 50.7 40.53 5.09 3 2 2 3 3 2 

89.093 13.66 17.43 2.86 2 1 3 3 3 1 

92.110 11.22 18.89 2.95 43.48 34.39 4.55 2 2 1 3 3 2 1 1 1 1 

93.164 8.5 21.81 1.43 2 2 1 3 3 1 1 3 3 1 

93.178 9.03 2.04 3 3 

94.131 10.92 19.85 2.09 1 1 

94.148 9.16 22.25 1.57 1 2 1 1 2 1 

94.154 13.72 22.65 2.54 1 1 

94.203 10.3 21.36 2.74 1 1 

95.028 10.03 19.09 1.45 1 1 

95.105 9.87 19.48 1.37 1 1 

95.224 11.28 22.15 2.15 1 1 

96.057 11.35 22.02 1.92 2 1 2 2 2 1 

96.126 11.25 20.95 2.5 2 1 3 2 1 1 

96.166 11.54 19.89 2.94 1 1 

96.172 9.78 21.59 2.03 1 1 
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Specimen BH BW BT GHS GHD MTT LHF RHF LI Ill 'l3 L4 IRJ IR2 R3 R4 

96.185 10.94 19.87 1.62 1 1 

97.075 14.02 20.26 1.55 2 2 1 2 2 3 1 3 3 1 

97.109 11.25 22.54 3.11 2 1 3 3 3 1 

97.148 11.63 2.58 71.22 63.63 3.8 3 2 3 3 1 1 

97.165 10.87 1.59 3 3 

98.016 10.1 20.08 2.55 2 1 2 3 3 2 

98.021 9.21 20.77 2.31 1 1 

98.037 11.48 21.27 1.97 49.67 42.99 3.34 2 2 2 3 3 2 3 3 3 2 

00.41f 12.2 19.28 1.61 1 1 

87.118 10.81 17.7 1.3 1 2 1 3 3 1 

93.083 8.54 22.38 2.52 2 2 2 3 3 2 2 3 3 3 

94.134 8.93 19.42 1.8 1 1 

96.032 6.33 17.31 1.03 1 1 

96.060 8.71 18.43 1.85 1 1 

97.211 7.97 19.33 1.86 1 1 

98.024 8.49 2.02 43.18 35.38 3.9 3 3 

87.008 11.95 2.3 50.67 44.54 3.07 3 3 

87.106 8.63 20.11 1.41 1 2 1 3 3 1 

87.121 12.37 2.82 3 1 

88.124 10.1 20.73 2.55 1 1 

92.134 11.53 2.26 53.45 43.86 4.8 2 2 3 3 3 1 3 3 3 1 

93.001 11.34 20.24 2.36 1 1 

93.042 10.61 1.98 3 1 

93.103 11.39 1.73 1 1 

93.107 11.11 17.91 3.07 2 1 3 3 2 3 

93.115 10.89 16.3 2.39 1 1 

93.184 12.18 23.62 2.58 1 1 

94.003 10.85 1.96 48.72 43.07 2.83 3 3 

94.139 10.88 2.27 3 3 

94.156 10.84 22.4 2.17 1 1 

94.206 9.17 19.8 2.4 1 1 

95.064 9.99 20.18 1.93 1 1 

95.107 10.14 19.74 1.52 1 2 3 3 3 1 
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!Specimen BH BW BT GHS GHD MTT LHF IRHF 1/,J L2 [3 1/.,4 RI 1/l.2 1/l.3 R4 

95.170 10.5 22.5 3.01 1 1 

95.174 9.62 20.98 1.96 1 1 

95.178 9.08 20.23 2.18 48.43 38.97 4.73 2 1 1 1 1 1 

96.033 12.23 2.23 55.42 47.78 3.82 1 3 

96.094 10.33 26.17 1.58 2 1 2 2 3 1 

96.143 10.08 19.58 2.08 1 1 

96.167 11.02 20.89 1.72 1 1 

96.227 10.69 2 44.07 37.18 3.45 3 2 3 3 3 2 

97.026 10.22 2.09 3 3 

97.048 9.98 24.95 1.84 49.23 42.11 3.56 1 2 2 3 3 1 

97.081 8.66 23.89 3.38 61.43 53.73 3.85 2 2 2 3 3 2 2 3 3 2 

97.149 10.29 19.6 1.91 2 1 3 3 3 1 

97.196 10.42 2.21 51.74 42.09 4.83 3 2 2 3 3 2 

9.89 11.54 2.16 16.48 9.8 3.34 3 3 

3.9 11.75 19.31 2.42 1 1 

88.129 9.44 1.56 40.94 34.73 3.11 3 2 3 3 3 2 

94.109 9.51 13.72 2.01 1 1 

95.166 9.16 16.07 1.97 1 1 

95.197 7.71 17.52 1.3 1 2 2 2 1 1 

96.036 9.92 18.9 1.35 2 1 2 2 3 3 

96.219 8.4 16.96 1.37 1 1 

97.028 10.27 17.1 1.97 1 2 1 3 2 1 

96.13f 8.52 18.54 2.11 1 1 

87.111 10.02 21.92 0.97 1 3 

88.171 10.6 20.77 2.7 1 2 2 3 3 1 

89.014 11.49 2.21 3 3 

92.023 9.18 2.11 45.43 36.4 4.52 2 3 3 3 3 2 

92.032 11.16 2.03 41.57 32.95 4.31 2 3 3 3 3 2 

92.033 10.45 21.1 2.58 1 1 

92.107 14.1 3.4 3 2 3 3 2 1 

93.025 9.95 2.55 49.8 3 2 3 3 3 2 

93.120 12.59 19.9 3.05 2 1 1 1 1 1 

93.179 9.64 22.74 1.44 2 2 3 3 3 2 3 3 3 2 
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!Specimen BH BW BT GHS GHD MTT LHF IRHF L1 t2 L3 t4 Rl R2 ~3 R4 

93.218 8.99 22.94 1.54 2 2 3 3 3 2 3 3 3 2 

94.048 10.68 1.93 42.3 33.17 4.57 3 3 

94.051 12.84 23.96 2.62 1 1 

94.075 9.36 23.47 2.1 1 1 

94.106 10.8 22.16 1.71 2 1 2 3 3 2 

94.12 9.29 20.32 2.15 1 2 1 2 1 1 

94.171 10.65 22.96 2.4 1 1 

95.023 11.33 21.14 2.33 2 1 2 3 3 3 

96.045 10.83 17.87 2.85 1 1 

96.047 11.23 19.85 1.8 1 1 

96.068 9.48 21.24 2.17 2 2 3 3 3 2 3 2 3 2 

96.122 10.01 21.81 2.06 1 1 

96.157 12.08 20.96 2.13 2 2 2 2 2 1 3 3 2 3 

96.232 14.26 23.94 2.63 1 2 3 3 3 2 

96.235 9.98 26.42 1.49 1 1 

96.237 11.54 20.32 2.01 1 1 

97.008 11.11 20.78 2.26 1 1 

97.031 11.34 18.29 2.39 1 1 

97.102 11.22 23.16 2.74 1 2 2 2 2 2 

97.189 16.16 24.04 2.96 51.16 42.96 4.1 2 2 2 3 3 1 3 3 3 1 

97.191 12.95 21.51 2.34 48.69 40 4.35 3 2 3 3 3 1 

97.233 10.71 24.41 2.09 2 2 2 2 2 1 2 2 2 1 

87.004p 10.26 22.52 1.94 47.07 39.58 3.75 2 2 3 3 3 2 3 3 3 2 

87.033 7.68 2.15 1 3 

87.135 9.84 1.73 42.61 36.26 3.18 3 3 

88.093 9.95 17.5 1.56 1 1 

88.157 9.29 17.25 2.91 1 1 

88.173 11.52 16.41 2.04 1 1 

94.127 9.5 18.38 2.05 1 1 

97.022 9.42 2.12 40.85 33.34 3.76 2 3 3 3 2 2 

97.058 8.5 16.8 1.47 1 1 

97.126 9.1 18.1 1.96 1 1 

28.9 9.38 2.4 3 1 
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!Specimen BH BW BT GHS GHD MTT LHF IRHF If.,] L2 lf.,3 lf.,4 RI 1/l.2 1/l.3 R4 

86.073 9.37 20.45 2.8 1 1 

87.009 13.91 22.69 3 1 1 

87.024 12.25 20.43 2.55 1 2 1 3 3 1 

87.039 9.91 1.87 43.3 36.72 3.29 3 3 

87.045a 12.81 2.73 50.5 43.11 3.7 3 3 

87.091 11.23 3.04 52.9 47.8 2.55 3 3 

87.095 8.66 1.81 55.07 44.28 5.4 3 3 

87.155 10.69 2.29 3 1 

88.168 10.58 19.67 2.43 1 1 

88.170 12.13 22.21 2.82 2 1 3 3 3 1 

92.080 10.86 2.4 41.92 37.12 2.4 3 3 

92.180 9.41 2.04 42.84 3 3 

93.005 11.76 20.02 2.38 1 1 

93.108 10.22 2.17 50.38 39.81 5.29 3 3 

94.118 9.11 2.06 53.7 47.3 3.2 3 2 2 2 3 1 

95.065 11.5 19.9 3.34 1 1 

95.134 11.9 23.19 1.88 2 1 3 3 3 1 

97.003 13.35 21.47 1.77 1 1 

97.038 9.78 17.91 1.67 1 1 

97.085 10.2 21.37 2.76 1 2 2 3 3 2 

97.141 10.5 21.45 2.7 2 2 1 3 3 1 1 1 1 1 

97.147 10.57 1.84 52.89 44.33 4.28 2 3 3 3 3 1 

97.153 11.26 23.95 2.24 2 1 3 3 3 2 

97.217 11.6 2.62 44.87 38.54 3.17 2 3 2 2 3 3 

98.063 12.29 21.52 2.17 1 1 

98.075 9.64 2.24 57.18 49.34 3.92 3 2 3 2 2 3 

1.94 11.88 18.18 2.85 1 1 

88.004 9.09 19.42 1.65 1 1 

88.038 10.07 18.49 2.05 1 1 

94.016 9.48 17.05 1.7 48.36 42.18 3.09 2 2 2 3 3 2 2 3 3 3 

94.039 6.47 17.27 1.63 41.28 34.69 3.3 1 2 2 3 3 1 

94.091 8.32 15.91 1.55 1 1 

94.128 8.77 16.21 1.95 1 1 
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!Specimen BH BW BT GHS GHD MTT LHF IJUIF Ll i2 L3 i4 IR.J W2 R3 W4 

94.152 8.22 18.51 2.76 1 1 

96.042 9.13 18.57 1.8 2 1 2 3 1 1 

96.104 8.72 18.59 1.92 2 1 3 3 3 2 

96.217 7.88 17.39 1.58 1 1 

96.241 10.33 16.97 2.14 1 1 

97.062 8.75 15.96 1.7 1 1 

97.195 9.64 17.13 1.52 1 1 

88.069 10.09 18.74 1.73 1 1 

92.144 19.2 2 1 2 2 3 3 

92.158 8.77 22.44 1.58 1 1 

92.163 11.11 2.02 49.21 40.39 4.41 3 3 

92.168 13.5 2 1 3 3 3 2 

93.010 10.24 21.96 2.12 1 1 

93.064 11.88 20.82 2.99 1 1 

93.132 8.74 19.97 2.5 1 2 2 3 3 2 

93.201 12.41 2.44 3 1 

93.213 12.33 2.33 3 2 3 3 3 2 

93.216 9.4 19.07 2.34 2 1 2 2 3 2 

94.021 13.07 18.51 2.84 1 1 

94.092 11.51 2.02 46.65 38.02 4.32 3 2 3 3 3 2 

94.146 9.4 19.9 2.1 40.69 34.84 2.93 2 2 1 1 2 1 2 3 3 2 

95.075 8.92 20.87 2.42 1 2 1 2 3 1 

96.005 10.37 19.08 2.25 1 1 

96.016 11.04 2.89 2 2 3 3 3 2 3 3 3 2 

96.061 10.23 20.51 2.05 1 1 

96.124 9.26 20.12 1.57 1 1 

30.93 12.77 2.18 3 2 3 3 3 2 

12.98 11.33 20.59 2.48 44.1 36.83 3.64 2 2 3 3 2 1 2 3 3 1 

87.078 11.12 18.95 2.54 40.04 34.62 2.71 2 3 3 3 3 2 

92.020 10.11 2.24 2 3 2 2 3 3 

93.047 7.66 1.26 45.41 39.1 3.16 3 3 

95.096 8.24 18.32 2.2 1 1 

95.122 8.72 19.78 2.12 1 1 
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I.Specimen BH BW BT GHS GHD MTT LHF IRHF ILJ L2 lf,3 if,4 RI 1/12 R3 R4 

96.026 9.53 2.93 56.97 49.25 3.86 3 3 

96.168 9.34 2.16 3 2 3 3 3 2 

87.028 11.85 18.88 3.11 1 2 3 3 3 2 

88.028 9.87 19.62 2.01 1 1 

88.039 11.89 21.51 3 1 2 3 3 3 1 

89.049 12.44 22.9 2.36 1 1 

93.044 9.93 22.63 2 2 1 1 3 3 1 

94.012 9.58 2.38 46.95 40.16 3.4 3 3 

94.014 8.93 19.8 1.91 1 1 

94.119 13.68 3.72 3 3 

95.175 8.9 2.22 64.39 54.66 4.87 3 3 

95.186 9.95 20.63 2.21 44.39 35.73 4.33 2 2 3 3 3 2 3 3 3 2 

95.193 9.72 19.26 1.28 2 2 2 3 3 1 3 3 3 2 

96.012 10.1 22.3 2.21 49.58 43.72 2.93 2 2 2 3 3 3 2 3 3 2 

96.081 9.25 23.28 1.68 1 1 

96.220 11.66 20.64 2.04 1 1 

96.253 10.33 22.44 1.52 1 1 

97.063 11.31 23.15 2.55 1 1 

97.113 11.03 1.63 40.67 30.51 5.08 3 3 

97.137 13.32 25.71 2.22 1 1 

97.143 11.34 22.61 2.12 2 2 3 3 2 1 3 3 3 1 

98.094 9.02 23.8 2.96 2 1 1 3 3 1 

12.88 10.72 22.66 2.64 40.82 34.41 3.21 2 2 3 3 3 2 3 3 3 2 

01.l00a 10.58 2.05 3 3 

88.021 8.91 17.71 1.88 38.9 30.83 4.04 2 2 3 3 3 1 2 3 3 2 

88.121 10.31 19.73 1.85 1 1 

92.043 9.96 18.25 2.34 1 1 

94.190 8.52 18.46 1.49 1 1 

95.031 8.69 17.48 1.85 2 1 2 3 2 2 

95.083 7.42 17.93 2.45 45.25 37.54 3.86 2 2 3 3 3 2 2 3 2 2 

97.230 8.86 18.51 2.07 1 2 2 2 3 3 

87.007 10.94 2.93 49.88 42.86 3.51 3 3 

87.130 9.73 18.85 2.15 47.8 38.63 4.59 2 2 2 2 2 2 2 2 2 2 
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l,Specimen BH BW BT GHS GHD MTT LHF 'iRHF L1 1/.,2 L3 1/.,4 Rl 1/l.2 1/l.3 R4 

88.055 9.7 24.07 2.49 2 2 3 3 3 1 3 3 3 1 

88.126 10.13 2.27 1 3 

89.098 9.27 2.98 43.49 36.01 3.74 2 2 2 2 3 3 2 2 3 3 

92.147 10.24 2.3 47.11 42.09 2.51 3 3 

92.174 11.67 2.81 47.73 37.82 4.96 3 3 

93.062 11.15 19.19 3.29 1 1 

93.152 10.44 1.91 2 3 3 3 3 1 

94.032 9.63 20.41 1.93 1 1 

94.041 11.93 2.28 50.03 43.18 3.43 3 3 

95.110 10.03 20.65 1.21 1 1 

95.119 9.89 18.74 2.15 2 1 2 2 2 1 

95.124 9.19 1.95 3 3 

95.153 11.45 19.91 1.39 1 1 

95.204 11.22 1.91 44.95 39.41 2.77 2 2 3 3 3 2 2 3 3 3 

95.226 12.98 21.21 2.23 1 1 

96.088 12.06 1.84 45.77 36.41 4.68 3 2 3 3 3 2 

96.128 12.23 1.78 3 3 

96.199 10.62 22.6 1.95 42.49 36.62 2.94 2 2 2 3 3 2 2 3 3 1 

96.228 9.56 20.08 2.31 2 1 2 2 3 2 

97.002 11.36 20.31 1.73 53.06 46.64 3.21 2 2 2 3 3 2 1 2 2 1 

97.042 11.91 22.54 2.45 2 2 2 3 3 2 2 3 3 2 

97.133 12.04 1.9 50.98 43.36 3.81 3 3 

97.174 12.96 19.06 2.32 1 1 

97.226 9.94 2.15 42.26 36.71 2.78 3 2 3 3 3 2 

87.019 9.29 1.88 45.51 38.03 3.74 2 3 3 3 3 1 

88.060 8.81 16.35 2.05 45.58 38.33 3.63 2 2 3 3 3 2 1 3 1 1 

88.064 8.51 19.39 2.57 1 1 

89.004 9.99 19.32 2.44 2 1 3 3 3 2 

93.008 8.6 16.04 2.3 1 1 

93.137 9.13 18.2 1.87 2 1 1 2 1 1 

94.201 8.04 1.72 3 2 2 2 3 1 

96.082 9.8 17.35 1.44 1 1 

96.084 8.24 18.79 1.99 2 1 1 3 2 1 
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!Specimen BH BW BT GHS GHD MTT LHF IRHF 'LI 'l2 L3 'l4 RI R2 ~3 R4 

97.001 8.44 19.71 1.58 2 2 2 3 3 1 2 3 2 2 

97.068 9.43 15.96 2.21 1 1 

97.223 7.23 1.78 41.14 33.72 3.71 3 2 2 3 3 2 

87.089 10.22 22.14 1.73 1 1 

87.126 11.14 22.78 2.35 46.48 36.86 4.81 3 2 3 3 3 1 

87.129 11.57 19.01 2.29 1 1 

88.003 11.14 19.73 1.88 1 1 

88.019 10.2 2.13 44.56 36.76 3.9 3 3 

88.117 9.43 1.8 3 1 

88.130 8.07 2.19 3 2 3 3 3 2 

89.036 10.38 22.59 1.79 1 1 

92.074 12.39 20.16 2.78 1 1 

92.076 12.29 22.22 3.32 42.15 34.1 4.03 2 2 3 3 3 2 3 3 3 2 

93.136 9.98 2.95 51.56 44.09 3.74 3 3 

94.177 12.78 20.64 2.56 43.51 36.2 3.66 2 2 3 3 2 2 2 2 1 3 

94.186 10.44 25.73 2.8 1 2 2 3 3 1 

95.037 10.76 2.67 47.6 41 3.3 3 3 

95.113 11.36 21.58 2.17 1 1 

95.164 9.39 19.44 2.89 1 1 

96.107 10.81 2.15 47.59 41.82 2.89 2 3 3 3 3 1 

96.226 11.53 21.95 1.27 1 1 

96.243 13.15 22.8 1.93 1 1 

97.015 9.33 2.63 41.03 34.66 3.19 2 1 3 3 3 2 

97.027 13.85 21.09 1.54 1 1 

97.064 12.09 24.27 1.59 2 2 2 2 3 2 2 3 2 2 

97.204 10.49 20.5 2.39 1 1 

98.043 10.53 2.06 3 3 

98.085 10.77 23.79 2.66 46.8 35.63 5.59 2 2 3 3 3 1 3 3 3 1 

98.088 12.13 2.21 44.66 38.53 3.07 3 2 3 3 3 2 

10.88 12.29 2.77 47.24 39.97 3.64 3 3 

96.19f 12.38 2.49 43.01 37.22 2.9 2 3 3 3 3 2 

88.128 9.85 2.59 2 3 3 3 3 2 

93.191 9.17 16.41 1.61 1 1 

277 



!Specimen BH BW BT GHS GHD MTT LHF IRHF LI ~2 L3 ~4 RI l/l2 R3 R4 

96.141 9.4 16.88 2.12 1 1 

86.094 10.64 21.57 2.32 1 1 

87.020 12.03 20.31 2.36 1 1 

88.009a 10.53 19.7 1.75 2 1 1 3 2 1 

88.056 11.52 21.62 2.85 1 2 2 3 3 3 

88.066 11.26 2.89 44.76 37.61 3.58 3 3 

93.023 11.87 2.1 3 1 

93.085 10.52 2.89 37.38 29.55 3.92 2 3 2 3 3 2 

94.060 10.64 24.02 1.21 1 1 

94.199 11.49 20.26 3.09 2 1 3 3 3 1 

95.030 8.89 1.56 40.67 33.91 3.38 2 3 3 3 3 1 

95.069 10.14 24.08 2.74 38.24 30.96 3.64 2 2 3 3 3 1 3 3 3 1 

95.139 10.99 22.08 2.22 1 1 

95.187 11 22.83 2 2 1 2 2 3 1 

96.184 12.19 22.03 3.38 47.96 40.18 3.89 2 2 3 3 3 2 1 2 2 1 

96.214 10.18 23.47 2.27 45.58 37.75 3.92 1 1 

96.223 9.02 1.79 52.71 44.23 4.24 3 3 

97.039 12.17 23.64 1.9 1 1 

97.151 9.98 21.52 2.44 1 1 

97.182 11.77 24.05 2.19 1 1 

97.236 8.58 18.28 1.6 1 1 

98.077 10.18 21.64 2.28 47.6 38.88 4.36 2 2 2 3 2 2 2 2 2 2 

01.134a 10.4 0.92 3 1 

93.198 7.64 18.16 1.71 1 2 1 3 3 1 

93.204 9.07 1.54 44.96 36.48 4.24 3 3 

94.065 7.55 19.04 1.86 46.52 40.66 2.93 2 2 2 3 3 3 2 3 3 2 

96.181 10.88 19.01 2.06 1 2 3 3 3 1 

97.103 9.13 19.41 1.51 1 2 3 3 3 2 

23.88 9.53 18.01 2.49 2 1 2 3 3 2 

87.025 11.02 21.98 2.35 2 1 3 3 3 1 

88.094 8.85 1.68 3 2 3 3 3 1 

88.148 9.78 2.39 53.61 45.59 4.01 3 3 

88.164 10.88 21.69 1.87 39.09 34.2 2.45 2 2 3 3 3 1 1 3 1 1 
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Specimen BH BW BT GHS GHD MTT IJ..HF IRHF LI L2 ~3 L4 RI ~2 R3 R4 

89.034 11.36 2.57 49.03 38.48 5.28 3 3 

92.083 12.29 21.88 41.37 32.66 4.36 2 2 2 2 2 2 2 2 2 2 

92.126 11.2 3.04 46.48 41 2.74 3 3 

93.093 10.18 17.27 3.29 1 1 

93.156 12.54 25.93 2.42 1 1 

93.202 12.39 22.96 1.91 1 1 

94.099 11.64 3 44.42 35.22 4.6 2 3 3 3 3 1 

94.143 11.8 21.93 1.51 1 1 

95.079 10.4 20.27 2.07 1 1 

95.092 9.43 19.4 3.25 1 1 

95.216 9.93 20.92 1.8 1 1 

96.017 10.61 2.12 3 3 

96.052 11.55 20.3 2.31 1 1 

97.018 12.35 25.19 2.39 47.2 36.91 5.15 2 2 2 3 3 2 2 3 3 2 

97.029 9.58 1.7 41.72 33.36 4.18 2 3 2 3 3 2 

97.035 10.82 24.18 3.15 2 1 2 2 3 2 

97.170 10.99 22.42 3.17 1 2 2 3 3 1 

97.171 11.32 19.94 3.37 1 1 

97.178 9.88 19.02 2.29 49.25 41.58 3.84 1 2 1 2 2 1 

97.203 10.76 21.04 2.4 2 2 3 3 3 2 2 2 3 2 

98.040 11.67 21.04 2.29 44.64 38.58 3.03 3 2 2 2 3 1 

98.090 11.61 19.44 2.38 1 2 2 3 3 1 

4.89 10.01 17.13 2.4 34.48 27.81 3.34 2 2 3 3 3 2 2 3 3 2 

88.145 9.21 16.52 1.17 1 1 

89.028 10.42 19.21 2.25 1 1 

95.120 8.53 16.8 2.27 1 1 

95.173 8.88 14.77 2.02 1 1 

96.123 9.48 1.55 3 2 3 3 3 2 

97.183 10.4 18.23 1.83 1 1 

98.062 8.22 17.05 1.91 1 1 

99.29f 9.49 17.79 2.87 1 1 

87.01 la 11.38 2.28 3 2 3 3 3 1 

87.012 10.46 2.88 3 1 
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!Specimen BH BW BT GHS GHD MTT LHF IRHF LI 1/,2 L3 I/A RI R2 RJ R4 

87.093 12.32 24.01 2.66 31.93 26.21 2.86 2 2 2 3 3 1 1 3 3 1 

87.113 13.14 50.07 44.13 2.97 3 3 

88.104 10.56 19:5 3.49 35.92 29.72 3.1 1 2 1 3 3 1 

93.014 11.55 24.11 2.26 1 1 

93.210 10.06 23.05 2.14 1 1 

94.025 10.46 3.03 3 2 1 3 3 1 

94.142 10.12 21.14 1.95 43.95 37.45 3.25 2 2 2 3 3 2 1 1 2 1 

94.158 11.11 18.86 2.5 1 1 

95.048 8.02 1.95 46.98 38.54 4.22 3 2 1 2 2 1 

95.061 10.5 23.33 2.5 1 1 

96.127 9.23 18.36 2.37 2 1 2 2 3 3 

96.265 13.21 1.88 46.54 41.28 2.63 3 3 

97.112 11.1 19.09 1.83 1 1 

97.210 12.96 18.42 2.57 1 1 

98.023 12.81 2.47 49.94 45.26 2.34 3 2 1 2 2 1 

98.031 9.67 19.68 2.18 45.11 35.96 4.58 2 2 2 2 3 2 2 2 1 1 

98.054 10.66 19.01 2.64 42.64 33.9 4.37 2 2 2 2 2 2 2 3 2 2 

98.070 9.32 23.79 2.05 51.07 44.05 3.51 2 2 2 3 2 1 2 3 2 2 

12.9 11.74 21.9 2.82 2 1 2 3 3 1 

88.120 10.77 17.44 2.28 41.34 32.07 4.64 2 2 3 3 3 2 2 3 3 2 

89.101 9.08 2.08 42.14 37.27 2.44 3 3 

92.089 11.49 1.95 2 1 3 3 3 1 

93.149 9.65 14.22 2.01 1 1 

98.029 8.14 18.8 1.86 1 1 

87.066 11.54 24.85 2.07 1 1 

87.154 12.28 2.34 50.42 41.67 4.38 3 3 

88.006 9.26 21.28 2.89 2 1 2 3 3 3 

92.156 12.31 2.2 45.87 39.26 3.31 2 3 3 3 2 2 

94.173 11.6 22.18 2.43 1 1 

94.197 11.12 2.6 42.79 39.64 1.58 2 3 3 3 3 2 

95.199 11.32 2.01 49.26 41.99 3.64 2 3 2 3 3 2 

96.010 9.23 2.32 38.42 30.31 4.06 2 3 3 3 3 1 

96.090 11.41 21.74 2.23 45.93 39.23 3.35 2 2 3 3 3 2 3 2 2 2 
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!Specimen BH BW BT GHS GHD MTT LHF l,RHF ''LI L2 L3 IIA RI 'fl,2 1/1.3 1/1.4 

96.155 11.98 22.97 1.95 1 1 

96.240 9.93 1.71 3 1 

97.050 12.33 21.28 2.57 1 1 

97.065 10.91 20.1 2.11 1 1 

97.108 9.44 24.02 1.57 47.63 37.65 4.99 2 2 3 3 3 2 2 3 3 2 

97.110 10.76 20.44 2.79 1 2 3 3 3 2 

97.129 9.4 20.6 1.83 1 1 

11.89 9.31 23.69 2 2 1 2 2 3 2 

5.93 8.55 21.12 2.25 2 2 3 3 3 2 3 3 3 2 

94.22f 10.65 20.7 2.34 2 1 2 3 3 1 

00.20f 11.86 21.4 1.37 2 1 1 2 3 1 

96.037 9.46 15.17 1.54 1 1 

97.128 9.27 18.02 2.17 1 1 

87.020a 9.89 19.39 2.41 1 1 

87.029a 11.67 21.21 2.31 1 1 

87.040 9.06 21.74 1.75 1 2 3 3 2 3 

87.064 10.69 2.23 1 3 

88.001 10.71 1.74 48.67 42.19 3.24 3 3 

88.139 11.19 23.41 1.58 1 1 

89.102 12.05 21.96 2.06 1 1 

92.039 9.34 2.37 44.45 36.27 4.09 3 3 

92.049 10.81 2.96 1 3 

92.094 9.64 2.01 36.65 29.01 3.82 3 2 1 3 3 3 

92.097 10.79 19.67 2.77 1 1 

93.117 10.36 21.06 2.11 43.65 35.11 4.27 2 2 2 3 3 3 2 3 3 1 

93.180 10.64 22.39 1.72 34.3 2 2 3 3 3 1 1 1 2 1 

93.186 10.16 24.6 1.94 1 1 

94.017 8.66 1.79 48.81 41.16 3.83 3 3 

94.080 12.29 3.57 45.09 38.81 3.14 3 3 

94.090 11.24 22.68 1.6 2 1 3 3 3 1 

94.098 11.6 20.43 2.5 1 1 

94.114 8.11 18.71 1.86 1 1 

95.020 10.2 21.68 2.43 1 1 
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Specimen BH BW BT GHS GHD MTT LHF RHF lf.,J IJ,2 L3 lf-4 RI R2 l/l3 R4 

95.049 11.39 21.44 2.2 1 1 

95.055 11.15 1.66 49.52 42.32 3.6 3 2 3 3 3 1 

95.215 9.44 22.65 3.11 1 2 1 2 3 2 

96.043 11.12 2.19 1 3 

96.194 11.4 18.76 2.21 1 1 

97.071 8.4 22.17 2.11 1 1 

97.091 10.2 24.13 1.35 1 1 

97.097 11.59 22.71 2.55 1 1 

97.214 12.17 22.53 2.3 1 1 

97.235 12 23.08 2.47 1 1 

98.079 9.9 18.99 1.37 2 1 1 3 2 2 

27.9 11.29 2.44 3 2 2 2 3 2 

87.076 10.25 17.54 1.77 1 1 

87.098 9.78 1.7 46.87 39.51 3.68 3 3 

88.042 11.08 17.02 1.9 1 1 

88.119 9.06 2.27 34.21 28.85 2.68 3 3 

89.074 10.96 16.1 3.65 1 1 

94.084 10.68 1.96 2 2 3 3 2 2 3 3 2 2 

96.029 8.34 1.78 2 3 3 3 3 2 

96.054 9.9 17.47 2.68 1 1 

97.188 11.28 18.56 2.59 34.45 27.32 3.57 2 2 3 3 3 1 3 3 3 1 

87.071 10.27 21.35 2.57 1 1 

87.105 10.34 20.81 2.28 2 1 2 3 3 1 

87.133 10.43 2.36 42.25 36.4 2.93 3 3 

89.064 11.55 22.51 2.09 1 1 

92.140 10.59 20.93 2.43 47.39 41.31 3.04 2 2 2 3 2 2 2 2 2 2 

92.146 9.17 18.69 2.52 1 1 

93.060 10.99 1.9 44.74 35.34 4.7 3 3 

93.094 10.44 1.28 48.32 39.35 4.49 3 2 1 3 3 1 

93.125 11.55 18.83 2.56 2 1 3 3 2 2 

94.053 12.55 21.96 2.42 1 1 

95.027 9.93 2.19 38.57 30.7 3.94 2 3 3 3 3 2 

95.202 9.78 17.96 1.99 1 1 
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Specimen BH BW BT GHS GHD MTT LHF IRHF ILJ L2 IL3 L4 IRJ IR2 R3 R4 

96.053 12.02 2.18 52.13 43.99 4.07 3 3 

96.151 11.09 22.33 2.21 1 1 

97.047 12.11 23.99 2.16 1 2 3 3 1 1 

98.074 12.22 20.09 2.93 1 1 

1.82 10.11 25.39 2.92 51.37 45.94 2.72 2 2 3 3 3 2 3 3 3 2 

4.87 10.32 2.88 42.02 34.29 3.87 3 2 2 1 3 2 

1.92 11.57 2.49 3 3 

36.93 9.46 23.05 2.01 2 1 3 3 3 2 

39.93 11.22 23.54 2.23 1 1 

4.96 10.1 2.57 49.61 42.91 3.35 3 3 

87.142 10.01 2.34 46.64 39.81 3.42 3 3 

88.082 7.63 17.01 1.67 1 1 

93.013 8.02 16.77 1.92 1 1 

93.130 7.61 1.55 3 3 

94.063 9.04 14.93 1.93 1 1 

95.025 10.73 19.06 2.24 1 2 2 2 3 2 

87.041 9.11 18.35 3.1 1 1 

87.047 11.11 21.47 2.3 1 1 

87.083 11.32 19.27 1.64 1 1 

88.085 12.89 24.05 2.44 61.51 53.77 3.87 2 2 3 3 3 2 3 3 3 1 

88.109 9.22 26.3 1.42 1 1 

89.052 12.6 21.8 3.29 2 1 3 3 3 2 

92.154 9.13 19.95 1.69 1 1 

93.011 8.88 2.09 3 3 

93.029 9.36 24.32 2.38 2 2 3 3 3 1 3 3 3 2 

93.082 11.36 22 2.64 2 1 3 3 3 1 

93.197 10.9 2.36 43.24 36.19 3.53 3 3 

95.046 11.33 24.99 1.91 1 1 

95.128 10.03 22.35 2.1 1 2 3 3 2 3 

95.211 12.84 20.64 2.69 1 2 1 3 2 1 

96.022 11.79 22.22 1.14 1 1 

96.071 10.94 20.18 2.44 2 1 2 3 3 1 

96.112 10.44 1.96 47.87 41.71 3.08 3 3 
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!Specimen BH BW BT GHS GHD MTT LHF IRHF LI 1/.2 L3 1/.4 Rl iR.2 iR.3 R4 

96.118 12.42 2.91 45.17 35.41 4.88 3 3 

96.120 10.72 20.61 2.01 1 1 

96.183 10.12 2.62 55.73 48.73 3.5 2 1 3 3 3 2 

96.203 10 25.87 2.87 1 1 

96.206 10.45 2.32 44.37 38.01 3.18 3 3 

96.242 10.57 22.61 2.25 1 1 

97.032 12.8 21.9 1.76 45.15 36.67 4.24 1 1 

97.154 8.66 24.21 2.16 49.44 42 3.72 2 2 2 3 3 2 3 3 3 1 

97.197 10.03 2.9 48.1 40.94 3.58 3 3 

98.051 10.11 22.94 2.3 49.41 40.39 4.51 2 2 3 3 3 2 3 3 3 1 

14.88 13.37 23.57 3.04 1 1 

10.95 12.57 19.91 1.84 1 1 

88.047 8.78 20.63 2.35 1 1 

89.072 8.04 1.99 52.41 44.62 3.9 3 2 3 2 3 3 

94.138 7.37 16.99 1.37 2 1 2 2 2 2 

95.184 9.8 19.71 1.78 46.58 35.98 5.3 2 2 2 2 2 1 1 2 2 1 

87.016a 10.77 23.47 2.52 1 1 

87.040a 11.76 24.02 2.17 1 2 3 3 3 1 

87.062b 11.7 2.27 44.46 37.68 3.39 2 3 3 3 3 1 

92.127 11.36 3.04 1 2 3 3 2 2 

93.077 10.22 24.97 2.37 1 1 

94.107 10.3 23.35 2.6 1 1 

94.178 9.86 22.45 1.87 2 1 3 3 3 2 

95.159 7.72 2.2 45.43 38.63 3.4 3 3 

95.185 10.53 2.25 46.24 38.04 4.1 3 3 

96.113 9.93 21.58 2.17 1 1 

96.165 12.46 19.23 2.31 1 1 

97.083 11.42 20.02 2.56 36.89 30.88 3.01 2 2 3 3 2 3 2 3 3 3 

97.100 10.76 2.79 65.96 57.04 4.46 3 2 2 3 3 2 

4.99 10.88 24.31 3.1 2 1 2 3 3 1 

95.227 9.31 16.99 2.22 1 1 

97.180 8.88 19.47 2.03 42.38 34.57 3.91 2 2 1 2 2 1 3 3 1 1 

98.030 9.02 18.82 1.84 1 2 1 3 3 1 
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!Specimen BH BW BT GHS GHD MTT LHF !RHF 1/,J L2 'L3 'l-4 RI !(l.2 !(l.3 R4 

88.002 10.01 2.14 1 3 

88.125 11.78 2.6 48.38 39.87 4.26 3 3 

89.001 10.34 19.32 2.91 1 2 2 2 2 1 

89.027 9.81 18.37 2.52 1 1 

92.050 11.73 1.92 34.99 28.81 3.09 3 3 

94.055 8.91 17.67 2.47 2 2 3 3 3 2 3 3 3 2 

95.088 10.65 1.28 46.68 37.63 4.53 3 2 3 3 3 2 

96.044 10.94 1.14 43.87 37.08 3.4 3 3 

97.140 9.23 2.12 51.09 44.17 3.46 3 2 2 3 3 3 

98.033 10.19 23.65 1.59 1 1 

98.080 9.6 21.48 2.09 48.22 40.64 3.79 2 2 3 3 3 2 3 3 3 2 

7.87 7.58 17.78 2.69 33.73 27.73 3 2 2 2 3 3 2 3 3 2 3 

18.91 8.94 26.98 3.1 58.25 50.44 3.91 2 2 2 3 3 2 2 3 3 2 

87.043 9.62 19.69 1.52 1 1 

89.025 10.97 18.l 2.51 1 1 

95.161 7.77 2.31 46.55 38.51 4.02 3 2 3 3 3 2 

96.008 8.01 16.71 1.69 39.47 32.64 3.42 2 2 3 3 3 2 3 3 3 2 

96.177 9.7 2.31 38.39 30.99 3.7 3 2 3 3 3 1 

96.252 9.55 20.44 1.88 2 1 3 3 3 2 

97.006 9.45 20.13 1.86 1 1 

97.142 7.13 18.95 1.05 2 1 3 3 3 2 

97.146 9.78 18.14 1.44 1 1 

86.091 10.55 18.34 2.56 1 1 

87.012a 11.05 22.18 4.44 2 1 3 3 3 2 

87.074 11.92 21.35 2.65 1 1 

87.094 11.21 22.26 2.16 1 1 

87.124 12.81 2.2 34.68 27.89 3.4 3 3 

88.083 11.23 2.22 38.53 32.98 2.78 3 3 

89.029 12.82 2.86 40.12 32.62 3.75 3 3 

89.076 11.64 21.58 1.81 51.21 43.79 3.71 2 2 2 3 3 1 3 3 3 1 

93.035 9.28 19.81 2.65 1 1 

93.203 11.63 1.85 3 3 

94.004 11.9 25.51 2.43 1 1 
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!Specimen BH BW BT GHS GHD MTT ILHF IRHF ILi IL2 IL3 IL4 IR1 IR2 IR3 IR4 

94.028 11.09 19.09 1.62 1 1 

94.031 10.92 2.64 1 1 

96.149 11.78 20.91 3 2 2 3 3 2 3 1 2 2 1 

96.164 11.24 2.02 3 3 

97.054 12.5 19.74 2.6 1 1 

97.061 10.98 17.26 2.57 1 1 

97.089 9.93 21.27 2.44 53.48 45.24 4.12 2 2 3 3 3 1 3 3 3 1 

97.099 12.74 23.3 2.87 2 2 3 3 3 1 3 3 3 1 

97.212 11.14 20.71 2.6 2 1 2 3 3 2 

0l.37f 12.29 2.1 3 3 

87.00lp 9.15 19.79 2.02 1 1 

93.185 8.6 18.2 1.79 2 1 3 3 3 1 

95.146 10.09 17.73 2.06 48.03 39.71 4.16 2 2 1 2 2 1 1 2 2 1 

95.182 10.21 15.67 1.81 1 1 

96.009 8.86 18.79 2.52 38.51 31.4 3.56 2 2 1 3 3 1 2 3 3 1 

98.044 7.35 17.23 1.59 1 1 

87.003a 12.59 22.48 2.95 58.39 51.2 3.6 2 2 3 3 3 2 1 1 2 1 

87.003p 13.36 2.08 60.12 52.8 3.66 3 3 

89.084 11.21 19.2 3.17 2 2 3 3 3 2 2 3 3 3 

92.082 10.87 23.7 2.68 1 1 

92.170 9.8 2.37 2 3 3 3 3 2 

93.135 8.94 19 2.25 1 1 

95.093 11.3 24.38 3.15 1 1 

95.220 9.2 2.07 3 3 

96.089 12.4 20.26 2.28 1 1 

96.153 8.47 16.37 2.73 1 1 

96.182 11.71 2.55 2 3 2 3 2 1 

0l.15f 11.39 20.5 2.13 1 1 

87.060b 9.87 24.71 2.32 1 1 

88.115 7.93 16.59 2.15 1 1 

88.153 7.92 18.82 1.9 1 1 

94.088 9.4 20 2.53 2 2 3 3 3 2 2 3 3 2 

96.137 8.71 15.94 1.73 1 1 
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!Specimen BH BW BT GHS GHD MTT LHF RHF ill L2 L3 'l4 RJ 'll-2 'll-3 R4 

96.256 9.82 19.58 2.37 1 1 

87.005a 10.84 24.98 2.26 44.16 38.19 2.99 2 3 3 3 3 1 

87.051a 9.82 22.15 2.48 1 1 

88.091 11.65 24.95 2.16 47.28 39.48 3.9 2 2 3 3 3 1 3 3 3 1 

89.054 11.36 21.96 2.63 1 1 

92.034 10.08 17.89 2.19 1 1 

92.047 9.77 22.6 2.14 1 2 1 1 2 1 

92.167 10.07 2.62 3 1 

92.173 12.6 2.58 3 3 

93.124 12.78 22.38 2.23 1 1 

93.181 8.67 2.97 3 3 

94.049 12.87 21.19 2.03 49.13 40.77 4.18 2 2 3 3 3 2 3 3 3 2 

95.101 11.62 18.54 1.6 1 2 1 2 1 1 

95.194 11.21 1.41 48.45 36.8 5.83 2 3 3 3 3 2 

96.014 12.21 23.13 2.04 54.3 47.5 3.4 2 2 2 3 3 2 3 3 3 1 

96.077 9.72 20.14 2.18 1 1 

98.010 9.73 21.71 1.38 1 1 

29.99 11.88 1.91 3 1 

96.078 7.84 2.07 44.16 36.05 4.06 3 3 

96.106 9.17 1.89 3 3 

96.178 8.06 2.46 35.62 30.26 2.68 3 2 3 3 3 2 

6.92 8.53 18.57 1.89 48.47 40.87 3.8 2 2 3 3 3 2 3 3 3 2 

86.087 10.71 19.18 2.63 2 1 1 3 3 1 

87.058 10.22 2.69 55.49 48.1 3.7 3 3 

87.060A 10.69 20.16 2.22 1 2 1 3 2 2 

87.072 9.64 20.37 2.44 2 2 3 3 3 2 3 3 3 2 

88.059 11.21 20.62 1.84 1 1 

89.031 11.95 20.44 3 1 1 

95.167 11.04 19.84 2.85 2 2 3 3 3 2 3 3 3 1 

96.013 11.75 23.09 2.82 1 1 

97.190 10.86 21.22 2.07 1 1 

3.83 10.63 20.67 2.51 1 2 2 2 2 3 

20.95 10.93 2.96 1 3 
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!Specimen BH BW BT GHS GHD MTT LHF IRHF LI ~2 L3 ~4 RI ~2 R3 R4 

2.99 11.46 22.51 2.92 1 2 3 3 3 2 

92.092 9.01 22.96 1.7 46.18 39.68 3.25 2 2 3 3 3 2 3 3 3 2 

86.085 10.76 21.86 2.18 2 1 2 2 3 2 

87.00la 10.24 24.01 2.47 2 2 3 3 3 1 3 3 3 1 

87.014 9.82 24.08 3.21 1 2 2 3 3 3 

87.034a 10.52 3 47.17 38.73 4.22 3 2 3 3 3 2 

87.041a 11.1 1.87 59.35 48.84 5.26 3 2 3 3 3 2 

87.057a 11.49 2.24 41.79 36.1 2.85 3 3 

87.159 10.44 22.72 3.06 45.67 38.87 3.4 2 2 3 3 3 1 3 3 3 1 

88.063 10.47 21.98 2.41 1 1 

89.086 10.67 20.93 1.94 52.48 47.21 2.64 2 2 3 3 3 2 3 3 3 2 

92.086 13.68 2.07 46.64 40.1 3.27 3 3 

93.021 11.3 23.04 2.65 46.13 38.05 4.04 2 2 1 3 3 1 1 3 3 1 

94.007 10.53 1.72 3 3 

94.034 9.55 20.39 1.82 1 1 

94.073 11.03 25.65 1.85 1 1 

94.100 13.42 22.7 2.13 2 1 3 3 3 2 

95.214 10.84 2.17 48.83 41.59 3.62 3 3 

96.119 13.27 1.95 48.18 42.31 2.94 3 3 

96.140 11.3 17.52 1.4 1 1 

97.016 11.33 24.34 2.94 50.35 38.74 5.81 2 2 3 2 1 3 2 3 3 2 

97.169 9.91 19.17 1.82 1 1 

98.034 10.83 19.15 2.85 1 1 

11.94 9.1 21.22 2.12 1 1 

87.140 10.03 19.2 1.2 2 2 1 3 3 2 1 3 3 1 

93.122 9.31 17.65 1.68 1 1 

95.209 8.51 18.41 1.72 1 1 

95.230 10.46 17.31 1.9 1 1 

97.106 9.35 17.63 1.67 1 2 3 3 3 1 

86.079a 10.11 1.75 3 2 2 3 3 3 

87.019a 11.9 2.91 50.37 40.65 4.86 3 3 

87.032a 10.28 2.41 1 3 

88.169 10.72 26.62 2.74 1 1 
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!Specimen BH BW BT GHS GHD MTT LHF RHF ILi L2 L3 IL4 RI R2 W3 R4 

89.051 10.08 20.75 1.6 1 1 

93.009 10.69 18.81 2.78 1 1 

93.214 11.3 21.9 1.87 1 1 

95.056 11.59 19.82 2.2 1 1 

95.191 11.88 17.74 2.64 2 2 2 3 3 2 3 3 3 2 

97.127 12.18 2.74 3 3 

97.175 12.01 2.03 3 3 

87.110 8.92 17.99 2.09 1 2 3 3 3 1 

88.163 7.61 19.12 1.87 2 1 3 3 3 1 

89.045 9.1 16.12 1.3 1 1 

92.138 9.61 1.46 3 2 2 2 2 3 

86.074a 10.62 24.27 2.46 53.14 44.57 4.29 2 3 2 2 3 2 

87.018a 14 3.19 3 1 

87.030 9.46 17.32 2.65 1 1 

87.039b 10.71 23.09 2.01 1 1 

88.152 12.52 18.88 3.56 1 2 2 3 3 1 

89.003 9.55 2.17 44.91 39.01 2.95 3 3 

92.019 8.48 20.71 2.21 2 2 3 3 2 2 3 3 3 2 

92.036 11.63 3.03 51.09 43.7 3.7 3 3 

93.089 11.94 3.04 3 1 

93.098 10.38 2.36 3 3 

93.206 9.6 2.86 50.02 41.13 4.45 3 3 

94.043 9.63 20.58 1.61 1 1 

95.130 11.84 1.58 3 3 

96.087 11.1 23.49 2.58 47.15 38.91 4.12 2 2 3 2 2 1 2 3 3 2 

96.111 8.07 20.41 2.4 1 2 1 1 1 1 

96.231 11.77 2.14 45.87 39.42 3.23 3 3 

96.255 10.5 20.9 1.88 1 1 

97.094 12.18 2.03 2 3 3 3 3 1 

97.124 12.32 21.41 3.34 1 1 

97.206 10.89 20.96 1.7 52.66 44.15 4.26 2 2 3 3 3 2 1 1 1 1 

98.092 11.46 22.36 2.17 2 2 3 3 3 1 1 1 1 1 

6.91 11.17 24.04 2.86 51.97 44.23 3.87 2 2 3 3 3 1 3 3 3 1 
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Specimen BH BW BT GHS GHD MTT £HF RHF 'LI Ll 1/,3 L4 'RI Rl 'R3 'R4 

96.085 10.64 17.77 2.07 2 2 1 1 1 1 1 1 1 1 

97.163 9.78 14.88 1.83 1 1 

1.96 8.78 18.78 1.65 2 2 3 3 3 2 2 3 3 2 

3.99 9.16 2.11 3 3 

87.043a 10.07 24.28 2.3 1 1 

87.044a 10.12 2.31 2 3 3 3 3 2 

92.072 10.91 3.04 67.41 56.92 5.25 2 3 2 3 3 2 

93.076 11.14 3.11 3 3 

93.081 11.28 3.55 53.24 45.22 4.01 3 3 

93.101 10.08 18.87 2.22 1 1 

95.176 10.82 22.38 2.48 1 2 2 2 2 1 

95.222 10.56 1.52 44.69 37.38 3.66 3 3 

97.043 9.95 21.99 2.64 2 2 2 3 3 2 2 3 3 2 

97.090 10.97 18.64 1.74 1 1 

88.002a 10.81 2.63 3 1 

88.075 9.4 22.61 1.8 1 2 1 3 3 1 

88.077 9.97 22.14 2.04 2 1 2 3 3 2 

94.018 9.14 15.16 1.73 35.56 30.52 2.52 2 2 2 3 3 2 2 3 3 2 

94.124 8.43 1.83 3 3 

87.070 11.32 22.12 2.54 47.75 39.66 4.05 2 2 3 3 3 2 3 3 3 1 

87.108 8.73 23.13 1.89 51.2 43.64 3.78 3 3 

88.027 10.15 2.66 47.26 37.99 4.64 2 3 3 3 3 2 

88.043 12.09 20.38 2.41 2 1 3 3 3 2 

89.056 13.2 22.74 3.05 43.93 36.76 3.59 2 2 2 3 3 3 3 3 3 2 

92.055 10.45 20.87 2.61 1 1 

92.075 8.82 2.35 52.71 46.59 3.06 2 3 3 3 3 2 

93.229 12.04 20.4 2.42 2 1 2 3 3 1 

94.071 16.22 19.92 1.89 1 2 3 3 3 2 

94.129 10.76 18.06 1.76 53.22 45.75 3.74 2 2 3 3 3 2 3 3 3 1 

94.137 12.1 20.7 1.9 2 3 2 3 3 1 

97.024 12.92 22.68 2 51.19 45.52 2.84 2 2 2 3 3 2 2 3 3 1 

97.187 10.56 18.44 1.72 36.71 26.08 5.32 1 2 2 3 3 3 

97.220 11.45 22.44 3.19 50.18 42.15 4.02 2 2 1 2 2 1 3 2 2 1 
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Specimen BH BW BT GHS GHD MTT LHF RHF ILi L2 L3 IL4 RI "12 R3 R4 

7.86 9.72 21.77 2.96 40.54 33.54 3.5 3 2 2 3 3 2 

23.94 13.52 1.63 61.19 55.42 2.89 2 3 3 3 3 2 

86.086 9.71 17.21 2.03 38.74 31.83 3.46 2 2 3 3 2 3 3 3 3 2 

87.032 9.48 2.5 3 3 

92.070 11.7 2.32 3 1 

93.086 8.15 1.11 2 3 3 3 3 2 

94.187 9.7 17.38 1.72 1 1 

95.044 10.19 18.45 1.92 1 1 

96.079 11.7 18.43 1.02 1 1 

11.9 9.21 2.16 3 3 

87.024a 13.38 24.56 3.39 3 1 

87.064a 13.84 21.09 2.81 1 1 

87.082 12.48 22.69 2.42 1 2 3 2 3 2 

89.094 10.05 22.97 1.53 57.17 48.68 4.25 2 2 2 3 3 3 1 3 3 I 

92.129 12.47 2.96 47.04 38.11 4.47 2 3 1 3 3 3 

92.157 11.08 21.24 2.02 1 2 3 2 3 2 

94.174 12.05 2.12 42.51 35.03 3.74 3 3 

95.058 11.75 22.76 2.8 1 1 

95.196 11.43 22.5 1.62 1 1 

96.193 11.08 23.85 1.88 35.35 27.84 3.76 2 2 3 3 3 1 2 2 3 1 

97.158 11.86 25.95 2.53 2 2 2 3 3 2 2 3 3 2 

98.028 14.3 23.78 3.26 59.35 50.44 4.46 2 2 3 3 3 1 3 3 3 I 

98.072 9.23 1.81 3 3 

24.88 11.56 1.91 3 3 

3.91 9.62 22.77 2.19 1 2 3 3 3 2 

31.93 11.87 1.99 56.42 48.47 3.98 3 3 

00.18f 9.51 2.35 2 3 3 3 3 1 

92.044 10.04 16.19 1.43 1 1 

92.114 8.34 2.47 51.73 43.3 4.22 2 3 3 3 3 1 

95.086 10.75 1.83 38.82 32.03 3.4 2 2 3 3 3 2 3 3 3 2 

96.198 11.66 21.07 3.04 2 1 2 3 3 2 

86.076a 10.26 21.52 3.11 1 2 1 3 1 1 

87.051 9.3 1.59 44.24 38.54 2.85 3 3 
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!Specimen BH BW BT GHS GHD MTT LHF IRHF LI i2 L3 L4 RI ~2 R3 R4 

88.018 9.1 21.62 2.96 1 1 

89.026 11.56 1.6 54.65 46.52 4.07 3 3 

89.035 11.98 22.28 3.2 1 2 3 2 3 2 

89.090 11.38 2.58 3 3 

92.021 10.2 20.45 2.85 1 1 

92.054 11.53 18.72 2.24 1 1 

92.118 10.82 24.78 2.54 1 1 

92.122 9.86 20.61 2.28 1 2 1 3 3 1 

93.012 14.7 23.23 3.7 2 1 2 3 3 1 

94.123 12.03 22.11 2.07 1 1 

95.145 9.96 2.43 44.22 37.98 3.12 3 3 

95.192 11.96 21.98 2.53 2 1 2 3 2 1 

96.069 13.33 24.52 2.14 51.71 41.14 5.29 1 2 1 2 2 1 

96.103 11.23 18.78 1.7 1 1 

96.105 11.47 20.9 2.79 52.18 44.69 3.75 2 1 2 2 2 2 

97.116 12.6 23.48 2.56 53.76 45.65 4.06 2 2 2 2 2 1 3 3 3 2 

98.045 11.26 22.7 2.27 51.14 42.51 4.32 2 2 2 2 2 1 1 2 2 1 

6.87 15.25 1.43 31.08 21.89 4.6 2 3 3 3 3 1 

96.158 7.61 1.93 46.46 41.01 2.73 3 2 3 3 3 1 

97.079 7.97 19.15 1.36 1 1 

00.28f 8.44 1.59 3 3 

87.016 14.12 21.53 3.17 1 1 

88.016 13.07 2 3 3 

88.037 11.05 17.2 1.88 1 1 

88.072 9.62 2.74 50.33 44.34 3 3 3 

89.017 13.6 23.19 2.23 1 1 

89.018 11.08 2.75 48.96 41.84 3.56 3 3 

89.046 10.83 2.3 3 3 

93.158 11.71 23.61 2.19 1 1 

94.083 10.44 20.89 2.11 1 2 3 3 3 1 

94.153 11.93 2.45 49.89 42.84 3.53 3 3 

95.018 11.03 22.1 3.3 2 2 2 3 2 1 2 2 3 1 

95.078 11.78 2.42 3 3 
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!Specimen BH BW BT GHS GHD MTT LHF IJU[F If.I L2 1/.3 1/.4 RI 1/l.2 1/l.3 R4 

96.130 11.28 23.89 2.69 49.53 40.63 4.45 2 2 3 3 3 2 3 3 3 2 

97.069 10.87 1.96 2 3 2 3 3 2 

98.032 9.67 23.32 2.28 1 1 

8.91 12.71 21.64 2.33 2 2 2 3 3 2 3 3 3 2 

12.91 13.06 27.14 2.74 51.08 39.09 6 2 2 2 2 2 1 3 3 3 1 

92.041 9.85 2.18 42.39 33.79 4.3 3 3 

92.123 10.23 18.72 1.08 1 1 

1.88 9.39 17.22 2.01 1 1 

7.95 1 1 

87.001 10.91 21.75 2.9 1 1 

94.193 9.33 19.72 1.8 1 1 

96.139 9.73 22.56 2.25 2 2 1 3 3 1 3 3 2 1 

96.236 9.74 2.35 2 3 3 3 3 2 

87.013 9.61 17.26 1.74 1 1 

96.200 8.64 14.66 1.9 1 1 

87.002a 10.01 26.54 1.7 2 1 3 3 3 2 

87.046 12.08 27.26 2.31 2 2 3 3 3 2 3 3 3 1 

87.047a 12.82 2.43 42.81 35.8 3.51 3 3 

87.048 10.15 22.64 2.22 1 1 

87.096 11.84 22.82 3.12 2 2 2 3 3 2 1 2 2 1 

87.151 9.93 2.62 46.04 36.78 4.63 3 3 

88.068 11.66 2.97 44.2 39.5 2.35 3 3 

88.084 10.7 2.25 3 3 

88.150 10.35 18.76 2.24 1 1 

89.013 9.44 2.29 47.8 42.1 2.85 2 3 2 3 3 2 

92.113 11.14 22.71 2.45 2 1 3 3 3 1 

93.109 11.48 20.45 2.47 1 1 

93.114 9.78 21 1.84 1 1 

93.154 11.78 24.39 2.14 1 1 

94.140 10.6 23.39 2.07 49.45 41.08 4.19 1 2 3 3 3 2 

94.163 11.59 22.71 2.89 1 1 

95.168 8.96 1.88 45.54 36.45 4.55 3 2 2 2 3 3 

96.095 11.86 1.69 3 3 
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!,Specimen BH BW BT GHS GHD MTT LHF IRHF LI i2 L3 i4 'fl.I 'fl.2 R3 'R.4 

97.202 10.25 1.87 3 3 

89.057 11.06 17.05 1.98 1 1 

94.030 10.11 17.19 1.49 44.25 36.04 4.11 2 2 2 3 3 1 3 3 3 1 

95.002 9.09 1.81 49.52 43.89 2.82 3 2 2 3 3 2 

96.150 8.07 14.78 1.5 1 1 

87.002 10.89 19.6 2.65 1 1 

87.097 10.37 22.62 2.51 51.73 42.68 4.53 2 2 3 3 3 1 3 3 3 1 

87.101 12.13 23.92 2.47 2 2 1 3 3 1 1 1 1 1 

89.077 11.2 2.28 3 3 

93.031 10.54 21.07 2.4 1 1 

93.155 11.64 23.16 2.53 1 2 2 3 3 1 

93.172 10.06 22.03 1.97 2 1 3 3 3 2 

94.074 12.55 19.65 1.38 1 1 

95.013 12.17 21.72 2.12 51.2 43.1 4.05 2 2 3 3 3 2 2 3 3 2 

95.016 9.36 1.8 47.59 40.3 3.65 3 2 2 3 3 3 

97.066 11.24 2.33 2 3 2 3 3 2 

1.81 8.44 23.38 1.89 1 1 

22.93 12.42 22.48 2.48 1 1 

45.93 12.71 2.17 47.09 39 4.05 3 3 

19.99 10.34 22.72 2.47 1 2 2 3 2 1 

87.008a 9.66 21.91 2.26 1 1 

87.025a 11.75 2.61 3 3 

87.026a 12.1 3.25 2 2 3 3 3 1 3 3 3 1 

87.042a 11.48 2.93 40.02 3 3 

87.109 10.69 21.49 1.93 1 1 

92.087 9.99 2.41 48.36 38.79 4.79 3 3 

92.178 11.1 2.6 40.66 32.05 4.31 3 3 

94.009 8.5 21.12 1.36 2 2 3 3 3 2 3 3 3 2 

96.034 10.78 18.67 1.91 1 1 

96.035 9.88 2.28 44.63 33.55 5.54 3 3 

96.244 12.1 20.12 1.91 1 1 

97.055 11.59 22.41 2.66 1 1 

97.198 10.72 17.79 2.53 1 1 
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!Specimen BH BW BT GHS GHD MTT LHF RHF LI 1(.,2 L3 L4 1/l.l R2 R.3 1/l.4 

97.218 10.31 2.73 2 3 2 3 3 2 

88.012 9.74 18.33 1.84 2 1 3 3 3 2 

94.015 8.28 1.58 3 3 

94.024 9.66 18.63 1.86 1 1 

94.157 6.11 16.44 2.11 1 1 

92.120 9.86 23 2.56 57.37 47.03 5.17 1 2 1 3 3 1 

94.159 9.15 1.85 60.83 49.89 5.47 3 3 

95.034 9.09 19.24 2.64 1 1 

95.212 13.01 21.13 2.27 2 1 1 2 1 1 

88.081 9.23 17.72 2.44 2 1 2 3 2 2 

93.069 8.04 15.53 2.65 1 1 

94.181 11.12 21.4 1.65 1 1 

97.093 8.73 17.01 1.77 1 1 

20.91 8.19 17.66 1.66 2 2 3 3 3 2 3 3 2 2 

93.007 10.36 18.38 2.2 2 1 2 3 3 2 

94.167 14.59 2.87 51.39 44.45 3.47 2 3 2 3 3 3 

95.003 9.66 20.62 2.17 1 2 1 2 1 1 

95.132 10.09 22.11 1.85 2 2 2 3 3 2 3 3 2 3 

98.005 11.74 3.61 3 3 

10.87 12.65 2.08 48.22 40.27 3.98 3 3 

23.93 10.3 20.35 2.76 2 1 1 2 3 3 

92.106 8.89 2.21 3 3 

96.055 8.34 18.19 1.52 1 1 

96.091 9.17 17.43 2.01 2 1 3 3 3 2 

98.014 8.22 2.53 48.47 41.12 3.68 3 2 2 2 3 2 

87.036 12.21 22.67 3.49 1 1 

93.033 9.44 1.2 50.08 41.94 4.07 3 2 2 3 3 3 

94.037 10.05 3.05 3 3 

94.082 11.59 25.14 2.11 52.97 45.07 3.95 2 2 1 2 1 1 2 2 2 1 

96.251 13.73 2.05 55.39 46.21 4.59 3 3 

97.040 11.4 2.4 44.48 36.32 4.08 2 3 3 3 3 2 

98.009 9.27 1.72 3 2 3 3 2 3 

25.91 9.83 2.8 3 3 
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!Specimen BH BW BT GHS GHD MTT LHF IRHF L1 L2 'L3 L4 W.l W.2 R3 R4 

88.046 8.76 18.27 2.36 46.06 39.29 3.39 2 2 2 3 3 2 2 3 3 1 

93.153 8.74 21.56 1.7 2 2 2 3 3 2 2 3 3 2 

01.28[ 10.72 1.96 2 3 3 3 3 1 

86.077a 10.14 25.17 1.99 3 1 

87.004a 13.63 20.45 2.71 39.48 33.43 3.03 2 2 3 3 3 2 3 3 3 2 

88.096 10.02 1.66 34.19 25.38 4.41 3 3 

88.147 9.48 20.01 2.4 1 1 

89.042 12.27 19.89 2.08 2 1 3 3 3 1 

89.062 10.91 21.23 2.27 1 1 

92.062 11.52 3.09 3 3 

92.159 10.46 20.66 2.56 1 1 

97.121 12.73 22.72 2.05 44 34.9 4.55 2 2 2 2 2 1 2 2 2 1 

22.9 13.55 22.01 2.15 1 1 

18.93 9.39 2.27 3 3 

87.031 8.66 1.66 3 3 

88.143 17.2 1.77 42.45 36 3.23 3 3 

96.129 7.43 1.87 2 3 3 3 3 2 

98.057 10.05 21.68 1.22 1 2 2 2 2 1 

87.0lOa 10.66 24.35 2.53 2 2 3 3 3 1 3 3 3 2 

87.014a 11.57 2.23 45.58 36.58 4.5 3 2 3 3 3 2 

87.029 12.2 3.43 46.34 39.37 3.49 3 3 

87.055 9.33 22.36 2.06 1 1 

93.173 9.99 18.81 2.21 1 2 3 3 3 2 

97.080 10.89 21.39 1.86 2 2 2 3 3 1 2 2 3 2 

97.122 12.12 21.73 1.92 48.19 41.18 3.51 2 2 2 2 3 3 2 2 2 3 

1.97 11.53 22.19 2.72 2 2 2 3 3 2 2 3 3 2 

87.104 9.72 2.21 45.7 38.13 3.79 3 3 

87.143 8.82 2.25 3 2 2 3 3 1 

95.006 9.16 19.63 2.17 2 1 1 2 3 1 

6.93 10.56 2.04 47.45 39.47 3.99 3 3 

87.002p 11.62 21.49 2.14 2 1 3 3 3 2 

87.021a 12.13 1.69 40.69 39.47 0.61 3 3 

87.033a 11.2 21.6 2.09 42.66 37.07 2.8 2 2 3 3 3 2 3 3 3 2 
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!Specimen BH BW BT GHS GHD MTT LHF RHF 1/,J IL2 L3 IL4 Rl 'R2 lf/.3 lf/.4 

93.070 10.23 21.64 1.68 1 2 3 3 3 2 

94.204 9.35 18.73 0.81 1 1 

95.009 9 22.28 1.8 1 2 1 2 1 1 

95.010 9.26 1.62 44.06 38.07 3 3 3 

95.180 10.75 21.14 2.72 53.85 44.75 4.55 2 2 1 2 2 1 1 3 2 1 

97.086 11.85 2.21 3 3 

98.069 11.76 21.93 2.59 1 2 1 2 2 1 

87.069 10.84 17.2 1.9 1 2 2 3 3 1 

87.131 10.05 18.65 2.56 47.1 39.25 3.93 2 2 3 3 3 1 2 3 3 1 

88.031 10.42 17.44 2.03 1 1 

95.206 10.5 16.27 1.34 1 1 

96.148 8.53 16.17 2.05 1 1 

97.045 8.51 17.36 1.46 1 1 

97.049 10.35 16.17 2.41 1 1 

87.03 la 13.59 24.69 1.46 2 2 3 3 3 1 3 3 3 1 

93.162 11.76 2.37 2 3 3 3 3 2 

96.093 11.75 23.12 1.74 1 2 2 3 2 I 

89.068 8.46 2.08 3 3 

87.022a 11.05 19.31 1.9 2 1 2 3 3 2 

87.061A 10.1 2.21 3 2 3 3 3 2 

88.058 11.86 2.41 35.37 29.92 2.73 3 2 3 3 3 2 

92.017 8.36 1.85 3 3 

95.007 9.51 2.05 41.93 35.19 3.37 3 3 

95.123 8.2 18.32 1.27 2 1 2 3 1 1 

96.073 8.89 2.11 48.16 39.73 4.22 2 3 2 3 3 1 

87.158 13.3 22.84 2.72 1 2 3 3 2 I 

96.098 13.11 2.02 34.69 27.85 3.42 3 3 

96.121 10.47 23 2.04 49.04 44.27 2.39 2 2 1 3 3 1 1 2 3 I 

97.020 11.48 2.05 45.66 38.15 3.76 3 3 

17.97 9.6 18.65 1.85 2 2 1 3 3 1 1 3 3 1 

87.086 11.2 2.64 42.71 35.5 3.61 2 2 3 3 3 1 1 3 3 3 

88.023 11.87 2.4 3 3 

93.059 9.24 2 3 2 2 3 3 3 
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!Specimen BH BW BT GHS GHD MTT LHF 'iRHF If,] L2 if,3 L4 1/l.l ~2 R3 'R4 

93.223 10.71 2.43 45.97 39.11 3.43 2 1 2 3 3 2 

97.184 11.39 21.66 2.47 1 1 

15.93 11.73 3.08 42.65 35.14 3.76 2 3 3 3 3 2 

95.127 9.37 1.67 2 3 3 3 3 2 

96.074 8.59 1.74 44.89 37.71 3.59 3 3 

01.27f 8.77 1.96 3 2 3 3 3 2 

93.020 9.01 21.82 2.45 46.21 38.35 3.93 2 2 3 3 3 2 3 3 3 2 

97.041 10.86 2.22 47.27 38.64 4.32 3 3 

97.156 11.75 22.01 2.93 54.56 46.88 3.84 2 2 1 3 2 1 1 3 3 2 

88.014 10.95 17.3 2.74 2 2 1 3 3 1 1 3 3 1 

95.111 8.95 2.1 54.33 47.84 3.25 3 3 

97.199 10.83 19.85 1.82 1 1 

00.40[ 12.25 2.49 3 3 

96.056 10.49 19.5 2.03 44.53 36.25 4.14 2 2 2 3 3 2 2 3 3 2 

96.176 8.22 16.52 1.97 2 2 3 3 3 1 3 3 3 1 

98.022 8.8 11.02 1.5 1 1 

89.097 10.63 18.44 1.83 1 1 

94.150 11.51 18.94 2.14 1 1 

2.85 9.98 21.08 2.4 60.28 52.01 4.14 2 2 3 3 3 2 3 3 3 2 

87.035 8.24 18.98 2.2 43.44 36.33 3.56 2 2 2 3 3 2 1 3 3 1 

92.104 8.27 18.5 1.56 2 1 2 3 3 1 

97.193 12.78 20.82 2.05 1 1 

98.067 9.14 14.32 1.61 1 1 

21.94 10.27 28 1.43 59.05 52.2 3.43 2 2 2 3 3 1 2 3 3 1 

87.017a 9.95 26.61 2.3 1 1 

87.045 9.99 2.61 3 3 

94.192 9.38 15.87 2.43 2 2 2 3 3 3 2 3 3 3 

95.148 9.88 18.31 2.31 2 1 2 3 2 1 

87.006a 8.64 21.08 2.71 1 1 

87.055a 10.74 2.38 48.08 42.07 3.01 3 3 

97.215 7.77 15.7 2.01 2 2 2 3 3 1 3 3 3 2 

4.94 8.99 2.04 44.18 37.73 3.23 3 3 
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